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Abstract

Modern robots are equipped with sophistacted compliant actuators, allowing the
robot to perform highly dynamic complex movement skills, like different forms of
locomotion, jumping or even playing tennis. However, classical control and engineer-
ing techniques typically fail for such complex tasks. A more promising perspective
is to let the robot learn the movement skill by trial and error, which is also the main
topic of this thesis. I will discuss 3 different topics that are strongly connected to
motor skill learning and present new techniques for each of these fields which can
be seen as a step towards learning rich and complex motor skills.

In the first part of the thesis I will examine reinforcement learning in continuous
state and action spaces as foundation for motor skill learning. Here, I present
two new methods, learning with adaptive state graphs and reinforcement learning
by advantage weighted regression. Both methods can easily deal with continuous
action spaces which are often considered as problematic for standard reinforcement
learning methods.

In the second part, I discuss different types of movement representations. Move-
ment representations are parametric descriptions of a movement plan, and therefore,
provide a lower dimensional representation of the resulting trajectories. Choosing a
compact movement representation which contains task relevant features can consid-
erable facilitate learning of movement skills. Besides elaborating existing methods,
I will introduce 3 new representations. I will introduce the kinematic synergy ap-
proach which provides a low dimensional representation of a high dimensional action
space. Then I will present the motion template framework, which is the first move-
ment representation which can be sequenced in time by the use of reinforcement
learning. The last representation which I introduce is called Planning Movement
Primitive. This representation employs planning already at the level of the move-
ment representation and therefore allows the use of abstract goals or features of
the trajectory as parameter representation, which allows fast learning of complex
movement skills.

Finally, in the last part of the thesis, I will address the policy search problem, i.e.
given a representation of the movement, how can we find a valid parameter setting by
reinforcement learning? Here, I present a new method based on variational inference
which generalizes policy search to different initial situations of the robot.






Zusammenfassung

Moderne Roboter sind heutzutage mit nachgiebigen Motoren ausgestattet welche
die Ausfithrung von komplexen dynamischen Bewegungen erlauben, wie zum Bei-
spiel ein zweibeiniger Gang, Hiipfen oder sogar Tennis spielen. Klassische Control-
Algorithmen schlagen aber fiir solche komplexen Aufgaben meist fehl. Ein vielver-
sprechenderer Ansatz ist es hingegen wenn der Roboter mittels Trial-and-Frror Ler-
nens die Bewegungen selbst erlernt. In dieser Dissertation werde ich 3 sehr wichtige
Themenbereiche des Bewegungslernens diskutieren und neue Methoden présentieren
welche als Schritt in Richtung selbststindiges Lernen von komplexen Bewegungsab-
ldufen gesehen werden kénnen.

Im ersten Teil der Dissertation werde ich Reinforcement Learning in kontinu-
ierlichen Zustands und Aktionsrdumen als Grundlage des Bewegungslernens unter-
suchen. Hierzu werde ich zwei neue Methoden einfiihren, Lernen mit Adaptiven-
Zustands Graphen und Reinforcement Learning by Advantage Weighted Regressi-
on. Beide Methoden kénnen einfach mit kontinuierlichen Aktionsriumen umgehen
welche fiir viele Standard Reinforcement Learning Methoden problematisch sind.

Im zweiten Teil dieser Dissertation werde ich verschiedene Bewegungsreprésenta-
tionen disktutieren. Eine Bewegungsreprasentation ist eine parametrische Beschrei-
bung eines Bewegungsplannes, und beschreibt daher eine Trajecktorie mit typischer-
weise wenigen Parametern. Die richtige Wahl der Reprisentation kann das Erlernen
einer Bewegung erheblich vereinfachen. Hier werde ich zunéchst vorhandene Modelle
diskutieren und dannach 3 neue Reprisentationen einfiihren. Der erste Ansatz, kine-
matische Synergies, dient dazu die Dimensionalitidt des Aktionsraumes eines Robo-
ters zu verringern und dadurch das Kontroll-Problem erheblich zu vereinfachen. Als
néchstes stelle ich den Motion Template Ansatz vor. Dieser Ansatz ist der 1. Ansatz
der dazu verwendet werden kann um zu lernen verschiedene Bewegungen hinter-
einander auszufiithren. Die letzte Bewegungsreprisentation die ich vorstellen werde
verwendet Plannungs-Algorithmen um die Bewegung zu generieren. Dies bringt den
Vorteil dass man abstrakte Features oder Ziele der Bewegung direkt als Parameter
der Représentation verwenden kann, welches des Erlernen einer Bewegung erheblich
vereinfachen kann.

Der letzte Teil dieser Thesis beschiftigt sich mit Policy Search, also den erlernen
eines geigneten Parameter-Vektors wenn man eine gegebene Bewegungsreprasentati-
on verwendet. Hier werde ich einen neuen Ansatz vorstellen welcher auf Variational
Inferenz basiert und die Suche nach Parametern unter verschiedenen Anfangszu-
stdnden des Roboters ermdglicht.
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CHAPTER 1

Introduction

Modern robots are equipped with sophistacted compliant actuators, allowing the
robot to perform highly dynamic complex movement skills, like different forms of
locomotion, jumping or even playing tennis. Classical control and engineering tech-
niques typically fail for such complex movements. A more promising perspective
is to let the robot learn the movement skill by trial and error. Learning of such
complex movement skills is still one of the major challenges in robotics research and
the main topic of this thesis.

1.1 Reinforcement Learning

Movement skill learning can easily be formulated as reinforcement learning (RL,
(Sutton, 1996)) problem - the robot autonomously tries different movements and
gets evaluative feedback in form of reward. The agent has to adapt its movement
such that the reward is maximized.

1.1.1 Markov Decision Processes

The RL framework can be nicely described by Markov decision processes (MDPs).
A MDP is defined by the tuple (S, A, P, 7, pg,7), where S is the state space and A is
the action space of the agent. The transition probabilities are given by P(s¢41]s¢, at)
for s¢, 8001 € S and a; € A and the reward of performing action a; in state s; is
given by r(st,a;). The initial state distribution is given by pg(s) and ~ denotes
the discount factor. The underlying principle of MDPs is the Markov assumption,
i.e. given the the current state s; the transition model and the reward model is
independent of past states and actions.

The task of a reinforcement learning agent is to find a policy 7(a¢|s;) which
minimizes the expected future discounted reward

o0

Z’ytr(st,at)

t=0

R™=E SONPOaatNW("St)73t+1 NP('\Snat) )

where the initial state sy is sampled according to pg, actions a; according to the
policy m and the state transition according to our transition model. For expectations,
I will always use this notation - i.e. after the condition operator ’|’, it is always given
according to which random variables the expectation is calculated.

In robotics, we typically deal with continuous state and action spaces, thus I will
always write states s and actions a in vector notation.



2 Chapter 1. Introduction

1.2 Movement Skill Learning

The field of movement skill learning has made considerable progress in recent years
which is documented by several success stories. In (Peters and Schaal, 2006), a robot
learned to swing a baseball pat in order to hit a ball. In (Kober and Peters, 2010),
the game ’ball in the cup’ was learned. Here, the learning performance reported
by the authors was even comparable to a human child. Other impressive results
include playing table tennis (Miilling et al., 2010), performing a jumping movement
with a dog-like robot (Theodorou et al., 2010a) and running with a cheetah-like
(simulated) robot (Wawrzynski, 2009).

However, despite of these success stories, learning, reusing and combining a rich
set of complex movement skills is still one of the major challenges in robotics re-
search. The probably largest problem with robot learning are the high-dimensional
continuous state and action spaces. Our robot has typically many degrees of freedom
(DoF), ranging from 7 for an anthropomorphic robot arm up to 30 for humanoid
robots. If we also include the dynamic state of the robot, and thus the joint veloci-
ties, we quickly reach 15 to 60 state variables. This is out of the scope for most RL
methods. In addition, the continuous control vector is also high-dimensional (one
control variable for each DoF'), which is beyond the scope of many RL algorithms.

Movement skill learning algorithms can be coarsely divided into value-based
and policy search learning algorithms. Value-based algorithms estimate a the value
function V(s). The value function tells us the expected future reward if the agent
follows a certain policy. Value-based approaches are in theory very efficient. The
value function can be used to evaluate every intermediate action of a trajectory,
i.e. we know which actions are responsible for the good or bad evaluation of a
trajectory? This is often called the temporal credit assignment problem. However,
value-functions are usually difficult to estimate in high dimensional continuous state
and action spaces. For this reason most of the more recent movement skill learning
algorithms try to avoid a direct representation of the value function. For a more
detailed description on value-based methods we refer to Chapter 2.

Policy search algorithms on the other hand rely on a parametric representation
of the policy and directly try to optimize the policy parameters without explicitly
estimating a value function. Hence, in difference to value based algorithms, we
can not directly evaluate single actions, but we can only evaluate the costs of the
whole trajectory (by performing whole rollouts on the real system). However, since
learning a value function is problematic for high dimensional continuous state spaces,
more impressive results could be achieved by policy search methods, and therefore,
recent research on policy search algorithms was intensified. We will discuss policy
search methods in more detail in Chapter 9.

The performance of policy search methods strongly depends on the used move-
ment representation. Choosing an adequate movement representation can increase
learning speed of such methods considerably. The most common method is to use a
local movement representation. Local representations directly describe the shape of
the specific movement trajectory. Therefore, they can only be applied for using the
same starting condition in each episode - different starting positions would result
in different trajectories which often requires relearning. The setup with the single
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starting state is often also referred to as the episodic reinforcement learning. While
this restricts the representational power of the policy, it also considerably simplifies
the learning task. Many learning tasks have only become feasible by the episodic
task assumption. Most of the success stories in robotic motor skill learning use a
local representation, while global representations, i.e. a representation which can
be used for any state, are more difficult to learn and therefore less commonly used.
We will discuss different local movement representations in more detail in Chapter
5.

1.3 Structure of this Thesis

This thesis is divided into 3 parts. For each part I first introduce relevant concepts in
the introduction chapter, the subsequent chapters are always based on published or
almost submitted papers where [ significantly contributed as first or second author.
The first part of the thesis discusses value-based methods for learning in continuous
state and action spaces. After the introduction I will present two new value-based
approaches. The first method, discussed in Chapter 3, is a graph-based method.
It represents the continuous state space by a discrete set of nodes in a graph. The
graph is built from experience and grows during learning. The benefit of the graph-
based approach is that we can use local controllers, which are employed to navigate
between nodes, as form of prior knowledge. The local controllers also provide an
efficient treatment of continuous actions. The second value-based method presented
in this thesis is based on weighted regression. We use a weighted regression to sim-
plify the max-operator which usually has to be performed in the action space. This
operator is hard to perform for continuous actions. We prove that an advantage-
weighted regression can be used to replace the max-operator, resulting in a more
efficient value-based algorithm suitable for continuous action spaces.

The second part of the thesis discusses movement representations. Here, I will
present 3 new methods. In Chapter 6 I introduce a new representation which we
denoted as kinematic synergies. It provides a lower dimensional manifold of the
high-dimensional action space of a (in this case humanoid) robot. The use of syn-
ergies significantly simplifies the control of the robot. We applied our approach
to balancing the humanoid robot HOAP-2. In Chapter 7 T introduce the motion
template representation, which is the first movement representation for which a re-
inforcement learning algorithm can be used to combine the templates sequentially
in time. We applied the motion template approach for complex 2-link pendulum
swing-up and balancing tasks. In the last chapter of this part of the thesis I present
a primitive which uses inherent probabilistic planning to generate the movement.
The inherent planner allows to use abstract features or goals of the movement as
parameters. As we will show this representation can simplify the learning problem
in comparison to the commonly used approaches considerably.

The last part of the thesis is devoted to policy search algorithms. Here, T will
present a new approach in Chapter 10 which is based on variational inference and
can generalize policy search to multiple initial situations simultaneously.
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Reinforcement Learning with
Continuous State and Action
Spaces






CHAPTER 2

Introduction

In this part of the thesis I will discuss value-based reinforcement learning methods
which are also suited for continous action spaces. After giving a short introduction
into relevant concepts I will present two new value-based approaches which were
published in (Neumann et al., 2007) (Chapter 3) and (Neumann and Peters, 2009)
(Chapter 4).

2.1 Value-based Methods

Value-based methods (Bertsekas and Tsitsiklis, 1998) estimate the beliefed accumu-
lated future reward for each state s if following a policy , i.e

[e.9]

VT(s) =E [Z vy

t=0

Sp = 8, a¢ ~ W('\St), St41 P('\Snat) >

where 7, = r(s¢,uy) is the reward for each time step and < is the discount factor.
V7 (s) is also called the value function of policy 7. The value function can also be
written in its recursive form, i.e.

V7(s) =E[r(s,a) + V7 (s')|a ~ 7(|s),s' ~ P(-]s,a)] .

The optimal value function is defined as

V*(s) = max VT(s) = mng [r(s,a) +yV*(s)|s' ~ P(-]s,a)],

which is also known as the Bellman-Optimality principle. The V-function evaluates
exclusively states and is therefore not directly applicable for decision making. For
decision making we need a function which evaluates state-action pairs. This function
is usually denoted as the Q-function. The Q-function Q™ (s, a) of policy 7 is defined
as the accumulated reward if we take action a in the first step and subsequently
again follow policy m

Q"(s,2) = E[r(s,a) +7Q7(sa)|s ~ P(ls,a),a’ ~ n([s)]
The optimal Q-function is defined as
Q*(s,a) = E|r(s,a) +7mz}xQ*(s’,a’){s’ ~ P(-|s,a)

Note that the V-function can be easily evaluated if the Q-function is known

VT(s) =E[Q"(s,a)|la~7(|s)], V*(s)= max Q*(s,a) (2.1)
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There are many ways to represent the value function. In the most simple setup
of a discrete state space we can use a tabular representation. For continuous state
spaces we have to rely on parametric or non-parametric function approximators.
For a more detailed discussion on different function approximator schemes please
consult Section 2.2. Before coming to this section we will briefly review existing
methods to learn the value function.

The V-function (or Q-function) is typically estimated from experience, i.e. by
the use of the data points (s, as, 7, s¢+1). Different methods can be applied in this
context, here, we will briefly discuss Temporal Difference (TD) Learning, Batch-
Mode RL and model-based RL.

2.1.1 Temporal Difference Learning

Temporal Difference (TD) methods incrementally estimate the V- or Q-function
from samples. The gathered experience of a single step (s, as, 7¢,S¢41) is used to
to calculate the temporal difference error, which is defined as the 1-step prediction
error of the V-function

6t =1+ ’}/V(StJrl) — V(St).

For tabular representations of the V-function the TD-error can straightforwardly be
used to update V(s;41), i.e.

V(st) = V(st) + ady.

In the case of parametric function approximators, we have to rely on gradient-based
methods (Bertsekas and Tsitsiklis, 1998; Sutton, 1996; Baird, 1995), however, these
methods are either only proofed to converge for special cases like linear function
approximators (Bertsekas and Tsitsiklis, 1998) or are known to have a very slow
convergence rate (Baird, 1995). The data point (s, as,r¢,s¢41) is typically only
used once to update the V or Q-function, subsequently the data point is dismissed.

2.1.2 Batch-Mode Reinforcement Learning

Batch-Mode RL methods use the whole history of the agent to update the V- or
Q-function which allows a more efficient data usage than for standard TD methods.

The first application of Batch-Mode RL was a method called "Experience Replay’
(Lin, 1992) (EP). EP is basically just an extension of TD-learning. After each time
step, K imaginary time steps out of the history of the agent are shown to the
TD-learning algorithm and used to update the Q or V-function. While there has
been a very recent and impressive extension of this approach for using actor critic
algorithms with neural networks (Wawrzynski, 2009), EP is limited to the function
approximator techniques which can be used in the online setup, which excludes
regression trees (Ernst et al., 2005) or Gaussian Processes (Deisenroth et al., 2009).

More recent work in batch mode RL has concentrated on Fitted Q-iteration
(FQI) (Ernst et al., 2003). FQI iteratively approximates the Q-function by using
the whole batch of experienced data points H = {< s;,a;,7;,s, >}1<i<n. For each
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data-point we calculate the target Q-value Q(i) by using the old estimate of the
Q-function at the successor states, i.e.

Qi) = ri+Vils) =i+ ymax Qu(s;, &) (2:2)

Learning the Q-function @Q;y1(s,a) then defines a new regression problem. As this
regression problem is formulated with the whole batch of data, also batch-model
supervised regression methods can be used. The whole process has to be repeated
for L times in order to calculate the optimal Q-function for the next L steps (thus,
L typically needs to be quite high). FQI can be used with all types of function
approximators, very good results have been shown with regression trees and neural
networks. In Chapter 4 we present a new FQI method which uses a weighted
regression to approximate the max operator over the action space in Equation 2.2.
This allows an efficient treatment of continuous action spaces.

2.1.3 Model-Based Techniques

The model-based variant of FQI is fitted V-iteration (Boyan and Moore, 1995) (FVT).
In FVI we iteratively fit the optimal V-function instead of the Q-function. However,
in order to do so, we have to know the transition model P(s|s,a) and the reward
model r(s,a) of the MDP. Both models can again be learned from data or might
already be given as prior knowledge.

Vie1(si) = maxr(si,a)—l—’y/P(s’]si,a)Vk(S')dsi. (2.3)

S

Usually the integral over s’ in continuous state spaces is very hard to perform. This
has limited the use of fitted V-iteration. However, recent work with Gaussian Pro-
cesses (Deisenroth et al., 2009) could circumvent this problem. Due to the Gaussian
transition probabilities the integral can be solved analytically. A similar, slightly
simpler kernel based approach was used in (Jong and Stone, 2007) to estimate the
transition probabilities. The transition model was estimated by a simple linear
averager using a Gaussian similarity kernel. Subsequently the V-function can be
calculated by the use of Prioritized Sweeping (PS, (Moore and Atkeson, 1993)),
which is much more efficient than fitted V-iteration. However, this method can only
be applied to simple, linear function approximators like linear averagers. This has
so far limited this approach to very simple applications.

In Chapter 3, we present a new model-based method which uses a graph-based
representation. Here, the state space is represented by a discrete set of nodes of a
graph which is built adaptively from experience. The graph is called an "Adaptive-
State Graph’ (Neumann et al., 2007). Nodes between the graph can be reached by
the use of local controllers, which are assumed to be part of the prior knowledge.
Because we can always use the local controller to navigate directly to the nodes in
the graph the V-function only needs to be represented at these discrete set of nodes.
Furthermore, simple planning methods such as value iteration can be applied to the
discrete graph in order to calculate the V-function.
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2.2 Continuous State Spaces : V-Function Approxima-
tion

In continuous state spaces we have to rely on function approximation techniques
to estimate the V or Q-function. Many types of approximators can be applied in
this context, including linear function approximators (Sutton, 1996; Timmer and
Riedmiller, 2007), neural networks (Riedmiller, 2005), regression trees (Ernst et al.,
2005), local regression techniques (Neumann and Peters, 2009) and Gaussian Pro-
cesses (Deisenroth et al., 2009). All these methods can be easily applied to batch-
model RL, however, as some approximators inherently use batch updates (such as
regression trees or Gaussian Processes), TD-learning methods have the restriction
that not all available function approximators can be used.

2.2.1 Linear Function Approximators

The most rigorous convergence proofs exists for linear function approximators. Lin-
ear function approximators typically use D (non-linear) features ®;(s) which are
linearly combined to approximate the V-function

The features ®;(s) have to be predefined by the user. Finding a good feature repre-
sentation is non-trivial and considered to be one of the biggest problems when using
linear function approximators.

Due to the linear representation the V-function (or Q-function) for a given pol-
icy can be easily calculated in batch-mode by employing least-square solution tech-
niques, resulting into the Least-Square Temporal Difference (LS-TD) (Boyan, 1999)
algorithm. This algorithm can only be used for policy evaluation, i.e. estimating the
value function of a given policy. It’s variant Least-Square Policy ITteration (LS-PI)
(Lagoudakis and Parr, 2003) can also be used for finding the optimal policy. A
popular method to define the features is to use grid-based RBF-networks or tile-
codings (Sutton and Barto, 1998). However, this usually fails for high dimensional
state spaces because these methods suffer from the curse of dimensionality, i.e. the
number of features scales exponentially with the number of dimensions.

A potential approach to avoid the problem of defining meaningful features by
hand has been proposed in (Kolter and Ng, 2009a). Here, an huge amount of
randomly defined features can be used. In order to avoid overfitting, a Ll-norm
regularization term has been used. The resulting algorithm is called Lasso-TD. Still
the application of this method has so far been limited to rather simple tasks such
as the pendulum swing-up task (Kolter and Ng, 2009a).

2.2.2 Non-Linear Methods

Non-linear methods are usually more flexible than linear function approximators
and do not require manual tuning of the feature representation. They are typically
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difficult to use for TD-learning, however, impressive results could be shown by the
use of batch RL methods.

A commonly used non-linear approach are feedforward neural networks (NNs).
In (Wawrzynski, 2009), the locomotion of a planar simulated cheetah robot is learned
by using neural networks and Experience Replay. NNs have also been applied suc-
cessfully with FQI (Riedmiller, 2005). Here, the main work has been done in the
context of Robocup. This method have been applied for learning to dribble with
a wheeled robot (Riedmiller et al., 2009), learning to control a omni-directional
drive (Riedmiller et al., 2009) or learning to control a slot car-racer (Kietzmann and
Riedmiller, 2009).

Another popular non-linear approximation technique which has been used for
FQI are regression trees, i.e. Extremely-Randomized Trees (ExtRa Trees). In (Ernst
et al., 2005), the ExtRa-Trees have been applied to many standard optimal control
tasks for RL showing that it outperforms online RL. The tree-based approach has
also been applied to simulated HIV (Ernst et al., 2006) and epilepsy treatment
(Guez et al., 2008) tasks. Both methods, FQI with neural network or regression
trees, have been used as baseline methods in my paper (Neumann and Peters, 2009)
where [ introduced a new batch-mode RL algorithm based on advantage weighted
regression.

In (Deisenroth et al., 2009), Gaussian Processes (GPs) have been used to ap-
proximate the V-function as well as the transition model. As GPs show very good
generalization properties, this is one of the most efficient value-based methods seen
so far.

2.3 Continuous Action Spaces : The greedy operator

Another subtle point when using RL for robotics are the continuous action spaces.
From the definition of the optimal V-function we can see that we have to perform
the greedy operator max, over the whole action space. The standard approach for
is to use a discretized set of actions, however, this becomes very inefficient if we
deal with high dimensional action spaces or we need to approximate the policy very
accurately.

In this part of the thesis I will present 2 methods which can solve the max,-
operator efficiently and hence are well suited for continuous action spaces. In Chap-
ter 3 I introduce a graph-based RL method. Instead of using continuous actions the
agent can choose the next node he wants to reach within the graph. The decision
of the agent is therefore discrete, and the max-operator is again easy to solve. The
navigation to the desired node is then done by a local controller, which inherently
uses continuous valued actions. As the graph is adapted to the current task, the
nodes of the graph, and hence the discrete actions of the agent, are always located
in areas relevant for the task.

In Chapter 4 I present a novel method to approximate the max,-operation.
Here, we have shown that by the use of a soft-greedy action selection mechanism the
max, operator can be efficiently approximated by an advantage-weighted regression
(AWR). The AWR can be performed very efficiently and therefore considerably
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simplifies the use of value-based RL methods for continuous actions.
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In this chapter we present a new reinforcement learning approach to finding
optimal solutions for continuous control problems in unknown environments with
arbitrary reward functions. We assume that the local system dynamics in such prob-
lems can be efficiently approximated with simpler models, still it is a hard task to
design globally optimal trajectories. The presented algorithm uses directed explo-
ration to build an adaptive state graph of sample points within the continuous state
space. Global solution trajectories are formed by combining local controllers that
connect nodes of the graph. A new generalization technique exploits the connectiv-
ity of the state graph to predict rewards of unexplored edges. We demonstrate our
approach on complex movement planning tasks with continuous states and actions
in continuous time.

3.1 Introduction

Finding near-optimal solutions for continuous control problems is of great impor-
tance for many research fields. Many of these problems involve difficult reward or
cost functions, which are usually not exactly known in advance. In the weighted
region problem (Mitchell and Papadimitriou, 1991) in path-planning, for example,
we need to find the shortest path to a goal state through regions of varying move-
ment costs. This task is challenging already, but becomes much harder if the agent
neither has a map of the environment nor knows the exact costs associated with the
regions. In robotics arbitrary reward functions can be used e.g. to enforce obstacle
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avoidance or stable and energy-efficient movements. Most existing approaches to
these problems require either complete knowledge of the underlying system, or are
restricted to simple reward functions. In this chapter we present an approach to
this problem that utilizes minimal prior knowledge and deals with arbitrary reward
functions, in order to efficiently learn high quality control strategies for continuous
problems in continuous time.

Reinforcement learning (RL) (Sutton and Barto, 1998) is an attractive frame-
work for the addressed problems. It can learn optimal policies through interaction
with an unknown environment. In continuous environments, the most common ap-
proach is to use parametric approximations to the value functions. However, several
authors have reported problems concerning the learning speed, quality and robust-
ness of the solutions (Baird, 1995; Boyan and Moore, 1995). Our proposed method
transforms the continuous problem into a discrete Markov decision process (MDP)
on a finite set of sample states, using simple local controllers to navigate between
them. Such hierarchical decompositions of the policy are known to speed up the
search for optimal solutions (Sutton et al., 1999). Local controllers for small regions
of the state space are often easily available, and can be seen as minimal prior in-
formation about the task’s underlying system dynamics. Local controllers do not
assume complete knowledge of the environment (e.g. location of obstacles), and are
therefore not sufficient to find globally optimal solutions.

The idea of using local controllers has been applied very successfully in sampling-
based planning methods (Kavraki et al., 1996; Kuffner and LaValle, 2000). These
methods build a graph consisting of random sample points and connect them with
local controllers. A global solution is constructed by combining the paths of sev-
eral local controllers to a path that leads to the goal. The two most prominent
approaches of this style are rapidly exploring random trees (RRTs) (Kuffner and
LaValle, 2000) and probabilistic roadmaps (Kavraki et al., 1996), which were de-
veloped for kinematic path planning in Euclidean configuration spaces. Planning
techniques are very efficient, but their application is limited to completely known
environments.

Our proposed algorithm combines the advantages of RL and local planning to
efficiently learn high quality policies in initially unknown continuous environments
with arbitrary reward functions. The algorithm explores the state space and builds
an adaptive state graph of sample points that are connected by local controllers. We
developed an online approach to building this graph, which immediately incorpo-
rates feedback from the environment, like reward signals or unexpected transitions.
We present exploration heuristics to initially cover the state space sparsely, but
still sufficiently to find ways to a goal state. Later the graph is refined in critical
regions. A novel generalization scheme predicts rewards for unexplored edges, to
avoid unnecessary exploration and find better solutions faster. The adaptive state
graph transforms the continuous control problem into a discrete MDP, for which
the optimal policy can be calculated with exact planning algorithms like dynamic
programming. This results in more accurate policies and reduced running time in
comparison to function approximation techniques. Our algorithm naturally deals
with continuous actions and continuous time steps, which leads to smoother and
more natural trajectories (Doya et al., 2000).
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The idea of combining local controllers with RL has been studied in the past: The
Parti-game algorithm (Moore and Atkeson, 1995) divides a continuous state space
into cells of varying size and uses local controllers to navigate between the cells.
Parti-game in its original formulation cannot maximize arbitrary reward functions,
but is restricted to finding paths to a goal state through regions of homogeneous
reward. The Parti-game idea was extended to value function approximation for
general continuous control problems in (Munos and Moore, 2002). In contrast to
our method they assume knowledge of the whole environment and do not make use
of local controllers. (Guestrin and Ormoneit, 2001) have used combinations of local
controllers for static path planning tasks in stochastic environments. Their graph
is built from uniform samples over the whole state space, rejecting those that result
in collisions. They also assume that a detailed simulation of the environment is
available to estimate the costs and success probabilities of every transition.

The main motivation for the design of a new algorithm is that none of these
approaches can handle unknown and arbitrary reward functions at the same time.
Remaining alternatives are standard function approximation and model-based RL
techniques like Prioritized Sweeping (Moore and Atkeson, 1993). Model-based al-
gorithms learn reward and transition models, which are used for offline updates of
the value function. In this paper we demonstrate on various problems that our
algorithm achieves faster convergence and finds more accurate solution trajectories
than widely used RL techniques.

In the next section we introduce the basic setup of our algorithm. Section 3.3
shows how the adaptive state graph is constructed and refined, making use of the
reward prediction scheme introduced in Section 3.4. In Section 3.5 we evaluate our
algorithm on various static and dynamic path finding tasks and a planar 3-link arm
reaching task, before concluding in Section 3.6.

3.2 Graph Based RL

We consider episodic, deterministic control tasks in continuous space and time, in
which the agent’s goal is to move from an arbitrary starting state to a fixed goal
state with maximal reward. In the beginning the agent only knows the locations of
the start and goal state, and can use local controllers to navigate to a desired target
state in its neighborhood. We will first define the mathematical notation for this
problem and then sketch the various steps of the algorithm for finding good solution
trajectories.

3.2.1 Mathematical Problem Formulation

Let X define the state space of all possible inputs € X to a controller. We require
X to be a metric space with given metric D : X x X — Rg. Control outputs u € U
change the current state x according to the system dynamics & = f(z,u). In this
paper we assume that only an approximate local model f (x,u) is known, which
does not capture possible nonlinearities due to obstacles. The objective is to find a
control policy p : X — U for the actual system dynamics f(x,u) that returns for
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every state x a control output u = p(z) such that the agent moves from a starting
state 2° € X to a goal state ¢ € X with maximum reward.

Our algorithm builds an adaptive state graph G = (V| E), where the nodes in
V ={x1,...,zy} C X form a finite subset of sample points from X'. We start with
Vo = {xs ,xG} ,Eo = () and let the graph grow in subsequent exploration phases.
The edges in E C V x V correspond to connections between points in V' that can
be achieved by local controllers. The local controller a(e) for an edge e = (x;,x;)
tries to steer the system from x; to x;, assuming that the system dynamics along
the path correspond to f (z,u). The adaptive state graph contains only those edges
that can be traversed by a local controller, but the combination of multiple edges
yields globally valid trajectories.

For an edge e we define t(e) as the time needed for the complete transition and
r(e) as the total reward obtained on the edge. In our approach we separate the
total reward into two components: r(e) = 78 (e) + ri*a5(e). The goal reward
88 is given upon reaching the goal state. We assume here that the location of
the goal, and thereby the goal reward, is known in advance. The transition reward
78 captures all other rewards that result from interactions with the environment,
such as time- and action-dependent transition costs, punishments for collisions, and
negative or positive location-dependent rewards.

For a given graph G we have to solve the discrete problem of finding a policy
7V — E that selects at every node ; € V an outgoing edge m(x;) = e;; = (x;, x;)
and moves to the successor node x;. The objective is to find a policy = which
produces a sequence of edges (eg = (z%,21),...,e; = 7(x;) = (Ti,Tig1)s-- . en =
(2, %)) that starts in 2° and ends in 2, such that the (possibly discounted) sum
of rewards R™ := Y1} i~ 1r(e;) is maximized.

For this task we use value iteration (Sutton and Barto, 1998), which is a dynamic
programming approach to finding optimal value functions in discrete MDPs with
known reward and transition functions. The advantage of value iteration is that we
can propagate new reward information quickly throughout the whole graph. This
may be used to update the values of all nodes whenever the agent receives new
information about the graph, e.g. when new nodes and edges are inserted. Value
iteration is guaranteed to converge to an optimal policy (Puterman, 1994), based
on the knowledge contained in the adaptive state graph.

3.2.2 Sketch of the Algorithm

The agent interacts with the environment by using local controllers to move between
states that are contained as nodes in the adaptive state graph. Initially the graph is
empty, except for the start and goal state. New nodes and edges are created in the
wnitial exploration phase by simulating the approximate model f (x,u) from the cur-
rent node to generate potential successor states. The exploration heuristics directs
the agent towards the goal, and the policy chooses between following an edge that
is already in the graph, or exploring a new successor state. In the latter case the
state is added as a new node into the graph. Whenever a new node is inserted into
the graph we also add all possible edges to neighboring nodes that can be achieved
by local controllers. We use a reward prediction technique to estimate the rewards
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for those edges. These predictions are later improved by actually experienced re-
wards from similar edges. We re-plan the policy with value iteration whenever new
nodes and edges become available, or an unpredicted reward is obtained during a
transition.

When the agent actually reaches the goal state we reduce exploration and the
algorithm enters the graph refinement phase. In this phase the currently best path
is optimized by adding new nodes to the graph and improving predictions for the
edge rewards.

The quality of the resulting policy depends on the available edges and nodes
of the graph, but also on the quality of the local controllers. We assume here
that local controllers can compute near-optimal solutions to connect two states in
the absence of unforeseen events. We restrict ourselves here to rather simple system
dynamics, for which controllers are easily available. In Euclidean spaces we typically
try to connect two states with a straight line. Extending the approach to non-linear
dynamics or even learning the local controllers for more complex dynamical systems
is part of future work.

3.3 Building the Adaptive State Graph

Previous approaches for sampling-based planning, e.g. (Guestrin and Ormoneit,
2001; Kavraki et al., 1996), have used uniform random sampling of nodes over the
whole state space. This requires a large number of nodes, of which many will lie
in irrelevant or even unreachable regions of the state space. On the other hand,
a high density of nodes in critical regions is needed for fine-tuning of trajectories.
The presented algorithm iteratively builds a graph by adding states that are visited
during two phases of online exploration: In the nitial ezploration phase we use
heuristic exploration scores to direct the search towards the goal state. During graph
refinement new nodes are added along successful trajectories to optimize solutions
found so far.

3.3.1 Initial Exploration Phase

Initially the agent needs to search for a path to the goal state, thereby expanding
the adaptive state graph into previously unknown regions. For every state x; that
the agent visits we create a set of potential successor states 7. This is done by
simulating the dynamical system f (z,u) with different control laws for a specific
amount of time. The control actions and execution times can either be fixed in
advance, or randomly picked from a distribution over control actions and times. To
ensure exploration into unvisited areas we immediately reject successor states that
are closer than some threshold 65" to existing nodes in the graph.

Our algorithm directs exploration towards the goal, but at the same time aban-
dons paths with high negative rewards, which are unlikely to be included in optimal
paths from start to goal. We therefore store a global queue @ of the most promising
successor states Z, ranked by an ezploration score oexp(Z). This score is equivalent
to the estimated sum of rewards for a path that first goes from the starting state
2% to & and then follows the direct path to the goal state z&. The reward to reach
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Figure 3.1: Tllustration of the exploration process. FExploration is rather continued at
successor Z1 than at Zo, because the reward to reach Z, is strongly negative.

Z from xg can be easily calculated from the current graph. The reward for the
direct path to the goal state from Z is estimated by the reward of a simulated local
controller, ignoring any obstacles on the path. Since we always assume that the goal
is reached, we also add the goal reward 78°#. Tuning this parameter either enforces
stronger exploration if 78°2! is large, or narrows the search space if r8°? is small.
Figure 3.1 illustrates exploration scores in a puddle world task (see Section 3.5.1),
where shaded regions indicate negative rewards. In this example Z; has a higher
exploration score than Ty, because reaching x5 requires traversing a region of large
negative reward.

