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iiiAbstra
tModern robots are equipped with sophista
ted 
ompliant a
tuators, allowing therobot to perform highly dynami
 
omplex movement skills, like di�erent forms oflo
omotion, jumping or even playing tennis. However, 
lassi
al 
ontrol and engineer-ing te
hniques typi
ally fail for su
h 
omplex tasks. A more promising perspe
tiveis to let the robot learn the movement skill by trial and error, whi
h is also the maintopi
 of this thesis. I will dis
uss 3 di�erent topi
s that are strongly 
onne
ted tomotor skill learning and present new te
hniques for ea
h of these �elds whi
h 
anbe seen as a step towards learning ri
h and 
omplex motor skills.In the �rst part of the thesis I will examine reinfor
ement learning in 
ontinuousstate and a
tion spa
es as foundation for motor skill learning. Here, I presenttwo new methods, learning with adaptive state graphs and reinfor
ement learningby advantage weighted regression. Both methods 
an easily deal with 
ontinuousa
tion spa
es whi
h are often 
onsidered as problemati
 for standard reinfor
ementlearning methods.In the se
ond part, I dis
uss di�erent types of movement representations. Move-ment representations are parametri
 des
riptions of a movement plan, and therefore,provide a lower dimensional representation of the resulting traje
tories. Choosing a
ompa
t movement representation whi
h 
ontains task relevant features 
an 
onsid-erable fa
ilitate learning of movement skills. Besides elaborating existing methods,I will introdu
e 3 new representations. I will introdu
e the kinemati
 synergy ap-proa
h whi
h provides a low dimensional representation of a high dimensional a
tionspa
e. Then I will present the motion template framework, whi
h is the �rst move-ment representation whi
h 
an be sequen
ed in time by the use of reinfor
ementlearning. The last representation whi
h I introdu
e is 
alled Planning MovementPrimitive. This representation employs planning already at the level of the move-ment representation and therefore allows the use of abstra
t goals or features ofthe traje
tory as parameter representation, whi
h allows fast learning of 
omplexmovement skills.Finally, in the last part of the thesis, I will address the poli
y sear
h problem, i.e.given a representation of the movement, how 
an we �nd a valid parameter setting byreinfor
ement learning? Here, I present a new method based on variational inferen
ewhi
h generalizes poli
y sear
h to di�erent initial situations of the robot.





vZusammenfassungModerne Roboter sind heutzutage mit na
hgiebigen Motoren ausgestattet wel
hedie Ausführung von komplexen dynamis
hen Bewegungen erlauben, wie zum Bei-spiel ein zweibeiniger Gang, Hüpfen oder sogar Tennis spielen. Klassis
he Control-Algorithmen s
hlagen aber für sol
he komplexen Aufgaben meist fehl. Ein vielver-spre
henderer Ansatz ist es hingegen wenn der Roboter mittels Trial-and-Error Ler-nens die Bewegungen selbst erlernt. In dieser Dissertation werde i
h 3 sehr wi
htigeThemenberei
he des Bewegungslernens diskutieren und neue Methoden präsentierenwel
he als S
hritt in Ri
htung selbstständiges Lernen von komplexen Bewegungsab-läufen gesehen werden können.Im ersten Teil der Dissertation werde i
h Reinfor
ement Learning in kontinu-ierli
hen Zustands und Aktionsräumen als Grundlage des Bewegungslernens unter-su
hen. Hierzu werde i
h zwei neue Methoden einführen, Lernen mit Adaptiven-Zustands Graphen und Reinfor
ement Learning by Advantage Weighted Regressi-on. Beide Methoden können einfa
h mit kontinuierli
hen Aktionsräumen umgehenwel
he für viele Standard Reinfor
ement Learning Methoden problematis
h sind.Im zweiten Teil dieser Dissertation werde i
h vers
hiedene Bewegungsrepräsenta-tionen disktutieren. Eine Bewegungsrepräsentation ist eine parametris
he Bes
hrei-bung eines Bewegungsplannes, und bes
hreibt daher eine Traje
ktorie mit typis
her-weise wenigen Parametern. Die ri
htige Wahl der Repräsentation kann das Erlerneneiner Bewegung erhebli
h vereinfa
hen. Hier werde i
h zunä
hst vorhandene Modellediskutieren und danna
h 3 neue Repräsentationen einführen. Der erste Ansatz, kine-matis
he Synergies, dient dazu die Dimensionalität des Aktionsraumes eines Robo-ters zu verringern und dadur
h das Kontroll-Problem erhebli
h zu vereinfa
hen. Alsnä
hstes stelle i
h den Motion Template Ansatz vor. Dieser Ansatz ist der 1. Ansatzder dazu verwendet werden kann um zu lernen vers
hiedene Bewegungen hinter-einander auszuführen. Die letzte Bewegungsrepräsentation die i
h vorstellen werdeverwendet Plannungs-Algorithmen um die Bewegung zu generieren. Dies bringt denVorteil dass man abstrakte Features oder Ziele der Bewegung direkt als Parameterder Repräsentation verwenden kann, wel
hes des Erlernen einer Bewegung erhebli
hvereinfa
hen kann.Der letzte Teil dieser Thesis bes
häftigt si
h mit Poli
y Sear
h, also den erlerneneines geigneten Parameter-Vektors wenn man eine gegebene Bewegungsrepräsentati-on verwendet. Hier werde i
h einen neuen Ansatz vorstellen wel
her auf VariationalInferenz basiert und die Su
he na
h Parametern unter vers
hiedenen Anfangszu-ständen des Roboters ermögli
ht.
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Chapter 1Introdu
tion
Modern robots are equipped with sophista
ted 
ompliant a
tuators, allowing therobot to perform highly dynami
 
omplex movement skills, like di�erent forms oflo
omotion, jumping or even playing tennis. Classi
al 
ontrol and engineering te
h-niques typi
ally fail for su
h 
omplex movements. A more promising perspe
tiveis to let the robot learn the movement skill by trial and error. Learning of su
h
omplex movement skills is still one of the major 
hallenges in roboti
s resear
h andthe main topi
 of this thesis.1.1 Reinfor
ement LearningMovement skill learning 
an easily be formulated as reinfor
ement learning (RL,(Sutton, 1996)) problem - the robot autonomously tries di�erent movements andgets evaluative feedba
k in form of reward. The agent has to adapt its movementsu
h that the reward is maximized.1.1.1 Markov De
ision Pro
essesThe RL framework 
an be ni
ely des
ribed by Markov de
ision pro
esses (MDPs).A MDP is de�ned by the tuple 〈S,A, P, r, p0, γ〉, where S is the state spa
e and A isthe a
tion spa
e of the agent. The transition probabilities are given by P (st+1|st, at)for st, st+1 ∈ S and at ∈ A and the reward of performing a
tion at in state st isgiven by r(st, at). The initial state distribution is given by p0(s) and γ denotesthe dis
ount fa
tor. The underlying prin
iple of MDPs is the Markov assumption,i.e. given the the 
urrent state st the transition model and the reward model isindependent of past states and a
tions.The task of a reinfor
ement learning agent is to �nd a poli
y π(at|st) whi
hminimizes the expe
ted future dis
ounted reward

Rπ = E

[

∞
∑

t=0

γtr(st, at)

∣

∣

∣

∣

∣

s0 ∼ p0, at ∼ π(·|st), st+1 ∼ P (·|st, at)

]

,where the initial state s0 is sampled a

ording to p0, a
tions at a

ording to thepoli
y π and the state transition a

ording to our transition model. For expe
tations,I will always use this notation - i.e. after the 
ondition operator '|', it is always givena

ording to whi
h random variables the expe
tation is 
al
ulated.In roboti
s, we typi
ally deal with 
ontinuous state and a
tion spa
es, thus I willalways write states s and a
tions a in ve
tor notation.



2 Chapter 1. Introdu
tion1.2 Movement Skill LearningThe �eld of movement skill learning has made 
onsiderable progress in re
ent yearswhi
h is do
umented by several su

ess stories. In (Peters and S
haal, 2006), a robotlearned to swing a baseball pat in order to hit a ball. In (Kober and Peters, 2010),the game 'ball in the 
up' was learned. Here, the learning performan
e reportedby the authors was even 
omparable to a human 
hild. Other impressive resultsin
lude playing table tennis (Mülling et al., 2010), performing a jumping movementwith a dog-like robot (Theodorou et al., 2010a) and running with a 
heetah-like(simulated) robot (Wawrzynski, 2009).However, despite of these su

ess stories, learning, reusing and 
ombining a ri
hset of 
omplex movement skills is still one of the major 
hallenges in roboti
s re-sear
h. The probably largest problem with robot learning are the high-dimensional
ontinuous state and a
tion spa
es. Our robot has typi
ally many degrees of freedom(DoF), ranging from 7 for an anthropomorphi
 robot arm up to 30 for humanoidrobots. If we also in
lude the dynami
 state of the robot, and thus the joint velo
i-ties, we qui
kly rea
h 15 to 60 state variables. This is out of the s
ope for most RLmethods. In addition, the 
ontinuous 
ontrol ve
tor is also high-dimensional (one
ontrol variable for ea
h DoF), whi
h is beyond the s
ope of many RL algorithms.Movement skill learning algorithms 
an be 
oarsely divided into value-basedand poli
y sear
h learning algorithms. Value-based algorithms estimate a the valuefun
tion V (s). The value fun
tion tells us the expe
ted future reward if the agentfollows a 
ertain poli
y. Value-based approa
hes are in theory very e�
ient. Thevalue fun
tion 
an be used to evaluate every intermediate a
tion of a traje
tory,i.e. we know whi
h a
tions are responsible for the good or bad evaluation of atraje
tory? This is often 
alled the temporal 
redit assignment problem. However,value-fun
tions are usually di�
ult to estimate in high dimensional 
ontinuous stateand a
tion spa
es. For this reason most of the more re
ent movement skill learningalgorithms try to avoid a dire
t representation of the value fun
tion. For a moredetailed des
ription on value-based methods we refer to Chapter 2.Poli
y sear
h algorithms on the other hand rely on a parametri
 representationof the poli
y and dire
tly try to optimize the poli
y parameters without expli
itlyestimating a value fun
tion. Hen
e, in di�eren
e to value based algorithms, we
an not dire
tly evaluate single a
tions, but we 
an only evaluate the 
osts of thewhole traje
tory (by performing whole rollouts on the real system). However, sin
elearning a value fun
tion is problemati
 for high dimensional 
ontinuous state spa
es,more impressive results 
ould be a
hieved by poli
y sear
h methods, and therefore,re
ent resear
h on poli
y sear
h algorithms was intensi�ed. We will dis
uss poli
ysear
h methods in more detail in Chapter 9.The performan
e of poli
y sear
h methods strongly depends on the used move-ment representation. Choosing an adequate movement representation 
an in
reaselearning speed of su
h methods 
onsiderably. The most 
ommon method is to use alo
al movement representation. Lo
al representations dire
tly des
ribe the shape ofthe spe
i�
 movement traje
tory. Therefore, they 
an only be applied for using thesame starting 
ondition in ea
h episode - di�erent starting positions would resultin di�erent traje
tories whi
h often requires relearning. The setup with the single



1.3. Stru
ture of this Thesis 3starting state is often also referred to as the episodi
 reinfor
ement learning. Whilethis restri
ts the representational power of the poli
y, it also 
onsiderably simpli�esthe learning task. Many learning tasks have only be
ome feasible by the episodi
task assumption. Most of the su

ess stories in roboti
 motor skill learning use alo
al representation, while global representations, i.e. a representation whi
h 
anbe used for any state, are more di�
ult to learn and therefore less 
ommonly used.We will dis
uss di�erent lo
al movement representations in more detail in Chapter5.1.3 Stru
ture of this ThesisThis thesis is divided into 3 parts. For ea
h part I �rst introdu
e relevant 
on
epts inthe introdu
tion 
hapter, the subsequent 
hapters are always based on published oralmost submitted papers where I signi�
antly 
ontributed as �rst or se
ond author.The �rst part of the thesis dis
usses value-based methods for learning in 
ontinuousstate and a
tion spa
es. After the introdu
tion I will present two new value-basedapproa
hes. The �rst method, dis
ussed in Chapter 3, is a graph-based method.It represents the 
ontinuous state spa
e by a dis
rete set of nodes in a graph. Thegraph is built from experien
e and grows during learning. The bene�t of the graph-based approa
h is that we 
an use lo
al 
ontrollers, whi
h are employed to navigatebetween nodes, as form of prior knowledge. The lo
al 
ontrollers also provide ane�
ient treatment of 
ontinuous a
tions. The se
ond value-based method presentedin this thesis is based on weighted regression. We use a weighted regression to sim-plify the max-operator whi
h usually has to be performed in the a
tion spa
e. Thisoperator is hard to perform for 
ontinuous a
tions. We prove that an advantage-weighted regression 
an be used to repla
e the max-operator, resulting in a moree�
ient value-based algorithm suitable for 
ontinuous a
tion spa
es.The se
ond part of the thesis dis
usses movement representations. Here, I willpresent 3 new methods. In Chapter 6 I introdu
e a new representation whi
h wedenoted as kinemati
 synergies. It provides a lower dimensional manifold of thehigh-dimensional a
tion spa
e of a (in this 
ase humanoid) robot. The use of syn-ergies signi�
antly simpli�es the 
ontrol of the robot. We applied our approa
hto balan
ing the humanoid robot HOAP-2. In Chapter 7 I introdu
e the motiontemplate representation, whi
h is the �rst movement representation for whi
h a re-infor
ement learning algorithm 
an be used to 
ombine the templates sequentiallyin time. We applied the motion template approa
h for 
omplex 2-link pendulumswing-up and balan
ing tasks. In the last 
hapter of this part of the thesis I presenta primitive whi
h uses inherent probabilisti
 planning to generate the movement.The inherent planner allows to use abstra
t features or goals of the movement asparameters. As we will show this representation 
an simplify the learning problemin 
omparison to the 
ommonly used approa
hes 
onsiderably.The last part of the thesis is devoted to poli
y sear
h algorithms. Here, I willpresent a new approa
h in Chapter 10 whi
h is based on variational inferen
e and
an generalize poli
y sear
h to multiple initial situations simultaneously.





Part IReinfor
ement Learning withContinuous State and A
tionSpa
es





Chapter 2Introdu
tion
In this part of the thesis I will dis
uss value-based reinfor
ement learning methodswhi
h are also suited for 
ontinous a
tion spa
es. After giving a short introdu
tioninto relevant 
on
epts I will present two new value-based approa
hes whi
h werepublished in (Neumann et al., 2007) (Chapter 3) and (Neumann and Peters, 2009)(Chapter 4).2.1 Value-based MethodsValue-based methods (Bertsekas and Tsitsiklis, 1998) estimate the beliefed a

umu-lated future reward for ea
h state s if following a poli
y π, i.e

V π(s) = E

[

∞
∑

t=0

γtrt

∣

∣

∣

∣

∣

s0 = s,at ∼ π(·|st), st+1 ∼ P (·|st,at)

]

,where rt = r(st,ut) is the reward for ea
h time step and γ is the dis
ount fa
tor.
V π(s) is also 
alled the value fun
tion of poli
y π. The value fun
tion 
an also bewritten in its re
ursive form, i.e.

V π(s) = E
[

r(s,a) + γV π(s′)
∣

∣a ∼ π(·|s), s′ ∼ P (·|s,a)
]

.The optimal value fun
tion is de�ned as
V ∗(s) = max

π
V π(s) = max

a
E
[

r(s,a) + γV ∗(s′)
∣

∣s′ ∼ P (·|s,a)
]

,whi
h is also known as the Bellman-Optimality prin
iple. The V-fun
tion evaluatesex
lusively states and is therefore not dire
tly appli
able for de
ision making. Forde
ision making we need a fun
tion whi
h evaluates state-a
tion pairs. This fun
tionis usually denoted as the Q-fun
tion. The Q-fun
tion Qπ(s,a) of poli
y π is de�nedas the a

umulated reward if we take a
tion a in the �rst step and subsequentlyagain follow poli
y π

Qπ(s,a) = E
[

r(s,a) + γQπ(s′,a′)
∣

∣s′ ∼ P (·|s,a),a′ ∼ π(·|s′)
]The optimal Q-fun
tion is de�ned as

Q∗(s,a) = E

[

r(s,a) + γmax
a′

Q∗(s′,a′)
∣

∣s′ ∼ P (·|s,a)

]Note that the V-fun
tion 
an be easily evaluated if the Q-fun
tion is known
V π(s) = E

[

Qπ(s,a)
∣

∣a ∼ π(·|s)
]

, V ∗(s) = max
a

Q∗(s,a) (2.1)



8 Chapter 2. Introdu
tionThere are many ways to represent the value fun
tion. In the most simple setupof a dis
rete state spa
e we 
an use a tabular representation. For 
ontinuous statespa
es we have to rely on parametri
 or non-parametri
 fun
tion approximators.For a more detailed dis
ussion on di�erent fun
tion approximator s
hemes please
onsult Se
tion 2.2. Before 
oming to this se
tion we will brie�y review existingmethods to learn the value fun
tion.The V-fun
tion (or Q-fun
tion) is typi
ally estimated from experien
e, i.e. bythe use of the data points 〈st,at, rt, st+1〉. Di�erent methods 
an be applied in this
ontext, here, we will brie�y dis
uss Temporal Di�eren
e (TD) Learning, Bat
h-Mode RL and model-based RL.2.1.1 Temporal Di�eren
e LearningTemporal Di�eren
e (TD) methods in
rementally estimate the V- or Q-fun
tionfrom samples. The gathered experien
e of a single step 〈st,at, rt, st+1〉 is used toto 
al
ulate the temporal di�eren
e error, whi
h is de�ned as the 1-step predi
tionerror of the V-fun
tion
δt = rt + γV (st+1)− V (st).For tabular representations of the V-fun
tion the TD-error 
an straightforwardly beused to update V (st+1), i.e.

V (st) = V (st) + αδt.In the 
ase of parametri
 fun
tion approximators, we have to rely on gradient-basedmethods (Bertsekas and Tsitsiklis, 1998; Sutton, 1996; Baird, 1995), however, thesemethods are either only proofed to 
onverge for spe
ial 
ases like linear fun
tionapproximators (Bertsekas and Tsitsiklis, 1998) or are known to have a very slow
onvergen
e rate (Baird, 1995). The data point 〈st,at, rt, st+1〉 is typi
ally onlyused on
e to update the V or Q-fun
tion, subsequently the data point is dismissed.2.1.2 Bat
h-Mode Reinfor
ement LearningBat
h-Mode RL methods use the whole history of the agent to update the V- orQ-fun
tion whi
h allows a more e�
ient data usage than for standard TD methods.The �rst appli
ation of Bat
h-Mode RL was a method 
alled 'Experien
e Replay'(Lin, 1992) (EP). EP is basi
ally just an extension of TD-learning. After ea
h timestep, K imaginary time steps out of the history of the agent are shown to theTD-learning algorithm and used to update the Q or V-fun
tion. While there hasbeen a very re
ent and impressive extension of this approa
h for using a
tor 
riti
algorithms with neural networks (Wawrzynski, 2009), EP is limited to the fun
tionapproximator te
hniques whi
h 
an be used in the online setup, whi
h ex
ludesregression trees (Ernst et al., 2005) or Gaussian Pro
esses (Deisenroth et al., 2009).More re
ent work in bat
h mode RL has 
on
entrated on Fitted Q-iteration(FQI) (Ernst et al., 2003). FQI iteratively approximates the Q-fun
tion by usingthe whole bat
h of experien
ed data points H = {< si,ai, ri, s
′
i >}1≤i≤N . For ea
h



2.1. Value-based Methods 9data-point we 
al
ulate the target Q-value Q̃(i) by using the old estimate of theQ-fun
tion at the su

essor states, i.e.
Q̃l+1(i) = ri + γVl(s

′
i) = ri + γmax

a′

Ql(s
′
i,a

′) (2.2)Learning the Q-fun
tion Ql+1(s,a) then de�nes a new regression problem. As thisregression problem is formulated with the whole bat
h of data, also bat
h-modelsupervised regression methods 
an be used. The whole pro
ess has to be repeatedfor L times in order to 
al
ulate the optimal Q-fun
tion for the next L steps (thus,
L typi
ally needs to be quite high). FQI 
an be used with all types of fun
tionapproximators, very good results have been shown with regression trees and neuralnetworks. In Chapter 4 we present a new FQI method whi
h uses a weightedregression to approximate the max operator over the a
tion spa
e in Equation 2.2.This allows an e�
ient treatment of 
ontinuous a
tion spa
es.2.1.3 Model-Based Te
hniquesThe model-based variant of FQI is �tted V-iteration (Boyan and Moore, 1995) (FVI).In FVI we iteratively �t the optimal V-fun
tion instead of the Q-fun
tion. However,in order to do so, we have to know the transition model P (s′|s,a) and the rewardmodel r(s,a) of the MDP. Both models 
an again be learned from data or mightalready be given as prior knowledge.

Ṽk+1(si) = max
a

r(si,a) + γ

∫

s′

P (s′|si,a)Vk(s
′)dsi. (2.3)Usually the integral over s′ in 
ontinuous state spa
es is very hard to perform. Thishas limited the use of �tted V-iteration. However, re
ent work with Gaussian Pro-
esses (Deisenroth et al., 2009) 
ould 
ir
umvent this problem. Due to the Gaussiantransition probabilities the integral 
an be solved analyti
ally. A similar, slightlysimpler kernel based approa
h was used in (Jong and Stone, 2007) to estimate thetransition probabilities. The transition model was estimated by a simple linearaverager using a Gaussian similarity kernel. Subsequently the V-fun
tion 
an be
al
ulated by the use of Prioritized Sweeping (PS, (Moore and Atkeson, 1993)),whi
h is mu
h more e�
ient than �tted V-iteration. However, this method 
an onlybe applied to simple, linear fun
tion approximators like linear averagers. This hasso far limited this approa
h to very simple appli
ations.In Chapter 3, we present a new model-based method whi
h uses a graph-basedrepresentation. Here, the state spa
e is represented by a dis
rete set of nodes of agraph whi
h is built adaptively from experien
e. The graph is 
alled an 'Adaptive-State Graph' (Neumann et al., 2007). Nodes between the graph 
an be rea
hed bythe use of lo
al 
ontrollers, whi
h are assumed to be part of the prior knowledge.Be
ause we 
an always use the lo
al 
ontroller to navigate dire
tly to the nodes inthe graph the V-fun
tion only needs to be represented at these dis
rete set of nodes.Furthermore, simple planning methods su
h as value iteration 
an be applied to thedis
rete graph in order to 
al
ulate the V-fun
tion.



10 Chapter 2. Introdu
tion2.2 Continuous State Spa
es : V-Fun
tion Approxima-tionIn 
ontinuous state spa
es we have to rely on fun
tion approximation te
hniquesto estimate the V or Q-fun
tion. Many types of approximators 
an be applied inthis 
ontext, in
luding linear fun
tion approximators (Sutton, 1996; Timmer andRiedmiller, 2007), neural networks (Riedmiller, 2005), regression trees (Ernst et al.,2005), lo
al regression te
hniques (Neumann and Peters, 2009) and Gaussian Pro-
esses (Deisenroth et al., 2009). All these methods 
an be easily applied to bat
h-model RL, however, as some approximators inherently use bat
h updates (su
h asregression trees or Gaussian Pro
esses), TD-learning methods have the restri
tionthat not all available fun
tion approximators 
an be used.2.2.1 Linear Fun
tion ApproximatorsThe most rigorous 
onvergen
e proofs exists for linear fun
tion approximators. Lin-ear fun
tion approximators typi
ally use D (non-linear) features Φi(s) whi
h arelinearly 
ombined to approximate the V-fun
tion
V (s;w) =

D
∑

i=1

Φi(s)wi = Φ(s)Tw.The features Φi(s) have to be prede�ned by the user. Finding a good feature repre-sentation is non-trivial and 
onsidered to be one of the biggest problems when usinglinear fun
tion approximators.Due to the linear representation the V-fun
tion (or Q-fun
tion) for a given pol-i
y 
an be easily 
al
ulated in bat
h-mode by employing least-square solution te
h-niques, resulting into the Least-Square Temporal Di�eren
e (LS-TD) (Boyan, 1999)algorithm. This algorithm 
an only be used for poli
y evaluation, i.e. estimating thevalue fun
tion of a given poli
y. It's variant Least-Square Poli
y Iteration (LS-PI)(Lagoudakis and Parr, 2003) 
an also be used for �nding the optimal poli
y. Apopular method to de�ne the features is to use grid-based RBF-networks or tile-
odings (Sutton and Barto, 1998). However, this usually fails for high dimensionalstate spa
es be
ause these methods su�er from the 
urse of dimensionality, i.e. thenumber of features s
ales exponentially with the number of dimensions.A potential approa
h to avoid the problem of de�ning meaningful features byhand has been proposed in (Kolter and Ng, 2009a). Here, an huge amount ofrandomly de�ned features 
an be used. In order to avoid over�tting, a L1-normregularization term has been used. The resulting algorithm is 
alled Lasso-TD. Stillthe appli
ation of this method has so far been limited to rather simple tasks su
has the pendulum swing-up task (Kolter and Ng, 2009a).2.2.2 Non-Linear MethodsNon-linear methods are usually more �exible than linear fun
tion approximatorsand do not require manual tuning of the feature representation. They are typi
ally



2.3. Continuous A
tion Spa
es : The greedy operator 11di�
ult to use for TD-learning, however, impressive results 
ould be shown by theuse of bat
h RL methods.A 
ommonly used non-linear approa
h are feedforward neural networks (NNs).In (Wawrzynski, 2009), the lo
omotion of a planar simulated 
heetah robot is learnedby using neural networks and Experien
e Replay. NNs have also been applied su
-
essfully with FQI (Riedmiller, 2005). Here, the main work has been done in the
ontext of Robo
up. This method have been applied for learning to dribble witha wheeled robot (Riedmiller et al., 2009), learning to 
ontrol a omni-dire
tionaldrive (Riedmiller et al., 2009) or learning to 
ontrol a slot 
ar-ra
er (Kietzmann andRiedmiller, 2009).Another popular non-linear approximation te
hnique whi
h has been used forFQI are regression trees, i.e. Extremely-Randomized Trees (ExtRa Trees). In (Ernstet al., 2005), the ExtRa-Trees have been applied to many standard optimal 
ontroltasks for RL showing that it outperforms online RL. The tree-based approa
h hasalso been applied to simulated HIV (Ernst et al., 2006) and epilepsy treatment(Guez et al., 2008) tasks. Both methods, FQI with neural network or regressiontrees, have been used as baseline methods in my paper (Neumann and Peters, 2009)where I introdu
ed a new bat
h-mode RL algorithm based on advantage weightedregression.In (Deisenroth et al., 2009), Gaussian Pro
esses (GPs) have been used to ap-proximate the V-fun
tion as well as the transition model. As GPs show very goodgeneralization properties, this is one of the most e�
ient value-based methods seenso far.2.3 Continuous A
tion Spa
es : The greedy operatorAnother subtle point when using RL for roboti
s are the 
ontinuous a
tion spa
es.From the de�nition of the optimal V-fun
tion we 
an see that we have to performthe greedy operator maxa over the whole a
tion spa
e. The standard approa
h foris to use a dis
retized set of a
tions, however, this be
omes very ine�
ient if wedeal with high dimensional a
tion spa
es or we need to approximate the poli
y verya

urately.In this part of the thesis I will present 2 methods whi
h 
an solve the maxa-operator e�
iently and hen
e are well suited for 
ontinuous a
tion spa
es. In Chap-ter 3 I introdu
e a graph-based RL method. Instead of using 
ontinuous a
tions theagent 
an 
hoose the next node he wants to rea
h within the graph. The de
isionof the agent is therefore dis
rete, and the max-operator is again easy to solve. Thenavigation to the desired node is then done by a lo
al 
ontroller, whi
h inherentlyuses 
ontinuous valued a
tions. As the graph is adapted to the 
urrent task, thenodes of the graph, and hen
e the dis
rete a
tions of the agent, are always lo
atedin areas relevant for the task.In Chapter 4 I present a novel method to approximate the maxa-operation.Here, we have shown that by the use of a soft-greedy a
tion sele
tion me
hanism the
maxa operator 
an be e�
iently approximated by an advantage-weighted regression(AWR). The AWR 
an be performed very e�
iently and therefore 
onsiderably
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tionsimpli�es the use of value-based RL methods for 
ontinuous a
tions.



Chapter 3Reinfor
ement Learning withLo
al Controllers and AdaptiveState Graphs
Contents3.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.2 Graph Based RL . . . . . . . . . . . . . . . . . . . . . . . . . . 153.3 Building the Adaptive State Graph . . . . . . . . . . . . . . 173.4 Reward Predi
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knowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 25In this 
hapter we present a new reinfor
ement learning approa
h to �ndingoptimal solutions for 
ontinuous 
ontrol problems in unknown environments witharbitrary reward fun
tions. We assume that the lo
al system dynami
s in su
h prob-lems 
an be e�
iently approximated with simpler models, still it is a hard task todesign globally optimal traje
tories. The presented algorithm uses dire
ted explo-ration to build an adaptive state graph of sample points within the 
ontinuous statespa
e. Global solution traje
tories are formed by 
ombining lo
al 
ontrollers that
onne
t nodes of the graph. A new generalization te
hnique exploits the 
onne
tiv-ity of the state graph to predi
t rewards of unexplored edges. We demonstrate ourapproa
h on 
omplex movement planning tasks with 
ontinuous states and a
tionsin 
ontinuous time.3.1 Introdu
tionFinding near-optimal solutions for 
ontinuous 
ontrol problems is of great impor-tan
e for many resear
h �elds. Many of these problems involve di�
ult reward or
ost fun
tions, whi
h are usually not exa
tly known in advan
e. In the weightedregion problem (Mit
hell and Papadimitriou, 1991) in path-planning, for example,we need to �nd the shortest path to a goal state through regions of varying move-ment 
osts. This task is 
hallenging already, but be
omes mu
h harder if the agentneither has a map of the environment nor knows the exa
t 
osts asso
iated with theregions. In roboti
s arbitrary reward fun
tions 
an be used e.g. to enfor
e obsta
le



14 Chapter 3. Graph Based Reinfor
ement Learningavoidan
e or stable and energy-e�
ient movements. Most existing approa
hes tothese problems require either 
omplete knowledge of the underlying system, or arerestri
ted to simple reward fun
tions. In this 
hapter we present an approa
h tothis problem that utilizes minimal prior knowledge and deals with arbitrary rewardfun
tions, in order to e�
iently learn high quality 
ontrol strategies for 
ontinuousproblems in 
ontinuous time.Reinfor
ement learning (RL) (Sutton and Barto, 1998) is an attra
tive frame-work for the addressed problems. It 
an learn optimal poli
ies through intera
tionwith an unknown environment. In 
ontinuous environments, the most 
ommon ap-proa
h is to use parametri
 approximations to the value fun
tions. However, severalauthors have reported problems 
on
erning the learning speed, quality and robust-ness of the solutions (Baird, 1995; Boyan and Moore, 1995). Our proposed methodtransforms the 
ontinuous problem into a dis
rete Markov de
ision pro
ess (MDP)on a �nite set of sample states, using simple lo
al 
ontrollers to navigate betweenthem. Su
h hierar
hi
al de
ompositions of the poli
y are known to speed up thesear
h for optimal solutions (Sutton et al., 1999). Lo
al 
ontrollers for small regionsof the state spa
e are often easily available, and 
an be seen as minimal prior in-formation about the task's underlying system dynami
s. Lo
al 
ontrollers do notassume 
omplete knowledge of the environment (e.g. lo
ation of obsta
les), and aretherefore not su�
ient to �nd globally optimal solutions.The idea of using lo
al 
ontrollers has been applied very su

essfully in sampling-based planning methods (Kavraki et al., 1996; Ku�ner and LaValle, 2000). Thesemethods build a graph 
onsisting of random sample points and 
onne
t them withlo
al 
ontrollers. A global solution is 
onstru
ted by 
ombining the paths of sev-eral lo
al 
ontrollers to a path that leads to the goal. The two most prominentapproa
hes of this style are rapidly exploring random trees (RRTs) (Ku�ner andLaValle, 2000) and probabilisti
 roadmaps (Kavraki et al., 1996), whi
h were de-veloped for kinemati
 path planning in Eu
lidean 
on�guration spa
es. Planningte
hniques are very e�
ient, but their appli
ation is limited to 
ompletely knownenvironments.Our proposed algorithm 
ombines the advantages of RL and lo
al planning toe�
iently learn high quality poli
ies in initially unknown 
ontinuous environmentswith arbitrary reward fun
tions. The algorithm explores the state spa
e and buildsan adaptive state graph of sample points that are 
onne
ted by lo
al 
ontrollers. Wedeveloped an online approa
h to building this graph, whi
h immediately in
orpo-rates feedba
k from the environment, like reward signals or unexpe
ted transitions.We present exploration heuristi
s to initially 
over the state spa
e sparsely, butstill su�
iently to �nd ways to a goal state. Later the graph is re�ned in 
riti
alregions. A novel generalization s
heme predi
ts rewards for unexplored edges, toavoid unne
essary exploration and �nd better solutions faster. The adaptive stategraph transforms the 
ontinuous 
ontrol problem into a dis
rete MDP, for whi
hthe optimal poli
y 
an be 
al
ulated with exa
t planning algorithms like dynami
programming. This results in more a

urate poli
ies and redu
ed running time in
omparison to fun
tion approximation te
hniques. Our algorithm naturally dealswith 
ontinuous a
tions and 
ontinuous time steps, whi
h leads to smoother andmore natural traje
tories (Doya et al., 2000).



3.2. Graph Based RL 15The idea of 
ombining lo
al 
ontrollers with RL has been studied in the past: TheParti-game algorithm (Moore and Atkeson, 1995) divides a 
ontinuous state spa
einto 
ells of varying size and uses lo
al 
ontrollers to navigate between the 
ells.Parti-game in its original formulation 
annot maximize arbitrary reward fun
tions,but is restri
ted to �nding paths to a goal state through regions of homogeneousreward. The Parti-game idea was extended to value fun
tion approximation forgeneral 
ontinuous 
ontrol problems in (Munos and Moore, 2002). In 
ontrast toour method they assume knowledge of the whole environment and do not make useof lo
al 
ontrollers. (Guestrin and Ormoneit, 2001) have used 
ombinations of lo
al
ontrollers for stati
 path planning tasks in sto
hasti
 environments. Their graphis built from uniform samples over the whole state spa
e, reje
ting those that resultin 
ollisions. They also assume that a detailed simulation of the environment isavailable to estimate the 
osts and su

ess probabilities of every transition.The main motivation for the design of a new algorithm is that none of theseapproa
hes 
an handle unknown and arbitrary reward fun
tions at the same time.Remaining alternatives are standard fun
tion approximation and model-based RLte
hniques like Prioritized Sweeping (Moore and Atkeson, 1993). Model-based al-gorithms learn reward and transition models, whi
h are used for o�ine updates ofthe value fun
tion. In this paper we demonstrate on various problems that ouralgorithm a
hieves faster 
onvergen
e and �nds more a

urate solution traje
toriesthan widely used RL te
hniques.In the next se
tion we introdu
e the basi
 setup of our algorithm. Se
tion 3.3shows how the adaptive state graph is 
onstru
ted and re�ned, making use of thereward predi
tion s
heme introdu
ed in Se
tion 3.4. In Se
tion 3.5 we evaluate ouralgorithm on various stati
 and dynami
 path �nding tasks and a planar 3-link armrea
hing task, before 
on
luding in Se
tion 3.6.3.2 Graph Based RLWe 
onsider episodi
, deterministi
 
ontrol tasks in 
ontinuous spa
e and time, inwhi
h the agent's goal is to move from an arbitrary starting state to a �xed goalstate with maximal reward. In the beginning the agent only knows the lo
ations ofthe start and goal state, and 
an use lo
al 
ontrollers to navigate to a desired targetstate in its neighborhood. We will �rst de�ne the mathemati
al notation for thisproblem and then sket
h the various steps of the algorithm for �nding good solutiontraje
tories.3.2.1 Mathemati
al Problem FormulationLet X de�ne the state spa
e of all possible inputs x ∈ X to a 
ontroller. We require
X to be a metri
 spa
e with given metri
 D : X ×X → R

+
0 . Control outputs u ∈ U
hange the 
urrent state x a

ording to the system dynami
s ẋ = f(x, u). In thispaper we assume that only an approximate lo
al model f̂(x, u) is known, whi
hdoes not 
apture possible nonlinearities due to obsta
les. The obje
tive is to �nd a
ontrol poli
y µ : X → U for the a
tual system dynami
s f(x, u) that returns for
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ement Learningevery state x a 
ontrol output u = µ(x) su
h that the agent moves from a startingstate xS ∈ X to a goal state xG ∈ X with maximum reward.Our algorithm builds an adaptive state graph G = 〈V,E〉, where the nodes in
V = {x1, . . . , xN} ⊂ X form a �nite subset of sample points from X . We start with
V0 =

{

xS , xG
}

, E0 = ∅ and let the graph grow in subsequent exploration phases.The edges in E ⊆ V × V 
orrespond to 
onne
tions between points in V that 
anbe a
hieved by lo
al 
ontrollers. The lo
al 
ontroller a(e) for an edge e = (xi, xj)tries to steer the system from xi to xj , assuming that the system dynami
s alongthe path 
orrespond to f̂(x, u). The adaptive state graph 
ontains only those edgesthat 
an be traversed by a lo
al 
ontroller, but the 
ombination of multiple edgesyields globally valid traje
tories.For an edge e we de�ne t(e) as the time needed for the 
omplete transition and
r(e) as the total reward obtained on the edge. In our approa
h we separate thetotal reward into two 
omponents: r(e) = rgoal(e) + rtrans(e). The goal reward
rgoal is given upon rea
hing the goal state. We assume here that the lo
ation ofthe goal, and thereby the goal reward, is known in advan
e. The transition reward
rtrans 
aptures all other rewards that result from intera
tions with the environment,su
h as time- and a
tion-dependent transition 
osts, punishments for 
ollisions, andnegative or positive lo
ation-dependent rewards.For a given graph G we have to solve the dis
rete problem of �nding a poli
y
π : V → E that sele
ts at every node xi ∈ V an outgoing edge π(xi) = eij = (xi, xj)and moves to the su

essor node xj . The obje
tive is to �nd a poli
y π whi
hprodu
es a sequen
e of edges 〈e0 = (xS , x1), . . . , ei = π(xi) = (xi, xi+1), . . . , en =
(xn, x

G)〉 that starts in xS and ends in xG, su
h that the (possibly dis
ounted) sumof rewards Rπ :=
∑n−1

i=0 γi−1r(ei) is maximized.For this task we use value iteration (Sutton and Barto, 1998), whi
h is a dynami
programming approa
h to �nding optimal value fun
tions in dis
rete MDPs withknown reward and transition fun
tions. The advantage of value iteration is that we
an propagate new reward information qui
kly throughout the whole graph. Thismay be used to update the values of all nodes whenever the agent re
eives newinformation about the graph, e.g. when new nodes and edges are inserted. Valueiteration is guaranteed to 
onverge to an optimal poli
y (Puterman, 1994), basedon the knowledge 
ontained in the adaptive state graph.3.2.2 Sket
h of the AlgorithmThe agent intera
ts with the environment by using lo
al 
ontrollers to move betweenstates that are 
ontained as nodes in the adaptive state graph. Initially the graph isempty, ex
ept for the start and goal state. New nodes and edges are 
reated in theinitial exploration phase by simulating the approximate model f̂(x, u) from the 
ur-rent node to generate potential su

essor states. The exploration heuristi
s dire
tsthe agent towards the goal, and the poli
y 
hooses between following an edge thatis already in the graph, or exploring a new su

essor state. In the latter 
ase thestate is added as a new node into the graph. Whenever a new node is inserted intothe graph we also add all possible edges to neighboring nodes that 
an be a
hievedby lo
al 
ontrollers. We use a reward predi
tion te
hnique to estimate the rewards
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tions are later improved by a
tually experien
ed re-wards from similar edges. We re-plan the poli
y with value iteration whenever newnodes and edges be
ome available, or an unpredi
ted reward is obtained during atransition.When the agent a
tually rea
hes the goal state we redu
e exploration and thealgorithm enters the graph re�nement phase. In this phase the 
urrently best pathis optimized by adding new nodes to the graph and improving predi
tions for theedge rewards.The quality of the resulting poli
y depends on the available edges and nodesof the graph, but also on the quality of the lo
al 
ontrollers. We assume herethat lo
al 
ontrollers 
an 
ompute near-optimal solutions to 
onne
t two states inthe absen
e of unforeseen events. We restri
t ourselves here to rather simple systemdynami
s, for whi
h 
ontrollers are easily available. In Eu
lidean spa
es we typi
allytry to 
onne
t two states with a straight line. Extending the approa
h to non-lineardynami
s or even learning the lo
al 
ontrollers for more 
omplex dynami
al systemsis part of future work.3.3 Building the Adaptive State GraphPrevious approa
hes for sampling-based planning, e.g. (Guestrin and Ormoneit,2001; Kavraki et al., 1996), have used uniform random sampling of nodes over thewhole state spa
e. This requires a large number of nodes, of whi
h many will liein irrelevant or even unrea
hable regions of the state spa
e. On the other hand,a high density of nodes in 
riti
al regions is needed for �ne-tuning of traje
tories.The presented algorithm iteratively builds a graph by adding states that are visitedduring two phases of online exploration: In the initial exploration phase we useheuristi
 exploration s
ores to dire
t the sear
h towards the goal state. During graphre�nement new nodes are added along su

essful traje
tories to optimize solutionsfound so far.3.3.1 Initial Exploration PhaseInitially the agent needs to sear
h for a path to the goal state, thereby expandingthe adaptive state graph into previously unknown regions. For every state xi thatthe agent visits we 
reate a set of potential su

essor states x̃ji . This is done bysimulating the dynami
al system f̂(x, u) with di�erent 
ontrol laws for a spe
i�
amount of time. The 
ontrol a
tions and exe
ution times 
an either be �xed inadvan
e, or randomly pi
ked from a distribution over 
ontrol a
tions and times. Toensure exploration into unvisited areas we immediately reje
t su

essor states thatare 
loser than some threshold θexpmin to existing nodes in the graph.Our algorithm dire
ts exploration towards the goal, but at the same time aban-dons paths with high negative rewards, whi
h are unlikely to be in
luded in optimalpaths from start to goal. We therefore store a global queue Q of the most promisingsu

essor states x̃, ranked by an exploration s
ore σexp(x̃). This s
ore is equivalentto the estimated sum of rewards for a path that �rst goes from the starting state
xS to x̃ and then follows the dire
t path to the goal state xG. The reward to rea
h
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x̃1

x̃2

Successor State
Start
Goal
Graph Node
Graph Edge
Direct Path to Goal
Path to SuccessorFigure 3.1: Illustration of the exploration pro
ess. Exploration is rather 
ontinued atsu

essor x̃1 than at x̃2, be
ause the reward to rea
h x̃2 is strongly negative.

