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iiiAbstratModern robots are equipped with sophistated ompliant atuators, allowing therobot to perform highly dynami omplex movement skills, like di�erent forms ofloomotion, jumping or even playing tennis. However, lassial ontrol and engineer-ing tehniques typially fail for suh omplex tasks. A more promising perspetiveis to let the robot learn the movement skill by trial and error, whih is also the maintopi of this thesis. I will disuss 3 di�erent topis that are strongly onneted tomotor skill learning and present new tehniques for eah of these �elds whih anbe seen as a step towards learning rih and omplex motor skills.In the �rst part of the thesis I will examine reinforement learning in ontinuousstate and ation spaes as foundation for motor skill learning. Here, I presenttwo new methods, learning with adaptive state graphs and reinforement learningby advantage weighted regression. Both methods an easily deal with ontinuousation spaes whih are often onsidered as problemati for standard reinforementlearning methods.In the seond part, I disuss di�erent types of movement representations. Move-ment representations are parametri desriptions of a movement plan, and therefore,provide a lower dimensional representation of the resulting trajetories. Choosing aompat movement representation whih ontains task relevant features an onsid-erable failitate learning of movement skills. Besides elaborating existing methods,I will introdue 3 new representations. I will introdue the kinemati synergy ap-proah whih provides a low dimensional representation of a high dimensional ationspae. Then I will present the motion template framework, whih is the �rst move-ment representation whih an be sequened in time by the use of reinforementlearning. The last representation whih I introdue is alled Planning MovementPrimitive. This representation employs planning already at the level of the move-ment representation and therefore allows the use of abstrat goals or features ofthe trajetory as parameter representation, whih allows fast learning of omplexmovement skills.Finally, in the last part of the thesis, I will address the poliy searh problem, i.e.given a representation of the movement, how an we �nd a valid parameter setting byreinforement learning? Here, I present a new method based on variational inferenewhih generalizes poliy searh to di�erent initial situations of the robot.





vZusammenfassungModerne Roboter sind heutzutage mit nahgiebigen Motoren ausgestattet welhedie Ausführung von komplexen dynamishen Bewegungen erlauben, wie zum Bei-spiel ein zweibeiniger Gang, Hüpfen oder sogar Tennis spielen. Klassishe Control-Algorithmen shlagen aber für solhe komplexen Aufgaben meist fehl. Ein vielver-sprehenderer Ansatz ist es hingegen wenn der Roboter mittels Trial-and-Error Ler-nens die Bewegungen selbst erlernt. In dieser Dissertation werde ih 3 sehr wihtigeThemenbereihe des Bewegungslernens diskutieren und neue Methoden präsentierenwelhe als Shritt in Rihtung selbstständiges Lernen von komplexen Bewegungsab-läufen gesehen werden können.Im ersten Teil der Dissertation werde ih Reinforement Learning in kontinu-ierlihen Zustands und Aktionsräumen als Grundlage des Bewegungslernens unter-suhen. Hierzu werde ih zwei neue Methoden einführen, Lernen mit Adaptiven-Zustands Graphen und Reinforement Learning by Advantage Weighted Regressi-on. Beide Methoden können einfah mit kontinuierlihen Aktionsräumen umgehenwelhe für viele Standard Reinforement Learning Methoden problematish sind.Im zweiten Teil dieser Dissertation werde ih vershiedene Bewegungsrepräsenta-tionen disktutieren. Eine Bewegungsrepräsentation ist eine parametrishe Beshrei-bung eines Bewegungsplannes, und beshreibt daher eine Trajektorie mit typisher-weise wenigen Parametern. Die rihtige Wahl der Repräsentation kann das Erlerneneiner Bewegung erheblih vereinfahen. Hier werde ih zunähst vorhandene Modellediskutieren und dannah 3 neue Repräsentationen einführen. Der erste Ansatz, kine-matishe Synergies, dient dazu die Dimensionalität des Aktionsraumes eines Robo-ters zu verringern und dadurh das Kontroll-Problem erheblih zu vereinfahen. Alsnähstes stelle ih den Motion Template Ansatz vor. Dieser Ansatz ist der 1. Ansatzder dazu verwendet werden kann um zu lernen vershiedene Bewegungen hinter-einander auszuführen. Die letzte Bewegungsrepräsentation die ih vorstellen werdeverwendet Plannungs-Algorithmen um die Bewegung zu generieren. Dies bringt denVorteil dass man abstrakte Features oder Ziele der Bewegung direkt als Parameterder Repräsentation verwenden kann, welhes des Erlernen einer Bewegung erheblihvereinfahen kann.Der letzte Teil dieser Thesis beshäftigt sih mit Poliy Searh, also den erlerneneines geigneten Parameter-Vektors wenn man eine gegebene Bewegungsrepräsentati-on verwendet. Hier werde ih einen neuen Ansatz vorstellen welher auf VariationalInferenz basiert und die Suhe nah Parametern unter vershiedenen Anfangszu-ständen des Roboters ermögliht.
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Chapter 1Introdution
Modern robots are equipped with sophistated ompliant atuators, allowing therobot to perform highly dynami omplex movement skills, like di�erent forms ofloomotion, jumping or even playing tennis. Classial ontrol and engineering teh-niques typially fail for suh omplex movements. A more promising perspetiveis to let the robot learn the movement skill by trial and error. Learning of suhomplex movement skills is still one of the major hallenges in robotis researh andthe main topi of this thesis.1.1 Reinforement LearningMovement skill learning an easily be formulated as reinforement learning (RL,(Sutton, 1996)) problem - the robot autonomously tries di�erent movements andgets evaluative feedbak in form of reward. The agent has to adapt its movementsuh that the reward is maximized.1.1.1 Markov Deision ProessesThe RL framework an be niely desribed by Markov deision proesses (MDPs).A MDP is de�ned by the tuple 〈S,A, P, r, p0, γ〉, where S is the state spae and A isthe ation spae of the agent. The transition probabilities are given by P (st+1|st, at)for st, st+1 ∈ S and at ∈ A and the reward of performing ation at in state st isgiven by r(st, at). The initial state distribution is given by p0(s) and γ denotesthe disount fator. The underlying priniple of MDPs is the Markov assumption,i.e. given the the urrent state st the transition model and the reward model isindependent of past states and ations.The task of a reinforement learning agent is to �nd a poliy π(at|st) whihminimizes the expeted future disounted reward

Rπ = E

[

∞
∑

t=0

γtr(st, at)

∣

∣

∣

∣

∣

s0 ∼ p0, at ∼ π(·|st), st+1 ∼ P (·|st, at)

]

,where the initial state s0 is sampled aording to p0, ations at aording to thepoliy π and the state transition aording to our transition model. For expetations,I will always use this notation - i.e. after the ondition operator '|', it is always givenaording to whih random variables the expetation is alulated.In robotis, we typially deal with ontinuous state and ation spaes, thus I willalways write states s and ations a in vetor notation.



2 Chapter 1. Introdution1.2 Movement Skill LearningThe �eld of movement skill learning has made onsiderable progress in reent yearswhih is doumented by several suess stories. In (Peters and Shaal, 2006), a robotlearned to swing a baseball pat in order to hit a ball. In (Kober and Peters, 2010),the game 'ball in the up' was learned. Here, the learning performane reportedby the authors was even omparable to a human hild. Other impressive resultsinlude playing table tennis (Mülling et al., 2010), performing a jumping movementwith a dog-like robot (Theodorou et al., 2010a) and running with a heetah-like(simulated) robot (Wawrzynski, 2009).However, despite of these suess stories, learning, reusing and ombining a rihset of omplex movement skills is still one of the major hallenges in robotis re-searh. The probably largest problem with robot learning are the high-dimensionalontinuous state and ation spaes. Our robot has typially many degrees of freedom(DoF), ranging from 7 for an anthropomorphi robot arm up to 30 for humanoidrobots. If we also inlude the dynami state of the robot, and thus the joint veloi-ties, we quikly reah 15 to 60 state variables. This is out of the sope for most RLmethods. In addition, the ontinuous ontrol vetor is also high-dimensional (oneontrol variable for eah DoF), whih is beyond the sope of many RL algorithms.Movement skill learning algorithms an be oarsely divided into value-basedand poliy searh learning algorithms. Value-based algorithms estimate a the valuefuntion V (s). The value funtion tells us the expeted future reward if the agentfollows a ertain poliy. Value-based approahes are in theory very e�ient. Thevalue funtion an be used to evaluate every intermediate ation of a trajetory,i.e. we know whih ations are responsible for the good or bad evaluation of atrajetory? This is often alled the temporal redit assignment problem. However,value-funtions are usually di�ult to estimate in high dimensional ontinuous stateand ation spaes. For this reason most of the more reent movement skill learningalgorithms try to avoid a diret representation of the value funtion. For a moredetailed desription on value-based methods we refer to Chapter 2.Poliy searh algorithms on the other hand rely on a parametri representationof the poliy and diretly try to optimize the poliy parameters without expliitlyestimating a value funtion. Hene, in di�erene to value based algorithms, wean not diretly evaluate single ations, but we an only evaluate the osts of thewhole trajetory (by performing whole rollouts on the real system). However, sinelearning a value funtion is problemati for high dimensional ontinuous state spaes,more impressive results ould be ahieved by poliy searh methods, and therefore,reent researh on poliy searh algorithms was intensi�ed. We will disuss poliysearh methods in more detail in Chapter 9.The performane of poliy searh methods strongly depends on the used move-ment representation. Choosing an adequate movement representation an inreaselearning speed of suh methods onsiderably. The most ommon method is to use aloal movement representation. Loal representations diretly desribe the shape ofthe spei� movement trajetory. Therefore, they an only be applied for using thesame starting ondition in eah episode - di�erent starting positions would resultin di�erent trajetories whih often requires relearning. The setup with the single



1.3. Struture of this Thesis 3starting state is often also referred to as the episodi reinforement learning. Whilethis restrits the representational power of the poliy, it also onsiderably simpli�esthe learning task. Many learning tasks have only beome feasible by the episoditask assumption. Most of the suess stories in roboti motor skill learning use aloal representation, while global representations, i.e. a representation whih anbe used for any state, are more di�ult to learn and therefore less ommonly used.We will disuss di�erent loal movement representations in more detail in Chapter5.1.3 Struture of this ThesisThis thesis is divided into 3 parts. For eah part I �rst introdue relevant onepts inthe introdution hapter, the subsequent hapters are always based on published oralmost submitted papers where I signi�antly ontributed as �rst or seond author.The �rst part of the thesis disusses value-based methods for learning in ontinuousstate and ation spaes. After the introdution I will present two new value-basedapproahes. The �rst method, disussed in Chapter 3, is a graph-based method.It represents the ontinuous state spae by a disrete set of nodes in a graph. Thegraph is built from experiene and grows during learning. The bene�t of the graph-based approah is that we an use loal ontrollers, whih are employed to navigatebetween nodes, as form of prior knowledge. The loal ontrollers also provide ane�ient treatment of ontinuous ations. The seond value-based method presentedin this thesis is based on weighted regression. We use a weighted regression to sim-plify the max-operator whih usually has to be performed in the ation spae. Thisoperator is hard to perform for ontinuous ations. We prove that an advantage-weighted regression an be used to replae the max-operator, resulting in a moree�ient value-based algorithm suitable for ontinuous ation spaes.The seond part of the thesis disusses movement representations. Here, I willpresent 3 new methods. In Chapter 6 I introdue a new representation whih wedenoted as kinemati synergies. It provides a lower dimensional manifold of thehigh-dimensional ation spae of a (in this ase humanoid) robot. The use of syn-ergies signi�antly simpli�es the ontrol of the robot. We applied our approahto balaning the humanoid robot HOAP-2. In Chapter 7 I introdue the motiontemplate representation, whih is the �rst movement representation for whih a re-inforement learning algorithm an be used to ombine the templates sequentiallyin time. We applied the motion template approah for omplex 2-link pendulumswing-up and balaning tasks. In the last hapter of this part of the thesis I presenta primitive whih uses inherent probabilisti planning to generate the movement.The inherent planner allows to use abstrat features or goals of the movement asparameters. As we will show this representation an simplify the learning problemin omparison to the ommonly used approahes onsiderably.The last part of the thesis is devoted to poliy searh algorithms. Here, I willpresent a new approah in Chapter 10 whih is based on variational inferene andan generalize poliy searh to multiple initial situations simultaneously.





Part IReinforement Learning withContinuous State and AtionSpaes





Chapter 2Introdution
In this part of the thesis I will disuss value-based reinforement learning methodswhih are also suited for ontinous ation spaes. After giving a short introdutioninto relevant onepts I will present two new value-based approahes whih werepublished in (Neumann et al., 2007) (Chapter 3) and (Neumann and Peters, 2009)(Chapter 4).2.1 Value-based MethodsValue-based methods (Bertsekas and Tsitsiklis, 1998) estimate the beliefed aumu-lated future reward for eah state s if following a poliy π, i.e

V π(s) = E

[

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

s0 = s,at ∼ π(·|st), st+1 ∼ P (·|st,at)

]

,where rt = r(st,ut) is the reward for eah time step and γ is the disount fator.
V π(s) is also alled the value funtion of poliy π. The value funtion an also bewritten in its reursive form, i.e.

V π(s) = E
[

r(s,a) + γV π(s′)
∣

∣a ∼ π(·|s), s′ ∼ P (·|s,a)
]

.The optimal value funtion is de�ned as
V ∗(s) = max

π
V π(s) = max

a
E
[

r(s,a) + γV ∗(s′)
∣

∣s′ ∼ P (·|s,a)
]

,whih is also known as the Bellman-Optimality priniple. The V-funtion evaluatesexlusively states and is therefore not diretly appliable for deision making. Fordeision making we need a funtion whih evaluates state-ation pairs. This funtionis usually denoted as the Q-funtion. The Q-funtion Qπ(s,a) of poliy π is de�nedas the aumulated reward if we take ation a in the �rst step and subsequentlyagain follow poliy π

Qπ(s,a) = E
[

r(s,a) + γQπ(s′,a′)
∣

∣s′ ∼ P (·|s,a),a′ ∼ π(·|s′)
]The optimal Q-funtion is de�ned as

Q∗(s,a) = E

[

r(s,a) + γmax
a′

Q∗(s′,a′)
∣

∣s′ ∼ P (·|s,a)

]Note that the V-funtion an be easily evaluated if the Q-funtion is known
V π(s) = E

[

Qπ(s,a)
∣

∣a ∼ π(·|s)
]

, V ∗(s) = max
a

Q∗(s,a) (2.1)



8 Chapter 2. IntrodutionThere are many ways to represent the value funtion. In the most simple setupof a disrete state spae we an use a tabular representation. For ontinuous statespaes we have to rely on parametri or non-parametri funtion approximators.For a more detailed disussion on di�erent funtion approximator shemes pleaseonsult Setion 2.2. Before oming to this setion we will brie�y review existingmethods to learn the value funtion.The V-funtion (or Q-funtion) is typially estimated from experiene, i.e. bythe use of the data points 〈st,at, rt, st+1〉. Di�erent methods an be applied in thisontext, here, we will brie�y disuss Temporal Di�erene (TD) Learning, Bath-Mode RL and model-based RL.2.1.1 Temporal Di�erene LearningTemporal Di�erene (TD) methods inrementally estimate the V- or Q-funtionfrom samples. The gathered experiene of a single step 〈st,at, rt, st+1〉 is used toto alulate the temporal di�erene error, whih is de�ned as the 1-step preditionerror of the V-funtion
δt = rt + γV (st+1)− V (st).For tabular representations of the V-funtion the TD-error an straightforwardly beused to update V (st+1), i.e.

V (st) = V (st) + αδt.In the ase of parametri funtion approximators, we have to rely on gradient-basedmethods (Bertsekas and Tsitsiklis, 1998; Sutton, 1996; Baird, 1995), however, thesemethods are either only proofed to onverge for speial ases like linear funtionapproximators (Bertsekas and Tsitsiklis, 1998) or are known to have a very slowonvergene rate (Baird, 1995). The data point 〈st,at, rt, st+1〉 is typially onlyused one to update the V or Q-funtion, subsequently the data point is dismissed.2.1.2 Bath-Mode Reinforement LearningBath-Mode RL methods use the whole history of the agent to update the V- orQ-funtion whih allows a more e�ient data usage than for standard TD methods.The �rst appliation of Bath-Mode RL was a method alled 'Experiene Replay'(Lin, 1992) (EP). EP is basially just an extension of TD-learning. After eah timestep, K imaginary time steps out of the history of the agent are shown to theTD-learning algorithm and used to update the Q or V-funtion. While there hasbeen a very reent and impressive extension of this approah for using ator ritialgorithms with neural networks (Wawrzynski, 2009), EP is limited to the funtionapproximator tehniques whih an be used in the online setup, whih exludesregression trees (Ernst et al., 2005) or Gaussian Proesses (Deisenroth et al., 2009).More reent work in bath mode RL has onentrated on Fitted Q-iteration(FQI) (Ernst et al., 2003). FQI iteratively approximates the Q-funtion by usingthe whole bath of experiened data points H = {< si,ai, ri, s
′
i >}1≤i≤N . For eah



2.1. Value-based Methods 9data-point we alulate the target Q-value Q̃(i) by using the old estimate of theQ-funtion at the suessor states, i.e.
Q̃l+1(i) = ri + γVl(s

′
i) = ri + γmax

a′

Ql(s
′
i,a

′) (2.2)Learning the Q-funtion Ql+1(s,a) then de�nes a new regression problem. As thisregression problem is formulated with the whole bath of data, also bath-modelsupervised regression methods an be used. The whole proess has to be repeatedfor L times in order to alulate the optimal Q-funtion for the next L steps (thus,
L typially needs to be quite high). FQI an be used with all types of funtionapproximators, very good results have been shown with regression trees and neuralnetworks. In Chapter 4 we present a new FQI method whih uses a weightedregression to approximate the max operator over the ation spae in Equation 2.2.This allows an e�ient treatment of ontinuous ation spaes.2.1.3 Model-Based TehniquesThe model-based variant of FQI is �tted V-iteration (Boyan and Moore, 1995) (FVI).In FVI we iteratively �t the optimal V-funtion instead of the Q-funtion. However,in order to do so, we have to know the transition model P (s′|s,a) and the rewardmodel r(s,a) of the MDP. Both models an again be learned from data or mightalready be given as prior knowledge.

Ṽk+1(si) = max
a

r(si,a) + γ

∫

s′

P (s′|si,a)Vk(s
′)dsi. (2.3)Usually the integral over s′ in ontinuous state spaes is very hard to perform. Thishas limited the use of �tted V-iteration. However, reent work with Gaussian Pro-esses (Deisenroth et al., 2009) ould irumvent this problem. Due to the Gaussiantransition probabilities the integral an be solved analytially. A similar, slightlysimpler kernel based approah was used in (Jong and Stone, 2007) to estimate thetransition probabilities. The transition model was estimated by a simple linearaverager using a Gaussian similarity kernel. Subsequently the V-funtion an bealulated by the use of Prioritized Sweeping (PS, (Moore and Atkeson, 1993)),whih is muh more e�ient than �tted V-iteration. However, this method an onlybe applied to simple, linear funtion approximators like linear averagers. This hasso far limited this approah to very simple appliations.In Chapter 3, we present a new model-based method whih uses a graph-basedrepresentation. Here, the state spae is represented by a disrete set of nodes of agraph whih is built adaptively from experiene. The graph is alled an 'Adaptive-State Graph' (Neumann et al., 2007). Nodes between the graph an be reahed bythe use of loal ontrollers, whih are assumed to be part of the prior knowledge.Beause we an always use the loal ontroller to navigate diretly to the nodes inthe graph the V-funtion only needs to be represented at these disrete set of nodes.Furthermore, simple planning methods suh as value iteration an be applied to thedisrete graph in order to alulate the V-funtion.



10 Chapter 2. Introdution2.2 Continuous State Spaes : V-Funtion Approxima-tionIn ontinuous state spaes we have to rely on funtion approximation tehniquesto estimate the V or Q-funtion. Many types of approximators an be applied inthis ontext, inluding linear funtion approximators (Sutton, 1996; Timmer andRiedmiller, 2007), neural networks (Riedmiller, 2005), regression trees (Ernst et al.,2005), loal regression tehniques (Neumann and Peters, 2009) and Gaussian Pro-esses (Deisenroth et al., 2009). All these methods an be easily applied to bath-model RL, however, as some approximators inherently use bath updates (suh asregression trees or Gaussian Proesses), TD-learning methods have the restritionthat not all available funtion approximators an be used.2.2.1 Linear Funtion ApproximatorsThe most rigorous onvergene proofs exists for linear funtion approximators. Lin-ear funtion approximators typially use D (non-linear) features Φi(s) whih arelinearly ombined to approximate the V-funtion
V (s;w) =

D
∑

i=1

Φi(s)wi = Φ(s)Tw.The features Φi(s) have to be prede�ned by the user. Finding a good feature repre-sentation is non-trivial and onsidered to be one of the biggest problems when usinglinear funtion approximators.Due to the linear representation the V-funtion (or Q-funtion) for a given pol-iy an be easily alulated in bath-mode by employing least-square solution teh-niques, resulting into the Least-Square Temporal Di�erene (LS-TD) (Boyan, 1999)algorithm. This algorithm an only be used for poliy evaluation, i.e. estimating thevalue funtion of a given poliy. It's variant Least-Square Poliy Iteration (LS-PI)(Lagoudakis and Parr, 2003) an also be used for �nding the optimal poliy. Apopular method to de�ne the features is to use grid-based RBF-networks or tile-odings (Sutton and Barto, 1998). However, this usually fails for high dimensionalstate spaes beause these methods su�er from the urse of dimensionality, i.e. thenumber of features sales exponentially with the number of dimensions.A potential approah to avoid the problem of de�ning meaningful features byhand has been proposed in (Kolter and Ng, 2009a). Here, an huge amount ofrandomly de�ned features an be used. In order to avoid over�tting, a L1-normregularization term has been used. The resulting algorithm is alled Lasso-TD. Stillthe appliation of this method has so far been limited to rather simple tasks suhas the pendulum swing-up task (Kolter and Ng, 2009a).2.2.2 Non-Linear MethodsNon-linear methods are usually more �exible than linear funtion approximatorsand do not require manual tuning of the feature representation. They are typially



2.3. Continuous Ation Spaes : The greedy operator 11di�ult to use for TD-learning, however, impressive results ould be shown by theuse of bath RL methods.A ommonly used non-linear approah are feedforward neural networks (NNs).In (Wawrzynski, 2009), the loomotion of a planar simulated heetah robot is learnedby using neural networks and Experiene Replay. NNs have also been applied su-essfully with FQI (Riedmiller, 2005). Here, the main work has been done in theontext of Roboup. This method have been applied for learning to dribble witha wheeled robot (Riedmiller et al., 2009), learning to ontrol a omni-diretionaldrive (Riedmiller et al., 2009) or learning to ontrol a slot ar-raer (Kietzmann andRiedmiller, 2009).Another popular non-linear approximation tehnique whih has been used forFQI are regression trees, i.e. Extremely-Randomized Trees (ExtRa Trees). In (Ernstet al., 2005), the ExtRa-Trees have been applied to many standard optimal ontroltasks for RL showing that it outperforms online RL. The tree-based approah hasalso been applied to simulated HIV (Ernst et al., 2006) and epilepsy treatment(Guez et al., 2008) tasks. Both methods, FQI with neural network or regressiontrees, have been used as baseline methods in my paper (Neumann and Peters, 2009)where I introdued a new bath-mode RL algorithm based on advantage weightedregression.In (Deisenroth et al., 2009), Gaussian Proesses (GPs) have been used to ap-proximate the V-funtion as well as the transition model. As GPs show very goodgeneralization properties, this is one of the most e�ient value-based methods seenso far.2.3 Continuous Ation Spaes : The greedy operatorAnother subtle point when using RL for robotis are the ontinuous ation spaes.From the de�nition of the optimal V-funtion we an see that we have to performthe greedy operator maxa over the whole ation spae. The standard approah foris to use a disretized set of ations, however, this beomes very ine�ient if wedeal with high dimensional ation spaes or we need to approximate the poliy veryaurately.In this part of the thesis I will present 2 methods whih an solve the maxa-operator e�iently and hene are well suited for ontinuous ation spaes. In Chap-ter 3 I introdue a graph-based RL method. Instead of using ontinuous ations theagent an hoose the next node he wants to reah within the graph. The deisionof the agent is therefore disrete, and the max-operator is again easy to solve. Thenavigation to the desired node is then done by a loal ontroller, whih inherentlyuses ontinuous valued ations. As the graph is adapted to the urrent task, thenodes of the graph, and hene the disrete ations of the agent, are always loatedin areas relevant for the task.In Chapter 4 I present a novel method to approximate the maxa-operation.Here, we have shown that by the use of a soft-greedy ation seletion mehanism the
maxa operator an be e�iently approximated by an advantage-weighted regression(AWR). The AWR an be performed very e�iently and therefore onsiderably



12 Chapter 2. Introdutionsimpli�es the use of value-based RL methods for ontinuous ations.



Chapter 3Reinforement Learning withLoal Controllers and AdaptiveState Graphs
Contents3.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.2 Graph Based RL . . . . . . . . . . . . . . . . . . . . . . . . . . 153.3 Building the Adaptive State Graph . . . . . . . . . . . . . . 173.4 Reward Predition . . . . . . . . . . . . . . . . . . . . . . . . . 193.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.6 Conlusion and Future Work . . . . . . . . . . . . . . . . . . 243.7 Aknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 25In this hapter we present a new reinforement learning approah to �ndingoptimal solutions for ontinuous ontrol problems in unknown environments witharbitrary reward funtions. We assume that the loal system dynamis in suh prob-lems an be e�iently approximated with simpler models, still it is a hard task todesign globally optimal trajetories. The presented algorithm uses direted explo-ration to build an adaptive state graph of sample points within the ontinuous statespae. Global solution trajetories are formed by ombining loal ontrollers thatonnet nodes of the graph. A new generalization tehnique exploits the onnetiv-ity of the state graph to predit rewards of unexplored edges. We demonstrate ourapproah on omplex movement planning tasks with ontinuous states and ationsin ontinuous time.3.1 IntrodutionFinding near-optimal solutions for ontinuous ontrol problems is of great impor-tane for many researh �elds. Many of these problems involve di�ult reward orost funtions, whih are usually not exatly known in advane. In the weightedregion problem (Mithell and Papadimitriou, 1991) in path-planning, for example,we need to �nd the shortest path to a goal state through regions of varying move-ment osts. This task is hallenging already, but beomes muh harder if the agentneither has a map of the environment nor knows the exat osts assoiated with theregions. In robotis arbitrary reward funtions an be used e.g. to enfore obstale



14 Chapter 3. Graph Based Reinforement Learningavoidane or stable and energy-e�ient movements. Most existing approahes tothese problems require either omplete knowledge of the underlying system, or arerestrited to simple reward funtions. In this hapter we present an approah tothis problem that utilizes minimal prior knowledge and deals with arbitrary rewardfuntions, in order to e�iently learn high quality ontrol strategies for ontinuousproblems in ontinuous time.Reinforement learning (RL) (Sutton and Barto, 1998) is an attrative frame-work for the addressed problems. It an learn optimal poliies through interationwith an unknown environment. In ontinuous environments, the most ommon ap-proah is to use parametri approximations to the value funtions. However, severalauthors have reported problems onerning the learning speed, quality and robust-ness of the solutions (Baird, 1995; Boyan and Moore, 1995). Our proposed methodtransforms the ontinuous problem into a disrete Markov deision proess (MDP)on a �nite set of sample states, using simple loal ontrollers to navigate betweenthem. Suh hierarhial deompositions of the poliy are known to speed up thesearh for optimal solutions (Sutton et al., 1999). Loal ontrollers for small regionsof the state spae are often easily available, and an be seen as minimal prior in-formation about the task's underlying system dynamis. Loal ontrollers do notassume omplete knowledge of the environment (e.g. loation of obstales), and aretherefore not su�ient to �nd globally optimal solutions.The idea of using loal ontrollers has been applied very suessfully in sampling-based planning methods (Kavraki et al., 1996; Ku�ner and LaValle, 2000). Thesemethods build a graph onsisting of random sample points and onnet them withloal ontrollers. A global solution is onstruted by ombining the paths of sev-eral loal ontrollers to a path that leads to the goal. The two most prominentapproahes of this style are rapidly exploring random trees (RRTs) (Ku�ner andLaValle, 2000) and probabilisti roadmaps (Kavraki et al., 1996), whih were de-veloped for kinemati path planning in Eulidean on�guration spaes. Planningtehniques are very e�ient, but their appliation is limited to ompletely knownenvironments.Our proposed algorithm ombines the advantages of RL and loal planning toe�iently learn high quality poliies in initially unknown ontinuous environmentswith arbitrary reward funtions. The algorithm explores the state spae and buildsan adaptive state graph of sample points that are onneted by loal ontrollers. Wedeveloped an online approah to building this graph, whih immediately inorpo-rates feedbak from the environment, like reward signals or unexpeted transitions.We present exploration heuristis to initially over the state spae sparsely, butstill su�iently to �nd ways to a goal state. Later the graph is re�ned in ritialregions. A novel generalization sheme predits rewards for unexplored edges, toavoid unneessary exploration and �nd better solutions faster. The adaptive stategraph transforms the ontinuous ontrol problem into a disrete MDP, for whihthe optimal poliy an be alulated with exat planning algorithms like dynamiprogramming. This results in more aurate poliies and redued running time inomparison to funtion approximation tehniques. Our algorithm naturally dealswith ontinuous ations and ontinuous time steps, whih leads to smoother andmore natural trajetories (Doya et al., 2000).



3.2. Graph Based RL 15The idea of ombining loal ontrollers with RL has been studied in the past: TheParti-game algorithm (Moore and Atkeson, 1995) divides a ontinuous state spaeinto ells of varying size and uses loal ontrollers to navigate between the ells.Parti-game in its original formulation annot maximize arbitrary reward funtions,but is restrited to �nding paths to a goal state through regions of homogeneousreward. The Parti-game idea was extended to value funtion approximation forgeneral ontinuous ontrol problems in (Munos and Moore, 2002). In ontrast toour method they assume knowledge of the whole environment and do not make useof loal ontrollers. (Guestrin and Ormoneit, 2001) have used ombinations of loalontrollers for stati path planning tasks in stohasti environments. Their graphis built from uniform samples over the whole state spae, rejeting those that resultin ollisions. They also assume that a detailed simulation of the environment isavailable to estimate the osts and suess probabilities of every transition.The main motivation for the design of a new algorithm is that none of theseapproahes an handle unknown and arbitrary reward funtions at the same time.Remaining alternatives are standard funtion approximation and model-based RLtehniques like Prioritized Sweeping (Moore and Atkeson, 1993). Model-based al-gorithms learn reward and transition models, whih are used for o�ine updates ofthe value funtion. In this paper we demonstrate on various problems that ouralgorithm ahieves faster onvergene and �nds more aurate solution trajetoriesthan widely used RL tehniques.In the next setion we introdue the basi setup of our algorithm. Setion 3.3shows how the adaptive state graph is onstruted and re�ned, making use of thereward predition sheme introdued in Setion 3.4. In Setion 3.5 we evaluate ouralgorithm on various stati and dynami path �nding tasks and a planar 3-link armreahing task, before onluding in Setion 3.6.3.2 Graph Based RLWe onsider episodi, deterministi ontrol tasks in ontinuous spae and time, inwhih the agent's goal is to move from an arbitrary starting state to a �xed goalstate with maximal reward. In the beginning the agent only knows the loations ofthe start and goal state, and an use loal ontrollers to navigate to a desired targetstate in its neighborhood. We will �rst de�ne the mathematial notation for thisproblem and then sketh the various steps of the algorithm for �nding good solutiontrajetories.3.2.1 Mathematial Problem FormulationLet X de�ne the state spae of all possible inputs x ∈ X to a ontroller. We require
X to be a metri spae with given metri D : X ×X → R

+
0 . Control outputs u ∈ Uhange the urrent state x aording to the system dynamis ẋ = f(x, u). In thispaper we assume that only an approximate loal model f̂(x, u) is known, whihdoes not apture possible nonlinearities due to obstales. The objetive is to �nd aontrol poliy µ : X → U for the atual system dynamis f(x, u) that returns for



16 Chapter 3. Graph Based Reinforement Learningevery state x a ontrol output u = µ(x) suh that the agent moves from a startingstate xS ∈ X to a goal state xG ∈ X with maximum reward.Our algorithm builds an adaptive state graph G = 〈V,E〉, where the nodes in
V = {x1, . . . , xN} ⊂ X form a �nite subset of sample points from X . We start with
V0 =

{

xS , xG
}

, E0 = ∅ and let the graph grow in subsequent exploration phases.The edges in E ⊆ V × V orrespond to onnetions between points in V that anbe ahieved by loal ontrollers. The loal ontroller a(e) for an edge e = (xi, xj)tries to steer the system from xi to xj , assuming that the system dynamis alongthe path orrespond to f̂(x, u). The adaptive state graph ontains only those edgesthat an be traversed by a loal ontroller, but the ombination of multiple edgesyields globally valid trajetories.For an edge e we de�ne t(e) as the time needed for the omplete transition and
r(e) as the total reward obtained on the edge. In our approah we separate thetotal reward into two omponents: r(e) = rgoal(e) + rtrans(e). The goal reward
rgoal is given upon reahing the goal state. We assume here that the loation ofthe goal, and thereby the goal reward, is known in advane. The transition reward
rtrans aptures all other rewards that result from interations with the environment,suh as time- and ation-dependent transition osts, punishments for ollisions, andnegative or positive loation-dependent rewards.For a given graph G we have to solve the disrete problem of �nding a poliy
π : V → E that selets at every node xi ∈ V an outgoing edge π(xi) = eij = (xi, xj)and moves to the suessor node xj . The objetive is to �nd a poliy π whihprodues a sequene of edges 〈e0 = (xS , x1), . . . , ei = π(xi) = (xi, xi+1), . . . , en =
(xn, x

G)〉 that starts in xS and ends in xG, suh that the (possibly disounted) sumof rewards Rπ :=
∑n−1

i=0 γi−1r(ei) is maximized.For this task we use value iteration (Sutton and Barto, 1998), whih is a dynamiprogramming approah to �nding optimal value funtions in disrete MDPs withknown reward and transition funtions. The advantage of value iteration is that wean propagate new reward information quikly throughout the whole graph. Thismay be used to update the values of all nodes whenever the agent reeives newinformation about the graph, e.g. when new nodes and edges are inserted. Valueiteration is guaranteed to onverge to an optimal poliy (Puterman, 1994), basedon the knowledge ontained in the adaptive state graph.3.2.2 Sketh of the AlgorithmThe agent interats with the environment by using loal ontrollers to move betweenstates that are ontained as nodes in the adaptive state graph. Initially the graph isempty, exept for the start and goal state. New nodes and edges are reated in theinitial exploration phase by simulating the approximate model f̂(x, u) from the ur-rent node to generate potential suessor states. The exploration heuristis diretsthe agent towards the goal, and the poliy hooses between following an edge thatis already in the graph, or exploring a new suessor state. In the latter ase thestate is added as a new node into the graph. Whenever a new node is inserted intothe graph we also add all possible edges to neighboring nodes that an be ahievedby loal ontrollers. We use a reward predition tehnique to estimate the rewards



3.3. Building the Adaptive State Graph 17for those edges. These preditions are later improved by atually experiened re-wards from similar edges. We re-plan the poliy with value iteration whenever newnodes and edges beome available, or an unpredited reward is obtained during atransition.When the agent atually reahes the goal state we redue exploration and thealgorithm enters the graph re�nement phase. In this phase the urrently best pathis optimized by adding new nodes to the graph and improving preditions for theedge rewards.The quality of the resulting poliy depends on the available edges and nodesof the graph, but also on the quality of the loal ontrollers. We assume herethat loal ontrollers an ompute near-optimal solutions to onnet two states inthe absene of unforeseen events. We restrit ourselves here to rather simple systemdynamis, for whih ontrollers are easily available. In Eulidean spaes we typiallytry to onnet two states with a straight line. Extending the approah to non-lineardynamis or even learning the loal ontrollers for more omplex dynamial systemsis part of future work.3.3 Building the Adaptive State GraphPrevious approahes for sampling-based planning, e.g. (Guestrin and Ormoneit,2001; Kavraki et al., 1996), have used uniform random sampling of nodes over thewhole state spae. This requires a large number of nodes, of whih many will liein irrelevant or even unreahable regions of the state spae. On the other hand,a high density of nodes in ritial regions is needed for �ne-tuning of trajetories.The presented algorithm iteratively builds a graph by adding states that are visitedduring two phases of online exploration: In the initial exploration phase we useheuristi exploration sores to diret the searh towards the goal state. During graphre�nement new nodes are added along suessful trajetories to optimize solutionsfound so far.3.3.1 Initial Exploration PhaseInitially the agent needs to searh for a path to the goal state, thereby expandingthe adaptive state graph into previously unknown regions. For every state xi thatthe agent visits we reate a set of potential suessor states x̃ji . This is done bysimulating the dynamial system f̂(x, u) with di�erent ontrol laws for a spei�amount of time. The ontrol ations and exeution times an either be �xed inadvane, or randomly piked from a distribution over ontrol ations and times. Toensure exploration into unvisited areas we immediately rejet suessor states thatare loser than some threshold θexpmin to existing nodes in the graph.Our algorithm direts exploration towards the goal, but at the same time aban-dons paths with high negative rewards, whih are unlikely to be inluded in optimalpaths from start to goal. We therefore store a global queue Q of the most promisingsuessor states x̃, ranked by an exploration sore σexp(x̃). This sore is equivalentto the estimated sum of rewards for a path that �rst goes from the starting state
xS to x̃ and then follows the diret path to the goal state xG. The reward to reah
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x̃1

x̃2

Successor State
Start
Goal
Graph Node
Graph Edge
Direct Path to Goal
Path to SuccessorFigure 3.1: Illustration of the exploration proess. Exploration is rather ontinued atsuessor x̃1 than at x̃2, beause the reward to reah x̃2 is strongly negative.