The k highest scored successor states in the queue @) are candidates for explo-
ration. Before running the value iteration we insert these k successors as terminal
nodes into the graph, and add virtual ezploration edges from the nodes from which
they were created. The rewards of these edges are the estimated rewards-to-goal.
The policy computed by value iteration may then either choose an exploration edge,
thereby adding a new node to the adaptive state graph, or move to an already visited
node. The latter indicates that exploring from other nodes seems more promising
than continuing the exploration at the current node.

Whenever a new node is inserted into the graph we also add new edges by sim-
ulating local controllers to all neighboring nodes under the local dynamics f (x,u).
The local controllers additionally yield predictions for the transition reward of
these edges, representing the estimated transition costs in the absence of unforeseen
events, such as obstacles. In Section 3.4 we describe a technique to use information
from the graph to get more accurate reward predictions. The true transition reward
for an edge is not known until it is actually traversed for the first time. We then
either replace the predictions by the true values, or delete the edge if we discover
that the local controller cannot complete the connection (e.g. because of an obstacle
in between the nodes). New reward information is also used to update predictions
for unvisited edges.

When the goal state is actually reached, the policy may still continue to visit
successor nodes in @, if their exploration scores are higher than the sum of rewards
on the currently best path from the start to the goal. The initial exploration phase
stops when no such successors remain. If the exploration phase does not find a
solution trajectory within a given time, we use a finer resolution of nodes. This
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can be done by using smaller time steps for the creation of successor nodes, or by
decreasing 6. thereby allowing successor nodes to lie closer to already visited
nodes.

3.3.2 Graph Refinement Phase

Graph refinement starts after the initial exploration phase, and optimizes the graph
to find better trajectories. The basic idea is to find bottlenecks on the best trajectory
found so far, i.e. nodes where the number of outgoing edges is small. For some
nodes a low outdegree is sensible, e.g. because they are located at narrow passages.
For other nodes this may just reflect a lack of alternatives, and so generating new
successor nodes and outgoing edges may improve the current policy.

The main component of graph refinement is an offline process, in which we
stochastically select nodes for optimization and add new successor nodes. For every
node z; in the graph we compute an optimization score oop(x;), which is the sum
of rewards on the best path in the graph from the start to the goal via z;. The
probability of selecting x; for optimization is proportional to oopt(z;), and indirectly
proportional to the number of outgoing edges in x;. This gives higher probability
to nodes on good solution trajectories and nodes with small outdegrees. Let x* be
the node selected for optimization, chosen according to the described probability
distribution. We then create a new successor node by simulating the local system
dynamics f (z,u) from x*, using a random variation of the control law of the optimal
outgoing edge from z*. New edges and predictions for the rewards are generated as
in the initial exploration phase.

The insertion of new nodes is typically performed after a fixed number of
episodes, in which we collect online experience. This is done by following an e-
greedy policy that explores new edges and nodes, and uses the gathered reward
information to update predictions for unseen edges.

3.4 Reward Prediction

Generalization of learned results for unseen states or actions is a well-known concept
in reinforcement learning (Sutton and Barto, 1998). In our case we want to predict
the transition rewards for unseen edges of the adaptive state graph. This speeds up
the learning process and avoids unnecessary exploration of all edges. The general
idea is to exploit local similarities, i.e. parallel connections of similar regions of the
state space are likely to have similar rewards.

During the agent’s exploration, our approach uses new information about the
reward of the currently traversed edge ec,r = (z,2;) to update the predictions
for similar edges. We say that two edges are similar if both their starting and
target nodes lie within certain neighborhoods. We call the region S, (x;) = {z €
X | D(z,x;) < €5} around the starting point x; the starting area, and the region
T, (z;) = {z € X | D(z,z;) < &} around the target point z; the target area. An
edge is similar to e, if its starting point lies in S, (x;) and its target point lies in
T:,(x;). This case is illustrated in Figure 3.2(a).
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Figure 3.2: Four cases for online local reward prediction. The currently traversed edge is
drawn blue, previously visited edges are drawn black, and the prediction is for the unvisited
red edge. (a) Edges from starting area to target area; (b) Unvisited edges that are connected
to the target area via previously visited edges; (c) Unvisited edges that connect from direct
successors of the starting node to the target area; (d) Direct edges from predecessors of the
starting node to the target area.

More updates can be performed if we consider indirect connections from S;,(x;)
to T, (x;), which use paths of two edges to connect the two regions (see Figure 3.2
(b) and (c)). Paths longer than two edges are not considered, because they may
lead through completely different regions, thereby violating our assumption of local
similarity of the connections. Let e; = (x1,x2),€2 = (z2,z3) be a 2-edge indirect
connection with zy € S, (z;),x3 € Tr,(x;). Using the current edge reward r(ecyr) as
an approximation to the total reward of the alternative path, we can assign shares
of r(ecur) to unvisited edges, proportional to their durations ¢(e;) and ¢(e2):

r(ecur) - t(er)
t(er) +t(e2)

r(ecur) - t(e2)

Her) = t(e1) + t(ea)

Peg) =

The current edge ecyr = (2;,2;) may also complete a 2-edge path from one of
the predecessors of z; to the target node (see Figure 3.2 (d)). If we know the reward
for the predecessor edge e, = (xp,z;), this yields predictions for any direct edges
from the predecessor node to the target area. The prediction for unvisited edges is
then simply the sum of rewards of the two known edges 7 (ecur) + 7r(ep).

To ensure that updates are only performed along chains of edges that follow
similar trajectories in the state space, we exclude connections that enclose large
angles with the currently traversed edge from the prediction. Secondly, we use a
similarity measure for weighted updates, giving more weight to predictions that orig-
inate from more similar trajectories. A straightforward measure for the similarity of
short transitions with nearby starting and target points is the time that is needed
for the transition. Local controllers for short connections of similar points will likely
follow a similar trajectory if they need the same amount of time. We define the
time-similarity weight of two paths with total times #; and to as

w =exp (—f - [log(t1) — log(t2)])
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Figure 3.3: Speed-up effect of reward prediction on a static puddle world task with uniformly
sampled nodes.

Figure 3.4: Static Puddle World: (a) and (b) shows the graph in the initial exploration
phase after 20 and 65 episodes. (c) shows the graph after the refinement phase. The red
line indicates the optimal policy to the target.

The absolute logarithm ensures that the weights are proportional to relative, not
absolute time differences. For every updated edge e’ we store a weight w, which
reflects the confidence of the current estimate. Initial reward estimates 7(e’) come
from local controllers, and are assigned small constant initial weights w. = wg > 0.
Every time an update of an edge is performed we change the reward prediction to
the weighted sum of all updates so far, and increase the weight of the edge by the
similarity of the alternative route. To preferentially improve reward estimates of
low confidence, the exploration scheme may also take the weights into account as
an additional factor for action selection.

3.4.1 Predictions for New Edges

Whenever new edges are inserted into the adaptive state graph during the explo-
ration and refinement phases, we basically use the same mechanism as above to
estimate their rewards. We search for known 1- or 2-edge paths into the target
region of the new edge and perform the updates.

3.4.2 Results of Reward Prediction

To isolate the speed-up effect of reward prediction from the exploration schemes,
we learned policies in a static puddle world (see also Section 3.5.1) with 600 uni-
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formly sampled nodes. The rewards of the edges were initialized to estimated time-
dependent costs. Figure 3.3 shows that an agent with reward prediction finds the
optimal policy after visiting around 50% of the edges that an agent without predic-
tion needs.

3.5 Experiments

In this section we show that our algorithm can solve several continuous control
problems that are challenging for standard reinforcement learning techniques. We
show that the algorithm requires less actual experience than existing methods and
finds more accurate trajectories.

3.5.1 Static Puddle World

The puddle world task is a well-known benchmark for reinforcement learning algo-
rithms in continuous domains. The objective is to navigate from a given starting
state to a goal state in a 2-dimensional environment which contains puddles, rep-
resenting regions of negative reward. Every transition inflicts a negative reward
proportional to the required time, plus additional penalties for entering a puddle
area. The 2-dimensional control action u = (v, vy) corresponds to setting velocities
in x and y directions, leading to the simple linear system dynamics & = v,y = vy.

We can safely assume to know this dynamics, but planning a path to the goal
state and avoiding the unknown puddles remains a difficult task. Figure 3.4 shows
various stages of the exploration process in a maze-like puddle world with multiple
puddles. In Figure 3.4(a) it can be observed that the agent directs its initial explo-
ration towards the goal, while avoiding paths through regions of negative reward.
Less promising regions like the upper left part are also visited less frequently. After
the end of the initial exploration phase (Figure 3.4(b)) the agent knows a coarse
path to the goal. A better solution is found after the graph refinement phase, which
is illustrated in Figure 3.4(c). The path is almost optimal and avoids all puddles on
the way to the goal, even at narrow passages.

Standard function approximation techniques like CMACs and RBFs need sev-
eral thousands of episodes to converge on this task, and are therefore not considered
for comparison. Better results were achieved by Prioritized Sweeping (Moore and
Atkeson, 1993), a model-based RL algorithm which discretizes the environment and
learns the transition and reward model from its experience. In Figure 3.5 we com-
pare the performance of RL with adaptive state graphs to prioritized sweeping with
various discretization densities. We evaluate the performance of the agent by mea-
suring the sum of rewards obtained by its greedy policy at different training times.
The training time is the total amount of time the agent has interacted with the
environment.

Figure 3.5 shows that the graph-based RL algorithm is faster to achieve rea-
sonable performance than prioritized sweeping with coarse discretization. Our al-
gorithm gradually improves its performance in the graph refinement phase, which
starts at approximately 700 seconds. After further training time the graph-based
approach slightly outperforms the best policy found by prioritized sweeping on a
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fine 50 x 50 grid. The refined graph in the end contains about 1200 nodes, which is
less than half the number of states used by prioritized sweeping on the fine grid.
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Figure 3.5: Learning performance of RL with adaptive state graphs (max. 1193 nodes) and
prioritized sweeping (PS) with different discretization densities on the static puddle world
from Figure 3.4. (Average over 5 trials.)

3.5.2 3-Link Arm Reaching Task

In the next task we control a simulated planar 3-link robot arm under static stability
constraints in an environment with several obstacles (see Figure 3.6). The links of
the robot arm have different weights, and the center of mass (CoM) of the robot
needs to be kept inside a finite support polygon. If the CoM leaves a neutral zone of
guaranteed stability, the agent receives negative reward that grows quadratically as
the CoM approaches the boundary of the support polygon. Under these constraints
the trivial solution of rotating the arm around the top left obstacle achieves lower
reward than the trajectory that maneuvers the arm through the narrow passage
between the obstacles.

The 3-dimensional state space consist of the three joint angles (61,602, 03) and the
control actions correspond to setting the angular velocities. The approximate model
f is a simple linear model. The true system dynamics f contains nonlinearities due
to obstacles, which are not captured by f .

The comparison in Figure 3.7 shows that graph-based RL converges much faster
to more accurate trajectories than prioritized sweeping with various levels of dis-
cretization.

3.5.3 Dynamic Puddle World

We study a dynamic version of the puddle world problem on a simplified environment
(see Figure 3.8(a)). The 4-dimensional state space consists of (x,y,#,y), and the
control actions correspond to accelerations in x and y direction. The approximate
model is still linear but of higher order. In the dynamic case the design of local
controllers is more difficult, because positions and velocities are coupled. We first
calculate the time required by a bang-bang controller to reach its target for (z, )
and (y,y) independently. The controller which reaches its target faster is then slowed
down such that all state variables arrive at the target simultaneously.

Figure 3.8(b) shows a comparison of our algorithm to RBF value function ap-
proximation. Our approach converges much faster and finds solution trajectories of
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com,

Figure 3.6: Arm reaching task with stability constraints. Left: Solution trajectory found
by our algorithm. The agent must reach the goal region (red) from the starting position
(green), avoiding the obstacles. Right: The agent receives negative reward if its center of
mass (red) leaves the neutral zone (green).

o

|
AN
"
1
1
1
1
-
1
1
-
1
L |
T
|
Lo
1
Lo
L |
"
A
1
1
'

Sum of Rewards

Graph-based R4
= = = PS 20x40x40
== PS 10x20x20

0 1 2 3 4
Training Time [s] %10

Figure 3.7: Learning performance on the 3-link arm reaching task for RL with adaptive
state graphs (max. 2629 nodes) and prioritized sweeping (PS) with different discretization
densities. (Average over 5 trials)

similar quality. In contrast to the previous examples, prioritized sweeping did not
find satisfactory results in reasonable time. One reason is that on dynamic tasks
discretized state signals often violate the Markov property. The other reason is the
exponential increase in the number of states with growing dimensionality.

3.6 Conclusion and Future Work

In this paper we introduced a new combination of reinforcement learning and
sampling-based planning for control problems with complex reward functions in
unknown continuous environments. We use minimal prior knowledge in the form
of approximate models and local controllers to increase learning speed and produce
continuous control outputs for varying time intervals. Our algorithm builds an adap-
tive state graph through efficient goal-directed exploration and refines the graph in
later stages. A new generalization scheme for reward prediction of unvisited edges
increases the performance of the algorithm by avoiding unnecessary exploration.
We demonstrated on various movement planning tasks with complex reward func-
tions that RL with adaptive state graphs outperforms standard RL techniques for
function approximation.

Future work will extend the approach to non-linear system dynamics and higher
dimensional problems. The approach is particularly promising for complicated tasks
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Figure 3.8: (a) Dynamic puddle world environment and solution trajectory. (b) Learning
performance on the dynamic puddle world for RL with adaptive state graphs (max. 8106
nodes) and RL with RBF function approximation. (20 resp. 10 RBF centers per position
dimension and 10 resp. 7 RBF centers per velocity dimension. Average over 5 trials.)

that can be projected to low dimensional representations, such as balancing hu-
manoid robots using motion primitives (Hauser et al., 2007). Future investigations
will also concern strategies to reduce the number of nodes, thereby enabling appli-
cations in larger state spaces.
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Recently, fitted Q-iteration (FQI) based methods have become more popular due
to their increased sample efficiency, a more stable learning process and the higher
quality of the resulting policy. However, these methods remain hard to use for
continuous action spaces which frequently occur in real-world tasks, e.g., in robotics
and other technical applications. The greedy action selection commonly used for the
policy improvement step is particularly problematic as it is expensive for continuous
actions, can cause an unstable learning process, introduces an optimization bias
and results in highly non-smooth policies unsuitable for real-world systems. In this
paper, we show that by using a soft-greedy action selection the policy improvement
step used in FQI can be simplified to an inexpensive advantage-weighted regression.
With this result, we are able to derive a new, computationally efficient FQI algorithm
which can even deal with high dimensional action spaces.

4.1 Introduction

Reinforcement Learning (Sutton and Barto, 1998) addresses the problem of how
autonomous agents can improve their behavior using their experience. At each time
step t the agent can observe its current state s; € X and chooses an appropriate
action a; € A. Subsequently, the agent gets feedback on the quality of the action,
i.e., the reward r; = r(s;,a¢), and observes the next state s;11. The goal of the
agent is to maximize the accumulated reward expected in the future. In this paper,
we focus on learning policies for continuous, multi-dimensional control problems.
Thus the state space X' and action space A are continuous and multi-dimensional,
meaning that discretizations start to become prohibitively expensive.



28 Chapter 4. Advantage Weighted Regression

While discrete-state/action reinforcement learning is a widely studied problem
with rigorous convergence proofs, the same does not hold true for continuous states
and actions. For continuous state spaces, few convergence guarantees exist and
pathological cases of bad performance can be generated easily (Boyan and Moore,
1995). Moreover, many methods cannot be transferred straightforwardly to contin-
uous actions.

Current approaches often circumvent continuous action spaces by focusing on
problems where the actor can rely on a discrete set of actions, e.g., when learning
a policy for driving a car to a goal in minimum time, an actor only needs three
actions: the maximum acceleration when starting, zero acceleration at maximum
velocity and maximum throttle down when the goal is sufficiently close for a point
landing. While this approach (called bang-bang in traditional control) works for the
large class of minimum time control problems, it is also a limited approach as cost
functions relevant to the real-world incorporate much more complex constraints,
e.g., cost-functions in biological systems often punish the jerkiness of the movement
(Viviani and Flash, 1995), the amount of used metabolic energy (Alexander, 1997)
or the variance at the end-point (Wolpert, 1998). For physical technical systems,
the incorporation of further optimization criteria is of essential importance; just
as a minimum time policy is prone to damage the car on the long-run, a similar
policy would be highly dangerous for a robot and its environment and the resulting
energy-consumption would reduce its autonomy. More complex, action-dependent
immediate reward functions require that much larger sets of actions are being em-
ployed.

We consider the use of continuous actions for fitted Q-iteration (FQI) based
algorithms. FQI is a batch mode reinforcement learning (BMRL) algorithm. The
algorithm mantains an estimate of the state-action value function (s, a) and uses
the greedy operator max, (s, a) on the action space for improving the policy. While
this works well for discrete action spaces, the greedy operation is hard to perform
for high-dimensional continuous actions. For this reason, the application of fitted
Q-iteration based methods is often restricted to low-dimensional action spaces which
can be efficiently discretized. In this paper, we show that the use of a stochastic soft-
max policy instead of a greedy policy allows us to reduce the policy improvement
step used in FQI to a simple advantage-weighted regression. The greedy operation
max, Q(s,a) over the actions is replaced by a less harmful greedy operation over
the parameter space of the value function. This result allows us to derive a new,
computationally efficient algorithm which is based on Locally-Advantage-WEighted
Regression (LAWER).

We test our algorithm on three different benchmark tasks, i.e., the pendulum
swing-up (Riedmiller, 2005), the acrobot swing-up (Sutton and Barto, 1998) and
a dynamic version of the puddle-world (Sutton, 1996) with 2 and 3 dimensions.
We show that in spite of the soft-greedy action selection, our algorithm is able to
produce high quality policies.
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4.2 Fitted Q-Iteration

In fitted Q-iteration (Ernst et al., 2005; Riedmiller, 2005; Antos et al., 2008) (FQI),
we assume that all the experience of the agent up to the current time is given in
the form H = {< s;,a;,ri,s, >}i<i<y. The task of the learning algorithm is to
estimate an optimal control policy from this historical data. FQI approximates
the state-action value function Q(s,a) by iteratively using supervised regression
techniques. New target values for the regression are generated by

Qk+1(i) = 7+ 'ka(sg) =7r; + ’)’IIL@X Qk(sg, a’). (4.1)

The regression problem for finding the function @y is defined by the list of data-
point pairs Dj and the regression procedure Regress

Dy(Qr) = {|:(Shai)a(2k+1(i)} 1§i§N} , Qry1 = Regress(Dy(Qy)) (4.2)

FQI can be viewed as approximate value iteration with state-action value functions
(Antos et al., 2008). Previous experiments show that function approximators such
as neural networks (Riedmiller, 2005), radial basis function networks (Ernst et al.,
2005), CMAC (Timmer and Riedmiller, 2007) and regression trees (Ernst et al.,
2005) can be employed in this context. In (Antos et al., 2008), performance bounds
for the value function approximation are given for a wide range of function approx-
imators. The performance bounds also hold true for continuous action spaces, but
only in the case of an actor-critic variant of FQI. Unfortunately, to our knowledge,
no experiments with this variant exist in the literature. Additionally, it is not clear
how to apply this actor-critic variant efficiently for nonparametric function approx-
imators.

FQI has proven to outperform classical online RL methods in many applica-
tions (Ernst et al., 2005). Nevertheless, FQI relies on the greedy action selection
in Equation (4.1). Thus, the algorithm frequently requires a discrete set of actions
and generalization to continuous actions is not straightforward. Using the greedy
operator for continuous action spaces is a hard problem by itself as the use of ex-
pensive optimization methods is needed for high dimensional actions. Moreover the
returned values of the greedy operator often result in an optimization bias caus-
ing an unstable learning process, including oscillations and divergence (Peters and
Schaal, 2007a). For a comparison with our algorithm, we use the Cross-Entropy
(CE) optimization method (de Boer et al., 2005) to find the maximum Q-values.
In our implementation, we maintain a Gaussian distribution for the belief of the
optimal action. We sample ncp actions from this distribution. Then, the best
ecp < ncog actions (with the highest Q-values) are used to update the parameters
of this distribution. The whole process is repeated for kcop iterations, starting with
a uniformly distributed set of sample actions.

FQI is inherently an offline method - given historical data, the algorithm esti-
mates the optimal policy. However, FQI can also be used for online learning. After
the FQI algorithm is finished, new episodes can be collected with the currently best
inferred policy and the FQI algorithm is restarted.
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4.3 Fitted Q-Iteration by Advantage Weighted Regres-
sion

A different method for policy updates in continuous action spaces is reinforcement
learning by reward-weighted regression (Peters and Schaal, 2007b). As shown by
the authors, the action selection problem in the immediate reward RL setting with
continuous actions can be formulated as expectation-maximization (EM) based al-
gorithm and, subsequently, reduced to a reward-weighted regression. The weighted
regression can be applied with ease to high-dimensional action spaces; no greedy
operation in the action space is needed. While we do not directly follow the work
in (Peters and Schaal, 2007b), we follow the general idea.

4.3.1 Weighted regression for value estimation

In this section we consider the task of estimating the value function V of a stochastic
policy m(-|s) when the state-action value function @ is already given. The value
function can be calculated by V(s) = [, 7(als)Q(s,a)da. Yet, the integral over
the action space is hard to perform for continuous actions. However, we will show
how we can approximate the value function without the evaluation of this integral.
Consider the quadratic error function

Error(V) = / ,u(s)(/a 7T(a|s)Q(s,a)da—V(s))2ds (4.3)

= / 1i(s) ( /a m(als) (Q(s,a) - V(s)) da)2 ds, (4.4)

which is used to find an approximation V of the value function. u(s) denotes the
state distribution when following policy 7(-|a). Since the squared function is convex
we can use Jensens inequality for probability density functions to derive an upper
bound of Equation (4.4)

Error(V) < / 1(s) /a 7(als) <Q(s,a) - f/(s)>2dads = Errorp(V).  (4.5)

The solution V* for minimizing the upper bound Errorp (V) is the same as for the

A~

original error function Error(V).
Proof. To see this, we compute the square and replace the term [, w(als)Q(s,a)da

by the value function V (s). This is done for the error function Error(V') and for the
upper bound Errorg(V).

Error(V) = /,u(s) (V(s) — V(s))2ds (4.6)
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Errorg(V) = /Su(s)/;r(a\s) <Q(s,a)2 —2Q(s,a)V(s) + V(s)2> dads (4.8)
= / 1(s) < /a m(als)Q(s,a)da — 2V (s)V (s) + V(S)Q) ds  (4.9)

Both error functions are the same except for an additive constant which does not
depend on V. U

In difference to the original error function, the upper bound Errorp can be
approximated straightforwardly by samples {(s;, a;), Q(s;, a;) }1<i<ny gained by fol-
lowing some behavior policy m(+[s).

Error(V Z “ _pls)mlailsi) (Q(si,ai)—f/(si))z, (4.10)

7Tb a2|sl)

up(s) defines the state distribution when following the behavior policy 7. The term
1/(up(si)mp(si,a;)) ensures that we do not give more weight on states and actions
preferred by m,. This is a well known method in importance sampling. In order to
keep our algorithm tractable, the factors my(a;|s;), up(s;) and u(s;) will all be set to
1/N. The minimization of Equation (4.10) defines a weighted regression problem
which is given by the dataset Dy, the weighting U and the weighted regression
procedure WeightedRegress

Dy = {[(Si,az’)aQ(Si,ai)hgigN} U = {[r(ailsi)li<i<n}» (4.11)
V = WeightedRegress(Dy, U) (4.12)

The result shows that in order to approximate the value function V(s), we do not
need to carry out the expensive integration over the action space for each state s;.
It is sufficient to know the Q-values at a finite set of state-action pairs.

4.3.2 Soft-greedy policy improvement

We use a soft-max policy (Sutton and Barto, 1998) in the policy improvement step of
the FQI algorithm. Our soft-max policy m(als) is based on the advantage function
A(s,a) = Q(s,a)— V(s). We additionally assume the knowledge of the mean m 4(s)
and the standard deviation of o4(s) of the advantage function at state s. These
quantities can be estimated locally or approximated by additional regressions. The
policy 71 (als) is defined as

(a| ) eXp( A( )) A(s,a) o A(s,a)fmA(s). (413)

oa(s)

7 controls the greediness of the policy. If we assume that the advantages A(s,a) are
distributed with N (A(s,a)|ma(s),c%(s)), all normalized advantage values A(s, a)
have the same distribution. Thus, the denominator of 71 is constant for all states and
we can use the term exp(7A(s,a)) o 71 (als) directly as weighting for the regression
defined in Equation (4.12). The resulting approximated value function V(s) is used
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Algorithm 1: FQI with Advantage Weighted Regression
Input: H = {<s;,a;,7;,s; >}i<i<n, 7 and L (Number of Iterations)
Initialize Vp(s) = 0.
for k=0to L —1do

Dy (V3,) = {[(Si7ai)ari +’Y‘7k(5§)} 1§z’§N}

Qr+1 = Regress(Dy(Vy))
A(t) = Qr41(si, ai) — Vie(si)
Estimate ma(s;) and o4(s;) for 1 <i < N
U = {lexp(T(A(i) —ma(si))/oa(si)li<i<n}
Vip1 = WeightedRegress(Dy,(V), U)

end for

to replace the greedy operator V(s;) = maxy Q(s},a’) in the FQI algorithm. The
FQI by Advantage Weighted Regression (AWR) algorithm is given in Algorithm 1.
As we can see, the Q-function Q) is only queried once for each step in the history
H. Furthermore only already seen state action pairs (s;, a;) are used for this query.

After the FQI algorithm is finished we still need to determine a policy for sub-
sequent data collection. The policy can be obtained in the same way as for reward-
weighted regression (Peters and Schaal, 2007b), only the advantage is used instead
of the reward for the weighting - thus, we are optimizing the long term costs instead
of the immediate one.

4.4 Locally-Advantage-WEighted Regression (LAWER)

Based on the FQI by AWR algorithm, we propose a new, computationally efficient
fitted Q-iteration algorithm which uses Locally Weighted Regression (LWR, (Atke-
son et al., 1997)) as function approximator. Similar to kernel based methods, our
algorithm needs to be able to calculate the similarity w;(s) between a state s; in the
dataset H and state s. To simplify the notation, we will denote w;(s;) as w;; for all
sj € H. w;(s) is calculated by a Gaussian kernel w;(s) = exp(—(s; —s)TD(s; — s)).
The diagonal matrix D determines the bandwidth of the kernel. Additionally, our
algorithm also needs a similarity measure wy; between two actions a; and a;. Again
a

Ww:

i; can be calculated by a Gaussian kernel wU = exp(—(a; — a;)TD%(a; — a;)).

Using the state similarity w;;, we can estimate the mean and the standard de-
viation of the advantage function for each state s;

> wizA(j) o2 (5) = SivalA0)—mas,)?
Sywg A 2.5 Wis '

ma(si) = (4.14)
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4.4.1 Approximating the value functions

For the approximation of the Q-function, we use Locally Weighted Regression (Atke-
son et al., 1997). The Q-function is therefore given by:

Qrr1(s,a) =54 (SATWSA) 1SATWQ)1 1 (4.15)

where A = [1,87,a”]7, SA = [5a(1),5a(2),...,5A (N)]T is the state-action matrix,
W = diag(w;(s)wf(a)) is the local weighting matrix consisting of state and action
similarities, and Qgy1 = [Qrs1(1), Qrs1(2), ..., Qrr1(N)]T is the vector of the Q-
values (see Equation (4.1).

For approximating the V-function we can multiplicatively combine the
advantage-based weighting u; = exp(7A(s;,a;)) and the state similarity weights
w;(s). The value Vj1(s) is given by !:

Vis1(s) = 8(8TUS) T 'STUQy 41, (4.16)

where § = [1,s7]7, S = [§1,82, ..., 8n]" is the state matrix and U = diag(w;(s)u;) is
the weight matrix. We bound the estimate of Vj1(s) by MaX;|y, (s)>0.001 @kt1(7) in
order to prevent the local regression from adding a positive bias which might cause
divergence of the value iteration.

A problem with nonparametric value function approximators is their strongly
increasing computational complexity with an increasing number of data points. A
simple solution to avoid this problem is to introduce a local forgetting mechanism.
Whenever parts of the state space are oversampled, old examples in this area are
removed from the dataset.

4.4.2 Approximating the policy

Similar to reward-weighted regression (Peters and Schaal, 2007b), we use a stochastic
policy 7(als) = N (a|u(s), diag(c?(s))) with Gaussian exploration as approximation
of the optimal policy. The mean su(s) and the variance o2(s) are given by

~ — 0.« S Wi (S)us(a; —p(s; 2
p(s) =8(STUS)'STUA, o%(s) = Tt Ot%izf JH(S()W e (4.17)

where A = [aj,as,...,ax|’ denotes the action matrix. The variance o2 au-

tomatically adapts the exploration of the policy to the uncertainty of the optimal
action. With 0i2nit and g we can set the initial exploration of the policy. ot is
always set to the bandwidth of the action space. g sets the weight of the initial
variance in comparison to the variance coming from the data, «q is set to 3 for all
experiments.

'Tn practice, ridge regression Vi11(s) = 8(STWS + o1)"'STWQy 1 is used to avoid numerical
instabilities in the regression.
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4.5 Evaluations

We evaluated the LAWER algorithm on three benchmark tasks, the pendulum swing
up task, the acrobot swing up task and a dynamic version of the puddle-world (i.e.,
augmenting the puddle-world by velocities, inertia, etc.) with 2 and 3 dimensions.
We compare our algorithm to tree-based FQI (Ernst et al., 2005) (CE-Tree), neural
FQI (Riedmiller, 2005) (CE-Net) and LWR-based FQI (CE-LWR) which all use
the Cross-Entropy (CE) optimization to find the maximum Q-values. For the CE
optimization we used ncop = 10 samples for one dimensional, nogp = 25 samples for
2-dimensional and ncg = 64 for 3-dimensional control variables. ecr was always set
to 0.3ncp and we used kgor = 3 iterations. To enforce exploration when collecting
new data, a Gaussian noise of ¢ = N(0,1.0) was added to the CE-based policy.
For the tree-based algorithm, an ensemble of M = 20 trees was used, K was set to
the number of state and action variables and n,,;, was set to 2 (see (Ernst et al.,
2005)). For the CE-Net algorithm we used a neural network with 2 hidden layers
and 10 neurons per layer and trained the network with the algorithm proposed in
(Riedmiller, 2005) for 600 epochs. For all experiments, a discount factor of v = 0.99
was used. The immediate reward function was quadratic in the distance to the goal
position s¢ and in the applied torque/force r = —c;(s —sg)? — c2a®. For evaluating
the learning process, the exploration-free (i.e., o(s) = 0, ¢ = 0) performance of
the policy was evaluated after each data-collection/FQI cycle. This was done by
determining the accumulated reward during an episode starting from the specified
initial position. All errorbars represent a 95% confidence interval.

4.5.1 Pendulum swing-up task

In this task, a pendulum needs to be swung up from the position at the bottom to
the top position (Riedmiller, 2005). The state space consists of the angular deviation
0 from the top position and the angular velocity 6 of the pendulum. The system
dynamics are given by 0.5mi%0 = mg sin(f) + u , the torque of the motor u was
limited to [-5NN,5N]. The mass was set to m = lkg and length of the link to 1m.
The time step was set to 0.05s. Two experiments with different torque punishments
co = 0.005 and ¢y = 0.025 were performed.

We used L = 150 iterations. The matrices D and D 4 were set to D = diag(30, 3)
and D4 = diag(2). In the data collection phase, 5 episodes with 150 steps were
collected starting from the bottom position and 5 episodes starting from a random
position.

A comparison of the LAWER algorithm to CE-based algorithms for ¢, = 0.005
is shown in Figure 4.1(a) and for ca = 0.025 in Figure 4.1(b). Our algorithm shows
a comparable performance to the tree-based FQI algorithm while being computa-
tionally much more efficient. All other CE-based FQI algorithms show a slightly
decreased performance. In Figure 4.1(c) and (d) we can see typical examples of
learned torque trajectories when starting from the bottom position for the LAWER,
the CE-Tree and the CE-LWR algorithm. In Figure 4.1(c) the trajectories are shown
for co = 0.005 and in Figure 4.1(d) for co = 0.025. All algorithms were able to dis-
cover a fast solution with 1 swing-up for the first setting and a more energy-efficient
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Figure 4.1: (a) Evaluation of LAWER and CE-based FQI algorithms on the pendulum
swing-up task for co = 0.005 . The plots are averaged over 10 trials. (b) The same
evaluation for co = 0.025. (c) Learned torque trajectories for co = 0.005. (d) Learned
torque trajectories for co = 0.025.

solution with 2 swing-ups for the second setting. Still, there are qualitative differ-
ences in the trajectories. Due to the advantage-weighted regression, LAWER was
able to produce very smooth trajectories while the trajectories found by the CE-
based methods look more jerky. In Figure 4.2(a) we can see the influence of the
parameter 7 on the performance of the LAWER algorithm. The algorithm works
for a large range of 7 values.

4.5.2 Acrobot swing-up task

In order to asses the performance of LAWER on a complex highly non-linear con-
trol task, we used the acrobot (for a description of the system, see (Sutton and
Barto, 1998)). The torque was limited to [-5N,5N]. Both masses were set to lkg
and both lengths of the links to 0.5m. A time step of 0.1s was used. L = 100
iterations were used for the FQI algorithms. In the data-collection phase the agent
could observe 25 episodes starting from the bottom position and 25 starting from
a random position. Each episode had 100 steps. The matrices D and D 4 were set
to D = diag(20,23.6,10,10.5) and D4 = diag(2). The comparison of the LAWER
and the CE-Tree algorithm is shown in Figure 4.2(a). Due to the adaptive state
discretization, the tree-based algorithm is able to learn faster, but in the end, the
LAWER algorithm is able to produce policies of higher quality than the tree-based
algorithm.

4.5.3 Dynamic puddle-world

In the puddle-world task (Sutton, 1996), the agent has to find a way to a predefined
goal area in a continuous-valued maze world (see Figure 4.3(a)). The agent gets
negative reward when going through puddles. In difference to the standard puddle-
world setting where the agent has a 2-dimensional state space (the z and y position),
we use a more demanding setting. We have created a dynamic version of the puddle-
world where the agent can set a force accelerating a k-dimensional point mass (m =
1kg). This was done for £k = 2 and k = 3 dimensions. The puddle-world illustrates
the scalability of the algorithms to multidimensional continuous action spaces (2
respectively 3 dimensional). The positions were limited to [0,1] and the velocities
o [-1,1]. The maximum force that could be applied in one direction was restricted
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Figure 4.3: (a) Comparison of the CE-Tree and the LAWER algorithm for the 2-dimensional
dynamic puddle-world. (b) Comparison of the CE-Tree and the LAWER algorithm for the
3-dimensional dynamic puddle-world. (¢) Torque trajectories for the 3-dimensional puddle
world learned with the LAWER, algorithm. (d) Torque trajectories learned with the CE-
Tree algorithm.

to 2N and the time step was set to 0.1s. The setting of the 2-dimensional puddle-
world can be seen in Figure 4.2(c). Whenever the agent was about to leave the
predefined area, the velocities were set to zero and an additional reward of —5 was
given. We compared the LAWER with the CE-Tree algorithm. L = 50 iterations
were used. The matrices D and D4 were set to D = diag(10,10,2.5,2.5) and
D4 = diag(2.5,2.5) for the 2-dimensional and to D = diag(8,8,8,2,2,2) and D4 =
diag(1,1,1) for the 3-dimensional puddle-world. In the data collection phase the
agent could observe 20 episodes with 50 steps starting from the predefined initial
position and 20 episodes starting from a random position.

