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ABSTRACT

Accurate and robust motion estimation in image sequences is essential for high quality
video processing and digital film restoration. The ability to deal with strong outliers and
large impaired regions is especially important for restoring historical film. Typical artifacts
like brightness changes, noise, scratches or other forms of missing data may cause the
algorithms to fail. Even in situations without disturbance and only changing illuminations
the algorithms often have problems to compute the correct motion.

We provide a convex variational framework for motion estimation with different extensions
to increase its accuracy as well as its robustness. We utilize efficient primal-dual methods
for optimization that exhibit good parallelization capabilities. The algorithms are well
suited for an efficient implementation on modern graphics hardware. Moreover, we evaluate
all the different models on a benchmark sequence where ground-truth motion is known to
quantitatively compare the proposed approaches.
To increase both, the robustness and the accuracy of the motion estimator we impose

the following modifications into the motion estimation framework: At first, we extend
existing approaches from the literature by anisotropic variants of the robust Huber norm
to increase the accuracy near motion boundaries. Next, based on the Gestalt principles of
grouping, we incorporate a low-level segmentation process to guide the regularization. We
propose to use a non-local Huber regularization to impose this grouping into the variational
framework. Constant intensity values over time along motion trajectories are a commonly
made assumption to simplify motion estimation. For realistic scenes this requirement is
rarely fulfilled. Hence, the ability to handle brightness variations is important and we
show different approaches that are able to deal with such data. Furthermore, we propose a
method to incorporate arbitrary data terms into the energy functional. This enables the
usage of any desired data similarity measure.

In order to demonstrate the capabilities of robust motion estimation we incorporate the
proposed motion estimation approach into video processing applications. At first, flow
guidance is introduced into a variational TV-`1 denoising framework. Besides denoising
this approach enables the restoration of coarse outliers. Even large areas of missing data
can be filled with reasonable information. Most importantly, the given motion is continued
within the unknown areas. In fact, the method is capable of recreating completely missing
frames. Moreover, multiple frames can be generated which enables the approach to generate
artificial slow-motion sequences. Second, we propose to use optical flow guidance also in
a patch-based inpainting approach. This approach is mainly intended to remove static
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artifacts that occur over a longer period of time. In addition, the other objects’ motion is
not affected by the restoration process. Including optical flow guidance into this patch-based
approach demonstrates that the proposed enhancements are not limited to variational
approaches.

Keywords. film, video processing, restoration, variational methods, motion, optical flow
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CHAPTER
ONE

MOTIVATION

The UCLA Film and Television Archive holds over 300000 films and television programs
and over 8 million meters of newsreel (twice the distance Earth – Moon). The Academy
Film Archive is in possession of over 140000 motion picture films and videos. Both archives
emphasize the value of their collections and especially highlight the importance of preserving
historical footage. The aim is to transfer all the material that resides on unstable film stock
towards modern polyester film or to digital formats. In addition, the storage condition
is optimized for minimizing the deterioration of the film bases. The amount of material
and the difficulty of the restoration task justifies the need for automatic video processing
algorithms.
With the rise of digitalization, the application of automatic algorithms for restoration

tasks gains in importance. Modern algorithms are not only beneficial for restoration
but also for video editing and motion picture post-production. More and more, digital
technology is entering the domain of motion picture film production. While the digital
format has quickly been accepted for broadcasting, it took longer for the digitalization
process to enter the movie business. There, first the post-production stage has been
concerned with the introduction of the digital intermediate. With the recent shift towards
digital cinematography, digital media also outranked film as the medium for distribution
companies. Subsequently, the current improvements in recording equipment completes
the digitalization process. Still, the brief outline (for more information see Chapter 2) of
this development shows, that digital video processing is a very relevant topic. Speaking in
terms of money, faster and more accurate algorithms simplify the digital processing stages
and may lower the production costs. In addition, the fast development of new technologies
demands for high quality material and approaches are needed to process (older) material
to meet the requirements.
For the restoration task, the major advantage of automation is obvious. The robust

detection and restoration of film defects remains a very challenging task and is far from
being solved for arbitrary impairments. In this thesis we do not push for a complete
restoration pipeline but emphasize important elements that can be incorporated into such
a pipeline to improve its usability, quality and robustness. For a description of a complete
restoration pipeline, we refer to the approaches of Van Roosmalen [1999], and Kokaram
[2003]. The succession of the pipeline’s building blocks as in Figure 1.1 got well established
[Van Roosmalen, 1999, Höller, 2012]. Notably, the position of “Image Stabilization” is
different in the work of Van Roosmalen [1999] and Höller [2012]. In our opinion, stabilizing
the video sequence at first simplifies the other processing steps. Furthermore, most of the
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2 1 Motivation

existing approaches do not utilize motion vectors other than for the retouching. The main
reason is the lack of robust motion estimators and e.g. the potential occurrence of flicker
artifacts makes it impossible for most approaches to compute reasonable motion vectors.
Motion vectors are a rich source of information and are crucial for the restoration quality.
Given a very robust motion estimator, the motion vectors could be beneficial in all stages
of the restoration pipeline. The dashed arrows in Figure 1.1 highlight the desire to use
motion information in every stage. Following, we give some examples how the single stages
can benefit from an accurate and robust motion estimation:

• For the stabilization stage, the motion vectors can be used to compute the high
frequency parts of the global motion or even stabilize unsteady camera work.

• If the approach is able to compute stable motion vectors in case of flicker, the
illumination differences can be computed directly. Hence, the brightness variations
are known and can be used for correcting them.

• The need for accurate motion vectors in the retouching is clear and if the motion
vectors are perfectly reconstructed, this restoration stage is almost trivial.

• In the case of noise reduction the knowledge of the points’ motion can be helpful
as well. Mostly, removing noise is formulated as some smoothing process. When
incorporating motion information the smoothing can also be performed temporally
which can enhance the quality of single frames.

Motion estimation is the ideal vehicle for investigating the nature of image
sequences . . . [Kokaram, 2003]

Actually, this statement from Kokaram [2003] is quite obvious. But in other words one
could also say that if the motion within a sequence is perfectly understood and estimated,
editing this sequence gets much easier. Unfortunately, there is no such algorithm that is
able to compute the motion in every imaginable situation since motion estimation is an
ill-posed problem. Consider the restoration task where parts of the image are destructed.
There, the estimation of the pixels’ movements between the single frames is anything but
simple. Even slight changes in the illumination cause a lot of existing motion estimation
algorithms to fail. Also the schematic overview of a restoration pipeline shows the need for
a robust motion estimation. A robust motion estimation is crucial for all other steps in
the restoration pipeline. Hence, motion estimation plays an essential role in this thesis.
The emphasis lies on increasing its robustness towards outliers that occur during film
restoration. In addition, we will present approaches that enhance the accuracy of such
algorithms. Let us point out once more that this thesis will not introduce improvements
of the restoration pipeline itself, but the presented algorithmic considerations improve
the quality and robustness of the single steps, first and foremost, the motion estimation
algorithm.
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1.1 Organization and Contribution 3

Input Sequence

Image Stabilization

Flicker Correction

Automatic and Inter-
active Retouching

Noise Reduction

Output

Motion Estimation

Figure 1.1.: Restoration pipeline.

Not only restoration tasks but also digital video processing and editing tasks attach
great importance to the accuracy of the estimated motion. A common example is video
stabilization that e.g. reduces the unsteadiness of the camera work by computing the
motion of the camera and registering the moving frames onto each other. A second example
which is of common interest is the generation of intermediate frames. Be it for restoration
purposes, when dealing with unrecoverable frames, or for generating multiple intermediate
frames for artificial slow motion sequences. To continue the occurring motion in the
intermediate frames to get a natural viewing impression, again the estimation of the pixels’
movement is crucial. Besides that, motion information improves a variety of algorithms
where at a first glance the use of motion information is not obvious.

1.1. Organization and Contribution

The thesis comprises different parts of the publications [Werlberger et al., 2009, 2010,
2011a,b]. [Werlberger et al., 2011a] features the application of robust motion estimation for
video processing tasks, whereas the other publications relate to methodical and algorithmic
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4 1 Motivation

improvements for motion estimation. When illustrating the organization of the rest of this
thesis we mention parts where the contributions are incorporated. Appendix ?? lists all
publications with a brief description of their content.
The robustness and quality of the algorithms is particularly crucial when dealing with

corrupted input data. This is especially the case for film and video restoration tasks.
Chapter 2 touches on this comprehensive topic. At first, we discuss the development of film
and video for recording motion pictures and broadcasting. Furthermore, we introduce the
taxonomy of video impairments and give a brief outline of relevant restoration approaches.
Chapter 3 provides an overview on the mathematical framework utilized throughout

the thesis. Besides the mathematical definitions, an introduction on variational methods,
convexity and related optimization algorithms is included in this chapter.
The schematic presentation of a typical restoration pipeline in Figure 1.1 reveals the

importance of motion estimation. Chapter 4 introduces the concept of optical flow and its
connection to motion estimation. In addition, this chapter comprises the origin for all our
investigations in the field of motion estimation. The variational formulation to compute
optical flow will be retained throughout the thesis. We mainly rely on the formulations of
Weickert and Schnörr [2001], Brox et al. [2004], Zach et al. [2007]. In addition, we introduce
the numerical scheme to optimize problems of the defined form. This will be used for the
optimization of all the presented approaches for optical flow estimation.
Chapter 5 introduces several extensions of the optical flow approach to improve its

robustness and quality. This expands the field of application for such algorithms. Especially
for difficult data (e.g. artifacts afflicted video sequences) the computation of motion vectors
is challenging. But for such data, an accurate and reliable motion estimate is crucial
to improve the restoration quality. Besides the algorithmic improvements, an additional
contribution is the definition of a versatile framework. All the extensions are incorporated
into the same framework. This improves the ability to combine different enhancements
and the general framework allows for a better comparison of the presented approaches. In
the paper [Werlberger et al., 2009] we defined a variational optical flow model that we
will use as the basis throughout the thesis. All extensions and investigations for motion
estimation are incorporated into this framework. There, we also used a image-driven
regularization that we will discuss in some variations in Chapter 5. Furthermore, for
optimization we exchange the splitting approach by a more sophisticated primal-dual
algorithm. The contributions of the paper [Werlberger et al., 2010] is then divided into
improvements of the regularization and data term to better integrate into the thesis. The
regularization is extended to incorporate larger regions in order to enforce the regularization
within a certain object but prohibit the smoothing process across motion boundaries. The
second contribution of this paper is the ability to utilize any arbitrary data term. This
enables to also use more complex and also patch-based similarity measures which are
difficult to include into the standard formulation. To compare the effects of the various
extensions, we did an extensive evaluation of the various approaches on a benchmark
dataset. Supplemental plots are depicted in Appendix A.
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1.1 Organization and Contribution 5

Chapter 6 deals with video processing applications and shows how motion vectors can
be utilized to improve the quality in video post-production. The chapter is mainly divided
into two parts:

• First, we define a variational restoration approach in form of an extended denoising
model for both, film/video restoration and video post-processing [Werlberger et al.,
2011a]. On the one hand, we show the model’s ability to restore an input sequence
from occurring outliers. On the other hand, the model can also be used for video post-
production e.g. to generate intermediate frames to create an artificial slow-motion
sequence. Here, the aim is to maintain the natural motion of objects throughout the
whole sequence.

• Second, we also demonstrate the benefit of accurate motion vectors for an inpaint-
ing approach that is not formulated in the variational setting. This combination
demonstrates the versatility of the presented optical flow approach.

Finally, Chapter ?? ends the thesis with a discussion and an outlook to further investi-
gations.
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CHAPTER
TWO

FILM AND VIDEO RESTORATION

With the growing demand on high quality broadcasting material, the grade of such
available material gains in importance. Especially when screening historical film
the demanded condition cannot be taken as granted. In addition, the gap between
the available and the desired quality widens. This means that the restoration
process gets more difficult, but also more important to obtain the desired quality
for display. In the following we will give a brief introduction on the development of
film and video and their differences in Section 2.1. Certainly, we do not consider
this summary as complete in any kind but instead show some of the important
milestones in the development of film and the relation to video and digital formats.
Section 2.2 treats the copying process (telecine) from film to video or digital media.
The taxonomy of considered artifacts is introduced in Section 2.4, and 2.5 gives an
overview on approaches that cope with such artifacts to enhance the visual quality
of image sequences. Finally, we discuss the findings and indicate the direction of
the thesis with respect to the presented restoration methods.

Contents
2.1 From Film to Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Telecine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Restoration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Motion Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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8 2 Film and Video Restoration

2.1. From Film to Video

The terminus film derives from film stock, a photographic film with photosensitive layers,
that was mainly used to capture motion pictures. Video is often used when talking about
video tape but in general it refers to digitally stored motion pictures. Currently there is
a trend towards tapeless setups, where the recorded motion pictures are directly written
on e.g. hard disks, solid-state disks or flash memory. Despite all the technical facts and
innovations in digital cinematography the choice between film and digital media has been a
question of belief in the last decades. Nowadays motion pictures are still shot on film but
with the increasing quality of the digital pipeline (recording equipment, etc.) the usage of
film decreases. Currently already 50% of all motion pictures are filmed digitally.
The film stock is distinguished by its width (see Figure 2.1). The most accepted film

gauges are 16 mm wide for broadcasting and 35 mm wide for motion picture production.
The acceptance of 35 mm film as a universally film size is one of the reasons for its success.
By contrast, several standards for video tapes defer its usage. This is also true in terms of
distribution companies, where again the various video formats around the world made film
the more flexible variant. Before outlining the processing of film and development towards
digital media, let us first discuss the issues with historical film and why the digitalization
and restoration of this material is important.

Figure 2.1.: Most common film gauges. The image is reproduced from the National Film
Preservation Foundation [2004]. c© [National Film Preservation Foundation, 2004]

Before the 1950s, motion picture films were shot on Nitrocellulose, which is chemically
unstable and therefore unsuitable for long-term storage [Slide, 1992]. Improper storing

Draft Copy: June 1, 2012



2.1 From Film to Video 9

conditions, like wrong temperature or humidity, cause the film to decompose. Until the
discovery that low temperatures stabilize the film base, the majority of early shot films
were already severely damaged. It is said that e.g. more than 80% of American silent films
are considered lost. The decomposition starts with color fading before the top layer of
the film forms blisters and finally pulverizes completely. Around 1930 a safe alternative
to nitrate film was developed by using cellulose triacetate or polyethylene terephthalate.
But also those film bases are not spared from degradation. The acetate layer for example
decomposes into acetic acid with the consequence of smelling like vinegar. This effect
is typically known as vinegar syndrome (see Figure 2.2). In the 1950s an alternative to
acetate film was introduced by using polyester as a film base. It is far more stable then
the films based on nitrate or acetate, but as any plastic material it is still affected by a
decay. Moreover, repeated playback causes mechanical abrasions. Those can range from
single scratches to complete damage of multiple frames where e.g. the film reels get bonded
together or when the film is torn apart.

Figure 2.2.: Combination of nitrate and triacetate film. In this case the more modern
triacetate film decomposes (vinegar syndrome) and then degrades the nitrate
film too. CC© kino-eye, www.flickr.com

Although the film has been the dominant medium in this industry, the process from
the recording of a motion picture to broadcasting or distribution is by far more complex
compared to digital cinematography. The image sequence is recorded on negative film,
whereof a first positive is developed which is called the “master positive”. This in turn is
used to create a first duplicate (“dupe”) in negative form and from that the release print is
developed. Each development of a film negative may introduce subtle color changes and
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10 2 Film and Video Restoration

decrease the quality. Due to this complex process, errors may slip in at different stages.
In addition, the occurrence of noise, dirt, scratches, etc. accumulates over the copying
processes.

This complex and costly procedure has been one of the main reasons for recording broad-
casts to tape or lately to other digital media. However, for blockbusters the development
took longer for several reasons. Firstly, after more than a century experience with 35 mm
film, the production pipeline for a blockbuster movie is mature. The underlying industry is
oriented towards film. Secondly, the flexibility of film according to achieved resolution and
frame rate has been higher than with shooting video. Thirdly, the audience is used to the
characteristics of the film material. We are accustomed to the soft characteristic of film
and therefore material, that is entirely recorded digitally is often judged as oversharpened.
Interestingly, this soft characteristic is actually due to quality loss of the copying processes.
Finally, up to now a major difference of film and video was the contrast latitude of the
medium. The graduation between white and black is continuous for film while it is dis-
cretized when recorded digitally. The range between shadows and high lights is measured
in f-stops. For film the maximal possible dynamic range is between 8 and 12 f-stops.
This value could not be reached by digital cameras so far. Only recently, state-of-the-art
equipment has reached competitive values.

To the obvious question for the superior technology no general answer could be given for
a long time. It was strongly dependent on the operational area whether to choose between
film and video. Especially for Hollywood blockbusters shooting film dominated and is
still in use. However, the trend is going towards shooting motion pictures with digital
cameras. The first film that was entirely recorded with a digital camera was “Russian Ark”
released in 2002. The interesting thing is that the whole movie was captured as a single
shot with a digital camera and a Steadicam∗ setup. In 2008, two milestones of digital
cinematography were released with the films “Slumdog Millionaire” and “The Curious
Case of Benjamin Button”. The first, “Slumdog Millionaire” was shot on multiple formats
and was the first film shot partly with digital cameras winning the Academy Award for
Best Cinematography. For “The Curious Case of Benjamin Button” most of the footage
(approximately 95%) was recorded with digital cameras. The rather late switch towards
digital technology demonstrates that not only for historic material but also for modern
footage the digitalization process is of high importance.
Since the first decade of the 20th century the so-called digital intermediate has had

a strong influence. Although the majority of film footage has been shot on film it has
been digitalized for post-production, broadcasting or distribution. More details on the
digitalization process itself will be given in the next section about the Telecine. When
transferring motion pictures from film to a digital media the quality should be as good
as possible and occurring artifacts should be removed. Clearly, when coping with historic
material this step is more important compared to modern material. Nevertheless, ToDomu:

∗ An apparatus for canceling the camera mans movement and stabilizing the scene.
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2.2 Telecine 11

outliers hier erklaerenoutliers can also occur when dealing with modern film material and
due to the demand towards high quality the tolerated impairments are minuscule. Due
to the fact that lately digital media has been coming to the fore in combination with the
demand of high quality, the restoration process of film is an active field of research.
The recent trend of digitalization is a step towards the possibility to store motion

pictures not exposed to typical degradation caused by long-term storage. Clearly, before
(or during) digitalization is a good moment to clean the material from all existing artifacts
and distortions and assure the high quality that is demanded nowadays. The downsides of
digitalization like e.g. compression artifacts should not be kept under cover, but within
this thesis digital artifacts are not explicitly treated.

Despite the improvements in quality of visually impaired material, also the reduction in
bit rate can be an essential argument for broadcasting companies when it comes to video
restoration. Clean material can be compressed more efficiently and therefore a restorated
film can either be stored at lower bit rates with equal visual quality or when keeping the
bit rate constant, the quality of the compressed material can be improved. Therefore, the
restoration process goes beyond the mere sake of improving the visual quality but can also
reduce broadcasting costs by achieving better compression rates [Van Roosmalen, 1999].

2.2. Telecine

Figure 2.3.: Philips Shadow telecine released in 2000 capable of scanning film to SDTV
and HDTV formats. CC© kino-eye, www.flickr.com

As stated before, motion pictures that are captured on film need to be transferred to
video for e.g. broadcasting or digitized for post-production (cf . digital intermediate) or
archiving. For this task a telecine is used to scan a film and convert it into an analog
or digital signal which is then stored on video tape or is available for further processing.
Besides transferring the material onto a different medium, often a restoration step is
incorporated into the pipeline. In case of impaired material the telecine process is a
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12 2 Film and Video Restoration

good point to improve the visual quality for further actions. Therefore, when dealing
with historical or visually impaired material, a restoration stage can be integrated into
the telecine process. In the era of NTSC, PAL and SECAM∗ an additional frame rate
conversion has been integrated into the system: Film is typically shot at 24 frames per
second (fps) whereas the NTSC standard broadcasts at 30 fps and PAL/SECAM at 25 fps.
For the latter, the difference of a single frame per second is often neglected as the difference
does not attract attention when the original 24 fps are played back with 25 fps. Ignoring
the framerate differences between the 24 fps of the recorded material and the 30 fps of
NTSC would result into prominent flicker. Therefore, a frame rate conversion is integrated
into the telecine process.
Figure 2.3 shows a Philips Shadow telecine from the year 2000 with a line array CCD

scanner. The exposed film image is lighted and a prism separates the light into the primary
colors (red, green and blue) which are separately recorded by the CCD array. With the rise
of digital intermediate systems, motion picture film scanners have been introduced. Two
different types of scanners are available: Evolved from the telecine process the scanning
process is performed while the film moves by. A possibility to scan at higher resolution is
enabled by scanning each frame of the film stock individually. Resolution up to 8K† can
be achieved. The emerging data is stored on a frame-by-frame basis and is then available
for further processing. Today, scanning is more important than the telecine process.

2.3. Restoration

The previous Section has already highlighted the necessity of the restoration task when
e.g. film is digitalized or historical movies are processed. In the following we will give some
more details on restoration, introduce the taxonomy for occurring artifacts and review
some relevant restoration approaches.
With the introduction of film scanners and the possibility to digitize impaired film

material, the emphasis gradually shifted towards digital film restoration. The restoration
of motion pictures ideally is a fully-automatic procedure, because manually repairing frame
by frame would be a cumbersome task. Considering a frame rate of 24 fps, the restoration
of every single frame is an intractable process. Unfortunately, the methods for recovering
from defects in a video sequence are mostly not a trivial extension of 1D signal processing or
2D image restoration methods towards 3D video signals [Kokaram, 2003]. Hence, utilizing
spatio-temporal information of the motion pictures [Biemond et al., 1987, Efstratiadis and
Katsaggelos, 1990, Erdem et al., 1992, Van Roosmalen, 1999, Kokaram, 2003] and imposing
motion compensation before applying temporal filters [Dennis, 1980, Dubois and Sabri,
1984, Martinez and Lim, 1985, 1989] has already been a valuable improvement when it
comes to restoration quality. For further details on relevant restoration approaches see
∗ Different encoding systems for broadcasting television. † 8K video format has a resolution of 8192×4320
pixels. In todays theaters mostly 2K (2048× 1080) or 4K (4196× 2160) resolution is used and for the home
environment 1080p (1920× 1080) is the current standard.
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2.4 Artifacts 13

Section 2.5.
In addition the restoration process is a balancing act of removing all unwanted im-

pairments without destroying the film characteristics. The discussion of the restored
film Metropolis (1927) is a famous example for such a controversy. In the optimal case,
all impairments are removed but the movie is still recognized as historical with all its
characteristics. As restoration almost always includes some kind of filtering operation the
results are often over-smoothed and this degrades the typical film characteristics, especially
the film grain. In order to distinguish film artifacts from the film’s characteristic and to
establish a common formulation we now introduce the used taxonomy of some relevant
impairments.

2.4. Artifacts

Degradation of film and video material can have different causes. Kokaram [2003] dis-
tinguished between impairments that are caused by film degradation and mechanical
abrasion from playback or the telecine process. During the copying process also more
complex degradations like synchronization errors or the loss of contrast can occur. However,
the artifacts are visually similar whatever they are caused by. Hence, we do not make
this distinction and treat the family of artifacts as a whole and neglect the cause of the
impairments. In the sense of Kokaram [2003] and Van Roosmalen [1999] we divide the
artifacts into four major impairment groups:

• Missing data

• Noise

• Flicker

• Image vibration

While the distinction of artifacts could be done at a finer scale, we refer to this classification
because we are mainly interested in the overall characteristics of these impairment families
and the resultant effects on the presented algorithms. In the following we give a rough
description of the impairment groups. Figure 2.4 shows some typical film artifacts from
the impairment families missing data and noise. At the current point, flicker and image
vibration is difficult to visualize with still images as those artifacts are mainly pronounced
over the temporal component. In the following we give some details on how those impairment
families can be characterized:

Missing data describes areas where no image information can be deduced. This can be
due to scratches or speckles, destructed areas, and completely lost frames for the worst
case. Such impairments can emerge from physical abrasion of the film layer caused by
the mechanical transportation in the playback apparatus. More severe deterioration can
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14 2 Film and Video Restoration

occur in areas where film reels get bonded together while played back which can result
into completely destructed areas. Besides mechanical abrasion, dust and dirt on the lens
or film while recording can lead to typical black and white spots in the recorded material.
Also pollution when storing or copying the film can produce such speckle artifacts. As
discussed in the Motivation, another cause for destructed regions is film degradation due
to chemical decomposition of the film base material. This can lead to small cracks but can
also escalate into big destructed regions and even unrecoverable frames.

Noise is difficult to judge for historic film material. Due to film grain the presence of
a certain amount of granularity is an essential characteristic. Simply removing all the
noise will lead to the impression of over-smoothed material destroying the typical film
characteristic. Though, noise can become too severe especially for very old material that
was copied multiple times. For every replication the noise level increases as the copying
process can add some more impairments when no restoration is performed. A widely
used technique to maintain the film grain is to smooth the video sequence and afterwards
superimpose some artificial grain. Clearly, a better approach is to only remove the severe
artifacts and leave some noise/grain in the image to maintain the typical film characteristic.

Flicker is an effect mainly confined to material recorded on film. It describes brightness
changes from one frame to the next and is mostly caused by different exposure times. This
is a very common impairment for the black and white era, and was caused by the cameras
exhibiting unconstant film exposures. Nevertheless, it is also possible that flicker has been
introduced by degrading film layers. The main difference between the two variants is the
duration where the flickering occurs. If caused by film degradation, the brightness changes
are often restricted to parts of film and often only parts of the frame are afflicted. In
contrast, inconsistent exposure times of the camera equipment effects the whole movie.

Image vibration describes the effect of an unsteady picture over time. This can be caused
directly by unsteadiness in the camera work by e.g. filming with a handheld camera. On
a smaller scale such shaking effects can be induced by inaccurate transportation of the
film while telecined or played back. Degraded transport perforations can cause unsteady
pictures during playback although the movie is technically fine.
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2.5 Restoration Methods 15

(a) (b)

(c) (d)

Figure 2.4.: Examples for film defects. (a) shows typical blob artifacts where no data
information is available. In addition it is a good example for noise and
scratches which do also occur in (b). (c) and (d) have large destructed areas.

2.5. Restoration Methods

In this section we will present an assortment of approaches to visually improve degraded
motion pictures. At first, we distinguish between algorithms that are applied to single
frames and such that explicitly use the temporal information available from video sequences.