x̃ from xS 
an be easily 
al
ulated from the 
urrent graph. The reward for thedire
t path to the goal state from x̃ is estimated by the reward of a simulated lo
al
ontroller, ignoring any obsta
les on the path. Sin
e we always assume that the goalis rea
hed, we also add the goal reward rgoal. Tuning this parameter either enfor
esstronger exploration if rgoal is large, or narrows the sear
h spa
e if rgoal is small.Figure 3.1 illustrates exploration s
ores in a puddle world task (see Se
tion 3.5.1),where shaded regions indi
ate negative rewards. In this example x̃1 has a higherexploration s
ore than x̃2, be
ause rea
hing x̃2 requires traversing a region of largenegative reward.The k highest s
ored su

essor states in the queue Q are 
andidates for explo-ration. Before running the value iteration we insert these k su

essors as terminalnodes into the graph, and add virtual exploration edges from the nodes from whi
hthey were 
reated. The rewards of these edges are the estimated rewards-to-goal.The poli
y 
omputed by value iteration may then either 
hoose an exploration edge,thereby adding a new node to the adaptive state graph, or move to an already visitednode. The latter indi
ates that exploring from other nodes seems more promisingthan 
ontinuing the exploration at the 
urrent node.Whenever a new node is inserted into the graph we also add new edges by sim-ulating lo
al 
ontrollers to all neighboring nodes under the lo
al dynami
s f̂(x, u).The lo
al 
ontrollers additionally yield predi
tions for the transition reward ofthese edges, representing the estimated transition 
osts in the absen
e of unforeseenevents, su
h as obsta
les. In Se
tion 3.4 we des
ribe a te
hnique to use informationfrom the graph to get more a

urate reward predi
tions. The true transition rewardfor an edge is not known until it is a
tually traversed for the �rst time. We theneither repla
e the predi
tions by the true values, or delete the edge if we dis
overthat the lo
al 
ontroller 
annot 
omplete the 
onne
tion (e.g. be
ause of an obsta
lein between the nodes). New reward information is also used to update predi
tionsfor unvisited edges.When the goal state is a
tually rea
hed, the poli
y may still 
ontinue to visitsu

essor nodes in Q, if their exploration s
ores are higher than the sum of rewardson the 
urrently best path from the start to the goal. The initial exploration phasestops when no su
h su

essors remain. If the exploration phase does not �nd asolution traje
tory within a given time, we use a �ner resolution of nodes. This
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an be done by using smaller time steps for the 
reation of su

essor nodes, or byde
reasing θexpmin, thereby allowing su

essor nodes to lie 
loser to already visitednodes.3.3.2 Graph Re�nement PhaseGraph re�nement starts after the initial exploration phase, and optimizes the graphto �nd better traje
tories. The basi
 idea is to �nd bottlene
ks on the best traje
toryfound so far, i.e. nodes where the number of outgoing edges is small. For somenodes a low outdegree is sensible, e.g. be
ause they are lo
ated at narrow passages.For other nodes this may just re�e
t a la
k of alternatives, and so generating newsu

essor nodes and outgoing edges may improve the 
urrent poli
y.The main 
omponent of graph re�nement is an o�ine pro
ess, in whi
h westo
hasti
ally sele
t nodes for optimization and add new su

essor nodes. For everynode xi in the graph we 
ompute an optimization s
ore σopt(xi), whi
h is the sumof rewards on the best path in the graph from the start to the goal via xi. Theprobability of sele
ting xi for optimization is proportional to σopt(xi), and indire
tlyproportional to the number of outgoing edges in xi. This gives higher probabilityto nodes on good solution traje
tories and nodes with small outdegrees. Let x∗ bethe node sele
ted for optimization, 
hosen a

ording to the des
ribed probabilitydistribution. We then 
reate a new su

essor node by simulating the lo
al systemdynami
s f̂(x, u) from x∗, using a random variation of the 
ontrol law of the optimaloutgoing edge from x∗. New edges and predi
tions for the rewards are generated asin the initial exploration phase.The insertion of new nodes is typi
ally performed after a �xed number ofepisodes, in whi
h we 
olle
t online experien
e. This is done by following an ε-greedy poli
y that explores new edges and nodes, and uses the gathered rewardinformation to update predi
tions for unseen edges.3.4 Reward Predi
tionGeneralization of learned results for unseen states or a
tions is a well-known 
on
eptin reinfor
ement learning (Sutton and Barto, 1998). In our 
ase we want to predi
tthe transition rewards for unseen edges of the adaptive state graph. This speeds upthe learning pro
ess and avoids unne
essary exploration of all edges. The generalidea is to exploit lo
al similarities, i.e. parallel 
onne
tions of similar regions of thestate spa
e are likely to have similar rewards.During the agent's exploration, our approa
h uses new information about thereward of the 
urrently traversed edge ecur = (xi, xj) to update the predi
tionsfor similar edges. We say that two edges are similar if both their starting andtarget nodes lie within 
ertain neighborhoods. We 
all the region Sεs(xi) = {x ∈
X | D(x, xi) < εs} around the starting point xi the starting area, and the region
Tεt(xj) = {x ∈ X | D(x, xj) < εt} around the target point xj the target area. Anedge is similar to ecur if its starting point lies in SεS(xi) and its target point lies in
Tεt(xj). This 
ase is illustrated in Figure 3.2(a).
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(b) (c) (d)(a)

Starting area

Target area

Visited EdgeCurrent Edge Edge with Predicted RewardFigure 3.2: Four 
ases for online lo
al reward predi
tion. The 
urrently traversed edge isdrawn blue, previously visited edges are drawn bla
k, and the predi
tion is for the unvisitedred edge. (a) Edges from starting area to target area; (b) Unvisited edges that are 
onne
tedto the target area via previously visited edges; (
) Unvisited edges that 
onne
t from dire
tsu

essors of the starting node to the target area; (d) Dire
t edges from prede
essors of thestarting node to the target area.More updates 
an be performed if we 
onsider indire
t 
onne
tions from Sεs(xi)to Tεt(xj), whi
h use paths of two edges to 
onne
t the two regions (see Figure 3.2(b) and (
)). Paths longer than two edges are not 
onsidered, be
ause they maylead through 
ompletely di�erent regions, thereby violating our assumption of lo
alsimilarity of the 
onne
tions. Let e1 = (x1, x2), e2 = (x2, x3) be a 2-edge indire
t
onne
tion with x1 ∈ Sεx(xi), x3 ∈ Tεt(xj). Using the 
urrent edge reward r(ecur) asan approximation to the total reward of the alternative path, we 
an assign sharesof r(e
ur) to unvisited edges, proportional to their durations t(e1) and t(e2):
r̂(e1) =

r(e
ur) · t(e1)
t(e1) + t(e2)

r̂(e2) =
r(ecur) · t(e2)

t(e1) + t(e2)The 
urrent edge e
ur = (xi, xj) may also 
omplete a 2-edge path from one ofthe prede
essors of xi to the target node (see Figure 3.2 (d)). If we know the rewardfor the prede
essor edge ep = (xp, xi), this yields predi
tions for any dire
t edgesfrom the prede
essor node to the target area. The predi
tion for unvisited edges isthen simply the sum of rewards of the two known edges r(e
ur) + r(ep).To ensure that updates are only performed along 
hains of edges that followsimilar traje
tories in the state spa
e, we ex
lude 
onne
tions that en
lose largeangles with the 
urrently traversed edge from the predi
tion. Se
ondly, we use asimilarity measure for weighted updates, giving more weight to predi
tions that orig-inate from more similar traje
tories. A straightforward measure for the similarity ofshort transitions with nearby starting and target points is the time that is neededfor the transition. Lo
al 
ontrollers for short 
onne
tions of similar points will likelyfollow a similar traje
tory if they need the same amount of time. We de�ne thetime-similarity weight of two paths with total times t1 and t2 as
w = exp (−β · | log(t1)− log(t2)|)
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With Prediction

Without PredictionFigure 3.3: Speed-up e�e
t of reward predi
tion on a stati
 puddle world task with uniformlysampled nodes.
(a) (b) (
)Figure 3.4: Stati
 Puddle World: (a) and (b) shows the graph in the initial explorationphase after 20 and 65 episodes. (
) shows the graph after the re�nement phase. The redline indi
ates the optimal poli
y to the target.The absolute logarithm ensures that the weights are proportional to relative, notabsolute time di�eren
es. For every updated edge e′ we store a weight we′ whi
hre�e
ts the 
on�den
e of the 
urrent estimate. Initial reward estimates r̂(e′) 
omefrom lo
al 
ontrollers, and are assigned small 
onstant initial weights we′ = w0 > 0.Every time an update of an edge is performed we 
hange the reward predi
tion tothe weighted sum of all updates so far, and in
rease the weight of the edge by thesimilarity of the alternative route. To preferentially improve reward estimates oflow 
on�den
e, the exploration s
heme may also take the weights into a

ount asan additional fa
tor for a
tion sele
tion.3.4.1 Predi
tions for New EdgesWhenever new edges are inserted into the adaptive state graph during the explo-ration and re�nement phases, we basi
ally use the same me
hanism as above toestimate their rewards. We sear
h for known 1- or 2-edge paths into the targetregion of the new edge and perform the updates.3.4.2 Results of Reward Predi
tionTo isolate the speed-up e�e
t of reward predi
tion from the exploration s
hemes,we learned poli
ies in a stati
 puddle world (see also Se
tion 3.5.1) with 600 uni-
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ement Learningformly sampled nodes. The rewards of the edges were initialized to estimated time-dependent 
osts. Figure 3.3 shows that an agent with reward predi
tion �nds theoptimal poli
y after visiting around 50% of the edges that an agent without predi
-tion needs.3.5 ExperimentsIn this se
tion we show that our algorithm 
an solve several 
ontinuous 
ontrolproblems that are 
hallenging for standard reinfor
ement learning te
hniques. Weshow that the algorithm requires less a
tual experien
e than existing methods and�nds more a

urate traje
tories.3.5.1 Stati
 Puddle WorldThe puddle world task is a well-known ben
hmark for reinfor
ement learning algo-rithms in 
ontinuous domains. The obje
tive is to navigate from a given startingstate to a goal state in a 2-dimensional environment whi
h 
ontains puddles, rep-resenting regions of negative reward. Every transition in�i
ts a negative rewardproportional to the required time, plus additional penalties for entering a puddlearea. The 2-dimensional 
ontrol a
tion u = (vx, vy) 
orresponds to setting velo
itiesin x and y dire
tions, leading to the simple linear system dynami
s ẋ = vx, ẏ = vy.We 
an safely assume to know this dynami
s, but planning a path to the goalstate and avoiding the unknown puddles remains a di�
ult task. Figure 3.4 showsvarious stages of the exploration pro
ess in a maze-like puddle world with multiplepuddles. In Figure 3.4(a) it 
an be observed that the agent dire
ts its initial explo-ration towards the goal, while avoiding paths through regions of negative reward.Less promising regions like the upper left part are also visited less frequently. Afterthe end of the initial exploration phase (Figure 3.4(b)) the agent knows a 
oarsepath to the goal. A better solution is found after the graph re�nement phase, whi
his illustrated in Figure 3.4(
). The path is almost optimal and avoids all puddles onthe way to the goal, even at narrow passages.Standard fun
tion approximation te
hniques like CMACs and RBFs need sev-eral thousands of episodes to 
onverge on this task, and are therefore not 
onsideredfor 
omparison. Better results were a
hieved by Prioritized Sweeping (Moore andAtkeson, 1993), a model-based RL algorithm whi
h dis
retizes the environment andlearns the transition and reward model from its experien
e. In Figure 3.5 we 
om-pare the performan
e of RL with adaptive state graphs to prioritized sweeping withvarious dis
retization densities. We evaluate the performan
e of the agent by mea-suring the sum of rewards obtained by its greedy poli
y at di�erent training times.The training time is the total amount of time the agent has intera
ted with theenvironment.Figure 3.5 shows that the graph-based RL algorithm is faster to a
hieve rea-sonable performan
e than prioritized sweeping with 
oarse dis
retization. Our al-gorithm gradually improves its performan
e in the graph re�nement phase, whi
hstarts at approximately 700 se
onds. After further training time the graph-basedapproa
h slightly outperforms the best poli
y found by prioritized sweeping on a



3.5. Experiments 23�ne 50× 50 grid. The re�ned graph in the end 
ontains about 1200 nodes, whi
h isless than half the number of states used by prioritized sweeping on the �ne grid.
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Graph−based RL
PS 50x50
PS 35x35Figure 3.5: Learning performan
e of RL with adaptive state graphs (max. 1193 nodes) andprioritized sweeping (PS) with di�erent dis
retization densities on the stati
 puddle worldfrom Figure 3.4. (Average over 5 trials.)3.5.2 3-Link Arm Rea
hing TaskIn the next task we 
ontrol a simulated planar 3-link robot arm under stati
 stability
onstraints in an environment with several obsta
les (see Figure 3.6). The links ofthe robot arm have di�erent weights, and the 
enter of mass (CoM) of the robotneeds to be kept inside a �nite support polygon. If the CoM leaves a neutral zone ofguaranteed stability, the agent re
eives negative reward that grows quadrati
ally asthe CoM approa
hes the boundary of the support polygon. Under these 
onstraintsthe trivial solution of rotating the arm around the top left obsta
le a
hieves lowerreward than the traje
tory that maneuvers the arm through the narrow passagebetween the obsta
les.The 3-dimensional state spa
e 
onsist of the three joint angles (θ1, θ2, θ3) and the
ontrol a
tions 
orrespond to setting the angular velo
ities. The approximate model

f̂ is a simple linear model. The true system dynami
s f 
ontains nonlinearities dueto obsta
les, whi
h are not 
aptured by f̂ .The 
omparison in Figure 3.7 shows that graph-based RL 
onverges mu
h fasterto more a

urate traje
tories than prioritized sweeping with various levels of dis-
retization.3.5.3 Dynami
 Puddle WorldWe study a dynami
 version of the puddle world problem on a simpli�ed environment(see Figure 3.8(a)). The 4-dimensional state spa
e 
onsists of (x, y, ẋ, ẏ), and the
ontrol a
tions 
orrespond to a

elerations in x and y dire
tion. The approximatemodel is still linear but of higher order. In the dynami
 
ase the design of lo
al
ontrollers is more di�
ult, be
ause positions and velo
ities are 
oupled. We �rst
al
ulate the time required by a bang-bang 
ontroller to rea
h its target for (x, ẋ)and (y, ẏ) independently. The 
ontroller whi
h rea
hes its target faster is then sloweddown su
h that all state variables arrive at the target simultaneously.Figure 3.8(b) shows a 
omparison of our algorithm to RBF value fun
tion ap-proximation. Our approa
h 
onverges mu
h faster and �nds solution traje
tories of
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Figure 3.6: Arm rea
hing task with stability 
onstraints. Left: Solution traje
tory foundby our algorithm. The agent must rea
h the goal region (red) from the starting position(green), avoiding the obsta
les. Right: The agent re
eives negative reward if its 
enter ofmass (red) leaves the neutral zone (green).
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Graph−based RL
PS 20x40x40
PS 10x20x20Figure 3.7: Learning performan
e on the 3-link arm rea
hing task for RL with adaptivestate graphs (max. 2629 nodes) and prioritized sweeping (PS) with di�erent dis
retizationdensities. (Average over 5 trials)similar quality. In 
ontrast to the previous examples, prioritized sweeping did not�nd satisfa
tory results in reasonable time. One reason is that on dynami
 tasksdis
retized state signals often violate the Markov property. The other reason is theexponential in
rease in the number of states with growing dimensionality.3.6 Con
lusion and Future WorkIn this paper we introdu
ed a new 
ombination of reinfor
ement learning andsampling-based planning for 
ontrol problems with 
omplex reward fun
tions inunknown 
ontinuous environments. We use minimal prior knowledge in the formof approximate models and lo
al 
ontrollers to in
rease learning speed and produ
e
ontinuous 
ontrol outputs for varying time intervals. Our algorithm builds an adap-tive state graph through e�
ient goal-dire
ted exploration and re�nes the graph inlater stages. A new generalization s
heme for reward predi
tion of unvisited edgesin
reases the performan
e of the algorithm by avoiding unne
essary exploration.We demonstrated on various movement planning tasks with 
omplex reward fun
-tions that RL with adaptive state graphs outperforms standard RL te
hniques forfun
tion approximation.Future work will extend the approa
h to non-linear system dynami
s and higherdimensional problems. The approa
h is parti
ularly promising for 
ompli
ated tasks
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Graph−based RL
RBF 20x10
RBF 10x7(a) (b)Figure 3.8: (a) Dynami
 puddle world environment and solution traje
tory. (b) Learningperforman
e on the dynami
 puddle world for RL with adaptive state graphs (max. 8106nodes) and RL with RBF fun
tion approximation. (20 resp. 10 RBF 
enters per positiondimension and 10 resp. 7 RBF 
enters per velo
ity dimension. Average over 5 trials.)

that 
an be proje
ted to low dimensional representations, su
h as balan
ing hu-manoid robots using motion primitives (Hauser et al., 2007). Future investigationswill also 
on
ern strategies to redu
e the number of nodes, thereby enabling appli-
ations in larger state spa
es.3.7 A
knowledgmentsThis 
hapter is based on the paper (Neumann et al., 2007) written by Gerhard Neu-mann (GN), Mi
hael Pfei�er (MP) and Wolfgang Maass (WM). GN implementedthe graph-based RL algorithm and 
ondu
ted most of the experiments while MP im-plemented the reward predi
tion me
hanism. WM signi�
antly improved the paperwritting.
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ently, �tted Q-iteration (FQI) based methods have be
ome more popular dueto their in
reased sample e�
ien
y, a more stable learning pro
ess and the higherquality of the resulting poli
y. However, these methods remain hard to use for
ontinuous a
tion spa
es whi
h frequently o

ur in real-world tasks, e.g., in roboti
sand other te
hni
al appli
ations. The greedy a
tion sele
tion 
ommonly used for thepoli
y improvement step is parti
ularly problemati
 as it is expensive for 
ontinuousa
tions, 
an 
ause an unstable learning pro
ess, introdu
es an optimization biasand results in highly non-smooth poli
ies unsuitable for real-world systems. In thispaper, we show that by using a soft-greedy a
tion sele
tion the poli
y improvementstep used in FQI 
an be simpli�ed to an inexpensive advantage-weighted regression.With this result, we are able to derive a new, 
omputationally e�
ient FQI algorithmwhi
h 
an even deal with high dimensional a
tion spa
es.4.1 Introdu
tionReinfor
ement Learning (Sutton and Barto, 1998) addresses the problem of howautonomous agents 
an improve their behavior using their experien
e. At ea
h timestep t the agent 
an observe its 
urrent state st ∈ X and 
hooses an appropriatea
tion at ∈ A. Subsequently, the agent gets feedba
k on the quality of the a
tion,i.e., the reward rt = r(st, at), and observes the next state st+1. The goal of theagent is to maximize the a

umulated reward expe
ted in the future. In this paper,we fo
us on learning poli
ies for 
ontinuous, multi-dimensional 
ontrol problems.Thus the state spa
e X and a
tion spa
e A are 
ontinuous and multi-dimensional,meaning that dis
retizations start to be
ome prohibitively expensive.



28 Chapter 4. Advantage Weighted RegressionWhile dis
rete-state/a
tion reinfor
ement learning is a widely studied problemwith rigorous 
onvergen
e proofs, the same does not hold true for 
ontinuous statesand a
tions. For 
ontinuous state spa
es, few 
onvergen
e guarantees exist andpathologi
al 
ases of bad performan
e 
an be generated easily (Boyan and Moore,1995). Moreover, many methods 
annot be transferred straightforwardly to 
ontin-uous a
tions.Current approa
hes often 
ir
umvent 
ontinuous a
tion spa
es by fo
using onproblems where the a
tor 
an rely on a dis
rete set of a
tions, e.g., when learninga poli
y for driving a 
ar to a goal in minimum time, an a
tor only needs threea
tions: the maximum a

eleration when starting, zero a

eleration at maximumvelo
ity and maximum throttle down when the goal is su�
iently 
lose for a pointlanding. While this approa
h (
alled bang-bang in traditional 
ontrol) works for thelarge 
lass of minimum time 
ontrol problems, it is also a limited approa
h as 
ostfun
tions relevant to the real-world in
orporate mu
h more 
omplex 
onstraints,e.g., 
ost-fun
tions in biologi
al systems often punish the jerkiness of the movement(Viviani and Flash, 1995), the amount of used metaboli
 energy (Alexander, 1997)or the varian
e at the end-point (Wolpert, 1998). For physi
al te
hni
al systems,the in
orporation of further optimization 
riteria is of essential importan
e; justas a minimum time poli
y is prone to damage the 
ar on the long-run, a similarpoli
y would be highly dangerous for a robot and its environment and the resultingenergy-
onsumption would redu
e its autonomy. More 
omplex, a
tion-dependentimmediate reward fun
tions require that mu
h larger sets of a
tions are being em-ployed.We 
onsider the use of 
ontinuous a
tions for �tted Q-iteration (FQI) basedalgorithms. FQI is a bat
h mode reinfor
ement learning (BMRL) algorithm. Thealgorithm mantains an estimate of the state-a
tion value fun
tion Q(s,a) and usesthe greedy operatormaxaQ(s,a) on the a
tion spa
e for improving the poli
y. Whilethis works well for dis
rete a
tion spa
es, the greedy operation is hard to performfor high-dimensional 
ontinuous a
tions. For this reason, the appli
ation of �ttedQ-iteration based methods is often restri
ted to low-dimensional a
tion spa
es whi
h
an be e�
iently dis
retized. In this paper, we show that the use of a sto
hasti
 soft-max poli
y instead of a greedy poli
y allows us to redu
e the poli
y improvementstep used in FQI to a simple advantage-weighted regression. The greedy operation
maxaQ(s,a) over the a
tions is repla
ed by a less harmful greedy operation overthe parameter spa
e of the value fun
tion. This result allows us to derive a new,
omputationally e�
ient algorithm whi
h is based on Lo
ally-Advantage-WEightedRegression (LAWER).We test our algorithm on three di�erent ben
hmark tasks, i.e., the pendulumswing-up (Riedmiller, 2005), the a
robot swing-up (Sutton and Barto, 1998) anda dynami
 version of the puddle-world (Sutton, 1996) with 2 and 3 dimensions.We show that in spite of the soft-greedy a
tion sele
tion, our algorithm is able toprodu
e high quality poli
ies.



4.2. Fitted Q-Iteration 294.2 Fitted Q-IterationIn �tted Q-iteration (Ernst et al., 2005; Riedmiller, 2005; Antos et al., 2008) (FQI),we assume that all the experien
e of the agent up to the 
urrent time is given inthe form H = {< si,ai, ri, s
′
i >}1≤i≤N . The task of the learning algorithm is toestimate an optimal 
ontrol poli
y from this histori
al data. FQI approximatesthe state-a
tion value fun
tion Q(s,a) by iteratively using supervised regressionte
hniques. New target values for the regression are generated by

Q̃k+1(i) = ri + γVk(s
′
i) = ri + γmax

a′

Qk(s
′
i,a

′). (4.1)The regression problem for �nding the fun
tion Qk+1 is de�ned by the list of data-point pairs Dk and the regression pro
edure Regress
Dk(Qk) =

{

[

(si,ai), Q̃k+1(i)
]

1≤i≤N

}

, Qk+1 = Regress(Dk(Qk)) (4.2)FQI 
an be viewed as approximate value iteration with state-a
tion value fun
tions(Antos et al., 2008). Previous experiments show that fun
tion approximators su
has neural networks (Riedmiller, 2005), radial basis fun
tion networks (Ernst et al.,2005), CMAC (Timmer and Riedmiller, 2007) and regression trees (Ernst et al.,2005) 
an be employed in this 
ontext. In (Antos et al., 2008), performan
e boundsfor the value fun
tion approximation are given for a wide range of fun
tion approx-imators. The performan
e bounds also hold true for 
ontinuous a
tion spa
es, butonly in the 
ase of an a
tor-
riti
 variant of FQI. Unfortunately, to our knowledge,no experiments with this variant exist in the literature. Additionally, it is not 
learhow to apply this a
tor-
riti
 variant e�
iently for nonparametri
 fun
tion approx-imators.FQI has proven to outperform 
lassi
al online RL methods in many appli
a-tions (Ernst et al., 2005). Nevertheless, FQI relies on the greedy a
tion sele
tionin Equation (4.1). Thus, the algorithm frequently requires a dis
rete set of a
tionsand generalization to 
ontinuous a
tions is not straightforward. Using the greedyoperator for 
ontinuous a
tion spa
es is a hard problem by itself as the use of ex-pensive optimization methods is needed for high dimensional a
tions. Moreover thereturned values of the greedy operator often result in an optimization bias 
aus-ing an unstable learning pro
ess, in
luding os
illations and divergen
e (Peters andS
haal, 2007a). For a 
omparison with our algorithm, we use the Cross-Entropy(CE) optimization method (de Boer et al., 2005) to �nd the maximum Q-values.In our implementation, we maintain a Gaussian distribution for the belief of theoptimal a
tion. We sample nCE a
tions from this distribution. Then, the best
eCE < nCE a
tions (with the highest Q-values) are used to update the parametersof this distribution. The whole pro
ess is repeated for kCE iterations, starting witha uniformly distributed set of sample a
tions.FQI is inherently an o�ine method - given histori
al data, the algorithm esti-mates the optimal poli
y. However, FQI 
an also be used for online learning. Afterthe FQI algorithm is �nished, new episodes 
an be 
olle
ted with the 
urrently bestinferred poli
y and the FQI algorithm is restarted.



30 Chapter 4. Advantage Weighted Regression4.3 Fitted Q-Iteration by Advantage Weighted Regres-sionA di�erent method for poli
y updates in 
ontinuous a
tion spa
es is reinfor
ementlearning by reward-weighted regression (Peters and S
haal, 2007b). As shown bythe authors, the a
tion sele
tion problem in the immediate reward RL setting with
ontinuous a
tions 
an be formulated as expe
tation-maximization (EM) based al-gorithm and, subsequently, redu
ed to a reward-weighted regression. The weightedregression 
an be applied with ease to high-dimensional a
tion spa
es; no greedyoperation in the a
tion spa
e is needed. While we do not dire
tly follow the workin (Peters and S
haal, 2007b), we follow the general idea.4.3.1 Weighted regression for value estimationIn this se
tion we 
onsider the task of estimating the value fun
tion V of a sto
hasti
poli
y π(·|s) when the state-a
tion value fun
tion Q is already given. The valuefun
tion 
an be 
al
ulated by V (s) =
∫

a
π(a|s)Q(s,a)da. Yet, the integral overthe a
tion spa
e is hard to perform for 
ontinuous a
tions. However, we will showhow we 
an approximate the value fun
tion without the evaluation of this integral.Consider the quadrati
 error fun
tionError(V̂ ) =

∫

s

µ(s)

(
∫

a

π(a|s)Q(s,a)da − V̂ (s)

)2

ds (4.3)
=

∫

s

µ(s)

(
∫

a

π(a|s)
(

Q(s,a) − V̂ (s)
)

da

)2

ds, (4.4)whi
h is used to �nd an approximation V̂ of the value fun
tion. µ(s) denotes thestate distribution when following poli
y π(·|a). Sin
e the squared fun
tion is 
onvexwe 
an use Jensens inequality for probability density fun
tions to derive an upperbound of Equation (4.4)Error(V̂ ) ≤

∫

s

µ(s)

∫

a

π(a|s)
(

Q(s,a)− V̂ (s)
)2

dads = ErrorB(V̂ ). (4.5)The solution V̂ ∗ for minimizing the upper bound ErrorB(V̂ ) is the same as for theoriginal error fun
tion Error(V̂ ).Proof. To see this, we 
ompute the square and repla
e the term ∫

a
π(a|s)Q(s,a)daby the value fun
tion V (s). This is done for the error fun
tion Error(V̂ ) and for theupper bound ErrorB(V̂ ).Error(V̂ ) =

∫

s

µ(s)
(

V (s)− V̂ (s)
)2

ds (4.6)
=

∫

s

µ(s)
(

V (s)2 − 2V (s)V̂ (s) + V̂ (s)2
)

ds (4.7)



4.3. Fitted Q-Iteration by Advantage Weighted Regression 31ErrorB(V̂ ) =

∫

s

µ(s)

∫

a

π(a|s)
(

Q(s,a)2 − 2Q(s,a)V̂ (s) + V̂ (s)2
)

dads (4.8)
=

∫

s

µ(s)

(
∫

a

π(a|s)Q(s,a)2da− 2V (s)V̂ (s) + V̂ (s)2
)

ds (4.9)Both error fun
tions are the same ex
ept for an additive 
onstant whi
h does notdepend on V̂ .In di�eren
e to the original error fun
tion, the upper bound ErrorB 
an beapproximated straightforwardly by samples {(si,ai), Q(si,ai)}1≤i≤N gained by fol-lowing some behavior poli
y πb(·|s).ErrorB(V̂ ) ≈
N
∑

i=1

µ(s)π(ai|si)

µb(si)πb(ai|si)

(

Q(si,ai)− V̂ (si)
)2

, (4.10)
µb(s) de�nes the state distribution when following the behavior poli
y πb. The term
1/(µb(si)πb(si,ai)) ensures that we do not give more weight on states and a
tionspreferred by πb. This is a well known method in importan
e sampling. In order tokeep our algorithm tra
table, the fa
tors πb(ai|si), µb(si) and µ(si) will all be set to
1/N . The minimization of Equation (4.10) de�nes a weighted regression problemwhi
h is given by the dataset DV , the weighting U and the weighted regressionpro
edure WeightedRegress

DV =
{

[(si,ai), Q(si,ai)]1≤i≤N

}

, U = {[π(ai|si)]1≤i≤N} , (4.11)
V̂ = WeightedRegress(DV , U) (4.12)The result shows that in order to approximate the value fun
tion V (s), we do notneed to 
arry out the expensive integration over the a
tion spa
e for ea
h state si.It is su�
ient to know the Q-values at a �nite set of state-a
tion pairs.4.3.2 Soft-greedy poli
y improvementWe use a soft-max poli
y (Sutton and Barto, 1998) in the poli
y improvement step ofthe FQI algorithm. Our soft-max poli
y π1(a|s) is based on the advantage fun
tion

A(s,a) = Q(s,a)−V (s). We additionally assume the knowledge of the mean mA(s)and the standard deviation of σA(s) of the advantage fun
tion at state s. Thesequantities 
an be estimated lo
ally or approximated by additional regressions. Thepoli
y π1(a|s) is de�ned as
π1(a|s) =

exp(τĀ(s,a))
∫

a
exp(τĀ(s,a))da

, Ā(s,a) = A(s,a)−mA(s)
σA(s) . (4.13)

τ 
ontrols the greediness of the poli
y. If we assume that the advantages A(s,a) aredistributed with N (A(s,a)|mA(s), σ
2
A(s)), all normalized advantage values Ā(s,a)have the same distribution. Thus, the denominator of π1 is 
onstant for all states andwe 
an use the term exp(τĀ(s,a)) ∝ π1(a|s) dire
tly as weighting for the regressionde�ned in Equation (4.12). The resulting approximated value fun
tion V̂ (s) is used



32 Chapter 4. Advantage Weighted RegressionAlgorithm 1: FQI with Advantage Weighted RegressionInput: H = {< si,ai, ri, s
′
i >}1≤i≤N , τ and L (Number of Iterations)Initialize V̂0(s) = 0.for k = 0 to L− 1 do

Dk(V̂k) =

{

[

(si,ai), ri + γV̂k(s
′
i)
]

1≤i≤N

}

Qk+1 = Regress(Dk(V̂k))
A(i) = Qk+1(si,ai)− V̂k(si)Estimate mA(si) and σA(si) for 1 ≤ i ≤ N
U = {[exp(τ(A(i) −mA(si))/σA(si)]i≤i≤N}
V̂k+1 = WeightedRegress(Dk(V̂k), U)end forto repla
e the greedy operator V (s′i) = maxa′ Q(s′i,a

′) in the FQI algorithm. TheFQI by Advantage Weighted Regression (AWR) algorithm is given in Algorithm 1.As we 
an see, the Q-fun
tion Qk is only queried on
e for ea
h step in the history
H. Furthermore only already seen state a
tion pairs (si,ai) are used for this query.After the FQI algorithm is �nished we still need to determine a poli
y for sub-sequent data 
olle
tion. The poli
y 
an be obtained in the same way as for reward-weighted regression (Peters and S
haal, 2007b), only the advantage is used insteadof the reward for the weighting - thus, we are optimizing the long term 
osts insteadof the immediate one.4.4 Lo
ally-Advantage-WEighted Regression (LAWER)Based on the FQI by AWR algorithm, we propose a new, 
omputationally e�
ient�tted Q-iteration algorithm whi
h uses Lo
ally Weighted Regression (LWR, (Atke-son et al., 1997)) as fun
tion approximator. Similar to kernel based methods, ouralgorithm needs to be able to 
al
ulate the similarity wi(s) between a state si in thedataset H and state s. To simplify the notation, we will denote wi(sj) as wij for all
sj ∈ H. wi(s) is 
al
ulated by a Gaussian kernel wi(s) = exp(−(si − s)TD(si − s)).The diagonal matrix D determines the bandwidth of the kernel. Additionally, ouralgorithm also needs a similarity measure wa

ij between two a
tions ai and aj . Again
wa
ij 
an be 
al
ulated by a Gaussian kernel wa

ij = exp(−(ai − aj)
TDa(ai − aj)).Using the state similarity wij , we 
an estimate the mean and the standard de-viation of the advantage fun
tion for ea
h state si

mA(si) =

∑

j wijA(j)
∑

j wij
, σ2

A(si) =
∑

j wij(A(j)−mA(sj))2∑
j wij

. (4.14)



4.4. Lo
ally-Advantage-WEighted Regression (LAWER) 334.4.1 Approximating the value fun
tionsFor the approximation of the Q-fun
tion, we use Lo
ally Weighted Regression (Atke-son et al., 1997). The Q-fun
tion is therefore given by:
Qk+1(s,a) = s̃A(SA

TWSA)−1SA
TWQk+1 (4.15)where s̃A = [1, sT ,aT ]T , SA = [s̃A(1), s̃A(2), ..., s̃A(N)]T is the state-a
tion matrix,

W = diag(wi(s)w
a
i (a)) is the lo
al weighting matrix 
onsisting of state and a
tionsimilarities, and Qk+1 = [Q̃k+1(1), Q̃k+1(2), . . . , Q̃k+1(N)]T is the ve
tor of the Q-values (see Equation (4.1).For approximating the V-fun
tion we 
an multipli
atively 
ombine theadvantage-based weighting ui = exp(τĀ(si,ai)) and the state similarity weights

wi(s). The value Vk+1(s) is given by 1:
Vk+1(s) = s̃(STUS)−1STUQk+1, (4.16)where s̃ = [1, sT ]T , S = [s̃1, s̃2, ..., s̃N ]T is the state matrix and U = diag(wi(s)ui) isthe weight matrix. We bound the estimate of V̂k+1(s) by maxi|wi(s)>0.001 Qk+1(i) inorder to prevent the lo
al regression from adding a positive bias whi
h might 
ausedivergen
e of the value iteration.A problem with nonparametri
 value fun
tion approximators is their stronglyin
reasing 
omputational 
omplexity with an in
reasing number of data points. Asimple solution to avoid this problem is to introdu
e a lo
al forgetting me
hanism.Whenever parts of the state spa
e are oversampled, old examples in this area areremoved from the dataset.4.4.2 Approximating the poli
ySimilar to reward-weighted regression (Peters and S
haal, 2007b), we use a sto
hasti
poli
y π(a|s) = N (a|µ(s),diag(σ2(s))) with Gaussian exploration as approximationof the optimal poli
y. The mean µ(s) and the varian
e σ2(s) are given by

µ(s) = s̃(STUS)−1STUA, σ2(s) =
σ2initα0+

∑
i wi(s)ui(ai−µ(si))

2

α0+
∑

i wi(s)ui
, (4.17)where A = [a1,a2, . . . ,aN ]T denotes the a
tion matrix. The varian
e σ2 au-tomati
ally adapts the exploration of the poli
y to the un
ertainty of the optimala
tion. With σ2init and α0 we 
an set the initial exploration of the poli
y. σinit isalways set to the bandwidth of the a
tion spa
e. α0 sets the weight of the initialvarian
e in 
omparison to the varian
e 
oming from the data, α0 is set to 3 for allexperiments.1In pra
ti
e, ridge regression V k+1(s) = s̃(STWS+ σI)−1STWQk+1 is used to avoid numeri
alinstabilities in the regression.