x̃ from xS an be easily alulated from the urrent graph. The reward for thediret path to the goal state from x̃ is estimated by the reward of a simulated loalontroller, ignoring any obstales on the path. Sine we always assume that the goalis reahed, we also add the goal reward rgoal. Tuning this parameter either enforesstronger exploration if rgoal is large, or narrows the searh spae if rgoal is small.Figure 3.1 illustrates exploration sores in a puddle world task (see Setion 3.5.1),where shaded regions indiate negative rewards. In this example x̃1 has a higherexploration sore than x̃2, beause reahing x̃2 requires traversing a region of largenegative reward.The k highest sored suessor states in the queue Q are andidates for explo-ration. Before running the value iteration we insert these k suessors as terminalnodes into the graph, and add virtual exploration edges from the nodes from whihthey were reated. The rewards of these edges are the estimated rewards-to-goal.The poliy omputed by value iteration may then either hoose an exploration edge,thereby adding a new node to the adaptive state graph, or move to an already visitednode. The latter indiates that exploring from other nodes seems more promisingthan ontinuing the exploration at the urrent node.Whenever a new node is inserted into the graph we also add new edges by sim-ulating loal ontrollers to all neighboring nodes under the loal dynamis f̂(x, u).The loal ontrollers additionally yield preditions for the transition reward ofthese edges, representing the estimated transition osts in the absene of unforeseenevents, suh as obstales. In Setion 3.4 we desribe a tehnique to use informationfrom the graph to get more aurate reward preditions. The true transition rewardfor an edge is not known until it is atually traversed for the �rst time. We theneither replae the preditions by the true values, or delete the edge if we disoverthat the loal ontroller annot omplete the onnetion (e.g. beause of an obstalein between the nodes). New reward information is also used to update preditionsfor unvisited edges.When the goal state is atually reahed, the poliy may still ontinue to visitsuessor nodes in Q, if their exploration sores are higher than the sum of rewardson the urrently best path from the start to the goal. The initial exploration phasestops when no suh suessors remain. If the exploration phase does not �nd asolution trajetory within a given time, we use a �ner resolution of nodes. This



3.4. Reward Predition 19an be done by using smaller time steps for the reation of suessor nodes, or bydereasing θexpmin, thereby allowing suessor nodes to lie loser to already visitednodes.3.3.2 Graph Re�nement PhaseGraph re�nement starts after the initial exploration phase, and optimizes the graphto �nd better trajetories. The basi idea is to �nd bottleneks on the best trajetoryfound so far, i.e. nodes where the number of outgoing edges is small. For somenodes a low outdegree is sensible, e.g. beause they are loated at narrow passages.For other nodes this may just re�et a lak of alternatives, and so generating newsuessor nodes and outgoing edges may improve the urrent poliy.The main omponent of graph re�nement is an o�ine proess, in whih westohastially selet nodes for optimization and add new suessor nodes. For everynode xi in the graph we ompute an optimization sore σopt(xi), whih is the sumof rewards on the best path in the graph from the start to the goal via xi. Theprobability of seleting xi for optimization is proportional to σopt(xi), and indiretlyproportional to the number of outgoing edges in xi. This gives higher probabilityto nodes on good solution trajetories and nodes with small outdegrees. Let x∗ bethe node seleted for optimization, hosen aording to the desribed probabilitydistribution. We then reate a new suessor node by simulating the loal systemdynamis f̂(x, u) from x∗, using a random variation of the ontrol law of the optimaloutgoing edge from x∗. New edges and preditions for the rewards are generated asin the initial exploration phase.The insertion of new nodes is typially performed after a �xed number ofepisodes, in whih we ollet online experiene. This is done by following an ε-greedy poliy that explores new edges and nodes, and uses the gathered rewardinformation to update preditions for unseen edges.3.4 Reward PreditionGeneralization of learned results for unseen states or ations is a well-known oneptin reinforement learning (Sutton and Barto, 1998). In our ase we want to preditthe transition rewards for unseen edges of the adaptive state graph. This speeds upthe learning proess and avoids unneessary exploration of all edges. The generalidea is to exploit loal similarities, i.e. parallel onnetions of similar regions of thestate spae are likely to have similar rewards.During the agent's exploration, our approah uses new information about thereward of the urrently traversed edge ecur = (xi, xj) to update the preditionsfor similar edges. We say that two edges are similar if both their starting andtarget nodes lie within ertain neighborhoods. We all the region Sεs(xi) = {x ∈
X | D(x, xi) < εs} around the starting point xi the starting area, and the region
Tεt(xj) = {x ∈ X | D(x, xj) < εt} around the target point xj the target area. Anedge is similar to ecur if its starting point lies in SεS(xi) and its target point lies in
Tεt(xj). This ase is illustrated in Figure 3.2(a).
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εs

tε

(b) (c) (d)(a)

Starting area

Target area

Visited EdgeCurrent Edge Edge with Predicted RewardFigure 3.2: Four ases for online loal reward predition. The urrently traversed edge isdrawn blue, previously visited edges are drawn blak, and the predition is for the unvisitedred edge. (a) Edges from starting area to target area; (b) Unvisited edges that are onnetedto the target area via previously visited edges; () Unvisited edges that onnet from diretsuessors of the starting node to the target area; (d) Diret edges from predeessors of thestarting node to the target area.More updates an be performed if we onsider indiret onnetions from Sεs(xi)to Tεt(xj), whih use paths of two edges to onnet the two regions (see Figure 3.2(b) and ()). Paths longer than two edges are not onsidered, beause they maylead through ompletely di�erent regions, thereby violating our assumption of loalsimilarity of the onnetions. Let e1 = (x1, x2), e2 = (x2, x3) be a 2-edge indiretonnetion with x1 ∈ Sεx(xi), x3 ∈ Tεt(xj). Using the urrent edge reward r(ecur) asan approximation to the total reward of the alternative path, we an assign sharesof r(eur) to unvisited edges, proportional to their durations t(e1) and t(e2):
r̂(e1) =

r(eur) · t(e1)
t(e1) + t(e2)

r̂(e2) =
r(ecur) · t(e2)

t(e1) + t(e2)The urrent edge eur = (xi, xj) may also omplete a 2-edge path from one ofthe predeessors of xi to the target node (see Figure 3.2 (d)). If we know the rewardfor the predeessor edge ep = (xp, xi), this yields preditions for any diret edgesfrom the predeessor node to the target area. The predition for unvisited edges isthen simply the sum of rewards of the two known edges r(eur) + r(ep).To ensure that updates are only performed along hains of edges that followsimilar trajetories in the state spae, we exlude onnetions that enlose largeangles with the urrently traversed edge from the predition. Seondly, we use asimilarity measure for weighted updates, giving more weight to preditions that orig-inate from more similar trajetories. A straightforward measure for the similarity ofshort transitions with nearby starting and target points is the time that is neededfor the transition. Loal ontrollers for short onnetions of similar points will likelyfollow a similar trajetory if they need the same amount of time. We de�ne thetime-similarity weight of two paths with total times t1 and t2 as
w = exp (−β · | log(t1)− log(t2)|)
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Without PredictionFigure 3.3: Speed-up e�et of reward predition on a stati puddle world task with uniformlysampled nodes.
(a) (b) ()Figure 3.4: Stati Puddle World: (a) and (b) shows the graph in the initial explorationphase after 20 and 65 episodes. () shows the graph after the re�nement phase. The redline indiates the optimal poliy to the target.The absolute logarithm ensures that the weights are proportional to relative, notabsolute time di�erenes. For every updated edge e′ we store a weight we′ whihre�ets the on�dene of the urrent estimate. Initial reward estimates r̂(e′) omefrom loal ontrollers, and are assigned small onstant initial weights we′ = w0 > 0.Every time an update of an edge is performed we hange the reward predition tothe weighted sum of all updates so far, and inrease the weight of the edge by thesimilarity of the alternative route. To preferentially improve reward estimates oflow on�dene, the exploration sheme may also take the weights into aount asan additional fator for ation seletion.3.4.1 Preditions for New EdgesWhenever new edges are inserted into the adaptive state graph during the explo-ration and re�nement phases, we basially use the same mehanism as above toestimate their rewards. We searh for known 1- or 2-edge paths into the targetregion of the new edge and perform the updates.3.4.2 Results of Reward PreditionTo isolate the speed-up e�et of reward predition from the exploration shemes,we learned poliies in a stati puddle world (see also Setion 3.5.1) with 600 uni-



22 Chapter 3. Graph Based Reinforement Learningformly sampled nodes. The rewards of the edges were initialized to estimated time-dependent osts. Figure 3.3 shows that an agent with reward predition �nds theoptimal poliy after visiting around 50% of the edges that an agent without predi-tion needs.3.5 ExperimentsIn this setion we show that our algorithm an solve several ontinuous ontrolproblems that are hallenging for standard reinforement learning tehniques. Weshow that the algorithm requires less atual experiene than existing methods and�nds more aurate trajetories.3.5.1 Stati Puddle WorldThe puddle world task is a well-known benhmark for reinforement learning algo-rithms in ontinuous domains. The objetive is to navigate from a given startingstate to a goal state in a 2-dimensional environment whih ontains puddles, rep-resenting regions of negative reward. Every transition in�its a negative rewardproportional to the required time, plus additional penalties for entering a puddlearea. The 2-dimensional ontrol ation u = (vx, vy) orresponds to setting veloitiesin x and y diretions, leading to the simple linear system dynamis ẋ = vx, ẏ = vy.We an safely assume to know this dynamis, but planning a path to the goalstate and avoiding the unknown puddles remains a di�ult task. Figure 3.4 showsvarious stages of the exploration proess in a maze-like puddle world with multiplepuddles. In Figure 3.4(a) it an be observed that the agent direts its initial explo-ration towards the goal, while avoiding paths through regions of negative reward.Less promising regions like the upper left part are also visited less frequently. Afterthe end of the initial exploration phase (Figure 3.4(b)) the agent knows a oarsepath to the goal. A better solution is found after the graph re�nement phase, whihis illustrated in Figure 3.4(). The path is almost optimal and avoids all puddles onthe way to the goal, even at narrow passages.Standard funtion approximation tehniques like CMACs and RBFs need sev-eral thousands of episodes to onverge on this task, and are therefore not onsideredfor omparison. Better results were ahieved by Prioritized Sweeping (Moore andAtkeson, 1993), a model-based RL algorithm whih disretizes the environment andlearns the transition and reward model from its experiene. In Figure 3.5 we om-pare the performane of RL with adaptive state graphs to prioritized sweeping withvarious disretization densities. We evaluate the performane of the agent by mea-suring the sum of rewards obtained by its greedy poliy at di�erent training times.The training time is the total amount of time the agent has interated with theenvironment.Figure 3.5 shows that the graph-based RL algorithm is faster to ahieve rea-sonable performane than prioritized sweeping with oarse disretization. Our al-gorithm gradually improves its performane in the graph re�nement phase, whihstarts at approximately 700 seonds. After further training time the graph-basedapproah slightly outperforms the best poliy found by prioritized sweeping on a



3.5. Experiments 23�ne 50× 50 grid. The re�ned graph in the end ontains about 1200 nodes, whih isless than half the number of states used by prioritized sweeping on the �ne grid.
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Graph−based RL
PS 50x50
PS 35x35Figure 3.5: Learning performane of RL with adaptive state graphs (max. 1193 nodes) andprioritized sweeping (PS) with di�erent disretization densities on the stati puddle worldfrom Figure 3.4. (Average over 5 trials.)3.5.2 3-Link Arm Reahing TaskIn the next task we ontrol a simulated planar 3-link robot arm under stati stabilityonstraints in an environment with several obstales (see Figure 3.6). The links ofthe robot arm have di�erent weights, and the enter of mass (CoM) of the robotneeds to be kept inside a �nite support polygon. If the CoM leaves a neutral zone ofguaranteed stability, the agent reeives negative reward that grows quadratially asthe CoM approahes the boundary of the support polygon. Under these onstraintsthe trivial solution of rotating the arm around the top left obstale ahieves lowerreward than the trajetory that maneuvers the arm through the narrow passagebetween the obstales.The 3-dimensional state spae onsist of the three joint angles (θ1, θ2, θ3) and theontrol ations orrespond to setting the angular veloities. The approximate model

f̂ is a simple linear model. The true system dynamis f ontains nonlinearities dueto obstales, whih are not aptured by f̂ .The omparison in Figure 3.7 shows that graph-based RL onverges muh fasterto more aurate trajetories than prioritized sweeping with various levels of dis-retization.3.5.3 Dynami Puddle WorldWe study a dynami version of the puddle world problem on a simpli�ed environment(see Figure 3.8(a)). The 4-dimensional state spae onsists of (x, y, ẋ, ẏ), and theontrol ations orrespond to aelerations in x and y diretion. The approximatemodel is still linear but of higher order. In the dynami ase the design of loalontrollers is more di�ult, beause positions and veloities are oupled. We �rstalulate the time required by a bang-bang ontroller to reah its target for (x, ẋ)and (y, ẏ) independently. The ontroller whih reahes its target faster is then sloweddown suh that all state variables arrive at the target simultaneously.Figure 3.8(b) shows a omparison of our algorithm to RBF value funtion ap-proximation. Our approah onverges muh faster and �nds solution trajetories of
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Figure 3.6: Arm reahing task with stability onstraints. Left: Solution trajetory foundby our algorithm. The agent must reah the goal region (red) from the starting position(green), avoiding the obstales. Right: The agent reeives negative reward if its enter ofmass (red) leaves the neutral zone (green).
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Graph−based RL
PS 20x40x40
PS 10x20x20Figure 3.7: Learning performane on the 3-link arm reahing task for RL with adaptivestate graphs (max. 2629 nodes) and prioritized sweeping (PS) with di�erent disretizationdensities. (Average over 5 trials)similar quality. In ontrast to the previous examples, prioritized sweeping did not�nd satisfatory results in reasonable time. One reason is that on dynami tasksdisretized state signals often violate the Markov property. The other reason is theexponential inrease in the number of states with growing dimensionality.3.6 Conlusion and Future WorkIn this paper we introdued a new ombination of reinforement learning andsampling-based planning for ontrol problems with omplex reward funtions inunknown ontinuous environments. We use minimal prior knowledge in the formof approximate models and loal ontrollers to inrease learning speed and produeontinuous ontrol outputs for varying time intervals. Our algorithm builds an adap-tive state graph through e�ient goal-direted exploration and re�nes the graph inlater stages. A new generalization sheme for reward predition of unvisited edgesinreases the performane of the algorithm by avoiding unneessary exploration.We demonstrated on various movement planning tasks with omplex reward fun-tions that RL with adaptive state graphs outperforms standard RL tehniques forfuntion approximation.Future work will extend the approah to non-linear system dynamis and higherdimensional problems. The approah is partiularly promising for ompliated tasks
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Graph−based RL
RBF 20x10
RBF 10x7(a) (b)Figure 3.8: (a) Dynami puddle world environment and solution trajetory. (b) Learningperformane on the dynami puddle world for RL with adaptive state graphs (max. 8106nodes) and RL with RBF funtion approximation. (20 resp. 10 RBF enters per positiondimension and 10 resp. 7 RBF enters per veloity dimension. Average over 5 trials.)

that an be projeted to low dimensional representations, suh as balaning hu-manoid robots using motion primitives (Hauser et al., 2007). Future investigationswill also onern strategies to redue the number of nodes, thereby enabling appli-ations in larger state spaes.3.7 AknowledgmentsThis hapter is based on the paper (Neumann et al., 2007) written by Gerhard Neu-mann (GN), Mihael Pfei�er (MP) and Wolfgang Maass (WM). GN implementedthe graph-based RL algorithm and onduted most of the experiments while MP im-plemented the reward predition mehanism. WM signi�antly improved the paperwritting.





Chapter 4Fitted Q-iteration by AdvantageWeighted Regression
Contents4.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274.2 Fitted Q-Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 294.3 Fitted Q-Iteration by Advantage Weighted Regression . . . 304.4 Loally-Advantage-WEighted Regression (LAWER) . . . . 324.5 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344.6 Conlusion and future work . . . . . . . . . . . . . . . . . . . 374.7 Aknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 37Reently, �tted Q-iteration (FQI) based methods have beome more popular dueto their inreased sample e�ieny, a more stable learning proess and the higherquality of the resulting poliy. However, these methods remain hard to use forontinuous ation spaes whih frequently our in real-world tasks, e.g., in robotisand other tehnial appliations. The greedy ation seletion ommonly used for thepoliy improvement step is partiularly problemati as it is expensive for ontinuousations, an ause an unstable learning proess, introdues an optimization biasand results in highly non-smooth poliies unsuitable for real-world systems. In thispaper, we show that by using a soft-greedy ation seletion the poliy improvementstep used in FQI an be simpli�ed to an inexpensive advantage-weighted regression.With this result, we are able to derive a new, omputationally e�ient FQI algorithmwhih an even deal with high dimensional ation spaes.4.1 IntrodutionReinforement Learning (Sutton and Barto, 1998) addresses the problem of howautonomous agents an improve their behavior using their experiene. At eah timestep t the agent an observe its urrent state st ∈ X and hooses an appropriateation at ∈ A. Subsequently, the agent gets feedbak on the quality of the ation,i.e., the reward rt = r(st, at), and observes the next state st+1. The goal of theagent is to maximize the aumulated reward expeted in the future. In this paper,we fous on learning poliies for ontinuous, multi-dimensional ontrol problems.Thus the state spae X and ation spae A are ontinuous and multi-dimensional,meaning that disretizations start to beome prohibitively expensive.



28 Chapter 4. Advantage Weighted RegressionWhile disrete-state/ation reinforement learning is a widely studied problemwith rigorous onvergene proofs, the same does not hold true for ontinuous statesand ations. For ontinuous state spaes, few onvergene guarantees exist andpathologial ases of bad performane an be generated easily (Boyan and Moore,1995). Moreover, many methods annot be transferred straightforwardly to ontin-uous ations.Current approahes often irumvent ontinuous ation spaes by fousing onproblems where the ator an rely on a disrete set of ations, e.g., when learninga poliy for driving a ar to a goal in minimum time, an ator only needs threeations: the maximum aeleration when starting, zero aeleration at maximumveloity and maximum throttle down when the goal is su�iently lose for a pointlanding. While this approah (alled bang-bang in traditional ontrol) works for thelarge lass of minimum time ontrol problems, it is also a limited approah as ostfuntions relevant to the real-world inorporate muh more omplex onstraints,e.g., ost-funtions in biologial systems often punish the jerkiness of the movement(Viviani and Flash, 1995), the amount of used metaboli energy (Alexander, 1997)or the variane at the end-point (Wolpert, 1998). For physial tehnial systems,the inorporation of further optimization riteria is of essential importane; justas a minimum time poliy is prone to damage the ar on the long-run, a similarpoliy would be highly dangerous for a robot and its environment and the resultingenergy-onsumption would redue its autonomy. More omplex, ation-dependentimmediate reward funtions require that muh larger sets of ations are being em-ployed.We onsider the use of ontinuous ations for �tted Q-iteration (FQI) basedalgorithms. FQI is a bath mode reinforement learning (BMRL) algorithm. Thealgorithm mantains an estimate of the state-ation value funtion Q(s,a) and usesthe greedy operatormaxaQ(s,a) on the ation spae for improving the poliy. Whilethis works well for disrete ation spaes, the greedy operation is hard to performfor high-dimensional ontinuous ations. For this reason, the appliation of �ttedQ-iteration based methods is often restrited to low-dimensional ation spaes whihan be e�iently disretized. In this paper, we show that the use of a stohasti soft-max poliy instead of a greedy poliy allows us to redue the poliy improvementstep used in FQI to a simple advantage-weighted regression. The greedy operation
maxaQ(s,a) over the ations is replaed by a less harmful greedy operation overthe parameter spae of the value funtion. This result allows us to derive a new,omputationally e�ient algorithm whih is based on Loally-Advantage-WEightedRegression (LAWER).We test our algorithm on three di�erent benhmark tasks, i.e., the pendulumswing-up (Riedmiller, 2005), the arobot swing-up (Sutton and Barto, 1998) anda dynami version of the puddle-world (Sutton, 1996) with 2 and 3 dimensions.We show that in spite of the soft-greedy ation seletion, our algorithm is able toprodue high quality poliies.



4.2. Fitted Q-Iteration 294.2 Fitted Q-IterationIn �tted Q-iteration (Ernst et al., 2005; Riedmiller, 2005; Antos et al., 2008) (FQI),we assume that all the experiene of the agent up to the urrent time is given inthe form H = {< si,ai, ri, s
′
i >}1≤i≤N . The task of the learning algorithm is toestimate an optimal ontrol poliy from this historial data. FQI approximatesthe state-ation value funtion Q(s,a) by iteratively using supervised regressiontehniques. New target values for the regression are generated by

Q̃k+1(i) = ri + γVk(s
′
i) = ri + γmax

a′

Qk(s
′
i,a

′). (4.1)The regression problem for �nding the funtion Qk+1 is de�ned by the list of data-point pairs Dk and the regression proedure Regress
Dk(Qk) =

{

[

(si,ai), Q̃k+1(i)
]

1≤i≤N

}

, Qk+1 = Regress(Dk(Qk)) (4.2)FQI an be viewed as approximate value iteration with state-ation value funtions(Antos et al., 2008). Previous experiments show that funtion approximators suhas neural networks (Riedmiller, 2005), radial basis funtion networks (Ernst et al.,2005), CMAC (Timmer and Riedmiller, 2007) and regression trees (Ernst et al.,2005) an be employed in this ontext. In (Antos et al., 2008), performane boundsfor the value funtion approximation are given for a wide range of funtion approx-imators. The performane bounds also hold true for ontinuous ation spaes, butonly in the ase of an ator-riti variant of FQI. Unfortunately, to our knowledge,no experiments with this variant exist in the literature. Additionally, it is not learhow to apply this ator-riti variant e�iently for nonparametri funtion approx-imators.FQI has proven to outperform lassial online RL methods in many applia-tions (Ernst et al., 2005). Nevertheless, FQI relies on the greedy ation seletionin Equation (4.1). Thus, the algorithm frequently requires a disrete set of ationsand generalization to ontinuous ations is not straightforward. Using the greedyoperator for ontinuous ation spaes is a hard problem by itself as the use of ex-pensive optimization methods is needed for high dimensional ations. Moreover thereturned values of the greedy operator often result in an optimization bias aus-ing an unstable learning proess, inluding osillations and divergene (Peters andShaal, 2007a). For a omparison with our algorithm, we use the Cross-Entropy(CE) optimization method (de Boer et al., 2005) to �nd the maximum Q-values.In our implementation, we maintain a Gaussian distribution for the belief of theoptimal ation. We sample nCE ations from this distribution. Then, the best
eCE < nCE ations (with the highest Q-values) are used to update the parametersof this distribution. The whole proess is repeated for kCE iterations, starting witha uniformly distributed set of sample ations.FQI is inherently an o�ine method - given historial data, the algorithm esti-mates the optimal poliy. However, FQI an also be used for online learning. Afterthe FQI algorithm is �nished, new episodes an be olleted with the urrently bestinferred poliy and the FQI algorithm is restarted.



30 Chapter 4. Advantage Weighted Regression4.3 Fitted Q-Iteration by Advantage Weighted Regres-sionA di�erent method for poliy updates in ontinuous ation spaes is reinforementlearning by reward-weighted regression (Peters and Shaal, 2007b). As shown bythe authors, the ation seletion problem in the immediate reward RL setting withontinuous ations an be formulated as expetation-maximization (EM) based al-gorithm and, subsequently, redued to a reward-weighted regression. The weightedregression an be applied with ease to high-dimensional ation spaes; no greedyoperation in the ation spae is needed. While we do not diretly follow the workin (Peters and Shaal, 2007b), we follow the general idea.4.3.1 Weighted regression for value estimationIn this setion we onsider the task of estimating the value funtion V of a stohastipoliy π(·|s) when the state-ation value funtion Q is already given. The valuefuntion an be alulated by V (s) =
∫

a
π(a|s)Q(s,a)da. Yet, the integral overthe ation spae is hard to perform for ontinuous ations. However, we will showhow we an approximate the value funtion without the evaluation of this integral.Consider the quadrati error funtionError(V̂ ) =

∫

s

µ(s)

(
∫

a

π(a|s)Q(s,a)da − V̂ (s)

)2

ds (4.3)
=

∫

s

µ(s)

(
∫

a

π(a|s)
(

Q(s,a) − V̂ (s)
)

da

)2

ds, (4.4)whih is used to �nd an approximation V̂ of the value funtion. µ(s) denotes thestate distribution when following poliy π(·|a). Sine the squared funtion is onvexwe an use Jensens inequality for probability density funtions to derive an upperbound of Equation (4.4)Error(V̂ ) ≤

∫

s

µ(s)

∫

a

π(a|s)
(

Q(s,a)− V̂ (s)
)2

dads = ErrorB(V̂ ). (4.5)The solution V̂ ∗ for minimizing the upper bound ErrorB(V̂ ) is the same as for theoriginal error funtion Error(V̂ ).Proof. To see this, we ompute the square and replae the term ∫

a
π(a|s)Q(s,a)daby the value funtion V (s). This is done for the error funtion Error(V̂ ) and for theupper bound ErrorB(V̂ ).Error(V̂ ) =

∫

s

µ(s)
(

V (s)− V̂ (s)
)2

ds (4.6)
=

∫

s

µ(s)
(

V (s)2 − 2V (s)V̂ (s) + V̂ (s)2
)

ds (4.7)



4.3. Fitted Q-Iteration by Advantage Weighted Regression 31ErrorB(V̂ ) =

∫

s

µ(s)

∫

a

π(a|s)
(

Q(s,a)2 − 2Q(s,a)V̂ (s) + V̂ (s)2
)

dads (4.8)
=

∫

s

µ(s)

(
∫

a

π(a|s)Q(s,a)2da− 2V (s)V̂ (s) + V̂ (s)2
)

ds (4.9)Both error funtions are the same exept for an additive onstant whih does notdepend on V̂ .In di�erene to the original error funtion, the upper bound ErrorB an beapproximated straightforwardly by samples {(si,ai), Q(si,ai)}1≤i≤N gained by fol-lowing some behavior poliy πb(·|s).ErrorB(V̂ ) ≈
N
∑

i=1

µ(s)π(ai|si)

µb(si)πb(ai|si)

(

Q(si,ai)− V̂ (si)
)2

, (4.10)
µb(s) de�nes the state distribution when following the behavior poliy πb. The term
1/(µb(si)πb(si,ai)) ensures that we do not give more weight on states and ationspreferred by πb. This is a well known method in importane sampling. In order tokeep our algorithm tratable, the fators πb(ai|si), µb(si) and µ(si) will all be set to
1/N . The minimization of Equation (4.10) de�nes a weighted regression problemwhih is given by the dataset DV , the weighting U and the weighted regressionproedure WeightedRegress

DV =
{

[(si,ai), Q(si,ai)]1≤i≤N

}

, U = {[π(ai|si)]1≤i≤N} , (4.11)
V̂ = WeightedRegress(DV , U) (4.12)The result shows that in order to approximate the value funtion V (s), we do notneed to arry out the expensive integration over the ation spae for eah state si.It is su�ient to know the Q-values at a �nite set of state-ation pairs.4.3.2 Soft-greedy poliy improvementWe use a soft-max poliy (Sutton and Barto, 1998) in the poliy improvement step ofthe FQI algorithm. Our soft-max poliy π1(a|s) is based on the advantage funtion

A(s,a) = Q(s,a)−V (s). We additionally assume the knowledge of the mean mA(s)and the standard deviation of σA(s) of the advantage funtion at state s. Thesequantities an be estimated loally or approximated by additional regressions. Thepoliy π1(a|s) is de�ned as
π1(a|s) =

exp(τĀ(s,a))
∫

a
exp(τĀ(s,a))da

, Ā(s,a) = A(s,a)−mA(s)
σA(s) . (4.13)

τ ontrols the greediness of the poliy. If we assume that the advantages A(s,a) aredistributed with N (A(s,a)|mA(s), σ
2
A(s)), all normalized advantage values Ā(s,a)have the same distribution. Thus, the denominator of π1 is onstant for all states andwe an use the term exp(τĀ(s,a)) ∝ π1(a|s) diretly as weighting for the regressionde�ned in Equation (4.12). The resulting approximated value funtion V̂ (s) is used



32 Chapter 4. Advantage Weighted RegressionAlgorithm 1: FQI with Advantage Weighted RegressionInput: H = {< si,ai, ri, s
′
i >}1≤i≤N , τ and L (Number of Iterations)Initialize V̂0(s) = 0.for k = 0 to L− 1 do

Dk(V̂k) =

{

[

(si,ai), ri + γV̂k(s
′
i)
]

1≤i≤N

}

Qk+1 = Regress(Dk(V̂k))
A(i) = Qk+1(si,ai)− V̂k(si)Estimate mA(si) and σA(si) for 1 ≤ i ≤ N
U = {[exp(τ(A(i) −mA(si))/σA(si)]i≤i≤N}
V̂k+1 = WeightedRegress(Dk(V̂k), U)end forto replae the greedy operator V (s′i) = maxa′ Q(s′i,a

′) in the FQI algorithm. TheFQI by Advantage Weighted Regression (AWR) algorithm is given in Algorithm 1.As we an see, the Q-funtion Qk is only queried one for eah step in the history
H. Furthermore only already seen state ation pairs (si,ai) are used for this query.After the FQI algorithm is �nished we still need to determine a poliy for sub-sequent data olletion. The poliy an be obtained in the same way as for reward-weighted regression (Peters and Shaal, 2007b), only the advantage is used insteadof the reward for the weighting - thus, we are optimizing the long term osts insteadof the immediate one.4.4 Loally-Advantage-WEighted Regression (LAWER)Based on the FQI by AWR algorithm, we propose a new, omputationally e�ient�tted Q-iteration algorithm whih uses Loally Weighted Regression (LWR, (Atke-son et al., 1997)) as funtion approximator. Similar to kernel based methods, ouralgorithm needs to be able to alulate the similarity wi(s) between a state si in thedataset H and state s. To simplify the notation, we will denote wi(sj) as wij for all
sj ∈ H. wi(s) is alulated by a Gaussian kernel wi(s) = exp(−(si − s)TD(si − s)).The diagonal matrix D determines the bandwidth of the kernel. Additionally, ouralgorithm also needs a similarity measure wa

ij between two ations ai and aj . Again
wa
ij an be alulated by a Gaussian kernel wa

ij = exp(−(ai − aj)
TDa(ai − aj)).Using the state similarity wij , we an estimate the mean and the standard de-viation of the advantage funtion for eah state si

mA(si) =

∑

j wijA(j)
∑

j wij
, σ2

A(si) =
∑

j wij(A(j)−mA(sj))2∑
j wij

. (4.14)



4.4. Loally-Advantage-WEighted Regression (LAWER) 334.4.1 Approximating the value funtionsFor the approximation of the Q-funtion, we use Loally Weighted Regression (Atke-son et al., 1997). The Q-funtion is therefore given by:
Qk+1(s,a) = s̃A(SA

TWSA)−1SA
TWQk+1 (4.15)where s̃A = [1, sT ,aT ]T , SA = [s̃A(1), s̃A(2), ..., s̃A(N)]T is the state-ation matrix,

W = diag(wi(s)w
a
i (a)) is the loal weighting matrix onsisting of state and ationsimilarities, and Qk+1 = [Q̃k+1(1), Q̃k+1(2), . . . , Q̃k+1(N)]T is the vetor of the Q-values (see Equation (4.1).For approximating the V-funtion we an multipliatively ombine theadvantage-based weighting ui = exp(τĀ(si,ai)) and the state similarity weights

wi(s). The value Vk+1(s) is given by 1:
Vk+1(s) = s̃(STUS)−1STUQk+1, (4.16)where s̃ = [1, sT ]T , S = [s̃1, s̃2, ..., s̃N ]T is the state matrix and U = diag(wi(s)ui) isthe weight matrix. We bound the estimate of V̂k+1(s) by maxi|wi(s)>0.001 Qk+1(i) inorder to prevent the loal regression from adding a positive bias whih might ausedivergene of the value iteration.A problem with nonparametri value funtion approximators is their stronglyinreasing omputational omplexity with an inreasing number of data points. Asimple solution to avoid this problem is to introdue a loal forgetting mehanism.Whenever parts of the state spae are oversampled, old examples in this area areremoved from the dataset.4.4.2 Approximating the poliySimilar to reward-weighted regression (Peters and Shaal, 2007b), we use a stohastipoliy π(a|s) = N (a|µ(s),diag(σ2(s))) with Gaussian exploration as approximationof the optimal poliy. The mean µ(s) and the variane σ2(s) are given by

µ(s) = s̃(STUS)−1STUA, σ2(s) =
σ2initα0+

∑
i wi(s)ui(ai−µ(si))

2

α0+
∑

i wi(s)ui
, (4.17)where A = [a1,a2, . . . ,aN ]T denotes the ation matrix. The variane σ2 au-tomatially adapts the exploration of the poliy to the unertainty of the optimalation. With σ2init and α0 we an set the initial exploration of the poliy. σinit isalways set to the bandwidth of the ation spae. α0 sets the weight of the initialvariane in omparison to the variane oming from the data, α0 is set to 3 for allexperiments.1In pratie, ridge regression V k+1(s) = s̃(STWS+ σI)−1STWQk+1 is used to avoid numerialinstabilities in the regression.