Standard image denoising methods can be applied on a frame-by-frame basis to a video
sequence. However, this neglects the temporal component and such methods obviously
do not profit from this additional information in the data. In addition, good looking
restoration results for a single image do not necessarily satisfy when seen in the context of
a whole sequence. A straightforward possibility to incorporate the temporal component is
frame averaging. This is a simple and fast approach to reduce noise from image sequences
by taking e.g. the mean of the color values over a certain temporal window. The results
are pleasant on static objects, however, when motion is present it introduces additional
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16 2 Film and Video Restoration

blur in these areas.
For this reason, McMann et al. [1978], Dennis [1980], Dubois and Sabri [1984] narrowed the

application of frame averaging towards non-moving objects. Hence, the filtering operation is
only applied to objects where no motion is detected in order to avoid introducing additional
blur. The major drawback of this approach is the limitation of denoising towards static
parts of the scene. When non-moving objects begin to move, the noise increases in those
areas as the filtering is then prohibited. In addition, the moving elements attract the
observers attention and are therefore particularly noticed. For this reason it is essential
to handle the moving parts of the scene and also apply some kind of filtering there. This
enables the restoration of the whole sequence and this certainly is a desirable goal.
Especially Huang [1981], Dennis [1980], Dubois and Sabri [1984], Martinez and Lim

[1985] depicted the importance of motion estimation when applying temporal filters. In
terms of different filters, a linear and a median filter [Tukey, 1977] is applied on the motion
compensated frames and it is shown that especially the median filter performs well for
removing defects in presence of moving objects. For small velocities even moving edges
are preserved by the median filter as it is the case for the 2D variant of the filter for
discontinuities. This variant works nicely if the motion compensation yields correct results.
However, for larger motion and complex sequences it often occurs that motion estimation
fails in certain areas. In such areas it is better to adapt the smoothing to the quality
of the motion estimator. If one is certain that the motion is valid, the smoothing can
be performed, but when it fails the temporal denoising should be reduced. In this sense,
Dubois and Sabri [1984] introduced an additional weighting parameter that adapts the
denoising towards the accuracy of the estimated motion vectors.

Incorporating motion detectors and estimators to guide temporal filtering improves the
sharpness of the denoised sequences. Still a combination of both, temporal and the classical
spatial filtering might even improve over both approaches. Efstratiadis and Katsaggelos
[1990], Ozkan [1991, 1992], Erdem et al. [1992], Kokaram [2003] proposed 3D operators to
combine the benefits of noise reducing spatial filters and the detail preserving tendency of
temporal filters. Furthermore, spatio-temporal Wiener filtering has been used in Martinez
and Lim [1985], Martinez [1987], Erdem et al. [1992], Katsaggelos et al. [1989], Kokaram
[2003] incorporating motion estimation.

2.6. Motion Estimation

A robust and accurate motion estimation technique is essential for the resultant quality of
the restoration approach. Despite the long history of research motion estimation remains
an unsolved problem and there exists no algorithm that achieves perfect results. Already
the schematic presentation of a restoration pipeline in the first chapter in Figure 1.1
emphasized the important of an accurate algorithm for motion estimation. Often, optical
flow is utilized to estimate the pixels’ movement in an image sequence. Optical flow and
motion estimation can only be equated under certain circumstances. While optical flow
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2.6 Motion Estimation 17

describes the motion of the image brightness pattern while motion estimation itself refers
to the actual movement of specific points in the image. In Chapter 4 we will discuss the
characteristics of optical flow in more detail and give some more details on using optical
flow for motion estimation. Furthermore we will present a variational approach that has
been heavily used throughout the last decades for computing optical flow vectors in sequent
images. As the restoration quality is heavily dependent on the quality of the motion
estimator we will then discuss various extensions in Chapter 5. But before discussing the
framework for optical flow estimation, we will introduce the mathematical foundations in
Chapter 3 and give an introduction to variational approaches.
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CHAPTER
THREE

VARIATIONAL METHODS IN IMAGING

The following chapter is devoted to a brief review on variational methods in the
field of image processing. The aim is to introduce the mathematical framework
for the presented models and to put together the common notation and operations.
First, we introduce some details on the mathematical notation, then give an
overview on variational methods for imaging problems and present some basic
concepts on convex analysis and optimization.
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20 3 Variational Methods in Imaging

3.1. Prerequisites (mathematical notation)

Before we start revisiting the mathematical foundations of variational methods, we first
introduce some of the used notation and operations that will be utilized throughout the
following sections. Furthermore, we give some details on the discretization of the defined
operators for the usage in numerical schemes applied to functions that are defined in the
continuous domain.

In order to use a spatio-temporal intensity function I(x, t) in numerical schemes we
define single images of this space-time volume as I1 (x) , . . . , IK (x) which are defined at
discrete time positions t = {1, . . . ,K}. x denotes the spatial position as the coordinate
vector in an image that is defined as

x =
(
x1

x2

)
.

The sequent input images Ik(x), k = 1, . . . ,K are defined on a regular Cartesian grid of
size M ×N ,

Ωh = {(ih, jh) : 1 ≤ i ≤M, 1 ≤ j ≤ N} , (3.1)

where h denotes the size of the pixels (pixel spacing). For all further considerations we
assume a regular and homogeneous pixel grid with pixels of size h = 1. This simplifies the
definition of the pixel grid to

Ω = {(i, j) : 1 ≤ i ≤M, 1 ≤ j ≤ N} . (3.2)

Hence, the discrete pixel position within an image is given by (i, j). Next, we define the
finite dimensional vector spaces

X = RMN

Y = X ×X = R2MN

Z = Y × Y = R4MN .

(3.3)

With the vectors

a ∈ X and â ∈ X ,

b =
(
b1, b2

)
∈ Y and b̂ =

(
b̂1, b̂2

)
∈ Y ,

c =
(
c1, c2, c3, c4

)
∈ Z and ĉ =

(
ĉ1, ĉ2, ĉ3, ĉ4

)
∈ Z .
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3.1 Prerequisites (mathematical notation) 21

the standard scalar products are defined as

〈a, â〉X =
N∑
j=1

M∑
i=1

ai,j âi,j , (3.4)

〈
b, b̂
〉
Y

=
N∑
j=1

M∑
i=1

(
b1i,j b̂

1
i,j + b2i,j b̂

2
i,j

)
, and (3.5)

〈c, ĉ〉Z =
N∑
j=1

M∑
i=1

(
c1
i,j ĉ

1
i,j + c2

i,j ĉ
2
i,j + c3

i,j ĉ
3
i,j + c4

i,j ĉ
4
i,j

)
. (3.6)

Moreover we define the `p-norm as

||a||p =

 N∑
j=1

M∑
i=1
|ai,j |p

1/p

. (3.7)

Frequently used norms are the `1, the `2 (or Euclidean) norm and the `∞ (or maximum)
norm which are defined as

||a||1 =
N∑
j=1

M∑
i=1
|ai,j | , (3.8)

||a||2 =
√
〈a, a〉X and (3.9)

||a||∞= max (ai,j) . (3.10)

The gradient operator ∇ : X → Y is defined as

(∇a)i,j =


(
δ+
x1a
)
i,j(

δ+
x2a
)
i,j

 , (3.11)

When used in a numerical scheme δ+
x1/x2 are standard forward differences computed on the

discrete lattice with Neumann boundary conditions defined as

(δ+
x1a)i,j =

ai+1,j − ai,j if i < M

0 else ,

(δ+
x2a)i,j =

ai,j+1 − ai,j if j < N

0 else .

(3.12)

Furthermore, we introduce the adjoint operator (denoted as ∗) of the gradient as
∇∗ : Y → X being the negative divergence operator through the identity

〈∇a, b〉Y ≡ 〈a,∇
∗b〉X = 〈a,−div b〉X . (3.13)
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To compute the divergence in a numerical scheme we use standard finite backward differences

− (div b)i,j =
(
δ−x1b

1
)
i,j

+
(
δ−x2b

2
)
i,j
. (3.14)

With the backward differences δ−x1/x2 defined as

(δ−x1b
1)i,j =


0 if m = 1
b1i,j − b1i−1,i if 1 < i < M

b1i−1,i else ,

(δ−x2b
2)i,j =


0 if n = 1
b2i,j − b2i,j−1 if 1 < j < N

b2i,j−1 else .

(3.15)

Similarly to (3.11), the gradient in Y , ∇ : Y → Z is defined as

(∇b)i,j =
((
δ+
x1b

1
)
i,j
,
(
δ+
x2b

1
)
i,j
,
(
δ+
x1b

2
)
i,j
,
(
δ+
x2b

2
)
i,j

)T
. (3.16)

Subsequently, the adjoint operator of the gradient −div : Z → Y is defined as

− (div c)i,j =
((
δ−x1c

1
)
i,j

+
(
δ−x2c

2
)
i,j
,
(
δ−x1c

3
)
i,j

+
(
δ−x2c

4
)
i,j

)T
. (3.17)

3.2. Variational Methods

Most of the problems in imaging and computer vision are inverse problems. According to
Keller [1976] inverse problems are defined as follows:

We call two problems inverses of one another if the formulation of each involves
all or part of the solution of the other. Often, for historical reasons, one of
the two problems has been studied extensively for some time, while the other is
newer and not so well understood. In such cases, the former problem is called
the direct problem, while the latter is called the inverse problem. [Keller, 1976]

The direct problem is often called forward problem. In other words, the forward problem
defines e.g. generating data with a given parametric model, whereas the inverse problem
would be the reconstruction of the model parameters from the given data. Such data can
be acquired by e.g. some measurements, observations, or as in the case of computer vision,
images or video streams. Applications in computer vision demonstrate the difficulty and
ambiguity of inverse problems. Considering a given image, it is difficult to recover the
original data which could be demanded in the form of appearance or 3D structure.
Typically, one of the two problems is ill-posed in the sense of Hadamard [1902] who

defines problems to be well-posed if

Draft Copy: June 1, 2012
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1. a solution exists (existence),

2. it is the only solution (uniqueness),

3. and the solution depends continuously on the data of the problem (stability).

If one out of the two inverse problems is an ill-posed problem, that one is denoted as
inverse, whereas the second one is then the direct problem.

As implied in the description of forward and inverse problems the usual tasks we have to
deal with in computer vision and image processing are ill-posed. In order to make such
problems well-posed, additional information is incorporated into the model. This is often
referred to as prior assumption. A common form of formulating an imaging problem is to
define an energy functional of the form

min
v
E(v (x)) . (3.18)

Its stationary point (in (3.18) defined as its minimum) should describe the desired solution.
In order to apply sophisticated optimization schemes, the formulated functional should be
convex. The next question is about the assembly of such an optimization problem. Usually
some kind of data fidelity (D) is defined to describe the desired objective. As mentioned,
mostly this will form an ill-posed problem and some prior knowledge must be added. This
can be done in form of an additional regularization term (R) (a.k.a. prior or smoothness
term) which results in the overall optimization problem

E(v (x)) = R (v (x)) + λD (v (x) , f (x))

=
∫

Ω
ψR

(
x, v (x) , Dv (x) , . . . , Dlv (x)

)
dx+ λ

∫
Ω
ψD (δ (v (x) , f (x))) dx . (3.19)

On the one hand, the data term D (·) measures the data fidelity of the desired signal v (x)
to the given data f (x) by optimizing a penalized similarity measure δ (·). On the other
hand, the regularizer R (·) imposes some additional knowledge (e.g. enforcing the signal to
be smooth) to make the optimization problem a well-posed problem. The order l of the
regularizer represents the highest order of derivative of v (x) used in the prior term. Note
that with a sufficiently smooth v (x) the linear operator D can be replaced by the gradient
operator ∇.

As the specifications of such a variational formulation suggest, solving a specific problem
within this framework becomes a twofold task:

• At first, an appropriate energy functional (model) must be defined, where the
stationary point yields the desired solution. Mostly it is a combination of a data
term, defining the problem and the relation to the given data, and a regularization
term to obtain a well-posed problem. Section 3.3 gives an example on utilizing such
an approach for the image denoising task.
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• Second, to obtain this solution, the optimization problem must be solved. An
appropriate algorithm is applied and in the best case a global optimum of the
function is computed. More details on convex function and respective optimization
techniques are given in Section 3.5 and 3.6.

3.3. Variational Image Denoising

As an illustrative example to model a variational formulation, we have a closer look on the
image denoising task which is well studied and nicely suits to a variational formulation.
By means of commonly used formulations we explain the constellation of such a problem.
The task is to extract the clean image v̌ (x) from the given data corrupted by noise η

f (x) = v̌ (x) + η . (3.20)

As the noise is usually unknown, the first step is to model an appropriate data term. A
common approach is to minimize the linear least squares fit of the residual

D (v (x) , f (x)) =
∫

Ω
(v (x)− f (x))2 dx . (3.21)

Next, to make the problem well-posed, additional prior knowledge has to be added to
(3.21). An often used variant is to enforce the fluctuations of high frequencies in the image
to be small by incorporating a quadratic penalization of the first-order derivatives of v (x):

R (v (x)) =
∫

Ω
|∇v|2 dx (3.22)

The first articles using such quadratic regularizers in the context of solving inverse problems
date back to Tikhonov [1963] and are therefore often referred to as Tikhonov regularization.
Combining the data term (3.21) and the quadratic regularizer (3.22) yields the so-called
Tikhonov model, an energy optimization problem of the form

min
v

∫
Ω

1
2 |∇v|

2 dx+ λ

2

∫
Ω

(v (x)− f (x))2 dx . (3.23)

Figure 3.1 shows an exemplar result of the Tikhonov model. At first, synthetic Gaussian
noise is superimposed on a clean image (Figure 3.1b) to obtain the noisy input image
(Figure 3.1a) that is used as input for the algorithm. Although the noise is removed, the
oversmoothing effect in the result (Figure 3.1c) immediately attracts attention.
The smoothing is accredited with the regularization term. By design, the used regular-

ization penalizes the first-order derivatives of the result v in a quadratic way. Considering
statistical evaluation on the distribution of a linear operator applied to natural images
(e.g. a gradient operator), Huang and Mumford [1999], and Weiss and Freeman [2007]
showed that the quadratic smoothness assumption (Figure 3.2b) does not fit properly
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(a) Noisy input image. (b) Original image. (c) Tikhonov

Figure 3.1.: Variational image denoising with the Tikhonov model (3.23) with λ = 0.05.

to the learned distribution shown in Figure 3.2a. A regularization that would fit such a
given data is depicted in Figure 3.2c with the penalty function ΨR(s) = |s|0.55. Unlike the
quadratic regularization this penalty function is non-convex and therefore not desirable for
integration into the variational framework.
Already the seminal work by Rudin et al. [1992] has drawn the attention to use an

`1-norm for regularizing the variational denoising problem. This yields the so-called ROF
model with the objective function

min
v

∫
Ω
|∇v| dx+ λ

2

∫
Ω
||v (x)− f (x)||22 dx , (3.24)

assuming that v is suffiently smooth. The utilized regularization R (∇v) is often referred
to as total variation. The `1-norm, shown in Figure 3.2d bridges the gap between convexity
and non-convexity. For optimization, the discontinuity at zero is a bit tricky but in general
the model is very well-suited for regularizing image processing problems. For more details
on the total variation we refer to Section 3.4. Replacing the Tikhonov regularizer with the
total variation enables the denoising approach to better preserve image edges which results
into sharper and therefore more natural results. A comparison of the denoising result with
the Tikhonov model (λ = 0.05) and the ROF model (λ = 5) is given in Figure 3.3. Clearly,
the result achieved by the ROF model features more image details and is more desirable.
The property of preserving image edges enables the total variation to be a commonly

used regularization in variational approaches. In the following section we will give some
more information and details on this regularization and furthermore we will utilize total
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Figure 3.2.: Distribution of a linear operator applied on natural images and different
prior terms.

variation-like smoothness priors throughout this thesis.

Draft Copy: June 1, 2012



3.4 The Total Variation 27

(a) Noisy input image. (b) Tikhonov (c) ROF

Figure 3.3.: Comparison of denoising results obtain by (b) the Tikhonov model (3.23)
with λ = 0.05 and (c) the ROF model (3.24) with λ = 5.

3.4. The Total Variation

As depicted for the image denoising task in Section 3.3, the total variation (TV) for
regularizing image processing tasks features the benefit of preserving image edges. This is
a useful property not only to image denoising but for any kind of image processing task.
Indeed a TV-like regularization has been used by Shulman and Hervé [1989] for optical
flow estimation. An introduction to TV in imaging and its mathematical properties is
given in [Chambolle et al., 2010] and references therein. We refer the reader for further
details on the topic. To outline the most important facts of the TV we define v ∈ BV (Ω)
with Ω ⊂ R2. Then the TV is defined by its dual formulation (more details on duality see
Section 3.5.3) as

R (v (x)) = sup
q

{
−
∫

Ω
v (x) div q (x) dx : q ∈ C∞, ||q (x)||∞ ≤ 1

}
. (3.25)

In the given case of v being a function of bounded variation the Divergence theorem is
defined as

−
∫

Ω
v (x) div q (x) dx =

∫
Ω
q (x)Dv (x) . (3.26)

Here, q is the dual variable andD denotes the BV gradient which is defined as a combination
of the gradient in the continuous parts and the jump parts. Moreover, for smooth functions
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u ∈W 1,1(Ω) (3.27) gets

−
∫

Ω
v (x) div q (x) dx =

∫
Ω
q (x)∇v (x) dx . (3.27)

Hence, for a sufficiently smooth v, the TV regularization is defined as

R (v (x)) =
∫

Ω
|∇v (x)| dx . (3.28)

For convenience we stick to the latter notation in the rest of the thesis and assume that
the function is sufficiently smooth.

To apply numerical schemes and optimize energy functionals that incorporate the TV, a
commonly used version of the discrete TV is defined as

||∇v||2,1 =
N∑
j=1

M∑
i=1

√(
δ+
x1v
)2

(i,j)
+
(
δ+
x2v
)2

(i,j)
(3.29)

The major benefits of using the TV regularizer in variational imaging problems has
already been touched in previous section. By using the TV norm as smoothness prior the
functional remains convex and still is able to preserve discontinuities. For the previous
example of denoising, the discontinuities depict image edges but it is also important for
other tasks like motion estimation to enhance motion discontinuities.

3.5. Convex Analysis

After devising an objective function, the task is to compute the desired result by minimizing
the given energy functional. We restrict ourselves to convex problems. There, it is
guaranteed that if a minimum exists, the minimum is a global one and not local. For this
reason we give an overview on the properties of convex analysis before diving into the topic
of convex optimization. For a more complete disquisition on convex analysis we refer to
the textbooks from Rockafellar and Wets [1997], Rockafellar [1997], Bertsekas et al. [2003],
and Boyd and Vandenberghe [2004] and references therein. In the following we give some
details on convexity, convex sets and convex functions.

3.5.1. Convex Sets

A set C is a convex set if it entirely contains all line segments joining any two points
x1, x2 ∈ C meaning that for all θ in the interval [0, 1] all points on the line

θx1 + (1− θ)x2 (3.30)

are again included in the convex set C. Figure 3.4 sketches an illustrative example for
a convex and a non-convex set. The set of all convex combinations of the k points
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x1, . . . , xk ∈ C span the convex hull of a set C which is convex by definition and formulated
as {

k∑
i=1

θkxk

}
, with θi ≥ 0 and

k∑
i=1

θi = 1. (3.31)

(a) Convex set. (b) Non-convex set.

Figure 3.4.: Illustrative example of a convex and b non-convex set.

Furthermore, a set defined as
θ1x1 + θ2x2 ∈ C (3.32)

with x1, x2 ∈ C and θ1, θ2 ≥ 0 is denoted as a convex cone. Similarly to the convex hull
the definition of a conic convex hull is given as the set of all conic combinations of points
in the set C by {

k∑
i=1

θkxk

}
, with θi ≥ 0. (3.33)

Operations on convex sets that preserve convexity are:

• The intersection of convex sets
⋂
iCi is again a convex set.

• The sum C1 + C2 = {x1 + x2|x1 ∈ C1, x2 ∈ C2} of two convex sets C1, C2 is convex.

• Multiplying a convex set C by a scalar λ yields a convex set λC. Furthermore, for
λ1 ≥ 0, λ2 ≥ 0 one obtains (λ1 + λ2)C = λ1C + λ2C.

3.5.2. Convex Functions

Let F (x) : Rn → R be a convex function if the assumption

F (θx1 + (1− θ)x2) ≤ θF (x1) + (1− θ)F (x2) (3.34)

holds for any pair of points x1, x2 ∈ C for any θ with 0 ≤ θ ≤ 1. Furthermore, the domain
of the function F (x) is a convex set C. Geometrically, this defines a line connecting the
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30 3 Variational Methods in Imaging

two points x1, x2 which lies entirely above the functions graph (see Figure 3.5). When
considering the whole set of points lying on or above the graph, the function is convex if
this set is a convex set. This so-called epigraph of F (x) ( epiF (x)) is formally defined as
the set

epiF (x) = {(x, t) |x ∈ Rn, F (x) ≤ t} . (3.35)

In other words, the epigraph of a function defines the area “above” the functional. A
geometric interpretation of the epigraph is depicted in Figure 3.6. Hence, F (x) is convex
on C ⊂ Rn, if epiF (x) is convex on a subset of Rn+1. The function F (x) is called strictly
convex if (3.34) is strict in the sense that x1 6= x2 implying 0 < θ < 1. If the function −F
is convex, F is called a concave function.

Figure 3.5.: Convex function. Figure 3.6.: Epigraph of a convex function.

In the following we show some properties of convexity and operations on convex (or
concave) functions that maintain convexity (concavity) on the newly generated functions:

• If a minimum exists, convexity ensures that the minimum is not local but global.

• For strictly convex functions the minimum, if existent, is unique.

• By forming the convex envelope∗ of a non-convex function, the global minima are
maintained.

• The set of global minima again form a convex set.

• The nonnegative scaling λF of a convex function F with a scalar λ ≥ 0 is again
convex.

• The sum of two convex functions F = F1 + F2 remains convex.
∗ The convex envelope G (x) of a function F (x) is its largest possible convex underestimator s.t.
G (x) ≤ F (x) ∀x ∈ Ω.
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• Combining the two latter operations on a set of convex functions F1, . . . , Fk with
nonnegative weights λ1, . . . , λk yields the convex cone

F =
k∑
i=1

λiFi . (3.36)

• Considering an affine mapping of F : Rn → R with a matrix A ∈ Rn×m and a vector
b ∈ Rn of the form

G (x) = F (Ax+ b) , (3.37)

then the new function G : Rm → R is convex if F is a convex function.

• Computing the pointwise maximum of a set of functions F1, . . . , Fk with

F (x) = max {F1 (x) , . . . , Fk (x)} , (3.38)

results in a convex function F if F1, . . . , Fk are convex.

3.5.3. The Conjugate Function

In this section we introduce an operation that is called conjugate transform, Fenchel
transform or Legendre-Fenchel transform. For our further investigations we stick to the
terminus of conjugate transform or simply the dual. More details on duality is given in the
relevant literature [Rockafellar, 1997, Rockafellar and Wets, 1997, Boyd and Vandenberghe,
2004, Bertsekas et al., 2003].

Consider a function F : Rn → R and F ∗ : Rn → R with the relation

F ∗(x∗) = sup
x∈ domF

{〈x∗, x〉 − F (x)} , (3.39)

then F ∗ is called the conjugate function of F . Moreover, the dual variable x∗ is related
to the function’s subgradient ∂F representing the slope of the original function F . In
succession the conjugate function F ∗ is dependent on the slope of F and is always a
convex function independent of the shape of F (cf . convexity preserving pointwise max
operation in Section 3.5.2). The geometric relations of the conjugate transform are shown
in Figure 3.7.
Applying the conjugate transform to the conjugate function F ∗(x∗) results into the

so-called biconjugate F ∗∗ of F defined as

F ∗∗(x∗∗) = sup
x∗∈ domF

{〈x∗∗, x∗〉 − F ∗(x∗)} , (3.40)

Geometrically speaking, the biconjugate forms the convex envelope of its original function
and is convex by definition, independent of the shape of F . Specifically, if F is a closed
convex function then the biconjugate F ∗∗ is equal to the original function F . In such
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(a) F (x)→ F ∗ (x) (b) F ∗ (x)→ F ∗∗ (x)

Figure 3.7.: Illustration of the conjugate transform’s geometric principles. Computing
the dual transfer points defined in F (x) into slopes of F ∗(x∗) (a) → (b)
while slopes of F ∗ (x) become points in F (x) (b)→ (a). Note, for the shown
example x∗∗ = x in (b) because of the convexity of F (x).

a setting the conjugacy transform is a symmetric operation. According to the Fenchel
inequality

F (x) + F ∗(x∗) ≥ 〈x, x∗〉 (3.41)

F ∗∗(x∗∗) = F (x) if F (x) is a convex function. If F (x) is non-convex then the biconjugate
forms the largest convex envelope of F (x) satisfying F ∗∗(x∗∗) ≤ F (x).

In the following we give some additional illustrative examples of conjugate functions for
some relevant cases:

• Figure 3.8 shows the conjugate transform for an affine function with a
non-differentiable point.

• Figure 3.9 shows the result of the conjugate transform applied to a non-convex
function. It is nicely shown that the biconjugate F ∗∗ (x) in Figure 3.9c forms the
convex envelope of F (x), Figure 3.9a.

For further details we once more refer to the textbooks [Rockafellar, 1997, Rockafellar and
Wets, 1997, Boyd and Vandenberghe, 2004, Bertsekas et al., 2003].
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(a) F (x) (b) F ∗ (x)

Figure 3.8.: Conjugate transform of an affine function with a non-differentiable point x1.

(a) F (x) (b) F ∗ (x) (c) F ∗∗ (x)

Figure 3.9.: Conjugate transform of a non-convex function.

3.6. Convex Optimization

Convex optimization is a special field in mathematical optimization and deals with the
problem of finding the minimum of convex functions. Variational methods are based on
continuous energy functionals and it is the intention to model this as a convex functional.
In order to obtain its minimizer, an appropriate optimization method is applied. As convex
optimization has been studied for more than a century, a vast amount of approaches and
literature exist. For a more complete overview on convex optimization we refer to the
textbooks from e.g. Rockafellar and Wets [1997], Rockafellar [1997], Bertsekas et al. [2003],
Nesterov [2004a], and Boyd and Vandenberghe [2004]. In the following we will mainly
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34 3 Variational Methods in Imaging

concentrate on some relevant approaches in imaging science that we are using to solve the
arising optimization problems.
Consider an optimization problem of the form

minF (v), F : Rk → R , (3.42)

with F being a convex functional and F ∈ C1, assuring that F is differentiable and its
gradient ∇F is Lipschitz continuous. Let v = (v1, v2, . . . , vk) be the optimization variables
and assume that an optimum v̌ with F (v̌) ≤ F (v), ∀v exists. Furthermore, the function’s
gradient is defined as

∇F =
(
∂F

∂v1
, . . . ,

∂F

∂vk

)
. (3.43)

Due to F ’s convexity and F ∈ C1, a vanishing gradient ∇F (v̌) = 0 is a necessary and
sufficient condition for the optimum. This so-called optimality condition may be used to
directly compute the solution of the minimization problem (3.42) but unfortunately for
most imaging problems this is not possible. Hence, often an iterative process is utilized to
compute the desired solution.