In Figure 4.3(a), we can see the comparison of the CE-Tree and the LAWER algo-
rithm for the 2-dimensional puddle-world and in Figure 4.3(b) for the 3-dimensional
puddle-world. The results show that the tree-based algorithm has an advantage in
the beginning of the learning process. However, the CE-Tree algorithm has prob-
lems finding a good policy in the 3-dimensional action-space, while the LAWER
algorithm still performs well in this setting. This can be seen clearly in the com-
parison of the learned force trajectories which are shown in Figure 4.3(c) for the
LAWER algorithm and in Figure 4.3(d) for the CE-Tree algorithm. The trajec-
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tories for the CE-Tree algorithm are very jerky and almost random for the first
and third dimension of the control variable, whereas the trajectories found by the
LAWER algorithm look very smooth and goal directed.

4.6 Conclusion and future work

In this paper, we focused on solving RL problems with continuous action spaces
with fitted Q-iteration based algorithms. The computational complexity of the max
operator max, Q(s,a) often makes FQI algorithms intractable for high dimensional
continuous action spaces. We proposed a new method which circumvents the max
operator by the use of a stochastic soft-max policy that allows us to reduce the
policy improvement step V(s) = max, Q(s,a) to a weighted regression problem.
Based on this result, we can derive the LAWER algorithm, a new, computationally
efficient FQI algorithm based on LWR.

Experiments have shown that the LAWER algorithm is able to produce high
quality smooth policies, even for high dimensional action spaces where the use of
expensive optimization methods for calculating max, Q(s,a) becomes problematic
and only quite suboptimal policies are found. Moreover, the computational costs of
using continuous actions for standard FQI are daunting. The LAWER algorithm
needed on average 2780s for the pendulum, 17600s for the acrobot, 13700s for the
2D-puddle-world and 24200s for the 3D-puddle world benchmark task. The CE-
Tree algorithm needed on average 59900s, 201900s, 134400s and 212000s, which is
an order of magnitude slower than the LAWER algorithm. The CE-Net and CE-
LWR algorithm showed comparable running times as the CE-Tree algorithm. A lot
of work has been spent to optimize the implementations of the algorithms. The
simulations were run on a P4 Xeon with 3.2 gigahertz.

Still, in comparison to the tree-based FQI approach, our algorithm has handicaps
when dealing with high dimensional state spaces. The distance kernel matrices have
to be chosen appropriately by the user. Additionally, the uniform distance measure
throughout the state space is not adequate for many complex control tasks and
might degrade the performance. Future research will concentrate on combining the
AWR approach with the regression trees presented in (Ernst et al., 2005).
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CHAPTER b

Introduction

Movement representations are frequently used for motor skill learning (Kober et al.,
2008). Instead of directly learning the desired trajectory, they represent a lower
dimensional description of the movement which is supposed to facilitate learning
of movement skills. Many types of movement representations are also denoted as
movement primitive. The key idea of the term ’primitive’ is that several of these
elementary movements can be combined sequentially or also simultaneously in time.

There are many different approaches how to encode movements with a lower
number of parameters, ranging from purely spatial (d’Avella and Bizzi, 2005) to
temporal (Schaal et al., 2003, 2007) representations. We will denote w as the pa-
rameter vector of the movement primitive.

In this thesis T will first give an overview over relevant methods. I will also
briefly discuss how movement primitives can be combined sequentially and simul-
taneously in time. Subsequently I will present 3 new approaches which were part
of my work during my PhD. In Chapter 6, I will introduce a spatial movement
representation approach for balancing control of a humanoid robot (Hauser et al.,
2011). In Chapter 7, I will present a new movement representation called motion
templates. Motion templates are the first representation which can be combined
sequentially in time by the use of reinforcement learning. Finally, in Chapter 8 I
will present a primitive which is based on inherent planning. As we use planning
already at the level of the primitive, abstract features or goals of the movement
can be used as parameter representation. We will show that this can significantly
facilitate learning of movement skills.

5.1 Spatial Primitives

Spatial representations use a K dimensional manifold to represent the D-
dimensional action space (K < D) but do not encode any temporal coherence
of the movement. Thus, they do not directly specify a policy which can be used to
perform the motion.

The most prominent representative of spatial representations is the synchronous
muscle synergies approach (d’Avella and Bizzi, 2005) which have been developed
in the context of explaining biological muscle activation data. The key idea is to
use a K-dimensional linear basis for the action space, where K < D. Each basis
vector represents a single synergy. The control vector a(t) is then represented by
the muscle synergy matrix M and the synergy coefficients, given by c(t), i.e.

a(t) = Mc(t).
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Each column vector of M represents a single synergy. The synchronous muscle
synergies have been used to explain muscle activation patterns in frogs (d’Avella
and Bizzi, 2005). The authors could show that several muscle synergies were shared
for different behaviors, rendering this approach also attractive for robot control and
transfer learning.

In Chapter 6 we present a similar approach based on kinematic synergies which
we have applied to a humanoid robot. We use a lower dimensional manifold in the
joint space of a humanoid robot to counter-balance unknown perturbations. This is
one of the first application of the idea of using synergies for robot control.

Typically the synergies are extracted from experimental data (d’Avella and Bizzi,
2005) or, as in our case, constructed by the inverse kinematic model of the robot.
Learning such lower dimensional spatial basis of an high-dimensional redundant
action space from interaction with an environment and reinforcement is still an
open problem.

5.2 Temporal Primitives

Temporal representations explicitly encode the temporal pattern of the movement.
The high-dimensional state information is usually absorbed by a scalar phase or
time variable ¢. The common approach for temporal representations is to calculate
a desired trajectory (y(t;w),y(t;w)). As we can see, the desired position and
velocity of the robot only depends on the duration ¢ of the movement. The real
state (current position q; and velocity ;) is not used for trajectory generation.

The current state s; = [qy, Q] is only used for feedback trajectory-tracking, e.g
linear PD-controllers or inverse dynamics control (Peters et al., 2008) (see Section
5.2.6). Both, the feedback controller and the desired trajectory can be parametrized,
we will subsume these parameters into the parameter vector w of the primitive. As
the desired trajectory always depends on w we will write y; instead of y(¢;w) to
simplify the notation.

Temporal representations can only be used in episodic setups, i.e. we always
use the same initial conditions (i.e. state of the robot and its environment) for the
movement and the movement ends after a certain amount of time. Because only the
duration of the movement is used as information for trajectory generation, we would
have to use different primitive parameters for different initial conditions. Thus, these
approaches are inherently local. While this restriction renders such approaches
less powerful than global representations, temporal representations typically need
fewer parameters in comparison to global representations and thus, learning is also
considerably simplified. Many of the most impressive robot applications like ball-
in-the-cup (Kober et al., 2008), baseball padding (Peters and Schaal, 2006), walking
(Nakanishi et al., 2004) or complex balancing movements (Neumann, 2011) have
been implemented with temporal primitives.

The generation of the trajectory for these approaches is often an offline process
and does not incorporate knowledge of the system dynamics, proprioceptive or other
sensory feedback. Because the trajectory itself is created without any knowledge of
the system model, the desired trajectory might not be applicable, and thus, the real
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trajectory of the robot might differ considerably from the specified trajectory.

Many types of temporal movement primitives can be found in the literature,
including Dynamic Movement Primitives (DMPs, (Schaal et al., 2007)), time-varying
muscle synergies (Bizzi et al., 2008), splines (Kolter and Ng, 2009b), and motion
templates (Neumann et al., 2009). We will now briefly review all these methods
and discuss the motion templates approach in more detail as we introduced this
approach used in the papers (Neumann et al., 2009) and (Neumann, 2011) which
are part of this thesis.

In Chapter 8 I will also present unpublished work which proposes a new type of
a temporal representation which is based on inherent probabilistic planning.

5.2.1 Dynamic Movement Primitives

The most prominent representation for movement primitives used in robot control
are the Dynamic Movement Primitives (DMP) (Schaal et al., 2003). DMPs generate
multi-dimensional trajectories by the use of non-linear differential equations. The
basic idea is to a use for each degree-of-freedom (DoF) of the robot a globally stable,
linear dynamical system which is modulated by a learnable non-linear function f :

i = (B9 -y) -2+ [y =2

where the desired final position of the joint is denoted by g. The variables y and
1 denote a desired joint position and joint velocity, which represent our movement
plan. The temporal scaling factor is denoted by 7 and «, and 3, define the damp-
ing properties of the linear system. The non-linear function f directly adds to
the derivative of the internal state variable z, which is proportional to the desired
acceleration of the movement plan.

For each degree-of-freedom (DoF) of the robot an individual dynamical system,
and hence an individual function f is used. The function f only depends on the
phase = of a movement, which represents time, 72 = —a,x. The phase variable x
is initially set to 1 and will converge to 0 for a proper choice of 7 and a,. With 7
we can modulate the desired movement speed. The function f is constructed by the
weighted sum of K Gaussian basis functions W,

K
= w, V(z) = exp(—%(m —¢)?).

> im1 Vi) 20;
As the phase variable x converges to zero, the influence of f vanishes with increasing
time. Hence, the dynamical system is globally stable for any initial and goal state,
i.e. for f = 0 the dynamical system represents a globally stable linear dynamic
system with ¢ as a unique point attractor.

Typically only the linear weights w; are parameters of the primitive which can
modulate the shape of the movement. The centers ¢; specify at which phase of
the movement the basis function becomes active. The centers are usually equally
spaced in the range of z and not modified during learning. The bandwidth of the
basis functions is given by o2.

Integrating the dynamical systems for each DoF results into a desired trajectory
(v, y¢) of the joint angles which is subsequentially followed by feedback control laws

f(x)
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(see Section 5.2.6). The desired acceleration y = z/7 of the system can also be seen
as control action a of the agent, and thus, we can define a policy

m(alz;w) = N(a|®@(z)w + k, X,),

which is linear in the parameter w of the movement primitive. The linear features
are given by
2 K
723 i Vi)

and the offset by k = a.(8.(g —y) — z)/72. The linear policy representation allows
an efficient use of imitation learning (Schaal et al., 2003), as well as for state-of-the-
art policy search algorithms (Kober et al., 2008; Peters and Schaal, 2006; Theodorou
et al., 2010b) which are only available for linear representations. For a more detailed
discussion on available policy search algorithms we refer to Chapter 9.

Learning with DMPs often takes place in two phases (Kober and Peters, 2010).
In the first phase, imitation learning is used to reproduce recorded trajectories.
Subsequently, Reinforcement Learning is used to improve the movement.

The generation of the trajectory for DMPs is typically an offline process and does
not incorporate proprioceptive (i.e. the actual joint position q; does not influence
the desired trajectory y;) or other sensory feedback. Exceptions are presented in
(Kober et al., 2008) and (Kober et al., 2010). In (Kober et al., 2008), an additional
feedback controller has been learned to modify the shape of the trajectory in order
to catch the ball in the game ’ball in the cup’. Learning such a feedback controller
drastically reduces the learning speed with DMPs. In (Kober et al., 2010), the
authors learned to adjust meta-parameters of the DMPs such as the time constant
7 or the end-point g of the movement to different situations (such as shooting a ball
to different positions).

P(x)

5.2.2 Planning Movement Primitives

This is a new idea for movement representation which is also introduced in this
thesis, see Chapter 8. The key idea is to use planning already inherently inside the
movement primitive. Instead of parametrizing the shape of the resulting trajectory,
we now parametrize an internal cost function used for a probabilistic planner. This
allows to use abstract features or goals as parameters and therefore a more compact
movement representation. For further details please refer to Chapter 8.

5.2.3 Motion Templates from Exponential Functions

Motion templates are temporally extended, parametrized actions, such as exponen-
tial torque or velocity profiles, which can be easily sequenced in time. They have
been introduced in our work in (Neumann et al., 2009) and (Neumann, 2011). The
parametrization of a template is typically non-linear and thus more complex as for
the DMPs. For example, it also incorporates the duration of the single template,
like the duration of an acceleration or a deceleration phase. However, in difference
to the DMPs, where a single primitive encodes the whole movement, the motion
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templates are much simpler, basic building blocks of the movement. Here, always
several motion templates are required to represent the whole movement.

A motion template m,, is defined by its k, dimensional parameter space W, C
RFr | its parametrized policy u,(s,t;w,) (s is the current state, ¢ represents the
time spent executing the template and w, € W, is the parameter vector) and its
termination condition cp(s,t; wp).

At each decision-time point oy, the agent has to choose a motion template m,,
from the set A(oy) and also the parametrization w), of m,. Subsequently the agent
follows the policy mp(s,t; wp) until the termination condition ¢, (s, t; w,) is fulfilled.
Afterwards, we obtain a new decision-time point oj11. The advantage of such an
approach is that value-based methods such as in (Neumann et al., 2009) can be
used to estimate the values of the states of the decision time points which allows
the combination of motion templates by sequencing them in time. This value based
approach is part of this thesis and can be found in Chapter 7. Still, the simultaneous
combination of the templates for several movement tasks remains an open problem.

The functional forms of the policy m,(s,t;w,) and the termination condition
cp(s,t; wp) are defined beforehand and can be arbitrary functions. So far we used
2 types of motion templates, both are based on exponential functions and specify
either torque or velocity profiles. The intuition behind the use of exponential func-
tions is that the response of linear PD-controllers also has an exponential form (at
least for linear systems). The exponential functions also resemble the bell-shaped
velocity profiles often measured for human motion.

Torque Profiles

In (Neumann et al., 2009), the motion templates were directly used to parametrize
the torque profile. The templates itself were implemented as exponential functions
and were used for learning a 1-link and 2-link pendulum swing-up task. The used
motion templates represent positive (mq and ms) and negative peaks (ms and my)
in the torque trajectory. There is also an individual template ms for balancing the
robot at the top position. One peak consists of 2 successive motion templates, one
for the ascending and one for the descending part of the peak. It is important to note
that the duration of the peaks is also included in the parameters of the template,
thus, the parametrization is highly non-linear. For a more exact description of the
templates please consult Chapter 7. As we directly define the torque profiles, no
feedback control is used for this type of templates (except for the balancing template
m5).

Velocity Profiles

We introduced this type of motion templates in (Neumann, 2011) to illustrate a
new policy search algorithm, called Variational Policy Search. This paper is also
part of this thesis and can be found in Chapter 10. Instead of torque profiles, the
templates now define desired velocity profiles which are subsequently integrated to
get a desired trajectory. The trajectory is then again followed by feedback control
laws (we used linear PD-controllers). This is a big advantage in comparison to the
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previously used torque profiles as feedback control makes the outcome of a template
easier to predict. We used this kind of templates for dynamic balancing of a 2-
link and a 4-link pendulum. The balancing movement consisted of a fast bending
movement to keep balance, subsequently the robot could return into the upright
position.

The motion is divided into 2 motion templates. Template my drives the robot
to a set-point of each joint, Template my tries to stabilize the agent at the upright
position. Each template consists of an acceleration phase and a deceleration phase,
both implemented by exponential velocity profiles. Template mso runs until the
episode is terminated. For a more detailed description of the parametric form of the
templates please consult the appendix of Chapter 10.

5.2.4 Time-Varying Muscle Synergies

Time-varying muscle synergies (d’Avella and Bizzi, 2005; Bizzi et al., 2008) have
been used to provide a compact representation of EKG data of muscle activation
patterns. In contrast to synchronous muscle synergies, time-varying muscle synergies
also encode the temporal course of the muscle activation pattern. The key idea is
that muscle activation patterns are composed of a linear sum of simpler, elemental
patterns, denoted as single muscle synergy m;(¢; w). Each muscle synergy can now
be shifted in time and scaled with a linear factor to construct the whole activation
pattern

K
a(t) = Z cmy(t — 73 w),
i=1

where ¢; is the linear scaling coefficients and 7; the time shift coefficient. The param-
eters w of the primitive now incorporate a description of each single synergy (which
can for example be implemented by Gaussian basis functions) and additionally the
scaling and shift parameters for each primitive. The synergies have the promising
property that some synergies might be shared between tasks and only the scaling
and shift parameters need to be relearned. This property has already been shown
to be true for the muscle activation of frogs performing different movements like
jumping, swimming or walking and seems to be a promising approach for transfer
learning in robots.

The time-varying synergy approach allows to combine the primitives simultane-
ously, which is straightforward due to the linear superposition. However, except for
some smaller applications (Chhabra and Jacobs, 2006), these primitives have only
been used for data analysis. It is not clear whether this property also holds for robot
control. One obvious drawback of the time-varying muscle synergy approach is that
there is no straightforward way to incorporate feedback because the synergies are
typically used to directly decompose the motor commands. In order to incorporate
feedback, the synergies need to decompose the joint trajectory instead of a torque
or muscle activation trajectory. In this setup, many properties like that the linear
superposition of synergies is useful, are likely to be lost.
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5.2.5 Splines

Splines are a common piece-wise polynomial interpolation method which was used
as one of the first movement representation (Chand and Doty, 1985; Kolter and
Ng, 2009b). Most commonly used are cubic splines. The trajectory is represented
by m via-points which are defined by the time points top < t; < -+ < t,,-1 and
the control points go,81,...,8m—1- In each interval ¢; <t < ¢;41, the trajectory
is approximated by a cubic polynomial. The polynomial is fitted such that the
trajectory coincides with the via-points g; and g;;1 at the time-points ¢; and ¢;,1 and
that the first and second order derivatives of the trajectory are smooth. However,
it is not clear if this is advantageous for representing movements.

The parameters w of the spline primitives are defined by the via-points, where
usually the first via-point (the initial-state) and sometimes the last via-point (the
goal-state) are pre-specified as prior knowledge.

5.2.6 Trajectory Tracking Controllers

Having discussed different ways how to parametrize the desired trajectory (y,¥¢),
we still need a control law which is used to follow this trajectory.

Linear Feedback Control

The most simple feedback controller is to define a linear PD-controller

Uy = Kpos(Yt - Qt) + Kvel(S’t - CIt)

The controller gains can either be pre-specified or also be learned from reinforcement.
The number of parameters in the controller gain matrices depend quadratically on
the number of dimensions of the system. We can further simplify the controller
by assuming diagonal matrices for the controller gains, i.e. K05 = diag(kpes) and
Kye = diag(kvel)-

Inverse Dynamics Control

A more sophisticated approach is to use inverse dynamics control (Peters et al.,
2008; Sciavicco and Siciliano, 2005). Instead of using the torque as controls, inverse
dynamics control allows us to use directly the desired acceleration z to control the
robot. However, this requires the knowledge of the dynamics of the robot

B(q)d +n(q,q) = u,

where n(q, q) represents the terms coming from Coriolis and gravity forces and u
is the applied torque to the joints.

If we replace the actual joint acceleration q with the desired acceleration z, we
can see that the control u is a function of manipulator state s = [q,q] and the
desired acceleration z

u=B(q)z +n(q,q). (5.1)
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As z = q denotes a decoupled linear system we can now use a simple PD-controller
with diagonal controller gain matrices to generate the desired acceleration z

Z; = diag(kpos)(Yt - CIt) + diag(kvel)(Yt - Qt)

from which we can determine the joint tourques using Equation 5.1

5.3 Combination of Primitives

In this section we briefly discuss several possibilities to combine movement primi-
tives. In principle there are 2 types of combinations, sequential and simultaneous
combinations. Sequential combinations are only useful for temporal primitives. The
obvious way if we want to combine 2 primitives sequentially is to specify when the
first primitive is finished (e.g. by an additional parameter) and subsequently execute
the 2nd primitive. However, we now have to learn the parameters of two primitives
simultaneously, and therefore, the problem has also increasing complexity. A po-
tential solution to this problem was illustrated in (Neumann et al., 2009) with the
motion template framework. Here, the parameters of each primitive can be chosen
separately at the point of time where the primitive is chosen for execution. This
is done by using value-based methods to estimate the values at the states of the
decision time-points. This has only be tried for quite simple templates representing
exponential torque profiles. An evaluation for more sophisticated primitives is still
missing.

The simultaneous combination is in most cases an unsolved problem. Here, the
goal is to use two primitives simultaneously in order to fullfill two different tasks,
for which the primitives were made, simultaneously. While this is easy for the spa-
tial primitives such as synchronous muscle synergies and kinematic synergies, it
is unclear how this can be done with temporal representations. Since the tempo-
ral primitives typically rely on a parametrized trajectory, these approaches would
combine trajectories linearly, which is for many tasks not appropriate. Here, the
exception is the time-varying muscle synergy representation, which is constructed
by the simultaneous combination of synergies. However, this representation has
only been applied to data analysis, it is not clear how this property can be directly
transferred to robot control.

An interesting new idea for the simultaneous combination is provided by the
planning movement primitives (see Chapter 8), where we do not need to combine
trajectories linearly, we can (linearly) combine cost functions which might result
in a strongly non-linear trajectory output of the planner. However, this idea of
combining several cost functions still needs to be evaluated.
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Despite many efforts, balance control of humanoid robots in the presence of
unforeseen external or internal forces has remained an unsolved problem. The dif-
ficulty of this problem is a consequence of the high dimensionality of the action
space of a humanoid robot, due to its large number of degrees of freedom (joints),
and of nonlinearities in its kinematic chains. Biped biological organisms face simi-
lar difficulties, but have nevertheless solved this problem. Experimental data show
that many biological organisms reduce the high dimensionality of their action space
by generating movements through linear superposition of a rather small number
of stereotypical combinations of simultaneous movements of many joints, to which
we refer as kinematic synergies in this paper. We show that by constructing two
suitable nonlinear kinematic synergies for the lower part of the body of a humanoid
robot, balance control can in fact be reduced to a linear control problem, at least
in the case of relatively slow movements. We demonstrate for a variety of tasks
that the humanoid robot HOAP-2 acquires through this approach the capability to
balance dynamically against unforeseen disturbances that may arise from external
forces or from manipulating unknown loads.

6.1 Introduction

Humanoid robots are constructed to have the form of a human body in order to
be able to work in environments optimized for human needs. In the near future
they are meant to work with people, and human like shape would increase the
possibility of acceptance of robots in human society. However, the humanoid form
carries the burden of being very difficult to control compared to wheeled robots for
instance. One of the biggest problem is the issue of balance like counterbalancing
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unknown perturbations. This is a standard situation in a real environment and has
to be solved as a prerequisite to any interaction. Due to their human structure,
humanoid robots are bipedal, and have therefore a smaller support polygon (which
is defined as the convex hull of the foot support area) compared to, for example,
quadrupeds. In addition, two-thirds of their body mass is typically located above
two-thirds of body height (Winter, 1995). Both facts contribute to the instability
of humanoid robots. Furthermore, a failure of their balance control is not only
bad for the robot, since a fall is likely to produce damages, but may also hurt
people that interact with the robot. Therefore, a crucial point for allowing human
robots to work in human environments is to find robust and effective methods for
their balance control. These solutions should induce naturally looking movements
in order to increase the possibility of acceptance of humanoid robots as partners of
humans.

The balance control problem of humanoid robots is known to be hard to solve due
to the high dimensionality of their action space (since many degrees of freedoms,
i.e., joints, are involved) and the nonlinearities inherent to any kinematic chain.
Because of the importance of finding solutions to this problem, a lot of effort has
already been invested and many approaches from different research areas have been
proposed.

A first step was made by introducing the Zero Moment Point (ZMP) criterion
(Vukobratovi¢ and Borovac, 2004). It simplifies the high dimensional problem by
reducing all acting forces above the foot (in case of single support, i.e., contact with
the ground with only on foot) to one single force (Vukobratovi¢ and Borovac, 2004).
Due to physical interaction between foot and ground we get at a so-called ground
reaction force. This ground reaction force is located at the point where the force
between foot and ground acts and has opposite sign. This two dimensional point
(called ZMP) on the ground can then be used to characterize the dynamic state of
the robot: If the ZMP lies within the support polygon of the robot, the state of
the robot is called dynamically stable. This "ZMP stability criterion’ reduces the
problem of stability to coordinate the limbs of the robot (i.e., apply appropriate
torques through their servos) in such a way, that the ZMP stays within the support
polygon'.

While the ZMP can be calculated analytically, the position of this point can also
be measured by pressure sensors (actually measuring the ground reaction force).
From this point of view the resulting point is called accordingly Center of Pressure
(CoP). As Goswami demonstrated (Goswami, 1999) the ZMP equals the CoP, since
they describe the same phenomenon from different points of view. In this paper
we are going to use the name CoP, since we use the pressure sensor information
in combination with the support polygon to estimate the state of stability. Since
the original ZMP definition has some limitations (Goswami, 1999), other ground
reference points have been proposed, for example, the Foot Rotation Indicator (FRI)
introduced by Goswami (Goswami, 1999) or the Centroidal Moment Pivot (CMP),
just to name two. For a detailed discussion we refer to (Popovic et al., 2005).

!The robot could also change the size of the support polygon by, for example, hold on to
something. For a discussion of different control strategies in this context we refer to (Goswami and
Kallem, 2004).



6.1. Introduction 51

Other approaches have been proposed that are also based on a reduced model
of the robot. For example, the Inverted Pendulum Model, introduced by Kajita et.
al. (Kajita et al., 1992), has proved to be very useful. It describes the whole robot,
under some assumptions, by a linear inverted pendulum and thereby, reduces the
number of dimensions. Extensions of this model have also been studied, for example,
the Three-Dimensional Inverted Pendulum Model 3D-LIPM (Kajita et al., 2001) and
the Reaction Mass Pendulum (RMP) (Lee and Goswami, 2007). Although all these
reduced models are useful, still, at the point of implementation one has to find
control schemes which map the strategy back into the full dynamic model (as Lee
and Goswami pointed out (Lee and Goswami, 2007)). Hence, they have difficulties
dealing with unknown external perturbations, since these perturbations present a
change in the dynamics of the robot.

An alternative approach to balance control is to rely on the static model, i.e.,
to use the kinematic model and the mass distribution of the robot. By employing
a local Jacobian Pseudo-Inverse (JPI) approach on local information, like Resolved
Motion Rate Control (RMRC) (Whitney, 1969), the optimal change of the joint
angles can be calculated. Some of these frameworks even allow to set priorities
amongst conflicting tasks (Baerlocher and Boulic, 1998, 2004). Accordingly, balanc-
ing could be one of these tasks, typically with a high priority. In order to deal with
unforeseen perturbations, the setup has to be used inside a feedback control loop,
for example as proposed in (Mansard and Chaumette, 2007). However, a drawback
of such an approach is that it calculates online inverse kinematics, which involves
computationally expensive matrix inversions.

Other approaches try to solve directly the dynamic equations within constraints,
which reflect the border of stability. For example, Kagami et. al. (Kagami et al.,
2001) proposed an online balancing scheme by solving a quadratic programming
problem. However, the precise dynamic model of the robot is needed in order to
apply this approach. Therefore, it has difficulties in situations where the dynamic
model of the robot significantly changes due to external unknown forces, for example,
introduced by picking up unknown loads or contact with the environment, which
are standard situations for humanoid robots working in a human environment.

Biological organisms face similar problems, but, as experimental data suggest,
employ a radically different strategy for controlling their movement apparatus with
many degrees of freedom (DoF), in particular for balance control. Numerous studies
from the Lab of Bizzi at MIT ((Mussa-Ivaldi, 1999; d’Avella et al., 2003; d’Avella and
Bizzi, 2005)) have shown that the central nervous systems of a variety of organisms
employ a modular architecture for motor control, whereby many different movements
(arm movements, walking, jumping, swimming) can be constructed as largely linear
(but non-negative) combinations of a rather small repertoire of movement primitives.
A very simple modular architecture in the context of biological data analysis are
the synchronous muscle synergies (d’Avella and Bizzi, 2005), which are a spatial
movement representation (see Chapter 5). Synchronous muscle synergies define a
low-dimensional linear basis of a high dimensional control vector, like the muscle
activations. The muscle activation vector a(t) is therefore given by

a(t) = Mc(t),
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where each column-vector of M defines a single muscle synergy and the vector
c(t) defines the muscle synergy coefficients. However, it is difficult to translate
such representations directly to robot control as they are directly defined in the
action space of the robot and therefore, do not provide any facility for incorporating
(proprioceptive) feedback. In this work we introduce a robot control strategy which
has been inspired by the synchronous muscle synergy approach, however, we define
the synergies in the joint space of the robot, which easily allows the use of feedback
control laws. Since the synergies are defined by the kinematic chain of the robot,
we will denote this approach as kinematic synergies.

Also recent work on whole-body movements of humans ((Freitas et al., 2006;
Tricon et al., 2007; Torres-Oviedo and Ting, 2007)) show that balance control and
other human body movements during standing can be understood as combinations
of a small set of stereotypical kinematic synergies (each of them affects several
joints). Experiments, where humans where asked to bend their upper trunk, while
recording the angles of the ankle, hip and knee, revealed after a Principal Component
Analysis (PCA) of these angles, that already the first principle component can
explain over 99% of the total angular variance (Alexandrov et al., 1998). This
suggests that a set of muscles (multiple degrees of freedom) are controlled by a low
dimensional (possibly even one dimensional) variable. Other experiments suggest
that this principle of kinematic synergies is present over a wide range of different
movements like reaching and grasping (Mason et al., 2001), upper-arm movement
(Sabatini, 2002) and making a step (Wang et al., 2005). Hence, kinematic synergies
seem to present a general strategy biological organisms apply.

We are specially interested in humanoid balance control. In a preceding confer-
ence paper (Hauser et al., 2007) we demonstrated how this basic modular strategy
based on kinematic synergies can be adapted for balance control of a humanoid
robot. The kinematic synergies were calculated offline by an optimization process
based only on the static model (kinematics and masses) of the robot?. Despite the
use of the static model, we could demonstrate that the concept of kinematic syn-
ergies, when plugged into a linear control loop, can provide a powerful scheme for
dynamic balance control. This article presents an extension of the previous work
(Hauser et al., 2007) by following points: (1) We demonstrate that our approach of
kinematic synergies is robust to parameter changes of the model of robot. Changes
of the static model present a standard situation for biological systems since they
grow or even get injured (e.g., loosing a leg). (2) Additionally, we show that no
special tuning of the controller parameters is needed since the proposed framework
works (i.e., balances the robot) within a wide range of these parameters. (3) We
demonstrate that the chosen kinematic synergies, originally designed for double sup-
port, can also be applied for the case of single support. (4) Finally, we demonstrate
that the proposed approach for balance control can be transferred from a simulated
humanoid robot without any changes to a real humanoid robot.

In the next section we define the kinematic synergies. Section 6.3 explains how
to construct and use kinematic synergies for balance control of the humanoid robot

2This optimization process is closely related to the Jacobian Pseudo-Inverse approaches (Sciav-
icco and Siciliano, 2005), however, the computations are only needed for the offline construction
of the synergies and not during online control.
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HOAP-2. In Section 6.4 we present a number of experiments with the simulated
and the real HOAP-2.

6.2 Formal Definitions of Kinematic Synergies

In this section we define the kinematic synergies which are used to reduce high
dimensionality and nonlinearities. Typically, humanoid robots have a high number
of degrees of freedom (DoF), namely joints. We interpret kinematic synergies (KS)
as a way to reduce the DoF by putting a defined set of joints under the regime of
one controlling parameter, which we refer to as the KS-parameter s. We define a
kinematic synergy as a nonlinear mapping ® of the KS-parameter s € R to a fixed
number of m degrees of freedom (joints).

Definition 1. A kinematic synergy (KS) is a function ® := ®(s) which maps the
KS-parameter s € R onto a m dimensional vector of joint angles % = ®(s):

®: R R™. (6.1)

The superscript X9 denotes the subset of m joints, which are controlled by the KS.
The total number of joints of the robot is denoted by n. Further, we define the
function ¢

¢: R™ - R" (6.2)

to embed the m-dimensional subspace spanned by ® into the n-dimensional space
of all joints of the robot. This embedding copies the angles of all joints affected by
® and leaves the remaining joints constant.

A KS is typically applied in order to control a low-dimensional, or even one-
dimensional, variable y € R!. In general the output y depends on all n joint positions
q € R" of the robot and can be described by a nonlinear function f(q)

f: R" - R. (6.3)

We want the KS to control the output y = (f o ¢ o ®)(s). In the case of balance
control, the function f represents the nonlinear relationship between all joints of the
robot and a ground reference point like the CoP. We will use two KS ®, and ®, for
the two dimensions of the CoP. Therefore, in this particular case each KS is used
to control a one-dimensional output (I = 1).

Since such a KS affects m degrees of freedom that depend just on a one
dimensional parameter s, we can impose further constraints on the function ®.
A reasonable choice for such a constraint is a linear relationship between the
controlling parameter s and its corresponding output y. This reduces nonlinearities,
inherent to kinematic chains, and hereby facilitates controlling and learning. Hence,
we are particularly interested in the following type of KS:
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q“S e R™ qeR”

Figure 6.1: Scheme for the composition of the functions ¢ and f according to (6.2) and
(6.3) with the kinematic synergy ®.

Definition 2. A linearizing kinematic synergy is a kinematic synergy according to
Definition 1, which has a linear relationship between its controlling parameter s and
the corresponding (to be controlled) output y

y=(fopod)(s)=k-s, EeR. (6.4)

We restrict our attention in this article to such linearizing KS, to which we
simply refer as KS.

For a better understanding we provide some additional remarks:

1. As stated above the property of linearity in Definition 2 reduces inherent
nonlinearities. But Equation 6.4 presents a static mapping, and therefore it
will only linearize the static part (linearization at g = 0, g = 0) of the whole
dynamic model of the robot. Nevertheless, it will reduce nonlinearities in the
dynamic regime to some extent too, since the dynamic part is coupled with
the static part of the differential equations.

2. The controlled variable y is one-dimensional, but is controlled by m > 1 joints.
Hence, we have additional redundant degrees of freedom and therefore, we are
free to impose additional constraints on the KS. Naturally, the choice will
depend on the task for which the KS are constructed. In our case of balance
control we used constraints to assure double support and an upright posture
(used in the optimization process described in Section 6.3.1).

3. KSs are calculated offline for each robot (see Section 6.3.1) and subsequently
fixed during simulation as well as when used with the real robot. In a biological
interpretation we assume the KSs to be found by evolution.