34 Chapter 4. Advantage Weighted Regression4.5 EvaluationsWe evaluated the LAWER algorithm on three ben
hmark tasks, the pendulum swingup task, the a
robot swing up task and a dynami
 version of the puddle-world (i.e.,augmenting the puddle-world by velo
ities, inertia, et
.) with 2 and 3 dimensions.We 
ompare our algorithm to tree-based FQI (Ernst et al., 2005) (CE-Tree), neuralFQI (Riedmiller, 2005) (CE-Net) and LWR-based FQI (CE-LWR) whi
h all usethe Cross-Entropy (CE) optimization to �nd the maximum Q-values. For the CEoptimization we used nCE = 10 samples for one dimensional, nCE = 25 samples for2-dimensional and nCE = 64 for 3-dimensional 
ontrol variables. eCE was always setto 0.3nCE and we used kCE = 3 iterations. To enfor
e exploration when 
olle
tingnew data, a Gaussian noise of ε = N (0, 1.0) was added to the CE-based poli
y.For the tree-based algorithm, an ensemble of M = 20 trees was used, K was set tothe number of state and a
tion variables and nmin was set to 2 (see (Ernst et al.,2005)). For the CE-Net algorithm we used a neural network with 2 hidden layersand 10 neurons per layer and trained the network with the algorithm proposed in(Riedmiller, 2005) for 600 epo
hs. For all experiments, a dis
ount fa
tor of γ = 0.99was used. The immediate reward fun
tion was quadrati
 in the distan
e to the goalposition sG and in the applied torque/for
e r = −c1(s− sG)
2− c2a

2. For evaluatingthe learning pro
ess, the exploration-free (i.e., σ(s) = 0, ε = 0) performan
e ofthe poli
y was evaluated after ea
h data-
olle
tion/FQI 
y
le. This was done bydetermining the a

umulated reward during an episode starting from the spe
i�edinitial position. All errorbars represent a 95% 
on�den
e interval.4.5.1 Pendulum swing-up taskIn this task, a pendulum needs to be swung up from the position at the bottom tothe top position (Riedmiller, 2005). The state spa
e 
onsists of the angular deviation
θ from the top position and the angular velo
ity θ̇ of the pendulum. The systemdynami
s are given by 0.5ml2θ̈ = mg sin(θ) + u , the torque of the motor u waslimited to [−5N, 5N ]. The mass was set to m = 1kg and length of the link to 1m.The time step was set to 0.05s. Two experiments with di�erent torque punishments
c2 = 0.005 and c2 = 0.025 were performed.We used L = 150 iterations. The matri
esD andDA were set toD = diag(30, 3)and DA = diag(2). In the data 
olle
tion phase, 5 episodes with 150 steps were
olle
ted starting from the bottom position and 5 episodes starting from a randomposition.A 
omparison of the LAWER algorithm to CE-based algorithms for c2 = 0.005is shown in Figure 4.1(a) and for c2 = 0.025 in Figure 4.1(b). Our algorithm showsa 
omparable performan
e to the tree-based FQI algorithm while being 
omputa-tionally mu
h more e�
ient. All other CE-based FQI algorithms show a slightlyde
reased performan
e. In Figure 4.1(
) and (d) we 
an see typi
al examples oflearned torque traje
tories when starting from the bottom position for the LAWER,the CE-Tree and the CE-LWR algorithm. In Figure 4.1(
) the traje
tories are shownfor c2 = 0.005 and in Figure 4.1(d) for c2 = 0.025. All algorithms were able to dis-
over a fast solution with 1 swing-up for the �rst setting and a more energy-e�
ient
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CE LWR(d)Figure 4.1: (a) Evaluation of LAWER and CE-based FQI algorithms on the pendulumswing-up task for c2 = 0.005 . The plots are averaged over 10 trials. (b) The sameevaluation for c2 = 0.025. (
) Learned torque traje
tories for c2 = 0.005. (d) Learnedtorque traje
tories for c2 = 0.025.solution with 2 swing-ups for the se
ond setting. Still, there are qualitative di�er-en
es in the traje
tories. Due to the advantage-weighted regression, LAWER wasable to produ
e very smooth traje
tories while the traje
tories found by the CE-based methods look more jerky. In Figure 4.2(a) we 
an see the in�uen
e of theparameter τ on the performan
e of the LAWER algorithm. The algorithm worksfor a large range of τ values.4.5.2 A
robot swing-up taskIn order to asses the performan
e of LAWER on a 
omplex highly non-linear 
on-trol task, we used the a
robot (for a des
ription of the system, see (Sutton andBarto, 1998)). The torque was limited to [−5N, 5N ]. Both masses were set to 1kgand both lengths of the links to 0.5m. A time step of 0.1s was used. L = 100iterations were used for the FQI algorithms. In the data-
olle
tion phase the agent
ould observe 25 episodes starting from the bottom position and 25 starting froma random position. Ea
h episode had 100 steps. The matri
es D and DA were setto D = diag(20, 23.6, 10, 10.5) and DA = diag(2). The 
omparison of the LAWERand the CE-Tree algorithm is shown in Figure 4.2(a). Due to the adaptive statedis
retization, the tree-based algorithm is able to learn faster, but in the end, theLAWER algorithm is able to produ
e poli
ies of higher quality than the tree-basedalgorithm.4.5.3 Dynami
 puddle-worldIn the puddle-world task (Sutton, 1996), the agent has to �nd a way to a prede�nedgoal area in a 
ontinuous-valued maze world (see Figure 4.3(a)). The agent getsnegative reward when going through puddles. In di�eren
e to the standard puddle-world setting where the agent has a 2-dimensional state spa
e (the x and y position),we use a more demanding setting. We have 
reated a dynami
 version of the puddle-world where the agent 
an set a for
e a

elerating a k-dimensional point mass (m =
1kg). This was done for k = 2 and k = 3 dimensions. The puddle-world illustratesthe s
alability of the algorithms to multidimensional 
ontinuous a
tion spa
es (2respe
tively 3 dimensional). The positions were limited to [0, 1] and the velo
itiesto [−1, 1]. The maximum for
e that 
ould be applied in one dire
tion was restri
ted
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3(d)Figure 4.3: (a) Comparison of the CE-Tree and the LAWER algorithm for the 2-dimensionaldynami
 puddle-world. (b) Comparison of the CE-Tree and the LAWER algorithm for the3-dimensional dynami
 puddle-world. (
) Torque traje
tories for the 3-dimensional puddleworld learned with the LAWER algorithm. (d) Torque traje
tories learned with the CE-Tree algorithm.to 2N and the time step was set to 0.1s. The setting of the 2-dimensional puddle-world 
an be seen in Figure 4.2(
). Whenever the agent was about to leave theprede�ned area, the velo
ities were set to zero and an additional reward of −5 wasgiven. We 
ompared the LAWER with the CE-Tree algorithm. L = 50 iterationswere used. The matri
es D and DA were set to D = diag(10, 10, 2.5, 2.5) and

DA = diag(2.5, 2.5) for the 2-dimensional and to D = diag(8, 8, 8, 2, 2, 2) and DA =
diag(1, 1, 1) for the 3-dimensional puddle-world. In the data 
olle
tion phase theagent 
ould observe 20 episodes with 50 steps starting from the prede�ned initialposition and 20 episodes starting from a random position.In Figure 4.3(a), we 
an see the 
omparison of the CE-Tree and the LAWER algo-rithm for the 2-dimensional puddle-world and in Figure 4.3(b) for the 3-dimensionalpuddle-world. The results show that the tree-based algorithm has an advantage inthe beginning of the learning pro
ess. However, the CE-Tree algorithm has prob-lems �nding a good poli
y in the 3-dimensional a
tion-spa
e, while the LAWERalgorithm still performs well in this setting. This 
an be seen 
learly in the 
om-parison of the learned for
e traje
tories whi
h are shown in Figure 4.3(
) for theLAWER algorithm and in Figure 4.3(d) for the CE-Tree algorithm. The traje
-



4.6. Con
lusion and future work 37tories for the CE-Tree algorithm are very jerky and almost random for the �rstand third dimension of the 
ontrol variable, whereas the traje
tories found by theLAWER algorithm look very smooth and goal dire
ted.4.6 Con
lusion and future workIn this paper, we fo
used on solving RL problems with 
ontinuous a
tion spa
eswith �tted Q-iteration based algorithms. The 
omputational 
omplexity of the maxoperator maxaQ(s,a) often makes FQI algorithms intra
table for high dimensional
ontinuous a
tion spa
es. We proposed a new method whi
h 
ir
umvents the maxoperator by the use of a sto
hasti
 soft-max poli
y that allows us to redu
e thepoli
y improvement step V (s) = maxaQ(s,a) to a weighted regression problem.Based on this result, we 
an derive the LAWER algorithm, a new, 
omputationallye�
ient FQI algorithm based on LWR.Experiments have shown that the LAWER algorithm is able to produ
e highquality smooth poli
ies, even for high dimensional a
tion spa
es where the use ofexpensive optimization methods for 
al
ulating maxaQ(s,a) be
omes problemati
and only quite suboptimal poli
ies are found. Moreover, the 
omputational 
osts ofusing 
ontinuous a
tions for standard FQI are daunting. The LAWER algorithmneeded on average 2780s for the pendulum, 17600s for the a
robot, 13700s for the2D-puddle-world and 24200s for the 3D-puddle world ben
hmark task. The CE-Tree algorithm needed on average 59900s, 201900s, 134400s and 212000s, whi
h isan order of magnitude slower than the LAWER algorithm. The CE-Net and CE-LWR algorithm showed 
omparable running times as the CE-Tree algorithm. A lotof work has been spent to optimize the implementations of the algorithms. Thesimulations were run on a P4 Xeon with 3.2 gigahertz.Still, in 
omparison to the tree-based FQI approa
h, our algorithm has handi
apswhen dealing with high dimensional state spa
es. The distan
e kernel matri
es haveto be 
hosen appropriately by the user. Additionally, the uniform distan
e measurethroughout the state spa
e is not adequate for many 
omplex 
ontrol tasks andmight degrade the performan
e. Future resear
h will 
on
entrate on 
ombining theAWR approa
h with the regression trees presented in (Ernst et al., 2005).4.7 A
knowledgmentsThis 
hapter is based on the paper (Neumann and Peters, 2009) written by GerhardNeumann (GN) and Jan Peters (JP). GN implemented the Advantage-WeightedRegression algorithms and 
ondu
ted the experiments while JP provided the basi
ideas and guidan
e for this paper.
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Chapter 5Introdu
tion
Movement representations are frequently used for motor skill learning (Kober et al.,2008). Instead of dire
tly learning the desired traje
tory, they represent a lowerdimensional des
ription of the movement whi
h is supposed to fa
ilitate learningof movement skills. Many types of movement representations are also denoted asmovement primitive. The key idea of the term 'primitive' is that several of theseelementary movements 
an be 
ombined sequentially or also simultaneously in time.There are many di�erent approa
hes how to en
ode movements with a lowernumber of parameters, ranging from purely spatial (d'Avella and Bizzi, 2005) totemporal (S
haal et al., 2003, 2007) representations. We will denote w as the pa-rameter ve
tor of the movement primitive.In this thesis I will �rst give an overview over relevant methods. I will alsobrie�y dis
uss how movement primitives 
an be 
ombined sequentially and simul-taneously in time. Subsequently I will present 3 new approa
hes whi
h were partof my work during my PhD. In Chapter 6, I will introdu
e a spatial movementrepresentation approa
h for balan
ing 
ontrol of a humanoid robot (Hauser et al.,2011). In Chapter 7, I will present a new movement representation 
alled motiontemplates. Motion templates are the �rst representation whi
h 
an be 
ombinedsequentially in time by the use of reinfor
ement learning. Finally, in Chapter 8 Iwill present a primitive whi
h is based on inherent planning. As we use planningalready at the level of the primitive, abstra
t features or goals of the movement
an be used as parameter representation. We will show that this 
an signi�
antlyfa
ilitate learning of movement skills.5.1 Spatial PrimitivesSpatial representations use a K dimensional manifold to represent the D-dimensional a
tion spa
e (K ≪ D) but do not en
ode any temporal 
oheren
eof the movement. Thus, they do not dire
tly spe
ify a poli
y whi
h 
an be used toperform the motion.The most prominent representative of spatial representations is the syn
hronousmus
le synergies approa
h (d'Avella and Bizzi, 2005) whi
h have been developedin the 
ontext of explaining biologi
al mus
le a
tivation data. The key idea is touse a K-dimensional linear basis for the a
tion spa
e, where K ≪ D. Ea
h basisve
tor represents a single synergy. The 
ontrol ve
tor a(t) is then represented bythe mus
le synergy matrix M and the synergy 
oe�
ients, given by c(t), i.e.

a(t) = Mc(t).



42 Chapter 5. Introdu
tionEa
h 
olumn ve
tor of M represents a single synergy. The syn
hronous mus
lesynergies have been used to explain mus
le a
tivation patterns in frogs (d'Avellaand Bizzi, 2005). The authors 
ould show that several mus
le synergies were sharedfor di�erent behaviors, rendering this approa
h also attra
tive for robot 
ontrol andtransfer learning.In Chapter 6 we present a similar approa
h based on kinemati
 synergies whi
hwe have applied to a humanoid robot. We use a lower dimensional manifold in thejoint spa
e of a humanoid robot to 
ounter-balan
e unknown perturbations. This isone of the �rst appli
ation of the idea of using synergies for robot 
ontrol.Typi
ally the synergies are extra
ted from experimental data (d'Avella and Bizzi,2005) or, as in our 
ase, 
onstru
ted by the inverse kinemati
 model of the robot.Learning su
h lower dimensional spatial basis of an high-dimensional redundanta
tion spa
e from intera
tion with an environment and reinfor
ement is still anopen problem.5.2 Temporal PrimitivesTemporal representations expli
itly en
ode the temporal pattern of the movement.The high-dimensional state information is usually absorbed by a s
alar phase ortime variable t. The 
ommon approa
h for temporal representations is to 
al
ulatea desired traje
tory 〈y(t;w), ẏ(t;w)〉. As we 
an see, the desired position andvelo
ity of the robot only depends on the duration t of the movement. The realstate (
urrent position qt and velo
ity q̇t) is not used for traje
tory generation.The 
urrent state st = [qt, q̇t] is only used for feedba
k traje
tory-tra
king, e.glinear PD-
ontrollers or inverse dynami
s 
ontrol (Peters et al., 2008) (see Se
tion5.2.6). Both, the feedba
k 
ontroller and the desired traje
tory 
an be parametrized,we will subsume these parameters into the parameter ve
tor w of the primitive. Asthe desired traje
tory always depends on w we will write yt instead of y(t;w) tosimplify the notation.Temporal representations 
an only be used in episodi
 setups, i.e. we alwaysuse the same initial 
onditions (i.e. state of the robot and its environment) for themovement and the movement ends after a 
ertain amount of time. Be
ause only theduration of the movement is used as information for traje
tory generation, we wouldhave to use di�erent primitive parameters for di�erent initial 
onditions. Thus, theseapproa
hes are inherently lo
al. While this restri
tion renders su
h approa
hesless powerful than global representations, temporal representations typi
ally needfewer parameters in 
omparison to global representations and thus, learning is also
onsiderably simpli�ed. Many of the most impressive robot appli
ations like ball-in-the-
up (Kober et al., 2008), baseball padding (Peters and S
haal, 2006), walking(Nakanishi et al., 2004) or 
omplex balan
ing movements (Neumann, 2011) havebeen implemented with temporal primitives.The generation of the traje
tory for these approa
hes is often an o�ine pro
essand does not in
orporate knowledge of the system dynami
s, proprio
eptive or othersensory feedba
k. Be
ause the traje
tory itself is 
reated without any knowledge ofthe system model, the desired traje
tory might not be appli
able, and thus, the real
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tory of the robot might di�er 
onsiderably from the spe
i�ed traje
tory.Many types of temporal movement primitives 
an be found in the literature,in
luding Dynami
 Movement Primitives (DMPs, (S
haal et al., 2007)), time-varyingmus
le synergies (Bizzi et al., 2008), splines (Kolter and Ng, 2009b), and motiontemplates (Neumann et al., 2009). We will now brie�y review all these methodsand dis
uss the motion templates approa
h in more detail as we introdu
ed thisapproa
h used in the papers (Neumann et al., 2009) and (Neumann, 2011) whi
hare part of this thesis.In Chapter 8 I will also present unpublished work whi
h proposes a new type ofa temporal representation whi
h is based on inherent probabilisti
 planning.5.2.1 Dynami
 Movement PrimitivesThe most prominent representation for movement primitives used in robot 
ontrolare the Dynami
 Movement Primitives (DMP) (S
haal et al., 2003). DMPs generatemulti-dimensional traje
tories by the use of non-linear di�erential equations. Thebasi
 idea is to a use for ea
h degree-of-freedom (DoF) of the robot a globally stable,linear dynami
al system whi
h is modulated by a learnable non-linear fun
tion f :
τ ż = αz(βz(g − y)− z) + f, τ ẏ = z,where the desired �nal position of the joint is denoted by g. The variables y and

ẏ denote a desired joint position and joint velo
ity, whi
h represent our movementplan. The temporal s
aling fa
tor is denoted by τ and αz and βz de�ne the damp-ing properties of the linear system. The non-linear fun
tion f dire
tly adds tothe derivative of the internal state variable z, whi
h is proportional to the desireda

eleration of the movement plan.For ea
h degree-of-freedom (DoF) of the robot an individual dynami
al system,and hen
e an individual fun
tion f is used. The fun
tion f only depends on thephase x of a movement, whi
h represents time, τ ẋ = −αxx. The phase variable xis initially set to 1 and will 
onverge to 0 for a proper 
hoi
e of τ and αx. With τwe 
an modulate the desired movement speed. The fun
tion f is 
onstru
ted by theweighted sum of K Gaussian basis fun
tions Ψi

f(x) =

∑K
i=1 Ψi(x)wix
∑K

i=1Ψi(x)
, Ψi(x) = exp(−

1

2σ2
i

(x− ci)
2).As the phase variable x 
onverges to zero, the in�uen
e of f vanishes with in
reasingtime. Hen
e, the dynami
al system is globally stable for any initial and goal state,i.e. for f = 0 the dynami
al system represents a globally stable linear dynami
system with g as a unique point attra
tor.Typi
ally only the linear weights wi are parameters of the primitive whi
h 
anmodulate the shape of the movement. The 
enters ci spe
ify at whi
h phase ofthe movement the basis fun
tion be
omes a
tive. The 
enters are usually equallyspa
ed in the range of x and not modi�ed during learning. The bandwidth of thebasis fun
tions is given by σ2

i .Integrating the dynami
al systems for ea
h DoF results into a desired traje
tory
〈yt, ẏt〉 of the joint angles whi
h is subsequentially followed by feedba
k 
ontrol laws
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tion(see Se
tion 5.2.6). The desired a

eleration ÿ = ż/τ of the system 
an also be seenas 
ontrol a
tion a of the agent, and thus, we 
an de�ne a poli
y
π(a|x;w) = N (a|Φ(x)w + k,Σa),whi
h is linear in the parameter w of the movement primitive. The linear featuresare given by

Φ(x) =
Ψ(x)x

τ2
∑K

i=1Ψi(x)and the o�set by k = αz(βz(g− y)− z)/τ2. The linear poli
y representation allowsan e�
ient use of imitation learning (S
haal et al., 2003), as well as for state-of-the-art poli
y sear
h algorithms (Kober et al., 2008; Peters and S
haal, 2006; Theodorouet al., 2010b) whi
h are only available for linear representations. For a more detaileddis
ussion on available poli
y sear
h algorithms we refer to Chapter 9.Learning with DMPs often takes pla
e in two phases (Kober and Peters, 2010).In the �rst phase, imitation learning is used to reprodu
e re
orded traje
tories.Subsequently, Reinfor
ement Learning is used to improve the movement.The generation of the traje
tory for DMPs is typi
ally an o�ine pro
ess and doesnot in
orporate proprio
eptive (i.e. the a
tual joint position qt does not in�uen
ethe desired traje
tory yt) or other sensory feedba
k. Ex
eptions are presented in(Kober et al., 2008) and (Kober et al., 2010). In (Kober et al., 2008), an additionalfeedba
k 
ontroller has been learned to modify the shape of the traje
tory in orderto 
at
h the ball in the game 'ball in the 
up'. Learning su
h a feedba
k 
ontrollerdrasti
ally redu
es the learning speed with DMPs. In (Kober et al., 2010), theauthors learned to adjust meta-parameters of the DMPs su
h as the time 
onstant
τ or the end-point g of the movement to di�erent situations (su
h as shooting a ballto di�erent positions).5.2.2 Planning Movement PrimitivesThis is a new idea for movement representation whi
h is also introdu
ed in thisthesis, see Chapter 8. The key idea is to use planning already inherently inside themovement primitive. Instead of parametrizing the shape of the resulting traje
tory,we now parametrize an internal 
ost fun
tion used for a probabilisti
 planner. Thisallows to use abstra
t features or goals as parameters and therefore a more 
ompa
tmovement representation. For further details please refer to Chapter 8.5.2.3 Motion Templates from Exponential Fun
tionsMotion templates are temporally extended, parametrized a
tions, su
h as exponen-tial torque or velo
ity pro�les, whi
h 
an be easily sequen
ed in time. They havebeen introdu
ed in our work in (Neumann et al., 2009) and (Neumann, 2011). Theparametrization of a template is typi
ally non-linear and thus more 
omplex as forthe DMPs. For example, it also in
orporates the duration of the single template,like the duration of an a

eleration or a de
eleration phase. However, in di�eren
eto the DMPs, where a single primitive en
odes the whole movement, the motion
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h simpler, basi
 building blo
ks of the movement. Here, alwaysseveral motion templates are required to represent the whole movement.A motion template mp is de�ned by its kp dimensional parameter spa
e Wp ⊆
Rkp , its parametrized poli
y up(s, t;wp) (s is the 
urrent state, t represents thetime spent exe
uting the template and wp ∈ Wp is the parameter ve
tor) and itstermination 
ondition cp(s, t;wp).At ea
h de
ision-time point σk, the agent has to 
hoose a motion template mpfrom the set A(σk) and also the parametrization wp of mp. Subsequently the agentfollows the poli
y πp(s, t;wp) until the termination 
ondition cp(s, t;wp) is ful�lled.Afterwards, we obtain a new de
ision-time point σk+1. The advantage of su
h anapproa
h is that value-based methods su
h as in (Neumann et al., 2009) 
an beused to estimate the values of the states of the de
ision time points whi
h allowsthe 
ombination of motion templates by sequen
ing them in time. This value basedapproa
h is part of this thesis and 
an be found in Chapter 7. Still, the simultaneous
ombination of the templates for several movement tasks remains an open problem.The fun
tional forms of the poli
y πp(s, t;wp) and the termination 
ondition
cp(s, t;wp) are de�ned beforehand and 
an be arbitrary fun
tions. So far we used2 types of motion templates, both are based on exponential fun
tions and spe
ifyeither torque or velo
ity pro�les. The intuition behind the use of exponential fun
-tions is that the response of linear PD-
ontrollers also has an exponential form (atleast for linear systems). The exponential fun
tions also resemble the bell-shapedvelo
ity pro�les often measured for human motion.Torque Pro�lesIn (Neumann et al., 2009), the motion templates were dire
tly used to parametrizethe torque pro�le. The templates itself were implemented as exponential fun
tionsand were used for learning a 1-link and 2-link pendulum swing-up task. The usedmotion templates represent positive (m1 and m2) and negative peaks (m3 and m4)in the torque traje
tory. There is also an individual template m5 for balan
ing therobot at the top position. One peak 
onsists of 2 su

essive motion templates, onefor the as
ending and one for the des
ending part of the peak. It is important to notethat the duration of the peaks is also in
luded in the parameters of the template,thus, the parametrization is highly non-linear. For a more exa
t des
ription of thetemplates please 
onsult Chapter 7. As we dire
tly de�ne the torque pro�les, nofeedba
k 
ontrol is used for this type of templates (ex
ept for the balan
ing template
m5).Velo
ity Pro�lesWe introdu
ed this type of motion templates in (Neumann, 2011) to illustrate anew poli
y sear
h algorithm, 
alled Variational Poli
y Sear
h. This paper is alsopart of this thesis and 
an be found in Chapter 10. Instead of torque pro�les, thetemplates now de�ne desired velo
ity pro�les whi
h are subsequently integrated toget a desired traje
tory. The traje
tory is then again followed by feedba
k 
ontrollaws (we used linear PD-
ontrollers). This is a big advantage in 
omparison to the
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tionpreviously used torque pro�les as feedba
k 
ontrol makes the out
ome of a templateeasier to predi
t. We used this kind of templates for dynami
 balan
ing of a 2-link and a 4-link pendulum. The balan
ing movement 
onsisted of a fast bendingmovement to keep balan
e, subsequently the robot 
ould return into the uprightposition.The motion is divided into 2 motion templates. Template m1 drives the robotto a set-point of ea
h joint, Template m2 tries to stabilize the agent at the uprightposition. Ea
h template 
onsists of an a

eleration phase and a de
eleration phase,both implemented by exponential velo
ity pro�les. Template m2 runs until theepisode is terminated. For a more detailed des
ription of the parametri
 form of thetemplates please 
onsult the appendix of Chapter 10.5.2.4 Time-Varying Mus
le SynergiesTime-varying mus
le synergies (d'Avella and Bizzi, 2005; Bizzi et al., 2008) havebeen used to provide a 
ompa
t representation of EKG data of mus
le a
tivationpatterns. In 
ontrast to syn
hronous mus
le synergies, time-varying mus
le synergiesalso en
ode the temporal 
ourse of the mus
le a
tivation pattern. The key idea isthat mus
le a
tivation patterns are 
omposed of a linear sum of simpler, elementalpatterns, denoted as single mus
le synergy mi(t;w). Ea
h mus
le synergy 
an nowbe shifted in time and s
aled with a linear fa
tor to 
onstru
t the whole a
tivationpattern
a(t) =

K
∑

i=1

cimi(t− τi;w),where ci is the linear s
aling 
oe�
ients and τi the time shift 
oe�
ient. The param-eters w of the primitive now in
orporate a des
ription of ea
h single synergy (whi
h
an for example be implemented by Gaussian basis fun
tions) and additionally thes
aling and shift parameters for ea
h primitive. The synergies have the promisingproperty that some synergies might be shared between tasks and only the s
alingand shift parameters need to be relearned. This property has already been shownto be true for the mus
le a
tivation of frogs performing di�erent movements likejumping, swimming or walking and seems to be a promising approa
h for transferlearning in robots.The time-varying synergy approa
h allows to 
ombine the primitives simultane-ously, whi
h is straightforward due to the linear superposition. However, ex
ept forsome smaller appli
ations (Chhabra and Ja
obs, 2006), these primitives have onlybeen used for data analysis. It is not 
lear whether this property also holds for robot
ontrol. One obvious drawba
k of the time-varying mus
le synergy approa
h is thatthere is no straightforward way to in
orporate feedba
k be
ause the synergies aretypi
ally used to dire
tly de
ompose the motor 
ommands. In order to in
orporatefeedba
k, the synergies need to de
ompose the joint traje
tory instead of a torqueor mus
le a
tivation traje
tory. In this setup, many properties like that the linearsuperposition of synergies is useful, are likely to be lost.



5.2. Temporal Primitives 475.2.5 SplinesSplines are a 
ommon pie
e-wise polynomial interpolation method whi
h was usedas one of the �rst movement representation (Chand and Doty, 1985; Kolter andNg, 2009b). Most 
ommonly used are 
ubi
 splines. The traje
tory is representedby m via-points whi
h are de�ned by the time points t0 ≤ t1 ≤ · · · ≤ tm−1 andthe 
ontrol points g0,g1, . . . ,gm−1. In ea
h interval ti ≤ t ≤ ti+1, the traje
toryis approximated by a 
ubi
 polynomial. The polynomial is �tted su
h that thetraje
tory 
oin
ides with the via-points gi and gi+1 at the time-points ti and ti+1 andthat the �rst and se
ond order derivatives of the traje
tory are smooth. However,it is not 
lear if this is advantageous for representing movements.The parameters w of the spline primitives are de�ned by the via-points, whereusually the �rst via-point (the initial-state) and sometimes the last via-point (thegoal-state) are pre-spe
i�ed as prior knowledge.5.2.6 Traje
tory Tra
king ControllersHaving dis
ussed di�erent ways how to parametrize the desired traje
tory 〈yt, ẏt〉,we still need a 
ontrol law whi
h is used to follow this traje
tory.Linear Feedba
k ControlThe most simple feedba
k 
ontroller is to de�ne a linear PD-
ontroller
ut = Kpos(yt − qt) +Kvel(ẏt − q̇t).The 
ontroller gains 
an either be pre-spe
i�ed or also be learned from reinfor
ement.The number of parameters in the 
ontroller gain matri
es depend quadrati
ally onthe number of dimensions of the system. We 
an further simplify the 
ontrollerby assuming diagonal matri
es for the 
ontroller gains, i.e. Kpos = diag(kpos) and

Kvel = diag(kvel).Inverse Dynami
s ControlA more sophisti
ated approa
h is to use inverse dynami
s 
ontrol (Peters et al.,2008; S
iavi

o and Si
iliano, 2005). Instead of using the torque as 
ontrols, inversedynami
s 
ontrol allows us to use dire
tly the desired a

eleration z to 
ontrol therobot. However, this requires the knowledge of the dynami
s of the robot
B(q)q̈ + n(q, q̇) = u,where n(q, q̇) represents the terms 
oming from Coriolis and gravity for
es and uis the applied torque to the joints.If we repla
e the a
tual joint a

eleration q̈ with the desired a

eleration z, we
an see that the 
ontrol u is a fun
tion of manipulator state s = [q, q̇] and thedesired a

eleration z

u = B(q)z + n(q, q̇). (5.1)
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tionAs z = q̈ denotes a de
oupled linear system we 
an now use a simple PD-
ontrollerwith diagonal 
ontroller gain matri
es to generate the desired a

eleration z

zt = diag(kpos)(yt − qt) + diag(kvel)(ẏt − q̇t)from whi
h we 
an determine the joint tourques using Equation 5.15.3 Combination of PrimitivesIn this se
tion we brie�y dis
uss several possibilities to 
ombine movement primi-tives. In prin
iple there are 2 types of 
ombinations, sequential and simultaneous
ombinations. Sequential 
ombinations are only useful for temporal primitives. Theobvious way if we want to 
ombine 2 primitives sequentially is to spe
ify when the�rst primitive is �nished (e.g. by an additional parameter) and subsequently exe
utethe 2nd primitive. However, we now have to learn the parameters of two primitivessimultaneously, and therefore, the problem has also in
reasing 
omplexity. A po-tential solution to this problem was illustrated in (Neumann et al., 2009) with themotion template framework. Here, the parameters of ea
h primitive 
an be 
hosenseparately at the point of time where the primitive is 
hosen for exe
ution. Thisis done by using value-based methods to estimate the values at the states of thede
ision time-points. This has only be tried for quite simple templates representingexponential torque pro�les. An evaluation for more sophisti
ated primitives is stillmissing.The simultaneous 
ombination is in most 
ases an unsolved problem. Here, thegoal is to use two primitives simultaneously in order to full�ll two di�erent tasks,for whi
h the primitives were made, simultaneously. While this is easy for the spa-tial primitives su
h as syn
hronous mus
le synergies and kinemati
 synergies, itis un
lear how this 
an be done with temporal representations. Sin
e the tempo-ral primitives typi
ally rely on a parametrized traje
tory, these approa
hes would
ombine traje
tories linearly, whi
h is for many tasks not appropriate. Here, theex
eption is the time-varying mus
le synergy representation, whi
h is 
onstru
tedby the simultaneous 
ombination of synergies. However, this representation hasonly been applied to data analysis, it is not 
lear how this property 
an be dire
tlytransferred to robot 
ontrol.An interesting new idea for the simultaneous 
ombination is provided by theplanning movement primitives (see Chapter 8), where we do not need to 
ombinetraje
tories linearly, we 
an (linearly) 
ombine 
ost fun
tions whi
h might resultin a strongly non-linear traje
tory output of the planner. However, this idea of
ombining several 
ost fun
tions still needs to be evaluated.
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 Synergies for Balan
ingControl
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knowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 73Despite many e�orts, balan
e 
ontrol of humanoid robots in the presen
e ofunforeseen external or internal for
es has remained an unsolved problem. The dif-�
ulty of this problem is a 
onsequen
e of the high dimensionality of the a
tionspa
e of a humanoid robot, due to its large number of degrees of freedom (joints),and of nonlinearities in its kinemati
 
hains. Biped biologi
al organisms fa
e simi-lar di�
ulties, but have nevertheless solved this problem. Experimental data showthat many biologi
al organisms redu
e the high dimensionality of their a
tion spa
eby generating movements through linear superposition of a rather small numberof stereotypi
al 
ombinations of simultaneous movements of many joints, to whi
hwe refer as kinemati
 synergies in this paper. We show that by 
onstru
ting twosuitable nonlinear kinemati
 synergies for the lower part of the body of a humanoidrobot, balan
e 
ontrol 
an in fa
t be redu
ed to a linear 
ontrol problem, at leastin the 
ase of relatively slow movements. We demonstrate for a variety of tasksthat the humanoid robot HOAP-2 a
quires through this approa
h the 
apability tobalan
e dynami
ally against unforeseen disturban
es that may arise from externalfor
es or from manipulating unknown loads.6.1 Introdu
tionHumanoid robots are 
onstru
ted to have the form of a human body in order tobe able to work in environments optimized for human needs. In the near futurethey are meant to work with people, and human like shape would in
rease thepossibility of a

eptan
e of robots in human so
iety. However, the humanoid form
arries the burden of being very di�
ult to 
ontrol 
ompared to wheeled robots forinstan
e. One of the biggest problem is the issue of balan
e like 
ounterbalan
ing
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 Synergiesunknown perturbations. This is a standard situation in a real environment and hasto be solved as a prerequisite to any intera
tion. Due to their human stru
ture,humanoid robots are bipedal, and have therefore a smaller support polygon (whi
his de�ned as the 
onvex hull of the foot support area) 
ompared to, for example,quadrupeds. In addition, two-thirds of their body mass is typi
ally lo
ated abovetwo-thirds of body height (Winter, 1995). Both fa
ts 
ontribute to the instabilityof humanoid robots. Furthermore, a failure of their balan
e 
ontrol is not onlybad for the robot, sin
e a fall is likely to produ
e damages, but may also hurtpeople that intera
t with the robot. Therefore, a 
ru
ial point for allowing humanrobots to work in human environments is to �nd robust and e�e
tive methods fortheir balan
e 
ontrol. These solutions should indu
e naturally looking movementsin order to in
rease the possibility of a

eptan
e of humanoid robots as partners ofhumans.The balan
e 
ontrol problem of humanoid robots is known to be hard to solve dueto the high dimensionality of their a
tion spa
e (sin
e many degrees of freedoms,i.e., joints, are involved) and the nonlinearities inherent to any kinemati
 
hain.Be
ause of the importan
e of �nding solutions to this problem, a lot of e�ort hasalready been invested and many approa
hes from di�erent resear
h areas have beenproposed.A �rst step was made by introdu
ing the Zero Moment Point (ZMP) 
riterion(Vukobratovi¢ and Borova
, 2004). It simpli�es the high dimensional problem byredu
ing all a
ting for
es above the foot (in 
ase of single support, i.e., 
onta
t withthe ground with only on foot) to one single for
e (Vukobratovi¢ and Borova
, 2004).Due to physi
al intera
tion between foot and ground we get at a so-
alled groundrea
tion for
e. This ground rea
tion for
e is lo
ated at the point where the for
ebetween foot and ground a
ts and has opposite sign. This two dimensional point(
alled ZMP) on the ground 
an then be used to 
hara
terize the dynami
 state ofthe robot: If the ZMP lies within the support polygon of the robot, the state ofthe robot is 
alled dynami
ally stable. This 'ZMP stability 
riterion' redu
es theproblem of stability to 
oordinate the limbs of the robot (i.e., apply appropriatetorques through their servos) in su
h a way, that the ZMP stays within the supportpolygon1.While the ZMP 
an be 
al
ulated analyti
ally, the position of this point 
an alsobe measured by pressure sensors (a
tually measuring the ground rea
tion for
e).From this point of view the resulting point is 
alled a

ordingly Center of Pressure(CoP). As Goswami demonstrated (Goswami, 1999) the ZMP equals the CoP, sin
ethey des
ribe the same phenomenon from di�erent points of view. In this paperwe are going to use the name CoP, sin
e we use the pressure sensor informationin 
ombination with the support polygon to estimate the state of stability. Sin
ethe original ZMP de�nition has some limitations (Goswami, 1999), other groundreferen
e points have been proposed, for example, the Foot Rotation Indi
ator (FRI)introdu
ed by Goswami (Goswami, 1999) or the Centroidal Moment Pivot (CMP),just to name two. For a detailed dis
ussion we refer to (Popovi
 et al., 2005).1The robot 
ould also 
hange the size of the support polygon by, for example, hold on tosomething. For a dis
ussion of di�erent 
ontrol strategies in this 
ontext we refer to (Goswami andKallem, 2004).
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tion 51Other approa
hes have been proposed that are also based on a redu
ed modelof the robot. For example, the Inverted Pendulum Model, introdu
ed by Kajita et.al. (Kajita et al., 1992), has proved to be very useful. It des
ribes the whole robot,under some assumptions, by a linear inverted pendulum and thereby, redu
es thenumber of dimensions. Extensions of this model have also been studied, for example,the Three-Dimensional Inverted Pendulum Model 3D-LIPM (Kajita et al., 2001) andthe Rea
tion Mass Pendulum (RMP) (Lee and Goswami, 2007). Although all theseredu
ed models are useful, still, at the point of implementation one has to �nd
ontrol s
hemes whi
h map the strategy ba
k into the full dynami
 model (as Leeand Goswami pointed out (Lee and Goswami, 2007)). Hen
e, they have di�
ultiesdealing with unknown external perturbations, sin
e these perturbations present a
hange in the dynami
s of the robot.An alternative approa
h to balan
e 
ontrol is to rely on the stati
 model, i.e.,to use the kinemati
 model and the mass distribution of the robot. By employinga lo
al Ja
obian Pseudo-Inverse (JPI) approa
h on lo
al information, like ResolvedMotion Rate Control (RMRC) (Whitney, 1969), the optimal 
hange of the jointangles 
an be 
al
ulated. Some of these frameworks even allow to set prioritiesamongst 
on�i
ting tasks (Baerlo
her and Bouli
, 1998, 2004). A

ordingly, balan
-ing 
ould be one of these tasks, typi
ally with a high priority. In order to deal withunforeseen perturbations, the setup has to be used inside a feedba
k 
ontrol loop,for example as proposed in (Mansard and Chaumette, 2007). However, a drawba
kof su
h an approa
h is that it 
al
ulates online inverse kinemati
s, whi
h involves
omputationally expensive matrix inversions.Other approa
hes try to solve dire
tly the dynami
 equations within 
onstraints,whi
h re�e
t the border of stability. For example, Kagami et. al. (Kagami et al.,2001) proposed an online balan
ing s
heme by solving a quadrati
 programmingproblem. However, the pre
ise dynami
 model of the robot is needed in order toapply this approa
h. Therefore, it has di�
ulties in situations where the dynami
model of the robot signi�
antly 
hanges due to external unknown for
es, for example,introdu
ed by pi
king up unknown loads or 
onta
t with the environment, whi
hare standard situations for humanoid robots working in a human environment.Biologi
al organisms fa
e similar problems, but, as experimental data suggest,employ a radi
ally di�erent strategy for 
ontrolling their movement apparatus withmany degrees of freedom (DoF), in parti
ular for balan
e 
ontrol. Numerous studiesfrom the Lab of Bizzi at MIT ((Mussa-Ivaldi, 1999; d'Avella et al., 2003; d'Avella andBizzi, 2005)) have shown that the 
entral nervous systems of a variety of organismsemploy a modular ar
hite
ture for motor 
ontrol, whereby many di�erent movements(arm movements, walking, jumping, swimming) 
an be 
onstru
ted as largely linear(but non-negative) 
ombinations of a rather small repertoire of movement primitives.A very simple modular ar
hite
ture in the 
ontext of biologi
al data analysis arethe syn
hronous mus
le synergies (d'Avella and Bizzi, 2005), whi
h are a spatialmovement representation (see Chapter 5). Syn
hronous mus
le synergies de�ne alow-dimensional linear basis of a high dimensional 
ontrol ve
tor, like the mus
lea
tivations. The mus
le a
tivation ve
tor a(t) is therefore given by
a(t) = Mc(t),
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 Synergieswhere ea
h 
olumn-ve
tor of M de�nes a single mus
le synergy and the ve
tor
c(t) de�nes the mus
le synergy 
oe�
ients. However, it is di�
ult to translatesu
h representations dire
tly to robot 
ontrol as they are dire
tly de�ned in thea
tion spa
e of the robot and therefore, do not provide any fa
ility for in
orporating(proprio
eptive) feedba
k. In this work we introdu
e a robot 
ontrol strategy whi
hhas been inspired by the syn
hronous mus
le synergy approa
h, however, we de�nethe synergies in the joint spa
e of the robot, whi
h easily allows the use of feedba
k
ontrol laws. Sin
e the synergies are de�ned by the kinemati
 
hain of the robot,we will denote this approa
h as kinemati
 synergies.Also re
ent work on whole-body movements of humans ((Freitas et al., 2006;Tri
on et al., 2007; Torres-Oviedo and Ting, 2007)) show that balan
e 
ontrol andother human body movements during standing 
an be understood as 
ombinationsof a small set of stereotypi
al kinemati
 synergies (ea
h of them a�e
ts severaljoints). Experiments, where humans where asked to bend their upper trunk, whilere
ording the angles of the ankle, hip and knee, revealed after a Prin
ipal ComponentAnalysis (PCA) of these angles, that already the �rst prin
iple 
omponent 
anexplain over 99% of the total angular varian
e (Alexandrov et al., 1998). Thissuggests that a set of mus
les (multiple degrees of freedom) are 
ontrolled by a lowdimensional (possibly even one dimensional) variable. Other experiments suggestthat this prin
iple of kinemati
 synergies is present over a wide range of di�erentmovements like rea
hing and grasping (Mason et al., 2001), upper-arm movement(Sabatini, 2002) and making a step (Wang et al., 2005). Hen
e, kinemati
 synergiesseem to present a general strategy biologi
al organisms apply.We are spe
ially interested in humanoid balan
e 
ontrol. In a pre
eding 
onfer-en
e paper (Hauser et al., 2007) we demonstrated how this basi
 modular strategybased on kinemati
 synergies 
an be adapted for balan
e 
ontrol of a humanoidrobot. The kinemati
 synergies were 
al
ulated o�ine by an optimization pro
essbased only on the stati
 model (kinemati
s and masses) of the robot2. Despite theuse of the stati
 model, we 
ould demonstrate that the 
on
ept of kinemati
 syn-ergies, when plugged into a linear 
ontrol loop, 
an provide a powerful s
heme fordynami
 balan
e 
ontrol. This arti
le presents an extension of the previous work(Hauser et al., 2007) by following points: (1) We demonstrate that our approa
h ofkinemati
 synergies is robust to parameter 
hanges of the model of robot. Changesof the stati
 model present a standard situation for biologi
al systems sin
e theygrow or even get injured (e.g., loosing a leg). (2) Additionally, we show that nospe
ial tuning of the 
ontroller parameters is needed sin
e the proposed frameworkworks (i.e., balan
es the robot) within a wide range of these parameters. (3) Wedemonstrate that the 
hosen kinemati
 synergies, originally designed for double sup-port, 
an also be applied for the 
ase of single support. (4) Finally, we demonstratethat the proposed approa
h for balan
e 
ontrol 
an be transferred from a simulatedhumanoid robot without any 
hanges to a real humanoid robot.In the next se
tion we de�ne the kinemati
 synergies. Se
tion 6.3 explains howto 
onstru
t and use kinemati
 synergies for balan
e 
ontrol of the humanoid robot2This optimization pro
ess is 
losely related to the Ja
obian Pseudo-Inverse approa
hes (S
iav-i

o and Si
iliano, 2005), however, the 
omputations are only needed for the o�ine 
onstru
tionof the synergies and not during online 
ontrol.
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 Synergies 53HOAP-2. In Se
tion 6.4 we present a number of experiments with the simulatedand the real HOAP-2.6.2 Formal De�nitions of Kinemati
 SynergiesIn this se
tion we de�ne the kinemati
 synergies whi
h are used to redu
e highdimensionality and nonlinearities. Typi
ally, humanoid robots have a high numberof degrees of freedom (DoF), namely joints. We interpret kinemati
 synergies (KS )as a way to redu
e the DoF by putting a de�ned set of joints under the regime ofone 
ontrolling parameter, whi
h we refer to as the KS -parameter s. We de�ne akinemati
 synergy as a nonlinear mapping Φ of the KS -parameter s ∈ R to a �xednumber of m degrees of freedom (joints).De�nition 1. A kinemati
 synergy (KS) is a fun
tion Φ := Φ(s) whi
h maps theKS-parameter s ∈ R onto a m dimensional ve
tor of joint angles qKS = Φ(s):
Φ : R→ R

m . (6.1)The supers
ript KS denotes the subset of m joints, whi
h are 
ontrolled by the KS.The total number of joints of the robot is denoted by n. Further, we de�ne thefun
tion ϕ

