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Abstract

The experimental determination of the sound-absorbing properties of poroelastic panels or
room-separating walls is known to be both expensive and time-consuming. That is why
it seems beneficial to replace such experiments by adequate computer simulations. Since
such panels or walls usually feature a plate-like geometry, a two-dimensional model is pre-
ferred over a three-dimensional one. The goal of this step is to increase the efficiency of
the computation due to the eliminated need of discretizing the structure over its thickness.
The development of a two-dimensional formulation relies on a proper integration over the
thickness. In contrast to classical plate theories in which this integration is enabled by
the introduction of some kinematical assumptions, the approach chosen in this work con-
sists in replacing all quantities by power series in thickness direction and truncating them
according to the needed level of accuracy. In this way, the requirement of formulating a
priori assumptions regarding the systems response in thickness direction is bypassed. This
method is shown to adequately aproximate the much costlier three-dimensional model.
Also, the coupling of the two-dimensional model with a surrounding fluid is developed
and results are presented.

Zusammenfassung

Die experimentelle Ermittlung des schalldämmenden Verhaltens poroelastischer Paneele
oder Wände ist im Allgemeinen eine aufwändige und kostspielige Unternehmung. Des-
halb scheint es von Vorteil, diese Experimente durch computergestützte Simulationen zu
ersetzen. Da solche Paneele oder Wände im Allgemeinen eine plattenähnliche Geometrie
aufweisen, wird eine zweidimensionale Formulierung einer dreidimensionalen bevorzugt.
Der Nutzen dieses Schrittes liegt in der Eliminierung der Notwendigkeit die Struktur über
ihre Dicke zu diskretisieren. Die Entwicklung einer zweidimensionalen Formulierung ba-
siert auf eine entsprechende Integration über die Dicke. Im Gegensatz zu klassischen Plat-
tentheorien in welchen diese Integration durch die Einführung bestimmter kinematischer
Annahmen ermöglicht wird, liegt der im vorliegenden Fall gewählte Ansatz darin, alle
Größen durch Potenzreihen in Dickenrichtung zu ersetzen und diese je nach gewünschter
Genauigkeit abzuschneiden. Dadurch wird die Notwendigkeit einer a priori Beschreibung
der Systemantwort in Dickenrichtung umgangen. Es wird gezeigt, dass die vorgestellte
Methode das weitaus rechenintensivere dreidimensionale Modell adäquat approximiert.
Zusätzlich wird die Kopplung dieser zweidimensionalen poroelastischen Strukturen mit
einem umgebenden Fluid entwickelt und entsprechende Ergebnisse werden vorgestellt.
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Notation

Unless an explicit statement is made to the contrary, the meaning of the symbols used
throughout this thesis corresponds to the following notation list. An index notation is
mainly used.

General symbols.

χ Alias for any not closer specified quantity
χ̃,χ Time and frequency domain representation of χ

a,b,. . . Scalars
a,b,. . . Vectors
A,B,. . . Higher order tensors
a ·b,. . . Scalar product
a⊗b,. . . Dyadic product
{ei} Orthonormal Cartesian basis with basis vectors ei
ai,bi,. . . Vector components of a = ∑

3
i=1 aiei

i, j, k Latin indices taking values 1,2,3
α ,β , γ Greek indices taking values 1,2
[ai] Vector representation of a
[Ai j] Matrix representation of A
(),i , ∂i Differentiation with respect to i
(),ii Laplacian
a,i Gradient of scalar field a in component notation
ai,i Divergence of vector field a in component notation
ai, j Gradient of vector field a in component notation
∇ Nabla operator ∇ = ∑

3
i=1 ei

∂

∂xi

∆ Laplace operator ∆ = ∑
3
i=1

∂ 2

∂x2
i

L Differential operator
∇a Gradient of scalar field a in symbolic notation
∇a Gradient of vector field a in symbolic notation
∇ ·a Divergence of vector field a in symbolic notation
δi j Kronecker delta
dχ Differential of χ

δ χ , χ̄ Variation of χ , testfunction
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Special symbols. Some of the special symbols listed below may eventually be extended
by some superscripts or subscripts. Their specific meaning is then elucidated within the
text, most likely close to the first use of the modified symbol

Ω Domain
Γ,∂Ω Boundary of Ω

xi Components of location vector x = ∑
3
i=1 xiei

t Time
ω Angular frequency
i Imaginary unit i =

√
−1

ρ Mass density
V Volume
ui Components of displacement vector u = ∑

3
i=1 uiei

p Pressure
s Fluid wave speed
fi Components of volume force vector f
ti Components of surface traction vector t
σi j Components of stress tensor σσσ

εi j Components of strain tensor εεε
µ,λ Lamé constants
E,ν ,G,K Young’s modulus, Poisson’s ratio, shear modulus, compression modulus
Q,R Poroelastic moduli
φ Porosity
α Biot’s effective stress coefficient
β Dimensionaless, frequency dependent poroelastic quantity
κ Permeability
ζ Change of fluid content per unit reference volume
qi Components of fluid flux vector q
U Strain energy density
WI,WE Internal and external potential energy
Π Total potential energy Π =WI +WE
A Two-dimensional plate/disc domain, mid-surface
∂A,C Boundary of A
h Thickness of plate/disc
w Vertical deflection of plate
ψα Rotations of the cross section, components of the 2d rotation vector ψψψ

γα Components of the 2d shear strain vector γγγ

Mαβ Stress resultants, bending and twisting moments
Qα Stress resultants, shear forces
ni Components of outward normal vector n
si Components of tangential vector s
()n (),n Normal component, normal derivative
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()s (),s Tangential component, tangential derivative
κ Shear correction factor
c2 Plate parameter, c2 := h2/12

()± Quantities living at x3 =±h/2, respectively
E,O Set of even numbers, set of odd numbers, respectively
k
ui,

k
p Power series coefficients of order k ∈ N

k
w Vertical deflection of order k

k
ψα Plate-related rotations of cross section of order k
k
vα Disc-related in-plane displacements of order k
`

Θi j,
`

Ξi,
`

Λi,
`

ϒi Resultants of order `

Frequently used superscripts for special symbols. In many cases it is necessary to
distinguish between quantities related to different continua or different structures. This
distinction is realized by the use of superscripts. Unless otherwise stated, the following
convention is used.

()s Quantity related to the solid phase of the poroelastic continuum
() f Quantity related to the fluid phase of the poroelastic continuum
()p Quantity related to the entire poroelastic continuum
()e Quantity related to the elastic continuum
()a Quantity related to the acoustic continuum
()p A plate-related quantity
()d A disc-related quantity
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1 INTRODUCTION

In the recent past, sound insulation has become a more and more important subject due
to the constantly growing demand towards a less noisy environment and, thus, increased
comfort. Many engineering fields are affected by this concern, such as the building, the
car, or the aeronautical industry.

The main point in quieting an interior area, be it an ordinary room of a building or a
passenger cabin of a car or aircraft, relies in reducing the sound pressure level between the
outside source and the inside receptor. In order for the sound wave to reach the receptor, it
must transfer its energy through the room-separating wall. The most natural measure for
reducing the pressure level is to build the wall in such a way that a possibly high percentage
of the energy is dissipated inside the structure. It is commonly known that porous materials
feature such favorable properties. Thereby, the energy-dissipating effect is basically given
by the composition of the material itself which consists of two phases, i.e., a solid and a
fluid phase. These can move relative to each other and introduce internal friction. The
frictional energy is not recoverable anymore such that the wave’s energy is lowered on its
way through the structure.

Usually, suitable sound-damping panels or walls are not composed of one porous layer
only, but rather have a multi-layered structure. The design and optimization of such struc-
tures relies on rather expensive and time-consuming experiments why it seems profitable to
partly replace the experiments by computer simulations. A computer simulation, however,
may be time-consuming as well, depending on many factors such as the complexity of the
underlying material model, the solution algorithm and on the geometrical description of
the domain, just to name a few. The focus of this work lies on the latter.

Normally, walls have a very simple geometry, i.e., they are plane or at least can be decom-
posed into plane elements and, moreover, are relatively thin or, at the most, moderately
thick. This suggests to use some plate theory instead of a three-dimensional formulation.
The main advantage is obvious, i.e., one dimension is eliminated. In view of a numerical
solution by means of the Finite Element Method, the structure does not have to be resolved
over its thickness. Assuming a hypothetical layered panel to be composed of a porous ma-
terial embedded between two thinner linear-elastic plates, the main problem consists in
describing the poroelastic layer as a two-dimensional domain (for the two elastic plates,
some classical theory could be sufficient to begin with). The main part of this work is
devoted to the development of a two-dimensional model for poroelastic structures which
appropriately accounts for all poroelastic effects, including a complete solution for the dis-
placement field of the solid phase as well as for the pressure field of the fluid phase. In
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2 1 Introduction

other words, the three-dimensional solution should be deducible from the two-dimensional
solution in as much detail as possible, but faster. A second part of this work elaborates the
coupling of such a 2d porous structure (in the following simply denoted as porostructure)
with a surrounding acoustic fluid.

1.1 State of the art

In this section, a brief overview of the state of research on the topics touched in this work
is given. For the sake of clearness, it is divided into paragraphs. Of course, the list is not
intended to be exhaustive. Some more detailed descriptions of the works cited below and
eventually additional references can be found throughout the regular text of this thesis.

Poroelasticity. The probably most popular theory of poroelasticity is Biot’s theory [19]
which he himself extended to dynamic effects for a lower [23] and a higher frequency
range [24]. As therein shown, a two-phase material features three wave types, i.e., two
compressional waves and a shear wave. For materials with very different compressibilities,
the assumption of incompressibility can be made, such that one of the two compression
waves travels at a theoretically infinite velocity and only the other one survives [99]. Biot
further investigated the anisotropic case [21] and included viscoelastic effects [22]. Alter-
natively, the Theory of Porous Media (TPM) [40] can be mentioned. It has been primarily
been developed by Bowen [30, 31] and extended by Ehlers [48]. As shown by Schanz and
Diebels [98], Biot’s theory and the TPM lead to the same system of equations up to some
different material parameters. Using incompressible constituents, the two systems even
coincide. Remarks on the existence of such an equivalence have also been published by
Bowen [31] for the quasistatic case and by Ehlers and Kubik [50] for the dynamic us-u f

formulation. Calculations on the sound absorbing behavior based on Biot’s theory have
been published by Allard [3] and Moore and Lyon [80]. Another approach in modelling
a porous material is given by the so-called Simple Mixture Theory developed by Wilman-
ski [113]. It is derived from the fundamental laws of thermodynamics and, hence, does
not display the thermodynamical inconsistencies encountered in Biot’s theory (see e.g.,
Wilmanski [114]). A way more exhaustive overview on dynamic poroelastic theories can
be found in [96].

Plate theories. The first satisfactory linear-elastic plate theory coinciding with experi-
mental measurements has been published by Kirchhoff [68]. Since it is shear rigid and
only suitable for rather thin plates, shear deformable theories have been developed by
Reissner [91, 92] and Mindlin [78, 79]. A systematic way in developing plate theories is
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based on series expansions of the degrees of freedom with respect to the thickness coor-
dinate. This approach has already been used by Mindlin [79] and was investigated further
by Preusser [88, 89], Kienzler [65–67], and Bose and Kienzler [29].

Poroelastic plate theories are published rarely. A first attempt for a poroelastic slab has
been given by Biot [20]. A poroelastic plate theory based on the Kirchhoff model has been
presented by Taber [106]. The formulation published by Theodorakopoulus and Beskos
[107] is likewise based on the Kirchhoff model, however, the former work only covers
the quasistatic case, whereas the latter accounts for dynamic effects. A simplified model is
given by Leclaire et al. [73]. Taber furthermore investigated poroelastic shells of revolution
[105]. In their book, Cederbaum et al. [35] discuss various poroelastic structures including
a plate. A poroelastic Mindlin model has been investigated by Schanz and Busse [97].
Some recent studies on poroelastic plate theories have been published by Wen and Liu
[112] and Folkow and Johansson [53].

Finite Element Method. The Finite Element Method represents a very powerful and
flexible method for the numerical solution of boundary value problems. It is being used and
developed for over five decades why its theoretical foundations are rather well understood.
Among the first to give a concise mathematical analysis of the method were Strang and
Fix [103]. The textbooks of Hughes [60], Bathe [17], and Zienkiewicz [120] provide a
good introduction to the method itself and also to various specializations of it, including
the numerical solution of classical plate theories. Likewise recommendable is the book
of Braess [32], which however, has a stronger focus on the mathematical analysis. The
concepts of hp-FEM are, for instance, given by Szabó and Babuška [104].

In conjunction with plate theories, the problem of shear-locking is often encountered. This
problem is of purely numerical nature and has been exhaustively studied. Some remedies
against shear-locking are the use of non-conforming plate elements [7,8], reduced/selective
integration [76], stabilized formulations [61] and the discrete shear-gap-method [27].

Of course, the Finite Element Method has also been used on poroelastic problems. Among
many others, the works by Zienkiewicz and Shiomi [118], Lewis and Schrefler [74] and
Korsawe et al. [70] can be mentioned. Some more recent investigations including hierar-
chical FE-formulations and hp approaches have been presented by Hörlin et al. [59] and
Hörlin [58], respectively.

Fluid-solid interaction. The coupling between a poroelastic solid and a surrounding
fluid demands the formulation of interface conditions between the coupled domains. Since
the poroelastic model can be expressed using different quantities as primal variables the
respective interface conditions must be modified accordingly. For the case of fluid and
solid displacements a theoretical basis has been formulated by Deresiewicz and Rice [43]
and Deresiewicz and Skalak [44]. If the poroelastic continuum is given by means of the
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solid displacement and the pore pressure, the interface conditions may be formulated as
shown by Atalla et al. [10].

The numerical treatment of coupled domains is a widely studied research field. A popular
technique is the Mortar method [18, 115]. Therein, the meshes of the individual sub-
domains need not to be conforming on the interfaces and the continuity of the solution is
enforced by Lagrangian multipliers. For fluid-solid interaction problems with unbounded
outer fluid domains, a Finite Element - Boundary Element coupling is convenient. A recent
work on this topic has been published by Rüberg [95]. A FEM/BEM coupling of an elastic
Kirchhoff plate with a surrounding compressible fluid can be found in [72].

1.2 Outline

In chapter 2, the governing equations for the acoustic fluid and elastodynamics are shortly
derived in time-domain. The equations are, however, transformed into a steady state rep-
resentation afterwards.

In chapter 3, Biot’s theory of poroelasticity is given to the necessary extent. The field
equations are derived and some limiting cases are presented. In the final section of this
chapter, some aspects regarding the virtual work theorem of a poroelastic continuum are
discussed.

In chapter 4 some classical linear elastic plate theories are presented. The respective gov-
erning equations are derived out of the three-dimensional elastic potential by incorporating
some admissible restrictions and, hence, allowing the elimination of one dimension by in-
tegration. The imposed restrictions are merely of heuristic and intuitive nature.

In the poroelastic case, additional unknown quantities appear, such as the pore pressure
and the fluid flux. In order to bypass the need of formulating additional conditions on
a heuristic basis for those quantities, power series in thickness direction are introduced.
Poroelastic in-plane (disc) and out-of-plane (plate) equations are obtained. This approach
is presented in chapter 5 and constitutes the first of the two main parts treated in this
work.

The second main part is given in chapter 6 and investigates the coupling of these structures
with a surrounding acoustic fluid. Therein, the power series approach must be accounted
in the interface conditions which is realized by the use of Lagrangian multipliers.

The solution method for the developed equations is chosen to be the Finite Element Method
which is shortly introduced in chapter 7.

Finally, the developed plate and disc models as well as the coupled system are validated in
chapter 8 by means of some numerical examples.
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In chapter 9 a summary of this thesis is given, including a short discussion concerning
some weaknesses as well as some suggestions for extending and improving the proposed
models.

At the very end, the appendix A can be found which contains all the rather bulky equations
which would considerably disturb the reading flow and the general appearance if built into
the regular text.

1.3 Preliminaries

One of the main subjects of this work consists in expressing a three-dimensional domain
in two dimensions only. The notation of choice is therefore the index notation, however,
sometimes it is more convenient to use a tensor notation. Moreover, differential operators
may be defined differently in two and three dimensions. In this section, the main points
concerning this matter are briefly introduced.

Basically, tensors can be represented in a symbolic form or in a component notation.
Throughout this thesis a component notation is preferred assuming an orthonormal Carte-
sian basis with basis vectors ei. In R3, a first order tensor is then written as

u = uiei = u1e1 +u2e2 +u3e3 (1.1)

whereas a second order tensor is written as

T = Ti j(ei⊗ e j) . (1.2)

The left-hand-sides of (1.1) and (1.2) represent the invariant forms of the respective ten-
sors and ui and Ti j their components with respect to the basis {ei}. The operator ⊗ in
(1.2) denotes the dyadic product. Generally, latin indices i, j,k take on the values 1,2,3
whereas greek indices α,β ,γ take on the values 1,2. As apparent from (1.1) the usual
summation convention over repeated indices is implied. The Kronecker delta δi j denotes
the components of the second order identity tensor with the property

δi j =

{
1 i = j
0 i 6= j

. (1.3)

Basically, it can always be switched between an invariant and a component representation
as shown below on the example of the scalar product of two first order tensors

u ·v = (uiei) · (v je j) = uiv j(ei · e j︸ ︷︷ ︸
δi j

) = uivi (1.4)
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In component notation, the gradient of a scalar field φ is denoted by φ,i and the divergence
of a vector field u by ui,i. The respective operations in invariant form make use of the
Nabla operator ∇. The gradient then becomes ∇φ whereas the divergence is given as ∇ ·u.
Therein, the Nabla operator can be interpreted as a vector

∇ =
∂

∂xi
ei =


∂

∂x1
∂

∂x2
∂

∂x3

 (1.5)

with components ∂

∂xi
= (),i. The divergence as given above is, hence, nothing else than

the scalar product of the Nabla operator with a vector field. The divergence of the nabla
operator itself gives

∇ ·∇ = ∆ =
∂ 2

∂x2
i
= (),ii , (1.6)

with ∆ denoting the Laplace operator.

As already mentioned, the component notation is preferred. In some situations, however,
it may be eventually switched to the invariant notation. This will be especially the case
when performing certain operations on plate equations. Since plates are defined on two-
dimensional domains, all vector valued quantities and operators have to be reduced to two
components. In 2d, an additional operator can be defined as

∇
⊥ =

∂

∂x2
e1−

∂

∂x1
e2 =

[
∂

∂x2

− ∂

∂x1

]
; ∇

⊥ ·∇⊥ = ∆ . (1.7)

It has the property to be perpendicular on ∇, i.e., ∇⊥ ·∇ = ∇ ·∇⊥ = 0. This operator is
sometimes denoted as the two-dimensional curl operator

∇
⊥ ≡ ∇× . (1.8)

In fact
∇ ·∇⊥ ≡ ∇ ·∇×= 0 , (1.9)

stating that the curl of a vector field is always divergence-free. This characteristic is in
accordance to the original three-dimensional curl operator.

For a comprehensive overview on the topic of tensor algebra it is referred to the introduc-
tory chapter of Altenbach [5] and, for a quite extensive and detailed treatment, to the first
chapter in Ogden [85].



2 TIME-HARMONIC ACOUSTIC AND ELASTIC FIELDS

The mathematical description of a continuum relies in finding some relation which de-
scribes how a disturbance induced at some point influences points of distant regions. This
is equivalent in finding the equation characterizing the propagation behavior of the dis-
turbance. Such an equation is then referred to as the wave equation for that continuum.
The propagation of waves is a dynamic process. When neglecting all dynamic effects, the
static equations are obtained. Those describe the final state which is adopted by the con-
sidered structure under the assumption that the disturbance is applied very slowly and is
held constant after reaching its final value.

As the title of this chapter implies, only the time-harmonic case will be considered through-
out this work. This means that any time-dependent quantity can be split into a product of
two functions, the first one being a function of space and the second one a function of time
according to

χ̃(xi, t) = χ(xi)eiωt . (2.1)

Therein, χ(xi) can be a scalar, vector- or matrix-valued function. The space function be-
comes the new unknown quantity of the system, whereas the time function is chosen to
be harmonic in time. It follows that the resulting equations can be brought into a time-
independent form although describing a dynamic process. Actually, there are many ways
of obtaining a time-independent dynamic formulation. In many cases, integral transforms
are used, such as the Laplace or the Fourier transforms [47], applicable on a very gen-
eral set of functions. For periodic functions, a Fourier series may be used instead. All
those methods lead to the very same set of final equations according to their appearance,
however, the individual transformed quantities differ from each other and so will their so-
lutions. Yet, a subsequent inverse transformation leads to one and the same time-domain
solution. The time-harmonic assumption used here represents the most simple and also the
most restrictive case compared to the more general transformations mentioned above.

In the following two sections, the wave equations for the acoustic fluid and the elastic con-
tinuum are derived in time domain. This makes it more comprehensible from a physical
point of view. As soon as the wave equations are established, the time-harmonic assump-
tion is used to get rid of the time-dependency.

7
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2.1 The acoustic fluid and the Helmholtz equation

The acoustic fluid is either a gas or a liquid and is assumed to be homogeneous and com-
pressible. It is at rest in its initial state and gravity effects are balanced. A local disturbance
results into a local change of density. A change of density corresponds to a change in pres-
sure. The existence of differences in pressure between neighboring points (i.e., a nonzero
pressure gradient) induces flow resulting in a propagation of the disturbance through the
medium.

Mathematically, this behavior is described by the acoustic wave equation. A comprehen-
sive derivation for the one-dimensional case is given for instance in [52]. The higher
dimensional case is covered in [81]. Moreover, a distinction between an inviscid acoustic
fluid (i.e., no energy is dissipated inside the fluid) and a dissipative acoustic fluid can be
found in [86]. Here, only the inviscid case is considered.

In a linearized setting, the density and pressure fluctuations ρ̃(xi, t) and p̃(xi, t) around the
static state ρ0 and p0 are small

ρ̃tot(xi, t) = ρ0 + ρ̃(xi, t) with ρ̃(xi, t)� ρ0 ∀ xi, t
p̃tot(xi, t) = p0 + p̃(xi, t) with p̃(xi, t)� p0 ∀ xi, t .

(2.2)

The conservation of mass demands(
ρ0 + ρ̃(xi, t)

)
dṼ (xi, t) = ρ0 dV0 , (2.3)

where dṼ is a differential volume at position xi and time t and dV0 the differential volume
in the reference configuration. The volume dilatation ε can be expressed as the ratio of the
absolute volume change dṼ −dV0 to the reference volume dV0

ε̃(xi, t) =
dṼ (xi, t)−dV0

dV0
= ũi,i(xi, t) , (2.4)

with ũi,i denoting the divergence of the displacement field. By rearranging (2.3) and using
(2.4), one obtains

ρ̃(xi, t) =−ρ̃tot(xi, t) ũi,i(xi, t) (2.5a)
'−ρ0 ũi,i(xi, t) , (2.5b)

which in (2.5b) expresses a linear relation between the change in density and the change of
volume. A volume dilatation (expressed by a positive divergence of the displacement field)
reduces the density, a contraction (negative divergence) increases it. Hence, the minus sign
is correct. (2.5b) is referred as the kinematic relation.
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Next, a relation between the density ρ̃(xi, t) and the acoustic pressure p̃(xi, t) is needed.
It must be of the form p̃tot = f̃ (ρ̃tot). Aiming for a linear setting, the unknown function
f̃ (ρ̃tot) is expanded into a Taylor series around ρ0

f̃ (ρ̃tot) =
∞

∑
n=0

f (n)(ρ0)

n!
(ρ̃tot−ρ0)

n (2.6)

and truncated after the linear term. This gives

p0 + p̃(xi, t) = f (ρ0)+ρ f ′(ρ0)+
ρ̃2

2
f ′′(ρ0)+ · · · (2.7a)

' f (ρ0)+ρ f ′(ρ0) . (2.7b)

Incorporating the required condition p0 = f (ρ0) and identifying the proportionality factor
f ′(ρ0) as the square of the wave speed s2, yields the linear constitutive relation

p̃(xi, t)' s2
ρ̃(xi, t) . (2.8)

Last, the dynamic equilibrium is formulated. This relates the pressure p̃(xi, t) to the dis-
placement field ũi(xi, t). By Newton’s second law, the balance of linear momentum is given
by ∫

V0

f̃i(xi, t)dV0 +
∫

∂V0

t̃i(xi, t)d∂V0 =
∫
V0

ρ0 ¨̃ui(xi, t)dV0 , (2.9)

where f̃i are the three components of the body force, t̃i = σ̃i jn j those of the surface force
and ρ0 ¨̃ui(xi, t) those of the inertia force with the double-dot in ¨̃ui denoting a double dif-
ferentiation of the displacement quantities with respect to time and, hence, representing
an acceleration. σ̃i j are the components of the stress tensor and n j those of the outward
normal vector. Using the divergence theorem on the boundary integral yields∫

V0

[
σ̃i j, j(xi, t)+ f̃i(xi, t)

]
dV0 =

∫
V0

ρ0 ¨̃ui(xi, t)dV0 . (2.10)

Since the fluid is inviscid, its stress state is of hydrostatic nature. The stress tensor, hence,
is written as σ̃i j = −p̃δi j. Equation (2.10) has not only to hold in the integral sense, but
for every sub-volume, hence, also point-wise. In its local form, the dynamic equilibrium
reads

−p̃,i(xi, t)+ f̃i(xi, t) = ρ0 ¨̃ui(xi, t) . (2.11)

With (2.5b), (2.8) and (2.11) enough equations are given to interconnect things (the ’'’
are replaced by ’=’). Eliminating ρ̃(xi, t) by combining (2.5b) and (2.8) gives

ρ0 ũi,i(xi, t) =−
1
s2 p̃(xi, t) . (2.12)
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Applying a divergence on (2.11) and eliminating ũ(xi, t) by means of (2.12) yields the
acoustic wave equation

p̃,ii(xi, t)−
1
s2

¨̃p(xi, t) = g̃(xi, t) , (2.13)

where g̃(xi, t) := f̃,i(xi, t). Throughout the literature, the acoustic wave equation is often
expressed by means of different state variables. For example, the displacement field ũi
is used instead of the pressure field p̃. Moreover, displacement or velocity potentials are
used.

As mentioned in the introductory part of this chapter, several possibilities exist to transform
(2.13) into the time-independent Helmholtz equation. Here, this is done by means of the
time-harmonic assumption (2.1) which is expressed as

p̃(xi, t) = p(xi)eiωt . (2.14)

A spatial derivative of (2.14) affects only the steady-state part p(xi), whereas a time deriva-
tive affects only the time-harmonic part eiωt . Plugging (2.14) into (2.13) yields

p,ii(xi)eiωt +
ω2

s2 p(xi)eiωt = g(xi)eiωt . (2.15)

Obviously, the time-harmonic part can be eliminated. By setting k2 := ω2/s2, k being the
wave number, the Helmholtz equation is obtained

p,ii(xi)+ k2 p(xi) = g(xi) . (2.16)

With g(xi) = 0, the homogeneous wave equation is obtained. For later use, also the ho-
mogeneous version of equation (2.11), sometimes denoted as the Euler equation [62] is
needed in its steady-state representation

ω
2
ρ

a ui(xi) = p,i(xi) . (2.17)

Note that for later convenience the density ρ0 has been replaced by ρa, the superscript a
standing for acoustic fluid.

Two simple 1d examples. Since the main part of this work uses time-harmonic for-
mulations, the difference between the physical meanings of the time-dependent and the
steady-state solutions shall be pointed out briefly.

The homogeneous wave equation and the Helmholtz equation are written as

p̃′′(x, t)− 1
s2

¨̃p(x, t) = 0 (2.18a)

p′′(x)+ k2 p(x) = 0 . (2.18b)
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The general solution of the one-dimensional wave-equation is given by

p̃(x, t) = aei(kx+ωt)+be−i(kx−ωt) . (2.19)

One part of the solution (2.19) (which is a solution on its own) is given by

p̃(x, t) = aei(kx+ωt) , (2.20)

which represents a wave travelling against the positive x-direction (see e.g., [55] for de-
tails). Using the time-harmonic assumption on (2.20), the solution for (2.18b) is found

p̃(x, t) = p(x)eiωt ⇒ p(x) = eikx . (2.21)

It is easily checked that (2.20) and (2.21) are indeed solutions of (2.18a) and (2.18b),
respectively. It becomes apparent, that the time-domain solution p̃ contains information
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1.0

x x

p̃ pdirection of propagation

Figure 2.1: Solution p̃(x, t) for several t versus stationary solution p(x)

regarding the shape of the wave and its propagation behavior, whereas the steady-state so-
lution p only contains information regarding the shape. Therein, the shape is characterized
by the wave number k, specifying the number of waves per unit (2π) wavelengths [62] and
the quantity a, specifying the amplitude (in figure 2.1, the real parts of both solutions are
plotted with k = 2 and a = 1).

Another example emphasizing the meaning of the steady-state solution is a standing wave.
Such a wave remains at a ’constant position’ with respect to x and is caused by the super-
position of two equal waves propagating in opposite directions. Such a wave is constructed
from the general solution (2.19) by setting b = a, leading to

p̃ = aei(kx+ωt)+ae−i(kx−ωt) . (2.22)

Again, the corresponding steady-state solution is easily deducible from (2.22) by means of
the time-harmonic assumption which gives

p = aeikx +ae−ikx . (2.23)
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Figure 2.2: Standing wave solution p̃(x, t) for several t versus stationary solution p(x)

The time dependent solution in figure 2.2 clearly shows the standing wave behavior,
whereas the stationary solution only displays the shape of the wave (a = 0.5 such that
p̃max = pmax = 1.0). In both cases,i.e., propagating and standing wave, the steady-state so-
lution only provides information on the shape of the wave for its maximum-amplitude.

2.2 Linear elastodynamics

After having presented the equations governing the acoustic fluid, the equations for the
elastic medium shall be introduced. The elastic medium is assumed to be linear elastic,
homogeneous, isotropic and at rest in its initial state. The here presented derivation mainly
follows the one given by Sommerfeld [101]. Alternative approaches can be found in any
textbook on the topic, e.g. [108]. A focus on a dynamic formulation is given for instance in
[55] and [1]. The equations of linear elasticity as a limiting case of a nonlinear formulation
are presented in [5], [85] and [77] just to name a few.

In order to obtain the equations of linear elastodynamics three basic relations must be
formulated, namely the kinematic equations, the balance equations and the constitutive
equations. These will be worked out in the following.

Kinematic equations. With a reference to Helmholtz on the very first page of [101],
Sommerfeld describes a small deformation to be composed by the sum of a translation,
a rotation, and a deformation. In order to show that, a sufficiently small volume element
shall be considered. The components of a vector connecting two neighboring points inside
this volume element is denoted as ri(xi). Without the loss of generality, one of the two
neighboring points can be set into the origin oi = 0 of the underlying coordinate system,
hence ri(xi) = xi. Now this reference volume is deformed, causing the two neighboring
points to experience some displacement from their original position. Taking oi to be the
point of reference for the underlying deformation, it is assigned the displacement ũi(0, t) =
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ũ0
i (t). The displacement components of the other point are ũi(xi, t). Developing ũi(xi, t)

into a Taylor series around the reference point oi = 0 and truncating it after the linear term
gives

ũi(xi, t)' ũi(0, t)+ ũi, j(0, t)(xi−0)

= ũ0
i +

1
2
(ũi, j− ũ j,i)xi +

1
2
(ũi, j + ũ j,i)xi . (2.24)

Therein, the deformation gradient tensor ũi, j has been split into an antimetric and a sym-
metric part. The first term in (2.24) represents a translation common to every point inside
the considered volume. By its antimetric nature, the second part represents a rotation and
the last part a deformation with respect to the three orthogonal directions xi. Introducing
the rotation tensor ω̃i j and the strain tensor ε̃i j, the deformation ũi is written as

ũi = ũ0
i + ω̃i j xi + ε̃i j xi . (2.25)

The translation does not change the relative position of two neighboring points and, hence,
represents a rigid body motion. As shown in [101], the same holds for the rotational com-
ponent of the displacement ω̃i j xi, as long as |ωi j| � 1. The only part of the displacement
actually deforming the body is, hence, given by the strain tensor

ε̃i j =
1
2
(ũi, j + ũ j,i) . (2.26)

With (2.26), the linear kinematic relation for an elastic body has been found.

For further information and proofs regarding the nature of the three displacement compo-
nents, see the book of Sommerfeld [101].

Balance of momentum. A displacement as described above has its cause in the forces
acting on the body. The balance of momentum provides a relation between the forces and
the stress within the body. It has already been stated in the previous section by equation
(2.10) in its integral form. Again, the equation must hold point-wise and can be written
as

σ̃i j, j(xi, t)+ f̃i(xi, t) = ρ ¨̃ui(xi, t) . (2.27)

Additionally to the balance of linear momentum given above, the balance of angular mo-
mentum provides the symmetry of the Cauchy stress tensor, leading to σ̃i j = σ̃ ji.

Constitutive equation. The constitutive equation relates the stress tensor σ̃i j to the strain
tensor ε̃i j. As mentioned earlier, the elastic medium is assumed to be isotropic, meaning
that the material response is uniform in all directions.
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In order to establish the constitutive relation, it is advantageous to assume the considered
volume to be oriented such that it suffers only stresses along its principal axes, i.e., no
shear stresses appear. But this means that shear strains cannot occur either and the volume
element undergoes a pure dilatation. The principal stresses and strains are denoted as σ̃ (i)

and ε̃(i), respectively. In a linear setting, the relation between strains and stresses is linear.
On the example of σ̃ (1), this would be

σ̃
(1) = a1ε̃

(1)+a2ε̃
(2)+a3ε̃

(3) . (2.28)

As a direct consequence of the assumption of isotropy, the relation above can be general-
ized for all three directions as

σ̃
(i) = a1ε̃

(i)+a2ε̃
(i+1)+a3ε̃

(i+2) . (2.29)

The superscript indices i+1 and i+2 have to understood as (i+1)mod3 and (i+2)mod3,
respectively. Moreover, a2 = a3, since, again due to isotropy, none of the two strain com-
ponents perpendicular to the acting stress direction is privileged compared to the other one
and, hence, must be weighted equally. By adding and subtracting the term a2ε̃

(i) in the left
hand side of (2.29), leads to

σ̃
(i) = (a1−a2)ε̃

(i)+a2
(
ε̃(i)+ ε̃(i+1)+ ε̃(i+2)) . (2.30)

Equation (2.30) linearly relates the principal stresses to the corresponding principal strains.
This equation can be generalized for an arbitrarily oriented volume element by means of
some transformation relation [101]. Finally, by setting (a1− a2) := 2µ and a2 := λ , the
linear relation between the stress and the strain tensors of a linear elastic, isotropic and
homogeneous solid takes the form

σ̃i j = 2µ ε̃i j +λ ε̃kkδi j . (2.31)

Apparently, the stress-strain-relation is governed by two independent material constants.
Therein, λ and µ are referred to as the Lamé constants. From a physical point of view,
those are rather abstract quantities. However, they can be expressed by means of the more
descriptive Young’s modulus E and Poisson’s ratio ν according to

λ =
Eν

(1+ν)(1−2ν)
µ =

E
2(1+ν)

E = µ
3λ +2µ

λ +µ
ν =

λ

2(λ +µ)
.

(2.32)

At this point, all three relations mentioned at the beginning of this section have been de-
rived and are ready for use. Inserting the kinematic relation (2.26) into the constitutive
relation (2.31), applying a divergence on the so obtained expression and finally eliminat-
ing the divergence of the stress tensor with the help of the balance of momentum (2.27),
one obtains the elastodynamic wave equation, also known as the Lamé-Navier equation

µ ũi, j j +(λ +µ)ũ j, ji + f̃i = ρ ¨̃ui . (2.33)
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So far, all quantities marked by (·̃), are quantities depending on both space and time. The
steady state representation of the elastodynamic wave equation (2.33) is again obtained by
inserting the time harmonic assumption (2.1). The steady state equation is given as

µui, j j +(λ +µ)u j, ji + fi =−ω
2
ρui . (2.34)

Basically, all equations of this section can be transformed into their steady state counter-
parts by means of the time-harmonic assumption.





3 LINEAR POROELASTICITY

In contrast to a pure solid continuum, a porous continuum is a solid permeated by a system
of fluid-filled interconnected pores. The kind of materials matching this property range
from oil impregnated rocks over water saturated soils to air filled foams. The mechanical
behavior of the porous medium can be strongly influenced by the presence of the fluid.
The purpose of a theory of poroelasticity therefore is to describe and to predict the effects
induced by the interaction between the solid and the fluid phases.

There have been several attempts in developing such a theory. One of the first has been pre-
sented by Biot [19] which builds on the studies of Terzaghi [110] and assumes a fully satu-
rated poroelastic material. During his lifetime, Biot has constantly refined and extended his
theory, including the anisotropic [21] and the viscoelastic case [22]. He investigated wave
propagation phenomena for a low frequency range [23] and a high frequency range [24] as
well as acoustic propagation [26]. An alternative theory is given by the Theory of Porous
Media (TPM) which is based on the axioms of the continuum theories of mixtures and has
been mainly developed by Bowen [30,31], de Boer and Ehlers [41] and Ehlers [48,49]. A
survey on the TPM can be found in the monograph of de Boer [40]. A comparative study
of the TPM with Biot’s theory is given in Schanz and Diebels [98]. Therein, among others,
it is observed that for incompressible constituents, the governing equations of both theories
actually coincide. Another approach in modelling a porous material has been developed by
Wilmanski [113] and is denoted as the Simple Mixture Model (SMM). It is derived from the
fundamental laws of thermodynamics and, hence, does not display the thermodynamical
inconsistencies encountered in Biot’s theory (see e.g., Wilmanski [114]). The governing
equations of the SMM do indeed neglect some effects compared with Biot’s theory.

Among the three theories mentioned above, it can be said that the one developed by Biot
still enjoys the widest acceptance and will therefore be used in this work. The aim of this
chapter is to present the basic concepts of this theory.

As the title of this chapter implies, only effects guaranteeing the linearity of the problem
are considered. The strain-displacement relations are taken to be linear

εs
i j =

1
2
(
us

i, j +us
j,i
)

(3.1a)

ε
f
kk = u f

k,k , (3.1b)

with εs
i j being the components of the solid strain tensor and ε

f
kk those of the fluid. From

a continuum mechanical point of view this means that no distinction is made between the

17
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Eulerian and the Lagrangian description. Basically, all quantities denoted as (·)s refer to
the solid, whereas the quantities denoted as (·) f refer to the fluid. Moreover, all equations
are stated directly in their steady-state (i.e., time-independent) representation. All quanti-
ties describing the material, such as the mass densities ρs and ρ f refer to the initial state.
The porosity φ is defined as the ratio of the fluid volume V f to the overall volume V of the
considered porous body

φ =
V f

V
, (3.2)

where V =V s+V f with V s being the volume of the solid. Sealed pores, whether saturated
or not, are taken to be part of V s. In his model, Biot did not explicitly account for changes
of porosity with respect to time. As pointed out by Wilmanski [114], such effects are
nevertheless always present.