4. The presented framework was kept as simple as possible. Various extensions,
which lead to a better performance for particular tasks, are possible. One
could define a two dimensional kinematic synergy (i.e., s € R? and y € R?) or
time-varying KSs (q%° = ®(s,t)), which depend on a cyclic movement, for
example, to be used in a walking cycle.
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Figure 6.2: (a) The real HOAP-2 robot and (b) its schematic structure. The red marked
and labeled joint rotation axes are controlled by the kinematic synergies &z and ®z.

6.3 Using Kinematic Synergies for Balance Control of
the Humanoid Robot HOAP-2

In this section we show in detail how to use kinematic synergies for balance control
of the humanoid robot HOAP-2, see Figure 6.2(a). The robot has n = 25 degrees of
freedom (rotational joints). Its structure can be seen in Figure 6.2(b). The goal is to
construct KSs for balance control in double support. Therefore, we have to decide
(a) what output function f and output variables y we are going to use, (b) which
subset of m joints we put under the regime of the KSs and (c¢) what additional
constraints we are going to apply to construct the KS's:

(a) For balance control a natural choice for the function f is a ground reference
point. These points are mathematically defined and can be analytically de-
rived, but in practice, they are estimated via pressure sensors. Therefore, we
will denote the reference point measured by the pressure sensors as measured
Center of Pressure (mCoP). HOAP-2 has four of such sensors per feet, located
at the corners (see Figure 6.3).

Since a KS is defined as a static mapping, we use the static version of the
mCoP to construct our KS. In the static case (zero joint velocity ¢ and zero
joint acceleration ) the mCoP coincides with the projected Center of Mass
(pCoM). Therefore, we chose the pCoM as output function f. Since the pCoM
is a two dimensional point on the supporting surface, we split it up into its
two dimensions y, = pCoM,, and y, = pCoM, and define two separate KS's,
namely ®, and ®,, in order to control these one-dimensional outputs y, and

Yz-

(b) Next, we have to decide what joints are placed under the regime of our KSs.
A natural choice for balance control is to use all m = 12 leg joints (three hip
joints, one knee joint and two ankle joints for both legs). Their corresponding
rotational axes are highlighted in red in Figure 6.2(b). The additional surplus
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Figure 6.3: Support polygon on the support surface for the robot, including the touch
sensors, which are used to measure the center of pressure (mCoP). Black arrows indicate
the = dimension (forward/backward: range 9.5 ¢m) and z dimension (left/right: range:
14.3 em) for movements of the center of pressure.

of joints are free to be used for other tasks (grasping, lifting weights, tracking
objects, etc.). Their movements clearly will change the pCoM too, but as we
show later in Section 6.4, our approach is able to deal with that in a natural
way.

(¢) Finally, we choose some additional constraints (next to the linearity property)
for the KSs, which are used for the optimization process described in the next
subsection. Suitable constraints for balance control are to keep the upper body
as upright as possible and to maintain double support.

6.3.1 Calculating Kinematic Synergies with Inverse Kinematics

In this section we describe how do obtain the desired KSs in detail. All calculations
are based only on the kinematic model of the robot including the mass informa-
tion (no dynamical information like the inertia matrices is needed). The KSs were
constructed offline and subsequently fixed during control action.

We defined an initial posture g, (see Figure 6.5-A). This posture resulted (for
the case of a horizontal support surface) in a pCoM at the center of the support
polygon. We used a posture with wide-spread arms in order to avoid self collision
when moving. The KS-parameters s, and s, were rescaled such that the values
—1 and +1 corresponded to the borders of the support polygon. Therefore, the
region of acting without falling was (for the case of a horizontal support surface)
Sz/s. € [—1,41] for both dimensions = and z, see red-dashed lines in Figure 6.3.
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We additionally set the origin of the coordinate system for the pCoM to the center
of the support polygon and therefore, the resulting outputs in the initial posture
were £, (Qinit) = £2(Ainit) = 0.

We will only describe the procedure for ®,. The second kinematic synergy ®.,
was obtained in a similar manner. The KS was implemented as look-up table which
maps the KS-parameter s, € [—1,+1] to joint angle offsets (with regard to the
initial posture)?, i.e., Aqz = ©(qX®) — qinir. Note that the look-up table represents
a discretized version of a linearizing kinematic synergy as defined in Definition 2. In
order to obtain joint angle offsets in between the table entries a linear interpolation
was used. We used joint angle offsets instead of absolute joint angles in order to
be able to use a linear superposition (as biological data suggest) of both KSs, i.e.,
Aq = Aq;+Aq.. Although, the problem is (due to the kinematic chains) nonlinear,
we will show that a linear superposition is valid for a wide range of postures. The
linear superposition allows us to use two separate simple KS, which depend only on
a one-dimensional KS-parameter, and which can be constructed independently*.

In order to construct the look-up table, we divided the range of the KS-parameter
sg over the support polygon into 80 points. Therefore, the distance between two
neighboring points represents 9.5 cm /80 =~ 0.12 cm in the pCoM space, which
corresponds to a step of As, = 0.025 in the KS-parameter space.

The construction of the KS consisted of two alternating optimization steps (see
optimization scheme in Figure 6.4). Starting from q;,;; and s, = 0, the first op-
timization step was used to move the pCoM of the robot to the next point y, of
the look-up table (located 0.12 cm in z-direction from the origin). In addition, the
optimization tried to keep the upper part of the body upright. An inverse kinemat-
ics algorithm based on the Jacobian Pseudo-Inverse (JPI) (Sciavicco and Siciliano,
2005) was used to calculate the joint movement. Therefore, the applied Jacobian
matrix consisted of two 3 x m sub-matrices, the Jacobian for the position of the
pCoM and the Jacobian for the rotation of the torso. However, due to the move-
ment calculated by this optimization, the position of the right foot relative to the
left foot tended to change. This should be avoided in order to prevent the robot
from falling. Therefore, a second JPI optimization step (see Figure 6.4) was used to
move the right foot back into its original position relative to the left foot. For this
optimization the same Inverse Kinematics algorithm was applied using only the 6
joints of the right leg.

These two previously described steps were iterated until the desired output value
y!. was reached. Subsequently, the joint angle offsets to the initial posture were
stored in the look-up table and, now starting from the new joint position, the next
entry of the look-up table was calculated. The same process was applied for the
opposite direction (i.e., for s, from 0 to —1). This finally led to a look-up table for
the range s, € [—1,+1] which mapped the KS-parameter s, to joint angle offsets.

Figure 6.5 presents four typical postures for different KS-parameter pairs [s;/s.].
The center of the figure shows the support polygon (gray area) and the coordinate

3The function ¢ is used to project the m-dimensional vector qX° into the n-dimensional space
of all joints.

“Without this property, one would have to construct one single KS with a two-dimensional
KS-parameter, i.e., s € R?.
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Figure 6.4: Scheme of the construction process for the look-up table for the KS ®, in the
form < s,,Aq >. Optimization step 1 moves the pCoM in the desired direction to y.,
while keeping the trunk in an upright position. Optimization step 2 keeps the feet at the
initial positions. The process ends when the end of the support polygon (SP) is reached.

system of the KS-parameters. The yellow circles (A-D) represent the postures in
the KS-parameter space. The corresponding screenshots can be seen in the corners
of the figure.

Figure 6.6(a) shows the mapping of the KS-parameter s, to the outputs
y> =pCoM,, and y, =pCoM,, for the KS ®,. We can clearly identify a linear rela-
tionship between s, and y,, whereas the second output dimension y, is unaffected
by s;. The same plot for the KS ®, is shown in Figure 6.6(b).

A graphical representation of the joint angle offsets over the range of the KS-
parameter space (from —1 to +1) for the kinematic synergies ®, and ®, is presented
in Figure 6.7. Similar to their biological prototypes (see Figure 4 in (d’Avella and
Bizzi, 2005)), the two KSs largely affect disjoint sets of joints. The joints mainly
responsible for the movement in x-direction are orthogonal to the joints mainly re-
sponsible for the z-direction. Note that the human muscle-skeleton system exhibits,
although more complex, a similar structure. This orthogonality suggests that we
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Figure 6.5: Typical postures of the simulated HOAP-2 resulting from the KSs ®, and ®,
for different KS-parameters. The center of the figure shows the defined coordinate system
for the KS-parameters s, and s,. The gray shaded area indicates the support polygon
(SP) of our robot standing with both feet on the ground. The red dashed lines depict the
limits of the SP and correspond to the values s, = 1.0 and s, = +1.0. The yellow points
show typical postures in the KS-parameter space. Corresponding postures can be seen in
the corners (labeled from A to D). The used KS-parameters [s,./s.] can be seen below the
screenshots. Screenshot [A] shows the initial posture Qi (s = s, = 0 / at the origin)
[B] shows the robot bending forward with s, = 0.8 and s, = 0.0, while in [C] the robot is
bending to the left (with s, = 0.0 and s, = —0.8). Screenshot [D] presents a combination
of both kinematic synergies with s, = —0.5 and s, = 0.5.

can combine the two KSs linearly, which is done by summing up the initial posture
and the two joint angle offsets q7, = Qinit + Az + AQ..

In order to show the validity of the linear superposition of the two KSs, we
evaluated empirically the deviation of the actual pCoM < f.(qr),f.(qr) > from
the case of perfect linear superposition < £,(qinit + Aqy), £2(Qinit + Aq.) >. The
deviations for the whole support polygon can be seen in Figure 6.8. Except for
extremal cases, where the pCoM is located at a corner of the support polygon, the
deviations from linearity are quite small.

Note that the described optimization procedure is closely related to standard
JPI approaches. However, these approaches are typically used for online control,
involving computationally expensive real-time calculations. With the use of kine-
matic synergies most of this computational load can be transferred to the offline
optimization scheme. As a consequence, and as we will demonstrate later, without
a significant loss of performance the robot can be balanced with very little compu-
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Figure 6.6: (a) The plot shows the mapping of the KS-parameter s, to the outputs y, =
pCoM, and y, = pCoM,, for the KS ®, . While the relationship between s, and y, is linear
(as demanded by the definition of a linearizing kinematic synergy), y. is nearly unaffected
by s.. (b) The same plot for the second KS-parameter s..
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Figure 6.7: Graphical representation of the KSs ®, and ®,. Shown are the joint angle off-
sets (in color coding) for the kinematic synergies ®, (moves the pCoM forward/backward)
and @, (moves the pCoM left/right) for the HOAP-2 over the range [—1,+1] for the KS-
parameters s, and s,. Note that these two KSs affect largely disjoint sets of joints.

tational power.

6.3.2 From Statics to Dynamics by Using Linear Controllers

The kinematic synergies ®, and ®, were constructed using the pCoM as output
function, and therefore they were based on the static model of the robot. However,
the robot can only estimate the mCoP with its pressure sensors®, which is also
affected by the dynamics of the robot. Nevertheless, we are still able to use the
obtained KSs in a dynamic context if following assumption holds:

Assumption: The robot moves sufficiently slowly such that

mCoP ~ pCoM.

In our simulations of the HOAP-2 we also used simulated pressure sensors to calculate the
mCoP.
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Figure 6.8: Empirical evaluation of the validity of the linear superposition of the KSs ®, and
®,. We calculated the deviation of the actual pCoM < f,(Qinit + Adx + Ady), £2(Qinit +
Aqg. + Aq.) > from the case of perfect linear superposition < f,(qinit + Aqy), £z (Qinit +
Aq;) >. The Euclidean norm of the deviations is shown in color code for the whole support
polygon. Except for extremal cases, where the pCoM is located at a corner of the support
polygon, the deviations from linearity are quite small. The white dotted lines depict the
contours of the feet.

As we will demonstrate in this section, the assumption allows us to use simple linear
controllers in conjunction with the KSs. Due to the assumption we are in principle
limited to "sufficiently slow" movements. However, we will demonstrate in our
experiments that a wide range of unknown external forces can be counterbalanced
by our approach, despite this limitation.

We now explain how the kinematic synergy ®, can be used in combination with a
linear controller for balancing the robot in z-direction (forward/backward). For the
other KS ®, the process is similar. As long as the assumption holds, the function
from the time derivative $, of the KS-parameter to mCoP, can be approximated
by a linear transfer function

P(z) = (6.5)

with K € RT and with z being the time shift operator for discrete systems (Op-
penheim and Willsky, 1992). The denominator polynomial represents an integrator
(one pole at z = +1), which integrates the velocity s, of the KS-parameter to obtain
Sy

Aslong as the dynamical effects are small enough, they can be seen as uncertain-
ties in the linear model of Equation 6.5. Already a simple linear feedback controller
can handle these small uncertainties. In order to obtain a closed control loop we
define a feedback error

€r = Yo — Yu (6.6)

with ¢, being the desired output value and y, = mCoP,. The goal is to prevent
the robot from falling. Therefore, the mCop,, should stay close to the center of the
support polygon. Since we have defined the center of SP at the origin, see Figure
6.3, the desired value g, is set to 0.
We can now use a general standard PID controller to get the controller output
Sz
dey

Sm:erm—FK[/emdt—FKDE R (67)
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Figure 6.9: Closed control loop for the kinematic synergy ®,. Since we want to have the
mCoP, at the center of the support polygon, the reference point is set to g, = 0 . The
external perturbation d results from external forces and/or model uncertainties.

where Kp, K; and Kp are the positive PID controller parameters. Figure 6.9
shows the described closed control loop for the kinematic synergy ®,. Since the
plant (see Equation 6.5) already contains an integrator, the use of PD controllers
(K1 = 0) is sufficient. For the KS ®, we used a similar control loop, which worked
independently from and in parallel to the first control loop.

We have described the control scheme to control around a set point (¢, = 7, =
0). However, the control loop can also be used to move the mCoP on any desired
time varying trajectory®, i.e., §,(t) and 7,(t). This is useful in many applications.
For example, for the purpose of initiating a walking cycle, the robot has to move
its mCoP under the future supporting foot in order to be able to raise the other leg
without falling.

The controller parameters used in the experiments were empirically found to
have a reasonable performance. As we demonstrate (see Subsection 6.4.3) there is
a wide range of appropriate controller parameters and therefore the choice of the
parameters is not critical.

Linear and nonlinear control theory offers a number of possible improvements for
the controllers, for example, adaptive control (see (Astrom and Wittenmark, 1995))
or robust control schemes, optimal control and different trial and error approaches to
find good control parameters (see for example (Kuo and Golnaraghi, 2002)). Even
higher order controllers or different control structures than in Figure 6.9 could be
used. However, in order to illustrate the capability of using kinematic synergies for
balance control, we only use the previously presented, simple PID controllers.

6.3.3 Examination of Different Possible Perturbations

Lets take a closer look at possible perturbations d for the proposed control loop
(Figure 6.9). We will distinguish between three different kinds of perturbations:

1. Model perturbations: Since we obtained our KSs from the static model of
the robot, unmodeled dynamics, which will always be present to some extent,
result in model perturbations.

2. Internal perturbations: The mCoP is also influenced by movements of joints,
which are not under the control of the kinematic synergies. For example,
if our humanoid robot uses the presented KSs for balancing and additionally

6 We have already demonstrated that in (Hauser et al., 2007).
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moves a heavy weight with its arms, this movement will also change the mCoP
position. Note that the proposed control loop does not need any information
about the movements of these joints.

3. External perturbations: For example pushes, pulls, contact with the environ-
ment or a moving support platform.

Since a standard feedback control loop has the property to suppress the perturba-
tions d, our approach works for a wide range of tasks. As shown in our experiments
(Hauser et al., 2007), these tasks include counteracting external forces, following
trajectories, compensating for forces introduced by movements of the limbs of the
robot or even a mixture of these tasks. If the perturbation is too large, the assump-
tion (mCoP ~ pCoM) might be violated and the controller will therefore not be
able to compensate the resulting error anymore. Yet, as our experiments show, the
proposed system is capable to react appropriately to a wide range of perturbations.

6.4 Experiments

We conducted experiments with our proposed approach for a variety of possible ap-
plications. We demonstrate that kinematic synergies with linear controllers empower
a humanoid robot to counterbalance different kinds of dynamic perturbations. In
our first experiments the robot had to counteract a moving support surface (plat-
form where it stood on) and abrupt unforeseen external forces at the same time
(see Subsection 6.4.1). Subsequently, we show that the approach can also be ex-
tended easily to balancing in single support (the robot only stood on the left foot,
see Subsection 6.4.2) and that robustness against parameter changes is an inherent
property (Subsection 6.4.3). Furthermore, we compare our approach to an online Ja-
cobian Pseudo-Inverse (JPI) algorithm. Finally, we demonstrate that our approach
can be easily transferred from the simulation to the real robot without any special
precautions (Subsection 6.4.5).

All simulations were implemented in the robot simulation software Webots
(Michel, 2004). A detailed model of the dynamics of the HOAP-2 robot, based
on data provided by the vendor Fujitsu, was used. The basic simulation time step
was set to 2 ms and the time steps for the control loops were set to 8 ms. In the
general setup we had two kinematic synergies (®, and ®,), which were used within
two separate control loops. They reacted independently from each other on their
corresponding output dimension x and z. In dependence on their errors e, and e,,
both linear controllers calculated the velocities s, and s, of their KS-parameters.
The velocities were integrated numerically to obtain s, and s,, which were then
mapped via the look-up table into joint angle offsets. Subsequently, these joint an-
gle offsets were linearly combined as described in Subsection 6.3.1 to get the actual
joint target angles. Finally, these angles were transformed into torques by local PD
controllers” at the servos.

"Note that these are the hardware controller of the servos and not the controllers from our
proposed control loops.
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Figure 6.10: Result for the experiment with a moving support platform (surfboard) and
unexpected external forces (wind) W1 and W2. The balance of the HOAP-2 is controlled
by two linear controllers combined with the kinematic synergies. Without balance control
(red dashed line in (c) and (d)) the mCoP left the support polygon after 16s (in response
to the wind W2), and the robot fell over. With balance control (solid lines) the stability of
the robot was maintained in spite of unexpected external forces.

We provide supplementary multimedia material in form of two videos,
available at http://ieeexplore.ieee.org.  The first one (simulation wvideos.avi)
shows all simulated experiments of the following sections. The second video
(real_robot_videos.avi) shows the experiments with the real robot. Both videos
(in compressed form) are about 13 MB in size.

6.4.1 Moving Support Platform (Surfboard Task)

In this task we simulated the HOAP-2 robot standing on a movable support platform
(surfboard). The surfboard could rotate about the z-axis with angle ©, and about
the z-axis with the angle ©,. Typical scenarios of the setup can be seen in Figure
6.11.
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(c) at 12 seconds (d) at 16 seconds

Figure 6.11: Screenshots of the posture of the (simulated) HOAP-2 at 4 time points during
the balancing experiment with the random moving support surface (surfboard) and external
perturbations (winds). In Figure (b) the wind W1 was blowing from the right (point of
view of the robot ; red arrow). As a consequence, the robot was leaning against the wind in
order to move its mCoP back into the middle of the support polygon. In Figure (d) another
wind W2 was blowing from the right and the back (red arrow), resulting in a diagonal force.
Again, the robot responded properly to this online modification of its dynamic model.

We considered the case where the surfboard was tilted dynamically in random di-
rections. The random trajectories for the angles ©, and ©, were generated indepen-
dently from each other by smoothing (by the use of a discrete low-pass FIR-filter®)
random trajectories of jumps (steps) with random amplitudes and random dura-
tions. Typical resulting trajectories are presented in Figures 6.10(a) and 6.10(b).

In addition to the random movement of the surfboard, unforeseen external forces
(for example wind forces or contact with other objects) were applied to the torso
of the robot at various points in time. We designed this scenario in order to show
that our proposed approach is able to deal with different kinds of external pertur-
bations simultaneously. Furthermore, control strategies that require knowledge of
the dynamic model of the robot are inapplicable in this scenario, because the exter-
nal forces change the dynamic model of the robot in an unknown, online manner.
Figure 6.10 shows the results when an external force W1 = [0, 0,5]”N (a force from
the right side) was applied at the torso of the robot during the interval [5s, 10s], and
another external force W2 = [5,0, —5]TN (a force from the right and the back) was
applied during the interval [15s,20s] (we shaded these two time intervals in gray).
Note that the onsets of the winds were abrupt (i.e., a step function in time) and
therefore represented highly dynamical perturbations to the system.

Typical trajectories of the mCoP for the described setup, with and without
balance control, are shown in Figures 6.10(c) and 6.10(d). Without balance control,
the robot lost balance after 16s (indicated by a black star in Figures 6.10(c) and
6.10(e)), whereas with our controllers, balance was maintained. The error signals

8The used FIR-filter had three poles at 0.997.
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for both dimensions x and z can be seen in Figures 6.10(e) and 6.10(f). Note
that both perturbations, the movements of the surfboard and the external forces,
are external perturbations. In addition, as the setup was dynamic, inherent model
perturbations were also always present. With this experiment, we demonstrated that
our approach is able to react online against a mixture of different types of unforeseen
perturbations.

6.4.2 Kinematic Synergies in Single Support

In this experiment we demonstrate how to apply our approach in single support. We
used two different strategies. The first strategy reused the KSs previously calculated
for double support (referred to as DS-KS). We switched off the output of the control
loop for the joints of the lifted leg and set the desired mCoP position to the center
of the reduced support polygon (defined by the single supporting foot). The second
strategy was to design new KSs for single support (referred to as SS-KS). We used
the same procedure as described previously in Subsection 6.3.1, with the distinction,
that we used a different initial position (the one shown in Figure 6.12(a)) and we
only optimized the joint angles of the supporting leg.

In the experimental setup the robot stood only on its left foot. The right foot

had no contact to the ground and therefore the right leg was free to perform any
desirable movement. In our example the robot is supposed to perform a kick motion.
The initial posture can be seen in Figure 6.12(a). The corresponding s-values for
this posture were s, = 0 and s, = 0.195 for DS-KS and s, = s, = 0 for SS-KS.
In order to demonstrate the validity of both strategies, we moved the body joint
and the hip joints of the left leg (these joints were not under the control of the
KSs) in order to perform a kick motion, which also included the upper trunk (see
Figure 6.12(b)). For the robot this movement represented an internal perturbation
as discussed in Subsection 6.3.3. When no balancing control was active, after about
7.5s of simulation time, the robot tipped over and fell. With the controllers switched
on, the robot was able to keep balance during the kick motion (in both cases, SS-KS
and DS-KS). Figure 6.13 shows the time course from 2s to 12s of this experiment
with DS-KS. Similar results were obtained with SS-KS. Figures 6.14(a) and 6.14(b)
show the trajectories of the KS-parameters s, and s,. Note that in the case of DS-
KS, there was an offset at the beginning of the simulation for the KS-parameter s..
This reflects the offset of the initial posture for single support from the original initial
posture for double support. Figures 6.14(c) and 6.14(d) present the errors during
the simulation. The controllers counteracted the disturbances correctly and kept the
errors close to zero for both strategies. The dashed red curve shows the errors when
no controllers were activated. Note that the scales of the y-axes of the plots in Figure
6.14 are different for the dimensions x and z. This is a consequence of the used kick
motion which mostly affected the mCoP in the z direction (forward/backward).
Both strategies (DS-KS and SS-KS) showed a similar performance (see Figures
6.14(c) and 6.14(d)). As a consequence, we can see that the KSs can also be used
for different, albeit related tasks, for which, in the first place, they have not been
designed for. This might also help to reduce the number of needed KSs in real world
applications, because related tasks might share the same set of KSs.
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Figure 6.12: Setup for the single support task. Figure (a) shows the initial posture. The
yellow circle denotes the CoM of the robot and the arrow points to the pCoM, which is
located at the center of the support polygon. Figure (b) shows the joint angle trajectories
which were used for the kick motion. When no balance control was applied, the robot lost

balance and tipped over at about 7.5s.
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Figure 6.13: Postures of the simulated HOAP-2 for the single support task. The first
row shows the robot from the front and the second row shows the robot from the side.
Screenshots were taken every second from the 2nd to the 12th second.

6.4.3 Robustness to Changes in the Model of the Robot and the
Controller Parameters

The kinematic synergies are based on the static model of the robot. Since uncer-
tainties in the model parameters (lengths and masses) are common, it is desirable
to have a framework that is robust to changes in those parameters. Moreover, such
a robustness simplifies a transfer from the simulation to a real robot. In addition,
it would be beneficial to have a wide range of valid control parameters, i.e., Kp and
Kp, which are able to balance the robot. In the following experiments we demon-
strate that our proposed setup is widely robust to variations of these parameters.

In a first experiment we varied the size of the robot by changing the length of
every link by a multiplicative length factor, ranging from 0.5 to 2.5. We used the
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Figure 6.14: Results for the single support task. The left column shows the results for the
a-dimension (®,,, forward /backward) and the right column the results for the z-dimension
(P, left/right). The Figures (a) and (b) show the responses of the KS-parameter s, and
s, for both approaches (SS-KS and DS-KS). Figures (c) and (d) show the errors. The
red dashed curves denote the errors when no balance control was active. In this case the
beginning of the red region indicates, when the robot tipped over and lost balance.

trajectory following task from our previous work (Hauser et al., 2007), where the
robot had to follow a figure eight trajectory with its mCoP, while it manipulated
a heavy weight. The KSs were kept constant. First, we used the same controller
parameters for both controllers as in the original task (Kp = 80 and Kp = 0.1). The
robot was able to keep balance for a length factor, which ranged from 0.85 to 1.1.
In Figure 6.15 the mean squared errors for the x-dimension? for successful length
factors (the robot kept balance) are indicated by red circles for these controller
parameters. In order to demonstrate how to improve robustness, we increased the
response time of the controllers by setting the controller parameters to Kp = 50 and
Kp = 0.0. In this case, successful length factors ranged from 0.85 to 1.45 (indicated
by blue crosses in Figure 6.15). Note that the mean squared error only increased
slightly. We also tested an even slower controller (Kp = 20 and Kp = 0.0), which
resulted in a fairly large range from 0.7 to 2.25 (indicated by green triangles in Figure
6.15). However, the used controller was too slow to follow the desired trajectory,
which can be seen in the high mean squared error values. The corresponding mCoP
trajectories of all three controllers can be seen in the right plots of Figure 6.15.
The black lines are the target trajectories. The conclusion of the experiment is that
the proposed setup is robust to changes in the lengths of the robot. In addition,
the results suggest that there is a tradeoff between the robustness of the approach
and the response times of the controllers. Similar results were obtained, when the

Similar plots were obtained for the z-dimension.
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Figure 6.15: Results on robustness to changes in the lengths. The lengths of all links were
multiplied by a length factor. The plot shows three different settings for the controller
parameters, resulting in different response times of the controllers. The red circles show
the mean squared error (mse) for the controller (Kp = 80 and Kp = 0.1) with the shortest
response time. The red circles are shown for the range of successful length factors (the robot
kept balance) from 0.85 to 1.1. By increasing the response time (controller parameters were
set to Kp = 50 and Kp = 0.0.) the range (from 0.85 to 1.45) of successful length factors
and therefore the robustness of our approach could be increased. However, also the mse
increased slightly, which indicates a worse tracking performance. With an even longer
response time (Kp = 20 and Kp = 0.0), the region of successful length factors (from 0.7 to
2.25) also grows, however, the controller was no longer able to follow the desired trajectory
(indicated by the large mse values). The results point to the fact, that there is a tradeoff
between the robustness of the approach and the response time of the controller. The right
plots show the corresponding mCoP trajectories for the three controllers (at a length factor
=1).

masses as well the lengths were changed simultaneously to simulate growing.

In a second experiment we provide an evaluation of the robustness of our ap-
proach to the choice of the controller parameters. We used the single support task
described in Subsection 6.4.2 (using the previously described SS-KS) and varied the
Kp and Kp parameters over several decades. We evaluated which parameter set-
tings (Kp/Kp-pairs) were successful, i.e., the robot was able to keep balance. The
results can be seen in Figure 6.16. Successful parameter settings are highlighted in
green. Note that the region of successful settings ranges over two decades for both
parameters. This suggests that our approach is robust to the choice of the con-
troller parameters and, thus, appropriate parameters are easily found. Moreover,
this robustness potentially allows us to combine our approach with adaptive con-
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Figure 6.16: Region of evaluated controller parameters for the single support task described
in 6.4.2. Successful parameter settings (for which the robot was able to keep balance) are
highlighted in green. Note that the scales of the axes are logarithmic. The region of
successful controller parameters ranges over two decades for both parameters, indicating
that our approach is robust to the choice of the control parameters.
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Figure 6.17: Schematic setup of the online Jacobian Pseudo-Inverse (JPI) approach, to
which we compared our approach (Figure 6.9). Instead of fixed kinematic synergies this

approach has to run online an optimization process (based on a JPI) at every single time
step to calculate the optimal joint angles velocities.

trol (Astrom and Wittenmark, 1995) or online policy search methods (Kober et al.,
2008).

6.4.4 Comparison to an Online Jacobian Pseudo-Inverse Approach

We performed a comparison of our kinematic synergy setup to an online Jacobian
Pseudo-Inverse (JPI) approach (Sciavicco and Siciliano, 2005). This approach per-
formed online an optimization similar to the one we used for the offline construction
of the KSs. In order to be responsive to external perturbations and model uncer-
tainties we had to plug the JPI into a feedback control loop. Figure 6.17 shows the
considered setup. In order to compare both approaches the robot had to track a
rectangular trajectory (with rounded edges) centered at the center of the support
polygon. We systematically increased the size of the rectangle and the speed of
the trajectory and compared the maximum quantities, at which the robot tipped
over. The differences between the two approaches for both limits (rectangle size and
speed) were less than 1%. Hence, there was no significant difference in their per-
formances. This suggests that the complex Jacobian Pseudo-Inverse computations
can be performed offline (in order to construct the KSs) without a significant loss of
performance. Note that the JPI approach needs to apply online sophisticated, time
intensive calculations, while our approach is based on a much simpler control law
using only a PID controller. A comparison of the online computation time of both
approaches revealed a speed-up factor of 80 in favor of our approach. The results
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also show that the performance loss due to the linear superposition'® of the two KSs
is negligible for humanoid balancing.

6.4.5 Experiments with a Real HOAP-2 Robot

In our final experiment we transferred our approach to a real HOAP-2 robot. Due to
the previously demonstrated robustness against model uncertainties, we were able
to simply reuse the same KSs as in our simulations, even though the static model
used for the KSs did not perfectly match the static model of the real robot.

We investigated two different setups. In the first setup the robot stood on the
floor (denoted by F) and we applied external forces. This was done by applying an
almost constant force from different directions for approximately 1 to 2 seconds by
pushing the robot. In the second setup (denoted by P) we reproduced the surfboard
task. The robot stood on a movable platform, which was mounted on a plastic sphere
in order to resemble the surfboard with its two degrees of freedom. In contrast to
the simulated experiment, no additional external forces (winds) were used (only the
movement of the platform represented an external force). Note that in both setups
the robot had no knowledge about the onset times, the directions or the amplitudes
of the applied external forces.

The first row of Figure 6.19 shows the responses of the robot to pushes from
different directions (setup F). The second row shows responses of the robot to dif-
ferent movements of the supporting platform (setup P). The robot counterbalanced
the applied external forces in order to keep its mCoP at the middle of the support
polygon in each of these cases.

In Figure 6.18 we show typical KS-parameters and the error signals recorded
while the robot was pushed from different directions (in setup F). Note that, except
for a short time period after a change of the applied external force, the error was kept
close to zero. This indicates that the robot always tried to maintain its mCoP at
the center of the support polygon. Note that videos of the experiments are provided
in the additional multimedia file, available at http://ieeexplore.ieee.org/.

6.5 Conclusion

We have presented a new approach to transfer spatial movement representations
coming from experimental data analysis such as synchronous muscle synergies to
robot control. We used the approach for balance control of a humanoid robot.
We have formalized the concept of a kinematic synergy (KS) that resembles the
concept of a muscle synergy in physiology, and which reduces the dimensionality of
the action space of the robot. We have shown that two kinematic synergies can be
constructed for balance control of the humanoid robot HOAP-2 in such a way that
their superposition is almost linear (like in biological paradigms), although each KS
itself is highly nonlinear. Based on this concept we were able to demonstrate that
it is possible to move the time intensive calculations of the optimization process

ONote that the JPI approach does not use a linear superpositions, but rather simultaneously
optimize for both output dimensions, i.e., y € R2.



72 Chapter 6. Kinematic Synergies

0.5 5
_s
X
0.25 —s, 2.5
= 0 5 0
-0.25 2.5 —&
_e
z
0% 20 40 0 20 40
time [sec] time [sec]
(a) KS-parameters s; and s, (b) errors e, and e,

Figure 6.18: The KS-parameters and the errors signals recorded during an experiment with
the real HOAP-2 robot. The robots was pushed from different directions (setup F). The left
figure shows the KS-parameters and the right figure shows the corresponding error signals.
We can see that, except for a short time period after a change of the applied external force,
the error is kept close to zero. This indicates that the robot always tried to maintain its
mCoP at the center of the support polygon.

Figure 6.19: Top row: Resulting responses of the HOAP-2 to external forces. The screen-
shots were made during dynamic action. The top row shows screenshots for experiments
while standing on the floor (setup F). Bottom row: External forces were applied by pushes.
The second row shows screenshots of experiments with the robot standing on a movable
platform (setup P). External forces were applied by moving the platform. In any of these
situations the robot acted correctly and moved its mCoP to the desired position at the
center of the support polygon. Note that there are videos of the experiments available (at
http://ieeexplore.ieee.org/).

offline and therefore keep the needed online calculations simple and fast. We have
demonstrated, both through computer simulations and through experiments with
the real robot HOAP-2, that this strategy makes it possible to virtually reduce the
highly nonlinear balance control problem of the robot to a linear control problem
(as long as the required movements are not too fast).

We showed that, in contrast to other approaches, which are based on an exact
dynamic model of the robot, our proposed combination of KSs and linear controllers
enables a humanoid robot to counterbalance unknown external forces of different
kinds. Additionally, we showed that robustness to parameter changes in the model as
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well to changes in the controller parameters is an inherent property of the proposed
approach. Based on this robustness we were able to transfer in straightforward
manner this new approach for balance control from a simulated to a real HOAP-2
robot.

We expect that both, the drastic dimensionality reduction of the action space
and the resulting linearization of the robot control through the use of suitable KSs,
pave the way for future learning-based solutions to movement control problems for
humanoid robots.
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Abstraction of complex, longer motor tasks into simpler elemental movements
enables humans and animals to exhibit motor skills which have not yet been matched
by robots. Humans intuitively decompose complex motions into smaller, simpler
segments. For example when describing simple movements like drawing a triangle
with a pen, we can easily name the basic steps of this movement.

Surprisingly, such abstractions have rarely been used in artificial motor skill
learning algorithms. These algorithms typically choose a new action (such as a
torque or a force) at a very fast time-scale. As a result, both policy and temporal
credit assignment problem become unnecessarily complex - often beyond the reach
of current machine learning methods.

We introduce a new framework for temporal abstractions in reinforcement learn-
ing (RL), i.e. RL with motion templates. We present a new algorithm for this
framework which can learn high-quality policies by making only few abstract de-
cisions. This is the first algorithm which allows efficient sequencing of movement
primitive representations.