34 Chapter 4. Advantage Weighted Regression4.5 EvaluationsWe evaluated the LAWER algorithm on three benhmark tasks, the pendulum swingup task, the arobot swing up task and a dynami version of the puddle-world (i.e.,augmenting the puddle-world by veloities, inertia, et.) with 2 and 3 dimensions.We ompare our algorithm to tree-based FQI (Ernst et al., 2005) (CE-Tree), neuralFQI (Riedmiller, 2005) (CE-Net) and LWR-based FQI (CE-LWR) whih all usethe Cross-Entropy (CE) optimization to �nd the maximum Q-values. For the CEoptimization we used nCE = 10 samples for one dimensional, nCE = 25 samples for2-dimensional and nCE = 64 for 3-dimensional ontrol variables. eCE was always setto 0.3nCE and we used kCE = 3 iterations. To enfore exploration when olletingnew data, a Gaussian noise of ε = N (0, 1.0) was added to the CE-based poliy.For the tree-based algorithm, an ensemble of M = 20 trees was used, K was set tothe number of state and ation variables and nmin was set to 2 (see (Ernst et al.,2005)). For the CE-Net algorithm we used a neural network with 2 hidden layersand 10 neurons per layer and trained the network with the algorithm proposed in(Riedmiller, 2005) for 600 epohs. For all experiments, a disount fator of γ = 0.99was used. The immediate reward funtion was quadrati in the distane to the goalposition sG and in the applied torque/fore r = −c1(s− sG)
2− c2a

2. For evaluatingthe learning proess, the exploration-free (i.e., σ(s) = 0, ε = 0) performane ofthe poliy was evaluated after eah data-olletion/FQI yle. This was done bydetermining the aumulated reward during an episode starting from the spei�edinitial position. All errorbars represent a 95% on�dene interval.4.5.1 Pendulum swing-up taskIn this task, a pendulum needs to be swung up from the position at the bottom tothe top position (Riedmiller, 2005). The state spae onsists of the angular deviation
θ from the top position and the angular veloity θ̇ of the pendulum. The systemdynamis are given by 0.5ml2θ̈ = mg sin(θ) + u , the torque of the motor u waslimited to [−5N, 5N ]. The mass was set to m = 1kg and length of the link to 1m.The time step was set to 0.05s. Two experiments with di�erent torque punishments
c2 = 0.005 and c2 = 0.025 were performed.We used L = 150 iterations. The matriesD andDA were set toD = diag(30, 3)and DA = diag(2). In the data olletion phase, 5 episodes with 150 steps wereolleted starting from the bottom position and 5 episodes starting from a randomposition.A omparison of the LAWER algorithm to CE-based algorithms for c2 = 0.005is shown in Figure 4.1(a) and for c2 = 0.025 in Figure 4.1(b). Our algorithm showsa omparable performane to the tree-based FQI algorithm while being omputa-tionally muh more e�ient. All other CE-based FQI algorithms show a slightlydereased performane. In Figure 4.1() and (d) we an see typial examples oflearned torque trajetories when starting from the bottom position for the LAWER,the CE-Tree and the CE-LWR algorithm. In Figure 4.1() the trajetories are shownfor c2 = 0.005 and in Figure 4.1(d) for c2 = 0.025. All algorithms were able to dis-over a fast solution with 1 swing-up for the �rst setting and a more energy-e�ient
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CE LWR(d)Figure 4.1: (a) Evaluation of LAWER and CE-based FQI algorithms on the pendulumswing-up task for c2 = 0.005 . The plots are averaged over 10 trials. (b) The sameevaluation for c2 = 0.025. () Learned torque trajetories for c2 = 0.005. (d) Learnedtorque trajetories for c2 = 0.025.solution with 2 swing-ups for the seond setting. Still, there are qualitative di�er-enes in the trajetories. Due to the advantage-weighted regression, LAWER wasable to produe very smooth trajetories while the trajetories found by the CE-based methods look more jerky. In Figure 4.2(a) we an see the in�uene of theparameter τ on the performane of the LAWER algorithm. The algorithm worksfor a large range of τ values.4.5.2 Arobot swing-up taskIn order to asses the performane of LAWER on a omplex highly non-linear on-trol task, we used the arobot (for a desription of the system, see (Sutton andBarto, 1998)). The torque was limited to [−5N, 5N ]. Both masses were set to 1kgand both lengths of the links to 0.5m. A time step of 0.1s was used. L = 100iterations were used for the FQI algorithms. In the data-olletion phase the agentould observe 25 episodes starting from the bottom position and 25 starting froma random position. Eah episode had 100 steps. The matries D and DA were setto D = diag(20, 23.6, 10, 10.5) and DA = diag(2). The omparison of the LAWERand the CE-Tree algorithm is shown in Figure 4.2(a). Due to the adaptive statedisretization, the tree-based algorithm is able to learn faster, but in the end, theLAWER algorithm is able to produe poliies of higher quality than the tree-basedalgorithm.4.5.3 Dynami puddle-worldIn the puddle-world task (Sutton, 1996), the agent has to �nd a way to a prede�nedgoal area in a ontinuous-valued maze world (see Figure 4.3(a)). The agent getsnegative reward when going through puddles. In di�erene to the standard puddle-world setting where the agent has a 2-dimensional state spae (the x and y position),we use a more demanding setting. We have reated a dynami version of the puddle-world where the agent an set a fore aelerating a k-dimensional point mass (m =
1kg). This was done for k = 2 and k = 3 dimensions. The puddle-world illustratesthe salability of the algorithms to multidimensional ontinuous ation spaes (2respetively 3 dimensional). The positions were limited to [0, 1] and the veloitiesto [−1, 1]. The maximum fore that ould be applied in one diretion was restrited
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3(d)Figure 4.3: (a) Comparison of the CE-Tree and the LAWER algorithm for the 2-dimensionaldynami puddle-world. (b) Comparison of the CE-Tree and the LAWER algorithm for the3-dimensional dynami puddle-world. () Torque trajetories for the 3-dimensional puddleworld learned with the LAWER algorithm. (d) Torque trajetories learned with the CE-Tree algorithm.to 2N and the time step was set to 0.1s. The setting of the 2-dimensional puddle-world an be seen in Figure 4.2(). Whenever the agent was about to leave theprede�ned area, the veloities were set to zero and an additional reward of −5 wasgiven. We ompared the LAWER with the CE-Tree algorithm. L = 50 iterationswere used. The matries D and DA were set to D = diag(10, 10, 2.5, 2.5) and

DA = diag(2.5, 2.5) for the 2-dimensional and to D = diag(8, 8, 8, 2, 2, 2) and DA =
diag(1, 1, 1) for the 3-dimensional puddle-world. In the data olletion phase theagent ould observe 20 episodes with 50 steps starting from the prede�ned initialposition and 20 episodes starting from a random position.In Figure 4.3(a), we an see the omparison of the CE-Tree and the LAWER algo-rithm for the 2-dimensional puddle-world and in Figure 4.3(b) for the 3-dimensionalpuddle-world. The results show that the tree-based algorithm has an advantage inthe beginning of the learning proess. However, the CE-Tree algorithm has prob-lems �nding a good poliy in the 3-dimensional ation-spae, while the LAWERalgorithm still performs well in this setting. This an be seen learly in the om-parison of the learned fore trajetories whih are shown in Figure 4.3() for theLAWER algorithm and in Figure 4.3(d) for the CE-Tree algorithm. The traje-



4.6. Conlusion and future work 37tories for the CE-Tree algorithm are very jerky and almost random for the �rstand third dimension of the ontrol variable, whereas the trajetories found by theLAWER algorithm look very smooth and goal direted.4.6 Conlusion and future workIn this paper, we foused on solving RL problems with ontinuous ation spaeswith �tted Q-iteration based algorithms. The omputational omplexity of the maxoperator maxaQ(s,a) often makes FQI algorithms intratable for high dimensionalontinuous ation spaes. We proposed a new method whih irumvents the maxoperator by the use of a stohasti soft-max poliy that allows us to redue thepoliy improvement step V (s) = maxaQ(s,a) to a weighted regression problem.Based on this result, we an derive the LAWER algorithm, a new, omputationallye�ient FQI algorithm based on LWR.Experiments have shown that the LAWER algorithm is able to produe highquality smooth poliies, even for high dimensional ation spaes where the use ofexpensive optimization methods for alulating maxaQ(s,a) beomes problematiand only quite suboptimal poliies are found. Moreover, the omputational osts ofusing ontinuous ations for standard FQI are daunting. The LAWER algorithmneeded on average 2780s for the pendulum, 17600s for the arobot, 13700s for the2D-puddle-world and 24200s for the 3D-puddle world benhmark task. The CE-Tree algorithm needed on average 59900s, 201900s, 134400s and 212000s, whih isan order of magnitude slower than the LAWER algorithm. The CE-Net and CE-LWR algorithm showed omparable running times as the CE-Tree algorithm. A lotof work has been spent to optimize the implementations of the algorithms. Thesimulations were run on a P4 Xeon with 3.2 gigahertz.Still, in omparison to the tree-based FQI approah, our algorithm has handiapswhen dealing with high dimensional state spaes. The distane kernel matries haveto be hosen appropriately by the user. Additionally, the uniform distane measurethroughout the state spae is not adequate for many omplex ontrol tasks andmight degrade the performane. Future researh will onentrate on ombining theAWR approah with the regression trees presented in (Ernst et al., 2005).4.7 AknowledgmentsThis hapter is based on the paper (Neumann and Peters, 2009) written by GerhardNeumann (GN) and Jan Peters (JP). GN implemented the Advantage-WeightedRegression algorithms and onduted the experiments while JP provided the basiideas and guidane for this paper.
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Chapter 5Introdution
Movement representations are frequently used for motor skill learning (Kober et al.,2008). Instead of diretly learning the desired trajetory, they represent a lowerdimensional desription of the movement whih is supposed to failitate learningof movement skills. Many types of movement representations are also denoted asmovement primitive. The key idea of the term 'primitive' is that several of theseelementary movements an be ombined sequentially or also simultaneously in time.There are many di�erent approahes how to enode movements with a lowernumber of parameters, ranging from purely spatial (d'Avella and Bizzi, 2005) totemporal (Shaal et al., 2003, 2007) representations. We will denote w as the pa-rameter vetor of the movement primitive.In this thesis I will �rst give an overview over relevant methods. I will alsobrie�y disuss how movement primitives an be ombined sequentially and simul-taneously in time. Subsequently I will present 3 new approahes whih were partof my work during my PhD. In Chapter 6, I will introdue a spatial movementrepresentation approah for balaning ontrol of a humanoid robot (Hauser et al.,2011). In Chapter 7, I will present a new movement representation alled motiontemplates. Motion templates are the �rst representation whih an be ombinedsequentially in time by the use of reinforement learning. Finally, in Chapter 8 Iwill present a primitive whih is based on inherent planning. As we use planningalready at the level of the primitive, abstrat features or goals of the movementan be used as parameter representation. We will show that this an signi�antlyfailitate learning of movement skills.5.1 Spatial PrimitivesSpatial representations use a K dimensional manifold to represent the D-dimensional ation spae (K ≪ D) but do not enode any temporal ohereneof the movement. Thus, they do not diretly speify a poliy whih an be used toperform the motion.The most prominent representative of spatial representations is the synhronousmusle synergies approah (d'Avella and Bizzi, 2005) whih have been developedin the ontext of explaining biologial musle ativation data. The key idea is touse a K-dimensional linear basis for the ation spae, where K ≪ D. Eah basisvetor represents a single synergy. The ontrol vetor a(t) is then represented bythe musle synergy matrix M and the synergy oe�ients, given by c(t), i.e.

a(t) = Mc(t).



42 Chapter 5. IntrodutionEah olumn vetor of M represents a single synergy. The synhronous muslesynergies have been used to explain musle ativation patterns in frogs (d'Avellaand Bizzi, 2005). The authors ould show that several musle synergies were sharedfor di�erent behaviors, rendering this approah also attrative for robot ontrol andtransfer learning.In Chapter 6 we present a similar approah based on kinemati synergies whihwe have applied to a humanoid robot. We use a lower dimensional manifold in thejoint spae of a humanoid robot to ounter-balane unknown perturbations. This isone of the �rst appliation of the idea of using synergies for robot ontrol.Typially the synergies are extrated from experimental data (d'Avella and Bizzi,2005) or, as in our ase, onstruted by the inverse kinemati model of the robot.Learning suh lower dimensional spatial basis of an high-dimensional redundantation spae from interation with an environment and reinforement is still anopen problem.5.2 Temporal PrimitivesTemporal representations expliitly enode the temporal pattern of the movement.The high-dimensional state information is usually absorbed by a salar phase ortime variable t. The ommon approah for temporal representations is to alulatea desired trajetory 〈y(t;w), ẏ(t;w)〉. As we an see, the desired position andveloity of the robot only depends on the duration t of the movement. The realstate (urrent position qt and veloity q̇t) is not used for trajetory generation.The urrent state st = [qt, q̇t] is only used for feedbak trajetory-traking, e.glinear PD-ontrollers or inverse dynamis ontrol (Peters et al., 2008) (see Setion5.2.6). Both, the feedbak ontroller and the desired trajetory an be parametrized,we will subsume these parameters into the parameter vetor w of the primitive. Asthe desired trajetory always depends on w we will write yt instead of y(t;w) tosimplify the notation.Temporal representations an only be used in episodi setups, i.e. we alwaysuse the same initial onditions (i.e. state of the robot and its environment) for themovement and the movement ends after a ertain amount of time. Beause only theduration of the movement is used as information for trajetory generation, we wouldhave to use di�erent primitive parameters for di�erent initial onditions. Thus, theseapproahes are inherently loal. While this restrition renders suh approahesless powerful than global representations, temporal representations typially needfewer parameters in omparison to global representations and thus, learning is alsoonsiderably simpli�ed. Many of the most impressive robot appliations like ball-in-the-up (Kober et al., 2008), baseball padding (Peters and Shaal, 2006), walking(Nakanishi et al., 2004) or omplex balaning movements (Neumann, 2011) havebeen implemented with temporal primitives.The generation of the trajetory for these approahes is often an o�ine proessand does not inorporate knowledge of the system dynamis, proprioeptive or othersensory feedbak. Beause the trajetory itself is reated without any knowledge ofthe system model, the desired trajetory might not be appliable, and thus, the real



5.2. Temporal Primitives 43trajetory of the robot might di�er onsiderably from the spei�ed trajetory.Many types of temporal movement primitives an be found in the literature,inluding Dynami Movement Primitives (DMPs, (Shaal et al., 2007)), time-varyingmusle synergies (Bizzi et al., 2008), splines (Kolter and Ng, 2009b), and motiontemplates (Neumann et al., 2009). We will now brie�y review all these methodsand disuss the motion templates approah in more detail as we introdued thisapproah used in the papers (Neumann et al., 2009) and (Neumann, 2011) whihare part of this thesis.In Chapter 8 I will also present unpublished work whih proposes a new type ofa temporal representation whih is based on inherent probabilisti planning.5.2.1 Dynami Movement PrimitivesThe most prominent representation for movement primitives used in robot ontrolare the Dynami Movement Primitives (DMP) (Shaal et al., 2003). DMPs generatemulti-dimensional trajetories by the use of non-linear di�erential equations. Thebasi idea is to a use for eah degree-of-freedom (DoF) of the robot a globally stable,linear dynamial system whih is modulated by a learnable non-linear funtion f :
τ ż = αz(βz(g − y)− z) + f, τ ẏ = z,where the desired �nal position of the joint is denoted by g. The variables y and

ẏ denote a desired joint position and joint veloity, whih represent our movementplan. The temporal saling fator is denoted by τ and αz and βz de�ne the damp-ing properties of the linear system. The non-linear funtion f diretly adds tothe derivative of the internal state variable z, whih is proportional to the desiredaeleration of the movement plan.For eah degree-of-freedom (DoF) of the robot an individual dynamial system,and hene an individual funtion f is used. The funtion f only depends on thephase x of a movement, whih represents time, τ ẋ = −αxx. The phase variable xis initially set to 1 and will onverge to 0 for a proper hoie of τ and αx. With τwe an modulate the desired movement speed. The funtion f is onstruted by theweighted sum of K Gaussian basis funtions Ψi

f(x) =

∑K
i=1 Ψi(x)wix
∑K

i=1Ψi(x)
, Ψi(x) = exp(−

1

2σ2
i

(x− ci)
2).As the phase variable x onverges to zero, the in�uene of f vanishes with inreasingtime. Hene, the dynamial system is globally stable for any initial and goal state,i.e. for f = 0 the dynamial system represents a globally stable linear dynamisystem with g as a unique point attrator.Typially only the linear weights wi are parameters of the primitive whih anmodulate the shape of the movement. The enters ci speify at whih phase ofthe movement the basis funtion beomes ative. The enters are usually equallyspaed in the range of x and not modi�ed during learning. The bandwidth of thebasis funtions is given by σ2

i .Integrating the dynamial systems for eah DoF results into a desired trajetory
〈yt, ẏt〉 of the joint angles whih is subsequentially followed by feedbak ontrol laws



44 Chapter 5. Introdution(see Setion 5.2.6). The desired aeleration ÿ = ż/τ of the system an also be seenas ontrol ation a of the agent, and thus, we an de�ne a poliy
π(a|x;w) = N (a|Φ(x)w + k,Σa),whih is linear in the parameter w of the movement primitive. The linear featuresare given by

Φ(x) =
Ψ(x)x

τ2
∑K

i=1Ψi(x)and the o�set by k = αz(βz(g− y)− z)/τ2. The linear poliy representation allowsan e�ient use of imitation learning (Shaal et al., 2003), as well as for state-of-the-art poliy searh algorithms (Kober et al., 2008; Peters and Shaal, 2006; Theodorouet al., 2010b) whih are only available for linear representations. For a more detaileddisussion on available poliy searh algorithms we refer to Chapter 9.Learning with DMPs often takes plae in two phases (Kober and Peters, 2010).In the �rst phase, imitation learning is used to reprodue reorded trajetories.Subsequently, Reinforement Learning is used to improve the movement.The generation of the trajetory for DMPs is typially an o�ine proess and doesnot inorporate proprioeptive (i.e. the atual joint position qt does not in�uenethe desired trajetory yt) or other sensory feedbak. Exeptions are presented in(Kober et al., 2008) and (Kober et al., 2010). In (Kober et al., 2008), an additionalfeedbak ontroller has been learned to modify the shape of the trajetory in orderto ath the ball in the game 'ball in the up'. Learning suh a feedbak ontrollerdrastially redues the learning speed with DMPs. In (Kober et al., 2010), theauthors learned to adjust meta-parameters of the DMPs suh as the time onstant
τ or the end-point g of the movement to di�erent situations (suh as shooting a ballto di�erent positions).5.2.2 Planning Movement PrimitivesThis is a new idea for movement representation whih is also introdued in thisthesis, see Chapter 8. The key idea is to use planning already inherently inside themovement primitive. Instead of parametrizing the shape of the resulting trajetory,we now parametrize an internal ost funtion used for a probabilisti planner. Thisallows to use abstrat features or goals as parameters and therefore a more ompatmovement representation. For further details please refer to Chapter 8.5.2.3 Motion Templates from Exponential FuntionsMotion templates are temporally extended, parametrized ations, suh as exponen-tial torque or veloity pro�les, whih an be easily sequened in time. They havebeen introdued in our work in (Neumann et al., 2009) and (Neumann, 2011). Theparametrization of a template is typially non-linear and thus more omplex as forthe DMPs. For example, it also inorporates the duration of the single template,like the duration of an aeleration or a deeleration phase. However, in di�ereneto the DMPs, where a single primitive enodes the whole movement, the motion



5.2. Temporal Primitives 45templates are muh simpler, basi building bloks of the movement. Here, alwaysseveral motion templates are required to represent the whole movement.A motion template mp is de�ned by its kp dimensional parameter spae Wp ⊆
Rkp , its parametrized poliy up(s, t;wp) (s is the urrent state, t represents thetime spent exeuting the template and wp ∈ Wp is the parameter vetor) and itstermination ondition cp(s, t;wp).At eah deision-time point σk, the agent has to hoose a motion template mpfrom the set A(σk) and also the parametrization wp of mp. Subsequently the agentfollows the poliy πp(s, t;wp) until the termination ondition cp(s, t;wp) is ful�lled.Afterwards, we obtain a new deision-time point σk+1. The advantage of suh anapproah is that value-based methods suh as in (Neumann et al., 2009) an beused to estimate the values of the states of the deision time points whih allowsthe ombination of motion templates by sequening them in time. This value basedapproah is part of this thesis and an be found in Chapter 7. Still, the simultaneousombination of the templates for several movement tasks remains an open problem.The funtional forms of the poliy πp(s, t;wp) and the termination ondition
cp(s, t;wp) are de�ned beforehand and an be arbitrary funtions. So far we used2 types of motion templates, both are based on exponential funtions and speifyeither torque or veloity pro�les. The intuition behind the use of exponential fun-tions is that the response of linear PD-ontrollers also has an exponential form (atleast for linear systems). The exponential funtions also resemble the bell-shapedveloity pro�les often measured for human motion.Torque Pro�lesIn (Neumann et al., 2009), the motion templates were diretly used to parametrizethe torque pro�le. The templates itself were implemented as exponential funtionsand were used for learning a 1-link and 2-link pendulum swing-up task. The usedmotion templates represent positive (m1 and m2) and negative peaks (m3 and m4)in the torque trajetory. There is also an individual template m5 for balaning therobot at the top position. One peak onsists of 2 suessive motion templates, onefor the asending and one for the desending part of the peak. It is important to notethat the duration of the peaks is also inluded in the parameters of the template,thus, the parametrization is highly non-linear. For a more exat desription of thetemplates please onsult Chapter 7. As we diretly de�ne the torque pro�les, nofeedbak ontrol is used for this type of templates (exept for the balaning template
m5).Veloity Pro�lesWe introdued this type of motion templates in (Neumann, 2011) to illustrate anew poliy searh algorithm, alled Variational Poliy Searh. This paper is alsopart of this thesis and an be found in Chapter 10. Instead of torque pro�les, thetemplates now de�ne desired veloity pro�les whih are subsequently integrated toget a desired trajetory. The trajetory is then again followed by feedbak ontrollaws (we used linear PD-ontrollers). This is a big advantage in omparison to the



46 Chapter 5. Introdutionpreviously used torque pro�les as feedbak ontrol makes the outome of a templateeasier to predit. We used this kind of templates for dynami balaning of a 2-link and a 4-link pendulum. The balaning movement onsisted of a fast bendingmovement to keep balane, subsequently the robot ould return into the uprightposition.The motion is divided into 2 motion templates. Template m1 drives the robotto a set-point of eah joint, Template m2 tries to stabilize the agent at the uprightposition. Eah template onsists of an aeleration phase and a deeleration phase,both implemented by exponential veloity pro�les. Template m2 runs until theepisode is terminated. For a more detailed desription of the parametri form of thetemplates please onsult the appendix of Chapter 10.5.2.4 Time-Varying Musle SynergiesTime-varying musle synergies (d'Avella and Bizzi, 2005; Bizzi et al., 2008) havebeen used to provide a ompat representation of EKG data of musle ativationpatterns. In ontrast to synhronous musle synergies, time-varying musle synergiesalso enode the temporal ourse of the musle ativation pattern. The key idea isthat musle ativation patterns are omposed of a linear sum of simpler, elementalpatterns, denoted as single musle synergy mi(t;w). Eah musle synergy an nowbe shifted in time and saled with a linear fator to onstrut the whole ativationpattern
a(t) =

K
∑

i=1

cimi(t− τi;w),where ci is the linear saling oe�ients and τi the time shift oe�ient. The param-eters w of the primitive now inorporate a desription of eah single synergy (whihan for example be implemented by Gaussian basis funtions) and additionally thesaling and shift parameters for eah primitive. The synergies have the promisingproperty that some synergies might be shared between tasks and only the salingand shift parameters need to be relearned. This property has already been shownto be true for the musle ativation of frogs performing di�erent movements likejumping, swimming or walking and seems to be a promising approah for transferlearning in robots.The time-varying synergy approah allows to ombine the primitives simultane-ously, whih is straightforward due to the linear superposition. However, exept forsome smaller appliations (Chhabra and Jaobs, 2006), these primitives have onlybeen used for data analysis. It is not lear whether this property also holds for robotontrol. One obvious drawbak of the time-varying musle synergy approah is thatthere is no straightforward way to inorporate feedbak beause the synergies aretypially used to diretly deompose the motor ommands. In order to inorporatefeedbak, the synergies need to deompose the joint trajetory instead of a torqueor musle ativation trajetory. In this setup, many properties like that the linearsuperposition of synergies is useful, are likely to be lost.



5.2. Temporal Primitives 475.2.5 SplinesSplines are a ommon piee-wise polynomial interpolation method whih was usedas one of the �rst movement representation (Chand and Doty, 1985; Kolter andNg, 2009b). Most ommonly used are ubi splines. The trajetory is representedby m via-points whih are de�ned by the time points t0 ≤ t1 ≤ · · · ≤ tm−1 andthe ontrol points g0,g1, . . . ,gm−1. In eah interval ti ≤ t ≤ ti+1, the trajetoryis approximated by a ubi polynomial. The polynomial is �tted suh that thetrajetory oinides with the via-points gi and gi+1 at the time-points ti and ti+1 andthat the �rst and seond order derivatives of the trajetory are smooth. However,it is not lear if this is advantageous for representing movements.The parameters w of the spline primitives are de�ned by the via-points, whereusually the �rst via-point (the initial-state) and sometimes the last via-point (thegoal-state) are pre-spei�ed as prior knowledge.5.2.6 Trajetory Traking ControllersHaving disussed di�erent ways how to parametrize the desired trajetory 〈yt, ẏt〉,we still need a ontrol law whih is used to follow this trajetory.Linear Feedbak ControlThe most simple feedbak ontroller is to de�ne a linear PD-ontroller
ut = Kpos(yt − qt) +Kvel(ẏt − q̇t).The ontroller gains an either be pre-spei�ed or also be learned from reinforement.The number of parameters in the ontroller gain matries depend quadratially onthe number of dimensions of the system. We an further simplify the ontrollerby assuming diagonal matries for the ontroller gains, i.e. Kpos = diag(kpos) and

Kvel = diag(kvel).Inverse Dynamis ControlA more sophistiated approah is to use inverse dynamis ontrol (Peters et al.,2008; Siavio and Siiliano, 2005). Instead of using the torque as ontrols, inversedynamis ontrol allows us to use diretly the desired aeleration z to ontrol therobot. However, this requires the knowledge of the dynamis of the robot
B(q)q̈ + n(q, q̇) = u,where n(q, q̇) represents the terms oming from Coriolis and gravity fores and uis the applied torque to the joints.If we replae the atual joint aeleration q̈ with the desired aeleration z, wean see that the ontrol u is a funtion of manipulator state s = [q, q̇] and thedesired aeleration z

u = B(q)z + n(q, q̇). (5.1)



48 Chapter 5. IntrodutionAs z = q̈ denotes a deoupled linear system we an now use a simple PD-ontrollerwith diagonal ontroller gain matries to generate the desired aeleration z

zt = diag(kpos)(yt − qt) + diag(kvel)(ẏt − q̇t)from whih we an determine the joint tourques using Equation 5.15.3 Combination of PrimitivesIn this setion we brie�y disuss several possibilities to ombine movement primi-tives. In priniple there are 2 types of ombinations, sequential and simultaneousombinations. Sequential ombinations are only useful for temporal primitives. Theobvious way if we want to ombine 2 primitives sequentially is to speify when the�rst primitive is �nished (e.g. by an additional parameter) and subsequently exeutethe 2nd primitive. However, we now have to learn the parameters of two primitivessimultaneously, and therefore, the problem has also inreasing omplexity. A po-tential solution to this problem was illustrated in (Neumann et al., 2009) with themotion template framework. Here, the parameters of eah primitive an be hosenseparately at the point of time where the primitive is hosen for exeution. Thisis done by using value-based methods to estimate the values at the states of thedeision time-points. This has only be tried for quite simple templates representingexponential torque pro�les. An evaluation for more sophistiated primitives is stillmissing.The simultaneous ombination is in most ases an unsolved problem. Here, thegoal is to use two primitives simultaneously in order to full�ll two di�erent tasks,for whih the primitives were made, simultaneously. While this is easy for the spa-tial primitives suh as synhronous musle synergies and kinemati synergies, itis unlear how this an be done with temporal representations. Sine the tempo-ral primitives typially rely on a parametrized trajetory, these approahes wouldombine trajetories linearly, whih is for many tasks not appropriate. Here, theexeption is the time-varying musle synergy representation, whih is onstrutedby the simultaneous ombination of synergies. However, this representation hasonly been applied to data analysis, it is not lear how this property an be diretlytransferred to robot ontrol.An interesting new idea for the simultaneous ombination is provided by theplanning movement primitives (see Chapter 8), where we do not need to ombinetrajetories linearly, we an (linearly) ombine ost funtions whih might resultin a strongly non-linear trajetory output of the planner. However, this idea ofombining several ost funtions still needs to be evaluated.



Chapter 6Kinemati Synergies for BalaningControl
Contents6.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496.2 Formal De�nitions of Kinemati Synergies . . . . . . . . . . 536.3 Using Kinemati Synergies for Balane Control of the Hu-manoid Robot HOAP-2 . . . . . . . . . . . . . . . . . . . . . . 556.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636.5 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716.6 Aknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 73Despite many e�orts, balane ontrol of humanoid robots in the presene ofunforeseen external or internal fores has remained an unsolved problem. The dif-�ulty of this problem is a onsequene of the high dimensionality of the ationspae of a humanoid robot, due to its large number of degrees of freedom (joints),and of nonlinearities in its kinemati hains. Biped biologial organisms fae simi-lar di�ulties, but have nevertheless solved this problem. Experimental data showthat many biologial organisms redue the high dimensionality of their ation spaeby generating movements through linear superposition of a rather small numberof stereotypial ombinations of simultaneous movements of many joints, to whihwe refer as kinemati synergies in this paper. We show that by onstruting twosuitable nonlinear kinemati synergies for the lower part of the body of a humanoidrobot, balane ontrol an in fat be redued to a linear ontrol problem, at leastin the ase of relatively slow movements. We demonstrate for a variety of tasksthat the humanoid robot HOAP-2 aquires through this approah the apability tobalane dynamially against unforeseen disturbanes that may arise from externalfores or from manipulating unknown loads.6.1 IntrodutionHumanoid robots are onstruted to have the form of a human body in order tobe able to work in environments optimized for human needs. In the near futurethey are meant to work with people, and human like shape would inrease thepossibility of aeptane of robots in human soiety. However, the humanoid formarries the burden of being very di�ult to ontrol ompared to wheeled robots forinstane. One of the biggest problem is the issue of balane like ounterbalaning



50 Chapter 6. Kinemati Synergiesunknown perturbations. This is a standard situation in a real environment and hasto be solved as a prerequisite to any interation. Due to their human struture,humanoid robots are bipedal, and have therefore a smaller support polygon (whihis de�ned as the onvex hull of the foot support area) ompared to, for example,quadrupeds. In addition, two-thirds of their body mass is typially loated abovetwo-thirds of body height (Winter, 1995). Both fats ontribute to the instabilityof humanoid robots. Furthermore, a failure of their balane ontrol is not onlybad for the robot, sine a fall is likely to produe damages, but may also hurtpeople that interat with the robot. Therefore, a ruial point for allowing humanrobots to work in human environments is to �nd robust and e�etive methods fortheir balane ontrol. These solutions should indue naturally looking movementsin order to inrease the possibility of aeptane of humanoid robots as partners ofhumans.The balane ontrol problem of humanoid robots is known to be hard to solve dueto the high dimensionality of their ation spae (sine many degrees of freedoms,i.e., joints, are involved) and the nonlinearities inherent to any kinemati hain.Beause of the importane of �nding solutions to this problem, a lot of e�ort hasalready been invested and many approahes from di�erent researh areas have beenproposed.A �rst step was made by introduing the Zero Moment Point (ZMP) riterion(Vukobratovi¢ and Borova, 2004). It simpli�es the high dimensional problem byreduing all ating fores above the foot (in ase of single support, i.e., ontat withthe ground with only on foot) to one single fore (Vukobratovi¢ and Borova, 2004).Due to physial interation between foot and ground we get at a so-alled groundreation fore. This ground reation fore is loated at the point where the forebetween foot and ground ats and has opposite sign. This two dimensional point(alled ZMP) on the ground an then be used to haraterize the dynami state ofthe robot: If the ZMP lies within the support polygon of the robot, the state ofthe robot is alled dynamially stable. This 'ZMP stability riterion' redues theproblem of stability to oordinate the limbs of the robot (i.e., apply appropriatetorques through their servos) in suh a way, that the ZMP stays within the supportpolygon1.While the ZMP an be alulated analytially, the position of this point an alsobe measured by pressure sensors (atually measuring the ground reation fore).From this point of view the resulting point is alled aordingly Center of Pressure(CoP). As Goswami demonstrated (Goswami, 1999) the ZMP equals the CoP, sinethey desribe the same phenomenon from di�erent points of view. In this paperwe are going to use the name CoP, sine we use the pressure sensor informationin ombination with the support polygon to estimate the state of stability. Sinethe original ZMP de�nition has some limitations (Goswami, 1999), other groundreferene points have been proposed, for example, the Foot Rotation Indiator (FRI)introdued by Goswami (Goswami, 1999) or the Centroidal Moment Pivot (CMP),just to name two. For a detailed disussion we refer to (Popovi et al., 2005).1The robot ould also hange the size of the support polygon by, for example, hold on tosomething. For a disussion of di�erent ontrol strategies in this ontext we refer to (Goswami andKallem, 2004).



6.1. Introdution 51Other approahes have been proposed that are also based on a redued modelof the robot. For example, the Inverted Pendulum Model, introdued by Kajita et.al. (Kajita et al., 1992), has proved to be very useful. It desribes the whole robot,under some assumptions, by a linear inverted pendulum and thereby, redues thenumber of dimensions. Extensions of this model have also been studied, for example,the Three-Dimensional Inverted Pendulum Model 3D-LIPM (Kajita et al., 2001) andthe Reation Mass Pendulum (RMP) (Lee and Goswami, 2007). Although all theseredued models are useful, still, at the point of implementation one has to �ndontrol shemes whih map the strategy bak into the full dynami model (as Leeand Goswami pointed out (Lee and Goswami, 2007)). Hene, they have di�ultiesdealing with unknown external perturbations, sine these perturbations present ahange in the dynamis of the robot.An alternative approah to balane ontrol is to rely on the stati model, i.e.,to use the kinemati model and the mass distribution of the robot. By employinga loal Jaobian Pseudo-Inverse (JPI) approah on loal information, like ResolvedMotion Rate Control (RMRC) (Whitney, 1969), the optimal hange of the jointangles an be alulated. Some of these frameworks even allow to set prioritiesamongst on�iting tasks (Baerloher and Bouli, 1998, 2004). Aordingly, balan-ing ould be one of these tasks, typially with a high priority. In order to deal withunforeseen perturbations, the setup has to be used inside a feedbak ontrol loop,for example as proposed in (Mansard and Chaumette, 2007). However, a drawbakof suh an approah is that it alulates online inverse kinematis, whih involvesomputationally expensive matrix inversions.Other approahes try to solve diretly the dynami equations within onstraints,whih re�et the border of stability. For example, Kagami et. al. (Kagami et al.,2001) proposed an online balaning sheme by solving a quadrati programmingproblem. However, the preise dynami model of the robot is needed in order toapply this approah. Therefore, it has di�ulties in situations where the dynamimodel of the robot signi�antly hanges due to external unknown fores, for example,introdued by piking up unknown loads or ontat with the environment, whihare standard situations for humanoid robots working in a human environment.Biologial organisms fae similar problems, but, as experimental data suggest,employ a radially di�erent strategy for ontrolling their movement apparatus withmany degrees of freedom (DoF), in partiular for balane ontrol. Numerous studiesfrom the Lab of Bizzi at MIT ((Mussa-Ivaldi, 1999; d'Avella et al., 2003; d'Avella andBizzi, 2005)) have shown that the entral nervous systems of a variety of organismsemploy a modular arhiteture for motor ontrol, whereby many di�erent movements(arm movements, walking, jumping, swimming) an be onstruted as largely linear(but non-negative) ombinations of a rather small repertoire of movement primitives.A very simple modular arhiteture in the ontext of biologial data analysis arethe synhronous musle synergies (d'Avella and Bizzi, 2005), whih are a spatialmovement representation (see Chapter 5). Synhronous musle synergies de�ne alow-dimensional linear basis of a high dimensional ontrol vetor, like the musleativations. The musle ativation vetor a(t) is therefore given by
a(t) = Mc(t),



52 Chapter 6. Kinemati Synergieswhere eah olumn-vetor of M de�nes a single musle synergy and the vetor
c(t) de�nes the musle synergy oe�ients. However, it is di�ult to translatesuh representations diretly to robot ontrol as they are diretly de�ned in theation spae of the robot and therefore, do not provide any faility for inorporating(proprioeptive) feedbak. In this work we introdue a robot ontrol strategy whihhas been inspired by the synhronous musle synergy approah, however, we de�nethe synergies in the joint spae of the robot, whih easily allows the use of feedbakontrol laws. Sine the synergies are de�ned by the kinemati hain of the robot,we will denote this approah as kinemati synergies.Also reent work on whole-body movements of humans ((Freitas et al., 2006;Trion et al., 2007; Torres-Oviedo and Ting, 2007)) show that balane ontrol andother human body movements during standing an be understood as ombinationsof a small set of stereotypial kinemati synergies (eah of them a�ets severaljoints). Experiments, where humans where asked to bend their upper trunk, whilereording the angles of the ankle, hip and knee, revealed after a Prinipal ComponentAnalysis (PCA) of these angles, that already the �rst priniple omponent anexplain over 99% of the total angular variane (Alexandrov et al., 1998). Thissuggests that a set of musles (multiple degrees of freedom) are ontrolled by a lowdimensional (possibly even one dimensional) variable. Other experiments suggestthat this priniple of kinemati synergies is present over a wide range of di�erentmovements like reahing and grasping (Mason et al., 2001), upper-arm movement(Sabatini, 2002) and making a step (Wang et al., 2005). Hene, kinemati synergiesseem to present a general strategy biologial organisms apply.We are speially interested in humanoid balane ontrol. In a preeding onfer-ene paper (Hauser et al., 2007) we demonstrated how this basi modular strategybased on kinemati synergies an be adapted for balane ontrol of a humanoidrobot. The kinemati synergies were alulated o�ine by an optimization proessbased only on the stati model (kinematis and masses) of the robot2. Despite theuse of the stati model, we ould demonstrate that the onept of kinemati syn-ergies, when plugged into a linear ontrol loop, an provide a powerful sheme fordynami balane ontrol. This artile presents an extension of the previous work(Hauser et al., 2007) by following points: (1) We demonstrate that our approah ofkinemati synergies is robust to parameter hanges of the model of robot. Changesof the stati model present a standard situation for biologial systems sine theygrow or even get injured (e.g., loosing a leg). (2) Additionally, we show that nospeial tuning of the ontroller parameters is needed sine the proposed frameworkworks (i.e., balanes the robot) within a wide range of these parameters. (3) Wedemonstrate that the hosen kinemati synergies, originally designed for double sup-port, an also be applied for the ase of single support. (4) Finally, we demonstratethat the proposed approah for balane ontrol an be transferred from a simulatedhumanoid robot without any hanges to a real humanoid robot.In the next setion we de�ne the kinemati synergies. Setion 6.3 explains howto onstrut and use kinemati synergies for balane ontrol of the humanoid robot2This optimization proess is losely related to the Jaobian Pseudo-Inverse approahes (Siav-io and Siiliano, 2005), however, the omputations are only needed for the o�ine onstrutionof the synergies and not during online ontrol.