3.1 Constitutive equations

Dealing with a two-phase continuum, distinct stress tensors for the solid (σ s
i j) and the fluid

(σ f ) can be defined. Such a formulation is known as the partial stress formulation [21],
with

σ
s
i j = 2µ εs

i j +

(
λ +

Q2

R

)
εs

kkδi j +Qε
f
kkδi j (3.3a)

σ
f = Qεs

kk +Rε
f
kk . (3.3b)

As pointed out in Biot’s 1941 paper [19], four independent physical constants are needed
to describe the stress-strain relations of the porous medium. The choice of the constants is
arbitrary. Biot himself changed his notation from work to work. The set of constants cho-
sen here are the two Lamé parameters µ and λ describing the solid and Q and R describing
a coupling between the two phases.

The relation between the fluid stress σ f and the pore pressure p is defined by

σ
f =−φ p . (3.4)

Following the sign convention of elasticity, a tensile stress is denoted positive. A tensile
stress in the pore fluid causes the pore to contract, an effect that is usually associated with a
negative pressure. That is why the pressure is defined as the negative hydrostatic stress.

Instead of considering the partial stresses, the total stress σi j = σ s
i j +σ f δi j can be intro-

duced. The constitutive response for the solid is thus expressed as

σi j = 2µ εs
i j +λ εs

kkδi j−α pδi j , (3.5)
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with α = φ (1+Q/R). Note that if the third term on the right hand side of (3.5) is moved
to the left hand side, the relation above strongly reminds of the constitutive equation of a
linear elastic solid as given by (2.31), this time however, with σi j +α pδi j playing the role
of a so-called effective stress. The factor α is, therefore, often denoted as Biot’s effective
stress coefficient [84].

Besides the relations (3.3) or (3.5), a constitutive response equation for the pore fluid can
be formulated

ζ = αεs
kk +

φ 2

R
p . (3.6)

The quantity ζ is most likely interpreted as a fluid strain. In contrast to the pure volu-
metric dilatation ε

f
kk, it describes the change in fluid content per unit reference volume.

Obviously, the fluid content can only change by the amount that passes in or out through
the boundary of the reference volume (as long as sources and sinks are excluded). Hence,
ζ is a conserved quantity and must obey the continuity equation

iω ζ +qi,i = 0 . (3.7)

Recall that all equations are given in frequency domain, hence, according to (2.1), the term
iω ζ represents the transformed version of a time derivative. According to the nature of a
continuity equation, qi is the flux of ζ , or, maybe easier to conceive, the relative motion
between the fluid and the solid, scaled by the porosity

qi = iω φ(u f
i −us

i ) . (3.8)

The vector qi is sometimes denoted as the specific flux [96] or as the filtration vector
[37].

After having specified the kinematic relations and different kinds of constitutive relations,
the balance of momentum has to be introduced. Two distinct equations for both phases can
be formulated.

3.2 Balance of momentum

The two equations describing the balance of momentum (i.e., dynamic equilibrium equa-
tions) in terms of partial stresses are given in [23]. Using a slightly modified notation
compared to that used by Biot in the just cited work, those equations read

σ
s
i j, j +(1−φ) f s

i =−(1−φ)ω2
ρ

s us
i +ω

2
ρa

(
u f

i −us
i

)
− iω

φ 2

κ

(
u f

i −us
i

)
(3.9a)

σ
f
,i +φ f f

i =−φω
2
ρ

f u f
i −ω

2
ρa

(
u f

i −us
i

)
+ iω

φ 2

κ

(
u f

i −us
i

)
. (3.9b)
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Again, recall (2.1) in order to identify the ω2-terms as transformed accelerations and the
iω-terms as transformed velocities. For the time-domain version of the same set of equa-
tions see, e.g., [96]. In the two equations above, f s

i and f f
i denote body forces and κ is the

permeability, a quantity inversely proportional to the fluids viscosity. The terms multiplied
by φ 2/κ thus describe dissipation terms. In a dissipation-free formulation, as mentioned by
Biot in [23], those terms are indeed missing. Another quantity appearing in (3.9) is the
so-called apparent mass density ρa (to not be confused with the density of the acoustic
fluid ρa introduced in section 2.1). It can be written as ρa = Cφρ f , where C is usually
frequency-dependent. For low frequencies, however, it can be treated as a constant and
Bonnet and Auriault [28] determined its value as C = 0.66.

In order to obtain the total stress formulation according to σi j, j = σ s
i j, j +σ

f
, jδi j, the two

equations (3.9a) and (3.9b) are added. The relative accelerations as well as the relative
velocities cancel out, yielding

σi j, j + fi =−ω
2
ρ us

i −φω
2
ρ

f
(

u f
i −us

i

)
. (3.10)

Above, the right hand side has been rearranged such that u f
i only appears in the term of

relative accelerations. Further,

fi = (1−φ) f s
i +φ f f

i and ρ = (1−φ)ρs +φρ
f , (3.11)

which are the overall body force and the overall mass density, respectively. In many pub-
lications, at this point Darcy’s law is introduced, which describes the fluid flow through
a porous medium. However, Darcy’s law is already given by (3.9b). Indeed, taking into
account the definition for the flux (3.8) and for the hydrostatic fluid stress (3.4), equation
(3.9b) can be rearranged to

qi =−κ

(
p,i−ω

2 ρa−φρ f

φ

(
u f

i −us
i

)
−ω

2
ρ

f u f
i − f f

i

)
. (3.12)

Equation (3.12) represents a dynamic version of Darcy’s law (omitting the ω2-terms the
classical form of Darcy’s law is retrieved).

Up to this point, a complete set of equations is given which allows the derivation of differ-
ent kinds of field equations, depending on the quantities of interest.

3.3 Field equations

The primal field quantities of the poroelastic continuum are the two vector valued displace-
ment fields us

i and u f
i as well as the scalar valued pore pressure field p. With the equations



3.3 Field equations 21

provided in the sections above, different kinds of field equations can be obtained, where
not all of those field quantities have to be involved.

The us
i -u

f
i formulation. Comparing to linear elasticity, the most obvious formulation is

obtained by inserting the constitutive equations (3.3) into the equilibrium equations (3.9)
and replacing the strains by the kinematic relations (3.1). This combination provides 6
equations for the 6 degrees of freedom us

i and u f
i . The resulting field equations are

µ us
i, j j +

(
µ +λ +

Q2

R

)
us

j,i j +Qu f
j,i j +(1−φ) f s

i

=−(1−φ)ω2
ρ

s us
i +

(
ω

2
ρa− iω

φ 2

κ

)(
u f

i −us
i

)
(3.13a)

Qus
j,i j +Ru f

j,i j +φ f f
i =−φω

2
ρ

f u f
i −
(

ω
2
ρa− iω

φ 2

κ

)(
u f

i −us
i

)
. (3.13b)

The us
i -p formulation. Instead of considering 6 unknowns by using the equations above,

it seems more convenient to consider only the four unknowns us
i and p, yielding the so-

called us
i -p formulation. In contrast to the us

i -u
f
i system, the us

i -p formulation cannot be
stated in time-domain (at least not without introducing further simplifications, as e.g., done
in [117]). In fact, in time-domain, the fluid displacement appears both as a simple and a
second time derivative and, hence, cannot be expressed explicitly. In frequency domain,
this issue is obviously bypassed. In order to obtain the corresponding field equations, the
fluid displacement field u f

i has to be eliminated. This can be achieved by using the two
equations (3.12) and (3.8). On the one hand, u f

i can be eliminated from (3.12) by using
(3.8), such that qi is expressed as a function of (ui, p)

qi =−
β

iωρ f (−p,i +ω
2
ρ

f us
i + f f

i ) . (3.14)

On the other hand, again by using (3.8) and (3.12), qi can be eliminated and the resulting
expression can be solved for (u f

i −us
i ), yielding(

u f
i −us

i

)
=

β

φω2ρ f (−p,i +ω
2
ρ

f us
i + f f

i ) . (3.15)

In both equations above, the dimensionless factor β is an abbreviation for

β =
ω2ρ f φ 2κ

iωφ 2−κω2(ρa +φρ f )
.

By using (3.15), the balance of momentum (3.10) becomes

σi j, j + fi +ω
2
ρui = β

(
p,i− f f

i −ω
2
ρ

f us
i

)
. (3.16)
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The first three equations for the us
i -p formulation are now obtained by combining the kine-

matic relation (3.1a) with the constitutive equation (3.5) and the balance of momentum
(3.16). The fourth equation is obtained by combining the constitutive equation (3.6) with
(3.1a) and inserting it, together with (3.14), into the continuity equation (3.7). The final
set of field equations reads

µ us
i, j j +(λ +µ)us

j,i j− (α +β ) p,i +ω
2(ρ +βρ

f )us
i =−( fi +β f f

i ) (3.17a)

β

ω2ρ f
p,ii−

φ 2

R
p− (α +β )us

i,i =
β

ω2ρ f
f f
i,i . (3.17b)

3.4 Limiting cases

As mentioned earlier, the choice of material parameters describing the poroelastic contin-
uum is basically arbitrary. However, only four parameters can be selected independently.
In the sections above, those where µ,λ ,Q and R.

All those parameters can be expressed in terms of the three bulk moduli K,Ks and K f as
well as the shear modulus G. The modulus K denotes the compression modulus for the
bulk material, whereas Ks and K f denote the compression moduli of the two phases. The
Lamé parameters used in section 3.1 as well as Young’s modulus E and Poisson’s ratio ν

for the bulk material can be easily obtained from those parameters by

µ = G λ = K− 2
3

G

E =
9KG

3K +G
ν =

3K−2G
6K +2G

.
(3.18)

Constitutive considerations at the micro-mechanical level as given in [45] lead to the fol-
lowing relations

α = 1− K
Ks (3.19a)

Q =
φ(α−φ)Ks2K f

K f (Ks−K)+φKs(Ks−K f )
(3.19b)

R =
φ 2Ks2K f

K f (Ks−K)+φKs(Ks−K f )
(3.19c)

Incompressible constituents. With the help of the compression moduli, the limiting
cases arising from incompressible constituents can be expressed as follows:
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• Incompressible solid: K
Ks → 0

α ≈ 1 Q≈ (1−φ)K f R≈ φK f (3.20)

• Incompressible fluid: K
K f → 0

α unaffected Q≈ φ(α−φ)Ks2

(1−φ)Ks−K
R≈ φ 2Ks2

(1−φ)Ks−K
(3.21)

• Incompressible solid and fluid: K
Ks → 0 and K

K f → 0

α ≈ 1 Q→ ∞ R→ ∞ but
Q
R
=

1−φ

φ
. (3.22)

The parameters resulting from the first two cases can be inserted into the constitutive equa-
tions (3.3), (3.5) and (3.6) and do not need any special treatment. The third case, however,
demands some further attention. Although both Q and R tend to infinity, from a physical
point of view, they are still limited. Using the conditions α = 1 and R→ ∞ on the consti-
tutive equations (3.5) and (3.6), shows, that the pore pressure is added to the total stress
tensor without scaling and that the volumetric dilatation of the solid is directly related to
the variation of fluid volume

σi j = 2µ εs
i j +λ εs

kkδi j− pδi j ; ζ = εs
kk . (3.23)

The partial stress formulation is somehow more delicate. In fact, inserting the infinite
values Q and R into (3.3), the solid and the fluid stresses tend to infinity as well. Biot was
aware of this issue and formulated the alternative condition for incompressible constituents
[21]

(1−φ)εs
kk +φε

f
kk = 0 (3.24)

which actually expresses a vanishing volumetric dilatation in the poroelastic body. With

Q
R
=

1−φ

φ
⇒ Q

R
εs

kk + ε
f
kk = 0 ,

and the constitutive equations by means of partial stresses become

σ
s
i j = 2µ εs

i j +λ εs
kkδi j (3.25a)

σ
f =−φ p =

(
Q
R
εs

kk + ε
f
kk

)
= 0 . (3.25b)

As stated earlier, R in (3.25b) is assumed to be large, but limited. Note that in contrast to
the incompressible total stress formulation (3.23), in the partial stress formulation (3.25)
the solid and fluid phases are uncoupled. This latter formulation is only suitable for a
quasistatic description.
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Drained and undrained responses. Two other kinds of limiting cases are obtained
by, firstly, assuming that the poroelastic medium is completely drained, or, secondly, by
completely preventing the poroelastic medium from draining. The former case is expressed
by the condition p = 0 (if the pressure on the boundary is zero as well) and the latter
case by ζ = 0. As it is shown in the chapter of Detournay and Cheng [45], under both
conditions the poroelastic body behaves like an elastic one, however, each with its own
material properties.

The material properties for the two elastic models are calculated by means of the poroe-
lastic parameters K,Ks,K f and G. Those are summarized in table 3.1 (note that only two
elastic parameters can be selected independently). For all three formulations, i.e., poroe-

Elastic drained Elastic undrained

Kd = K Ku = K + α2KsK f

αK f+φ(Ks−K f )

νd = ν νu =
3Ku−2G
6Ku+2G

Ed = E Eu = 3Ku(1−2νu)

Gd = G Gu =
Eu

2(1+2νu)

Table 3.1: Elastic drained and elastic undrained parameters

lastic, elastic drained and elastic undrained, the same mass density ρ is used.

The benefit of these two elastic models consists in the fact that they represent (approx-
imately) upper and lower bounds for the poroelastic material. Hence, the range of the
poroelastic behavior can be estimated without actually performing a poroelastic calcula-
tion.

Another convenient feature of the two models is their approximate depiction of the instan-
taneous and the long term behavior of the poroelastic material. Indeed, the drained case
assumes that the interstitial fluid has enough time to equilibrate its pore pressure with the
pressure imposed at the boundary, whereas the undrained case simulates the instantaneous
response just after imposition of a load, when the fluid has not yet had any time to flow. In
view of the frequency domain formulation presented in this work, the drained behavior is
expected for low frequencies, i.e., slowly applied loads, whereas the undrained behavior is
expected for higher frequencies, i.e., for rapidly imposed loads.

Elastodynamic equations. A limiting case for the poroelastic system is also given when
reducing the fluid volume V f to zero. In this paragraph, it will be shown that the governing
equations of elastodynamics can be indeed derived from the more general theory of poroe-
lasticity by simply stating that the fluid volume V f = 0. As a result, the porosity φ = 0 as
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well. Under these terms, all governing equations of linear elastodynamics can be retrieved
from the poroelastic model.

First of all, the kinematic relation (3.1a) can be adopted as it stands (for the sake of clarity,
the superscript is changed to e for elastic)

εe
i j =

1
2
(
ue

i, j +ue
j,i
)
. (3.26)

As a next step, the constitutive equations shall be recovered from the partial stress (3.3a)
and the total stress formulation (3.5). The factor α = φ(1+Q/R)= 0 when φ = 0, but it also
has to be zero when expressed in terms of the compression moduli according to (3.19a),
i.e., α = 1− K/Ks. This obviously leads to the conclusion that the compression moduli
K and Ks must be equal. This is indeed the case, since in an elastic continuum, there is
no distinction between a bulk material and a solid phase. Hence, the elastic constitutive
equation is directly obtained from the total stress equation (3.5) with α = 0

σ
e
i j = 2µ

e εe
i j +λ

e εe
kkδi j . (3.27)

According to (3.19) Q = R = 0 for φ = 0. So, when using the partial stress formulation
(3.3a), the fluid strain is directly eliminated. In order not to obtain an undefined fraction
by simply using Q = R = 0 in Q2/R, this expression is first evaluated using (3.19b) and
(3.19c). This gives Q2/R = Ks−K, which, in view of Ks = K, again leads to the elastic
constitutive equation (3.27). The two Lamé parameters µe and λ e are proper to the elastic
system. When aiming for the drained or undrained models, the corresponding parameters
can be calculated using (3.18) together with the expressions given in table 3.1.

The elastodynamic equilibrium equation can also be obtained from both the partial stress
(3.9) and the total stress formulation (3.10). With φ = 0 the apparent mass density ρa =
Cφρ f = 0 and, hence,

σ
e
i j, j + f e

i =−ω
2
ρ

e ue
i . (3.28)

In view of the definitions for fi and ρ , with φ = 0, the body force and the mass density of
the elastic continuum coincide with those of the solid.

The linear elastodynamic field equations are again obtained by combining (3.26), (3.27)
and (3.28)

µ
e ue

i, j j +(λ e +µ
e)ue

j, ji + f e
i =−ω

2
ρ

e ue
i . (3.29)

Less surprisingly, all equations presented within this last paragraph, exactly correspond to
the (steady-state) equations of section 2.2. Therewith, it has been shown how to obtain the
elastodynamic equations out of the poroelastic equations by simply stating V f = 0. This
fact lets presume that the poroelastic plate formulations, which will be presented within
this work, follow the same pattern. Hence, by working out the poroelastic formulation, the
elastic formulation will be implicitly given.
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3.5 The energy point of view

The field equations of poroelastodynamics, (3.13) or (3.17), and the field equations of elas-
todynamics (3.29), all express a state of dynamic equilibrium. As known from analytical
mechanics, the entire study of equilibrium and motion can be based on scalar quantities.
In a conservative system these would be the potential energy and the kinetic energy. Nu-
merous methods have been developed for an approximate solution of partial differential
equations based on such energy concepts, such as the Finite Element Method. The main
idea behind the energy principle is that in a state of equilibrium the total energy stored
in the system is minimized. Considering solely the quasi-static case, i.e., omitting the in-
ertia terms and, hence, the kinetic energy, the total energy of the system is expressed by
the potential energy only. The potential energy itself is the sum of the work induced by
external forces and the strain energy stored in the body. Entire books are devoted to the
subject of energy principles in mechanics, see e.g., [71] for a general overview on analyti-
cal mechanics or [90] for an emphasis on elasticity. This section is only meant to point out
the basic principle of this concept as well as to show the difference between elasticity and
poroelasticity.

3.5.1 Elastic energy

In the isothermal case, an ideal elastic body is assumed to have the property that all work
performed on that body by external forces is stored as recoverable internal strain energy.
The external work is induced by body forces acting inside the considered domain and
surface forces acting on the surface. The local form of this isothermal energy balance in
time domain is expressed by the first law of thermodynamics as

∂Ũe

∂ t
= σ̃

e
i j
ε̃e

i j

∂ t
. (3.30)

In the equation above Ũe is the internal energy density of the elastic body. Note that this
equation implies that the balance of momentum is fulfilled simultaneously [5]. The time
derivative of the strain energy density Ũe = Ũe(ε̃e

i j(xi, t)) gives

∂Ũe

∂ t
=

∂Ũe

∂ ε̃e
i j

∂ ε̃e
i j

∂ t
. (3.31)

With (3.31) in (3.30) a general form for an elastic constitutive equation is obtained

σ
e
i j =

∂Ue

∂ εe
i j
. (3.32)
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In this last step, the time derivatives have been canceled out such that (3.32) takes the same
form both in the time and in the frequency domain and the latter representation is therefore
used. Equation (3.32) is a direct consequence (and vice versa) of the expression

Ue =

εe
i j∫

0

σ
e
i j dεe

i j , (3.33)

stating that the energy density function only depends on the initial and final strain value, but
not on the strain-path itself. This is the very definition of a conservative system. Assuming
that σ e

i j = σ e
i j(ε

e
i j) depends linearly on εe

i j, (3.33) leads to

Ue =
1
2

σ
e
i jε

e
i j . (3.34)

The total amount of internal strain energy (i.e., internal potential energy) stored in the
elastic body is obtained by integrating Ue over the domain Ω of the body

W e
I =

∫
Ω

Ue dΩ =
∫
Ω

1
2

σ
e
i jε

e
i j dΩ . (3.35)

The external potential energy is given by the work done on the body by external forces.
This is expressed as

W e
E =−

∫
Ω

f e
i ue

i dΩ−
∫

ΓN

te
i ue

i dΓN . (3.36)

The boundary ΓN describes the Neumann boundary, i.e., the part of the boundary, where
surface stresses are prescribed (te

i is the stress vector acting on the surface). The minus
sign implies that work is performed on the body.

The principle of minimum potential energy can be expressed as the well known principle
of virtual work. It states that a body is in equilibrium if the work of the impressed forces
is zero for any variation of the configuration, provided the variations are in harmony with
the kinematical constraints (see e.g., [71, 90]), i.e.,

δΠ
e = δW e

I +δW e
E = 0 . (3.37)

Performing the variation on W e
I gives

δW e
I =

∫
Ω

σ
e
i jδ ε

e
i j dΩ . (3.38)

The variation of the external work is given by

δW e
E =−

∫
Ω

f e
i δue

i dΩ−
∫

ΓN

te
i δue

i dΓN . (3.39)
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Combining (3.38) and (3.39) gives the variation of the total elastic potential

δΠ
e =

∫
Ω

[
σ

e
i jδ ε

e
i j− f e

i δue
i
]

dΩ−
∫

ΓN

te
i δue

i dΓN = 0 . (3.40)

The variation of the external work δW e
E may also be obtained from δW e

I . Therefore, after
realizing that σ e

i jδ ε
e
i j = σ e

i jδue
i, j (due to the symmetry of the stress tensor), equation (3.38)

is integrated by parts leading to∫
Ω

σ
e
i jδ ε

e
i j dΩ =−

∫
Ω

σ
e
i j, jδue

i dΩ+
∫

ΓN

(σ e
i jn j)δue

i dΓN . (3.41)

In the static case, the balance of momentum is given by σ e
i j, j =− f e

i (i.e., (3.28) without the
inertia term) and σ e

i jn j = te
i denotes the surface stress vector. Inserting those expressions

in (3.41), its right hand side can clearly be identified with −δW e
E .

With (3.38) and (3.39) in (3.37) the variation of the total virtual work (i.e., the variation of
the total potential energy) is given. From the so obtained statement, the field equations of
linear elasticity can be retrieved by inserting Hooke’s law (3.27) for σi j and performing an
integration by parts, such to eliminate the derivative in the variation. When aiming for a
numerical solution of the problem, equation (3.37) represents the variational formulation
which can be treated by numerous numerical methods.

3.5.2 Poroelastic energy

In his 1941 publication [19], Biot presented his theory of three-dimensional consolidation
which builds the basis for his theory of poroelasticity [25]. In this former work, Biot
introduces the ’potential energy density of the soil’, defined as

U =
1
2
(
σi jεi j + pζ

)
. (3.42)

An infinitesimal work increment associated with the respective strain increments is given
as [45]

dU = σi j dεi j + pdζ . (3.43)

The connection between (3.42) and (3.43) only exists if dU is an exact differential, i.e.,
if

dU =
∂U
∂ εi j

dεi j +
∂U
∂ζ

dζ → σi j =
∂U
∂ εi j

; p =
∂U
∂ζ

. (3.44)

Indeed, Biot makes use of this relation to get rid of one material parameter, which elim-
ination is essential for the further development of the poroelastic model. By expressing
(3.42) as U = U(εi j,ζ ) with the help of (3.5) and (3.6) it is actually not too difficult to



3.5 The energy point of view 29

prove (3.44). With the validation of the relations (3.42) - (3.44), equation (3.43) may be
modified such to express the variation of the internal strain energy. If (3.43) holds for the
actual increments dεi j,dζ , it must also hold for the virtual increments δ εi j,δζ , hence

δU = σi jδ εi j + pδζ . (3.45)

Consequently, an integration over the domain gives

δWI =
∫
Ω

(
σi jδ εi j + pδζ

)
dΩ . (3.46)

Up to this point, the analogy between the elastic and the poroelastic model seems to be
obvious. In view of the procedure applied before, i.e., integrating (3.38) by parts in order
to obtain the equation expressing the variation of the total potential energy (3.41) seems
the right thing to do. Here, however, the problem arises that the poroelastic system is a dis-
sipative system. Hence, equations (3.42) - (3.46), although correct, must be distinguished
from their elastic counterparts presented in the previous subsection 3.5.1. Indeed, those
equations again imply a conservative system. Therefore, the poroelastic ’inner potential
energy density’ U must be identified as a reduced potential, which does not consider the
dissipative parts. In the absence of body and boundary forces, equation (3.37) becomes

δW e
I = 0 . (3.47)

In the poroelastic case, under the same conditions, the statement above does not hold. It
must be modified to

δWI ≤ 0 . (3.48)

In his book [37], Coussy derives the viscous dissipation ϕ f associated with the fluid flow
from a thermodynamical point view as

ϕ
f =
(
−p,i + f f

i +ω
2
ρ

f ui

)
qi ≥ 0 . (3.49)

Furthermore, he specifies the virtual work theorem for the two fields δui and δζ under
quasi-static conditions, which is expressed by (body forces are neglected as well)∫

Ω

(
σi jδ εi j + pδζ − 1

iω
p,i δqi

)
dΩ =

∫
ΓN

(
ti δui−

1
iω

pδqini

)
dΓN . (3.50)

It becomes apparent from (3.50) that the third term on the left hand side is missing in
(3.46). With (3.49), this term can clearly be identified as the viscous dissipation of the
fluid (under quasi-static conditions and zero body forces) and, hence, is always larger or
equal to zero. Under zero boundary conditions, (3.50) becomes∫

Ω

(
σi jδ εi j + pδζ

)
dΩ =

∫
Ω

1
iω

p,i δqi dΩ ⇒
∫
Ω

(
σi jδ εi j + pδζ

)
dΩ≤ 0 , (3.51)
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and thus, (3.48) is confirmed .

The variation of the reduced potential as given by equation (3.46) can be reversed accord-
ing to

δU = σi jδ εi j + pδζ = εi jδσi j +ζ δ p , (3.52)

however, the individual terms cannot be mixed, as e.g.,

δU 6= σi jδ εi j +ζ δ p (3.53)

An equality in (3.53) is not admissible, since in this case the needed condition of dU
being a total differential is violated. Yet, in the present work, it is aimed for a formulation
with variations in ui and p rather than ui and ζ . This can be achieved by multiplying the
poroelastic field equations (3.17a) and (3.17b) by the respective variations δui and δ p,
and integrating them over the domain. An appropriate integration by parts finally yields
the sought variational formulation, suited for numerical treatment. In the present work, the
variational formulation is given by

∫
Ω

[[
µ(ui, j +ui, j)+(λ uk,k−α p)δi j

]
δ εi j+[

β

(
p,i− f f

i −ω
2
ρ

f ui

)
−
(

fi +ω
2
ρui
)]

δui+

1
iω

[
β

iωρ f

(
p,i−ω

2
ρ

f ui− f f
i

)]
δ p,i−

[
α uk,k +

φ 2

R
p
]

δ p

]
dΩ−

∫
ΓN

[
(σi jn j)δui +

1
iω

(qini)δ p
]

dΓN = 0 .

(3.54)

The variational formulations of the individual field equations have been summed up, since
both of them are equal to zero for themself. The integration by parts which led to (3.54)
has been performed such that the arising boundary integral contains the quantities (σi jn j)
and (q jn j), which are the prescribed stress vector and the prescribed flux on the boundary
ΓN , respectively. In addition, (3.17b) has been multiplied by (−1). This is needed for the
following energetic considerations. By using the constitutive equations (3.5) and (3.6) and
doing some rearrangements, equation (3.54) can be rewritten in the form

∫
Ω

[
σi jδ εi j−ζ δ p+

1
iω

[(
p,i− f f

i −ω
2
ρ

f ui

)
β

iωρ f

(
δ p,i−ω

2
ρ

f
δui

)]]
dΩ−

∫
Ω

(
fi +ω

2
ρui
)

δui dΩ−
∫

ΓN

[
(σi jn j)δui +

1
iω

(q jn j)δ p
]

dΓN = 0 . (3.55)
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Recalling (3.14), the expression in square brackets in the upper row of (3.55) can be written
as (

p,i− f f
i −ω

2
ρ

f ui

)
β

iωρ f

(
δ p,i−ω

2
ρ

f
δui

)
=
(

p,i− f f
i −ω

2
ρ

f ui

)
δqi

=−δϕ
f ≤ 0 ,

(3.56)

and represents the negative fluid dissipation (in δq, the variation of the fluid body force
is zero). By taking again the quasi-static case and assuming zero boundary conditions as
well as zero body forces, equation (3.55) becomes∫

Ω

(
σi jδ εi j−ζ δ p

)
dΩ =

∫
Ω

δϕ
f dΩ ⇒

∫
Ω

(
σi jδ εi j−ζ δ p

)
dΩ≥ 0 . (3.57)

The expression above can be defined as the variation of an ’alternative’ reduced potential

δW ∗I =
∫
Ω

(
σi jδ εi j−ζ δ p

)
dΩ with δU∗ = σi jδ εi j−ζ δ p . (3.58)

In order to prove that this alternative reduced potential U∗ actually exists, it must be shown
that

dU∗ = σi j dεi j−ζ dp (3.59)

is an exact differential, hence,

dU∗ =
∂U∗

∂ εi j
dεi j +

∂U∗

∂ p
dp → σi j =

∂U∗

∂ εi j
; −ζ =

∂U∗

∂ p
. (3.60)

In fact, those conditions hold for

U∗ =
1
2
(
σi jεi j−ζ p

)
. (3.61)

Comparing (3.51) to (3.57) reveals that δU ≤ 0 underestimates the internal energy of the
poroelastic continuum, whereas δU∗ ≥ 0 overestimates it. This further means that

δU−δU∗ = pδζ +ζ δ p≤ 0 , (3.62)

and, hence, that pδζ 6= ζ δ p in the general case. At this point it can be stated that the
assumption of reversibility (3.52) only holds for the entire expression but not for the indi-
vidual terms.

In order to conclude this chapter, the essentials shall be shortly recapitulated. In sections
3.1, 3.2 and 3.3 the basic equations constituting Biot’s linear theory of poroelasticity have
been presented, mentioning both the partial and the total stress formulation from which
the us

i -u
f
i and the us

i -p field equations can be obtained, respectively. For the rest of this
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work, only the latter formulation will be considered. Section 3.4 provides some informa-
tion concerning the behavior of a poroelastic continuum when approaching limiting cases.
Finally, the main goal of section 3.5 was to discuss the somehow misleading terminology
of the poroelastic potential used by Biot himself. Depending on the choice of the primal
variables, the existence of two different ’reduced potentials’ could be shown, where the
word ’reduced’ is meant to point out that the dissipative parts are not considered in it.
In addition, the variational formulation (or weak formulation) of the us

i -p field equations
has been presented, which takes the form of an energy balance. This weak form allows a
numerical treatment in order to find weak solutions. Also, it is convenient when formu-
lating the coupling conditions between a poroelastic and an elastic or acoustic domain as
e.g., presented in [10]. Furthermore, it represents the starting point for the upcoming plate
formulations. However, before concentrating on them, the classical plate theories shall be
reviewed in the next chapter.



4 CLASSICAL PLATE THEORIES

Plates have been subject of studies long before Kirchhoff presented his well known the-
ory [68], however, it was his formulation which, for the first time, provided satisfactory
results compared to the experimental data, although restricted on rather thin plates. A
hundred years later, Reissner [91] and Mindlin [78] presented, independently from each
other, extended plate theories better suited for the description of moderately thick plates.
Although numerous other plate theories have been developed in the past, those given by
Kirchhoff (also known as Kirchhoff-Love theory), Reissner and Mindlin are widely ac-
cepted and used. The aim of this chapter is to present those classical elastic plate theories
and to give a short overview on poroelastic plate theories developed so far.

4.1 Elastic potential of plates

The elastic plate theories mentioned above can be seen as special cases of the theory of
elasticity applied on a domain with special geometrical properties. This suggests that they
should be derivable from the more general theory of elastodynamics. An elegant approach
in showing that this is indeed the case consists in taking the elastic potential given by
Πe =W e

I +W e
E

1 , hence,

Π
e =

∫
Ω

[
1
2

σ
e
i jε

e
i j− f e

i ue
i

]
dΩ−

∫
ΓN

te
i ue

i dΓN (4.2)

and modifying it, such that it accounts for the restrictions a plate is subjected to. The
incorporation of those restrictions then allows an integration of (4.2) over the thickness
coordinate, reducing the dimension of the problem. The so obtained two-dimensional
elastic potential of the plate can then be minimized by the standard variational techniques
in order to determine its equilibrium conditions, and hence, the plate equations. This whole
procedure is presented in the following.

1If dynamic effects shall be taken into account, the kinetic energy must be included. The total energy of
the system is then expressed as Ee = Πe +Ke. The kinetic energy Ke and its variation δKe are given as

Ke =−1
2

∫
Ω

ω
2
ρ

euiui dΩ δKe =−
∫
Ω

ω
2
ρ

euiδui dΩ (4.1)

33
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A plate-like geometry is given when the considered domain has a small extension in
thickness-direction (from now on denoted as the x3-direction) compared to its extensions
in the x1-x2-plane. The plate domain is defined as

Ω
p = [(x1,x2,x3) ∈ R3 | x3 ∈

[
−h

2
,
h
2

]
,(x1,x2) ∈ A⊂ R2], (4.3)

where A denotes the so-called middle-surface and h the plate thickness, which is assumed
to be constant and symmetric to the middle-surface.

4.1.1 Plate kinematics

Before proceeding to formulate the usual kinematical assumptions associated with the ge-
ometrical restrictions of the plate, it is worth mentioning that it has to be clearly distin-
guished between the Mindlin and the Reissner plate theories. Although they are similar
in their final forms (still just similar and not equal) they are based on partly very different
assumptions [111]. Hence, the following 4 hypotheses are only valid for the Mindlin and
the Kirchhoff theory. The Reissner theory does not adopt the hypotheses 1, 2 and 4.

The plate hypotheses:

1. a plane section remains plane, i.e., a thickness fiber normal to the x1-x2-plane de-
forms linearly and its image lies on a straight line.

2. the displacement in x3-direction is independent of x3, hence, it is constant over the
thickness.

3. The displacement of all points on the middle-surface is exclusively in x3-direction.

4. the normal stress component in x3-direction σ33 vanishes. This implies plane stress,
and is contradictory to hypothesis 2. This contradiction, however, impinges only
marginally on the quality of the results.

The hypotheses 1, 2 and 3 together lead to

uα(x1,x2,x3) = ψα(x1,x2)x3

u3(x1,x2,x3) = w(x1,x2) .
(4.4)

In figure 4.1, the geometrical interpretation of the relations (4.4) is depicted. Therein, ψα

denotes the angles (i.e., the rotations) between the fiber in the undeformed configuration
and the fiber in the deformed configuration. If w is the function of vertical displacement,
then w,α are the components of its gradient, i.e., the slopes of the plates middle-surface
in the respective directions. A positive rotation ψα shall be defined such that a material
particle on the fiber with positive x3-coordinate subjected to such a rotation experiences
a horizontal displacement in the positive xα direction (may be defined differently in the
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xα

x3
ψα

γα

w,α

w,α

w

γα = w,α +ψα

Figure 4.1: Plate kinematics and definition of rotations

various textbooks). The rotations ψα and w,α in figure 4.1 are therefore positive, whereas
γα is negative. This latter quantity denotes the components of the shear strain vector

γα = w,α +ψα , (4.5)

which is unequal to zero whenever the fiber deviates from its normal orientation with
respect to the middle-surface.

Using the kinematical relations (4.4), the components of the elastic strain tensor εi j as
given in (2.26) become

εαβ =
1
2
(ψα,β +ψβ ,α)x3 εα3 = ε3α =

1
2
(w,α +ψα) ε33 = w3,3 . (4.6)

Note that ε33 as given above is equal to zero in view of hypothesis 2 and equation (4.4).
At the same time, the plane stress hypothesis 4 says that σ33 = 0. Despite this obvious
contradiction, the plane stress hypothesis must still be implied (it may be argued that the
plane stress condition is assigned a higher importance). Hence, inserting the condition
σ33 = 0 into (3.27) with i = j = 3 and solving for ε33 gives

ε33 =−
λ

2µ +λ
εγγ , (4.7)

which is then substituted back into (3.27) leading to

σi j = 2µ εi j +
2µλ

2µ +λ
εγγ δi j (i, j) 6= (3,3) . (4.8)
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4.1.2 Stresses and stress resultants

Instead of inserting (4.6) and (4.8) into (4.2) right away, so-called stress resultants are
introduced. The stress resultants are not essential for the development of the plate equa-
tions, however, they allow a deeper understanding, since the plate characteristics are then
expressed in terms of bending moments and shear forces instead of just rotations and dis-
placements. The resultants are defined as

Mαβ =

h
2∫

− h
2

σαβ x3 dx3 ; Qα =

h
2∫

− h
2

σ3α dx3 , (4.9)

where M11 and M22 are the bending moments around the x2 and x1 axes, respectively, M12
and M21 are the symmetric twisting moments and Q1 and Q2 are the shear forces in x3
direction. The components of the moment tensor and the two shear force components are
obtained by using (4.6) and (4.8) in (4.9)

Mαβ = µ
h3

12

[
ψα,β +ψβ ,α +

2λ

2µ +λ
ψγ,γδαβ

]
(4.10a)

Qα = µh [w,α +ψα ] . (4.10b)

Figure 4.2 shows the acting stresses on an infinitesimal plate element of dimension dx1 dx2.
Figure 4.3a shows the stresses on a skew cut, or on an arbitrarily oriented boundary.

x1

x2

x3

M11

M12

Q1

M22

M21

Q2

M11 +
∂M11
∂x1

dx1 M12 +
∂M12
∂x1

dx1

Q1 +
∂Q1
∂x1

dx1

M22 +
∂M22
∂x2

dx2

M21 +
∂M21
∂x2

dx2

Q2 +
∂Q2
∂x2

dx2

f3

Figure 4.2: stresses on infinitesimal element

Thereby, the orientation of the considered cross section or boundary is uniquely defined
by its normal vector nα . Taking the product of the moment tensor Mαβ with the normal
vector gives the moment vector [Mα ] = Mαeα = [M1,M2]

> acting on that surface. These
two components are given in the {eα} basis, with the unit vectors in direction of the x1
and x2 axes. In general, it is of greater interest knowing the moments [M′α ] = [Mn,Ms]

>
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in the rotated basis {e′α}, with unit vectors in direction of nα and sα (see figure 4.3b).
Similarly, the rotations may also be expressed in the two bases as [ψα ] = [ψ1,ψ2]

> and
[ψ ′α ] = [ψn,ψs]

>, respectively.

x1

x2

M11

M12

Q1

M22

M21

Q2

Mn
MsQ

nα

sα

(a) stresses on a skew cut

x1

x2

M1

M2

Mn

Ms

nα

sα

(b) Rotation of moments

Figure 4.3: Stresses acting on a skew cut or boundary

The transformation matrix between the two bases and the two direction vectors are given
by

[Rαβ ] = [e′α · eβ ] =

[
n1 n2
−n2 n1

]
; [nα ] =

[
n1
n2

]
; [sα ] =

[
−n2
n1

]
(4.11)

The moment and the rotation vector transform according to

M′α = Rαβ Mβ ; Mα = RβαM′
β
. (4.12)

In terms of the moment tensor Mαβ , the two components of M′α are expressed as

Mn = Mαβ nβ nα = Mαnα

Ms = Mαβ nβ sα = Mαsα .
(4.13)

Mn and Ms represent the bending moment and the twisting moment, respectively, whereas
each of the two components M1 and M2 are a combination of the bending and twisting
moments.