3.6.1. Gradient Descent Methods

As we restrict our models to convex functionals F , the necessary condition ∇F (v) = 0
holds for any v ∈ Rk and is referred to as optimality condition. Unfortunately, it is rarely
the case that a direct solution of can be computed for imaging problems. Therefore, the
update direction for the gradient descent method is defined through the gradient’s direction
yielding

vn+1 = vn − τ∇F (vn) (3.44)

In (3.44) τ is the step size of the gradient update and has to be chosen properly so that the
update scheme remains stable and does not overshoot. τ can be interpreted as a temporal
discretization. In order to obtain a reasonable solution one has to choose a proper v0 in
such a way that the iterates (3.44) converge towards the desired stationary point.
When imposing additional constraints the projected gradient descent algorithm can be

used to solve the respective optimization problem. Therefore, an additional projection
onto the given set of constraints is added. Note that the requirement for applying this
algorithm to constrained optimization problems is the ability to compute the projection in
a reasonable fashion.

3.6.2. Interior Point Methods

The interior point methods, as the name suggests, converges to the solution through the
interior of the convex polytope. Therefore, barrier functions are imposed to model the
inequality constraints. In order to iterate towards the optimum, Newton iterations are
utilized. Hence, the objective function F (x) must be twice differentiable. Interior point
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methods are state of the art in convex optimization and are able to achieve highly accurate
results with fast convergence. Unfortunately, most of the problems in image processing have
lots of unknowns and interior point methods are not suited to solve large scale optimization
problems.

3.6.3. Proximal Point Methods

The key concept of proximal point methods as proposed by Rockafellar [1976] is to add
equality constraints as quadratic terms to a convex function F (x) in order to restrict the
update to a certain bound. The proximal point method belongs to the family of simplex
methods and is well suited to solve linear programming problems. Those methods test
adjacent edges of the convex polytope to iteratively approach the optimum. The general
task is to find a v such that T (v) 3 0, with T being a maximal monotone operator. In
order to seek the optimal v, T generates the sequence {vn} with

T
(
vn+1

)
+ 1
λn

(
vn+1 − vn

)
. (3.45)

The proximal point algorithm can also be written with the help of the resolvent of T as

vn+1 = (I + λnT )−1 (vn) . (3.46)

For the case when T is defined as the object function’s subgradient T = ∂F (v) and F is
again a convex function, the algorithm can be written as

vn+1 = arg max
v

F (v) + 1
2λn
||v − vn||22 (3.47)

The major drawback of this algorithm is the difficulty to compute the resolvent operator.
For complex problems, computing the inverse of I + λnT is often of the same complexity.
Therefore, different approaches have been introduced to simplify this step. The operator
T is split into T = A + B with A and B being two maximally monotone operators.
This enables the simpler computation of the resolvent operators (I + λnA) and (I + λnB)
instead of the more complex (I + λnA+B). Famous variants of this algorithm are the
Douglas-Rachford splitting [Lions and Mercier, 1979] or alternating direction method of
multipliers (ADMM), a variaint of the Augmented Lagrangian method [Bertsekas, 1982].
The latter one can be interpreted as an application of the Douglas-Rachford splitting
algorithm which is in turn an application of the proximal point method [Eckstein and
Bertsekas, 1992]. The disadvantage of proximal point methods compared to interior point
methods is the worse accuracy. Still for the optimization problems that are discussed
throughout this thesis, solving interior point methods is not an option due to the large
amounts of unknowns. The trade-off in accuracy is not a problem either as most of the
algorithms are an approximation by itself and therefore the accuracy of the proximal point
approaches is sufficient. In general, proximal point methods are well suited to optimize
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problems of the following form

min
v∈X

F (Kv) +G(v) , (3.48)

with K being a linear operator with the mapping K : X → Y and F,G are convex functions.
Most of the discussed problems will fit this scheme. In image processing, primal-dual
splitting approaches have shown increased popularity and exhibit good performance for
optimizing such problems. In the following we will review a variant of a primal-dual method
proposed by Chambolle and Pock [2010].

3.6.4. Primal-Dual Approaches

We have already shown in Section 3.6.1 that setting the optimality condition to zero is
sufficient in case of convexity. Now consider that the premise of a continuously differentiable
function is not given. A simple, yet often used, function is the absolute function |v| (as
e.g. in the total variation) where the derivative degenerates at v → 0. Concerning the
total variation, Chambolle [2004] proposed a projection algorithm for minimizing the exact
ROF energy functional (3.24) utilizing the dual formulation of the total variation. Again
in the context of ROF denoising, Chan et al. [1996] were among the first that applied a
primal-dual algorithm to solve the optimization problem. Subsequently, Pock et al. [2009]
utilized a similar idea to optimize the Mumford-Shah functional. Generalizations and
connections to other algorithms in the field have then been proposed by Esser et al. [2010]
and Chambolle and Pock [2010]. In the latter, the algorithms convergence rate was shown
to be optimal in the sense of Nemirovski [2004] and Nesterov [2004b]. We will refer to the
work of Chambolle and Pock [2010] on this topic. In the following we reflect parts of their
algorithm that are relevant for our upcoming considerations.

In general, first order primal-dual approaches have been popularized for solving problems
of the form

min
v∈X

F (Kv) +G(v) (3.49)

by transferring it to a primal-dual saddle-point problem yielding

min
v∈X

max
q∈Y
〈Kv, q〉+G(v)− F ∗(q) . (3.50)

The respective dual problem is given as

max
q∈Y
− (F ∗(q) +G∗ (−K∗q)) . (3.51)

We refer to v as the primal variable and q as its dual. The optimization problem depicts
a minimization towards the primal function and a respective maximization on the dual
formulation which yields a convex-concave saddle-point problem. In (3.50), K is a linear
operator and the functions G : X → R∪ {∞} and F ∗ : Y → R∪ {∞} are convex functions.
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Furthermore, F ∗ depicts the convex conjugate of the convex function F . For details
on the Fenchel duality we refer to Section 3.5.3. When solving (3.50) with respect to
minimizing the primal variable and maximizing the dual variable one ends up with an
iterative algorithm that takes gradient ascent steps in the dual variable and gradient
descent updates in the primal variable. Moreover, Chambolle [2004] added an additional
extragradient step and showed convergence for θ = 1. The algorithm then reads

qn+1 = (I + σ ∂F ∗)−1 (qn + σKvn)

vn+1 = (I + τ ∂G)−1
(
vn − τK∗qn+1

)
vn+1 = vn+1 + θ

(
vn+1 − vn

)
.

(3.52)

Here, τ and σ are the step sizes of the primal and the dual update. They are chosen as
τ > 0 and σ > 0 satisfying τσL2 ≤ 1, with L2 = ||K||2. One of the algorithm’s restrictions
is the structure of the operator K. It must have a simple structure so that its norm
L = ||K|| is computable in a reasonable fashion.
In (3.52), (I + σ ∂F ∗)−1 and (I + τ ∂G)−1 are the so-called resolvent (or proximity)

operators of the functions G(v) and F ∗(q). The resolvent operator of a function G(v) is
defined as the minimizer of the following problem, given a x̂ ∈ X:

vn+1 = arg min
v

δG(v) + 1
2 ||v − v̂||

2
2 (3.53)

With δ > 0 the unique solution is given as

δ ∂G(v) + (v − v̂) 3 0 . (3.54)

Utilizing the operator notation, the optimal solution vn+1 can be computed via the resolvent
operator of G(v) which yields

vn+1 = (I + δ ∂G(v))−1 (v̂) (3.55)

For simplicity reasons we set δ = 1 for all further investigations. A requirement of the
algorithm in (3.52) to the resolvent operator is the computability of its solution in a closed
form. To sum up, there are two major restrictions of this primal-dual algorithm on the
optimization problem that are

1. The operator K must have a simple structure such that the operator norm of K is
computable in reasonable time.

2. The resolvent operator must be computable in a closed form manner (or with a fast
algorithm) so that a unique minimizer to (3.53) can be computed.
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Subsequent to (3.52), the authors proposed a preconditioned variant of the algorithm in
[Pock and Chambolle, 2011]. There, they assured convergence properties for optimization
problems, where the first restrictions of an easy to compute operator norm ||K|| is not met.

3.6.5. Preconditioned Primal-Dual

[TODO: motivate the need for this in the thesis]
To overcome some of the models restriction of (3.52), Pock and Chambolle [2011] proposed

a diagonal preconditioned primal-dual method. In case of a badly scaled linear operator K
the convergence of the primal-dual algorithm (3.52) is bad. To assure convergence rates
without the need to explicitly compute the step sizes τ and σ the positive and real-valued
τ and σ of (3.52) are replaced with preconditioned matrices T and Σ. Therefore, the
algorithm changes to

qn+1 = (I + Σ ∂F ∗)−1 (qn + ΣKvn)

vn+1 = (I + T ∂G)−1
(
vn − TK∗qn+1

)
vn+1 = vn+1 + θ

(
vn+1 − vn

)
.

(3.56)

For the algorithmic proofs of converges we refer to the paper by Pock and Chambolle
[2011]. If θ = 1 the preconditioned matrices T and Σ must be symmetric, positive definite,
and, similar to the step sizes, satisfy the condition∣∣∣∣∣∣Σ 1

2KT
1
2

∣∣∣∣∣∣2
2
≤ 1 . (3.57)

In order to improve convergence over (3.52) when ||K|| is not simple to compute, the
parametrization of the preconditioned algorithm is essential. In addition, the requirement
of simple to compute resolvent operators remain. Here, Pock and Chambolle [2011] note
that if G and F ∗ are separable in vj and qi and in addition if Σ and T are restricted to
be diagonal matrices Σ = diag (σi) and T = diag (τj), then the resolvent operators remain
tractable to compute. Moreover, they showed convergence when choosing those diagonal
elements of the preconditioner matrices as

σi = 1∑N

j=1|Ki,j |
α ,

τj = 1∑M

i=1|Ki,j |
2−α ,

with α ∈ [0, 2] . (3.58)
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CHAPTER
FOUR

OPTICAL FLOW

When dealing with movies or other image sequences where some motion is involved,
the knowledge of the pixels’ movement is a rich source of information. In the
following, we give an introduction on optical flow and its connection to motion
estimation. In order to estimate optical flow vectors a variational formulation is
modeled and we also introduce some common formulations. The introduced TV-`1
model selects the origin for all our further investigations in the field of optical flow
estimation. Furthermore, we give details on the utilized optimization framework
to solve this model.
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40 4 Optical Flow

4.1. Motion Perception

Motion perception describes the process of motion cognition in a scene. It infers the
velocity and orientation of the object’s motion. From a biological point of view it depicts
an important field in neuroscience as well as psychology. Because of its complexity, it
would be far beyond the scope of this thesis to discuss details of biological motion. The
more important aspect for us is how to reconstruct the motion of elements in temporally
succeeding images. For details on biological motion perception and especially how to
connect those to computer science we refer to the work of Longuet-Higgins and Prazdny
[1980], and Adelson and Bergen [1985] and references therein.
Concerning the estimated motion, we are mainly interested in the apparent motion of

points in a sequence of consecutive images. The apparent motion is the illusion of motion
when viewing sequenced images in a certain time frame. When e.g. watching a movie
the human observer gets the impression of motion by looking at a rapid succession of
still images where actually each element is pictured at a distinct location. The illusion
of motion is not given until the temporal information is available. This shows that the
combination of spatial and temporal information is important when considering motion
estimation. A very basic concept of motion perception is to consider illumination changes
of a point at the retina. In addition, this point is connected to the neighboring points such
that illumination changes can be detected (cf . Hassenstein-Reichardt detectors). These
changes of the brightness pattern over time are also denoted as optical flow.
The aim of the following chapter is to give an overview on optical flow and the most

relevant historical findings in this field. Moreover, we reflect an approach of modeling an
energy functional in a variational setting to compute the disparities between points in a
pair of consecutive images. In addition, we introduce the optimization framework and give
details on how to solve the given energy functional.

4.2. Optical Flow

Optical flow (sometimes also optic flow) describes the apparent motion of an image
brightness pattern. It denotes a 2D disparity vector linking points of two consecutive
frames together. Hence, it is only the 2D projection of some 3D motion. Let us point
out that the optical flow and the 2D motion field can only be equated under certain
circumstances. Although a lot of literature, among them Horn [1986], and Verri and Poggio
[1989], already referred to this issue, large amounts of literature have used the term optical
flow misleadingly when the true motion field is meant and vice versa. In order to emphasize
this issue once more, assume a static scene with no object performing any type of motion,
but with changing illumination conditions. Therefore, the image intensities will change
at certain regions due to e.g. moving shadows, highlights and reflections. This causes a
change between the brightness pattern of consecutive frames which is estimated as optical
flow although no object motion is present (see Figure 4.1). Although the assumption of
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constant intensities over time is incorrect for many situations it still does provide reasonable
results and is heavily used. To simplify the terminology we stick to the equation of motion
vectors and optical flow and account for the differences when we talk about approaches
that are (or are not) robust to e.g. illumination changes. The versatile applicability of
optical flow vectors is confirmed when looking at the variety of fields where optical flow
is used like e.g. tracking, driver assistance systems, video compression, video processing,
motion segmentation, structure from motion, superresolution, medical image registration,
and many more.

(a) (b)

Figure 4.1.: Changing illumination causes an optical flow field although no object’s motion
is performed.

4.2.1. The Optical Flow Constraint

Consider an image sequence as space/time volume I(x(t), t), where x = (x1, x2)T denotes
the spatial position, t the time and I(x, t) : Ω × T → R the intensity function. In the
following we rely on the frequently made assumption (e.g. [Lucas and Kanade, 1981, Horn
and Schunck, 1981]) of a constant intensity function over time (brightness constancy or
data conservation assumption), that is

d

dt
I(x(t), t) = 0 . (4.1)

Applying a Taylor expansion to the above equation, neglecting the second- and higher-order
terms, yields

d

dt
I(x(t), t) = ∂I(x(t), t)

∂x1
dx1

dt
+ ∂I(x(t), t)

∂x2
dx2

dt
+ ∂I(x(t), t)

∂t
= 0 . (4.2)

Furthermore, we define the motion vector as

u ∈ Y : u (x) =
(
u1, u2

)
, (4.3)
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and the incremental motion vector

du(x) = u(x)− u0(x) = ( dx1

dt ,
dx2

dt )T , (4.4)

the spatial image gradient

∇I(x(t), t) =
(

∂I(x(t),t)
∂x1 , ∂I(x(t),t)

∂x2

)T
(4.5)

and the temporal image derivative

It(x(t), t) = ∂I(x(t), t)
∂t

. (4.6)

Substituting (4.4), (4.5) and (4.6) into (4.2) yields the classical optical flow constraint
(OFC):

ρ(u(x)) = (∇I(x(t), t))T (u(x)− u0(x)) + It(x(t), t) = 0 , (4.7)

with u0 being a given flow field. Note, that this equation is ill-posed for recovering both
components of the flow field u which is related to the aperture problem:

The aperture problem denotes the ambiguity in motion perception when moving (mostly
repetitive) structures are observed through an aperture. Assume a moving repetitive
texture and further assume that the borders of the object are not visible as seen through an
aperture. From the resulting pattern, visible in the aperture, the direction of the motion is
ambiguous as shown in Figure 4.2. Furthermore, this ambiguity can result from untextured
regions. When perceiving the motion of homogeneous areas the observer cannot tell in
which direction the motion vectors are pointing until the object’s boundaries (or at least a
bigger neighborhood) is taken into account.

Different approaches have been proposed to make (4.7) well-posed which can essentially
be divided into two classes, namely local and global approaches. In the following we give a
brief overview of these concepts and their historically most seminal approaches.

4.2.2. Local Approach

Lucas and Kanade [1981] proposed a local approach that estimates the flow vectors within a
small spatial neighborhood. The basic optical flow constraint is solved with the assumption
that the entire proximity is displaced by a similar vector. This yields an over-determined
system of equations, which can be solved with a least-squares estimator, minimizing the
squared errors

ELK(u(x)) =
∑

x∈N (x)
g(x, x)

(
It(x, t) + (∇I(x, t))Tu(x)

)2
. (4.8)

Here, the weighting function g(x, x) steers the support between pixels within the neighbor-
hood N (x) around x and usually decreases with increasing distance |x− x|. Since (4.8) is
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?

Figure 4.2.: Aperture problem: the ambiguity of motion.

convex, the global minimum of ELK(u(x)) is reached, when the derivatives with respect to
the components of u = (u1, u2)T are zero:

∂ELK(u)
∂u1 =

∑
g
(
IxIt + u1I2

x + u2IxIy
)

= 0 , (4.9a)

∂ELK(u)
∂u2 =

∑
g
(
IyIt + u1IxIy + u2I2

y

)
= 0 , (4.9b)

which are often written in matrix form

Mu = b , (4.10)

with
M =

( ∑
gI2
x

∑
gIxIy∑

gIxIy
∑
gI2
y

)
, b =

( ∑
gIxIt∑
gIyIt

)
. (4.11)

When rank(M) = 2 is satisfied, the image structure in the local neighborhood N (x)
contains enough information to solve the aperture problem and the least-squares estimate
can be calculated as u = M−1b. To assure the ability to compute a unique solution, the
neighborhood size is increased which in turn presumes the same displacement vector for
this larger proximity. A trivial way to overcome this dilemma is to compute the optical
flow only where a unique solution can be estimated. This yields a sparse solution of the
resulting optical flow field. Although this approach is an entirely local approach, the
method is still widely used in computer vision systems due to its simplicity. Clearly, the
assumption of constant velocity within a patch is generally not valid for realistic data.
Therefore, various modifications of this approach were proposed in subsequent works.

As the Lucas & Kanade algorithm is only suitable to estimate small displacements (as it is
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based on the linearized OFC), it is common practice to use a coarse-to-fine approach to
recover larger displacements [Moravec, 1979, Lucas and Kanade, 1981]. Robustness, on the
other hand, can be increased by using more robust norms instead of the `2 penalty in (4.8)
[Shulman and Hervé, 1989, Black and Anandan, 1991, Black, 1992], adapting the window
size for defining the neighborhood N (x) [Black and Jepson, 1996] or explicitly model the
neighborhood with e.g. the representation of moving layers [Wang and Adelson, 1994].

4.2.3. Global Approach

Regarding the desire of a dense optical flow field, the local approach shows some drawbacks
when estimating optical flow vectors e.g. within a homogeneous region. Solving the resultant
system of linear equations do not reveal an accurate solution in such areas or might even
be rank deficient, hence cannot be solved uniquely. By contrast, the global approach uses
a smoothness term that propagates the optical flow field from well-posed regions to regions
with poorly conditioned data fidelity. As the name suggests, the global method utilizes the
complete available data to estimate the optical flow field and yields a dense result.

With the seminal work of Horn and Schunck [1981], a new chapter in estimating optical
flow was opened. The idea to circumvent the ill-posedness of the OFC is to formulate the
optical flow problem as an optimization problem of the form

min
u(x)

{∫
Ω
|∇u(x)|2 dx︸ ︷︷ ︸

regularizer (R(u)))

+λ
∫

Ω
|ρ(u(x))|2 dx︸ ︷︷ ︸

data term (D(u))

}
, (4.12)

where ρ(u (x)) denotes the OFC and the free parameter λ defines the trade-off between
smoothness (regularization) and data fidelity (data term). As already stated, the major
advantage of such global methods is the ability to handle regions where local approaches
would end up with poorly conditioned systems. As for global methods, the regularization
term propagates the optical flow into such regions by filling in from neighboring estimates.
This enables approaches like (4.12) to gain a dense flow field. Mainly the computational
effort to optimize energy equations like (4.12) has limited the use of global approaches in
applications. With the introduction of more sophisticated optimization algorithms and
possibilities to parallelize the algorithms on e.g. the GPU, the global approaches have seen
a renewed interest. When it comes to accuracy, the results on the Middlebury benchmark
[Baker et al., 2011] suggest that global variational methods are among the best performing
algorithms available. Since the introduction of such variational approaches in [Horn and
Schunck, 1981] a vast amount of literature and extensions have been published and we will
give some insights on how to model such energy functionals in the following:

Draft Copy: June 1, 2012



4.3 Modeling of Variational Optical Flow 45

4.3. Modeling of Variational Optical Flow

The formulation of optical flow estimation as an energy minimization problem gives the
flexibility to incorporate different regularization and data terms. Different approaches
have already been reviewed in the surveys by Weickert et al. [2006] and Trobin [2009].
Driven by this flexibility various different approaches have been proposed since the original
formulation (4.12) by Horn and Schunck [1981] (denoted as Horn & Schunck model in the
following). Let us first recall the properties of the Horn & Schunck model: (4.12) combines
a quadratic penalization on the classical optical flow constraint (OFC) (see Section 4.2.1)
for modeling the data fidelity and again a quadratic penalization of the flow gradients
enforcing a smooth flow field. The trend towards over-smoothed results caused by the
quadratic penalty, not allowing for any outliers, shows room for improvement. In addition,
a data term based on the OFC is prone to errors if outliers occur in one of the images or
simply when the illumination changes over time. In the following we stick to the distinction
on changing the regularization or data term and review some popular variants for modifying
(4.12).

4.3.1. Regularizer

In order to overcome the aperture problem (see Section 4.2.1) it became common practice to
add a smoothness constraint. Over the years, different penalty functions have been used to
improve accuracy and robustness of the methods. A motivation for the regularization term
from a stochastic point of view is given in [Trobin, 2009] and for the link to diffusion-reaction
systems we refer the interested reader to [Weickert and Schnörr, 2001], and [Weickert et al.,
2006]. In the following we will outline some popular concepts of regularization terms used
for optical flow estimation.
We divide the taxonomy of regularizers according to e.g. [Weickert et al., 2006], and

[Trobin, 2009] into flow-driven and image-driven regularization. When the image function is
used to modify the influence of the smoothing step, the approaches are called image-driven,
whereas an adaption based on the flow field itself is called flow-driven. The fact that image
features can easily be computed supports the image-driven regularization. However, when
image features occur in areas where the flow field should be homogeneous the smoothness
can be distracted. In such a case, the flow-driven type would be preferable.

Homogeneous regularization is a quadratic regularization as proposed by Tikhonov
[1963] enforcing the optical flow field to be smooth in a homogeneous way by penalizing
the gradients of the flow field using the regularizer

R (u) =
∫

Ω
|∇u|2 dx . (4.13)

It represents the smoothness prior used in the original paper by Horn and Schunck [1981].
The drawback of this homogeneous prior assumption is reflected by blurry optical flow
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fields caused by the well-known over-smoothing effects of (4.13) (see Figure 4.3). The
reason is the non-robustness towards outliers and consequently the model does not allow
for discontinuities in the flow field.

(a) Frame 10 (b) Ground truth (c) Horn & Schunck

Figure 4.3.: Optical flow field computed with the Horn & Schunck model [Horn and
Schunck, 1981]. Input: Frame 10 and 11 from Middlebury’s RubberWhale
sequence.

Robust regularization techniques have become popular for mainly two reasons, the ro-
bustness towards outliers, and the ability to preserve motion discontinuities. In comparison
to the quadratic regularization of the Horn & Schunck model, a robust penalization of flow
gradients allows for outliers and to increases the robustness towards the presence of such.
In terms of optical flow estimation, at first Shulman and Hervé [1989] and later Black and
Anandan [1991], Black [1992], Black and Anandan [1993, 1996] used penalizers from robust
statistic to improve the performance of (4.12) in the presence of outliers. Subsequently,
Memin and Perez [1996] proposed an approach to compute a flow field in a variational
setting as in (4.12) but with the additional constraints to prohibit smoothing across motion
discontinuities and increase robustness towards outliers as well. Inspired by the work of
Rudin et al. [1992] in the field of image restoration, a regularization like

R(u) =
∫

Ω
|Du| (4.14)

was introduced to overcome the ambiguity of the OFC [Shulman and Hervé, 1989, Cohen,
1993, Brox et al., 2004]. The total variation regularization has become a widely used
prior term to enforce coherence in the optical flow field. Often the approximation R(u) =∫

Ω

√
ε2 + |∇u|2 dx with ε > 0 has been used to overcome the nondifferentiability at zero

[Papenberg et al., 2006]. Zach et al. [2007] used a variant of Chambolle’s algorithm
[Chambolle, 2004] to solve for an optical flow model utilizing the exact total variation as
smoothness prior.
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4.3.1.1. Flow-driven Regularization

Isotropic flow-driven regularization reduces the smoothing of motion boundaries by
decreasing the regularizer’s influence nearby the edges of the flow field. This flow-driven
regularization was introduced by Schnörr [1994] using the smoothness assumption

R(u) =
∫

Ω
ψ
(
|∇u (x)|2

)
dx , (4.15)

where ψ (·) denotes a (differentiable) function that adapts the influence of the regularization
towards the flow field.

Anisotropic flow-driven regularization was proposed by Weickert and Schnörr [2001]
using

R(u) =
∫

Ω
tr
(
ψ
(
∇u (x) (∇u (x))T

))
dx . (4.16)

The operator ψ (·) splits its argument into its Eigenvectros and uses such to encode the
strength as well as the direction of the edges in the flow field. Then, ψ (·) adapts the
regularization towards the edges and therefore guides the regularization process according
to them. The resultant smoothing process is prohibited across flow edges and enforced
along them.

4.3.1.2. Image-driven Regularization

Isotropic image-driven regularization is based on the assumption that motion boundaries
coincide with image gradients [Nagel, 1983, Alvarez et al., 1999]. The modification reads

R(u) =
∫

Ω
g
(
|∇I (x)|2

)
|∇u (x)|2 dx , (4.17)

where g depicts a strictly positive weighting function dependent on the image gradients
(∇I (x)) so that the influence of the regularizer is reduced when image gradients are present.

Anisotropic image-driven regularization was proposed in an early version by Nagel [1983].
In addition to the isotropic variant (4.17), directional information of the image gradients
are incorporated into the quadratic regularization (4.13) yielding

R(u) =
∫

Ω
(∇u (x))T D (∇I (x)) (∇u (x)) dx . (4.18)

Here, D(·) is a symmetric, positive definite diffusion matrix that impedes smoothing across
image edges and allows smoothing along them. In contrast to the scalar weighting function
in (4.17), only taking the gradient’s magnitude into account, the direction of the image
edges is incorporated to weight the influence of the regularization.
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4.3.2. Data Term

The data term, as the name suggests, searches for pixel correspondences in the input data.
Usually, this is realized by penalizing the residual of some matching cost δ (I(x, t), u(x)).
The penalty function ψ can be quadratic ψ(δ) = δ2 as in (4.12) proposed by Horn and
Schunck [1981]. In order to increase robustness towards outliers, Black and Anandan [1993]
started to use robust penalizers as shown for the regularization term. A popular choice
is the `1 norm, hence ψ(δ) = |δ|. In order to assign correspondences between pixels, an
appropriate similarity measure δ must be found. A majority of optical flow models utilize
the classical OFC (4.7) based on the brightness constancy constraint (4.1). However, for
realistic image data, this assumption is often violated due to e.g. changing illumination,
surface reflections or moving shadows. Therefore, methods that deal with such violations
on the OFC have been introduced. Moreover, prior information can be incorporated in the
matching energy. In a situation where e.g. the camera intrinsics are known, the geometric
relations like camera movement or insights from the epipolar geometry can be added as an
additional data term. Slesareva et al. [2005] incorporated the epipolar geometry to use
optical flow methods for computing stereo depth maps. Then, Wedel et al. [2008] proposed
to use a fundamental matrix prior in addition to the classical OFC. Valgaerts et al. [2008]
also included an epipolar constraint as a second data term but unlike Wedel et al. [2008] it
is not used as prior knowledge but to formulate a joint optimization problem in order to
recover the optical flow and the fundamental matrix simultaneously.
In the following, we revisit some prominent examples on how to become invariant to

gray-value changes in the intensity function. Despite all approaches to incorporate high
level information, changing illumination conditions is among the most prominent situations.
Especially when relying on the intensity function for computing correspondences in the
data term, it is essential to make the approach robust towards changes in the brightness
pattern.