6.2. Formal De�nitions of Kinemati Synergies 53HOAP-2. In Setion 6.4 we present a number of experiments with the simulatedand the real HOAP-2.6.2 Formal De�nitions of Kinemati SynergiesIn this setion we de�ne the kinemati synergies whih are used to redue highdimensionality and nonlinearities. Typially, humanoid robots have a high numberof degrees of freedom (DoF), namely joints. We interpret kinemati synergies (KS )as a way to redue the DoF by putting a de�ned set of joints under the regime ofone ontrolling parameter, whih we refer to as the KS -parameter s. We de�ne akinemati synergy as a nonlinear mapping Φ of the KS -parameter s ∈ R to a �xednumber of m degrees of freedom (joints).De�nition 1. A kinemati synergy (KS) is a funtion Φ := Φ(s) whih maps theKS-parameter s ∈ R onto a m dimensional vetor of joint angles qKS = Φ(s):
Φ : R→ R

m . (6.1)The supersript KS denotes the subset of m joints, whih are ontrolled by the KS.The total number of joints of the robot is denoted by n. Further, we de�ne thefuntion ϕ

ϕ : R
m → R

n (6.2)to embed the m-dimensional subspae spanned by Φ into the n-dimensional spaeof all joints of the robot. This embedding opies the angles of all joints a�eted by
Φ and leaves the remaining joints onstant.A KS is typially applied in order to ontrol a low-dimensional, or even one-dimensional, variable y ∈ R

l. In general the output y depends on all n joint positions
q ∈ R

n of the robot and an be desribed by a nonlinear funtion f(q)

f : R
n → R

l. (6.3)We want the KS to ontrol the output y = (f ◦ ϕ ◦Φ)(s). In the ase of balaneontrol, the funtion f represents the nonlinear relationship between all joints of therobot and a ground referene point like the CoP. We will use two KS Φx and Φz forthe two dimensions of the CoP. Therefore, in this partiular ase eah KS is usedto ontrol a one-dimensional output (l = 1).Sine suh a KS a�ets m degrees of freedom that depend just on a onedimensional parameter s, we an impose further onstraints on the funtion Φ.A reasonable hoie for suh a onstraint is a linear relationship between theontrolling parameter s and its orresponding output y. This redues nonlinearities,inherent to kinemati hains, and hereby failitates ontrolling and learning. Hene,we are partiularly interested in the following type of KS :
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Φ(s)

s ∈ R

ϕ(qKS)

qKS
∈ R

m q ∈ R
n

f(q)

y ∈ R

linearityFigure 6.1: Sheme for the omposition of the funtions ϕ and f aording to (6.2) and(6.3) with the kinemati synergy Φ.De�nition 2. A linearizing kinemati synergy is a kinemati synergy aording toDe�nition 1, whih has a linear relationship between its ontrolling parameter s andthe orresponding (to be ontrolled) output y
y = (f ◦ ϕ ◦Φ)(s) = k · s, k ∈ R . (6.4)We restrit our attention in this artile to suh linearizing KS, to whih wesimply refer as KS.For a better understanding we provide some additional remarks:1. As stated above the property of linearity in De�nition 2 redues inherentnonlinearities. But Equation 6.4 presents a stati mapping, and therefore itwill only linearize the stati part (linearization at q̇ = 0, q̈ = 0) of the wholedynami model of the robot. Nevertheless, it will redue nonlinearities in thedynami regime to some extent too, sine the dynami part is oupled withthe stati part of the di�erential equations.2. The ontrolled variable y is one-dimensional, but is ontrolled by m > 1 joints.Hene, we have additional redundant degrees of freedom and therefore, we arefree to impose additional onstraints on the KS. Naturally, the hoie willdepend on the task for whih the KS are onstruted. In our ase of balaneontrol we used onstraints to assure double support and an upright posture(used in the optimization proess desribed in Setion 6.3.1).3. KSs are alulated o�ine for eah robot (see Setion 6.3.1) and subsequently�xed during simulation as well as when used with the real robot. In a biologialinterpretation we assume the KSs to be found by evolution.4. The presented framework was kept as simple as possible. Various extensions,whih lead to a better performane for partiular tasks, are possible. Oneould de�ne a two dimensional kinemati synergy (i.e., s ∈ R

2 and y ∈ R
2) ortime-varying KSs (qKS = Φ(s, t)), whih depend on a yli movement, forexample, to be used in a walking yle.
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(b)Figure 6.2: (a) The real HOAP-2 robot and (b) its shemati struture. The red markedand labeled joint rotation axes are ontrolled by the kinemati synergies Φx and Φz.6.3 Using Kinemati Synergies for Balane Control ofthe Humanoid Robot HOAP-2In this setion we show in detail how to use kinemati synergies for balane ontrolof the humanoid robot HOAP-2, see Figure 6.2(a). The robot has n = 25 degrees offreedom (rotational joints). Its struture an be seen in Figure 6.2(b). The goal is toonstrut KSs for balane ontrol in double support. Therefore, we have to deide(a) what output funtion f and output variables y we are going to use, (b) whihsubset of m joints we put under the regime of the KSs and () what additionalonstraints we are going to apply to onstrut the KS s:(a) For balane ontrol a natural hoie for the funtion f is a ground referenepoint. These points are mathematially de�ned and an be analytially de-rived, but in pratie, they are estimated via pressure sensors. Therefore, wewill denote the referene point measured by the pressure sensors as measuredCenter of Pressure (mCoP). HOAP-2 has four of suh sensors per feet, loatedat the orners (see Figure 6.3).Sine a KS is de�ned as a stati mapping, we use the stati version of themCoP to onstrut our KS. In the stati ase (zero joint veloity q̇ and zerojoint aeleration q̈) the mCoP oinides with the projeted Center of Mass(pCoM). Therefore, we hose the pCoM as output funtion f . Sine the pCoMis a two dimensional point on the supporting surfae, we split it up into itstwo dimensions yx = pCoMx and yz = pCoMz and de�ne two separate KS s,namely Φx and Φz, in order to ontrol these one-dimensional outputs yx and
yz.(b) Next, we have to deide what joints are plaed under the regime of our KSs.A natural hoie for balane ontrol is to use all m = 12 leg joints (three hipjoints, one knee joint and two ankle joints for both legs). Their orrespondingrotational axes are highlighted in red in Figure 6.2(b). The additional surplus
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Figure 6.3: Support polygon on the support surfae for the robot, inluding the touhsensors, whih are used to measure the enter of pressure (mCoP). Blak arrows indiatethe x dimension (forward/bakward: range 9.5 cm) and z dimension (left/right: range:
14.3 cm) for movements of the enter of pressure.of joints are free to be used for other tasks (grasping, lifting weights, trakingobjets, et.). Their movements learly will hange the pCoM too, but as weshow later in Setion 6.4, our approah is able to deal with that in a naturalway.() Finally, we hoose some additional onstraints (next to the linearity property)for the KS s, whih are used for the optimization proess desribed in the nextsubsetion. Suitable onstraints for balane ontrol are to keep the upper bodyas upright as possible and to maintain double support.6.3.1 Calulating Kinemati Synergies with Inverse KinematisIn this setion we desribe how do obtain the desired KSs in detail. All alulationsare based only on the kinemati model of the robot inluding the mass informa-tion (no dynamial information like the inertia matries is needed). The KSs wereonstruted o�ine and subsequently �xed during ontrol ation.We de�ned an initial posture qinit (see Figure 6.5-A). This posture resulted (forthe ase of a horizontal support surfae) in a pCoM at the enter of the supportpolygon. We used a posture with wide-spread arms in order to avoid self ollisionwhen moving. The KS-parameters sx and sz were resaled suh that the values
−1 and +1 orresponded to the borders of the support polygon. Therefore, theregion of ating without falling was (for the ase of a horizontal support surfae)
sx/sz ∈ [−1,+1] for both dimensions x and z, see red-dashed lines in Figure 6.3.



6.3. Using Kinemati Synergies for Balane Control of the HumanoidRobot HOAP-2 57We additionally set the origin of the oordinate system for the pCoM to the enterof the support polygon and therefore, the resulting outputs in the initial posturewere fx(qinit) = fz(qinit) = 0.We will only desribe the proedure for Φx. The seond kinemati synergy Φzwas obtained in a similar manner. The KS was implemented as look-up table whihmaps the KS -parameter sx ∈ [−1,+1] to joint angle o�sets (with regard to theinitial posture)3, i.e., ∆qx = ϕ(qKS
x )−qinit. Note that the look-up table representsa disretized version of a linearizing kinemati synergy as de�ned in De�nition 2. Inorder to obtain joint angle o�sets in between the table entries a linear interpolationwas used. We used joint angle o�sets instead of absolute joint angles in order tobe able to use a linear superposition (as biologial data suggest) of both KS s, i.e.,

∆q = ∆qx+∆qz. Although, the problem is (due to the kinemati hains) nonlinear,we will show that a linear superposition is valid for a wide range of postures. Thelinear superposition allows us to use two separate simple KS, whih depend only ona one-dimensional KS -parameter, and whih an be onstruted independently4.In order to onstrut the look-up table, we divided the range of the KS -parameter
sx over the support polygon into 80 points. Therefore, the distane between twoneighboring points represents 9.5 m / 80 ≈ 0.12 m in the pCoM spae, whihorresponds to a step of ∆sx = 0.025 in the KS -parameter spae.The onstrution of the KS onsisted of two alternating optimization steps (seeoptimization sheme in Figure 6.4). Starting from qinit and sx = 0, the �rst op-timization step was used to move the pCoM of the robot to the next point y′x ofthe look-up table (loated 0.12 m in x-diretion from the origin). In addition, theoptimization tried to keep the upper part of the body upright. An inverse kinemat-is algorithm based on the Jaobian Pseudo-Inverse (JPI) (Siavio and Siiliano,2005) was used to alulate the joint movement. Therefore, the applied Jaobianmatrix onsisted of two 3 × m sub-matries, the Jaobian for the position of thepCoM and the Jaobian for the rotation of the torso. However, due to the move-ment alulated by this optimization, the position of the right foot relative to theleft foot tended to hange. This should be avoided in order to prevent the robotfrom falling. Therefore, a seond JPI optimization step (see Figure 6.4) was used tomove the right foot bak into its original position relative to the left foot. For thisoptimization the same Inverse Kinematis algorithm was applied using only the 6joints of the right leg.These two previously desribed steps were iterated until the desired output value
y′x was reahed. Subsequently, the joint angle o�sets to the initial posture werestored in the look-up table and, now starting from the new joint position, the nextentry of the look-up table was alulated. The same proess was applied for theopposite diretion (i.e., for sx from 0 to −1). This �nally led to a look-up table forthe range sx ∈ [−1,+1] whih mapped the KS -parameter sx to joint angle o�sets.Figure 6.5 presents four typial postures for di�erent KS -parameter pairs [sx/sz].The enter of the �gure shows the support polygon (gray area) and the oordinate3The funtion ϕ is used to projet the m-dimensional vetor qKS

x into the n-dimensional spaeof all joints.4Without this property, one would have to onstrut one single KS with a two-dimensionalKS -parameter, i.e., s ∈ R
2.
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Figure 6.4: Sheme of the onstrution proess for the look-up table for the KS Φx in theform < sx,∆q >. Optimization step 1 moves the pCoM in the desired diretion to y′x,while keeping the trunk in an upright position. Optimization step 2 keeps the feet at theinitial positions. The proess ends when the end of the support polygon (SP) is reahed.system of the KS -parameters. The yellow irles (A-D) represent the postures inthe KS -parameter spae. The orresponding sreenshots an be seen in the ornersof the �gure.Figure 6.6(a) shows the mapping of the KS -parameter sx to the outputs
yx =pCoMx and yz =pCoMz for the KS Φx. We an learly identify a linear rela-tionship between sx and yx, whereas the seond output dimension yz is una�etedby sx. The same plot for the KS Φz is shown in Figure 6.6(b).A graphial representation of the joint angle o�sets over the range of the KS -parameter spae (from −1 to +1) for the kinemati synergies Φx and Φz is presentedin Figure 6.7. Similar to their biologial prototypes (see Figure 4 in (d'Avella andBizzi, 2005)), the two KSs largely a�et disjoint sets of joints. The joints mainlyresponsible for the movement in x-diretion are orthogonal to the joints mainly re-sponsible for the z-diretion. Note that the human musle-skeleton system exhibits,although more omplex, a similar struture. This orthogonality suggests that we
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Figure 6.5: Typial postures of the simulated HOAP-2 resulting from the KSs Φx and Φzfor di�erent KS -parameters. The enter of the �gure shows the de�ned oordinate systemfor the KS -parameters sx and sz. The gray shaded area indiates the support polygon(SP) of our robot standing with both feet on the ground. The red dashed lines depit thelimits of the SP and orrespond to the values sx = ±1.0 and sz = ±1.0. The yellow pointsshow typial postures in the KS -parameter spae. Corresponding postures an be seen inthe orners (labeled from A to D). The used KS -parameters [sx/sz] an be seen below thesreenshots. Sreenshot [A℄ shows the initial posture qinit (sx = sz = 0 / at the origin)[B℄ shows the robot bending forward with sx = 0.8 and sz = 0.0, while in [C℄ the robot isbending to the left (with sx = 0.0 and sz = −0.8). Sreenshot [D℄ presents a ombinationof both kinemati synergies with sx = −0.5 and sz = 0.5.an ombine the two KSs linearly, whih is done by summing up the initial postureand the two joint angle o�sets qL = qinit +∆qx +∆qz.In order to show the validity of the linear superposition of the two KS s, weevaluated empirially the deviation of the atual pCoM < fx(qL), fz(qL) > fromthe ase of perfet linear superposition < fx(qinit + ∆qx), fz(qinit + ∆qz) >. Thedeviations for the whole support polygon an be seen in Figure 6.8. Exept forextremal ases, where the pCoM is loated at a orner of the support polygon, thedeviations from linearity are quite small.Note that the desribed optimization proedure is losely related to standardJPI approahes. However, these approahes are typially used for online ontrol,involving omputationally expensive real-time alulations. With the use of kine-mati synergies most of this omputational load an be transferred to the o�ineoptimization sheme. As a onsequene, and as we will demonstrate later, withouta signi�ant loss of performane the robot an be balaned with very little ompu-
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Figure 6.6: (a) The plot shows the mapping of the KS -parameter sx to the outputs yx =pCoMx and yz = pCoMz for the KS Φx . While the relationship between sx and yx is linear(as demanded by the de�nition of a linearizing kinemati synergy), yz is nearly una�etedby sx. (b) The same plot for the seond KS -parameter sz.
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−1 −0.5 0.0 +0.5 +1Figure 6.7: Graphial representation of the KS s Φx and Φz. Shown are the joint angle o�-sets (in olor oding) for the kinemati synergies Φx (moves the pCoM forward/bakward)and Φz (moves the pCoM left/right) for the HOAP-2 over the range [−1,+1] for the KS -parameters sx and sz. Note that these two KSs a�et largely disjoint sets of joints.tational power.6.3.2 From Statis to Dynamis by Using Linear ControllersThe kinemati synergies Φx and Φz were onstruted using the pCoM as outputfuntion, and therefore they were based on the stati model of the robot. However,the robot an only estimate the mCoP with its pressure sensors5, whih is alsoa�eted by the dynamis of the robot. Nevertheless, we are still able to use theobtained KSs in a dynami ontext if following assumption holds:Assumption: The robot moves su�iently slowly suh that
mCoP ≈ pCoM.5In our simulations of the HOAP-2 we also used simulated pressure sensors to alulate themCoP.
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Figure 6.8: Empirial evaluation of the validity of the linear superposition of theKSs Φx and
Φz. We alulated the deviation of the atual pCoM < fx(qinit +∆qx +∆qz), fz(qinit +
∆qx + ∆qz) > from the ase of perfet linear superposition < fx(qinit + ∆qx), fz(qinit +
∆qz) >. The Eulidean norm of the deviations is shown in olor ode for the whole supportpolygon. Exept for extremal ases, where the pCoM is loated at a orner of the supportpolygon, the deviations from linearity are quite small. The white dotted lines depit theontours of the feet.As we will demonstrate in this setion, the assumption allows us to use simple linearontrollers in onjuntion with the KS s. Due to the assumption we are in priniplelimited to "su�iently slow" movements. However, we will demonstrate in ourexperiments that a wide range of unknown external fores an be ounterbalanedby our approah, despite this limitation.We now explain how the kinemati synergyΦx an be used in ombination with alinear ontroller for balaning the robot in x-diretion (forward/bakward). For theother KS Φz the proess is similar. As long as the assumption holds, the funtionfrom the time derivative ṡx of the KS -parameter to mCoPx an be approximatedby a linear transfer funtion

P (z) =
K

(z− 1)
, (6.5)with K ∈ R

+ and with z being the time shift operator for disrete systems (Op-penheim and Willsky, 1992). The denominator polynomial represents an integrator(one pole at z = +1), whih integrates the veloity ṡx of the KS -parameter to obtain
sx. As long as the dynamial e�ets are small enough, they an be seen as unertain-ties in the linear model of Equation 6.5. Already a simple linear feedbak ontrolleran handle these small unertainties. In order to obtain a losed ontrol loop wede�ne a feedbak error

ex := ỹx − yx (6.6)with ỹx being the desired output value and yx = mCoPx. The goal is to preventthe robot from falling. Therefore, the mCopx should stay lose to the enter of thesupport polygon. Sine we have de�ned the enter of SP at the origin, see Figure6.3, the desired value ỹx is set to 0.We an now use a general standard PID ontroller to get the ontroller output
ṡx

ṡx = KP ex +KI

∫

exdt+KD
dex
dt

, (6.7)
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Figure 6.9: Closed ontrol loop for the kinemati synergy Φx. Sine we want to have themCoPx at the enter of the support polygon, the referene point is set to ỹx = 0 . Theexternal perturbation d results from external fores and/or model unertainties.where KP , KI and KD are the positive PID ontroller parameters. Figure 6.9shows the desribed losed ontrol loop for the kinemati synergy Φx. Sine theplant (see Equation 6.5) already ontains an integrator, the use of PD ontrollers(KI = 0) is su�ient. For the KS Φz we used a similar ontrol loop, whih workedindependently from and in parallel to the �rst ontrol loop.We have desribed the ontrol sheme to ontrol around a set point (ỹx = ỹz =
0). However, the ontrol loop an also be used to move the mCoP on any desiredtime varying trajetory6, i.e., ỹx(t) and ỹz(t). This is useful in many appliations.For example, for the purpose of initiating a walking yle, the robot has to moveits mCoP under the future supporting foot in order to be able to raise the other legwithout falling.The ontroller parameters used in the experiments were empirially found tohave a reasonable performane. As we demonstrate (see Subsetion 6.4.3) there isa wide range of appropriate ontroller parameters and therefore the hoie of theparameters is not ritial.Linear and nonlinear ontrol theory o�ers a number of possible improvements forthe ontrollers, for example, adaptive ontrol (see (Astrom and Wittenmark, 1995))or robust ontrol shemes, optimal ontrol and di�erent trial and error approahes to�nd good ontrol parameters (see for example (Kuo and Golnaraghi, 2002)). Evenhigher order ontrollers or di�erent ontrol strutures than in Figure 6.9 ould beused. However, in order to illustrate the apability of using kinemati synergies forbalane ontrol, we only use the previously presented, simple PID ontrollers.6.3.3 Examination of Di�erent Possible PerturbationsLets take a loser look at possible perturbations d for the proposed ontrol loop(Figure 6.9). We will distinguish between three di�erent kinds of perturbations:1. Model perturbations: Sine we obtained our KSs from the stati model ofthe robot, unmodeled dynamis, whih will always be present to some extent,result in model perturbations.2. Internal perturbations: The mCoP is also in�uened by movements of joints,whih are not under the ontrol of the kinemati synergies. For example,if our humanoid robot uses the presented KSs for balaning and additionally6 We have already demonstrated that in (Hauser et al., 2007).



6.4. Experiments 63moves a heavy weight with its arms, this movement will also hange the mCoPposition. Note that the proposed ontrol loop does not need any informationabout the movements of these joints.3. External perturbations: For example pushes, pulls, ontat with the environ-ment or a moving support platform.Sine a standard feedbak ontrol loop has the property to suppress the perturba-tions d, our approah works for a wide range of tasks. As shown in our experiments(Hauser et al., 2007), these tasks inlude ounterating external fores, followingtrajetories, ompensating for fores introdued by movements of the limbs of therobot or even a mixture of these tasks. If the perturbation is too large, the assump-tion (mCoP ≈ pCoM) might be violated and the ontroller will therefore not beable to ompensate the resulting error anymore. Yet, as our experiments show, theproposed system is apable to reat appropriately to a wide range of perturbations.6.4 ExperimentsWe onduted experiments with our proposed approah for a variety of possible ap-pliations. We demonstrate that kinemati synergies with linear ontrollers empowera humanoid robot to ounterbalane di�erent kinds of dynami perturbations. Inour �rst experiments the robot had to ounterat a moving support surfae (plat-form where it stood on) and abrupt unforeseen external fores at the same time(see Subsetion 6.4.1). Subsequently, we show that the approah an also be ex-tended easily to balaning in single support (the robot only stood on the left foot,see Subsetion 6.4.2) and that robustness against parameter hanges is an inherentproperty (Subsetion 6.4.3). Furthermore, we ompare our approah to an online Ja-obian Pseudo-Inverse (JPI) algorithm. Finally, we demonstrate that our approahan be easily transferred from the simulation to the real robot without any speialpreautions (Subsetion 6.4.5).All simulations were implemented in the robot simulation software Webots(Mihel, 2004). A detailed model of the dynamis of the HOAP-2 robot, basedon data provided by the vendor Fujitsu, was used. The basi simulation time stepwas set to 2 ms and the time steps for the ontrol loops were set to 8 ms. In thegeneral setup we had two kinemati synergies (Φx and Φz), whih were used withintwo separate ontrol loops. They reated independently from eah other on theirorresponding output dimension x and z. In dependene on their errors ex and ez ,both linear ontrollers alulated the veloities ṡx and ṡz of their KS -parameters.The veloities were integrated numerially to obtain sx and sz, whih were thenmapped via the look-up table into joint angle o�sets. Subsequently, these joint an-gle o�sets were linearly ombined as desribed in Subsetion 6.3.1 to get the atualjoint target angles. Finally, these angles were transformed into torques by loal PDontrollers7 at the servos.7Note that these are the hardware ontroller of the servos and not the ontrollers from ourproposed ontrol loops.
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(h) ativation sz of KS ΦzFigure 6.10: Result for the experiment with a moving support platform (surfboard) andunexpeted external fores (wind) W1 and W2. The balane of the HOAP-2 is ontrolledby two linear ontrollers ombined with the kinemati synergies. Without balane ontrol(red dashed line in () and (d)) the mCoP left the support polygon after 16s (in responseto the wind W2), and the robot fell over. With balane ontrol (solid lines) the stability ofthe robot was maintained in spite of unexpeted external fores.We provide supplementary multimedia material in form of two videos,available at http://ieeexplore.ieee.org. The �rst one (simulation_videos.avi)shows all simulated experiments of the following setions. The seond video(real_robot_videos.avi) shows the experiments with the real robot. Both videos(in ompressed form) are about 13 MB in size.6.4.1 Moving Support Platform (Surfboard Task)In this task we simulated the HOAP-2 robot standing on a movable support platform(surfboard). The surfboard ould rotate about the x-axis with angle Θx and aboutthe z-axis with the angle Θz. Typial senarios of the setup an be seen in Figure6.11.
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(a) at 3 seonds (b) at 7 seonds
() at 12 seonds (d) at 16 seondsFigure 6.11: Sreenshots of the posture of the (simulated) HOAP-2 at 4 time points duringthe balaning experiment with the random moving support surfae (surfboard) and externalperturbations (winds). In Figure (b) the wind W1 was blowing from the right (point ofview of the robot ; red arrow). As a onsequene, the robot was leaning against the wind inorder to move its mCoP bak into the middle of the support polygon. In Figure (d) anotherwind W2 was blowing from the right and the bak (red arrow), resulting in a diagonal fore.Again, the robot responded properly to this online modi�ation of its dynami model.We onsidered the ase where the surfboard was tilted dynamially in random di-retions. The random trajetories for the angles Θx and Θz were generated indepen-dently from eah other by smoothing (by the use of a disrete low-pass FIR-�lter8)random trajetories of jumps (steps) with random amplitudes and random dura-tions. Typial resulting trajetories are presented in Figures 6.10(a) and 6.10(b).In addition to the random movement of the surfboard, unforeseen external fores(for example wind fores or ontat with other objets) were applied to the torsoof the robot at various points in time. We designed this senario in order to showthat our proposed approah is able to deal with di�erent kinds of external pertur-bations simultaneously. Furthermore, ontrol strategies that require knowledge ofthe dynami model of the robot are inappliable in this senario, beause the exter-nal fores hange the dynami model of the robot in an unknown, online manner.Figure 6.10 shows the results when an external fore W1 = [0, 0, 5]TN (a fore fromthe right side) was applied at the torso of the robot during the interval [5s, 10s], andanother external fore W2 = [5, 0,−5]TN (a fore from the right and the bak) wasapplied during the interval [15s, 20s] (we shaded these two time intervals in gray).Note that the onsets of the winds were abrupt (i.e., a step funtion in time) andtherefore represented highly dynamial perturbations to the system.Typial trajetories of the mCoP for the desribed setup, with and withoutbalane ontrol, are shown in Figures 6.10() and 6.10(d). Without balane ontrol,the robot lost balane after 16s (indiated by a blak star in Figures 6.10() and6.10(e)), whereas with our ontrollers, balane was maintained. The error signals8The used FIR-�lter had three poles at 0.997.



66 Chapter 6. Kinemati Synergiesfor both dimensions x and z an be seen in Figures 6.10(e) and 6.10(f). Notethat both perturbations, the movements of the surfboard and the external fores,are external perturbations. In addition, as the setup was dynami, inherent modelperturbations were also always present. With this experiment, we demonstrated thatour approah is able to reat online against a mixture of di�erent types of unforeseenperturbations.6.4.2 Kinemati Synergies in Single SupportIn this experiment we demonstrate how to apply our approah in single support. Weused two di�erent strategies. The �rst strategy reused the KSs previously alulatedfor double support (referred to as DS-KS ). We swithed o� the output of the ontrolloop for the joints of the lifted leg and set the desired mCoP position to the enterof the redued support polygon (de�ned by the single supporting foot). The seondstrategy was to design new KSs for single support (referred to as SS-KS ). We usedthe same proedure as desribed previously in Subsetion 6.3.1, with the distintion,that we used a di�erent initial position (the one shown in Figure 6.12(a)) and weonly optimized the joint angles of the supporting leg.In the experimental setup the robot stood only on its left foot. The right foothad no ontat to the ground and therefore the right leg was free to perform anydesirable movement. In our example the robot is supposed to perform a kik motion.The initial posture an be seen in Figure 6.12(a). The orresponding s-values forthis posture were sx = 0 and sz = 0.195 for DS-KS and sx = sz = 0 for SS-KS.In order to demonstrate the validity of both strategies, we moved the body jointand the hip joints of the left leg (these joints were not under the ontrol of theKS s) in order to perform a kik motion, whih also inluded the upper trunk (seeFigure 6.12(b)). For the robot this movement represented an internal perturbationas disussed in Subsetion 6.3.3. When no balaning ontrol was ative, after about
7.5s of simulation time, the robot tipped over and fell. With the ontrollers swithedon, the robot was able to keep balane during the kik motion (in both ases, SS-KSand DS-KS ). Figure 6.13 shows the time ourse from 2s to 12s of this experimentwith DS-KS. Similar results were obtained with SS-KS. Figures 6.14(a) and 6.14(b)show the trajetories of the KS -parameters sx and sz. Note that in the ase of DS-KS, there was an o�set at the beginning of the simulation for the KS -parameter sz.This re�ets the o�set of the initial posture for single support from the original initialposture for double support. Figures 6.14() and 6.14(d) present the errors duringthe simulation. The ontrollers ounterated the disturbanes orretly and kept theerrors lose to zero for both strategies. The dashed red urve shows the errors whenno ontrollers were ativated. Note that the sales of the y-axes of the plots in Figure6.14 are di�erent for the dimensions x and z. This is a onsequene of the used kikmotion whih mostly a�eted the mCoP in the x diretion (forward/bakward).Both strategies (DS-KS and SS-KS ) showed a similar performane (see Figures6.14() and 6.14(d)). As a onsequene, we an see that the KS s an also be usedfor di�erent, albeit related tasks, for whih, in the �rst plae, they have not beendesigned for. This might also help to redue the number of needed KSs in real worldappliations, beause related tasks might share the same set of KS s.
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Figure 6.13: Postures of the simulated HOAP-2 for the single support task. The �rstrow shows the robot from the front and the seond row shows the robot from the side.Sreenshots were taken every seond from the 2nd to the 12th seond.6.4.3 Robustness to Changes in the Model of the Robot and theController ParametersThe kinemati synergies are based on the stati model of the robot. Sine uner-tainties in the model parameters (lengths and masses) are ommon, it is desirableto have a framework that is robust to hanges in those parameters. Moreover, suha robustness simpli�es a transfer from the simulation to a real robot. In addition,it would be bene�ial to have a wide range of valid ontrol parameters, i.e., KP and
KD, whih are able to balane the robot. In the following experiments we demon-strate that our proposed setup is widely robust to variations of these parameters.In a �rst experiment we varied the size of the robot by hanging the length ofevery link by a multipliative length fator, ranging from 0.5 to 2.5. We used the
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KD = 0.0. In this ase, suessful length fators ranged from 0.85 to 1.45 (indiatedby blue rosses in Figure 6.15). Note that the mean squared error only inreasedslightly. We also tested an even slower ontroller (KP = 20 and KD = 0.0), whihresulted in a fairly large range from 0.7 to 2.25 (indiated by green triangles in Figure6.15). However, the used ontroller was too slow to follow the desired trajetory,whih an be seen in the high mean squared error values. The orresponding mCoPtrajetories of all three ontrollers an be seen in the right plots of Figure 6.15.The blak lines are the target trajetories. The onlusion of the experiment is thatthe proposed setup is robust to hanges in the lengths of the robot. In addition,the results suggest that there is a tradeo� between the robustness of the approahand the response times of the ontrollers. Similar results were obtained, when the9Similar plots were obtained for the z-dimension.
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2.25) also grows, however, the ontroller was no longer able to follow the desired trajetory(indiated by the large mse values). The results point to the fat, that there is a tradeo�between the robustness of the approah and the response time of the ontroller. The rightplots show the orresponding mCoP trajetories for the three ontrollers (at a length fator= 1).masses as well the lengths were hanged simultaneously to simulate growing.In a seond experiment we provide an evaluation of the robustness of our ap-proah to the hoie of the ontroller parameters. We used the single support taskdesribed in Subsetion 6.4.2 (using the previously desribed SS-KS ) and varied the
KP and KD parameters over several deades. We evaluated whih parameter set-tings (KP /KD-pairs) were suessful, i.e., the robot was able to keep balane. Theresults an be seen in Figure 6.16. Suessful parameter settings are highlighted ingreen. Note that the region of suessful settings ranges over two deades for bothparameters. This suggests that our approah is robust to the hoie of the on-troller parameters and, thus, appropriate parameters are easily found. Moreover,this robustness potentially allows us to ombine our approah with adaptive on-
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Figure 6.17: Shemati setup of the online Jaobian Pseudo-Inverse (JPI) approah, towhih we ompared our approah (Figure 6.9). Instead of �xed kinemati synergies thisapproah has to run online an optimization proess (based on a JPI) at every single timestep to alulate the optimal joint angles veloities.trol (Astrom and Wittenmark, 1995) or online poliy searh methods (Kober et al.,2008).6.4.4 Comparison to an Online Jaobian Pseudo-Inverse ApproahWe performed a omparison of our kinemati synergy setup to an online JaobianPseudo-Inverse (JPI) approah (Siavio and Siiliano, 2005). This approah per-formed online an optimization similar to the one we used for the o�ine onstrutionof the KSs. In order to be responsive to external perturbations and model uner-tainties we had to plug the JPI into a feedbak ontrol loop. Figure 6.17 shows theonsidered setup. In order to ompare both approahes the robot had to trak aretangular trajetory (with rounded edges) entered at the enter of the supportpolygon. We systematially inreased the size of the retangle and the speed ofthe trajetory and ompared the maximum quantities, at whih the robot tippedover. The di�erenes between the two approahes for both limits (retangle size andspeed) were less than 1%. Hene, there was no signi�ant di�erene in their per-formanes. This suggests that the omplex Jaobian Pseudo-Inverse omputationsan be performed o�ine (in order to onstrut the KSs) without a signi�ant loss ofperformane. Note that the JPI approah needs to apply online sophistiated, timeintensive alulations, while our approah is based on a muh simpler ontrol lawusing only a PID ontroller. A omparison of the online omputation time of bothapproahes revealed a speed-up fator of 80 in favor of our approah. The results



6.5. Conlusion 71also show that the performane loss due to the linear superposition10 of the two KSsis negligible for humanoid balaning.6.4.5 Experiments with a Real HOAP-2 RobotIn our �nal experiment we transferred our approah to a real HOAP-2 robot. Due tothe previously demonstrated robustness against model unertainties, we were ableto simply reuse the same KSs as in our simulations, even though the stati modelused for the KSs did not perfetly math the stati model of the real robot.We investigated two di�erent setups. In the �rst setup the robot stood on the�oor (denoted by F) and we applied external fores. This was done by applying analmost onstant fore from di�erent diretions for approximately 1 to 2 seonds bypushing the robot. In the seond setup (denoted by P) we reprodued the surfboardtask. The robot stood on a movable platform, whih was mounted on a plasti spherein order to resemble the surfboard with its two degrees of freedom. In ontrast tothe simulated experiment, no additional external fores (winds) were used (only themovement of the platform represented an external fore). Note that in both setupsthe robot had no knowledge about the onset times, the diretions or the amplitudesof the applied external fores.The �rst row of Figure 6.19 shows the responses of the robot to pushes fromdi�erent diretions (setup F). The seond row shows responses of the robot to dif-ferent movements of the supporting platform (setup P). The robot ounterbalanedthe applied external fores in order to keep its mCoP at the middle of the supportpolygon in eah of these ases.In Figure 6.18 we show typial KS -parameters and the error signals reordedwhile the robot was pushed from di�erent diretions (in setup F). Note that, exeptfor a short time period after a hange of the applied external fore, the error was keptlose to zero. This indiates that the robot always tried to maintain its mCoP atthe enter of the support polygon. Note that videos of the experiments are providedin the additional multimedia �le, available at http://ieeexplore.ieee.org/.6.5 ConlusionWe have presented a new approah to transfer spatial movement representationsoming from experimental data analysis suh as synhronous musle synergies torobot ontrol. We used the approah for balane ontrol of a humanoid robot.We have formalized the onept of a kinemati synergy (KS ) that resembles theonept of a musle synergy in physiology, and whih redues the dimensionality ofthe ation spae of the robot. We have shown that two kinemati synergies an beonstruted for balane ontrol of the humanoid robot HOAP-2 in suh a way thattheir superposition is almost linear (like in biologial paradigms), although eah KSitself is highly nonlinear. Based on this onept we were able to demonstrate thatit is possible to move the time intensive alulations of the optimization proess10Note that the JPI approah does not use a linear superpositions, but rather simultaneouslyoptimize for both output dimensions, i.e., y ∈ R
2.



72 Chapter 6. Kinemati Synergies
0 20 40

−0.5

−0.25

0

0.25

0.5

time [sec]

[ ]

 

 

s
x

s
z

(a) KS -parameters sx and sz

0 20 40
−5

2.5

0

2.5

5

time [sec]

[c
m

]

 

 

e
x

e
z(b) errors ex and ezFigure 6.18: The KS -parameters and the errors signals reorded during an experiment withthe real HOAP-2 robot. The robots was pushed from di�erent diretions (setup F). The left�gure shows the KS -parameters and the right �gure shows the orresponding error signals.We an see that, exept for a short time period after a hange of the applied external fore,the error is kept lose to zero. This indiates that the robot always tried to maintain itsmCoP at the enter of the support polygon.

Figure 6.19: Top row: Resulting responses of the HOAP-2 to external fores. The sreen-shots were made during dynami ation. The top row shows sreenshots for experimentswhile standing on the �oor (setup F). Bottom row: External fores were applied by pushes.The seond row shows sreenshots of experiments with the robot standing on a movableplatform (setup P). External fores were applied by moving the platform. In any of thesesituations the robot ated orretly and moved its mCoP to the desired position at theenter of the support polygon. Note that there are videos of the experiments available (athttp://ieeexplore.ieee.org/).o�ine and therefore keep the needed online alulations simple and fast. We havedemonstrated, both through omputer simulations and through experiments withthe real robot HOAP-2, that this strategy makes it possible to virtually redue thehighly nonlinear balane ontrol problem of the robot to a linear ontrol problem(as long as the required movements are not too fast).We showed that, in ontrast to other approahes, whih are based on an exatdynami model of the robot, our proposed ombination of KSs and linear ontrollersenables a humanoid robot to ounterbalane unknown external fores of di�erentkinds. Additionally, we showed that robustness to parameter hanges in the model as



6.6. Aknowledgments 73well to hanges in the ontroller parameters is an inherent property of the proposedapproah. Based on this robustness we were able to transfer in straightforwardmanner this new approah for balane ontrol from a simulated to a real HOAP-2robot.We expet that both, the drasti dimensionality redution of the ation spaeand the resulting linearization of the robot ontrol through the use of suitable KSs,pave the way for future learning-based solutions to movement ontrol problems forhumanoid robots.6.6 AknowledgmentsThis hapter is based on the publiation 'Biologially Inspired Kinemati Synergiesenable Linear Balane Control of a Humanoid Robot.' (Hauser et al., 2011). Thepaper was written by Helmut Hauser (HH), Gerhard Neumann (GN), Auke Ijspeert(AJ) and Wolfgang Maass (WM). HH onduted the experiments and implementedthe linear ontrol laws while GN implemented the synergies inluding the inversekinematis optimization.