The moments do work on rotations. Hence, Mα does work along ψα , whereas M′α does
work along ψ ′α . That the two work quantities are equivalent is easily shown with the help
of (4.12)

M′αψ
′
α = Rαβ Mβ Rαγψγ = Rαβ Rαγ Mβ ψγ = δβγ Mβ ψγ = Mβ ψβ . (4.14)

The relation above is useful when prescribing boundary conditions on arbitrarily oriented
boundaries as it will become apparent in the following sections.

The equilibrium conditions may be obtained directly from figure 4.3a by formulating the
balances of moments and forces. This is done in almost any textbook dealing with plates.
Here, the equilibrium conditions will be derived from the potential.
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4.1.3 The potential and its variation

With (4.6) and (4.8), the internal strain energy of the plate, i.e., the first term of (4.2) can
now be expressed as

∫
Ω

1
2

σ
e
i jε

e
i j dΩ

plate−−→
∫
A

[ h
2∫

− h
2

1
2
(
σαβ εαβ +2σ3αε3α

)
dx3

]
dA

=
1
2

∫
A

[
Mαβ

1
2
(
ψα,β +ψβ ,α

)
+Qα (w,α +ψα)

]
dA .

(4.15)

Next, the external forces must be analyzed. By using (4.4), the domain integral from (4.2)
containing the body forces f e

i (which are taken to be constant over the thickness) can be
written as

∫
Ω

f e
i ue

i dΩ
plate−−→

∫
A

[ h
2∫

− h
2

fαψαx3 dx3 +

h
2∫

− h
2

f3wdx3

]
dA≡

∫
A

[ h
2∫

− h
2

f3wdx3

]
dA . (4.16)

The first integral over x3 in square brackets is always equal to zero since it represents an
integral over a linear function between antimetric boundary values. In other words, since
the in-plane displacements uα are antimetric with respect to the middle-surface, the work
done by the body forces fα along those displacements, in sum, cancels out.

The external forces ti acting on the boundary shall be omitted at this point under the as-
sumption that ti = 0 on Γ = ∂Ω. The boundary forces will be covered in later chapters in
detail.

The elastic potential of the plate is therewith given by adding (4.15) and (4.16) and insert-
ing (4.6) and (4.8) and integrating over x3. In terms of (ψ,w), the potential reads

Π(ψ,w) = µ
h3

12

∫
A

[
1
4
(ψα,β +ψβ ,α)

2 +
λ

2µ +λ
(ψγ,γ)

2
]

dA+

µh
2

∫
A

(w,α +ψα)
2 dA−h

∫
A

f3wdA .

(4.17)

The first integral in (4.17) accounts for the bending energy, the second for the shear energy,
and the third integral for the energy of the body forces. Alternatively, by using the stress
resultants (4.9), the potential reads

Π =
∫
A

[
1
4

Mαβ

(
ψα,β +ψβ ,α

)
+

1
2

Qα (w,α +ψα)

]
dA−h

∫
A

f3wdA . (4.18)
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Equations (4.17) and (4.18) are obviously equivalent (with (4.10) in (4.18), (4.17) is ob-
tained).

Once again, the vanishing of the first variation of the potential represents the necessary
condition for equilibrium. In view of (3.40), after some rearrangements, the variation of
(4.17) results in

δΠ(ψ,w) = µ
h3

12

∫
A

[
(ψα,β +ψβ ,α)δψα,β +

2λ

2µ +λ
ψα,αδψβ ,β

]
dA+

µh
∫
A

(w,α +ψα)(δw,α +δψα)dA−h
∫
A

f3δwdA = 0 ,
(4.19)

whereas in terms of the stress resultants, the first variation of (4.18) reads

δΠ =
∫
A

[
1
2

Mαβ

(
δψα,β +δψβ ,α

)
+Qα (δw,α +δψα)

]
dA−h

∫
A

f3δwdA = 0 . (4.20)

4.2 Kirchhoff-Love plate theory

In the previous section, the elastic potential of plates has been deduced from the elastic
potential of the continuum by imposition of four hypotheses which are assumed to ade-
quately describe the kinematical behavior of plates. This expression shall now be taken as
the starting point for the deduction of the Kirchhoff-Love plate theory. This theory surely
is the best known plate theory, why a vast number of textbooks offer an introduction to the
subject. A very precise and exhaustive discourse can be found in the second edition of the
book of Timoshenko and Woinowski-Krieger [109]. Graff [55] also points out nicely the
basics of the theory focusing on a dynamic treatment.

The main property of the Kirchoff-Love plate theory is that it takes on an additional hy-
pothesis to those given before, namely the so-called normal hypothesis:

5. All thickness fibers remain normal to the mid-surface during deformation.

This basically means that γα as defined in figure 4.1 is equal to zero. In view of equation
(4.5) this gives

ψα =−w,α . (4.21)

The rotations ψα do not represent an independent degree of freedom anymore, but they
are directly linked to the vertical deflection w. It becomes immediately apparent from the
potential (4.17) and (4.18) that the integral accounting for the shear energy is zero when
applying (4.21). The Kirchhoff plate is said to be shear rigid. Since all variations must
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be applied in a kinematically admissible manner, the variations δψα and δw,α must obey
condition (4.21) as well, hence, equation (4.20) reduces to

δΠ =−
∫
A

Mαβ δw,αβ dA−h
∫
A

f3δwdA = 0 . (4.22)

Integrating the first integral of (4.22) by parts twice in order to get rid of the derivatives in
the variation, yields

−δΠ =
∫
A

[
Mαβ ,αβ +h f3

]
δwdA+

∫
∂A

[
Mαβ nβ δw,α −Mαβ ,β nαδw

]
d∂A = 0 . (4.23)

The boundary integral over ∂A demands special attention. This integral indeed suggests
the prescription of three independent boundary conditions, which are the two rotations w,1
in x1-direction and w,2 in x2-direction and the vertical displacement w, or, alternatively,
the forces doing work on these displacements. In terms of an arbitrarily oriented boundary
(see figure 4.3), the three displacements and the respective forces are

• the rotation in normal direction ∂w/∂n or the bending moment Mn

• the rotation in tangential direction ∂w/∂ s or the twisting moment Ms

• the vertical displacement w or the shear force Q = Mn,n +Ms,s.

Along the considered boundary, the normal hypothesis directly links ∂w
∂ s to w, hence, the

two quantities are obviously not independent from each other, nor can the respective forces
Ms and Q be. In fact, it was already shown by Kirchhoff that these two quantities combine
to a single one.

In order to show this, the boundary integral is expressed in terms of the normal and tan-
gential quantities by using the relation (4.14). The surplus degree of freedom can now be
eliminated by an integration by parts∫

∂A

[
Mαβ nβ δw,α −Mαβ ,β nαδw

]
d∂A =

∫
∂A

[Mnδw,n +Msδw,s− (Mn,n +Ms,s)δw]d∂A =

∫
∂A

[Mnδw,n− (Mn,n +2Ms,s)δw]d∂A+
∫

∂∂A

[Msnsδw]d∂∂A .

(4.24)

Above, the notation (),n and (),s denotes directional derivatives and n,s shall therefore
not be confused with ordinary indices. The boundary integral now contains only the two
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independent kinematical quantities δw,n and δw. The forces doing work are the bending
moment Mn and the so-called effective shear force

V = Mn,n +2Ms,s = Q+
∂Ms

∂ s
. (4.25)

This surely anomalous condition has its nature in the fact that the underlying mathematical
model only accounts for parts of the deformation a plate may undergo [55]. Indeed, besides
the kinematical restrictions of the 5 hypotheses, the stress components σ31 and σ32 haven’t
been brought into the analysis at all.

The somehow strange integral over the boundary of the boundary represents a force ap-
pearing on corner points Pc and is a direct, albeit certainly not self-evident, consequence
of (4.25). The nature of this force may be found in the following consideration: Along a
boundary approaching a corner, the twisting moments are substituted by equivalent force
couples. The individual forces building the couples cancel out along the boundary. On the
corner point, however, one part of the couple is preserved which results in the corner force.
This force, therefore, only appears in such corner points and prevents the plate from lifting
up. This peculiarity obviously doesn’t appear on circular plates, since there is no boundary
of a boundary.

With (4.24) and (4.25), the variation of the potential now reads

−δΠ =
∫
A

[
Mαβ ,αβ +h f3

]
δwdA+

∫
∂A

[Mnδw,n−V δw]d∂A+

∫
∂∂A

[Msnsδw]d∂∂A = 0 .
(4.26)

Since the variations δw are arbitrary on the open domain A, the fundamental lemma of the
calculus of variation states that

Mαβ ,αβ +h f3 = 0 , (4.27)

presumed the boundary conditions are fulfilled. Equation (4.27) represents the equilib-
rium equation for the Kirchhoff-Love plate. Two types of boundary conditions are distin-
guished. The first kind of condition is the so-called Dirichlet condition which prescribes
the value for the kinematical quantities on the considered boundary. In such a case, the
respective variation is equal to zero, since a known quantity is not subjected to any varia-
tion. The second kind of condition is the so-called Neumann condition which prescribes
the value of the stress quantity on the respective boundary. In such a case, the kinematical
quantities are unknown, and their variations are, therefore, arbitrary. Hence, the funda-
mental lemma of the calculus of variations is again applied, stating that the expressions
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multiplied by the variation must be equal to zero if the whole integral shall be zero. The
boundary conditions are hence given by

Mn = 0 or w,n = gψn on Γψn ⊂ ∂A
V = 0 or w = gw on Γw ⊂ ∂A

Ms = 0 or w = gw on Pc ⊂ ∂∂A .

(4.28)

Above, g(·) denotes some admissible function defined on the boundary Γ(·). It may seem
strange that the boundary forces can only be prescribed as zero according to (4.28). In
a more general formulation this is actually not the case. Recall that in section 4.1.3 the
prescribed boundary forces ti have been assumed to be zero everywhere. Hence, in this
formulation, boundary forces can only appear as reaction forces due to the plates bear-
ing.

Inside the plate domain, the moment tensor and the shear forces can be expressed by
imposing the normal hypothesis (4.21) on the stress resultants (4.10), yielding

Mαβ =−2µ
h3

12

[
w,αβ +

λ

2µ +λ
w,γγδαβ

]
(4.29a)

Qα = 0 . (4.29b)

Due to the normal hypothesis, the shear force is equal to zero. With (4.29a) in (4.27), the
Kirchhoff plate equation is obtained

w,ααββ =
h f3

D
, (4.30)

with the plate stiffness

D =
4µ(µ +λ )

2µ +λ

h3

12
=

Eh3

12(1−ν2)
(4.31)

Rewriting (4.30) using the 2d Laplace operator ∆ = (),αα gives

∆∆w =
h f3

D
, (4.32)

which is a way more common form encountered in the literature (instead of the volume
force h f3, mostly a surface load is given. Due to the neglecting of the surface integrals,
however, this surface load does not appear). The plate equation (4.30) or (4.32) represents
an inhomogeneous partial differential equation of fourth order.

4.3 Shear deformable plate theories

The shear rigid plate theory of Kirchoff-Love has proven itself until today and is proba-
bly still the most used plate model in engineering applications. The normal hypothesis,



4.3 Shear deformable plate theories 43

however, results in lower accuracy the thicker the plate gets. Around the 1950’s the the-
ory of plates has widened considerably. Timoshenko and Woinowski-Krieger remark in
their 1959 monograph [109] that they had to make many changes and additions when up-
dating their first edition of 1940 to their second edition of 1959. Among other things, one
change was motivated by a publication of E. Reissner [91] on shear deformable plates. Due
to the remarkable and independent contribution of R. Mindlin on this subject, the notion
Reissner-Mindlin plate model is often used throughout the literature. As mentioned earlier,
this name is misleading due to the obvious differences between the two theories [111].

It is often not so evident which of the two models is given under the notion Reissner-
Mindlin. A clearly distinct presentation of the Reissner model can be obviously found in
his own papers, but also in the books of Timoshenko and Woinowski-Krieger [109] and
Panc [87]. In view of section 4.1 and the four plate hypotheses therein introduced, here,
the Mindlin model is presented.

Once again, the variation of the elastic potential of plates (4.20) is used. This time, the in-
tegral accounting for the shear energy is not zero, since γα 6= 0 (see figure 4.1 and equation
(4.5)). An integration by parts eliminates the derivatives in the variations leading to

δΠ =
∫
A

[(
−Mαβ ,β +Qα

)
δψα − (Qα,α +h f3)δw

]
dA+

∫
∂A

[
Mnδψn +Msδψs +Qδw

]
d∂A = 0 .

(4.33)

The terms under the boundary integral have already been transformed into their normal
and tangential components (Q = Qαnα is a scalar quantity and is invariant under a change
of basis). It turns out that the boundary integral is of much better nature than its Kirchoff-
Love counterpart. In fact, the three kinematical quantities ψn, ψs and w can be prescribed
independently of each other, and so can the respective forces Mn, Ms and Q.

The arbitrariness of the functions of variation allows extracting from (4.33) the equilibrium
conditions

Mαβ ,β −Qα = 0 on A

Qα,α +h f3 = 0 on A
(4.34)

together with the boundary conditions

Mn = 0 or ψn = gψn on Γψn ⊂ ∂A
Ms = 0 or ψs = gψs on Γψs ⊂ ∂A
Q = 0 or w = gw on Γw ⊂ ∂A .

(4.35)
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In order to obtain the governing plate equations for the Mindlin model, the stress resultants
(4.10) have to be inserted into (4.34). In terms of (E,ν) instead of (µ,λ ), those are given
by

Mαβ = D
[

1−ν

2
(ψα,β +ψβ ,α)+νψγ,γδαβ

]
(4.36a)

Qα =
Ehκ

2(1+ν)
(w,α +ψα) . (4.36b)

Above, D is the plate stiffness defined in (4.31) and κ denotes the so-called shear correc-
tion factor. This factor accounts for the overestimation of the shear stress in x3-direction
acting on a cross section. The overestimation has its source in the kinematical hypotheses
which entail a constant shear stress distribution over the thickness instead of a parabolic
one. In the literature, the shear correction factor is usually assigned a constant value of
κ = 5/6, which goes back to Reissner [92] and seems to be accurate enough in most
cases. Yet, notable effort has been spent in giving a more precise definition, for exam-
ple by Babuška et.al [14] or in the recently published technical report by Braess et al. [33],
where, among other things, the shear correction is determined by comparing two different
potentials belonging to two plate formulations of different order.

With (4.36) in (4.34), the governing differential equations for the Mindlin plate theory are
obtained

ψα,ββ +
1+ν

1−ν
ψβ ,αβ −κ

12
h2 (w,α +ψα) = 0 (4.37a)

Ehκ
2(1+ν)

(w,αα +ψα,α)+h f3 = 0 . (4.37b)

The system above represents 3 coupled equations. A partial differential equation may be
written in the form Ln×nu = f , where Ln×n is the differential operator of size n× n, u is
the vector containing the n unknowns and f is the known load vector. With the help of

a1 :=
2

1−ν
; a2 :=

1+ν

1−ν
; a3 :=

3−ν

1−ν
; c2

κ :=
h2

12κ
, (4.38)

the system (4.37) can be written as∆ ∂1 ∂1
∂1 1− c2

κ(a1∂11 +∂22) −c2
κa2∂12

∂2 −c2
κa2∂12 1− c2

κ(a1∂11 +∂22)

 w
ψ1
ψ2

=

− h
µhκ f3

0
0

 . (4.39)

Here, ∆ is again the Laplace operator, ∂1,∂2,∂11,∂22 and ∂12 denote partial derivatives
according to their indices. The differential operator matrix has second derivatives in every
entry along its main diagonal, which characterizes it as a system of sixth order. Eliminating
the two rotations ψ1 and ψ2 indeed yields

Dc2
κ∆∆∆w−D∆∆w =−h f3 + c2

κa3h∆ f3− c4
κa1h∆∆ f3 . (4.40)
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It does not need much of a comment to see that this system is much more complicated to
solve than the Kirchhoff system. The Kirchhoff system itself, however, is implicitly given
in (4.40). In fact, letting κ tending to infinity imposes the normal hypothesis as it can be
seen in (4.36b). With

κ→ ∞ ⇒ c2
κ→ 0 ,

the Kirchhoff-Love equation is retrieved from (4.40).

Beside the representations of the Mindlin system presented so far (i.e., (4.37) and (4.40)),
another form can be often encountered throughout the literature which will be derived
next. Therefore, the equations (4.37) are changed into a symbolic notation (see section
1.3) in order to make the intended manipulations easier. The system (4.37) then takes the
equivalent form

∆ψψψ +a2∇∇ ·ψψψ− 1
c2
κ
(∇w+ψψψ) = 0 (4.41a)

µhκ(∆w+∇ ·ψψψ)+h f3 = 0 , (4.41b)

or, alternatively, in a matrix representation[
∆ ∇·
−∇ −1+ c2

κ(∆+a2∇∇·)

][
w
ψψψ

]
=

[
− 1

µκ f3

0

]
. (4.42)

Due to the Helmholtz decomposition, a vector may be decomposed into the gradient of a
scalar and the curl of a divergence-free vector. This is generally stated in R3 only. In the
2d case, the theorem is expressed as

ψψψ = ∇ϑ̂ +∇× θ̂ . (4.43)

Hence, in 2d, the vector is decomposed into the gradient of a scalar and the curl of a scalar,
where the curl is defined by (1.8). In order to show that the relation above actually holds,
assume ∇ ·ψψψ = χ and χ = ∆ϑ̂ , where χ is some scalar quantity. Then ∇ · (ψψψ−∇ϑ̂) = 0.
The expression in parenthesis is obviously divergence-free. A divergence-free quantity can
always be expressed as the curl of some scalar field θ̂ , hence, ψψψ−∇ϑ̂ = ∇× θ̂ and (4.43)
follows.

First, (4.43) is inserted into (4.41a) yielding

∆(∇ϑ̂ +∇× θ̂)+a2∇∇ · (∇ϑ̂ +∇× θ̂)− 1
c2
κ
(∇w+∇ϑ̂ +∇× θ̂) = 0 . (4.44)

This can be rearranged to (recall ∇ ·∇× θ̂ = 0)

∇

[
a1∆ϑ̂ − 1

c2
κ

ϑ̂ − 1
c2
κ

w
]
+∇×

[
∆θ̂ − 1

c2
κ

θ̂

]
= 0 . (4.45)
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In order to satisfy (4.45), the individual expressions in square brackets must vanish

a1 ∆ϑ̂ − 1
c2
κ

ϑ̂ − 1
k

w = 0 (4.46a)

∆θ̂ − 1
c2
κ

θ̂ = 0 . (4.46b)

Second, (4.43) is inserted into (4.41b)

µhκ
(
∆w+∇ ·

(
∇ϑ̂ +∇× θ̂

))
+h f3 = 0 , (4.47)

which can be rearranged to

∆w+∆ϑ̂ =− 1
µhκ

h f3 . (4.48)

With (4.46) and (4.48), the Mindlin system is again complete.

Instead of the scalar quantities ϑ̂ and θ̂ , one might introduce the substitutions ϑ := ∆ϑ̂ =
∇ ·ψψψ and θ := ∆θ̂ = ∇⊥ ·ψψψ . Applying a Laplace operator on (4.46) and perform the
substitution on those equations as well as on equation (4.48), the following equivalent
system is obtained

∆w+ϑ =− 1
µhκ

h f3 (4.49a)

a1 ∆ϑ − 1
c2
κ

ϑ − 1
c2
κ

∆w = 0 (4.49b)

∆θ − 1
c2
κ

θ = 0 . (4.49c)

Interestingly, equation (4.49c) is completely decoupled from the other two. The quantity
ϑ can be eliminated by combining (4.49a) and (4.49b). This yields the final system

D∆∆w = h f3− c2
κa1 h∆ f3 (4.50a)

∆θ − 1
c2
κ

θ = 0 . (4.50b)

The first equation is of fourth order, the second of second order, allowing in sum the pre-
scription of three boundary conditions. For a constant or linear distributed body force f3,
equation (4.50a) exactly corresponds to the Kirchoff-Love equation (4.32). For a complete
solution, however, equation (4.50b) must be solved as well. This last equation, written as
c2
κ∆θ = θ shows that the sum of the second derivatives of the function, multiplied by c2

κ
gives the value of the function itself. The solution for such a problem is an exponential-
function with large exponent, due to the generally small value of c2

κ. Such a function
decays rapidly with increasing distance from the boundary. The quantity θ = ψ1,2−ψ2,1,
hence describes edge effects more and more vanishing for smaller c2

κ, i.e., for thinner
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plates. This suggests that, for moderately thick plates, the effects of higher order mainly
influence the quality of the results in the neighborhood of edges and clamps.

In the next chapter, much larger systems will be encountered than the Mindlin system
presented here. However, the Helmholtz decomposition of a vector valued quantity is still
possible. Therefore, instead of going over the full procedure from (4.42) to (4.50), the
final system is also obtained by alternately applying the divergence operator ∇· and its
perpendicular counterpart ∇⊥· on the second row of (4.42) and insert the substitutions
∇ ·ψψψ = ϑ and ∇⊥ ·ψψψ = θ . This yields ∆ 1 0

−∆ −1+ c2
κa1∆ 0

0 0 −1+ c2
κ∆

w
ϑ

θ

=

− 1
µκ f3

0
0

 . (4.51)

The system above exactly corresponds to the equations (4.49).

4.4 Poroelastic plate theories – An overview

The spectrum of publications dealing with poroelastic plate structures is quite restricted
although some new or alternative approaches have been presented in the last few years.
In this short section some of the theories available so far are briefly summarized. This
literature overview does not claim to be complete.

In his 1992 publication, Taber [106] presents a theory for transverse deflection of poroelas-
tic plates, which is based on the concepts investigated by Biot in 1964 [20]. The underlying
plate equations are taken from the Kirchhoff model. Therein, inertia terms in the equilib-
rium equations are neglected. The fluid flow is modeled using Darcy’s law, assuming the
in-plane fluid velocity gradients to be small compared to the transverse component and
are, hence, neglected. An equation is established which couples the mean plate curvature
to the pore pressure. An interesting detail consists in the fact that this last equation is
solved in its three-dimensional form rather than being integrated over the plate thickness.
The reason is that strong transverse gradients in the pore pressure are expected. The final
system consists of a fourth order differential equation in the transverse plate deflection
extended by an additional term accounting for the effects arising from the presence of the
pore pressure. Neglecting this additional term, the Kirchhoff plate equation is retrieved.
Solution methods and results are presented.

The 1994 paper of Theodorakopoulos and Beskos [107] is probably the most known publi-
cation on the topic. Starting point is Biot’s total stress formulation into which the Kirchhoff
assumptions are incorporated allowing an integration over the thickness. In contrast to the
work presented by Taber, the inertia effects are included. All equations are transformed
into the steady-state frequency domain by means of the same time-harmonic assumption
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used here. Again, the in-plane fluid flow is neglected. The subsequent elimination of the
fluid displacement leads to a final system consisting of two coupled equations with the
vertical deflection and the fluid stress as unknown quantities. An unpleasant complica-
tion of the system is given by the fact that the fluid stress appears in its ’normal’ form
as well as inside an integral over the thickness. Nonetheless, the system is solved using
double trigonometric series expansions of the unknown quantities over the plate domain.
A comparison to thermoelasticity is given and results are presented.

Another work worth mentioning has been published by Leclaire, Horoshenkov and Cum-
mings [73] in 2001. Once again, the presettings are very similar to the preceding works.
The total stress formulation is used, the thin-plate assumptions are introduced and the in-
plane fluid flow is neglected. This time, the stress resultants related to the poroelastic
structure are expressed by means of the stress resultants of the solid plate. After using
energy expressions for the poroelastic continuum and incorporating the insights gained re-
garding the stress resultants, a coupled system of two differential equations is obtained.
The unknown quantities are the vertical plate deflection and the relative (vertical) fluid-
solid displacement. Again, the first equation is of fourth order actually reducing to the
Kirchhoff equation when neglecting poroelastic effects. The second one strongly reminds
of an enhanced wave equation. The authors claim to have developed a much simpler model
as the one given by Theodorakopoulos and Beskos, yet, comparing very well. The given
results seem to confirm this.

Beside the three works briefly introduced above, some more publications dealing with
poroelastic plates can be mentioned. In their 2000 monograph Cederbaum et al. [35] for
example discuss several poroelastic structures, including beams and plates. In contrast
to the publications mentioned above, they investigate structures for which the transversal
flow is negligible while it is viable in the longitudinal directions. Finally, two very recent
publications from 2009 worth mentioning are the one by Wen and Liu [112] and by Folkow
and Johansson [53].



5 EXTENDABLE POROELASTIC PLATE AND DISC EQUATIONS

As it has been pointed out in the previous chapter, the derivation of classical plate theories
requests the introduction of several kinematical assumptions describing the behavior of the
plate in thickness direction. As a result, the thickness coordinate can be eliminated by an
integration, hence, reducing the dimension of the problem from 3d to 2d. The plate domain
is then given by its mid-surface.

The assumptions expressed by the equations (4.4) may directly give an idea of how they
may be extended in order to describe a more general kinematical behavior. Intuitively, the
in-plane displacement could be extended such to incorporate a cubic term. In fact, a cubic
term would allow a warping of the cross section, overruling hypothesis 1. The vertical
deflection could be extended by a quadratic term, allowing a thinning and a thickening of
the two plate halves during bending, hence, overruling hypothesis 2. Basically, an infinite
amount of such terms could be added in this way. This approach, however, still demands
an apriori estimation of the plate kinematics over its thickness.

A more general approach is found by abandoning the idea of introducing any assumptions
of this kind. Instead of incorporating only such terms coinciding with the intuitively as-
sumed kinematical behavior, all possible terms shall be considered. In other words, the
primal variables are replaced by power series in thickness direction

ui =
∞

∑
k=0

k
uixk

3 p =
∞

∑
k=0

k
pxk

3 . (5.1)

This idea goes, at least, back to Mindlin as it can be read in his 1955 monograph or its
recently published new edition [79]. However, for the elastic case only. Therein, he derives
plate equations using energy principles and introduces the power series (5.1) for ui. An
integration eliminates the thickness coordinate and different truncations lead to theories of
different order of approximation.

Later, Kienzler [65] adopted this idea and used it on curved shell structures. Preußer [89]
used this approach for obtaining enhanced plate equations. Kienzler [66, 67] has further
shown how to obtain the classical plate equations by using such series expansions and
truncating them according to what he denotes as the uniform-approximation approach.
Moreover, Bose and Kienzler [29] studied the material conservation laws associated with
those consistent plate theories.

This chapter is dedicated to the derivation of extendable 2d equations in poroelastody-
namics, starting from the variational formulation of the poroelastic continuum (3.55) and

49
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using the power series (5.1) in order to bypass the need of formulating any assumptions in
thickness direction. This seems to be especially advantageous in view of the pore pressure,
since its effects on the behavior of the structure are hardly to predict. Moreover, it will be
shown that this approach does not only lead to plate equations describing the out-of-plane
problem, but also the in-plane (i.e., disc) problem is additionally provided.

5.1 The two-dimensional variational formulation

In this section, the two-dimensional variational formulation (or weak form) for a poroelas-
tic continuum will be derived. Starting point is the three-dimensional virtual work theorem
(3.54), which, for simplicity, is given once again

∫
Ω

[[
µ
(
ui, j +ui, j

)
+
(
λ uk,k−α p

)
δi j

]
ūi, j

+

[
β

(
p,i− f f

i −ω
2
ρ

f ui

)
−
(

fi +ω
2
ρui
)]

ūi

+
1

iω

[
β

iωρ f

(
p,i−ω

2
ρ

f ui− f f
i

)]
p̄,i−

[
α uk,k +

φ 2

R
p
]

p̄

]
dΩ

−
∫

ΓN

[(
σi jn j

)
ūi +

1
iω

(qini) p̄
]

dΓN = 0 .

(5.2)

For obtaining a more compact notation, the functions of variation have been replaced ac-
cording to ūi := δui and p̄ := δ p. By replacing the expressions in square brackets by
the governing equations presented within the sections 3.1, 3.2 and 3.3, equation (5.2) is
rewritten as∫

Ω

[
σi jūi, j +σi j, jūi +

1
iω

(qi p̄,i +qi,i p̄)
]

dΩ−
∫

ΓN

[
tiūi +

1
iω

q p̄
]

dΓN = 0 . (5.3)

Recall that in the poroelastic case, in contrast to the elastic case, σi j are the components
of the total stress tensor (3.5), and ρ and fi are the density and the body forces of the bulk
material, respectively, hence combining the solid and the fluid phases.

Every plate theory relies on a proper integration over the thickness. In the previous chap-
ter, the strategy used in order to allow this reduction of dimension consisted in introduc-
ing several specific assumptions. As pointed out in the introduction of this chapter, such
assumptions will not be used here. Instead, the primal variables and their variations are re-
placed by power series in thickness direction, which, to put it crudely, could be interpreted
as a collection of all possible assumptions



5.1 The two-dimensional variational formulation 51

ui(x1,x2,x3) =
∞

∑
k=0

k
ui(x1,x2)xk

3 p(x1,x2,x3) =
∞

∑
k=0

k
p(x1,x2)xk

3 (5.4a)

ūi(x1,x2,x3) =
∞

∑
`=0

`

ūi(x1,x2)x`3 p̄(x1,x2,x3) =
∞

∑
`=0

`

p̄(x1,x2)x`3 . (5.4b)

Since every function in (5.3) is multiplied by a variation, a product of two series is ob-
tained.

As long as the series are infinite, the equalities hold. It can be clearly observed that in
contrast to the original functions on the left hand sides, the dependence on the thickness
coordinate x3 is explicitly given in the expressions on the right-hand-sides. The coefficients
of order k in (5.4a) are the new unknown functions of the system. Those, however, now
only depend on the two plane-coordinates x1 and x2. The coefficients of order ` in (5.4b)
are functions of variation and are therefore arbitrary as long as they are kinematically
admissible.

In order to integrate (5.3) over the thickness, the dependence of all quantities on x3 must be
known. For the primal variables and their variations, this is achieved by the introduction of
the power series. The volume forces fi (including f s

i and f f
i ) and the density ρ (including

ρs and ρ f ) have not been considered yet. In order to be consistent, those quantities should
be replaced by power series as well. However, since the plate’s extension over x3 is rela-
tively small, the benefit of allowing varying densities and body forces along the thickness
direction may be questionable. Therefore, they are assumed to be constant with respect
to x3, or, in other words, only the constant term of their power series representations are
considered. They may still vary over the plane, though.

In (5.3), the derivatives of the series (5.4) are needed. It is especially important to distin-
guish between a differentiation with respect to the in-plane coordinates xα and the thick-
ness coordinate x3. By using the product rule, one obtains

ui,α(x1,x2,x3) =
∞

∑
k=0

k
ui,α(x1,x2)xk

3 p,α(x1,x2,x3) =
∞

∑
k=0

k
p,α(x1,x2)xk

3 (5.5a)

ui,3(x1,x2,x3) =
∞

∑
k=0

k
k
ui(x1,x2)xk−1

3 p,3(x1,x2,x3) =
∞

∑
k=0

k
k
p(x1,x2)xk−1

3 . (5.5b)

So far, everything has been prepared to perform the reduction of dimension. Before doing
so, resultants shall be defined first

`

Θi j =
∫
h

[
σi j x`3

]
dx3

`

Ξi =
∫
h

[
qi x`3

]
dx3 (5.6a)

`

Λi =
∫
h

[
σi j, j x`3

]
dx3

`

ϒ =
∫
h

[
qi,i x`3

]
dx3 . (5.6b)
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In contrast to those given in (4.9) in section 4.1.2, the ones defined here are generalized
resultants of order `. (5.6a) are stress and flux resultants, respectively, while (5.6b) are
primarily defined for convenience and cannot be assigned to a distinct physical meaning.

The benefit of introducing such resultants is first of all the use of a much more compact
notation. In view of the large expressions arising, this is indeed advantageous. Second, the
whole integration over the thickness is performed by evaluating the resultants. This allows
splitting the equation into easier manageable sub-expressions, rather then working on the
full system. Third, after solving the system for the primal variables, the stress and the flux
resultants provide information on the state of stress and flux inside the structure.

In the following two subsections 5.1.1 and 5.1.2, the domain and the boundary integral of
(5.3) are mapped onto the two-dimensional domain A∪∂A.

5.1.1 The domain integral

In a first step, only the power series for the functions of variation (5.4b) are plugged into
the domain integral of the virtual work expression (5.3). The terms containing derivatives
in the variations are split according to derivatives with respect to xα and x3. Moreover, the
integral over the domain Ω is split into an integral over the mid-surface A and an integral
over the thickness h according to

∫
Ω

dΩ =
∫

A
∫

h dx3 dA. Finally, the summation and the
integration are exchanged. This last step, however, is only valid if the series is convergent
for all x3 ∈ [−h/2,h/2]. Hence, the convergence radius r must be larger than h/2. Since the
function to be represented by the power series is unknown, its convergence radius cannot be
determined exactly, however, it may still be estimated by the following considerations.

The so-called Cauchy root test implies that a series ∑
∞
n=0 an with coefficients an converges

if the condition C = limn→∞
n
√
|an| < 1 holds. Applied to a power series with an = cnxn,

the radius of convergence is found to be

C = lim
n→∞

n
√
|cnxn| ⇒ r =

1
lim
n→∞

n
√
|cn|

. (5.7)

The power series may be separated into two series, the first one being symmetric with re-
spect to the series center point (in this case, the center point is x = 0) and an antisymmetric
one, hence ∑

∞
n=0 cnxn = ∑

∞
n=0 c2nx2n + x∑

∞
n=0 c2n+1x2n. For both parts, the convergence

radius results in

C = lim
n→∞

n
√
|c2n(+1)x2n| ⇒ r =

1

lim
n→∞

2n
√
|c2n(+1)|

. (5.8)

The coefficient c2n(+1) stands for both c2n and c2n+1. The convergence radius is, hence,
governed by the shape of the coefficients cn. Applied to the present problem, those coeffi-
cients are not known, since they represent exactly the quantities to be calculated. However,
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from an engineering point of view, it may seem sustainable to assume that there exist some
dominant coefficients ĉ2k(+1) for both the symmetric and antimetric parts, such that

ĉ2k(+1)x
2k > c2n(+1)x

2n for n > k . (5.9)

In the present case, both terms in the above inequality take their maximum value at |x| =
h/2. Hence, a condition for the unknown coefficients is found, namely

c2n(+1) < ĉ2k(+1)

(
2
h

)2(n−k)

. (5.10)

Using the condition (5.10) in (5.8) gives

r >
1

lim
n→∞

2n
√
|ĉ2k(+1)

(2
h

)2(n−k) |
= lim

n→∞
|ĉ2k(+1)|

1
2n

(
h
2

) n−k
n

=
h
2
, (5.11)

stating that the convergence radius is larger than the integration limits and the exchange of
integration and summation is therewith justified.

The domain integral is now written as∫
Ω

[
σi jūi, j +σi j, jūi +

1
iω

(qi p̄,i +qi,i p̄)
]

dΩ

=
∫
A

∫
h

[
σiα ūi,α +σi3ūi,3 +σi j, jūi +

1
iω

(qα p̄,α +q3 p̄,3 +qi,i p̄)
]

dx3 dA

=
∞

∑
`=0

∫
A

[∫
h

(
σiα x`3

)
dx3

`

ūi,α + `
∫
h

(
σi3 x`−1

3

)
dx3

`

ūi +
∫
h

(
σi j, j x`3

)
dx3

`

ūi

+
1

iω

(∫
h

(
qα x`3

)
dx3

`

p̄,α + `
∫
h

(
q3 x`−1

3

)
dx3

`

p̄+
∫
h

(
qi,i x`3

)
dx3

`

p̄
)]

dA .

(5.12)

The resultants (5.6) can now easily be identified within (5.12). The order of each resultant
is characterized by the power in x3. A substitution yields

∞

∑
`=0

∫
A

[
`

Θiα
`

ūi,α + `
`−1

Θ i3
`

ūi +
`

Λi
`

ūi +
1

iω

(
`

Ξα

`

p̄,α + `
`−1

Ξ α

`

p̄+
`

ϒ
`

p̄
)]

dA . (5.13)

The domain integral is now expressed as a two-dimensional integral over the mid-surface
A. The integration over the thickness is hidden in the resultants and can be evaluated for
each resultant separately (see section 5.3).
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5.1.2 The boundary integral

The boundary integral over ΓN covers the parts of Γ = ∂Ω on which Neumann data are
given, i.e., on which a stress and/or a flux is prescribed. It is apparent from figure 5.1 that
the whole boundary of the considered structure consists of

Γ = ∂Ω = A+∪A−∪B ; ΓN ⊆ Γ . (5.14)

The orientation of the boundary surface is uniquely defined by the normal vector on each
point of the surface. As depicted in figure 5.1, the upper and the lower surfaces A+ and
A−, respectively, are parallel to the (x1,x2)-plane. As a result, both surfaces A± have one

{

O

x1

x2
x3

ns

A

C

A+

A−

B

Figure 5.1: The geometry and definitions of the plate

unique normal vector of the form [0,0,±1], respectively. Consequently, the quantities ti
and qn are

ti = σi jn j ≡ (σi3n3)
+ = ti(3)+ and qn = qini ≡ (q3n3)

+ = q(3)+ on A+

ti = σi jn j ≡ (σi3n3)
− = ti(3)− and qn = qini ≡ (q3n3)

− = q(3)− on A− .
(5.15)

The boundary B is perpendicular to the (x1,x2)-plane everywhere. Hence its normal vector
takes the form [n1,n2,0]. Along B, the prescribed quantities are, therefore, given as

ti = σi jn j ≡ σiαnα = ti(α) and qn = qini ≡ qαnα = q(α) on B . (5.16)

The force vector may have three non-zero components on each boundary, whereas for
the flux only the normal component counts. Both q(3)± and q(α) are scalar quantities
describing the flux in normal direction.

By splitting the boundary integral according to (5.14) and taking into account the consid-



5.1 The two-dimensional variational formulation 55

erations expressed above, yields∫
ΓN

[
tiūi +

1
iω

q p̄
]

dΓN =
∫

A+

[
ti(3)+ūi +

1
iω

q(3)+ p̄
]

dA++
∫

A−

[
ti(3)−ūi +

1
iω

q(3)− p̄
]

dA−

+
∫
B

[
ti(α)ūi +

1
iω

q(α) p̄
]

dB .

(5.17)

On A+ and A− the thickness coordinate x3 takes the value x3 = h/2 and x3 =−h/2, respec-
tively. The geometry of the plate is restricted such that in an undeformed state, the two
surfaces A+ and A− are equal to each other and to the mid-surface A. With fixed x3 the
power series for the functions of variation become

ūi =
∞

∑
`=0

`

ūi

(
h
2

)`

p̄ =
∞

∑
`=0

`

p̄
(

h
2

)`

on A+

ūi =
∞

∑
`=0

`

ūi

(
−h

2

)`

p̄ =
∞

∑
`=0

`

p̄
(
−h

2

)`

on A− .