7.1 Introduction

Humans use abstractions to simplify the motor tasks occurring during their daily
life. For example when describing simple movements like drawing a triangle with a
pen, we can easily name the basic steps of this movement. In a similar manner, many
complex movements can be decomposed into smaller, simpler segments. This sort of
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abstraction is for example often used by engineers for designing hybrid control solu-
tions (Xu and Antsaklis, 2002) where the single segments are implemented as local,
linear continuous controllers. We will call these building blocks motion templates.
Other names that can be found in the literature are “motion primitives”, “movement
schema’s”, “basis behaviors” or “options” (Ijspeert and Schaal, 2003; Arbib, 1981;
Dautenhahn and Nehaniv, 2002; Sutton et al., 1999).

Motor skill learning is a challenging problem for machine learning and, in partic-
ular, for the subfield of reinforcement learning (RL). Primarily used in motor skill
learning is the flat RL setting without the use of abstractions. In this setting the
agent has to choose a new action (typically a motor force or torque) at a very small
sampling frequency. While this allows the representation of arbitrary policies, this
flexibility makes the learning problem so complex that it is often beyond the reach
of current methods. A common approach for limiting the potential complexity of
the policy in the flat RL setting is to use a parametrized policy. Ijspeert et al.
(Ijspeert and Schaal, 2003) introduced a special kind of parametrized policies called
motion primitives, which are based on dynamical systems. In most applications to
date, only a single motion primitive is used for the whole movement. Parametrized
policy search methods such as policy gradient descent and EM-like policy updates
(Kober and Peters, 2010) have been used in order to improve single-stroke motor
primitives.

Currently, only few abstractions are used in RL algorithms for continuous en-
vironments, with few exceptions such as (Huber and Grupen, 1998; Ghavamzadeh
and Mahadevan, 2003). In (Huber and Grupen, 1998) the policy acquisition prob-
lem is reduced to learning to coordinate a set of closed loop control strategies. In
(Ghavamzadeh and Mahadevan, 2003) the given task is manually decomposed into a
set of subtasks. Both, the lower-level subtasks and the higher-level subtask-selection
policies are learned. In all these approaches the structure for the hierarchy of ab-
straction is manually designed and fixed during learning which limits the generality
of these approaches. In our approach, an arbitrary parametrization of the abstracted
level can be learned.

In this paper, we introduce a new framework for abstraction in RL, i.e. RL with
motion templates. Motion templates are our building blocks of motion. A template
m,, is represented as parametrized policy and executed until its termination condi-
tion is fulfilled. We assume that the functional forms of the motion templates remain
fixed, and thus, our task is to learn the correct order and parameters of the motion
templates by reinforcement learning. As motion templates are temporally extended
actions, they can be seen as parametrized options in continuous time. There are a
few well-established learning algorithms for the options framework (Sutton et al.,
1999). However, these algorithms are designed for discrete environments.

Choosing the parameters of a motion template is a continuous-valued decision.
However, a single decision has now much more influence on the outcome of the whole
motion than in flat RL. Thus, the decisions have to be made more precisely, though,
the overall learning problem is simplified because much fewer decisions are needed
to fulfill a task. As RL in continuous action spaces is already challenging in the flat
RL setting, the requirement of learning highly-precise policies has limited the use
of this sort of abstraction for motor control learning.
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This paper introduces a new algorithm which satisfies this requirement and
therefore permits learning at an abstract level. The algorithm is based on the
Locally-Advantage WEighted Regression (LAWER) algorithm. LAWER is a fitted
Q-Iteration (Ernst et al., 2005) based algorithm which has been shown to learn
high-quality continuous valued policies for many flat RL settings (Neumann et al.,
2009). However, two substantial extensions are needed to render motion template
learning possible. Firstly, we propose an improved estimation of the goodness of
an state action pair. Secondly, we introduce an adaptive kernel, which is based on
randomized regression trees (Ernst et al., 2005).

We conduct experiments on 3 different tasks, a 1-link and a 2-link pendulum
swing-up task and also a 2-link balancing task.

7.2 Motion Templates

A motion template m,, is defined by its k, dimensional parameter space W, C Rbv,
its parametrized policy u,(s, t; wp) (s is the current state, ¢ represents the time spent
executing the template and w, € W, is the parameter vector) and its termination
condition ¢p(s,t; wyp).

At each decision-time point oy, the agent has to choose a motion template m,,
from the set A(oy) and also the parametrization w), of m,. Subsequently the agent
follows the policy pp(s,t; w;) until the termination condition ¢, (s, t; wp) is fulfilled.
Afterwards, we obtain a new decision-time point oy .

The functional forms of the policy uy(s,t; w;,) and the termination condition
¢p(s,t;wp) are defined beforehand and can be arbitrary functions. For example,
consider again the task of drawing a triangle. We can define a motion template
Miine for drawing a line with the endpoint of the line and the velocity of moving the
pen as parameters. The policy ujne moves the pen from the current position with
the specified velocity in the direction of the endpoint of the line. The template is
terminated when the pen has reached a certain neighborhood of the endpoint.

In our experiments, sigmoidal functions and linear controllers are used to model
the motion templates.

7.2.1 Reinforcement Learning with Motion Templates

Each motion template is a temporally extended, continuous valued action. Thus,
we deal with a continuous-time Semi-Markov Decision Process (SMDP). We will
review only the relevant concepts from the continuous-time SMDP framework. For
a detailed definition, please refer to (Bradtke and Duff, 1995).

Unlike in standard Markov Decision Processes (MDPs), the transition probabil-
ity function P(s’,d|s,a) is extended by the duration d of an action. The Bellman
equation for the value function V™ (s) of policy = is given by

V™ (s) = [ w(a|s) (r(s,a)+
! -

/ /OO exp(—ﬁt)P(s',t|s,a)V7r(s')dtds'> da,
s’ Jt=0
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where f3 is the discount factor'. The action value function Q™(s,a) is given by
Q" (s,a) =r(s,a)+

o0 , , , (7.2)
exp(—Q0t)P(s',t|s,a)V™(s")dtds'.
s Jt=0
A policy is now defined as m(mp, wplsg). It can be decomposed into
m(mp|sk)mp(Wpsk), where w(myp|sk) is the template selection policy and m,(wp|sk)
is the policy for selecting the parameters of template m,,.

7.3 Fitted Q-Iteration

As LAWER is a Fitted Q-iteration (FQI) (Ernst et al., 2005; Riedmiller, 2005)
based algorithm we quickly review the relevant concepts. FQI is a batch mode
reinforcement learning (BMRL) algorithm. In BMRL algorithms we assume that
all the experience of the agent up to the current time is given in the form H = {<
Si,a;, 1,8, >t<i<ny. FQI estimates an optimal control policy from this historical
data. Therefore it approximates the state-action value function Q(s, a) by iteratively
using supervised regression techniques. New target values for the regression are
generated by

Qrs1(3) = 73 +Vi(s)), -3
iy max Qu(shal), =
a/
which are subsequently used to learn the Q-function Qx1(s,a). For more details
please refer to (Neumann et al., 2009).

7.3.1 Fitted Q-Iteration for SMDPs

For SMDPs we have to include the duration d; of each action to our historical data
H = {< s;,a;,ri,d;, s, >}i<i<n. Instead of using Equation 7.3, new Q-values can
now be calculated by

Qr+1(i) = ri + exp(—Bd;) max Qr(s;, a'). (7.4)

7.3.2 Locally-Advantage-WEighted Regression (LAWER)

A severe problem when using fitted Q-iteration for continuous action spaces is the use
of the greedy operation Vi (s) = maxy, Qk(s,a’) which is hard to perform. LAWER
(Neumann et al., 2009) is a variant of FQI which avoids this max operator and is
therefore well suited for continuous action spaces. The algorithm has been shown
to learn high quality policies for many flat RL settings.

Instead of using the max operator, a soft-max operator is used which can be effi-
ciently approximated by an advantage-weighted regression. The advantage-weighted

n order to achieve the same discounting rate as in a flat MDP, 8 can be calculated from the
relation v = exp(—BAt), where ~ is the discount factor and At is the time step of the flat MDP.
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regression solely uses the given state action pairs (s;,a;) to estimate the V-function
and therefore avoids an exhaustive search in the action space. State-action pairs
with an higher expected advantage? have a higher influence on the regression.

The regression uses the state vectors s; as input dataset, the Q-values Qk+1(i) as
target values and an additional weighting u; for each data point. The authors proved
that the result of the advantage-weighted regression is an approximation of the V-
function V(s) = max, Qg(s,a’). The weighting u; can be seen as goodness of using
action a; in state s;. It is estimated by u; = exp(TA(s;, a;)), where A(s;,a;) denotes
the normalized advantage function and the parameter 7 sets the greediness of the
soft-max operator. We skip the description of the normalization of the advantage
function, because, for this paper, it is enough to know that the normalization, and
also the proof of the algorithm, assume normally distributed advantage values. For
a more detailed description of A(s;,a;) please refer to (Neumann et al., 2009).

LAWER uses Locally Weighted Regression (LWR, by Atkeson et al., 1997) for ap-
proximating the Q and the V-function. It therefore needs to be able to calculate the
similarity w;(s) between a state s; in the dataset H and state s. The state similari-
ties w;(s) can be calculated by a Gaussian kernel w;(s) = exp(—(s; —s)TD(s; —s)).
In this paper we also introduce an adaptive kernel in Section 7.4.1. For simplicity,
we will denote w;(s;) as w;; for all s; € H.

Standard LWR is used to estimate the Q-function. The V-function is approxi-
mated by a combination of LWR and advantage-weighted regression. In order to do
so, the advantage weighting w; is multiplicatively combined with the state similarity
weighting, resulting again in a standard weighted linear regression. For the exact
equations, please refer to (Neumann et al., 2009).

The optimal policy m(als) = N (a|u(s),X(s)) is modelled as stochastic policy
with Gaussian exploration. The mean u(s) can be determined by a similar locally
and advantage-weighted regression, just the actions a; are used as targets instead
of the Q-values. The covariance matrix X(s) is given by calculating the advantage-
weighted covariance of locally neighbored actions.

Intuitively speaking, the V-function is calculated by interpolating between the
Q-values of locally neighbored state action pairs, but only examples with a high
goodness u; (i.e. high normalized advantage value) are used. The same is true for
the policy, we just interpolate between the action vectors.

7.4 Fitted Q-iteration for Motion Templates

In order to apply the LAWER algorithm to the motion template framework we use a
separate dataset H? and individual estimations QP and VP of the Q and V-function
for each motion template m,. The functions V? and QP represent the state and
state-action value function when choosing motion template m,, in the first decision
and subsequently following the optimal policy. We implement the template selection
policy m(my|s) by a soft-max policy. The overall value function is determined by
V(ok) = maxy,, e A(o,) VP (0k). LAWER is used to learn the single Q and V-function
estimates QP and VP.

>The advantage function is given by A(s;, a;) = Q(s;,a;) — V (s:)
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In this section we present two extensions which improve the accuracy of LAWER
and render learning with motion templates possible. Firstly, adaptive tree-based
kernels are used to improve the estimation of the state similarities w;;. This kernel
also adapts to spatially varying curvatures of the regression surface and therefore
needs an estimate of the V-function. Secondly, we show how to improve the estimate
of the goodness u; by the use of an additional optimization. Based on the current
estimate of the state similarities w;;, new wu; values, and subsequently also new
estimates of the V-function are calculated. Both algorithms are applied intertwined
to get improved estimates of w;; and u;.

7.4.1 Adaptive Tree-based Kernels

The use of an uniform weighting kernel is often problematic in the case of high
dimensional input spaces (’curse of dimensionality’), spatially varying data densi-
ties or spatially varying curvatures of the regression surface. This problem can be
alleviated by varying the 'shape’ of the weighting kernel.

We use the Extremely Randomized Tree (Extra-Tree) algorithm (Ernst et al.,
2005) to obtain a varying kernel function. This algorithm has been particularly
successful for approximating the Q-function in FQI. We modify this approach to
calculate the weighting kernel. The resulting kernel has the same properties as the
Extra-Trees, and therefore adapts to the local state density as well as to the local
curvature of the V-function.

The standard Extra-Tree algorithm builds an ensemble of regression trees. It
has 3 parameters, the number M of regression trees, the number K of randomized
splits to evaluate per node and the maximum number of samples per leaf nyi,. For
more details about the algorithm please refer to (Ernst et al., 2005).

We use the trees for calculating the state similarities w;; instead of approximating
the Q-function. In order to do so, we learn the mapping from the states s; to the V-
values V (s;) with the Extra-Tree algorithm. The kernel is then given by the fraction
of trees in which two states s; and s; are located in the same leaf

M
1
wij = 7 ZisSameLeaf(Tk, Si,Sj), (7.5)
k=1

where T is the kth tree in the ensemble and isSameLeaf is a function returning 1 if
both examples are located in the same leaf and 0 otherwise. In our experiments we
will show the superiority of the tree-based kernels to the Gaussian kernels.

7.4.2 Optimized LAWER

As already pointed out in Section 7.3.2, LAWER assumes normally distributed
advantage values. Often this assumption does not hold or the normalization of
the advantages is imprecise due to too few data points in the neighborhood. This
effect is even more drastic if high 7 values are used because the inaccuracies may
result in low activations in areas with a low sample density and therefore also in
inaccurate regressions. This restriction on the 7 parameter also limits the quality
of the estimated policy.
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But how can we improve the estimation of the weightings u;7 Let us first con-
sider a greedy policy mp in a discrete environment. We formulate wp as stochastic
policy u;; = mp(ajls;). The u;; can be found by solving the following constraint
optimization problem

u = argmaxy »_; ; uijA(s;, ;)
subject to: 3, u;; = 1 for all states s; (7.6)
0 <wu;; <1foralld,j,

where u is the vector of all u;; and A is again the advantage function. In our setting,
we also have a finite number of state-action pairs (s;, a;), but typically all the states
are different. However, the states are linked by the state similarities w;;. The first
constraint of the optimization problem can therefore be reformulated as

Zwijuj =1 for all states s;, (7.7)
J
while the remaining formulation of the optimization is unchanged. We also skipped
the second index of u;; because there is only one action for each state s;.

Due to this optimization we only use the u; with the highest advantage values
while ensuring that the summed activation Zj wjju; is high enough at each state
s; for applying an accurate weighted linear regression.

We solve the constraint optimization problem by maximizing the performance
function C

(7.8)

with n = 1, where Z is a normalization constant for the advantage values given
by Z =, |Q(si,a;)|/N. The second term of Equation 7.8 specifies the squared
summed activation error for each state s;. It is normalized by the summed state-
similarity of this state (i.e. ) ;wj;;). This ensures that the activation error is
equally weighted throughout the state space, independent of the local state density.
We also introduced a new parameter A which sets the tradeoff between maximizing
the greediness of u; or minimizing the summed activation error. It replaces the
greediness parameter 7 of the LAWER algorithm.

The function C' can be maximized with respect to u; using gradient ascent, the
derivation of C' is given by

ac _1

du, Z

(%, wijuj — 1) (7.9)
——Wj .

The learning rate for the gradient ascent algorithm is always chosen such that the
maximum change of an activation u; is fixed to 0.01. After each gradient update
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the weights w; are restricted to the interval [0;1]. The gradient ascent update is
repeated for N, iterations, every M,,; << Ny iterations the value estimates
V(s;) are recalculated using the current weights w;. When using the tree-based
kernels, we also recalculate the state similarities w;; with the new estimate of V'(s;).
Typical values for N, and M, are 1000 and 100.

The covariance matrix of the exploration policy is also calculated slightly dif-
ferently to the original LAWER algorithm. We require that always the best 7exp
locally neighbored actions are used. We therefore use a separate set of advantage
weightings uexp for the covariance calculation which can be obtained by the same
optimization defined in Equation 7.8, we just have to set 1 to Nexp. With 7eyx, we
can scale the exploration rate of the algorithm.

7.5 Results

We evaluated the motion template approach on a 1-link and a 2-link pendulum
swing-up task and a 2-link balancing task. For each task the immediate reward
function was quadratic in the distance to the goal position sg and in the applied
torque/force, i.e., r = —ci|s —sg|? — c2|a|?. For all our experiments we assume that
the goal position sg is known.

We collect L new episodes with the currently estimated exploration policy and
one episode with the greedy policy (without exploration). After estimating the
optimal policy, its performance is evaluated (without exploration) and the data col-
lection is repeated. The initial distributions of the motion template parameters were
set intuitively and were by no means optimal. We compared the motion template
approach to flat RL with the standard LAWER algorithm.

7.5.1 Swing-Up Tasks

In this task a pendulum needs to be swung up from the position at the bottom to
the top position.

7.5.1.1 1-link Pendulum

The link of the pendulum had a length of 1m and a mass of 1kg, no friction was
used. The used motion templates represent positive (m; and ms) and negative peaks
(ms3 and my) in the torque trajectory. There is also an individual template ms for
balancing the robot at the top position. One peak consists of 2 successive motion
templates, one for the ascending and one for the descending part of the peak.

The parametrization of the motion templates can be seen in Table 7.1. In order
to form a proper peak, template msy and my always start with the last torque wu;
taken in the end of the previous template. Therefore parameter asy of these templates
is already determined by wu; and consequently the outcome of template mo and my
depend on wu;. For this reason, the state space of template ms and my4 was extended
by u;. The balancing template ms is implemented as linear PD-controller (see Table
7.1). The duration of the peak templates is an individual parameter of the templates
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Table 7.1: MTs for the swing up motion. The functional forms resemble sigmoid functions.
Parameter a; coresponds to the height of the peak, o; to the initial time offset and d;
to the duration of the motion template. ki and ks are the PD-controller constants of the
balancer template. ms and my resemble m; and mq except for a negative sign. The sketches
illustrate the torque trajectories of these templates (x-axis: time, y-axis: acceleration).

MT  Functional Form Parameters
B 2
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Figure 7.1: (a) Torque trajectories and motion templates learned for different action pun-
ishment factors cs. (b) Torque trajectories learned with flat RL

(d;), ms is always the final template and runs for 20s. Subsequently the episode is
ended.

The agent always started from the bottom position with motion template my.
Afterwards it could either choose to use the peak templates in the predefined order
(ms, my, my, ma, ms...) or use the balancing template ms. Thus, the agent had
to learn the correct parametrization of the motion templates and the number of
swing-up motions.

For all experiments a discount factor of 8 = 0.2 was used, A was set to 0.025 and
Nexp t0 20. For the Gaussian kernel we used a bandwidth matrix of D = diag(30, 3)
for my, ms and ms and D = diag(30, 3, 1) for the extended state space of templates
mo and my. For the tree-based kernels we used the parameters n,,;, = 7, M = 80
and K = 20. For the comparison with the flat LAWER algorithm 7 was set to 4
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Figure 7.2: Learning curves for the Gaussian kernel (MT Gauss) and the tree-based kernel
(MT Tree) for (a) c2 = 0.025 and (b) c2 = 0.075

and a time step of 50ms was used. We used L = 50 episodes per data collection.

We carried out 3 experiments with different torque punishment factors (co =
0.005, co = 0.025 and ¢o = 0.075). We compared the learning process of flat RL,
motion template learning with Gaussian state similarities (MT Gauss) and with
adaptive tree-based state similarities (MT Tree) (see Figure 7.2). In the initial learn-
ing phase, the flat RL approach is superior to motion template learning, probably
due to the larger number of produced training examples. However, RL with motion
templates is able to produce policies of significantly higher quality and quickly out-
performs the flat RL approach. This can also be seen in Figure 7.1(a) and (b), where
the resulting torque trajectories are compared. Flat RL has difficulties particularly
with the hardest setting (co = 0.075) where we received a maximum average reward
of —48.6 for flat RL and —38.5 for the motion template approach. From Figure 7.2
we can also see that the tree-based kernel is much more sample efficient than the
Gaussian kernel. An evaluation of the influence of the A parameter can be seen in
Figure 7.3(a) and of the parameter n,,;, of the tree-based kernel in Figure 7.3(b).
The approach works robustly for a wide range of parameters.

7.5.1.2 2-link Pendulum

We also conducted experiments with a 2-link pendulum. The lengths of the links
were set to 1m, each link had a mass of 1kg (located at the center of the link). We
use the same templates as for the 1-dimensional task, the peak templates have now
2 additional parameters, the height of the peak a; and the time offset o; for the
second control dimension us. Including the duration parameter, this results in 5
parameters for mg, m; and ms and 3 parameters for ms and my. The parameters
of the balancer template mg consists of two 2 x 2 matrices for the controller gains.

Experiments were done for the tree-based kernels with n,,;, = 8, A = 0.025
and 7y, = 25. At each data collection, 50 new episodes were collected. For
comparison to the flat RL approach we used a bandwidth matrix of D =
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Figure 7.3: (a) Evaluation of the influence of A for the Gaussian (MT Gauss) and the tree-
based kernel (MT Tree, min = 5) (b) Evaluation of the nmin parameter for A = 0.025. ¢y
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Figure 7.4: (a) Torque trajectories and decomposition in the motion templates for the 2-link
pendulum swing-up task. (b) Illustration of the motion. The bold postures represent the
switching time points of the motion templates.

diag(6.36,2.38,3.18,1.06) and 7 = 4. The evaluation of the learning process can
be seen in Figure 7.5(a) and the learned motion and torque trajectories are shown
in Figure 7.4. Also for this challenging task, the motion template approach was able
to learn high-quality policies. While the flat RL approach stagnates at an average
reward of —28.7, the motion template approach reaches an average reward of —15.6.

7.5.2 2-link Balancing

In this task a 2-link pendulum needs to be balanced at the top position after being
pushed. The model parameters were chosen to loosely match the characteristics of
a human, i.e. I; = Im and m; = 35kg. The hip-joint was limited to [—0.1;1.5]rad
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Figure 7.5: Learning curves for motion template learning with tree-based kernels for the
(a) 2-link swing-up task and the (b) 2-link balancing task.

and the ankle-joint to [—0.8;0.4]rad. Whenever the robot left this area of the state
space, we assumed that the robot had fallen, i.e. a negative reward of —10000 was
given. The hip-torque was limited to £500Nm and the ankle torque to =70Nm.

In the beginning of an episode, the robot stands upright and gets pushed with a
certain force F'. This results in an immediate jump of the joint velocities. The agent
has to learn to keep balance for different perturbations. In (Atkeson and Stephens,
2007) this problem was solved exactly using Dynamic Programming techniques.
The authors found out that two different balancing strategies emerge. For small
perturbations, the ankle strategy, which uses almost only the ankle joint, is optimal.
For larger perturbations (F' > 17.5Ns), the ankle-hip strategy, which results in a
fast bending movement, is optimal. In this experiment we want to reproduce both
strategies by motion template learning.

We use two motion templates to model the balancing behavior, both resemble
linear controllers. The first motion template (mg) keeps the robot at the upright
position and is similar to ms from the previous experiment. The second template m;y
additionally defines a set-point of the linear controller for each joint and a duration
parameter d;. In addition to the 8 controller gains, this results in 11 parameters.
The agent can now choose to use mg directly in the beginning or to use m; and
subsequently mg. We used 4 different perturbations, i.e., F' = 10, 15,20 and 25Ns.
For each perturbation, we collected L = 20 episodes.

We again used the tree-based approach with the same parameter setting as in the
previous experiment. The learning curve can be seen in Figure 7.5(b). The resulting
torque trajectories are shown in Figure 7.6(a) and (b). We can clearly identify the
ankle strategy for the two smaller perturbations and the ankle-hip strategy for larger
perturbations using both motion templates.
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Figure 7.6: Learned solutions for the 2-link balancing problem for (a) F' = 10Ns and
F = 15Ns (ankle strategy) (b) F = 20Ns and F' = 25Ns (ankle-hip strategy). The sketches
bellow illustrate the temporal course of the balancing movement for the ankle strategy (a)
and the ankle-hip strategy (b)

7.6 Conclusion and Future Work

In this paper we proposed a new framework for temporal abstraction for RL in
continuous environments, i.e. RL with motion templates. Learning the overall
control task is decomposed into learning a sequence of simpler controllers. Because
of the used abstractions the agent has to make fewer decisions, which simplifies the
learning task. We strongly belief that this kind of abstractions may help scaling RL
algorithms to more complex domains.

The motion templates approach also raises several interesting research questions
to which we will dedicate our future work. For example, how can we efficiently
add feedback to the motion templates? Which functional forms of the templates
can facilitate learning? When do we terminate a motion template, in particular in
the case of unforeseen events? Future work will also concentrate on applying the
approach to more complex environments such as planar walking robots.
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A common approach for motor skill learning in robotics is to use parametrized
movement plans, also called movement primitives. Currently used approaches en-
dow the primitives with dynamical systems. Here, the parameters of the primitive
indirectly define the shape of the desired trajectory. This trajectory is then followed
with feedback control laws. Instead of endowing the primitives with dynamical
systems, we propose to endow movement primitives with an intrinsic probabilistic
planning system, exploiting the power of stochastic optimal control methods already
at the level of the primitive. The parametrization of the primitive now specifies a
cost function for the intrinsic planning system. We parameterize this intrinsic cost
function using use task-relevant features, such as the importance of passing through
certain via-points as parameters of the movement. These task-relevant features
are learned using standard reinforcement learning, which implies that a (typically)
sparse reward signal is transformed into a intrinsic cost function for planning. Si-
multaneously we learn the dynamics model of the robot. Together, the intrinsic
cost function and the dynamics model fully specify a graphical model for movement
planning. In difference to current methods, the probabilistic planner can naturally
deal with noisy systems, exploiting the stochastic dynamics by suppressing the in-
herent noise in the system only if necessary. This is also known as the minimum
intervention principle, a basic property of human movement control. We evaluate
our approach on a complex 4-link balancing task. Our experiments show that our
movement representation facilitates learning and allows learning of motor skills up
to one order of magnitude faster than traditional approaches. The representation
can be easily generalized to new task settings without re-learning and also generates
policies with higher quality.

8.1 Introduction

The use of movement primitives has often been shown to facilitate learning of com-
plex movement skills (d’Avella et al., 2003; Schaal et al., 2003; Neumann et al.,
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2009). They allow an efficient abstraction of the high-dimensional continuous ac-
tion spaces which often occur in robotics. Movement primitives are parametrized
representations of elementary movements. For current approaches the parameters
of the primitive determine the shape of the desired trajectory either directly or in-
directly. This trajectory is then followed by feedback control laws. An example for
an indirect trajectory parametrization are the widely used Dynamical Movement
Primitives (DMPs) (Schaal et al., 2003). This approach uses parametrized dynam-
ical systems to determine a movement trajectory. The idea of DMPs to endowing
movement primitives with an intrinsic dynamic system has many benefits: They
provide a linear policy parametrization which can be used for imitation learning
and policy search (Kober and Peters, 2010). The complexity of the trajectory can
be scaled by the number of parameters (Schaal et al., 2003) and one can adapt
meta-parameters of the movement such as the movement speed or the goal state of
the movement (Kober et al., 2010; Pastor et al., 2009).

The general idea of the present work is to endow movement primitives with
an intrinsic planning system instead of an intrinsic dynamic system. While the
dynamic system of a DMP is to some degree reactive to the environment—namely by
adapting the temporal scaling factor and thereby de- or accelerating the movement
execution as needed (Schaal et al., 2003)—the trajectory shape itself is fixed and
non-reactive to the environment. In contrast, a movement primitive that is endowed
with an intrinsic planning component can react to the environment by optimizing
the trajectory for the specific current situation. Training such a movement primitive
now means to train a planner to generate an appropriate policy in a given situation
instead of training a dynamical system to generate a fixed (temporally flexible)
reference trajectory. This implies a different level of generalization. For instance, if
some endeffector target changes between training and testing phase, a planner that
has learned to generate trajectories towards targets will generalize to the new target
without retraining. A system that directly encodes a trajectory would either have
to be retrained or use heuristics to be adapted (Pastor et al., 2009).

Stochastic optimal control, besides its high relevance in engineering problems,
has proven itself as an excellent computational theory of human movement control
(Todorov and Jordan, 2002). For example, the minimum intervention principle
implies that we should only intervene the system if it is necessary to fulfill the given
task. If the task constraints are not violated it is inefficient to suppress the inherent
noise in the stochastic system. As an example consider the problem of performing
a tennis serve. The most task-relevant feature of the movement is the state of the
arm (including velocities, accelerations and stiffness) at the point in time when the
racket hits the ball. For this time point the movement has to be very precise, but
elsewhere less accurate control is sufficient. Human movements account for such
principles, suggesting that stochastic optimal control principles are involved on the
lowest level of movement execution. On the other hand: A tennis serve is certainly
also a highly trained movement primitive. This exemplifies our general view of a
movement primitive system which can be trained in a reinforcement learning setting,
but which also involves a low-level movement planner that accounts for fundamental
optimality principles. In contrast, a movement primitive system that implies a fixed
reference trajectory would force the movement to follow this reference more or less
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accurately and can only choose how much noise is suppressed by the feedback control
law throughout the execution of the whole trajectory. It can not generate movements
that fulfill optimality principles for variable target or task constraints.

Therefore we propose Planning Movement Primitives (PMPs) which exploit the
power of stochastic optimal control (SOC) methods (Todorov and Li, 2005; Kappen,
2007) within the primitive. As with DMPs, a PMP is trained in a standard reinforce-
ment learning (RL) setting. Instead of parametrizing the shape of the trajectory
directly, a PMP has parameters that determine the the intrinsic cost function of the
intrinsic SOC planner. While the reward function (typically) gives a single scalar
reward for a whole movement, the learned intrinsic cost function in the standard
SOC form defines task and control costs for every time step of the movement. In
other terms, training a PMP is the problem learning from a sparse reward signal
an intrinsic cost function such that the SOC planner will, with high probability,
generate rewarded movements. Parametrizing the intrinsic cost function allows us
to use task-relevant features as parameters of the movement, e.g. the importance of
passing through a certain via-point.

Training a PMP also requires to learn an approximate model of the system
dynamics within the RL setting since the intrinsic SOC planner requires some ap-
proximate model to estimate optimal control. Therefore, PMP learning combines
model-based and model-free RL: it learns a model of the system dynamics while at
the same time training PMP parameters based on the reward signal. (It does not
learn an approximate model of the reward function itself.) We can exploit supervised
learning methods such as (Vijayakumar et al., 2005; Nguyen-Tuong et al., 2008a,b)
for learning the system dynamics and at the same time use policy search methods
to adapt the PMP parameters that determine the intrinsic cost function. This two-
fold learning strategy has the promising property of fully exploiting the data by also
estimating the system dynamics instead of only adapting policy parameters.

As planning algorithm we employ a probabilistic planner called Approximate
Inference Control (AICO), (Toussaint, 2009). AICO generates the movement by
performing inference in a graphical model. The graphical model is defined by the
system dynamics and the intrinsic cost function. Since we learn both from experience
(the latter via policy search) all conditional probability distributions of this graphical
model are determined empirically. The output of the planner is a linear regulator
for each time slice.

Our experiments show that, by the use of task relevant features, we can signifi-
cantly facilitate learning and generalization of complex movement skills. Moreover,
due to the intrinsic SOC planner, our primitive representation implements all prin-
ciples of optimal control, which allows to learn solutions of high quality which are
not representable with traditional trajectory-based methods.

In the following section we review in more detail related previous work and the
background on which our methods build. Section 8.2 then introduces the proposed
Planning Movement Primitives. In Section 8.3 we evaluate the system on a one-
dimensional via-point task and a complex dynamic humanoid balancing task and
compare to DMPs. We conclude this work with a discussion in Section 8.4.
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8.1.1 Related Work and Background

This section reviews the related work based on parametrized movement policies,
policy search methods and stochastic optimal control.

8.1.2 Parametrized Movement Policies

Movement primitives represent a parametric description of elementary movements
(d’Avella et al., 2003; Schaal et al., 2003; Neumann et al., 2009). We will denote the
parameter vector of a movement primitive by @ and the possibly stochastic policy of
the primitive as 7w(u|x,t;0), where u is the applied action and x denotes the state.
The key idea of the term ’primitive’ is that several of these elementary movements
can be combined not only sequentially but also simultaneously in time. However, in
this paper, we want to concentrate on the parametrization of a single primitive, i.e.
only learn a single elementary movement. Using several primitives simultaneously
is part of future work for our approach as well as for existing approaches such as
(Schaal et al., 2003; Neumann et al., 2009).

Many types of movement primitives can be found in the literature. The currently
most widely used movement representation used for robot control are the Dynamic
Movement Primitives (DMPs) (Schaal et al., 2003). DMPs evaluate parametrized
dynamical systems to generate trajectories. The dynamical system is constructed
such that the system is stable. In order to do so, a linear dynamical system is
used which is modulated by a learnable non-linear function f. A great advantage
of the DMP approach is that the function f depends linearly on the parameters 6
of the primitive, i.e f(s) = ®(s)7 0, where s is the time or phase variable. As a
result, imitation learning for DMPs is straightforward as this can simply be done by
performing a linear regression (Schaal et al., 2003). Furthermore, it also allows the
use of many well-established reinforcement learning methods such as policy gradi-
ent methods (Peters and Schaal, 2008b) or Policy Improvements by Path Integrals
(Theodorou et al., 2010a). The complexity of the trajectory can be scaled by the
number of features used for modelling f. However, as the features ®(s) are fixed,
the ability of the approach to extract task-relevant features is limited. We can also
adapt meta-parameters of the movement such as the movement speed or the goal
state of the movement (Kober et al., 2010; Pastor et al., 2009). Yet, the change of
the desired trajectory due to the change of the meta-parameters is based on heuris-
tics and does not consider task relevant constraints. As the DMPs are the most
common movement representation we will use it as a baseline in our experiments.
For a more detailed discussion of the DMP approach please consult the appendix.

Another type of movement representation was introduced in (Neumann et al.,
2009) by the movement template framework. Movement templates are temporally
extended, parametrized actions, such as sigmoidal torque, velocity or joint posi-
tion profiles, which can be sequenced in time. This approach uses a more complex
parametrization as the DMPs. For example, it also incorporates the duration of dif-
ferent phases, like an acceleration or deceleration phase. The division of a movement
into single phases allows the use of reinforcement learning methods to learn how to
sequence these primitives. However, as the approach still directly specifies the shape
of the trajectory, defining complex movements for high dimensional systems is still
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complicated, which has restricted the use of movement templates to rather simple
applications.

An interesting movement representation coming from experimental data analysis
are the muscle synergies (d’Avella et al., 2003; Bizzi et al., 2008). They have been
used to provide a compact representation of electromyographic muscle activation
patterns. The key idea of this approach is that muscle activation patterns are com-
posed of a linear sum of simpler, elemental patterns, called muscle synergies. Each
muscle synergy can be shifted in time and scaled with a linear factor to construct
the whole activation pattern. While the synergy approach has promising properties
such as the linear superposition and the ability to share synergies between tasks,
except for some smaller applications (Chhabra and Jacobs, 2006), these primitives
have only been used for data analysis, and not for robot control.

All the so far presented primitives are inherently local approaches. The specified
trajectory and hence the resulting policy are only valid for a local (typically small)
neighborhood of our initial state. If we are in a new situation, it is likely that we
need to re-estimate the parameters of the primitive. The generation of the reference
trajectory for these approaches is often an offline process and does not incorporate
knowledge of the system dynamics, proprioceptive or other sensory feedback. Be-
cause the reference trajectory itself is usually created without any knowledge of the
system model, the desired trajectory might not be applicable, and thus, the real
trajectory of the robot might differ considerably from the specified trajectory.

