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Abstract

The recurrent connectivity within in the cortex is highly structured. For ex-

ample, the connection probability and the mean synaptic strength varies between

the six layers of the cortex. The underlying rules of this connectivity structure

seem to be crucial for the computational function of the cortex.

This thesis investigates how this structured recurrent connectivity in cortical

neural circuits influences the activity of neurons and the computational function

of the circuit. This is done by developing both software and hardware models of

neural circuits based on experimental data.

First, two data-based templates of connectivity in cortical microcircuits are an-

alyzed and compared regarding their network structure, as well as their dynamical

and computational properties. The distribution of network motifs are quite dif-

ferent for the two microcircuit templates. The computational performance of a

cortical microcircuit is correlated with specific statistical properties of the circuit

dynamics that is induced by a particular distribution of degrees of nodes.

Furthermore, a prototype of a spiking neuromorphic VLSI hardware is used to

emulate cortical neural circuits. Such neuromorphic VLSI hardware systems are

promising candidates for neuroscientific research tools, especially for tasks, which

exhaust the computing power of software simulations. Still, neuromorphic models

suffer from a constricted configurability and production-related fluctuations of

device characteristics. A cortically inspired self-adjusting network architecture is

applied to keep the the activity of emulated generic spiking neural networks within

a biologically realistic firing regime. This architecture increases the robustness

against transistor-level variations.

Finally, two computer models for a patch of primary visual cortex (V1) are

developed. For the first model, a detailed large network for a patch of V1 of

macaque monkeys, the statistics of the spike activity in response to a natural

movie stimuli is compared with statistics of in vivo recordings in response to the

same stimuli. Some high level parameters of the recurrent connectivity are varied

to investigate their influence on the firing statistics. This knowledge is used to

optimize the model to achieve realistic firing statistics. The deviation between the

firing regime of the optimized model and the in vivo data is on the same level as

deviations among monkeys and experimental sessions. A second network model

for a patch of V1 of cats is used to reproduce the experimental findings about

the temporal integration of information about the visual stimulus in this area.

Additionally, the model is used to show how higher order correlations of neurons

contribute to the information about the visual stimulus.





Zusammenfassung

Die Verbindungsstruktur zwischen den Neuronen im Kortex ist sehr strukturi-

ert. Beispielsweise variiert die Verbindungswahrscheinlichkeit und die Stärke der

Verbindungen zwischen den typischen sechs Schichten des Kortex. Die Regeln

hinter dieser Verbindungsstruktur scheinen für die Funktionalität des Gehirns es-

sentiell zu sein. Diese Arbeit untersucht, wie diese Verbindungsstrukturen in kor-

tikalen neuronalen Schaltkreisen deren Funktionalität und die Aktivität der Neu-

ronen beeinflussen. Die Untersuchung wird mittels Simulationen von Modellen in

Software und Hardware durchgeführt, die auf experimentellen Daten basieren.

Zunächst werden zwei experimentell ermittelte Muster von Verbindungsstruk-

turen von kortikalen Netzwerken analysiert und bezüglich der Netzwerkstruktur,

der Dynamik und der Berechnungseigenschaften verglichen. Die Verteilungen

der Netzwerkmotive der beiden Verbindungsstrukturen unterscheiden sich. Die

Berechnungseigenschaften der Netzwerke korrelieren mit der Statistik der Netzw-

erkdynamik, die von den jeweiligen Verteilungen der Knotengrade abhängt.

Darüber hinaus wird ein Prototyp eines neuromorphen VLSI Chips verwen-

det um kortikale Netzwerke zu emulieren. Solche VLSI Systeme sind erfolgver-

sprechende Werkzeuge für neurowissenschaftliche Fragestellungen, welche die Leis-

tungsfähigkeit üblicher Softwaresimulationen überschreiten. Die beschränkte Kon-

figurierbarkeit und die produktionsbedingten Bauteilschwankungen solcher Sys-

teme sind noch problematisch. Eine selbstregulierende Netzwerk-Architektur

wird verwendet um das emulierte Netzwerk in einem biologisch realistischen Ak-

tivitätszustand zu stabilisieren. Diese Architektur macht das Netzwerk zusätzlich

robuster gegenüber Bauteilschwankungen.