Chapter 7Learning Complex Motions bySequening Simpler MotionTemplates
Contents7.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757.2 Motion Templates . . . . . . . . . . . . . . . . . . . . . . . . . 777.3 Fitted Q-Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 787.4 Fitted Q-iteration for Motion Templates . . . . . . . . . . . 797.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827.6 Conlusion and Future Work . . . . . . . . . . . . . . . . . . 877.7 Aknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 87Abstration of omplex, longer motor tasks into simpler elemental movementsenables humans and animals to exhibit motor skills whih have not yet been mathedby robots. Humans intuitively deompose omplex motions into smaller, simplersegments. For example when desribing simple movements like drawing a trianglewith a pen, we an easily name the basi steps of this movement.Surprisingly, suh abstrations have rarely been used in arti�ial motor skilllearning algorithms. These algorithms typially hoose a new ation (suh as atorque or a fore) at a very fast time-sale. As a result, both poliy and temporalredit assignment problem beome unneessarily omplex - often beyond the reahof urrent mahine learning methods.We introdue a new framework for temporal abstrations in reinforement learn-ing (RL), i.e. RL with motion templates. We present a new algorithm for thisframework whih an learn high-quality poliies by making only few abstrat de-isions. This is the �rst algorithm whih allows e�ient sequening of movementprimitive representations.7.1 IntrodutionHumans use abstrations to simplify the motor tasks ourring during their dailylife. For example when desribing simple movements like drawing a triangle with apen, we an easily name the basi steps of this movement. In a similar manner, manyomplex movements an be deomposed into smaller, simpler segments. This sort of



76 Chapter 7. Motion Templatesabstration is for example often used by engineers for designing hybrid ontrol solu-tions (Xu and Antsaklis, 2002) where the single segments are implemented as loal,linear ontinuous ontrollers. We will all these building bloks motion templates.Other names that an be found in the literature are �motion primitives�, �movementshema's�, �basis behaviors� or �options� (Ijspeert and Shaal, 2003; Arbib, 1981;Dautenhahn and Nehaniv, 2002; Sutton et al., 1999).Motor skill learning is a hallenging problem for mahine learning and, in parti-ular, for the sub�eld of reinforement learning (RL). Primarily used in motor skilllearning is the �at RL setting without the use of abstrations. In this setting theagent has to hoose a new ation (typially a motor fore or torque) at a very smallsampling frequeny. While this allows the representation of arbitrary poliies, this�exibility makes the learning problem so omplex that it is often beyond the reahof urrent methods. A ommon approah for limiting the potential omplexity ofthe poliy in the �at RL setting is to use a parametrized poliy. Ijspeert et al.(Ijspeert and Shaal, 2003) introdued a speial kind of parametrized poliies alledmotion primitives, whih are based on dynamial systems. In most appliations todate, only a single motion primitive is used for the whole movement. Parametrizedpoliy searh methods suh as poliy gradient desent and EM-like poliy updates(Kober and Peters, 2010) have been used in order to improve single-stroke motorprimitives.Currently, only few abstrations are used in RL algorithms for ontinuous en-vironments, with few exeptions suh as (Huber and Grupen, 1998; Ghavamzadehand Mahadevan, 2003). In (Huber and Grupen, 1998) the poliy aquisition prob-lem is redued to learning to oordinate a set of losed loop ontrol strategies. In(Ghavamzadeh and Mahadevan, 2003) the given task is manually deomposed into aset of subtasks. Both, the lower-level subtasks and the higher-level subtask-seletionpoliies are learned. In all these approahes the struture for the hierarhy of ab-stration is manually designed and �xed during learning whih limits the generalityof these approahes. In our approah, an arbitrary parametrization of the abstratedlevel an be learned.In this paper, we introdue a new framework for abstration in RL, i.e. RL withmotion templates. Motion templates are our building bloks of motion. A template
mp is represented as parametrized poliy and exeuted until its termination ondi-tion is ful�lled. We assume that the funtional forms of the motion templates remain�xed, and thus, our task is to learn the orret order and parameters of the motiontemplates by reinforement learning. As motion templates are temporally extendedations, they an be seen as parametrized options in ontinuous time. There are afew well-established learning algorithms for the options framework (Sutton et al.,1999). However, these algorithms are designed for disrete environments.Choosing the parameters of a motion template is a ontinuous-valued deision.However, a single deision has now muh more in�uene on the outome of the wholemotion than in �at RL. Thus, the deisions have to be made more preisely, though,the overall learning problem is simpli�ed beause muh fewer deisions are neededto ful�ll a task. As RL in ontinuous ation spaes is already hallenging in the �atRL setting, the requirement of learning highly-preise poliies has limited the useof this sort of abstration for motor ontrol learning.



7.2. Motion Templates 77This paper introdues a new algorithm whih satis�es this requirement andtherefore permits learning at an abstrat level. The algorithm is based on theLoally-Advantage WEighted Regression (LAWER) algorithm. LAWER is a �ttedQ-Iteration (Ernst et al., 2005) based algorithm whih has been shown to learnhigh-quality ontinuous valued poliies for many �at RL settings (Neumann et al.,2009). However, two substantial extensions are needed to render motion templatelearning possible. Firstly, we propose an improved estimation of the goodness ofan state ation pair. Seondly, we introdue an adaptive kernel, whih is based onrandomized regression trees (Ernst et al., 2005).We ondut experiments on 3 di�erent tasks, a 1-link and a 2-link pendulumswing-up task and also a 2-link balaning task.7.2 Motion TemplatesA motion template mp is de�ned by its kp dimensional parameter spae Wp ⊆ Rkp ,its parametrized poliy up(s, t;wp) (s is the urrent state, t represents the time spentexeuting the template and wp ∈ Wp is the parameter vetor) and its terminationondition cp(s, t;wp).At eah deision-time point σk, the agent has to hoose a motion template mpfrom the set A(σk) and also the parametrization wp of mp. Subsequently the agentfollows the poliy pp(s, t;wp) until the termination ondition cp(s, t;wp) is ful�lled.Afterwards, we obtain a new deision-time point σk+1.The funtional forms of the poliy up(s, t;wp) and the termination ondition
cp(s, t;wp) are de�ned beforehand and an be arbitrary funtions. For example,onsider again the task of drawing a triangle. We an de�ne a motion template
mline for drawing a line with the endpoint of the line and the veloity of moving thepen as parameters. The poliy uline moves the pen from the urrent position withthe spei�ed veloity in the diretion of the endpoint of the line. The template isterminated when the pen has reahed a ertain neighborhood of the endpoint.In our experiments, sigmoidal funtions and linear ontrollers are used to modelthe motion templates.7.2.1 Reinforement Learning with Motion TemplatesEah motion template is a temporally extended, ontinuous valued ation. Thus,we deal with a ontinuous-time Semi-Markov Deision Proess (SMDP). We willreview only the relevant onepts from the ontinuous-time SMDP framework. Fora detailed de�nition, please refer to (Bradtke and Du�, 1995).Unlike in standard Markov Deision Proesses (MDPs), the transition probabil-ity funtion P (s′, d|s, a) is extended by the duration d of an ation. The Bellmanequation for the value funtion V π(s) of poliy π is given by

V π(s) =

∫

a
π(a|s) (r(s, a)+

∫

s′

∫ ∞

t=0
exp(−βt)P (s′, t|s, a)V π(s′)dtds′

)

da,

(7.1)



78 Chapter 7. Motion Templateswhere β is the disount fator1. The ation value funtion Qπ(s, a) is given by
Qπ(s, a) = r(s, a)+
∫

s′

∫ ∞

t=0
exp(−βt)P (s′, t|s, a)V π(s′)dtds′.

(7.2)A poliy is now de�ned as π(mp,wp|sk). It an be deomposed into
π(mp|sk)πp(wp|sk), where π(mp|sk) is the template seletion poliy and πp(wp|sk)is the poliy for seleting the parameters of template mp.7.3 Fitted Q-IterationAs LAWER is a Fitted Q-iteration (FQI) (Ernst et al., 2005; Riedmiller, 2005)based algorithm we quikly review the relevant onepts. FQI is a bath modereinforement learning (BMRL) algorithm. In BMRL algorithms we assume thatall the experiene of the agent up to the urrent time is given in the form H = {<
si,ai, ri, s

′
i >}1≤i≤N . FQI estimates an optimal ontrol poliy from this historialdata. Therefore it approximates the state-ation value funtion Q(s,a) by iterativelyusing supervised regression tehniques. New target values for the regression aregenerated by

Q̃k+1(i) = ri + γVk(s
′
i),

= ri + γmax
a′

Qk(s
′
i,a

′),
(7.3)whih are subsequently used to learn the Q-funtion Qk+1(s,a). For more detailsplease refer to (Neumann et al., 2009).7.3.1 Fitted Q-Iteration for SMDPsFor SMDPs we have to inlude the duration di of eah ation to our historial data

H = {< si,ai, ri, di, s
′
i >}1≤i≤N . Instead of using Equation 7.3, new Q-values annow be alulated by
Q̃k+1(i) = ri + exp(−βdi)max

a′

Qk(s
′
i,a

′). (7.4)7.3.2 Loally-Advantage-WEighted Regression (LAWER)A severe problem when using �tted Q-iteration for ontinuous ation spaes is the useof the greedy operation Vk(s) = maxa′ Qk(s,a
′) whih is hard to perform. LAWER(Neumann et al., 2009) is a variant of FQI whih avoids this max operator and istherefore well suited for ontinuous ation spaes. The algorithm has been shownto learn high quality poliies for many �at RL settings.Instead of using the max operator, a soft-max operator is used whih an be e�-iently approximated by an advantage-weighted regression. The advantage-weighted1In order to ahieve the same disounting rate as in a �at MDP, β an be alulated from therelation γ = exp(−β∆t), where γ is the disount fator and ∆t is the time step of the �at MDP.



7.4. Fitted Q-iteration for Motion Templates 79regression solely uses the given state ation pairs (si,ai) to estimate the V-funtionand therefore avoids an exhaustive searh in the ation spae. State-ation pairswith an higher expeted advantage2 have a higher in�uene on the regression.The regression uses the state vetors si as input dataset, the Q-values Q̃k+1(i) astarget values and an additional weighting ui for eah data point. The authors provedthat the result of the advantage-weighted regression is an approximation of the V-funtion V (s) = maxa′ Qk(s,a
′). The weighting ui an be seen as goodness of usingation ai in state si. It is estimated by ui = exp(τĀ(si,ai)), where Ā(si,ai) denotesthe normalized advantage funtion and the parameter τ sets the greediness of thesoft-max operator. We skip the desription of the normalization of the advantagefuntion, beause, for this paper, it is enough to know that the normalization, andalso the proof of the algorithm, assume normally distributed advantage values. Fora more detailed desription of Ā(si,ai) please refer to (Neumann et al., 2009).LAWER uses Loally Weighted Regression (LWR, by Atkeson et al., 1997) for ap-proximating the Q and the V-funtion. It therefore needs to be able to alulate thesimilarity wi(s) between a state si in the dataset H and state s. The state similari-ties wi(s) an be alulated by a Gaussian kernel wi(s) = exp(−(si− s)TD(si− s)).In this paper we also introdue an adaptive kernel in Setion 7.4.1. For simpliity,we will denote wi(sj) as wij for all sj ∈ H.Standard LWR is used to estimate the Q-funtion. The V-funtion is approxi-mated by a ombination of LWR and advantage-weighted regression. In order to doso, the advantage weighting ui is multipliatively ombined with the state similarityweighting, resulting again in a standard weighted linear regression. For the exatequations, please refer to (Neumann et al., 2009).The optimal poliy π(a|s) = N (a|µ(s),Σ(s)) is modelled as stohasti poliywith Gaussian exploration. The mean µ(s) an be determined by a similar loallyand advantage-weighted regression, just the ations ai are used as targets insteadof the Q-values. The ovariane matrix Σ(s) is given by alulating the advantage-weighted ovariane of loally neighbored ations.Intuitively speaking, the V-funtion is alulated by interpolating between theQ-values of loally neighbored state ation pairs, but only examples with a highgoodness ui (i.e. high normalized advantage value) are used. The same is true forthe poliy, we just interpolate between the ation vetors.7.4 Fitted Q-iteration for Motion TemplatesIn order to apply the LAWER algorithm to the motion template framework we use aseparate dataset Hp and individual estimations Qp and V p of the Q and V-funtionfor eah motion template mp. The funtions V p and Qp represent the state andstate-ation value funtion when hoosing motion template mp in the �rst deisionand subsequently following the optimal poliy. We implement the template seletionpoliy π(mp|sk) by a soft-max poliy. The overall value funtion is determined by

V (σk) = maxmp∈A(σk) V
p(σk). LAWER is used to learn the single Q and V-funtionestimates Qp and V p.2The advantage funtion is given by A(si,ai) = Q(si,ai)− V (si)



80 Chapter 7. Motion TemplatesIn this setion we present two extensions whih improve the auray of LAWERand render learning with motion templates possible. Firstly, adaptive tree-basedkernels are used to improve the estimation of the state similarities wij . This kernelalso adapts to spatially varying urvatures of the regression surfae and thereforeneeds an estimate of the V-funtion. Seondly, we show how to improve the estimateof the goodness ui by the use of an additional optimization. Based on the urrentestimate of the state similarities wij , new ui values, and subsequently also newestimates of the V-funtion are alulated. Both algorithms are applied intertwinedto get improved estimates of wij and ui.7.4.1 Adaptive Tree-based KernelsThe use of an uniform weighting kernel is often problemati in the ase of highdimensional input spaes ('urse of dimensionality'), spatially varying data densi-ties or spatially varying urvatures of the regression surfae. This problem an bealleviated by varying the 'shape' of the weighting kernel.We use the Extremely Randomized Tree (Extra-Tree) algorithm (Ernst et al.,2005) to obtain a varying kernel funtion. This algorithm has been partiularlysuessful for approximating the Q-funtion in FQI. We modify this approah toalulate the weighting kernel. The resulting kernel has the same properties as theExtra-Trees, and therefore adapts to the loal state density as well as to the loalurvature of the V-funtion.The standard Extra-Tree algorithm builds an ensemble of regression trees. Ithas 3 parameters, the number M of regression trees, the number K of randomizedsplits to evaluate per node and the maximum number of samples per leaf nmin. Formore details about the algorithm please refer to (Ernst et al., 2005).We use the trees for alulating the state similarities wij instead of approximatingthe Q-funtion. In order to do so, we learn the mapping from the states si to the V-values V (si) with the Extra-Tree algorithm. The kernel is then given by the frationof trees in whih two states si and sj are loated in the same leaf
wij =

1

M

M
∑

k=1

isSameLeaf(Tk, si, sj), (7.5)where Tk is the kth tree in the ensemble and isSameLeaf is a funtion returning 1 ifboth examples are loated in the same leaf and 0 otherwise. In our experiments wewill show the superiority of the tree-based kernels to the Gaussian kernels.7.4.2 Optimized LAWERAs already pointed out in Setion 7.3.2, LAWER assumes normally distributedadvantage values. Often this assumption does not hold or the normalization ofthe advantages is impreise due to too few data points in the neighborhood. Thise�et is even more drasti if high τ values are used beause the inauraies mayresult in low ativations in areas with a low sample density and therefore also ininaurate regressions. This restrition on the τ parameter also limits the qualityof the estimated poliy.



7.4. Fitted Q-iteration for Motion Templates 81But how an we improve the estimation of the weightings ui? Let us �rst on-sider a greedy poliy πD in a disrete environment. We formulate πD as stohastipoliy uij = πD(aj |si). The uij an be found by solving the following onstraintoptimization problem
u = argmaxu

∑

i,j uijA(si,aj)subjet to: ∑

j uij = 1 for all states si
0 ≤ uij ≤ 1 for all i, j, (7.6)where u is the vetor of all uij and A is again the advantage funtion. In our setting,we also have a �nite number of state-ation pairs (si,ai), but typially all the statesare di�erent. However, the states are linked by the state similarities wij . The �rstonstraint of the optimization problem an therefore be reformulated as

∑

j

wijuj = 1 for all states si, (7.7)while the remaining formulation of the optimization is unhanged. We also skippedthe seond index of uij beause there is only one ation for eah state si.Due to this optimization we only use the ui with the highest advantage valueswhile ensuring that the summed ativation ∑

j wijuj is high enough at eah state
si for applying an aurate weighted linear regression.We solve the onstraint optimization problem by maximizing the performanefuntion C

C =
1

Z

∑

j

uj(Q(sj ,aj)− V (sj))−

λ
∑

i

(
∑

j wijuj − η)2
∑

j wij
,

(7.8)with η = 1, where Z is a normalization onstant for the advantage values givenby Z =
∑

i |Q(si,ai)|/N . The seond term of Equation 7.8 spei�es the squaredsummed ativation error for eah state si. It is normalized by the summed state-similarity of this state (i.e. ∑

j wij). This ensures that the ativation error isequally weighted throughout the state spae, independent of the loal state density.We also introdued a new parameter λ whih sets the tradeo� between maximizingthe greediness of ui or minimizing the summed ativation error. It replaes thegreediness parameter τ of the LAWER algorithm.The funtion C an be maximized with respet to ui using gradient asent, thederivation of C is given by
dC

duk
=

1

Z
(Q(sk,ak)− V (sk))

− 2λ
∑

i

(
∑

j wijuj − η)
∑

j wij
wik.

(7.9)The learning rate for the gradient asent algorithm is always hosen suh that themaximum hange of an ativation ui is �xed to 0.01. After eah gradient update



82 Chapter 7. Motion Templatesthe weights ui are restrited to the interval [0; 1]. The gradient asent update isrepeated for Nopt iterations, every Mopt << Nopt iterations the value estimates
V (si) are realulated using the urrent weights ui. When using the tree-basedkernels, we also realulate the state similarities wij with the new estimate of V (si).Typial values for Nopt and Mopt are 1000 and 100.The ovariane matrix of the exploration poliy is also alulated slightly dif-ferently to the original LAWER algorithm. We require that always the best ηexploally neighbored ations are used. We therefore use a separate set of advantageweightings uexp for the ovariane alulation whih an be obtained by the sameoptimization de�ned in Equation 7.8, we just have to set η to ηexp. With ηexp wean sale the exploration rate of the algorithm.7.5 ResultsWe evaluated the motion template approah on a 1-link and a 2-link pendulumswing-up task and a 2-link balaning task. For eah task the immediate rewardfuntion was quadrati in the distane to the goal position sG and in the appliedtorque/fore, i.e., r = −c1|s− sG|2− c2|a|2. For all our experiments we assume thatthe goal position sG is known.We ollet L new episodes with the urrently estimated exploration poliy andone episode with the greedy poliy (without exploration). After estimating theoptimal poliy, its performane is evaluated (without exploration) and the data ol-letion is repeated. The initial distributions of the motion template parameters wereset intuitively and were by no means optimal. We ompared the motion templateapproah to �at RL with the standard LAWER algorithm.7.5.1 Swing-Up TasksIn this task a pendulum needs to be swung up from the position at the bottom tothe top position.7.5.1.1 1-link PendulumThe link of the pendulum had a length of 1m and a mass of 1kg, no frition wasused. The used motion templates represent positive (m1 andm2) and negative peaks(m3 and m4) in the torque trajetory. There is also an individual template m5 forbalaning the robot at the top position. One peak onsists of 2 suessive motiontemplates, one for the asending and one for the desending part of the peak.The parametrization of the motion templates an be seen in Table 7.1. In orderto form a proper peak, template m2 and m4 always start with the last torque uttaken in the end of the previous template. Therefore parameter a2 of these templatesis already determined by ut and onsequently the outome of template m2 and m4depend on ut. For this reason, the state spae of template m2 and m4 was extendedby ut. The balaning template m5 is implemented as linear PD-ontroller (see Table7.1). The duration of the peak templates is an individual parameter of the templates



7.5. Results 83Table 7.1: MTs for the swing up motion. The funtional forms resemble sigmoid funtions.Parameter ai oresponds to the height of the peak, oi to the initial time o�set and dito the duration of the motion template. k1 and k2 are the PD-ontroller onstants of thebalaner template. m3 andm4 resemblem1 andm2 exept for a negative sign. The skethesillustrate the torque trajetories of these templates (x-axis: time, y-axis: aeleration).MT Funtional Form Parameters Sketh
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Flat(b)Figure 7.2: Learning urves for the Gaussian kernel (MT Gauss) and the tree-based kernel(MT Tree) for (a) c2 = 0.025 and (b) c2 = 0.075and a time step of 50ms was used. We used L = 50 episodes per data olletion.We arried out 3 experiments with di�erent torque punishment fators (c2 =

0.005, c2 = 0.025 and c2 = 0.075). We ompared the learning proess of �at RL,motion template learning with Gaussian state similarities (MT Gauss) and withadaptive tree-based state similarities (MT Tree) (see Figure 7.2). In the initial learn-ing phase, the �at RL approah is superior to motion template learning, probablydue to the larger number of produed training examples. However, RL with motiontemplates is able to produe poliies of signi�antly higher quality and quikly out-performs the �at RL approah. This an also be seen in Figure 7.1(a) and (b), wherethe resulting torque trajetories are ompared. Flat RL has di�ulties partiularlywith the hardest setting (c2 = 0.075) where we reeived a maximum average rewardof −48.6 for �at RL and −38.5 for the motion template approah. From Figure 7.2we an also see that the tree-based kernel is muh more sample e�ient than theGaussian kernel. An evaluation of the in�uene of the λ parameter an be seen inFigure 7.3(a) and of the parameter nmin of the tree-based kernel in Figure 7.3(b).The approah works robustly for a wide range of parameters.7.5.1.2 2-link PendulumWe also onduted experiments with a 2-link pendulum. The lengths of the linkswere set to 1m, eah link had a mass of 1kg (loated at the enter of the link). Weuse the same templates as for the 1-dimensional task, the peak templates have now
2 additional parameters, the height of the peak ai and the time o�set oi for theseond ontrol dimension u2. Inluding the duration parameter, this results in 5parameters for m0, m1 and m3 and 3 parameters for m2 and m4. The parametersof the balaner template m5 onsists of two 2× 2 matries for the ontroller gains.Experiments were done for the tree-based kernels with nmin = 8, λ = 0.025and ηexp = 25. At eah data olletion, 50 new episodes were olleted. Foromparison to the �at RL approah we used a bandwidth matrix of D =
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Number of Data Collections(b)Figure 7.5: Learning urves for motion template learning with tree-based kernels for the(a) 2-link swing-up task and the (b) 2-link balaning task.and the ankle-joint to [−0.8; 0.4]rad. Whenever the robot left this area of the statespae, we assumed that the robot had fallen, i.e. a negative reward of −10000 wasgiven. The hip-torque was limited to ±500Nm and the ankle torque to ±70Nm.In the beginning of an episode, the robot stands upright and gets pushed with aertain fore F . This results in an immediate jump of the joint veloities. The agenthas to learn to keep balane for di�erent perturbations. In (Atkeson and Stephens,2007) this problem was solved exatly using Dynami Programming tehniques.The authors found out that two di�erent balaning strategies emerge. For smallperturbations, the ankle strategy, whih uses almost only the ankle joint, is optimal.For larger perturbations (F > 17.5Ns), the ankle-hip strategy, whih results in afast bending movement, is optimal. In this experiment we want to reprodue bothstrategies by motion template learning.We use two motion templates to model the balaning behavior, both resemblelinear ontrollers. The �rst motion template (m0) keeps the robot at the uprightposition and is similar tom5 from the previous experiment. The seond template m1additionally de�nes a set-point of the linear ontroller for eah joint and a durationparameter d1. In addition to the 8 ontroller gains, this results in 11 parameters.The agent an now hoose to use m0 diretly in the beginning or to use m1 andsubsequently m0. We used 4 di�erent perturbations, i.e., F = 10, 15, 20 and 25Ns.For eah perturbation, we olleted L = 20 episodes.We again used the tree-based approah with the same parameter setting as in theprevious experiment. The learning urve an be seen in Figure 7.5(b). The resultingtorque trajetories are shown in Figure 7.6(a) and (b). We an learly identify theankle strategy for the two smaller perturbations and the ankle-hip strategy for largerperturbations using both motion templates.
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F = 15Ns (ankle strategy) (b) F = 20Ns and F = 25Ns (ankle-hip strategy). The skethesbellow illustrate the temporal ourse of the balaning movement for the ankle strategy (a)and the ankle-hip strategy (b)7.6 Conlusion and Future WorkIn this paper we proposed a new framework for temporal abstration for RL inontinuous environments, i.e. RL with motion templates. Learning the overallontrol task is deomposed into learning a sequene of simpler ontrollers. Beauseof the used abstrations the agent has to make fewer deisions, whih simpli�es thelearning task. We strongly belief that this kind of abstrations may help saling RLalgorithms to more omplex domains.The motion templates approah also raises several interesting researh questionsto whih we will dediate our future work. For example, how an we e�ientlyadd feedbak to the motion templates? Whih funtional forms of the templatesan failitate learning? When do we terminate a motion template, in partiular inthe ase of unforeseen events? Future work will also onentrate on applying theapproah to more omplex environments suh as planar walking robots.7.7 AknowledgmentsThis hapter is based on the paper 'Learning Complex Motions by Sequening Sim-pler Motion Templates' (Neumann and Peters, 2009) whih has been written byGerhard Neumann (GN), Wolfgang Maass (WM) and Jan Peters (JP). The algo-rithm design, implementation and the experiments have been onduted by GNwhile the initial basi idea was provided by WM. JP greatly helped to improve thepaper writting and also provided useful guidane.





Chapter 8Planning Movement Primitives
Contents8.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898.2 Planning Movement Primitives . . . . . . . . . . . . . . . . . 958.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008.4 Conlusion and Future Work . . . . . . . . . . . . . . . . . . 1098.5 Aknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 110A ommon approah for motor skill learning in robotis is to use parametrizedmovement plans, also alled movement primitives. Currently used approahes en-dow the primitives with dynamial systems. Here, the parameters of the primitiveindiretly de�ne the shape of the desired trajetory. This trajetory is then followedwith feedbak ontrol laws. Instead of endowing the primitives with dynamialsystems, we propose to endow movement primitives with an intrinsi probabilistiplanning system, exploiting the power of stohasti optimal ontrol methods alreadyat the level of the primitive. The parametrization of the primitive now spei�es aost funtion for the intrinsi planning system. We parameterize this intrinsi ostfuntion using use task-relevant features, suh as the importane of passing throughertain via-points as parameters of the movement. These task-relevant featuresare learned using standard reinforement learning, whih implies that a (typially)sparse reward signal is transformed into a intrinsi ost funtion for planning. Si-multaneously we learn the dynamis model of the robot. Together, the intrinsiost funtion and the dynamis model fully speify a graphial model for movementplanning. In di�erene to urrent methods, the probabilisti planner an naturallydeal with noisy systems, exploiting the stohasti dynamis by suppressing the in-herent noise in the system only if neessary. This is also known as the minimumintervention priniple, a basi property of human movement ontrol. We evaluateour approah on a omplex 4-link balaning task. Our experiments show that ourmovement representation failitates learning and allows learning of motor skills upto one order of magnitude faster than traditional approahes. The representationan be easily generalized to new task settings without re-learning and also generatespoliies with higher quality.8.1 IntrodutionThe use of movement primitives has often been shown to failitate learning of om-plex movement skills (d'Avella et al., 2003; Shaal et al., 2003; Neumann et al.,



90 Chapter 8. Planning Movement Primitives2009). They allow an e�ient abstration of the high-dimensional ontinuous a-tion spaes whih often our in robotis. Movement primitives are parametrizedrepresentations of elementary movements. For urrent approahes the parametersof the primitive determine the shape of the desired trajetory either diretly or in-diretly. This trajetory is then followed by feedbak ontrol laws. An example foran indiret trajetory parametrization are the widely used Dynamial MovementPrimitives (DMPs) (Shaal et al., 2003). This approah uses parametrized dynam-ial systems to determine a movement trajetory. The idea of DMPs to endowingmovement primitives with an intrinsi dynami system has many bene�ts: Theyprovide a linear poliy parametrization whih an be used for imitation learningand poliy searh (Kober and Peters, 2010). The omplexity of the trajetory anbe saled by the number of parameters (Shaal et al., 2003) and one an adaptmeta-parameters of the movement suh as the movement speed or the goal state ofthe movement (Kober et al., 2010; Pastor et al., 2009).The general idea of the present work is to endow movement primitives withan intrinsi planning system instead of an intrinsi dynami system. While thedynami system of a DMP is to some degree reative to the environment�namely byadapting the temporal saling fator and thereby de- or aelerating the movementexeution as needed (Shaal et al., 2003)�the trajetory shape itself is �xed andnon-reative to the environment. In ontrast, a movement primitive that is endowedwith an intrinsi planning omponent an reat to the environment by optimizingthe trajetory for the spei� urrent situation. Training suh a movement primitivenow means to train a planner to generate an appropriate poliy in a given situationinstead of training a dynamial system to generate a �xed (temporally �exible)referene trajetory. This implies a di�erent level of generalization. For instane, ifsome ende�etor target hanges between training and testing phase, a planner thathas learned to generate trajetories towards targets will generalize to the new targetwithout retraining. A system that diretly enodes a trajetory would either haveto be retrained or use heuristis to be adapted (Pastor et al., 2009).Stohasti optimal ontrol, besides its high relevane in engineering problems,has proven itself as an exellent omputational theory of human movement ontrol(Todorov and Jordan, 2002). For example, the minimum intervention prinipleimplies that we should only intervene the system if it is neessary to ful�ll the giventask. If the task onstraints are not violated it is ine�ient to suppress the inherentnoise in the stohasti system. As an example onsider the problem of performinga tennis serve. The most task-relevant feature of the movement is the state of thearm (inluding veloities, aelerations and sti�ness) at the point in time when theraket hits the ball. For this time point the movement has to be very preise, butelsewhere less aurate ontrol is su�ient. Human movements aount for suhpriniples, suggesting that stohasti optimal ontrol priniples are involved on thelowest level of movement exeution. On the other hand: A tennis serve is ertainlyalso a highly trained movement primitive. This exempli�es our general view of amovement primitive system whih an be trained in a reinforement learning setting,but whih also involves a low-level movement planner that aounts for fundamentaloptimality priniples. In ontrast, a movement primitive system that implies a �xedreferene trajetory would fore the movement to follow this referene more or less



8.1. Introdution 91aurately and an only hoose how muh noise is suppressed by the feedbak ontrollaw throughout the exeution of the whole trajetory. It an not generate movementsthat ful�ll optimality priniples for variable target or task onstraints.Therefore we propose Planning Movement Primitives (PMPs) whih exploit thepower of stohasti optimal ontrol (SOC) methods (Todorov and Li, 2005; Kappen,2007) within the primitive. As with DMPs, a PMP is trained in a standard reinfore-ment learning (RL) setting. Instead of parametrizing the shape of the trajetorydiretly, a PMP has parameters that determine the the intrinsi ost funtion of theintrinsi SOC planner. While the reward funtion (typially) gives a single salarreward for a whole movement, the learned intrinsi ost funtion in the standardSOC form de�nes task and ontrol osts for every time step of the movement. Inother terms, training a PMP is the problem learning from a sparse reward signalan intrinsi ost funtion suh that the SOC planner will, with high probability,generate rewarded movements. Parametrizing the intrinsi ost funtion allows usto use task-relevant features as parameters of the movement, e.g. the importane ofpassing through a ertain via-point.Training a PMP also requires to learn an approximate model of the systemdynamis within the RL setting sine the intrinsi SOC planner requires some ap-proximate model to estimate optimal ontrol. Therefore, PMP learning ombinesmodel-based and model-free RL: it learns a model of the system dynamis while atthe same time training PMP parameters based on the reward signal. (It does notlearn an approximate model of the reward funtion itself.) We an exploit supervisedlearning methods suh as (Vijayakumar et al., 2005; Nguyen-Tuong et al., 2008a,b)for learning the system dynamis and at the same time use poliy searh methodsto adapt the PMP parameters that determine the intrinsi ost funtion. This two-fold learning strategy has the promising property of fully exploiting the data by alsoestimating the system dynamis instead of only adapting poliy parameters.As planning algorithm we employ a probabilisti planner alled ApproximateInferene Control (AICO), (Toussaint, 2009). AICO generates the movement byperforming inferene in a graphial model. The graphial model is de�ned by thesystem dynamis and the intrinsi ost funtion. Sine we learn both from experiene(the latter via poliy searh) all onditional probability distributions of this graphialmodel are determined empirially. The output of the planner is a linear regulatorfor eah time slie.Our experiments show that, by the use of task relevant features, we an signi�-antly failitate learning and generalization of omplex movement skills. Moreover,due to the intrinsi SOC planner, our primitive representation implements all prin-iples of optimal ontrol, whih allows to learn solutions of high quality whih arenot representable with traditional trajetory-based methods.In the following setion we review in more detail related previous work and thebakground on whih our methods build. Setion 8.2 then introdues the proposedPlanning Movement Primitives. In Setion 8.3 we evaluate the system on a one-dimensional via-point task and a omplex dynami humanoid balaning task andompare to DMPs. We onlude this work with a disussion in Setion 8.4.



92 Chapter 8. Planning Movement Primitives8.1.1 Related Work and BakgroundThis setion reviews the related work based on parametrized movement poliies,poliy searh methods and stohasti optimal ontrol.8.1.2 Parametrized Movement PoliiesMovement primitives represent a parametri desription of elementary movements(d'Avella et al., 2003; Shaal et al., 2003; Neumann et al., 2009). We will denote theparameter vetor of a movement primitive by θ and the possibly stohasti poliy ofthe primitive as π(u|x, t;θ), where u is the applied ation and x denotes the state.The key idea of the term 'primitive' is that several of these elementary movementsan be ombined not only sequentially but also simultaneously in time. However, inthis paper, we want to onentrate on the parametrization of a single primitive, i.e.only learn a single elementary movement. Using several primitives simultaneouslyis part of future work for our approah as well as for existing approahes suh as(Shaal et al., 2003; Neumann et al., 2009).Many types of movement primitives an be found in the literature. The urrentlymost widely used movement representation used for robot ontrol are the DynamiMovement Primitives (DMPs) (Shaal et al., 2003). DMPs evaluate parametrizeddynamial systems to generate trajetories. The dynamial system is onstrutedsuh that the system is stable. In order to do so, a linear dynamial system isused whih is modulated by a learnable non-linear funtion f . A great advantageof the DMP approah is that the funtion f depends linearly on the parameters θof the primitive, i.e f(s) = Φ(s)Tθ, where s is the time or phase variable. As aresult, imitation learning for DMPs is straightforward as this an simply be done byperforming a linear regression (Shaal et al., 2003). Furthermore, it also allows theuse of many well-established reinforement learning methods suh as poliy gradi-ent methods (Peters and Shaal, 2008b) or Poliy Improvements by Path Integrals(Theodorou et al., 2010a). The omplexity of the trajetory an be saled by thenumber of features used for modelling f . However, as the features Φ(s) are �xed,the ability of the approah to extrat task-relevant features is limited. We an alsoadapt meta-parameters of the movement suh as the movement speed or the goalstate of the movement (Kober et al., 2010; Pastor et al., 2009). Yet, the hange ofthe desired trajetory due to the hange of the meta-parameters is based on heuris-tis and does not onsider task relevant onstraints. As the DMPs are the mostommon movement representation we will use it as a baseline in our experiments.For a more detailed disussion of the DMP approah please onsult the appendix.Another type of movement representation was introdued in (Neumann et al.,2009) by the movement template framework. Movement templates are temporallyextended, parametrized ations, suh as sigmoidal torque, veloity or joint posi-tion pro�les, whih an be sequened in time. This approah uses a more omplexparametrization as the DMPs. For example, it also inorporates the duration of dif-ferent phases, like an aeleration or deeleration phase. The division of a movementinto single phases allows the use of reinforement learning methods to learn how tosequene these primitives. However, as the approah still diretly spei�es the shapeof the trajetory, de�ning omplex movements for high dimensional systems is still



8.1. Introdution 93ompliated, whih has restrited the use of movement templates to rather simpleappliations.An interesting movement representation oming from experimental data analysisare the musle synergies (d'Avella et al., 2003; Bizzi et al., 2008). They have beenused to provide a ompat representation of eletromyographi musle ativationpatterns. The key idea of this approah is that musle ativation patterns are om-posed of a linear sum of simpler, elemental patterns, alled musle synergies. Eahmusle synergy an be shifted in time and saled with a linear fator to onstrutthe whole ativation pattern. While the synergy approah has promising propertiessuh as the linear superposition and the ability to share synergies between tasks,exept for some smaller appliations (Chhabra and Jaobs, 2006), these primitiveshave only been used for data analysis, and not for robot ontrol.All the so far presented primitives are inherently loal approahes. The spei�edtrajetory and hene the resulting poliy are only valid for a loal (typially small)neighborhood of our initial state. If we are in a new situation, it is likely that weneed to re-estimate the parameters of the primitive. The generation of the referenetrajetory for these approahes is often an o�ine proess and does not inorporateknowledge of the system dynamis, proprioeptive or other sensory feedbak. Be-ause the referene trajetory itself is usually reated without any knowledge of thesystem model, the desired trajetory might not be appliable, and thus, the realtrajetory of the robot might di�er onsiderably from the spei�ed trajetory.There are only few movement representations whih an also be used globally,i.e. for many di�erent initial states of the systems. One suh methods is the StableEstimator of Dynamial Systems (SEDS) (Khansari-Zadeh and Billard, 2011) ap-proah. However, this method has so far only been applied to imitation learning,using the approah for learning or improving new movement skills is not straightforward. We will therefore restrit our disussion to loal movement representations.Our Planning Movement Primitive approah is, similar to the DMPs, a loalapproah. In a di�erent situation, di�erent abstrat goals and features might beneessary to ahieve a given task. However, as we extrat task relevant features anduse them as parameters, the same parameters an be used in di�erent situations aslong as the task relevant features do not hange. As we will show, the valid regionwhere the loal primitives an still be applied is muh larger for the given ontroltasks in omparison to trajetory based methods.8.1.3 Poliy Searh for Movement PrimitivesLet x denote the state and u the ontrol vetor. A trajetory τ is de�ned as sequeneof state ontrol pairs, τ = 〈x0:T ,u0:T−1〉, where T is the length of the trajetory.Eah trajetory has assoiated osts C(τ) (denoted as extrinsi ost), whih an bean arbitrary funtion of the trajetory. It an, but need not be omposed of thesum of intermediate osts during the trajetory. For example, it ould be based onthe minimum distane to a given point throughout the trajetory. We want to �nda movement primitive's parameter vetor θ∗ = argminθJ(θ) whih minimizes theexpeted osts J(θ) = E [C(τ)|θ]. We assume that we an evaluate the expetedosts J(θ) for a given parameter vetor θ by performing roll-outs on the real system.