There are only few movement representations which can also be used globally,
i.e. for many different initial states of the systems. One such methods is the Stable
Estimator of Dynamical Systems (SEDS) (Khansari-Zadeh and Billard, 2011) ap-
proach. However, this method has so far only been applied to imitation learning,
using the approach for learning or improving new movement skills is not straight
forward. We will therefore restrict our discussion to local movement representations.

Our Planning Movement Primitive approach is, similar to the DMPs, a local
approach. In a different situation, different abstract goals and features might be
necessary to achieve a given task. However, as we extract task relevant features and
use them as parameters, the same parameters can be used in different situations as
long as the task relevant features do not change. As we will show, the valid region
where the local primitives can still be applied is much larger for the given control
tasks in comparison to trajectory based methods.

8.1.3 Policy Search for Movement Primitives

Let x denote the state and u the control vector. A trajectory 7 is defined as sequence
of state control pairs, 7 = (Xo.7, up.7—1), where T' is the length of the trajectory.
Each trajectory has associated costs C'(7) (denoted as extrinsic cost), which can be
an arbitrary function of the trajectory. It can, but need not be composed of the
sum of intermediate costs during the trajectory. For example, it could be based on
the minimum distance to a given point throughout the trajectory. We want to find
a movement primitive’s parameter vector 8 = argmingJ(@) which minimizes the
expected costs J(@) = E[C(7)|0]. We assume that we can evaluate the expected
costs J(0) for a given parameter vector 8 by performing roll-outs on the real system.
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In order to find 8* we can apply policy search methods. Here a huge variety
of possible methods exists. Policy search methods can be coarsely divided into
step-based exploration and episode-based exploration approaches. Step-based ex-
ploration approaches such as (Theodorou et al., 2010a; Peters and Schaal, 2008b;
Kober and Peters, 2010) apply an exploration noise to the action of the agent at each
time step of the episode. Subsequently, the policy is updated such that the (noisy)
trajectories with higher reward are more likely to be repeated. In order to do this
update, step-based exploration techniques strictly rely on a policy which is linear
in its parameters. This is true for the DMPs. Currently, the most common policy
search methods are step-based approaches, including the REINFORCE (Williams,
1992), the episodic Natural Actor Critic (Peters and Schaal, 2008b), the PoOWER
(Kober and Peters, 2010) or the PI? (Theodorou et al., 2010a) algorithm. This
also explains partially the popularity of the DMP approach for motor skill learning
because DMPs are, from those introduced above, the only representation which can
be used for these step-based exploration methods (apart from very simple ones like
linear controllers).

However, recent research has also intensified on episode-based exploration tech-
niques (Sehnke et al., 2010; Wierstra et al., 2008; Hansen et al., 2003). These
methods directly perturb the policy parameters 8 and then estimate the perfor-
mance of the perturbed @ parameters by performing roll-outs on the real system.
During the episode no additional exploration is applied (i.e. a deterministic policy
is used). The policy parameters are then updated in the estimated direction of in-
creasing performance. Episode-based exploring methods do not depend on a specific
form of parametrization of the policy. In addition, episode-based exploration tech-
niques easily allow the use of second order stochastic search methods that estimate
correlations between policy parameters (Heidrich-Meisner and Igel, 2009b; Wierstra
et al., 2008). This ability to apply correlated exploration in parameter-space is often
beneficial in comparison to the uncorrelated exploration techniques applied by all
step-based exploration methods.

Since the resulting control policies of our PMPs depend non-linearly on the pa-
rameters @, step-based exploration techniques can not be used in our setup. Hence,
we will use the second order stochastic search method CMA (Covariance Matrix
Adaptation, (Hansen et al., 2003)) which makes no assumptions on the parametriza-
tion of the primitive. CMA uses a multivariate Gaussian distribution to represent
the belief over the optimal parameters and has been shown to be highly competitive
for policy search in high dimensional spaces. We will compare our PMP approach to
both, DMPs learned with CMA policy search and DMPs learned with the state of
the art step-based method PI? (Theodorou et al., 2010a). Interestingly, the second
order stochastic search method outperformed PI? for DMPs, illustrating the benefits
of second order optimization.

8.1.4 Stochastic Optimal Control and Probabilistic Inference for
Planning

Stochastic optimal control (SOC) methods such as (Todorov and Li, 2005; Kappen,
2007; Toussaint, 2009) have been shown to be powerful methods for movement
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planning in high-dimensional robotic systems. The incremental Linear Quadratic
Gaussian (iLQG) (Todorov and Li, 2005) algorithm is one of the most commonly
used SOC algorithms. It uses Taylor expansions of the system dynamics and cost
function to convert the non-linear control problem in a Linear dynamics, Quadratic
costs and Gaussian noise system (LQG). The algorithm is iterative - the Taylor
expansions are recalculated at the newly estimated optimal trajectory for the LQG
system.

In (Toussaint, 2009), the SOC problem has been reformulated as inference prob-
lem in a graphical model, resulting in the Approximate Inference Control (AICO)
algorithm. The graphical model is given by a simple dynamic Bayesian network
with states x;, actions u; and task variables gl (representing the costs) as nodes,
see Figure 8.1. The dynamic Bayesian network is fully specified by conditional dis-
tributions encoded by the cost function and by the state transition model. If beliefs
in the graphical model are approximated as Gaussian the resulting algorithm is
very similar to iLQG. Gaussian message passing iteratively re-approximates local
costs and transitions as LQG around the current mode of the belief within a time
slice. A difference to iLQG is that is uses forward messages instead of a forward
roll-out to determine the point of local LQG approximation and can iterate belief
re-approximation with in a time slice until convergence, which may lead to faster
overall convergence. For a more detailed discussion of the AICO algorithm with
Gaussian message passing see Section 8.2.5 and the appendix.

Local planners have the advantage that they can be applied to high-dimensional
dynamical systems, but the disadvantage of requiring a suitable initialization.
Global planning (Kuffner and LaValle, 2000) on the other hand does not require
an initial solution, however, they have much higher computational demands. Our
motivation for using only a local planner as component of a Planning Movement
Primitive is related to the learning of an intrinsic cost function:

Existing planning approaches for robotics typically use hand-crafted cost func-
tions and the dynamic model is either analytically given or learned from data (Mitro-
vic et al., 2010). PMPs use reinforcement learning to train an intrinsic cost function
for planning instead of trying to learn a model of the extrinsic reward directly. The
reason is that a local planner often fails to directly solve realistically complex tasks
by optimizing directly the extrinsic cost functions. From this perspective, PMPs
learn to translate complex tasks to a simpler intrinsic cost function that can effi-
ciently be optimized by a local planner. This learning is done by trial-and-error
in the reinforcement learning setting: the PMP essentially learns from experience
which intrinsic cost function the local planner can cope with and use to generate
good trajectories. Thereby, the reinforcement learning of the intrinsic cost function
can compensate the limitedness of the local planner.

8.2 Planning Movement Primitives
In this section we introduce the proposed Planning Movement Primitives (PMPs),

in particular the parametrization of the intrinsic cost function. The overall system
will combine three components: (1) a regression method for learning the system dy-



96 Chapter 8. Planning Movement Primitives

namics, (2) a policy search method for finding the PMP parameters, and (3) a SOC
planner for generating movements with the learned model and PMP parameters.

8.2.1 Problem Definition

We assume an unknown dynamic system of the general form

Xer1 = foyn (e, X¢) + &4, (8.1)

with state variable x¢, controls u; and Gaussian noise g; ~ N(0,8). The agent is to
realize a control policy 7 : Xy — u;, which in our case will be a linear regulator for
each time slice. The problem is to find a policy that minimizes the expected costs of
a finite-horizon episodic task. That is, we assume there exists a cost function C(7),
where 7 = (xq.7, ug.) is roll-out of the agent controlling the system. The problem
is to find argmin_(C(7))x.

The system dynamics fpy, as well as the cost function C'(7) are analytically un-
known. Concerning the system dynamics we can compute an approximate model of
the systems dynamics from a set of roll-outs—as standard in model-based reinforce-
ment learning (RL). However, concerning costs, we only receive the single scalar
cost C'(7) after a roll out indicating the quality or success of a movement. Note that
C(7) is a function of the whole trajectory, not only the final state. Learning C' from
data would be an enormous task, more complex that learning a reward function
x¢ +— 1y as in standard model-based RL. Further, if we try to model C(7) directly
and apply SOC methods to optimize it, C'(7) would have to be modelled in the form
C(1) = >, he(x¢, x441)—assigning separate costs to each time step of the roll-out.
This implies an enormous credit assignment problem.

Generally, approaches to learn C(7) directly in a form useful for applying SOC
methods seems an overly complex task and violates the maxim “never try to solve
a problem more complex than the original”. Therefore, our approach will not try
to learn C'(7) from data but to employ reinforcement learning to learn some intrin-
sic cost function that can efficiently be optimized by SOC methods and generates
control policies that, by empiricism, minimizes C().

8.2.2 Parametrization of PMP’s intrinsic cost function

In PMPs the parameters @ specify task-relevant abstract goals or features of the
movement, which specify an intrinsic cost function

T
Zl Xt U, £50) + cp(xe, ue), (8.2)
t=0

where [ denotes the intermediate intrinsic cost function for every time-step and
cp(x¢,uz) is used to represent basic known task constraints, such as torque or joint
limits. We will assume that basic task constraints like joint and torque limits are part
of our prior knowledge, thus ¢, is given and not included in our parametrization. For
the description of PMPs we will neglect the constraints ¢, for simplicity. We will use
a via-point representation for the intermediate intrinsic cost function I(x,u,t;8).
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Figure 8.1: Planning Movement Primitives are can be illustrated using graphical models.
States are denoted by x;, controls by u; and the time horizon is fixed to T time-steps.
In this example the graphical model is used to infer the movement by conditioning on two
abstract goals gl and gl?!, which are specified in the learned intrinsic cost function L(T;0).

Therefore, parameter learning corresponds to extracting goals which are required
to achieve a given task, such as passing through a via-point at a given time. As
pointed out in the previous section, L(7;8) is not meant to approximate C(7). It
should to provide a feasible cost function that empirically generates policies that
minimize C(7).

There are many ways to parametrize the intermediate intrinsic cost function [.
We choose a simple via-point approach. The movement is decomposed in N shorter
phases with duration dll, ¢ = 1,.., N. In each phase the cost function is assumed
to be quadratic in the state and control vectors. In the ¢th phase (Z;;ll dlil < ¢t <

22:1 d) we assume the intrinsic cost has the form:
I(xi,u,10) = (x — gl R (x; — g) + uf HI,. (8.3)

It is parametrized by the reference point gl! in state space; by the precision vec-
tor rll which determines Rl = diag(exp r[i]) and therefore how steep the poten-
tial is along each state dimension; and by the parameters hll which determine
Hl! = diag(exphl) and therefore the control costs along each control dimension.
We represent the importance factors rll and hl both in log space as we are only in-
terested in to relationship of this factors. At the end of each phase (at the via-point),
we multiply the quadratic state costs by the factor 1/dt where dt is the time step
used for planning. This ensures that at the end of the phase the via-point is reached,
while during the phase the movement is less constraint. With this representation,
the parameters 8 of our PMPs are given by

0 = [V, gl ¢l Bt gIN] N 4[N (V)] (8.4)

Cost functions of this type are commonly used—and hand-crafted—in control prob-
lems. They allow to specify a reference, but also to determine whether only certain
dimensions of the state need to be controlled to the reference and how this trades of
with control cost. Instead of hand-designing such cost functions, our method will use
CMA policy search to learn these parameters of the intrinsic cost function. As for
the DMPs we will assume that the desired final state at time point 7" is known, and
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thus g™ and d!™ are fixed and not included in the parameters. Still, the algorithm
can choose the importance factors r™ and h™] of the final phase. In addition, we
fix the velocities in the via-points gl to zero, however, the algorithm can still reach
the via-points with non-zero velocities by choosing very low importance factors for
the velocities (included in rl?).

8.2.3 Dynamic Model Learning

In order to use planning we need to learn a model of the system dynamics fpyn in
Equation 8.1. The planning algorithm can not interact with the real environment,
it solely has to rely on the learned model. Only after the planning algorithm is
finished, the resulting policy is executed on the real system and new data points
([x¢, we], %¢) are collected for learning the model.

Many types of function approximators can be applied in this context (Vijayaku-
mar et al., 2005; Nguyen-Tuong et al., 2008a,b). We use the lazy learning technique
Locally Weighted Regression (LWR) (Atkeson et al., 1997) as it is a very simple and
effective approach. LWR is a memory-based, non-parametric approach, which fits a
local linear model to the locally-weighted set of data points. For our experiments,
the size of the data set was limited to 10° points implemented as a first-in-first-out
queue buffer because the computational demands of LWR drastically increases with
the size of the data set.

8.2.4 Policy search

Model learning takes place simultaneously to learning the parameters 0 of the prim-
itive. In general this could lead to some instability. However, while the distri-
bution P(x;) depends on the policy and the data for model learning is certainly
non-stationary, the conditional distribution P(xy11|us,x¢) is stationary. A local
learning scheme as LWR behaves rather robust under such type of non-stationarity
of the input distribution only. On the other hand, from the perspective of @ opti-
mization, the resulting policies may change and lead to different payoffs C'(7) even
for the same parameters 8 due to the adaption of the learned system dynamics.

We employ the second order stochastic search method CMA (Heidrich-Meisner
and Igel, 2009b) to optimize the parameters @ w.r.t. C(7). Roughly, CMA is an
iterative procedure that, from the current Gaussian distribution, generates a number
of samples, evaluates the samples, computes second order statistics of those samples
that reduced C'(7) and uses these to update the Gaussian search distribution. In each
iteration, all parameter samples 0 use the same learned dynamic model to evaluate
C(7). Further, CMA includes an implicit forgetting in its update of the Gaussian
distribution and therefore behaves robust under the non-stationary introduced by
adaptation of the system dynamics model.

Note that even if the learned model is only a roughly approximation of the
true dynamics, the policy search for parameters of the intrinsic cost function can
compensate for an imprecise dynamics model: The RL approach will find parameters
0 of the intrinsic cost function such that—even with a mediocre model—the resulting
controller will lead to low extrinsic costs in the real system.
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8.2.5 Probabilistic Planning Algorithm

We use the probabilistic planning method Approximate Inference Control (AICO)
(Toussaint, 2009) as intrinsic planning algorithm. It offers the interpretation that a
movement primitive can be represented as graphical model and the movement itself
is generated by inference in this graphical model.

The graphical model is fully determined by the learned system dynamics and the
learned intrinsic cost function, see Figure 8.1. In order to transform the minimiza-
tion of L(7;#) into an inference problem, for each time-step an individual binary
random variable z; is introduced. This random variable indicates a reward event.
Its probability is given by

Pz = 1]x¢,uy, t) o< exp(—ce(xg, uy; 0)),

where ¢;(x¢, ug; 0) = [(x¢, ue, t; 0) 4 cp(x¢, ug) denotes the cost function for time step
t. AICO now assumes that a reward event z; = 1 is observed at every time-step.
Given that evidence, AICO calculates the posterior distribution P(x1.7, uy.p|21.0 =
1) over trajectories.

We will use the simplest version of AICO, where an extended Kalman smooth-
ing approach is used to estimate the posterior. The extended Kalman smoothing
approach uses Taylor expansions to linearize the system and subsequently uses Gaus-
sian message passing to perform the inference. Subsequently the system is linearized
again at the new mode of the belief over the trajectories. AICO is only a local op-
timization method and we have to provide an initial solution which is used for the
first linearization. We will use the direct path to the via-points gl! in Equation
8.3 as initial solution. AICO provides us with an linear feedback controller for each
time slice of the form

u; = Oix; + oy, (8.5)

which is used as policy of the movement primitive.

The original formulation of the AICO method (Toussaint, 2009) does not con-
sider torque limits, which are important for our dynamic balancing experiments,
and hence, we needed to extend the algorithm. This extension yields not only a
modified form of the immediate cost function but also results in different update
equations for the messages and finally different equations of the optimal feedback
controller. A complete derivation of the extension including the resulting messages
and the corresponding feedback controller is given in Appendix 8.5.

The complete learning framework is organized the following. Given the param-
eters @, AICO is initialized with an initial solution which is the direct path from
via-point to via-point. AICO is then used to optimize the parametrized intrinsic
cost function and the result of this optimization process is a linear feedback con-
troller for each time slice, see Equation 8.5. This feedback control law is executed
either on a real or simulated robot and the overall task performance (or extrinsic
costs) C(7) of the resulting trajectory is evaluated. Model learning takes place in
parallel and uses all data collected during the roll-outs, see Figure 8.2.
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Figure 8.2: We decompose motor skill learning into two different learning problems. At the
highest level we find parameters of an intrinsic cost function L(7;0) using policy search.
Given parameters 0; the probabilistic planner at the lower level uses the intrinsic cost
function L(7;6) to estimate a non-linear feedback controller for each time step. The feed-
back controller is subsequently executed on the real robot and the extrinsic cost C(;) is
evaluated. Simultaneously we collect samples of the system dynamics ([x:, uz], X;) while ex-
ecuting the movement primitive. These samples are used to improve our learned dynamics
model which is used for planning.

8.3 Experiments

We start our evaluation of the proposed Planning Movement Primitive (PMP) ap-
proach on a one-dimensional via-point task to illustrate basic characteristics. In
order to demonstrate our approach on a more challenging dynamic robot task we
choose a complex 4-link humanoid balancing task. In our experiments, we focus
on investigating robustness to noise, optimality of the solution, learning speed and
generalizability to different initial or target states. For a comparison we take the
commonly used DMPs as a baseline where we use the newest version of the DMPs
(Pastor et al., 2009) as discussed in detail in Appendix 8.5. In difference to most
applications of the DMPs, are we learning from scratch without the use of imitation
learning. As described above we use 2nd order stochastic search to learn the PMP
and DMP parameters. In order to compare to a more commonly used policy search
algorithm we additionally test using the PI? algorithm for learning the DMPs. For
all experiments we empirically evaluate the optimal settings of the algorithms (such
as the exploration rate of CMA and PI? or the number of centers for the DMPs),
which are listed in the Appendix 8.5.

8.3.1 One-dimensional via-point task

In this task the agent has to control a one dimensional point mass. The state at
time ¢ is denoted by x; = [¢¢, ¢]7 and we directly control the acceleration. The
time horizon was limited to 7' = 0.5s. Starting at xo = [0,0]7 the agent has to pass
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through a given via-point g, = —0.2 at t, = 300ms and the final target gr was set
to 1, see Figure 8.3. We define the extrinsic costs for this task:

T
t=0

The first two terms punish deviations from the target gr and the via-point g,. The
target should be reached with zero velocity at 7' = 0.5s. The last term punishes high
energy consumption. The control action is noisy, we always add a Gaussian noise
term with a standard deviation of o = 20 to the control action. The simulation time
step was set to 10ms. As this is a very simple task, we use it just to show different
characteristics of the DMPs and PMPs.

A quite similar task has been used in (Todorov and Jordan, 2002) to study human
movement control. The experiments showed that humans were able to reach the
given via-points with high accuracy, however, in between the via-points, the trial-to-
trial variability was rather high. This is a well known concept from optimal control,
called the minimum intervention principle, showing also that human movement
control follows basic rules of optimal control. This observation also contradicts that
humans use a pure trajectory based movement representation. Still, the minimum
intervention principle is consistent with the dynamical system view of movement
control, however, much more complex dynamical systems than the DMPs are needed
(i.e. coupled dynamical systems with non-constant system parameters such as the
damping constants) to reproduce this effect.

We first estimate the quality of the best available policy with the DMP and the
PMP approach. We therefore use the PMPs with two via-points and set the param-
eters @ per hand. As we are using a linear system model and a simple extrinsic cost
function, the PMP parameters can be directly obtained by looking at the extrinsic
costs. As the PMPs use the AICO algorithm which always produces optimal poli-
cies for LQG systems, the PMP solution is the optimal solution. We subsequently
use the mean trajectory returned by AICO and use imitation learning to fit the
DMP parameters. We also optimized the feedback controllers used for the DMPs.
In Figure 8.3 we plotted 100 roll-outs of the DMP and PMP approach using this
optimal policies. The second column illustrates the trial-to-trial variability of the
trajectories. The optimal solution has minimum variance at the via-point and the
target. As expected this solution is reproduced with the PMP approach, because the
parameters of the PMPs are able to reflect the importance of passing through the
via-point. The DMPs could not adapt the variance during the movement because
the used (optimized) feedback controller uses constant controller gains. As we can
see, the variance of the DMP trajectory is simply increasing with time.

Comparing the optimal solutions we find that PMPs, in contrast to DMPs, can
naturally deal with the inherent noise in the system. This is also reflected by the
average cost values over 1000 trajectories, 1286 + 556 for the DMPs and 1173 4 596
for the PMPs. The &+ symbol always denotes the standard deviation.

This advantage would not be very useful if we were not able to learn the optimal
PMP parameters from experience. Next we test using CMA policy search to learn
the parameters for the DMPs and the PMPs. In addition, in order to compare to
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Figure 8.3: Best available policies for the PMPs and the DMPs for the via-point task.
The agent has to pass the via-point at ¢, = 0.3s and deal with the stochasticity of the
system (Gaussian control noise with a variance of 20%). The plot shows 100 trajectories
reproduced with the (hand-crafted) optimal PMPs parameters and 100 trajectories with
the optimal parameters for the DMPs. The PMP approach is able to reduce the variance
at the movement if it is relevant for the task while the DMPs can only suppress the noise in
the system throughout the trajectory in order to get an acceptable score. This advantage
is also reflected by the average costs over 1000 trajectories.

a more commonly used policy search method, we also compare to the PI? approach
(Theodorou et al., 2010a) which we could only evaluate for the DMP approach. We
evaluated the learning performance in the case of no control noise, Figure 8.4(a),
and in the case of control noise o = 20, Figure 8.4(b). Without control noise the
quality of the learned policy found by 2nd order search is similar for the DMPs and
the PMPs. PI? could not find as good solutions as the stochastic search approach.
The reason for this is that PI? could not find the very large weight values which are
needed for the last few centers of the DMPs in order to have exactly zero velocity
at the final state (note that the weights of the DMPs are multiplied by the phase
variable s which almost vanishes in the end of the movement and therefore these
weight values have to be very high). Because CMA policy search uses second order
information, such large parameter values are easily found. This comparison clearly
shows that using 2nd order search for policy search is justified. If we compare the
learning speed in terms of required samples between DMPs and PMPs, we find an
advantage for PMPs which could be learned an order of magnitude faster than the
DMPs.

The second experiment (with control noise of ¢ = 20) was considerably harder
to learn. Here, we needed to average each performance evaluation over 20 roll-
outs. The use of more sophisticated extensions of CMA (Heidrich-Meisner and Igel,
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2009a) which can deal with noisy performance evaluations and hence improve the
learning speed of CMA policy search in the noisy setup is part of future work.
In Figure 8.4(b) we find that the PMPs could be learned an order of magnitude
faster than the DMPs. As expected from the earlier experiment, the PMPs could
find clearly better solutions as the DMPs as they can adapt the variance of the
trajectory to the task constraints. Again, PI? showed a worse performance than
2nd order search. Illustrated are mean values and standard deviations over 15 trials
of learning (1034 + 1.46 for the PMPs and 1876 4 131 for the DMPs using CMA).
To compare these results to the optimal costs we evaluated the best learned policies
of both approaches and generated 1000 trajectories. The learned solution for the
PMPs was similar to the hand-coded optimal solution, 1190 =+ 584 versus costs of
1173 £596 for the optimal solution. DMPs achieved costs of 1478 + 837, illustrating
that, eventhough the DMPs are able to represent much better solutions with costs
of 1286 + 556 (see Figure 8.3), it is very hard to find this solution.

In Table 8.1, we show the mean and variance of the found parameters for the
first via-point in comparison to the optimal PMP parameters. We can see that the
found parameters closely matched the optimal ones. Interestingly, in the experiment
with no noise, the found parameters had a larger deviation from the optimal ones,
especially for the first via-point gl* in Table 8.1. The reason for this is the simple
observation that without noise, we can choose many via-points which results in the
same trajectory, whereas with noise we have to choose the correct via-point in order
to reduce the variance of the trajectory at this point in time.

Table 8.1: Learned parameters using PMPs for the via-point task (1st via-point), £+ denotes
the standard deviation.

scenario d gl! log ([t log(h!)

optimal 0.3 -0.2 [5, 0] —23
no noise  0.29+0.01 —0.27+0.03 [4.08+4.18,—0.8+—0.77] —3.05+ —4
with noise  0.29 +0.01 —0.23+0.05 [4.93+5.29,—0.31 + —0.12] —2.85+ —3

Next, we investigate the ability of both approaches to generalize to different
situations. With generalization we mean that the same learned parameters can
be re-used to generate different movements, e.g. used for different start or target
states. The change of the initial state or the target state is also allowed by the DMP
framework. However, how the movement is generalized to these new situations is
based on heuristics (Pastor et al., 2009) and does not consider any task constraints.

In Figure 8.5 the learned policies are applied to reach different final targets
or € [1.5,1.25,1,0.75,0.5]. All plots show the mean trajectory. In order to change
the final state of the movement we have to change the point attractor of the DMPs,
which changes the complete trajectory. Due to this heuristic, the resulting DMP
trajectories shown in Figure 8.5(a) do not pass through the via-point any more. Note
that we use a modified version of the DMPs (Pastor et al., 2009) which has already
been built for generalization to different target points. The PMPs on the other hand
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Figure 8.4: This figure illustrates the learning performance of the two movement represen-
tations, DMPs and PMPs, for the one-dimensional via-point task. Illustrated are mean
values and standard deviations over 15 trials after CMA policy search. In addition, we also
compare to the PI? approach (Theodorou et al., 2010a) which we could only evaluate for the
DMP approach. Without noise the final costs of the two representations are similar if CMA
policy search is used (a). In the second example (b) we use zero-mean Gaussian noise with
o = 20 for the controls. In this setup we needed to average each performance evaluation
for CMA over 20 roll-outs. For both setups the PMPs could considerably outperform the
DMPs in terms of learning speed. For the noisy setup the PMPs could additionally produce
policies of much higher quality as they can adapt the variance of the trajectories to the
task constraints. PI? could not find as good solutions as the CMA policy search approach
in both setups.
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Figure 8.5: In this experiment we evaluated the generalization of the learned policies to dif-
ferent goal states ¢ € [1.5,1.25,1,0.75,0.5]. Always the same parameters 6 have been used,
i.e the parameters were not relearned. The DMPs (a) are not aware of task-relevant features
and hence do not pass through the via-point any more. (b) PMPs can adapt to varying final
goals with small effects on passing through the learned via-point. Furthermore the PMP rep-
resentation is very flexible and we can also use a via-point g1 = g1 +[0.5,0.25,0, —0.25, —0.5]
with constant distance to the goal state to emulate the heuristic DMP behavior (c).

still navigate through the learned via-point when changing the goal state as shown
in Figure 8.5(b). We can also adapt the via-point g, = g1 +[0.5,0.25,0, —0.25, —0.5]
to encode, for example, a via-point which always has the same distance from the
target state 8.5(c). This would somehow emulate the adaption of the trajectory
used in the DMP approach. It is hard to argue which behavior is better suited
for this task as we have not specified any cost function for the changed situations,
however, the PMP approach offers much more control how the policy is changed.
For generalization to different initial states the behavior is basically the same thus
this evaluation is not shown here.
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Figure 8.6: This figure illustrates a dynamic balancing movement learned using the proposed
Planning Movement Primitives. The 4-link robot modelling a humanoid (70kg, 2m) gets
pushed from behind with a specific force (F' = 25Ns) and has to move such that it maintains
balance. The optimal policy is to perform a fast bending movement and subsequently return
to the upright robot posture. The circles denote the ankle, the knee, the hip and the shoulder
joint.

8.3.2 Dynamic humanoid balancing task

In order to assess the PMPs on a more complex task, we evaluate the PMP and
DMP approach on a dynamic non-linear balancing task (Atkeson and Stephens,
2007) where a robot gets pushed with a specific force F' and has to keep balance. The
push results in an immediate change of the joint velocities. The motor torques are
limited which makes direct counter-balancing of the force unfeasible. The optimal
strategy is therefore to perform a fast bending movement and subsequently return
to the upright position, see Figure 8.6. This is a very non-linear control problem,
using any type of (linear) balancing control or local optimal control algorithm such as
using AICO with the extrinsic cost function fails. Thus, we have to use a parametric
movement representation. Like in the previous experiment, we take the Dynamic
Movement Primitive (DMP) (Schaal et al., 2003) approach as a baseline.

We use a 4-link robot as a simplistic model of a humanoid (70kg, 2m) (Atkeson
and Stephens, 2007). The 8-dimensional state x; is composed of the arm, the hip,
the knee and the ankle positions and their velocities. Table 8.6 shows the initial
velocities (resulting from the force F' which always acts at the shoulder of the robot)
and the valid joint angle range for the task. In all experiments the applied force
was [' = 25Ns. If one of the joints leaves the valid range the robot is considered
to be fallen. If the robot manages to keep balance for 5s the episode is considered
to be successful and the simulation is stopped. Additionally to the joint limits, the
controls are limited to the intervals [£250, +500, £500, 70]Ns (arm, hip, knee and
ankle). For more details we refer to (Atkeson and Stephens, 2007).

Let ts be the last point in time where the robot has not fallen and let x;, be
the last valid state. The final target state (upright position with zero velocity) is
denoted by x, and T' = 5s. As extrinsic cost function C(7) we use

ts
C(r) = 2-10%(t; = T)* + (x4, — %) "Rpp(xs, —x,) + Y_uf Hpu, . (8.6)
t=0
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Figure 8.7: The figure illustrates generated movements for the 4-link balancing task using
DMPs. The controls were perturbed by zero-mean Gaussian noise with ¢ = 10Nm , the
plots show 100 roll-outs using the same parameter setting 8. The trial-to-trial variability of
the trajectories is shown in (b). This variance is determined by the learned controller gains
of the inverse dynamics controller. As constant controller gains are used the variance can
not be adapted during the movement. The noisy controls for all 100 roll-outs are illustrated
in (c). This illustrated best available policy achieved costs of 568.

The first term (t;—7)? is a punishment term for falling over. If the robot falls over,
this term typically dominates. The precision matrix Ry determines how costly it is
not to reach x,. The diagonal elements of Rg are set to 10? for joint angles and to
10 for joint velocities. Controls are punished by Hg = 5-107°I. As we can see the
extrinsic cost function cannot be directly encoded as a sum of intermediate costs
which is usually required for stochastic optimal control algorithms. Therefore, we
need to extract such a cost function in order to use a SOC planner.

We use additive zero-mean Gaussian noise with a variance ¢ = 10. In contrast
to the simple via-point task here imitation learning fails for the DMPs. The best
achieved policy using PMPs shown in Figure 8.8 is very close to the control and
joint constraints and since the DMPs have no knowledge about these constraints,
CMA policy search could not learn any control gain settings which fulfills them. (Al-
though that the trajectories were first perfectly matched using imitation learning.)
Therefore the illustrated DMP policy was learned from scratch and differs from the
best PMP solution. Figure 8.7 illustrates 100 roll-outs of the best policies found by
the DMP approach and Figure 8.8 shows 100 roll-outs of the PMP method. The
second column in each figure illustrates the variance of the trajectories for the dif-
ferent roll-outs. While the DMPs cannot adapt the variance during the movement,
the PMPs in Figure 8.8 can reduce the variance at the learned via-point (denoted
by crosses). As the PMPs are able to control the variance of the trajectory, we can
also see that the variance of the movement is much higher compared to the DMPs
as accuracy only matters at the via-points. We can also see that the arm trajectory
has a high variance after the robot is close to a stable up-right posture, see Figure
8.8(a), because it is not necessary to strictly control the arm in this phase. The
best found policy of the DMPs had costs of 568 while the best result using PMPs
was 307. This strongly suggests that it is advantageous to reduce the variance at
certain points in time in order to improve the quality of the policy.

Next, we again want to assess the learning speed of both approaches. We again
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Figure 8.8: This figure illustrates the generated movements for the 4-link balancing task
using PMPs. The crosses in (a) and (b) mark the learned via-point. As we can see the
variance is minimized at these points, reflecting the importance to reach this point. (c)
shows the noisy controls applied by the PMPs. The illustrated best available policy achieved
costs of 307.
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Figure 8.9: The figure illustrates the learning performance of the two movement represen-
tations, DMPs and PMPs for the 4-link balancing task. Illustrated are mean values and
standard deviations over 20 trials after CMA policy search. The controls (torques) are
perturbed by zero-mean Gaussian noise with ¢ = 10Nm. The PMPs are able to extract
characteristic features of this task which is a specific posture during the bending move-
ment, shown in Figure 8.8(a). Using the proposed Planning Movement Primitives good
policies could be found at least one order of magnitude faster compared to the trajectory
based DMP approach. Also, the quality of the best-found policy was considerably better
for the PMP approach (993 + 449 for the DMPs and 451 £+ 212 for the PMPs). For the
DMP approach we additionally evaluated PI? for policy search which could not find good
policies.

used CMA policy search for the PMPs and DMPs as well as PI? for the DMP
approach. The learning curves are illustrated in Figure 8.9. Using the PMPs as
movement representation, good policies could be found at least one order of mag-
nitude faster compared to the trajectory based DMP approach. The quality of the
found policies was better for the PMP approach (mean values and standard devia-
tions after learning: 993 4 449 for the DMPs and 451 + 212 for the PMPs). For the
DMP approach we additionally evaluated PI? for policy search, however, PI? was
not able to find good solutions—the robot always fell over.

In the next step we again test the generalization to different targets. We used
the learned policies to generate movements to different final targets of the arm
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Figure 8.10: This figure illustrates the joint angle trajectories (arm, hip, knee and ankle) of
a 4-link robot model during a balancing movement for different final targets of the arm joint
([3,2.5,2,1.5,1,0.5,0,—0.2, —0.4, —0.6]). The applied policies were learned for a final arm
posture of ¢ = 0. (a) The valid range of the arm joint using DMPs is ¢7 € {—0.2,1}.

arm arm

Large dots in the plot indicates that the robot has fallen. (b) PMPs could generate valid
policies for all final arm configurations.

joint ¢, €13,2.5,2,1.5,1,0.5,0,—0.2, 0.4, —0.6]. Note that the used policy was
learned for an final arm posture of ¢7, . = 0, we only change either the arm-
position of the last via-point or the point attractor of the dynamical system. The
results shown in Figure 8.10 confirm the findings of the one-dimensional via-point
task. The PMPs first move to the via-point, always maintaining the extracted
task constraints and afterwards move the arm to the desired position while keeping
balance. All desired target positions of the arm could be fulfilled. In contrast, the
DMPs managed to keep balance only for few target positions. The valid range of the
target arm position with DMPs was ¢r,, € {—0.2,1}. This shows the advantage
of generalization while keeping task constraints versus generalization per using the
DMP heuristics.