Structure/Texture Decomposition: When solely relying on the image’s intensity func-
tions the approach demands for a preprocessing step to reduce the influence of brightness
variations over time. Based on Aujol et al. [2006], Wedel et al. [2009] proposed to decompose
the images into its “structure” and its “texture” part and reassemble the input images
as a linear combination of both with emphasis on the “texture” part. This improves the
robustness towards illumination changes as those are encoded into the structure part.
Wedel et al. [2009] used the ROF denoising model (3.24) to obtain this splitting. A major
drawback of this approach is the potential loss of useful information. Especially when
no brightness variations occur, the model still neglects potentially useful information of
the structure part. However, the decomposition can be computed quickly and is therefore
well-suited in applications where a certain robustness towards illumination changes is
desired but the computation time is limited.
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Higher Order Constancy Assumption: Already in the 1980s, Tretiak and Pastor [1984],
and Uras et al. [1988] suggested to use higher order terms to model the constancy assumption
for local approaches. Later, Tistarelli [1996] used multiple data terms including gradient
constancy in a local approach. For computing dense flow fields, Brox et al. [2004] proposed
to impose gradient constancy as a data term for a global approach. Hence, the additional
gradient constancy assumption changes (4.1) to

d

dt
I(x(t), t) + α

d

dt
∇I(x(t), t) = 0 . (4.19)

Here, ∇I(x(t), t) denotes the spatial gradient and α weights the two constancy assumptions.
Using the gradient constancy assumption is invariant to additive illumination changes
but unfortunately not to multiplicative ones. In addition, the sensitivity towards noise is
increased. Recently, Zimmer et al. [2009] combined the use of gradient constancy with
brightness constancy in the HSV color space. By combining a robust penalization of
the data fidelity term and an anisotropic smoothness prior the accuracy of results were
improved to previous models.
Moreover, higher order constancy assumptions, as e.g. constancy of the Hessian, can

be incorporated. In Table 4.1 we review different variants of constancy assumption in the
taxonomy of Papenberg et al. [2006]:

Table 4.1.: Variants of the constancy assumption (4.1) according to Papenberg et al.
[2006].

constancy assumption intensity function

brightness d
dtI(x(t), t) = 0

gradient d
dt∇I(x(t), t) = 0

Hessian d
dtH(I(x(t), t)) = 0

Laplacian d
dt∆I(x(t), t) = 0

norm of the gradient d
dt ||∇I(x(t), t)|| = 0

norm of the Hessian d
dt ||H(I(x(t), t))|| = 0

determinant of the Hessian d
dtdetH(I(x(t), t)) = 0

Modified Optical Flow Constraint: As the higher-order constancy assumptions of Ta-
ble 4.1 are not invariant to multiplicative illumination changes but realistic illumination
changes mostly imply such, extensive research has been performed in the field of modeling
lightning changes as part of the OFC. Already Horn [1986], Nagel [1989], Verri and Poggio
[1989], and Shulman and Hervé [1989] showed, that the assumption of brightness constancy
generally does not hold due to variations in the gray value function over time. Therefore,
Shulman and Hervé [1989], and in subsequent works Gennert and Negahdaripour [1987],
Negahdaripour [1998], and Kim et al. [2005], impose additional functions into the OFC
to model additive and multiplicative illumination changes. In order to guarantee the
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smoothness of those, additional regularizers are imposed. Hence, the OFC reads

(∇I(x(t), t))T (u(x)− u0(x)) + It(x(t), t)−mI(x(t), t)− c = 0 , (4.20)

where m is the multiplicative and c the additive component.
Haussecker and Fleet [2001] used physical models of illumination conditions to allow

for brightness variations in the OFC. For two input images only linear changes in the
illumination can be modeled. If more images are available, also more complex models
can be considered. Hence, a parametrized function G(I(x(t), t, a) that is able to model
(nonlinear) brightness changes over time is incorporated into the OFC yielding

(∇I(x, t))T (u(x)− u0(x)) + It(x, t) = G(I(x(t)), t, a) , (4.21)

with the n-dimensional parameter vector a = [a1, . . . , an] modeling the brightness variations.
A different approach was proposed by Mileva et al. [2007] for global models and earlier by

van de Weijer and Gevers [2004] for local approaches, who used a multichannel approach for
photometric invariants. Therefore, the brightness constancy was redefined on multichannel
data. The robustness on brightness variations is achieved by introducing a color channel
transformation. The color input images (e.g. RGB) are transformed to a color space where
the channels are invariant to varying lightning conditions. This normalized color space is
used to model multiple constancy assumptions (channel-wise) to form the data term as the
weighted sum of the residuals similar to (4.19).

Patch-based Similarity Measures: In the field of image matching, correlation-based
measures are well established to become invariant to multiplicative illumination changes.
Steinbrücker et al. [2009b] proposed a flexible data term that allows to use patch-based
similarity measures as data term for optical flow computation. In order to be able to
use e.g. a normalized cross-correlation measurement, the problem of linearizing the data
term must be considered. The authors show that using traditional Taylor expansions to
linearize the intensity function is difficult when using patch-based measures. Therefore, the
optimization strategy uses alternative optimization steps for the components of the optical
flow field which yields two convex subproblems each with a single unknown [Steinbrücker
et al., 2009a].

4.4. TV-`1 Optical Flow

Let us now define the starting point for further investigation of computing optical flow
fields. Considering the historic evolution of possible frameworks, the demand on dense flow
fields emphasized the decision to use a global approach within a variational framework.
The choice is confirmed by the model’s flexibility and the possibilities to incorporate
various extensions. In addition, most of the top performing approaches in the Middlebury
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evaluation database are formulated within the variational framework which affirm this
choice. Considering the discussed modeling approaches from Section 4.3 we decide to use
an `1 penalization for both, the regularization and the data term. This allows for outliers;
in addition it preserves motion discontinuities. Concerning the regularization term, we use
a standard total variation regularization of the flow field’s gradients and for the data term
we assume constant intensities along motion trajectories and use the classical linearized
OFC as in (4.7). Combining the individual parts yields the optimization problem

min
u∈Y

∫
Ω
|∇u (x)| dx+ λ

∫
Ω
|ρ(u (x))| dx ,

with ρ(u(x)) = (∇I(x(t), t))T (u(x)− u0(x)) + It(x(t), t) = 0 ,
and ||u− u0|| ≤ ∆u0 .

(4.22)

Here, ρ(u (x)) is the linearized optical flow constraint (OFC) (4.7) and λ defines the
tradeoff between the data fidelity and the regularization. In order to guarantee that the
linearization remains valid we restrict the increment of updates of the flow vectors in an
interval of radius ∆u0 around u0. For a graphical illustration of the linearization at u0 and
the restricted update interval see Figure 4.4.

Figure 4.4.: Linearization of the image function. Restrict the update to an interval
around u0.
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As pointed out in Chapter 3, the optimization of an energy functional like (4.22) using an
`1-norm as penalizer function is not a trivial task. A clever splitting approach to optimize
the TV-`1 model was proposed by Zach et al. [2007]. Recent advances in the field of convex
approaches for imaging problems show especially for variational denoising models, that
primal-dual approaches (see also Section 3.6.4) yield a good performance for optimizing
such functionals. In the following, we will utilize the optimization framework proposed by
Chambolle and Pock [2010] for solving the minimization problem in (4.22). But before that,
let us first depict some details concerning the discretization of the energy functional (4.22).

4.4.1. Discretization

At first, we want to refer to Section 3.1 for the common overview of the used discretization
approach. In the following, we will utilize parts of it to achieve a discretized variant of the
TV-`1 optical flow model (4.22). Assume that we have two discrete images I1 and I2 both
defined on the grid Ω of size M ×N . Let the images be a sequent pair out of an image
sequence. In literature, I2 is often denoted as the moving image and I1 as the fixed or the
reference image. In the following, we will denote discrete pixel locations in the images as
(Ii)i,j . Let us now define the discretized optical flow vector ui,j =

((
u1)

i,j ,
(
u2)

i,j

)T
∈ Y ,

also defined on a regular and equally spaced Cartesian grid. With that, we define the
discretized variant of the TV-`1 optical flow model (4.22) as

min
u∈Y
||∇u||2,1 + λ ||ρ(u)||1 ,

with ρ(ui,j) = (It)i,j + (∇I)Ti,j (ui,j − (u0)i,j) .
(4.23)

4.4.2. Primal-Dual Optimization of the TV-`1 Optical Flow

For optimization we apply the primal-dual algorithm of Section 3.6.4 and therefore we have
to convey (4.23) to a primal-dual saddle point problem like in (3.50). Hence, we apply the
Legendre-Fenchel (LF) transform (3.39) to (4.23). Let us first introduce the dual variable
of u denoted as p = u∗, p ∈ Z and, in the discrete case, it is written as

pi,j =
(
p1
i,j , p

2
i,j , p

3
i,j , p

4
i,j

)
. (4.24)

In the following we omit the indices (i, j) to simplify the notation. The convex conjugate
of the total variation, defined as F (u) = ||∇u||2,1, is

F ∗(p) = sup
u∈Y

{
〈∇u, p〉 − ||∇u||2,1

}
. (4.25)

To find its supremum with respect to u ∈ Y we distinguish the following cases:

• To maximize (4.25) for the case that ||p|| ≤ 1, u = 0 and F ∗(p) = 0.

• If |p| > 1 the supremum is attained for u→∞.
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Hence, two different cases are important to characterize the conjugate of the total variation,
namely

F ∗(p) =

0 |p| ≤ 1
∞ else

. (4.26)

This can also be written with the indicator function

δP (p) =

0 if p ∈ P
∞ else

, (4.27)

where δP (p) is the projection of p onto the convex set P = {p ∈ Z : ||p||∞ ≤ 1}. Returning
to the generic saddle-point formulation (3.50) with

F (u) = ||∇u||1 (4.28)
G(u) = λ ||ρ(u)||1 (4.29)
F ∗(p) = δP (p) (4.30)

the given problem (4.22) can be formulated as the primal-dual saddle-point problem

min
u∈Y

max
p∈Z
〈∇u, p〉Z + λ ||ρ(u)||1 − δP (p) . (4.31)

This formulation is of the form (3.50), hence we can apply the primal-dual algorithm (3.52).
Therefore, we have to compute the resolvent operators (or prox operators) (I + σ ∂F ∗)−1

and (I + τ ∂G)−1 with respect to F ∗(p) and G(u). The resolvent operator in terms of
F ∗(p), defined as p = (I + σ ∂F ∗)−1 (p̂), is given through the minimizer

p = arg min
p

{ 1
2σ ||p− p̂||

2
2 + F ∗ (p)

}
= arg min

p

{ 1
2σ ||p− p̂||

2
2 + δP (p)

}
. (4.32)

The minimizer of this optimization problem is

pi,j = proxP (p̂i,j) , (4.33)

where proxP denotes a pointwise projection of p onto the Euclidean unit ball. Similarly,
the resolvent operator u = (I + τ ∂G)−1 (û) is defined as the minimizer of

u = arg min
u

{ 1
2τ ||u− û||

2
2 +G (u)

}
= arg min

u

{ 1
2τ ||u− û||

2
2 + λ ||ρ(u)||1

}
. (4.34)

To simplify the following elaboration, we define the OFC as

ρ(u) = aTu+ b

with a = ∇I and b = It
(4.35)
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For computing the minimum of (4.34) the optimality condition yields

u− û+ τλs = 0 , (4.36)

where s is the subgradient and is defined with the cases

s ∈ ∂
∣∣∣aTu+ b

∣∣∣ =


a if aTu+ b > 0
−a if aTu+ b < 0
[−a, a] else

(4.37)

In the following we consider these cases in more detail to derive the corresponding update
rules:

• For the case when aTu+ b > 0, i.e. ρ(u) > 0, we obtain the update rule

u = û+ τλa (4.38)

Then we insert (4.38) into the condition ρ(u) > 0 which gives us the condition with
respect to û as

aT (û+ τλa) + b < 0
aT û+ b+ τλaTa < 0

ρ (û) < −τλaTa .
(4.39)

• Similarly, for ρ(u) < 0, the update is

u = û− τλa (4.40)

and the corresponding thresholding check yields

ρ (û) > τλaTa . (4.41)

• Next, we consider the case when ρ(u) = 0. Here, we add a Lagrange multiplier µ to
(4.34). At first, the optimality condition can be computed as

u = max
µ

min
u

{ 1
2τ ||u− û||

2
2 + λ

〈
µ, aTu+ b

〉}
, (4.42)

yielding

∂

∂u
: u− û+ τλµa = 0 (4.43)

∂

∂µ
: aTu+ b = 0 . (4.44)
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Expressing u from (4.43) and inserting it in (4.44) yields

aT û+ b− τλµaTa = 0

µ = ρ (û)
τλaTa

.
(4.45)

Then, µ is in turn inserted into (4.43) which finally leads to the update

u = û− aρ (û)
aTa

(4.46)

The following table summarizes the different thresholding checks and the corresponding
updates:

Table 4.2.: Thresholding checks and corresponding updates for solving the resolvent
operator for the `1 data term.

condition thresholding check update

ρ(u) > 0 ρ (û) < −τλ (∇I1)i,j ui,j = ûi,j + τλ (∇I1)i,j
ρ(u) < 0 ρ (û) > τλ (∇I1)i,j ui,j = ûi,j − τλ (∇I1)i,j
else |ρ (û)| ≤ τλ (∇I1)i,j ui,j = ûi,j − (∇I1)i,j

ρ(ûi,j)
|∇I1|2i,j

For a shorter notation, we define to use the notation shrink (û) for the above soft-
thresholding (shrinkage) scheme. With the computed resolvent operators we can then give
the iterates for the primal-dual updates. For the initial setting n = 0 the primal as well as
the dual variable is set to zero. For n > 0 we then perform the iterates

pn+1 = proxP (pn + σ∇un)

un+1 = shrink
(
un − τdiv pn+1

)
un+1 = 2un+1 − un .

(4.47)

4.4.3. Iterative Coarse-To-Fine/Warping Scheme

Remember that the linearized version of the OFC (4.7) is defined via an incremental motion
vector (4.4). In this case, the function u(x) is linearized around a given u0(x). Therefore,
the updates are only reasonable within a small vicinity around u0(x). This also means, that
the resultant flow field u(x) must not differ too much from the initial estimate u0(x). This
is the reason why such methods are only valid to estimate small displacements. In order to
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estimate optical flow for larger displacements, it is common practice to embed the approach
in a coarse-to-fine framework [Anandan, 1989, Black and Anandan, 1996, Mémin and
Pérez, 2002, Brox et al., 2004, Papenberg et al., 2006]. Alternatively, using a non-linearized
OFC to allow for larger displacements was proposed by Nagel and Enkelmann [1986], and
Alvarez et al. [2000]. Brox et al. [2004] has shown the equivalence of such approaches to
the mathematical foundations of the coarse-to-fine/warping scheme. Recently, methods
that use a feature stage to model large displacements was proposed by Xu et al. [2010,
2011], Brox and Malik [2010].
In our framework, we rely on the classical approach of embedding the optimization

routine into a pyramidal coarse-to-fine framework. Otherwise, the optimization with a
gradient approach might get stuck in local minima when the disparities of pixels are bigger
than the discretization for the algorithm [Brox and Malik, 2010]. We denote the scale factor
between neighboring levels as ζ ∈ (0, 1). For the algorithm, first multi-resolution pyramids
with L levels are generated. Therefore, the input images are iteratively smoothed and
subsampled. Subsequently, the results are then prolongated from the coarse to the fine level
and used for its initialization. In addition, we add the possibility to filter the components
of the optical flow field before prolongation with a 3× 3 median filter. This reduces outliers
in the optical flow field coming from wrong matches in coarse levels. Figure 4.5 shows a
flow-chart to illustrate the coarse-to-fine approach. Note, that the “solve” step comprises
the warping iterates.
Still, the creation of the multi-resolution pyramid is a crucial step. For moderate

disparities the well studied Gaussian pyramid, generated by repeated Gaussian convolution
and a scaling factor of ζ = 0.5, is sufficient. This setting is well-studied and lots of literature
exist [Burt, 1981, Crowley, 1981, Burt and Adelson, 1983, Lindeberg, 1994]. Though, for
covering large motion of fine details a finer pyramid is mandatory and there the theoretical
justifications are vague. Empirical experiments showed that three different settings of
ζ = {0.5, 0.8, 0.95} cover most of the occurring conditions.

In order to avoid aliasing artifacts, the prefiltering of the input images must be adapted
to the used scaling factor. For details on aliasing in image processing and, especially,
texture mapping we refer to the work of Heckbert [1989]. There, the presented low-pass
filters for avoiding aliasing when resampling the image is often time and memory consuming.
Therefore, we decided to stick to classical Gaussian convolution with σ = 0.3

√
ζ and use

standard linear interpolation for scaling operations.
In addition to the coarse-to-fine approach, we apply warping steps between the algorithm

iterates on a level. After a defined amount of iterations the moving image is warped
towards the fixed image. The iterates of the optimization are then continued with the
recomputed spatial and temporal gradients. This reduces the displacements between the
images within a pyramid level iteratively and help to overcome potential local minima. We
denote the process of iteratively warping the input images towards each other as warping
iterations. Moreover, the point of linearization u0 is updated after each warping iteration.
Again, we restrict the updates of flow vectors in an interval around u0 to guarantee that
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the linearization remains valid. In addition, we shrink this interval after each warping
iteration with a factor κu0 . Experiments will show that this reduces the outliers on coarse
levels and makes the median filtering at the prolongation step less crucial. Especially on
finer levels the median filter can be omitted and then an unfiltered result is obtained there.

Solution

init
solve

prolongate
solve

prolongate
solve

prolongate

Figure 4.5.: Illustration of solving the coarse-to-fine scheme.

4.4.4. Discussion

Figure 4.6 shows a comparison of the previously presented Horn & Schunck model and the
TV-`1 model. Both results were achieved using a coarse-to-fine warping scheme performing
three warps per pyramid level with 100 iterations each. The scale factor between the
pyramid levels was chosen with ζ = 0.5. The results of the TV-`1 approach shows fewer
outliers due to the `1 penalization in the data term. In addition, the oversmoothing effects
caused by the `2 regularization of the Horn & Schunck Model are efficiently removed by
using the total variation as smoothness prior.
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(a) Frame 10 (b) Ground truth

(c) Horn & Schunck (d) TV-`1

Figure 4.6.: Comparison of the optical flow field computed with (c) the Horn & Schunck
model [Horn and Schunck, 1981], and (d) the TV-`1 model.
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CHAPTER
FIVE

OPTICAL FLOW ENHANCEMENTS

Motivated by the applications of optical flow there are two major points for
improvement. On the one hand the robustness towards the input data, on the
other hand the accuracy of the estimate. Ideally, the accuracy of the optical flow
is increased and at the same time the method is more robust than the standard
approach. In the following, we present some strategies on modifying a variational
optical flow approach as presented in Section 4.3. We give insights on changes in
the optimization approach.
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5.1. Regularization Term

The subsequent chapters already demonstrated the effects of different regularizations. At
first remember that some kind of regularization is needed in the context of variational optical
flow estimation to overcome the data term’s ambiguity. Recall the potential improvements
when replacing a quadratic regularization by the total variation. Hence, the quality of the
result is very dependent on the used smoothness prior. In the following we will present
different modifications of the regularizer and we show how the model can be adapted
towards different necessities. In general, we shall emphasize that there is no universal
formulation that satisfies all different demands. Therefore it is a reasonable practice to
have a framework where different regularizers (and later also data terms of course) can
be used and comply with the current needs. In the following, the improvements of the
regularizer are mainly about the type how to enforce the flow field to be smooth. On the
one hand, typical artifacts caused by the total variation regularization are treated. On
the other hand different weighting procedures are discussed to improve the optical flow
estimate near motion boundaries.

5.1.1. Huber-`1

While total variation (TV) regularization is a frequently used smoothness prior for vari-
ational methods, it exhibits some drawbacks especially in weakly textured areas. As
discussed in Section 4.3.1, the principal reason for imposing a smoothness constraint is to
overcome the ambiguity in certain areas due to the aperture problem. The total variation
enforces a smooth flow field by penalizing its gradient magnitudes with an `1-norm. Due
to the `1 norm’s tendency to favor sparse solutions (i.e. lots of “zeros”), the fill-in effect
caused by the regularizer leads to fronto-parallel solutions in weakly textured regions. Such
piecewise constant areas are also prominent in larger regions where the data term is not
strong enough to compute unique solutions. In the 1D setting this effect is known as
“staircasing” artifact and we borrow this terminology to describe the piecewise constant
results caused by the `1 regularization. In the field of robust statistics, Huber [1973]
proposed an approach to combine a quadratic (`2) and linear (`1) penalization. Hence, the
Huber norm, indicated as |·|ε, is defined by the two cases

|s|ε =


|s|2
2ε |s| ≤ ε
|s| − ε

2 else
, (5.1)

where ε > 0, ε ∈ R defines the trade-off between `2 and `1 penalization. Figure 5.1 shows
graphs of the different penalization functions using a quadratic norm, the total variation
and the presented Huber norm.

In the context of optical flow estimation, Shulman and Hervé [1989] were among the first
to apply robust estimators as penalization functions. Using a Huber-norm to regularize
the flow field reduces the staircasing effects because of penalizing small magnitudes of the
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Figure 5.1.: Illustration of the (a) quadratic, (b) `1 and (c) Huber penalty function.

flow gradient by a quadratic norm. Let us now interchange the TV regularization in (4.22)
with the Huber norm |∇u|ε and examine the changes in the optimization. Furthermore,
let ||∇u||ε denote the discretized Huber norm. Hence, the optimization problem yields

min
u∈Y
||∇u||ε + λ ||ρ(u)||1 , (5.2)

with the classical optical flow constraint (OFC) ρ(u) (4.7). For applying the primal-dual
algorithm we need the convex conjugate of the Huber function F (u) = ||∇u||ε yielding

F ∗(p) = sup
u∈Y
{〈∇u, p〉Z − ||∇u||ε} . (5.3)
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(a) Frame 10 (b) Ground-truth (c) Heightfield (ground-
truth)

(d) TV (e) Huber

(f) Heightfield (TV) (g) Heightfield (Huber)

Figure 5.2.: Demonstration of the TV-prior’s staircasing effect and the smoother result
of the Huber norm. (a) one of the input images; (b) the groundtruth color
coded optical flow and (c) the x1-component’s heightfield. (d) and (e) are the
color-coded flow results, and (f) and (g) the corresponding heightfields. The
heightfields are overlaid with the color-coded representation. The staircasing
effect is clearly visible when using the TV prior (f) whereas the Huber-norm
abates the zero-filling effects (g).
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When computing this supremum as in (4.26), the cases of the Huber norm (5.1) must be
considered and yield the optimization problem

F ∗(p) = sup
u∈Y

〈∇u, p〉Z −

|∇u|2

2ε |∇u| ≤ ε
|∇u| − ε

2 else

 . (5.4)

To compute the supremum of (5.4) we distinguish the respective cases:

• |∇u| ≤ ε: In this cases the optimality condition is

∇u = εp (5.5)

and the convex conjugate yields

F ∗(p) = ε

2 ||p||
2
2 . (5.6)

To get the condition with respect to the dual variable p we now re-insert (5.5) into
the original condition |∇u| ≤ ε yielding ||p||2 ≤ 1.

• else:
F ∗(p) = sup

u∈Y

{
〈∇u, p〉Z − |∇u|+

ε

2

}
(5.7)

comprises the conditions from the total variation which has been derived in (4.26).
The additional term ε

2 is incorporated as follows:

F ∗(p) =


ε
2 ||p||

2
2 ||p||2 ≤ 1

∞ else
. (5.8)

Combining the two cases we end up with the convex conjugate of the Huber regularization
formulated as

F ∗(p) = ε

2 ||p||
2
2 + δP (p) , (5.9)

with the indicator function δP (p) (4.27). With that, incorporating the Huber norm changes
the primal-dual saddle-point problem (4.31) to

min
u∈Y

max
p∈Z
〈∇u, p〉Z + λ ||ρ(u)||1 −

ε ||p||22
2 − δP (p) . (5.10)

Notice that the resolvent operator with respect to G(u) is the same as for the TV-`1 optical
flow model with the thresholding checks and updates presented in Table 4.2. With respect
to F ∗(p) the resolvent operator p = (I + σ ∂F ∗)−1 (p̂) changes the pointwise minimizer
(4.32) to

pi,j = proxP
(

p̂i,j
1 + σε

)
. (5.11)
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With that, the iterates of the primal-dual update yield

pn+1 = proxP
(
pn + σ∇un

1 + σε

)
un+1 = shrink

(
un − τdiv pn+1

)
un+1 = 2un+1 − un .

(5.12)

Here, proxP again denotes a pointwise projection on the L2 unit ball and shrink the
soft-thresholding scheme (see Table 4.2).
The benefits when using a Huber-norm compared to the typically used TV-norm is

presented in the illustrative example in Figure 5.2. There, heightfield plots are generated
from the optical flow results of the Dimetrodon dataset from the Middlebury database.
The experiment demonstrates the effects of the smoothness prior in regions with little
texture such as the cloth in the background of Figure 5.2a. The x1-component (u1) of the
optical flow vectors are plotted as heightfields to better visualize the leveling when the
regularization propagates the vectors to homogeneous regions. The anticipated staircasing
effects of the TV prior are clearly visible while the Huber norm induces smoother results
in areas of vanishing gradients. Still, the Huber norm preserves edges due to the `1
regularization areas with larger gradient magnitudes like in textured areas (cf . Figure 5.2e).
As long as the ε is reasonably chosen (for too large values the oversmoothing effects of
the quadratic penalization will return) the Huber-norm does not exhibit any drawbacks
compared to the TV regularization. We denote the combination of Huber regularization
and classical OFC (5.2) as Huber-`1 model and use this model as the starting point for
further investigations.