94 Chapter 8. Planning Movement PrimitivesIn order to �nd θ∗ we an apply poliy searh methods. Here a huge varietyof possible methods exists. Poliy searh methods an be oarsely divided intostep-based exploration and episode-based exploration approahes. Step-based ex-ploration approahes suh as (Theodorou et al., 2010a; Peters and Shaal, 2008b;Kober and Peters, 2010) apply an exploration noise to the ation of the agent at eahtime step of the episode. Subsequently, the poliy is updated suh that the (noisy)trajetories with higher reward are more likely to be repeated. In order to do thisupdate, step-based exploration tehniques stritly rely on a poliy whih is linearin its parameters. This is true for the DMPs. Currently, the most ommon poliysearh methods are step-based approahes, inluding the REINFORCE (Williams,1992), the episodi Natural Ator Criti (Peters and Shaal, 2008b), the PoWER(Kober and Peters, 2010) or the PI2 (Theodorou et al., 2010a) algorithm. Thisalso explains partially the popularity of the DMP approah for motor skill learningbeause DMPs are, from those introdued above, the only representation whih anbe used for these step-based exploration methods (apart from very simple ones likelinear ontrollers).However, reent researh has also intensi�ed on episode-based exploration teh-niques (Sehnke et al., 2010; Wierstra et al., 2008; Hansen et al., 2003). Thesemethods diretly perturb the poliy parameters θ and then estimate the perfor-mane of the perturbed θ parameters by performing roll-outs on the real system.During the episode no additional exploration is applied (i.e. a deterministi poliyis used). The poliy parameters are then updated in the estimated diretion of in-reasing performane. Episode-based exploring methods do not depend on a spei�form of parametrization of the poliy. In addition, episode-based exploration teh-niques easily allow the use of seond order stohasti searh methods that estimateorrelations between poliy parameters (Heidrih-Meisner and Igel, 2009b; Wierstraet al., 2008). This ability to apply orrelated exploration in parameter-spae is oftenbene�ial in omparison to the unorrelated exploration tehniques applied by allstep-based exploration methods.Sine the resulting ontrol poliies of our PMPs depend non-linearly on the pa-rameters θ, step-based exploration tehniques an not be used in our setup. Hene,we will use the seond order stohasti searh method CMA (Covariane MatrixAdaptation, (Hansen et al., 2003)) whih makes no assumptions on the parametriza-tion of the primitive. CMA uses a multivariate Gaussian distribution to representthe belief over the optimal parameters and has been shown to be highly ompetitivefor poliy searh in high dimensional spaes. We will ompare our PMP approah toboth, DMPs learned with CMA poliy searh and DMPs learned with the state ofthe art step-based method PI2 (Theodorou et al., 2010a). Interestingly, the seondorder stohasti searh method outperformed PI2 for DMPs, illustrating the bene�tsof seond order optimization.8.1.4 Stohasti Optimal Control and Probabilisti Inferene forPlanningStohasti optimal ontrol (SOC) methods suh as (Todorov and Li, 2005; Kappen,2007; Toussaint, 2009) have been shown to be powerful methods for movement



8.2. Planning Movement Primitives 95planning in high-dimensional roboti systems. The inremental Linear QuadratiGaussian (iLQG) (Todorov and Li, 2005) algorithm is one of the most ommonlyused SOC algorithms. It uses Taylor expansions of the system dynamis and ostfuntion to onvert the non-linear ontrol problem in a Linear dynamis, Quadratiosts and Gaussian noise system (LQG). The algorithm is iterative - the Taylorexpansions are realulated at the newly estimated optimal trajetory for the LQGsystem.In (Toussaint, 2009), the SOC problem has been reformulated as inferene prob-lem in a graphial model, resulting in the Approximate Inferene Control (AICO)algorithm. The graphial model is given by a simple dynami Bayesian networkwith states xt, ations ut and task variables g[i] (representing the osts) as nodes,see Figure 8.1. The dynami Bayesian network is fully spei�ed by onditional dis-tributions enoded by the ost funtion and by the state transition model. If beliefsin the graphial model are approximated as Gaussian the resulting algorithm isvery similar to iLQG. Gaussian message passing iteratively re-approximates loalosts and transitions as LQG around the urrent mode of the belief within a timeslie. A di�erene to iLQG is that is uses forward messages instead of a forwardroll-out to determine the point of loal LQG approximation and an iterate beliefre-approximation with in a time slie until onvergene, whih may lead to fasteroverall onvergene. For a more detailed disussion of the AICO algorithm withGaussian message passing see Setion 8.2.5 and the appendix.Loal planners have the advantage that they an be applied to high-dimensionaldynamial systems, but the disadvantage of requiring a suitable initialization.Global planning (Ku�ner and LaValle, 2000) on the other hand does not requirean initial solution, however, they have muh higher omputational demands. Ourmotivation for using only a loal planner as omponent of a Planning MovementPrimitive is related to the learning of an intrinsi ost funtion:Existing planning approahes for robotis typially use hand-rafted ost fun-tions and the dynami model is either analytially given or learned from data (Mitro-vi et al., 2010). PMPs use reinforement learning to train an intrinsi ost funtionfor planning instead of trying to learn a model of the extrinsi reward diretly. Thereason is that a loal planner often fails to diretly solve realistially omplex tasksby optimizing diretly the extrinsi ost funtions. From this perspetive, PMPslearn to translate omplex tasks to a simpler intrinsi ost funtion that an e�-iently be optimized by a loal planner. This learning is done by trial-and-errorin the reinforement learning setting: the PMP essentially learns from experienewhih intrinsi ost funtion the loal planner an ope with and use to generategood trajetories. Thereby, the reinforement learning of the intrinsi ost funtionan ompensate the limitedness of the loal planner.8.2 Planning Movement PrimitivesIn this setion we introdue the proposed Planning Movement Primitives (PMPs),in partiular the parametrization of the intrinsi ost funtion. The overall systemwill ombine three omponents: (1) a regression method for learning the system dy-



96 Chapter 8. Planning Movement Primitivesnamis, (2) a poliy searh method for �nding the PMP parameters, and (3) a SOCplanner for generating movements with the learned model and PMP parameters.8.2.1 Problem De�nitionWe assume an unknown dynami system of the general form
xt+1 = fDyn(ut,xt) + εt, (8.1)with state variable xt, ontrols ut and Gaussian noise εt ∼ N (0, §). The agent is torealize a ontrol poliy π : xt 7→ ut, whih in our ase will be a linear regulator foreah time slie. The problem is to �nd a poliy that minimizes the expeted osts ofa �nite-horizon episodi task. That is, we assume there exists a ost funtion C(τ),where τ = (x0:T ,u0:T ) is roll-out of the agent ontrolling the system. The problemis to �nd argminπ〈C(τ)〉π.The system dynamis fDyn as well as the ost funtion C(τ) are analytially un-known. Conerning the system dynamis we an ompute an approximate model ofthe systems dynamis from a set of roll-outs�as standard in model-based reinfore-ment learning (RL). However, onerning osts, we only reeive the single salarost C(τ) after a roll out indiating the quality or suess of a movement. Note that

C(τ) is a funtion of the whole trajetory, not only the �nal state. Learning C fromdata would be an enormous task, more omplex that learning a reward funtion
xt 7→ rt as in standard model-based RL. Further, if we try to model C(τ) diretlyand apply SOC methods to optimize it, C(τ) would have to be modelled in the form
C(τ) =

∑

t ht(xt,xt+1)�assigning separate osts to eah time step of the roll-out.This implies an enormous redit assignment problem.Generally, approahes to learn C(τ) diretly in a form useful for applying SOCmethods seems an overly omplex task and violates the maxim �never try to solvea problem more omplex than the original�. Therefore, our approah will not tryto learn C(τ) from data but to employ reinforement learning to learn some intrin-si ost funtion that an e�iently be optimized by SOC methods and generatesontrol poliies that, by empiriism, minimizes C(τ).8.2.2 Parametrization of PMP's intrinsi ost funtionIn PMPs the parameters θ speify task-relevant abstrat goals or features of themovement, whih speify an intrinsi ost funtion
L(τ ;θ) :=

T
∑

t=0

l(xt,ut, t;θ) + cp(xt,ut), (8.2)where l denotes the intermediate intrinsi ost funtion for every time-step and
cp(xt,ut) is used to represent basi known task onstraints, suh as torque or jointlimits. We will assume that basi task onstraints like joint and torque limits are partof our prior knowledge, thus cp is given and not inluded in our parametrization. Forthe desription of PMPs we will neglet the onstraints cp for simpliity. We will usea via-point representation for the intermediate intrinsi ost funtion l(xt,ut, t;θ).
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intrinsic costs ...

Figure 8.1: Planning Movement Primitives are an be illustrated using graphial models.States are denoted by xt, ontrols by ut and the time horizon is �xed to T time-steps.In this example the graphial model is used to infer the movement by onditioning on twoabstrat goals g[1] and g[2], whih are spei�ed in the learned intrinsi ost funtion L(τ ; θ).Therefore, parameter learning orresponds to extrating goals whih are requiredto ahieve a given task, suh as passing through a via-point at a given time. Aspointed out in the previous setion, L(τ ;θ) is not meant to approximate C(τ). Itshould to provide a feasible ost funtion that empirially generates poliies thatminimize C(τ).There are many ways to parametrize the intermediate intrinsi ost funtion l.We hoose a simple via-point approah. The movement is deomposed in N shorterphases with duration d[i], i = 1, .., N . In eah phase the ost funtion is assumedto be quadrati in the state and ontrol vetors. In the ith phase (∑i−1
j=1 d

[i] < t ≤
∑i

j=1 d
[i]) we assume the intrinsi ost has the form:

l(xt,ut, t;θ) = (xt − g[i])TR[i](xt − g[i]) + uT
t H

[i]ut. (8.3)It is parametrized by the referene point g[i] in state spae; by the preision ve-tor r[i] whih determines R[i] = diag(exp r[i]) and therefore how steep the poten-tial is along eah state dimension; and by the parameters h[i] whih determine
H[i] = diag(exph[i]) and therefore the ontrol osts along eah ontrol dimension.We represent the importane fators r[i] and h[i] both in log spae as we are only in-terested in to relationship of this fators. At the end of eah phase (at the via-point),we multiply the quadrati state osts by the fator 1/dt where dt is the time stepused for planning. This ensures that at the end of the phase the via-point is reahed,while during the phase the movement is less onstraint. With this representation,the parameters θ of our PMPs are given by

θ = [d[1],g[1], r[1],h[1] ... d[N ],g[N ], r[N ],h[N ]] (8.4)Cost funtions of this type are ommonly used�and hand-rafted�in ontrol prob-lems. They allow to speify a referene, but also to determine whether only ertaindimensions of the state need to be ontrolled to the referene and how this trades ofwith ontrol ost. Instead of hand-designing suh ost funtions, our method will useCMA poliy searh to learn these parameters of the intrinsi ost funtion. As forthe DMPs we will assume that the desired �nal state at time point T is known, and



98 Chapter 8. Planning Movement Primitivesthus g[N ] and d[N ] are �xed and not inluded in the parameters. Still, the algorithman hoose the importane fators r[N ] and h[N ] of the �nal phase. In addition, we�x the veloities in the via-points g[i] to zero, however, the algorithm an still reahthe via-points with non-zero veloities by hoosing very low importane fators forthe veloities (inluded in r[i]).8.2.3 Dynami Model LearningIn order to use planning we need to learn a model of the system dynamis fDyn inEquation 8.1. The planning algorithm an not interat with the real environment,it solely has to rely on the learned model. Only after the planning algorithm is�nished, the resulting poliy is exeuted on the real system and new data points
〈[xt,ut], ẋt〉 are olleted for learning the model.Many types of funtion approximators an be applied in this ontext (Vijayaku-mar et al., 2005; Nguyen-Tuong et al., 2008a,b). We use the lazy learning tehniqueLoally Weighted Regression (LWR) (Atkeson et al., 1997) as it is a very simple ande�etive approah. LWR is a memory-based, non-parametri approah, whih �ts aloal linear model to the loally-weighted set of data points. For our experiments,the size of the data set was limited to 105 points implemented as a �rst-in-�rst-outqueue bu�er beause the omputational demands of LWR drastially inreases withthe size of the data set.8.2.4 Poliy searhModel learning takes plae simultaneously to learning the parameters θ of the prim-itive. In general this ould lead to some instability. However, while the distri-bution P (xt) depends on the poliy and the data for model learning is ertainlynon-stationary, the onditional distribution P (xt+1|ut,xt) is stationary. A loallearning sheme as LWR behaves rather robust under suh type of non-stationarityof the input distribution only. On the other hand, from the perspetive of θ opti-mization, the resulting poliies may hange and lead to di�erent payo�s C(τ) evenfor the same parameters θ due to the adaption of the learned system dynamis.We employ the seond order stohasti searh method CMA (Heidrih-Meisnerand Igel, 2009b) to optimize the parameters θ w.r.t. C(τ). Roughly, CMA is aniterative proedure that, from the urrent Gaussian distribution, generates a numberof samples, evaluates the samples, omputes seond order statistis of those samplesthat redued C(τ) and uses these to update the Gaussian searh distribution. In eahiteration, all parameter samples θ use the same learned dynami model to evaluate
C(τ). Further, CMA inludes an impliit forgetting in its update of the Gaussiandistribution and therefore behaves robust under the non-stationary introdued byadaptation of the system dynamis model.Note that even if the learned model is only a roughly approximation of thetrue dynamis, the poliy searh for parameters of the intrinsi ost funtion anompensate for an impreise dynamis model: The RL approah will �nd parameters
θ of the intrinsi ost funtion suh that�even with a mediore model�the resultingontroller will lead to low extrinsi osts in the real system.



8.2. Planning Movement Primitives 998.2.5 Probabilisti Planning AlgorithmWe use the probabilisti planning method Approximate Inferene Control (AICO)(Toussaint, 2009) as intrinsi planning algorithm. It o�ers the interpretation that amovement primitive an be represented as graphial model and the movement itselfis generated by inferene in this graphial model.The graphial model is fully determined by the learned system dynamis and thelearned intrinsi ost funtion, see Figure 8.1. In order to transform the minimiza-tion of L(τ ; θ) into an inferene problem, for eah time-step an individual binaryrandom variable zt is introdued. This random variable indiates a reward event.Its probability is given by
P (zt = 1|xt,ut, t) ∝ exp(−ct(xt,ut;θ)),where ct(xt,ut;θ) = l(xt,ut, t;θ)+cp(xt,ut) denotes the ost funtion for time step

t. AICO now assumes that a reward event zt = 1 is observed at every time-step.Given that evidene, AICO alulates the posterior distribution P (x1:T ,u1:T |z1:T =
1) over trajetories.We will use the simplest version of AICO, where an extended Kalman smooth-ing approah is used to estimate the posterior. The extended Kalman smoothingapproah uses Taylor expansions to linearize the system and subsequently uses Gaus-sian message passing to perform the inferene. Subsequently the system is linearizedagain at the new mode of the belief over the trajetories. AICO is only a loal op-timization method and we have to provide an initial solution whih is used for the�rst linearization. We will use the diret path to the via-points g[i] in Equation8.3 as initial solution. AICO provides us with an linear feedbak ontroller for eahtime slie of the form

ut = Otxt + ot, (8.5)whih is used as poliy of the movement primitive.The original formulation of the AICO method (Toussaint, 2009) does not on-sider torque limits, whih are important for our dynami balaning experiments,and hene, we needed to extend the algorithm. This extension yields not only amodi�ed form of the immediate ost funtion but also results in di�erent updateequations for the messages and �nally di�erent equations of the optimal feedbakontroller. A omplete derivation of the extension inluding the resulting messagesand the orresponding feedbak ontroller is given in Appendix 8.5.The omplete learning framework is organized the following. Given the param-eters θ, AICO is initialized with an initial solution whih is the diret path fromvia-point to via-point. AICO is then used to optimize the parametrized intrinsiost funtion and the result of this optimization proess is a linear feedbak on-troller for eah time slie, see Equation 8.5. This feedbak ontrol law is exeutedeither on a real or simulated robot and the overall task performane (or extrinsiosts) C(τ) of the resulting trajetory is evaluated. Model learning takes plae inparallel and uses all data olleted during the roll-outs, see Figure 8.2.
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Figure 8.2: We deompose motor skill learning into two di�erent learning problems. At thehighest level we �nd parameters of an intrinsi ost funtion L(τ ; θ) using poliy searh.Given parameters θi the probabilisti planner at the lower level uses the intrinsi ostfuntion L(τ ; θ) to estimate a non-linear feedbak ontroller for eah time step. The feed-bak ontroller is subsequently exeuted on the real robot and the extrinsi ost C(τi) isevaluated. Simultaneously we ollet samples of the system dynamis 〈[xt,ut], ẋt〉 while ex-euting the movement primitive. These samples are used to improve our learned dynamismodel whih is used for planning.8.3 ExperimentsWe start our evaluation of the proposed Planning Movement Primitive (PMP) ap-proah on a one-dimensional via-point task to illustrate basi harateristis. Inorder to demonstrate our approah on a more hallenging dynami robot task wehoose a omplex 4-link humanoid balaning task. In our experiments, we fouson investigating robustness to noise, optimality of the solution, learning speed andgeneralizability to di�erent initial or target states. For a omparison we take theommonly used DMPs as a baseline where we use the newest version of the DMPs(Pastor et al., 2009) as disussed in detail in Appendix 8.5. In di�erene to mostappliations of the DMPs, are we learning from srath without the use of imitationlearning. As desribed above we use 2nd order stohasti searh to learn the PMPand DMP parameters. In order to ompare to a more ommonly used poliy searhalgorithm we additionally test using the PI2 algorithm for learning the DMPs. Forall experiments we empirially evaluate the optimal settings of the algorithms (suhas the exploration rate of CMA and PI2 or the number of enters for the DMPs),whih are listed in the Appendix 8.5.8.3.1 One-dimensional via-point taskIn this task the agent has to ontrol a one dimensional point mass. The state attime t is denoted by xt = [φt, φ̇t]
T and we diretly ontrol the aeleration. Thetime horizon was limited to T = 0.5s. Starting at x0 = [0, 0]T the agent has to pass



8.3. Experiments 101through a given via-point gv = −0.2 at tv = 300ms and the �nal target gT was setto 1, see Figure 8.3. We de�ne the extrinsi osts for this task:
C(τ) = 104(φ̇2

T + 10(gT − φT )
2) + 105(gv − φt300ms)2 + 5 · dt · 10−1

T
∑

t=0

u2t .The �rst two terms punish deviations from the target gT and the via-point gv. Thetarget should be reahed with zero veloity at T = 0.5s. The last term punishes highenergy onsumption. The ontrol ation is noisy, we always add a Gaussian noiseterm with a standard deviation of σ = 20 to the ontrol ation. The simulation timestep was set to 10ms. As this is a very simple task, we use it just to show di�erentharateristis of the DMPs and PMPs.A quite similar task has been used in (Todorov and Jordan, 2002) to study humanmovement ontrol. The experiments showed that humans were able to reah thegiven via-points with high auray, however, in between the via-points, the trial-to-trial variability was rather high. This is a well known onept from optimal ontrol,alled the minimum intervention priniple, showing also that human movementontrol follows basi rules of optimal ontrol. This observation also ontradits thathumans use a pure trajetory based movement representation. Still, the minimumintervention priniple is onsistent with the dynamial system view of movementontrol, however, muh more omplex dynamial systems than the DMPs are needed(i.e. oupled dynamial systems with non-onstant system parameters suh as thedamping onstants) to reprodue this e�et.We �rst estimate the quality of the best available poliy with the DMP and thePMP approah. We therefore use the PMPs with two via-points and set the param-eters θ per hand. As we are using a linear system model and a simple extrinsi ostfuntion, the PMP parameters an be diretly obtained by looking at the extrinsiosts. As the PMPs use the AICO algorithm whih always produes optimal poli-ies for LQG systems, the PMP solution is the optimal solution. We subsequentlyuse the mean trajetory returned by AICO and use imitation learning to �t theDMP parameters. We also optimized the feedbak ontrollers used for the DMPs.In Figure 8.3 we plotted 100 roll-outs of the DMP and PMP approah using thisoptimal poliies. The seond olumn illustrates the trial-to-trial variability of thetrajetories. The optimal solution has minimum variane at the via-point and thetarget. As expeted this solution is reprodued with the PMP approah, beause theparameters of the PMPs are able to re�et the importane of passing through thevia-point. The DMPs ould not adapt the variane during the movement beausethe used (optimized) feedbak ontroller uses onstant ontroller gains. As we ansee, the variane of the DMP trajetory is simply inreasing with time.Comparing the optimal solutions we �nd that PMPs, in ontrast to DMPs, annaturally deal with the inherent noise in the system. This is also re�eted by theaverage ost values over 1000 trajetories, 1286± 556 for the DMPs and 1173± 596for the PMPs. The ± symbol always denotes the standard deviation.This advantage would not be very useful if we were not able to learn the optimalPMP parameters from experiene. Next we test using CMA poliy searh to learnthe parameters for the DMPs and the PMPs. In addition, in order to ompare to
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(a) Best found poliy with DMPs (average osts over 1000 traj: 1286 ± 556)
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(b) Best found poliy with PMPs (average osts over 1000 traj: 1173 ± 596)Figure 8.3: Best available poliies for the PMPs and the DMPs for the via-point task.The agent has to pass the via-point at tv = 0.3s and deal with the stohastiity of thesystem (Gaussian ontrol noise with a variane of 202). The plot shows 100 trajetoriesreprodued with the (hand-rafted) optimal PMPs parameters and 100 trajetories withthe optimal parameters for the DMPs. The PMP approah is able to redue the varianeat the movement if it is relevant for the task while the DMPs an only suppress the noise inthe system throughout the trajetory in order to get an aeptable sore. This advantageis also re�eted by the average osts over 1000 trajetories.a more ommonly used poliy searh method, we also ompare to the PI2 approah(Theodorou et al., 2010a) whih we ould only evaluate for the DMP approah. Weevaluated the learning performane in the ase of no ontrol noise, Figure 8.4(a),and in the ase of ontrol noise σ = 20, Figure 8.4(b). Without ontrol noise thequality of the learned poliy found by 2nd order searh is similar for the DMPs andthe PMPs. PI2 ould not �nd as good solutions as the stohasti searh approah.The reason for this is that PI2 ould not �nd the very large weight values whih areneeded for the last few enters of the DMPs in order to have exatly zero veloityat the �nal state (note that the weights of the DMPs are multiplied by the phasevariable s whih almost vanishes in the end of the movement and therefore theseweight values have to be very high). Beause CMA poliy searh uses seond orderinformation, suh large parameter values are easily found. This omparison learlyshows that using 2nd order searh for poliy searh is justi�ed. If we ompare thelearning speed in terms of required samples between DMPs and PMPs, we �nd anadvantage for PMPs whih ould be learned an order of magnitude faster than theDMPs.The seond experiment (with ontrol noise of σ = 20) was onsiderably harderto learn. Here, we needed to average eah performane evaluation over 20 roll-outs. The use of more sophistiated extensions of CMA (Heidrih-Meisner and Igel,



8.3. Experiments 1032009a) whih an deal with noisy performane evaluations and hene improve thelearning speed of CMA poliy searh in the noisy setup is part of future work.In Figure 8.4(b) we �nd that the PMPs ould be learned an order of magnitudefaster than the DMPs. As expeted from the earlier experiment, the PMPs ould�nd learly better solutions as the DMPs as they an adapt the variane of thetrajetory to the task onstraints. Again, PI2 showed a worse performane than2nd order searh. Illustrated are mean values and standard deviations over 15 trialsof learning (1034 ± 1.46 for the PMPs and 1876 ± 131 for the DMPs using CMA).To ompare these results to the optimal osts we evaluated the best learned poliiesof both approahes and generated 1000 trajetories. The learned solution for thePMPs was similar to the hand-oded optimal solution, 1190 ± 584 versus osts of
1173±596 for the optimal solution. DMPs ahieved osts of 1478±837, illustratingthat, eventhough the DMPs are able to represent muh better solutions with ostsof 1286 ± 556 (see Figure 8.3), it is very hard to �nd this solution.In Table 8.1, we show the mean and variane of the found parameters for the�rst via-point in omparison to the optimal PMP parameters. We an see that thefound parameters losely mathed the optimal ones. Interestingly, in the experimentwith no noise, the found parameters had a larger deviation from the optimal ones,espeially for the �rst via-point g[1] in Table 8.1. The reason for this is the simpleobservation that without noise, we an hoose many via-points whih results in thesame trajetory, whereas with noise we have to hoose the orret via-point in orderto redue the variane of the trajetory at this point in time.Table 8.1: Learned parameters using PMPs for the via-point task (1st via-point), ± denotesthe standard deviation.senario d[1] g[1] log(r[1]) log(h[1])optimal 0.3 −0.2 [5, 0] −2.3no noise 0.29 ± 0.01 −0.27± 0.03 [4.08 ± 4.18,−0.8 ±−0.77] −3.05 ±−4with noise 0.29 ± 0.01 −0.23± 0.05 [4.93 ± 5.29,−0.31 ±−0.12] −2.85 ±−3Next, we investigate the ability of both approahes to generalize to di�erentsituations. With generalization we mean that the same learned parameters anbe re-used to generate di�erent movements, e.g. used for di�erent start or targetstates. The hange of the initial state or the target state is also allowed by the DMPframework. However, how the movement is generalized to these new situations isbased on heuristis (Pastor et al., 2009) and does not onsider any task onstraints.In Figure 8.5 the learned poliies are applied to reah di�erent �nal targets
φT ∈ [1.5, 1.25, 1, 0.75, 0.5]. All plots show the mean trajetory. In order to hangethe �nal state of the movement we have to hange the point attrator of the DMPs,whih hanges the omplete trajetory. Due to this heuristi, the resulting DMPtrajetories shown in Figure 8.5(a) do not pass through the via-point any more. Notethat we use a modi�ed version of the DMPs (Pastor et al., 2009) whih has alreadybeen built for generalization to di�erent target points. The PMPs on the other hand
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(b) Learning performane with noiseFigure 8.4: This �gure illustrates the learning performane of the two movement represen-tations, DMPs and PMPs, for the one-dimensional via-point task. Illustrated are meanvalues and standard deviations over 15 trials after CMA poliy searh. In addition, we alsoompare to the PI2 approah (Theodorou et al., 2010a) whih we ould only evaluate for theDMP approah. Without noise the �nal osts of the two representations are similar if CMApoliy searh is used (a). In the seond example (b) we use zero-mean Gaussian noise with
σ = 20 for the ontrols. In this setup we needed to average eah performane evaluationfor CMA over 20 roll-outs. For both setups the PMPs ould onsiderably outperform theDMPs in terms of learning speed. For the noisy setup the PMPs ould additionally produepoliies of muh higher quality as they an adapt the variane of the trajetories to thetask onstraints. PI2 ould not �nd as good solutions as the CMA poliy searh approahin both setups.
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() PMPs with varying goalsand adapted via-pointsFigure 8.5: In this experiment we evaluated the generalization of the learned poliies to dif-ferent goal states φT ∈ [1.5, 1.25, 1, 0.75, 0.5]. Always the same parameters θ have been used,i.e the parameters were not relearned. The DMPs (a) are not aware of task-relevant featuresand hene do not pass through the via-point any more. (b) PMPs an adapt to varying �nalgoals with small e�ets on passing through the learned via-point. Furthermore the PMP rep-resentation is very �exible and we an also use a via-point g̃1 = g1+[0.5, 0.25, 0,−0.25,−0.5]with onstant distane to the goal state to emulate the heuristi DMP behavior ().still navigate through the learned via-point when hanging the goal state as shownin Figure 8.5(b). We an also adapt the via-point g̃1 = g̃1+[0.5, 0.25, 0,−0.25,−0.5]to enode, for example, a via-point whih always has the same distane from thetarget state 8.5(). This would somehow emulate the adaption of the trajetoryused in the DMP approah. It is hard to argue whih behavior is better suitedfor this task as we have not spei�ed any ost funtion for the hanged situations,however, the PMP approah o�ers muh more ontrol how the poliy is hanged.For generalization to di�erent initial states the behavior is basially the same thusthis evaluation is not shown here.
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Figure 8.6: This �gure illustrates a dynami balaning movement learned using the proposedPlanning Movement Primitives. The 4-link robot modelling a humanoid (70kg, 2m) getspushed from behind with a spei� fore (F = 25Ns) and has to move suh that it maintainsbalane. The optimal poliy is to perform a fast bending movement and subsequently returnto the upright robot posture. The irles denote the ankle, the knee, the hip and the shoulderjoint.8.3.2 Dynami humanoid balaning taskIn order to assess the PMPs on a more omplex task, we evaluate the PMP andDMP approah on a dynami non-linear balaning task (Atkeson and Stephens,2007) where a robot gets pushed with a spei� fore F and has to keep balane. Thepush results in an immediate hange of the joint veloities. The motor torques arelimited whih makes diret ounter-balaning of the fore unfeasible. The optimalstrategy is therefore to perform a fast bending movement and subsequently returnto the upright position, see Figure 8.6. This is a very non-linear ontrol problem,using any type of (linear) balaning ontrol or loal optimal ontrol algorithm suh asusing AICO with the extrinsi ost funtion fails. Thus, we have to use a parametrimovement representation. Like in the previous experiment, we take the DynamiMovement Primitive (DMP) (Shaal et al., 2003) approah as a baseline.We use a 4-link robot as a simplisti model of a humanoid (70kg, 2m) (Atkesonand Stephens, 2007). The 8-dimensional state xt is omposed of the arm, the hip,the knee and the ankle positions and their veloities. Table 8.6 shows the initialveloities (resulting from the fore F whih always ats at the shoulder of the robot)and the valid joint angle range for the task. In all experiments the applied forewas F = 25Ns. If one of the joints leaves the valid range the robot is onsideredto be fallen. If the robot manages to keep balane for 5s the episode is onsideredto be suessful and the simulation is stopped. Additionally to the joint limits, theontrols are limited to the intervals [±250,±500,±500,±70]Ns (arm, hip, knee andankle). For more details we refer to (Atkeson and Stephens, 2007).Let ts be the last point in time where the robot has not fallen and let xts bethe last valid state. The �nal target state (upright position with zero veloity) isdenoted by xr and T = 5s. As extrinsi ost funtion C(τ) we use
C(τ) = 2 · 103(ts − T )2 + (xts − xr)