ϕ : R
m → R

n (6.2)to embed the m-dimensional subspa
e spanned by Φ into the n-dimensional spa
eof all joints of the robot. This embedding 
opies the angles of all joints a�e
ted by
Φ and leaves the remaining joints 
onstant.A KS is typi
ally applied in order to 
ontrol a low-dimensional, or even one-dimensional, variable y ∈ R

l. In general the output y depends on all n joint positions
q ∈ R

n of the robot and 
an be des
ribed by a nonlinear fun
tion f(q)

f : R
n → R

l. (6.3)We want the KS to 
ontrol the output y = (f ◦ ϕ ◦Φ)(s). In the 
ase of balan
e
ontrol, the fun
tion f represents the nonlinear relationship between all joints of therobot and a ground referen
e point like the CoP. We will use two KS Φx and Φz forthe two dimensions of the CoP. Therefore, in this parti
ular 
ase ea
h KS is usedto 
ontrol a one-dimensional output (l = 1).Sin
e su
h a KS a�e
ts m degrees of freedom that depend just on a onedimensional parameter s, we 
an impose further 
onstraints on the fun
tion Φ.A reasonable 
hoi
e for su
h a 
onstraint is a linear relationship between the
ontrolling parameter s and its 
orresponding output y. This redu
es nonlinearities,inherent to kinemati
 
hains, and hereby fa
ilitates 
ontrolling and learning. Hen
e,we are parti
ularly interested in the following type of KS :
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Φ(s)

s ∈ R

ϕ(qKS)

qKS
∈ R

m q ∈ R
n

f(q)

y ∈ R

linearityFigure 6.1: S
heme for the 
omposition of the fun
tions ϕ and f a

ording to (6.2) and(6.3) with the kinemati
 synergy Φ.De�nition 2. A linearizing kinemati
 synergy is a kinemati
 synergy a

ording toDe�nition 1, whi
h has a linear relationship between its 
ontrolling parameter s andthe 
orresponding (to be 
ontrolled) output y
y = (f ◦ ϕ ◦Φ)(s) = k · s, k ∈ R . (6.4)We restri
t our attention in this arti
le to su
h linearizing KS, to whi
h wesimply refer as KS.For a better understanding we provide some additional remarks:1. As stated above the property of linearity in De�nition 2 redu
es inherentnonlinearities. But Equation 6.4 presents a stati
 mapping, and therefore itwill only linearize the stati
 part (linearization at q̇ = 0, q̈ = 0) of the wholedynami
 model of the robot. Nevertheless, it will redu
e nonlinearities in thedynami
 regime to some extent too, sin
e the dynami
 part is 
oupled withthe stati
 part of the di�erential equations.2. The 
ontrolled variable y is one-dimensional, but is 
ontrolled by m > 1 joints.Hen
e, we have additional redundant degrees of freedom and therefore, we arefree to impose additional 
onstraints on the KS. Naturally, the 
hoi
e willdepend on the task for whi
h the KS are 
onstru
ted. In our 
ase of balan
e
ontrol we used 
onstraints to assure double support and an upright posture(used in the optimization pro
ess des
ribed in Se
tion 6.3.1).3. KSs are 
al
ulated o�ine for ea
h robot (see Se
tion 6.3.1) and subsequently�xed during simulation as well as when used with the real robot. In a biologi
alinterpretation we assume the KSs to be found by evolution.4. The presented framework was kept as simple as possible. Various extensions,whi
h lead to a better performan
e for parti
ular tasks, are possible. One
ould de�ne a two dimensional kinemati
 synergy (i.e., s ∈ R

2 and y ∈ R
2) ortime-varying KSs (qKS = Φ(s, t)), whi
h depend on a 
y
li
 movement, forexample, to be used in a walking 
y
le.
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L hip 2

L hip 3

L knee

L ankle 1

L ankle 2
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R ankle 1

R knee
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R hip 1
R hip 2

(b)Figure 6.2: (a) The real HOAP-2 robot and (b) its s
hemati
 stru
ture. The red markedand labeled joint rotation axes are 
ontrolled by the kinemati
 synergies Φx and Φz.6.3 Using Kinemati
 Synergies for Balan
e Control ofthe Humanoid Robot HOAP-2In this se
tion we show in detail how to use kinemati
 synergies for balan
e 
ontrolof the humanoid robot HOAP-2, see Figure 6.2(a). The robot has n = 25 degrees offreedom (rotational joints). Its stru
ture 
an be seen in Figure 6.2(b). The goal is to
onstru
t KSs for balan
e 
ontrol in double support. Therefore, we have to de
ide(a) what output fun
tion f and output variables y we are going to use, (b) whi
hsubset of m joints we put under the regime of the KSs and (
) what additional
onstraints we are going to apply to 
onstru
t the KS s:(a) For balan
e 
ontrol a natural 
hoi
e for the fun
tion f is a ground referen
epoint. These points are mathemati
ally de�ned and 
an be analyti
ally de-rived, but in pra
ti
e, they are estimated via pressure sensors. Therefore, wewill denote the referen
e point measured by the pressure sensors as measuredCenter of Pressure (mCoP). HOAP-2 has four of su
h sensors per feet, lo
atedat the 
orners (see Figure 6.3).Sin
e a KS is de�ned as a stati
 mapping, we use the stati
 version of themCoP to 
onstru
t our KS. In the stati
 
ase (zero joint velo
ity q̇ and zerojoint a

eleration q̈) the mCoP 
oin
ides with the proje
ted Center of Mass(pCoM). Therefore, we 
hose the pCoM as output fun
tion f . Sin
e the pCoMis a two dimensional point on the supporting surfa
e, we split it up into itstwo dimensions yx = pCoMx and yz = pCoMz and de�ne two separate KS s,namely Φx and Φz, in order to 
ontrol these one-dimensional outputs yx and
yz.(b) Next, we have to de
ide what joints are pla
ed under the regime of our KSs.A natural 
hoi
e for balan
e 
ontrol is to use all m = 12 leg joints (three hipjoints, one knee joint and two ankle joints for both legs). Their 
orrespondingrotational axes are highlighted in red in Figure 6.2(b). The additional surplus
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Figure 6.3: Support polygon on the support surfa
e for the robot, in
luding the tou
hsensors, whi
h are used to measure the 
enter of pressure (mCoP). Bla
k arrows indi
atethe x dimension (forward/ba
kward: range 9.5 cm) and z dimension (left/right: range:
14.3 cm) for movements of the 
enter of pressure.of joints are free to be used for other tasks (grasping, lifting weights, tra
kingobje
ts, et
.). Their movements 
learly will 
hange the pCoM too, but as weshow later in Se
tion 6.4, our approa
h is able to deal with that in a naturalway.(
) Finally, we 
hoose some additional 
onstraints (next to the linearity property)for the KS s, whi
h are used for the optimization pro
ess des
ribed in the nextsubse
tion. Suitable 
onstraints for balan
e 
ontrol are to keep the upper bodyas upright as possible and to maintain double support.6.3.1 Cal
ulating Kinemati
 Synergies with Inverse Kinemati
sIn this se
tion we des
ribe how do obtain the desired KSs in detail. All 
al
ulationsare based only on the kinemati
 model of the robot in
luding the mass informa-tion (no dynami
al information like the inertia matri
es is needed). The KSs were
onstru
ted o�ine and subsequently �xed during 
ontrol a
tion.We de�ned an initial posture qinit (see Figure 6.5-A). This posture resulted (forthe 
ase of a horizontal support surfa
e) in a pCoM at the 
enter of the supportpolygon. We used a posture with wide-spread arms in order to avoid self 
ollisionwhen moving. The KS-parameters sx and sz were res
aled su
h that the values
−1 and +1 
orresponded to the borders of the support polygon. Therefore, theregion of a
ting without falling was (for the 
ase of a horizontal support surfa
e)
sx/sz ∈ [−1,+1] for both dimensions x and z, see red-dashed lines in Figure 6.3.
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oordinate system for the pCoM to the 
enterof the support polygon and therefore, the resulting outputs in the initial posturewere fx(qinit) = fz(qinit) = 0.We will only des
ribe the pro
edure for Φx. The se
ond kinemati
 synergy Φzwas obtained in a similar manner. The KS was implemented as look-up table whi
hmaps the KS -parameter sx ∈ [−1,+1] to joint angle o�sets (with regard to theinitial posture)3, i.e., ∆qx = ϕ(qKS
x )−qinit. Note that the look-up table representsa dis
retized version of a linearizing kinemati
 synergy as de�ned in De�nition 2. Inorder to obtain joint angle o�sets in between the table entries a linear interpolationwas used. We used joint angle o�sets instead of absolute joint angles in order tobe able to use a linear superposition (as biologi
al data suggest) of both KS s, i.e.,

∆q = ∆qx+∆qz. Although, the problem is (due to the kinemati
 
hains) nonlinear,we will show that a linear superposition is valid for a wide range of postures. Thelinear superposition allows us to use two separate simple KS, whi
h depend only ona one-dimensional KS -parameter, and whi
h 
an be 
onstru
ted independently4.In order to 
onstru
t the look-up table, we divided the range of the KS -parameter
sx over the support polygon into 80 points. Therefore, the distan
e between twoneighboring points represents 9.5 
m / 80 ≈ 0.12 
m in the pCoM spa
e, whi
h
orresponds to a step of ∆sx = 0.025 in the KS -parameter spa
e.The 
onstru
tion of the KS 
onsisted of two alternating optimization steps (seeoptimization s
heme in Figure 6.4). Starting from qinit and sx = 0, the �rst op-timization step was used to move the pCoM of the robot to the next point y′x ofthe look-up table (lo
ated 0.12 
m in x-dire
tion from the origin). In addition, theoptimization tried to keep the upper part of the body upright. An inverse kinemat-i
s algorithm based on the Ja
obian Pseudo-Inverse (JPI) (S
iavi

o and Si
iliano,2005) was used to 
al
ulate the joint movement. Therefore, the applied Ja
obianmatrix 
onsisted of two 3 × m sub-matri
es, the Ja
obian for the position of thepCoM and the Ja
obian for the rotation of the torso. However, due to the move-ment 
al
ulated by this optimization, the position of the right foot relative to theleft foot tended to 
hange. This should be avoided in order to prevent the robotfrom falling. Therefore, a se
ond JPI optimization step (see Figure 6.4) was used tomove the right foot ba
k into its original position relative to the left foot. For thisoptimization the same Inverse Kinemati
s algorithm was applied using only the 6joints of the right leg.These two previously des
ribed steps were iterated until the desired output value
y′x was rea
hed. Subsequently, the joint angle o�sets to the initial posture werestored in the look-up table and, now starting from the new joint position, the nextentry of the look-up table was 
al
ulated. The same pro
ess was applied for theopposite dire
tion (i.e., for sx from 0 to −1). This �nally led to a look-up table forthe range sx ∈ [−1,+1] whi
h mapped the KS -parameter sx to joint angle o�sets.Figure 6.5 presents four typi
al postures for di�erent KS -parameter pairs [sx/sz].The 
enter of the �gure shows the support polygon (gray area) and the 
oordinate3The fun
tion ϕ is used to proje
t the m-dimensional ve
tor qKS

x into the n-dimensional spa
eof all joints.4Without this property, one would have to 
onstru
t one single KS with a two-dimensionalKS -parameter, i.e., s ∈ R
2.
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Figure 6.4: S
heme of the 
onstru
tion pro
ess for the look-up table for the KS Φx in theform < sx,∆q >. Optimization step 1 moves the pCoM in the desired dire
tion to y′x,while keeping the trunk in an upright position. Optimization step 2 keeps the feet at theinitial positions. The pro
ess ends when the end of the support polygon (SP) is rea
hed.system of the KS -parameters. The yellow 
ir
les (A-D) represent the postures inthe KS -parameter spa
e. The 
orresponding s
reenshots 
an be seen in the 
ornersof the �gure.Figure 6.6(a) shows the mapping of the KS -parameter sx to the outputs
yx =pCoMx and yz =pCoMz for the KS Φx. We 
an 
learly identify a linear rela-tionship between sx and yx, whereas the se
ond output dimension yz is una�e
tedby sx. The same plot for the KS Φz is shown in Figure 6.6(b).A graphi
al representation of the joint angle o�sets over the range of the KS -parameter spa
e (from −1 to +1) for the kinemati
 synergies Φx and Φz is presentedin Figure 6.7. Similar to their biologi
al prototypes (see Figure 4 in (d'Avella andBizzi, 2005)), the two KSs largely a�e
t disjoint sets of joints. The joints mainlyresponsible for the movement in x-dire
tion are orthogonal to the joints mainly re-sponsible for the z-dire
tion. Note that the human mus
le-skeleton system exhibits,although more 
omplex, a similar stru
ture. This orthogonality suggests that we
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Figure 6.5: Typi
al postures of the simulated HOAP-2 resulting from the KSs Φx and Φzfor di�erent KS -parameters. The 
enter of the �gure shows the de�ned 
oordinate systemfor the KS -parameters sx and sz. The gray shaded area indi
ates the support polygon(SP) of our robot standing with both feet on the ground. The red dashed lines depi
t thelimits of the SP and 
orrespond to the values sx = ±1.0 and sz = ±1.0. The yellow pointsshow typi
al postures in the KS -parameter spa
e. Corresponding postures 
an be seen inthe 
orners (labeled from A to D). The used KS -parameters [sx/sz] 
an be seen below thes
reenshots. S
reenshot [A℄ shows the initial posture qinit (sx = sz = 0 / at the origin)[B℄ shows the robot bending forward with sx = 0.8 and sz = 0.0, while in [C℄ the robot isbending to the left (with sx = 0.0 and sz = −0.8). S
reenshot [D℄ presents a 
ombinationof both kinemati
 synergies with sx = −0.5 and sz = 0.5.
an 
ombine the two KSs linearly, whi
h is done by summing up the initial postureand the two joint angle o�sets qL = qinit +∆qx +∆qz.In order to show the validity of the linear superposition of the two KS s, weevaluated empiri
ally the deviation of the a
tual pCoM < fx(qL), fz(qL) > fromthe 
ase of perfe
t linear superposition < fx(qinit + ∆qx), fz(qinit + ∆qz) >. Thedeviations for the whole support polygon 
an be seen in Figure 6.8. Ex
ept forextremal 
ases, where the pCoM is lo
ated at a 
orner of the support polygon, thedeviations from linearity are quite small.Note that the des
ribed optimization pro
edure is 
losely related to standardJPI approa
hes. However, these approa
hes are typi
ally used for online 
ontrol,involving 
omputationally expensive real-time 
al
ulations. With the use of kine-mati
 synergies most of this 
omputational load 
an be transferred to the o�ineoptimization s
heme. As a 
onsequen
e, and as we will demonstrate later, withouta signi�
ant loss of performan
e the robot 
an be balan
ed with very little 
ompu-
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al representation of the KS s Φx and Φz. Shown are the joint angle o�-sets (in 
olor 
oding) for the kinemati
 synergies Φx (moves the pCoM forward/ba
kward)and Φz (moves the pCoM left/right) for the HOAP-2 over the range [−1,+1] for the KS -parameters sx and sz. Note that these two KSs a�e
t largely disjoint sets of joints.tational power.6.3.2 From Stati
s to Dynami
s by Using Linear ControllersThe kinemati
 synergies Φx and Φz were 
onstru
ted using the pCoM as outputfun
tion, and therefore they were based on the stati
 model of the robot. However,the robot 
an only estimate the mCoP with its pressure sensors5, whi
h is alsoa�e
ted by the dynami
s of the robot. Nevertheless, we are still able to use theobtained KSs in a dynami
 
ontext if following assumption holds:Assumption: The robot moves su�
iently slowly su
h that
mCoP ≈ pCoM.5In our simulations of the HOAP-2 we also used simulated pressure sensors to 
al
ulate themCoP.
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Figure 6.8: Empiri
al evaluation of the validity of the linear superposition of theKSs Φx and
Φz. We 
al
ulated the deviation of the a
tual pCoM < fx(qinit +∆qx +∆qz), fz(qinit +
∆qx + ∆qz) > from the 
ase of perfe
t linear superposition < fx(qinit + ∆qx), fz(qinit +
∆qz) >. The Eu
lidean norm of the deviations is shown in 
olor 
ode for the whole supportpolygon. Ex
ept for extremal 
ases, where the pCoM is lo
ated at a 
orner of the supportpolygon, the deviations from linearity are quite small. The white dotted lines depi
t the
ontours of the feet.As we will demonstrate in this se
tion, the assumption allows us to use simple linear
ontrollers in 
onjun
tion with the KS s. Due to the assumption we are in prin
iplelimited to "su�
iently slow" movements. However, we will demonstrate in ourexperiments that a wide range of unknown external for
es 
an be 
ounterbalan
edby our approa
h, despite this limitation.We now explain how the kinemati
 synergyΦx 
an be used in 
ombination with alinear 
ontroller for balan
ing the robot in x-dire
tion (forward/ba
kward). For theother KS Φz the pro
ess is similar. As long as the assumption holds, the fun
tionfrom the time derivative ṡx of the KS -parameter to mCoPx 
an be approximatedby a linear transfer fun
tion

P (z) =
K

(z− 1)
, (6.5)with K ∈ R

+ and with z being the time shift operator for dis
rete systems (Op-penheim and Willsky, 1992). The denominator polynomial represents an integrator(one pole at z = +1), whi
h integrates the velo
ity ṡx of the KS -parameter to obtain
sx. As long as the dynami
al e�e
ts are small enough, they 
an be seen as un
ertain-ties in the linear model of Equation 6.5. Already a simple linear feedba
k 
ontroller
an handle these small un
ertainties. In order to obtain a 
losed 
ontrol loop wede�ne a feedba
k error

ex := ỹx − yx (6.6)with ỹx being the desired output value and yx = mCoPx. The goal is to preventthe robot from falling. Therefore, the mCopx should stay 
lose to the 
enter of thesupport polygon. Sin
e we have de�ned the 
enter of SP at the origin, see Figure6.3, the desired value ỹx is set to 0.We 
an now use a general standard PID 
ontroller to get the 
ontroller output
ṡx

ṡx = KP ex +KI

∫

exdt+KD
dex
dt

, (6.7)
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Figure 6.9: Closed 
ontrol loop for the kinemati
 synergy Φx. Sin
e we want to have themCoPx at the 
enter of the support polygon, the referen
e point is set to ỹx = 0 . Theexternal perturbation d results from external for
es and/or model un
ertainties.where KP , KI and KD are the positive PID 
ontroller parameters. Figure 6.9shows the des
ribed 
losed 
ontrol loop for the kinemati
 synergy Φx. Sin
e theplant (see Equation 6.5) already 
ontains an integrator, the use of PD 
ontrollers(KI = 0) is su�
ient. For the KS Φz we used a similar 
ontrol loop, whi
h workedindependently from and in parallel to the �rst 
ontrol loop.We have des
ribed the 
ontrol s
heme to 
ontrol around a set point (ỹx = ỹz =
0). However, the 
ontrol loop 
an also be used to move the mCoP on any desiredtime varying traje
tory6, i.e., ỹx(t) and ỹz(t). This is useful in many appli
ations.For example, for the purpose of initiating a walking 
y
le, the robot has to moveits mCoP under the future supporting foot in order to be able to raise the other legwithout falling.The 
ontroller parameters used in the experiments were empiri
ally found tohave a reasonable performan
e. As we demonstrate (see Subse
tion 6.4.3) there isa wide range of appropriate 
ontroller parameters and therefore the 
hoi
e of theparameters is not 
riti
al.Linear and nonlinear 
ontrol theory o�ers a number of possible improvements forthe 
ontrollers, for example, adaptive 
ontrol (see (Astrom and Wittenmark, 1995))or robust 
ontrol s
hemes, optimal 
ontrol and di�erent trial and error approa
hes to�nd good 
ontrol parameters (see for example (Kuo and Golnaraghi, 2002)). Evenhigher order 
ontrollers or di�erent 
ontrol stru
tures than in Figure 6.9 
ould beused. However, in order to illustrate the 
apability of using kinemati
 synergies forbalan
e 
ontrol, we only use the previously presented, simple PID 
ontrollers.6.3.3 Examination of Di�erent Possible PerturbationsLets take a 
loser look at possible perturbations d for the proposed 
ontrol loop(Figure 6.9). We will distinguish between three di�erent kinds of perturbations:1. Model perturbations: Sin
e we obtained our KSs from the stati
 model ofthe robot, unmodeled dynami
s, whi
h will always be present to some extent,result in model perturbations.2. Internal perturbations: The mCoP is also in�uen
ed by movements of joints,whi
h are not under the 
ontrol of the kinemati
 synergies. For example,if our humanoid robot uses the presented KSs for balan
ing and additionally6 We have already demonstrated that in (Hauser et al., 2007).



6.4. Experiments 63moves a heavy weight with its arms, this movement will also 
hange the mCoPposition. Note that the proposed 
ontrol loop does not need any informationabout the movements of these joints.3. External perturbations: For example pushes, pulls, 
onta
t with the environ-ment or a moving support platform.Sin
e a standard feedba
k 
ontrol loop has the property to suppress the perturba-tions d, our approa
h works for a wide range of tasks. As shown in our experiments(Hauser et al., 2007), these tasks in
lude 
ountera
ting external for
es, followingtraje
tories, 
ompensating for for
es introdu
ed by movements of the limbs of therobot or even a mixture of these tasks. If the perturbation is too large, the assump-tion (mCoP ≈ pCoM) might be violated and the 
ontroller will therefore not beable to 
ompensate the resulting error anymore. Yet, as our experiments show, theproposed system is 
apable to rea
t appropriately to a wide range of perturbations.6.4 ExperimentsWe 
ondu
ted experiments with our proposed approa
h for a variety of possible ap-pli
ations. We demonstrate that kinemati
 synergies with linear 
ontrollers empowera humanoid robot to 
ounterbalan
e di�erent kinds of dynami
 perturbations. Inour �rst experiments the robot had to 
ountera
t a moving support surfa
e (plat-form where it stood on) and abrupt unforeseen external for
es at the same time(see Subse
tion 6.4.1). Subsequently, we show that the approa
h 
an also be ex-tended easily to balan
ing in single support (the robot only stood on the left foot,see Subse
tion 6.4.2) and that robustness against parameter 
hanges is an inherentproperty (Subse
tion 6.4.3). Furthermore, we 
ompare our approa
h to an online Ja-
obian Pseudo-Inverse (JPI) algorithm. Finally, we demonstrate that our approa
h
an be easily transferred from the simulation to the real robot without any spe
ialpre
autions (Subse
tion 6.4.5).All simulations were implemented in the robot simulation software Webots(Mi
hel, 2004). A detailed model of the dynami
s of the HOAP-2 robot, basedon data provided by the vendor Fujitsu, was used. The basi
 simulation time stepwas set to 2 ms and the time steps for the 
ontrol loops were set to 8 ms. In thegeneral setup we had two kinemati
 synergies (Φx and Φz), whi
h were used withintwo separate 
ontrol loops. They rea
ted independently from ea
h other on their
orresponding output dimension x and z. In dependen
e on their errors ex and ez ,both linear 
ontrollers 
al
ulated the velo
ities ṡx and ṡz of their KS -parameters.The velo
ities were integrated numeri
ally to obtain sx and sz, whi
h were thenmapped via the look-up table into joint angle o�sets. Subsequently, these joint an-gle o�sets were linearly 
ombined as des
ribed in Subse
tion 6.3.1 to get the a
tualjoint target angles. Finally, these angles were transformed into torques by lo
al PD
ontrollers7 at the servos.7Note that these are the hardware 
ontroller of the servos and not the 
ontrollers from ourproposed 
ontrol loops.
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tivation sz of KS ΦzFigure 6.10: Result for the experiment with a moving support platform (surfboard) andunexpe
ted external for
es (wind) W1 and W2. The balan
e of the HOAP-2 is 
ontrolledby two linear 
ontrollers 
ombined with the kinemati
 synergies. Without balan
e 
ontrol(red dashed line in (
) and (d)) the mCoP left the support polygon after 16s (in responseto the wind W2), and the robot fell over. With balan
e 
ontrol (solid lines) the stability ofthe robot was maintained in spite of unexpe
ted external for
es.We provide supplementary multimedia material in form of two videos,available at http://ieeexplore.ieee.org. The �rst one (simulation_videos.avi)shows all simulated experiments of the following se
tions. The se
ond video(real_robot_videos.avi) shows the experiments with the real robot. Both videos(in 
ompressed form) are about 13 MB in size.6.4.1 Moving Support Platform (Surfboard Task)In this task we simulated the HOAP-2 robot standing on a movable support platform(surfboard). The surfboard 
ould rotate about the x-axis with angle Θx and aboutthe z-axis with the angle Θz. Typi
al s
enarios of the setup 
an be seen in Figure6.11.
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(a) at 3 se
onds (b) at 7 se
onds
(
) at 12 se
onds (d) at 16 se
ondsFigure 6.11: S
reenshots of the posture of the (simulated) HOAP-2 at 4 time points duringthe balan
ing experiment with the random moving support surfa
e (surfboard) and externalperturbations (winds). In Figure (b) the wind W1 was blowing from the right (point ofview of the robot ; red arrow). As a 
onsequen
e, the robot was leaning against the wind inorder to move its mCoP ba
k into the middle of the support polygon. In Figure (d) anotherwind W2 was blowing from the right and the ba
k (red arrow), resulting in a diagonal for
e.Again, the robot responded properly to this online modi�
ation of its dynami
 model.We 
onsidered the 
ase where the surfboard was tilted dynami
ally in random di-re
tions. The random traje
tories for the angles Θx and Θz were generated indepen-dently from ea
h other by smoothing (by the use of a dis
rete low-pass FIR-�lter8)random traje
tories of jumps (steps) with random amplitudes and random dura-tions. Typi
al resulting traje
tories are presented in Figures 6.10(a) and 6.10(b).In addition to the random movement of the surfboard, unforeseen external for
es(for example wind for
es or 
onta
t with other obje
ts) were applied to the torsoof the robot at various points in time. We designed this s
enario in order to showthat our proposed approa
h is able to deal with di�erent kinds of external pertur-bations simultaneously. Furthermore, 
ontrol strategies that require knowledge ofthe dynami
 model of the robot are inappli
able in this s
enario, be
ause the exter-nal for
es 
hange the dynami
 model of the robot in an unknown, online manner.Figure 6.10 shows the results when an external for
e W1 = [0, 0, 5]TN (a for
e fromthe right side) was applied at the torso of the robot during the interval [5s, 10s], andanother external for
e W2 = [5, 0,−5]TN (a for
e from the right and the ba
k) wasapplied during the interval [15s, 20s] (we shaded these two time intervals in gray).Note that the onsets of the winds were abrupt (i.e., a step fun
tion in time) andtherefore represented highly dynami
al perturbations to the system.Typi
al traje
tories of the mCoP for the des
ribed setup, with and withoutbalan
e 
ontrol, are shown in Figures 6.10(
) and 6.10(d). Without balan
e 
ontrol,the robot lost balan
e after 16s (indi
ated by a bla
k star in Figures 6.10(
) and6.10(e)), whereas with our 
ontrollers, balan
e was maintained. The error signals8The used FIR-�lter had three poles at 0.997.
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 Synergiesfor both dimensions x and z 
an be seen in Figures 6.10(e) and 6.10(f). Notethat both perturbations, the movements of the surfboard and the external for
es,are external perturbations. In addition, as the setup was dynami
, inherent modelperturbations were also always present. With this experiment, we demonstrated thatour approa
h is able to rea
t online against a mixture of di�erent types of unforeseenperturbations.6.4.2 Kinemati
 Synergies in Single SupportIn this experiment we demonstrate how to apply our approa
h in single support. Weused two di�erent strategies. The �rst strategy reused the KSs previously 
al
ulatedfor double support (referred to as DS-KS ). We swit
hed o� the output of the 
ontrolloop for the joints of the lifted leg and set the desired mCoP position to the 
enterof the redu
ed support polygon (de�ned by the single supporting foot). The se
ondstrategy was to design new KSs for single support (referred to as SS-KS ). We usedthe same pro
edure as des
ribed previously in Subse
tion 6.3.1, with the distin
tion,that we used a di�erent initial position (the one shown in Figure 6.12(a)) and weonly optimized the joint angles of the supporting leg.In the experimental setup the robot stood only on its left foot. The right foothad no 
onta
t to the ground and therefore the right leg was free to perform anydesirable movement. In our example the robot is supposed to perform a ki
k motion.The initial posture 
an be seen in Figure 6.12(a). The 
orresponding s-values forthis posture were sx = 0 and sz = 0.195 for DS-KS and sx = sz = 0 for SS-KS.In order to demonstrate the validity of both strategies, we moved the body jointand the hip joints of the left leg (these joints were not under the 
ontrol of theKS s) in order to perform a ki
k motion, whi
h also in
luded the upper trunk (seeFigure 6.12(b)). For the robot this movement represented an internal perturbationas dis
ussed in Subse
tion 6.3.3. When no balan
ing 
ontrol was a
tive, after about
7.5s of simulation time, the robot tipped over and fell. With the 
ontrollers swit
hedon, the robot was able to keep balan
e during the ki
k motion (in both 
ases, SS-KSand DS-KS ). Figure 6.13 shows the time 
ourse from 2s to 12s of this experimentwith DS-KS. Similar results were obtained with SS-KS. Figures 6.14(a) and 6.14(b)show the traje
tories of the KS -parameters sx and sz. Note that in the 
ase of DS-KS, there was an o�set at the beginning of the simulation for the KS -parameter sz.This re�e
ts the o�set of the initial posture for single support from the original initialposture for double support. Figures 6.14(
) and 6.14(d) present the errors duringthe simulation. The 
ontrollers 
ountera
ted the disturban
es 
orre
tly and kept theerrors 
lose to zero for both strategies. The dashed red 
urve shows the errors whenno 
ontrollers were a
tivated. Note that the s
ales of the y-axes of the plots in Figure6.14 are di�erent for the dimensions x and z. This is a 
onsequen
e of the used ki
kmotion whi
h mostly a�e
ted the mCoP in the x dire
tion (forward/ba
kward).Both strategies (DS-KS and SS-KS ) showed a similar performan
e (see Figures6.14(
) and 6.14(d)). As a 
onsequen
e, we 
an see that the KS s 
an also be usedfor di�erent, albeit related tasks, for whi
h, in the �rst pla
e, they have not beendesigned for. This might also help to redu
e the number of needed KSs in real worldappli
ations, be
ause related tasks might share the same set of KS s.
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BODY
RIGHT KNEE
RLEG_JOINT_3(b) joint traje
tories for the ki
k motionFigure 6.12: Setup for the single support task. Figure (a) shows the initial posture. Theyellow 
ir
le denotes the CoM of the robot and the arrow points to the pCoM, whi
h islo
ated at the 
enter of the support polygon. Figure (b) shows the joint angle traje
torieswhi
h were used for the ki
k motion. When no balan
e 
ontrol was applied, the robot lostbalan
e and tipped over at about 7.5s.

Figure 6.13: Postures of the simulated HOAP-2 for the single support task. The �rstrow shows the robot from the front and the se
ond row shows the robot from the side.S
reenshots were taken every se
ond from the 2nd to the 12th se
ond.6.4.3 Robustness to Changes in the Model of the Robot and theController ParametersThe kinemati
 synergies are based on the stati
 model of the robot. Sin
e un
er-tainties in the model parameters (lengths and masses) are 
ommon, it is desirableto have a framework that is robust to 
hanges in those parameters. Moreover, su
ha robustness simpli�es a transfer from the simulation to a real robot. In addition,it would be bene�
ial to have a wide range of valid 
ontrol parameters, i.e., KP and
KD, whi
h are able to balan
e the robot. In the following experiments we demon-strate that our proposed setup is widely robust to variations of these parameters.In a �rst experiment we varied the size of the robot by 
hanging the length ofevery link by a multipli
ative length fa
tor, ranging from 0.5 to 2.5. We used the
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(d) error ezFigure 6.14: Results for the single support task. The left 
olumn shows the results for the
x-dimension (Φx, forward/ba
kward) and the right 
olumn the results for the z-dimension(Φz, left/right). The Figures (a) and (b) show the responses of the KS -parameter sx and
sz for both approa
hes (SS-KS and DS-KS ). Figures (
) and (d) show the errors. Thered dashed 
urves denote the errors when no balan
e 
ontrol was a
tive. In this 
ase thebeginning of the red region indi
ates, when the robot tipped over and lost balan
e.traje
tory following task from our previous work (Hauser et al., 2007), where therobot had to follow a �gure eight traje
tory with its mCoP, while it manipulateda heavy weight. The KSs were kept 
onstant. First, we used the same 
ontrollerparameters for both 
ontrollers as in the original task (KP = 80 andKD = 0.1). Therobot was able to keep balan
e for a length fa
tor, whi
h ranged from 0.85 to 1.1.In Figure 6.15 the mean squared errors for the x-dimension9 for su

essful lengthfa
tors (the robot kept balan
e) are indi
ated by red 
ir
les for these 
ontrollerparameters. In order to demonstrate how to improve robustness, we in
reased theresponse time of the 
ontrollers by setting the 
ontroller parameters to KP = 50 and
KD = 0.0. In this 
ase, su

essful length fa
tors ranged from 0.85 to 1.45 (indi
atedby blue 
rosses in Figure 6.15). Note that the mean squared error only in
reasedslightly. We also tested an even slower 
ontroller (KP = 20 and KD = 0.0), whi
hresulted in a fairly large range from 0.7 to 2.25 (indi
ated by green triangles in Figure6.15). However, the used 
ontroller was too slow to follow the desired traje
tory,whi
h 
an be seen in the high mean squared error values. The 
orresponding mCoPtraje
tories of all three 
ontrollers 
an be seen in the right plots of Figure 6.15.The bla
k lines are the target traje
tories. The 
on
lusion of the experiment is thatthe proposed setup is robust to 
hanges in the lengths of the robot. In addition,the results suggest that there is a tradeo� between the robustness of the approa
hand the response times of the 
ontrollers. Similar results were obtained, when the9Similar plots were obtained for the z-dimension.
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Figure 6.15: Results on robustness to 
hanges in the lengths. The lengths of all links weremultiplied by a length fa
tor. The plot shows three di�erent settings for the 
ontrollerparameters, resulting in di�erent response times of the 
ontrollers. The red 
ir
les showthe mean squared error (mse) for the 
ontroller (KP = 80 and KD = 0.1) with the shortestresponse time. The red 
ir
les are shown for the range of su

essful length fa
tors (the robotkept balan
e) from 0.85 to 1.1. By in
reasing the response time (
ontroller parameters wereset to KP = 50 and KD = 0.0.) the range (from 0.85 to 1.45) of su

essful length fa
torsand therefore the robustness of our approa
h 
ould be in
reased. However, also the msein
reased slightly, whi
h indi
ates a worse tra
king performan
e. With an even longerresponse time (KP = 20 and KD = 0.0), the region of su

essful length fa
tors (from 0.7 to
2.25) also grows, however, the 
ontroller was no longer able to follow the desired traje
tory(indi
ated by the large mse values). The results point to the fa
t, that there is a tradeo�between the robustness of the approa
h and the response time of the 
ontroller. The rightplots show the 
orresponding mCoP traje
tories for the three 
ontrollers (at a length fa
tor= 1).masses as well the lengths were 
hanged simultaneously to simulate growing.In a se
ond experiment we provide an evaluation of the robustness of our ap-proa
h to the 
hoi
e of the 
ontroller parameters. We used the single support taskdes
ribed in Subse
tion 6.4.2 (using the previously des
ribed SS-KS ) and varied the
KP and KD parameters over several de
ades. We evaluated whi
h parameter set-tings (KP /KD-pairs) were su

essful, i.e., the robot was able to keep balan
e. Theresults 
an be seen in Figure 6.16. Su

essful parameter settings are highlighted ingreen. Note that the region of su

essful settings ranges over two de
ades for bothparameters. This suggests that our approa
h is robust to the 
hoi
e of the 
on-troller parameters and, thus, appropriate parameters are easily found. Moreover,this robustness potentially allows us to 
ombine our approa
h with adaptive 
on-



70 Chapter 6. Kinemati
 Synergies
10

−2
10

0
10

2

10
−2

10
0

10
2

K
P

K
D

Figure 6.16: Region of evaluated 
ontroller parameters for the single support task des
ribedin 6.4.2. Su

essful parameter settings (for whi
h the robot was able to keep balan
e) arehighlighted in green. Note that the s
ales of the axes are logarithmi
. The region ofsu

essful 
ontroller parameters ranges over two de
ades for both parameters, indi
atingthat our approa
h is robust to the 
hoi
e of the 
ontrol parameters.
Figure 6.17: S
hemati
 setup of the online Ja
obian Pseudo-Inverse (JPI) approa
h, towhi
h we 
ompared our approa
h (Figure 6.9). Instead of �xed kinemati
 synergies thisapproa
h has to run online an optimization pro
ess (based on a JPI) at every single timestep to 
al
ulate the optimal joint angles velo
ities.trol (Astrom and Wittenmark, 1995) or online poli
y sear
h methods (Kober et al.,2008).6.4.4 Comparison to an Online Ja
obian Pseudo-Inverse Approa
hWe performed a 
omparison of our kinemati
 synergy setup to an online Ja
obianPseudo-Inverse (JPI) approa
h (S
iavi

o and Si
iliano, 2005). This approa
h per-formed online an optimization similar to the one we used for the o�ine 
onstru
tionof the KSs. In order to be responsive to external perturbations and model un
er-tainties we had to plug the JPI into a feedba
k 
ontrol loop. Figure 6.17 shows the
onsidered setup. In order to 
ompare both approa
hes the robot had to tra
k are
tangular traje
tory (with rounded edges) 
entered at the 
enter of the supportpolygon. We systemati
ally in
reased the size of the re
tangle and the speed ofthe traje
tory and 
ompared the maximum quantities, at whi
h the robot tippedover. The di�eren
es between the two approa
hes for both limits (re
tangle size andspeed) were less than 1%. Hen
e, there was no signi�
ant di�eren
e in their per-forman
es. This suggests that the 
omplex Ja
obian Pseudo-Inverse 
omputations
an be performed o�ine (in order to 
onstru
t the KSs) without a signi�
ant loss ofperforman
e. Note that the JPI approa
h needs to apply online sophisti
ated, timeintensive 
al
ulations, while our approa
h is based on a mu
h simpler 
ontrol lawusing only a PID 
ontroller. A 
omparison of the online 
omputation time of bothapproa
hes revealed a speed-up fa
tor of 80 in favor of our approa
h. The results



6.5. Con
lusion 71also show that the performan
e loss due to the linear superposition10 of the two KSsis negligible for humanoid balan
ing.6.4.5 Experiments with a Real HOAP-2 RobotIn our �nal experiment we transferred our approa
h to a real HOAP-2 robot. Due tothe previously demonstrated robustness against model un
ertainties, we were ableto simply reuse the same KSs as in our simulations, even though the stati
 modelused for the KSs did not perfe
tly mat
h the stati
 model of the real robot.We investigated two di�erent setups. In the �rst setup the robot stood on the�oor (denoted by F) and we applied external for
es. This was done by applying analmost 
onstant for
e from di�erent dire
tions for approximately 1 to 2 se
onds bypushing the robot. In the se
ond setup (denoted by P) we reprodu
ed the surfboardtask. The robot stood on a movable platform, whi
h was mounted on a plasti
 spherein order to resemble the surfboard with its two degrees of freedom. In 
ontrast tothe simulated experiment, no additional external for
es (winds) were used (only themovement of the platform represented an external for
e). Note that in both setupsthe robot had no knowledge about the onset times, the dire
tions or the amplitudesof the applied external for
es.The �rst row of Figure 6.19 shows the responses of the robot to pushes fromdi�erent dire
tions (setup F). The se
ond row shows responses of the robot to dif-ferent movements of the supporting platform (setup P). The robot 
ounterbalan
edthe applied external for
es in order to keep its mCoP at the middle of the supportpolygon in ea
h of these 
ases.In Figure 6.18 we show typi
al KS -parameters and the error signals re
ordedwhile the robot was pushed from di�erent dire
tions (in setup F). Note that, ex
eptfor a short time period after a 
hange of the applied external for
e, the error was kept
lose to zero. This indi
ates that the robot always tried to maintain its mCoP atthe 
enter of the support polygon. Note that videos of the experiments are providedin the additional multimedia �le, available at http://ieeexplore.ieee.org/.6.5 Con
lusionWe have presented a new approa
h to transfer spatial movement representations
oming from experimental data analysis su
h as syn
hronous mus
le synergies torobot 
ontrol. We used the approa
h for balan
e 
ontrol of a humanoid robot.We have formalized the 
on
ept of a kinemati
 synergy (KS ) that resembles the
on
ept of a mus
le synergy in physiology, and whi
h redu
es the dimensionality ofthe a
tion spa
e of the robot. We have shown that two kinemati
 synergies 
an be
onstru
ted for balan
e 
ontrol of the humanoid robot HOAP-2 in su
h a way thattheir superposition is almost linear (like in biologi
al paradigms), although ea
h KSitself is highly nonlinear. Based on this 
on
ept we were able to demonstrate thatit is possible to move the time intensive 
al
ulations of the optimization pro
ess10Note that the JPI approa
h does not use a linear superpositions, but rather simultaneouslyoptimize for both output dimensions, i.e., y ∈ R
2.
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z(b) errors ex and ezFigure 6.18: The KS -parameters and the errors signals re
orded during an experiment withthe real HOAP-2 robot. The robots was pushed from di�erent dire
tions (setup F). The left�gure shows the KS -parameters and the right �gure shows the 
orresponding error signals.We 
an see that, ex
ept for a short time period after a 
hange of the applied external for
e,the error is kept 
lose to zero. This indi
ates that the robot always tried to maintain itsmCoP at the 
enter of the support polygon.

Figure 6.19: Top row: Resulting responses of the HOAP-2 to external for
es. The s
reen-shots were made during dynami
 a
tion. The top row shows s
reenshots for experimentswhile standing on the �oor (setup F). Bottom row: External for
es were applied by pushes.The se
ond row shows s
reenshots of experiments with the robot standing on a movableplatform (setup P). External for
es were applied by moving the platform. In any of thesesituations the robot a
ted 
orre
tly and moved its mCoP to the desired position at the
enter of the support polygon. Note that there are videos of the experiments available (athttp://ieeexplore.ieee.org/).o�ine and therefore keep the needed online 
al
ulations simple and fast. We havedemonstrated, both through 
omputer simulations and through experiments withthe real robot HOAP-2, that this strategy makes it possible to virtually redu
e thehighly nonlinear balan
e 
ontrol problem of the robot to a linear 
ontrol problem(as long as the required movements are not too fast).We showed that, in 
ontrast to other approa
hes, whi
h are based on an exa
tdynami
 model of the robot, our proposed 
ombination of KSs and linear 
ontrollersenables a humanoid robot to 
ounterbalan
e unknown external for
es of di�erentkinds. Additionally, we showed that robustness to parameter 
hanges in the model as



6.6. A
knowledgments 73well to 
hanges in the 
ontroller parameters is an inherent property of the proposedapproa
h. Based on this robustness we were able to transfer in straightforwardmanner this new approa
h for balan
e 
ontrol from a simulated to a real HOAP-2robot.We expe
t that both, the drasti
 dimensionality redu
tion of the a
tion spa
eand the resulting linearization of the robot 
ontrol through the use of suitable KSs,pave the way for future learning-based solutions to movement 
ontrol problems forhumanoid robots.6.6 A
knowledgmentsThis 
hapter is based on the publi
ation 'Biologi
ally Inspired Kinemati
 Synergiesenable Linear Balan
e Control of a Humanoid Robot.' (Hauser et al., 2011). Thepaper was written by Helmut Hauser (HH), Gerhard Neumann (GN), Auke Ijspeert(AJ) and Wolfgang Maass (WM). HH 
ondu
ted the experiments and implementedthe linear 
ontrol laws while GN implemented the synergies in
luding the inversekinemati
s optimization.