(5.18)

Under those conditions the two integrals over A+ and A− can be merged to one single
integral over A∫
A+

[
ti(3)+ūi +

1
iω

q(3)+ p̄
]

dA++
∫

A−

[
ti(3)−ūi +

1
iω

q(3)− p̄
]

dA−

=
∞

∑
`=0

∫
A

[[
ti(3)+

(
h
2

)`

+ ti(3)−
(
−h

2

)`]
`

ūi +
1

iω

[
q(3)+

(
h
2

)`

+q(3)−
(
−h

2

)`]
`

p̄

]
dA+

=
∞

∑
`=0

∫
A

[
`

t i
(3) `

ūi +
1

iω
`

q(3)
`

p̄
]

dA .

(5.19)

Above, the load resultants

`

t i
(3) = ti(3)+

(
h
2

)`

+ ti(3)−
(
−h

2

)`

and
`

q(3) = q(3)+
(

h
2

)`

+q(3)−
(
−h

2

)`

(5.20)

have been introduced. Similarly as the resultants (5.6), these contain all information re-
garding the thickness.

In contrast to the boundary integrals over A±, the integral over B must be integrated over
x3 in order to reduce it to the boundary curve C = ∂A (see figure 5.1). Inserting the power
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series (5.4b) into the third integral on the right-hand-side of (5.17) and exchanging again
the integration and the summation under the same argument as before, one obtains∫

B

[
ti(α)ūi +

1
iω

q(α) p̄
]

dB =
∞

∑
`=0

∫
C

∫
h

[
(σiαnα)

`

ūix`3 +
1

iω
(qαnα)

`

p̄x`3

]
dx3 dC

=
∞

∑
`=0

∫
C

∫
h

(
σiαx`3

)
dx3 nα

`

ūi +
1

iω

∫
h

(
qαx`3

)
dx3 nα

`

p̄

dC .

(5.21)

Again, both integrals over the thickness in (5.21) are identified as the resultants (5.6a). The
boundary integral over B, hence, takes the compact form∫

B

[
ti(α)ūi +

1
iω

q(α) p̄
]

dB =
∞

∑
`=0

∫
C

[(
`

Θiαnα

)
`

ūi +
1

iω

(
`

Ξαnα

)
`

p̄
]

dC . (5.22)

With (5.19) and (5.22) the boundary integral of (5.3) has been mapped onto the two-
dimensional surface A and its boundary C = ∂A. The complete boundary integral reads∫

ΓN

[
tiūi +

1
iω

q p̄
]

dΓN

=
∞

∑
`=0

∫
A

[
`

t i
(3) `

ūi +
1

iω
`

q(3)
`

p̄
]

dA+
∞

∑
`=0

∫
C

[(
`

Θiαnα

)
`

ūi +
1

iω

(
`

Ξαnα

)
`

p̄
]

dC .

(5.23)

5.2 In-plane and out-of-plane problems

With the domain integral (5.13) and the boundary integral (5.23), the variational formula-
tion (5.3) is given as a two-dimensional integral over the plate’s mid-surface A

∞

∑
`=0

∫
A

[
`

Θiα
`

ūi,α + `
`−1

Θ i3
`

ūi +
`

Λi
`

ūi +
1

iω

(
`

Ξα

`

p̄,α + `
`−1

Ξ α

`

p̄+
`

ϒ
`

p̄
)]

dA

=
∞

∑
`=0

∫
A

[
`

t i
(3) `

ūi +
1

iω
`

q(3)
`

p̄
]

dA+
∞

∑
`=0

∫
C

[(
`

Θiαnα

)
`

ūi +
1

iω

(
`

Ξαnα

)
`

p̄
]

dC .

(5.24)

The integration over the thickness is hidden in the resultants and has not been performed
yet, which is why it is actually not entirely correct to speak of a two-dimensional expres-
sion. However, with the help of the power series, the evaluation of the resultants represents
no major problem and will be presented in section 5.3.
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Before carrying out this evaluation, the decoupling of the out-of-plane (i.e., plate) and
the in-plane (i.e., disc) problems shall be discussed. In fact, the domain and the bound-
ary integrals derived in the previous section, still describe the complete three-dimensional
structure. Indeed, beside some geometrical confinements, no other restrictions have been
imposed so far. It is known from elasticity that the full system uncouples into a disc prob-
lem and a pure plate-bending problem. As it will be shown in the following, this also holds
for a poroelastic material.

First of all, one must be aware of what distinguishes a plate from a disc. Essentially,
there is only one characteristic: Regarding the plate, the mid-surface A can only move
in x3-direction, whereas the mid-surface of a disc is only allowed to move in x1- and
x2-direction. Hence, every quantity of any power series resulting into an in-plane displace-
ment of the mid-surface can uniquely be associated to the disc problem and vice versa.
This further means that the shear forces and the bending moments are related to the plate
problem, since they do not induce any in-plane displacement of the mid-surface, whereas
the normal forces can only appear in the disc problem. Conversely, it can also be stated
that all quantities describing deformations induced by the respective reaction forces, can
be uniquely associated with the corresponding problem.

For facilitating the distinction between out-of-plane and in-plane quantities, the sets of
even and odd numbers are introduced

E= {a|a = 2a′,a′ ∈ N}; O= {a|a = 2a′+1,a′ ∈ N} . (5.25)

In the following figures 5.3, 5.2 and 5.4, the physical effects induced by each term of the
individual power series are depicted up to the third order. The effects are shown on one
and the same thickness fiber. The dashed line denotes the mid-surface.

The overall in-plane displacement uα . The series for the overall in-plane displacement
is given as

uα =
∞

∑
k=0

k
uαxk

3 =
0
uα +

1
uαx3 +

2
uαx2

3 +
3
uαx3

3 + . . . (5.26)

The constant term describes a constant in-plane shift of the thickness fiber. All higher

0
uα

1
uα x3

2
uα x2

3
3
uα x3

3

Figure 5.2: Physical interpretation of the in-plane displacement power series
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terms of even order express an in-plane shift of all points of the fiber into the same direc-
tion, however, putting much more weight on the external points the higher the order of the
power is. Those terms result into a nonzero in-plane displacement when integrated over
x3.

The linear term expresses a rotation of the thickness fiber. Higher terms of odd order
describe basically the same, however, including warping effects. Those terms result into a
zero in-plane displacement after integration.

Regarding uα , all quantities
k
uα , k∈E are related to the disc problem, whereas all quantities

k
uα , k ∈O are related to the plate problem.

The overall out-of-plane displacement u3. The series for the overall out-of-plane dis-
placement is given as

u3 =
∞

∑
k=0

k
u3xk

3 =
0
u3 +

1
u3x3 +

2
u3x2

3 +
3
u3x3

3 + . . . . (5.27)

The constant term describes a constant vertical deflection, hence, every point on the thick-

0
u3

1
u3x3

2
u3x2

3
3
u3x3

3

Figure 5.3: Physical interpretation of the terms appearing in the individual power series

ness fiber is shifted by the same amount in x3 direction. The quadratic term describes a
thickening of one plate halve and a thinning of the other. All higher terms of even or-
der describe a similar effect. When integrated over x3, those terms result into a nonzero
out-of-plane displacement.

The linear term expresses a thickening (or thinning) of the plate fiber, where every point
is shifted linearly with increasing distance from the mid-surface. All higher terms of odd
order describe basically the same, however, with the displacement depending nonlinearly
on x3, therefore, putting much more weight on the external points of the fiber. Those terms
result into a zero out-of-plane displacement after integration.

Regarding u3, all quantities
k
u3, k ∈ E are related to the plate problem, whereas all quanti-

ties
k
u3, k ∈O are related to the disc problem.
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The overall pore pressure p. The series for the overall pore pressure is given as

p =
∞

∑
k=0

k
pxk

3 =
0
p+

1
px3 +

2
px2

3 +
3
px3

3 + . . . . (5.28)

In contrast to the kinematical quantities, the pore pressure is a scalar function and, hence,
cannot be assigned to any direction. In figure 5.4, the schematic value of the function is
therefore expressed as a filled circle, symbolizing the intensity of the pore pressure acting
at a specific point on the fiber. The black and white fillings express different signs.

0
p

1
px3

2
px2

3
3
px3

3

Figure 5.4: Physical interpretation of the pore pressure power series

The constant term obviously expresses an equal pressure over the thickness. Higher terms
of even order describe a pressure not changing sign. Again, higher order terms put more
weight on the outer points. All those terms result into a nonzero pore pressure when
integrated over the thickness.

All terms of odd order describe a pressure distribution changing sign at the mid-surface.
In the linear case, the pressure changes linearly with increasing distance from the mid-
surface, whereas for higher terms the change is nonlinear. Those quantities result into a
zero pore pressure after integration.

In contrast to the kinematical quantities, the attribution of the pressure quantities to the in-
plane or out-of-plane problem is less obvious, yet, still unique. All quantities

k
p, k ∈ E are

related to the disc problem, since those express a nonzero pore pressure after integration.
This means that a normal force is induced, which, by its very nature, triggers an in-plane
displacement of the mid-surface, which is only allowed in the disc problem. In contrast to
that, all quantities

k
p, k ∈ O are related to the plate problem, since they do not induce any

inadmissible effects for the plate.

In table 5.1, all quantities of the power series are recollected depending on their affiliation
to the plate or to the disc. It follows pretty clearly from above that higher order terms
mainly influence the outer layers of the structure, letting the neighborhood around the
mid-surface remain more and more unaffected. The ’main part’ of the deformation and
pressure distribution is basically given by only a few low order terms. To give an idea,
recall that the Mindlin-plate in section 4.3 only uses the quantities w :=

0
u3 and ψα :=

1
uα

(which, less surprisingly, are indeed plate quantities according to the considerations of
this section). In conclusion, it can be stated that the uncoupling of the in-plane and the
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k
u3 ,

`

ū3
k
uα ,

`

ūα

k
p ,

`

p̄

plate k, ` ∈ E k, ` ∈O k, ` ∈O
disc k, ` ∈O k, ` ∈ E k, ` ∈ E

Table 5.1: Separation of plate and disc quantities

out-of-plane problems, as known from elasticity, is also available in the poroelastic case.
This means that both problems can be formulated and solved independently of each other.
However, it must be kept in mind that in order to reconstruct the actual state of stress and/or
deformation of the three-dimensional structure the effects arising from both parts have to
be considered.

5.3 The resultants

After having specified the quantities belonging to the out-of-plane and the in-plane prob-
lems, the resultants can be split accordingly. This leads to a separation of the two-dimen-
sional weak form into the two uncoupled plate- and disc-parts.

When evaluating the resultants, it must be distinguished between the components with
indices α and those with index 3. The evaluation shall be presented using the example of
`

Θαβ , i.e.,

`

Θαβ =
∫
h

σαβ x`3 dx3 =
∫
h

[
µ
(
uα,β +uβ ,α

)
+
(
λuk,k−α p

)
δαβ

]
x`3 dx3 . (5.29)

In order to perform the integration over the thickness, the functions ui and p are replaced
by the power series (5.4a), taking into consideration the derivatives (5.5). This yields

`

Θαβ =
∞

∑
k=0

∫
h

[
µ

(
k
uα,β +

k
uβ ,α

)
+
(

λ
k
uγ,γ −α

k
p
)

δαβ

]
xk+`

3 dx3 +
∞

∑
k=0

∫
h

[
kλ

k
u3δαβ

]
xk+`−1

3 dx3 .

(5.30)

The expressions in square brackets do not depend on x3 anymore and can be moved in
front of the integral. Hence, the integrand now only consists of some power of x3. Such an
integral is easy to evaluate. However, what must be considered are the values of the powers
k+` and k+`−1. Indeed, since the integration boundaries are antisymmetric with respect
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to x3 = 0, only odd powers of x3 will result into a nonzero expression, whereas even powers
will always cause the integral to become equal to zero. Evaluating the integrals

h
2∫

− h
2

xk+`
3 dx3 =

(
h
2

)k+` h
k+ `+1

δ
e
k` ∀ k, ` ∈ N

h
2∫

− h
2

xk+`+1
3 dx3 =

(
h
2

)k+` 2k
k+ `

δ
o
k` ∀ k, ` ∈ N

(5.31)

with

δ
e
k` =

1+(−1)k+`

2
=

{
1 if k+ ` even
0 if k+ ` odd

δ
o
k` =

1− (−1)k+`

2
=

{
0 if k+ ` even
1 if k+ ` odd

,

(5.32)

expression (5.30) is written as

`

Θαβ =
∞

∑
k=0

(
h
2

)k+`[
δ

e
k`

h
k+ `+1

[
µ

(
k
uα,β +

k
uβ ,α

)
+
(

λ
k
uγ,γ −α

k
p
)

δαβ

]
+

δ
o
k`

2k
k+ `

[
λ

k
u3δαβ

]]
, (5.33)

with δ e
k` and δ o

k` taking care of the effects resulting from an even or odd power. Note that
the superscript e in δ e

k` exceptionally does not denote an elastic quantity but simply stands

for even whereas the superscript o stands for odd. With (5.33), the resultant
`

Θαβ represents
an expression not depending on the thickness coordinate x3 anymore.

So far, no distinction has been made between the out-of-plane and the in-plane parts of the
resultant (5.33). The nice thing is that this uncoupling basically sets itself when evaluating
the expressions for different orders of ` ∈ N. In fact, it turns out that for ` ∈ O only
plate-related quantities are left in the resulting expression (see table 5.1)

( `

Θαβ

)
`∈O

=
∞

∑
k=0
k∈O

(
h
2

)k+` h
k+ `+1

[
µ

(
k
uα,β +

k
uβ ,α

)
+
(

λ
k
uγ,γ −α

k
p
)

δαβ

]

+
∞

∑
k=0
k∈E

(
h
2

)k+` 2k
k+ `

[
λ

k
u3δαβ

]
,

(5.34)
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whereas for ` ∈ E only disc-related quantities appear( `

Θαβ

)
`∈E

=
∞

∑
k=0
k∈E

(
h
2

)k+` h
k+ `+1

[
µ

(
k
uα,β +

k
uβ ,α

)
+
(

λ
k
uγ,γ −α

k
p
)

δαβ

]

+
∞

∑
k=0
k∈O

(
h
2

)k+` 2k
k+ `

[
λ

k
u3δαβ

]
.

(5.35)

All resultants (5.6) can be evaluated and split into their plate and disc parts accordingly.
Due to their bulkiness, however, the respective expressions are shifted into the appendix
A.1. Table 5.2 summarizes all resultants and distinguishes between those related to the

plate and the disc problem depending on the value of `. In the particular case of
`

Θαβ , it is

`

Θαβ

`

Θ3α =
`

Θα3
`

Θ33
`

Ξα

`

Ξ3
`

Λα

`

Λ3
`

ϒ

plate ` ∈O ` ∈ E ` ∈O ` ∈O ` ∈ E ` ∈O ` ∈ E ` ∈O

disc ` ∈ E ` ∈O ` ∈ E ` ∈ E ` ∈O ` ∈ E ` ∈O ` ∈ E

Table 5.2: Plate and disc resultants

actually not too difficult to establish the relation between the value of ` and its affiliation
to the plate or the disc problem from the beginning, i.e., intuitively. In fact, for ` = 0,
the individual components of the resultant clearly express some in-plane forces, uniquely
related to the disc problem. Indeed, for α = β = 1 and α = β = 2, one gets normal forces
in the respective directions

0

Θ11 =
∫
h

σ11 dx3
0

Θ22 =
∫
h

σ22 dx3 ,

for α = 1,β = 2 and vice versa, one gets in-plane shear forces
0

Θ12 =
∫
h

σ12 dx3
0

Θ21 =
∫
h

σ21 dx3 .

For every other ` ∈ E, again in-plane forces are obtained, which can be interpreted as
normal and in-plane shear forces of higher order.

For `= 1, on the other hand, a comparison with (4.9) directly links the individual compo-
nents to plate-related moments. Indeed, for α = β = 1 and α = β = 2, one gets bending
moments with normal stresses in the respective directions

1

Θ11 =
∫
h

σ11x3 dx3
1

Θ22 =
∫
h

σ22x3 dx3 ,



5.3 The resultants 63

for α = 1,β = 2 and vice versa, one gets twisting moments
1

Θ12 =
∫
h

σ12x3 dx3
1

Θ21 =
∫
h

σ21x3 dx3 .

For every other `∈O, again, higher order moments are obtained. Generally, the higher the
order of the resultant, the more weight it puts towards the external layers of the structure.

With the expressions given in appendix A.1, all resultants (5.6) appearing in (5.13) can
be expressed in an x3-independent form. The three-dimensional domain integral of the
virtual work (5.3) can, hence, be reduced to a two-dimensional integral over the mid-
surface A, without having introduced any kinematic assumptions as it was necessary in
chapter 4 in order to reduce the three-dimensional elastic potential to two dimensions.
Thus, having covered the dimensional reduction of the domain integral in (5.3), only the
boundary integral is left. According to equation (5.23), the boundary integral is split into
two parts, the first one taking care of the conditions imposed on the upper and lower
surfaces of the structure, and the second part dealing with the conditions imposed along
the outer boundary. The first part shall be investigated first and is rewritten as

∞

∑
`=0

∫
A

[
`

t i
(3) `

ūi +
1

iω
`

q(3)
`

p̄
]

dA =
∞

∑
`=0

∫
A

[
`

tα

`

ūα +
`

t3
`

ū3 +
1

iω
`

qn
`

p̄
]

dA , (5.36)

where the first term has been split into its in-plane and out-of-plane components and the
superscript (3) denoting the direction of the normal vector has been omitted since no danger
of confusion is given. The resultants (5.20) may be written in the equivalent form

`

χ =

(
h
2

)`
0
χ ∀ ` ∈ E and

0
χ = χ

++χ
−

`

χ =

(
h
2

)`−1
1
χ ∀ ` ∈O and

1
χ =

h
2
(
χ
+−χ

−) (5.37)

where χ stands for either tα , t3, or qn and χ± stands for the respective prescribed quantity
on A±. Every resultant (5.37) is either connected to the plate or to the disc problem depend-
ing on its value `. This is easily determined by having a look on the function of variation
with which each resultant is multiplied with, i.e., if the variation is a plate quantity, the
resultant belongs to the plate problem and vice versa. The load resultants connected to the
plate are thus

`

t3 =

(
h
2

)`
0
t3 ∀ ` ∈ E

`

tα =

(
h
2

)`−1
1
tα ∀ ` ∈O

`

qn =

(
h
2

)`−1
1
qn ∀ ` ∈O

(5.38)
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whereas those for the disc are

`

t3 =

(
h
2

)`−1
1
t3 ∀ ` ∈O

`

tα =

(
h
2

)`
0
tα ∀ ` ∈ E

`

qn =

(
h
2

)`
0
qn ∀ ` ∈ E .

(5.39)

It becomes immediately apparent that all three components of the surface stress vector
`

t i as
well as the surface flux

`

qn contribute to either problem. Hence, prescribing some arbitrary
load and/or flux on the upper and lower surfaces of the structure inevitably activates both
problems. Although the two systems can still be solved uncoupled of each other, they
are not independent. It follows that in order to reconstruct the real state of stress in the
three-dimensional structure, both solutions must be superposed.

Yet, there is a way to circumvent this peculiarity and to create two completely independent
problems. Indeed, the expressions for

0
χ and

1
χ as given in (5.37) suggest that an appropriate

prescription of the upper and lower values causes the respective resultants to be equal to
zero. It is, in fact, easily verified that the necessary conditions for eliminating the disc
loads (5.39) and, hence, the disc problem are

t+3 = t−3 t+α =−t−α q+n =−q−n . (5.40)

Similarly, with
t+3 =−t−3 t+α = t−α q+n = q−n (5.41)

the plate loads (5.38) vanish, and with them the plate problem.

To give an example, assume
0
t3 = 1.0 (an exemplary dimensionless load). The plate does

not care if this load is prescribed completely on the upper surface according to t+ = 1.0
and t− = 0.0 or it has been split half and half on both surfaces, i.e., t+ = 0.5 and t− = 0.5.
The value of the load resultant is the same in both cases, and so is the solution of the plate
equations. The difference is that in the first case, the disc resultant

1
t3 is not equal to zero,

while in the second case it is. Hence, this distinction is vital for the reconstruction of the
complete solution.

The boundary integral over C in (5.23) allows the prescription of several boundary forces.
Again, the components with index α and index 3 are split. This gives

∞

∑
`=0

∫
C

[(
`

Θiαnα

)
`

ūi +
1

iω

(
`

Ξαnα

)
`

p̄
]

dC

=
∞

∑
`=0

∫
C

[(
`

Θαβ nβ

)
`

ūα +

(
`

Θ3β nβ

)
`

ū3 +
1

iω

(
`

Ξαnα

)
`

p̄
]

dC .

(5.42)
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Expression (5.42) still covers all boundary conditions related to both the plate and the disc.
As before, the order of the variation tells which quantity is related to which problem. The
plate quantities turn out to be

`

Θαβ nβ =
`

Θα1n1 +
`

Θα2n2 =
`

Θα for ` ∈O
`

Θ3β nβ =
`

Θ31n1 +
`

Θ32n2 =
`

Θ3 for ` ∈ E
`

Ξαnα =
`

Ξ1n1 +
`

Ξ2n2 =
`

Ξ for ` ∈O

(5.43)

with
1

Θα :=Mα being the moments around the xα -axes and
0

Θ3 :=Q3 being the shear force.
All other quantities have no counterpart in classical theories. The disc quantities, on the
other hand, are

`

Θαβ nβ =
`

Θα1n1 +
`

Θα2n2 =
`

Θα for ` ∈ E
`

Θ3β nβ =
`

Θ31n1 +
`

Θ32n2 =
`

Θ3 for ` ∈O
`

Ξαnα =
`

Ξ1n1 +
`

Ξ2n2 =
`

Ξ for ` ∈ E

(5.44)

with
0

Θα := Nα being the normal forces in xα -direction and
d

Ξ3 being a constant fluid flux

over the thickness.
1

Θ3 represents a force inducing a stretching or a compression of the
structure in thickness direction. This last force, together with all other quantities of higher
order again do not have a counterpart in classical theories. As shown in section 4.1.2, all
boundary resultants on C with components α can alternatively be expressed by a normal
and tangential component.

In most cases, a prescription of higher order boundary conditions is not needed or does
not even make sense. However, if one wishes to connect several 2d structures along their
boundaries, presumably with an angle different from π , then the consideration of all higher
order quantities is required in order to allow a transmission of all effects from one structure
to the other. This case, however, is not treated within this work.

The general two-dimensional work theorem as given by equation (5.24) can now finally be
split into its uncoupled plate and disc systems. The virtual work equation for the plate is
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given by
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ū3

]
dA

+
∞

∑
`=1
`∈O

∫
A

[
`

Θαβ

`
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(5.45)

and the virtual work equation for the disc is given by
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(5.46)

The difference between (5.45) and (5.46) lies in the values that ` is allowed to adopt in
each sum. These `-values exclude each other in the two problems, such that when adding
(5.45) and (5.46) the full expression (5.24) is obtained.

5.4 Some thoughts concerning the truncation

So far, in this chapter it has been shown how the three-dimensional virtual work equation
can be reduced to a two-dimensional expression by replacing all x3-dependent quantities
by infinite power series. This procedure naturally led to a decoupling of the initial equation
into an out-of-plane and an in-plane problem represented by the two expressions at the end
of the previous section. In order to actually work with those equations the infinite series
have to be truncated. This includes a truncation of the ’primal’ series identified by the



5.4 Some thoughts concerning the truncation 67

summation index ` and all ’secondary’ series with summation index k contained in the
resultants.

It seems obvious that the primal and secondary series cannot be truncated independently of
each other. It has to be assured that the resulting system is balanced concerning its number
of equations and its number of unknowns. One way to obtain such a balanced system is
to prescribe some arbitrary highest value n ∈ N for both ` and k. This assures that each
unknown quantity of order k has its own function of variation of order `= k which naturally
results into a system of n partial differential equations for n unknown functions. This is
the approach investigated by Preußer [88, 89] and will be used within this work.

Another way of truncation has been investigated by Kienzler [66]. Therein, the series are
truncated by means of the order of the plate parameter c2 = h2/12. This means that all terms
multiplied by up to a certain power of c2 are taken into consideration whereas the rest is
neglected. The justification of this approach is found in the fact that the plate thickness h is
assumed to be small compared to the plates extension in the plane. The higher the power of
(c2)n, n ∈ N, the smaller its value and, hence, the minor the contribution of the respective
terms to the solution of the system. In other words, it is aimed for a system consisting
of all quantities which do not exceed a certain order of magnitude. Kienzler denotes this
approach fittingly as the uniform-approximation-approach. In his publications [66, 67] he
was able to show that the Kirchhoff system naturally results out of the first-order theory
(first-order means n≤ 1, hence, all quantities multiplied by (c2)0 = c0 and (c2)1 = c2 are
considered, whereas all terms of order O(c4) and higher are neglected), and the Reissner
system out of the second-order theory.

Although Kienzler’s approach for obtaining consistent plate theories works very nicely
in elastostatics, some arguments speak against its use within this work. Before obtaining
the Kirchhoff equation from the first-order system, the zeroth-order theory must be ana-
lyzed. This leads to some conclusions regarding the load term. Indeed, the zeroth-order
system is identically satisfied if there is no load. In the spirit of the uniform-approximation-
approach, this means that the load term is classified as being connected to a higher order
and, therefore, has to be neglected. This finding must be transferred to the first-order sys-
tem. Only then the exact Kirchhoff equation can be obtained. In elastodynamics, this
conclusion is not that obvious. In contrast to elastostatics, the elastodynamic zeroth-order
system is enriched by an inertia term. Now the question arises whether the insights gained
from elastostatics concerning the load term can be directly transferred to the elastodynamic
system, or, if it has to be treated as a self-standing one. In the first case, the inertia term
turns out to be of higher order as well and must be neglected. In the second case this con-
clusion is not evident. Actually, the first case leads to the correct elastodynamic Kirchhoff
equation when incorporating it into the first-order system. However, this result is based on
the assumption that the insights gained from lower order theories must be considered even
when switching between systems of different physical nature. Moreover, it demands the
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knowledge of the final equation in order to check its correctness. How about poroelasto-
dynamics where things get even more tricky? Can it be treated the same way as the elastic
one even if now the pore pressure appears as an additional unknown? It looks like as if at
this point some assumptions have to be made in order to proceed. But making assumptions
is the very thing to be avoided.

A closer investigation could probably help clarifying these peculiarities. Another property
of the resulting system excludes it from being the first choice for accomplishing the goals
of this work. Indeed, the Kirchhoff and the Reissner plate equations are obtained from
the first- and second-order theories, respectively, after reducing each system to one single
equation by means of an elimination of unknowns. The critical point lies exactly in the way
the system is reduced, since the factor c2 influences crucially the meaning of the individual
expressions. In order to give an example, the equation

w,α +ψα = 0

shall be mentioned, where
0
u3 := w and

1
uα := ψα . This equation states that the gradient

of the vertical displacement w is equal to the rotations ψα of the cross section, hence, it
expresses the Kirchhoff normal hypothesis. Independently of the level of approximation,
this equation can be found in every system. In the case of the first- and second-order
approximations it takes the form

c2(w,α +ψα)+O(c4) = 0 and c4(w,α +ψα)+O(c6) = 0 ,

respectively. Clearly, the second equation above cannot be interpreted as the Kirchhoff
normal hypothesis since it belongs to a system describing shear-deformable plates. Ad-
ditionally, neither of the two equations can be explicitly resolved for one or the other
function, since this would demand dividing by c2 (or c4) which would cause the terms of
higher order to be not negligible anymore. The whole reduction, hence, becomes a cum-
bersome procedure for systems of higher order. Without further effort, even solving the
full set of equations right away without reducing it is no option. In fact, this would force
the equations above to be always fulfilled. As pointed out before, those equations do not
directly represent a physical property of higher order systems.

Adopting appropriate measures should still allow a numerical treatment of the equations
obtained from the uniform-approximation-approach. Within this work, however, such
measures will not be investigated. Instead, the truncation of the series is performed by
the method mentioned at the beginning of this section. The systems obtained in this way
do not yield the classical equations anymore, yet still intact plate and disc models able to
reconstruct the state of stress and deformation of the 3d structure.

Equation (5.45) represents the variational formulation (or weak form) of poroelastody-
namic plates of any degree of approximation. This formulation is the point of departure
for obtaining weak solutions by means of the use of numerical solution methods. Hence,
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in order to obtain numerical results, the knowledge of the actual plate equation in its strong
form is dispensable. Nevertheless, it seems reasonable to investigate a low order plate sys-
tem and comparing it to classical equations for estimating its validity and, if needed, to
determine the way it has to be extended. This means that a starting system must be cho-
sen, i.e., a system of lowest possible order which provides results not contradicting those
obtainable from classical theories. The philosophy of the whole approach assumes that an
extension to higher orders enhances the quality of the results. Hence, the system of lowest
acceptable order must at least contain the Kirchhoff system.

In view of the elastostatic equations presented in chapter 4 the procedure shall be used
on the elastostatic system only. This allows an easier comparison. As pointed out in sec-
tion 3.4, the elastodynamic equations can be obtained by simply neglecting all poroelastic
quantities in the original equations. This makes the ’downgrading’ of equation (5.45) to
elastostatics fairly simple. It actually makes no difference whether the variational form
(5.45) is ’downgraded’ before extracting the PDEs, or the PDEs are ’downgraded’ after
being extracted. In order to present the full poroelastic PDE system, the second case is
applied here. The procedure is the same as the one used in chapter 4 for obtaining the
classical plate equations out of the variation of the elastic plate potential (4.20), i.e., in-
tegrating by parts all terms featuring a spatial derivative in the function of variation and
collecting all quantities tested by the same function. Once again, the individual PDEs are
then obtained by means of the fundamental lemma of the calculus of variation. The strong
form of (5.45) with the corresponding boundary conditions therewith is

−
`

Θ3α,α + `
`−1

Θ33 +
`

Λ3 =
`

t3 ∀` ∈ E

−
`

Θαβ ,β + `
`−1

Θα3 +
`

Λα =
`

tα ∀` ∈O

−
`

Ξα,α + `
`−1

Ξ3 +
`

ϒ =
`

q3 ∀` ∈O ,

(5.47)

`

Θ3 =
`

Θ
∗
3 or

`

u3 = gu3 on Γu3 ⊂C ∀` ∈ E
`

Θα =
`

Θ
∗
α or

`

uα = guα
on Γuα

⊂C ∀` ∈O
`

Ξ =
`

Ξ
∗ or

`

p = gp on Γp ⊂C ∀` ∈O .

(5.48)

Above, the asterisk∗ marks the prescribed value. Recall that in sections 4.2 and 4.3 no force
quantity different from zero could be prescribed on ∂A =C, since the respective boundary
integrals were not considered. Here, this is not the case anymore and one is free to apply
Neumann conditions as well as Dirichlet conditions freely. A reasonable prescription of

nonzero Neumann conditions, however, should be restricted onto
0

Θ3 := Q representing

the classical shear force and
1

Θα := Mα representing the two classical moments around the
xα -axes, respectively.

Due to the ’downgrading’, the last equation of (5.47) vanishes as well as all terms contain-
ing a poroelastic quantity in the evaluated resultants (A.1), (A.2), (A.3), (A.6) and (A.7)
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(appendix A.1.2). The flux and the pressure conditions in (5.48) vanish, too. The shear
forces and moments are preserved, although now originating from the ordinary elastic
stress tensor rather then from the poroelastic total stress tensor. The so obtained system is
of elastodynamic nature. If, additionally, the inertia terms in (A.6) and (A.7) are excluded,
the elastostatic system is retrieved

−
`

Θ3α,α + `
`−1

Θ33 +
`

Λ3 =
`

t3 ∀` ∈ E

−
`

Θαβ ,β + `
`−1

Θα3 =
`

tα ∀` ∈O ,
(5.49)

with the boundary conditions

`

Θ3 =
`

Θ
∗
3 or

`

u3 = gu3 on Γu3 ⊂C ∀` ∈ E
`

Θα =
`

Θ
∗
α or

`

uα = guα
on Γuα

⊂C ∀` ∈O .

(5.50)

For the sake of simplicity, no additional index is introduced for the distinction of the
poroelastic quantities in (5.47) from the elastic ones in (5.49). When neglecting the body
forces contained in Λ3 and the in-plane surface forces tα , the system above, together with
the respective resultants, exactly corresponds to the one given by Kienzler [66]. In fact,
the ’consistent’ plate equations obtainable from the uniform-approximation-approach and
those used in the present work differ only due to the different truncation techniques. The
underlying general systems are equivalent.

Recalling the physical meaning of the individual coefficients of the power series as pre-
sented in section 5.2, it is easily comprehensible from the figures 5.3 and 5.2 that the
displacement quantity

0
u3 := w represents the same vertical deflection as the one known

from classical theories. Similarly
1
uα := ψα , i.e., the rotations of the cross section. The

latter symbols are used in the following.

Zeroth-order The lowest possible approximation extractable from the elastostatic system
is the one of zeroth-order (not to be confused with the terminology used in conjunction
with the uniform-approximation-approach), i.e., ` = 0 and k = 0. Obviously, the second
equation in (5.49) cannot be considered since it is not defined for `= 0. The first equation
yields

w,αα =
1

µh

(
h f3 +(t+3 + t−3 )

)
. (5.51)

This is Poisson’s equation and does not constitute an acceptable plate model. Hence, the
zeroth-order approximation has to be discarded.
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First-order The next higher approximation is given by the first-order theory, hence ` =
0,1 and k = 0,1. By means of the stress resultants Qα and Mαβ , the first-order equations
become

Qα,α +h f3 +(t+3 + t−3 ) = 0

Mαβ ,β −Qα +
h
2
(t+α − t−α ) = 0 .

(5.52)

When assuming all surface loads to be zero, the system above takes the same form as the
equilibrium equations (4.34) of the Mindlin system. However, the corresponding system
of equations with Helmholtz decomposition in ψα (see section 4.3) takes the form

D∆∆w =
1−2ν

(1−ν)2 h f − 2
1−ν

hc2
∆ f

∆θ − 1
c2 θ = 0 .

(5.53)

Clearly, the first term on the right hand side does not match the one in equation (4.50),
except for ν = 0. Hence, the first-order theory must be enhanced in order to produce an
acceptable plate model.

Second-order This enhancement is achieved by adding the quantities of order 2, leading
to the second-order theory. The system in terms of the resultants takes the form

Qα,α +h f3 +(t+3 + t−3 ) = 0

Mαβ ,β −Qα +
h
2
(t+α − t−α ) = 0

2

Θ3α,α −2
2

Θ33 +hc2 f3 +3c2(t+3 + t−3 ) = 0 .

(5.54)

Again, neglecting all surface tractions, applying the Helmholtz decomposition on ψα and
reducing the system accordingly, yields

−1−ν

10
c2D∆∆∆w+D∆∆w = h f − 3(7+ν)

10(1−ν)
hc2

∆ f +
1
5

hc4
∆∆ f

∆θ − 1
c2 θ = 0 .

(5.55)

This time, the factor in front of h f on the right-hand-side has the same value as in (4.50),
hence, the two innermost terms represent the correct Kirchhoff equation. Furthermore,
comparing the factor in front of hc2∆ f in (4.50), with the one in (5.53) and (5.55) shows
that the latter one accounts for a (small) shear correction, whereas the former did not
at all. The second equation, on the other hand, has not experienced any enhancement
with the upgrade from the first- to the second-order, which is not very surprising since
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no rotations of higher order were introduced. As pointed out by Preußer [89], including
such rotations enhances both the first equation in w and the second equation in θ . The
latter one then includes a shear correction factor of κ̂ = 1/2(15−

√
535/3) ≈ 0.823 which

nicely confirms the value of the classical factor κ = 5/6≈ 0.833. For a further analysis and
comparison of the elastostatic equations presented above, see the works of Preußer and
Kienzler mentioned throughout this section.

To sum up, the second-order system represents a plate theory settling somewhere between
the Kirchhoff and the Mindlin or Reissner model and can be seen as an adequate starting
point for any poroelastic system. The poroelastic system of second-order can be written by
means of three equations, namely two coupled equations in w and

1
p and the same equation

in θ as above. Unfortunately, even this low order system features complex expressions
such that it is difficult to put it in a clear and compact form. However, this does not
matter, since the knowledge of the equations in their strong form is not required anyway.
Up to now, only systems of some specific order have been introduced, such as of the
first-order or the second-order. It turns out that the presented ’framework’ is much more
flexible than that. In fact, any system can be enhanced by simply considering the additional
unknowns of interest. For example, if the pore pressure has a much stronger tendency to
a cubic distribution over the thickness than the rotations, the second-order system can
be enriched by the cubic term for the pore pressure

3
p, while omitting the cubic rotations

3
ψα . Hence, a notable overhead can be eliminated compared to the full third-order. The
uniform-approximation-approach does not allow such a flexibility.

5.5 Third-order systems

After having briefly discussed the different methods of truncation, the full operators of
third-order for both the plate and the disc shall be given. As already mentioned earlier, the
explicit knowledge of these systems is not essential, since the solution method relies purely
on the weak rather than the strong form of the PDEs. However, in view of the elastostatic
plate systems given by Preusser [88,89] and Kienzler [66,67], here, the poroelastodynamic
systems shall be presented.

The expressions turn out to be rather bulky why some abbreviations have to be introduced.
Moreover, an operator notation is used instead of the index notation. In accordance with
the evaluated resultants in the appendices A.1.2 and A.1.3, only constant volume forces
are considered.

The complete third-order systems for both the plate and the disc can be written as

Lp
8×8up = f p Ld

8×8ud = f d , (5.56)
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respectively. The plate-operator Lp
8×8 is given by (5.63). The vector of unknowns up and

the right-hand-side load vector f p are given as

up =



0
w
1

ψψψ
1
p
2
w
3

ψψψ
3
p


f p =− 1

µh



h( f3 +β f f
3 )+(t+3 + t−3 )

h
2(t

+− t−)
h
2(q

+
3 −q−3 )

hc2( f3 +β f f
3 )+3c2(t+3 + t−3 )

3c2 h
2(t

+− t−)
3c2 h

2(q
+
3 −q−3 ) .


(5.57)

The disc-operator Ld
8×8 is given by (5.64). The vector of unknowns ud and the right-hand-

side load vector f d are given as

ud =



0
v
0
p
1
w
2
v
2
p
3
w


f d =− 1

µh



h(f+β f f
3)+(t++ t−)

q+3 +q−3
h
2(t

+
3 − t−3 )

hc2(f+β f f )+3c2(t++ t−)
3c2(q+3 +q−3 )

3c2 h
2(t

+
3 − t−3 ) .


(5.58)

The quantities in up in (5.57) have been encountered before and do not require further
explanations. The physical meanings of the quantities in ud in (5.58) are easily determined
with the help of the figures 5.3, 5.2 and 5.4. The vector

0
v =

0
vα ·eal pha denotes the in-plane

displacements in xα -direction,
0
p is the constant pressure distribution over the thickness

and
1
w a linear contraction (or dilatation) of the thickness. The higher order quantities can

be understood in a similar way.