Schließlich werden zwei Computermodelle für einen Ausschnitt des Primären

Visuellen Kortex (V1) entwickelt. Für das erste Modell, ein Modell des V1 von

Makak Affen, werden die Statistiken der Feueraktivität nach Stimulation mit

natürlichen Filmsequenzen mit den Statistiken der in vivo aufgezeichneten Feuer-

aktivität verglichen. Einige Parameter der Verbindungsstruktur des Modells wer-

den variiert um deren Einfluss auf die Feuerstatistiken zu untersuchen. Das Modell

kann nun optimiert werden um ein möglichst biologisch realistisches Feuerverhal-

ten zu erreichen. Die Abweichung des optimierten Modells ist in etwa im selben

Bereich wie die Abweichung zwischen den einzelnen Affen und den Experimenten.

Das zweite Modell für einen Ausschnitt des V1 von Katzen reproduziert die ex-

perimentellen Ergebnisse über die zeitliche Integration von Information über den

visuellen Stimulus in diesem kortikalen Areal. Zusätzlich wird gezeigt, wie Ko-

rrelationen höherer Ordnung zwischen den Neuronen zur Information über den

visuellen Stimulus beitragen.
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Chapter 1

Introduction

For decades, response properties of single neurons within the primary sensory areas

of the cortex have been studied in great detail. It has been shown that neurons in

these areas encode or extract specific features of an input signal such as a movie or

a tone sequence. The primary visual cortex (V1) is one of these primary sensory

cortical areas for which the typical response properties of single neurons are well

known. V1 neurons are tuned on e.g. the orientation or the direction of moving

bars in the visual input. Another primary sensory area is the primary auditory

cortex (A1). It has been found that neurons of A1 are tuned to respond to distinct

frequency bands or intensities of the auditory stimulus. Receptive field properties

are typically inferred by studies using artificially generated stimuli. However,

much less is known about the tuning properties in response to natural stimuli, for

which spatial and temporal statistics are typically more complex than for artificial

stimuli.

Neurons in V1 that are tuned for an oriented bar at a given position of the

visual field are referred to as simple cells. It is a common belief that the response

properties of such simple cells emerge from the connections of neurons of the

lateral geniculate nucleus (LGN) of the thalamus, which is thought to function

as a relay of the retina. Thus, tuning properties can be attributed to the feed-

forward connectivity structure from the LGN to V1. The main recipient layer of

V1 is the granular layer (layer 4) and the excitatory neurons of this layer typically

show the behavior of simple cells. This fact supports the idea that the properties

of simple cells mainly emerge from the feed-forward connectivity. The recurrent

connectivity within this cortical area is thought to only modulate the activity of

these neurons.

However, in the primary visual cortex only 5-10 % of the synapses targeting a

neuron in layer 4 (Peters et al., 1994; Peters and Payne, 1993) originate from the

LGN. The remaining synapses originate from neurons within the cortex. Such a

connectivity structure does not support the idea of a simple feed-forward process

that transforms the input. It rather suggests that the recurrent connectivity plays

a very important role in the computational function of the sensory cortex. But

how does this recurrent connectivity influence the computations or the general

dynamics of such cortical circuits?

Moreover, the connectivity in the cortex seems to be highly structured. The

connectivity between specific layers varies with respect to the connection prob-
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ability and the connection strength. The underlying rules of this connectivity

structure seem to be crucial for the computational function of the cortex. The

aim of this thesis is to analyze how the recurrent connectivity of a cortical neural

circuit influences its spiking activity and its computational function. The func-

tional properties of the cortical neural circuits are studied using the framework

of liquid computing. This framework suggests that the circuit acts as a reservoir

that supports different simultaneous computations. Readout neurons that have

access to the activity of the reservoir (i.e., which receive input from the neurons

within the reservoir) can transform this activity in order to produce the desired

output for a specific computational task.