5.1.2. Weighted Huber-`1

Although the TV norm shows edge preserving capabilities of the optical flow field, it
is often desired to improve the estimate near motion boundaries. For this reason, flow-
and image driven regularizers have been proposed (cf . Section 4.3.1). In the following,
we present three different types of image-driven priors and explain how to incorporate
them into the previously introduced Huber-`1 model. At first we examine a rudimentary
approach that incorporates a simple edge-weighting into the regularization. Then, we
additionally use the direction of the edges to uncouple the weighting for the two components
of the flow field. Finally, the directional information of the image gradients are used to
incorporate a diffusion tensor-like weighting function. In Figure 5.3 we show the results
of the different methods on the Middlebury’s Urban3 dataset. In addition, some cropped
areas are presented in Figure 5.4 to better illustrate the approaches’ characteristics.
The common idea of these approaches is to weight the regularization according to the
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occurring image gradients. Assuming that image edges and motion boundaries coincide, the
quality of the optical flow increases in those areas. Therefore, the smoothing influence is
reduced across image edges while the smoothing along them is allowed. A simple approach
is to use the gradient’s magnitudes to directly weight the influence of the regularizer.
This is strongly related to the weighted TV (also g-weighted TV or gTV) introduced by
Bresson et al. [2005, 2007] in the context of image segmentation. They also showed that
the weighted TV represents the Geodesic Active Contour model under certain conditions.
Adding a pointwise weighting function g (x) to the TV-norm (3.28) yields

R(u) =
∫

Ω
g (x) |∇u (x)| dx . (5.13)

Besides image segmentation, Leung and Osher [2005] used the weighted TV norm in
combination with an `1 data fidelity term in the context of image denoising and inpainting.

5.1.2.1. Gradient Weighted Huber-`1

As mentioned above, the first approach uses the gradient magnitude to influence the
regularization weight. Therefore, we incorporate a weighting function g (x) into the Huber
regularization which then reads

R(u) =
∫

Ω
|g (x)∇u (x)|ε dx , (5.14)

with g (x) = exp (−α ||∇I0 (x)||q2) . (5.15)

The function g (x) weights the regularizer according to the image gradient’s magnitude.
Hence, the components u1 and u2 of the flow field are weighted equally. Note that unlike
(5.13) we incorporate the weights into the Huber norm which simplifies the implementation.
Before computing the gradients of the reference image I0, the image is pre-filtered with a
Gaussian filter (σ = 1) to reduce the influence of small gradients. When discretized, the
gradient is computed using standard finite differences as in (3.12) and weighted according
to (5.15) with α = 10 and q = 0.9.

The numerical scheme of the Huber-`1 model changes only with respect to the gradient
and divergence operator. For this reason we define a weighted gradient operator similar
to (3.16) as

(diag(g)∇)u =
(
g ∂x1u1, g ∂x2u1, g ∂x1u2, g ∂x2u2

)
. (5.16)

Respectively, the divergence operator (3.17) changes to(
∇Tdiag(g)

)
p =

(
g ∂x1p1 + g ∂x2p2, g ∂x1p3 + g ∂x2p4

)
. (5.17)
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With that, the iterates for optimizing the edge-weighted Huber-`1 model are given as

pn+1 = proxP
(
pn + σ (diag(g)∇)un

1 + σε

)
un+1 = shrink

(
un − τ

(
∇Tdiag(g)

)
pn+1

)
un+1 = 2un+1 − un .

(5.18)

5.1.2.2. Gradient Directed Weighted Huber-`1

An obvious extension to the edge weighting approach of the previous section is to take the
direction of the gradient field into account. We change the weighting function (5.15) to
separate the influence of the image gradients and define it as

gd (x) =
(
g1 (x) , g2 (x)

)
, (5.19)

with

g1
d (x) = exp (−α | ∂x1I0 (x)|q) , and (5.20)
g2
d (x) = exp (−α | ∂x2I0 (x)|q) . (5.21)

The straightforward changes of the gradient and the divergence operator yield(
diag(g1, g2)∇

)
u =

(
g1
d ∂x1u1, g2

d ∂x2u1, g1
d ∂x1u2, g2

d ∂x2u2
)
, and (5.22)(

∇Tdiag(g1, g2)
)
p =

(
g1
d ∂x1p1 + g2

d ∂x2p2, g1
d ∂x1p3 + g2

d ∂x2p4
)
. (5.23)

The algorithmic scheme for the iterates of the primal-dual update remain the same as in
(5.18) replacing the gradient operator ∇g with ∇gd defined in (5.22). Respectively, the
divergence operator div gd , as in (5.23), is replacing the divergence operator div g.

5.1.2.3. Tensor Directed Huber-`1

In Section 5.1.2.2 we already incorporate the direction of the gradient to weight the
components of the regularizer. Still the directions are purely the two components of the
gradients that are used separately to weight the smoothing process. To continue this
approach we now integrate the full direction of the gradients into the Huber regularization.
Therefore, we use a symmetric, positive definite diffusion tensor D to enforce regularization
along image edges and to impede the smoothing across them. Replacing the edge-weighting
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function g (x) from (5.14) with a tensor-weight the regularizer becomes

R(u) =
∫

Ω

∣∣∣D1/2∇u (x)
∣∣∣
ε

dx . (5.24)

We define the diffusion tensor

D
1/2 = g (x)n (x) (n (x))T + n⊥ (x) (n⊥ (x))T (5.25)

with the weighting function g (x) as defined in (5.15), the vector

n (x) = ∇I0 (x)
||∇I0 (x)||2

,

and its normal vector n⊥ (x). Next, we define the elements of the 2× 2 symmetric tensor
matrix as

D
1/2 =

(
a c

c b

)
. (5.26)

When optimizing a tensor directed Huber-`1 model the numerical scheme changes again
with respect of the gradient and the divergence operator. The weighted operators are
defined as

(
D

1/2∇
)
u =


a ∂x1u1 + c ∂x2u1

c ∂x1u1 + b ∂x2u1

a ∂x1u2 + c ∂x2u2

c ∂x1u2 + b ∂x2u2

 , and (5.27)

(
∇TD1/2

)
p =

(
a ∂x1p1 + c ∂x1p2 + c ∂x2p1 + b ∂x2p2

a ∂x1p3 + c ∂x1p4 + c ∂x2p3 + b ∂x2p4

)
. (5.28)

Consequently, the iterates of the primal-dual updates become

pn+1 = proxP

pn + σ
(
D1/2∇

)
un

1 + σε


un+1 = shrink

(
un − τ

(
∇TD1/2

)
pn+1

)
un+1 = 2un+1 − un .

(5.29)
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(a) Frame 10 (b) Ground truth

(c) Huber (d) Weighted Huber

(e) Directed Huber (f) Tensor-directed Huber

Figure 5.3.: Effects of the different methods to weight the regularization towards image
structures shown on the optical flow estimate of the Middlebury’s Urban3
dataset. Frame 10 and 11 are used as input.
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(a) Huber (b) Weighted Huber

(c) Directed (d) tensor-directed Huber

Figure 5.4.: Cropped regions of Figure 5.3 shows that the regularization weights enhance
the details in the flow field.

(a) Weighted Huber (b) Directed Huber (c) Tensor-directed Huber

Figure 5.5.: Detail area of the results from Figure 5.3 demonstrating the possible artifacts
due to strong texture. The tensor-directed Huber regularization is less prone
to such artifacts than the approaches only relying on the edge strength.
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5.1.2.4. Discussion

The presented variants of weighting the Huber regularization mainly differ on how to
incorporate directional information. While the simple weighting case only uses gradient
magnitudes the other two approaches use the directional information of the gradient to
adapt the smoothing process accordingly. The gradient directed case uses the image’s
gradient directions to weight the components of the optical flow field differently. The tensor
weighted Huber norm imposes the gradient’s full orientation into the smoothing process.

Figure 5.3 shows the effect of the different approaches on the Urban3/Middlebury dataset.
The results clearly improve near motion boundaries (cf . Figure 5.4). Still, the results
of the three approaches are very similar. For this reason let us highlight the benefits
of the presented methods and compare computation time for the models. The fact that
image gradients are used to weight or direct the smoothing process may also lead to
unwanted modifications of the regularizer. While the guidance of the regularization is
desired when image edges coincide with motion boundaries, a weighting function caused by
textured regions may lead to artifacts. Solely relying on the gradient’s magnitude results
in more outliers compared to the methods that also incorporate the directional information.
Figure 5.5 demonstrates this effect of strongly textured areas.

The computation time to compute the results of the Urban3/Middlebury sequence are
given in Table 5.1. We use a scale pyramid of the input images with a scale factor ζ = 0.8,
10 warps per level and with 10 iterates of the primal-dual updates per warping iteration.

Table 5.1.: Computation time (algorithm only) of the weighted Huber-`1 models on an
image pair of the Urban3/Middlebury dataset (image size: 640× 480). The
error is computed as the average end-point error (see Section 5.3).

Method computation time [ms] error [epe]

Huber-`1 140 0.485
gradient-weighted Huber-`1 155 0.398
gradient-directed Huber-`1 165 0.383
tensor-directed Huber-`1 180 0.385

Considering the results and computation time we suggest to use the tensor weighted
Huber-`1. For the given dataset the accuracy is almost the same for all three approaches.
Considering general data, the tensor directed approach is the superior approach when it
comes to robustness towards different kind of input data. Especially for strongly textured
regions, the tensor-directed approach is more robust then the other weighing variants.
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5.1.3. Nonlocal Huber-`1

The Huber regularization as well as its weighted variants only consider “local”∗ derivative
operators and hence the prior is not aware of higher order structures. The terminology
local refers to the type of how the gradient operator is computed. Hence, local regularizers
only use local neighbors, i.e. direct neighbors, for computing the gradient operator as
in (3.16). As a consequence also the divergence operator is defined (3.17). What if we
integrate bigger spatial neighborhoods in order to group similar moving regions together?
Assume that an object (or at least parts of this object) exhibit a similar motion pattern. If
this spatial coherence can be integrated into the regularization term, several restrictions of
local regularizers can be overcome:

• In poorly textured regions, a stronger regularization can improve the filling-in effect
and transport valid optical flow vectors from areas where a matching can be performed
into ambiguous areas.

• The optical flow cannot be computed in occluded regions and the regularization must
take care of those regions if no explicit occlusion handling is performed.

• Small scale structures are canceled due to the smoothness prior as the isotropic
regularization does not adapt well to local image structures, especially small structures.
Anisotropic smoothness priors (cf . Section 5.1.2) improve the quality in such regions
but still fine details with relatively large motion might be canceled from the optical
flow field.

The demand of a stronger regularization with an expanded proximal influence brings us to
the well-known neighborhood filters. To fit our framework we use a nonlocal extension of
the Huber norm which is then defined via the derivative operators computed in a nonlocal
sense. Bigger neighborhoods are taken into account and an additional weighting function
models the pixel’s connections within this area. The support weights between the single
pixels further strengthen their cohesion. Before defining the energy functional, we go
through the most important contributions that incorporate such neighborhood filters.

5.1.3.1. History

The idea of neighborhood filters is based on the works of Lee [1983] (sigma filter), and
Yaroslavsky [1985] (Yaroslavsky filter). The intention of those filters has been to impede the
smoothing of image edges when denoising an image. This has been achieved by restricting
the filter operation towards similar pixels (similar in the sense of e.g. similar gray values).
Aurich and Weule [1995] picked up this thought and proposed to add an additional weight to
a Gaussian filter to integrate data information and adapt the Gaussian kernel to underlying
image structures. The resultant nonlinear Gaussian filter enhanced the edge preserving
∗ Also TV regularization and most of its image and flow-driven variants belong to the class of local
regularization.
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capabilities of the smoothing process. Similarly, Smith and Brady [1997] proposed the
“SUSAN” filter where a mask restricts the Gaussian filtering towards similar gray values.
Then, Tomasi and Manduchi [1998] shaped the term of the bilateral filter. Again, the
use of a nonlinear combination of image values defined the filtering kernel. Additionally,
Smith and Brady [1997], and Tomasi and Manduchi [1998] included a proximal weighting
to strengthen the coherence of contiguous pixels. Further investigations in this direction
were made by Buades et al. [2005b,a] with the nonlocal means algorithm. In addition,
Buades et al. [2005b] showed the relations between bilateral filters and PDEs in the sense
of Perona and Malik [1990]. Connections between the mentioned neighborhood filters were
established by Buades et al. [2006] and Paris et al. [2009]. Moreover, Barash [2004, 2002]
discussed the relations to nonlinear diffusion processes.

In a graph-based learning framework, Zhou and Schölkopf [2004, 2005] proposed a
nonlocal gradient and divergence operator for the regularization of such discrete structures.
Such weighted graphs were then also used by Bougleux et al. [2007] and Elmoataz et al.
[2008]. For the continuous setting, at first Kindermann et al. [2004] and later Gilboa and
Osher [2007] incorporated neighborhood filters into an energy functional. Those works
shaped the terminus of nonlocal TV regularization. Moreover, the weights that were used
in the nonlocal regularizer from Gilboa and Osher [2007] are strongly related to the ones
used by Zhou and Schölkopf [2004, 2005].

To define the connectedness of pixels in specified areas principles of Gestalt psychology
have often been considered. The so-called Gestalt principles of grouping suggest that
elements of certain properties belong together. The most often used properties are proximity
and similarity. They imply that it is likely that nearby elements belong together (proximity).
In addition, elements can be grouped together according to their appearance (color, texture,
etc.) to strengthen the relation between pixels (similarity). Of course also other properties
could be used to increase the connectedness within regions but indeed proximity and
similarity are the most important and most often used ones.

Especially for stereo algorithms, more precisely for cost volume filtering, the benefits
of such nonlocal regularization have already been emphasized. Yoon and Kweon [2006]
incorporated support weights based on the Gestalt principles. These weights are computed
as a combination of the pixels’ color differences and their spatial distances. A subsequent
work by Yang et al. [2009] used similar support weights to build the cost volume for
computing the disparities. For optical flow estimation, Xiao et al. [2006] used a bilateral
filter to regularize the optical flow field. Therefore, an initial flow estimate is made using
an anisotropic regularizer in combination with a gray-value constancy data term. Then,
occlusions are computed and a bilateral filter is used to propagate flow vectors from regions
that are similar in appearance and motion into the occluded areas. Subsequently, Sand
and Teller [2008] simplified this idea and incorporated the bilateral filter as regularization
in areas near motion boundaries in the framework of Brox et al. [2004].
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5.1.3.2. Nonlocal Huber Regularization

According to Yoon and Kweon [2006] we define support weights that combine the influence of
similarity and proximity of adjacent pixels. Theoretically, the neighborhood for computing
the support weights could be expanded to the whole image but the computation time
would be too high and the memory consumption for solving such a system would be not
manageable at the moment. Hence, a neighborhood system Nx ⊆ Ω defines a set of pixels y
that are within a defined photometric and geometric vicinity to x. The similarity measure
for the spatial distance between two points x and y is defined using a simple Euclidean
distance i.e. the proximity

∆s = d(x, y) (5.30)

and the photometric similarity as an Euclidean distance in a color space (e.g. grayscale,
RGB or LAB) that is defined as

∆c = d(I (x) , I(y)) . (5.31)

In combination, the support weights within Nx yield

g(x, y) = exp
(
−
(∆c(x, y)

wc
+ ∆s(x, y)

ws

))
. (5.32)

The parameters wc ∈ R and ws ∈ R weight the influence of color similarity and proximity.
In addition, we assume that the weights are symmetric such that the weighting g(x, y)
between pixel x and y with y ∈ Nx is equal to the weighting g(y, x) when x ∈ Ny,
hence, g(x, y) = g(y, x). Figure 5.8 shows exemplary support weights for some selected
regions of the Army/Middlebury sequence. These examples reveal that the support weights
essentially incorporate a low level segmentation, based on the underlying image data, into
the regularization. Incorporating the support weights into the smoothness term yields the
nonlocal Huber regularizer

R(u) =
∫

Ω

∫
Nx
g(x, y) |(u(y)− u (x))|ε dy dx . (5.33)

5.1.3.3. Minimization

In order to discretize (5.33) we first define the discretized support weights within a restricted
neighborhood. As already mentioned, theoretically this neighborhood can be extended to
the whole image domain. Nonetheless, we define a window of the size 2w + 1, the number
of neighbors L = 2w(w + 1), and a set of offset vectors

ξ = (−w, . . . , 0, . . . , w︸ ︷︷ ︸
w-times

, . . . ,−w, . . . ,−1)

η = (−w, . . . ,−w︸ ︷︷ ︸
2w+1-times

,−w + 1, . . . ,−w + 1︸ ︷︷ ︸
2w+1-times

, . . . 0, . . . , 0︸ ︷︷ ︸
w-times

) .
(5.34)
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Afterwards, we define the neighboring pixels of (i, j) as(
i+n , j

+
n

)
= (i+ ξn, j + ηn)

and (
i−n , j

−
n

)
= (i− ξn, j − ηn) ,

with n = 1 . . . L. Next, we define the discrete version of the support weights as

gi,j,i+,j+ = exp
(
−
(

(∆c)i,j,i+,j+

wc
+

(∆s)i,j,i+,j+

ws

))
. (5.35)

Note that the symmetric definition of the support weights defines gi−,j−,i,j = gi,j,i+,j+ .
Figure 5.6 shows an illustration of a neighborhood with window radius w = 2. The
corresponding weights are depicted in Figure 5.7. The symmetry of the weights is hinted
by only defining the weights for half of the neighborhood patch. Finally, we show the offset
vectors for the specific case w = 2:

ξ = (−2, −1, 0, 1, 2, −2, −1, 0, 1, 2, −2, −1)
η = (−2, −2, −2, −2, −2, −1, −1, −1, −1, −1, 0, 0)

(5.36)

Moreover, we define the nonlocal gradient operator KNL : Y → Z+, with Z+ = RLMN

as

KNL =


δ+

1
δ+

2
...
δ+
L

 , (5.37)

with the nonlocal forward differences (δ+
n ) with Neumann boundary conditions defined as

(δ+
n u)i,j =

{
ui+n ,j+

n
− ui,j if (i+n , j+

n ) ∈ Ω
0 else .

(5.38)

Respectively, we define the discretized adjoint operator (KNL)∗ : Z+ → Y :

(KNL)∗ =
L∑
n=1

δ−n , (5.39)

and the nonlocal backward differences

(δ−n p)i,j =



(
pi,j − pi−n ,j−n

)
if (i+n , j+

n ) ∈ Ω and (i−n , j−n ) ∈ Ω
−pi−n ,j−n if (i+n , j+

n ) /∈ Ω and (i−n , j−n ) ∈ Ω
pi,j if (i+n , j+

n ) ∈ Ω and (i−n , j−n ) /∈ Ω
0 else .

(5.40)
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i+1 , j
+
1 i+2 , j

+
2 i+3 , j

+
3 i+4 , j

+
4 i+5 , j

+
5

i+6 , j
+
6 i+7 , j

+
7 i+8 , j

+
8 i+9 , j

+
9 i+10, j

+
10

i+11, j
+
11 i+12, j

+
12 i, j i−12, j

−
12 i−11, j

−
11

i−10, j
−
10 i−9 , j

−
9 i−8 , j

−
8 i−7 , j

−
7 i−6 , j

−
6

i−5 , j
−
5 i−4 , j

−
4 i−3 , j

−
3 i−2 , j

−
2 i−1 , j

−
1

Figure 5.6.: Illustration of an exemplar neighborhood patch of the pixel (i, j).
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Figure 5.7.: Support weights for an exemplar neighborhood patch of pixel (i, j). As the
weights are symmetric, they are only defined for half of the patch.
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(a)

(b) patch (c) proximity (d) similarity (e) support weight

Figure 5.8.: Support weights of some exemplar patches of the Middlebury’s Army sequence.
In (b-e) the individual elements for computing the support weights are shown
for the patch in (b). The support weights (e) are a combination of the
distances (i.e. proximal weight) (c) and the pixel similarities (d)
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With that we can define the discrete version of the nonlocal Huber`1 model as

min
u∈Y

∣∣∣∣∣∣KNLu1
∣∣∣∣∣∣
ε

+
∣∣∣∣∣∣KNLu2

∣∣∣∣∣∣
ε

+ λ ||ρ(u)||1 . (5.41)

Until now we did not explain how to incorporate the support weights into the framework.
When we introduced the usage of the weighted Huber-norm in Section 5.1.2, we directly
incorporated the weights into the gradient and divergence operator. Now, we want to
demonstrate an alternative variant and use the support weights to modify the reprojection
step of the dual variables. Therefore, we recall the resolvent operator p = (I + σ ∂F ∗)−1 (p̂)
which is defined as the minimization problem

arg min
p

{ 1
2σ ||p− p̂||

2
2 + ε

2g ||p||
2
2 + δ||p||≤g(p)

}
. (5.42)

Hence, we project the dual variable not onto the unit ball but adapt the radius according
to the weighting factor g such that the projection is made onto a ball Bg with radius g.
With that we get the primal-dual algorithm (3.52) with the iterates

pn+1 = proxBg

(
pn + σKNLun

1 + σ εg

)
un+1 = shrink

(
un − τ

(
KNL

)∗
pn+1

)
un+1 = 2un+1 − un .

(5.43)

5.1.3.4. Discussion

Figure 5.9 shows an exemplar result of the presented nonlocal Huber regularization in
combination with the standard OFC as data term. There we especially want to emphasize
the comparison to the tensor-directed regularization. In terms of accuracy of motion
boundaries the rather simple Army sequence does not reveal any big differences. Still, fine
and small details in the motion field are more accurate using the nonlocal regularizer. In
terms of smoothness within the moving areas the nonlocal approach is clearly in favor.
Especially for strong textured areas (e.g. courtain on the right) the nonlocal approach does
not reveal the typical structures of the underlying texture as it is the case for the tensor-
directed regularization. Still, keep in mind that the nonlocal approach is more complex
to compute in terms of computation and also memory due to the larger neighborhood
relations. In general, the nonlocal regularization is the “strongest” regularization presented
in this thesis. It is possible to handle larger areas where no data information can be
computed and also more prior knowledge can be incorporated in form of the neighborhood
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relations. The defined weights are able to guide the regularization as desired which means
that the quality of the optical flow field can be improved near motion boundaries, within
untextured areas and also for unknown areas the weights can be modified to have positive
influence on the flow field’s accuracy. To anticipate, the nonlocal Huber regularization will
be perfectly suited with strong and robust data terms where the other smoothness priors
have too little influence to additionally guide the regularization.

(a) Frame 10 (b) Ground truth (c) Huber-`1

(d) Tensor-directed H.-`1 (e) nonlocal H.-`1

Figure 5.9.: Exemplar result of the nonlocal Huber regularization. We compare results
on the Army sequence from (a) the Huber-`1 model, (d) its tensor-directed
variant, and (e) the nonlocal Huber regularization with `1 data term. Already
the tensor-directed approach enhances the result near motion boundaries
but also introduces more noise in textured areas as the nonlocal model (e.g.
curtain on the right). We set λ = 30 for all three models.

5.2. Data Term

In the upcoming Section we have a closer look on the data fidelity term and how we can
improve its robustness. The first clear disadvantage is the general assumption about the
brightness constancy which is violated at any change of illumination conditions. Although
optical flow estimation mostly considers consecutive frames of video data, recorded in a
tight temporal interval, the brightness constancy generally cannot be guaranteed. In fact
this assumption is often violated for real-world data. In addition, not only changes in
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the global illumination setup are an issue but also moving shadows, specular highlights
or simple reflections violate the assumption of the points’ constant intensities over time.
Therefore, models that solely rely on this classical optical flow constraint (OFC) are bound
to fail or at least exhibit some failures in the flow field. Moreover, it is not only the task
to improve the robustness of the data term but also to improve the strength of the data
fidelity.
To outline the improvements concerning the data term we define the Huber-`1 model

(cf . Section 5.1.1) as the starting point for further improvements. Let us point out, that
all other regularization terms can be combined with the considered data terms and we will
show results from different combinations in Section 5.3.

5.2.1. Structure/Texture Decomposition of the Input Images

At first we will reflect a common practice of decomposing the input images into its structure
and texture components. As already mentioned in the introduction, the robustness
concerning illumination variations comes from reassembling the structure and texture
components with different weightings. The illumination changes are mostly encoded in
the structure part and a linear combination of the components (with more weight on the
texture part) reassembles the input images and increases the robustness towards illumination
changes. But shifting the weight of structure and texture part when reassembling the
image also neglects potential information for optical flow computation. This is one of the
major drawbacks when using structure/texture decomposed input images. It might occur
that valid information is discarded of the image data and the quality might degrade in such
areas. Nevertheless, this preprocessing step is widely used and one can obtain reasonable
and stable results with this simple preprocessing step. The benefit of the approach is
clearly the low complexity of computation and as it is simply a preprocessing step we can
stick to the presented baseline model for computing the optical flow fields.

We utilize the ROF denoising model (3.24) [Rudin et al., 1992] to decompose the input
image I (x) into its structure Is (x) and texture It (x) component. Hence, we solve the
denoising problem

min
Is
||∇Is||2,1 + λ

2 ||Is − I||
2
2 (5.44)

with the primal-dual algorithm (3.52) as proposed in Chambolle and Pock [2010]. We
chose they parameter λ = 1.0 for computing the structure part of the input image. The
texture part is then simply computed by

It (x) = I (x)− Is (x) (5.45)

and finally the reassembled input image yields

Ĩ (x) = (1− ϑ)Is (x) + ϑIt (x) , (5.46)
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where ϑ defines the trade-off between structure and texture part. For all our experiments
where we use structure-texture decomposed input images we set ϑ = 0.8 unless otherwise
stated.
Figure 5.10 shows the structure and texture parts of an image and the effects of using

a recombination of those as the input for the Huber-`1 model. The influence of moving
shadows, reflections (e.g. rear window of the car) and highlights are reduced. Generally,
it can be observed that the results using decomposed input images are smoother which
results from the sparser information for computing the data term. Hence, the decrease of
used data information might effect the available details in the flow field.

5.2.2. Compensating Brightness Constancy Violations

Motivated by a number of works that model an explicit illumination model to describe
OFC violations, we use a very simple variant to estimate the deviations of the classical
OFC which is also used in Chambolle and Pock [2010]. Most of the related approaches
discussed in Section 4.3.2 try to fit some kind of illumination model in the data but, in
fact, not only illumination but also occlusions, noise, specular highlights, impairments, etc.
can be the cause for not complying the classical OFC. The task for our model is to keep
it simple but still be strong enough to handle such outliers. Therefore, we do not try to
estimate an illumination model per se but, according to Chambolle and Pock [2010], add
an additional variable that directly models the abnormalities of the OFC (4.7). Adding
such an absorption variable c (x) ∈ X we obtain the following variant of (4.1) by

d

dt
I(x(t), t) = −γc (x) . (5.47)

With that, we can formulate the modified OFC as

ρ(u (x) , c (x)) = It(x(t), t) + (∇I(x(t), t))T (u (x)− u0 (x)) + γc (x) = 0 . (5.48)

The real-valued parameter γ steers the influence of the compensation variable c (x). This
means that for low values of γ the optical flow is estimated in a rather classical way and
only slight intensity differences are absorbed. Likewise, larger values of γ incorporate
more severe outliers of the flow field into c (x). This enables a stronger compensation for
situations when the flow field would be severely degraded due to strong violation of (4.7).
Attention should be paid to the fact that this behavior can also be exaggerated. A too
large influence of the compensation may incode valuable information in the compensation
variable while it should actually be encoded in the optical flow fiel.