Comparing the operator (5.63) with the elastostatic one given by Preußer, it is immedi-
ately noted that the latter one does not use the rotations

k
ψα , k ∈O but rather the quantities

k

ϑ = ∇ ·
k

ψψψ and
k

θ = ∇⊥ ·
k

ψψψ which have already been encountered in section 4.3 in con-
junction with the Helmholtz decomposition of the rotation vector. The operator (5.63)
can be modified accordingly. The procedure is the same as described in section 4.3. The
same modifications can be applied on the disc operator (5.64) by means of a Helmholtz
decomposition of

k
v k ∈ E.

Although it seems natural to eliminate the factor c2 from the last three rows of both sys-
tems, this has been deliberately omitted. Consequently, by neglecting all terms of order
O(c4) and higher, the first-order poroelastic system in terms of the uniform-approxima-
tion-approach can be retrieved. The respective zeroth-order is obtained by eliminating the
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terms of orderO(c2) as well. As mentioned before, these systems are not analyzed further
and are just given for the sake of completeness.

The abbreviations used in the operators are given below. Note that the quantities containing
β are functions of the angular frequency ω and have to be updated in each frequency
step.

The elastic constants are given as

a1 =
1

1−2ν
a2 =

2ν

1−2ν
a3 =

1−6ν

1−2ν
a4 =

2(1−ν)

1−2ν

a5 =
2(1−3ν)

1−2ν
a6 =

2(1−5ν)

1−2ν
a7 =

3−10ν

1−2ν
.

(5.59)

The poroelastic constants (i.e., constant within a frequency step) are given as

b1 =
α

µ
b2 =

β

µ
b3 =

α +β

µ
b4 =

α−2β

µ
b5 =

2α−β

µ

b6 =
2α−3β

µ
b7 =

3α−2β

µ
b8 =

β

µω2ρ f b9 =
φ 2

µR
.

(5.60)

The ’extended’ inertia term d is defined as

d =
ω2ρβ

µ
with ρ

β = ρ +βρ
f = (1−φ)ρs +φρ

f +βρ
f (5.61)

and, finally, the sub-operator L is defined as

L= ∆+a1∇∇· (5.62)
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6 COUPLED CONTINUA

The interaction of a fluid with a deformable structure is encountered in many different
fields of engineering and gives rise to a vast number of interesting problems, such as the
stability of skyscrapers and bridges subjected to winds, or the dynamic response of aircraft
wings. Other examples are the vibration of turbine blades or the effects of fluid flow on
a pipe system. On a smaller scale, the investigation of blood flow through arteries can be
mentioned. Other applications are found in structural acoustics, such as in problems deal-
ing with the dynamical response of structures under acoustical excitation, or, inversely, the
emission of noise from a vibrating structure. The nature of the problems to be investigated
in this chapter are of the latter kind.

The aim is to construct a model for the interaction of a three-dimensional acoustic con-
tinuum and the two-dimensional poroelastic structures developed so far in this work. In
the first section, the coupling of different three-dimensional continua is briefly presented
before investigating the coupling of a three-dimensional fluid continuum with a two-dim-
ensional elastic and poroelastic structure.

6.1 Coupling of poroelastic, elastic and fluid continua

The wide-ranging applicability of fluid-structure interaction problems in engineering sci-
ences has brought out a vast number of textbooks covering the subject, for example the
books of Fahy and Gardonio [51], Junger and Feit [64], Cremer et al. [38] and Ohayon and
Soize [86], most of them focusing on the coupling of an inviscid fluid with a linear-elastic
structure.

In this section, the coupling conditions between an acoustic fluid, an elastic and a poroe-
lastic structure are given. The governing equations for the individual continua have been
derived in the chapters 2 and 3. When dealing with coupled domains, in addition to any
prescribed Dirichlet and Neumann conditions, transmission and continuity conditions have
to be satisfied between the individual subdomains. In a series of papers Atalla, Debergue,
Panetton et al. [10, 11, 42] investigated such conditions for a coupled system. The formu-
lation used in this chapter basically follows the ideas presented in [10]. In figure 6.1, such
a coupled system is sketched. Therein, it is assumed that all subdomains are bounded and
fixed somewhere in a vacuum. If instead one of the domains is unbounded or the sys-
tem itself is, for instance, immersed in an open fluid domain, a condition considering the
description of outgoing waves must be introduced. The first analytic form of a so-called

77
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radiation condition for the Helmholtz equation was proposed by A. Sommerfeld [100].
The involvement of radiation conditions, however, is of lower relevance within the context
of this work and will not be considered further.

In figure 6.1, the acoustic (Ωa), the elastic (Ωe) and the poroelastic (Ωp) domains are de-
picted and connected to each other, hence creating three kinds of coupling boundaries, i.e.,
the acoustic-elastic boundary Γae, the acoustic-poroelastic boundary Γap and the elastic-
poroelastic boundary Γep. Since all three subdomains are in ’contact’ with the surrounding
vacuum, they all feature a Neumann boundary Γa

N , Γe
N and Γ

p
N and a Dirichlet boundary

Γa
D, Γe

D an Γ
p
D, the superscripts a,e and p denote the acoustic, elastic and poroelastic part,

respectively. The intersection of any two different boundaries is always empty, hence,

Acoustic fluid

Ωa

Elastic structure

Ωe

Poroelastic structure

Ωp

Γap

Γae

Γep

Γe
D

Γe
N

Γa
D

Γa
N

Γ
p
Ds ∪Γ

p
D f

Γ
p
Ns ∪Γ

p
N f

Figure 6.1: Coupled acoustic, elastic and poroelastic continua

the complete boundary of any subdomain is given by the union of its Dirichlet and Neu-
mann boundary with the two domain-specific coupling boundaries. On every point along
a coupling boundary, the normal vectors of the two domains have opposed directions. The
normal component of a vector and its normal derivative are, respectively, denoted by

()χ
n = ()

χ

i nχ

i (),n = (),i nχ

i , (6.1)

with χ standing for either a,e, p.

Acoustic-elastic coupling on Γae. According to section 2.1, the considered fluid is in-
viscid and, hence, no shear stresses can be transferred along the coupling boundary. This
means that a relative displacement between a fluid and an elastic particle may occur in tan-
gential direction. Therefore, the continuity of displacements is only required in the normal
direction. This condition is written as

ua
n =−ue

n . (6.2)
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The minus sign results from the fact that both normal vectors are opposed in their direc-
tions. Defining ηi := ne

i = −na
i , the condition above takes the form ua

i ηi = ue
i ηi, which

states that both displacements coincide in the same direction ηηη = ηiei. In this work, the
acoustic field is expressed in terms of the fluid pressure p. The condition (6.2), however,
contains the fluid particle displacements ua

i . A relation between ua
i and pa is given by the

Euler equation (2.17). Using it in (6.2) yields

1
ω2ρa pa

,n =−ue
n , (6.3)

which represents the first coupling condition. A second condition must take care of the
continuity of stresses over the shared boundary. As mentioned above, only normal stresses
appear on Γea. The stress vector on Γea resulting from the scalar pressure field pa is given
by pa na

i ei. The stress vector resulting from the elastic stress tensor σ e
i j(ei⊗e j) is given by

σ e
i jn

e
jei. Hence, equilibrium over the boundary demands

pa
δi jna

j = σ
e
i jn

e
j , (6.4)

where σa
i j =−paδi j. With (6.3) and (6.4) the two required coupling conditions are given.

Acoustic-poroelastic coupling on Γap. The poroelastic continuum is described by the
solid displacements ui (note that the superscript is omitted), the fluid displacements u f

i
and the pore pressure p (again, no superscript). Hence, in contrast to the acoustic-elastic
coupling, the continuity of the pressure must be additionally ensured.

The first condition concerns the displacements. Again,

ua
n =−up

n , (6.5)

where up
n denotes the normal displacement of a ’poroelastic particle’. Similarly as the

poroelastic body forces and the poroelastic density (see (3.11)), the components up
i shall

be defined as
up

i = (1−φ)ui +φu f
i . (6.6)

The right-hand-side of (6.6) is rearranged to up
i = ui +φ(u f

i −ui) and (3.8) is used to get
rid of the fluid displacements such to obtain a relation including the relative mass flux qi
instead. On the other side, the displacements ua

i of the acoustic field are again replaced by
the Euler equation (2.17). Thus, the first condition (6.5) takes the form

1
ω2ρa pa

,n =−(un +
1

iω
qn) . (6.7)

(Above and in the following the superscript in un is omitted. In general, all quantities
without superscript denote a quantity related to the poroelastic continuum.) The second
condition concerns the stresses. As before, it reads

pa
δi jna

j = σi jn
p
j , (6.8)
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this time, σi j being the components of the total stress tensor. As mentioned above, the
continuity of the two pressure fields must be ensured as well. This third condition, hence,
is given by

pa = p . (6.9)

Equations (6.7), (6.8) and (6.9) represent the three coupling conditions on Γap.

Elastic-poroelastic coupling on Γep. Both the elastic and the poroelastic continuum are
able to carry shear stresses over their shared boundary, hence, no relative displacements
between the two solid phases are allowed. The continuity of displacements is therewith
given by

ue
i = ui . (6.10)

In the normal direction, the condition ue
n =−up

n must be still fulfilled, with up
i as given in

(6.6). A rearrangement yields ue
n = −(un + 1/iω qn). Due to the impervious interface of

the elastic domain, the relative mass flux qn in normal direction must be zero, giving the
additional condition

qn = 0 . (6.11)

The remaining part, i.e., ue
n = −un, is naturally covered by (6.10). Finally, the continuity

of stresses demands
σ

e
i jn

e
j =−σi jn

p
j , (6.12)

relating the elastic stress components to the total stresses of poroelasticity. The elastic-
poroelastic coupling therewith requires the fulfillment of the three conditions (6.10), (6.11)
and (6.12).

Having specified all interface conditions, the complete set of differential equations gov-
erning the coupled system can be given. Each subdomain is still governed by its own wave
equation and the respective conditions prescribed on its Dirichlet and Neumann bound-
aries. In the following equations (6.14) and (6.15), Le,s

ln represents the Lamé-Navier oper-
ator applied on either the elastic ue or the solid displacement vector u.

Acoustic part
pa
,ii + k2 pa = 0 on Ω

a

pa = ga
D on Γ

a
D

ua
n = ga

N on Γ
a
N

(6.13)

Elastic part
Le

ln +ω
2
ρ

eue
i =− f e

i on Ω
e

ue
i = ge

Di on Γ
e
D

te
i = ge

N i on Γ
e
N

(6.14)
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Poroelastic part

Ls
ln− (α +β ) p,i +ω

2(ρ +βρ
f )ui =−( fi +β f f

i ) on Ω
p

β

ω2ρ f
p,ii−

φ 2

R
p− (α +β )ui,i =

β

ω2ρ f
f f
i,i on Ω

p

ui = gp
Ds i on Γ

p
Ds

ti = gp
Ns i on Γ

p
Ns

p = gp
D f on Γ

p
D f

qn = gp
N f on Γ

p
N f

(6.15)

In the absence of any coupling boundaries, the three systems above can stand for their
own, each representing the boundary value problem (BVP) of its domain. However, if
the subdomains are coupled as depicted in figure 6.1, additionally the following interface
conditions must be fulfilled

1
ω2ρa pa

,n =−ue
n

pana
i = σ

e
i jn

e
j

on Γ
ae (6.16a)

1
ω2ρa pa

,n =−(un +
1

iω
qn)

pa na
i = σi jn

p
j

pa = p

on Γ
ap (6.16b)

ue
i = ui

qn = 0
σ

e
i jn

e
j =−σi jn

p
j

on Γ
ep (6.16c)

The complete set (6.13), (6.14), (6.15) and (6.16) represents the BVP for the coupled
acoustic-elastic-poroelastic domain. As mentioned a few times throughout this work, the
solution of a BVP by means of the Finite Element Method requires the representation of
the complete system in its variational form. Such a variational form provides information
regarding the energetic state of the system and, in the case of coupled continua, it allows
interesting insights regarding the work that one structure performs on the other and vice
versa. Obtaining the variational formulation does not represent a problem and, for the
elastic and the poroelastic continua it is already given by the equations (3.40) and (3.54),
respectively. Concerning the acoustic system (6.13), the variational form is found by mul-
tiplying the Helmholtz equation by some test-function p̄a (i.e., a function of variation)
integrating over the domain and performing an integrating by parts on the first term, such
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that one spatial derivative is shifted to the test-function. For convenience, the Helmholtz
equation is first multiplied by −1/ω2ρa. The sought variational formulation is, thus, given
by ∫

Ωa

[
1

ω2ρa pa
,i p̄

a
,i−

1
c2ρa pa p̄a

]
dΩ

a−
∫
Γa

1
ω2ρa pa

,n p̄a dΓ
a = 0 . (6.17)

As pointed out, the interaction of different continua is realized by the connection along
their shared boundaries. This means that the variational formulation of the coupled sys-
tem only affects the boundary integrals ’living’ on the actual interfaces, while all domain
integrals as well as all integrals defined on Dirichlet and Neumann boundaries remain un-
touched. The complete variational formulation is obtained by adding (3.40), (3.54) and
(6.17). Each boundary integral can be split according to Γχ = Γ

χ

N +Γ
χ

D +Γ
χ

IF1 +Γ
χ

IF2,
where χ again acts as placeholder for either a,e, p and IF stands for interface. The inte-
grals over Γ

χ

N and Γ
χ

D do not concern the coupling (the integral over Γ
χ

D is zero anyway).
Hence, only integrals ’living’ on interfaces are considered. Obviously, different integrals
defined on the same interface describe the very same region in space and can, hence, be
merged. This leads to the following expression

I1 + I2 + I3 =
∫

Γae

[
1

ω2ρa pa
,n p̄a + te

i ūe
i

]
dΓ

ae +
∫

Γap

[
1

ω2ρa pa
,n p̄a + tiūi +

1
iω

qn p̄
]

dΓ
ap

+
∫

Γep

[
te
i ūe

i + tiūi +
1

iω
qn p̄
]

dΓ
ep .

(6.18)

Incorporating the coupling conditions (6.16a) into the first integral of (6.18) and using
σ e

i jn
e
j = te

i and ηi := ne
i =−na

i , one obtains

I1 =
∫

Γae

[
1

ω2ρa pa
,n p̄a + te

i ūe
i

]
dΓ

ae =−
∫

Γae

[
ue

η p̄a + paūe
η

]
dΓ

ae . (6.19)

The right-hand-side of (6.19) shows that the virtual work performed on the coupling inter-
face consists of the work done by a virtual pressure along a real displacement and a real
pressure along a virtual displacement. In Atalla et al. [10], this expression is referred to as
the classical structure-cavity coupling term. Applying the conditions (6.16b) on the second
integral of (6.18), again by making use of σi jn

p
j = ti and ηi = np

i =−na
i , yields

I2 =
∫

Γap

[
1

ω2ρa pa
,n p̄a + tiūi +

1
iω

qn p̄
]

dΓ
ap =−

∫
Γap

[
uη p̄a + paūη +

1
iω

qη(p̄a− p̄)
]

dΓ
ap

=−
∫

Γap

[uη p̄a + paūη ]dΓ
ap .

(6.20)
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Above, the flux term vanishes, since the third condition demands equality of the two
pressure quantities, and hence, equality of their variations. Interestingly, the acoustic-
poroelastic coupling leads to the same structure-cavity coupling terms as in the acoustic-
elastic case. In addition to (6.20), the condition pa = p, which represents a Dirichlet-type
condition, must be explicitly imposed. In a finite element formulation (see chapter 7) this
can be easily realized by treating the two quantities pa and p as one and the same degree
of freedom on Γap and, hence, the stiffness matrices of the acoustic and the poroelastic
pressure fields can be by ’overlapped’ accordingly. Finally, incorporating the interface
conditions (6.16c) into the third integral of (6.18), yields

I3 =
∫

Γep

[
te
i ūe

i + tiūi +
1

iω
qn p̄
]

dΓ
ep = 0 , (6.21)

hence, the coupling between an elastic and a poroelastic continuum is natural, only the
Dirichlet-type condition ue

i = ui has to be explicitly imposed by means of the same method
mentioned above regarding the pressure fields.

Below, the complete variational formulation of the coupled system is given (compare with
[116]). The poroelastic domain integrals have been slightly rearranged, yet, they are still
equivalent to those given previously. Note that by means of the Euler equation (2.17) the
quantity to be imposed on an acoustic Neumann boundary is a fluid displacement in normal
direction∫

Ωa

[
1

ω2ρa pa
,i p̄

a
,i−

1
c2ρa pa p̄a

]
dΩ

a +
∫

Ωe

[
σ

e
i j ε̄

e
i j−ω

2
ρ

eue
i ūe

i
]

dΩ
e

+
∫

Ωp

[
σi j ε̄i j−ω

2(ρ +βρ
f )uiūi +β p,iūi

]
dΩ

p +
∫

Ωp

[
1

iω
qi p̄,i−α uk,k p̄− φ 2

R
pp̄
]

dΩ
p

+
∫

Γae

[
ue

η p̄a + paūe
η

]
dΓ

ae +
∫

Γap

[uη p̄a + paūη ]dΓ
ap

=
∫

Ωe

f e
i ūe

i dΩ
e +

∫
Ωp

(
fi +β f f

i

)
ūi dΩ

p

+
∫

Γa
N

ua
n p̄a dΓ

a
N +

∫
Γe

N

te
i ūe

i dΓ
e
N +

∫
Γ

p
Ns

tiūi dΓ
p
Ns +

1
iω

∫
Γ

p
N f

qn p̄dΓ
p
N f .

(6.22)

If it is striven for a numerical solution of (6.22), all Dirichlet conditions on the individ-
ual Dirichlet boundaries as well as on the interface boundaries must be additionally im-
posed.
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6.2 Fluid-Plate Coupling

In this section, the coupling of a three-dimensional acoustic fluid continuum with the two-
dimensional poroelastic structures developed in chapter 5 is investigated. An immediately
evident difference between a 3d-3d coupling as presented in the previous section and a 3d-
2d coupling consists in the fact that, mathematically, the coupling boundaries of the two-
dimensional structures and their domains occupy the very same region in space, namely
the mid-surface A. Still, in a purely acoustic-elastic coupling using classical plate models,
the interface conditions do not differ much from those presented in the previous section.
Actually, this is immediately obvious, since the vertical deflection w of the classical plate
is constant over the thickness, hence, equally representing the displacement of a plate par-
ticle at a distance of ±h/2 from the mid-surface, i.e., on the actual coupling boundary. If
additionally, the rotations ψα are included into the plate formulation, still no modifications
on the coupling conditions are needed, since the rotations induce solely a displacement in
tangential direction. Due to the inviscid fluid, such a displacement is allowed to unfold
freely, since no shear stresses can appear on the plate surfaces to counteract the motion.
Such a coupling between a fluid and an elastic plate has been elaborated, for instance,
in [72] and in [2], the first one focussing on the Kirchhoff model, the second on the Mindlin
model. The aim of this section is to investigate how a coupling using the here developed
2d structures can be realized, especially in view of the presence of higher order displace-
ment quantities and the pore pressure. The geometry of the problem in the x1-x3-plane
is depicted in figure 6.2. Therein, the poroelastic structure is indicated as the dark-gray

Acoustic fluid

Ωa
1

Acoustic fluid

Ωa
2

Poro-
structure

A
x3

x1

Γ
ap
1

x3 =− h
2

Γ
ap
2

x3 =+ h
2

Γa
1N

Γa
1D

Γa
2N

Γa
2D

Figure 6.2: Coupling of an acoustic fluid with a two-dimensional poroelastic structure

area with an actual extension in the x3-direction. Mathematically, the porostructure lives
in two dimensions only and is described solely by its mid-surface A. The two coupling
boundaries and the mid-surface , therefore, occupy the same area in space at x3 = 0. Yet, it
must still be distinguished between the individual boundaries, since, in physical reality, the
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thickness coordinate x3 takes different values depending on the considered boundary, i.e.,
x3 = h/2 or x3 =−h/2. This is expressed by Γ

ap
1 = A− and Γ

ap
2 = A+. As before, the acous-

tic regions are assumed to be bounded, hence, eliminating the need of fulfilling a radiation
condition. Moreover, they both feature a Dirichlet and a Neumann boundary. Regarding
the 2d-structure, Dirichlet and Neumann conditions may be prescribed along the boundary
curve C, i.e., the closure of A. The former being some given displacement and/or pressure
quantity, the latter some given stress and/or flux resultants.

The interface conditions must necessarily be the same as in the 3d-3d case, since the mod-
ifications in the geometrical setting cannot change the physical laws of interaction. Of
course, the conditions must be rearranged to fit into the 3d-2d formulation, but without
distorting their physical meaning. The first condition must, hence, enforce the continuity
of the normal displacements, i.e.,

ua
3 =−up

3 . (6.23)

Note that the two normal vectors are again opposed in their directions, i.e., na
i ei =−np

i ei,
and that the normal components coincide with the component in x3-direction due to the
chosen geometry (see figure 6.2). The quantity ua

3 is replaced by the Euler equation (2.17)
and the poroelastic displacement is replaced by (6.6) in conjunction with equation (3.8)
yielding again (6.7). This time, however, the solid displacement quantity u3 is only known
by means of its power series evaluated at x3 = ±h/2, where ± denotes either the positive
or the negative coordinate, depending on the considered coupling interface. This yields

1
ω2ρa pa

,3na
3 =−

(
∞

∑
k=0

k
u3

(
±h

2

)k

+
1

iω
q3

)
np

3 . (6.24)

The continuity of the surface tractions is expressed by

pa
δi3na

3 = σi3np
3 , (6.25)

where it has been taken into account that the nα -components of both normal vectors are
zero. Due to the Kronecker delta, equation (6.25) reduces to

pana
3 = σ33np

3 and σα3np
3 = 0 . (6.26)

The third condition demands the equality of the pressure quantities on the coupling bound-
aries, hence pa = p. The quantity p has to be replaced by its power series and evaluated at
x3 =±h/2, giving the condition

pa =
∞

∑
k=0

k
p
(
±h

2

)k

. (6.27)

The three conditions governing the coupling of an acoustic fluid with a two-dimensional
porostructure are thus given by (6.24), (6.26) and (6.27). The next step consists in incor-
porating the just derived interface conditions into the equations describing the individual
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subdomains, and thus, coupling them. In contrast to section 6.1, here, the representation
of the BVP in its strong form is skipped and only the variational form (i.e., the weak form)
is considered.

In the following, only the coupling at x3 = −h/2 is presented. The other one at x3 = +h/2

can be realized analogously. The variational formulation for the porostructure is given by
the two equations (5.45) and (5.46), the one for the acoustic fluid by (6.17). As pointed
out in section 6.1, the coupling only affects the boundary integrals living on the actual
interface. Therefore, the boundary integral of (6.17) is split into an integral over Γap1 = A−

and one over Γa
1N . Only the former is of interest for the coupling. In the case of the

porostructure, the coupling integrals are given by the integrals in the third lines of (5.45)
and (5.46). Since those integrals combine all quantities defined on x3 = −h/2 as well as
on x3 = +h/2, the latter ones must be omitted. By doing so, an integral living on A− is
obtained (recall section 5.1.2). The unified acoustic-porostructure coupling integral is then
given as

S− =
∫

A−

[
1

ω2ρa pa
,3 p̄a +(σi3n3)

− ·
∞

∑
`=0

(
−h

2

)`
`

ū3 +
1

iω
(q3n3)

− ·
∞

∑
`=0

(
−h

2

)`
`

p̄

]
dA− .

(6.28)
The coupling conditions can now be incorporated into (6.28). Therefore, the first term
is replaced by (6.24). The second term is expanded according to the summation over its
index i. In view of (6.26), only the term for i = 3 survives. Finally, the sum appearing
in the third term can be replaced by (6.27) leading to a vanishing of the flux quantities.
Moreover, the identity np

3 =−na
3 = 1 is used and expression (6.28) therewith reduces to

S− =−
∞

∑
`=0

(
−h

2

)` ∫
A−

[
`

u3 p̄a + pa `

ū3

]
dA− . (6.29)

The similarity of (6.29) to (6.20) is obvious. Once again the classical structure-cavity
coupling term is obtained. This time, however, it includes quantities of any order, each one
scaled by a respective power of h. The quantities

`

u3 represent the vertical deflections of
the porostructure. In view of the separation of the out-of-plane and the in-plane quantities
(see section 5.2), the interface integral (6.29) can be split into a plate and a disc part. The
plate part gathers all ` ∈ E and the disc part all ` ∈O with

`

u3 =
`

w. This yields

S− =−
∞

∑
`=0
`∈E

(
h
2

)` ∫
A−

[
`

w p̄a + pa `

w̄
]

dA−+
∞

∑
`=0
`∈O

(
h
2

)` ∫
A−

[
`

w p̄a + pa `

w̄
]

dA− . (6.30)

Note that the missing of the minus sign inside (h/2) has only to do with the fact that an
even power always eliminates the minus sign, whereas an odd power preserves it, which,
in the latter case, has been pulled in front of the sum turning the original subtraction into
an addition.
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For the sake of completeness, the interface integrals for a coupling at x3 = h/2 shall be
additionally given. Basically, the derivation is analogous to what has been presented above.
The respective counterpart to (6.28) is, hence, very similar, however, three changes apply.
First, instead of having (−h/2), one has (+h/2). Second, the domain of integration is,
of course A+ and, finally, the normal vector np

i ei points in the opposite direction, i.e.,
(np

3)
+ = −(np

3)
−. After splitting the expression into a plate and a disc part as before, one

obtains

S+ =
∞

∑
`=0
`∈E

(
h
2

)` ∫
A+

[
`

w p̄a + pa `

w̄
]

dA++
∞

∑
`=0
`∈O

(
h
2

)` ∫
A+

[
`

w p̄a + pa `

w̄
]

dA+ . (6.31)

In section 6.1, after having specified the interface integrals, the overall variational for-
mulation for the coupled problem could be given (see (6.22)). In view of its numerical
solution, only an additional note regarding the imposition of the continuity of the pressure
quantities had to be added. As said before, in a finite element formulation this can be auto-
matically achieved during the assembly process of the stiffness matrix, i.e., by merging the
two degrees of freedom living on the shared boundary to a single one, leading to only one
pressure value after solving, which is then equally assigned to both degrees of freedom in
the post-processing analysis.

This procedure, however, cannot be used within the present 3d-2d coupling. The reason is
that the pressure pa of the acoustic fluid and the individual pore pressure quantities

k
p of

the poroelastic structure do not represent the same degrees of freedom, since the latter ones
are only defined on the mid-surface A rather then on the coupling boundary. The condition
to be imposed is given by equation (6.27) whose right-hand-side represents the actual pore
pressure on the coupling boundary. In the overall system to be solved, however, the pore
pressure quantities

k
p appear only individually rather then in the combined form of equation

(6.27). Hence, an alternative method is required for imposing the continuity of pressure
along the 3d-2d interface which is found in the method of Lagrange multipliers.

The method of Lagrange multipliers constitutes a very elegant approach for describing
systems subjected to an arbitrary number of constraints. For an introduction to this method
it is referred to the books of Lanczos [71] and Reddy [90], however, a short treatment can
be found on almost any textbook dealing with classical mechanics. In this context, in
particular the work by Babuška [13] shall be mentioned. Skipping any details, the main
idea is the following. In order to minimize a functional subjected to some constraints, the
conditions are added to the functional after being multiplied by an undetermined factor
υ , i.e., the Lagrangian multiplier. In the case that the functional represents a physically
meaningful energy expression, the addition of the constraints can interpreted such that the
overall energy of the system is adapted in order to account for the imposed conditions. The
state of equilibrium is henceforth not found at the original minimum of the functional, but
rather at the minimum along the path enforced by the constraint. Applied on the present
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problem, the variation of the original functional, i.e., the variational formulation of the
coupled problem is given by the weak forms of the poroelastic structure and those of the
two fluid continua, together with the above derived interface integrals. What must be
additionally accounted is the variation of the energy originating from the constraint. In
view of the interface condition (6.27) the integral to be added to the functional is given
as

Π
c(

`

p, pa,υ) =
∫

A±

υ(p− pa)dA± =
∫

A±

υ

(
∞

∑
`=0

`

p
(
±h

2

)`

− pa

)
dA± . (6.32)

Its variation is found by the standard procedure, i.e.,

δΠ
c = Π

c(
`

p+
`

p̄, pa + p̄a,υ + ῡ)−Π
c(

`

p, pa,υ) (6.33)

and omitting quadratic expressions in the functions of variation. This then yields

δΠ
c =

∫
A±

[
υ

∞

∑
`=0

`

p̄
(
±h

2

)`

+ ῡ

∞

∑
`=0

`

p
(
±h

2

)`

−υ p̄a− ῡ pa

]
dA± . (6.34)

Clearly, the interface integral above is of the same nature as the structure-cavity coupling
terms encountered earlier. The expression (6.34) still combines the coupling integrals for
both coupling boundaries as well as the plate and the disc. On the interface at x3 = −h/2,
the above condition reads (with a separation of the plate and disc parts)

S−υ =−
∞

∑
`=0
`∈O

(
h
2

)` ∫
A−

[
υ

`

p̄+ ῡ
`

p
]

dA−+
∞

∑
`=0
`∈E

(
h
2

)` ∫
A−

[
υ

`

p̄+ ῡ
`

p
]

dA−

−
∫

A−

[υ p̄a + ῡ pa]dA− ,

(6.35)

whereas at x3 = h/2 the pressure constraint is enforced by

S+υ =
∞

∑
`=0
`∈O

(
h
2

)` ∫
A+

[
υ

`

p̄+ ῡ
`

p
]

dA++
∞

∑
`=0
`∈E

(
h
2

)` ∫
A+

[
υ

`

p̄+ ῡ
`

p
]

dA+

−
∫

A+

[υ p̄a + ῡ pa]dA+ .

(6.36)

The coupled acoustic fluid - poroelastic structure - acoustic fluid system is now completely
described in its weak form by appropriately combining the equations (5.45), (5.46) and
(6.17), representing the individual domains (obviously, the latter one has to be considered
twice if two fluid domains are given), the interface integrals (6.30) and (6.31) enforcing
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the continuity of displacements and stresses and the interface integrals (6.35) and (6.36)
imposing the continuity of pressure on both coupling boundaries.

In conclusion it shall be mentioned that the method of Lagrangian multipliers is equally
applicable in the 3d-3d coupling for imposing any kind of Dirichlet conditions on the
interfaces, such as the displacement condition (6.10) between an elastic and a poroelastic
domain or the pressure condition (6.9) between an acoustic and a poroelastic domain.

With the conclusion of this chapter, the main theoretical part of this work has been pre-
sented, i.e., the poroelastic plate and disc theories developed in chapter 5 and the coupling
of those structure with a surrounding acoustic fluid. The next step, hence, consists in
solving the equations. Due to the complexity of the expressions, only a numerical solu-
tion seems to be possible. As indicated a few times throughout this work, the method of
choice is the Finite Element Method which will be introduced in the next chapter before
presenting numerical results.





7 FINITE ELEMENT FORMULATION

Differential equations are encountered in many scientific branches, ranging from engineer-
ing over physics and chemistry to economics. Only in rare cases an analytic solution of the
problem can be found. Moreover, such an exact solution is mostly restricted on rather sim-
ple geometries and to a certain set of boundary conditions. In a more complicated setting,
only a numerical solution can usually be found.

To this day, several methods have been developed for the accomplishment of this task.
Among the most used, the Finite Difference Method (FDM) [36], the Finite Element
Method (FEM) and the Boundary Element Method (BEM) can be mentioned. In con-
trast to the FDM, the FEM and the BEM are so-called variational methods. Rather than
solving the original strong form of the differential equation, these approaches seek for an
approximate solution of the variational (or weak) form. The partial differential equations
presented within this work will be exclusively solved by the FEM which will be briefly pre-
sented in this chapter. Regarding an introduction on the BEM, it is referred to the books of
Gaul et al. [54] and Steinbach [102].

One of the pioneering works preceding both the FEM and the BEM as a variational method
is the Rayleigh-Ritz approximation [94]. Its basic idea consists in replacing the unknown
quantity by some linear combination of suitable, globally defined trial functions, i.e.,
u=∑aiϕ i and to determine the coefficients ai such that the potential energy of the problem
is minimized. This reduces the solution of the (partial) differential equation to a solution
of a set of algebraic equations. The disadvantage of this approach consists in the choice
of suitable trial functions which have to be specific enough to fulfill the boundary condi-
tions, yet, general enough to allow a sufficiently accurate solution. Strang and Fix [103]
even declare the choice of admissible functions as the one cardinal rule of the Ritz the-
ory. This mostly demands some apriori knowledge of the nature of the solution. For more
complicated settings, the approach cannot be used efficiently. Still, the idea introduced by
the Rayleigh-Ritz method of solving the variational problem rather than the original one,
represents the basis for the very effective and very flexible FEM.

Due to its widespread use, a vast literature on the FEM is available. Among many others,
especially the books of Strang and Fix [103], Hughes [60], Jung and Langer [63], Bathe
[17], Braess [32] and Zienkiewicz and Taylor [120] are mentioned.

In this work, the equations to be solved by means of the finite element method are, first
of all, the poroelastodynamic plate and disc equations developed in chapter 5, which nat-
urally includes their simpler elastodynamic versions. A validation of the results also re-
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quires the solution of the three-dimensional poroelastic problem. Moreover, the coupled
problem presented in chapter 6, additionally, includes the Helmholtz equation on a three-
dimensional domain. This latter one represents the simplest equation among those treated
in this work. Hence, it seems best to introduce the basic concepts of the FEM on the
example of the Helmholtz equation.

In describing the main points of a FE-formulation, the introduction of additional indices
is unavoidable. In order to lower the danger of confusion and, hopefully, presenting the
following expressions in a clearer way, the tensor notation is used (recall section 1.3).
Hence, especially the indices i, j referring to the components of the displacment field are
avoided and the sans serif indices i, j are introduced which refer to some distinct node on
the FE-mesh.

7.1 The variational formulation

A variational formulation represents an equivalent form of the strong formulation of the
problem. Hence, assuming all functions to be sufficiently smooth, solving the varia-
tional problem delivers the solution of the original equations [60]. On the example of
the Helmholtz equation, the strong form can be stated in the following way.

Given gN(x),x ∈ ΓN and gD(x),x ∈ ΓD, find p(x),x ∈Ω, such that

∆p(x)+ k2 p(x) = 0 x ∈Ω

p(x) = gD(x) x ∈ ΓD

∇n p(x) = gN(x) x ∈ ΓN .

(7.1)

Above, the superscript a relating the quantities to the acoustic fluid has been omitted. The
functions gD and gN are the prescribed boundary conditions on the respective boundary
sections, i.e., on the Dirichlet and the Neumann boundary, respectively. The former is
called an essential boundary condition, whereas the latter is denoted a natural boundary
condition. The corresponding variational formulation is now obtained by multiplying the
field equation with a test-function p̄ (also called variation or weighting function), integrat-
ing the whole expression over the considered domain Ω⊂ R3 and applying an integration
by parts on the first term. At this point the question arises how the functions have to be
constituted in order to be admissible for the whole procedure (for the sake of simplicity the
supplement (x) is omitted in the following). A function p is admissible if it is a member of
the so-called trial solution space S. The properties of this space depend on the considered
problem, in this case it is defined as

S = {p|p ∈ H1, p = gD on ΓD} . (7.2)
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Therein, H1 denotes the space (i.e., the set) of all square integrable functions with square
integrable first derivatives, i.e.,

∫
Ω

p2 dΩ < ∞ and
∫

Ω
(p,i)2 dΩ < ∞. Moreover, the trial

functions are required to fulfill the Dirichlet boundary condition p = gD on ΓD.

The test-functions p̄ have to fulfill very similar conditions. In contrast to the trial functions,
however, they must be zero on the Dirichlet boundary, due to the simple reason that the
solution cannot be subjected to any variation if it is explicitly given apriori. The test-
function space is, therefore, defined as

V0 = {p̄|p̄ ∈ H1, p̄ = 0 on ΓD} . (7.3)

As described above, the field equation is multiplied by the test-function p̄ and integrated
over the domain Ω ∫

Ω

[
∆p p̄+ k2 pp̄

]
dΩ = 0 . (7.4)

A subsequent integration by parts of the first term yields∫
Ω

[
−∇p∇p̄+ k2 pp̄

]
dΩ+

∫
Γ

∇p ·n︸ ︷︷ ︸
∇n p

p̄dΓ = 0 . (7.5)

The boundary integral can now be split into its Dirichlet and Neumann parts Γ = ΓD∪ΓN .
The integral over the Dirichlet boundary vanishes due to the requirement that p̄ = 0 on ΓD
expressed in (7.3). The variational formulation can now be stated in the following form.

Given gN and gD as before, find p ∈ S , such that for all p̄ ∈ V0∫
Ω

[
∇p∇p̄− k2 pp̄

]
dΩ =

∫
ΓN

gN p̄dΓN . (7.6)

At the beginning of this section it has been stated that a solution of the variational problem
is also a solution of the strong formulation, provided all functions involved being suffi-
ciently smooth. This smoothness condition has its origin in the fact that the requirements
on the solution function are lower in the variational form compared to the strong form.
In fact, in the former case it only has to be differentiable once while in the latter case it
has to be differentiable twice. This justifies the often encountered terminology of weak
formulation as synonym for variational formulation. The solution of (7.6) is therefore also
denoted as the weak solution. The other way around works without restrictions, i.e., a
strong solution is also a weak solution.

A note regarding the coupling: As anticipated in chapter 6, in the case that the acoustic
fluid is coupled to some other continua (elastic or poroelastic or both) its boundary can
be decomposed as Γ = ΓD∪ΓN ∪Γae∪Γap, where the superscripts ae and ap denote the
acoustic-elastic and the acoustic-poroelastic coupling boundary, respectively. Hence, the
boundary integral arising from the integration by parts must be decomposed accordingly,
and the corresponding coupling conditions can be incorporated.
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7.2 Spatial discretization

The main idea of the Finite Element Method consists in replacing the spaces S and V0
by finite dimensional subspaces Sh and Vh,0 and seeking for the weak solution among the
functions in Sh. The property of the basis functions spanning these subspaces is that they
are zero almost everywhere except for a small subset of the domain Ω. In a conforming
setting, the basis functions and their linear combinations obey the regularity requirements
of the original functions. This characteristic, however, can be relaxed in a non-conforming
setting, in which the regularity conditions are only fulfilled on specific points over the
inter-element boundaries.

The structure of the basis functions (also called shape functions) ϕ i(x) is usually chosen to
be as simple as possible. Their actual choice, however, depends on the considered problem.
Yet, a common property is their linear independence. The space of finite element functions
Vh can therewith be defined as

Vh = span{ϕ i }Nn
i=1 . (7.7)

The finite element subspaces Vh,0 for the test-functions and Sh for the trial solution func-
tions are both subspaces of Vh and are defined as

Vh,0 = {ϕ ∈ Vh | ϕ(x) = 0 on ΓD,h} (7.8)
Sh = {ϕ ∈ Vh | ϕ(x) = gD,h(x) on ΓD,h} . (7.9)

In the two definitions (7.8) and (7.9), the function ϕ may be any linear combination of
the basis functions ϕ i obeying the succeeding condition on ΓD,h, the latter one denoting
the Dirichlet boundary of Ωh. The function gD,h is the approximation of the prescribed
Dirichlet datum on the discretized boundary ΓD,h which is obtained either by interpolation
or an L2-projection [102].