Chapter 7Learning Complex Motions bySequen
ing Simpler MotionTemplates
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lusion and Future Work . . . . . . . . . . . . . . . . . . 877.7 A
knowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 87Abstra
tion of 
omplex, longer motor tasks into simpler elemental movementsenables humans and animals to exhibit motor skills whi
h have not yet been mat
hedby robots. Humans intuitively de
ompose 
omplex motions into smaller, simplersegments. For example when des
ribing simple movements like drawing a trianglewith a pen, we 
an easily name the basi
 steps of this movement.Surprisingly, su
h abstra
tions have rarely been used in arti�
ial motor skilllearning algorithms. These algorithms typi
ally 
hoose a new a
tion (su
h as atorque or a for
e) at a very fast time-s
ale. As a result, both poli
y and temporal
redit assignment problem be
ome unne
essarily 
omplex - often beyond the rea
hof 
urrent ma
hine learning methods.We introdu
e a new framework for temporal abstra
tions in reinfor
ement learn-ing (RL), i.e. RL with motion templates. We present a new algorithm for thisframework whi
h 
an learn high-quality poli
ies by making only few abstra
t de-
isions. This is the �rst algorithm whi
h allows e�
ient sequen
ing of movementprimitive representations.7.1 Introdu
tionHumans use abstra
tions to simplify the motor tasks o

urring during their dailylife. For example when des
ribing simple movements like drawing a triangle with apen, we 
an easily name the basi
 steps of this movement. In a similar manner, many
omplex movements 
an be de
omposed into smaller, simpler segments. This sort of



76 Chapter 7. Motion Templatesabstra
tion is for example often used by engineers for designing hybrid 
ontrol solu-tions (Xu and Antsaklis, 2002) where the single segments are implemented as lo
al,linear 
ontinuous 
ontrollers. We will 
all these building blo
ks motion templates.Other names that 
an be found in the literature are �motion primitives�, �movements
hema's�, �basis behaviors� or �options� (Ijspeert and S
haal, 2003; Arbib, 1981;Dautenhahn and Nehaniv, 2002; Sutton et al., 1999).Motor skill learning is a 
hallenging problem for ma
hine learning and, in parti
-ular, for the sub�eld of reinfor
ement learning (RL). Primarily used in motor skilllearning is the �at RL setting without the use of abstra
tions. In this setting theagent has to 
hoose a new a
tion (typi
ally a motor for
e or torque) at a very smallsampling frequen
y. While this allows the representation of arbitrary poli
ies, this�exibility makes the learning problem so 
omplex that it is often beyond the rea
hof 
urrent methods. A 
ommon approa
h for limiting the potential 
omplexity ofthe poli
y in the �at RL setting is to use a parametrized poli
y. Ijspeert et al.(Ijspeert and S
haal, 2003) introdu
ed a spe
ial kind of parametrized poli
ies 
alledmotion primitives, whi
h are based on dynami
al systems. In most appli
ations todate, only a single motion primitive is used for the whole movement. Parametrizedpoli
y sear
h methods su
h as poli
y gradient des
ent and EM-like poli
y updates(Kober and Peters, 2010) have been used in order to improve single-stroke motorprimitives.Currently, only few abstra
tions are used in RL algorithms for 
ontinuous en-vironments, with few ex
eptions su
h as (Huber and Grupen, 1998; Ghavamzadehand Mahadevan, 2003). In (Huber and Grupen, 1998) the poli
y a
quisition prob-lem is redu
ed to learning to 
oordinate a set of 
losed loop 
ontrol strategies. In(Ghavamzadeh and Mahadevan, 2003) the given task is manually de
omposed into aset of subtasks. Both, the lower-level subtasks and the higher-level subtask-sele
tionpoli
ies are learned. In all these approa
hes the stru
ture for the hierar
hy of ab-stra
tion is manually designed and �xed during learning whi
h limits the generalityof these approa
hes. In our approa
h, an arbitrary parametrization of the abstra
tedlevel 
an be learned.In this paper, we introdu
e a new framework for abstra
tion in RL, i.e. RL withmotion templates. Motion templates are our building blo
ks of motion. A template
mp is represented as parametrized poli
y and exe
uted until its termination 
ondi-tion is ful�lled. We assume that the fun
tional forms of the motion templates remain�xed, and thus, our task is to learn the 
orre
t order and parameters of the motiontemplates by reinfor
ement learning. As motion templates are temporally extendeda
tions, they 
an be seen as parametrized options in 
ontinuous time. There are afew well-established learning algorithms for the options framework (Sutton et al.,1999). However, these algorithms are designed for dis
rete environments.Choosing the parameters of a motion template is a 
ontinuous-valued de
ision.However, a single de
ision has now mu
h more in�uen
e on the out
ome of the wholemotion than in �at RL. Thus, the de
isions have to be made more pre
isely, though,the overall learning problem is simpli�ed be
ause mu
h fewer de
isions are neededto ful�ll a task. As RL in 
ontinuous a
tion spa
es is already 
hallenging in the �atRL setting, the requirement of learning highly-pre
ise poli
ies has limited the useof this sort of abstra
tion for motor 
ontrol learning.



7.2. Motion Templates 77This paper introdu
es a new algorithm whi
h satis�es this requirement andtherefore permits learning at an abstra
t level. The algorithm is based on theLo
ally-Advantage WEighted Regression (LAWER) algorithm. LAWER is a �ttedQ-Iteration (Ernst et al., 2005) based algorithm whi
h has been shown to learnhigh-quality 
ontinuous valued poli
ies for many �at RL settings (Neumann et al.,2009). However, two substantial extensions are needed to render motion templatelearning possible. Firstly, we propose an improved estimation of the goodness ofan state a
tion pair. Se
ondly, we introdu
e an adaptive kernel, whi
h is based onrandomized regression trees (Ernst et al., 2005).We 
ondu
t experiments on 3 di�erent tasks, a 1-link and a 2-link pendulumswing-up task and also a 2-link balan
ing task.7.2 Motion TemplatesA motion template mp is de�ned by its kp dimensional parameter spa
e Wp ⊆ Rkp ,its parametrized poli
y up(s, t;wp) (s is the 
urrent state, t represents the time spentexe
uting the template and wp ∈ Wp is the parameter ve
tor) and its termination
ondition cp(s, t;wp).At ea
h de
ision-time point σk, the agent has to 
hoose a motion template mpfrom the set A(σk) and also the parametrization wp of mp. Subsequently the agentfollows the poli
y pp(s, t;wp) until the termination 
ondition cp(s, t;wp) is ful�lled.Afterwards, we obtain a new de
ision-time point σk+1.The fun
tional forms of the poli
y up(s, t;wp) and the termination 
ondition
cp(s, t;wp) are de�ned beforehand and 
an be arbitrary fun
tions. For example,
onsider again the task of drawing a triangle. We 
an de�ne a motion template
mline for drawing a line with the endpoint of the line and the velo
ity of moving thepen as parameters. The poli
y uline moves the pen from the 
urrent position withthe spe
i�ed velo
ity in the dire
tion of the endpoint of the line. The template isterminated when the pen has rea
hed a 
ertain neighborhood of the endpoint.In our experiments, sigmoidal fun
tions and linear 
ontrollers are used to modelthe motion templates.7.2.1 Reinfor
ement Learning with Motion TemplatesEa
h motion template is a temporally extended, 
ontinuous valued a
tion. Thus,we deal with a 
ontinuous-time Semi-Markov De
ision Pro
ess (SMDP). We willreview only the relevant 
on
epts from the 
ontinuous-time SMDP framework. Fora detailed de�nition, please refer to (Bradtke and Du�, 1995).Unlike in standard Markov De
ision Pro
esses (MDPs), the transition probabil-ity fun
tion P (s′, d|s, a) is extended by the duration d of an a
tion. The Bellmanequation for the value fun
tion V π(s) of poli
y π is given by

V π(s) =

∫

a
π(a|s) (r(s, a)+

∫

s′

∫ ∞

t=0
exp(−βt)P (s′, t|s, a)V π(s′)dtds′

)

da,

(7.1)



78 Chapter 7. Motion Templateswhere β is the dis
ount fa
tor1. The a
tion value fun
tion Qπ(s, a) is given by
Qπ(s, a) = r(s, a)+
∫

s′

∫ ∞

t=0
exp(−βt)P (s′, t|s, a)V π(s′)dtds′.

(7.2)A poli
y is now de�ned as π(mp,wp|sk). It 
an be de
omposed into
π(mp|sk)πp(wp|sk), where π(mp|sk) is the template sele
tion poli
y and πp(wp|sk)is the poli
y for sele
ting the parameters of template mp.7.3 Fitted Q-IterationAs LAWER is a Fitted Q-iteration (FQI) (Ernst et al., 2005; Riedmiller, 2005)based algorithm we qui
kly review the relevant 
on
epts. FQI is a bat
h modereinfor
ement learning (BMRL) algorithm. In BMRL algorithms we assume thatall the experien
e of the agent up to the 
urrent time is given in the form H = {<
si,ai, ri, s

′
i >}1≤i≤N . FQI estimates an optimal 
ontrol poli
y from this histori
aldata. Therefore it approximates the state-a
tion value fun
tion Q(s,a) by iterativelyusing supervised regression te
hniques. New target values for the regression aregenerated by

Q̃k+1(i) = ri + γVk(s
′
i),

= ri + γmax
a′

Qk(s
′
i,a

′),
(7.3)whi
h are subsequently used to learn the Q-fun
tion Qk+1(s,a). For more detailsplease refer to (Neumann et al., 2009).7.3.1 Fitted Q-Iteration for SMDPsFor SMDPs we have to in
lude the duration di of ea
h a
tion to our histori
al data

H = {< si,ai, ri, di, s
′
i >}1≤i≤N . Instead of using Equation 7.3, new Q-values 
annow be 
al
ulated by
Q̃k+1(i) = ri + exp(−βdi)max

a′

Qk(s
′
i,a

′). (7.4)7.3.2 Lo
ally-Advantage-WEighted Regression (LAWER)A severe problem when using �tted Q-iteration for 
ontinuous a
tion spa
es is the useof the greedy operation Vk(s) = maxa′ Qk(s,a
′) whi
h is hard to perform. LAWER(Neumann et al., 2009) is a variant of FQI whi
h avoids this max operator and istherefore well suited for 
ontinuous a
tion spa
es. The algorithm has been shownto learn high quality poli
ies for many �at RL settings.Instead of using the max operator, a soft-max operator is used whi
h 
an be e�-
iently approximated by an advantage-weighted regression. The advantage-weighted1In order to a
hieve the same dis
ounting rate as in a �at MDP, β 
an be 
al
ulated from therelation γ = exp(−β∆t), where γ is the dis
ount fa
tor and ∆t is the time step of the �at MDP.



7.4. Fitted Q-iteration for Motion Templates 79regression solely uses the given state a
tion pairs (si,ai) to estimate the V-fun
tionand therefore avoids an exhaustive sear
h in the a
tion spa
e. State-a
tion pairswith an higher expe
ted advantage2 have a higher in�uen
e on the regression.The regression uses the state ve
tors si as input dataset, the Q-values Q̃k+1(i) astarget values and an additional weighting ui for ea
h data point. The authors provedthat the result of the advantage-weighted regression is an approximation of the V-fun
tion V (s) = maxa′ Qk(s,a
′). The weighting ui 
an be seen as goodness of usinga
tion ai in state si. It is estimated by ui = exp(τĀ(si,ai)), where Ā(si,ai) denotesthe normalized advantage fun
tion and the parameter τ sets the greediness of thesoft-max operator. We skip the des
ription of the normalization of the advantagefun
tion, be
ause, for this paper, it is enough to know that the normalization, andalso the proof of the algorithm, assume normally distributed advantage values. Fora more detailed des
ription of Ā(si,ai) please refer to (Neumann et al., 2009).LAWER uses Lo
ally Weighted Regression (LWR, by Atkeson et al., 1997) for ap-proximating the Q and the V-fun
tion. It therefore needs to be able to 
al
ulate thesimilarity wi(s) between a state si in the dataset H and state s. The state similari-ties wi(s) 
an be 
al
ulated by a Gaussian kernel wi(s) = exp(−(si− s)TD(si− s)).In this paper we also introdu
e an adaptive kernel in Se
tion 7.4.1. For simpli
ity,we will denote wi(sj) as wij for all sj ∈ H.Standard LWR is used to estimate the Q-fun
tion. The V-fun
tion is approxi-mated by a 
ombination of LWR and advantage-weighted regression. In order to doso, the advantage weighting ui is multipli
atively 
ombined with the state similarityweighting, resulting again in a standard weighted linear regression. For the exa
tequations, please refer to (Neumann et al., 2009).The optimal poli
y π(a|s) = N (a|µ(s),Σ(s)) is modelled as sto
hasti
 poli
ywith Gaussian exploration. The mean µ(s) 
an be determined by a similar lo
allyand advantage-weighted regression, just the a
tions ai are used as targets insteadof the Q-values. The 
ovarian
e matrix Σ(s) is given by 
al
ulating the advantage-weighted 
ovarian
e of lo
ally neighbored a
tions.Intuitively speaking, the V-fun
tion is 
al
ulated by interpolating between theQ-values of lo
ally neighbored state a
tion pairs, but only examples with a highgoodness ui (i.e. high normalized advantage value) are used. The same is true forthe poli
y, we just interpolate between the a
tion ve
tors.7.4 Fitted Q-iteration for Motion TemplatesIn order to apply the LAWER algorithm to the motion template framework we use aseparate dataset Hp and individual estimations Qp and V p of the Q and V-fun
tionfor ea
h motion template mp. The fun
tions V p and Qp represent the state andstate-a
tion value fun
tion when 
hoosing motion template mp in the �rst de
isionand subsequently following the optimal poli
y. We implement the template sele
tionpoli
y π(mp|sk) by a soft-max poli
y. The overall value fun
tion is determined by

V (σk) = maxmp∈A(σk) V
p(σk). LAWER is used to learn the single Q and V-fun
tionestimates Qp and V p.2The advantage fun
tion is given by A(si,ai) = Q(si,ai)− V (si)



80 Chapter 7. Motion TemplatesIn this se
tion we present two extensions whi
h improve the a

ura
y of LAWERand render learning with motion templates possible. Firstly, adaptive tree-basedkernels are used to improve the estimation of the state similarities wij . This kernelalso adapts to spatially varying 
urvatures of the regression surfa
e and thereforeneeds an estimate of the V-fun
tion. Se
ondly, we show how to improve the estimateof the goodness ui by the use of an additional optimization. Based on the 
urrentestimate of the state similarities wij , new ui values, and subsequently also newestimates of the V-fun
tion are 
al
ulated. Both algorithms are applied intertwinedto get improved estimates of wij and ui.7.4.1 Adaptive Tree-based KernelsThe use of an uniform weighting kernel is often problemati
 in the 
ase of highdimensional input spa
es ('
urse of dimensionality'), spatially varying data densi-ties or spatially varying 
urvatures of the regression surfa
e. This problem 
an bealleviated by varying the 'shape' of the weighting kernel.We use the Extremely Randomized Tree (Extra-Tree) algorithm (Ernst et al.,2005) to obtain a varying kernel fun
tion. This algorithm has been parti
ularlysu

essful for approximating the Q-fun
tion in FQI. We modify this approa
h to
al
ulate the weighting kernel. The resulting kernel has the same properties as theExtra-Trees, and therefore adapts to the lo
al state density as well as to the lo
al
urvature of the V-fun
tion.The standard Extra-Tree algorithm builds an ensemble of regression trees. Ithas 3 parameters, the number M of regression trees, the number K of randomizedsplits to evaluate per node and the maximum number of samples per leaf nmin. Formore details about the algorithm please refer to (Ernst et al., 2005).We use the trees for 
al
ulating the state similarities wij instead of approximatingthe Q-fun
tion. In order to do so, we learn the mapping from the states si to the V-values V (si) with the Extra-Tree algorithm. The kernel is then given by the fra
tionof trees in whi
h two states si and sj are lo
ated in the same leaf
wij =

1

M

M
∑

k=1

isSameLeaf(Tk, si, sj), (7.5)where Tk is the kth tree in the ensemble and isSameLeaf is a fun
tion returning 1 ifboth examples are lo
ated in the same leaf and 0 otherwise. In our experiments wewill show the superiority of the tree-based kernels to the Gaussian kernels.7.4.2 Optimized LAWERAs already pointed out in Se
tion 7.3.2, LAWER assumes normally distributedadvantage values. Often this assumption does not hold or the normalization ofthe advantages is impre
ise due to too few data points in the neighborhood. Thise�e
t is even more drasti
 if high τ values are used be
ause the ina

ura
ies mayresult in low a
tivations in areas with a low sample density and therefore also inina

urate regressions. This restri
tion on the τ parameter also limits the qualityof the estimated poli
y.



7.4. Fitted Q-iteration for Motion Templates 81But how 
an we improve the estimation of the weightings ui? Let us �rst 
on-sider a greedy poli
y πD in a dis
rete environment. We formulate πD as sto
hasti
poli
y uij = πD(aj |si). The uij 
an be found by solving the following 
onstraintoptimization problem
u = argmaxu

∑

i,j uijA(si,aj)subje
t to: ∑

j uij = 1 for all states si
0 ≤ uij ≤ 1 for all i, j, (7.6)where u is the ve
tor of all uij and A is again the advantage fun
tion. In our setting,we also have a �nite number of state-a
tion pairs (si,ai), but typi
ally all the statesare di�erent. However, the states are linked by the state similarities wij . The �rst
onstraint of the optimization problem 
an therefore be reformulated as

∑

j

wijuj = 1 for all states si, (7.7)while the remaining formulation of the optimization is un
hanged. We also skippedthe se
ond index of uij be
ause there is only one a
tion for ea
h state si.Due to this optimization we only use the ui with the highest advantage valueswhile ensuring that the summed a
tivation ∑

j wijuj is high enough at ea
h state
si for applying an a

urate weighted linear regression.We solve the 
onstraint optimization problem by maximizing the performan
efun
tion C

C =
1

Z

∑

j

uj(Q(sj ,aj)− V (sj))−

λ
∑

i

(
∑

j wijuj − η)2
∑

j wij
,

(7.8)with η = 1, where Z is a normalization 
onstant for the advantage values givenby Z =
∑

i |Q(si,ai)|/N . The se
ond term of Equation 7.8 spe
i�es the squaredsummed a
tivation error for ea
h state si. It is normalized by the summed state-similarity of this state (i.e. ∑

j wij). This ensures that the a
tivation error isequally weighted throughout the state spa
e, independent of the lo
al state density.We also introdu
ed a new parameter λ whi
h sets the tradeo� between maximizingthe greediness of ui or minimizing the summed a
tivation error. It repla
es thegreediness parameter τ of the LAWER algorithm.The fun
tion C 
an be maximized with respe
t to ui using gradient as
ent, thederivation of C is given by
dC

duk
=

1

Z
(Q(sk,ak)− V (sk))

− 2λ
∑

i

(
∑

j wijuj − η)
∑

j wij
wik.

(7.9)The learning rate for the gradient as
ent algorithm is always 
hosen su
h that themaximum 
hange of an a
tivation ui is �xed to 0.01. After ea
h gradient update



82 Chapter 7. Motion Templatesthe weights ui are restri
ted to the interval [0; 1]. The gradient as
ent update isrepeated for Nopt iterations, every Mopt << Nopt iterations the value estimates
V (si) are re
al
ulated using the 
urrent weights ui. When using the tree-basedkernels, we also re
al
ulate the state similarities wij with the new estimate of V (si).Typi
al values for Nopt and Mopt are 1000 and 100.The 
ovarian
e matrix of the exploration poli
y is also 
al
ulated slightly dif-ferently to the original LAWER algorithm. We require that always the best ηexplo
ally neighbored a
tions are used. We therefore use a separate set of advantageweightings uexp for the 
ovarian
e 
al
ulation whi
h 
an be obtained by the sameoptimization de�ned in Equation 7.8, we just have to set η to ηexp. With ηexp we
an s
ale the exploration rate of the algorithm.7.5 ResultsWe evaluated the motion template approa
h on a 1-link and a 2-link pendulumswing-up task and a 2-link balan
ing task. For ea
h task the immediate rewardfun
tion was quadrati
 in the distan
e to the goal position sG and in the appliedtorque/for
e, i.e., r = −c1|s− sG|2− c2|a|2. For all our experiments we assume thatthe goal position sG is known.We 
olle
t L new episodes with the 
urrently estimated exploration poli
y andone episode with the greedy poli
y (without exploration). After estimating theoptimal poli
y, its performan
e is evaluated (without exploration) and the data 
ol-le
tion is repeated. The initial distributions of the motion template parameters wereset intuitively and were by no means optimal. We 
ompared the motion templateapproa
h to �at RL with the standard LAWER algorithm.7.5.1 Swing-Up TasksIn this task a pendulum needs to be swung up from the position at the bottom tothe top position.7.5.1.1 1-link PendulumThe link of the pendulum had a length of 1m and a mass of 1kg, no fri
tion wasused. The used motion templates represent positive (m1 andm2) and negative peaks(m3 and m4) in the torque traje
tory. There is also an individual template m5 forbalan
ing the robot at the top position. One peak 
onsists of 2 su

essive motiontemplates, one for the as
ending and one for the des
ending part of the peak.The parametrization of the motion templates 
an be seen in Table 7.1. In orderto form a proper peak, template m2 and m4 always start with the last torque uttaken in the end of the previous template. Therefore parameter a2 of these templatesis already determined by ut and 
onsequently the out
ome of template m2 and m4depend on ut. For this reason, the state spa
e of template m2 and m4 was extendedby ut. The balan
ing template m5 is implemented as linear PD-
ontroller (see Table7.1). The duration of the peak templates is an individual parameter of the templates



7.5. Results 83Table 7.1: MTs for the swing up motion. The fun
tional forms resemble sigmoid fun
tions.Parameter ai 
oresponds to the height of the peak, oi to the initial time o�set and dito the duration of the motion template. k1 and k2 are the PD-
ontroller 
onstants of thebalan
er template. m3 andm4 resemblem1 andm2 ex
ept for a negative sign. The sket
hesillustrate the torque traje
tories of these templates (x-axis: time, y-axis: a

eleration).MT Fun
tional Form Parameters Sket
h
m0 a0(1−

2
1+exp(o0− o0

d0
t)
) a0, o0, d0

m1,3 a1(
2

1+exp(− 6o1

d1
t)
− 1) a1, o1, d1

m2,4 a2(1−
2

1+exp(o2− o2

d2
t)
) o2, d2

m5 −k1w − k2w
′ k1, k2
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Time [s](b)Figure 7.1: (a) Torque traje
tories and motion templates learned for di�erent a
tion pun-ishment fa
tors c2. (b) Torque traje
tories learned with �at RL(di), m5 is always the �nal template and runs for 20s. Subsequently the episode isended.The agent always started from the bottom position with motion template m0.Afterwards it 
ould either 
hoose to use the peak templates in the prede�ned order(m3, m4, m1, m2, m3...) or use the balan
ing template m5. Thus, the agent hadto learn the 
orre
t parametrization of the motion templates and the number ofswing-up motions.For all experiments a dis
ount fa
tor of β = 0.2 was used, λ was set to 0.025 and
ηexp to 20. For the Gaussian kernel we used a bandwidth matrix of D = diag(30, 3)for m1, m3 and m5 and D = diag(30, 3, 1) for the extended state spa
e of templates
m2 and m4. For the tree-based kernels we used the parameters nmin = 7, M = 80and K = 20. For the 
omparison with the �at LAWER algorithm τ was set to 4
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Flat(b)Figure 7.2: Learning 
urves for the Gaussian kernel (MT Gauss) and the tree-based kernel(MT Tree) for (a) c2 = 0.025 and (b) c2 = 0.075and a time step of 50ms was used. We used L = 50 episodes per data 
olle
tion.We 
arried out 3 experiments with di�erent torque punishment fa
tors (c2 =

0.005, c2 = 0.025 and c2 = 0.075). We 
ompared the learning pro
ess of �at RL,motion template learning with Gaussian state similarities (MT Gauss) and withadaptive tree-based state similarities (MT Tree) (see Figure 7.2). In the initial learn-ing phase, the �at RL approa
h is superior to motion template learning, probablydue to the larger number of produ
ed training examples. However, RL with motiontemplates is able to produ
e poli
ies of signi�
antly higher quality and qui
kly out-performs the �at RL approa
h. This 
an also be seen in Figure 7.1(a) and (b), wherethe resulting torque traje
tories are 
ompared. Flat RL has di�
ulties parti
ularlywith the hardest setting (c2 = 0.075) where we re
eived a maximum average rewardof −48.6 for �at RL and −38.5 for the motion template approa
h. From Figure 7.2we 
an also see that the tree-based kernel is mu
h more sample e�
ient than theGaussian kernel. An evaluation of the in�uen
e of the λ parameter 
an be seen inFigure 7.3(a) and of the parameter nmin of the tree-based kernel in Figure 7.3(b).The approa
h works robustly for a wide range of parameters.7.5.1.2 2-link PendulumWe also 
ondu
ted experiments with a 2-link pendulum. The lengths of the linkswere set to 1m, ea
h link had a mass of 1kg (lo
ated at the 
enter of the link). Weuse the same templates as for the 1-dimensional task, the peak templates have now
2 additional parameters, the height of the peak ai and the time o�set oi for these
ond 
ontrol dimension u2. In
luding the duration parameter, this results in 5parameters for m0, m1 and m3 and 3 parameters for m2 and m4. The parametersof the balan
er template m5 
onsists of two 2× 2 matri
es for the 
ontroller gains.Experiments were done for the tree-based kernels with nmin = 8, λ = 0.025and ηexp = 25. At ea
h data 
olle
tion, 50 new episodes were 
olle
ted. For
omparison to the �at RL approa
h we used a bandwidth matrix of D =
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MT Tree(b)Figure 7.3: (a) Evaluation of the in�uen
e of λ for the Gaussian (MT Gauss) and the tree-based kernel (MT Tree, nmin = 5) (b) Evaluation of the nmin parameter for λ = 0.025. c2was set to 0.025 for both evaluations.
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2(a) (b)Figure 7.4: (a) Torque traje
tories and de
omposition in the motion templates for the 2-linkpendulum swing-up task. (b) Illustration of the motion. The bold postures represent theswit
hing time points of the motion templates.diag(6.36, 2.38, 3.18, 1.06) and τ = 4. The evaluation of the learning pro
ess 
anbe seen in Figure 7.5(a) and the learned motion and torque traje
tories are shownin Figure 7.4. Also for this 
hallenging task, the motion template approa
h was ableto learn high-quality poli
ies. While the �at RL approa
h stagnates at an averagereward of −28.7, the motion template approa
h rea
hes an average reward of −15.6.7.5.2 2-link Balan
ingIn this task a 2-link pendulum needs to be balan
ed at the top position after beingpushed. The model parameters were 
hosen to loosely mat
h the 
hara
teristi
s ofa human, i.e. li = 1m and mi = 35kg. The hip-joint was limited to [−0.1; 1.5]rad
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urves for motion template learning with tree-based kernels for the(a) 2-link swing-up task and the (b) 2-link balan
ing task.and the ankle-joint to [−0.8; 0.4]rad. Whenever the robot left this area of the statespa
e, we assumed that the robot had fallen, i.e. a negative reward of −10000 wasgiven. The hip-torque was limited to ±500Nm and the ankle torque to ±70Nm.In the beginning of an episode, the robot stands upright and gets pushed with a
ertain for
e F . This results in an immediate jump of the joint velo
ities. The agenthas to learn to keep balan
e for di�erent perturbations. In (Atkeson and Stephens,2007) this problem was solved exa
tly using Dynami
 Programming te
hniques.The authors found out that two di�erent balan
ing strategies emerge. For smallperturbations, the ankle strategy, whi
h uses almost only the ankle joint, is optimal.For larger perturbations (F > 17.5Ns), the ankle-hip strategy, whi
h results in afast bending movement, is optimal. In this experiment we want to reprodu
e bothstrategies by motion template learning.We use two motion templates to model the balan
ing behavior, both resemblelinear 
ontrollers. The �rst motion template (m0) keeps the robot at the uprightposition and is similar tom5 from the previous experiment. The se
ond template m1additionally de�nes a set-point of the linear 
ontroller for ea
h joint and a durationparameter d1. In addition to the 8 
ontroller gains, this results in 11 parameters.The agent 
an now 
hoose to use m0 dire
tly in the beginning or to use m1 andsubsequently m0. We used 4 di�erent perturbations, i.e., F = 10, 15, 20 and 25Ns.For ea
h perturbation, we 
olle
ted L = 20 episodes.We again used the tree-based approa
h with the same parameter setting as in theprevious experiment. The learning 
urve 
an be seen in Figure 7.5(b). The resultingtorque traje
tories are shown in Figure 7.6(a) and (b). We 
an 
learly identify theankle strategy for the two smaller perturbations and the ankle-hip strategy for largerperturbations using both motion templates.
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ing problem for (a) F = 10Ns and
F = 15Ns (ankle strategy) (b) F = 20Ns and F = 25Ns (ankle-hip strategy). The sket
hesbellow illustrate the temporal 
ourse of the balan
ing movement for the ankle strategy (a)and the ankle-hip strategy (b)7.6 Con
lusion and Future WorkIn this paper we proposed a new framework for temporal abstra
tion for RL in
ontinuous environments, i.e. RL with motion templates. Learning the overall
ontrol task is de
omposed into learning a sequen
e of simpler 
ontrollers. Be
auseof the used abstra
tions the agent has to make fewer de
isions, whi
h simpli�es thelearning task. We strongly belief that this kind of abstra
tions may help s
aling RLalgorithms to more 
omplex domains.The motion templates approa
h also raises several interesting resear
h questionsto whi
h we will dedi
ate our future work. For example, how 
an we e�
ientlyadd feedba
k to the motion templates? Whi
h fun
tional forms of the templates
an fa
ilitate learning? When do we terminate a motion template, in parti
ular inthe 
ase of unforeseen events? Future work will also 
on
entrate on applying theapproa
h to more 
omplex environments su
h as planar walking robots.7.7 A
knowledgmentsThis 
hapter is based on the paper 'Learning Complex Motions by Sequen
ing Sim-pler Motion Templates' (Neumann and Peters, 2009) whi
h has been written byGerhard Neumann (GN), Wolfgang Maass (WM) and Jan Peters (JP). The algo-rithm design, implementation and the experiments have been 
ondu
ted by GNwhile the initial basi
 idea was provided by WM. JP greatly helped to improve thepaper writting and also provided useful guidan
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ommon approa
h for motor skill learning in roboti
s is to use parametrizedmovement plans, also 
alled movement primitives. Currently used approa
hes en-dow the primitives with dynami
al systems. Here, the parameters of the primitiveindire
tly de�ne the shape of the desired traje
tory. This traje
tory is then followedwith feedba
k 
ontrol laws. Instead of endowing the primitives with dynami
alsystems, we propose to endow movement primitives with an intrinsi
 probabilisti
planning system, exploiting the power of sto
hasti
 optimal 
ontrol methods alreadyat the level of the primitive. The parametrization of the primitive now spe
i�es a
ost fun
tion for the intrinsi
 planning system. We parameterize this intrinsi
 
ostfun
tion using use task-relevant features, su
h as the importan
e of passing through
ertain via-points as parameters of the movement. These task-relevant featuresare learned using standard reinfor
ement learning, whi
h implies that a (typi
ally)sparse reward signal is transformed into a intrinsi
 
ost fun
tion for planning. Si-multaneously we learn the dynami
s model of the robot. Together, the intrinsi

ost fun
tion and the dynami
s model fully spe
ify a graphi
al model for movementplanning. In di�eren
e to 
urrent methods, the probabilisti
 planner 
an naturallydeal with noisy systems, exploiting the sto
hasti
 dynami
s by suppressing the in-herent noise in the system only if ne
essary. This is also known as the minimumintervention prin
iple, a basi
 property of human movement 
ontrol. We evaluateour approa
h on a 
omplex 4-link balan
ing task. Our experiments show that ourmovement representation fa
ilitates learning and allows learning of motor skills upto one order of magnitude faster than traditional approa
hes. The representation
an be easily generalized to new task settings without re-learning and also generatespoli
ies with higher quality.8.1 Introdu
tionThe use of movement primitives has often been shown to fa
ilitate learning of 
om-plex movement skills (d'Avella et al., 2003; S
haal et al., 2003; Neumann et al.,



90 Chapter 8. Planning Movement Primitives2009). They allow an e�
ient abstra
tion of the high-dimensional 
ontinuous a
-tion spa
es whi
h often o

ur in roboti
s. Movement primitives are parametrizedrepresentations of elementary movements. For 
urrent approa
hes the parametersof the primitive determine the shape of the desired traje
tory either dire
tly or in-dire
tly. This traje
tory is then followed by feedba
k 
ontrol laws. An example foran indire
t traje
tory parametrization are the widely used Dynami
al MovementPrimitives (DMPs) (S
haal et al., 2003). This approa
h uses parametrized dynam-i
al systems to determine a movement traje
tory. The idea of DMPs to endowingmovement primitives with an intrinsi
 dynami
 system has many bene�ts: Theyprovide a linear poli
y parametrization whi
h 
an be used for imitation learningand poli
y sear
h (Kober and Peters, 2010). The 
omplexity of the traje
tory 
anbe s
aled by the number of parameters (S
haal et al., 2003) and one 
an adaptmeta-parameters of the movement su
h as the movement speed or the goal state ofthe movement (Kober et al., 2010; Pastor et al., 2009).The general idea of the present work is to endow movement primitives withan intrinsi
 planning system instead of an intrinsi
 dynami
 system. While thedynami
 system of a DMP is to some degree rea
tive to the environment�namely byadapting the temporal s
aling fa
tor and thereby de- or a

elerating the movementexe
ution as needed (S
haal et al., 2003)�the traje
tory shape itself is �xed andnon-rea
tive to the environment. In 
ontrast, a movement primitive that is endowedwith an intrinsi
 planning 
omponent 
an rea
t to the environment by optimizingthe traje
tory for the spe
i�
 
urrent situation. Training su
h a movement primitivenow means to train a planner to generate an appropriate poli
y in a given situationinstead of training a dynami
al system to generate a �xed (temporally �exible)referen
e traje
tory. This implies a di�erent level of generalization. For instan
e, ifsome ende�e
tor target 
hanges between training and testing phase, a planner thathas learned to generate traje
tories towards targets will generalize to the new targetwithout retraining. A system that dire
tly en
odes a traje
tory would either haveto be retrained or use heuristi
s to be adapted (Pastor et al., 2009).Sto
hasti
 optimal 
ontrol, besides its high relevan
e in engineering problems,has proven itself as an ex
ellent 
omputational theory of human movement 
ontrol(Todorov and Jordan, 2002). For example, the minimum intervention prin
ipleimplies that we should only intervene the system if it is ne
essary to ful�ll the giventask. If the task 
onstraints are not violated it is ine�
ient to suppress the inherentnoise in the sto
hasti
 system. As an example 
onsider the problem of performinga tennis serve. The most task-relevant feature of the movement is the state of thearm (in
luding velo
ities, a

elerations and sti�ness) at the point in time when thera
ket hits the ball. For this time point the movement has to be very pre
ise, butelsewhere less a

urate 
ontrol is su�
ient. Human movements a

ount for su
hprin
iples, suggesting that sto
hasti
 optimal 
ontrol prin
iples are involved on thelowest level of movement exe
ution. On the other hand: A tennis serve is 
ertainlyalso a highly trained movement primitive. This exempli�es our general view of amovement primitive system whi
h 
an be trained in a reinfor
ement learning setting,but whi
h also involves a low-level movement planner that a

ounts for fundamentaloptimality prin
iples. In 
ontrast, a movement primitive system that implies a �xedreferen
e traje
tory would for
e the movement to follow this referen
e more or less
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urately and 
an only 
hoose how mu
h noise is suppressed by the feedba
k 
ontrollaw throughout the exe
ution of the whole traje
tory. It 
an not generate movementsthat ful�ll optimality prin
iples for variable target or task 
onstraints.Therefore we propose Planning Movement Primitives (PMPs) whi
h exploit thepower of sto
hasti
 optimal 
ontrol (SOC) methods (Todorov and Li, 2005; Kappen,2007) within the primitive. As with DMPs, a PMP is trained in a standard reinfor
e-ment learning (RL) setting. Instead of parametrizing the shape of the traje
torydire
tly, a PMP has parameters that determine the the intrinsi
 
ost fun
tion of theintrinsi
 SOC planner. While the reward fun
tion (typi
ally) gives a single s
alarreward for a whole movement, the learned intrinsi
 
ost fun
tion in the standardSOC form de�nes task and 
ontrol 
osts for every time step of the movement. Inother terms, training a PMP is the problem learning from a sparse reward signalan intrinsi
 
ost fun
tion su
h that the SOC planner will, with high probability,generate rewarded movements. Parametrizing the intrinsi
 
ost fun
tion allows usto use task-relevant features as parameters of the movement, e.g. the importan
e ofpassing through a 
ertain via-point.Training a PMP also requires to learn an approximate model of the systemdynami
s within the RL setting sin
e the intrinsi
 SOC planner requires some ap-proximate model to estimate optimal 
ontrol. Therefore, PMP learning 
ombinesmodel-based and model-free RL: it learns a model of the system dynami
s while atthe same time training PMP parameters based on the reward signal. (It does notlearn an approximate model of the reward fun
tion itself.) We 
an exploit supervisedlearning methods su
h as (Vijayakumar et al., 2005; Nguyen-Tuong et al., 2008a,b)for learning the system dynami
s and at the same time use poli
y sear
h methodsto adapt the PMP parameters that determine the intrinsi
 
ost fun
tion. This two-fold learning strategy has the promising property of fully exploiting the data by alsoestimating the system dynami
s instead of only adapting poli
y parameters.As planning algorithm we employ a probabilisti
 planner 
alled ApproximateInferen
e Control (AICO), (Toussaint, 2009). AICO generates the movement byperforming inferen
e in a graphi
al model. The graphi
al model is de�ned by thesystem dynami
s and the intrinsi
 
ost fun
tion. Sin
e we learn both from experien
e(the latter via poli
y sear
h) all 
onditional probability distributions of this graphi
almodel are determined empiri
ally. The output of the planner is a linear regulatorfor ea
h time sli
e.Our experiments show that, by the use of task relevant features, we 
an signi�-
antly fa
ilitate learning and generalization of 
omplex movement skills. Moreover,due to the intrinsi
 SOC planner, our primitive representation implements all prin-
iples of optimal 
ontrol, whi
h allows to learn solutions of high quality whi
h arenot representable with traditional traje
tory-based methods.In the following se
tion we review in more detail related previous work and theba
kground on whi
h our methods build. Se
tion 8.2 then introdu
es the proposedPlanning Movement Primitives. In Se
tion 8.3 we evaluate the system on a one-dimensional via-point task and a 
omplex dynami
 humanoid balan
ing task and
ompare to DMPs. We 
on
lude this work with a dis
ussion in Se
tion 8.4.