Organization of the Thesis

This thesis is comprised of four chapters which are based on publications to which

I contributed during my PhD studies.

In chapter 2, two data-based templates of connectivity in cortical microcircuits

are analyzed and compared regarding their network structure, as well as their dy-

namical and computational properties. The distribution of network motifs, i.e.

of subcircuits consisting of a small number of neurons, are quite different for the

two microcircuit templates, although they both have a characteristic small-world

property. The dynamical and computational properties of the two microcircuit

templates were studied using computer models consisting of Hodgkin-Huxley point

neurons with conductance-based synapses that have a biologically realistic short-

term plasticity. The models were tested on seven generic computational tasks

that require accumulation and merging of information contained in two afferent

spike inputs. Although the two models exhibit a different performance for some

of these tasks, their average computational performance is very similar. Changing

the connectivity structure of the models, we found that the distribution of de-

grees of nodes is a common key factor for their computational performance. The

computational performance of a cortical microcircuit is also correlated with spe-

cific statistical properties of the circuit dynamics that is induced by a particular

distribution of degrees of nodes.

The simulation of cortical neural circuits with digital computers is typically

very time consuming. In chapter 3, a prototype of a spiking neuromorphic VLSI

hardware that was developed within the FACETS research project (FACETS,

2009), is used to emulate a cortical neural circuit. Such neuromorphic VLSI

hardware systems are promising candidates for neuroscientific research tools and

massively parallel computing devices, especially for tasks, which exhaust the com-

puting power of software simulations. Still, like all analog hardware systems,

neuromorphic models suffer from a constricted configurability and production-

related fluctuations of device characteristics. A cortically inspired self-adjusting
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network architecture is applied to keep the the activity of generic spiking neural

networks emulated on a neuromorphic hardware system within a biologically re-

alistic firing regime. Additionally, this architecture makes the circuit remarkable

robust against transistor-level variations.

In chapter 4, a detailed large network for a 5 mm x 5 mm patch of primary

visual cortex (V1) of macaque monkeys that integrates many previously published

anatomical and physiological details is developed. The statistics of the spike

activity of the model in response to a natural movie stimuli is compared with

statistics of in vivo recordings in response to the same stimuli. Acquiring a realistic

firing regime in cortical network models might be a prerequisite for analyzing

their emergent computational functions. This chapter also addresses the question

how some high level parameters of the recurrent connectivity influence the firing

statistics of the model. This knowledge is used to optimize the model to achieve

realistic firing statistics. The deviation between the firing regime of the optimized

model and the in vivo data is on the same level as deviations among monkeys and

sessions.

Finally, in chapter 5 a laminar model of a patch of primary visual cortex of

cats is used to reproduce the experimental findings of (Nikolic et al., 2009) about

the temporal integration of information about the visual stimulus in this area.

The model is similar to the one used in chapter 4, but several parameters are

adapted to fit the anatomical and physiological properties of cats. Additionally,

the model is used to show how higher order correlations of neurons contribute

to the information about the visual stimulus. This analysis had to be conducted

on large trial sets produced by the model, because the relatively small number of

trials from the experiments did not suffice to obtain accurate results for higher

order correlations.
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Chapter 2

Motif distribution, dynamical

properties, and computational

performance of two data-based

cortical microcircuit templates

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . 43

The neocortex is a continuous sheet composed of rather stereotypical local mi-

crocircuits that consist of neurons on several laminae with characteristic synap-

tic connectivity patterns. An understanding of the structure and computational

function of these cortical microcircuits may hold the key for understanding the

enormous computational power of the neocortex. Two templates for the structure

of laminar cortical microcircuits have recently been published by Thomson et al.

and Binzegger et al., both resulting from long-lasting experimental studies (but

based on different methods).