The domain is decomposed into a finite number of subsets

Ω≈Ωh =
Ne⋃
e=1

τe . (7.10)

The terminology finite element may equally refer to the special choice of finite dimensional
trial- and test-functions as well as to the geometrical subsets τe. These subsets are usually
of very simple structure, too. In a two-dimensional problem, the use of triangles and
quadrilaterals prevail, whereas in three dimensions, mostly tetrahedrons and hexahedrons
are used. Each geometrical element contains a certain number of nodes, mostly located
on its vertices but they may also appear on the inter-element boundaries and in its interior.
The set of global node numbers shall be denoted by η = {1,2 . . . i . . .Nn}, where Nn is the
total number of nodal points. Each node i ∈ η is assigned a shape function ϕ i(x) with the
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property to be nonzero only on the geometrical elements τe connected to the node i. On
the node i, the shape function ϕ i(x) shall take the value 1, whereas on all other nodes in η

it shall be equal to zero, hence

ϕ i(xj) =

{
1 for i = j
0 else

. (7.11)

Above, the index j is a counting index for the node-set η , hence xj denotes the location of
the node j. With the definition (7.11), the discrete solution of the weak formulation can be
written as a linear combination of the shape functions according to

p(x)≈ ph(x) =
Nn

∑
i=1

piϕ i(x) , (7.12)

with pi = ph(xi) being the discrete solution values to be determined at the nodes i.

It becomes apparent that the discrete solution (7.12) can be decomposed as

ph(x) = ∑
i∈η

�D

piϕ i(x)+∑
i∈ηD

gD iϕ i(x) , (7.13)

where η�D denotes the set of all nodes without those on ΓD,h, such that η�D = η\ηD. This
set contains N�D nodes. The first term on the right-hand side of (7.13) is a member of the
trial solution space Vh,0, whereas ph(x) ∈ Sh. The second term represents the interpolated
function gD,h with gD i = gD(xi), i ∈ ΓD,h. The test-functions p̄ is subjected to the same
approximation as p, hence

p̄(x)≈ p̄h(x) =
Nn

∑
i=1

p̄iϕ i(x) , (7.14)

with p̄h(x) ∈ Vh,0. The so-called (Bubnov-) Galerkin formulation is obtained by replacing
the continuous functions in the weak form (7.6) with their discrete counterparts, yielding∫

Ωh

[
∇ph∇ p̄h− k2 ph p̄h

]
dΩh =

∫
ΓN,h

gN,h p̄ dΓN,h . (7.15)

When plugging (7.13) and (7.14) into (7.15), one obtains

∑
i∈η

�D

p̄i

[
∑
j∈η

�D

∫
Ωh

[
∇ϕ j∇ϕ i− k2

ϕ jϕ i

]
dΩh pj−

∫
ΓN,h

gN,hϕ i dΓN,h

+ ∑
j∈ηD

∫
Ωh

[
∇ϕ j∇ϕ i− k2

ϕ jϕ i

]
dΩh gD j

]
= 0 .

(7.16)
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Due to the arbitrariness of the coefficients p̄i, the equation (7.16) can only be satisfied if
the expression in big square brackets its equal to zero for every single i. The finite element
system for the Helmholtz equation, hence, becomes

∑
j∈η

�D

∫
Ωh

[
∇ϕ j∇ϕ i− k2

ϕ jϕ i

]
dΩh pj

=
∫

ΓN,h

gN,hϕ i dΓN,h− ∑
j∈ηD

∫
Ωh

[
∇ϕ j∇ϕ i− k2

ϕ jϕ i

]
dΩh gD j .

(7.17)

The left-hand side of equation (7.17) can be identified as the so-called stiffness matrix
applied on the vector of nodal unknowns. The integrals on the right-hand-side take care
of the natural conditions imposed on the Neumann boundary and the essential conditions
imposed on the Dirichlet boundary, respectively. The problem of finding the weak solution
of the Helmholtz equation has thus been reduced to the the problem of solving a linear
system of N�D equations. The system is written as

Kp= f , (7.18)

where the complete (known) right-hand-side of (7.17) has been put into the vector f. The
matrices and vectors are

K[i, j] =
∫

Ωh

[
∇ϕ j∇ϕ i− k2

ϕ jϕ i

]
dΩh

p[i] = pi

f[i] =
∫

ΓN,h

gN,hϕ i dΓN,h− ∑
j∈ηD

∫
Ωh

[
∇ϕ j∇ϕ i− k2

ϕ jϕ i

]
dΩh gD j .

(7.19)

Although the shape functions ϕ i(x) have not yet been specified, by definition, they vanish
everywhere except in the elements τe connected to the node i. This means that the inte-
gration of two shape functions as needed for the calculation of K will only be nonzero for
closely neighboring nodes. The matrix K[i, j] is sparse. Since the discretization of the do-
main is known, it seems natural to perform the integration only on the subsets, for which it
indeed returns a nonzero value. This is most easily realized by splitting the domain integral
over Ωh into Ne integrals over the geometrical elements τe according to

∫
Ωh

[
∇ϕ j∇ϕ i− k2

ϕ jϕ i

]
dΩh =

Ne⋃
e=1

∫
τe

[
∇ϕ j∇ϕ i− k2

ϕ jϕ i

]
dτe . (7.20)

In this way, the contribution of each element to the global stiffness matrix of size Nn×Nn
can be determined in terms of the element stiffness matrices of size Nne×Nne, with Nne
denoting the number of nodes per element. When performing calculations on a distinct
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element, a local node numbering is usually introduced. Hence, in (7.20) the indices i, j
on the left-hand-side refer to the global numbering whereas on the right-hand-side they
refer to the local node numbers. For the sake of simplicity it is renounced on a distinction
by means of the use of different symbols. One has to keep in mind, however, that the
relation between local and global node numbers has to be stored for every element. This
allows a subsequent correct setup of the global stiffness matrix by transferring each entry
of the individual element matrices to their correct position in the global stiffness matrix.
This process is called matrix assembly and is exhaustively discussed in various textbooks
[60, 63, 120].

In a general triangulation the individual sub-domains τe differ in size and shape, which
requires to adapt the domain of integration for every element. This issue can be bypassed
by performing all calculations on a reference element τ̂e and consider the transformation
to the original element by means of some mapping. This, of course, requires the elements
τe to meet certain regularity conditions regarding their shape in order to guarantee the
mapping to be well-defined [17, 32]. The relation between a point on the original element
with position vector x and a point on the reference element with position vector ξξξ must be
reversible, hence

x(ξξξ )� ξξξ (x) . (7.21)

Again, following the spirit of keeping each step from the problem statement to its solution
as simple as possible, the mapping shall be kept simple, too. This suggests to restrict the
mapping to be exact only at the nodes and to interpolate the area between them by some
interpolation functions. This leads to the so-called isoparametric concept, which proposes
the use of the shape functions ϕ i as interpolation functions for the mapping, i.e.,

x(ξξξ ) =
Nne

∑
i=1

ϕ(ξξξ )xi , (7.22)

where xi denotes the position vectors of the nodes on τe and Nne the number of nodes per
element. For a closer discussion of the isoparametric concept see for instance [60] and [17].
Basically, other mapping functions are possible which, however, are not considered in this
work.

The mapping (7.22) allows the evaluation of all integrals on the reference element by
substituting the global coordinates with the local ones, i.e.,

ϕ i(x) = ϕ i

(
x(ξξξ )

)
= ϕ i(ξξξ ) (7.23)

and transforming the domain of integration according to

dτe = detJ(ξξξ ) dτ̂e (7.24)

with detJ being the determinant of the Jacobi matrix. The Jacobi matrix itself is given
as [17, 85]

J(ξξξ ) = ∇ξ x(ξξξ ) . (7.25)
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The nabla operator ∇ξξξ takes derivatives with respect to the local coordinates ξξξ . By using
(7.23) and (7.24) in (7.20) and substituting J := detJ, the integration over the global
element can be expressed as an integration over the reference element∫

τe

ϕ jϕ i dτe =
∫
τ̂e

ϕ jϕ iJ dτ̂e . (7.26)

In order to evaluate the global gradient of a local shape function as it appears in (7.17), the
chain rule is used

∇xϕ(ξξξ ) = ∇ξξξ ϕ(ξξξ )∇xξξξ (x) = ∇ξξξ ϕ(ξξξ )J(x)−1 . (7.27)

On the reference element, the part of the integral (7.17) featuring gradients of the shape
function is, thus, transformed to∫

τe

∇xϕ j∇xϕ i dτe =
∫
τ̂e

(
∇ξξξ ϕ j J−1

)(
∇ξξξ ϕ i J−1

)
J dτ̂e . (7.28)

Generally, the subscripts in ∇ can be omitted, since the nature of the differentiation is
determined by whether it takes place in the global or in the reference coordinate system.

Up to now the shape functions have not been specified. In fact, the choice of ideal shape
functions is usually not an easy task since the requirements may change from problem to
problem. Some very common types of shape functions are built from Lagrange polyno-
mials [60, 63], which yield elements widely applicable on a large set of problems. One
restriction worth mentioning, however, is that such elements can only be used if the weak
form of the problem does not feature derivatives exceeding the first order. The global so-
lution constructible from Lagrange polynomials is a C0 function, i.e., it is continuous and
once differentiable, however with discontinuous first derivatives. All problems to be solved
within this work demand C0-continuity of the weak solution. If for instance, the Kirchhoff
plate equation shall be solved which features second derivatives in its weak form [32, 56],
Lagrange polynomials are not applicable. The shape functions for the Kirchhoff equa-
tion require to interpolate a C1-continuous solution, i.e., the solution function and its first
derivatives must be continuous, the second derivatives may be discontinuous. These re-
quirements are fulfilled by the so-called Hermite or Bogner-Fox-Schmidt element [32].

Due to the wide range of possible elements, it is not ensured that the integrals (7.26) and
(7.28) can be solved analytically. If, however, polynomial shape functions are used, the
integrals can be evaluated exactly by means of a numerical integration scheme. Most com-
monly the Gaussian quadrature is applied. The theory is throughly discussed in most of
the FEM-related textbooks mentioned here as well as in textbooks dealing with numerical
mathematics, for instance [57] and [39]. The main point consists in replacing the integra-
tion by a sum of the form ∫

τ̂e

χ(ξξξ )dτ̂e ≈
Nqp

∑
l=1

χ(ξξξ l)Wl , (7.29)
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where Nqp denotes the number of quadrature points (or Gauss points) inside the element.
The position of the point with number l is given by ξξξ l and Wl is its weight. The location
of the quadrature points and the value of the weights is predefined. Depending on Nqp,
polynoms of any degree can be integrated exactly. The quadrature points are located inside
the element. This implicates that integrations over the boundary, as for example appearing
in the force vector of (7.19), must be adapted accordingly. Therefore, appropriate elements
with one dimension lower than the domain elements are created on the respective boundary,
allowing a correct evaluation of the boundary integrals.

Summing up, the stiffness matrix and the load vector in (7.19) can be calculated element-
wise by splitting the domain integral into Ne sub-integrals according to (7.20). The inte-
gration, however, is not evaluated on the elements τe which are presumably all different
in shape, but rather on the normed reference element τ̂e according to (7.26) and (7.28) by
including some well-defined mapping (7.22) such that the calculation, finally, returns the
value for the original element. The assembly of the so obtained individual element stiff-
ness matrices and element vectors into the global ones in due consideration of the local-
to-global correlation of the node numbering, finally, yields the linear system of equations
(7.18), which solution is given by inversion of K and yields the nodeal values specifying
the discrete pressure field p.

Basically, the needed steps for obtaining a finite element formulation of any problem to be
solved within this work follow the very same procedure as described in this section. Hence,
in order to keep things simple, the following sections only point out the main properties of
the respective systems without repeating the whole approach.

7.3 FEM for the poroelastic u-p formulation

Finite element formulations for poroelastic media have been studied for all its manifes-
tations, both in time and frequency domain and the available literature is, therefore, con-
siderable. Only few works can be mentioned here to give a slight overview. Zienkiewicz
and Shiomi [118] for example investigated the numerical solution for Biot’s equations in
time domain. Therein, they discuss the full form (us-u f -p) as well as some simplifica-
tions by neglecting, for instance, dynamic terms in consolidation processes. The solution
of consolidation processes is also discussed in detail by Lewis and Schrefler [74] both
for saturated and partially saturated media. A formulation which additionally treats de-
rived quantities such as fluxes and stresses as primal variables can be found in Korsawe
et al. [70] (the terminus mixed methods is often used in this context). Hierarchical FE-
formulations are discussed in Hörlin et al. [59] and Hörlin [58], the latter one including a
hp-FEM approach.

In this section, only the u-p formulation (u := us) in frequency domain is given. For the
sake of simplicity, the Dirichlet condition is not taken into account from the beginning as
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in (7.13). The Dirichlet condition can be imposed after the matrix assembly. There are
some methods to accomplish this tasks as given in Jung and Langer [63]. The variational
formulation has been anticipated in section 3.5.2 and, for convenience, is restated here in
a slightly modified, yet still equivalent, index-free version∫

Ω

[
σσσ

s : ∇ū−ω
2
ρβ u · ū

]
dΩ+

∫
Ω

[
β∇p · ū−α p∇ · ū

]
dΩ

+
∫
Ω

[
βu ·∇ p̄−α ∇ ·up̄

]
dΩ+

∫
Ω

[
− β

ω2ρ f ∇p ·∇ p̄− φ 2

R
pp̄
]

dΩ

=
∫

ΓN,s

t · ū dΓN,s +
∫

ΓN, f

1
iω

qn p̄ dΓN, f +
∫
Ω

[(
f+β f f

)
· ū− β

ω2ρ f
f f ·∇p̄

]
dΩ .

(7.30)

Note that the formulation above is easily derived by multiplying equation (3.17a) with a
test-function ū and equation (3.17b) with p̄, integrating over the (same) domain Ω and
performing an appropriate integration by parts, such that the resulting boundary integrals
represent stress and flux quantities. The finite dimensional discrete version of (7.30) is
obtained by replacing u and p as well as the respective test-functions by finite dimensional
approximations of the form

u≈ uh =
Nu

ne

∑
i=1

uiϕ i ū≈ ūh =
Nu

ne

∑
i=1

ūiϕ i (7.31a)

p≈ ph =
N p

ne

∑
i=1

piϖi p̄≈ p̄h =
N p

ne

∑
i=1

p̄iϖi . (7.31b)

The use of the same basis functions for both the trial and the test-functions characterizes
the Bubnov-Galerkin method. However, the basis functions for the displacement and the
pressure quantities may, or even have to, differ (hence, Nu

ne denotes the number of nodes in
the displacement element and N p

ne in the pore pressure element). Choosing them arbitrarily
can produce poor or even wrong results, provided the method converges at all. An often
mentioned condition in this context is the LBB-condition (or inf-sup condition) [12, 16,
34] which fulfillment usually guarantees the stability of a finite element solution. Some
remarks regarding this condition in conjunction with poroelasticity can be found in [75].
Showing its fulfillment, however, is all but a trivial task and cannot be subject of this thesis.
Lewis and Schrefler [74] propose the use of different approximation orders for u and p.
Hence, in this work, the displacement is approximated by Lagrangian shape functions of
the second order, whereas those for the pore pressure will be of first order.

By plugging the approximations (7.31) into (7.30) and proceeding as shown in section 7.2,
the following finite element system is obtained[

K11
i j K12

i
K21

j K22

][
u j
p

]
=

[
f1
i
f2

]
(7.32)
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with indices i, j = 1,2,3. In contrast to the pore pressure p, which is a scalar function, the
displacement u is a vector valued function and has three components. The sub-matrix K11

i j
is therefore composed by 3×3 sub-matrices, K12

i by 3×1 and K21
j by 1×3 sub-matrices.

The four, in a manner of speaking, ’superior’ sub-matrices in (7.32) can be identified as
the discretized and approximated versions of the left-hand-side integrals in (7.30), respec-
tively. The computation of the stiffness matrix follows the procedure presented earlier,
i.e., performing the integrations numerically over a reference element including a mapping
which accounts for the transformation from local to global coordinates.

7.4 FEM for the 2d poroelastic structures

The finite element method merely originated from the attempt to solve problems in struc-
tural mechanics. Thus, the solution of plate problems has been subject of studies ever since.
The main issue in solving the Kirchhoff plate equation concerns a proper choice of suit-
able elements for the biharmonic operator. As briefly mentioned in section 7.2, the shape
functions for such elements must be twice differentiable and, hence, require C1-continuity.
Conforming elements of this type are most commonly constructed by cubic Hermite poly-
nomials. In contrast to a 1d two-node Lagrangian element, for which the shape functions
are equal to 1 in one node while being zero in the other, the Hermite polynoms assume this
property for their first derivatives as well. Extended to a 2d four-node element, the mixed
derivatives in each node obey this property, too. A four-node C1-continuous element fea-
tures four degrees of freedom per node, hence, 16 dofs per element. It is obvious that the
computational effort becomes comparatively large. Although such elements can yield ac-
ceptable results, a strong tendency in avoiding C1-continuity has caught on leading to the
development of mixed methods and the use of non-conforming elements. A nicely elabo-
rated and comprehensive introduction of the general theory of mixed methods is given by
Arnold [6] including some remarks on the Reissner plate model. The use of mixed and
non-conforming methods for plate equations is discussed in various textbooks such as in
Braess [32], Zienkiewicz and Taylor [119] and Hughes [60]. A non-conforming formula-
tion for the Reissner-Mindlin model has also been presented by Arnold and Falk [7].

Speaking of non-conforming formulations, one of their significant advantages consists in
their alleviating properties for shear locking which occurs in the finite element solution of
the Mindlin (and Reissner) model when approaching the thin plate limit h→ 0. The lock-
ing effect manifests itself in a considerable underestimation of the deformation quantities.
In equation (4.19), the first integral represents the variation of the bending energy and con-
tains the factor h3/12, whereas the second represents the variation of the shear energy and
contains the factor h. The smaller the plate gets, the larger the shear energy becomes in
comparison to the bending energy and the stronger the constraint ∇w+ψψψ = 0 is enforced.
While on the continuous level the Reissner solution converges to the solution of a related
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Kirchhoff equation, this does not occur on the discrete level, especially when using low
order finite element spaces. In fact, the discrete solution in the thin plate limit approaches
∇wh +ψψψh = 0 as well. Assuming a vanishing thickness and both quantities to be approx-
imated by continuous piecewise linear functions implies ∇wh ≡ −ψψψh, which, due to the
presence of the gradient operator means that both quantities are actually continuous and
piecewise constant with zero boundary conditions. This can only be satisfied for ψψψh = 0.
In this case, the mesh is said to be completely locked. The root of this effect is, hence,
purely of numerical nature. In reality, the normal hypothesis is only imposed approxi-
mately since in a physically meaningful setting the thickness cannot be zero. Still, with
small h a rather poor, heavily locking mesh can be obtained. Some remedies against shear-
locking to be mentioned beside the use of non-conforming elements [7] are, for example,
the fulfillment of the LBB condition, reduced/selective integration [76], stabilized formu-
lations [61] and the so-called discrete shear gap method [27]. Enhanced formulations are
continuously developed as for example by Arnold et al. [8].

The poroelastic plate equations to be solved here, basically share the problem of shear
locking in the thin plate limit as it is easily seen on the presence of the plate parameter
c2 = h2/12 which, for small h, enforces the Kirchhoff normal hypothesis in the same way
as described above with the same consequences. The primary goal of this work, however,
lies in showing the functionality of the presented formulation and to justify its use over
the full three-dimensional formulation. Therefore, as a first try, Lagrangian elements are
used. Their performance in comparison to Serendipity elements has been investigated by
Dhainaut [46] for the Reissner model.

The three classes of unknown quantities encountered in the plate problem are vertical
deflections, rotations of the cross section and pore pressures. The option of approximating
these three kinds of quantities by basis functions of different orders shall be preserved.
The finite dimensional approximations of the continuous functions, hence, read

k
ψψψ ≈

k
ψψψh =

Nψ
ne

∑
i=1

k
ψψψ iϑi

`

ψ̄ψψ ≈
`

ψ̄ψψh =
Nψ

ne

∑
i=1

`

ψ̄ψψ iϑi k, ` ∈O

k
w≈ k

wh =
Nw

ne

∑
i=1

k
wiϕ i

`

w̄≈
`

w̄h =
Nw

ne

∑
i=1

`

w̄iϕ i k, ` ∈ E

k
p≈ k

ph =
N p

ne

∑
i=1

k
piϖi

`

p̄≈
`

p̄h =
N p

ne

∑
i=1

`

p̄iϖi k, ` ∈O .

(7.33)

Similar considerations can be made for the disc problem as well. Therein, the unknown
quantities of interest are in-plane displacements, contractions in thickness direction and
pore pressures. Again, different approximation orders for each unknown shall be al-
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lowed
k
v≈ k

vh =
Nv

ne

∑
i=1

k
viϑi

`

v̄≈
`

v̄h =
Nv

ne

∑
i=1

`

v̄iϑi k, ` ∈ E

k
w≈ k

wh =
Nw

ne

∑
i=1

k
wiϕ i

`

w̄≈
`

w̄h =
Nw

ne

∑
i=1

`

w̄iϕ i k, ` ∈O

k
p≈ k

ph =
N p

ne

∑
i=1

k
piϖi

`

p̄≈
`

p̄h =
N p

ne

∑
i=1

`

p̄iϖi k, ` ∈ E .

(7.34)

Note that the basis functions in (7.33) and those denoted by the same symbols in (7.34)
are not related to each other. The weak forms (5.45) and (5.46) reveal that each unknown
quantity must be in H1 in order for the integrals to make sense, i.e., the functions themself
and their first derivatives must be square integrable. C0-continuous functions, i.e., first
derivatives exist but are allowed to be discontinuous, fulfill this requirement. Hence, La-
grangian polynomials represent a suitable basis for the finite dimensional finite element
spaces. In order to prevent locking effects, the use of piecewise linear shape functions for
all unknowns, however, can be excluded in the first place, at least if no additional provi-
sions are undertaken. Referring to the plate problem, at least the vertical deflections should
be approximated by piecewise quadratic shape functions.

The discrete weak forms of both the plate and the disc are obtained by replacing the contin-
uous functions in (5.45) and (5.46) by their discrete versions defined in (7.33) and (7.34),
respectively. Once again, the coefficients of the test-functions are arbitrary, which allows
the extraction of a certain number of finite element equations, coinciding with the num-
ber of unknowns considered in the problem. For instance, the second order plate problem
results in 4 equations and the third order in 6 equations.

Similarly as for the Helmholtz equation and for the 3d poroelastic problem, the final FE-
system for the extendable poroelastic structures can be condensed to a system of the form
Ku = f. This time, three kinds of unknowns appear in each system where one of those
unknowns is vector-valued (i.e., it has two components). In addition, all quantities are, in
theory, extendable to any desired order k. This extendibility must be taken into account.
The FE-system for the poroelastic plate is given by

`k

K11
`k

K12
β

`k

K13

`k

K21
α

`k

K22
αβ

`k

K23
α

`k

K31
`k

K32
β

`k

K33


p

k
w

k

ψβ

k
p


p

=


`

f1

`

f2
α

`

f3


p

. (7.35)

The subscripts α,β = 1,2 account for the two components of the rotations. The overscripts
k and ` account for the amount of unknown functions and test-functions considered in the
system. The summation convention applies for all repeated indices. The values that each
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k and ` are allowed to adopt is uniquely determined by the considered quantity and are
restricted to each term. In order to clarify this convention, the first equation from (7.35) is
taken

`k

K11 k
w+

`k

K12
β

k

ψβ +
`k

K13 k
p=

`

f1 . (7.36)

The summation over β is obvious and applies in any case. Now, assuming a full third-
order plate system means that each unknown has two components of different order. The
equation above then expands to

00

K11 0
w+

02

K11 2
w+

01

K12
β

1

ψβ +
03

K12
β

3

ψβ +
01

K13 1
p+

03

K13 3
p=

0

f1 (7.37)
20

K11 0
w+

22

K11 2
w+

21

K12
β

1

ψβ +
23

K12
β

3

ψβ +
21

K13 1
p+

23

K13 3
p=

2

f1 . (7.38)

Therein, the `-values represent the order of the test-function with which each equation is

multiplied, i.e., the first one above with
0

w̄, the second with
2

w̄. The two equations can be
written as 00

K11
02

K11

20

K11
22

K11


︸ ︷︷ ︸

`k
K11

[
0
w
2
w

]
+

 01

K12
β

13

K02
β

21

K12
β

33

K22
β


︸ ︷︷ ︸

`k
K12

β

 1

ψβ
3

ψβ

+
 11

K03
13

K03

31

K23
33

K23


︸ ︷︷ ︸

`k
K13

[
1
p
3
p

]
=

0

f1

2

f1

 . (7.39)

The remaining equations in (7.35) are treated in the same way. When considering a full
third-order plate, the system (7.35) contains 64 sub-matrices. Omitting the higher order ro-
tations, reduces it to 36 sub-matrices and the second-order plate contains 25 sub-matrices.
The extendable system for the disc is given as


`k

K11
αβ

`k

K12
α

`k

K13
α

`k

K21
β

`k

K22
`k

K23

`k

K31
β

`k

K32
`k

K33


d

k
vβ

k
p

k
w


d

=


`

f1
α

`

f2

`

f3


d

. (7.40)

Note that the sub-matrices in (7.35) are not related to those in (7.40). The superscripts p

and d shall emphasize this distinction. The systems (7.35) and (7.40) allow a sophisticated
implementation which supports an easy switching between systems of different orders
and to change the order of the basis functions for each unknown quantity. The integrals
representing all sub-matrices up to the full third order are given in appendix A.2 for both,
the plate and the disc.
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7.5 FEM for the coupled system

In section 6.2, the fluid-porostructure-fluid coupling has been formulated in its variational
form. The complete formulation combines the weak forms of the plate (5.45) and the
disc (5.46) with the weak form of the Helmholtz equation (7.6). The coupling is implied
over the boundary integrals, leaving the domain integrals unaffected. This means that the
finite element formulation of the individual domains presented in the previous sections can
be applied to the coupled problem as well. An analysis of the finite element method for
coupled systems can be found, for instance, in [62] and [86].

The overall FE-system for the fluid-porostructure-fluid problem takes the form

Ka1
Ca1υ1

Ca1p Ca1d

Cυ
1a1

Cυ
1p Cυ

1d

Cpa1 `k

K11
`k

K12
β

`k

K13 Cpa2

`k
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α

`k
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α
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K31
`k
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β

`k

K33 Cpυ2

`k
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α
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β
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K31
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`k

K32
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2p Cυ

2d Cυ
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Ca2p Ca2d Ca2υ2
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k
wp

k

ψβ

k
pp

k
vβ

k
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k
wd

υ2

pa2



=



`

fa1

0
`

fp1

`

fp2
β

`

fp3

`

fd1
β

`

fd2

`

fd3

0
`

fa2


(7.41)

The K matrices are the same stiffness sub-matrices encountered before. The C matrices
represent coupling matrices. These only contain non-zero entries for dofs located on the
respective interface boundaries. The Cap, Cad matrices and their transposed versions arise
from the integrals (6.30) and (6.31) and couple the acoustic pressure to the vertical deflec-
tion quantities of both the plate and the disc. Therein, the superscripts a, p and d refer to
the acoustic fluid, the plate and the disc, respectively. The Cυa, Cυp and Cυd as well as
their transposed versions arise from the integrals (6.35) and (6.36). The role of the La-
grange multipliers in the system above becomes evident when looking at the second and
the second-to-last rows. In fact, these state that

Cυa pa +Cυp k
pp+Cυd k

pd = 0 (7.42)

holds, which is nothing else than the discrete version of the interface condition (6.27).
Hence, the linear system of equations (7.41) provides a set of equations explicitly imposing
the equality of pressure on the interfaces.
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All empty spaces are zero-sub-matrices. Note, especially, the absence of any coupling ma-
trices between the plate and the disc blocks. If each domain is discretized independently,
the meshes won’t usually match on the interfaces. This leads to so-called Mortar meth-
ods [18, 115]. In order to keep things simple, here, only matching grids are considered.
The Lagrange multipliers (and their test-functions) are treated as any other unknown in the
system and can be approximated accordingly, i.e.,

υ ≈ υh =
Nυ

ne

∑
i=1

υiϕ i ῡ ≈ ῡh =
Nυ

ne

∑
i=1

ῡiϕ i . (7.43)

As all other unknown quantities in (7.41), the quantity υ represents the collection of all
coefficients υi, i.e., υ= [υi]

Nne
i=1.



8 NUMERICAL RESULTS

In this chapter, numerical results are presented with the purpose to validate the theories de-
veloped in this work. Unfortunately, there are no analytic solutions available which makes
it necessary to compare the models to the analytic or numeric results obtainable from some
alternative theories. Under suitable restrictions (thin structure, elastic material), the pro-
posed plate model can be compared to the rather simple Euler-Bernoulli beam theory or
the Kirchhoff plate model. This is done in section 8.1. The poroelastic structures, i.e.,
plate and disc (and their interactions), are investigated in section 8.2. The missing of an
analytic solution for those structures requires a comparison with the poroelastic 3d model.
Finally, results concerning the coupling of the poroelastic structures with an acoustic fluid
are given in section 8.3.

All numerical calculations are carried out by a finite element code written in C++ under
involvement of the finite element library libmesh [69]. The arising linear systems of equa-
tions are solved directly using PETSc [15] under inclusion of the package SPOOLES [9].
All 2d models use quadrilateral elements with Lagrangian basis functions. The order of the
basis functions can be altered between bilinear and biquadratic for each unknown quan-
tity. Details on the discretization, the material model and the geometry are given in the
respective sections.

8.1 Elastic structures

8.1.1 Elastic beam

The elastic beam represents the most basic system for performing a first validation of the
proposed model, since it can be easily compared to the fairly simple Euler-Bernoulli beam
theory (EB). The theory of vibration of finite beams is nicely presented in Graff [55].

The EB theory can be seen as the one-dimensional counterpart of the Kirchhoff-Love plate
theory since shear rigidity is assumed and, hence, the normal hypothesis w,1+ψ1 = 0 holds
(the beam is assumed to extend in x1-direction). Consequently, the comparison between
the EB theory and the extendable plate model must be restricted on thin structures. The
geometry data and the implied load is given in table 8.2. Three different kinds of supports
are considered, i.e., clamped ( ), pinned ( ), and free. Three differently supported
beams are investigated, the first one being clamped at one end and free at the other (cf),
the second being pinned at both ends (pp) and the third being clamped at the one end and
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pinned at the other one (cp). The material is chosen to be Aluminium with its material
properties specified in table 8.1. Although the Poisson ratio is given as ν = 0.35, for

Material
Young’s modulus Poisson ratio Density

E[kN/m2] ν [−] ρ[kg/m3]

Aluminium 6.90 ·107 0.35 2700.00

Table 8.1: Material data

the actual calculation it is set to ν = 0. A material with Poisson ratio of zero does not
experience any contraction or expansion in the transversal direction of the acting normal
stresses and since the EB theory does not account for such effects, the material data for
the plate model is modified accordingly. Under the assumption of a constant bending
stiffness EI, the static EB theory is governed by a differential equation of fourth order (for
simplicity x := x1)

EI
∂ 4

∂x4 wEB = tb . (8.1)

Its analytic solution can be established fairly simple by integrating four times and adjusting
the constants of integration according to the imposed boundary conditions. The solutions
for the three considered problems are

cf : wEB(x) =
tb

24EI

(
−4x4 +4`x3−6`2x2) (8.2)

pp : wEB(x) =
tb

24EI

(
−x4 +2`x3− `3x

)
(8.3)

cp : wEB(x) =
tb

48EI

(
−2x4 +5`x3−3`2x2) (8.4)

The respective rotations of the cross section for each problem are given by the normal
hypothesis, i.e., ψ1 =−w,1.

The analytic solutions (8.2) shall be compared to the numerical solutions of the extendable
plate theory. Four different discretizations are considered which are depicted in figure 8.1.
The used plate theory is of order two, i.e., the vertical defections

0
w and

2
w and the rotation

1
ψα are calculated. The numerical solution for the vertical deflection is given as

wh =
0
wh +

2
whx2

3 , (8.5)

however, in order to compare it to the EB theory solution, only points on the mid-surface
are considered, i.e., x3 = 0. In view of the locking effects mentioned in the previous
chapter, the use of bilinear shape functions for the vertical deflections and the rotations
is avoided. Instead, as a first try, the two vertical deflection quantities are approximated
by biquadratic shape functions and the rotations by bilinear ones. It should be noted that
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(a) 6×1 elements (b) 12×2 elements

(c) 24×4 elements (d) 48×8 elements

Figure 8.1: Quadrilateral discretizations of the elastic beam

the constant surface load must be thought of being applied equally on the upper and lower
surfaces of the 2d beam in order to prevent the disc problem to be activated (see section
5.3). The analytic Euler-Bernoulli solutions and the numerical plate solutions are plotted
in figure 8.2 for the three considered cases. Therein, the drawn-through lines represent

` [m] b [m] h [m] t [kN/m2]

1.00 0.10 0.01 1.00

Table 8.2: Length, width, thickness and surface load

the analytic Euler-Bernoulli solutions, whereas the circles and squares represent values on
discrete points of the numerical plate solution. The agreement between the solutions is
evident. In table 8.3 and figure 8.3, the difference between the analytic and the numerical
solutions are given in the L2-norm, i.e.,

‖wEB−wh‖L2 =

√
n

∑
k=1
|wEB(xk)−wh(xk)|2 , (8.6)

where the counting index k denotes the points on which the solution functions are eval-
uated, most likely the nodes of the FE-mesh. Despite the obvious convergence behavior,
the value (8.6) cannot be expected to actually approach zero even for very fine meshes.
Indeed, solutions originating from different theories are compared.

One last remark on the elastostatic beam worth mentioning concerns the Poisson ratio. As
mentioned before, it has been set to zero in the actual calculation in order to reproduce the
restrictions the Euler-Bernoulli beam is subjected to. Taking the Poisson ratio into account,
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‖wEB−wh‖L2

6×1 12×2 24×4 48×4
clamped-free 3.84 ·10−4 1.28 ·10−4 4.05 ·10−5 8.66 ·10−6

pinned-pinned 8.93 ·10−5 3.09 ·10−5 9.96 ·10−6 2.15 ·10−6

clamped-pinned 1.06 ·10−4 3.67 ·10−5 1.18 ·10−5 2.55 ·10−6

Table 8.3: Difference in the L2-Norm between the analytic Euler-Bernoulli beam solution
and the finite element plate solution for different meshes
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Figure 8.3: Convergence behavior

however, changes the results for
0
w only marginally (top about 0.3%). What changes dras-

tically (about a factor of 104) is the solution for
2
w since this quantity expresses the order of

magnitude of the thickening of one half and the thinning of the other half during bending
and, hence, the ability of the structure to suffer a transversal contraction and expansion un-
der normal stresses. Still, for the overall vertical deflection wh as given in equation (8.5),
this quantity does not contribute much since it is multiplied by the square of the thickness
coordinate, which, due the here given thin structure, results into a negligible value.

Now, the inertia terms shall be considered. This allows an investigation of the systems
behavior depending on the frequency of excitation. Due to the time harmonic assumption
(2.1), the system can be calculated for any frequency separately, where the applied surface
load must be understood as a harmonic function in time with the period 2π/ω. Hence,
the lower the frequency, the longer the period and the closer the solution will be to the
elastostatic one.

If neglecting any damping effects, every vibratory structure features some characteristic
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frequencies, for which the amplitude of the oscillation approaches infinity although the am-
plitude of the harmonic excitation remains steady. Those frequencies are usually referred
to as eigenfrequencies or natural frequencies. For the EB theory, the eigenfrequencies can
be calculated by

ωn =
(

ηn

`

)2
√

EI
ρA

(8.7)

where ηn with n= 1,2,3 . . . represents the roots of the underlying general solution adjusted
by the respective boundary conditions (see Graff [55] for details). The first few roots for
the single problems turn out to be

c f : ηn = 1.875, 4.694, 7.885, 10.996 for n = 1,2,3,4
pp : ηn = nπ for n = 1,2,3,4 . . .
cp : ηn = 3.927, 7.069, 10.210, 13.352 for n = 1,2,3,4 .

(8.8)

The eigenfrequencies of the plate model are determined approximately by solving for sev-
eral frequencies in some interval. When approaching an eigenfrequency, the absolute value
of the displacement amplitude increases and actually tends to infinity before it decreases.
The eigenfrequencies of the plate model are therewith approximately given by the location
of such peaks. In figure 8.4, the frequency plots for the three systems are given up to a
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Figure 8.4: Frequency-plot of the elastic beams with different supports

frequency of 0 ≤ ω ≤ 2000 rad/s. The individual curves represent the absolute values for
the vertical deflection of some distinct point on the beam. For the cf-beam, it’s the free
endpoint, for the pp-beam, it’s the middle point, and for the cp-beam it’s the point of max-
imum amplitude of its static solution, i.e., approx. 0.58m from the clamp. In table 8.4,
the eigenfrequencies of the Euler-Bernoulli beam and those of the plate model are given.
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Note that the second eigenfrequency for the pp-beam is missing. The reason is that the
beam is supported and loaded symmetrically, whereas the second eigenfrequency comes
with an antisymmetric displacement mode and hence does not appear. The FE-calculation
has been performed using the 24x4-mesh with biquadratic basis functions for the displace-
ment quantities and bilinear basis functions for the rotations. It can be observed that the

clamped-free pinned-pinned clamped-pinned
ω1 ω2 ω3 ω4 ω1 ω3 ω1 ω2 ω3

EB 51.3 321.5 900.4 1764.5 144.0 1296.3 225.0 728.8 1521.2
FE 51.4 322.3 904.5 1779.5 144.3 1303.3 225.4 732.4 1534.0

diff. in % 0.19 0.25 0.45 0.84 0.21 0.54 0.18 0.49 0.83

Table 8.4: Comparison of the first few eigenfrequencies for the elastic beams in rad/s: EB
denotes the analytic Euler-Bernoulli beam solution and FE the finite element
plate solution. Diff. in % given by 100 · (1− ωEB

ωFE
).

first eigenfrequencies are matched very well for all three beams. Even for the higher ones,
the ratios between the EB eigenfrequencies and the plate eigenfrequencies do not exceed
0.85%. The latter ones, however, are slightly shifted towards a larger value. This turns
out to be a numerical issue, since a finer discretization and/or the use of biquadratic basis
functions for the rotations more and more yields the respective EBT value. This is not sur-
prising, since, as mentioned earlier, C0 continuous Lagrangian shape functions in conjunc-
tion with exact numerical integration are not the ideal choice for solving plate equations,
even less for thin structures. Within this work, however, the finite element solution scheme
shall not be altered since the static solution is reproduced precisely and the quality of the
dynamic solutions is still in absolutely acceptable ranges. Of course, this latter statement
cannot be generalized and should be verified for each problem.