92 Chapter 8. Planning Movement Primitives8.1.1 Related Work and Ba
kgroundThis se
tion reviews the related work based on parametrized movement poli
ies,poli
y sear
h methods and sto
hasti
 optimal 
ontrol.8.1.2 Parametrized Movement Poli
iesMovement primitives represent a parametri
 des
ription of elementary movements(d'Avella et al., 2003; S
haal et al., 2003; Neumann et al., 2009). We will denote theparameter ve
tor of a movement primitive by θ and the possibly sto
hasti
 poli
y ofthe primitive as π(u|x, t;θ), where u is the applied a
tion and x denotes the state.The key idea of the term 'primitive' is that several of these elementary movements
an be 
ombined not only sequentially but also simultaneously in time. However, inthis paper, we want to 
on
entrate on the parametrization of a single primitive, i.e.only learn a single elementary movement. Using several primitives simultaneouslyis part of future work for our approa
h as well as for existing approa
hes su
h as(S
haal et al., 2003; Neumann et al., 2009).Many types of movement primitives 
an be found in the literature. The 
urrentlymost widely used movement representation used for robot 
ontrol are the Dynami
Movement Primitives (DMPs) (S
haal et al., 2003). DMPs evaluate parametrizeddynami
al systems to generate traje
tories. The dynami
al system is 
onstru
tedsu
h that the system is stable. In order to do so, a linear dynami
al system isused whi
h is modulated by a learnable non-linear fun
tion f . A great advantageof the DMP approa
h is that the fun
tion f depends linearly on the parameters θof the primitive, i.e f(s) = Φ(s)Tθ, where s is the time or phase variable. As aresult, imitation learning for DMPs is straightforward as this 
an simply be done byperforming a linear regression (S
haal et al., 2003). Furthermore, it also allows theuse of many well-established reinfor
ement learning methods su
h as poli
y gradi-ent methods (Peters and S
haal, 2008b) or Poli
y Improvements by Path Integrals(Theodorou et al., 2010a). The 
omplexity of the traje
tory 
an be s
aled by thenumber of features used for modelling f . However, as the features Φ(s) are �xed,the ability of the approa
h to extra
t task-relevant features is limited. We 
an alsoadapt meta-parameters of the movement su
h as the movement speed or the goalstate of the movement (Kober et al., 2010; Pastor et al., 2009). Yet, the 
hange ofthe desired traje
tory due to the 
hange of the meta-parameters is based on heuris-ti
s and does not 
onsider task relevant 
onstraints. As the DMPs are the most
ommon movement representation we will use it as a baseline in our experiments.For a more detailed dis
ussion of the DMP approa
h please 
onsult the appendix.Another type of movement representation was introdu
ed in (Neumann et al.,2009) by the movement template framework. Movement templates are temporallyextended, parametrized a
tions, su
h as sigmoidal torque, velo
ity or joint posi-tion pro�les, whi
h 
an be sequen
ed in time. This approa
h uses a more 
omplexparametrization as the DMPs. For example, it also in
orporates the duration of dif-ferent phases, like an a

eleration or de
eleration phase. The division of a movementinto single phases allows the use of reinfor
ement learning methods to learn how tosequen
e these primitives. However, as the approa
h still dire
tly spe
i�es the shapeof the traje
tory, de�ning 
omplex movements for high dimensional systems is still
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ompli
ated, whi
h has restri
ted the use of movement templates to rather simpleappli
ations.An interesting movement representation 
oming from experimental data analysisare the mus
le synergies (d'Avella et al., 2003; Bizzi et al., 2008). They have beenused to provide a 
ompa
t representation of ele
tromyographi
 mus
le a
tivationpatterns. The key idea of this approa
h is that mus
le a
tivation patterns are 
om-posed of a linear sum of simpler, elemental patterns, 
alled mus
le synergies. Ea
hmus
le synergy 
an be shifted in time and s
aled with a linear fa
tor to 
onstru
tthe whole a
tivation pattern. While the synergy approa
h has promising propertiessu
h as the linear superposition and the ability to share synergies between tasks,ex
ept for some smaller appli
ations (Chhabra and Ja
obs, 2006), these primitiveshave only been used for data analysis, and not for robot 
ontrol.All the so far presented primitives are inherently lo
al approa
hes. The spe
i�edtraje
tory and hen
e the resulting poli
y are only valid for a lo
al (typi
ally small)neighborhood of our initial state. If we are in a new situation, it is likely that weneed to re-estimate the parameters of the primitive. The generation of the referen
etraje
tory for these approa
hes is often an o�ine pro
ess and does not in
orporateknowledge of the system dynami
s, proprio
eptive or other sensory feedba
k. Be-
ause the referen
e traje
tory itself is usually 
reated without any knowledge of thesystem model, the desired traje
tory might not be appli
able, and thus, the realtraje
tory of the robot might di�er 
onsiderably from the spe
i�ed traje
tory.There are only few movement representations whi
h 
an also be used globally,i.e. for many di�erent initial states of the systems. One su
h methods is the StableEstimator of Dynami
al Systems (SEDS) (Khansari-Zadeh and Billard, 2011) ap-proa
h. However, this method has so far only been applied to imitation learning,using the approa
h for learning or improving new movement skills is not straightforward. We will therefore restri
t our dis
ussion to lo
al movement representations.Our Planning Movement Primitive approa
h is, similar to the DMPs, a lo
alapproa
h. In a di�erent situation, di�erent abstra
t goals and features might bene
essary to a
hieve a given task. However, as we extra
t task relevant features anduse them as parameters, the same parameters 
an be used in di�erent situations aslong as the task relevant features do not 
hange. As we will show, the valid regionwhere the lo
al primitives 
an still be applied is mu
h larger for the given 
ontroltasks in 
omparison to traje
tory based methods.8.1.3 Poli
y Sear
h for Movement PrimitivesLet x denote the state and u the 
ontrol ve
tor. A traje
tory τ is de�ned as sequen
eof state 
ontrol pairs, τ = 〈x0:T ,u0:T−1〉, where T is the length of the traje
tory.Ea
h traje
tory has asso
iated 
osts C(τ) (denoted as extrinsi
 
ost), whi
h 
an bean arbitrary fun
tion of the traje
tory. It 
an, but need not be 
omposed of thesum of intermediate 
osts during the traje
tory. For example, it 
ould be based onthe minimum distan
e to a given point throughout the traje
tory. We want to �nda movement primitive's parameter ve
tor θ∗ = argminθJ(θ) whi
h minimizes theexpe
ted 
osts J(θ) = E [C(τ)|θ]. We assume that we 
an evaluate the expe
ted
osts J(θ) for a given parameter ve
tor θ by performing roll-outs on the real system.



94 Chapter 8. Planning Movement PrimitivesIn order to �nd θ∗ we 
an apply poli
y sear
h methods. Here a huge varietyof possible methods exists. Poli
y sear
h methods 
an be 
oarsely divided intostep-based exploration and episode-based exploration approa
hes. Step-based ex-ploration approa
hes su
h as (Theodorou et al., 2010a; Peters and S
haal, 2008b;Kober and Peters, 2010) apply an exploration noise to the a
tion of the agent at ea
htime step of the episode. Subsequently, the poli
y is updated su
h that the (noisy)traje
tories with higher reward are more likely to be repeated. In order to do thisupdate, step-based exploration te
hniques stri
tly rely on a poli
y whi
h is linearin its parameters. This is true for the DMPs. Currently, the most 
ommon poli
ysear
h methods are step-based approa
hes, in
luding the REINFORCE (Williams,1992), the episodi
 Natural A
tor Criti
 (Peters and S
haal, 2008b), the PoWER(Kober and Peters, 2010) or the PI2 (Theodorou et al., 2010a) algorithm. Thisalso explains partially the popularity of the DMP approa
h for motor skill learningbe
ause DMPs are, from those introdu
ed above, the only representation whi
h 
anbe used for these step-based exploration methods (apart from very simple ones likelinear 
ontrollers).However, re
ent resear
h has also intensi�ed on episode-based exploration te
h-niques (Sehnke et al., 2010; Wierstra et al., 2008; Hansen et al., 2003). Thesemethods dire
tly perturb the poli
y parameters θ and then estimate the perfor-man
e of the perturbed θ parameters by performing roll-outs on the real system.During the episode no additional exploration is applied (i.e. a deterministi
 poli
yis used). The poli
y parameters are then updated in the estimated dire
tion of in-
reasing performan
e. Episode-based exploring methods do not depend on a spe
i�
form of parametrization of the poli
y. In addition, episode-based exploration te
h-niques easily allow the use of se
ond order sto
hasti
 sear
h methods that estimate
orrelations between poli
y parameters (Heidri
h-Meisner and Igel, 2009b; Wierstraet al., 2008). This ability to apply 
orrelated exploration in parameter-spa
e is oftenbene�
ial in 
omparison to the un
orrelated exploration te
hniques applied by allstep-based exploration methods.Sin
e the resulting 
ontrol poli
ies of our PMPs depend non-linearly on the pa-rameters θ, step-based exploration te
hniques 
an not be used in our setup. Hen
e,we will use the se
ond order sto
hasti
 sear
h method CMA (Covarian
e MatrixAdaptation, (Hansen et al., 2003)) whi
h makes no assumptions on the parametriza-tion of the primitive. CMA uses a multivariate Gaussian distribution to representthe belief over the optimal parameters and has been shown to be highly 
ompetitivefor poli
y sear
h in high dimensional spa
es. We will 
ompare our PMP approa
h toboth, DMPs learned with CMA poli
y sear
h and DMPs learned with the state ofthe art step-based method PI2 (Theodorou et al., 2010a). Interestingly, the se
ondorder sto
hasti
 sear
h method outperformed PI2 for DMPs, illustrating the bene�tsof se
ond order optimization.8.1.4 Sto
hasti
 Optimal Control and Probabilisti
 Inferen
e forPlanningSto
hasti
 optimal 
ontrol (SOC) methods su
h as (Todorov and Li, 2005; Kappen,2007; Toussaint, 2009) have been shown to be powerful methods for movement



8.2. Planning Movement Primitives 95planning in high-dimensional roboti
 systems. The in
remental Linear Quadrati
Gaussian (iLQG) (Todorov and Li, 2005) algorithm is one of the most 
ommonlyused SOC algorithms. It uses Taylor expansions of the system dynami
s and 
ostfun
tion to 
onvert the non-linear 
ontrol problem in a Linear dynami
s, Quadrati

osts and Gaussian noise system (LQG). The algorithm is iterative - the Taylorexpansions are re
al
ulated at the newly estimated optimal traje
tory for the LQGsystem.In (Toussaint, 2009), the SOC problem has been reformulated as inferen
e prob-lem in a graphi
al model, resulting in the Approximate Inferen
e Control (AICO)algorithm. The graphi
al model is given by a simple dynami
 Bayesian networkwith states xt, a
tions ut and task variables g[i] (representing the 
osts) as nodes,see Figure 8.1. The dynami
 Bayesian network is fully spe
i�ed by 
onditional dis-tributions en
oded by the 
ost fun
tion and by the state transition model. If beliefsin the graphi
al model are approximated as Gaussian the resulting algorithm isvery similar to iLQG. Gaussian message passing iteratively re-approximates lo
al
osts and transitions as LQG around the 
urrent mode of the belief within a timesli
e. A di�eren
e to iLQG is that is uses forward messages instead of a forwardroll-out to determine the point of lo
al LQG approximation and 
an iterate beliefre-approximation with in a time sli
e until 
onvergen
e, whi
h may lead to fasteroverall 
onvergen
e. For a more detailed dis
ussion of the AICO algorithm withGaussian message passing see Se
tion 8.2.5 and the appendix.Lo
al planners have the advantage that they 
an be applied to high-dimensionaldynami
al systems, but the disadvantage of requiring a suitable initialization.Global planning (Ku�ner and LaValle, 2000) on the other hand does not requirean initial solution, however, they have mu
h higher 
omputational demands. Ourmotivation for using only a lo
al planner as 
omponent of a Planning MovementPrimitive is related to the learning of an intrinsi
 
ost fun
tion:Existing planning approa
hes for roboti
s typi
ally use hand-
rafted 
ost fun
-tions and the dynami
 model is either analyti
ally given or learned from data (Mitro-vi
 et al., 2010). PMPs use reinfor
ement learning to train an intrinsi
 
ost fun
tionfor planning instead of trying to learn a model of the extrinsi
 reward dire
tly. Thereason is that a lo
al planner often fails to dire
tly solve realisti
ally 
omplex tasksby optimizing dire
tly the extrinsi
 
ost fun
tions. From this perspe
tive, PMPslearn to translate 
omplex tasks to a simpler intrinsi
 
ost fun
tion that 
an e�-
iently be optimized by a lo
al planner. This learning is done by trial-and-errorin the reinfor
ement learning setting: the PMP essentially learns from experien
ewhi
h intrinsi
 
ost fun
tion the lo
al planner 
an 
ope with and use to generategood traje
tories. Thereby, the reinfor
ement learning of the intrinsi
 
ost fun
tion
an 
ompensate the limitedness of the lo
al planner.8.2 Planning Movement PrimitivesIn this se
tion we introdu
e the proposed Planning Movement Primitives (PMPs),in parti
ular the parametrization of the intrinsi
 
ost fun
tion. The overall systemwill 
ombine three 
omponents: (1) a regression method for learning the system dy-
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s, (2) a poli
y sear
h method for �nding the PMP parameters, and (3) a SOCplanner for generating movements with the learned model and PMP parameters.8.2.1 Problem De�nitionWe assume an unknown dynami
 system of the general form
xt+1 = fDyn(ut,xt) + εt, (8.1)with state variable xt, 
ontrols ut and Gaussian noise εt ∼ N (0, §). The agent is torealize a 
ontrol poli
y π : xt 7→ ut, whi
h in our 
ase will be a linear regulator forea
h time sli
e. The problem is to �nd a poli
y that minimizes the expe
ted 
osts ofa �nite-horizon episodi
 task. That is, we assume there exists a 
ost fun
tion C(τ),where τ = (x0:T ,u0:T ) is roll-out of the agent 
ontrolling the system. The problemis to �nd argminπ〈C(τ)〉π.The system dynami
s fDyn as well as the 
ost fun
tion C(τ) are analyti
ally un-known. Con
erning the system dynami
s we 
an 
ompute an approximate model ofthe systems dynami
s from a set of roll-outs�as standard in model-based reinfor
e-ment learning (RL). However, 
on
erning 
osts, we only re
eive the single s
alar
ost C(τ) after a roll out indi
ating the quality or su

ess of a movement. Note that

C(τ) is a fun
tion of the whole traje
tory, not only the �nal state. Learning C fromdata would be an enormous task, more 
omplex that learning a reward fun
tion
xt 7→ rt as in standard model-based RL. Further, if we try to model C(τ) dire
tlyand apply SOC methods to optimize it, C(τ) would have to be modelled in the form
C(τ) =

∑

t ht(xt,xt+1)�assigning separate 
osts to ea
h time step of the roll-out.This implies an enormous 
redit assignment problem.Generally, approa
hes to learn C(τ) dire
tly in a form useful for applying SOCmethods seems an overly 
omplex task and violates the maxim �never try to solvea problem more 
omplex than the original�. Therefore, our approa
h will not tryto learn C(τ) from data but to employ reinfor
ement learning to learn some intrin-si
 
ost fun
tion that 
an e�
iently be optimized by SOC methods and generates
ontrol poli
ies that, by empiri
ism, minimizes C(τ).8.2.2 Parametrization of PMP's intrinsi
 
ost fun
tionIn PMPs the parameters θ spe
ify task-relevant abstra
t goals or features of themovement, whi
h spe
ify an intrinsi
 
ost fun
tion
L(τ ;θ) :=

T
∑

t=0

l(xt,ut, t;θ) + cp(xt,ut), (8.2)where l denotes the intermediate intrinsi
 
ost fun
tion for every time-step and
cp(xt,ut) is used to represent basi
 known task 
onstraints, su
h as torque or jointlimits. We will assume that basi
 task 
onstraints like joint and torque limits are partof our prior knowledge, thus cp is given and not in
luded in our parametrization. Forthe des
ription of PMPs we will negle
t the 
onstraints cp for simpli
ity. We will usea via-point representation for the intermediate intrinsi
 
ost fun
tion l(xt,ut, t;θ).
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intrinsic costs ...

Figure 8.1: Planning Movement Primitives are 
an be illustrated using graphi
al models.States are denoted by xt, 
ontrols by ut and the time horizon is �xed to T time-steps.In this example the graphi
al model is used to infer the movement by 
onditioning on twoabstra
t goals g[1] and g[2], whi
h are spe
i�ed in the learned intrinsi
 
ost fun
tion L(τ ; θ).Therefore, parameter learning 
orresponds to extra
ting goals whi
h are requiredto a
hieve a given task, su
h as passing through a via-point at a given time. Aspointed out in the previous se
tion, L(τ ;θ) is not meant to approximate C(τ). Itshould to provide a feasible 
ost fun
tion that empiri
ally generates poli
ies thatminimize C(τ).There are many ways to parametrize the intermediate intrinsi
 
ost fun
tion l.We 
hoose a simple via-point approa
h. The movement is de
omposed in N shorterphases with duration d[i], i = 1, .., N . In ea
h phase the 
ost fun
tion is assumedto be quadrati
 in the state and 
ontrol ve
tors. In the ith phase (∑i−1
j=1 d

[i] < t ≤
∑i

j=1 d
[i]) we assume the intrinsi
 
ost has the form:

l(xt,ut, t;θ) = (xt − g[i])TR[i](xt − g[i]) + uT
t H

[i]ut. (8.3)It is parametrized by the referen
e point g[i] in state spa
e; by the pre
ision ve
-tor r[i] whi
h determines R[i] = diag(exp r[i]) and therefore how steep the poten-tial is along ea
h state dimension; and by the parameters h[i] whi
h determine
H[i] = diag(exph[i]) and therefore the 
ontrol 
osts along ea
h 
ontrol dimension.We represent the importan
e fa
tors r[i] and h[i] both in log spa
e as we are only in-terested in to relationship of this fa
tors. At the end of ea
h phase (at the via-point),we multiply the quadrati
 state 
osts by the fa
tor 1/dt where dt is the time stepused for planning. This ensures that at the end of the phase the via-point is rea
hed,while during the phase the movement is less 
onstraint. With this representation,the parameters θ of our PMPs are given by

θ = [d[1],g[1], r[1],h[1] ... d[N ],g[N ], r[N ],h[N ]] (8.4)Cost fun
tions of this type are 
ommonly used�and hand-
rafted�in 
ontrol prob-lems. They allow to spe
ify a referen
e, but also to determine whether only 
ertaindimensions of the state need to be 
ontrolled to the referen
e and how this trades ofwith 
ontrol 
ost. Instead of hand-designing su
h 
ost fun
tions, our method will useCMA poli
y sear
h to learn these parameters of the intrinsi
 
ost fun
tion. As forthe DMPs we will assume that the desired �nal state at time point T is known, and
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luded in the parameters. Still, the algorithm
an 
hoose the importan
e fa
tors r[N ] and h[N ] of the �nal phase. In addition, we�x the velo
ities in the via-points g[i] to zero, however, the algorithm 
an still rea
hthe via-points with non-zero velo
ities by 
hoosing very low importan
e fa
tors forthe velo
ities (in
luded in r[i]).8.2.3 Dynami
 Model LearningIn order to use planning we need to learn a model of the system dynami
s fDyn inEquation 8.1. The planning algorithm 
an not intera
t with the real environment,it solely has to rely on the learned model. Only after the planning algorithm is�nished, the resulting poli
y is exe
uted on the real system and new data points
〈[xt,ut], ẋt〉 are 
olle
ted for learning the model.Many types of fun
tion approximators 
an be applied in this 
ontext (Vijayaku-mar et al., 2005; Nguyen-Tuong et al., 2008a,b). We use the lazy learning te
hniqueLo
ally Weighted Regression (LWR) (Atkeson et al., 1997) as it is a very simple ande�e
tive approa
h. LWR is a memory-based, non-parametri
 approa
h, whi
h �ts alo
al linear model to the lo
ally-weighted set of data points. For our experiments,the size of the data set was limited to 105 points implemented as a �rst-in-�rst-outqueue bu�er be
ause the 
omputational demands of LWR drasti
ally in
reases withthe size of the data set.8.2.4 Poli
y sear
hModel learning takes pla
e simultaneously to learning the parameters θ of the prim-itive. In general this 
ould lead to some instability. However, while the distri-bution P (xt) depends on the poli
y and the data for model learning is 
ertainlynon-stationary, the 
onditional distribution P (xt+1|ut,xt) is stationary. A lo
allearning s
heme as LWR behaves rather robust under su
h type of non-stationarityof the input distribution only. On the other hand, from the perspe
tive of θ opti-mization, the resulting poli
ies may 
hange and lead to di�erent payo�s C(τ) evenfor the same parameters θ due to the adaption of the learned system dynami
s.We employ the se
ond order sto
hasti
 sear
h method CMA (Heidri
h-Meisnerand Igel, 2009b) to optimize the parameters θ w.r.t. C(τ). Roughly, CMA is aniterative pro
edure that, from the 
urrent Gaussian distribution, generates a numberof samples, evaluates the samples, 
omputes se
ond order statisti
s of those samplesthat redu
ed C(τ) and uses these to update the Gaussian sear
h distribution. In ea
hiteration, all parameter samples θ use the same learned dynami
 model to evaluate
C(τ). Further, CMA in
ludes an impli
it forgetting in its update of the Gaussiandistribution and therefore behaves robust under the non-stationary introdu
ed byadaptation of the system dynami
s model.Note that even if the learned model is only a roughly approximation of thetrue dynami
s, the poli
y sear
h for parameters of the intrinsi
 
ost fun
tion 
an
ompensate for an impre
ise dynami
s model: The RL approa
h will �nd parameters
θ of the intrinsi
 
ost fun
tion su
h that�even with a medio
re model�the resulting
ontroller will lead to low extrinsi
 
osts in the real system.
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 Planning AlgorithmWe use the probabilisti
 planning method Approximate Inferen
e Control (AICO)(Toussaint, 2009) as intrinsi
 planning algorithm. It o�ers the interpretation that amovement primitive 
an be represented as graphi
al model and the movement itselfis generated by inferen
e in this graphi
al model.The graphi
al model is fully determined by the learned system dynami
s and thelearned intrinsi
 
ost fun
tion, see Figure 8.1. In order to transform the minimiza-tion of L(τ ; θ) into an inferen
e problem, for ea
h time-step an individual binaryrandom variable zt is introdu
ed. This random variable indi
ates a reward event.Its probability is given by
P (zt = 1|xt,ut, t) ∝ exp(−ct(xt,ut;θ)),where ct(xt,ut;θ) = l(xt,ut, t;θ)+cp(xt,ut) denotes the 
ost fun
tion for time step

t. AICO now assumes that a reward event zt = 1 is observed at every time-step.Given that eviden
e, AICO 
al
ulates the posterior distribution P (x1:T ,u1:T |z1:T =
1) over traje
tories.We will use the simplest version of AICO, where an extended Kalman smooth-ing approa
h is used to estimate the posterior. The extended Kalman smoothingapproa
h uses Taylor expansions to linearize the system and subsequently uses Gaus-sian message passing to perform the inferen
e. Subsequently the system is linearizedagain at the new mode of the belief over the traje
tories. AICO is only a lo
al op-timization method and we have to provide an initial solution whi
h is used for the�rst linearization. We will use the dire
t path to the via-points g[i] in Equation8.3 as initial solution. AICO provides us with an linear feedba
k 
ontroller for ea
htime sli
e of the form

ut = Otxt + ot, (8.5)whi
h is used as poli
y of the movement primitive.The original formulation of the AICO method (Toussaint, 2009) does not 
on-sider torque limits, whi
h are important for our dynami
 balan
ing experiments,and hen
e, we needed to extend the algorithm. This extension yields not only amodi�ed form of the immediate 
ost fun
tion but also results in di�erent updateequations for the messages and �nally di�erent equations of the optimal feedba
k
ontroller. A 
omplete derivation of the extension in
luding the resulting messagesand the 
orresponding feedba
k 
ontroller is given in Appendix 8.5.The 
omplete learning framework is organized the following. Given the param-eters θ, AICO is initialized with an initial solution whi
h is the dire
t path fromvia-point to via-point. AICO is then used to optimize the parametrized intrinsi

ost fun
tion and the result of this optimization pro
ess is a linear feedba
k 
on-troller for ea
h time sli
e, see Equation 8.5. This feedba
k 
ontrol law is exe
utedeither on a real or simulated robot and the overall task performan
e (or extrinsi

osts) C(τ) of the resulting traje
tory is evaluated. Model learning takes pla
e inparallel and uses all data 
olle
ted during the roll-outs, see Figure 8.2.
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Figure 8.2: We de
ompose motor skill learning into two di�erent learning problems. At thehighest level we �nd parameters of an intrinsi
 
ost fun
tion L(τ ; θ) using poli
y sear
h.Given parameters θi the probabilisti
 planner at the lower level uses the intrinsi
 
ostfun
tion L(τ ; θ) to estimate a non-linear feedba
k 
ontroller for ea
h time step. The feed-ba
k 
ontroller is subsequently exe
uted on the real robot and the extrinsi
 
ost C(τi) isevaluated. Simultaneously we 
olle
t samples of the system dynami
s 〈[xt,ut], ẋt〉 while ex-e
uting the movement primitive. These samples are used to improve our learned dynami
smodel whi
h is used for planning.8.3 ExperimentsWe start our evaluation of the proposed Planning Movement Primitive (PMP) ap-proa
h on a one-dimensional via-point task to illustrate basi
 
hara
teristi
s. Inorder to demonstrate our approa
h on a more 
hallenging dynami
 robot task we
hoose a 
omplex 4-link humanoid balan
ing task. In our experiments, we fo
uson investigating robustness to noise, optimality of the solution, learning speed andgeneralizability to di�erent initial or target states. For a 
omparison we take the
ommonly used DMPs as a baseline where we use the newest version of the DMPs(Pastor et al., 2009) as dis
ussed in detail in Appendix 8.5. In di�eren
e to mostappli
ations of the DMPs, are we learning from s
rat
h without the use of imitationlearning. As des
ribed above we use 2nd order sto
hasti
 sear
h to learn the PMPand DMP parameters. In order to 
ompare to a more 
ommonly used poli
y sear
halgorithm we additionally test using the PI2 algorithm for learning the DMPs. Forall experiments we empiri
ally evaluate the optimal settings of the algorithms (su
has the exploration rate of CMA and PI2 or the number of 
enters for the DMPs),whi
h are listed in the Appendix 8.5.8.3.1 One-dimensional via-point taskIn this task the agent has to 
ontrol a one dimensional point mass. The state attime t is denoted by xt = [φt, φ̇t]
T and we dire
tly 
ontrol the a

eleration. Thetime horizon was limited to T = 0.5s. Starting at x0 = [0, 0]T the agent has to pass



8.3. Experiments 101through a given via-point gv = −0.2 at tv = 300ms and the �nal target gT was setto 1, see Figure 8.3. We de�ne the extrinsi
 
osts for this task:
C(τ) = 104(φ̇2

T + 10(gT − φT )
2) + 105(gv − φt300ms)2 + 5 · dt · 10−1

T
∑

t=0

u2t .The �rst two terms punish deviations from the target gT and the via-point gv. Thetarget should be rea
hed with zero velo
ity at T = 0.5s. The last term punishes highenergy 
onsumption. The 
ontrol a
tion is noisy, we always add a Gaussian noiseterm with a standard deviation of σ = 20 to the 
ontrol a
tion. The simulation timestep was set to 10ms. As this is a very simple task, we use it just to show di�erent
hara
teristi
s of the DMPs and PMPs.A quite similar task has been used in (Todorov and Jordan, 2002) to study humanmovement 
ontrol. The experiments showed that humans were able to rea
h thegiven via-points with high a

ura
y, however, in between the via-points, the trial-to-trial variability was rather high. This is a well known 
on
ept from optimal 
ontrol,
alled the minimum intervention prin
iple, showing also that human movement
ontrol follows basi
 rules of optimal 
ontrol. This observation also 
ontradi
ts thathumans use a pure traje
tory based movement representation. Still, the minimumintervention prin
iple is 
onsistent with the dynami
al system view of movement
ontrol, however, mu
h more 
omplex dynami
al systems than the DMPs are needed(i.e. 
oupled dynami
al systems with non-
onstant system parameters su
h as thedamping 
onstants) to reprodu
e this e�e
t.We �rst estimate the quality of the best available poli
y with the DMP and thePMP approa
h. We therefore use the PMPs with two via-points and set the param-eters θ per hand. As we are using a linear system model and a simple extrinsi
 
ostfun
tion, the PMP parameters 
an be dire
tly obtained by looking at the extrinsi

osts. As the PMPs use the AICO algorithm whi
h always produ
es optimal poli-
ies for LQG systems, the PMP solution is the optimal solution. We subsequentlyuse the mean traje
tory returned by AICO and use imitation learning to �t theDMP parameters. We also optimized the feedba
k 
ontrollers used for the DMPs.In Figure 8.3 we plotted 100 roll-outs of the DMP and PMP approa
h using thisoptimal poli
ies. The se
ond 
olumn illustrates the trial-to-trial variability of thetraje
tories. The optimal solution has minimum varian
e at the via-point and thetarget. As expe
ted this solution is reprodu
ed with the PMP approa
h, be
ause theparameters of the PMPs are able to re�e
t the importan
e of passing through thevia-point. The DMPs 
ould not adapt the varian
e during the movement be
ausethe used (optimized) feedba
k 
ontroller uses 
onstant 
ontroller gains. As we 
ansee, the varian
e of the DMP traje
tory is simply in
reasing with time.Comparing the optimal solutions we �nd that PMPs, in 
ontrast to DMPs, 
annaturally deal with the inherent noise in the system. This is also re�e
ted by theaverage 
ost values over 1000 traje
tories, 1286± 556 for the DMPs and 1173± 596for the PMPs. The ± symbol always denotes the standard deviation.This advantage would not be very useful if we were not able to learn the optimalPMP parameters from experien
e. Next we test using CMA poli
y sear
h to learnthe parameters for the DMPs and the PMPs. In addition, in order to 
ompare to
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(a) Best found poli
y with DMPs (average 
osts over 1000 traj: 1286 ± 556)
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(b) Best found poli
y with PMPs (average 
osts over 1000 traj: 1173 ± 596)Figure 8.3: Best available poli
ies for the PMPs and the DMPs for the via-point task.The agent has to pass the via-point at tv = 0.3s and deal with the sto
hasti
ity of thesystem (Gaussian 
ontrol noise with a varian
e of 202). The plot shows 100 traje
toriesreprodu
ed with the (hand-
rafted) optimal PMPs parameters and 100 traje
tories withthe optimal parameters for the DMPs. The PMP approa
h is able to redu
e the varian
eat the movement if it is relevant for the task while the DMPs 
an only suppress the noise inthe system throughout the traje
tory in order to get an a

eptable s
ore. This advantageis also re�e
ted by the average 
osts over 1000 traje
tories.a more 
ommonly used poli
y sear
h method, we also 
ompare to the PI2 approa
h(Theodorou et al., 2010a) whi
h we 
ould only evaluate for the DMP approa
h. Weevaluated the learning performan
e in the 
ase of no 
ontrol noise, Figure 8.4(a),and in the 
ase of 
ontrol noise σ = 20, Figure 8.4(b). Without 
ontrol noise thequality of the learned poli
y found by 2nd order sear
h is similar for the DMPs andthe PMPs. PI2 
ould not �nd as good solutions as the sto
hasti
 sear
h approa
h.The reason for this is that PI2 
ould not �nd the very large weight values whi
h areneeded for the last few 
enters of the DMPs in order to have exa
tly zero velo
ityat the �nal state (note that the weights of the DMPs are multiplied by the phasevariable s whi
h almost vanishes in the end of the movement and therefore theseweight values have to be very high). Be
ause CMA poli
y sear
h uses se
ond orderinformation, su
h large parameter values are easily found. This 
omparison 
learlyshows that using 2nd order sear
h for poli
y sear
h is justi�ed. If we 
ompare thelearning speed in terms of required samples between DMPs and PMPs, we �nd anadvantage for PMPs whi
h 
ould be learned an order of magnitude faster than theDMPs.The se
ond experiment (with 
ontrol noise of σ = 20) was 
onsiderably harderto learn. Here, we needed to average ea
h performan
e evaluation over 20 roll-outs. The use of more sophisti
ated extensions of CMA (Heidri
h-Meisner and Igel,
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h 
an deal with noisy performan
e evaluations and hen
e improve thelearning speed of CMA poli
y sear
h in the noisy setup is part of future work.In Figure 8.4(b) we �nd that the PMPs 
ould be learned an order of magnitudefaster than the DMPs. As expe
ted from the earlier experiment, the PMPs 
ould�nd 
learly better solutions as the DMPs as they 
an adapt the varian
e of thetraje
tory to the task 
onstraints. Again, PI2 showed a worse performan
e than2nd order sear
h. Illustrated are mean values and standard deviations over 15 trialsof learning (1034 ± 1.46 for the PMPs and 1876 ± 131 for the DMPs using CMA).To 
ompare these results to the optimal 
osts we evaluated the best learned poli
iesof both approa
hes and generated 1000 traje
tories. The learned solution for thePMPs was similar to the hand-
oded optimal solution, 1190 ± 584 versus 
osts of
1173±596 for the optimal solution. DMPs a
hieved 
osts of 1478±837, illustratingthat, eventhough the DMPs are able to represent mu
h better solutions with 
ostsof 1286 ± 556 (see Figure 8.3), it is very hard to �nd this solution.In Table 8.1, we show the mean and varian
e of the found parameters for the�rst via-point in 
omparison to the optimal PMP parameters. We 
an see that thefound parameters 
losely mat
hed the optimal ones. Interestingly, in the experimentwith no noise, the found parameters had a larger deviation from the optimal ones,espe
ially for the �rst via-point g[1] in Table 8.1. The reason for this is the simpleobservation that without noise, we 
an 
hoose many via-points whi
h results in thesame traje
tory, whereas with noise we have to 
hoose the 
orre
t via-point in orderto redu
e the varian
e of the traje
tory at this point in time.Table 8.1: Learned parameters using PMPs for the via-point task (1st via-point), ± denotesthe standard deviation.s
enario d[1] g[1] log(r[1]) log(h[1])optimal 0.3 −0.2 [5, 0] −2.3no noise 0.29 ± 0.01 −0.27± 0.03 [4.08 ± 4.18,−0.8 ±−0.77] −3.05 ±−4with noise 0.29 ± 0.01 −0.23± 0.05 [4.93 ± 5.29,−0.31 ±−0.12] −2.85 ±−3Next, we investigate the ability of both approa
hes to generalize to di�erentsituations. With generalization we mean that the same learned parameters 
anbe re-used to generate di�erent movements, e.g. used for di�erent start or targetstates. The 
hange of the initial state or the target state is also allowed by the DMPframework. However, how the movement is generalized to these new situations isbased on heuristi
s (Pastor et al., 2009) and does not 
onsider any task 
onstraints.In Figure 8.5 the learned poli
ies are applied to rea
h di�erent �nal targets
φT ∈ [1.5, 1.25, 1, 0.75, 0.5]. All plots show the mean traje
tory. In order to 
hangethe �nal state of the movement we have to 
hange the point attra
tor of the DMPs,whi
h 
hanges the 
omplete traje
tory. Due to this heuristi
, the resulting DMPtraje
tories shown in Figure 8.5(a) do not pass through the via-point any more. Notethat we use a modi�ed version of the DMPs (Pastor et al., 2009) whi
h has alreadybeen built for generalization to di�erent target points. The PMPs on the other hand



104 Chapter 8. Planning Movement Primitives
10 100 1000 10000

10
3

10
4

episodes

co
st

s

 

 

1 DMP CMA
2 PMP CMA
3 DMP PI2

1 2 3
600

800

1000

1200

1400

methods

fin
al

 c
os

ts(a) Learning performan
e without noise 200 2000 20000 200000
10

3

10
4

episodes

co
st

s

 

 

1 DMP CMA
2 PMP CMA
3 DMP PI2

1 2 3
0

500

1000

1500

2000

2500

methods

fin
al

 c
os

ts

(b) Learning performan
e with noiseFigure 8.4: This �gure illustrates the learning performan
e of the two movement represen-tations, DMPs and PMPs, for the one-dimensional via-point task. Illustrated are meanvalues and standard deviations over 15 trials after CMA poli
y sear
h. In addition, we also
ompare to the PI2 approa
h (Theodorou et al., 2010a) whi
h we 
ould only evaluate for theDMP approa
h. Without noise the �nal 
osts of the two representations are similar if CMApoli
y sear
h is used (a). In the se
ond example (b) we use zero-mean Gaussian noise with
σ = 20 for the 
ontrols. In this setup we needed to average ea
h performan
e evaluationfor CMA over 20 roll-outs. For both setups the PMPs 
ould 
onsiderably outperform theDMPs in terms of learning speed. For the noisy setup the PMPs 
ould additionally produ
epoli
ies of mu
h higher quality as they 
an adapt the varian
e of the traje
tories to thetask 
onstraints. PI2 
ould not �nd as good solutions as the CMA poli
y sear
h approa
hin both setups.
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(
) PMPs with varying goalsand adapted via-pointsFigure 8.5: In this experiment we evaluated the generalization of the learned poli
ies to dif-ferent goal states φT ∈ [1.5, 1.25, 1, 0.75, 0.5]. Always the same parameters θ have been used,i.e the parameters were not relearned. The DMPs (a) are not aware of task-relevant featuresand hen
e do not pass through the via-point any more. (b) PMPs 
an adapt to varying �nalgoals with small e�e
ts on passing through the learned via-point. Furthermore the PMP rep-resentation is very �exible and we 
an also use a via-point g̃1 = g1+[0.5, 0.25, 0,−0.25,−0.5]with 
onstant distan
e to the goal state to emulate the heuristi
 DMP behavior (
).still navigate through the learned via-point when 
hanging the goal state as shownin Figure 8.5(b). We 
an also adapt the via-point g̃1 = g̃1+[0.5, 0.25, 0,−0.25,−0.5]to en
ode, for example, a via-point whi
h always has the same distan
e from thetarget state 8.5(
). This would somehow emulate the adaption of the traje
toryused in the DMP approa
h. It is hard to argue whi
h behavior is better suitedfor this task as we have not spe
i�ed any 
ost fun
tion for the 
hanged situations,however, the PMP approa
h o�ers mu
h more 
ontrol how the poli
y is 
hanged.For generalization to di�erent initial states the behavior is basi
ally the same thusthis evaluation is not shown here.
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Figure 8.6: This �gure illustrates a dynami
 balan
ing movement learned using the proposedPlanning Movement Primitives. The 4-link robot modelling a humanoid (70kg, 2m) getspushed from behind with a spe
i�
 for
e (F = 25Ns) and has to move su
h that it maintainsbalan
e. The optimal poli
y is to perform a fast bending movement and subsequently returnto the upright robot posture. The 
ir
les denote the ankle, the knee, the hip and the shoulderjoint.8.3.2 Dynami
 humanoid balan
ing taskIn order to assess the PMPs on a more 
omplex task, we evaluate the PMP andDMP approa
h on a dynami
 non-linear balan
ing task (Atkeson and Stephens,2007) where a robot gets pushed with a spe
i�
 for
e F and has to keep balan
e. Thepush results in an immediate 
hange of the joint velo
ities. The motor torques arelimited whi
h makes dire
t 
ounter-balan
ing of the for
e unfeasible. The optimalstrategy is therefore to perform a fast bending movement and subsequently returnto the upright position, see Figure 8.6. This is a very non-linear 
ontrol problem,using any type of (linear) balan
ing 
ontrol or lo
al optimal 
ontrol algorithm su
h asusing AICO with the extrinsi
 
ost fun
tion fails. Thus, we have to use a parametri
movement representation. Like in the previous experiment, we take the Dynami
Movement Primitive (DMP) (S
haal et al., 2003) approa
h as a baseline.We use a 4-link robot as a simplisti
 model of a humanoid (70kg, 2m) (Atkesonand Stephens, 2007). The 8-dimensional state xt is 
omposed of the arm, the hip,the knee and the ankle positions and their velo
ities. Table 8.6 shows the initialvelo
ities (resulting from the for
e F whi
h always a
ts at the shoulder of the robot)and the valid joint angle range for the task. In all experiments the applied for
ewas F = 25Ns. If one of the joints leaves the valid range the robot is 
onsideredto be fallen. If the robot manages to keep balan
e for 5s the episode is 
onsideredto be su

essful and the simulation is stopped. Additionally to the joint limits, the
ontrols are limited to the intervals [±250,±500,±500,±70]Ns (arm, hip, knee andankle). For more details we refer to (Atkeson and Stephens, 2007).Let ts be the last point in time where the robot has not fallen and let xts bethe last valid state. The �nal target state (upright position with zero velo
ity) isdenoted by xr and T = 5s. As extrinsi
 
ost fun
tion C(τ) we use
C(τ) = 2 · 103(ts − T )2 + (xts − xr)