Note that this modified OFC (5.48) is still linear and hence the resultant optimization
problem remains convex. In addition to the absorption of outliers in the OFC, we want c (x)
to change smoothly and therefore an additional spatial regularization on c (x) penalizes
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(a) original (b) structure part (c) texture part

(d) original (e) structure part (f) texture part

(g) original (h) structure-texture decomposed

(i) original (j) structure-texture decomposed

Figure 5.10.: An input image of the Middlebury sequences Army (a-c) and MiniCooper
(d-f) is decomposed into its structure and texture components. For the
ROF denoising we use λ = 10. (g-j) compares results of using the original
images as input versus using structure-texture decomposed images. The
intensities of structure and texture images are rescaled for visualization.
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the gradient variations by the already introduced Huber-norm:

R (c) =
∫

Ω
|Dc|ε (5.49)

Integrating the modified OFC (5.48) and the additional smoothness prior term (5.49) into
the discretized energy formulation for computing the optical flow, we end up with the
minimization problem

min
u∈Y,c∈X

||∇u||ε + ||∇c||ε + λ ||ρ(u, c)||1 ,

with ρ(u, c)i,j = (It)i,j + (∇I)Ti,j (ui,j − (u0)i,j) + γci,j .
(5.50)

For optimization we transfer this minimization problem into the saddle-point formulation

min
u∈Y,c∈X

max
p∈Z,q∈Y

〈∇u, p〉Z + 〈∇c, q〉Y

+ λ ||ρ(u, c)||1 −
ε ||p||22

2 − δP (p)− ε ||q||22
2 − δQ (q) (5.51)

with q ∈ Y being the dual variable of c. With that we obtain the updates

pn+1 = proxP
(
pn + σ∇un

1 + σε

)
qn+1 = proxP

(
qn + σ∇cn

1 + σε

)
un+1 = shrink

(
un − τdiv pn+1

)
cn+1 = shrink

(
cn − τdiv qn+1

)
un+1 = 2un+1 − un

cn+1 = 2cn+1 − cn .

(5.52)

As in (5.11), the resolvent operator (p, q) = (I + σ ∂F ∗)−1 (p̂, q̂) is a pointwise projection
onto `2 unit balls. To simplify the notation in the thresholding checks, we define

ri,j = ρ (ûi,j , ĉi,j)
|∇I|2i,j + γ2

.

The modified thresholding checks and updates from Table 4.2 are presented in Table 5.2.
In Figure 5.11 and 5.12 we show two exemplar results (Army and Schefflera dataset

from the Middlebury benchmark). In the cropped regions we show the benefits when
adding a compensation variable in areas where the constancy assumption of the OFC is not
satisfied. Most likely the illumination situation has changed and for the shown examples,
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moving shadows are one of the major causes for not complying the brightness constancy
over time. For the Schefflera dataset difficulties when matching small textured structure
are absorbed by the added compensation. Still, for this dataset the emerging results contain
outliers and in the cropped area the moving shadow is not entirely handled.

Table 5.2.: Thresholding checks and corresponding updates for solving the resolvent
operator for the `1 data term with an additional compensation variable.

condition thresholding check update

ρ(u, c) > 0 ri,j < −τλ (∇I1)i,j
ui,j = ûi,j + τλ (∇I1)i,j
ci,j = ĉi,j + τλγ

ρ(u, c) < 0 ri,j > τλ (∇I1)i,j
ui,j = ûi,j − τλ (∇I1)i,j
ci,j = ĉi,j − τλγ

else |ri,j | ≤ τλ (∇I1)i,j
ui,j = ûi,j − ri,j (∇I1)i,j
ci,j = ĉi,j − ri,jγ

5.2.3. Optical Flow Constraint Based on Gradient Constancy

The remaining difficulties in handling brightness variations brings us to the next approach
of modifying the OFC. In literature there are different approaches on how to exchange
the brightness constancy for higher-order constancy assumptions. The related approaches
have been discussed in Section 4.3.2. In the following, we present some insights on how to
integrate a higher order constancy assumption and in particular on how to incorporate the
constancy of moving gradients into the presented variational framework. At first, we will
show how to integrate simple gradient constancy and then we give some details on how to
optimize even more complex models with the preconditioned primal-dual algorithm (3.56)
of Pock and Chambolle [2011] (cf . Section 3.6.5).
For a simple usage of gradient constancy we interchange the brightness constancy by

assuming moving gradients to be constant. This results in a data term similar to (4.19)
proposed by Brox et al. [2004] but neglecting the quota of the brightness constancy. With
the gradient operator ∇ =

(
∇x1

,∇x2
)T

we define the gradient field of the input intensity
function as

∇I(x(t), t) =
[
∇x1

I(x(t), t)
∇x2

I(x(t), t)

]
=
[
Ix

1

Ix
2

]
.

Assuming gradient constancy over time yields the data term

D(u) =
∫

Ω

∣∣∣∣Ix1
t +

(
∇Ix1)T (u (x)− u0 (x))

∣∣∣∣︸ ︷︷ ︸
ρ1

+
∣∣∣∣Ix2
t +

(
∇Ix2)T (u (x)− u0 (x))

∣∣∣∣︸ ︷︷ ︸
ρ2

(5.53)
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(a) Input (b) Ground truth flow field (c) Data compensation

(d) Flow field (e) Flow field with compensation

(f) Ground truth flow field (g) Data compensation

(h) Flow field (i) Flow field with compensation

Figure 5.11.: Effects of adding a compensation variable to the OFC on the
Army/Middlebury dataset. The cropped area in (f-i) demonstrates the
enhancement for moving shadows.
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(a) Input (b) Ground truth flow field (c) Data compensation

(d) Flow field (e) Flow field with compensation

(f) Ground truth flow field (g) Data compensation

(h) Flow field (i) Flow field with compensation

Figure 5.12.: Effects of adding a compensation variable to the OFC on the
Schefflera/Middlebury dataset. The cropped area in (f-i) demonstrates
the enhancement for moving shadows and for wrong data matches due to
the movement of small textures. This example shows that the compensation
enhances the results but still the result is by far not perfect.
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and the discretized minimization problem

min
u∈Y
||∇u||ε + λ (||ρ1(u)||1 + ||ρ2(u)||1) ,

with ρ1(ui,j) = (Ix1
t )i,j + (∇Ix1)Ti,j (ui,j − (u0)i,j) ,

and ρ2(ui,j) = (Ix2
t )i,j + (∇Ix2)Ti,j (ui,j − (u0)i,j) .

(5.54)

When comparing the minimization problem to the baseline model (5.2) the only change is
concerning the function G(u) (4.29) which changes to

G(u) = λ ||ρ1(u)||1 + λ ||ρ2(u)||1 . (5.55)

Hence, the difference for the algorithms iterates (5.12) is that the soft-thresholding scheme
changes due to the resolvent operator with respect to G(u). A similar approach on using
two data terms is discussed in Wedel et al. [2008]. In the following we present a different
approach how to derive the cases for the thresholding scheme. Therefore, we come back to
the resolvent operator that is defined as the minimizer of

u = arg min
u

{ 1
2τ ||u− û||

2
2 + λ ||ρ1(u)||1 + λ ||ρ2(u)||1

}
. (5.56)

For convenience we define the data residuals as

ρ1(u) = aTu+ b and ρ2(u) = cTu+ d ,

and accordingly, the corresponding optimality condition yields

u− û+ τλ (s+ t) = 0 . (5.57)

Here, s and t are defined as the subgradient of ρ1(u) and ρ2(u) as

s ∈ ∂
∣∣∣aTu+ b

∣∣∣ =


a if aTu+ b > 0
−a if aTu+ b < 0
[−a, a] else

and (5.58)

t ∈ ∂
∣∣∣cTu+ d

∣∣∣ =


c if cTu+ d > 0
−c if cTu+ d < 0
[−c, c] else

. (5.59)

Similar to the derivation of the thresholding scheme in Section 4.4.2 different cases of the
OFC’s values must be made:

ρ1(u) > 0, ρ2(u) > 0: We use this case to represent the derivation of update rules for
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the cases when

ρ1(u) > 0, ρ2(u) > 0 ,
ρ1(u) > 0, ρ2(u) < 0 ,
ρ1(u) < 0, ρ2(u) > 0 ,
ρ1(u) < 0, ρ2(u) < 0 .

(5.60)

All these cases deduce in a similar way and mainly only the signs of s and t changes
as listed in the cases in (5.58) and (5.59). In the case of positive residuals ρ1(u) and
ρ2(u), both signs in (5.57) are positive and this leads directly to the update rule

u = û− τλ (a+ c) . (5.61)

To obtain the thresholding check with respect to û this update is substituted into
the initial conditions ρ1(u) > 0 and ρ2(u) > 0 that in turn leads to

ρ1 (û) > τλ
(
aTa− aT c

)
, and

ρ2 (û) > τλ
(
cTa− cT c

) (5.62)

The related update rules and thresholding checks for the remaining cases in (5.60)
are listed in Table 5.3.

ρ1(u) = 0, ρ2(u) ≷≷≷ 0: Here, the resolvent operator is defined as the minimizer of

u = arg min
u

{ 1
2τ ||u− û||

2
2 + λ 〈µ1, ρ1(u)〉+ λ ||ρ2(u)||1

}
, (5.63)

with µ1 being the Lagrange multiplier modeling ρ1(u) = 0. The optimality condition
with respect to u and µ1 yield

∂

∂u
: u− û+ τλ (aµ1 ± c) = 0 (5.64)

∂

∂µ1
: aTu+ b = 0 (5.65)

By inserting u from (5.64) into (5.65) µ1 becomes

µ1 = 1
aTa

( 1
τλ
ρ1u∓ aT c

)
. (5.66)

By inserting µ1 into (5.64) we get to the update rule

u = û− ρ1u
a

aTa
± τλ

(
a
aT c

aTa
− c
)
. (5.67)
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Transferring the conditions ρ2(u) ≷ 0 with respect to û the thresholding cases yield

ρ2 (û) ≷ ρ1 (û)± τλ

−
(
cTa

)2

aTa
+ cT c

 (5.68)

Note that for the case when ρ1(u) ≷ 0, ρ2(u) = 0 the updates and thresholding cases
are achieved in a similar way and are listed in Table 5.3.

ρ1(u) = u, ρ2(u) = 0: Consiquently, we add two Lagrange multipliers µ1 and µ2 to
model the equality constraint of the residuals in the minimization problem to obtain
the resolvent operator for this case:

u = arg min
u

{ 1
2τ ||u− û||

2
2 + λ 〈µ1, ρ1(u)〉+ λ 〈µ2, ρ2(u)〉

}
(5.69)

The respective optimality condition yields

∂

∂u
: u− û+ τλ (aµ1 + cµ2) = 0 (5.70)

∂

∂µ1
: aTu+ b = 0 (5.71)

∂

∂µ2
: cTu+ d = 0 (5.72)

are used to obtain the update equation. By inserting u, expressed from (5.70), into
(5.71) and (5.72) we obtain two linear equations with the two unknowns µ1 and µ2.
Solving this system of equation for µ1 and µ2 and re-inserting them into (5.70) yields
the update equation

u = û+ 1
aTacT c− (aT c)2(

−a
(
ρ1 (û) cT c− ρ2 (û) aT c

)
+ c

(
ρ1 (û) cTa− ρ2 (û) aTa

))
. (5.73)

Hence, for optimizing (5.54) we apply the iterates (5.12) with the soft-thresholding
scheme presented in Table 5.3. Still, examining the complex result for the soft-thresholding
scheme when only considering two data terms, it becomes clear that for more than two
data terms the solution to the resolvent operator for G(u) will get even more complicated.
An alternative approach on directly solving the resolvent operator is to dualize the data
term. A point that must be considered then is the strength of the updates by adapting
the stepsizes τ and σ accordingly. Recently, a variant of the used primal-dual algorithm
has been proposed by Pock and Chambolle [2011] where a preconditioner can be utilized
to balance the strength of the corresponding updates. In the following we utilize this
approach to show how to optimize for multiple data terms.
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5.2.4. Increasing the Data Information – Multiple Dataterms

We have seen in the previous section (cf . Table 5.3) that already for two data terms the
direct solution of the resolvent operator with respect to the function G(u) is cumbersome
to compute and this gets worse for an increasing number of data terms. In the following
we want to consider the general case for K data terms. Let us therefore consider the case
where we dualize not only the `1 norm of the smoothness term but also for the data terms.
Introducing the dual variables q = (q1, . . . , qK) with qk ∈ X the primal-dual saddle-point
formulation yields

min
u∈Y

max
p∈Z,q∈X

〈∇u, p〉Z −
ε ||p||22

2 − δP (p) + λ
K∑
k=1

(
〈ρk(u), qk〉X − δ{|q1|∞≤1}

)
. (5.74)

With the definition of the diagonal preconditioner matrices elements (3.58) we end up
with the iterates

pn+1 = proxP
(
pn + Σ∇un

1 + Σε

)
qn+1
k = prox[−1,1] (qnk + Σλρk(un))

un+1 = shrink
(
un − T

(
div pn+1 + λ

K∑
k=1

(
qn+1
k

∂

∂u
qn+1
k

)))
un+1 = 2un+1 − un ,

(5.75)

with the pointwise truncation prox[−1,1]. [TODO: i think the stuff with the sum
and the partial is not correct. recheck!]

For better understanding of the preconditioner matrices elements we apply the algorithm
to optimize a model using a data term with gradient-based constancy assumption discussed
in Section 5.2.3. By dualizing the Huber-norm of the smoothness term and the data terms
`1-norms, (5.54) transfers to the saddle-point formulation

min
u∈Y

max
p∈Z,q∈X

〈∇u, p〉Z −
ε ||p||22

2 − δP (p)

+ λ
(
〈ρ1(u), q1〉X − δ{|q1|∞≤1} + 〈ρ2(u), q2〉X − δ{|q2|∞≤1}

)
. (5.76)

In order to compute the elements of the preconditioner matrix, we bring (5.76) in the form〈
Ku, (p, q1, q2)T

〉
+
〈
b, (q1, q2)T

〉
. (5.77)

In the following we deduce the corresponding operator matrix K for which we will use
the operators ∇x1

,∇x2 for the x- and y-gradient operators which are of size MN ×MN .
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With that we define the matrices

K =



∇x1

∇x2

∇x1

∇x2

diag(λ∇x1
Ix

1) diag(λ∇x2
Ix

1)
diag(λ∇x1

Ix
2) diag(λ∇x2

Ix
2)


, (5.78)

and

b =
[
λ∇x1

Ix
1 + λ∇x2

Ix
1)

λ∇x1
Ix

2 + λ∇x2
Ix

2)

]
. (5.79)

Computing the elements of the preconditioner matrices according to (3.58) is trivial by
considering the row-wise sum of the elements in (5.78) for computing Σ. Respectively, for
T use the column-wise sum of K. For convenience we furthermore define

c =
[
λq1∇x

1
Ix

1 + q2λ∇x
1
Ix

2)
λq1∇x

2
Ix

1 + q2λ∇x
2
Ix

2)

]
.

With that, the iterates for optimizing the Huber-`1 model with gradient constancy data
term yield

pn+1 = proxP
(
pn + Σ∇un

1 + Σε

)
qn+1

1 = prox[−1,1] (qn1 + Σλρ1(un))

qn+1
2 = prox[−1,1] (qn2 + Σλρ2(un))

un+1 = shrink
(
un − T

(
div pn+1 + c

))
un+1 = 2un+1 − un ,

(5.80)

5.2.5. Quadratic Fitting on the Dataterms Energy Functional

Standard optical flow algorithms often use some kind of constancy assumption for computing
similarity measures. In order to optimize for the disparities with a formulation like (4.22),
one has to linearize the image function around a given point u0 (x) to obtain an objective
function that is linear in u (x) and therefore convex (cf . Section 4.2.1). This restricts
the data fidelity modeling to rather simple constraints as e.g. the brightness or gradient
constancy assumption. We introduced an alternative approach in [Werlberger et al., 2010],
where not the image function is linearized but a Taylor expansion is directly applied to
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the data terms energy functional to linearize it. The major benefit of this approach is its
flexibility to add arbitrarily complex data terms. This enables us to use window-based
approaches like e.g. sum of squared/absolute differences, correlation-based similarities or
the Census transform. In the following we discuss the second-order Taylor approximation
of the data term and its optimization in the primal-dual framework. In addition we present
some relevant similarity measures that work well for different applications of optical flow.
Therefore, let us first define a general data term function

φ (x, u (x)) = δ (x, I1 (x) , I2 (x) , u (x)) , (5.81)

where δ (x, I1 (x) , I2 (x) , u (x)) defines an arbitrary similarity measure of the input image
I1 (x) (fixed image) and the transformed image I2 (x) (moving image). u (x) again denotes
the flow vectors from I1 (x) to I2 (x). Let us ignore the details of the similarity measure for
the moment. Applying a Taylor expansion to (5.81), neglecting terms higher than second
order, yields the approximation

φ̆(x, u (x)) ≈ φ(x, u0 (x)) + (∇φ(x, u0 (x)))T (u (x)− u0 (x)) +
1
2 (u (x)− u0 (x))T ∇2φ(x, u0 (x)) (u (x)− u0 (x)) . (5.82)

For brevity we will omit the argument x for the following considerations and use the
notation φ̆, φ(u) and φ(u0) respectively. In (5.82), ∇φ(u0) = (φx(u0), φy(u0)) denotes the
function’s gradient, whereas ∇2φ(u0) is its Hessian matrix defined as

∇2φ(u0) = H (φ (u0)) =
[
φxx(u0) φxy(u0)
φyx(u0) φyy(u0)

]
. (5.83)

To guarantee convexity of the data term’s approximation the Hessian matrix must be posi-
tive semidefinite. This is the case when both Eigenvalues of (5.83) are non-negative. In the
following we demonstrate two different approaches to handle violations of this requirement.
At first we describe how to check the positive semidefiniteness via the computation of
the Eigenvalues. Further, we transform the Hessian into a positive semidefinite matrix if
an Eigenvalue is negative. Secondly, we show a simple approximation of the Hessian to
guarantee convexity.

5.2.5.1. Positive Definiteness of the Hessian Matrix

In the following we show two approaches that guarantee for convexity of the used second-
order Taylor approximation of the data term. Therefore, a sufficient condition is the
positive definiteness of the Hessian matrix which is fulfilled when the two Eigenvalues
are positive. At first we show the computation of the Eigenvalues and Eigenvectors and
how to transform the Hessian matrix into a positive definite matrix if the condition of
positive Eigenvalues does not hold. We will refer to this as the “full approximation of the
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Hessian” in the following. Furthermore, we will discuss a second approach that uses a
simple approximation of the Hessian that is positive definite by design. We will see that
the approximation is simpler to compute and above all the results are similar to the full
approximation of the Hessian.

Full Approximation of the Hessian Matrix

To compute the Eigenvalues of (5.83) we consider the characteristic equation

det (H(φ(u0))− λI) = 0 . (5.84)

Its solution are the Eigenvalues. For the given symmetric 2× 2 matrix H(φ(u0)) this yields

det
(
φxx(u0)− λ φxy(u0)
φxy(u0) φxx(u0)− λ

)
= 0 . (5.85)

Solving the resultant quadratic equation reveals the Eigenvalues

λ1/2 = 1
2

(
(φxx(u0) + φyy(u0))±

√
4 (φxy(u0))2 + (φxx(u0)− φyy(u0))2

)
. (5.86)

Furthermore, the corresponding Eigenvectors v1/2 are computed through the identity

H(φ(u0))v = λv , yielding
(
φxx(u0)− λ φxy(u0)
φxy(u0) φyy(u0)− λ

)[
v1
v2

]
. (5.87)

With that we can compute the slope of the first Eigenvalue v1 =
(
v1

1, v
2
1
)
through the

component’s relations

(φxx(u0)− λ1) v1
1 + φxy(u0)v2

1 = 0 → v1
1
v2

1
= φxy(u0)
φxx(u0)− λ1

and

φxy(u0)v1
1 + (λ1 − φxx(u0)) v2

1 = 0 → v1
1
v2

1
= λ1 − φyy(u0)

φxy(u0) .

(5.88)

Hence, for φxy(u0) 6= 0 the Eigenvector normalized to the unit length yields

v1 =

 φxy(u0)√
(φxy)2 + (λ− φxx)2

,
λ1 − φxx(u0)√

(φxy)2 + (λ− φxx)2
,

T . (5.89)

For the symmetric 2× 2 matrix H(φ(u0)), the Eigenvectors are orthogonal which yields

v2 =
(
v2

1,−v1
1

)T
. (5.90)

In case when φxy(u0) = 0, the Eigenvectors reduce to v1 = (1, 0), and v2 = (0, 1).
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To guarantee the Hessian to be positive semidefinite, we restrict the Eigenvalues to be
positive with

λ+
1 = max

{
0, λ1

}
, and λ+

2 = max
{

0, λ2
}
,

and use those to reconstruct the matrix H+(φ(u0)) with the elements

φ+
xx = λ+

1 (v1
1)2 + λ+

2 (v1
2)2

φ+
yy = λ+

1 (v2
1)2 + λ+

2 (v2
2)2

φ+
xy = λ+

1 v
1
1v

2
1 + λ+

2 v
1
2v

2
2 .

(5.91)

It can be shown that H+(φ(u0)) is the orthogonal projection to the set of symmetric
positive semidefinite 2× 2 matrices.

Approximation of the Hessian Matrix

The previous approach guarantees for convex approximations of the data term by computing
the Eigenvalues and in case of non-positive Eigenvalues, we approximate the Hessian by a
reasonable positive definite matrix. As an alternative approach we propose to use only
positive second order derivatives and set the mixed derivative φxy(u0) = 0. By design, this
yields the positive definite approximation of the Hessian

H+(φ(u0)) =
[
φ+
xx(u0) 0

0 φ+
yy(u0)

]
. (5.92)

Discussion

We anticipate some of the results before discussing the optimization routine and evaluate
both approximations on the Middlebury benchmark database. The aim is to show the
differences of the two approximations in terms of accuracy. With that, we can check if the
additional costs for projecting the Hessian to the set of symmetric positive semidefinite
2 × 2 matrices pay of or if the simple approximation is sufficient. For computing the
similarity measure we use pointwise absolute differences which corresponds to the same as
when using the standard optical flow constraint based on intensities. In Table 5.4 the two
approaches are evaluated on the Middlebury’s benchmark sequences where a ground truth
is available. Figure 5.13 shows an exemplar result and affirms that the computed flow fields
are equal, independent on the used approximation. There, even the simpler approximation
is a little bit in favor. Hence, we can use the approach of only using positive second order
derivatives to construct the Hessian matrix without any limitations.

5.2.5.2. The Similarity Measure

The major benefit of this model is the generality of using arbitrary data terms. In the
following we will give a brief overview of some possibilities that turn out to work well in
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Table 5.4.: Comparison of the Hessian’s full approximation with the faster/simpler ap-
proach of only using the positive diagonal entries of the Hessian matrix (H+).
As error measurement the average end-point error of the flow vectors is used.
(For details on the evaluation, see Section 5.3)

Approx. Hydrangea Venus Grove3 Urban3
Dimetrodon RubberWhale Grove2 Urban2 Average

Full 0.209 0.239 0.196 0.449 0.247 0.713 0.457 0.623 0.392
H+ 0.208 0.239 0.195 0.444 0.247 0.706 0.433 0.596 0.384

(a) Frame 10 (b) Ground truth (c) Full (d) H+

Figure 5.13.: Visual comparison of the results on Middlebury’s Urban2 sequence. Almost
no differences are visible when comparing the color-coded visualization
when using the full (c) or simple (d) approximation of the Hessian matrix.
Both results are close to the ground truth flow field (b).

the context of optical flow estimation. Beside the classical pointwise data matching term,
the already introduced classical optical flow constraint, comparing intensities or gradients
the quadratic approximation enables us to use patch based similarity measures. Related to
the intensity constancy assumption we can use the sum of absolute differences in a defined
window (mostly a rectangular neighborhood around the current pixel).

Furthermore, also more complex similarity measures can be incorporated. In the field
of image matching correlation based measurements like the normalized cross correlation
(NCC) is well-established and with the presented approximation of the data term functional
the integration is trivial. A major benefit is its invariance to multiplicative illumination
changes which can be very useful in the field of motion estimation. To define a truncated
variant of the NCC we first define the mean of a certain patch within the input images
I1 (x) and I2 (x) as

µ1 (x) =
∫

Ω
I1(y)BL(x− y) dy , and

µ2 (x) =
∫

Ω
Ĩ2(y)BL(x− y) dy ,

(5.93)

Draft Copy: June 1, 2012



96 5 Optical Flow Enhancements

where BL denotes a box filter of width L and
∫
B(z) dz = 1.

Ĩ2(y) = I2(y + u0)

depicts the warped image. Likewise, the standard deviation σ (x) is defined as

σ1 (x) =
√∫

Ω
(I1(y)− µ1 (x))2BL(x− y) dy , and

σ2 (x) =
√∫

Ω
(I2(y)− µ2 (x))2BL(x− y) dy .

(5.94)

Hence, the pointwise matching costs using the normalized cross correlation yields

NCC(x, I1 (x) , I2 (x) , u (x)) =
1

σ1 (x)σ2 (x)

∫
Ω

(I1(y)− µ1 (x))(Ĩ2(y)− µ2 (x))BL(x− y) dy . (5.95)

Note that the matching term is computed based on the warped image Ĩ2(y) = I2(y + u0)
to better account for the local distortion within the correlation window. The values
of the NCC is in the range [−1, 1] and for modeling the actual similarity measure we
incorporate a pointwise truncation and only consider positive values of (5.95). Neglecting
poor correlations increases the robustness of the data term towards outliers that are e.g.
caused by occlusions. This yields the similarity measure

δTNCC(x, I1 (x) , I2 (x) , u (x)) = min
{

1, 1−NCC(x, I1 (x) , I2 (x) , u (x))
}

(5.96)

and due to the truncation we call the matching function the truncated normalized cross
correlation (TNCC). This is then introduced into the data term as

φ (x, u (x)) = δTNCC(x, I1 (x) , I2 (x) , u (x)) . (5.97)

5.2.5.3. Minimization

Combining the Huber norm (5.1) for regularizing the flow field and the presented second
order approximation of the data term (5.82) yields the minimization task

min
u∈Y

∫
Ω
|Du|ε + λ

∫
Ω
φ̆ (x) dx . (5.98)

For minimization we define φ̆i,j to be the the discretized version of the approximated data
term (5.82). With ||·||ε being the discretized Huber norm, the optimization problem (5.98)
yields

min
u∈Y
||∇u||ε + λ

∑
i,j

φ̆i,j . (5.99)
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Accordingly, we obtain the convex-concave saddle-point formulation

min
u∈Y

max
p∈Z
〈∇u, p〉Z −

ε ||p||22
2 − δP (p) + λ

∑
i,j

φ̆i,j . (5.100)

To define the updated algorithm for this model, we have to treat the resolvent operator
with respect to G(u) = λ

∑
i,j φ̆i,j that is defined as the minimizer

u = arg min
u

{ 1
2τ ||u− û||

2
2 + λφ̆

}
. (5.101)

Its optimality conditions with respect to the flow fields components u1, u2 yield

∂

∂u1
: u1 − û1 + τλ (φx + φxx (u1 − u1,0)) = 0

∂

∂u2
: u2 − û2 + τλ (φy + φyy (u2 − u2,0)) = 0

(5.102)

Hence, the pointwise minimizers of (5.101) for the components u1, u2 yield

u = proxQF {û} =


1

1
τ

+λφxx(u1,0)

(
û1
τ − λφx + λφxxu1,0

)
1

1
τ

+λφyy(u2,0)

(
û2
τ − λφy + λφyyu2,0

) . (5.103)

With that we once more solve the primal-dual saddle-point problem by applying a
gradient descent update on the primal variable and a gradient ascent on the dual. The
iterates are given as

pn+1 = proxP
{
pn + σ∇un

1 + σε

}
un+1 = proxQF

{
un − τdiv pn+1

}
un+1 = 2un+1 − un .