So far all experiments for the PMPs were performed using the known model of
the system dynamics, these experiments are denoted by PMP in Figure 8.11. Note
that also for the DMPs the known system model has been used for inverse dynamics
control. Now we want to evaluate how model learning affects the performance of
our approach. This can be seen in Figure 8.11. In the beginning of learning the
extrinsic costs are larger compared to motor skill learning with a given analytic
model. However, as the number of collected data-points ([x;; u],%;) increases the
PMPs with model learning quickly catch up and converge finally to the same costs.
The PMP representation with model learning in parallel considerably outperforms
the trajectory based DMP approach in learning speed and in the final costs.
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Figure 8.11: The figure shows the influence of model learning on the 4-link balancing
task. Illustrated are mean values and standard deviations over 20 trials. The learning
performance with the given system model is denoted by PMP. Instead of using the given
model we now want to learn the system model from data (as described in Section 8.2.3).
In the beginning of learning the extrinsic costs are larger compared to motor skill learning
with a given analytic model. However, as the number of collected data-points ([x;; u], %)
increases the PMPs with model learning quickly catch up and converge finally to the same
costs. The PMP representation with model learning in parallel considerably outperforms
the trajectory based DMP approach in learning speed and in the final costs.

8.4 Conclusion and Future Work

We have proposed a new type movement representation which endows a movement
primitive with an intrinsic probabilistic planning system instead of endowing a move-
ment primitive with a dynamical system such as the widely used Dynamic Movement
Primitives (DMPs) (Schaal et al., 2003) approach. While the dynamical system of
a DMP is to some degree reactive to the environment—namely by adapting the
temporal scaling factor and thereby de- or accelerating the movement execution as
needed (Schaal et al., 2003)—the trajectory shape itself is fixed and non-reactive to
the environment. In contrast, a movement primitive that is endowed with an intrin-
sic planning component can react to the environment by optimizing the trajectory
for the specific current situation. Training such a movement primitive now means
to train a planner to generate an appropriate trajectory in a given situation instead
of training a dynamical system to generate a fixed (temporally flexible) reference
trajectory.

Our approach to parameterize the intrinsic cost function is to use task-relevant
features, such as the location of via-points or the importance of reaching this via-
point. The idea is that such learnt task-relevant features as parameters of the
movement representation should generalize well across situations. As our experi-
ments show such an parametrization facilitates learning - good policies can be found
an order of magnitude faster as with parametrizations which define the shape of the
trajectory. It also allows an efficient generalization to new situations (e.g. new
movement endpoints) because the planner always tries to fulfills the extracted task
constraints. Once a motor skill is learned additional constraints like an unexpected
appearing obstacle during a walking movement can directly be considered for mod-
ulating the behavior. Thus re-learning of the motor skill is not necessary since the
planning machinery can integrate the new knowledge immediately. This properties
will be further investigated for footplacement planning in future research.

Stochastic optimal control (SOC) is also an excellent method to describe human



110 Chapter 8. Planning Movement Primitives

motor control (Todorov and Jordan, 2002). Thus, by the use of SOC methods
already at the level of the primitive, our approach can implement many of these
principles. For example, the minimum intervention principle implies that we should
only intervene the system if it is necessary to fulfill a given task. A representation
which strictly follows a desired trajectory by feedback control laws can not reproduce
such a behavior. This has also been confirmed by our experiments, where the DMP
representation produces sub-optimal policies in the presence of noise in our system.
Only for deterministic systems the optimal solution can be represented by such an
approach. In contrast the proposed Planning Movement Primitives could reproduce
the optimal policy after learning.

An additional interesting aspect of using movement primitives is that, ideally,
we want to be able to combine primitives in order to achieve several tasks simul-
taneously. This is still a mostly unsolved problem for current movement represen-
tations. Here, our Planning Movement Primitives offers new opportunities. For
trajectory-based representation we would need to linearly combine two trajectories
in order to combine two movements. As many task demands and system dynamics
are non-linear such an approach usually fails. However, instead of linearly combining
trajectories, our approach can now linearly combine cost functions—which results
in a non-linear combination of the policies for the single tasks. The evaluation of
this idea for combining several movements is also part of future work.

In this paper we focused on the representation of movement and put less empha-
sis on learning a movement. Yet, we want to point out again that our method does
not depend on the used policy search method (we used the second order stochas-
tic search method CMA), any episode-based exploring policy search method can
be used. We also do not want to argue for using episode-based exploring methods
for policy search, however, as our experiments show, these methods provide use-
ful alternatives to the more commonly used step-based approaches such as the PI?
(Theodorou et al., 2010a), the POWER (Kober and Peters, 2010) or the eNAC al-
gorithm (Peters and Schaal, 2008b). For policy search, future work will concentrate
on extending the framework for learning in the case of changing initial conditions
(Neumann, 2011) as well as using inference-based methods (Peters et al., 2010) also
on the level of learning the parameters.
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Appendix

Algorithms

In this section we review the evaluated algorithms.

Dynamic Movement Primitives

The most prominent representation for movement primitives used in robot control
are the Dynamic Movement Primitives (DMP) (Schaal et al., 2003). We therefore
used the DMPs as a baseline in our evaluations and will briefly review this approach
in order to clarify differences to our work. For our experiments we implemented an
extension of the original DMPs (Pastor et al., 2009), which considers an additional
term in the dynamical system which facilitates generalization to different target
states. For more details we refer to (Schaal et al., 2003; Pastor et al., 2009).

DMPs generate multi-dimensional trajectories by the use of non-linear differen-
tial equations. The basic idea is to a use for each degree-of-freedom (DoF) of the
robot a globally stable, linear dynamical system which is modulated by learnable
non-linear functions f :

TZ = azﬁz(g - y) — 02 — O‘zﬁz(g - yO)S + f,my =2,

where the desired final position of the joint is denoted by ¢ and the initial position of
the joint is denoted by yo. The variables y and g denote a desired joint position and
joint velocity, which represent our movement plan. The temporal scaling factor is
denoted by 7 and o, and S, are time constants. The non-linear function f directly
modulates the derivative of the internal state variable z. Thus, f modulates the
desired acceleration of the movement plan. s denotes the phase of the movement.

For each DoF of the robot an individual dynamical system, and hence an individ-
ual function f is used. The function f only depends on the phase s of a movement,
which represents time, 7$ = —a,s. The phase variable s is initially set to 1 and will
converge to 0 for a proper choice of 7 and a. With ag we can modulate the desired
movement speed. The function f is constructed of the weighted sum of K Gaussian
basis functions V¥,

_M i(s) = ex —LS—C-2
=S w) Wi(s) = exp( 2%2( )2).

As the phase variable s converges to zero also the influence of f vanishes with
increasing time. Hence, the dynamical system is globally stable with g as point
attractor.

In our setting, only the linear weights w; are parameters of the primitive which
can modulate the shape of the movement. The centers ¢; specify at which phase of
the movement the basis function becomes active and are typically equally spaced
in the range of s and not modified during learning. The bandwidth of the basis
functions is given by o?.

Integrating the dynamical systems for each DoF results into a desired trajectory
(y¢,y¢) of the joint angles. We will use an inverse dynamics controller to follow this

f(s)
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trajectory (Peters et al., 2008). The inverse dynamics controller receives the desired
accelerations (ges as input and outputs the control torques u. In order to calculate
the desired accelerations we use a simple decoupled linear PD-controller

Qdes = diag(kpos)(}’t - Qt) + diag(kvel)(Yt - qt)

Unfortunately standard inverse dynamics control did not work in our setup because
we had to deal with control limits of multi-dimensional systems. Thus, we had to
use an inverse dynamics controller which also incorporates control constraints. For
this reason we performed an iterative gradient ascent using the difference between
the actual (using constrainted controls) and the desired accelerations Qges as error
function. This process was stopped after at most 25 iterations.

For our comparison, we will learn the linear weights w for each DoF as well as
the controller gains kpos and kyel, i.e. @ = [wi,...,Wp,Kpos, kye]. This results
into KD + 2D parameters for the movement representation, where D denotes the
number of DoF of the robot.

Approximate Inference Control

The original formulation of the Approximate Inference Control (AICO) method
(Toussaint, 2009) does not consider a linear term for the control costs. However, this
is needed to encode torque limits, which are important for our dynamic balancing
experiments, and hence, we needed to extend AICO.

The introduction of a linear term for the control costs yields not only in a modi-
fied cost function but also results in different update equations for the messages and
finally in different equations of the optimal feedback controller. For completeness
we will first recap the main steps to derive the AICO method and will then discuss
the modifications to implement control constraints.

Approximate Inference Control without Torque Limits For motor planning
we consider the stochastic process:

T T
P(xo.7,u1.7,21.7) = P(%0 HP uy|x;) HP(Xt|Xt71,ut 1 HP 2e| %, ag).
= =1 =0

where P(uy|x;) denotes the state dependent prior for the controls, P(x|x;—1,us—1)
the state transition distribution and P(xq) the initial state distribution. Here, we
assume that the prior of the controls is independent of the states and thus we will
simply use P(u|x;) = P(u;) for the rest of the appendix. The time horizon is fixed
to T time-steps. The binary task variable z; denotes a reward event, its probability
is defined by P(z; = 1|x¢, ;) o< exp(—c¢(x¢, 1)), where ¢;(x¢, u) is the intermediate
cost function® for time step t. It expresses a performance criteria (like avoiding a
collision, or reaching a goal).

We want to compute the posterior P(xy.7,ui.p|z1.7 = 1) over trajectories, con-
ditioned on observing a reward (z; = 1) at each time-step ¢. This posterior can be

n this paper the immediate cost function is composed of the intrinsic costs and the constraint
costs, 1.e. ci(Xe, ur) = U(xe, ue, £50) + cp(xe, ur)
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computed by using message passing in the given graphical model of Figure 8.1. To
simplify the computations we integrate out the controls:

P(xpy1]xt) = P(xpy1]xe, ue) P(ugfx)duy, (8.7)

u

The marginal belief b:(x¢) of a state at time ¢ is given by:

bt(Xt) = at(xt)/@t(xt)¢t(xt)7 (8.8)

where ay(x;) is the forward message, [;(x¢) is the backward message ¢;(x;) is the
current task message. The messages are given by:

ay(xi) = / Py |%1—1) o1 (%11) 1 (e )11, (3.9)
Bi(xt) = / P(xpy1[xe) B (e41) Pey1 (Xe1)dxe 1, (8.10)
De(xt) = Plze|xe). (8.11)

We consider discrete-time, non-linear stochastic systems with zero mean Gaus-
sian noise

P(Xt+1|Xt, ut) = N(Xt+1|nyn(Xtaut)a Qt)-

The non-linear stochastic system fpy, is approximated by a Linear dynamics,
Quadratic costs and Gaussian noise system (LQG) by Taylor expansion (Toussaint,
2009; Todorov and Li, 2005) :

P(Xt+1 |Xt, ut) = N(Xt+1|AtXt + a; + Btut, Qt) (812)

Thus, the system is linearized along a given trajectory (Xo.r,0j.7) at every point
in time. We will use f; as shorthand for fpyn(x¢,u;). Then, the state transition
matrices A; are given by A; = (I 4+ g—j:iAt), the control matrices B; are given by

B, = g—(:’iAt and the linear terms by a; = (f; — s, — %ut)At.

5Xt 6ut
In the original formulation of ATICO the cost function ¢ is approximated as :

T T T
Ct(Xt, ut) = X RtXt — 2I't X; + uy Htut.

Note that there is no linear term for the control costs as we only punish quadratic
controls. We can now write P(z; = 1|x¢, ut) = P(z = 1|x¢)P(u) as

P(Zt = 1|Xt) X ./\/'[xt|rt,Rt] (813)
P(llt) = ./\/'[ut|O,Ht], (814)

where the distributions in Equation 8.13 and 8.14 are given in canonical form. The
canonical form of a Gaussian is used because numerical operations such as products
or integrals are easier to calculate in this notation. The canonical form is indicated
by the square bracket notation and given by

exp(—1/2a” A~ la)

N[X’a7 A] = |27TA_1|1/2

exp(—1/2xT Ax + xTa).
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A Gaussian in normal form can always be transformed into the canonical form by
N(x|a, A) = N[x|A ta, A71]. For more details we refer to the Gaussian Identities
in (Toussaint, 2011).

We can see in Equation 8.14 that our prior for applying the control uy is given by
the control costs, i.e. N'{u;|0, H;]. By integrating out the controls from our system
dynamics we get the following state transition probabilities

P(Xt+1|Xt) = N(Xt+1|AtXt +a; + Btut, Qt)N[llt|0, Ht]dut (815)

ug

= N(xpp1|Awxe +ar, Q + Bth_lBt)7 (8.16)

where the integral was solved using a reformulation of the Propagation rule in (Tou-
ssaint, 2011).

As we can see, all distributions in the approximated LQG system in Equation
8.16 are Gaussian, and thus, also all messages are Gaussians and can be calculated
analytically. The resulting messages are given in (Toussaint, 2009).

Approximate Inference Control with Torque Limits In order to implement
torque and joint limits we introduce an additional cost function ¢, which punishes
the violation of the given constraints. The function ¢, is just added to the current
immediate costs. We use separate cost terms for control constraints ¢}’ and joint
constraints cf, i.e cp(x¢,uy) = cf(x¢) + ¢¥(uy). Here, we will only discuss how
to implement the function c¢}'(u;) for the torque constraints, joint constraints are
implemented similarly.

The cost function ¢} is quadratic in u and punishes leaving the valid control
limits of u. In order to implement the upper bound upax for the torques, we use
the following cost function

T TyyU
C?(ut) = Hiu, + (ut - umax) Ht (ut - umax)a
T TyyU T U T U
= uw Hywy +u, H vy — 2u,,, Hy vy + u;  HY unmax,

= u/Hpy +u!HVu; — 2ul, HYu; + const.

As before, the matrix H; denotes the quadratic control costs. The constrained costs
are only imposed for the control variable u; if the torque value exceeds the upper
bound %max ;. In order to do so ng is a diagonal matrix where the ith diagonal entry
is zero if u; < Umax,; and non-zero otherwise. The lower bound Ui, is implemented
likewise using an individual diagonal matrix HF.

We can again implement c'(u;) as prior distribution P(u;) for the controls.

P(u;) o< Nwlhy, Hy, (8.17)

where hy = ul, HY +ul. H} and the precision H; = H; + HY + HF. As we can
see, the linear term hy of the prior distribution P(u;) is now non-zero. This yields
different message equations.

Joint-limits can be imposed similarly by using additional terms costs for ¢f(x).
However, for joint limits the update equations stay the same because P(z; = 1|xy)

has already a non-zero mean denoted by r; in Equation 8.13.
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To derive the messages we will first integrate out the controls to get the state
transition probabilities:

P(x¢t+1]xt) = / N (xt41])Asxs + a¢ + Boug, Q)N [uy | hy, I:It]duta
w

= N(Xt+1|AtXt + ag + Btﬂ;lht, Qt + BtI"\I;lB?) (818)

Note that, since the cost function ¢}(u;) contains a non-zero linear term hy, we
get a new linear term &; = a; + B;H, 'h, in the transition dynamics. The forward
and the backward messages are the same like in (Toussaint, 2009) except that a; is
replaced by &; and H; by H;.

Like in (Toussaint, 2009) we use the canonical representations for the forward
and the backward message:

ar(xy) = N[x¢|st, S¢]
Br(xt) = N[x¢|ve, Vi
¢t(xt) = P(Zt|Xt) = ./\/'[xt|rt,Rt].

The messages are represented by Gaussians in canonical form, for which mathemati-
cal operations like products are simply performed by adding the linear terms and the
precisions. The mean of the belief is given by by (x;) = (S; + Vi +Ry) (¢ +vi+1y)
(multiplying three canonical messages and a subsequent transformation to normal
form). Furthermore we use the shorthand Q: =Q;+ Btﬂt_ 1B? for the covariance
in Equation 8.18.

The messages are computed by inserting the state transition probabilities given
in Equation 8.18 in the message passing Equations 8.9 and 8.10. Subsequently
the integrals are solved using the Propagation rule in (Toussaint, 2011). The final
equations in canonical form are:

S: = (AL —K)Si 1A, (8.19)
st = (A —K)Ei1+Si1A (&1 + B H hy 1)), (8.20)
K, = AS (S +ASQ LA™ (8.21)
And for the backward messages:
Vi = (A —K,) VA, (8.22)
vi = (AT —K,)#i11 — Vi1 (a + BH; hy)), (8.23)
K, = AV, (Vi +Q;H L (8.24)

To obtain the same mathematical form as in (Toussaint, 2009) one needs to apply
the Woodbury identity and reformulate the equations. In contrast to the update
message in normal form (Toussaint, 2009), direct inversions of S;_1 and V1 are not
necessary in the canonical form and therefore, the iterative updates are numerically
more stable.

Finally, in order to compute the optimal feedback controller we calculate the
joint state-control posterior

P(ut,xt) = P(ut,xt\zt = 1)
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P(ug,x;) = / v (Xt) P (%) P (Xt 41 [%e, ue) P(ug) Bey 1 (Xe41) P41 (Xe1) dX 41

P(ug,x;) = P(x)P(uy) P(xp1 e, u) N x4 1 Vi1, Viga]dxe 11
X¢t1

Pluxy) = N(w M (B VLV V1 — Axi — &) + hy), M ),

where V, = (Q + \_/'tjrll)*1 and M, = B V,B, + H,. After a reformulation we can
obtain an optimal feedback controller of the form u; = oy + O;x; with

oy = M;l(BgV*Vgﬁl\_’t+1 — va*at + ht), (825)
0, = -M;'BI'V,A,. (8.26)

Similar to (Toussaint, 2009), we use an iterative message passing approach where
we approximate the non-linear system by an Linear dynamics, Quadratic costs and
Gaussian noise system (LQG) at the new mode of the trajectory. In (Toussaint,
2009), this is done by using a learning rate on the state beliefs b(x;). However,
in difference to (Toussaint, 2009), we also need an estimate of the optimal action
u; in order to impose the control constraints. Using a learning rate on the control
action u turned out to be very ineffective because feedback is extenuated. For
this reason we will use a learning rate on the feedback controller. We simulate the
LQG system (using the linearized model) to get a new mode of the belief of the
trajectory. The complete message passing algorithm considering state and control
constraints is listed in Algorithm 2. This is a straightforward implementation of
Gaussian message passing in linearized systems, similar to an extended Kalman
smoother. In (Toussaint, 2009) or (Rawlik et al., 2010) more time efficient methods
are presented, where for each time step the belief is updated until convergence
in contrast to updating all messages and iterating until the intrinsic costs L(7;0)
converge. The computational benefits of such an approach still needs to be evaluated
for our messages.

Task settings and parameters

In this section the movement primitive parameters and constants are specified for
the one-dimensional via-point task and for the humanoid balancing task.

One-dimensional via-point task

For the one-dimensional via-point task the parameters of the Dynamic Movement
Primitives are listed in Table 8.2. The valid configuration space for the policy
search algorithm is listed in Table 8.3. The CMA policy search algorithm has just
one parameter, the exploration rate. Where the best exploration rate using DMPs
for this task found was 0.05.

The limits of the parametrization of the Planning Movement Primitives (see
Equation 8.4) is listed in Table 8.4. For the via-point task we choose N = 2, where
the second via-point gVl = g was given. The exploration rate was set to 0.1 in all
experiments.
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Algorithm 2: Approximate Inference Control for Constrained Systems

Data: initial trajectory Xg.7, learning rate 7

Result: xg.p and ug.p

initialize Sg = 1e10 - I, sg = Sgxo, k =0, 6.7 =0, Og.p =0-1 ;
while L(7;0) not converged do

fort <+ 0to 7T do
Linearize Model: A4, a;, By using Equation 8.12

Compute Costs: Hy, hy, Ry, 1 using Equation 8.13, 8.17

fort <1 to T do
| Forward Messages: a;(x;) using Equation 8.19 - 8.21

fort< T —1to 0do
| Backward Messages: [5;(x;) using Equation 8.22 - 8.24

fort + 0 to T do
Feedback Controller: o, O; using Equation 8.25, 8.26

if K == 0 then
| up = o0p + Ogxy
else

0 = (1 —1)0; + noy
O; = (1 -71)O; + 10O
u; = 0 + Otxt

L X¢41 = Ayxy +a; + By

L k=k+1

Table 8.2: Via-point task: DMP movement primitive parameters

K o a 3, T

100 1 2 09 0.1

Dynamic humanoid balancing task

The DMP parameters for the balancing task are listed in Table 8.5. The policy
search parameters are the same like for the via-point task, Table 8.3. The exploration

Table 8.3: Via-point task: DMP policy search configuration parameters

w kpos Kyel

lower bound —100 0 0
upper bound +100 100 100
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Table 8.4: Via-point task: PMP policy search configuration parameters with i = 1,2

il gl rld hld

lower bound 0.05 -2 [1,107%] 107*
upper bound 0.4  +2 [105,10%] 1072

Table 8.5: Balancing task: DMP movement primitive parameters

K a o [, 7

10 1 5 5 1

rate was set to 0.1.

The PMPs were again evaluated with N = 2 via-points, where the second via-
point gVl = g7 (the up-right robot posture) was given and for the first via-point
the valid joint angle configuration is shown in Table 8.6. The exploration rate was
0.1 and the policy search algorithm configuration is listed in Table 8.7.

Table 8.6: Joint angle configurations where a robot gets pushed by a specific force F'.

Joint Init velocities Lower Bound Upper Bound

arm —0.4-1072F —0.6 3.0
hip +5.1-1072F -2.0 0.1
knee —7.4-1072F —0.05 2.5

ankle +1.2-1072F -0.8 0.8
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Table 8.7: Balancing task: PMP policy search configuration parameters with i = 1,2

gl Ll Blil

lower bound 0.1 [1072,107%,1072,107%,1072,1074,1072,107%] [1072,1079,107°,107]
upper bound 4.6  [10%,10%,10%,102,10%, 102, 10%, 10?] [1073,1073,1073,1073]
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Policy Search






CHAPTER 9

Introduction

In this section we briefly discuss policy search methods for motor skill learning.
We will put our focus on the temporal movement primitives discussed in Chapter
5 as they are the most widely used. A temporal movement representation uses the
duration (or phase) of the movement to encode the state of the robot, i.e. the
policy now explicitly depends on the time 7 (als,t; w), where w are the parameters
of the primitive. Temporal primitives are typically used for episodic tasks, i.e. we
always use the same initial conditions for each episode. In this setup we do not
necessarily have to estimate a value-function because we can directly search for
optimal primitive parameters w*. This chapter gives a broad overview of existing
policy search methods.

In the next chapter we will introduce a new method which is able to generalize
policy search to changing several situations. This work has already been published in
the paper ’Variational Inference for Policy Search in Changing Situations’, appeared
in the Proceedings of the International Conference for Machine Learning (ICML),
2011.

9.1 Episodic Policy Search for temporal Movement
Primitives

In the episodic setup we can neglect the value-function because the expected reward
of using parameter vector w can be estimated directly by performing roll-outs on
the real (or simulated) robot

J(w) = /p(T;w)R(T)dT, (9.1)

where a trajectory 7 is given by a sequence of state and action vectors, i.e
T = (sp,a9,...,s7) and R(7) denotes the summed reward associated with this
trajectory. Note that this type f performance evaluation is also possible for the
non-episodic setup with multiple start states, however, we would have to estimate
the costs by averaging over all possible start states, which is very inefficient. The
summed reward R(7) is typically composed of the summed immediate rewards r;
and a final reward for the last time step ¢r, i.e.

T—

R(r) =" r(st.ar) + ér(sr)

t=0

—

Our goal is now to find a parameter vector w* which minimizes J(w).
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There are many approaches which can be used for this task, some are gradient-
based (Williams, 1992; Peters and Schaal, 2006), expectation-maximization (Kober
and Peters, 2010) or inference-based (Theodorou et al., 2010b) and some are stochas-
tic optimizers (Heidrich-Meisner and Igel, 2009b; Hansen et al., 2003). These meth-
ods can coarsely be divided into episode-based exploring and step-based exploring
approaches. Step-based exploring methods apply exploration at each time step by
performing noisy actions while Episode-based exploring approaches explore the pa-
rameter space by using different parameter vectors for each episode.

9.2 Step-based Exploring Approaches

Step-based exploring algorithms include traditional policy gradient methods such as
episodic REINFORCE (Williams, 1992) and the episodic Natural Actor Critic algo-
rithm (Peters and Schaal, 2006, 2008a), expectation-maximization based algorithms
such as POWER (Kober and Peters, 2010) and algorithms based on path integrals
such as PI? (Theodorou et al., 2010b). PoOWER and PI? are currently considered to
be state of the art.

The main principle of step-based approaches is that an exploration-noise g; for
the action a; is used for each time step to search for trajectories with low costs.
Subsequently the parameters w are adapted such that the (noisy) trajectories with
lower costs are more likely to be reproduced again. Step-based exploring approaches
only work for policies which depend linearly on the parameters w as we have to
be able to easily fit the parameters to the noisy trajectories. Of all the discussed
movement representations in Chapter 5, the linear policy representation applies only
for the Dynamic Movement Primitive (DMP) approach. The DMPs typically use a
Gaussian policy for the desired acceleration where the mean g depends linearly on
the parameters w (see Section 5.2.1).

The exploration scheme is quite simple. All algorithms either add the noise term
e directly to the action, i.e

a,=®/'wte?, w(as,t;w)=N (at|‘I’tTw, %) (9.2)
or to the linear parameters w, i.e.
ar = @?(W+€;ﬂ), 7T(at|St,t; W) :N(at|‘I’?W, ‘I’?qu"t) s (93)

Adding noise to the parameters has become more accepted in recent algorithms like
PoWER (Kober and Peters, 2010) and PI* (Theodorou et al., 2010b).

The noise g, itself is always sampled from a multivariate normal distribution
with a diagonal covariance matrix 3. = diag(o). Thus, there is no correlation
in the exploration noise, and consequently exploration is always undirected. In
addition, the uncorrelated exploration noise is usually not adapted during learning.
Another problem of step-based exploration techniques is that we add noise at each
time step which often results in high variance of the estimate of the value of a specific
parameter vector w, in particular if the time horizon T is large.
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9.2.1 Policy Gradient Methods

The principle of policy gradient (PG) methods is simple. The parameters are up-
dated in the direction of the gradient of our expected reward function

Wil = Wi + aVwJ (W),

where « is a learning rate which has to be specified by the user.

Typically PG-methods use Gaussian noise directly added to the current action,
ie. a; = <I>tTw + ef. PG algorithms only differ how they estimate the gradient
Vwd (w).

REINFORCE

REINFORCE is one of the first policy gradient algorithms (Williams, 1992). The
algorithm calculates the gradient of the expected reward (Equation 9.1) by using
the well-known "log-ratio trick’ Vyp(7;w) = p(7; W)V log p(T; w), i.e.

VwJ (W) = /pr(T; w)R(7)dT = /p(T; w)Vyw log p(7; w)R(7)dT

Now, if we use the identity

T-1

p(r;w) = P(so) [ [ Plstslsi, ar)m(asls; w)
=0

, we can reduce the product to a sum as we are using the log term of p(7;w).
Consequently all terms drop out which do not depend on w for the derivative. The
REINFORCE gradient is therefore given by

T-1

VerdJ(w) = /R(T) Z Vw log m(ag|ss; w)dr.
T t=0

Fortunately, the gradient only depends on the derivative of the policy, which is
usually known to the experimenter. No knowledge of the transition or reward model
is needed.

The expectation over the trajectories can be replaced by sample trajectories. It
has been also shown that the substraction of a reward baseline b from the trajectory
reward R(7) can improve the performance significantly (Greensmith et al., 2004).
Further advancements of REINFORCE are the GPOMDP (Baxter and Bartlett,
1999) and the Policy Gradient Theorem algorithm (Sutton et al., 1999). Both
algorithms use the simple observation that rewards in the past are not affected by
actions in the future, which results in a gradient calculation with reduced variance
in comparison to REINFORCE.
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9.2.1.1 Episodic Natural-Actor Critic

The episodic Natural-Actor Critic (eNAC) (Peters and Schaal, 2008a) algorithm is
one of the most efficient policy gradient methods. The algorithm is inspired by the
use of natural gradients for supervised learning (Amari, 1998). Here, the standard
gradient is projected onto more efficient update directions by the use of the inverse
Fisher Information matrix. The Fisher Information matrix measures the amount of
'information’ that the trajectory distribution p(r;w) carries about the parameter
vector w, it is given by

F(w) = E; [Vwp(r;w)Vap(riw)'] .

Using the inverse Fisher Information matrix to project the standard REIN-
FORCE gradient has the effect that the change of each parameter w; has now the
same influence on the trajectory distribution. Thus, the algorithm is invariant to
the choice of the parametrization (e.g. scale) if two parametrizations have the same
representational power. The resulting gradient estimation is given by

VaacJ(w) = F(w) 'VrpJ(w).

Experiments showed that due to the scaling of the REINFORCE gradient the eNAC
converges an order of magnitude faster than the standard REINFORCE algorithm.

9.2.2 Inference-based algorithms

There are 2 types of inference-based algorithms, Monte-Carlo Expectation-
Maximization (MC-EM) algorithms such as POWER (Kober and Peters, 2010) and
MC-EM Policy Search (Vlassis et al., 2009) and algorithms based on path-integrals
such as PI? (Theodorou et al., 2010b). The exact derivation of these algorithms is
out of the scope of this introduction, we will only briefly sketch some interesting
properties. The methods apply the noise term €} directly to the parameter vector
w at each time step (see Equation 9.3). The parameter update Aw is subsequently
determined by weighting each noise term &}’, i.e.

T
ZS<Rt,t>e;”] ,

Aw =E
t=0

where Ry = Z]T:t r; is the future reward for time step ¢ and the function S(Ry,t)
determines the weighting of €}’. The main idea is that noise terms €}’ which resulted
in high returns R; have a higher influence in the parameter update. Thus, the
weighting typically depends on the point in time when the noise has been taken
and on the return R; after applying the noise. Even so the POWER and the PI?
are derived quite differently, they only differ in the way they calculate S(Ry,t).
We refer to the corresponding papers for an exact definition of S(Ry,t). The main
advantage of both algorithms is that they do not require a user-specified learning
rate. The learning speed of both methods is comparable (Theodorou et al., 2010b),
although PoOWER has some restrictions on the reward function which can be used.
Both methods are known to outperform the (step-based) policy gradient methods
introduced in Section 9.2.1.
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9.3 Episode-based Exploration Approaches

Episode-based exploring approaches apply the exploration noise to the parameter
vector w before executing the whole roll-out, during the execution no further explo-
ration is applied. In this setup we typically use a deterministic policy a; = (s, t; w)
and therefore, we only have system noise to deal with. As a result, the expected
reward of a single parameter vector w is easier to estimate (with reduced variance,
(Sehnke et al., 2010)).

The big advantage of episodic-exploring approaches is that they do not depend
on a linear parametrization of the movement representation. In order to use episodic-
exploring approaches we just have to be able to estimate J(w) by performing roll-
outs on the real system. In addition, sophisticated second order optimizers can be
used in this setup which tend to show very good performance on many problems
(Heidrich-Meisner and Igel, 2009b). For example, the CMA-ES algorithm estimates
the full covariance matrix =4, of a Gaussian distribution which is used for the ex-
ploration noise. This can be seen as second-order information of the cost-function.
As a consequence, the exploration noise correlated and thus more directed than the
uncorrelated exploration noise used by many other approaches. We will now briefly
discuss the most relevant episode-based exploration approaches.

9.3.1 Gradient-based Methods

Similar to the standard step-based exploring PG methods, episode-based PG-
methods try to estimate the gradient of the expected reward J(w) in order to
apply gradient descent. However, the gradient is now estimated by perturbing the
parameter vector w before performing the roll-outs, during execution no additional
exploration is applied (i.e. a deterministic policy is used).

9.3.1.1 Finite Difference Policy Gradients

The most simple policy gradient method is to use the Finite Difference Policy Gra-
dient. Here, J rollouts ' with small, random perturbations Aw; of the current
parameter vector w are performed on the real system. The gradient is calculated
by using a first order Taylor-Approximation of the cost function and subsequently
applying the least-square solution

VepJ(w) = (AWTAW)TAWT AT,

with AW = [Awl, Awl .. AwWl]T and AT = [J(w + Awy),J(w +
Aws),...,J(w + Awy)] — J(w). The finite difference method has been used in
(Kohl and Stone, 2003) as one of the first policy gradient methods applied to a real
robot. It is also often used as baseline for comparison (Peters and Schaal, 2006),
(Kober and Peters, 2010).

typically J has to be twice the number of parameters to accurately estimate the gradient
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9.3.1.2 The Policy Gradient with Parameter-Based Exploration algo-
rithm

In difference to the Finite-Difference PG algorithm, the Policy Gradient with
Parameter-Based Exploration (PG-PE) algorithm (Sehnke et al., 2010) calculates
the likelihood gradient of the expected reward. It is therefore the equivalent to RE-
INFORCE for the step-based-exploring approaches. However, the likelihood gra-
dient is now calculated for the whole trajectory instead of calculating it for each
time step separately. In order to do so, we introduce a distribution over the pol-
icy parameters p(w|0) = N (w|pu,,, diag(c?) and calculate the likelihood gradient
with respect to @ = {u,0}. The parameters @ now define a distribution over the
parameterspace w € WW. The expected reward is then given by

J(0) = /W/p(7'|w)p(w|9)R(T)deW

If we now apply again the "log-ratio trick’ and replace the integral with samples, the
gradient of the expected reward J(0) is given by

Vearr/(0) = Z Vg logp(w;|0)R(7;)

In the original algorithm (Sehnke et al., 2010), an uncorrelated Gaussian distribution
is used as model for w. Thus the exploration noise for each dimension of the
parameter vector is adapted, but the correlations between the parameters are still
neglected.

9.3.2 Stochastic Optimizers

By now we have only discussed algorithms which originated from Reinforcement
Learning, but in fact any stochastic optimizer can be used to find the optimal
parameters argming,J(w). These stochastic optimizers have shown impressive per-
formance on many tasks so they should not be neglected. Here, we briefly present
two promising approaches, the Covariance Matrix Adaption - Evolutionary Strategy
(CMA-ES) 2 (Heidrich-Meisner and Igel, 2009b) and Cross-Entropy search (Mannor
et al., 2003; de Boer et al., 2005). The strategy of both approaches is quite simi-
lar. They sample a certain number of offsprings w; from a Gaussian distribution
N (w|{k, £%). The evaluated reward J(w;) of the samples is used to weight each of
the offsprings. Subsequently, the weighted offsprings are used to update the Gaus-
sian distribution. CMA-ES and Cross-Entropy search only differ in the way they
update the distribution, i.e. how they calculate {541 and £, from the offsprings
w;. One big advantage of both methods is that they estimate a full-covariance ma-
trix £,41 for exploration, thus, both algorithms use correlated noise resulting in
more directed exploration strategies than most other algorithms which simply use
a diagonal covariance matrix. Although there is no direct comparison of CMA-ES
and Cross-Entropy search, CMA-ES has become more popular in recent literature
(Heidrich-Meisner and Igel, 2009b; Neumann, 2011).