We analyze and compare in this article the structure of these two microcircuit

templates. In particular, we examine the distribution of network motifs, i.e. of

subcircuits consisting of a small number of neurons. The distribution of these

building blocks has recently emerged as a method for characterizing similarities

and differences among complex networks. We show that the two microcircuit

templates have quite different distributions of network motifs, although they both

have a characteristic small-world property. In order to understand the dynamical

and computational properties of these two microcircuit templates, we have gener-

ated computer models of them, consisting of Hodgkin-Huxley point neurons with

conductance based synapses that have a biologically realistic short-term plastic-

ity. The performance of these two cortical microcircuit models was studied for 7
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generic computational tasks that require accumulation and merging of informa-

tion contained in two afferent spike inputs. Although the two models exhibit a

different performance for some of these tasks, their average computational per-

formance is very similar. When we changed the connectivity structure of these

two microcircuit models in order to see which aspects of it are essential for com-

putational performance, we found that the distribution of degrees of nodes is a

common key factor for their computational performance. We also show that their

computational performance is correlated with specific statistical properties of the

circuit dynamics that is induced by a particular distribution of degrees of nodes.

2.1 Introduction

Many complex networks from biochemistry and neurobiology as well as engineer-

ing share certain global properties (Strogatz, 2001; Newman, 2003; Watts and

Strogatz, 1998), like degree distributions (distribution of the number of edges per

node) and small-world properties, i.e. local clustering of edges in a graph while

maintaining a short path between nodes. But they often have different local prop-

erties, yielding different distributions of stereotypical connectivity patterns for few

nodes, called motifs (Shen-Orr et al., 2002; Milo et al., 2002, 2004).

Neurobiological studies have shown that cortical circuits have a distinctive

modular and laminar structure, with stereotypical connections between neurons

that are repeated throughout many cortical areas (White, 1989; Douglas et al.,

1995b; Mountcastle, 1998; Nelson, 2002; Silberberg et al., 2002; Douglas and Mar-

tin, 2004; Kalisman et al., 2005). It has been conjectured that these stereotypical

canonical microcircuits are not merely an artifact of the specific mapping of affer-

ent and efferent cortical pathways or other anatomical constraints like evolution-

ary processes or development, but are also advantageous for generic computational

operations that are carried out throughout the neocortex.

Over the past years detailed statistical data became available that are based on

two different experimental methods became available: dual intracellular record-

ings in vitro and cell morphology. The first dataset assembled by (Thomson et al.,

2002) was estimated from 998 paired intracellular recordings with sharp electrodes

in slices of somatosensory, motor and visual areas of adult rats and adult cats.

It specifies connection probabilities and connection strengths of effectively estab-

lished synaptic connections between excitatory and inhibitory neocortical neu-

rons, to which we will refer as functional connectivity in this chapter. The second

dataset assembled by (Binzegger et al., 2004) was predicted from bouton and tar-

get densities in cat primary visual cortex estimated from three-dimensional cell

reconstructions. This dataset does not specify the distribution of functional con-

nections, but rather represents potential synaptic connectivity. The probabilities

of synaptic connections between excitatory and inhibitory neurons located in dif-
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ferent layers, i.e. layer 2/3, 4 and 5, differ significantly for the functional and the

potential microcircuit template (see (Thomson and Lamy, 2007)). In addition this

dataset also includes neurons on layer 6.

We investigate these two cortical microcircuit templates with regard to struc-

tural and functional properties. In order to evaluate the computational properties

of microcircuit templates we carried out computer simulations of detailed corti-

cal microcircuit models consisting of 560 Hodgkin-Huxley type point neurons and

synaptic connections with stereotypical dynamic properties (such as paired pulse

depression and paired pulse facilitation) from (Markram et al., 1998). Similar to