8.1.2 Elastic plate

When supporting only one or two juxtaposed boundaries of a rectangular plate, it may
be conceived as a beam and compared to the EBT. If, however, more than two or two
not juxtaposed boundaries are supported, this approximation is not admissible anymore.
Some plate theory must then be used for comparison. Assuming again a thin structure, the
Kirchhoff plate theory can be used for providing a comparative solution.

The considered plate is simply supported along all four boundaries. For the Kirchhoff
model, the locations of the eigenfrequencies can then be calculated by [55]

ωnm = π
2
(

n2

a2 +
m2

b2

)√
D

ρA
n,m = 1,2,3 . . . , (8.9)
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with a,b denoting the length of the two neighboring sides of the rectangular plate and D
the plate stiffness. The plate is chosen to be rectangular with a = 2.00m, b = 1.00m and
thickness h = 0.02m. For convenience, the material properties are chosen to represent the
elastic-drained case of the poroelastic model used in the next section. The values are given
in table 8.5 The following calculations are performed on a mesh with 25× 15 elements,

Material
Young’s modulus Poisson ratio Density

E[kN/m2] ν [−] ρ[kg/m3]

Berea sandstone 1.44 ·107 0.2 2458.00

Table 8.5: Material data

with biquadratic basis functions for w and bilinear basis functions for ψ . Figure 8.5 depicts
the absolute value of the vertical deflection w of the plates middle point over the frequency.
Again, the peaks mark eigenfrequencies. The six corresponding eigenmodes are given in
figure 8.6, which appear in the given order from (a) to (f). Due to the constant load over
the whole plate surface, antisymmetric eigenmodes do not occur. In table 8.6, the first few
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Figure 8.5: Frequency-plot of the elastic, rectangular plate

eigenfrequencies determined by equation (8.9) and those calculated numerically using the
second order elastodynamic plate model are listed. As already mentioned in the previous
section, lower eigenfrequencies are approximated much better than the higher ones. It
comes as no real surprise that the FE model tends to be stiffer for higher eigenfrequencies
after having a look on figure 8.6. Therein, it is evident that the sine and cosine behavior is
resolved more and more inaccurately due to the limited amount of elements in the respec-
tive directions. Yet, it must be emphasized that the Kirchhoff-Love values do not represent
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ω11 ω31 ω51 ω13 ω33 ω71
KL 176.0 457.5 1020.5 1302.1 1583.6 1865.1
FE 176.0 459.5 1034.0 1318.0 1600.0 1915.0

diff. in % 0.00 0.43 1.30 1.21 1.02 2.63

Table 8.6: Comparison of the first few eigenfrequencies for the elastic plate in rad/s: KL
denotes the analytic Kirchhoff-Love plate solution and FE the finite element
plate solution. Diff. in % given by 100 · (1− ωKL

ωFE
)
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Figure 8.6: Eigenmodes of the elastic, rectangular plate: FE solution
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the reference solution to be approached. In fact, for increasing thickness, the FE model
tends to be less stiff than the Kirchhoff model, whereas for very thin plates, the contrary is
true. Although this latter case may be explained by the activation of locking effects, some
uncertainty persists of whether the deviation between the solutions is due to numerical in-
accuracies of the FE solution or if the use of the Kirchoff model is improper for the given
geometry.

On the example of the eigenfrequency ω33, the values obtained from different discretiza-
tions and different approximation orders are compared. The results are summarized in
figure 8.7. It can be observed that the use of biquadratic basis functions for w and bi-
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Figure 8.7: Convergence behavior for eigenfrequency ω33

linear ones for ψ is slightly inferior in its convergence behavior than the approach with
biquadratic basis function for all quantities. The latter option, however, comes with a
considerable increase in computation time. Moreover, it can be seen that the Kirchhoff so-
lution is actually slightly stiffer than the FE-solution. The eigenfrequency obtained from
the biquadratic-bilinear approximation on the 25×15 mesh approaches the value obtained
from the biquadratic-biquadratic 40×24 mesh as close as 1.5%. If the exact estimation of
the location of the eigenfrequencies is not the primary objective, the use of the first option
is therewith completely justified.

8.2 Poroelastic structures

In this section, numerical results for the poroelastic 2d structures are presented. First, the
vertical deflection of the poroelastic solution is compared to the two limiting cases given
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by the elastic drained and undrained models over some frequency range. Subsequently, the
effects of different applications of a constant load are investigated and, in this context, the
distribution of the individual degrees of freedom over the thickness. The material data for

poroelastic elastic drained elastic undrained

Young’s modulus E[kN/m2] 1.44 ·107 1.44 ·107 1.60 ·107

Poisson’s ratio ν [-] 0.2 0.2 0.335
density ρ[kg/m3] 2458 2458 2458
porosity φ [-] 0.19 - -
fluid density ρ f [kg/m3] 1000 - -
solid bulk modulus Ks[kN/m2] 3.60 ·107 - -
fluid bulk modulus K f [kN/m2] 3.30 ·106 - -
permeability κ[m4/kNs] 1.90 ·10−7 - -

Table 8.7: Material data for Berea sandstone

the forthcoming calculations is given in table 8.7.

8.2.1 Poroelastic versus elastic drained and undrained solutions

As mentioned in section 3.4, a possibility of estimating the behavior of a poroelastic sys-
tem is given by the elastic-drained and the elastic-undrained models. This, of course, is
restricted to frequencies not located in the direct neighborhood of eigenfrequencies, since
the expected damping behavior of the poroelastic system cannot be reproduced by the elas-
todynamic models. The drained model is expected to approximate the poroelastic behavior
for lower frequencies, whereas the undrained one represents an approximation for higher
frequencies.

The plate under consideration has been chosen to have the same dimensions as in the
example of section 8.1.2, except for the thickness which has been increased to h = 0.1m.
It shall be shown that for such a thickness the eigenfrequencies obtained from equation
(8.9) differ considerably from those obtained from the FE calculation. The mesh again
consists of 25×15 elements. For the two elastic models, the second order system is used.
Therein, the two vertical deflection quantities

0
w and

2
w are approximated biquadratically

and the rotations
1

ψα bilinearly. For the poroelastodynamic system, an extended second
order model is used, i.e., in addition to the pressure quantity

1
p, the quantity

3
p is considered.

The two pressure quantities are approximated by bilinear basis functions as well.

In order to estimate the accuracy of the chosen settings, the eigenfrequency ω33 of the
drained system is again compared to its counterpart obtained from the 40×24 mesh with
biquadratic basis functions for all quantities. It turns out that for the former case the value
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Figure 8.8: Comparison between the poroelastic, the elastic drained and the elastic
undrained solutions

is ω33 = 7001.0 rad/s whereas for the latter case it is ω33 = 6927.0 rad/s. The inaccuracy is,
hence, lower than 1.1%. On the other hand, the value calculated using equation (8.9) is
ω33 = 7918.0 rad/s. Clearly, in this case the Kirchhoff model exceeds its range of applica-
tion.

The three solutions are plotted in figure 8.8. Therein, the first thing that attracts attention is
the smoothness of the poroelastic curve compared to the two elastic ones, i.e., no singular-
ities appear and the maximum deflection is finite for every frequency which is due to the
natural damping behavior of the poroelastic system. The poroelastic solution is complex-
valued, hence, the curve in figure 8.8 depicts its magnitude |w|=

√
(Rew)2 +(Imw)2. In

the pictures given in Nagler and Schanz [83], only the real part Rew of the solution has
been plotted leading to the strange looking inverse peaks where actually the maximum de-
flection is expected. The real part, hence, governs the solution outside the neighborhood of
eigenfrequencies whereas in their neighborhood the solution is governed by the imaginary
part. As anticipated in section 3.4, the poroelastic solution indeed turns out to coincide
with the elastic drained case for lower frequencies whereas for higher frequencies it more
and more approaches the elastic undrained solution (see figure 8.9) .

8.2.2 2d versus 3d

Up two now, the proposed plate model has been shown to coincide well with classical 2d
theories within the limitations the classical theories are subjected to, both in the static and
in the dynamic case. Moreover, the calculation on the poroelastic plate nicely confirms
the predicted damping behavior in the neighborhood of eigenfrequencies as well as its
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Figure 8.9: Zooms on a lower and a higher frequency range of figure 8.8

approximate limits given by the elastic drained and undrained model. The next step in
validating the system developed in this work consists in comparing the distribution of
the individual quantities over the thickness with their counterparts obtained from the 3d
model.

Structure subjected to stress load. The calculations are performed on a beam-like
structure of length a = 2.0m, width b = 0.2m and thickness h = 0.1m as depicted in
figure 8.10. The origin of the underlying coordinate system is taken to be in the middle
point of the plate. The left end is clamped, whereas on the right end the rotation is sup-
pressed but the vertical deflection is free ( ). In the 3d calculation, the displacement
field is approximated quadratically and the pore pressure field linearly. Hex20 elements

x1

x2

x3

Figure 8.10: Geometry and supports of the considered structure

are used. The 2d model uses the same settings as before. The two meshes are depicted in
figure 8.11. An important detail of the following calculations is how the load is applied.
As described in section 5.3, it must be distinguished between the case where the load is
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applied on one surface only, and the case where the load is split and applied on the upper
and the lower surfaces, respectively. In fact, the underlying equations reveal that in the
former case the disc problems is not activated, while in the latter case it is. In the first

(a) 2d mesh, 6×30 elements (b) 3d mesh, 6×30×5 elements

Figure 8.11: Discretizations of the 2d and 3d structures

calculation the load is applied equally on the upper and lower surface, all disc quantities
are therewith equal to zero. The system is solved for an angular frequency of ω = 1.0 rad/s,
hence, simulating a nearly static configuration.

After solving the system, the only quantities that can be directly compared between the
2d and the 3d systems are the vertical displacements

0
w and u3 at x3 = 0. For a general

comparison, the plate quantities must be inserted into the respective power series. For the
actual case, the power series are given as

uα(xi) =
1

ψα(xα)x3 (8.10a)

u3(xi) =
0
w(xα)+

2
w(xα)x2

3 (8.10b)

p(xi) =
1
p(xα)x3 +

3
p(xα)x3

3 . (8.10c)

The calculated values for the individual coefficients of (8.10) at (x1,x2) = (−0.8,0), i.e.,
near the clamp, are given in table 8.8. The values obtained from the 3d model on the nodes

k
w

k
ψ1

k
p

0
w =−2.033 ·10−5 1

ψ1 = 1.87269 ·10−4 1
p =−1.9827 ·10−3

2
w =−8.043 ·10−5 3

p = 2.6774 ·10−1

Table 8.8: Values at (x1,x2) = (−0.8,0) obtained from the 2d model

along that fiber are listed in table 8.9. Using these values from table 8.8 in (8.10a) and
(8.10b) and plotting the respective functions together with the discrete values from table
8.9, gives figure 8.12. Note that therein the x3 values are applied on the vertical axis, such
that the plot actually represents the deformed thickness fiber. The accordance between the
2d and the 3d results is obvious. The in-plane displacement u1 clearly shows a linear dis-
tribution. Apparently, the assumption of an unwarped cross section as found in classical
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x3 u1[m] u3[m] p[kN/m]

−0.05 −9.40505 ·10−6 −2.07699 ·10−5 6.32591 ·10−5

−0.03 −5.61731 ·10−6 −2.06411 ·10−5 5.06344 ·10−5

−0.01 −1.86836 ·10−6 −2.05764 ·10−5 1.91768 ·10−5

0.01 1.86836 ·10−6 −2.05764 ·10−5 −1.91768 ·10−5

0.03 5.61731 ·10−6 −2.06411 ·10−5 −5.06343 ·10−5

0.05 9.40505 ·10−6 −2.07699 ·10−5 −6.32591 ·10−5

Table 8.9: Discrete values along thickness fiber at (x1,x2) = (−0.8,0) obtained from the
3d model

theories seems to be justified. If, however, the plate gets even thicker or if the consid-
ered fiber is located closer to a clamp or if the system is solved for a higher frequency,
the in-plane displacement may tend to a cubic distribution. In such a case, the quantity

3
ψ1 must be additionally considered. For the vertical displacement, the constant term
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Figure 8.12: Comparison of in-plane and vertical displacements over the thickness

clearly dominates. The agreement between the 2d and the 3d solutions is good, the plate,
however, being slightly stiffer. Zooming on the data range and artificially eliminating the
slight (constant) deviation of the two solutions, reveals that the quadratic distribution is
matched perfectly (figure 8.13). Finally, the pore-pressure-function (8.10c) is plotted to-
gether with the discrete values from the 3d model. The cubic distribution is clearly visible.
The function (8.10c) nicely reproduces this behavior. This points out the importance of
incorporating the third order term of the pore pressure. If only the linear term was consid-
ered, the deviation from the 3d solution would be considerable.

It is worth noting that the two antisymmetric functions u1 and p are equal to zero for x3 = 0
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due to the non-existing constant terms. Recall that the load has been applied equally on
the upper and lower surfaces. The load on the system, hence, is antisymmetric as well.
From that it may be deduced, that breaking the antisymmetry in the load will also break
the antisymmetry in the systems response. Presumed this is the case, a newly computed
3d solution under non-antisymmetric load, but with the same magnitude as before, differs
from the actual one. The plate solution, however, remains the same. In fact, recalling
section 5.3, the load for the plate is given by the sum t+3 + t−3 . The turning out of the
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Figure 8.14: Comparison of the pore pressure distribution over the thickness

plate solution only depends on the sum of those two quantities, their individual values
do actually not matter. This means that the plate solution will not match the 3d solution
anymore. This discrepancy can be adjusted by superposing the plate solution to the disc
solution. Indeed, the load for the disc depends on the difference t+3 − t−3 , which, in the case
of t+3 6= t−3 , is unequal to zero which means that the disc solution won’t be zero either.
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The following example points out the consequences of such a non-antisymmetric load.
The considered problem remains the same as above, with the only difference that the load
is applied on one surface only. The new node-values along the thickness fiber of the 3d
model are given in table 8.10. The values resulting from the disc problem are given in table
8.11 while those for the plate remain the same as before (table 8.8). A comparison between

x3 u1[m] u3[m] p[kN/m]

−0.05 −9.40507 ·10−6 −2.07685 ·10−5 0.145334
−0.03 −5.61732 ·10−6 −2.06403 ·10−5 0.145321
−0.01 −1.86837 ·10−6 −2.05762 ·10−5 0.145290

0.01 1.86834 ·10−6 −2.05767 ·10−5 0.145251
0.03 5.61730 ·10−6 −2.06420 ·10−5 0.145220
0.05 9.40504 ·10−6 −2.07712 ·10−5 0.145207

Table 8.10: Discrete values along thickness fiber at (x1,x2) = (−0.8,0.0) obtained from
the 3d model

the tables 8.9 and 8.10 shows negligible differences for the displacement quantities. The
pore pressure, however, changed considerably. By all indications, it seems to be increased
by a constant factor. Such a constant factor must originate from the disc solution. In
fact, the respective value is given by

0
p in table 8.11. Including the disc quantities, the 3d

k
w

0
v1

k
p

1
w =−2.77007 ·10−8 0

v1 = 9.52443 ·10−11 0
p = 0.144962

2
p =−2.77045 ·10−8

Table 8.11: Values at (x1,x2) = (−0.8,0.0) obtained from the 2d disc model

displacement/pressure-fields can be reconstructed out of the 2d problem by

uα(xi) =
0
vα(xα)+

1
ψα(xα)x3 (8.11a)

u3(xi) =
0
w(xα)+

1
w(xα)x3 +

2
w(xα)x2

3 (8.11b)

p(xi) =
0
p(xα)+

1
p(xα)x3 +

2
p(xα)x2

3 +
3
p(xα)x3

3 . (8.11c)

Using the values in table 8.11 in (8.11a), (8.11b) and (8.11c) and evaluating the functions
on the discrete locations along x3 coinciding with the nodes of the thickness fiber confirms
the values of table 8.10. It may be noted that the in-plane displacement and the vertical
deflection are influenced only marginally by the non-symmetric load. The same holds for
the quadratic term of the pore pressure. The constant pore pressure term

0
p, however, plays

an essential role. Without it, the pore pressure solution of the 2d calculation would be
completely wrong.
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Structure subjected to flux-load. A further example focuses on the systems response
when only flux conditions are applied. A square plate of 1.0× 1.0× 0.1m is considered.
As shown in figure 8.15 two neighboring sides are clamped, the other two are free. The

x1

x2

x3

Figure 8.15: The considered plate

discretized 2d and 3d models are depicted in figure 8.16. The load is given by the constant
flux vector qi = [0,0,q3]

>, such that q+ = qi n+i = q3 on A+, i.e., on the upper surface
and q− = qi n−i = −q3 on A−. Therewith, the flux-load acting on the plate results to

1
q =

h/2(q3− (−q3)) = hq3, whereas for the disc one has
0
q = (q3−q3) = 0. Hence, the system

is completely described by the plate only.

(a) 2d mesh, 15×15 elements (b) 3d mesh, 15×15×5 elements

Figure 8.16: Discretizations of the 2d and 3d structures

In figure 8.17, the vertical displacements of the 2d and 3d structures are plotted along the
diagonal x2 =−x1 for x3 = 0 (dashed line in figure 8.15). As expected, the plate deforms
in the direction of the flow, i.e., in the positive x3-direction and the agreement between the
two solutions his clearly evident.

Regarding the pore pressure, it turns out that Re
1
p = const, i.e., independent of xα . Actu-

ally, as long as the pressure is not subjected to any Dirichlet conditions, Re
1
p is independent
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Figure 8.17: Comparison of the vertical displacements in the 2d and 3d structure along the
plate diagonal (see dashed line in figure 8.15) caused by the flux-load

of how the plate is supported. On the other hand, different supports lead to different de-
formations which again have an influence on the pore pressure. This influence, however,
is small and mainly affects the quantity

3
p. At (x1,x2) = (0.5,−0.5) the pore-pressure-

function is given by

p = (−2631.58−2.56262i)x3 +(−0.273354+340.997i)x3
3

Clearly, Re
1
p dominates such that the function is approximately linear in x3. The values of

p at x3 =±h/2 =±0.05 are given in table 8.12 for the 2d and the 3d model. The agreement

2d plate model 3d plate model

x3 =
h
2 −131.579−0.0855064i −131.579−0.085584i

x3 =−h
2 131.579+0.0855064i 131.579+0.085584i

Table 8.12: Comparison of pore pressure values at x1 = 0.5, x2 =−0.5

between the two solutions couldn’t be more striking. The same holds for any other xα .

With this section, the proposed two-dimensional poroelastic model can be considered at-
tested regarding its ability to produce accurate results. Many more examples have been
calculated within the preparation of this work, whereby the geometry, the supports and the
loads have been varied. Also, bending moments and shear forces as well as normal forces
and flux conditions in any combination have been applied along the edges. All in all, it
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turns out that the quality of the obtained results is in perfect agreement with the quality of
the results presented here.

What has not yet been discussed is the computation time. Indeed, one central point of the
developed method lies in reducing the needed amount of time for solving the system com-
pared to the three-dimensional formulation. Before making any comparisons, however, it
must be emphasized that the focus of the presented work lies in showing the functionality
of the system rather than optimizing its execution time. The values given in the following
are therefore only to be understood as rough estimates.

The structures to be compared are those given in figure 8.16. The three-dimensional and
the two-dimensional formulations are both implemented using the open source finite el-
ement library libmesh [69]. The most time-consuming part of the computation is the so-
lution of the system of linear equations, which is why only the times taken by the solve-
functions are compared. In the 3d model, two discretizations are used, i.e., with only one
element over the thickness and with two elements over the thickness. The 3d elements are
HEX20’s with the displacement field approximated quadratically (Q) and the pore pressure
linearly (L). The plate model considers the constant and quadratic vertical deflections, the
linear rotations and the linear and cubic pore pressures. The 2d elements are QUAD9’s.
The vertical deflection is always approximated quadratically and the pore pressure linearly.
In a first calculation, the rotations are approximated linearly and in a second one quadrat-
ically. The systems are solved for 100 frequency steps on a single local machine using
one processor only. The various solving times are summarized in table 8.13. Therein it is

discr. approx. time in [s]
ui p

3d
15×15×1 Q L 450
15×15×2 Q L 2700

k
w

k
ψα

k
p

2d plate
15×15 Q L L 80
15×15 Q Q L 130

Table 8.13: Comparison of solving times

apparent that all 2d plate computations are faster than the 3d computations. Even if only
one thickness element is used in the 3d model, the plate model is superior. The compared
codes are, however, far from being optimized and the given values are, at the most, rough
estimates. This is why it makes no sense to give a precise value for the actual speedup.
Moreover, the disc computation has not been included. However, the disc computation
does not even double the given 2d computation times. The bottom line is that the 2d model
can be expected to provide accurate solutions in a shorter amount time.
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8.3 Coupling of acoustic fluid and poroelastic structures

After having validated the 2d poroelastic model, in this last section of this chapter, the
interaction between the poroelastic structure and a fluid is investigated. The geometry of
the coupled system is kept very simple, i.e., a fluid prism is separated into two parts by
the 2d structure as depicted in figure 8.18. Therein, for the sake of clarity, the left one
is slightly transparent in order to visualize the juncture on which the plate and the disc

0
0.2
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2
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0

0.2

Figure 8.18: The coupled system

are situated. The left prism extends from −1.5 ≤ x3 ≤ 0m and the right one from 0 ≤
x3 ≤ 2.0m. The 2d structure is placed at x3 = 0 and has dimensions −0.2≤ x1,x2 ≤ 0.2m
with a thickness of h = 0.01m and is clamped all around. All faces of the two prisms are
rigid and impermeable except for the one at x3 = −1.5m on which a pressure gradient of
0.01 kN/m3 is applied. On the opposed wall at x3 = 2.0m the flux is zero which implies that
the pressure takes on a maximum value.

Both the prisms and the 2d structure are equally discretized in the (x1,x2)-plane, such that
the coupling is conforming. The plate and the disc consist of 10×10 Lagrangian elements,
the first prism consists of 10× 10× 15 elements and the second of 10× 10× 20. The 3d
elements are trilinear HEX8’s. The mathematical formulation of the coupling has been
presented in chapter 6 and its numerical realization in section 7.5.

The considered frequency range for all the following calculations is chosen to be 1≤ ω ≤
1400 rad/s. The fluid is taken to be air with its parameters given in table 8.14. The wave
speed s in air is thus given by s =

√
Ka/ρa ≈ 337 m/s. The corresponding wavelengths
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λ a = 2π s/ω therewith range from 1.5m . λ a . 2117m and are, hence, much larger than
any thickness of the structure.

In view of the geometrical settings, the eigenfrequencies of the two fluid prisms can be es-
timated by ω = nπs/` with ` being the length of the prism in x3-direction and n = 1,2,3 . . . .
Within the given frequency range one has ω

f 1
1 = 706 rad/s for fluid_1 and ω

f 2
1 = 529 rad/s

and ω
f 2

2 = 1058 rad/s for fluid_2.

8.3.1 Fluid - elastic plate - fluid

Before actually carrying out a fluid - porostructure - fluid calculation, the functionality of
the system shall be verified on a simple elastic example. Therefore, the geometry has been
chosen to match one of the settings used by Langer [72]. In Langer’s work, the 2d structure

Material
Young’s modulus Bulk Modulus Poisson ratio Density

E[kN/m2] K[kN/m2] ν [−] ρ[kg/m3]

Glass 6.32 ·106 4.05 ·106 0.24 2300.00
Air − 142 − 1.20

Table 8.14: Material data

is given by an elastic Kirchhoff plate with cubic Hermite shape functions. Here, the elastic
plate of second order is used. The plate material is glass and the fluid is taken to be air.
The respective material parameters are given in table 8.14.

In figure 8.19, the acoustic pressures in the two fluids are plotted over the given frequency
range. For both fluids, the considered points are located at x1 = x2 = x3 = 0, i.e., im-
mediately before and after the plate, respectively (note that, physically, the plate has an
extension in x3-direction and, hence, actually separates the two fluids in space. The fact
that all three domains equally occupy one and the same area at x3 = 0 is a consequence
of the mathematical construction). In addition, the vertical deflection of the plates middle
point is given. First of all it is observed that the pressure is considerably lower in fluid_2
than in fluid_1. Due to the relatively stiff plate, this is an expected behavior. Moreover,
the interaction between the three fields is clearly visible. Although the load is applied
only on fluid_1, the whole system is excited. Especially the plate and fluid_2 display a
strong interaction which is noticeable on the similarity of their curves. For the most part,
fluid_1, however, remains unaffected by the interaction with the rest of the system, except
in the higher frequency range of figure 8.19, where some feedback occurs. The distinct
peaks appear at ω1 = 534 rad/s, ω2 = 710 rad/s, ω3 = 1059 rad/s and ω4 = 1127 rad/s which,
when transformed into Hz by f = ω/2π nicely confirm the results given in [72]. It is worth
mentioning that all four peaks approximately correspond to an actual eigenfrequency of



8.3 Coupling of acoustic fluid and poroelastic structures 129

0 200 400 600 800 1000 1200 1400
angular frequency ω[rad/s]

1e-04

0.01

1

100

d
is

p
l.

 w
[m

];
  
 p

re
ss

u
re

 p
[k

N
/m

2
] fluid_1

fluid_2
elastic plate

Figure 8.19: Frequency plot for the fluid - elastic plate - fluid system

one of the three distinct systems. Indeed, as noted above, fluid_1 has its eigenfrequency
at ω = 706 rad/s and fluid_2 at ω = 529 rad/s and ω = 1058 rad/s. The last peak originates
from the plates first eigenfrequency at ω4 = 1127 rad/s (the plate therefore does not change
into different eigenmodes within the depicted frequency range). Consequently, a stiffer
plate only shifts the fourth peak towards a higher value, whereas the first three remain
unchanged (the amplitudes may obviously change).

In conclusion of this validation example, it remains to note that the load on the plate (i.e.,
the acoustic fluid pressure) is different on its two surfaces which inevitably triggers the
disc problem. Hence, in order to reconstruct the complete 3d solution, the disc would
have to be additionally considered. As seen in the previous section, however, in the elastic
case, the disc quantities (i.e., in-plane displacements and thickness contraction) remain
negligible compared to the plate quantities why it is acceptable to omit them. As likewise
shown before, this does not hold in the poroelastic case, where the pore pressure comes
into play. In the following calculation, hence, the complete fluid - porostructure - fluid
system is considered.

8.3.2 Fluid - porostructure - fluid

The fluid - porostructure - fluid system under consideration shares the same geometry as
the example presented before except for the plate thickness which is increased to h =
0.05m. The poroelastic material is a foam designated as probe 485/2 with its parameters
specified in table 8.15 with the interstitial fluid being air. The parameters are taken from
[93] and have been originally measured at the KU Leuven. Some of the parameters are
complex valued, hence, introducing viscoelastic effects. The parameters given in [93] are
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poroelastic elastic drained

Young’s modulus E[kN/m2] 290+120i 290
Poisson’s ratio ν [-] 0.207−0.003i 0.207
density ρ[kg/m3] 97.93 97.93
porosity φ [-] 0.95 -
fluid density ρ f [kg/m3] 1.225 -
solid bulk modulus Ks[kN/m2] 10000 -
fluid bulk modulus K f [kN/m2] 142 -
permeability κ[m4/kNs] 0.0328 -

Table 8.15: Material data for the poroelastic foam probe 485/2

not confined to those given in table 8.15. Indeed, quantities like the tortuosity α∞, the flow
resistivity σ or the characteristic length Λ are additionally specified. On the other hand,
the permeability κ is missing. A comparison of the equations in chapter 3 with those given
in the book of Allard and Atalla [4], reveals that κ = 1/σG(ω). The quantity G(ω) depends
on the above mentioned parameters α∞, σ , and Λ as well as on the frequency ω . Various
models define G(ω) differently. The precise expressions can be found in [4]. For the
actual case, G(ω) remains practically equal to 1 within the considered frequency range.
The permeability is therefore given as κ = 1/σ with σ = 30.5 kNs/m4. A specific value for
the solid bulk modulus Ks is not given either, however, it seems reasonable to assume it to
be larger than the bulk modulus of the foam itself, i.e., Ks > K = E/3(1−2ν) (see table 8.15).
For the actual case, however, the system is rather insensitive to a variation of Ks.

The two fluid prisms again consist of air. The discretization is the same as before. The
pressure gradient applied at x3 = −1.5m is reduced to 1.0 · 10−5 kN/m3 in order to obtain
more reasonable values concerning the amplitude of the acoustic pressure and the vertical
deflection of the plate (realistic values for an effective acoustic pressure within the range
of human hearing lie between 2 ·10−8 ≤ p≤ 2 ·10−1 kN/m2, see for instance [82]).

For purposes of comparison, an elastic calculation is carried out first using the elastic
drained parameters given in table 8.15. The results are depicted in figure 8.20. The fre-
quency range is again 1 ≤ ω ≤ 1400 rad/s. In their nature, the results in figure 8.20 do
not differ much from those in figure 8.19 except for the fact that the jump between the
two pressure curves is generally smaller and the number of peaks has increased. Indeed,
due to the weaker plate, more energy is transferred from the first to the second fluid. The
additional peaks originate from the increased number of plate-eigenfrequencies within the
considered frequency range. Also, fluid_1 is influenced much stronger by the acoustic
feedbacks.

Now to the poroelastic system. In order to emphasize the effects originating from the
poroelastic properties only, in this calculation the imaginary parts of the complex valued
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Figure 8.20: Frequency plot for the fluid - elastic foam plate - fluid system

material data (hence, the viscoelastic effects) are omitted. The results of this calculation are
depicted in figure 8.21. Clearly, in comparison to the elastic case, the curves are smoothed
out and all peaks are reduced in their magnitude, if not eliminated. The acoustic pressure
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Figure 8.21: Frequency plot for the fluid - poroelastic, non-viscous foam structure - fluid
system

of p= 0.01 kN/m2 is hardly exceeded. This effect is a consequence of the damping behavior
of the poroelastic structure, which has already been encountered in section 8.2. Another
observation is that the two pressure curves are closer to each other than before. An expla-
nation of this effect is given by the high porosity. Indeed, the considered structure consists
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of 95% air, such that the two prisms are almost connected to a single one. In fact, for mate-
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Figure 8.22: Comparison of the individual curves of the figures 8.20 and 8.21.
Top: fluid_1, Middle: plate, Bottom: fluid_2

rials of such high porosity, an approach of replacing the porous structure by an equivalent
fluid has been proposed [3]. This result implies that the pure poroelastic structure does
not primarily quieten the second ’room’ but rather equalizes the pressure distribution over
both ’rooms’. The sound-damping, however, is still given by the reduction of the pressure
amplitudes. The comparison of the individual curves in figure 8.22 emphasizes this.

The continuity of fluid pressure over the two interfaces of the poroelastic structure (equa-
tion (6.27)) has been realized by the use of Lagrangian multipliers. That this condition
is indeed fulfilled shall be shown for some arbitrary frequency, say ω = 300 rad/s. From
figure 8.21 it can be seen that for this frequency the pressure has different values in fluid_1
and fluid_2, i.e., on the left and the right interfaces, respectively. Since the poroelastic
structure is fluid-filled and directly connected to the outer fluid domains, its pressure dis-
tribution must continuously link those two values. The function expressing the pressure
distribution over the thickness is given by

p(x3) =
0
p+

1
px3 +

2
px2

3 +
3
px3

3 (8.12)

with the values
k
p specified in table 8.16. The function is cubic in x3, however, its image is

almost linear. Evaluating equation (8.12) at x3 =±h/2 =±0.025m gives

p(x3 =−h/2) = 1.31031 ·10−3−9.00094 ·10−5i

p(x3 = h/2) = 7.27363 ·10−5−7.07135 ·10−5i .
(8.13)



8.3 Coupling of acoustic fluid and poroelastic structures 133

fluid_1 p f 1 = 1.31031 ·10−3−9.00089 ·10−5i

porostructure

0
p = 6.88176 ·10−4−1.06931 ·10−4i
1
p =−2.47429 ·10−2−1.31735 ·10−3i
2
p = 5.35418 ·10−3 +4.25113 ·10−2i
3
p =−1.36685 ·10−2 +2.72523 ·10−0i

fluid_2 p f 2 = 7.27356 ·10−5−7.07132 ·10−5i

Table 8.16: Calculated fluid pressure values at x1 = x2 = x3 = 0 for each subsystem at an
angular frequency of ω = 301.6

Comparing the values in equation (8.13) with those in table 8.16 for the two fluids shows
very accurately that the Lagrangian multipliers did their job. The corresponding plot is
given in figure 8.23. Therein, the pressure is plotted along the line extending from −1.5≤
x3 ≤ 2.0m at x1 = x2 = 0 for the frequency ω = 300 rad/s. The real and imaginary parts
are given separately. The middle section represents the porostructure with its pressure
distribution given by equation (8.12). It nicely shows how the values to the right and

-1.5 -1 -0.5 0

position coordinate x
3

-5e-04

0

5e-04

0.001

0.0015

p
re

ss
u

re
 p

[k
N

/m
2
]

real part

imagnary part

-0.025 0 0.025
structure thickness

0 0.5 1 1.5 2

Figure 8.23: Pressure plot along the line −1.5≤ x3 ≤ 2.0m at x1 = x2 = 0.
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the left of the plate are continuously connected. Moreover, once again the importance
of considering the constant pressure term becomes apparent and, hence, to superpose the
plate and the disc solutions.

Note that the thickness of the structure is labeled at the top of the figure in order to distin-
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guish it from the position coordinate of the mathematical model which is equally zero for
all interfaces (compare to figure 8.18). Moreover, in room 1 at x3 = −1.5m, the applied
positive and real-valued pressure gradient can be noted (i.e., the inclination of the pressure
curve). In room 2 at x3 = 2.0m, both the real and the imaginary parts display a maximum
value with pressure gradient equal to zero, hence, representing an acoustically rigid wall.
Of course, a similar picture can be drawn for every frequency.

Finally, the same system is solved using the complex-valued material data. The results
are plotted in figure 8.24. Comparing it to the ’pure poroelastic’ results in figure 8.21 it
is noted that the damping property of the structure is increased, smoothing out the curves
and reducing the amplitudes once more. Beside at its first eigenfrequency, the plate hardly
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Figure 8.24: Frequency plot for the fluid - poro(visco)elastic structure - fluid system

shows any distinct maxima in its vertical deflection. Consequently, the pressure curves of
the two fluids are affected similarly, displaying some local maxima only in the neighbor-
hood of their own eigenfrequencies.
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The main focus of this work was on developing a formulation which allows expressing a
three-dimensional poroelastic plate-like structure by two-dimensions only. Any plate the-
ory relies on a proper integration over the thickness coordinate. Such an the integration
is only possible if the dependence of all quantities on the thickness coordinate is known.
Usually, this is not the case. Hence, the classical approach consists in formulating some
assumptions which account for the kinematical restrictions the plate is subjected to. In the
poroelastic case the use of similar assumptions as in the elastic case may not be suitable
for the following reasons. First, additional unknown quantities appear, such as the pore
pressure and the fluid flux. Second, a pure plate theory does not account for the in-plane
deformations of the mid-surface or a constant pore pressure distributions over the thick-
ness, effects that certainly emerge in the three-dimensional model. The main step towards
obtaining the formulation presented in this work, hence, consist in replacing the unknown
quantities (in this case the solid displacement field and the pore pressure) by power series
in thickness direction. This makes any a priori assumption redundant. Indeed, equality
holds between the original quantity and its (infinite) power series representation with the
only difference that in the latter one the dependency on the thickness coordinate is explic-
itly given and the integration becomes trivial.

The so obtained two-dimensional expression can be split into an out-of-plane and an in-
plane system. An important insight at this point is given by the fact that an arbitrarily
prescribed load, be it a stress or a flux, generally affects both systems. The surface load
encountered in any of the classical plate equations is no exception. If this load is applied
on one surface only, inevitably some in-plane related effects are activated. As it has been
pointed out in the numerical examples, this inaccuracy is negligible in the elastic case. In
the poroelastic case, however, the consideration of this effect is essential since it strongly
influences the distribution of the pore pressure over the thickness. Poroelastic plate models
which are based on some classical elastic plate theory do not account for this effect.

The power series introduce an infinite amount of unknown coefficients. Each coefficient
represents, so to say, a piece of the original field quantity and can be assigned a distinct
physical interpretation. In order to obtain a solvable system, the series must be truncated.
For the elastic plate case, it has been shown which coefficients have to be included in
order to fulfill minimum requirements. If the plate is thin and the Poisson ration is zero,
the constant term for the vertical deflection and the linear terms for the two rotations are
sufficient. For a nonzero Poisson ratio, the quadratic vertical deflection term must be
included. In the general case, considering the constant and quadratic terms of the vertical

135
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deflection, the linear terms for the two rotations and the linear and cubic terms for the
pore pressure leads to a rather versatile poroelastic plate model. Moreover, the relation to
classical formulations has been investigated and discussed. It turns out that only very few
coefficients are necessary to obtain a "higher order" plate theory. A favorable property is
that the system can easily be extended as required.

The presented numerical examples clearly confirm the functionality of the two-dimension-
al poroelastic model. Therein, the elastic plate is validated against the analytic solutions
of some simple elastic structures, both in the static and dynamic case. The subsequent
plot over the frequency comparing the vertical deflection of a poroelastic plate with the
corresponding elastic drained and undrained models nicely shows how the poroelastic so-
lution is shifted from the drained to the undrained solution for increasing frequencies. The
even more important result is that the poroelastic deflection curve is clearly smoothed out.
Especially in the neighbourhood of eigenfrequencies, the amplitudes of the deflection are
clearly reduced. The two-dimensional formulation has, moreover, been proven to coincide
very well with the results obtained from the three-dimensional formulation. The solid dis-
placement field as well as the pore pressure field are reconstructed by back-substituting
the calculated coefficients into the power series. Exemplarily, the vertical non-antimetric
and non-symmetric load shows how the out-of-plane and the in-plane model both have a
contributions to the overall solution. The displacement field still remains plate-like with
very little contribution from the disc, the pore pressure, however, strongly depends on the
in-plane model. This confirms the theoretically predicted need of superposing the plate
and the disc solutions in the general case.

A favorable property of the 2d model is the much lower computation time. All 2d examples
only took a fraction of the time needed by the 3d model. Of course, a precise comparison
of the speedup cannot be given since too many factors are involved which may influence
the calculation in one or the other way. One of the main factors is the amount of elements
over the thickness. Indeed, more elements slow down the 3d solver considerably. However,
in view of the nonlinear distribution of the vertical deflection and the pore pressure, the 3d
model demands at least four to five elements over the thickness. Under these conditions,
the 2d model has been observed to be clearly faster.

In this context, it must be mentioned that the Finite Element formulation applied is surely
not optimized for solving plate equations. The literature suggests many different elements
for such purposes, primarily to prevent shear-locking. However, beside the case where all
quantities are approximated bilinearly, effects of this kind were not clearly detected, why
it has been renounced so far on implementing such improved or non-conforming elements.
An improved FE formulation will be the subject of future work.