2CMA-ES is often denoted as genetic algorithm, however, it can also be seen as stochastic
second order optimizer.
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9.4 Generalizing Temporal Representations to Multiple
Situations

One disadvantage of temporal representations is that they are only valid locally, i.e.
they can only be used for constant initial conditions of the robot (including a small
neighborhood). For different initial conditions s{), the parameter vector w has to be
re-estimated. In order to avoid exhaustive relearning, we need to learn a hierarchic
policy 7w (W|sg; @) which can generalize between different initial situations sy of the
robot. We will denote the parameter vector of the hierarchic policy as 8. In order
to assess the expected reward for a parameter vector 8, we now have to evaluate
multiple roll-outs starting from different initial conditions, and thus, solving this
problem directly with standard parameter-exploring policy search methods is highly
inefficient. For a discussion of more efficient methods and also a new method which
has been introduced in our work in the paper (Neumann, 2011) we refer to Chapter
10.
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Many policy search algorithms minimize the Kullback-Leibler (KL) divergence
to a certain target distribution in order to fit their policy. The commonly used KL-
divergence forces the resulting policy to be 'reward-attracted’. The policy tries to
reproduce all positively rewarded experience while negative experience is neglected.
However, the KL-divergence is not symmetric and we can also minimize the the
reversed KL-divergence, which is typically used in variational inference. The policy
now becomes ’cost-averse’. It tries to avoid reproducing any negatively-rewarded
experience while maximizing exploration.

Due to this ’cost-averseness’ of the policy, Variational Inference for Policy Search
(VIP) has several interesting properties. It requires no kernel-bandwith nor explo-
ration rate, such settings are determined automatically by the inference. The algo-
rithm meets the performance of state-of-the-art methods while being applicable to
simultaneously learning in multiple situations.

We concentrate on using VIP for policy search in robotics. We apply our algo-
rithm to learn dynamic counterbalancing of different kinds of pushes with human-like
2-link and 4-link robots.

10.1 Introduction

Variational inference is a widely used approximate inference method. While there
exists first applications of variational inference for discrete reinforcement learning
(Furmston and Barber, 2010), it has never been used for policy search in high dimen-
sional parameter spaces. Variational inference introduces an approximate distribu-
tion ¢ and iteratively minimizes the Kullback-Leibler divergence KL(q||p) between
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g and the target distribution p. This minimization is also known as I(nformation)-
projection of distribution p.

In policy search, many algorithms also apply approximate inference. However,
all these algorithm use the M(oment)-projection, which is given by the reversed KL-
divergence KL(p||q) to estimate their policy. While at the first glance this might only
be a minor difference, it turns out that the resulting policies may differ considerably.
Policies calculated by the M-projection try to reproduce all experience with high
reward, but neglect information coming from negative experience. We will therefore
call these policies 'reward-attracted’. The I-projection forces the resulting policy
to be 'cost-averse’. Here, the focus of the policy is to avoid reproducing negative
experience, while exploration is maximized.

Which projection is better suited for policy search? We argue for the I-
projection. When using a common Gaussian policy, the M-projection averages over
all positively rewarded experience seen so far. However, in the case of a multi-modal
or non-concave target distribution taking the average might be a bad choice. The
[-projection always tries to exclude negative experience from the resulting distribu-
tion, and thus, concentrates at one mode of the target distribution. Non-concave
target distributions typically occur if we want to apply policy search for multiple
situations. The I-projection can be applied with ease in this context. The ’cost-
averseness’ also comes with additional advantages. The algorithm automatically
determines the optimal kernel bandwidth for a new situation and adapts its explo-
ration rate and used search directions.

In difference to the M-projection, the I-projection can’t be minimized in closed
form. We have to rely on non-linear optimization methods like gradient descent.
Here, we present a new method where gradient descent is performed on meta-
parameters of the approximate distribution ¢.

We will apply our new Variational Inference for Policy Search (VIP) algorithm
to learn complex motor skills with robots. In robotics we often need to search for
parametrized movement plans in related, but different scenarios. These movement
plans, also called Dynamic Movement Primitives (Ijspeert and Schaal, 2003; Schaal
et al., 2007), Motion Templates (Neumann et al., 2009) or Muscle Synergies (Bizzi
et al., 2008) are often only valid locally, and hence, need to be adjusted for a new
situation.

For example, a tennis playing robot has to adapt its movement to the trajectory
of the ball or a humanoid robot has to react differently to counter-balance different
kinds of pushes. Hence, we need to find a policy 7(w|s") which is able to choose good
parametric descriptions w € W of the movement plan given the initial conditions
s'. Learning such a policy 7 is very challenging due to the high-dimensionality of
parameter-space YW. Our algorithm is well suited for such tasks.

Many policy search algorithm like the CMA-ES (Heidrich-Meisner and Igel,
2009b), Cross-Entropy search (Mannor et al., 2003) or the PoOWER (Kober and
Peters, 2010) algorithm are limited to the single-situation setting. Only few algo-
rithms exist for learning in multiple initial conditions. Here, we can use Reward-
Weighted Regression (RWR)(Kober et al., 2010) or Cost-Regularized-Kernel Regres-
sion (CRKR) (Kober et al., 2010), which is the kernelized version of RWR. Both
algorithms use locally weighted linear regression methods to interpolate between
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different initial states s?. In addition to the local weighting, the data points are

weighted by their corresponding rewards. The reward-weighted linear regression
represents an M-projection of the reward distribution (see Section 10.3.1), there-
fore these algorithms suffer from the previously mentioned limitations of the M-
projection.

Both algorithms require that the user specifies the shape or bandwidth of the
receptive fields or kernels. This shape is not only kept constant during the learning
phase, it is also constant in the whole state space. Therefore the user always has
to make a tradeoff between fast learning speed and good quality of the final perfor-
mance. Because the I-projection always wants to exclude samples with low reward,
the 'kernel shape’ automatically adapts to the data density as well as to the shape
of the target distribution.

Note that CRKR and RWR have only been used to learn meta-parameters of
the motion (Kober et al., 2010) (like the duration or the end-point of the motion).
The remaining (typically higher-dimensional) parametrization for the shape of the
trajectory was kept fixed. Therefore, the application is limited to similar shapes of
the movement. The VIP approach allows learning with the full-parametric repre-
sentation of a movement for multiple scenarios, and therefore, can find completely
different movements for different subregions of the state space.

We will apply our method to a 2-link and a 4-link dynamic robot balancing task
where the robot has to counterbalance different kinds of pushes.

10.2 Kullback Leibler (KL) Divergences

We quickly review concept of KL-divergences because it is of great importance for
this paper. The KL divergence between two probability distributions ¢ and p is
defined as
p(X)
KL(gllp) = - [ a(X)log Zotax

X q(X)
It is zero if and only if the two distributions are equal. Since the KL-divergence is
not symmetric, there are 2 kinds of KL-divergences which we can minimize in order
to approximate a target distribution p with an approximate distribution q.

e The M-projection ¢ = argmin KL(p||g): The M-projection forces the ap-
proximate distribution ¢ to have high probability everywhere where p has
high probability. Therefore, if distribution ¢ is a Gaussian, the M-projection
tries to average over all modes of p.

e The I-projection ¢ = argmin KL(g||p): It forces the approximate distribu-
tion ¢ to be zero everywhere where p is zero. Can not be calculated in closed
form for the most distributions. When using a Gaussian distribution ¢, the
I-projection typically concentrates on a single mode of the target distribution.

These differences between the projections are well known (Bishop, 2006), however,
the effect of these difference for policy search have never been evaluated.
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10.3 Inference for policy search

Many policy search algorithms (Kober and Peters, 2010; Vlassis et al., 2009;
Heidrich-Meisner and Igel, 2009b) use inference or inference related methods to
iteratively optimize the policy.

In order to use inference for policy search we define a binary reward event R = 1
as observed variable. To simplify notation we will always write R when we mean
R = 1. The probability of this reward event is given by p(R|7) o exp(—C(7)), where
T is a trajectory and C(7) are the associated costs. This is a common method to
transform an optimization problem into an inference problem (Toussaint, 2009). We
want to find parameter vectors 6 with high evidence

D(R:0) = / p(RI7)p(r; 0)dr,

where 7 is a trajectory and p(7;0) is the parametric model of the trajectory distri-
bution. The policy 7 is contained in this model.

We can now introduce a variational distribution ¢(7) which is used to decompose
the log-evidence

logp(R;8) = L(q,0) + KL(qllpr), (10.1)
where (RIr)p(r:0)
PUR|T)P\T,
L(q,0 :/qT log ———————=dt
(0.0) = [ atriox "0
is the lower bound of the log evidence and
KL(q|lpr) = —/q(T) log L;'(]j;e)ch (10.2)

is the KL-divergence between the ¢ and the reward-weighted trajectory distribution

p(R|7)p(T;0)

(10.3)
The correctness of Equation (10.1) can be easily verified by substituting Equation
(10.3) into Equation (10.2). Note that this decomposition is the same as used in
expectation-maximization (EM) and variational inference algorithms. It has also
already been used in (Furmston and Barber, 2010) for using variational inference
for learning the model of discrete MDPs.

The lower bound L(q, 8) is now iteratively improved by an expectation (E-) and
a maximization (M-) step. In the E-step, we minimize KL(q||pr) with respect to
q. Since logp(R;0) is fixed, the lower bound has to increase. In the M-step we
maximize the lower bound L(q, 8) with respect to 6.

10.3.1 M-Projection: Monte-Carlo EM-based Policy Search Algo-
rithms

Monte-Carlo (MC) EM-based algorithms (Kober and Peters, 2010; Vlassis et al.,
2009) use a sample based approximation for ¢, i.e. in the E-step they minimize
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the KL-divergence KL(q||pr) by setting q(i) o< p(R|7;)p(7i;0) for a discrete set of
samples 7;. Subsequently, the ¢(7) are used to replace the integral in the lower bound
L(q,0) by a sum. The lower bound therefore reads

p(TiSOnew)
L(q,O0new) = R|7;)p(7i;001q) log ——
(¢, Onew) Eﬁ p(R|7i)p(7i; Oola) 8 o Oora)

= —KL(pgr(7)||p(T; Onew)) + const

As we can see maximizing the lower bound with respect to the new parameter
vector Opey is equivalent to calculating the M-projection of pr(7). Note that this is
exactly the same lower bound as given in (Kober and Peters, 2010) for the POWER
and RWR algorithm. Thus, these algorithms are special cases of the decomposition
shown in Equation 10.1.

10.3.2 I-projection: Variational Inference for Policy Search

In the variational approach, a parametric representation of g is used instead of a
sample-based approximation. We choose ¢(7;w) to be from the same family of
distributions as p(7;80). Now, we will use a sample-based approximation to replace
the integral in the KL-divergence KL(¢||pr) needed for the E-step. Thus we need
to minimize

KL(qllpr) = = a(73:w)/Zy log % ’

Ti

(10.4)

with respect to w, which is equivalent to the I-projection of pr(7). The terms Z,
and Z, are used to normalize the sample-based approximations. The M-step now
trivially reduces to setting the new parameter vector @pey to w.

Both algorithms only differ in the used projections of pg(7). As the projections
are in general different, they converge to a different (local) maximum of the lower
bound L(q,0). When using a Gaussian model distribution, the I-projection con-
centrates on a single mode. This is not a problem if all modes are almost equally
good, however, the I-projection might also choose a sub-optimal mode (which has
lower reward probability). In our evaluations we could not observe this problem.
The M-projection always averages over all modes and therefore might also include
large areas of low reward in the distribution. Hence, we consider the use of the I-
projection to be less harmful. If the target distribution is concave, both projections
yield almost the same solutions, however, using the I-projection is computationally
more demanding.

The discussed projections are applicable for any kind of policy search problems,
however, in this paper we will focus on single-step decision problems with high
dimensional action spaces because these problems are of high importance for motor
skill learning with motion primitives.
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10.4 Policy Search in multiple situations

In this paper we concentrate on policy search in multiple situations. Thus, we
want to learn a policy 7(w|s’; @) for choosing the parametric description w of our
movement plan when being in situation s".

We will treat the policy search problem as 1-step reinforcement learning problem
and neglect any sequential nature of the decision problem. The agent chooses its
desired trajectory description w in the initial state s and then observes the whole
trajectory 7 and the associated costs C'(7) as one big step. The trajectory 7; itself is
therefore determined by the state-action pair (s}, w;) and its associated costs C(4).
All derivations from Section 10.3 are still valid, we just replace the trajectories 7;
with the state-action pairs (s}, w;).

As samples we will always use the whole history of the agent, i.e. we will use sam-
ples from all situations sg experienced so far. For the sake of simplicity, we neglected
any importance weights in Equation 10.4 which should be used to compensate for
the fact that the history of the agent is usually not sampled uniformly from the
state-action space. In the subsequent discussion we assume that each dimension of
the parameter vector has been scaled to the interval [0;1].

If the reward weighted probability pr(7;) is very close to 0 we can’t use the
log function. Instead, we use a penalty term of —P, for logpgr(7;). It turned out
that reasonable settings of this value have to scale exponentially with the number
of dimensions of the parameter space to account for the increasing volume of the
search space.

10.4.1 Approximate Distribution

For representing p(s¥, w;; ) we use Gaussian distributions NV ([s’; ]|, ). Since a
Gaussian is a rather simple representation we re-estimate the Gaussian for a new,
currently active situation s?. For every re-estimation, the state components of u
are clamped at s by putting a sharply peaked prior on these components (see next
section).

In Figure 10.1 and 10.2, we illustrated the difference of policy search with the
M- and the I-projection for bimodal and non-concave target distributions. For the
bi-modal distribution, the M-projection concentrates on both modes while the I-
projection only tries to cover one mode. For the non-concave target distribution
we assumed that the first variable represents a state variable which is observed.
Therefore, we clamped this dimension of the mean of the Gaussian to be the observed
value. Again, the M-projection tries to average over the non-concave function, and
hence also includes regions of low reward, while the I-projection nicely approximates
the desired distribution.

10.4.2 Minimization of the I-projection

The I-projection KL(q||pr) is difficult to use because it can’t be calculated in closed
form. We have to rely on non-linear optimization methods, i.e. gradient descent.
However, optimizing directly the parameters of a Gaussian is difficult because of the
quadratic number of parameters needed to represent the covariance matrix.
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Figure 10.1: Comparison of the Variational Policy Search algorithm using the I-projection
against the M-projection on a bi-modal reward function. A simple Gaussian distribution
was used as model distribution. The M-projection tries to average over both modes, while
the I-projection concentrates on a single mode.

Hence, we propose a sample oriented approach which is computationally more
tractable. For each sample we introduce a weighting v;. These weightings are used
to calculate the weighted maximum likelihood (ML) estimate from the data-points.
We will denote the weighted sample mean as m and the weighted sample covariance
matrix as S. The weights v; are normalized such that max; v; = 1.

In order to clamp the state-space part of the mean p at the current initial state
s¥, we combine the ML-estimate m with a Gaussian prior distribution P(u|sY) =
N (pelpeg, So) with py = [s?,O.5]T and Sy is a diagonal matrix which is set such
that the prior is sharply peaked for the state variables s° and almost flat in the
action space. The mean p of our Gaussian distribution is then given by

p= (8" +87)(Sy o+ 8" m)

For the covariance matrix 3 of our model, we also use a combination of a prior
covariance matrix Cy and the weighted sample covariance S.

Zi UZ‘S + OéCo

2:
>ivita

, Co=k-diag([o?]) + /2 ¢; 55,
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M-projection I-projection
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(a) M-projection (b) I-projection

Figure 10.2: Comparison of I-projection and M-projection on a non-concave reward func-
tion. Dark background indicates negative reward. The model distribution is a Gaussian
of which the mean (indicated by ’'x’) of the state variable (x-axis) has been clamped at
different, locations. The M-projection again tries to average over the non-concave function
while the I-projection nicely approximates the desired policy.

where 3; are the covariance matrices of the previous iterations of VIP. The X;
are used to incorporate previous search directions into the current search. The
parameters k, 0'%: 4 and c1;—1 are also optimized by gradient descent.

After calculating g and 3 we can evaluate the KL-divergence KL(g||pr) on our
sample points by the use of Equation 10.4. The gradient with respect to v;, «, k,
o? and ¢; is calculated numerically by finite differences. Subsequently we apply
standard gradient descent augmented by a line search algorithm to estimate the
optimal learning rate. The algorithm always runs for 10 iterations.

We also use a slight modification of the original variational algorithm. Instead
of using the model distribution p(s?, w;; @) for calculating the reward weighted tra-
jectory distribution pgr(i) we use the sample weights v; found by the previous KL-
divergence minimization, i.e pg(i) = v;p(R|s?, w;). This turned out to be numeri-
cally more stable in high dimensional parameter spaces.

10.4.3 Reward Transformation

Instead of using the standard reward transformation p(R|s?, w;) = exp(—C(s?, w;)),
we will use a baseline V(s?) and also introduce a scaling factor p to the costs, i.e.
p(R[s?, w;) = exp (—(C(s), w;) — V(s¥))/p). Both mechanisms help to improve
accuracy of the algorithm as well as to reduce the number of required iterations.
As baseline we use an estimate of the value V(s?) = [ C(s?, w)p(w|s); 8)dr at
state s?. In order to do so, we use the tuples (s?, C;) as data points to estimate a
Gaussian cost model. Fach data point gets again weighted by the weights v; found
by the previous KL-minimization. Subsequently, we condition this Gaussian cost
model on the scenario states S? of our samples. This results in a linear Gaussian
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Algorithm 3: Variational Policy Search

Input: History of the agent H = (sg,wi, C;), current scenario s’, initial
covariance X

Initialize p = [s0; 1/2] and v; = N ([sY; w;]|pg, Xo) for all i
for [ =11t0o L do
Estimate V (s{) and p by calculating a Gaussian cost model using v;.
Calculate cost weighted trajectory distribution

pr(i) = viexp (— (Ci = V(s})) /p)
Check effective number of examples, eventually reduce sharpness of pr
while . pr(i)/ max; pr(j) < nge do

| pr(i) = pr(i)®? for all i
Acquire new v;, p and ¥ (minimize KL(q||pr))

[vi, py, 3] = I-project(pr, H,{Zo, - Xi-1})
Set new model distribution...

(s, w3 8) = N([s% w]|p;, 3)
Calculate policy (conditional Gaussian)
m(w|s% 8) = p(s’, w;8)/p(s"; 0)

model from which we use the (state-dependent) mean as baseline V/(s?).

The scaling factor p regulates the greediness of our distribution p(R|s", w). We
use the standard deviation of the conditioned Gaussian cost model to determine p.

If the effective number of activations of our target distribution pr(i) gets too
small (i.e. >, pr(i)/max; pr(j) < nact) we do not have enough data-points to
reliably estimate the Gaussian models. Hence, we iteratively reduce the sharpness
of pr(i) by setting all pr(i) to pr(i)*? until the effective number of samples is larger
than naet. The parameter naet has to be specified by the user and depends on the
dimensionality of the state-space (in our experiments we varied the value between
5 and 15).

10.4.4 Estimating the policy

So far we have estimated a model which describes the probability of whole trajec-
tories, i.e. in our case a probability distribution over the state and action space. In
order to determine the policy m(w|s?; @) we just have to condition on the current
state sY. This is again a linear Gaussian model which can be easily calculated.

The whole algorithm is summarized in Algorithm 3. The number of iterations
L was always set to 10. For performance reasons we only use the last N examples
(between 100 and 10000) from the history. The initial covariance 3, as given in
Algorithm 3 is typically almost flat in the action space and state space. The method
is almost invariant to this setting.

In difference to MC-EM based algorithms like RWR, or CRKR we use several
iterations to estimate the model distribution. Additionally, the introduced scaling
factor p of the reward function helps to set the greediness of the resulting distribution
correctly. If we would use the M-projection and only apply one iteration (L = 1)
without the scaling factor p and the baseline V (s{), VIP reduces to RWR.



140 Chapter 10. Variational Inference for Policy Search

of —
o =20 ; -
o " 1 PR
c TR o=
I M
3 Vet
540! P
@ , .
a Lo
—-60r b —I-Projection |
g ---M-projection
80 . -- CRKR
1000 2000 3000 4000 5000

Episodes

Figure 10.3: Evaluation of VIP on Cannon-Toy task. We compared our algorithm using
the T and the M-projection. The I-projection converges much faster and also produces a
final policy with higher quality. The competing algorithm CRKR could not find as good
solutions.

10.5 Experiments

In our evaluations of the algorithms we always use the median over 20 trials. The
median is used to get rid of outliers, 1 or 2 trials out of 20 usually did not find good
solutions.

We first evaluate our algorithm on a Cannon Toy Task. Here, the task is to hit a
target located at distance d with a cannon ball. The controls are the launching angle
« and the launching velocity v of the cannon ball. The angle was restricted to [0; 7 /2]
and the velocity to [0;10]m/s. The cannon-ball was modelled as 1-kg point mass,
gravity and a horizontal wind force f act on the ball. The wind force f can be in
the range of [0; 1] and the target locations were also restricted to [0; 10]. This results
in a 2-dimensional state space s® = [d,w] and a two dimensional parameterspace
w = [, v]. As reward function we used 20 times the negative squared distance of
the impact position to the target. Note there are several solutions to hit a target at
a certain distance, rendering the reward function multi-modal. We compared our
algorithm using the I-projection and M-projection against the CRKR algorithm.
Every 50 episodes we evaluated the policy at 20 randomly chosen states (which
were fixed for every evaluation). The parameter ny, was set to 5 and P, to 10.

The result can be seen in Figure 10.3. The I-projection clearly outperformed
the M-projection in learning speed as well as in the quality of the learned policy.
The final average distance to the target was 0.08m with the I-projection while the
final policy of the M-projection missed the target at a average distance of 0.26m.
The learning speed of CRKR matched the speed of the M-projection, but could not
find as good solutions. We also compared both approaches with the finite difference
policy gradient algorithm using a fixed set of basis functions (Kober et al., 2010)
in the state space. The algorithm did converge after approximately 10° episodes,
which is not shown in Figure 10.3 due to the bad performance.
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Figure 10.4: (a)Comparison of the VIP with full representation of the covariance (VIP-full)
and the fixed representation (VIP-diag) with the CMA-ES algorithm. In order to compare
our algorithm to CMA-ES, we only used a single force F' = 25Ns. We use the maximum
value seen so far for the plot of CMA-ES. (b) In this experiment we added a uniformly
distributed noise € € [—2.5;0] to the force F. As the CMA-ES is unaware of this noise it
could not cope with this setting. VIP was only sightly disturbed and could find solutions
of the same quality as in (a).

10.5.1 2 and 4 Link Humanoid Balancing

Here we use a 2-link and a 4-link model to learn dynamic humanoid balancing
strategies. The masses and lengths of the links as well as the maximum torques
were chosen to crudely match a human.

The joints of the 2-link model resemble the ankle and the hip joints. For a more
exact description of the model please refer to (Atkeson and Stephens, 2007). The
robot is pushed with a certain force 0 < F' < 25Ns which results in an immediate
jump in the joint velocities. The robot has to learn to keep balance. This requires
completely different strategies for different forces (Atkeson and Stephens, 2007). If
the joints leave the intervals ¢; € [—0.4;0.8] or ¢ € [—0.1;1.6] the robot has fallen
and the episode is terminated. An episode is considered as successful if the robot
has managed to keep balance for 5s. The state space is defined by the applied (one
dimensional) force F'. We used the following reward function

T
C(r) = —2000(T — 5)* — 0.01 > _ al'ay,
t=1

where T is the point in time the robot falls over (or 5s if the robot keeps balance).

The whole movement representation consisted of 19 parameters. Since the exact
representation of the movement is of minor importance for this paper we refer to
the supplementary material for further information. For performance reasons, we
always create 30 samples from the currently estimated policy. The parameter nact
was again set to 5 and the punishment for including samples with zero probabilities
to P, = 300 In our first experiment we compared our algorithm to CMA-ES, which
is a highly competitive stochastic optimizer, in a single situation setup with F =
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Figure 10.5: (a)Comparison of the I-projection and M-projection on the multi-force setup.
VIP-single denotes learning for each force separately. The I-projection could outperform
the M-projection and also slightly the VIP-single setup. (b) Learning curve of the 4-link
balancing experiment with random forces.

25Ns.  We evaluated VIP one time with learning all diagonal entries o? of the
covariance matrix and VIP when keeping these factors fixed. As we can see in
Figure 10.4(a), VIP with the full representation performed best. VIP with the fixed
diagonal entries showed similar performance as the CMA-ES algorithm. Because of
the huge computational requirements of the full representation (one trial runs for
10h) we will only use the fixed diagonal representation (one trial runs for 90min)
for the remaining experiments. In the next experiment (Figure 10.4(b)) we used a
small noise for our force F' which was uniformly sampled from interval [—2.5; 0]Ns.
This noise was known to the VIP, however, as CMA-ES is inherently unaware of
the state s, it could not learn a useful policy. The VIP algorithm was only slightly
affected by the noise. The final performance was similar as learning without noise.
Next, we evaluated the VIP algorithm once with the M-projection and the I-
projection on the multi-force setup. The force was chosen uniformly from the interval
[0,25]|Ns. We also compared our algorithm to the noisy single situation setting. Here,
we used 10 different forces from 2.5 to 25Ns and performed individual learning trials
for each force (we again added a noise of [—1.25,1.25] to the force). The result
can be seen in Figure 10.5, again, the I-projection outperformed the M-projection,
however, the difference was not that extreme as in the Cannon task. Still, the final
performance of the I-projection (—51.2) was better than the M-projection (—62.1)
by 20%. We can also see that learning with all forces at once could slightly improve
the learning speed in comparison to the average of the noisy single-force setup.
The 4-link model consisted of an ankle, a knee, a hip and a shoulder joint. In
this experiment the force F was a 4-dimensional vector, denoting the force value
applied to each body part. Thus, our state space is 4 dimensional. The movement
representation for this task had 39 parameters. We always normalized the force
vector F, such that |F| = 25Ns. In this experiment we used 16 randomly chosen
force vectors, which were additionally perturbed by a uniformly sampled noise in
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Figure 10.6: Learned balancing strategies for different random forces (with [F| = 25Ns).
The robot has learned to apply completely different strategies in different situations.

the interval +2.5Ns. The parameter nac; was set to 10 and P, to 10°. The learning
curve for this experiment can be seen in Figure 10.5(b). After 60000 episodes the
agent was able to balance almost all experienced forces. The resulting balancing
strategies for different forces can be seen in Figure 10.6. As we can see, the robot
has learned to apply completely different strategies in different situations.

10.6 Conclusion and future work

Existing policy search algorithms typically approximate the policy by using the
M-projection to the reward-weighted trajectory distribution. In this paper we pro-
posed to use the I-projection of the reward-weighted trajectory distribution as in-
teresting alternative. The I-projection alleviates many problems connected to the
M-projection. While the I-projection is computationally a much more difficult op-
eration, the ’cost-averse’ policy resulting from the I-projection comes along with
several advantages. Because the I-projection always wants to exclude negative ex-
amples, the algorithm does not suffer from problems which occur by averaging over
non-concave or multi-modal target distributions. Consequently, it shows an in-
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creased learning speed, improved performance of the final policy and it can also be
applied with ease to the learning in multiple situations simultaneously.

The main restriction of VIP is the computation time. In future, we plan to
use mixture of Gaussian models to alleviate this problem. This should give us
considerable speed up because we do not have to re-estimate our distributions over
and over again. Furthermore, a more efficient method for calculating the I-projection
is needed.

VIP is not limited to the single step reinforcement learning setup. In the future
we plan to use the algorithm also for sequential decision tasks. In this case, message
passing algorithms like the one presented in (Toussaint, 2009) could extend our
framework.
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Appendix

Motion Templates used for balancing

The motion templates (or movement plans) used for the balancing tasks define
desired velocity profiles. The profiles are intergrated to get a desired trajectory. The
policy of the motion templates is then defined by a linear PD-trajectory tracking
controller. The motion is divided into 2 motion templates. Template m drives the
robot to a set-point of each joint, Template mq tries to stabilize the agent at the
upright position. Template m; consists of an acceleration phase and a deceleration
phase. The acceleration phase takes d; seconds and has the following velocity profile

2
1+ exp(—6/dicyt)

where k; is a constant depending on the desired set point p; (the exact dependence
is not shown here but can be easily obtained via integrating the velocity profiles)
and ¢ is a constant which specifies slope of the velocity profile. The deceleration
profile has the following form :

UD(t) = —kl(l ) + U(O),

2
- t—dy
1 + exp(—ﬁcz(l — W))

T

1(1 ),

up(t) =
where dp is again the duration of the deceleration phase, co sets the slope of the
acceleration and ki is again chosen depending on the desired set point p;. ki and
k1 is chosen such that the integral over the acceleration and the deceleration phase
equals p1, and that there is no jump in the velocity at the transition of acceleration

to deceleration phase. At the end of the deceleration phase the desired velocity
vp(dy + dg) is always zero. dy and dy are shared for all joints while the remaining
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Figure 10.7: The plots show the desired velocity profiles (top row) and positions trajectories
(bottom row) for different parameter settings of template m; and mo.

parameters can be chosen independently for each joint. Thus we have 3 parameters
per joint (¢1, co and p;) which describe the shape of the velocity profile. The
velocity profile is then integrated and used in combination with a PD trajectory
tracking controller to define the policy of the template. The 2 PD-controller gains
are also chosen by the template, resulting in 5 parameters per joint. Thus, including
the 2 timing parameters dy and ds, template my has 12 parameters for the 2-link
pendulum task and 22-parameters for the 4-link pendulum problem. The velocity
profile and the resulting trajectories for different parameter settings can be seen in
Figure 10.7(a) and (b).

After executing template my the agent should ideally have reached the set-points
p; with zero velocity. However, since we deal with a highly non-linear system,
the PD-controller is usually not able to track the trajectories perfectly and these
conditions might be violated.

Motion template ms is used to stabilize the robot at the upright position. Thus,
the desired setpoint is already given (¢; = 0 and ¢4 = 7). mg runs until the
episode is terminated. The template uses the same acceleration profile than m;.
For stabilizing the robot at the upright position, the deceleration profile resembles
a slowly decaying exponential function. The deceleration profile is given by

vp(t) = ko exp(—ca(t — dy))

Due to the tracking errors this profile is more suitable for stabilization at a
setpoint than the deceleration profile of my. Again ko and 12:2 are chosen such that
the desired joint position converges to zero (or pi for ¢4) and that there is no jump
in the velocity at the transition from the acceleration to the deceleration phase. The
velocity profile and the resulting trajectory for different parameter settings can be
seen in Figures 10.7(c) and (d). Template mgo has 4 parameters per joint (c1, c2 and
the 2 PD-controller gains), resulting in 9 (including d;) parameters for the 2-link
and 17 parameters for the 4-link balancing task.
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List of Publications

1. G. Neumann Batch-Mode Reinforcement Learning for Continuous State
Spaces: A Survey, In Proceedings of Oesterreichische Gesellschaft fuer Ar-
tificial Intelligence (OGAI) Journal, 2008

2. G. Neumann, M. Pfeiffer, and W. Maass. Efficient Continuous-Time Re-
inforcement Learning with Adaptive State Graphs., In Proceedings of the
18th European conference on Machine Learning (ECML) 2007, pp. 250-261,
Springer, 2007

3. G. Neumann and J. Peters. Fitted Q-Iteration by Advantage Weighted Regres-
sion. In Proceedings of Advances in Neural Information Processing Systems
22 (NIPS 2008), pp. 1177-1184. MIT Press, 2008.

4. H. Hauser, G. Neumann, A. Tjspeert and W. Maass. Biologically Inspired Kine-
matic Synergies Provide a New Paradigm for Balance Control of Humanoid
Robots., In Proceedings of the 7th IEEE RAS/RSJ Conference on Humanoids
Robots (HUMANOIDSO07), pp. 73-80, 2007

5. H. Hauser, G. Neumann, A. Ijspeert and W. Maass. Biologically Inspired
Kinematic Synergies enable Linear Balance Control of a Humanoid Robot.,
Biological Cybernetics, volume 104, pp. 235-249, 2011

6. G. Neumann, W. Maass and J. Peters. Learning Complexr Motions by Se-
quencing Simpler Motion Templates., In Proceedings of the 26th International
Conference on Machine Learning (ICML 2009), pp. 753-760, 2009

7. E. Rueckert, G. Neumann, M. Toussaint and W. Maass. Planning Movement
Primitives., in preparation.

8. G. Neumann. Variational Inference for Policy Search in Changing Situations.,
In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pp. 817-824, 2011

A.1 Comments and Contributions to Publications

The first publication, Batch-Mode Reinforcement Learning for Continuous State
Spaces: A Survey, is a survey paper written for the OGAI Journal. As it is only a
review and was not peer reviewed it is not included in this thesis.

The paper Efficient Continuous-Time Reinforcement Learning with Adaptive
State Graphs was written by myself (GN), Michael Pfeiffer (MP) and Wolfgang
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Maass (WM). I developed the graph-based RL algorithm and conducted most of
the experiments while MP implemented the reward prediction mechanism and did
most of the paper writting. The paper was selected for oral presentation at the
18th European Conference for Machine Learning (ECML). Chapter 3 of this thesis
is based on this paper.

The paper Fitted Q-Iteration by Advantage Weighted Regression was written
by myself (GN) and Jan Peters (JP). I developed the theory and implemented the
Advantage-Weighted Regression algorithms. T also conducted the experiments while
JP provided the basic ideas and very helpful guidance for this paper. I also wrote
the paper with significant improvements provided by JP. The paper was selected for
a poster including spotlight presentation at the 22th Annual Conference on Neural
Information Processing Systems (NIPS) 2008. The Chapter 4 is based on this paper.

The paper Biologically Inspired Kinematic Synergies Provide a New Paradigm
for Balance Control of Humanoid Robots. was written by Helmut Hauser (HH),
myself, Auke Jan Ijspeert (AT) and my supervisor Wolfgang Maass (WM). HH con-
ducted the experiments and implemented the linear control laws while GN imple-
mented the synergies including the inverse kinematics optimization. HH and WM
did most of the paper writting. AI provided many useful ideas for the design of the
experiments. The paper got the best paper award at the 7th IEEE RAS/RSJ Con-
ference on Humanoids Robots (HUMANOIDS07). It was subsequently extended to
the journal version Biologically Inspired Kinematic Synergies enable Linear Balance
Control of a Humanoid Robot. Chapter 6 of this thesis is based on this paper.

The paper Learning Complex Motions by Sequencing Simpler Motion Templates
was written by myself, Wolfgang Maass (WM) and Jan Peters (JP). The algorithm
design, implementation and the experiments have been conducted by GN while the
initial basic idea was provided by WM. JP greatly helped to improve the paper
writting and also provided useful guidance.

Chapter 8 is based on joint work with Elmar Riickert (ER), Marc Toussaint
(MT) and my supervisor Wolfgang Maass (WM). While I provided the basic idea
and guidance, ER did a great job in the realization of these ideas. Paper writting
was done by ER and myself, with additional very useful input by MT and WM.
While this work is not yet submitted, I included it in my thesis because I think it
has great potential. It will hopefully be finished for submission in December 2011.

The paper Variational Inference for Policy Search in Changing Situations was
completely written by myself.
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