(Häusler and Maass, 2007), our analysis is based on the assumption that stereo-

typical cortical microcircuits have some “universal” computational capabilities,

and can support quite different computations in different cortical areas. Con-

sequently we concentrate on generic information processing capabilities that are

likely to be needed for many concrete computational tasks: to accumulate, hold

and fuse information contained in Poisson input spike trains from two different

sources (modeling thalamic or cortical feedforward input that arrives primarily in

layer 4, and lateral or top-down input that arrives primarily in layers 2/3). In

addition we examine the capability of such circuit models to carry out linear and

nonlinear computations on time-varying firing rates of these two afferent input

streams. In order to avoid rather arbitrary assumptions about the specific type

of neuronal encoding of the results of such computations, we analyzed how much

information is available about the results of such computations to the generic

“neural users”, i.e., to pyramidal neurons in layers 2/3 (which typically project to

higher cortical areas) and to pyramidal neurons in layer 5 (which typically project

to lower cortical areas or to subcortical structures, but also project for example

from V1 back to nonspecific thalamus, i.e. to the intralaminar and midline nuclei

that do not receive direct primary sensory input, and through this relay to higher

cortical areas, see (Callaway, 2004)).

In (Häusler and Maass, 2007) it was shown that the cortical microcircuit model

based on the template from (Thomson et al., 2002) exhibits specific computational

advantages over various types of control circuits that have the same components

and the same global statistics of neurons and synaptic connections, but are missing

the lamina-specific structure of real cortical microcircuits. Furthermore it was

demonstrated that the connectivity graphs defined by this cortical microcircuit

template has a small-world property. However we had shown that the degree

distribution of neurons is more salient for their computational performance than

the small world property.

Here we extend this study by showing that the two cortical microcircuit tem-

plates of (Thomson et al., 2002) and (Binzegger et al., 2004) share some global

structural properties, like degree distributions and small-world properties, but

have significantly different local structural properties, i.e. network motif distribu-
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tions. A comparison of the information processing capabilities of both microcircuit

templates reveals that they have a similar average computational performance but

significantly different computational properties for specific tasks. We also address

the question which aspect of the microcircuit template of (Binzegger et al., 2004)

is essential for its computational performance, by scrambling specific aspects of

their connectivity pattern in a variety of control circuits. We find that, like for

the template of (Thomson et al., 2002), the degree distribution of nodes is es-

sential for its computational performance. This result is, besides their similar

average computational performance, a second common property of these other-

wise quite dissimilar microcircuit templates. We also identify specific properties of

the dynamics of the two networks that correlate with their superior computational

performance.

2.2 Methods

2.2.1 Microcircuits and computational tasks

We analyzed cortical microcircuit models based on the laminae-specific connec-

tivity pattern specified by two different cortical microcircuit templates. The first

cortical microcircuit template assembled by (Thomson et al., 2002) was estimated

from paired intracellular recordings with sharp electrodes from 998 pairs of identi-

fied neurons from somatosensory, motor and visual areas of adult rats, and visual

areas of adult cats. The sampling was made randomly within a lateral spread of

50− 100µm (Thomson, 2005). This cortical microcircuit template specifies func-

tional synaptic connectivity, i.e. connection probabilities and efficacies of synaptic

connections between neurons located in 6 different populations (excitatory and in-

hibitory neurons in layers 2/3, 4, 5). For those pairs where both data from rat

and from cat are given in (Thomson et al., 2002), we have taken the data from

rat (see Fig. 2.1). Only for pairs of neurons within layer 4 no data from rat are

given in (Thomson et al., 2002), hence the corresponding data are from cat.1 We

analyzed a model of this microcircuit template that consisted of 560 neurons, with

30%, 20%, and 50% of the neurons assigned to layers 2/3, layer 4, and layer 5,

respectively (the number 560 was chosen somewhat arbitrarily, based on required

simulation speed and programming details). We will refer to the microcircuit

model based on this cortical microcircuit template as Thomson et al. circuit2.