An essential part of this work is devoted to the coupling of the developed 2d structures
to an acoustic fluid. Therein, the main problem to be solved concerns the prescription
of the interface conditions which require the knowledge of the values of the respective
quantities on the actual interface. The 2d model, however, does not directly supply the
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needed quantities but only the coefficients to calcualte them. In other words, the coupling
requires the possibility of prescribing values for the field quantities on both surfaces of
the 2d structure. This issue has been solved by enforcing this additional condition using
Lagrangian multipliers. The results clearly approve the functionality of this procedure
as it is shown on the continuity of the pressure level on the two surfaces. The coupled
system itself displays a considerable damping of the acoustic pressure level when using
the poroelastic model instead of the elastic one. Moreover, due to the high porosity of
the foam, the pressure level is sort of smeared over the whole system. The much stiffer
elastic plate, however, has the favorable property of causing a much stronger reduction
of the pressure level in the second room. This suggests the combination of a poroelastic
layer with some stiffer, eventually thinner elastic plates to combine these effects. The
here presented results, hence, approve the use of such layered panels which are already
encountered in the practice.





A APPENDIX

A.1 Evaluated Plate and Disc Resultants

All resultants (5.6) can be integrated over x3 and separated into their plate and disc related

parts according to the procedure presented in section 5.3 on the example of
`

Θαβ . In section
A.1.1 all resultants are given.

In order to obtain equations solvable in a finite amount of time, only a finite amount of
unknown quantities can be considered. In sections A.1.2 and A.1.3, the resultants are
evaluated for both the plate and the disc up to the order of k, ` ≤ 4. All higher order
quantities O(5) are omitted. Only the constant part of the volume forces is considered.
Extending the expressions to higher orders, however, is straightforward.

For allowing a more compact notation, the following short forms

C1 :=
∞

∑
k=0

(
h
2

)k+` h
k+ `+1

and C2 :=
∞

∑
k=0

(
h
2

)k+` 2k
k+ `

are introduced. The evaluation of the expressions above leads to terms containing some
power in h. In accordance to the notation used by Preußer [89] and Kienzler [29, 65–67],
the so called plate parameter is introduced

c2 :=
h2

12
.

A.1.1 Integrated Resultants, Plate and Disc

Resultants
`

Θαβ .
`

Θαβ =
∫
h

σαβ x`3 dx3

=
∫
h

[
µ
(
uα,β +uβ ,α

)
+
(
λ uk,k−α p

)
δαβ

]
x`3 dx3

plate:
`

Θαβ = C1
k∈O

[
µ

(
k
uα,β +

k
uβ ,α

)
+
(

λ
k
uγ,γ −α

k
p
)

δαβ

]
+ C2

k∈E

[
λ

k
u3 δαβ

]
, ∀ ` ∈O

disc:
`

Θαβ = C1
k∈E

[
µ

(
k
uα,β +

k
uβ ,α

)
+
(

λ
k
uγ,γ −α

k
p
)

δαβ

]
+ C2

k∈O

[
λ

k
u3 δαβ

]
, ∀ ` ∈ E

139
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Resultants
`

Θ3α

`

Θ3α =
`

Θα3 =
∫
h

σ3α x`3 dx3

=
∫
h

[µ(u3,α +uα,3)]x`3 dx3

plate:
`

Θ3α = C1
k∈E

[
µ

k
u3,α

]
+ C2

k∈O

[
µ

k
uα

]
, ∀ ` ∈ E

disc:
`

Θ3α = C1
k∈O

[
µ

k
u3,α

]
+ C2

k∈E

[
µ

k
uα

]
, ∀ ` ∈O

Resultants
`

Θ33

`

Θ33 =
∫
h

σ33 x`3 dx3

=
∫
h

[
2µ u3,3 +(λ uk,k−α p)

]
x`3 dx3

plate:
`

Θ33 = C1
k∈O

[
λ

k
uγ,γ −α

k
p
]
+ C2

k∈E

[
(2µ +λ )

k
u3

]
, ∀ ` ∈O

disc:
`

Θ33 = C1
k∈E

[
λ

k
uγ,γ −α

k
p
]
+ C2

k∈O

[
(2µ +λ )

k
u3

]
, ∀ ` ∈ E

Resultants
`

Ξα

`

Ξα =
∫
h

qα x`3 dx3

=
∫
h

[
β

iωρ f

(
p,α −ω

2
ρ

f uα − f f
α

)]
x`3 dx3

plate:
`

Ξα = C1
k∈O

[
β

iωρ f

(
k
p,α −ω

2
ρ

f k
uα −

k

f f
α

)]
, ∀ ` ∈O

disc:
`

Ξα = C1
k∈E

[
β

iωρ f

(
k
p,α −ω

2
ρ

f k
uα −

k

f f
α

)]
, ∀ ` ∈ E
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Resultants
`

Ξ3

`

Ξ3 =
∫
h

q3 x`3 dx3

=
∫
h

[
β

iωρ f

(
p,3−ω

2
ρ

f u3− f f
3

)]
x`3 dx3

plate:
`

Ξ3 = C1
k∈E

[
β

iωρ f

(
−ω

2
ρ

f k
u3−

k

f f
3

)]
+ C2

k∈O

[
β

iωρ f
k
p
]
, ∀ ` ∈ E

disc:
`

Ξ3 = C1
k∈O

[
β

iωρ f

(
−ω

2
ρ

f k
u3−

k

f f
3

)]
+ C2

k∈E

[
β

iωρ f
k
p
]
, ∀ ` ∈O

Resultants
`

Λα

`

Λα =
∫
h

σα j, j x`3 dx3

=
∫
h

[
−
(
ω

2
ρ uα + fα

)
+β

(
p,α − f f

α −ω
2
ρ

f uα

)]
x`3 dx3

plate:
`

Λα = C1
k∈O

[
−ω

2
(

ρ +βρ
f
)

k
uα +β

k
p,α −

k

f α −β
k

f f
α

]
, ∀ ` ∈O

disc:
`

Λα = C1
k∈E

[
−ω

2
(

ρ +βρ
f
)

k
uα +β

k
p,α −

k

f α −β
k

f f
α

]
, ∀ ` ∈ E

Resultants
`

Λ3

`

Λ3 =
∫
h

σ3 j, j x`3 dx3

=
∫
h

[
−
(
ω

2
ρu3 + f3

)
+β

(
p,3− f f

3 −ω
2
ρ

f u3

)]
x`3 dx3

plate:
`

Λ3 = C1
k∈E

[
−ω

2
(

ρ +βρ
f
)

k
u3−

k

f 3−β
k

f f
3

]
+ C2

k∈O

[
β

k
p
]
, ∀ ` ∈ E

disc:
`

Λ3 = C1
k∈O

[
−ω

2
(

ρ +βρ
f
)

k
u3−

k

f 3−β
k

f f
3

]
+ C2

k∈E

[
β

k
p
]
, ∀ ` ∈O
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Resultants
`

ϒ

`

ϒ =
∫
h

qi,i x`3 dx3

=
∫
h

[
−iω

(
α uk,k +

φ 2

R
p
)]

x`3 dx3

plate:
`

ϒ = C1
k∈O

[
−iω

(
α

k
uγ,γ +

φ 2

R
k
p
)]

+ C2
k∈E

[
−iω α

k
u3

]
, ∀ ` ∈O

disc:
`

ϒ = C1
k∈E

[
−iω

(
α

k
uγ,γ +

φ 2

R
k
p
)]

+ C2
k∈O

[
−iω α

k
u3

]
, ∀ ` ∈ E
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A.1.2 Plate Resultants

Resultants
`

Θαβ ∀ ` ∈O. Bending and twisting moments.

1

Θαβ = µh

[
c2
[

1
uα,β +

1
uβ ,α +

(
λ

µ

1
uγ,γ −

α

µ

1
p+2

λ

µ

2
u3

)
δαβ

]

+
9
5

c4
[

3
uα,β +

3
uβ ,α +

(
λ

µ

3
uγ,γ −

α

µ

3
p+4

λ

µ

4
u3

)
δαβ

]
+O(5)

]
3

Θαβ = µh

[
9
5

c4
[

1
uα,β +

1
uβ ,α +

(
λ

µ

1
uγ,γ −

α

µ

1
p+2

λ

µ

2
u3

)
δαβ

]

+
27
7

c6
[

3
uα,β +

3
uβ ,α +

(
λ

µ

3
uγ,γ −

α

µ

3
p+4

λ

µ

4
u3

)
δαβ

]
+O(5)

]
5

Θαβ =O(5)

(A.1)

Resultants
`

Θ3α =
`

Θα3 ∀ ` ∈ E. Shear forces.

0

Θ3α = µh

[(
0
u3,α +

1
uα

)
+ c2

(
2
u3,α +3

3
uα

)
+

9
5

c4 4
u3,α +O(5)

]
2

Θ3α = µh

[
c2
(

0
u3,α +

1
uα

)
+

9
5

c4
(

2
u3,α +3

3
uα

)
+

27
7

c6 4
u3,α +O(5)

]
4

Θ3α = µh

[
9
5

c4
(

0
u3,α +

1
uα

)
+

27
7

c6
(

2
u3,α +3

3
uα

)
+9c8 4

u3,α +O(5)

]
6

Θ3α =O(5)

(A.2)
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Resultant
`

S33 ∀ ` ∈O.

1

Θ33 = µh

[
c2
[

λ

µ

1
uγ,γ −

α

µ

1
p+2

2µ +λ

µ

2
u3

]
+

9
5

c4
[

λ

µ

3
uγ,γ −

α

µ

3
p+4

2µ +λ

µ

4
u3

]
+O(5)

]
3

Θ33 = µh
[

9
5

c4
[

λ

µ

1
uγ,γ −

α

µ

1
p+2

2µ +λ

µ

2
u3

]
+

27
7

c6
[

λ

µ

3
uγ,γ −

α

µ

3
p+4

(2µ +λ )

µ

4
u3

]
+O(5)

]
5

Θ33 =O(5)

(A.3)

Resultant
`

Ξα ∀ ` ∈O.

1

Ξα = h iωβ

[
c2
[
− 1

ω2ρ f
1
p,α +

1
uα

]
+

9
5

c4
[
− 1

ω2ρ f
3
p,α +

3
uα

]
+O(5)

]
3

Ξα = h iωβ

[
9
5

c4
[
− 1

ω2ρ f
1
p,α +

1
uα

]
+

27
7

c6
[
− 1

ω2ρ f
3
p,α +

3
uα

]
+O(5)

]
5

Ξα =O(5)

(A.4)

Resultant
`

Ξ3 ∀ ` ∈ E. Resulting out-of-plane flux over the thickness in x3-direction.

0

Ξ3 = h iωβ

[[
1

ω2ρ f

(
− 1

p+ f f
3

)
+

0
u3

]
+ c2

[
− 3

ω2ρ f
3
p+

2
u3

]
+

9
5

c4 4
u3 +O(5)

]
2

Ξ3 = h iωβ

[
c2
[

1
ω2ρ f

(
− 1

p+ f f
3

)
+

0
u3

]
+

9
5

c4
[
− 3

ω2ρ f
3
p+

2
u3

]
+

27
7

c6 4
u3 +O(5)

]
4

Ξ3 = h iωβ

[
9
5

c4
[

1
ω2ρ f

(
− 1

p+ f f
3

)
+

0
u3

]
+

27
7

c6
[
− 3

ω2ρ f
3
p+

2
u3

]
+9c8 4

u3 +O(5)

]
6

Ξ3 =O(5)
(A.5)
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Resultant
`

Λα ∀ ` ∈O.

1

Λα = h

[
c2
[
−ω

2
(

ρ +βρ
f
)

1
uα +β

1
p,α
]
+

9
5

c4
[
−ω

2
(

ρ +βρ
f
)

3
uα +β

3
p,α
]
+O(5)

]
3

Λα = h

[
9
5

c4
[
−ω

2
(

ρ +βρ
f
)

1
uα +β

1
p,α
]
+

27
7

c6
[
−ω

2
(

ρ +βρ
f
)

3
uα +β

3
p,α
]
+O(5)

]
5

Λα =O(5)
(A.6)

Resultant
`

Λ3 ∀ ` ∈ E

0

Λ3 = h

[[
−ω

2
(

ρ +βρ
f
)

0
u3−β f f

3 − f3 +β
1
p
]
+ c2

[
−ω

2
(

ρ +βρ
f
)

2
u3 +3β

3
p
]

+
9
5

c4
[
−ω

2
(

ρ +βρ
f
)

4
u3

]
+O(5)

]
2

Λ3 = h

[
c2
[
−ω

2
(

ρ +βρ
f
)

0
u3−β f f

3 − f3 +β
1
p
]
+

9
5

c4
[
−ω

2
(

ρ +βρ
f
)

2
u3 +3β

3
p
]

+
27
7

c6
[
−ω

2
(

ρ +βρ
f
)

4
u3

]
+O(5)

]
4

Λ3 = h

[
9
5

c4
[
−ω

2
(

ρ +βρ
f
)

0
u3−β f f

3 − f3 +β
1
p
]
+

27
7

c6
[
−ω

2
(

ρ +βρ
f
)

2
u3 +3β

3
p
]

+9c8
[
−ω

2
(

ρ +βρ
f
)

4
u3

]
+O(5)

]
6

Λ3 =O(5)
(A.7)

Resultant
`

ϒ ∀ ` ∈O

1

ϒ =−h iω

[
c2
[

α
1
uγ,γ +

φ 2

R
1
p+2α

2
u3

]
+

9
5

c4
[

α
3
uγ,γ +

φ 2

R
3
p+4α

4
u3

]
+O(5)

]
3

ϒ =−h iω

[
9
5

c4
[

α
1
uγ,γ +

φ 2

R
1
p+2α

2
u3

]
+

27
7

c6
[

α
3
uγ,γ +

φ 2

R
3
p+4α

4
u3

]
+O(5)

]
5

ϒ =O(5)

(A.8)
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A.1.3 Disc Resultants

Resultants
`

Θαβ ∀ ` ∈ E. In-plane normal and shear forces..

0

Θαβ = µh

[[
0
uα,β +

0
uβ ,α +

(
λ

µ

0
uγ,γ −

α

µ

0
p+

λ

µ

1
u3

)
δαβ

]
+ c2

[
2
uα,β +

2
uβ ,α +

(
λ

µ

2
uγ,γ −

α

µ

2
p+3

λ

µ

3
u3

)
δαβ

]
+

9
5

c4
[

4
uα,β +

4
uβ ,α +

(
λ

µ

4
uγ,γ −

α

µ

4
p
)

δαβ

]
+O(5)

]
2

Θαβ = µh

[
c2
[

0
uα,β +

0
uβ ,α +

(
λ

µ

0
uγ,γ −

α

µ

0
p+

λ

µ

1
u3

)
δαβ

]
+

9
5

c4
[

2
uα,β +

2
uβ ,α +

(
λ

µ

2
uγ,γ −

α

µ

2
p+3

λ

µ

3
u3

)
δαβ

]
+

27
7

c6
[

4
uα,β +

4
uβ ,α +

(
λ

µ

4
uγ,γ −

α

µ

4
p
)

δαβ

]
+O(5)

]
4

Θαβ = µh

[
9
5

c4
[

0
uα,β +

0
uβ ,α +

(
λ

µ

0
uγ,γ −

α

µ

0
p+

λ

µ

1
u3

)
δαβ

]
+

27
7

c6
[

2
uα,β +

2
uβ ,α +

(
λ

µ

2
uγ,γ −

α

µ

2
p+3

λ

µ

3
u3

)
δαβ

]
+9c8

[
4
uα,β +

4
uβ ,α +

(
λ

µ

4
uγ,γ −

α

µ

4
p
)

δαβ

]
+O(5)

]
6

Θαβ =O(5)

(A.9)

Resultants
`

Θ3α =
`

Θα3 ∀ ` ∈O. Contraction forces.

1

Θ3α = µh

[
c2
(

1
u3,α +2

2
uα

)
+

9
5

c4
(

3
u3,α +4

4
uα

)
+O(5)

]
3

Θ3α = µh

[
9
5

c4
(

1
u3,α +2

2
uα

)
+

27
7

c6
(

3
u3,α +4

4
uα

)
+O(5)

]
5

Θ3α =O(5)

(A.10)
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Resultant
`

Θ33 ∀ ` ∈ E.

0

Θ33 = µh

[[
λ

µ

0
uγ,γ −

α

µ

0
p+

2µ +λ

µ

1
u3

]
+ c2

[
λ

µ

2
uγ,γ −

α

µ

2
p+3

2µ +λ

µ

3
u3

]
+

9
5

c4
[

λ

µ

4
uγ,γ −

α

µ

4
p
]
+O(5)

]
2

Θ33 = µh
[

c2
[

λ

µ

0
uγ,γ −

α

µ

0
p+

2µ +λ

µ

1
u3

]
+

9
5

c4
[

λ

µ

2
uγ,γ −

α

µ

2
p+3

2µ +λ

µ

3
u3

]
+

27
7

c6
[

λ

µ

4
uγ,γ −

α

µ

4
p
]
+O(5)

]
4

Θ33 = µh
[

9
5

c4
[

λ

µ

0
uγ,γ −

α

µ

0
p+

2µ +λ

µ

1
u3

]
+

27
7

c6
[

λ

µ

2
uγ,γ −

α

µ

2
p+3

2µ +λ

µ

3
u3

]
+9c8

[
λ

µ

4
uγ,γ −

α

µ

4
p
]
+O(5)

]
6

Θ33 =O(5)
(A.11)

Resultant
`

Ξα ∀ ` ∈ E.

0

Ξα =
hβ

iωρ f

[[
0
p,α −

0

f f −ω
2
ρ

f 0
uα

]
+ c2

[
2
p,α −ω

2
ρ

f 2
uα

]
+

9
5

c4
[

4
p,α −ω

2
ρ

f 4
uα

]
+O(5)

]
2

Ξα =
hβ

iωρ f

[
c2
[

0
p,α −

0

f f −ω
2
ρ

f 0
uα

]
+

9
5

c4
[

2
p,α −ω

2
ρ

f 2
uα

]
+

27
7

c6
[

4
p,α −ω

2
ρ

f 4
uα

]
+O(5)

]
4

Ξα =
hβ

iωρ f

[
9
5

c4
[

0
p,α −

0

f f −ω
2
ρ

f 0
uα

]
+

27
7

c6
[

2
p,α −ω

2
ρ

f 2
uα

]
+9c8

[
4
p,α −ω

2
ρ

f 4
uα

]
+O(5)

]
6

Ξα =O(5)
(A.12)

Resultant
`

Ξ3 ∀ ` ∈O.

1

Ξ3 =−
hβ

iωρ f

[
c2
[
ω

2
ρ

f 1
u3−2

2
p
]
+

9
5

c4
[
ω

2
ρ

f 3
u3−4

4
p
]
+O(5)

]
3

Ξ3 =−
hβ

iωρ f

[
9
5

c4
[
ω

2
ρ

f 1
u3−2

2
p
]
+

27
7

c6
[
ω

2
ρ

f 3
u3−4

4
p
]
+O(5)

]
5

Ξ3 =O(5)

(A.13)
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Resultant
`

Λα ∀ ` ∈ E.

0

Λα = h

[[
−ω

2
(

ρ +βρ
f
)

0
uα +β

0
p,α −

0

f α −β
0

f f
α

]
+ c2

[
−ω

2
(

ρ +βρ
f
)

2
uα +β

2
p,α
]

+
9
5

c4
[
−ω

2
(

ρ +βρ
f
)

4
uα +β

4
p,α
]
+O(5)

]
2

Λα = h

[
c2
[
−ω

2
(

ρ +βρ
f
)

0
uα +β

0
p,α −

0

f α −β
0

f f
α

]
+

9
5

c4
[
−ω

2
(

ρ +βρ
f
)

2
uα +β

2
p,α
]

+
27
7

c6
[
−ω

2
(

ρ +βρ
f
)

4
uα +β

4
p,α
]
+O(5)

]
4

Λα = h

[
9
5

c4
[
−ω

2
(

ρ +βρ
f
)

0
uα +β

0
p,α −

0

f α −β
0

f f
α

]
+

27
7

c6
[
−ω

2
(

ρ +βρ
f
)

2
uα +β

2
p,α
]

+9c8
[
−ω

2
(

ρ +βρ
f
)

4
uα +β

4
p,α
]
+O(5)

]
6

Λα =O(5)

(A.14)

Resultant
`

Λ3 ∀ ` ∈O

1

Λ3 = h

[
c2
[
−ω

2
(

ρ +βρ
f
)

1
u3 +2β

2
p
]
+

9
5

c4
[
−ω

2
(

ρ +βρ
f
)

3
u3 +4β

4
p
]
+O(5)

]
3

Λ3 = h

[
9
5

c4
[
−ω

2
(

ρ +βρ
f
)

1
u3 +2β

2
p
]
+

27
7

c6
[
−ω

2
(

ρ +βρ
f
)

3
u3 +4β

4
p
]
+O(5)

]
5

Λ3 =O(5)
(A.15)
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Resultant
`

ϒ ∀ ` ∈ E

0

ϒ =−h iω

[[
α

0
uγ,γ +

φ 2

R
0
p+α

1
u3

]
+ c2

[
α

2
uγ,γ +

φ 2

R
2
p+3α

3
u3

]

+
9
5

c4
[

α
4
uγ,γ +

φ 2

R
4
p
]
+O(5)

]
2

ϒ =−h iω

[
c2
[

α
0
uγ,γ +

φ 2

R
0
p+α

1
u3

]
+

9
5

c4
[

α
2
uγ,γ +

φ 2

R
2
p+3α

3
u3

]

+
27
7

c6
[

α
4
uγ,γ +

φ 2

R
4
p
]
+O(5)

]
4

ϒ =−h iω

[
9
5

c4
[

α
0
uγ,γ +

φ 2

R
0
p+α

1
u3

]
+

27
7

c6
[

α
2
uγ,γ +

φ 2

R
2
p+3α

3
u3

]

+9c8
[

α
4
uγ,γ +

φ 2

R
4
p
]
+O(5)

]
6

ϒ =O(5)

(A.16)
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A.2 Discretized plate and disc

A.2.1 Plate stiffness sub-matrices

00

K11[i, j] = µh
∫
A

[
∇ϕj∇ϕi

]
dA−hω

2
ρ

β

∫
A

[
ϕjϕi

]
dA

02

K11[i, j] = c2
µh
∫
A

[
∇ϕj∇ϕi

]
dA− c2hω

2
ρ

β

∫
A

[
ϕjϕi

]
dA

20

K11[i, j] = c2
µh
∫
A

[
∇ϕj∇ϕi

]
dA− c2hω

2
ρ

β

∫
A

[
ϕjϕi

]
dA

22

K11[i, j] = 4c2h(2µ +λ )
∫
A

[
ϕjϕi

]
dA+

9
5

c4
µh
∫
A

[
∇ϕj∇ϕi

]
dA− 9

5
c4hω

2
ρ

β

∫
A

[
ϕjϕi

]
dA

(A.17)

01

K12
β
[i, j] = µh

∫
A

[
ϑj∂β ϕi

]
dA

03

K12
β
[i, j] = 3c2

µh
∫
A

[
ϑj∂β ϕi

]
dA

21

K12
β
[i, j] = c2

µh
∫
A

[
ϑj∂β ϕi

]
dA+2c2hλ

∫
A

[
∂β ϑjϕi

]
dA

23

K12
β
[i, j] =

27
5

c4
µh
∫
A

[
ϑj∂β ϕi

]
dA+

18
5

c4hλ

∫
A

[
∂β ϑjϕi

]
dA

(A.18)

01

K13[i, j] = hβ

∫
A

[
ϖjϕi

]
dA

03

K13[i, j] = 3c2hβ

∫
A

[
ϖjϕi

]
dA

21

K13[i, j] =−2c2hα

∫
A

[
ϖjϕi

]
dA+ c2hβ

∫
A

[
ϖjϕi

]
dA

23

K13[i, j] =−18
5

c4hα

∫
A

[
ϖjϕi

]
dA+

27
5

c4hβ

∫
A

[
ϖjϕi

]
dA

(A.19)
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10

K21
α [i, j] = µh

∫
A

[
∂αϕjϑi

]
dA

12

K21
α [i, j] = 2c2hλ

∫
A

[
ϕj∂αϑi

]
dA+ c2

µh
∫
A

[
∂αϕjϑi

]
dA

30

K21
α [i, j] = 3c2

µh
∫
A

[
∂αϕjϑi

]
dA

32

K21
α [i, j] =

18
5

c4hλ

∫
A

[
ϕj∂αϑi

]
dA+

27
5

c4
µh
∫
A

[
∂αϕjϑi

]
dA

(A.20)

11

K22
αβ

[i, j] = δαβ

µh
∫
A

[
ϑjϑi

]
dA+ c2

µh
∫
A

[
∇ϑj∇ϑi

]
dA− c2hω

2
ρ

β

∫
A

[
ϑjϑi

]
dA


+ c2

µh
∫
A

[
∂αϑj∂β ϑi

]
dA+ c2

λh
∫
A

[
∂β ϑj∂αϑi

]
dA

13

K22
αβ

[i, j] = δαβ

3c2
µh
∫
A

[
ϑjϑi

]
dA+

9
5

c4
µh
∫
A

[
∇ϑj∇ϑi

]
dA− 9

5
c4hω

2
ρ

β

∫
A

[
ϑjϑi

]
dA


+

9
5

c4
µh
∫
A

[
∂αϑj∂β ϑi

]
dA+

9
5

c4
λh
∫
A

[
∂β ϑj∂αϑi

]
dA

31

K22
αβ

[i, j] = δαβ

3c2
µh
∫
A

[
ϑjϑi

]
dA+

9
5

c4
µh
∫
A

[
∇ϑj∇ϑi

]
dA− 9

5
c4hω

2
ρ

β

∫
A

[
ϑjϑi

]
dA


+

9
5

c4
µh
∫
A

[
∂αϑj∂β ϑi

]
dA+

9
5

c4
λh
∫
A

[
∂β ϑj∂αϑi

]
dA

33

K22
αβ

[i, j] = δαβ

81
5

c4
µh
∫
A

[
ϑjϑi

]
dA+

27
7

c6
µh
∫
A

[
∇ϑj∇ϑi

]
dA− 27

7
c6hω

2
ρ

β

∫
A

[
ϑjϑi

]
dA


+

27
7

c6
µh
∫
A

[
∂αϑj∂β ϑi

]
dA+

27
7

c6
λh
∫
A

[
∂β ϑj∂αϑi

]
dA

(A.21)
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11

K23
α [i, j] =−c2hα

∫
A

[
ϖj∂αϑi

]
dA+ c2hβ

∫
A

[
∂αϖjϑi

]
dA

13

K23
α [i, j] =−9

5
c4hα

∫
A

[
ϖj∂αϑi

]
dA+

9
5

c4hβ

∫
A

[
∂αϖjϑi

]
dA

31

K23
α [i, j] =−9

5
c4hα

∫
A

[
ϖj∂αϑi

]
dA+

9
5

c4hβ

∫
A

[
∂αϖjϑi

]
dA

33

K23
α [i, j] =−27

7
c6hα

∫
A

[
ϖj∂αϑi

]
dA+

27
7

c6hβ

∫
A

[
∂αϖjϑi

]
dA

(A.22)

10

K31[i, j] = hβ

∫
A

[
ϕjϖi

]
dA

12

K31[i, j] = c2hβ

∫
A

[
ϕjϖi

]
dA−2c2hα

∫
A

[
ϕjϖi

]
dA

30

K31[i, j] = 3c2hβ

∫
A

[
ϕjϖi

]
dA

32

K31[i, j] =
27
5

c4hβ

∫
A

[
ϕjϖi

]
dA− 18

5
c4hα

∫
A

[
ϕjϖi

]
dA

(A.23)

11

K32
β
[i, j] = c2hβ

∫
A

[
ϑj∂β ϖi

]
dA− c2hα

∫
A

[
∂β ϑjϖi

]
dA

13

K32
β
[i, j] =

9
5

c4hβ

∫
A

[
ϑj∂β ϖi

]
dA− 9

5
c4hα

∫
A

[
∂β ϑjϖi

]
dA

31

K32
β
[i, j] =

9
5

c4hβ

∫
A

[
ϑj∂β ϖi

]
dA− 9

5
c4hα

∫
A

[
∂β ϑjϖi

]
dA

33

K32
β
[i, j] =

27
7

c6hβ

∫
A

[
ϑj∂β ϖi

]
dA− 27

7
c4hα

∫
A

[
∂β ϑjϖi

]
dA

(A.24)
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11

K33[i, j] =−c2 hβ

ω2ρ f

∫
A

[
∇ϖj∇ϖi

]
dA− hβ

ω2ρ f

∫
A

[
ϖjϖi

]
dA

− c2h
φ 2

R

∫
A

[
ϖjϖi

]
dA

13

K33[i, j] =−9
5

c4 hβ

ω2ρ f

∫
A

[
∇ϖj∇ϖi

]
dA−3c2 hβ

ω2ρ f

∫
A

[
ϖjϖi

]
dA

− 9
5

c4h
φ 2

R

∫
A

[
ϖjϖi

]
dA

31

K33[i, j] =−9
5

c4 hβ

ω2ρ f

∫
A

[
∇ϖj∇ϖi

]
dA−3c2 hβ

ω2ρ f

∫
A

[
ϖjϖi

]
dA

− 9
5

c4h
φ 2

R

∫
A

[
ϖjϖi

]
dA

33

K33[i, j] =−27
7

c6 hβ

ω2ρ f

∫
A

[
∇ϖj∇ϖi

]
dA− 81

5
c4 hβ

ω2ρ f

∫
A

[
ϖjϖi

]
dA

− 27
7

c6h
φ 2

R

∫
A

[
ϖjϖi

]
dA

(A.25)

A.2.2 Plate sub-vectors

In the following discrete right-hand-side contributions, only Neumann data related to clas-

sical forces are considered, i.e., zeroth order shear forces
0

Θ3 and first order bending mo-

ments
1

Θβ . Recall that all body forces are assumed to be constant over the thickness.

0

f1[j] = h
∫
A

[
( f3 +β f f

3 )ϕj

]
dA+

∫
A

[
(t+3 + t−3 )ϕj

]
dA+

∫
ΓNs

[
0

Θ
p
3ϕj

]
dΓNs

2

f1[j] = c2h
∫
A

[
( f3 +β f f

3 )ϕj

]
dA+3c2

∫
A

[
(t+3 + t−3 )ϕj

]
dA

(A.26)
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1

f2
β
[j] =

h
2

∫
A

[
(t+

β
− t−

β
)ϑj

]
dA+

∫
ΓNs

[
1

Θ
p
β

ϑj

]
dΓNs

3

f2
β
[j] = 3c2 h

2

∫
A

[
(t+

β
− t−

β
)ϑj

]
dA

(A.27)

1

f3[j] =
hβ

ω2ρ f

∫
A

[
f f
3 ϖj

]
dA+

h
2iω

∫
A

[
(q+3 −q−3 )ϖj

]
dA

3

f3[j] = c2 hβ

ω2ρ f

∫
A

[
f f
3 ϖj

]
dA+3c2 h

2iω

∫
A

[
(q+3 −q−3 )ϖj

]
dA

(A.28)

A.2.3 Disc stiffness sub-matrices

00

K11
αβ

[i, j] = δαβ

µh
∫
A

[
∇ϕj∇ϕi

]
dA−hω

2
ρ

β

∫
A

[
ϕjϕi

]
dA


+µh

∫
A

[
∂αϕj∂β ϕi

]
dA+λh

∫
A

[
∂β ϕj∂αϕi

]
dA

02

K11
αβ

[i, j] = δαβ

c2
µh
∫
A

[
∇ϕj∇ϕi

]
dA− c2hω

2
ρ

β

∫
A

[
ϕjϕi

]
dA


+ c2

µh
∫
A

[
∂αϕj∂β ϕi

]
dA+ c2

λh
∫
A

[
∂β ϕj∂αϕi

]
dA

20

K11
αβ

[i, j] = δαβ

c2
µh
∫
A

[
∇ϕj∇ϕi

]
dA− c2hω

2
ρ

β

∫
A

[
ϕjϕi

]
dA


+ c2

µh
∫
A

[
∂αϕj∂β ϕi

]
dA+ c2

λh
∫
A

[
∂β ϕj∂αϕi

]
dA

22

K11
αβ

[i, j] = δαβ

9
5

c4
µh
∫
A

[
∇ϕj∇ϕi

]
dA− 9

5
c4hω

2
ρ

β

∫
A

[
ϕjϕi

]
dA+4c2

µh
∫
A

[
ϕjϕi

]
dA


+

9
5

c4
µh
∫
A

[
∂αϕj∂β ϕi

]
dA+

9
5

c4
λh
∫
A

[
∂β ϕj∂αϕi

]
dA

(A.29)
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00

K12
α [i, j] =−hα

∫
A

[
ϖj∂αϑi

]
dA+hβ

∫
A

[
∂αϖjϑi

]
dA

02

K12
α [i, j] =−c2hα

∫
A

[
ϖj∂αϑi

]
dA+ c2hβ

∫
A

[
∂αϖjϑi

]
dA

20

K12
α [i, j] =−c2hα

∫
A

[
ϖj∂αϑi

]
dA+ c2hβ

∫
A

[
∂αϖjϑi

]
dA

22

K12
α [i, j] =−9

5
c4hα

∫
A

[
ϖj∂αϑi

]
dA+

9
5

c4hβ

∫
A

[
∂αϖjϑi

]
dA

(A.30)

01

K13
α [i, j] = hλ

∫
A

[
ϕj∂αϑi

]
dA

03

K13
α [i, j] = 3c2hλ

∫
A

[
ϕj∂αϑi

]
dA

21

K13
α [i, j] = c2hλ

∫
A

[
ϕj∂αϑi

]
dA+2c2

µh
∫
A

[
∂αϕjϑi

]
dA

23

K13
α [i, j] =

27
5

c4hλ

∫
A

[
ϕj∂αϑi

]
dA+

18
5

c4
µh
∫
A

[
∂αϕjϑi

]
dA

(A.31)

00

K21
β
[i, j] = hβ

∫
A

[
ϑj∂β ϖi

]
dA−hα

∫
A

[
∂β ϑjϖi

]
dA

02

K21
β
[i, j] = c2hβ

∫
A

[
ϑj∂β ϖi

]
dA− c2hα

∫
A

[
∂β ϑjϖi

]
dA

20

K21
β
[i, j] = c2hβ

∫
A

[
ϑj∂β ϖi

]
dA− c2hα

∫
A

[
∂β ϑjϖi

]
dA

20

K21
β
[i, j] =

9
5

c4hβ

∫
A

[
ϑj∂β ϖi

]
dA− 9

5
c4hα

∫
A

[
∂β ϑjϖi

]
dA

(A.32)
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00

K22[i, j] =− hβ

ω2ρ f

∫
A

[
∇ϖj∇ϖi

]
dA−h

φ 2

R

∫
A

[
ϖjϖi

]
dA

02

K22[i, j] =−c2 hβ

ω2ρ f

∫
A

[
∇ϖj∇ϖi

]
dA− c2h

φ 2

R

∫
A

[
ϖjϖi

]
dA

20

K22[i, j] =−c2 hβ

ω2ρ f

∫
A

[
∇ϖj∇ϖi

]
dA− c2h

φ 2

R

∫
A

[
ϖjϖi

]
dA

22

K22[i, j] =−9
5

c4 hβ

ω2ρ f

∫
A

[
∇ϖj∇ϖi

]
dA−2c2 hβ

ω2ρ f

∫
A

[
ϖjϖi

]
dA− 9

5
c4h

φ 2

R

∫
A

[
ϖjϖi

]
dA

(A.33)

01

K23[i, j] =−hα

∫
A

[
ϕjϖi

]
dA

03

K23[i, j] =−3c2hα

∫
A

[
ϕjϖi

]
dA

21

K23[i, j] = 2c2hβ

∫
A

[
ϕjϖi

]
dA− c2hα

∫
A

[
ϕjϖi

]
dA

23

K23[i, j] =
18
5

c4hβ

∫
A

[
ϕjϖi

]
dA− 27

5
c4hα

∫
A

[
ϕjϖi

]
dA

(A.34)

10

K31
β
[i, j] = hλ

∫
A

[
∂β ϑjϕi

]
dA

12

K31
β
[i, j] = 2c2

µh
∫
A

[
ϑj∂β ϕi

]
dA+ c2hλ

∫
A

[
∂β ϑjϕi

]
dA

30

K31
β
[i, j] = 3c2hλ

∫
A

[
∂β ϑjϕi

]
dA

32

K31
β
[i, j] =

18
5

c4
µh
∫
A

[
ϑj∂β ϕi

]
dA+

27
5

c4hλ

∫
A

[
∂β ϑjϕi

]
dA

(A.35)
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10

K32[i, j] =−hα

∫
A

[
ϖjϕi

]
dA

12

K32[i, j] =−c2hα

∫
A

[
ϖjϕi

]
dA+2c2hβ

∫
A

[
ϖjϕi

]
dA

30

K32[i, j] =−3c2hα

∫
A

[
ϖjϕi

]
dA

32

K32[i, j] =−27
5

c4hα

∫
A

[
ϖjϕi

]
dA+

18
5

c4hβ

∫
A

[
ϖjϕi

]
dA

(A.36)

11

K33[i, j] = c2
µh
∫
A

[
∇ϕj∇ϕi

]
dA+(2µ +λ )h

∫
A

[
ϕjϕi

]
dA− c2hω

2
ρ

β

∫
A

[
ϕjϕi

]
dA

13

K33[i, j] =
9
5

c4
µh
∫
A

[
∇ϕj∇ϕi

]
dA+3c2(2µ +λ )h

∫
A

[
ϕjϕi

]
dA− 9

5
c4hω

2
ρ

β

∫
A

[
ϕjϕi

]
dA

31

K33[i, j] =
9
5

c4
µh
∫
A

[
∇ϕj∇ϕi

]
dA+3c2(2µ +λ )h

∫
A

[
ϕjϕi

]
dA− 9

5
c4hω

2
ρ

β

∫
A

[
ϕjϕi

]
dA

33

K33[i, j] =
27
7

c6
µh
∫
A

[
∇ϕj∇ϕi

]
dA+

81
5

c4(2µ +λ )h
∫
A

[
ϕjϕi

]
dA− 27

7
c6hω

2
ρ

β

∫
A

[
ϕjϕi

]
dA

(A.37)

A.2.4 Disc sub-vectors

In the following discrete right-hand-side contributions, only Neumann data related to clas-

sical forces are considered, i.e., zeroth order normal and in-plane shear-forces
0

Θβ and a

constant flux
0

Ξ. Recall that all body forces are assumed to be constant over the thickness.

0

f1
β
[j] = h

∫
A

[
( fβ +β f f

β
)ϑj

]
dA+

∫
A

[
(t+

β
+ t−

β
)ϑj

]
dA+

∫
ΓNs

[
0

Θβ ϑj

]
dΓNs

2

f1
β
[j] = c2h

∫
A

[
( fβ +β f f

β
)ϑj

]
dA+3c2

∫
A

[
(t+

β
+ t−

β
)ϑj

]
dA

(A.38)
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0

f2[j] =− hβ

ω2ρ f

∫
A

[
f f
3 ϖj

]
dA+
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∫
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[
(t+3 − t−3 )ϕj

]
dA
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