(5.104)

5.2.5.4. A Note on Multiple Data Terms

Throughout the whole section about the quadratic approximation of the data term we
argued about its flexibility on using any arbitrary data term. In the following we round up
this reasoning by explaining how to incorporate multiple data terms. This is advantageous
when using e.g. a higher order constancy assumption or simply when using more than
two input images. This also completes the approaches for multiple data terms beside the
explicit solution of the resolvent operator by the soft-thresholding scheme presented in
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Section 5.2.3 and the preconditioned variant in Section 5.2.4. For both approaches (in
particular the soft-thresholding scheme) the computation can get cumbersome when having
more than two data terms. With the approach presented in the following the extension to
arbitrary frames is trivial.
When having K data terms, the individual similarity measures are defined as the sum

φ(x, u (x)) =
K∑
k=1

φk(x, u (x)) . (5.105)

When applying its second-order approximation, the derivatives of φ(x, u0 (x)) are computed
as sum of the gradients of the individual data terms:

∇φ(x, u0 (x)) =
K∑
k=1
∇φk(x, u0 (x))

∇2φ(x, u0) =
K∑
k=1
∇2φk(x, u0 (x)) .

(5.106)

The rest of the optimization remains the same.

5.2.5.5. Discussion

To demonstrate the flexibility of the presented data term’s quadratic approximation we
show some exemplar results using different similarity measures. Therefore, we utilize the
tensor-directed Huber regularization as smoothness prior and different similarity measures
to model the data fidelity. For a more extensive evaluation we refer to Section 5.3 where
also other regularizers are used in conjunction with different similarity measures. As
representative results we show three different similarity measures, absolute differences
(AD) which is equatable with the classical OFC, the sum of absolute differences over a
3 × 3 patch (SAD), and the truncated normalized cross correlation (TNCC). For this
comparison we manually tuned the λ parameter to obtain reasonable results for the specific
data set. The corresponding values are given in the images’ captions. While the flow fields
computed with the pointwise AD similarity measure and the patch-based SAD do not show
much of a difference, the result computed with the TNCC is able to capture much more
details, especially for the shown Schefflera sequence. Especially in areas with lightning
changes and strong texture the TNCC outreaches the other approaches. Furthermore, in
combination with an even stronger regularizer (e.g. nonlocal Huber regularization) the
performance can be increased even more.
In general the notion of having a flexible way of modeling the data term is affirmed by

the results and possibilities how similarity measures can be integrated. Nevertheless we
mention some comments about the drawback of the model. As the approximation is based
on the energy functional, and not the image’s intensity function, the model is in general
more sensitive to disturbances. Therefore, the restriction of the update according to the
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linearization (cf . Figure 4.4 in Section 4.4.3) is even more important than for the models
using the classical OFC. This sensitivity particularly emerges when using a pointwise
data matching cost. For path-based approaches and there especially for strong similarity
measures as the TNCC, the linearization restriction becomes less important again. For
using e.g. absolute differences as matching cost, we set the interval around the linearized
point to ∆u0 = 1.0 and the factor for reducing the size of the interval to κu0 = 1.75.
As mentioned for stronger data terms the interval can be increased to ∆u0 = 2.0 and
κu0 = 1.25 without any problems but actually the effect is barely visible in the accuracy of
the estimated flow field. Therefore we simply stick to the restricted update interval for all
the used similarity measures.
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(a) Frame 10 (b) Ground truth (c) AD, λ = 25

(d) SAD, λ = 30 (e) TNCC, λ = 3

(f) Frame 10 (g) Ground truth (h) AD, λ = 25

(i) SAD, λ = 30 (j) TNCC, λ = 1

Figure 5.14.: Exemplar results on the Middlebury’s Schefflera and Urban3 sequences.
The results are computed with the tensor-directed Huber-Quadfit model
with the (h) similarity measures absolute differences (AD), (i) sum of
absolute differences (3×3 window) (SAD), and (j) the truncated normalized
cross correlation (3× 3 window) (TNCC).
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5.3. Experimental Comparison

In this section we compare the different modifications of the TV-`1 model that have been
presented throughout this chapter. Because of the models’ different characteristics, the
parameterization must be chosen differently for each evaluation. Especially the parameter
λ, defining the trade-off between regularization and data fidelity, can have a strong influence
on the resultant optical flow field. To obtain a suitable choice for λ we perform an extensive
evaluation on the Middlebury’s benchmark datasets where ground-truth data is available
[Baker et al., 2011]. These eight sequences consist of four natural and four synthetic ones.
For comparing the flow vectors u with some ground-truth flow vectors ǔ two different error
measures have been enforced in the past:

• Fleet and Jepson [1990] introduced the angular error (ae) that is defined as

ae = arccos uT ǔ

||u||2 ||ǔ||2
, and (5.107)

• Otte and Nagel [1995] proposed to use the end-point error (epe) that is defined as
the Euclidean distance between the flow vector’s end-points:

epe = ||u− ǔ||2 . (5.108)

For our evaluation we will use the end-point error because the angular error penalizes
vectors differently depending on their magnitude. As we want to penalize vectors with
large magnitude the same way than vectors with small magnitudes we utilize the end-point
error. Still, let us point out that the use of the angular error would lead to similar results
for the upcoming evaluations. Another fact to mention is that the natural scenes have
annotated occlusions where the error measure is not evaluated. Interestingly, the synthetic
datasets, where a virtual camera moves along a rendered scene, have no marked occlusions.
This raises the error for these datasets which is also visible in all our evaluations where the
synthetic datasets always exhibit a higher error than the natural scenes.
In order to find a suitable choice for λ, we evaluate all the combinations of presented

regularization and data terms on the benchmark sequences with varying λ. We then
compute the average end-point error (aepe) of the resultant flow fields and in addition
we average the error over all datasets to obtain a statement of the best λ over multiple
sequences. The plots of these evaluations are shown in Appendix A. Furthermore, Table 5.5
lists the errors for the optimal λ and Figures 5.16-5.18 show an assortment of resultant
color-coded flow fields.

The evaluation shows that the combination of regularization and data term is not trivial
and actually is also dependent on the given data. As the datasets do not exhibit any strong
lightning changes, hardly any noise and no outliers, we should not expect any big differences
in the error rates. Still, the stability of the algorithms can be judged according to changing
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parametrization. A steady error rate over varying λ is a good sign for robustness towards
changing this parameter. Let us now comment some of the findings of this evaluation:

• Already the baseline model, using a Huber regularization and `1 penalized intensity
constancy assumption, yields good results on this database.

• Using structure-texture decomposed input image increases the robustness against
lightning changes but in turn also useful information is neglected by omitting data.
This is observed by increasing error rates in the evaluation but still for certain
situations the quickly computable extension is a reasonable choice. The evaluation
shows that for clean data more emphasis is placed on the data term (higher λ) to
obtain similar results as the baseline model. If outliers are present a high λ would
increase the influence of such. This fact should be carefully attended when using
structure-texture decomposed input images.

• In terms of enforcing the regularization within objects the weighting according to
image edges improves the estimate near motion boundaries. For the clean data the
outcome of the different variants of regularization weight (edge-weighted, directed or
tensor-directed) are similar with slight benefits for the tensor-directed approach as
it is the most flexible one. In addition, strong textured regions are less influential
compared to the edge-weighted/directed approach.

• With respect to adding robustness towards intensity changes, and in our implemen-
tation towards general outliers, the additive compensation variable performs well.
The benefit of absorbing small outliers due to e.g. too strong regularization makes it
an applicable data term for a weighted regularization approach. Outliers that are
caused by e.g. enforcing the regularization within textured objects are then absorbed
by the compensation in the data term.

• Exchanging the intensity constancy assumption by a higher-order constancy assump-
tion (e.g. gradients), the robustness towards lightning changes and moving shadows
are increased again, but the use of gradients in the data matching cost exhibits
the disadvantage of being prone to errors caused by strong image texture. This
is particularly the case for the synthetic datasets and the reason for the relatively
poor performance on the given sequences. Nevertheless, it is a heavily used data
matching in the field of optical flow and often the results are improved by combining
the intensity and gradient constancy assumption dependent on the underlying data.

• Using the quadratic fitting of the data term’s function yields a very flexible approach
where also more robust matching terms can be easily integrated. The evaluation
shows that especially patch based approaches (with e.g. small 3×3 patches) work well
in this setting. Especially for strong matching terms like correlation measurements
or normalized gradients the approach is very well suited. Especially in combination
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5.3 Experimental Comparison 103

with a strong regularization one can obtain state of the art results. In addition using
bigger patches increases the robustness towards outliers and the approach is able to
handle also corrupted data as we will demonstrate in Section 5.3.1.

• A strong regularization is formed by the nonlocal Huber regularization which imposes
knowledge of the underlying data to enforce the smoothness prior within associated
regions. The combination with the quadratic fitting of the data term using correlation
based measurements results in the most accurate model in terms of aepe for this
benchmark sequence. In addition, the combination with a TNCC data term shows
the lowest variance over the Middlebury data set which is an indicator of being a
robust approach.
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106 5 Optical Flow Enhancements

Frame 10 Ground truth Huber-L1
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Figure 5.15.
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5.3 Experimental Comparison 107

tensor-d. H.-L1+comp. tensor-d. H.-L1-grad. nonlocal H.-Quadfit (TNCC)

aepe = 0.180 aepe = 0.225 aepe = 0.186

aepe = 0.170 aepe = 0.166 aepe = 0.172

aepe = 0.100 aepe = 0.099 aepe = 0.093

aepe = 0.271 aepe = 0.398 aepe = 0.265

Figure 5.16.: Results of Middlebury’s test data set.
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Frame 10 Ground truth Huber-L1
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Figure 5.17.
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tensor-d. H.-L1+comp. tensor-d. H.-L1-grad. nonlocal H.-Quadfit (TNCC)

aepe = 0.220 aepe = 0.268 aepe = 0.146

aepe = 0.608 aepe = 0.703 aepe = 0.590

aepe = 0.339 aepe = 0.445 aepe = 0.287

aepe = 0.438 aepe = 0.898 aepe = 0.378

Figure 5.18.: Results of Middlebury’s test data set.
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110 5 Optical Flow Enhancements

5.3.1. Handling Outliers

In the beginning we motivated the optical flow’s model improvements also by the demand to
handle corrupted video material. By now, most of the material has been clean. Nevertheless,
some of the introduced improvements are suitable to treat difficult data with coarse
outliers. Figure 5.19 shows an exemplary result of a historical video sequence with typical
impairments. The emerging artifacts range from noise and scratches to blobs of completely
missing data. To handle such coarse outliers patch-based approaches, realized with the
Quadfitdata term, are well suited. In this particular case we utilized patches of size 22× 22
and computed the sum of absolute differences (SAD) to use as a similarity measure for
the data term. Imposing such large patches normally oversmoothes the resultant optical
flow fields, but utilizing a weighted regularization enables the approach to preserve motion
discontinuities and compute a reasonable optical flow field. In contrast to using a point-wise
data term as in Figure 5.19d, the optical flow field obtained by the described approach (we
used a tensor-directed Huber regularization but also e.g. nonlocal regularization could be
used here) yield the desired result without any disturbances coming from the impairments.

An additional benefit that we get from the ability to compute correct flow fields without
outliers is the possibility to compute a mask with the impairments’ locations as in Fig-
ure 5.19c. Here, we simply computed the difference image of the reference image (Frame
59) and the warped moving image. Therefore, we utilized the computed optical flow vector
to map the second input image towards the reference image. However, let us point out
that all the impairments (especially the coarse ones) that occur in the second image are
also warped towards the reference frame. The restoration itself is not completed by only
computing clean optical flow fields. Nevertheless, a model for computing optical flow that
is robust towards outliers is crucial for every restoration pipeline to achieve the desired
results. In the following chapter, we will utilize the ability to compute optical flow in
an accurate and robust manner and incorporate the optical flow vectors into restoration
systems demonstrating the ability to recover image sequences from typical impairments.
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5.3 Experimental Comparison 111

(a) Frame 59 (b) Frame 60 (c) H.-Quadfit (SAD) warped
difference image

(d) Huber-L1 (e) Huber-L1, warped 60→ 59

(f) tensor-d. H.-Quadfit (SAD) (g) tensor-d. H.-Quadfit (SAD), warped 60→ 59

Figure 5.19.: Increasing the neighborhood size of patch based similarity measures gains
robustness towards gross outliers. The input images (a) and (b) yield
the color-coded optical flow result for (d) the Huber-L1 model and (f)
the tensor directed Huber-Quadfit model with SAD data term and the
respective warped images (e) and (g). To obtain the clean result we use a
matching window of 22× 22. With the clean flow field the position of the
outliers are obtained by computing the difference of the warped image (g)
and the respective input image (a). The difference image is shown in (c).
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CHAPTER
SIX

OPTICAL FLOW GUIDED VIDEO PROCESSING

We introduced a versatile framework for optical flow and motion estimation,
respectively. Beforehand, we motivated the detailed disquisition on that topic with
the importance of the optical flow for video restoration and video processing in
general. Still, the ability to handle coarse outliers to estimate an optical flow field
is an essential tool for the restoration task itself. This brings us to the next step –
the utilization of optical flow vectors in video processing tasks.
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114 6 Optical Flow Guided Video Processing

In this chapter, we first extend the well-known TV-`1 denoising framework to operate on
image sequences in a space-time volume. We then use this approach to implement different
applications towards video processing. In terms of restoration, we show the results on
frame-denoising and the performance if handling coarser outliers. In addition, we show the
versatility of the model by generating artificial intermediate images. This is of particular
interest when complete frames are lost. But also in the video post-production the approach
can be applied to generate artificial slow motion sequences.

As a second approach, we demonstrate the adoption of inpainting towards video sequences.
For single frames, exemplar-based inpainting is a well established way to recover image areas
without the smoothing effects that might be introduced when information is propagated
from the inpainting boarder by e.g. a diffusion process.

6.1. Optical Flow Guided TV-`1

In this chapter we propose a method that is capable of image sequence denoising, restorating
impaired frames, reconstructing completely lost frames and interpolating images between
frames. It is of note that all this can be realized with a simple extension of the well-known
TV-`1 model and still we are able to produce state-of-the-art results. As our model is
closely related to variational image denoising we first pick up the topic from Section 3.3
and give some more insights. Then, we introduce the data representation for an image
sequence. After that the optical flow guided extension is discussed including the respective
optimization scheme. Finally, we show the method’s different fields of application.

6.1.1. Variational Image Denoising

We have already introduced the concept of variational methods in Chapter 3 and some
details on variational image denoising have been discussed in Section 3.3. There, we
presented the so-called ROF denoising model, proposed in the seminal work of Rudin
et al. [1992]. Since its introduction, models of this type were studied intensively. A
well-established modification of the classical ROF model is the so-called TV-`1 model that
replaces the `2 norm in the data term by an `1 norm:
Starting from the ROF model, we obtain a denoised image v by minimizing the energy

functional
min
v

∫
Ω
|∇v (x)|+ λ

2 (v (x)− f (x))2 dx , (6.1)

assuming that v is sufficiently smooth. The unknown (noise-free) data v (x), as well as the
given input data f (x), is defined in the image domain Ω. This model is appropriate to
remove additive Gaussian noise. When looking at the characteristics of video defects, it
immediately becomes obvious that those are not likely to be similar to Gaussian noise.
Consider all kinds of missing data like e.g. scratches or noise speckles coming from dust on
the film during the copying process. Taking a closer look, the outliers are more related to
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6.1 Optical Flow Guided TV-`1 115

impulse noise.
Similar to the ROF model, Nikolova [2004], and Chan and Esedoglu [2005] proposed the

TV-`1model as
min
v

∫
Ω
|∇v (x)|+ λ |v (x)− f (x)| dx . (6.2)

This is a popular approach when it comes to removing impulse noise. Besides the ability to
remove strong outliers, the substitution of the `2-norm in the ROF model with the `1 norm
makes the TV-`1 model contrast invariant. In addition to image denoising applications,
(6.2) can be used for shape denoising and feature selection tasks [Pock, 2008].

6.1.2. TV-`1 Sequence Denoising

For the moment, the given input data f (x) (and also the model itself) is defined on the
two dimensional image grid Ω. We already referred to the issue that applying an approved
image denoising algorithm does not necessarily result into a well-performing algorithm
for denoising video sequences. Let us, at first, neglect the motion influence for a moment
and discuss the data representation. The main idea is to treat a video sequence as a
spatio-temporal volume and apply the restoration algorithm not on the 2D images but the
3D volume. For tracking and segmentation it has been shown by Mansouri et al. [2003],
and Unger et al. [2009] that the representation of image sequences in a space-time volume is
beneficial. For the following model, we will show that this is also true if a spatio-temporal
TV-`1 model is utilized for restoration and video processing tasks. Incorporating the
temporal domain into the TV-`1 model (6.2) results in the minimization task

min
v

∫
Ω×T
|∇v (x, t)|+ λ |v (x, t)− f (x, t)| dx dt . (6.3)

The input sequence f : Ω× T → R and the sought solution v : Ω× T → R are defined in a
space-time volume.
The benefit of directly encoding the temporal domain into the model does not fully

exhaust the potential of such approaches. The drawback of the existing methods is
the definition of the temporal gradient. To handle moving objects and the associated
(dis-)occlusions, we incorporate optical flow to guide the temporal derivative.

6.1.3. The Optical Flow Guided TV-`1 Model

In order to incorporate information about objects’ movements, we utilize the computed
motion vectors to guide the smoothing process. Therefore, the time derivatives are computed
along motion trajectories. In order to be robust against occlusions and disocclusions we
compute the optical flow in both directions, which we will denote as the forward flow

u+ (x, t) =
(
u1+ (x, t) , u2+ (x, t)

)T
: Ω× T → R2
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116 6 Optical Flow Guided Video Processing

and the backward flow

u− (x, t) =
(
u1− (x, t) , u2− (x, t)

)T
: Ω× T → R2 .

We propose to minimize the following optical flow driven TV-`1 energy functional

min
v

∫
Ω×T
|∇uv (x, t)|+ λ (x, t) |v (x, t)− f (x, t)| dx dt . (6.4)

As mentioned previously, the input sequence f (x, t), as well as the sought solution v (x, t),
are defined in a space-time volume. Unlike in the previous models, we now define the
trade-off between regularization and data term in a pointwise manner as λ (x, t). This
enables the model to neglect the data term for certain areas and only rely on the filling-in
effect of the regularizer. There, solely an inpainting operation is performed and only
information from neighboring regions are considered. Furthermore, the spatio-temporal
gradient operator is defined as

∇u = (∂x1 , ∂x2 , ∂t+ , ∂t−)T , (6.5)

where the components ∂x1 and ∂x2 denote standard spatial derivatives. The temporal
derivatives are directed by the corresponding optical flow vectors (u+ (x, t) , u− (x, t)) and
are denoted as ∂t+ and ∂t− .

∂x1v = lim
h→0+

v(x1 + h, x2, t)− v (x, t)
h

∂x2v = lim
h→0+

v(x1, x2 + h, t)− v (x, t)
h

∂t+v = lim
ht→0+

v(x+ htu
+ (x, t) , t+ ht)− v (x, t)

ht

√
1 + |u+ (x, t)|2

∂t−v = lim
ht→0+

v(x+ htu
− (x, t) , t+ ht)− v (x, t)

ht

√
1 + |u− (x, t)|2

. (6.6)

Figure 6.1 shows a graphical illustration of the gradients’ directions.

6.1.4. Minimization

Due to the fact that the model is defined to operate on a spatio-temporal domain, the
mathematical foundation and its discretization from Section 3.1 must be extended towards
the temporal domain. To make the following numerical scheme self-contained we discuss
the whole discretization approach although we may repeat some elements that have already
been introduced in previously discussed discretizations.
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6.1 Optical Flow Guided TV-`1 117

Figure 6.1.: Layout of the spatio-temporal volume and the defined gra-
dient operator (6.5), whose directions are marked as red
vectors. The forward (u+ (x, t)) and backward (u− (x, t))
optical flow vectors guides the temporal components of this
gradient operator.

Discretization

First, we define the image sequence within a three dimensional, regular Cartesian grid of
the size M ×N ×K:

Ω× T = {(i, j, k) : 1 ≤ i ≤M, 1 ≤ j ≤ N, 1 ≤ k ≤ K} (6.7)

The grid size is 1 and the discrete pixel positions within the defined volume are given by
(i, j, k). The finite dimensional vector spaces X and Z are extended towards

X = RMNK ,

Z = R4MNK ,
(6.8)
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118 6 Optical Flow Guided Video Processing

equipped with standard scalar products denoted by 〈·, ·〉X and 〈·, ·〉Z . Next, we define the
discretized versions of the anisotropic spatio-temporal gradient operator ∇u (6.5) with h
and ht controlling the spatial and temporal influence of the regularization

(Duv)i,j,k =
(
(Dx1v)i,j,k, (Dx2v)i,j,k︸ ︷︷ ︸

spatial

, (Dt+v)i,j,k, (Dt−v)i,j,k︸ ︷︷ ︸
temporal

)T
. (6.9)

The spatial gradients are discretized using simple finite differences yielding

(Dx1v)i,j,k =


vi+1,j,k−vi,j,k

h if i < M

0 if i = M
, (6.10)

(Dx2v)i,j,k =


vi,j+1,k−vi,j,k

h if j < N

0 if j = N
. (6.11)

If the flow vector points in-between discrete locations on the pixel grid we use a linear
interpolation of the surrounding pixels to compute the flow-guided temporal gradients. In
the following, we describe the interpolation for the spatial component guided with the
forward flow. The same is, of course, valid for the component where the gradient is steered
with the backward optical flow. The linear interpolated pixel positions(

i
+
, j

+
, k
)

=
(
i+ htu

1+
i,j,k, j + htu

2+
i,j,k, k

)
, (6.12)

and their coordinates
i
+
1 = bi+c , i

+
2 = i

+
1 + 1 ,

j
+
1 = bj+c , j

+
2 = j

+
1 + 1 .

(6.13)

The corresponding weighting factors are computed as the distances

δ+
i = i

+
2 − i

+ and δ+
j = j

+
2 − j

+
. (6.14)

The temporal gradient operators then yield

(Dt+v)i,j,k =


a++b++c++d+−e+

ht

√
1+
∣∣∣∣u+

i,j,k

∣∣∣∣2
2

if a+, b+, c+, d+, e+ ∈ Ω× T

0 else ,

(6.15)

(Dt−v)i,j,k =


a−+b−+c−+d−−e−

ht

√
1+
∣∣∣∣u−

i,j,k

∣∣∣∣2
2

if a−, b−, c−, d−, e− ∈ Ω× T

0 else ,

(6.16)
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6.1 Optical Flow Guided TV-`1 119

with

a+ = δ+
i δ

+
j vi+1 ,j

+
1 ,k+1 a− = δ−i δ

−
j vi−1 ,j

−
1 ,k

b+ = (1− δ+
i )δ+

j vi+2 ,j
+
1 ,k+1 b− = (1− δ−i )δ−j vi−2 ,j−1 ,k

c+ = δ+
i (1− δ+

j )v
i
+
1 ,j

+
2 ,k+1 c− = δ−i (1− δ−j )v

i
−
1 ,j
−
2 ,k

d+ = (1− δ+
i )(1− δ+

j )v
i
+
2 ,j

+
2 ,k+1 d− = (1− δ−i )(1− δ−j )v

i
−
2 ,j
−
2 ,k

e+ = vi,j,k e− = vi,j,k+1 .

(6.17)

To implement the operator Du we use a sparse matrix representation. This is of particular
interest because we will also need to implement the adjoint operator D∗u which is defined
through the identity 〈Duv, p〉Z = 〈v,D∗up〉X . Note that here, the adjoint operator is simply
the matrix transpose.

Now, (6.4) can be rewritten in the discrete setting as the following minimization problem

min
v
||Duv||1 + ||Λ(v − f)||1 , with Λ = diag(λ) . (6.18)

Primal-Dual Algorithm

Dualizing both `1 norms in (6.18) yields the saddle-point problem

min
v

max
p,q
〈Duv, p〉Z + Λ 〈v − f, q〉X ,

s.t. 0 ≤ v ≤ 1 ,
||p||∞ ≤ 1 , and
− 1 ≤ s ≤ 1

(6.19)

where p =
(
p1
i,j,k, p

2
i,j,k, p

3
i,j,k, p

4
i,j,k

)
∈ Z and q = (qi,j,k) ∈ X denote the dual variables, and

the discrete maximum norm ||p||∞ is defined as

||p||∞ = max
i,j,k
|ri,j,k| ,

|pi,j,k| =
√

(p1
i,j,k)2 + (p2

i,j,k)2 + (p3
i,j,k)2 + (p4

i,j,k)2 .
(6.20)

Applying the primal-dual algorithm (cf . Section 3.6.4) yields the following iterates to
perform a gradient descent update for the primal variable and a gradient ascent update for
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120 6 Optical Flow Guided Video Processing

the dual variables:

pn+1 = ΠB1

[
pn + σ (Duv

n)
]

qn+1 = Π[−1,1]
[
qn + σΛ (vn − f)

]
vn+1 = vn − τ (D∗up+ Λq)
vn+1 = 2vn+1 − vn

(6.21)

The projection ΠBζ is a simple point-wise projections onto the ball with the radius ζ, and
Π[a,b] denotes the point-wise truncation to the interval [a, b]. τ and σ are the primal and
dual update step sizes satisfying τσL2 ≤ 1, where L2 = ‖(D∗v ,Λ∗)‖2.