1Some of the pairings were rarely observed and the corresponding entries suffer from small

sample size (see Thomson et al. (2002) for details). Also very small neurons in rat may have been

missed in this study (Thomson, 2005). In addition it is likely that in some cortical microcircuits

connections exist between pairs of neurons for which no connections were reported in (Thomson

et al., 2002) (see for example (Dantzker and Callaway, 2000) for the case of connections to

inhibitory neurons in layers 2/3).
2One should note that the layers defined by this and other microcircuit templates are not

induced by their graph structure (like the layers in a multi layer perceptron). Rather the layer
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The second cortical microcircuit template assembled by (Binzegger et al., 2004)

was predicted from bouton and target densities in cat primary visual cortex es-

timated from three-dimensional reconstructions of cells in vivo. This cortical

microcircuit template specifies potential synaptic connectivity between neurons

located in 10 specific populations (excitatory and inhibitory neurons in layers 1,

2/3, 4, 5 and 6). We omitted layer 1, because it only receives input and provides

no synaptic connections back to other layers, and is therefore irrelevant for the

analysis in this study. The connectivity graph of the 8 modeled populations is

shown in Fig. 2.2. A number of additional unassigned connections were reported

in (Binzegger et al., 2004). These were not considered for the calculation of con-

nection probabilities in this article. The synaptic connection probabilities were

further rescaled to achieve on average the same number of 42540 synaptic con-

nections as obtained for the Thomson et al. circuits. This resulted in a mean

connection probability of 13% or, equivalently, an average number of 76 recurrent

synaptic connections per neuron. The microcircuit model consisted of 560 neu-

rons, with 36%, 36%, 7% and 21% of the neurons assigned to layers 2/3, layer

4, layer 5 and layer 6, respectively (see (Binzegger et al., 2004) for a discussion

of data which justify these estimates).3 Because the cortical microcircuit tem-

plate of (Binzegger et al., 2004) provides no strengths of synaptic connections

(i.e., synaptic weights), we modeled the distribution of synaptic weights according

to the cortical microcircuit template of (Thomson et al., 2002). The strengths

of synaptic connections from and to layer 6, which do not occur in Thomson et

al. circuits, were set to the average values of all other connections of the corre-

sponding synapse type. 4 These weights are labeled with ”?” in Fig. 2.2. We will

refer to microcircuit models based on the second cortical microcircuit template

as Binzegger et al. circuits. Each layer of both cortical microcircuit templates

consisted of a population of excitatory neurons and a population of inhibitory

neurons with a ratio of 4:1.

The short term dynamics of cortical synapses (i.e., their specific mixture of

paired pulse depression and paired pulse facilitation) is known to depend on the

type of the presynaptic and postsynaptic neuron. We modeled the short term

synaptic dynamics according to the model proposed in (Markram et al., 1998),

with synaptic parameters chosen as in (Maass et al., 2002) to fit data from micro-

circuits in rat somatosensory cortex (based on (Gupta et al., 2000) and (Markram

et al., 1998)). The maximum conductances of synapses were chosen from a Gaus-

sian distribution with a SD of 70% of its mean (the negative values were replaced

to which a neuron belongs should formally be viewed as a label of the corresponding node in the

graph.
3We verified that the reported results are qualitatively the same for circuits consisting of up to

1000 neurons. In general, the performance scales with the network size (see Häusler and Maass,

2007).
4Synapse types are defined according to the post-and presynaptic neuron type
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by values chosen from an uniform distribution between zero and two times the

mean) 5. The mean maximum conductances of synapses were chosen to reproduce

the mean amplitude of PSPs given in Fig. 2.1 and Fig. 2.2 at the resting membrane

potential (in the presence of synaptic background activity). Synaptic transmission

delays between neurons were chosen from Gaussian distributions with mean 1.5

ms (0.8 ms) for connections between excitatory neurons (all other connections)

and a standard deviation of 0.1 times the mean.