TRE(xts − xr) +

ts
∑

t=0

uT
t HEut . (8.6)
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(b) Varian
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(
) ControlsFigure 8.7: The �gure illustrates generated movements for the 4-link balan
ing task usingDMPs. The 
ontrols were perturbed by zero-mean Gaussian noise with σ = 10Nm , theplots show 100 roll-outs using the same parameter setting θ. The trial-to-trial variability ofthe traje
tories is shown in (b). This varian
e is determined by the learned 
ontroller gainsof the inverse dynami
s 
ontroller. As 
onstant 
ontroller gains are used the varian
e 
annot be adapted during the movement. The noisy 
ontrols for all 100 roll-outs are illustratedin (
). This illustrated best available poli
y a
hieved 
osts of 568.The �rst term (ts−T )2 is a punishment term for falling over. If the robot falls over,this term typi
ally dominates. The pre
ision matrix RE determines how 
ostly it isnot to rea
h xr. The diagonal elements of RE are set to 103 for joint angles and to
10 for joint velo
ities. Controls are punished by HE = 5 · 10−6I. As we 
an see theextrinsi
 
ost fun
tion 
annot be dire
tly en
oded as a sum of intermediate 
ostswhi
h is usually required for sto
hasti
 optimal 
ontrol algorithms. Therefore, weneed to extra
t su
h a 
ost fun
tion in order to use a SOC planner.We use additive zero-mean Gaussian noise with a varian
e σ = 10. In 
ontrastto the simple via-point task here imitation learning fails for the DMPs. The besta
hieved poli
y using PMPs shown in Figure 8.8 is very 
lose to the 
ontrol andjoint 
onstraints and sin
e the DMPs have no knowledge about these 
onstraints,CMA poli
y sear
h 
ould not learn any 
ontrol gain settings whi
h ful�lls them. (Al-though that the traje
tories were �rst perfe
tly mat
hed using imitation learning.)Therefore the illustrated DMP poli
y was learned from s
rat
h and di�ers from thebest PMP solution. Figure 8.7 illustrates 100 roll-outs of the best poli
ies found bythe DMP approa
h and Figure 8.8 shows 100 roll-outs of the PMP method. These
ond 
olumn in ea
h �gure illustrates the varian
e of the traje
tories for the dif-ferent roll-outs. While the DMPs 
annot adapt the varian
e during the movement,the PMPs in Figure 8.8 
an redu
e the varian
e at the learned via-point (denotedby 
rosses). As the PMPs are able to 
ontrol the varian
e of the traje
tory, we 
analso see that the varian
e of the movement is mu
h higher 
ompared to the DMPsas a

ura
y only matters at the via-points. We 
an also see that the arm traje
toryhas a high varian
e after the robot is 
lose to a stable up-right posture, see Figure8.8(a), be
ause it is not ne
essary to stri
tly 
ontrol the arm in this phase. Thebest found poli
y of the DMPs had 
osts of 568 while the best result using PMPswas 307. This strongly suggests that it is advantageous to redu
e the varian
e at
ertain points in time in order to improve the quality of the poli
y.Next, we again want to assess the learning speed of both approa
hes. We again
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(b) Varian
e of the joints 0 1 2 3 4 5
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(
) ControlsFigure 8.8: This �gure illustrates the generated movements for the 4-link balan
ing taskusing PMPs. The 
rosses in (a) and (b) mark the learned via-point. As we 
an see thevarian
e is minimized at these points, re�e
ting the importan
e to rea
h this point. (
)shows the noisy 
ontrols applied by the PMPs. The illustrated best available poli
y a
hieved
osts of 307.
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Figure 8.9: The �gure illustrates the learning performan
e of the two movement represen-tations, DMPs and PMPs for the 4-link balan
ing task. Illustrated are mean values andstandard deviations over 20 trials after CMA poli
y sear
h. The 
ontrols (torques) areperturbed by zero-mean Gaussian noise with σ = 10Nm. The PMPs are able to extra
t
hara
teristi
 features of this task whi
h is a spe
i�
 posture during the bending move-ment, shown in Figure 8.8(a). Using the proposed Planning Movement Primitives goodpoli
ies 
ould be found at least one order of magnitude faster 
ompared to the traje
torybased DMP approa
h. Also, the quality of the best-found poli
y was 
onsiderably betterfor the PMP approa
h (993 ± 449 for the DMPs and 451 ± 212 for the PMPs). For theDMP approa
h we additionally evaluated PI2 for poli
y sear
h whi
h 
ould not �nd goodpoli
ies.used CMA poli
y sear
h for the PMPs and DMPs as well as PI2 for the DMPapproa
h. The learning 
urves are illustrated in Figure 8.9. Using the PMPs asmovement representation, good poli
ies 
ould be found at least one order of mag-nitude faster 
ompared to the traje
tory based DMP approa
h. The quality of thefound poli
ies was better for the PMP approa
h (mean values and standard devia-tions after learning: 993± 449 for the DMPs and 451± 212 for the PMPs). For theDMP approa
h we additionally evaluated PI2 for poli
y sear
h, however, PI2 wasnot able to �nd good solutions�the robot always fell over.In the next step we again test the generalization to di�erent targets. We usedthe learned poli
ies to generate movements to di�erent �nal targets of the arm
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(a) DMPs for 
hanging targets 0 1 2 3 4 5
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(b) PMPs for 
hanging targetsFigure 8.10: This �gure illustrates the joint angle traje
tories (arm, hip, knee and ankle) ofa 4-link robot model during a balan
ing movement for di�erent �nal targets of the arm joint([3, 2.5, 2, 1.5, 1, 0.5, 0,−0.2,−0.4,−0.6]). The applied poli
ies were learned for a �nal armposture of φTarm = 0. (a) The valid range of the arm joint using DMPs is φTarm ∈ {−0.2, 1}.Large dots in the plot indi
ates that the robot has fallen. (b) PMPs 
ould generate validpoli
ies for all �nal arm 
on�gurations.
joint φTarm ∈ [3, 2.5, 2, 1.5, 1, 0.5, 0,−0.2,−0.4,−0.6]. Note that the used poli
y waslearned for an �nal arm posture of φTarm = 0, we only 
hange either the arm-position of the last via-point or the point attra
tor of the dynami
al system. Theresults shown in Figure 8.10 
on�rm the �ndings of the one-dimensional via-pointtask. The PMPs �rst move to the via-point, always maintaining the extra
tedtask 
onstraints and afterwards move the arm to the desired position while keepingbalan
e. All desired target positions of the arm 
ould be ful�lled. In 
ontrast, theDMPs managed to keep balan
e only for few target positions. The valid range of thetarget arm position with DMPs was φTarm ∈ {−0.2, 1}. This shows the advantageof generalization while keeping task 
onstraints versus generalization per using theDMP heuristi
s.So far all experiments for the PMPs were performed using the known model ofthe system dynami
s, these experiments are denoted by PMP in Figure 8.11. Notethat also for the DMPs the known system model has been used for inverse dynami
s
ontrol. Now we want to evaluate how model learning a�e
ts the performan
e ofour approa
h. This 
an be seen in Figure 8.11. In the beginning of learning theextrinsi
 
osts are larger 
ompared to motor skill learning with a given analyti
model. However, as the number of 
olle
ted data-points 〈[xt;ut], ẋt〉 in
reases thePMPs with model learning qui
kly 
at
h up and 
onverge �nally to the same 
osts.The PMP representation with model learning in parallel 
onsiderably outperformsthe traje
tory based DMP approa
h in learning speed and in the �nal 
osts.
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Figure 8.11: The �gure shows the in�uen
e of model learning on the 4-link balan
ingtask. Illustrated are mean values and standard deviations over 20 trials. The learningperforman
e with the given system model is denoted by PMP. Instead of using the givenmodel we now want to learn the system model from data (as des
ribed in Se
tion 8.2.3).In the beginning of learning the extrinsi
 
osts are larger 
ompared to motor skill learningwith a given analyti
 model. However, as the number of 
olle
ted data-points 〈[xt;ut], ẋt〉in
reases the PMPs with model learning qui
kly 
at
h up and 
onverge �nally to the same
osts. The PMP representation with model learning in parallel 
onsiderably outperformsthe traje
tory based DMP approa
h in learning speed and in the �nal 
osts.8.4 Con
lusion and Future WorkWe have proposed a new type movement representation whi
h endows a movementprimitive with an intrinsi
 probabilisti
 planning system instead of endowing a move-ment primitive with a dynami
al system su
h as the widely used Dynami
 MovementPrimitives (DMPs) (S
haal et al., 2003) approa
h. While the dynami
al system ofa DMP is to some degree rea
tive to the environment�namely by adapting thetemporal s
aling fa
tor and thereby de- or a

elerating the movement exe
ution asneeded (S
haal et al., 2003)�the traje
tory shape itself is �xed and non-rea
tive tothe environment. In 
ontrast, a movement primitive that is endowed with an intrin-si
 planning 
omponent 
an rea
t to the environment by optimizing the traje
toryfor the spe
i�
 
urrent situation. Training su
h a movement primitive now meansto train a planner to generate an appropriate traje
tory in a given situation insteadof training a dynami
al system to generate a �xed (temporally �exible) referen
etraje
tory.Our approa
h to parameterize the intrinsi
 
ost fun
tion is to use task-relevantfeatures, su
h as the lo
ation of via-points or the importan
e of rea
hing this via-point. The idea is that su
h learnt task-relevant features as parameters of themovement representation should generalize well a
ross situations. As our experi-ments show su
h an parametrization fa
ilitates learning - good poli
ies 
an be foundan order of magnitude faster as with parametrizations whi
h de�ne the shape of thetraje
tory. It also allows an e�
ient generalization to new situations (e.g. newmovement endpoints) be
ause the planner always tries to ful�lls the extra
ted task
onstraints. On
e a motor skill is learned additional 
onstraints like an unexpe
tedappearing obsta
le during a walking movement 
an dire
tly be 
onsidered for mod-ulating the behavior. Thus re-learning of the motor skill is not ne
essary sin
e theplanning ma
hinery 
an integrate the new knowledge immediately. This propertieswill be further investigated for footpla
ement planning in future resear
h.Sto
hasti
 optimal 
ontrol (SOC) is also an ex
ellent method to des
ribe human
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ontrol (Todorov and Jordan, 2002). Thus, by the use of SOC methodsalready at the level of the primitive, our approa
h 
an implement many of theseprin
iples. For example, the minimum intervention prin
iple implies that we shouldonly intervene the system if it is ne
essary to ful�ll a given task. A representationwhi
h stri
tly follows a desired traje
tory by feedba
k 
ontrol laws 
an not reprodu
esu
h a behavior. This has also been 
on�rmed by our experiments, where the DMPrepresentation produ
es sub-optimal poli
ies in the presen
e of noise in our system.Only for deterministi
 systems the optimal solution 
an be represented by su
h anapproa
h. In 
ontrast the proposed Planning Movement Primitives 
ould reprodu
ethe optimal poli
y after learning.An additional interesting aspe
t of using movement primitives is that, ideally,we want to be able to 
ombine primitives in order to a
hieve several tasks simul-taneously. This is still a mostly unsolved problem for 
urrent movement represen-tations. Here, our Planning Movement Primitives o�ers new opportunities. Fortraje
tory-based representation we would need to linearly 
ombine two traje
toriesin order to 
ombine two movements. As many task demands and system dynami
sare non-linear su
h an approa
h usually fails. However, instead of linearly 
ombiningtraje
tories, our approa
h 
an now linearly 
ombine 
ost fun
tions�whi
h resultsin a non-linear 
ombination of the poli
ies for the single tasks. The evaluation ofthis idea for 
ombining several movements is also part of future work.In this paper we fo
used on the representation of movement and put less empha-sis on learning a movement. Yet, we want to point out again that our method doesnot depend on the used poli
y sear
h method (we used the se
ond order sto
has-ti
 sear
h method CMA), any episode-based exploring poli
y sear
h method 
anbe used. We also do not want to argue for using episode-based exploring methodsfor poli
y sear
h, however, as our experiments show, these methods provide use-ful alternatives to the more 
ommonly used step-based approa
hes su
h as the PI2(Theodorou et al., 2010a), the PoWER (Kober and Peters, 2010) or the eNAC al-gorithm (Peters and S
haal, 2008b). For poli
y sear
h, future work will 
on
entrateon extending the framework for learning in the 
ase of 
hanging initial 
onditions(Neumann, 2011) as well as using inferen
e-based methods (Peters et al., 2010) alsoon the level of learning the parameters.8.5 A
knowledgmentsThis paper was written by Elmar Rü
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knowledgments 111AppendixAlgorithmsIn this se
tion we review the evaluated algorithms.Dynami
 Movement PrimitivesThe most prominent representation for movement primitives used in robot 
ontrolare the Dynami
 Movement Primitives (DMP) (S
haal et al., 2003). We thereforeused the DMPs as a baseline in our evaluations and will brie�y review this approa
hin order to 
larify di�eren
es to our work. For our experiments we implemented anextension of the original DMPs (Pastor et al., 2009), whi
h 
onsiders an additionalterm in the dynami
al system whi
h fa
ilitates generalization to di�erent targetstates. For more details we refer to (S
haal et al., 2003; Pastor et al., 2009).DMPs generate multi-dimensional traje
tories by the use of non-linear di�eren-tial equations. The basi
 idea is to a use for ea
h degree-of-freedom (DoF) of therobot a globally stable, linear dynami
al system whi
h is modulated by learnablenon-linear fun
tions f :
τ ż = αzβz(g − y)− αzz − αzβz(g − y0)s+ f, τ ẏ = z,where the desired �nal position of the joint is denoted by g and the initial position ofthe joint is denoted by y0. The variables y and ẏ denote a desired joint position andjoint velo
ity, whi
h represent our movement plan. The temporal s
aling fa
tor isdenoted by τ and αz and βz are time 
onstants. The non-linear fun
tion f dire
tlymodulates the derivative of the internal state variable z. Thus, f modulates thedesired a

eleration of the movement plan. s denotes the phase of the movement.For ea
h DoF of the robot an individual dynami
al system, and hen
e an individ-ual fun
tion f is used. The fun
tion f only depends on the phase s of a movement,whi
h represents time, τ ṡ = −αss. The phase variable s is initially set to 1 and will
onverge to 0 for a proper 
hoi
e of τ and αs. With αs we 
an modulate the desiredmovement speed. The fun
tion f is 
onstru
ted of the weighted sum of K Gaussianbasis fun
tions Ψi

f(s) =

∑K
i=1 Ψi(s)wis
∑K

i=1 Ψi(s)
, Ψi(s) = exp(−

1

2σ2
i

(s− ci)
2).As the phase variable s 
onverges to zero also the in�uen
e of f vanishes within
reasing time. Hen
e, the dynami
al system is globally stable with g as pointattra
tor.In our setting, only the linear weights wi are parameters of the primitive whi
h
an modulate the shape of the movement. The 
enters ci spe
ify at whi
h phase ofthe movement the basis fun
tion be
omes a
tive and are typi
ally equally spa
edin the range of s and not modi�ed during learning. The bandwidth of the basisfun
tions is given by σ2

i .Integrating the dynami
al systems for ea
h DoF results into a desired traje
tory
〈yt, ẏt〉 of the joint angles. We will use an inverse dynami
s 
ontroller to follow this
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tory (Peters et al., 2008). The inverse dynami
s 
ontroller re
eives the desireda

elerations q̈des as input and outputs the 
ontrol torques u. In order to 
al
ulatethe desired a

elerations we use a simple de
oupled linear PD-
ontroller
q̈des = diag(kpos)(yt − qt) + diag(kvel)(ẏt − q̇t).Unfortunately standard inverse dynami
s 
ontrol did not work in our setup be
ausewe had to deal with 
ontrol limits of multi-dimensional systems. Thus, we had touse an inverse dynami
s 
ontroller whi
h also in
orporates 
ontrol 
onstraints. Forthis reason we performed an iterative gradient as
ent using the di�eren
e betweenthe a
tual (using 
onstrainted 
ontrols) and the desired a

elerations q̈des as errorfun
tion. This pro
ess was stopped after at most 25 iterations.For our 
omparison, we will learn the linear weights w for ea
h DoF as well asthe 
ontroller gains kpos and kvel, i.e. θ = [w1, . . . ,wD,kpos,kvel]. This resultsinto KD + 2D parameters for the movement representation, where D denotes thenumber of DoF of the robot.Approximate Inferen
e ControlThe original formulation of the Approximate Inferen
e Control (AICO) method(Toussaint, 2009) does not 
onsider a linear term for the 
ontrol 
osts. However, thisis needed to en
ode torque limits, whi
h are important for our dynami
 balan
ingexperiments, and hen
e, we needed to extend AICO.The introdu
tion of a linear term for the 
ontrol 
osts yields not only in a modi-�ed 
ost fun
tion but also results in di�erent update equations for the messages and�nally in di�erent equations of the optimal feedba
k 
ontroller. For 
ompletenesswe will �rst re
ap the main steps to derive the AICO method and will then dis
ussthe modi�
ations to implement 
ontrol 
onstraints.Approximate Inferen
e Control without Torque Limits For motor planningwe 
onsider the sto
hasti
 pro
ess:

P (x0:T ,u1:T , z1:T ) = P (x0)

T
∏

t=0

P (ut|xt)

T
∏

t=1

P (xt|xt−1,ut−1)

T
∏

t=0

P (zt|xt,ut).where P (ut|xt) denotes the state dependent prior for the 
ontrols, P (xt|xt−1,ut−1)the state transition distribution and P (x0) the initial state distribution. Here, weassume that the prior of the 
ontrols is independent of the states and thus we willsimply use P (ut|xt) = P (ut) for the rest of the appendix. The time horizon is �xedto T time-steps. The binary task variable zt denotes a reward event, its probabilityis de�ned by P (zt = 1|xt,ut) ∝ exp(−ct(xt,ut)), where ct(xt,ut) is the intermediate
ost fun
tion1 for time step t. It expresses a performan
e 
riteria (like avoiding a
ollision, or rea
hing a goal).We want to 
ompute the posterior P (x1:T ,u1:T |z1:T = 1) over traje
tories, 
on-ditioned on observing a reward (zt = 1) at ea
h time-step t. This posterior 
an be1In this paper the immediate 
ost fun
tion is 
omposed of the intrinsi
 
osts and the 
onstraint
osts, i.e. ct(xt,ut) = l(xt,ut, t;θ) + cp(xt,ut)
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omputed by using message passing in the given graphi
al model of Figure 8.1. Tosimplify the 
omputations we integrate out the 
ontrols:
P (xt+1|xt) =

∫

ut

P (xt+1|xt,ut)P (ut|xt)dut, (8.7)The marginal belief bt(xt) of a state at time t is given by:
bt(xt) = αt(xt)βt(xt)φt(xt), (8.8)where αt(xt) is the forward message, βt(xt) is the ba
kward message φt(xt) is the
urrent task message. The messages are given by:

αt(xt) =

∫

xt−1

P (xt|xt−1)αt−1(xt−1)φt−1(xt−1)dxt−1, (8.9)
βt(xt) =

∫

xt+1

P (xt+1|xt)βt+1(xt+1)φt+1(xt+1)dxt+1, (8.10)
φt(xt) = P (zt|xt). (8.11)We 
onsider dis
rete-time, non-linear sto
hasti
 systems with zero mean Gaus-sian noise

P (xt+1|xt,ut) = N (xt+1|fDyn(xt,ut),Qt).The non-linear sto
hasti
 system fDyn is approximated by a Linear dynami
s,Quadrati
 
osts and Gaussian noise system (LQG) by Taylor expansion (Toussaint,2009; Todorov and Li, 2005) :
P (xt+1|xt,ut) = N (xt+1|Atxt + at +Btut,Qt) (8.12)Thus, the system is linearized along a given traje
tory 〈x̂0:T , û1:T 〉 at every pointin time. We will use ft as shorthand for fDyn(xt,ut). Then, the state transitionmatri
es At are given by At = (I + δft

δxt
∆t), the 
ontrol matri
es Bt are given by

Bt =
δft
δut

∆t and the linear terms by at = (ft −
δft
δxt

xt −
δft
δut

ut)∆t.In the original formulation of AICO the 
ost fun
tion ct is approximated as :
ct(xt,ut) = xT

t Rtxt − 2rTt xt + uT
t Htut.Note that there is no linear term for the 
ontrol 
osts as we only punish quadrati

ontrols. We 
an now write P (zt = 1|xt,ut) = P (zt = 1|xt)P (ut) as

P (zt = 1|xt) ∝ N [xt|rt,Rt] (8.13)
P (ut) = N [ut|0,Ht], (8.14)where the distributions in Equation 8.13 and 8.14 are given in 
anoni
al form. The
anoni
al form of a Gaussian is used be
ause numeri
al operations su
h as produ
tsor integrals are easier to 
al
ulate in this notation. The 
anoni
al form is indi
atedby the square bra
ket notation and given by

N [x|a,A] =
exp(−1/2aTA−1a)

|2πA−1|1/2
exp(−1/2xTAx+ xTa).
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an always be transformed into the 
anoni
al form by
N (x|a,A) = N [x|A−1a,A−1]. For more details we refer to the Gaussian Identitiesin (Toussaint, 2011).We 
an see in Equation 8.14 that our prior for applying the 
ontrol ut is given bythe 
ontrol 
osts, i.e. N [ut|0,Ht]. By integrating out the 
ontrols from our systemdynami
s we get the following state transition probabilities

P (xt+1|xt) =

∫

ut

N (xt+1|Atxt + at +Btut,Qt)N [ut|0,Ht]dut (8.15)
= N (xt+1|Atxt + at,Qt +BtH

−1
t Bt), (8.16)where the integral was solved using a reformulation of the Propagation rule in (Tou-ssaint, 2011).As we 
an see, all distributions in the approximated LQG system in Equation8.16 are Gaussian, and thus, also all messages are Gaussians and 
an be 
al
ulatedanalyti
ally. The resulting messages are given in (Toussaint, 2009).Approximate Inferen
e Control with Torque Limits In order to implementtorque and joint limits we introdu
e an additional 
ost fun
tion cp whi
h punishesthe violation of the given 
onstraints. The fun
tion cp is just added to the 
urrentimmediate 
osts. We use separate 
ost terms for 
ontrol 
onstraints cut and joint
onstraints cqt , i.e cp(xt,ut) = cqt (xt) + cut (ut). Here, we will only dis
uss howto implement the fun
tion cut (ut) for the torque 
onstraints, joint 
onstraints areimplemented similarly.The 
ost fun
tion cut is quadrati
 in u and punishes leaving the valid 
ontrollimits of u. In order to implement the upper bound umax for the torques, we usethe following 
ost fun
tion

cut (ut) = uT
t Htut + (ut − umax)THU

t (ut − umax),
= uT

t Htut + uT
t H

U
t ut − 2uTmaxHU

t ut + uTmaxHU
t umax,

= uT
t Htut + uT

t H
U
t ut − 2uTmaxHU

t ut + 
onst.As before, the matrix Ht denotes the quadrati
 
ontrol 
osts. The 
onstrained 
ostsare only imposed for the 
ontrol variable ui if the torque value ex
eeds the upperbound umax,i. In order to do soHU
t is a diagonal matrix where the ith diagonal entryis zero if ui ≤ umax,i and non-zero otherwise. The lower bound umin is implementedlikewise using an individual diagonal matrix HL

t .We 
an again implement cut (ut) as prior distribution P (ut) for the 
ontrols.
P (ut) ∝ N [ut|ht,Ht], (8.17)where ht = uTmaxHU

t + uTminHL
t and the pre
ision Ĥt = Ht +HU

t +HL
t . As we 
ansee, the linear term ht of the prior distribution P (ut) is now non-zero. This yieldsdi�erent message equations.Joint-limits 
an be imposed similarly by using additional terms 
osts for cqt (xt).However, for joint limits the update equations stay the same be
ause P (zt = 1|xt)has already a non-zero mean denoted by rt in Equation 8.13.
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knowledgments 115To derive the messages we will �rst integrate out the 
ontrols to get the statetransition probabilities:
P (xt+1|xt) =

∫

ut

N (xt+1|Atxt + at +Btut,Qt)N [ut|ht, Ĥt]dut,

= N (xt+1|Atxt + at +BtĤ
−1
t ht,Qt +BtĤ

−1
t BT

t ). (8.18)Note that, sin
e the 
ost fun
tion cut (ut) 
ontains a non-zero linear term ht, weget a new linear term ât = at +BtH
−1
t ht in the transition dynami
s. The forwardand the ba
kward messages are the same like in (Toussaint, 2009) ex
ept that at isrepla
ed by ât and Ht by Ĥt.Like in (Toussaint, 2009) we use the 
anoni
al representations for the forwardand the ba
kward message:

αt(xt) = N [xt|st,St]

βt(xt) = N [xt|vt,Vt]

φt(xt) = P (zt|xt) = N [xt|rt,Rt].The messages are represented by Gaussians in 
anoni
al form, for whi
h mathemati-
al operations like produ
ts are simply performed by adding the linear terms and thepre
isions. The mean of the belief is given by bt(xt) = (St+Vt+Rt)
−1(st+vt+rt)(multiplying three 
anoni
al messages and a subsequent transformation to normalform). Furthermore we use the shorthand Q̄t = Qt +BtĤ

−1
t BT

t for the 
ovarian
ein Equation 8.18.The messages are 
omputed by inserting the state transition probabilities givenin Equation 8.18 in the message passing Equations 8.9 and 8.10. Subsequentlythe integrals are solved using the Propagation rule in (Toussaint, 2011). The �nalequations in 
anoni
al form are:
St = (A−T

t−1 −Ks)St−1A
−1
t−1, (8.19)

st = (A−T
t−1 −Ks)(̄st−1 + St−1A

−1
t−1(ât−1 +Bt−1Ĥ

−1
t−1ht−1)), (8.20)

Ks = A−T
t−1St−1(St−1 +A−T

t−1Q̄
−1
t−1A

−1
t−1)

−1. (8.21)And for the ba
kward messages:
Vt = (AT

t −Kv)V̄t+1At, (8.22)
vt = (AT

t −Kv)(v̄t+1 − V̄t+1(ât +BtĤ
−1
t ht)), (8.23)

Kv = AT
t V̄t+1(V̄t+1 + Q̄−1

t )−1. (8.24)To obtain the same mathemati
al form as in (Toussaint, 2009) one needs to applythe Woodbury identity and reformulate the equations. In 
ontrast to the updatemessage in normal form (Toussaint, 2009), dire
t inversions of S̄t−1 and V̄t+1 are notne
essary in the 
anoni
al form and therefore, the iterative updates are numeri
allymore stable.Finally, in order to 
ompute the optimal feedba
k 
ontroller we 
al
ulate thejoint state-
ontrol posterior
P (ut,xt) = P (ut,xt|zt = 1)



116 Chapter 8. Planning Movement Primitives
P (ut,xt) =

∫

xt+1

αt(xt)φt(xt)P (xt+1|xt,ut)P (ut)βt+1(xt+1)φt+1(xt+1)dxt+1

P (ut,xt) = P (xt)P (ut)

∫

xt+1

P (xt+1|xt,ut)N [xt+1|v̄t+1, V̄t+1]dxt+1

P (ut|xt) = N (ut|M
−1
t (BT

t V∗(V̄
−1
t+1v̄t+1 −Atxt − ât) + ht),M

−1
t ),where V∗ = (Q+ V̄−1

t+1)
−1 and Mt = BT

t V∗Bt + Ĥt. After a reformulation we 
anobtain an optimal feedba
k 
ontroller of the form ut = ot +Otxt with
ot = M−1

t (BT
t V∗V̄

−1
t+1v̄t+1 −BT

t V∗at + ht), (8.25)
Ot = −M−1

t BT
t V∗At. (8.26)Similar to (Toussaint, 2009), we use an iterative message passing approa
h wherewe approximate the non-linear system by an Linear dynami
s, Quadrati
 
osts andGaussian noise system (LQG) at the new mode of the traje
tory. In (Toussaint,2009), this is done by using a learning rate on the state beliefs b(xt). However,in di�eren
e to (Toussaint, 2009), we also need an estimate of the optimal a
tion

ut in order to impose the 
ontrol 
onstraints. Using a learning rate on the 
ontrola
tion ut turned out to be very ine�e
tive be
ause feedba
k is extenuated. Forthis reason we will use a learning rate on the feedba
k 
ontroller. We simulate theLQG system (using the linearized model) to get a new mode of the belief of thetraje
tory. The 
omplete message passing algorithm 
onsidering state and 
ontrol
onstraints is listed in Algorithm 2. This is a straightforward implementation ofGaussian message passing in linearized systems, similar to an extended Kalmansmoother. In (Toussaint, 2009) or (Rawlik et al., 2010) more time e�
ient methodsare presented, where for ea
h time step the belief is updated until 
onvergen
ein 
ontrast to updating all messages and iterating until the intrinsi
 
osts L(τ ;θ)
onverge. The 
omputational bene�ts of su
h an approa
h still needs to be evaluatedfor our messages.Task settings and parametersIn this se
tion the movement primitive parameters and 
onstants are spe
i�ed forthe one-dimensional via-point task and for the humanoid balan
ing task.One-dimensional via-point taskFor the one-dimensional via-point task the parameters of the Dynami
 MovementPrimitives are listed in Table 8.2. The valid 
on�guration spa
e for the poli
ysear
h algorithm is listed in Table 8.3. The CMA poli
y sear
h algorithm has justone parameter, the exploration rate. Where the best exploration rate using DMPsfor this task found was 0.05.The limits of the parametrization of the Planning Movement Primitives (seeEquation 8.4) is listed in Table 8.4. For the via-point task we 
hoose N = 2, wherethe se
ond via-point g[N ] = gT was given. The exploration rate was set to 0.1 in allexperiments.
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knowledgments 117Algorithm 2: Approximate Inferen
e Control for Constrained SystemsData: initial traje
tory x̂0:T , learning rate ηResult: x0:T and u0:Tinitialize S0 = 1e10 · I, s0 = S0x0, k = 0, ô0:T = 0, Ô0:T = 0 · I ;while L(τ ;θ) not 
onverged dofor t← 0 to T doLinearize Model: At,at,Bt using Equation 8.12Compute Costs: Ĥt,ht,Rt, rt using Equation 8.13, 8.17for t← 1 to T doForward Messages: αt(xt) using Equation 8.19 - 8.21for t← T − 1 to 0 doBa
kward Messages: βt(xt) using Equation 8.22 - 8.24for t← 0 to T doFeedba
k Controller: ot,Ot using Equation 8.25, 8.26if k == 0 then
ut = ot +Otxtelsê
ot = (1− η)ôt + ηot
Ôt = (1− η)Ôt + ηOt

ut = ôt + Ôtxt

xt+1 = Atxt + at +Btut

k = k + 1Table 8.2: Via-point task: DMP movement primitive parametersK αs αz βz τ

10 1 2 0.9 0.1Dynami
 humanoid balan
ing taskThe DMP parameters for the balan
ing task are listed in Table 8.5. The poli
ysear
h parameters are the same like for the via-point task, Table 8.3. The explorationTable 8.3: Via-point task: DMP poli
y sear
h 
on�guration parameters
w kpos kvellower bound −100 0 0upper bound +100 100 100
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y sear
h 
on�guration parameters with i = 1, 2

d[1] g[1] r[i] h[i]lower bound 0.05 -2 [1, 10−6] 10−4upper bound 0.4 +2 [106, 104] 10−2Table 8.5: Balan
ing task: DMP movement primitive parametersK αs αz βz τ

10 1 5 5 1rate was set to 0.1.The PMPs were again evaluated with N = 2 via-points, where the se
ond via-point g[N ] = gT (the up-right robot posture) was given and for the �rst via-pointthe valid joint angle 
on�guration is shown in Table 8.6. The exploration rate was
0.1 and the poli
y sear
h algorithm 
on�guration is listed in Table 8.7.

Table 8.6: Joint angle 
on�gurations where a robot gets pushed by a spe
i�
 for
e F .Joint Init velo
ities Lower Bound Upper Boundarm −0.4 · 10−2F −0.6 3.0hip +5.1 · 10−2F −2.0 0.1knee −7.4 · 10−2F −0.05 2.5ankle +1.2 · 10−2F −0.8 0.8
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Table 8.7: Balan
ing task: PMP poli
y sear
h 
on�guration parameters with i = 1, 2

d[1] r[i] h[i]lower bound 0.1 [10−2, 10−4, 10−2, 10−4, 10−2, 10−4, 10−2, 10−4] [10−9, 10−9, 10−9, 10−9]upper bound 4.6 [104, 102, 104, 102, 104, 102, 104, 102] [10−3, 10−3, 10−3, 10−3]
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Chapter 9Introdu
tion
In this se
tion we brie�y dis
uss poli
y sear
h methods for motor skill learning.We will put our fo
us on the temporal movement primitives dis
ussed in Chapter5 as they are the most widely used. A temporal movement representation uses theduration (or phase) of the movement to en
ode the state of the robot, i.e. thepoli
y now expli
itly depends on the time π(a|s, t;w), where w are the parametersof the primitive. Temporal primitives are typi
ally used for episodi
 tasks, i.e. wealways use the same initial 
onditions for ea
h episode. In this setup we do notne
essarily have to estimate a value-fun
tion be
ause we 
an dire
tly sear
h foroptimal primitive parameters w∗. This 
hapter gives a broad overview of existingpoli
y sear
h methods.In the next 
hapter we will introdu
e a new method whi
h is able to generalizepoli
y sear
h to 
hanging several situations. This work has already been published inthe paper 'Variational Inferen
e for Poli
y Sear
h in Changing Situations', appearedin the Pro
eedings of the International Conferen
e for Ma
hine Learning (ICML),2011.9.1 Episodi
 Poli
y Sear
h for temporal MovementPrimitivesIn the episodi
 setup we 
an negle
t the value-fun
tion be
ause the expe
ted rewardof using parameter ve
tor w 
an be estimated dire
tly by performing roll-outs onthe real (or simulated) robot

J(w) =

∫

τ
p(τ ;w)R(τ)dτ, (9.1)where a traje
tory τ is given by a sequen
e of state and a
tion ve
tors, i.e

τ = 〈s0,a0, . . . , sT 〉 and R(τ) denotes the summed reward asso
iated with thistraje
tory. Note that this type f performan
e evaluation is also possible for thenon-episodi
 setup with multiple start states, however, we would have to estimatethe 
osts by averaging over all possible start states, whi
h is very ine�
ient. Thesummed reward R(τ) is typi
ally 
omposed of the summed immediate rewards rtand a �nal reward for the last time step φT , i.e.
R(τ) =

T−1
∑

t=0

r(st,at) + φT (sT )Our goal is now to �nd a parameter ve
tor w∗ whi
h minimizes J(w).
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tionThere are many approa
hes whi
h 
an be used for this task, some are gradient-based (Williams, 1992; Peters and S
haal, 2006), expe
tation-maximization (Koberand Peters, 2010) or inferen
e-based (Theodorou et al., 2010b) and some are sto
has-ti
 optimizers (Heidri
h-Meisner and Igel, 2009b; Hansen et al., 2003). These meth-ods 
an 
oarsely be divided into episode-based exploring and step-based exploringapproa
hes. Step-based exploring methods apply exploration at ea
h time step byperforming noisy a
tions while Episode-based exploring approa
hes explore the pa-rameter spa
e by using di�erent parameter ve
tors for ea
h episode.9.2 Step-based Exploring Approa
hesStep-based exploring algorithms in
lude traditional poli
y gradient methods su
h asepisodi
 REINFORCE (Williams, 1992) and the episodi
 Natural A
tor Criti
 algo-rithm (Peters and S
haal, 2006, 2008a), expe
tation-maximization based algorithmssu
h as PoWER (Kober and Peters, 2010) and algorithms based on path integralssu
h as PI2 (Theodorou et al., 2010b). PoWER and PI2 are 
urrently 
onsidered tobe state of the art.The main prin
iple of step-based approa
hes is that an exploration-noise εt forthe a
tion at is used for ea
h time step to sear
h for traje
tories with low 
osts.Subsequently the parameters w are adapted su
h that the (noisy) traje
tories withlower 
osts are more likely to be reprodu
ed again. Step-based exploring approa
hesonly work for poli
ies whi
h depend linearly on the parameters w as we have tobe able to easily �t the parameters to the noisy traje
tories. Of all the dis
ussedmovement representations in Chapter 5, the linear poli
y representation applies onlyfor the Dynami
 Movement Primitive (DMP) approa
h. The DMPs typi
ally use aGaussian poli
y for the desired a

eleration where the mean µ depends linearly onthe parameters w (see Se
tion 5.2.1).The exploration s
heme is quite simple. All algorithms either add the noise term
ε dire
tly to the a
tion, i.e

at = ΦT
t w + εat , π(at|st, t;w) = N

(

at|Φ
T
t w,Σa

) (9.2)or to the linear parameters w, i.e.
at = ΦT

t (w + εwt ), π(at|st, t;w) = N
(

at|Φ
T
t w,ΦT

t ΣwΦt

)

, (9.3)Adding noise to the parameters has be
ome more a

epted in re
ent algorithms likePoWER (Kober and Peters, 2010) and PI2 (Theodorou et al., 2010b).The noise εt itself is always sampled from a multivariate normal distributionwith a diagonal 
ovarian
e matrix Σε = diag(σ). Thus, there is no 
orrelationin the exploration noise, and 
onsequently exploration is always undire
ted. Inaddition, the un
orrelated exploration noise is usually not adapted during learning.Another problem of step-based exploration te
hniques is that we add noise at ea
htime step whi
h often results in high varian
e of the estimate of the value of a spe
i�
parameter ve
tor w, in parti
ular if the time horizon T is large.
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hes 1259.2.1 Poli
y Gradient MethodsThe prin
iple of poli
y gradient (PG) methods is simple. The parameters are up-dated in the dire
tion of the gradient of our expe
ted reward fun
tion
wk+1 = wk + α∇wJ(w),where α is a learning rate whi
h has to be spe
i�ed by the user.Typi
ally PG-methods use Gaussian noise dire
tly added to the 
urrent a
tion,i.e. at = ΦT

t w + εat . PG algorithms only di�er how they estimate the gradient
∇wJ(w).REINFORCEREINFORCE is one of the �rst poli
y gradient algorithms (Williams, 1992). Thealgorithm 
al
ulates the gradient of the expe
ted reward (Equation 9.1) by usingthe well-known 'log-ratio tri
k' ∇wp(τ ;w) = p(τ ;w)∇w log p(τ ;w), i.e.

∇wJ(w) =

∫

τ
∇wp(τ ;w)R(τ)dτ =

∫

τ
p(τ ;w)∇w log p(τ ;w)R(τ)dτNow, if we use the identity

p(τ ;w) = P (s0)

T−1
∏

t=0

P (st+1|st,at)π(at|st;w), we 
an redu
e the produ
t to a sum as we are using the log term of p(τ ;w).Consequently all terms drop out whi
h do not depend on w for the derivative. TheREINFORCE gradient is therefore given by
∇RFJ(w) =

∫

τ
R(τ)

T−1
∑

t=0

∇w log π(at|st;w)dτ.Fortunately, the gradient only depends on the derivative of the poli
y, whi
h isusually known to the experimenter. No knowledge of the transition or reward modelis needed.The expe
tation over the traje
tories 
an be repla
ed by sample traje
tories. Ithas been also shown that the substra
tion of a reward baseline b from the traje
toryreward R(τ) 
an improve the performan
e signi�
antly (Greensmith et al., 2004).Further advan
ements of REINFORCE are the GPOMDP (Baxter and Bartlett,1999) and the Poli
y Gradient Theorem algorithm (Sutton et al., 1999). Bothalgorithms use the simple observation that rewards in the past are not a�e
ted bya
tions in the future, whi
h results in a gradient 
al
ulation with redu
ed varian
ein 
omparison to REINFORCE.
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tion9.2.1.1 Episodi
 Natural-A
tor Criti
The episodi
 Natural-A
tor Criti
 (eNAC) (Peters and S
haal, 2008a) algorithm isone of the most e�
ient poli
y gradient methods. The algorithm is inspired by theuse of natural gradients for supervised learning (Amari, 1998). Here, the standardgradient is proje
ted onto more e�
ient update dire
tions by the use of the inverseFisher Information matrix. The Fisher Information matrix measures the amount of'information' that the traje
tory distribution p(τ ;w) 
arries about the parameterve
tor w, it is given by
F (w) = Eτ

[

∇wp(τ ;w)∇wp(τ ;w)T
]

.Using the inverse Fisher Information matrix to proje
t the standard REIN-FORCE gradient has the e�e
t that the 
hange of ea
h parameter wi has now thesame in�uen
e on the traje
tory distribution. Thus, the algorithm is invariant tothe 
hoi
e of the parametrization (e.g. s
ale) if two parametrizations have the samerepresentational power. The resulting gradient estimation is given by
∇NACJ(w) = F (w)−1∇RFJ(w).Experiments showed that due to the s
aling of the REINFORCE gradient the eNAC
onverges an order of magnitude faster than the standard REINFORCE algorithm.9.2.2 Inferen
e-based algorithmsThere are 2 types of inferen
e-based algorithms, Monte-Carlo Expe
tation-Maximization (MC-EM) algorithms su
h as PoWER (Kober and Peters, 2010) andMC-EM Poli
y Sear
h (Vlassis et al., 2009) and algorithms based on path-integralssu
h as PI2 (Theodorou et al., 2010b). The exa
t derivation of these algorithms isout of the s
ope of this introdu
tion, we will only brie�y sket
h some interestingproperties. The methods apply the noise term εwt dire
tly to the parameter ve
tor

w at ea
h time step (see Equation 9.3). The parameter update ∆w is subsequentlydetermined by weighting ea
h noise term εwt , i.e.
∆w = E

[

T
∑

t=0

S(Rt, t)ε
w
t

]

,where Rt =
∑T

j=t rj is the future reward for time step t and the fun
tion S(Rt, t)determines the weighting of εwt . The main idea is that noise terms εwt whi
h resultedin high returns Rt have a higher in�uen
e in the parameter update. Thus, theweighting typi
ally depends on the point in time when the noise has been takenand on the return Rt after applying the noise. Even so the PoWER and the PI2are derived quite di�erently, they only di�er in the way they 
al
ulate S(Rt, t).We refer to the 
orresponding papers for an exa
t de�nition of S(Rt, t). The mainadvantage of both algorithms is that they do not require a user-spe
i�ed learningrate. The learning speed of both methods is 
omparable (Theodorou et al., 2010b),although PoWER has some restri
tions on the reward fun
tion whi
h 
an be used.Both methods are known to outperform the (step-based) poli
y gradient methodsintrodu
ed in Se
tion 9.2.1.
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hes 1279.3 Episode-based Exploration Approa
hesEpisode-based exploring approa
hes apply the exploration noise to the parameterve
tor w before exe
uting the whole roll-out, during the exe
ution no further explo-ration is applied. In this setup we typi
ally use a deterministi
 poli
y at = π(st, t;w)and therefore, we only have system noise to deal with. As a result, the expe
tedreward of a single parameter ve
tor w is easier to estimate (with redu
ed varian
e,(Sehnke et al., 2010)).The big advantage of episodi
-exploring approa
hes is that they do not dependon a linear parametrization of the movement representation. In order to use episodi
-exploring approa
hes we just have to be able to estimate J(w) by performing roll-outs on the real system. In addition, sophisti
ated se
ond order optimizers 
an beused in this setup whi
h tend to show very good performan
e on many problems(Heidri
h-Meisner and Igel, 2009b). For example, the CMA-ES algorithm estimatesthe full 
ovarian
e matrix ±w of a Gaussian distribution whi
h is used for the ex-ploration noise. This 
an be seen as se
ond-order information of the 
ost-fun
tion.As a 
onsequen
e, the exploration noise 
orrelated and thus more dire
ted than theun
orrelated exploration noise used by many other approa
hes. We will now brie�ydis
uss the most relevant episode-based exploration approa
hes.9.3.1 Gradient-based MethodsSimilar to the standard step-based exploring PG methods, episode-based PG-methods try to estimate the gradient of the expe
ted reward J(w) in order toapply gradient des
ent. However, the gradient is now estimated by perturbing theparameter ve
tor w before performing the roll-outs, during exe
ution no additionalexploration is applied (i.e. a deterministi
 poli
y is used).9.3.1.1 Finite Di�eren
e Poli
y GradientsThe most simple poli
y gradient method is to use the Finite Di�eren
e Poli
y Gra-dient. Here, J rollouts 1 with small, random perturbations ∆wj of the 
urrentparameter ve
tor w are performed on the real system. The gradient is 
al
ulatedby using a �rst order Taylor-Approximation of the 
ost fun
tion and subsequentlyapplying the least-square solution
∇FDJ(w) = (∆WT∆W)−1∆WT∆J,with ∆W = [∆wT
1 ,∆wT

2 . . .∆wT
J ]

T and ∆J = [J(w + ∆w1), J(w +
∆w2), . . . , J(w + ∆wJ)] − J(w). The �nite di�eren
e method has been used in(Kohl and Stone, 2003) as one of the �rst poli
y gradient methods applied to a realrobot. It is also often used as baseline for 
omparison (Peters and S
haal, 2006),(Kober and Peters, 2010).1typi
ally J has to be twi
e the number of parameters to a

urately estimate the gradient
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tion9.3.1.2 The Poli
y Gradient with Parameter-Based Exploration algo-rithmIn di�eren
e to the Finite-Di�eren
e PG algorithm, the Poli
y Gradient withParameter-Based Exploration (PG-PE) algorithm (Sehnke et al., 2010) 
al
ulatesthe likelihood gradient of the expe
ted reward. It is therefore the equivalent to RE-INFORCE for the step-based-exploring approa
hes. However, the likelihood gra-dient is now 
al
ulated for the whole traje
tory instead of 
al
ulating it for ea
htime step separately. In order to do so, we introdu
e a distribution over the pol-i
y parameters p(w|θ) = N (w|µw,diag(σ2
i ) and 
al
ulate the likelihood gradientwith respe
t to θ = {µ,σ}. The parameters θ now de�ne a distribution over theparameterspa
e w ∈ W. The expe
ted reward is then given by

J(θ) =

∫

W

∫

τ
p(τ |w)p(w|θ)R(τ)dτdwIf we now apply again the 'log-ratio tri
k' and repla
e the integral with samples, thegradient of the expe
ted reward J(θ) is given by

∇PGPEJ(θ) = ∑

j

∇θ log p(wj|θ)R(τj)In the original algorithm (Sehnke et al., 2010), an un
orrelated Gaussian distributionis used as model for w. Thus the exploration noise for ea
h dimension of theparameter ve
tor is adapted, but the 
orrelations between the parameters are stillnegle
ted.9.3.2 Sto
hasti
 OptimizersBy now we have only dis
ussed algorithms whi
h originated from Reinfor
ementLearning, but in fa
t any sto
hasti
 optimizer 
an be used to �nd the optimalparameters argminwJ(w). These sto
hasti
 optimizers have shown impressive per-forman
e on many tasks so they should not be negle
ted. Here, we brie�y presenttwo promising approa
hes, the Covarian
e Matrix Adaption - Evolutionary Strategy(CMA-ES) 2 (Heidri
h-Meisner and Igel, 2009b) and Cross-Entropy sear
h (Mannoret al., 2003; de Boer et al., 2005). The strategy of both approa
hes is quite simi-lar. They sample a 
ertain number of o�springs wj from a Gaussian distribution
N (w|mk,±k). The evaluated reward J(wj) of the samples is used to weight ea
h ofthe o�springs. Subsequently, the weighted o�springs are used to update the Gaus-sian distribution. CMA-ES and Cross-Entropy sear
h only di�er in the way theyupdate the distribution, i.e. how they 
al
ulate mk+1 and ±k+1 from the o�springs
wl. One big advantage of both methods is that they estimate a full-
ovarian
e ma-trix ±k+1 for exploration, thus, both algorithms use 
orrelated noise resulting inmore dire
ted exploration strategies than most other algorithms whi
h simply usea diagonal 
ovarian
e matrix. Although there is no dire
t 
omparison of CMA-ESand Cross-Entropy sear
h, CMA-ES has be
ome more popular in re
ent literature(Heidri
h-Meisner and Igel, 2009b; Neumann, 2011).2CMA-ES is often denoted as geneti
 algorithm, however, it 
an also be seen as sto
hasti
se
ond order optimizer.