TRE(xts − xr) +

ts
∑

t=0

uT
t HEut . (8.6)
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() ControlsFigure 8.7: The �gure illustrates generated movements for the 4-link balaning task usingDMPs. The ontrols were perturbed by zero-mean Gaussian noise with σ = 10Nm , theplots show 100 roll-outs using the same parameter setting θ. The trial-to-trial variability ofthe trajetories is shown in (b). This variane is determined by the learned ontroller gainsof the inverse dynamis ontroller. As onstant ontroller gains are used the variane annot be adapted during the movement. The noisy ontrols for all 100 roll-outs are illustratedin (). This illustrated best available poliy ahieved osts of 568.The �rst term (ts−T )2 is a punishment term for falling over. If the robot falls over,this term typially dominates. The preision matrix RE determines how ostly it isnot to reah xr. The diagonal elements of RE are set to 103 for joint angles and to
10 for joint veloities. Controls are punished by HE = 5 · 10−6I. As we an see theextrinsi ost funtion annot be diretly enoded as a sum of intermediate ostswhih is usually required for stohasti optimal ontrol algorithms. Therefore, weneed to extrat suh a ost funtion in order to use a SOC planner.We use additive zero-mean Gaussian noise with a variane σ = 10. In ontrastto the simple via-point task here imitation learning fails for the DMPs. The bestahieved poliy using PMPs shown in Figure 8.8 is very lose to the ontrol andjoint onstraints and sine the DMPs have no knowledge about these onstraints,CMA poliy searh ould not learn any ontrol gain settings whih ful�lls them. (Al-though that the trajetories were �rst perfetly mathed using imitation learning.)Therefore the illustrated DMP poliy was learned from srath and di�ers from thebest PMP solution. Figure 8.7 illustrates 100 roll-outs of the best poliies found bythe DMP approah and Figure 8.8 shows 100 roll-outs of the PMP method. Theseond olumn in eah �gure illustrates the variane of the trajetories for the dif-ferent roll-outs. While the DMPs annot adapt the variane during the movement,the PMPs in Figure 8.8 an redue the variane at the learned via-point (denotedby rosses). As the PMPs are able to ontrol the variane of the trajetory, we analso see that the variane of the movement is muh higher ompared to the DMPsas auray only matters at the via-points. We an also see that the arm trajetoryhas a high variane after the robot is lose to a stable up-right posture, see Figure8.8(a), beause it is not neessary to stritly ontrol the arm in this phase. Thebest found poliy of the DMPs had osts of 568 while the best result using PMPswas 307. This strongly suggests that it is advantageous to redue the variane atertain points in time in order to improve the quality of the poliy.Next, we again want to assess the learning speed of both approahes. We again
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(b) Variane of the joints 0 1 2 3 4 5
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() ControlsFigure 8.8: This �gure illustrates the generated movements for the 4-link balaning taskusing PMPs. The rosses in (a) and (b) mark the learned via-point. As we an see thevariane is minimized at these points, re�eting the importane to reah this point. ()shows the noisy ontrols applied by the PMPs. The illustrated best available poliy ahievedosts of 307.
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Figure 8.9: The �gure illustrates the learning performane of the two movement represen-tations, DMPs and PMPs for the 4-link balaning task. Illustrated are mean values andstandard deviations over 20 trials after CMA poliy searh. The ontrols (torques) areperturbed by zero-mean Gaussian noise with σ = 10Nm. The PMPs are able to extratharateristi features of this task whih is a spei� posture during the bending move-ment, shown in Figure 8.8(a). Using the proposed Planning Movement Primitives goodpoliies ould be found at least one order of magnitude faster ompared to the trajetorybased DMP approah. Also, the quality of the best-found poliy was onsiderably betterfor the PMP approah (993 ± 449 for the DMPs and 451 ± 212 for the PMPs). For theDMP approah we additionally evaluated PI2 for poliy searh whih ould not �nd goodpoliies.used CMA poliy searh for the PMPs and DMPs as well as PI2 for the DMPapproah. The learning urves are illustrated in Figure 8.9. Using the PMPs asmovement representation, good poliies ould be found at least one order of mag-nitude faster ompared to the trajetory based DMP approah. The quality of thefound poliies was better for the PMP approah (mean values and standard devia-tions after learning: 993± 449 for the DMPs and 451± 212 for the PMPs). For theDMP approah we additionally evaluated PI2 for poliy searh, however, PI2 wasnot able to �nd good solutions�the robot always fell over.In the next step we again test the generalization to di�erent targets. We usedthe learned poliies to generate movements to di�erent �nal targets of the arm
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(a) DMPs for hanging targets 0 1 2 3 4 5
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(b) PMPs for hanging targetsFigure 8.10: This �gure illustrates the joint angle trajetories (arm, hip, knee and ankle) ofa 4-link robot model during a balaning movement for di�erent �nal targets of the arm joint([3, 2.5, 2, 1.5, 1, 0.5, 0,−0.2,−0.4,−0.6]). The applied poliies were learned for a �nal armposture of φTarm = 0. (a) The valid range of the arm joint using DMPs is φTarm ∈ {−0.2, 1}.Large dots in the plot indiates that the robot has fallen. (b) PMPs ould generate validpoliies for all �nal arm on�gurations.
joint φTarm ∈ [3, 2.5, 2, 1.5, 1, 0.5, 0,−0.2,−0.4,−0.6]. Note that the used poliy waslearned for an �nal arm posture of φTarm = 0, we only hange either the arm-position of the last via-point or the point attrator of the dynamial system. Theresults shown in Figure 8.10 on�rm the �ndings of the one-dimensional via-pointtask. The PMPs �rst move to the via-point, always maintaining the extratedtask onstraints and afterwards move the arm to the desired position while keepingbalane. All desired target positions of the arm ould be ful�lled. In ontrast, theDMPs managed to keep balane only for few target positions. The valid range of thetarget arm position with DMPs was φTarm ∈ {−0.2, 1}. This shows the advantageof generalization while keeping task onstraints versus generalization per using theDMP heuristis.So far all experiments for the PMPs were performed using the known model ofthe system dynamis, these experiments are denoted by PMP in Figure 8.11. Notethat also for the DMPs the known system model has been used for inverse dynamisontrol. Now we want to evaluate how model learning a�ets the performane ofour approah. This an be seen in Figure 8.11. In the beginning of learning theextrinsi osts are larger ompared to motor skill learning with a given analytimodel. However, as the number of olleted data-points 〈[xt;ut], ẋt〉 inreases thePMPs with model learning quikly ath up and onverge �nally to the same osts.The PMP representation with model learning in parallel onsiderably outperformsthe trajetory based DMP approah in learning speed and in the �nal osts.
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Figure 8.11: The �gure shows the in�uene of model learning on the 4-link balaningtask. Illustrated are mean values and standard deviations over 20 trials. The learningperformane with the given system model is denoted by PMP. Instead of using the givenmodel we now want to learn the system model from data (as desribed in Setion 8.2.3).In the beginning of learning the extrinsi osts are larger ompared to motor skill learningwith a given analyti model. However, as the number of olleted data-points 〈[xt;ut], ẋt〉inreases the PMPs with model learning quikly ath up and onverge �nally to the sameosts. The PMP representation with model learning in parallel onsiderably outperformsthe trajetory based DMP approah in learning speed and in the �nal osts.8.4 Conlusion and Future WorkWe have proposed a new type movement representation whih endows a movementprimitive with an intrinsi probabilisti planning system instead of endowing a move-ment primitive with a dynamial system suh as the widely used Dynami MovementPrimitives (DMPs) (Shaal et al., 2003) approah. While the dynamial system ofa DMP is to some degree reative to the environment�namely by adapting thetemporal saling fator and thereby de- or aelerating the movement exeution asneeded (Shaal et al., 2003)�the trajetory shape itself is �xed and non-reative tothe environment. In ontrast, a movement primitive that is endowed with an intrin-si planning omponent an reat to the environment by optimizing the trajetoryfor the spei� urrent situation. Training suh a movement primitive now meansto train a planner to generate an appropriate trajetory in a given situation insteadof training a dynamial system to generate a �xed (temporally �exible) referenetrajetory.Our approah to parameterize the intrinsi ost funtion is to use task-relevantfeatures, suh as the loation of via-points or the importane of reahing this via-point. The idea is that suh learnt task-relevant features as parameters of themovement representation should generalize well aross situations. As our experi-ments show suh an parametrization failitates learning - good poliies an be foundan order of magnitude faster as with parametrizations whih de�ne the shape of thetrajetory. It also allows an e�ient generalization to new situations (e.g. newmovement endpoints) beause the planner always tries to ful�lls the extrated taskonstraints. One a motor skill is learned additional onstraints like an unexpetedappearing obstale during a walking movement an diretly be onsidered for mod-ulating the behavior. Thus re-learning of the motor skill is not neessary sine theplanning mahinery an integrate the new knowledge immediately. This propertieswill be further investigated for footplaement planning in future researh.Stohasti optimal ontrol (SOC) is also an exellent method to desribe human



110 Chapter 8. Planning Movement Primitivesmotor ontrol (Todorov and Jordan, 2002). Thus, by the use of SOC methodsalready at the level of the primitive, our approah an implement many of thesepriniples. For example, the minimum intervention priniple implies that we shouldonly intervene the system if it is neessary to ful�ll a given task. A representationwhih stritly follows a desired trajetory by feedbak ontrol laws an not reproduesuh a behavior. This has also been on�rmed by our experiments, where the DMPrepresentation produes sub-optimal poliies in the presene of noise in our system.Only for deterministi systems the optimal solution an be represented by suh anapproah. In ontrast the proposed Planning Movement Primitives ould reproduethe optimal poliy after learning.An additional interesting aspet of using movement primitives is that, ideally,we want to be able to ombine primitives in order to ahieve several tasks simul-taneously. This is still a mostly unsolved problem for urrent movement represen-tations. Here, our Planning Movement Primitives o�ers new opportunities. Fortrajetory-based representation we would need to linearly ombine two trajetoriesin order to ombine two movements. As many task demands and system dynamisare non-linear suh an approah usually fails. However, instead of linearly ombiningtrajetories, our approah an now linearly ombine ost funtions�whih resultsin a non-linear ombination of the poliies for the single tasks. The evaluation ofthis idea for ombining several movements is also part of future work.In this paper we foused on the representation of movement and put less empha-sis on learning a movement. Yet, we want to point out again that our method doesnot depend on the used poliy searh method (we used the seond order stohas-ti searh method CMA), any episode-based exploring poliy searh method anbe used. We also do not want to argue for using episode-based exploring methodsfor poliy searh, however, as our experiments show, these methods provide use-ful alternatives to the more ommonly used step-based approahes suh as the PI2(Theodorou et al., 2010a), the PoWER (Kober and Peters, 2010) or the eNAC al-gorithm (Peters and Shaal, 2008b). For poliy searh, future work will onentrateon extending the framework for learning in the ase of hanging initial onditions(Neumann, 2011) as well as using inferene-based methods (Peters et al., 2010) alsoon the level of learning the parameters.8.5 AknowledgmentsThis paper was written by Elmar Rükert (ER), Gerhard Neumann (GN), MarToussaint (MT) and Wolfgang Maass (WM). It will be submitted at the end ofnovember to the Journal of Mahine Learning Researh. GN provided most of thebasi ideas and experimental design, ER implemented the algorithms and ondutedmost experiments. MT and WM onsiderably helped to improve the paper by theirguidane and omments. Paper writting was mostly done by ER and GN withhighly appreiated assistene from MT.



8.5. Aknowledgments 111AppendixAlgorithmsIn this setion we review the evaluated algorithms.Dynami Movement PrimitivesThe most prominent representation for movement primitives used in robot ontrolare the Dynami Movement Primitives (DMP) (Shaal et al., 2003). We thereforeused the DMPs as a baseline in our evaluations and will brie�y review this approahin order to larify di�erenes to our work. For our experiments we implemented anextension of the original DMPs (Pastor et al., 2009), whih onsiders an additionalterm in the dynamial system whih failitates generalization to di�erent targetstates. For more details we refer to (Shaal et al., 2003; Pastor et al., 2009).DMPs generate multi-dimensional trajetories by the use of non-linear di�eren-tial equations. The basi idea is to a use for eah degree-of-freedom (DoF) of therobot a globally stable, linear dynamial system whih is modulated by learnablenon-linear funtions f :
τ ż = αzβz(g − y)− αzz − αzβz(g − y0)s+ f, τ ẏ = z,where the desired �nal position of the joint is denoted by g and the initial position ofthe joint is denoted by y0. The variables y and ẏ denote a desired joint position andjoint veloity, whih represent our movement plan. The temporal saling fator isdenoted by τ and αz and βz are time onstants. The non-linear funtion f diretlymodulates the derivative of the internal state variable z. Thus, f modulates thedesired aeleration of the movement plan. s denotes the phase of the movement.For eah DoF of the robot an individual dynamial system, and hene an individ-ual funtion f is used. The funtion f only depends on the phase s of a movement,whih represents time, τ ṡ = −αss. The phase variable s is initially set to 1 and willonverge to 0 for a proper hoie of τ and αs. With αs we an modulate the desiredmovement speed. The funtion f is onstruted of the weighted sum of K Gaussianbasis funtions Ψi

f(s) =

∑K
i=1 Ψi(s)wis
∑K

i=1 Ψi(s)
, Ψi(s) = exp(−

1

2σ2
i

(s− ci)
2).As the phase variable s onverges to zero also the in�uene of f vanishes withinreasing time. Hene, the dynamial system is globally stable with g as pointattrator.In our setting, only the linear weights wi are parameters of the primitive whihan modulate the shape of the movement. The enters ci speify at whih phase ofthe movement the basis funtion beomes ative and are typially equally spaedin the range of s and not modi�ed during learning. The bandwidth of the basisfuntions is given by σ2

i .Integrating the dynamial systems for eah DoF results into a desired trajetory
〈yt, ẏt〉 of the joint angles. We will use an inverse dynamis ontroller to follow this



112 Chapter 8. Planning Movement Primitivestrajetory (Peters et al., 2008). The inverse dynamis ontroller reeives the desiredaelerations q̈des as input and outputs the ontrol torques u. In order to alulatethe desired aelerations we use a simple deoupled linear PD-ontroller
q̈des = diag(kpos)(yt − qt) + diag(kvel)(ẏt − q̇t).Unfortunately standard inverse dynamis ontrol did not work in our setup beausewe had to deal with ontrol limits of multi-dimensional systems. Thus, we had touse an inverse dynamis ontroller whih also inorporates ontrol onstraints. Forthis reason we performed an iterative gradient asent using the di�erene betweenthe atual (using onstrainted ontrols) and the desired aelerations q̈des as errorfuntion. This proess was stopped after at most 25 iterations.For our omparison, we will learn the linear weights w for eah DoF as well asthe ontroller gains kpos and kvel, i.e. θ = [w1, . . . ,wD,kpos,kvel]. This resultsinto KD + 2D parameters for the movement representation, where D denotes thenumber of DoF of the robot.Approximate Inferene ControlThe original formulation of the Approximate Inferene Control (AICO) method(Toussaint, 2009) does not onsider a linear term for the ontrol osts. However, thisis needed to enode torque limits, whih are important for our dynami balaningexperiments, and hene, we needed to extend AICO.The introdution of a linear term for the ontrol osts yields not only in a modi-�ed ost funtion but also results in di�erent update equations for the messages and�nally in di�erent equations of the optimal feedbak ontroller. For ompletenesswe will �rst reap the main steps to derive the AICO method and will then disussthe modi�ations to implement ontrol onstraints.Approximate Inferene Control without Torque Limits For motor planningwe onsider the stohasti proess:

P (x0:T ,u1:T , z1:T ) = P (x0)

T
∏

t=0

P (ut|xt)

T
∏

t=1

P (xt|xt−1,ut−1)

T
∏

t=0

P (zt|xt,ut).where P (ut|xt) denotes the state dependent prior for the ontrols, P (xt|xt−1,ut−1)the state transition distribution and P (x0) the initial state distribution. Here, weassume that the prior of the ontrols is independent of the states and thus we willsimply use P (ut|xt) = P (ut) for the rest of the appendix. The time horizon is �xedto T time-steps. The binary task variable zt denotes a reward event, its probabilityis de�ned by P (zt = 1|xt,ut) ∝ exp(−ct(xt,ut)), where ct(xt,ut) is the intermediateost funtion1 for time step t. It expresses a performane riteria (like avoiding aollision, or reahing a goal).We want to ompute the posterior P (x1:T ,u1:T |z1:T = 1) over trajetories, on-ditioned on observing a reward (zt = 1) at eah time-step t. This posterior an be1In this paper the immediate ost funtion is omposed of the intrinsi osts and the onstraintosts, i.e. ct(xt,ut) = l(xt,ut, t;θ) + cp(xt,ut)



8.5. Aknowledgments 113omputed by using message passing in the given graphial model of Figure 8.1. Tosimplify the omputations we integrate out the ontrols:
P (xt+1|xt) =

∫

ut

P (xt+1|xt,ut)P (ut|xt)dut, (8.7)The marginal belief bt(xt) of a state at time t is given by:
bt(xt) = αt(xt)βt(xt)φt(xt), (8.8)where αt(xt) is the forward message, βt(xt) is the bakward message φt(xt) is theurrent task message. The messages are given by:

αt(xt) =

∫

xt−1

P (xt|xt−1)αt−1(xt−1)φt−1(xt−1)dxt−1, (8.9)
βt(xt) =

∫

xt+1

P (xt+1|xt)βt+1(xt+1)φt+1(xt+1)dxt+1, (8.10)
φt(xt) = P (zt|xt). (8.11)We onsider disrete-time, non-linear stohasti systems with zero mean Gaus-sian noise

P (xt+1|xt,ut) = N (xt+1|fDyn(xt,ut),Qt).The non-linear stohasti system fDyn is approximated by a Linear dynamis,Quadrati osts and Gaussian noise system (LQG) by Taylor expansion (Toussaint,2009; Todorov and Li, 2005) :
P (xt+1|xt,ut) = N (xt+1|Atxt + at +Btut,Qt) (8.12)Thus, the system is linearized along a given trajetory 〈x̂0:T , û1:T 〉 at every pointin time. We will use ft as shorthand for fDyn(xt,ut). Then, the state transitionmatries At are given by At = (I + δft

δxt
∆t), the ontrol matries Bt are given by

Bt =
δft
δut

∆t and the linear terms by at = (ft −
δft
δxt

xt −
δft
δut

ut)∆t.In the original formulation of AICO the ost funtion ct is approximated as :
ct(xt,ut) = xT

t Rtxt − 2rTt xt + uT
t Htut.Note that there is no linear term for the ontrol osts as we only punish quadrationtrols. We an now write P (zt = 1|xt,ut) = P (zt = 1|xt)P (ut) as

P (zt = 1|xt) ∝ N [xt|rt,Rt] (8.13)
P (ut) = N [ut|0,Ht], (8.14)where the distributions in Equation 8.13 and 8.14 are given in anonial form. Theanonial form of a Gaussian is used beause numerial operations suh as produtsor integrals are easier to alulate in this notation. The anonial form is indiatedby the square braket notation and given by

N [x|a,A] =
exp(−1/2aTA−1a)

|2πA−1|1/2
exp(−1/2xTAx+ xTa).



114 Chapter 8. Planning Movement PrimitivesA Gaussian in normal form an always be transformed into the anonial form by
N (x|a,A) = N [x|A−1a,A−1]. For more details we refer to the Gaussian Identitiesin (Toussaint, 2011).We an see in Equation 8.14 that our prior for applying the ontrol ut is given bythe ontrol osts, i.e. N [ut|0,Ht]. By integrating out the ontrols from our systemdynamis we get the following state transition probabilities

P (xt+1|xt) =

∫

ut

N (xt+1|Atxt + at +Btut,Qt)N [ut|0,Ht]dut (8.15)
= N (xt+1|Atxt + at,Qt +BtH

−1
t Bt), (8.16)where the integral was solved using a reformulation of the Propagation rule in (Tou-ssaint, 2011).As we an see, all distributions in the approximated LQG system in Equation8.16 are Gaussian, and thus, also all messages are Gaussians and an be alulatedanalytially. The resulting messages are given in (Toussaint, 2009).Approximate Inferene Control with Torque Limits In order to implementtorque and joint limits we introdue an additional ost funtion cp whih punishesthe violation of the given onstraints. The funtion cp is just added to the urrentimmediate osts. We use separate ost terms for ontrol onstraints cut and jointonstraints cqt , i.e cp(xt,ut) = cqt (xt) + cut (ut). Here, we will only disuss howto implement the funtion cut (ut) for the torque onstraints, joint onstraints areimplemented similarly.The ost funtion cut is quadrati in u and punishes leaving the valid ontrollimits of u. In order to implement the upper bound umax for the torques, we usethe following ost funtion

cut (ut) = uT
t Htut + (ut − umax)THU

t (ut − umax),
= uT

t Htut + uT
t H

U
t ut − 2uTmaxHU

t ut + uTmaxHU
t umax,

= uT
t Htut + uT

t H
U
t ut − 2uTmaxHU

t ut + onst.As before, the matrix Ht denotes the quadrati ontrol osts. The onstrained ostsare only imposed for the ontrol variable ui if the torque value exeeds the upperbound umax,i. In order to do soHU
t is a diagonal matrix where the ith diagonal entryis zero if ui ≤ umax,i and non-zero otherwise. The lower bound umin is implementedlikewise using an individual diagonal matrix HL

t .We an again implement cut (ut) as prior distribution P (ut) for the ontrols.
P (ut) ∝ N [ut|ht,Ht], (8.17)where ht = uTmaxHU

t + uTminHL
t and the preision Ĥt = Ht +HU

t +HL
t . As we ansee, the linear term ht of the prior distribution P (ut) is now non-zero. This yieldsdi�erent message equations.Joint-limits an be imposed similarly by using additional terms osts for cqt (xt).However, for joint limits the update equations stay the same beause P (zt = 1|xt)has already a non-zero mean denoted by rt in Equation 8.13.



8.5. Aknowledgments 115To derive the messages we will �rst integrate out the ontrols to get the statetransition probabilities:
P (xt+1|xt) =

∫

ut

N (xt+1|Atxt + at +Btut,Qt)N [ut|ht, Ĥt]dut,

= N (xt+1|Atxt + at +BtĤ
−1
t ht,Qt +BtĤ

−1
t BT

t ). (8.18)Note that, sine the ost funtion cut (ut) ontains a non-zero linear term ht, weget a new linear term ât = at +BtH
−1
t ht in the transition dynamis. The forwardand the bakward messages are the same like in (Toussaint, 2009) exept that at isreplaed by ât and Ht by Ĥt.Like in (Toussaint, 2009) we use the anonial representations for the forwardand the bakward message:

αt(xt) = N [xt|st,St]

βt(xt) = N [xt|vt,Vt]

φt(xt) = P (zt|xt) = N [xt|rt,Rt].The messages are represented by Gaussians in anonial form, for whih mathemati-al operations like produts are simply performed by adding the linear terms and thepreisions. The mean of the belief is given by bt(xt) = (St+Vt+Rt)
−1(st+vt+rt)(multiplying three anonial messages and a subsequent transformation to normalform). Furthermore we use the shorthand Q̄t = Qt +BtĤ

−1
t BT

t for the ovarianein Equation 8.18.The messages are omputed by inserting the state transition probabilities givenin Equation 8.18 in the message passing Equations 8.9 and 8.10. Subsequentlythe integrals are solved using the Propagation rule in (Toussaint, 2011). The �nalequations in anonial form are:
St = (A−T

t−1 −Ks)St−1A
−1
t−1, (8.19)

st = (A−T
t−1 −Ks)(̄st−1 + St−1A

−1
t−1(ât−1 +Bt−1Ĥ

−1
t−1ht−1)), (8.20)

Ks = A−T
t−1St−1(St−1 +A−T

t−1Q̄
−1
t−1A

−1
t−1)

−1. (8.21)And for the bakward messages:
Vt = (AT

t −Kv)V̄t+1At, (8.22)
vt = (AT

t −Kv)(v̄t+1 − V̄t+1(ât +BtĤ
−1
t ht)), (8.23)

Kv = AT
t V̄t+1(V̄t+1 + Q̄−1

t )−1. (8.24)To obtain the same mathematial form as in (Toussaint, 2009) one needs to applythe Woodbury identity and reformulate the equations. In ontrast to the updatemessage in normal form (Toussaint, 2009), diret inversions of S̄t−1 and V̄t+1 are notneessary in the anonial form and therefore, the iterative updates are numeriallymore stable.Finally, in order to ompute the optimal feedbak ontroller we alulate thejoint state-ontrol posterior
P (ut,xt) = P (ut,xt|zt = 1)
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P (ut,xt) =

∫

xt+1

αt(xt)φt(xt)P (xt+1|xt,ut)P (ut)βt+1(xt+1)φt+1(xt+1)dxt+1

P (ut,xt) = P (xt)P (ut)

∫

xt+1

P (xt+1|xt,ut)N [xt+1|v̄t+1, V̄t+1]dxt+1

P (ut|xt) = N (ut|M
−1
t (BT

t V∗(V̄
−1
t+1v̄t+1 −Atxt − ât) + ht),M

−1
t ),where V∗ = (Q+ V̄−1

t+1)
−1 and Mt = BT

t V∗Bt + Ĥt. After a reformulation we anobtain an optimal feedbak ontroller of the form ut = ot +Otxt with
ot = M−1

t (BT
t V∗V̄

−1
t+1v̄t+1 −BT

t V∗at + ht), (8.25)
Ot = −M−1

t BT
t V∗At. (8.26)Similar to (Toussaint, 2009), we use an iterative message passing approah wherewe approximate the non-linear system by an Linear dynamis, Quadrati osts andGaussian noise system (LQG) at the new mode of the trajetory. In (Toussaint,2009), this is done by using a learning rate on the state beliefs b(xt). However,in di�erene to (Toussaint, 2009), we also need an estimate of the optimal ation

ut in order to impose the ontrol onstraints. Using a learning rate on the ontrolation ut turned out to be very ine�etive beause feedbak is extenuated. Forthis reason we will use a learning rate on the feedbak ontroller. We simulate theLQG system (using the linearized model) to get a new mode of the belief of thetrajetory. The omplete message passing algorithm onsidering state and ontrolonstraints is listed in Algorithm 2. This is a straightforward implementation ofGaussian message passing in linearized systems, similar to an extended Kalmansmoother. In (Toussaint, 2009) or (Rawlik et al., 2010) more time e�ient methodsare presented, where for eah time step the belief is updated until onvergenein ontrast to updating all messages and iterating until the intrinsi osts L(τ ;θ)onverge. The omputational bene�ts of suh an approah still needs to be evaluatedfor our messages.Task settings and parametersIn this setion the movement primitive parameters and onstants are spei�ed forthe one-dimensional via-point task and for the humanoid balaning task.One-dimensional via-point taskFor the one-dimensional via-point task the parameters of the Dynami MovementPrimitives are listed in Table 8.2. The valid on�guration spae for the poliysearh algorithm is listed in Table 8.3. The CMA poliy searh algorithm has justone parameter, the exploration rate. Where the best exploration rate using DMPsfor this task found was 0.05.The limits of the parametrization of the Planning Movement Primitives (seeEquation 8.4) is listed in Table 8.4. For the via-point task we hoose N = 2, wherethe seond via-point g[N ] = gT was given. The exploration rate was set to 0.1 in allexperiments.



8.5. Aknowledgments 117Algorithm 2: Approximate Inferene Control for Constrained SystemsData: initial trajetory x̂0:T , learning rate ηResult: x0:T and u0:Tinitialize S0 = 1e10 · I, s0 = S0x0, k = 0, ô0:T = 0, Ô0:T = 0 · I ;while L(τ ;θ) not onverged dofor t← 0 to T doLinearize Model: At,at,Bt using Equation 8.12Compute Costs: Ĥt,ht,Rt, rt using Equation 8.13, 8.17for t← 1 to T doForward Messages: αt(xt) using Equation 8.19 - 8.21for t← T − 1 to 0 doBakward Messages: βt(xt) using Equation 8.22 - 8.24for t← 0 to T doFeedbak Controller: ot,Ot using Equation 8.25, 8.26if k == 0 then
ut = ot +Otxtelsê
ot = (1− η)ôt + ηot
Ôt = (1− η)Ôt + ηOt

ut = ôt + Ôtxt

xt+1 = Atxt + at +Btut

k = k + 1Table 8.2: Via-point task: DMP movement primitive parametersK αs αz βz τ

10 1 2 0.9 0.1Dynami humanoid balaning taskThe DMP parameters for the balaning task are listed in Table 8.5. The poliysearh parameters are the same like for the via-point task, Table 8.3. The explorationTable 8.3: Via-point task: DMP poliy searh on�guration parameters
w kpos kvellower bound −100 0 0upper bound +100 100 100



118 Chapter 8. Planning Movement PrimitivesTable 8.4: Via-point task: PMP poliy searh on�guration parameters with i = 1, 2

d[1] g[1] r[i] h[i]lower bound 0.05 -2 [1, 10−6] 10−4upper bound 0.4 +2 [106, 104] 10−2Table 8.5: Balaning task: DMP movement primitive parametersK αs αz βz τ

10 1 5 5 1rate was set to 0.1.The PMPs were again evaluated with N = 2 via-points, where the seond via-point g[N ] = gT (the up-right robot posture) was given and for the �rst via-pointthe valid joint angle on�guration is shown in Table 8.6. The exploration rate was
0.1 and the poliy searh algorithm on�guration is listed in Table 8.7.

Table 8.6: Joint angle on�gurations where a robot gets pushed by a spei� fore F .Joint Init veloities Lower Bound Upper Boundarm −0.4 · 10−2F −0.6 3.0hip +5.1 · 10−2F −2.0 0.1knee −7.4 · 10−2F −0.05 2.5ankle +1.2 · 10−2F −0.8 0.8
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Table 8.7: Balaning task: PMP poliy searh on�guration parameters with i = 1, 2

d[1] r[i] h[i]lower bound 0.1 [10−2, 10−4, 10−2, 10−4, 10−2, 10−4, 10−2, 10−4] [10−9, 10−9, 10−9, 10−9]upper bound 4.6 [104, 102, 104, 102, 104, 102, 104, 102] [10−3, 10−3, 10−3, 10−3]





Part IIIPoliy Searh





Chapter 9Introdution
In this setion we brie�y disuss poliy searh methods for motor skill learning.We will put our fous on the temporal movement primitives disussed in Chapter5 as they are the most widely used. A temporal movement representation uses theduration (or phase) of the movement to enode the state of the robot, i.e. thepoliy now expliitly depends on the time π(a|s, t;w), where w are the parametersof the primitive. Temporal primitives are typially used for episodi tasks, i.e. wealways use the same initial onditions for eah episode. In this setup we do notneessarily have to estimate a value-funtion beause we an diretly searh foroptimal primitive parameters w∗. This hapter gives a broad overview of existingpoliy searh methods.In the next hapter we will introdue a new method whih is able to generalizepoliy searh to hanging several situations. This work has already been published inthe paper 'Variational Inferene for Poliy Searh in Changing Situations', appearedin the Proeedings of the International Conferene for Mahine Learning (ICML),2011.9.1 Episodi Poliy Searh for temporal MovementPrimitivesIn the episodi setup we an neglet the value-funtion beause the expeted rewardof using parameter vetor w an be estimated diretly by performing roll-outs onthe real (or simulated) robot

J(w) =

∫

τ
p(τ ;w)R(τ)dτ, (9.1)where a trajetory τ is given by a sequene of state and ation vetors, i.e

τ = 〈s0,a0, . . . , sT 〉 and R(τ) denotes the summed reward assoiated with thistrajetory. Note that this type f performane evaluation is also possible for thenon-episodi setup with multiple start states, however, we would have to estimatethe osts by averaging over all possible start states, whih is very ine�ient. Thesummed reward R(τ) is typially omposed of the summed immediate rewards rtand a �nal reward for the last time step φT , i.e.
R(τ) =

T−1
∑

t=0

r(st,at) + φT (sT )Our goal is now to �nd a parameter vetor w∗ whih minimizes J(w).



124 Chapter 9. IntrodutionThere are many approahes whih an be used for this task, some are gradient-based (Williams, 1992; Peters and Shaal, 2006), expetation-maximization (Koberand Peters, 2010) or inferene-based (Theodorou et al., 2010b) and some are stohas-ti optimizers (Heidrih-Meisner and Igel, 2009b; Hansen et al., 2003). These meth-ods an oarsely be divided into episode-based exploring and step-based exploringapproahes. Step-based exploring methods apply exploration at eah time step byperforming noisy ations while Episode-based exploring approahes explore the pa-rameter spae by using di�erent parameter vetors for eah episode.9.2 Step-based Exploring ApproahesStep-based exploring algorithms inlude traditional poliy gradient methods suh asepisodi REINFORCE (Williams, 1992) and the episodi Natural Ator Criti algo-rithm (Peters and Shaal, 2006, 2008a), expetation-maximization based algorithmssuh as PoWER (Kober and Peters, 2010) and algorithms based on path integralssuh as PI2 (Theodorou et al., 2010b). PoWER and PI2 are urrently onsidered tobe state of the art.The main priniple of step-based approahes is that an exploration-noise εt forthe ation at is used for eah time step to searh for trajetories with low osts.Subsequently the parameters w are adapted suh that the (noisy) trajetories withlower osts are more likely to be reprodued again. Step-based exploring approahesonly work for poliies whih depend linearly on the parameters w as we have tobe able to easily �t the parameters to the noisy trajetories. Of all the disussedmovement representations in Chapter 5, the linear poliy representation applies onlyfor the Dynami Movement Primitive (DMP) approah. The DMPs typially use aGaussian poliy for the desired aeleration where the mean µ depends linearly onthe parameters w (see Setion 5.2.1).The exploration sheme is quite simple. All algorithms either add the noise term
ε diretly to the ation, i.e

at = ΦT
t w + εat , π(at|st, t;w) = N

(

at|Φ
T
t w,Σa

) (9.2)or to the linear parameters w, i.e.
at = ΦT

t (w + εwt ), π(at|st, t;w) = N
(

at|Φ
T
t w,ΦT

t ΣwΦt

)

, (9.3)Adding noise to the parameters has beome more aepted in reent algorithms likePoWER (Kober and Peters, 2010) and PI2 (Theodorou et al., 2010b).The noise εt itself is always sampled from a multivariate normal distributionwith a diagonal ovariane matrix Σε = diag(σ). Thus, there is no orrelationin the exploration noise, and onsequently exploration is always undireted. Inaddition, the unorrelated exploration noise is usually not adapted during learning.Another problem of step-based exploration tehniques is that we add noise at eahtime step whih often results in high variane of the estimate of the value of a spei�parameter vetor w, in partiular if the time horizon T is large.



9.2. Step-based Exploring Approahes 1259.2.1 Poliy Gradient MethodsThe priniple of poliy gradient (PG) methods is simple. The parameters are up-dated in the diretion of the gradient of our expeted reward funtion
wk+1 = wk + α∇wJ(w),where α is a learning rate whih has to be spei�ed by the user.Typially PG-methods use Gaussian noise diretly added to the urrent ation,i.e. at = ΦT

t w + εat . PG algorithms only di�er how they estimate the gradient
∇wJ(w).REINFORCEREINFORCE is one of the �rst poliy gradient algorithms (Williams, 1992). Thealgorithm alulates the gradient of the expeted reward (Equation 9.1) by usingthe well-known 'log-ratio trik' ∇wp(τ ;w) = p(τ ;w)∇w log p(τ ;w), i.e.

∇wJ(w) =

∫

τ
∇wp(τ ;w)R(τ)dτ =

∫

τ
p(τ ;w)∇w log p(τ ;w)R(τ)dτNow, if we use the identity

p(τ ;w) = P (s0)

T−1
∏

t=0

P (st+1|st,at)π(at|st;w), we an redue the produt to a sum as we are using the log term of p(τ ;w).Consequently all terms drop out whih do not depend on w for the derivative. TheREINFORCE gradient is therefore given by
∇RFJ(w) =

∫

τ
R(τ)

T−1
∑

t=0

∇w log π(at|st;w)dτ.Fortunately, the gradient only depends on the derivative of the poliy, whih isusually known to the experimenter. No knowledge of the transition or reward modelis needed.The expetation over the trajetories an be replaed by sample trajetories. Ithas been also shown that the substration of a reward baseline b from the trajetoryreward R(τ) an improve the performane signi�antly (Greensmith et al., 2004).Further advanements of REINFORCE are the GPOMDP (Baxter and Bartlett,1999) and the Poliy Gradient Theorem algorithm (Sutton et al., 1999). Bothalgorithms use the simple observation that rewards in the past are not a�eted byations in the future, whih results in a gradient alulation with redued varianein omparison to REINFORCE.



126 Chapter 9. Introdution9.2.1.1 Episodi Natural-Ator CritiThe episodi Natural-Ator Criti (eNAC) (Peters and Shaal, 2008a) algorithm isone of the most e�ient poliy gradient methods. The algorithm is inspired by theuse of natural gradients for supervised learning (Amari, 1998). Here, the standardgradient is projeted onto more e�ient update diretions by the use of the inverseFisher Information matrix. The Fisher Information matrix measures the amount of'information' that the trajetory distribution p(τ ;w) arries about the parametervetor w, it is given by
F (w) = Eτ

[

∇wp(τ ;w)∇wp(τ ;w)T
]

.Using the inverse Fisher Information matrix to projet the standard REIN-FORCE gradient has the e�et that the hange of eah parameter wi has now thesame in�uene on the trajetory distribution. Thus, the algorithm is invariant tothe hoie of the parametrization (e.g. sale) if two parametrizations have the samerepresentational power. The resulting gradient estimation is given by
∇NACJ(w) = F (w)−1∇RFJ(w).Experiments showed that due to the saling of the REINFORCE gradient the eNAConverges an order of magnitude faster than the standard REINFORCE algorithm.9.2.2 Inferene-based algorithmsThere are 2 types of inferene-based algorithms, Monte-Carlo Expetation-Maximization (MC-EM) algorithms suh as PoWER (Kober and Peters, 2010) andMC-EM Poliy Searh (Vlassis et al., 2009) and algorithms based on path-integralssuh as PI2 (Theodorou et al., 2010b). The exat derivation of these algorithms isout of the sope of this introdution, we will only brie�y sketh some interestingproperties. The methods apply the noise term εwt diretly to the parameter vetor

w at eah time step (see Equation 9.3). The parameter update ∆w is subsequentlydetermined by weighting eah noise term εwt , i.e.
∆w = E

[

T
∑

t=0

S(Rt, t)ε
w
t

]

,where Rt =
∑T

j=t rj is the future reward for time step t and the funtion S(Rt, t)determines the weighting of εwt . The main idea is that noise terms εwt whih resultedin high returns Rt have a higher in�uene in the parameter update. Thus, theweighting typially depends on the point in time when the noise has been takenand on the return Rt after applying the noise. Even so the PoWER and the PI2are derived quite di�erently, they only di�er in the way they alulate S(Rt, t).We refer to the orresponding papers for an exat de�nition of S(Rt, t). The mainadvantage of both algorithms is that they do not require a user-spei�ed learningrate. The learning speed of both methods is omparable (Theodorou et al., 2010b),although PoWER has some restritions on the reward funtion whih an be used.Both methods are known to outperform the (step-based) poliy gradient methodsintrodued in Setion 9.2.1.