Excitatory and inhibitory neurons were modeled as conductance based single

compartment Hodgkin-Huxley neuron models with passive and active properties

modeled according to (Destexhe et al., 2001). A cortical neuron receives synaptic

inputs not only from immediately adjacent neurons, but also smaller background

input currents from a large number of more distal neurons, causing in awake

animals a depolarization of the membrane potential commonly referred to as ’high

conductance state’. This was reflected in our computer model by background

input currents that were injected into each neuron. The conductances of these

background currents were modeled as a one-variable stochastic process similar

to an Ornstein-Uhlenbeck process with parameters obtained from a biophysical

model matched to intracellular recordings from a L5 neuron from cat cerebral

cortex (Destexhe et al., 2001).

Two afferent input streams, each consisting of 4 or 40 spike trains (i.e., 4 or

40 input channels), were injected into the circuit. Each of the channels of the first

input stream (representing thalamic, or feedforward cortical input) was injected

mainly into layer 4, i.e. to 50% of its inhibitory neurons and 80% of its excitatory

neurons, but also into 20% of the excitatory neurons in layers 2/3 and 10% of the

excitatory neurons in layer 5 (all randomly chosen). Each of the channels of the

second afferent input stream was injected into 20% of the excitatory neurons on

layers 2/3. The mean maximum conductances of all input synapses were chosen

to generate a PSP with a mean amplitude of 1.9 mV at the resting membrane

potential in the presence of background input. Input synapses were chosen to be

static and their maximum conductances were chosen from a Gaussian distribution

with a SD of 70% of its mean (with negative values replaced by values chosen from

an uniform distribution between zero and two times the mean).

In addition to these data there remain 3 parameters SI1, SI2 and SRW that

scale (in the form of multiplicative factors) the amplitudes of PSPs for all recurrent

synapses, and EPSPs from the two input streams (1 and 2). These parameters

were adjusted for inputs consisting of 40 Poisson spike trains at 20 Hz to induce

biologically plausible average firing rates. The parameter SI1 (SI2) was chosen

so that its respective afferent input stream caused in the absence of the other

input stream SI2 (SI1) and without recurrent connections (SRW = 0) but with

5No observable differences occurred in case of replacing this distribution with a gamma dis-

tribution with a scale parameter that equals the specified mean and a shape parameter of 1.
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background input currents injected into each neuron an average firing rate of 15

Hz in layer 4 (10 Hz in layers 2/3). The parameter SRW was set to a value

that produced for the previously fixed parameter SI1 and SI2 in the presence of

synaptic background noise a realistic low but significant firing activity of 8.5 Hz

in layer 5 and an average firing rate of 24 Hz in layer 2/3, layer 4 and layer

5. To achieve these firing rates for the Binzegger et al. circuits, the parameter

SRW had to be scaled down by a factor of 3.3 compared with its value for the

Thomson et al. circuits. For the analysis reported in Fig. 2.8 and Fig. 2.10 we

performed simulations with 40 randomly chosen scaling parameters (SI1, SI2 and

SRW ) that were drawn uniformly from the interval [0.2, 2] times the previously

described standard values. The resulting average firing rates ranged from 4 to 55

Hz.

We further modeled hypothetical projection neuron in layers 2/3 and layer 5.

The set of presynaptic neurons for such hypothetical readout neuron was chosen

according to Fig. 2.1 for Thomson et al. circuits and Fig. 2.2 for Binzegger et

al. circuits, but no synaptic connections from a readout neuron back into the

circuit were included. This amounted for the Thomson et al. circuits to an

average of 84 presynaptic neurons for a readout neuron on layers 2/3, and 109

presynaptic neurons for a readout neuron on layer 5. To allow a fair comparison

between the two cortical microcircuit templates the connections probabilities for

the hypothetical readout neurons of Binzegger et al. circuits were rescaled by a

multiplicative factor to obtain the same number of presynaptic neurons for each

of the two readout neurons.

The projection or readout neurons themselves were modeled as linear neurons,

i.e., their output was a weighted sum of low pass filtered spikes (exponential decay

with a time constant of 15 ms, modeling the time constants of synaptic receptors

and membrane of a readout neuron). The weights of synaptic connections from

the presynaptic neurons to the readout neuron were optimized for specific tasks.