9.4. Generalizing Temporal Representations to Multiple Situations 1299.4 Generalizing Temporal Representations to MultipleSituationsOne disadvantage of temporal representations is that they are only valid lo
ally, i.e.they 
an only be used for 
onstant initial 
onditions of the robot (in
luding a smallneighborhood). For di�erent initial 
onditions s′0, the parameter ve
tor w has to bere-estimated. In order to avoid exhaustive relearning, we need to learn a hierar
hi
poli
y πw(w|s0;θ) whi
h 
an generalize between di�erent initial situations s0 of therobot. We will denote the parameter ve
tor of the hierar
hi
 poli
y as θ. In orderto assess the expe
ted reward for a parameter ve
tor θ, we now have to evaluatemultiple roll-outs starting from di�erent initial 
onditions, and thus, solving thisproblem dire
tly with standard parameter-exploring poli
y sear
h methods is highlyine�
ient. For a dis
ussion of more e�
ient methods and also a new method whi
hhas been introdu
ed in our work in the paper (Neumann, 2011) we refer to Chapter10.





Chapter 10Variational Inferen
e for Poli
ySear
h in Changing Situations
Contents10.1 Introdu
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k Leibler (KL) Divergen
es . . . . . . . . . . . . . . . 13310.3 Inferen
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y sear
h . . . . . . . . . . . . . . . . . . . 13410.4 Poli
y Sear
h in multiple situations . . . . . . . . . . . . . . 13610.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14010.6 Con
lusion and future work . . . . . . . . . . . . . . . . . . . 14310.7 A
knowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 144Many poli
y sear
h algorithms minimize the Kullba
k-Leibler (KL) divergen
eto a 
ertain target distribution in order to �t their poli
y. The 
ommonly used KL-divergen
e for
es the resulting poli
y to be 'reward-attra
ted'. The poli
y tries toreprodu
e all positively rewarded experien
e while negative experien
e is negle
ted.However, the KL-divergen
e is not symmetri
 and we 
an also minimize the thereversed KL-divergen
e, whi
h is typi
ally used in variational inferen
e. The poli
ynow be
omes '
ost-averse'. It tries to avoid reprodu
ing any negatively-rewardedexperien
e while maximizing exploration.Due to this '
ost-averseness' of the poli
y, Variational Inferen
e for Poli
y Sear
h(VIP) has several interesting properties. It requires no kernel-bandwith nor explo-ration rate, su
h settings are determined automati
ally by the inferen
e. The algo-rithm meets the performan
e of state-of-the-art methods while being appli
able tosimultaneously learning in multiple situations.We 
on
entrate on using VIP for poli
y sear
h in roboti
s. We apply our algo-rithm to learn dynami
 
ounterbalan
ing of di�erent kinds of pushes with human-like2-link and 4-link robots.10.1 Introdu
tionVariational inferen
e is a widely used approximate inferen
e method. While thereexists �rst appli
ations of variational inferen
e for dis
rete reinfor
ement learning(Furmston and Barber, 2010), it has never been used for poli
y sear
h in high dimen-sional parameter spa
es. Variational inferen
e introdu
es an approximate distribu-tion q and iteratively minimizes the Kullba
k-Leibler divergen
e KL(q||p) between
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y Sear
h
q and the target distribution p. This minimization is also known as I(nformation)-proje
tion of distribution p.In poli
y sear
h, many algorithms also apply approximate inferen
e. However,all these algorithm use the M(oment)-proje
tion, whi
h is given by the reversed KL-divergen
e KL(p||q) to estimate their poli
y. While at the �rst glan
e this might onlybe a minor di�eren
e, it turns out that the resulting poli
ies may di�er 
onsiderably.Poli
ies 
al
ulated by the M-proje
tion try to reprodu
e all experien
e with highreward, but negle
t information 
oming from negative experien
e. We will therefore
all these poli
ies 'reward-attra
ted'. The I-proje
tion for
es the resulting poli
yto be '
ost-averse'. Here, the fo
us of the poli
y is to avoid reprodu
ing negativeexperien
e, while exploration is maximized.Whi
h proje
tion is better suited for poli
y sear
h? We argue for the I-proje
tion. When using a 
ommon Gaussian poli
y, the M-proje
tion averages overall positively rewarded experien
e seen so far. However, in the 
ase of a multi-modalor non-
on
ave target distribution taking the average might be a bad 
hoi
e. TheI-proje
tion always tries to ex
lude negative experien
e from the resulting distribu-tion, and thus, 
on
entrates at one mode of the target distribution. Non-
on
avetarget distributions typi
ally o

ur if we want to apply poli
y sear
h for multiplesituations. The I-proje
tion 
an be applied with ease in this 
ontext. The '
ost-averseness' also 
omes with additional advantages. The algorithm automati
allydetermines the optimal kernel bandwidth for a new situation and adapts its explo-ration rate and used sear
h dire
tions.In di�eren
e to the M-proje
tion, the I-proje
tion 
an't be minimized in 
losedform. We have to rely on non-linear optimization methods like gradient des
ent.Here, we present a new method where gradient des
ent is performed on meta-parameters of the approximate distribution q.We will apply our new Variational Inferen
e for Poli
y Sear
h (VIP) algorithmto learn 
omplex motor skills with robots. In roboti
s we often need to sear
h forparametrized movement plans in related, but di�erent s
enarios. These movementplans, also 
alled Dynami
 Movement Primitives (Ijspeert and S
haal, 2003; S
haalet al., 2007), Motion Templates (Neumann et al., 2009) or Mus
le Synergies (Bizziet al., 2008) are often only valid lo
ally, and hen
e, need to be adjusted for a newsituation.For example, a tennis playing robot has to adapt its movement to the traje
toryof the ball or a humanoid robot has to rea
t di�erently to 
ounter-balan
e di�erentkinds of pushes. Hen
e, we need to �nd a poli
y π(w|s0) whi
h is able to 
hoose goodparametri
 des
riptions w ∈ W of the movement plan given the initial 
onditions
s0. Learning su
h a poli
y π is very 
hallenging due to the high-dimensionality ofparameter-spa
e W. Our algorithm is well suited for su
h tasks.Many poli
y sear
h algorithm like the CMA-ES (Heidri
h-Meisner and Igel,2009b), Cross-Entropy sear
h (Mannor et al., 2003) or the PoWER (Kober andPeters, 2010) algorithm are limited to the single-situation setting. Only few algo-rithms exist for learning in multiple initial 
onditions. Here, we 
an use Reward-Weighted Regression (RWR)(Kober et al., 2010) or Cost-Regularized-Kernel Regres-sion (CRKR) (Kober et al., 2010), whi
h is the kernelized version of RWR. Bothalgorithms use lo
ally weighted linear regression methods to interpolate between
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k Leibler (KL) Divergen
es 133di�erent initial states s0i . In addition to the lo
al weighting, the data points areweighted by their 
orresponding rewards. The reward-weighted linear regressionrepresents an M-proje
tion of the reward distribution (see Se
tion 10.3.1), there-fore these algorithms su�er from the previously mentioned limitations of the M-proje
tion.Both algorithms require that the user spe
i�es the shape or bandwidth of there
eptive �elds or kernels. This shape is not only kept 
onstant during the learningphase, it is also 
onstant in the whole state spa
e. Therefore the user always hasto make a tradeo� between fast learning speed and good quality of the �nal perfor-man
e. Be
ause the I-proje
tion always wants to ex
lude samples with low reward,the 'kernel shape' automati
ally adapts to the data density as well as to the shapeof the target distribution.Note that CRKR and RWR have only been used to learn meta-parameters ofthe motion (Kober et al., 2010) (like the duration or the end-point of the motion).The remaining (typi
ally higher-dimensional) parametrization for the shape of thetraje
tory was kept �xed. Therefore, the appli
ation is limited to similar shapes ofthe movement. The VIP approa
h allows learning with the full-parametri
 repre-sentation of a movement for multiple s
enarios, and therefore, 
an �nd 
ompletelydi�erent movements for di�erent subregions of the state spa
e.We will apply our method to a 2-link and a 4-link dynami
 robot balan
ing taskwhere the robot has to 
ounterbalan
e di�erent kinds of pushes.10.2 Kullba
k Leibler (KL) Divergen
esWe qui
kly review 
on
ept of KL-divergen
es be
ause it is of great importan
e forthis paper. The KL divergen
e between two probability distributions q and p isde�ned as KL(q||p) = − ∫

X

q(X) log
p(X)

q(X)
dXIt is zero if and only if the two distributions are equal. Sin
e the KL-divergen
e isnot symmetri
, there are 2 kinds of KL-divergen
es whi
h we 
an minimize in orderto approximate a target distribution p with an approximate distribution q.

• The M-proje
tion q = argminqKL(p||q): The M-proje
tion for
es the ap-proximate distribution q to have high probability everywhere where p hashigh probability. Therefore, if distribution q is a Gaussian, the M-proje
tiontries to average over all modes of p.
• The I-proje
tion q = argminqKL(q||p): It for
es the approximate distribu-tion q to be zero everywhere where p is zero. Can not be 
al
ulated in 
losedform for the most distributions. When using a Gaussian distribution q, theI-proje
tion typi
ally 
on
entrates on a single mode of the target distribution.These di�eren
es between the proje
tions are well known (Bishop, 2006), however,the e�e
t of these di�eren
e for poli
y sear
h have never been evaluated.
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e for Poli
y Sear
h10.3 Inferen
e for poli
y sear
hMany poli
y sear
h algorithms (Kober and Peters, 2010; Vlassis et al., 2009;Heidri
h-Meisner and Igel, 2009b) use inferen
e or inferen
e related methods toiteratively optimize the poli
y.In order to use inferen
e for poli
y sear
h we de�ne a binary reward event R = 1as observed variable. To simplify notation we will always write R when we mean
R = 1. The probability of this reward event is given by p(R|τ) ∝ exp(−C(τ)), where
τ is a traje
tory and C(τ) are the asso
iated 
osts. This is a 
ommon method totransform an optimization problem into an inferen
e problem (Toussaint, 2009). Wewant to �nd parameter ve
tors θ with high eviden
e

p(R;θ) =

∫

τ
p(R|τ)p(τ ;θ)dτ,where τ is a traje
tory and p(τ ;θ) is the parametri
 model of the traje
tory distri-bution. The poli
y π is 
ontained in this model.We 
an now introdu
e a variational distribution q(τ) whi
h is used to de
omposethe log-eviden
e

log p(R;θ) = L(q,θ) +KL(q||pR), (10.1)where
L(q,θ) =

∫

τ
q(τ) log

p(R|τ)p(τ ;θ)

q(τ)
dτis the lower bound of the log eviden
e andKL(q||pR) = − ∫

τ
q(τ) log

p(τ |R;θ)

q(τ)
dτ (10.2)is the KL-divergen
e between the q and the reward-weighted traje
tory distribution

pR(τ) = p(τ |R;θ) =
p(R|τ)p(τ ;θ)

p(R;θ)
(10.3)The 
orre
tness of Equation (10.1) 
an be easily veri�ed by substituting Equation(10.3) into Equation (10.2). Note that this de
omposition is the same as used inexpe
tation-maximization (EM) and variational inferen
e algorithms. It has alsoalready been used in (Furmston and Barber, 2010) for using variational inferen
efor learning the model of dis
rete MDPs.The lower bound L(q,θ) is now iteratively improved by an expe
tation (E-) anda maximization (M-) step. In the E-step, we minimize KL(q||pR) with respe
t to

q. Sin
e log p(R;θ) is �xed, the lower bound has to in
rease. In the M-step wemaximize the lower bound L(q,θ) with respe
t to θ.10.3.1 M-Proje
tion: Monte-Carlo EM-based Poli
y Sear
h Algo-rithmsMonte-Carlo (MC) EM-based algorithms (Kober and Peters, 2010; Vlassis et al.,2009) use a sample based approximation for q, i.e. in the E-step they minimize
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e for poli
y sear
h 135the KL-divergen
e KL(q||pR) by setting q(i) ∝ p(R|τi)p(τi;θ) for a dis
rete set ofsamples τi. Subsequently, the q(i) are used to repla
e the integral in the lower bound
L(q,θ) by a sum. The lower bound therefore reads

L(q,θnew) =
∑

τi

p(R|τi)p(τi;θold) log p(τi;θnew)
p(τi;θold)

= −KL(pR(τ)||p(τ ;θnew)) + 
onstAs we 
an see maximizing the lower bound with respe
t to the new parameterve
tor θnew is equivalent to 
al
ulating the M-proje
tion of pR(τ). Note that this isexa
tly the same lower bound as given in (Kober and Peters, 2010) for the PoWERand RWR algorithm. Thus, these algorithms are spe
ial 
ases of the de
ompositionshown in Equation 10.1.10.3.2 I-proje
tion: Variational Inferen
e for Poli
y Sear
hIn the variational approa
h, a parametri
 representation of q is used instead of asample-based approximation. We 
hoose q(τ ;ω) to be from the same family ofdistributions as p(τ ;θ). Now, we will use a sample-based approximation to repla
ethe integral in the KL-divergen
e KL(q||pR) needed for the E-step. Thus we needto minimize KL(q||pR) = −∑

τi

q(τi;ω)/Zq log
pR(τi)/Zp

q(τi;ω)/Zq
, (10.4)with respe
t to ω, whi
h is equivalent to the I-proje
tion of pR(τ). The terms Zqand Zp are used to normalize the sample-based approximations. The M-step nowtrivially redu
es to setting the new parameter ve
tor θnew to ω.Both algorithms only di�er in the used proje
tions of pR(τ). As the proje
tionsare in general di�erent, they 
onverge to a di�erent (lo
al) maximum of the lowerbound L(q,θ). When using a Gaussian model distribution, the I-proje
tion 
on-
entrates on a single mode. This is not a problem if all modes are almost equallygood, however, the I-proje
tion might also 
hoose a sub-optimal mode (whi
h haslower reward probability). In our evaluations we 
ould not observe this problem.The M-proje
tion always averages over all modes and therefore might also in
ludelarge areas of low reward in the distribution. Hen
e, we 
onsider the use of the I-proje
tion to be less harmful. If the target distribution is 
on
ave, both proje
tionsyield almost the same solutions, however, using the I-proje
tion is 
omputationallymore demanding.The dis
ussed proje
tions are appli
able for any kind of poli
y sear
h problems,however, in this paper we will fo
us on single-step de
ision problems with highdimensional a
tion spa
es be
ause these problems are of high importan
e for motorskill learning with motion primitives.
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e for Poli
y Sear
h10.4 Poli
y Sear
h in multiple situationsIn this paper we 
on
entrate on poli
y sear
h in multiple situations. Thus, wewant to learn a poli
y π(w|s0;θ) for 
hoosing the parametri
 des
ription w of ourmovement plan when being in situation s0.We will treat the poli
y sear
h problem as 1-step reinfor
ement learning problemand negle
t any sequential nature of the de
ision problem. The agent 
hooses itsdesired traje
tory des
ription w in the initial state s0 and then observes the wholetraje
tory τ and the asso
iated 
osts C(τ) as one big step. The traje
tory τi itself istherefore determined by the state-a
tion pair 〈s0i ,wi〉 and its asso
iated 
osts C(i).All derivations from Se
tion 10.3 are still valid, we just repla
e the traje
tories τiwith the state-a
tion pairs 〈s0i ,wi〉.As samples we will always use the whole history of the agent, i.e. we will use sam-ples from all situations s0i experien
ed so far. For the sake of simpli
ity, we negle
tedany importan
e weights in Equation 10.4 whi
h should be used to 
ompensate forthe fa
t that the history of the agent is usually not sampled uniformly from thestate-a
tion spa
e. In the subsequent dis
ussion we assume that ea
h dimension ofthe parameter ve
tor has been s
aled to the interval [0; 1].If the reward weighted probability pR(τi) is very 
lose to 0 we 
an't use the
log fun
tion. Instead, we use a penalty term of −Pz for log pR(τi). It turned outthat reasonable settings of this value have to s
ale exponentially with the numberof dimensions of the parameter spa
e to a

ount for the in
reasing volume of thesear
h spa
e.10.4.1 Approximate DistributionFor representing p(s0i ,wi;θ) we use Gaussian distributions N ([s0;w]|µ,Σ). Sin
e aGaussian is a rather simple representation we re-estimate the Gaussian for a new,
urrently a
tive situation s0t . For every re-estimation, the state 
omponents of µare 
lamped at s0t by putting a sharply peaked prior on these 
omponents (see nextse
tion).In Figure 10.1 and 10.2, we illustrated the di�eren
e of poli
y sear
h with theM- and the I-proje
tion for bimodal and non-
on
ave target distributions. For thebi-modal distribution, the M-proje
tion 
on
entrates on both modes while the I-proje
tion only tries to 
over one mode. For the non-
on
ave target distributionwe assumed that the �rst variable represents a state variable whi
h is observed.Therefore, we 
lamped this dimension of the mean of the Gaussian to be the observedvalue. Again, the M-proje
tion tries to average over the non-
on
ave fun
tion, andhen
e also in
ludes regions of low reward, while the I-proje
tion ni
ely approximatesthe desired distribution.10.4.2 Minimization of the I-proje
tionThe I-proje
tion KL(q||pR) is di�
ult to use be
ause it 
an't be 
al
ulated in 
losedform. We have to rely on non-linear optimization methods, i.e. gradient des
ent.However, optimizing dire
tly the parameters of a Gaussian is di�
ult be
ause of thequadrati
 number of parameters needed to represent the 
ovarian
e matrix.
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Figure 10.1: Comparison of the Variational Poli
y Sear
h algorithm using the I-proje
tionagainst the M-proje
tion on a bi-modal reward fun
tion. A simple Gaussian distributionwas used as model distribution. The M-proje
tion tries to average over both modes, whilethe I-proje
tion 
on
entrates on a single mode.Hen
e, we propose a sample oriented approa
h whi
h is 
omputationally moretra
table. For ea
h sample we introdu
e a weighting vi. These weightings are usedto 
al
ulate the weighted maximum likelihood (ML) estimate from the data-points.We will denote the weighted sample mean as m and the weighted sample 
ovarian
ematrix as S. The weights vi are normalized su
h that maxi vi = 1.In order to 
lamp the state-spa
e part of the mean µ at the 
urrent initial state
s0t , we 
ombine the ML-estimate m with a Gaussian prior distribution P (µ|s0t ) =

N (µ|µ0,S0) with µ0 =
[

s0t ,0.5
]T and S0 is a diagonal matrix whi
h is set su
hthat the prior is sharply peaked for the state variables s0 and almost �at in thea
tion spa
e. The mean µ of our Gaussian distribution is then given by

µ = (S−1
0 + S−1)−1(S−1

0 µ0 + S−1m)For the 
ovarian
e matrix Σ of our model, we also use a 
ombination of a prior
ovarian
e matrix C0 and the weighted sample 
ovarian
e S.
Σ =

∑

i viS+ αC0
∑

i vi + α
, C0 = k · diag([σ2

i ]) +
∑l−1

j=1 cjΣj,
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M−projection

s1 s2 s3 s4 s5 s6(a) M-proje
tion

I−projection

s1 s2 s3 s4 s5 s6(b) I-proje
tionFigure 10.2: Comparison of I-proje
tion and M-proje
tion on a non-
on
ave reward fun
-tion. Dark ba
kground indi
ates negative reward. The model distribution is a Gaussianof whi
h the mean (indi
ated by 'x') of the state variable (x-axis) has been 
lamped atdi�erent lo
ations. The M-proje
tion again tries to average over the non-
on
ave fun
tionwhile the I-proje
tion ni
ely approximates the desired poli
y.where Σj are the 
ovarian
e matri
es of the previous iterations of VIP. The Σjare used to in
orporate previous sear
h dire
tions into the 
urrent sear
h. Theparameters k, σ2
1:d and c1:l−1 are also optimized by gradient des
ent.After 
al
ulating µ and Σ we 
an evaluate the KL-divergen
e KL(q||pR) on oursample points by the use of Equation 10.4. The gradient with respe
t to vi, α, k,

σ2
i and cj is 
al
ulated numeri
ally by �nite di�eren
es. Subsequently we applystandard gradient des
ent augmented by a line sear
h algorithm to estimate theoptimal learning rate. The algorithm always runs for 10 iterations.We also use a slight modi�
ation of the original variational algorithm. Insteadof using the model distribution p(s0i ,wi;θ) for 
al
ulating the reward weighted tra-je
tory distribution pR(i) we use the sample weights vi found by the previous KL-divergen
e minimization, i.e pR(i) = vip(R|s0i ,wi). This turned out to be numeri-
ally more stable in high dimensional parameter spa
es.10.4.3 Reward TransformationInstead of using the standard reward transformation p(R|s0i ,wi) = exp(−C(s0i ,wi)),we will use a baseline V (s0i ) and also introdu
e a s
aling fa
tor ρ to the 
osts, i.e.

p(R|s0i ,wi) = exp
(

−(C(s0i ,wi)− V (s0i ))/ρ
). Both me
hanisms help to improvea

ura
y of the algorithm as well as to redu
e the number of required iterations.As baseline we use an estimate of the value V (s0i ) =

∫

w
C(s0i ,w)p(w|s0i ;θ)dτ atstate s0i . In order to do so, we use the tuples 〈s0i , Ci〉 as data points to estimate aGaussian 
ost model. Ea
h data point gets again weighted by the weights vi foundby the previous KL-minimization. Subsequently, we 
ondition this Gaussian 
ostmodel on the s
enario states s0i of our samples. This results in a linear Gaussian
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y Sear
h in multiple situations 139Algorithm 3: Variational Poli
y Sear
hInput: History of the agent H = 〈s0i ,wi, Ci〉, 
urrent s
enario s0, initial
ovarian
e Σ0Initialize µ0 = [s0;1/2] and vi = N ([s0i ;wi]|µ0,Σ0) for all ifor l = 1 to L doEstimate V (s0i ) and ρ by 
al
ulating a Gaussian 
ost model using vi.Cal
ulate 
ost weighted traje
tory distribution
pR(i) = vi exp

(

−
(

Ci − V (s0i )
)

/ρ
)Che
k e�e
tive number of examples, eventually redu
e sharpness of pRwhile ∑

i pR(i)/maxj pR(j) < na
t do
pR(i) = pR(i)

0.9 for all iA
quire new vi, µ and Σ (minimize KL(q||pR))
[vi,µl,Σl] = I-proje
t(pR,H, {Σ0, · · ·Σl−1})Set new model distribution...
p(s0,w;θ) = N ([s0;w]|µl,Σl)Cal
ulate poli
y (
onditional Gaussian)

π(w|s0;θ) = p(s0,w;θ)/p(s0;θ)model from whi
h we use the (state-dependent) mean as baseline V (s0i ).The s
aling fa
tor ρ regulates the greediness of our distribution p(R|s0,w). Weuse the standard deviation of the 
onditioned Gaussian 
ost model to determine ρ.If the e�e
tive number of a
tivations of our target distribution pR(i) gets toosmall (i.e. ∑

i pR(i)/maxj pR(j) < na
t) we do not have enough data-points toreliably estimate the Gaussian models. Hen
e, we iteratively redu
e the sharpnessof pR(i) by setting all pR(i) to pR(i)0.9 until the e�e
tive number of samples is largerthan na
t. The parameter na
t has to be spe
i�ed by the user and depends on thedimensionality of the state-spa
e (in our experiments we varied the value between
5 and 15).10.4.4 Estimating the poli
ySo far we have estimated a model whi
h des
ribes the probability of whole traje
-tories, i.e. in our 
ase a probability distribution over the state and a
tion spa
e. Inorder to determine the poli
y π(w|s0t ;θ) we just have to 
ondition on the 
urrentstate s0t . This is again a linear Gaussian model whi
h 
an be easily 
al
ulated.The whole algorithm is summarized in Algorithm 3. The number of iterations
L was always set to 10. For performan
e reasons we only use the last N examples(between 100 and 10000) from the history. The initial 
ovarian
e Σ0 as given inAlgorithm 3 is typi
ally almost �at in the a
tion spa
e and state spa
e. The methodis almost invariant to this setting.In di�eren
e to MC-EM based algorithms like RWR or CRKR we use severaliterations to estimate the model distribution. Additionally, the introdu
ed s
alingfa
tor ρ of the reward fun
tion helps to set the greediness of the resulting distribution
orre
tly. If we would use the M-proje
tion and only apply one iteration (L = 1)without the s
aling fa
tor ρ and the baseline V (s0i ), VIP redu
es to RWR.
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CRKRFigure 10.3: Evaluation of VIP on Cannon-Toy task. We 
ompared our algorithm usingthe I and the M-proje
tion. The I-proje
tion 
onverges mu
h faster and also produ
es a�nal poli
y with higher quality. The 
ompeting algorithm CRKR 
ould not �nd as goodsolutions.10.5 ExperimentsIn our evaluations of the algorithms we always use the median over 20 trials. Themedian is used to get rid of outliers, 1 or 2 trials out of 20 usually did not �nd goodsolutions.We �rst evaluate our algorithm on a Cannon Toy Task. Here, the task is to hit atarget lo
ated at distan
e d with a 
annon ball. The 
ontrols are the laun
hing angle

α and the laun
hing velo
ity v of the 
annon ball. The angle was restri
ted to [0;π/2]and the velo
ity to [0; 10]m/s. The 
annon-ball was modelled as 1-kg point mass,gravity and a horizontal wind for
e f a
t on the ball. The wind for
e f 
an be inthe range of [0; 1] and the target lo
ations were also restri
ted to [0; 10]. This resultsin a 2-dimensional state spa
e s0 = [d,w] and a two dimensional parameterspa
e
w = [α, v]. As reward fun
tion we used 20 times the negative squared distan
e ofthe impa
t position to the target. Note there are several solutions to hit a target ata 
ertain distan
e, rendering the reward fun
tion multi-modal. We 
ompared ouralgorithm using the I-proje
tion and M-proje
tion against the CRKR algorithm.Every 50 episodes we evaluated the poli
y at 20 randomly 
hosen states (whi
hwere �xed for every evaluation). The parameter na
t was set to 5 and Pz to 10.The result 
an be seen in Figure 10.3. The I-proje
tion 
learly outperformedthe M-proje
tion in learning speed as well as in the quality of the learned poli
y.The �nal average distan
e to the target was 0.08m with the I-proje
tion while the�nal poli
y of the M-proje
tion missed the target at a average distan
e of 0.26m.The learning speed of CRKR mat
hed the speed of the M-proje
tion, but 
ould not�nd as good solutions. We also 
ompared both approa
hes with the �nite di�eren
epoli
y gradient algorithm using a �xed set of basis fun
tions (Kober et al., 2010)in the state spa
e. The algorithm did 
onverge after approximately 105 episodes,whi
h is not shown in Figure 10.3 due to the bad performan
e.
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(b)Figure 10.4: (a)Comparison of the VIP with full representation of the 
ovarian
e (VIP-full)and the �xed representation (VIP-diag) with the CMA-ES algorithm. In order to 
ompareour algorithm to CMA-ES, we only used a single for
e F = 25Ns. We use the maximumvalue seen so far for the plot of CMA-ES. (b) In this experiment we added a uniformlydistributed noise ε ∈ [−2.5; 0] to the for
e F . As the CMA-ES is unaware of this noise it
ould not 
ope with this setting. VIP was only sightly disturbed and 
ould �nd solutionsof the same quality as in (a).10.5.1 2 and 4 Link Humanoid Balan
ingHere we use a 2-link and a 4-link model to learn dynami
 humanoid balan
ingstrategies. The masses and lengths of the links as well as the maximum torqueswere 
hosen to 
rudely mat
h a human.The joints of the 2-link model resemble the ankle and the hip joints. For a moreexa
t des
ription of the model please refer to (Atkeson and Stephens, 2007). Therobot is pushed with a 
ertain for
e 0 ≤ F ≤ 25Ns whi
h results in an immediatejump in the joint velo
ities. The robot has to learn to keep balan
e. This requires
ompletely di�erent strategies for di�erent for
es (Atkeson and Stephens, 2007). Ifthe joints leave the intervals φ1 ∈ [−0.4; 0.8] or φ2 ∈ [−0.1; 1.6] the robot has fallenand the episode is terminated. An episode is 
onsidered as su

essful if the robothas managed to keep balan
e for 5s. The state spa
e is de�ned by the applied (onedimensional) for
e F . We used the following reward fun
tion
C(τ) = −2000(T − 5)2 − 0.01

T
∑

t=1

aTt at,where T is the point in time the robot falls over (or 5s if the robot keeps balan
e).The whole movement representation 
onsisted of 19 parameters. Sin
e the exa
trepresentation of the movement is of minor importan
e for this paper we refer tothe supplementary material for further information. For performan
e reasons, wealways 
reate 30 samples from the 
urrently estimated poli
y. The parameter na
twas again set to 5 and the punishment for in
luding samples with zero probabilitiesto Pz = 300 In our �rst experiment we 
ompared our algorithm to CMA-ES, whi
his a highly 
ompetitive sto
hasti
 optimizer, in a single situation setup with F =
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(b)Figure 10.5: (a)Comparison of the I-proje
tion and M-proje
tion on the multi-for
e setup.VIP-single denotes learning for ea
h for
e separately. The I-proje
tion 
ould outperformthe M-proje
tion and also slightly the VIP-single setup. (b) Learning 
urve of the 4-linkbalan
ing experiment with random for
es.
25Ns. We evaluated VIP one time with learning all diagonal entries σ2

i of the
ovarian
e matrix and VIP when keeping these fa
tors �xed. As we 
an see inFigure 10.4(a), VIP with the full representation performed best. VIP with the �xeddiagonal entries showed similar performan
e as the CMA-ES algorithm. Be
ause ofthe huge 
omputational requirements of the full representation (one trial runs for
10h) we will only use the �xed diagonal representation (one trial runs for 90min)for the remaining experiments. In the next experiment (Figure 10.4(b)) we used asmall noise for our for
e F whi
h was uniformly sampled from interval [−2.5; 0]Ns.This noise was known to the VIP, however, as CMA-ES is inherently unaware ofthe state s0, it 
ould not learn a useful poli
y. The VIP algorithm was only slightlya�e
ted by the noise. The �nal performan
e was similar as learning without noise.Next, we evaluated the VIP algorithm on
e with the M-proje
tion and the I-proje
tion on the multi-for
e setup. The for
e was 
hosen uniformly from the interval
[0, 25]Ns. We also 
ompared our algorithm to the noisy single situation setting. Here,we used 10 di�erent for
es from 2.5 to 25Ns and performed individual learning trialsfor ea
h for
e (we again added a noise of [−1.25, 1.25] to the for
e). The result
an be seen in Figure 10.5, again, the I-proje
tion outperformed the M-proje
tion,however, the di�eren
e was not that extreme as in the Cannon task. Still, the �nalperforman
e of the I-proje
tion (−51.2) was better than the M-proje
tion (−62.1)by 20%. We 
an also see that learning with all for
es at on
e 
ould slightly improvethe learning speed in 
omparison to the average of the noisy single-for
e setup.The 4-link model 
onsisted of an ankle, a knee, a hip and a shoulder joint. Inthis experiment the for
e F was a 4-dimensional ve
tor, denoting the for
e valueapplied to ea
h body part. Thus, our state spa
e is 4 dimensional. The movementrepresentation for this task had 39 parameters. We always normalized the for
eve
tor F, su
h that |F| = 25Ns. In this experiment we used 16 randomly 
hosenfor
e ve
tors, whi
h were additionally perturbed by a uniformly sampled noise in
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t = 0.10 s t = 0.60 s t = 1.10 s t = 1.60 s t = 2.10 s

Figure 10.6: Learned balan
ing strategies for di�erent random for
es (with |F| = 25Ns).The robot has learned to apply 
ompletely di�erent strategies in di�erent situations.the interval ±2.5Ns. The parameter na
t was set to 10 and Pz to 105. The learning
urve for this experiment 
an be seen in Figure 10.5(b). After 60000 episodes theagent was able to balan
e almost all experien
ed for
es. The resulting balan
ingstrategies for di�erent for
es 
an be seen in Figure 10.6. As we 
an see, the robothas learned to apply 
ompletely di�erent strategies in di�erent situations.10.6 Con
lusion and future workExisting poli
y sear
h algorithms typi
ally approximate the poli
y by using theM-proje
tion to the reward-weighted traje
tory distribution. In this paper we pro-posed to use the I-proje
tion of the reward-weighted traje
tory distribution as in-teresting alternative. The I-proje
tion alleviates many problems 
onne
ted to theM-proje
tion. While the I-proje
tion is 
omputationally a mu
h more di�
ult op-eration, the '
ost-averse' poli
y resulting from the I-proje
tion 
omes along withseveral advantages. Be
ause the I-proje
tion always wants to ex
lude negative ex-amples, the algorithm does not su�er from problems whi
h o

ur by averaging overnon-
on
ave or multi-modal target distributions. Consequently, it shows an in-
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reased learning speed, improved performan
e of the �nal poli
y and it 
an also beapplied with ease to the learning in multiple situations simultaneously.The main restri
tion of VIP is the 
omputation time. In future, we plan touse mixture of Gaussian models to alleviate this problem. This should give us
onsiderable speed up be
ause we do not have to re-estimate our distributions overand over again. Furthermore, a more e�
ient method for 
al
ulating the I-proje
tionis needed.VIP is not limited to the single step reinfor
ement learning setup. In the futurewe plan to use the algorithm also for sequential de
ision tasks. In this 
ase, messagepassing algorithms like the one presented in (Toussaint, 2009) 
ould extend ourframework.10.7 A
knowledgmentsThis 
hapter is based on the paper 'Variational Inferen
e for Poli
y Sear
h in Chang-ing Situations' published at the International Conferen
e for Ma
hine Learning(ICML) 2011. Gerhard Neumann was the only author of this paper.AppendixMotion Templates used for balan
ingThe motion templates (or movement plans) used for the balan
ing tasks de�nedesired velo
ity pro�les. The pro�les are intergrated to get a desired traje
tory. Thepoli
y of the motion templates is then de�ned by a linear PD-traje
tory tra
king
ontroller. The motion is divided into 2 motion templates. Template m1 drives therobot to a set-point of ea
h joint, Template m2 tries to stabilize the agent at theupright position. Template m1 
onsists of an a

eleration phase and a de
elerationphase. The a

eleration phase takes d1 se
onds and has the following velo
ity pro�le:
vD(t) = −k1(1−

2

1 + exp(−6/d1c1t)
) + v(0),where k1 is a 
onstant depending on the desired set point p1 (the exa
t dependen
eis not shown here but 
an be easily obtained via integrating the velo
ity pro�les)and c1 is a 
onstant whi
h spe
i�es slope of the velo
ity pro�le. The de
elerationpro�le has the following form :

vD(t) = k̃1(1−
2

1 + exp(−6c2(1−
t−d1
d2

))
),where d2 is again the duration of the de
eleration phase, c2 sets the slope of thea

eleration and k̃1 is again 
hosen depending on the desired set point p1. k1 and

k̃1 is 
hosen su
h that the integral over the a

eleration and the de
eleration phaseequals p1, and that there is no jump in the velo
ity at the transition of a

elerationto de
eleration phase. At the end of the de
eleration phase the desired velo
ity
vD(d1 + d2) is always zero. d1 and d2 are shared for all joints while the remaining
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(d) m2, c2Figure 10.7: The plots show the desired velo
ity pro�les (top row) and positions traje
tories(bottom row) for di�erent parameter settings of template m1 and m2.parameters 
an be 
hosen independently for ea
h joint. Thus we have 3 parametersper joint (c1, c2 and p1) whi
h des
ribe the shape of the velo
ity pro�le. Thevelo
ity pro�le is then integrated and used in 
ombination with a PD traje
torytra
king 
ontroller to de�ne the poli
y of the template. The 2 PD-
ontroller gainsare also 
hosen by the template, resulting in 5 parameters per joint. Thus, in
ludingthe 2 timing parameters d1 and d2, template m1 has 12 parameters for the 2-linkpendulum task and 22-parameters for the 4-link pendulum problem. The velo
itypro�le and the resulting traje
tories for di�erent parameter settings 
an be seen inFigure 10.7(a) and (b).After exe
uting template m1 the agent should ideally have rea
hed the set-points
pi with zero velo
ity. However, sin
e we deal with a highly non-linear system,the PD-
ontroller is usually not able to tra
k the traje
tories perfe
tly and these
onditions might be violated.Motion template m2 is used to stabilize the robot at the upright position. Thus,the desired setpoint is already given (φi = 0 and φ4 = π). m2 runs until theepisode is terminated. The template uses the same a

eleration pro�le than m1.For stabilizing the robot at the upright position, the de
eleration pro�le resemblesa slowly de
aying exponential fun
tion. The de
eleration pro�le is given by

vD(t) = k̃2 exp(−c2(t− d1))Due to the tra
king errors this pro�le is more suitable for stabilization at asetpoint than the de
eleration pro�le of m1. Again k2 and k̃2 are 
hosen su
h thatthe desired joint position 
onverges to zero (or pi for φ4) and that there is no jumpin the velo
ity at the transition from the a

eleration to the de
eleration phase. Thevelo
ity pro�le and the resulting traje
tory for di�erent parameter settings 
an beseen in Figures 10.7(
) and (d). Template m2 has 4 parameters per joint (c1, c2 andthe 2 PD-
ontroller gains), resulting in 9 (in
luding d1) parameters for the 2-linkand 17 parameters for the 4-link balan
ing task.
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ation, Bat
h-Mode Reinfor
ement Learning for Continuous StateSpa
es: A Survey, is a survey paper written for the OGAI Journal. As it is only areview and was not peer reviewed it is not in
luded in this thesis.The paper E�
ient Continuous-Time Reinfor
ement Learning with AdaptiveState Graphs was written by myself (GN), Mi
hael Pfei�er (MP) and Wolfgang
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ationsMaass (WM). I developed the graph-based RL algorithm and 
ondu
ted most ofthe experiments while MP implemented the reward predi
tion me
hanism and didmost of the paper writting. The paper was sele
ted for oral presentation at the18th European Conferen
e for Ma
hine Learning (ECML). Chapter 3 of this thesisis based on this paper.The paper Fitted Q-Iteration by Advantage Weighted Regression was writtenby myself (GN) and Jan Peters (JP). I developed the theory and implemented theAdvantage-Weighted Regression algorithms. I also 
ondu
ted the experiments whileJP provided the basi
 ideas and very helpful guidan
e for this paper. I also wrotethe paper with signi�
ant improvements provided by JP. The paper was sele
ted fora poster in
luding spotlight presentation at the 22th Annual Conferen
e on NeuralInformation Pro
essing Systems (NIPS) 2008. The Chapter 4 is based on this paper.The paper Biologi
ally Inspired Kinemati
 Synergies Provide a New Paradigmfor Balan
e Control of Humanoid Robots. was written by Helmut Hauser (HH),myself, Auke Jan Ijspeert (AI) and my supervisor Wolfgang Maass (WM). HH 
on-du
ted the experiments and implemented the linear 
ontrol laws while GN imple-mented the synergies in
luding the inverse kinemati
s optimization. HH and WMdid most of the paper writting. AI provided many useful ideas for the design of theexperiments. The paper got the best paper award at the 7th IEEE RAS/RSJ Con-feren
e on Humanoids Robots (HUMANOIDS07). It was subsequently extended tothe journal version Biologi
ally Inspired Kinemati
 Synergies enable Linear Balan
eControl of a Humanoid Robot. Chapter 6 of this thesis is based on this paper.The paper Learning Complex Motions by Sequen
ing Simpler Motion Templateswas written by myself, Wolfgang Maass (WM) and Jan Peters (JP). The algorithmdesign, implementation and the experiments have been 
ondu
ted by GN while theinitial basi
 idea was provided by WM. JP greatly helped to improve the paperwritting and also provided useful guidan
e.Chapter 8 is based on joint work with Elmar Rü
kert (ER), Mar
 Toussaint(MT) and my supervisor Wolfgang Maass (WM). While I provided the basi
 ideaand guidan
e, ER did a great job in the realization of these ideas. Paper writtingwas done by ER and myself, with additional very useful input by MT and WM.While this work is not yet submitted, I in
luded it in my thesis be
ause I think ithas great potential. It will hopefully be �nished for submission in De
ember 2011.The paper Variational Inferen
e for Poli
y Sear
h in Changing Situations was
ompletely written by myself.
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