6.1.5. Application to Sequence Restoration

In the following, we will demonstrate different fields of applications for the proposed method.
At first, we will show the denoising result of a sequence where some kind of motion is present.
Then, we demonstrate the method’s appliance towards sequence restoration by inpainting
destructed areas. Finally, the ability to generate complete frames is evaluated on the
Middlebury benchmark for frame interpolation and, furthermore, an artificial slow-motion
sequence is generated.

6.1.6. Denoising

The following example mainly aims to demonstrate the ability to enhance the smoothing
results over a sequence of frames including motion in comparison to classical spatio-temporal
approaches that do not take the guided gradient operator into account. Therefore, we
compare results of a classical TV-`1 denoising, extended to the spatio temporal domain,
with the proposed method. The smoothed images in Figure 6.2 reveal that the classical
TV-`1 model does not prevent the smoothing over moving edges. In this example the
camera is moving and therefore every edge in the image is a moving edge. Especially the
details shown in Figure 6.2d and 6.2e demonstrate that the optical flow guided variant also
preserves fine details by enforcing the temporal smoothness along motion trajectories.

6.1.7. Inpainting

The previous example shows the benefit of guiding the gradient with a spatio-temporal
variant of the TV-`1 when the sequence is smoothed. As we have already stated, the `1
norm penalizing the data fidelity term makes the model appropriate to remove impulse
noise. In the following, we demonstrate that with incorporating optical flow guidance also
coarse outliers can be removed from the sequence. A requirement for a successful restoration
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6.1 Optical Flow Guided TV-`1 121

(a) Clean input sequence.

(b) TV-`1 smoothing result without any guidance.

(c) Guided TV-`1 smoothing result.

(d) Details showing the differences the two approaches. The right images shows the
proposed guided variant.

(e) Details showing the differences the two approaches. The right images shows the
proposed guided variant.

Figure 6.2.: Denoising the flowergarden sequence with the optical flow guided TV-`1
model enhances the details in the result compared to the variant without
optical flow guidance.
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122 6 Optical Flow Guided Video Processing

is the capability to compute the optical flow vectors. However, for big destructed areas it
may occur that it is not possible to compute any reasonable optical flow field. In these
cases the vectors must be interpolated in these areas as e.g. done in Section 6.1.8 (see also
Figure 6.4).

In the presented example in Figure 6.3 the task is to reduce the coarse outliers but still
conserve the historical characteristic of the sequence. Therefore, we mainly emphasize the
temporal smoothing as the defects occur within single frames (so-called single-frame defects)
and valid information can be propagated from neighboring frames. In this experiment,
the values for λ are set to λ(x, t) = 2 if the pixels are considered good and to λ(x, t) = 0
otherwise. In the areas where the data term is switched of (λ(x, t) = 0) solely inpainting
is performed. To reduce the influence of the spatial smoothing, the weightings of the
regularity are chosen as h = 2.5 and ht = 1. Especially the desire to reconstruct fine image
details makes the task a difficult problem. The results in Figure 6.3 show that due to
the reduced spatial smoothing, the overall characteristic of the movie is preserved and all
the coarse outliers are removed. In addition, all fine details, like the wheel’s spokes, are
recovered.

6.1.8. Application to Frame Interpolation

For frame interpolation, we use the ability of regularizing along the temporal trajectory in
the space-time volume. When solving (6.4) in such a setting, the intermediate frames are
generated and the pixel’s movement are reasonably interpolated along the object’s motion
trajectories. Hence, the optical flow vectors must be propagated in order to define the
temporal gradients for the unknown frames. In this case, we assume a locally linear motion
around the sought frame and propagate the flow vectors from the previous frame towards
the unknown positions as illustrated in Figure 6.4

For a numerical evaluation of interpolating intermediate frames within an image sequence
we use sequences of the Middlebury benchmark [Baker et al., 2011], where interpolated
frames are available as ground truth. The ground-truth datasets, as well as the input
data, are available at the Middlebury website∗. For comparison, we show the interpolated
image v, the ground-truth v̌ and the difference image vdiff = |v̌ − v| in Fig. 6.5-6.7. As a
quantitative measurement we give the root mean squared error (RMSE)

eRMSE =

√√√√ 1
MN

N∑
j=1

M∑
i=1

(v̌i,j − vi,j)2 . (6.22)

In Fig. 6.8 an example of the Middlebury database is shown. Here, large displacements,
fast motion, small scaled structures and complex occlusions are the major difficulties within
these datasets. The magnified regions show that, again, the interpolated movement is
reasonable and the (dis-)occluded regions are handled robustly. Having a closer look at
∗ http://vision.middlebury.edu
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(a) Input sequence.

(b) Inpainting result.

(c)

(d)

Figure 6.3.: Inpainting corrupted regions in a defect afflicted sequence (a). The restoration
is performed with the aim to obtain a naturally looking sequence (b). In (c)
and (d) we show two magnified regions with the corrupted input on the left
and the resulting inpainting result on the right.
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(a) (b)

Figure 6.4.: Flow propagation: (a) shows the basic setting of an unknown frame (t, t +
1: known; t+ 1

2 : unknown) and an exemplary forward flow vector. (b) shows the
relevant pixels that are used when the optical flow is propagated using the linear
interpolation factors as in (6.14).

the ball reveals a drawback of the approach. As the ball has a rather big movement we are
not capable to capture it completely accurately with the used optical flow approach and in
areas, where no motion vectors are available (or the motion vectors are not 100% correct),
the interpolation can produce incorrect results. Besides the benchmark sequence, we also
show a result from a historical video sequence where we generated nine intermediate frames.
In Figure 6.9 we only show every fifth frame for presentation purpose and to also receive
the impression of some motion. The remaining frames are of equal quality. To be more
precise, as we assume a linear motion between two known frames the interpolation quality is
independent of the number of interpolated frames. Let us point out some key observations
from this sequence. Natural motion like the persons’ movement in the foreground, including
gestures like opening/closing of the mouth, is well captured by the approach and also
continued during the intermediate frames. The camera motion aggravates the handling of
e.g. the poles in the background due to their size and the low contrast to the background.
Still, those are well captured and the position remains valid in all the frames. Tiny
structures like details in the hair are preserved too and are correctly interpolated towards
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(a) Ground truth (v̌). (b) Interpolation result (v). (c) Difference image..

Figure 6.5.: Dimetrodon-dataset: eRMSE = 7.478 · 10−3

(a) Ground truth (v̌). (b) Interpolation result (v). (c) Difference image..

Figure 6.6.: MiniCooper-dataset: eRMSE = 1.78 · 10−02

(a) Ground truth (v̌). (b) Interpolation result (v). (c) Difference image..

Figure 6.7.: Walking-dataset: eRMSE = 1.15 · 10−2
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in-between positions also when the two persons move. Most important for viewing such
material, the overall impression of the artificially slow-motion sequence is natural and does
not exhibit any prominent outliers that draws the attention of the observer. This example
shows that the approach is well-suited for typical video sequences. Let us once more point
out that the resultant quality is very dependent on the quality of the estimated optical
flow vectors. This again shows the importance of a robust and accurate motion estimator
in the field of video processing.

6.1.9. Discussion

The purpose of this section is twofold. On the one hand we present an extension to the
classical TV-`1 denoising model and on the other hand it demonstrates the importance of
accurate and robust motion estimation in the field of video processing. Let us emphasize
once more that the only modification of classical TV-`1 denoising is the extension towards
spatio-temporal input data and incorporating directional information to guide the temporal
gradient along motion trajectories. Hence, for video restoration, denoising or interpolation
tasks, the motion must be robustly estimated even when outliers occur. If this is not
possible, as for the interpolation case, a reasonable interpolation must be performed to
impose motion vectors into those areas. The different results in this section show that the
presented approach is useful for both, video restoration, and the post production stage (e.g.
to generate artificial slow motion sequences). Moreover, the optical flow guidance enables
the TV-`1 denoising to restore big regions without introducing blur. Still, when recovering
from very big outliers, or when difficult elements are processed, it might happen that some
blur is introduced and abates the overall impression. In the details shown in Figure 6.3d
such blurring artifacts can be observed. Still, for this example it is not a problem when
the sequence is played back because the impairment is only applied on this single frame
and the introduced blur is not disruptive. In the following section we will pick up on this
problem and introduce an approach that is designed for situations where the optical flow
guided TV-`1 approach would not lead to the desired results.

Draft Copy: June 1, 2012



Figure 6.8.: Interpolating the Backyard-sequence.



Figure 6.9.: Interpolating the Macunaima-sequence.
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6.2. Optical Flow Guided Exemplar-based Inpainting

In this section we discuss an approach that is complementary to the optical flow guided
interpolation presented in Section 6.1. While the guided TV-`1 model is well suited to
interpolate single frame defects, the upcoming approach is especially designed for artifacts
that occur over a longer period. Such an artifact can e.g. be caused by dirt on the lens
while recording. As an illustrative example and for demonstrating the capabilities of the
following approach, we use a sequence with a lens hair∗ causing a static artifact over
a complete shot (see Figure 6.10). The additional stripe pattern on the moving person
makes the restoration of this sequence especially difficult and the duration of the artifact
demands a different approach than the one presented earlier. Using information from the
neighboring frame might help in cases where a valid motion is estimated but for static
parts of the sequence no information can be propagated towards the unknown region. A
further requirement is, that the restoration must be fully automatic as the impairments
can appear in every single frame. The only user input should be to create a mask that
tells the algorithm where the defect appears. For the example in Figure 6.10 we give
the corresponding masks in Figure 6.10d. In the following we will first give some details
on exemplar-based inpainting in general and then discuss the extension by incorporating
optical flow vectors.
Before we start with any details on this approach, let us point out that the presented

basis does not fit the mathematical framework of the rest of the paper. Still, it is a good
chance to present a different approach where also optical flow guidance can be used. For
the interested reader, the formulation of exemplar-based inpainting within a variational
framework has been introduced by Arias et al. [2011]. The approach has a strong relation
to the nonlocal total variation where we used the nonlocal Huber pendant for optical flow
regularization in Section 5.1.3.2

(a) Frame 003 (b) Frame 006 (c) Frame 009 (d) Inpainting mask

Figure 6.10.: Three exemplary frames out of 52 frames from a sequence with a static
artifact over a complete shot of a video sequence. The artifact is caused by
a hair on the camera lens. (d) is the mask for the inpainting region.

∗ The terminology “lens hair” is used for a static missing-data artifact over multiple frames that is caused
by a hair on the lens.
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6.2.1. Exemplar-based Inpainting

The system we implemented for single frame exemplar-based inpainting is based upon the
techniques proposed by Criminisi et al. [2004]. In addition, to improve the performance, we
use sampling methods for the possible input patches that are related to the “PatchMatch”
approach by Barnes et al. [2009]. For the sake of completeness, we outline the used
algorithm and for details on those related approaches we refer to them and the references
therein.

The basic concept of exemplar-based inpainting is the search for adequate patches that fit
into the desired region. In other words, the unknown region is iteratively filled by looking
for patches that fit towards the surrounding image structure. To maintain prominent image
edges the filling order is of substantial importance. This is also a great concern within
the work of Criminisi et al. [2004]. Given an input image I, we define the domain of the
image I = dom I as the set of all available pixels. Furthermore, the region Iu defines the
unknown pixels and depicts the area that should be filled by the algorithm. The pixels
that are not declared as unknown have some color value and are defined through the set of
pixels Is = I − Iu. The contour around the unknown area is called the fill front δIu. A
patch, chosen to be filled, is centered at a point p ∈ δIu, and denoted as Θp. The size wp
of the patch is defined by the user. The quality of the inpainting result is very dependent
on this patch size. We defer the selection of this parameter for a moment and discuss that
separately after the algorithm’s details.

In order to define the succession of patches to fill, Criminisi et al. [2004] define a priority
measure P (p) that is defined as a combination of a confidence value C(p) and a measure
that is related to the given data D(p):

P (p) = C(p)D(p) (6.23)

The confidence is computed from the confidences of available pixels q from within the
source region yielding

C(p) =
∑
q C(q)

|Θ(p)
⋂
Is|

, with q ∈ Θ(p)
⋂
Is , (6.24)

and |·| denoting the number of elements within the given set. The confidence values for
the single pixels are updated when the pixel is filled and is initialized as C(p) = 1 if p
lies in the source region and C(p) = 0 if p ∈ Iu. The ordering with respect to the data
information is dependent on image edges. The basic concept is to continue edges that
hit the fill front in the unknown area. As human cognition is very sensitive to edges in
the image, it is very important that strong edges are continued in a reasonable fashion.
Therefore, D(p) is computed as

D(p) =
∣∣∣〈∇I⊥(p), n(p)

〉∣∣∣ , (6.25)
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where ∇I⊥(p) is the so-called isophote and n(p) the normal vector of the fill front. Both,
∇I⊥(p) and n(p) are defined at the point p. For a geometrical interpretation see Figure 6.11.
With the computed priorities the patches can be worked on in the respective order.

Figure 6.11.: Illustration of an exemplar patch with an isophote etc.

Hence, the next step is to find a valid proposal that fits into the desired area. Unlike
Criminisi et al. [2004] we do not perform a complete search over all available patches in
the image space but in order to accelerate the algorithm, we take a certain amount of
random samples to search after a possible match like in [Barnes et al., 2009]. We modified
the random sampling of patch candidates in such a way that more nearby patches are
taken into account than patches that are further afar. For comparing patch similarities we
compute the sum of squared differences (SSD) with respect to pixels that are already filled.
Unlike Criminisi et al. [2004] we use the RGB color space as we found the results more
applicable compared to the CIE Lab color space. Though, this might depend on the used
data. Note, that only patches that completely lie in the source region are considered as
candidates to fill the current patch. This is defined as

Θq = arg min
Θq∈Is

SSD (Θp,Θq) . (6.26)

Here, Θp denotes the patch that is desired to be filled, Θq a potential candidate and Θq the
best found patch with respect to the sum of squared difference computed on valid pixels
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between Θp and Θq.
When an adequate patch is found the desired data is then copied into the unfilled pixels

of Θp which are denoted as pu. In addition, the confidence values of the newly filled pixels
must be updated. Hence, the confidence value for the newly filled pixels is defined as

C(pu) = C(p) . (6.27)

A drawback that we found when applying this algorithm to difficult restoration problems
is its dependency on the patch size. Often, the border of the patches in the filled areas is
noticeable. Even if it does not distract the result for a single frame restoration, the slight
changes over time would catch the attention of the viewer. In other words, the restoration
of a sequence is more sensitive to small artifacts. As mentioned, even if the borders of the
filled patches (e.g. where different patches meet) are hardly noticeable in single frames, it
can be an disturbing artifact within the sequence. Changing artifacts are especially visible
when played back and only slight changes in e.g. edges or even different and changing grain
can distract the viewer immediately.

Before we proceed to the temporal guidance of the inpainting approach we discuss some
further improvements for searching for patches and filling the unknown image regions.
First, we will increase the patch size for searching possible patches. Hence, we define an
additional overlap o that is added to the current patch for searching candidates. Hence, to
find matching patches we use the patch size

w+ = wp + 2o . (6.28)

This has the benefit that more information is used to choose a patch and, more importantly,
when the current patch meets the border of an already filled patch, the overlapping region
ensures that the current patch is filled with information that better fits the previously
filled-in information. Furthermore, when an appropriate candidate is found we modify the
insertion of the patch by additionally adding a slight blending to already filled pixels. This
also reduces the appearance of blocking artifacts at patch borders. When filling the desired
patch, the data information is again copied to pixels that are unknown and for known
pixels the mentioned blending step is performed. Therefore let pi ∈ Θp be the pixels from
the current patch and qi ∈ Θq the respective pixels from the found patch. Introducing a
real-valued parameter b ∈ [0, 1] that weights the blending, the filling step for the pixels in
the current patch Θp is defined as

I(pi) =
{
I(qi) if pi ∈ Θp

⋂
Iu

(1− b) I(pi) + bI(qi) if pi ∈ Θp
⋂
Is

. (6.29)

The combination of both extensions yields a more consistent inpainting result and
improves the quality of the filled regions. In addition, the different patch sizes for searching
a matching patch and filling the desired regions increases the robustness of the algorithm
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towards this parameter. We set the patch size to wp = 9 and the overlap to o = 2 and
w+ = 13 respectively. In order to avoid blurring due to the introduced blending step we set
b = 0.5. When big regions are inpainted the regions might be reduced if some disturbing
blurring artifacts occur. Still the temporal consistency of patches is not yet enforced and
it can happen that the restored images look reasonable when separately examined, but
when the consecutive frames are played back the temporal consistency is not given. In
other words, the observer notices some rapid changes from frame to frame in the repaired
regions. Therefore, we introduce an additional temporal guidance to improve the visual
quality of the repaired video sequence.

6.2.2. Imposing Optical Flow Guidance

The benefit of introducing optical flow guidance in a holistic variational framework like
the optical flow guided TV-`1 denoising in Section 6.1.3 has already been shown. It
is a legitimate question, if the advantages can be conveyed to other approaches. The
exemplar-based inpainting method is a typical patch-based approach and in the following
we will present a simple extension on how to incorporate optical flow vectors to achieve
temporal consistency of the repaired region.
As mentioned previously, slight variations in the patch constellation already distract

the viewer and destroy the impression of a nicely repaired video sequence although the
single frames are of reasonable quality. A further demand is, that the restoration should
be automated over the whole sequence and should be able to handle static impairments
over a longer part of the sequence. As shown in the example, the impairment will mostly
be applied over the whole shot. In the following, we will discuss the incorporation of
flow guidance and in addition show a further modification of the optical flow approach to
explicitly handle coarse outliers where the position is known.
To include temporal information in a patch-based inpainting approach we enforce the

patch that is chosen to fit towards the available source region of the current patch Θp to
be similar to the patch in the previous frame. In order to account for moving objects we
transform the previous image by means of warping with the computed optical flow vectors
between the previous and the current frame. Let us start by inpainting the first frame with
the approach presented in the previous section if no prior information is available. If a
previous frame is available without impairment one can directly start off with the guided
approach that we present in the following.
Now, with a restored (or intact) frame available we compute the optical flow between

this frame and the next impaired frame in the sequence. To be able to compute valid
optical flow vectors also for the inpainting region, one must consider the robustness of the
used optical flow method. In this case we can also use the mask that is given by the user
for the unknown region. Usually, this mask will be equivalent to the outliers and can be
incorporated in the optical flow estimation. Therefore, we expand the used optical flow
model to the ability to define the trade-off between regularization and data fidelity in a
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pointwise manner as function λ (x). Hence, for the typical optical flow model the objective
function is then defined as

min
u∈Y
R (u (x)) + λ (x)D (u (x)) dx . (6.30)

To neglect the data information in the impaired region, we set λ (x) = 0 for the unknown
pixels x ∈ Iu. As a consequence, only the regularization is active for these areas and
the optical flow vectors are inpainted according to the neighboring information. With
the computed optical flow vectors the previous frame can be warped towards the current
frame. Now we define the currently active patch again as Θp and in addition we define the
underlying patch of the warped previous image at the same position p as Θp which we will
refer to as prior patch. If no motion is present in those areas the underlying patch is a
repaired version that can be incorporated to achieve temporal consistency of the imposed
data information. In addition, if the area behind the impairment is currently moving the
flow guidance enables to map the correct patch to the current area and also enforces some
natural movement and again visual consistency over time.
Next, we compute the patch priorities according to (6.23). Now, to find a matching

patch, we impose the constraint that the found patch pq must also be similar to the prior
patch Θp. In addition, we add the weight γ to parametrize the influence of the previous
patch. Hence, (6.26) changes to

Θq = arg min
Θq∈Is

(1− γ)SSD (Θp,Θq) + γ SSD
(
Θp,Θq

)
. (6.31)

For the results shown in the following section we set γ = 0.2 for imposing the temporal
consistency of the patches. For inserting missing pixels from the found patch we utilize the
approach presented in (6.29).

6.2.3. Result

The example that we use to demonstrate the capability of the optical flow guided exemplar-
based inpainting model seems not very challenging at first because of the comparably thin
impairment. On closer consideration it becomes clear that the restoration of this sequence is
anything else than a simple restoration task. First, the impairment is static over the whole
sequence. Second, within the surroundings of the defect, objects perform complex motion.
Third, the texture of the moving objects, especially the clothes’ striped pattern is difficult
to repair in such a way that the observer does not recognize the filled area. In addition,
due to the fast movement, motion blur appears and even the stripe pattern changes (see
e.g. Figure 6.12p). Finally, the motion is constantly changing as the object changes its
directions and also the camera is slightly moving. Altogether, this task becomes a very
difficult restoration problem and, to emphasize this once again, the restoration should be
performed fully automatically. By applying the presented approach this restoration task
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can be performed and the viewer is not able to notice any repaired region when looking
either at the still images or the whole video sequence. Also for repairing single images, the
small extensions presented in Section 6.2.1 improves the quality and robustness of those
approaches.

(a) Frame #003 (b) Frame #006 (c) Frame #009 (d) Frame #012

(e) Repaired #003 (f) Repaired #006 (g) Repaired #009 (h) Repaired #012

(i) Frame #015 (j) Frame #018 (k) Frame #021 (l) Frame #024

(m) Repaired #015 (n) Repaired #018 (o) Repaired #021 (p) Repaired #024

Figure 6.12.: Details of the impaired and filled areas from the sequence shown in Fig-
ure 6.10.
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6.2.4. Discussion

In this section we presented an optical flow guided variant of exemplar-based inpainting.
It shows that also for methods that are not formulated in a variational framework, adding
temporal information increases the results’ quality when used for video processing. For
the showcase results of restoration of a static artifact the methods yield an appropriate
reconstruction and when viewing the sequence, the restored area is not noticed by the
viewer. Furthermore, the usage of motion information in a restoration task emphasizes the
importance of a robust algorithm for motion estimation.
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Figure A.1.: Huber-`1
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Figure A.2.: Huber-`1; structure-texture decomposed input
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Figure A.3.: weighted Huber-`1
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Figure A.4.: weighted Huber-`1; structure-texture decomposed input
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Figure A.5.: directed Huber-`1
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Figure A.6.: directed Huber-`1; structure-texture decomposed input
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Figure A.7.: tensor directed Huber-`1
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Figure A.8.: tensor directed Huber-`1; structure-texture decomposed input
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Figure A.9.: Nonlocal Huber-`1 (w = 2)
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Figure A.10.: Nonlocal Huber-`1 (w = 2); structure-texture decomposed input
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Figure A.11.: Huber-`1; compensating data violations
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Figure A.12.: tensor directed Huber-`1; compensating data violations

Draft Copy: June 1, 2012



144 A Optical Flow: A Comparison

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

en
dp

oi
nt

er
ro

r
(a

ep
e)

[p
ix

el
]

λ

Dimetrodon
Hydrangea

RubberWhale

Venus
Grove2
Grove3

Urban2
Urban3
Average

Figure A.13.: nonlocal Huber-`1 (w = 2); compensating data violations
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Figure A.14.: Huber-grad
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Figure A.15.: tensor directed Huber-grad
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Figure A.16.: nonlocal Huber-grad
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Figure A.17.: Huber-Quadfit (AD)
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Figure A.18.: Huber-Quadfit (AD); structure-texture decomposed input
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Figure A.19.: Huber-Quadfit (AD)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

en
dp

oi
nt

er
ro

r
(a

ep
e)

[p
ix

el
]

λ

Dimetrodon
Hydrangea

RubberWhale

Venus
Grove2
Grove3

Urban2
Urban3
Average

Figure A.20.: Huber-Quadfit (SAD3); structure-texture decomposed input
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Figure A.21.: Huber-Quadfit (GRAD)
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Figure A.22.: Huber-Quadfit (GRAD+INTENSITY)
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Figure A.23.: Huber-Quadfit (NCC3)
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Figure A.24.: Huber-Quadfit (normalized GRAD)
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Figure A.25.: tensor directed Huber-Quadfit (AD)
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Figure A.26.: tensor directed Huber-Quadfit (AD); structure-texture decomposed input
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Figure A.27.: tensor directed Huber-Quadfit (SAD3)
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Figure A.28.: tensor directed Huber-Quadfit (SAD3); structure-texture decomposed input
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Figure A.29.: tensor directed Huber-Quadfit (GRAD)
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Figure A.30.: tensor directed Huber-Quadfit (GRAD+INTENSITY)
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Figure A.31.: tensor directed Huber-Quadfit (NCC3)
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Figure A.32.: tensor directed Huber-Quadfit (normalized GRAD)
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Figure A.33.: nonlocal Huber-Quadfit (AD)
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Figure A.34.: nonlocal Huber-Quadfit (AD); structure-texture decomposed input
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Figure A.35.: nonlocal Huber-Quadfit (SAD3)
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Figure A.36.: nonlocal Huber-Quadfit (SAD3); structure-texture decomposed input
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Figure A.37.: nonlocal Huber-Quadfit (GRAD)
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Figure A.38.: nonlocal Huber-Quadfit (GRAD+INTENSITY)
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Figure A.39.: nonlocal Huber-Quadfit (NCC3)
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Figure A.40.: nonlocal Huber-Quadfit (normalized GRAD)
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APPENDIX
B

NOTATION

List of Symbols

R Set of real numbers.
x Spatial image position; in the 2D case x =

(
x1, x2)T . When multiple

spatial positions are needed we utilize the notation x1, x2, x3, . . ..
Then the coordinate indices are denoted as xi =

(
x1
i , x

2
i

)T .
Ω Image domain, typically a rectangular and regular Cartesian grid of

size M ×N .
M,N Image dimensions (grid size).
X Two dimensional (2D), real-valued vector space of size M ×N .
Y Vector valued 2D vector space with two components of size 2×M×N .
Z Vector valued 2D vector space with four components of size 4×M×N .
C Closed convex set.
D BV gradient.
∇ Gradient operator.
div Divergence operator.
∂xa Partial derivative of a w.r.t. to x.
δ−x a Backward finite differences of a w.r.t. to x.
δ+
x a Forward finite differences of a w.r.t. to x.
v Variable to optimize. For e.g. denoising it represents the denoised

image, v ∈ X.
v̌ Desired solution. For e.g. denoising it represents the clean image,

v̌ ∈ X.
u Optical flow vector u =

(
u1, u2)T , u ∈ Y .

ǔ Ground truth optical flow vector, ǔ ∈ Y .
c “Compensation” variable.
q Dual variable w.r.t. to v or c, q ∈ Y .
p Dual variable w.r.t. to u, p ∈ Z.
R (·) Regularization term.
D (·) Data fidelity term.
ψ Penalty function.
δ (·) Similarity measure.
C1 Set of continuously differentiable functions.
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160 B Notation

C∞ Set of functions that are differentiable for all degrees of differentia-
tion.

epiF Epigraph of function F.
Ix Shorthand for the spatial derivative ∂xI (x(t), t).
It Shorthand for the temporal derivative ∂tI (x(t), t).
N (x), Nx Set of neighboring pixels around x.
tr (A) The trace of matrix A.
det (A) The determinant of matrix A.
diag (a) Diagonal matrix with elements a.
TODO scalar product
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