9.3. Episode-based Exploration Approahes 1279.3 Episode-based Exploration ApproahesEpisode-based exploring approahes apply the exploration noise to the parametervetor w before exeuting the whole roll-out, during the exeution no further explo-ration is applied. In this setup we typially use a deterministi poliy at = π(st, t;w)and therefore, we only have system noise to deal with. As a result, the expetedreward of a single parameter vetor w is easier to estimate (with redued variane,(Sehnke et al., 2010)).The big advantage of episodi-exploring approahes is that they do not dependon a linear parametrization of the movement representation. In order to use episodi-exploring approahes we just have to be able to estimate J(w) by performing roll-outs on the real system. In addition, sophistiated seond order optimizers an beused in this setup whih tend to show very good performane on many problems(Heidrih-Meisner and Igel, 2009b). For example, the CMA-ES algorithm estimatesthe full ovariane matrix ±w of a Gaussian distribution whih is used for the ex-ploration noise. This an be seen as seond-order information of the ost-funtion.As a onsequene, the exploration noise orrelated and thus more direted than theunorrelated exploration noise used by many other approahes. We will now brie�ydisuss the most relevant episode-based exploration approahes.9.3.1 Gradient-based MethodsSimilar to the standard step-based exploring PG methods, episode-based PG-methods try to estimate the gradient of the expeted reward J(w) in order toapply gradient desent. However, the gradient is now estimated by perturbing theparameter vetor w before performing the roll-outs, during exeution no additionalexploration is applied (i.e. a deterministi poliy is used).9.3.1.1 Finite Di�erene Poliy GradientsThe most simple poliy gradient method is to use the Finite Di�erene Poliy Gra-dient. Here, J rollouts 1 with small, random perturbations ∆wj of the urrentparameter vetor w are performed on the real system. The gradient is alulatedby using a �rst order Taylor-Approximation of the ost funtion and subsequentlyapplying the least-square solution
∇FDJ(w) = (∆WT∆W)−1∆WT∆J,with ∆W = [∆wT
1 ,∆wT

2 . . .∆wT
J ]

T and ∆J = [J(w + ∆w1), J(w +
∆w2), . . . , J(w + ∆wJ)] − J(w). The �nite di�erene method has been used in(Kohl and Stone, 2003) as one of the �rst poliy gradient methods applied to a realrobot. It is also often used as baseline for omparison (Peters and Shaal, 2006),(Kober and Peters, 2010).1typially J has to be twie the number of parameters to aurately estimate the gradient



128 Chapter 9. Introdution9.3.1.2 The Poliy Gradient with Parameter-Based Exploration algo-rithmIn di�erene to the Finite-Di�erene PG algorithm, the Poliy Gradient withParameter-Based Exploration (PG-PE) algorithm (Sehnke et al., 2010) alulatesthe likelihood gradient of the expeted reward. It is therefore the equivalent to RE-INFORCE for the step-based-exploring approahes. However, the likelihood gra-dient is now alulated for the whole trajetory instead of alulating it for eahtime step separately. In order to do so, we introdue a distribution over the pol-iy parameters p(w|θ) = N (w|µw,diag(σ2
i ) and alulate the likelihood gradientwith respet to θ = {µ,σ}. The parameters θ now de�ne a distribution over theparameterspae w ∈ W. The expeted reward is then given by

J(θ) =

∫

W

∫

τ
p(τ |w)p(w|θ)R(τ)dτdwIf we now apply again the 'log-ratio trik' and replae the integral with samples, thegradient of the expeted reward J(θ) is given by

∇PGPEJ(θ) = ∑

j

∇θ log p(wj|θ)R(τj)In the original algorithm (Sehnke et al., 2010), an unorrelated Gaussian distributionis used as model for w. Thus the exploration noise for eah dimension of theparameter vetor is adapted, but the orrelations between the parameters are stillnegleted.9.3.2 Stohasti OptimizersBy now we have only disussed algorithms whih originated from ReinforementLearning, but in fat any stohasti optimizer an be used to �nd the optimalparameters argminwJ(w). These stohasti optimizers have shown impressive per-formane on many tasks so they should not be negleted. Here, we brie�y presenttwo promising approahes, the Covariane Matrix Adaption - Evolutionary Strategy(CMA-ES) 2 (Heidrih-Meisner and Igel, 2009b) and Cross-Entropy searh (Mannoret al., 2003; de Boer et al., 2005). The strategy of both approahes is quite simi-lar. They sample a ertain number of o�springs wj from a Gaussian distribution
N (w|mk,±k). The evaluated reward J(wj) of the samples is used to weight eah ofthe o�springs. Subsequently, the weighted o�springs are used to update the Gaus-sian distribution. CMA-ES and Cross-Entropy searh only di�er in the way theyupdate the distribution, i.e. how they alulate mk+1 and ±k+1 from the o�springs
wl. One big advantage of both methods is that they estimate a full-ovariane ma-trix ±k+1 for exploration, thus, both algorithms use orrelated noise resulting inmore direted exploration strategies than most other algorithms whih simply usea diagonal ovariane matrix. Although there is no diret omparison of CMA-ESand Cross-Entropy searh, CMA-ES has beome more popular in reent literature(Heidrih-Meisner and Igel, 2009b; Neumann, 2011).2CMA-ES is often denoted as geneti algorithm, however, it an also be seen as stohastiseond order optimizer.



9.4. Generalizing Temporal Representations to Multiple Situations 1299.4 Generalizing Temporal Representations to MultipleSituationsOne disadvantage of temporal representations is that they are only valid loally, i.e.they an only be used for onstant initial onditions of the robot (inluding a smallneighborhood). For di�erent initial onditions s′0, the parameter vetor w has to bere-estimated. In order to avoid exhaustive relearning, we need to learn a hierarhipoliy πw(w|s0;θ) whih an generalize between di�erent initial situations s0 of therobot. We will denote the parameter vetor of the hierarhi poliy as θ. In orderto assess the expeted reward for a parameter vetor θ, we now have to evaluatemultiple roll-outs starting from di�erent initial onditions, and thus, solving thisproblem diretly with standard parameter-exploring poliy searh methods is highlyine�ient. For a disussion of more e�ient methods and also a new method whihhas been introdued in our work in the paper (Neumann, 2011) we refer to Chapter10.





Chapter 10Variational Inferene for PoliySearh in Changing Situations
Contents10.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13110.2 Kullbak Leibler (KL) Divergenes . . . . . . . . . . . . . . . 13310.3 Inferene for poliy searh . . . . . . . . . . . . . . . . . . . 13410.4 Poliy Searh in multiple situations . . . . . . . . . . . . . . 13610.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14010.6 Conlusion and future work . . . . . . . . . . . . . . . . . . . 14310.7 Aknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 144Many poliy searh algorithms minimize the Kullbak-Leibler (KL) divergeneto a ertain target distribution in order to �t their poliy. The ommonly used KL-divergene fores the resulting poliy to be 'reward-attrated'. The poliy tries toreprodue all positively rewarded experiene while negative experiene is negleted.However, the KL-divergene is not symmetri and we an also minimize the thereversed KL-divergene, whih is typially used in variational inferene. The poliynow beomes 'ost-averse'. It tries to avoid reproduing any negatively-rewardedexperiene while maximizing exploration.Due to this 'ost-averseness' of the poliy, Variational Inferene for Poliy Searh(VIP) has several interesting properties. It requires no kernel-bandwith nor explo-ration rate, suh settings are determined automatially by the inferene. The algo-rithm meets the performane of state-of-the-art methods while being appliable tosimultaneously learning in multiple situations.We onentrate on using VIP for poliy searh in robotis. We apply our algo-rithm to learn dynami ounterbalaning of di�erent kinds of pushes with human-like2-link and 4-link robots.10.1 IntrodutionVariational inferene is a widely used approximate inferene method. While thereexists �rst appliations of variational inferene for disrete reinforement learning(Furmston and Barber, 2010), it has never been used for poliy searh in high dimen-sional parameter spaes. Variational inferene introdues an approximate distribu-tion q and iteratively minimizes the Kullbak-Leibler divergene KL(q||p) between



132 Chapter 10. Variational Inferene for Poliy Searh
q and the target distribution p. This minimization is also known as I(nformation)-projetion of distribution p.In poliy searh, many algorithms also apply approximate inferene. However,all these algorithm use the M(oment)-projetion, whih is given by the reversed KL-divergene KL(p||q) to estimate their poliy. While at the �rst glane this might onlybe a minor di�erene, it turns out that the resulting poliies may di�er onsiderably.Poliies alulated by the M-projetion try to reprodue all experiene with highreward, but neglet information oming from negative experiene. We will thereforeall these poliies 'reward-attrated'. The I-projetion fores the resulting poliyto be 'ost-averse'. Here, the fous of the poliy is to avoid reproduing negativeexperiene, while exploration is maximized.Whih projetion is better suited for poliy searh? We argue for the I-projetion. When using a ommon Gaussian poliy, the M-projetion averages overall positively rewarded experiene seen so far. However, in the ase of a multi-modalor non-onave target distribution taking the average might be a bad hoie. TheI-projetion always tries to exlude negative experiene from the resulting distribu-tion, and thus, onentrates at one mode of the target distribution. Non-onavetarget distributions typially our if we want to apply poliy searh for multiplesituations. The I-projetion an be applied with ease in this ontext. The 'ost-averseness' also omes with additional advantages. The algorithm automatiallydetermines the optimal kernel bandwidth for a new situation and adapts its explo-ration rate and used searh diretions.In di�erene to the M-projetion, the I-projetion an't be minimized in losedform. We have to rely on non-linear optimization methods like gradient desent.Here, we present a new method where gradient desent is performed on meta-parameters of the approximate distribution q.We will apply our new Variational Inferene for Poliy Searh (VIP) algorithmto learn omplex motor skills with robots. In robotis we often need to searh forparametrized movement plans in related, but di�erent senarios. These movementplans, also alled Dynami Movement Primitives (Ijspeert and Shaal, 2003; Shaalet al., 2007), Motion Templates (Neumann et al., 2009) or Musle Synergies (Bizziet al., 2008) are often only valid loally, and hene, need to be adjusted for a newsituation.For example, a tennis playing robot has to adapt its movement to the trajetoryof the ball or a humanoid robot has to reat di�erently to ounter-balane di�erentkinds of pushes. Hene, we need to �nd a poliy π(w|s0) whih is able to hoose goodparametri desriptions w ∈ W of the movement plan given the initial onditions
s0. Learning suh a poliy π is very hallenging due to the high-dimensionality ofparameter-spae W. Our algorithm is well suited for suh tasks.Many poliy searh algorithm like the CMA-ES (Heidrih-Meisner and Igel,2009b), Cross-Entropy searh (Mannor et al., 2003) or the PoWER (Kober andPeters, 2010) algorithm are limited to the single-situation setting. Only few algo-rithms exist for learning in multiple initial onditions. Here, we an use Reward-Weighted Regression (RWR)(Kober et al., 2010) or Cost-Regularized-Kernel Regres-sion (CRKR) (Kober et al., 2010), whih is the kernelized version of RWR. Bothalgorithms use loally weighted linear regression methods to interpolate between



10.2. Kullbak Leibler (KL) Divergenes 133di�erent initial states s0i . In addition to the loal weighting, the data points areweighted by their orresponding rewards. The reward-weighted linear regressionrepresents an M-projetion of the reward distribution (see Setion 10.3.1), there-fore these algorithms su�er from the previously mentioned limitations of the M-projetion.Both algorithms require that the user spei�es the shape or bandwidth of thereeptive �elds or kernels. This shape is not only kept onstant during the learningphase, it is also onstant in the whole state spae. Therefore the user always hasto make a tradeo� between fast learning speed and good quality of the �nal perfor-mane. Beause the I-projetion always wants to exlude samples with low reward,the 'kernel shape' automatially adapts to the data density as well as to the shapeof the target distribution.Note that CRKR and RWR have only been used to learn meta-parameters ofthe motion (Kober et al., 2010) (like the duration or the end-point of the motion).The remaining (typially higher-dimensional) parametrization for the shape of thetrajetory was kept �xed. Therefore, the appliation is limited to similar shapes ofthe movement. The VIP approah allows learning with the full-parametri repre-sentation of a movement for multiple senarios, and therefore, an �nd ompletelydi�erent movements for di�erent subregions of the state spae.We will apply our method to a 2-link and a 4-link dynami robot balaning taskwhere the robot has to ounterbalane di�erent kinds of pushes.10.2 Kullbak Leibler (KL) DivergenesWe quikly review onept of KL-divergenes beause it is of great importane forthis paper. The KL divergene between two probability distributions q and p isde�ned as KL(q||p) = − ∫

X

q(X) log
p(X)

q(X)
dXIt is zero if and only if the two distributions are equal. Sine the KL-divergene isnot symmetri, there are 2 kinds of KL-divergenes whih we an minimize in orderto approximate a target distribution p with an approximate distribution q.

• The M-projetion q = argminqKL(p||q): The M-projetion fores the ap-proximate distribution q to have high probability everywhere where p hashigh probability. Therefore, if distribution q is a Gaussian, the M-projetiontries to average over all modes of p.
• The I-projetion q = argminqKL(q||p): It fores the approximate distribu-tion q to be zero everywhere where p is zero. Can not be alulated in losedform for the most distributions. When using a Gaussian distribution q, theI-projetion typially onentrates on a single mode of the target distribution.These di�erenes between the projetions are well known (Bishop, 2006), however,the e�et of these di�erene for poliy searh have never been evaluated.



134 Chapter 10. Variational Inferene for Poliy Searh10.3 Inferene for poliy searhMany poliy searh algorithms (Kober and Peters, 2010; Vlassis et al., 2009;Heidrih-Meisner and Igel, 2009b) use inferene or inferene related methods toiteratively optimize the poliy.In order to use inferene for poliy searh we de�ne a binary reward event R = 1as observed variable. To simplify notation we will always write R when we mean
R = 1. The probability of this reward event is given by p(R|τ) ∝ exp(−C(τ)), where
τ is a trajetory and C(τ) are the assoiated osts. This is a ommon method totransform an optimization problem into an inferene problem (Toussaint, 2009). Wewant to �nd parameter vetors θ with high evidene

p(R;θ) =

∫

τ
p(R|τ)p(τ ;θ)dτ,where τ is a trajetory and p(τ ;θ) is the parametri model of the trajetory distri-bution. The poliy π is ontained in this model.We an now introdue a variational distribution q(τ) whih is used to deomposethe log-evidene

log p(R;θ) = L(q,θ) +KL(q||pR), (10.1)where
L(q,θ) =

∫

τ
q(τ) log

p(R|τ)p(τ ;θ)

q(τ)
dτis the lower bound of the log evidene andKL(q||pR) = − ∫

τ
q(τ) log

p(τ |R;θ)

q(τ)
dτ (10.2)is the KL-divergene between the q and the reward-weighted trajetory distribution

pR(τ) = p(τ |R;θ) =
p(R|τ)p(τ ;θ)

p(R;θ)
(10.3)The orretness of Equation (10.1) an be easily veri�ed by substituting Equation(10.3) into Equation (10.2). Note that this deomposition is the same as used inexpetation-maximization (EM) and variational inferene algorithms. It has alsoalready been used in (Furmston and Barber, 2010) for using variational inferenefor learning the model of disrete MDPs.The lower bound L(q,θ) is now iteratively improved by an expetation (E-) anda maximization (M-) step. In the E-step, we minimize KL(q||pR) with respet to

q. Sine log p(R;θ) is �xed, the lower bound has to inrease. In the M-step wemaximize the lower bound L(q,θ) with respet to θ.10.3.1 M-Projetion: Monte-Carlo EM-based Poliy Searh Algo-rithmsMonte-Carlo (MC) EM-based algorithms (Kober and Peters, 2010; Vlassis et al.,2009) use a sample based approximation for q, i.e. in the E-step they minimize



10.3. Inferene for poliy searh 135the KL-divergene KL(q||pR) by setting q(i) ∝ p(R|τi)p(τi;θ) for a disrete set ofsamples τi. Subsequently, the q(i) are used to replae the integral in the lower bound
L(q,θ) by a sum. The lower bound therefore reads

L(q,θnew) =
∑

τi

p(R|τi)p(τi;θold) log p(τi;θnew)
p(τi;θold)

= −KL(pR(τ)||p(τ ;θnew)) + onstAs we an see maximizing the lower bound with respet to the new parametervetor θnew is equivalent to alulating the M-projetion of pR(τ). Note that this isexatly the same lower bound as given in (Kober and Peters, 2010) for the PoWERand RWR algorithm. Thus, these algorithms are speial ases of the deompositionshown in Equation 10.1.10.3.2 I-projetion: Variational Inferene for Poliy SearhIn the variational approah, a parametri representation of q is used instead of asample-based approximation. We hoose q(τ ;ω) to be from the same family ofdistributions as p(τ ;θ). Now, we will use a sample-based approximation to replaethe integral in the KL-divergene KL(q||pR) needed for the E-step. Thus we needto minimize KL(q||pR) = −∑

τi

q(τi;ω)/Zq log
pR(τi)/Zp

q(τi;ω)/Zq
, (10.4)with respet to ω, whih is equivalent to the I-projetion of pR(τ). The terms Zqand Zp are used to normalize the sample-based approximations. The M-step nowtrivially redues to setting the new parameter vetor θnew to ω.Both algorithms only di�er in the used projetions of pR(τ). As the projetionsare in general di�erent, they onverge to a di�erent (loal) maximum of the lowerbound L(q,θ). When using a Gaussian model distribution, the I-projetion on-entrates on a single mode. This is not a problem if all modes are almost equallygood, however, the I-projetion might also hoose a sub-optimal mode (whih haslower reward probability). In our evaluations we ould not observe this problem.The M-projetion always averages over all modes and therefore might also inludelarge areas of low reward in the distribution. Hene, we onsider the use of the I-projetion to be less harmful. If the target distribution is onave, both projetionsyield almost the same solutions, however, using the I-projetion is omputationallymore demanding.The disussed projetions are appliable for any kind of poliy searh problems,however, in this paper we will fous on single-step deision problems with highdimensional ation spaes beause these problems are of high importane for motorskill learning with motion primitives.



136 Chapter 10. Variational Inferene for Poliy Searh10.4 Poliy Searh in multiple situationsIn this paper we onentrate on poliy searh in multiple situations. Thus, wewant to learn a poliy π(w|s0;θ) for hoosing the parametri desription w of ourmovement plan when being in situation s0.We will treat the poliy searh problem as 1-step reinforement learning problemand neglet any sequential nature of the deision problem. The agent hooses itsdesired trajetory desription w in the initial state s0 and then observes the wholetrajetory τ and the assoiated osts C(τ) as one big step. The trajetory τi itself istherefore determined by the state-ation pair 〈s0i ,wi〉 and its assoiated osts C(i).All derivations from Setion 10.3 are still valid, we just replae the trajetories τiwith the state-ation pairs 〈s0i ,wi〉.As samples we will always use the whole history of the agent, i.e. we will use sam-ples from all situations s0i experiened so far. For the sake of simpliity, we negletedany importane weights in Equation 10.4 whih should be used to ompensate forthe fat that the history of the agent is usually not sampled uniformly from thestate-ation spae. In the subsequent disussion we assume that eah dimension ofthe parameter vetor has been saled to the interval [0; 1].If the reward weighted probability pR(τi) is very lose to 0 we an't use the
log funtion. Instead, we use a penalty term of −Pz for log pR(τi). It turned outthat reasonable settings of this value have to sale exponentially with the numberof dimensions of the parameter spae to aount for the inreasing volume of thesearh spae.10.4.1 Approximate DistributionFor representing p(s0i ,wi;θ) we use Gaussian distributions N ([s0;w]|µ,Σ). Sine aGaussian is a rather simple representation we re-estimate the Gaussian for a new,urrently ative situation s0t . For every re-estimation, the state omponents of µare lamped at s0t by putting a sharply peaked prior on these omponents (see nextsetion).In Figure 10.1 and 10.2, we illustrated the di�erene of poliy searh with theM- and the I-projetion for bimodal and non-onave target distributions. For thebi-modal distribution, the M-projetion onentrates on both modes while the I-projetion only tries to over one mode. For the non-onave target distributionwe assumed that the �rst variable represents a state variable whih is observed.Therefore, we lamped this dimension of the mean of the Gaussian to be the observedvalue. Again, the M-projetion tries to average over the non-onave funtion, andhene also inludes regions of low reward, while the I-projetion niely approximatesthe desired distribution.10.4.2 Minimization of the I-projetionThe I-projetion KL(q||pR) is di�ult to use beause it an't be alulated in losedform. We have to rely on non-linear optimization methods, i.e. gradient desent.However, optimizing diretly the parameters of a Gaussian is di�ult beause of thequadrati number of parameters needed to represent the ovariane matrix.
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Figure 10.1: Comparison of the Variational Poliy Searh algorithm using the I-projetionagainst the M-projetion on a bi-modal reward funtion. A simple Gaussian distributionwas used as model distribution. The M-projetion tries to average over both modes, whilethe I-projetion onentrates on a single mode.Hene, we propose a sample oriented approah whih is omputationally moretratable. For eah sample we introdue a weighting vi. These weightings are usedto alulate the weighted maximum likelihood (ML) estimate from the data-points.We will denote the weighted sample mean as m and the weighted sample ovarianematrix as S. The weights vi are normalized suh that maxi vi = 1.In order to lamp the state-spae part of the mean µ at the urrent initial state
s0t , we ombine the ML-estimate m with a Gaussian prior distribution P (µ|s0t ) =

N (µ|µ0,S0) with µ0 =
[

s0t ,0.5
]T and S0 is a diagonal matrix whih is set suhthat the prior is sharply peaked for the state variables s0 and almost �at in theation spae. The mean µ of our Gaussian distribution is then given by

µ = (S−1
0 + S−1)−1(S−1

0 µ0 + S−1m)For the ovariane matrix Σ of our model, we also use a ombination of a priorovariane matrix C0 and the weighted sample ovariane S.
Σ =

∑

i viS+ αC0
∑

i vi + α
, C0 = k · diag([σ2

i ]) +
∑l−1

j=1 cjΣj,
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M−projection

s1 s2 s3 s4 s5 s6(a) M-projetion

I−projection

s1 s2 s3 s4 s5 s6(b) I-projetionFigure 10.2: Comparison of I-projetion and M-projetion on a non-onave reward fun-tion. Dark bakground indiates negative reward. The model distribution is a Gaussianof whih the mean (indiated by 'x') of the state variable (x-axis) has been lamped atdi�erent loations. The M-projetion again tries to average over the non-onave funtionwhile the I-projetion niely approximates the desired poliy.where Σj are the ovariane matries of the previous iterations of VIP. The Σjare used to inorporate previous searh diretions into the urrent searh. Theparameters k, σ2
1:d and c1:l−1 are also optimized by gradient desent.After alulating µ and Σ we an evaluate the KL-divergene KL(q||pR) on oursample points by the use of Equation 10.4. The gradient with respet to vi, α, k,

σ2
i and cj is alulated numerially by �nite di�erenes. Subsequently we applystandard gradient desent augmented by a line searh algorithm to estimate theoptimal learning rate. The algorithm always runs for 10 iterations.We also use a slight modi�ation of the original variational algorithm. Insteadof using the model distribution p(s0i ,wi;θ) for alulating the reward weighted tra-jetory distribution pR(i) we use the sample weights vi found by the previous KL-divergene minimization, i.e pR(i) = vip(R|s0i ,wi). This turned out to be numeri-ally more stable in high dimensional parameter spaes.10.4.3 Reward TransformationInstead of using the standard reward transformation p(R|s0i ,wi) = exp(−C(s0i ,wi)),we will use a baseline V (s0i ) and also introdue a saling fator ρ to the osts, i.e.

p(R|s0i ,wi) = exp
(

−(C(s0i ,wi)− V (s0i ))/ρ
). Both mehanisms help to improveauray of the algorithm as well as to redue the number of required iterations.As baseline we use an estimate of the value V (s0i ) =

∫

w
C(s0i ,w)p(w|s0i ;θ)dτ atstate s0i . In order to do so, we use the tuples 〈s0i , Ci〉 as data points to estimate aGaussian ost model. Eah data point gets again weighted by the weights vi foundby the previous KL-minimization. Subsequently, we ondition this Gaussian ostmodel on the senario states s0i of our samples. This results in a linear Gaussian



10.4. Poliy Searh in multiple situations 139Algorithm 3: Variational Poliy SearhInput: History of the agent H = 〈s0i ,wi, Ci〉, urrent senario s0, initialovariane Σ0Initialize µ0 = [s0;1/2] and vi = N ([s0i ;wi]|µ0,Σ0) for all ifor l = 1 to L doEstimate V (s0i ) and ρ by alulating a Gaussian ost model using vi.Calulate ost weighted trajetory distribution
pR(i) = vi exp

(

−
(

Ci − V (s0i )
)

/ρ
)Chek e�etive number of examples, eventually redue sharpness of pRwhile ∑

i pR(i)/maxj pR(j) < nat do
pR(i) = pR(i)

0.9 for all iAquire new vi, µ and Σ (minimize KL(q||pR))
[vi,µl,Σl] = I-projet(pR,H, {Σ0, · · ·Σl−1})Set new model distribution...
p(s0,w;θ) = N ([s0;w]|µl,Σl)Calulate poliy (onditional Gaussian)

π(w|s0;θ) = p(s0,w;θ)/p(s0;θ)model from whih we use the (state-dependent) mean as baseline V (s0i ).The saling fator ρ regulates the greediness of our distribution p(R|s0,w). Weuse the standard deviation of the onditioned Gaussian ost model to determine ρ.If the e�etive number of ativations of our target distribution pR(i) gets toosmall (i.e. ∑

i pR(i)/maxj pR(j) < nat) we do not have enough data-points toreliably estimate the Gaussian models. Hene, we iteratively redue the sharpnessof pR(i) by setting all pR(i) to pR(i)0.9 until the e�etive number of samples is largerthan nat. The parameter nat has to be spei�ed by the user and depends on thedimensionality of the state-spae (in our experiments we varied the value between
5 and 15).10.4.4 Estimating the poliySo far we have estimated a model whih desribes the probability of whole traje-tories, i.e. in our ase a probability distribution over the state and ation spae. Inorder to determine the poliy π(w|s0t ;θ) we just have to ondition on the urrentstate s0t . This is again a linear Gaussian model whih an be easily alulated.The whole algorithm is summarized in Algorithm 3. The number of iterations
L was always set to 10. For performane reasons we only use the last N examples(between 100 and 10000) from the history. The initial ovariane Σ0 as given inAlgorithm 3 is typially almost �at in the ation spae and state spae. The methodis almost invariant to this setting.In di�erene to MC-EM based algorithms like RWR or CRKR we use severaliterations to estimate the model distribution. Additionally, the introdued salingfator ρ of the reward funtion helps to set the greediness of the resulting distributionorretly. If we would use the M-projetion and only apply one iteration (L = 1)without the saling fator ρ and the baseline V (s0i ), VIP redues to RWR.
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CRKRFigure 10.3: Evaluation of VIP on Cannon-Toy task. We ompared our algorithm usingthe I and the M-projetion. The I-projetion onverges muh faster and also produes a�nal poliy with higher quality. The ompeting algorithm CRKR ould not �nd as goodsolutions.10.5 ExperimentsIn our evaluations of the algorithms we always use the median over 20 trials. Themedian is used to get rid of outliers, 1 or 2 trials out of 20 usually did not �nd goodsolutions.We �rst evaluate our algorithm on a Cannon Toy Task. Here, the task is to hit atarget loated at distane d with a annon ball. The ontrols are the launhing angle

α and the launhing veloity v of the annon ball. The angle was restrited to [0;π/2]and the veloity to [0; 10]m/s. The annon-ball was modelled as 1-kg point mass,gravity and a horizontal wind fore f at on the ball. The wind fore f an be inthe range of [0; 1] and the target loations were also restrited to [0; 10]. This resultsin a 2-dimensional state spae s0 = [d,w] and a two dimensional parameterspae
w = [α, v]. As reward funtion we used 20 times the negative squared distane ofthe impat position to the target. Note there are several solutions to hit a target ata ertain distane, rendering the reward funtion multi-modal. We ompared ouralgorithm using the I-projetion and M-projetion against the CRKR algorithm.Every 50 episodes we evaluated the poliy at 20 randomly hosen states (whihwere �xed for every evaluation). The parameter nat was set to 5 and Pz to 10.The result an be seen in Figure 10.3. The I-projetion learly outperformedthe M-projetion in learning speed as well as in the quality of the learned poliy.The �nal average distane to the target was 0.08m with the I-projetion while the�nal poliy of the M-projetion missed the target at a average distane of 0.26m.The learning speed of CRKR mathed the speed of the M-projetion, but ould not�nd as good solutions. We also ompared both approahes with the �nite di�erenepoliy gradient algorithm using a �xed set of basis funtions (Kober et al., 2010)in the state spae. The algorithm did onverge after approximately 105 episodes,whih is not shown in Figure 10.3 due to the bad performane.
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(b)Figure 10.4: (a)Comparison of the VIP with full representation of the ovariane (VIP-full)and the �xed representation (VIP-diag) with the CMA-ES algorithm. In order to ompareour algorithm to CMA-ES, we only used a single fore F = 25Ns. We use the maximumvalue seen so far for the plot of CMA-ES. (b) In this experiment we added a uniformlydistributed noise ε ∈ [−2.5; 0] to the fore F . As the CMA-ES is unaware of this noise itould not ope with this setting. VIP was only sightly disturbed and ould �nd solutionsof the same quality as in (a).10.5.1 2 and 4 Link Humanoid BalaningHere we use a 2-link and a 4-link model to learn dynami humanoid balaningstrategies. The masses and lengths of the links as well as the maximum torqueswere hosen to rudely math a human.The joints of the 2-link model resemble the ankle and the hip joints. For a moreexat desription of the model please refer to (Atkeson and Stephens, 2007). Therobot is pushed with a ertain fore 0 ≤ F ≤ 25Ns whih results in an immediatejump in the joint veloities. The robot has to learn to keep balane. This requiresompletely di�erent strategies for di�erent fores (Atkeson and Stephens, 2007). Ifthe joints leave the intervals φ1 ∈ [−0.4; 0.8] or φ2 ∈ [−0.1; 1.6] the robot has fallenand the episode is terminated. An episode is onsidered as suessful if the robothas managed to keep balane for 5s. The state spae is de�ned by the applied (onedimensional) fore F . We used the following reward funtion
C(τ) = −2000(T − 5)2 − 0.01

T
∑

t=1

aTt at,where T is the point in time the robot falls over (or 5s if the robot keeps balane).The whole movement representation onsisted of 19 parameters. Sine the exatrepresentation of the movement is of minor importane for this paper we refer tothe supplementary material for further information. For performane reasons, wealways reate 30 samples from the urrently estimated poliy. The parameter natwas again set to 5 and the punishment for inluding samples with zero probabilitiesto Pz = 300 In our �rst experiment we ompared our algorithm to CMA-ES, whihis a highly ompetitive stohasti optimizer, in a single situation setup with F =



142 Chapter 10. Variational Inferene for Poliy Searh

0 0.5 1 1.5 2
x 10

4

−10
4

−10
3

−10
2

# Episodes

M
ea

n 
pe

rf
or

m
an

ce

 

 

I−projection
M−projection
VIP−single(a) 1 2 3 4 5 6

x 10
4

−3

−2.5

−2

−1.5

−1

−0.5

x 10
4

# Episodes

M
ed

ia
n 

pe
rf

or
m

an
ce

(b)Figure 10.5: (a)Comparison of the I-projetion and M-projetion on the multi-fore setup.VIP-single denotes learning for eah fore separately. The I-projetion ould outperformthe M-projetion and also slightly the VIP-single setup. (b) Learning urve of the 4-linkbalaning experiment with random fores.
25Ns. We evaluated VIP one time with learning all diagonal entries σ2

i of theovariane matrix and VIP when keeping these fators �xed. As we an see inFigure 10.4(a), VIP with the full representation performed best. VIP with the �xeddiagonal entries showed similar performane as the CMA-ES algorithm. Beause ofthe huge omputational requirements of the full representation (one trial runs for
10h) we will only use the �xed diagonal representation (one trial runs for 90min)for the remaining experiments. In the next experiment (Figure 10.4(b)) we used asmall noise for our fore F whih was uniformly sampled from interval [−2.5; 0]Ns.This noise was known to the VIP, however, as CMA-ES is inherently unaware ofthe state s0, it ould not learn a useful poliy. The VIP algorithm was only slightlya�eted by the noise. The �nal performane was similar as learning without noise.Next, we evaluated the VIP algorithm one with the M-projetion and the I-projetion on the multi-fore setup. The fore was hosen uniformly from the interval
[0, 25]Ns. We also ompared our algorithm to the noisy single situation setting. Here,we used 10 di�erent fores from 2.5 to 25Ns and performed individual learning trialsfor eah fore (we again added a noise of [−1.25, 1.25] to the fore). The resultan be seen in Figure 10.5, again, the I-projetion outperformed the M-projetion,however, the di�erene was not that extreme as in the Cannon task. Still, the �nalperformane of the I-projetion (−51.2) was better than the M-projetion (−62.1)by 20%. We an also see that learning with all fores at one ould slightly improvethe learning speed in omparison to the average of the noisy single-fore setup.The 4-link model onsisted of an ankle, a knee, a hip and a shoulder joint. Inthis experiment the fore F was a 4-dimensional vetor, denoting the fore valueapplied to eah body part. Thus, our state spae is 4 dimensional. The movementrepresentation for this task had 39 parameters. We always normalized the forevetor F, suh that |F| = 25Ns. In this experiment we used 16 randomly hosenfore vetors, whih were additionally perturbed by a uniformly sampled noise in
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t = 0.10 s t = 0.60 s t = 1.10 s t = 1.60 s t = 2.10 s

Figure 10.6: Learned balaning strategies for di�erent random fores (with |F| = 25Ns).The robot has learned to apply ompletely di�erent strategies in di�erent situations.the interval ±2.5Ns. The parameter nat was set to 10 and Pz to 105. The learningurve for this experiment an be seen in Figure 10.5(b). After 60000 episodes theagent was able to balane almost all experiened fores. The resulting balaningstrategies for di�erent fores an be seen in Figure 10.6. As we an see, the robothas learned to apply ompletely di�erent strategies in di�erent situations.10.6 Conlusion and future workExisting poliy searh algorithms typially approximate the poliy by using theM-projetion to the reward-weighted trajetory distribution. In this paper we pro-posed to use the I-projetion of the reward-weighted trajetory distribution as in-teresting alternative. The I-projetion alleviates many problems onneted to theM-projetion. While the I-projetion is omputationally a muh more di�ult op-eration, the 'ost-averse' poliy resulting from the I-projetion omes along withseveral advantages. Beause the I-projetion always wants to exlude negative ex-amples, the algorithm does not su�er from problems whih our by averaging overnon-onave or multi-modal target distributions. Consequently, it shows an in-



144 Chapter 10. Variational Inferene for Poliy Searhreased learning speed, improved performane of the �nal poliy and it an also beapplied with ease to the learning in multiple situations simultaneously.The main restrition of VIP is the omputation time. In future, we plan touse mixture of Gaussian models to alleviate this problem. This should give usonsiderable speed up beause we do not have to re-estimate our distributions overand over again. Furthermore, a more e�ient method for alulating the I-projetionis needed.VIP is not limited to the single step reinforement learning setup. In the futurewe plan to use the algorithm also for sequential deision tasks. In this ase, messagepassing algorithms like the one presented in (Toussaint, 2009) ould extend ourframework.10.7 AknowledgmentsThis hapter is based on the paper 'Variational Inferene for Poliy Searh in Chang-ing Situations' published at the International Conferene for Mahine Learning(ICML) 2011. Gerhard Neumann was the only author of this paper.AppendixMotion Templates used for balaningThe motion templates (or movement plans) used for the balaning tasks de�nedesired veloity pro�les. The pro�les are intergrated to get a desired trajetory. Thepoliy of the motion templates is then de�ned by a linear PD-trajetory trakingontroller. The motion is divided into 2 motion templates. Template m1 drives therobot to a set-point of eah joint, Template m2 tries to stabilize the agent at theupright position. Template m1 onsists of an aeleration phase and a deelerationphase. The aeleration phase takes d1 seonds and has the following veloity pro�le:
vD(t) = −k1(1−

2

1 + exp(−6/d1c1t)
) + v(0),where k1 is a onstant depending on the desired set point p1 (the exat dependeneis not shown here but an be easily obtained via integrating the veloity pro�les)and c1 is a onstant whih spei�es slope of the veloity pro�le. The deelerationpro�le has the following form :

vD(t) = k̃1(1−
2

1 + exp(−6c2(1−
t−d1
d2

))
),where d2 is again the duration of the deeleration phase, c2 sets the slope of theaeleration and k̃1 is again hosen depending on the desired set point p1. k1 and

k̃1 is hosen suh that the integral over the aeleration and the deeleration phaseequals p1, and that there is no jump in the veloity at the transition of aelerationto deeleration phase. At the end of the deeleration phase the desired veloity
vD(d1 + d2) is always zero. d1 and d2 are shared for all joints while the remaining
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(d) m2, c2Figure 10.7: The plots show the desired veloity pro�les (top row) and positions trajetories(bottom row) for di�erent parameter settings of template m1 and m2.parameters an be hosen independently for eah joint. Thus we have 3 parametersper joint (c1, c2 and p1) whih desribe the shape of the veloity pro�le. Theveloity pro�le is then integrated and used in ombination with a PD trajetorytraking ontroller to de�ne the poliy of the template. The 2 PD-ontroller gainsare also hosen by the template, resulting in 5 parameters per joint. Thus, inludingthe 2 timing parameters d1 and d2, template m1 has 12 parameters for the 2-linkpendulum task and 22-parameters for the 4-link pendulum problem. The veloitypro�le and the resulting trajetories for di�erent parameter settings an be seen inFigure 10.7(a) and (b).After exeuting template m1 the agent should ideally have reahed the set-points
pi with zero veloity. However, sine we deal with a highly non-linear system,the PD-ontroller is usually not able to trak the trajetories perfetly and theseonditions might be violated.Motion template m2 is used to stabilize the robot at the upright position. Thus,the desired setpoint is already given (φi = 0 and φ4 = π). m2 runs until theepisode is terminated. The template uses the same aeleration pro�le than m1.For stabilizing the robot at the upright position, the deeleration pro�le resemblesa slowly deaying exponential funtion. The deeleration pro�le is given by

vD(t) = k̃2 exp(−c2(t− d1))Due to the traking errors this pro�le is more suitable for stabilization at asetpoint than the deeleration pro�le of m1. Again k2 and k̃2 are hosen suh thatthe desired joint position onverges to zero (or pi for φ4) and that there is no jumpin the veloity at the transition from the aeleration to the deeleration phase. Theveloity pro�le and the resulting trajetory for di�erent parameter settings an beseen in Figures 10.7() and (d). Template m2 has 4 parameters per joint (c1, c2 andthe 2 PD-ontroller gains), resulting in 9 (inluding d1) parameters for the 2-linkand 17 parameters for the 4-link balaning task.
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