Care was taken to make sure that weights from excitatory (inhibitory) presynaptic

neurons could not become negative (positive) by using a standard method of linear

regression with sign-constraints.

The information processing tasks comprised spike pattern classification tasks,

i.e. classification of spike patterns in either of the two afferent input streams, mem-

ory tasks (classification of earlier spike patterns in one of the two input streams),

and non-linear fusion of information from spike patterns in both input streams, as

well as real-time computations on the firing rates of both input streams. For infor-

mation processing tasks with spike patterns we randomly generated spike pattern

templates consisting of 30 ms segments of 40 Poisson spike trains at 20 Hz (see

Fig. 2.3). More precisely, the spike trains of each of the two input streams were of

length 450 ms and consisted of 15 consecutive time segments of length 30 ms. For

each time segment 2 spike pattern templates were generated randomly. For the
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actual input one of the two templates of each time segment was chosen randomly

(with equal probability) and a noisy variation of it was injected into the circuit,

where each spike was shifted by an amount drawn from a Gaussian distribution

with mean 0 and SD 1 ms. Readout neurons were trained to classify which of the

two spike templates fixed for input 1 (input 2) was injected during the last time

interval [t−30 ms, t ms], denoted as task tcl1(t) (tcl2(t)), or during the preceding

time interval [t − 60 ms, t − 30 ms], denoted as task tcl1(t − ∆t) (tcl2(t − ∆t)).

Note that the latter task is more difficult because the relevant spike input during

time [t − 60 ms, t − 30 ms] is overwritten by new input before the readout takes

place. It may be viewed as a memory task (with distractors).

Nonlinear fusion of information from both input streams was tested by training

readouts to output the exclusive-or (XOR) of the two bits that represent the labels

of the two templates from which the most recent spike patterns in the two input

streams had been generated. Note that this computation involves a nonlinear

“binding” operation on spike patterns, since it has to give a low output value if

and only if the labels of the noisy spike templates injected in input stream 1 and

2 are identical. The XOR task has been used in the neural network literature as

a standard example for a nonlinear computational task.

In addition we analyzed nonlinear computations on time-varying firing rates

of the two input streams. The spike trains of each of the two input streams were

of length 450 ms and consisted of 15 time segments of length 30 ms. For each

input stream and each time segment 4 Poisson spike trains were generated with

a randomly chosen time-varying frequency between 15 Hz and 25 Hz. The actual

firing rates of both input streams, i.e. r1 and r2, used for the computations

on these input firing rates, i.e. r1(t)/r2(t) and (r1(t) − r2(t))
2, were calculated

from these spike trains with a sliding window of 15 ms width. The error bars in

Fig. 2.9 denote standard errors. All performance results are for test inputs, and

freshly generated random initial conditions and random background noise for all

neurons in the circuit. All simulations were carried out with the CSIM software

(Natschläger et al., 2003) in combination with MATLAB. For further details see

(Häusler and Maass, 2007).

2.2.2 Control circuits

Control circuits have the same components and the same global statistics of neu-

rons and synaptic connections, but are missing the lamina-specific connectivity

structure of data-based cortical microcircuits. Random control circuits were gen-

erated from data-based circuits by randomly rewiring recurrent synaptic connec-

tions whereas no synaptic connection was allowed to occur more than once. In

order to maintain the stereotypical neuron to synapse type alignment observed for

short-term synaptic plasticity (Gupta et al., 2000) the rewiring was carried out

under the constraint that the pre- and postsynaptic neuron type (i.e. excitatory or
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inhibitory) of each synaptic connection stays the same. This constraint introduces

a difference in the randomized networks generated from Thomson et al. circuits

and Binzegger et al. circuits, because the numbers of synaptic connections be-

tween excitatory neurons (NEE) are different in these two circuit templates. The

same holds for the number of synaptic connections between inhibitory neurons

(NII), from inhibitory to excitatory (NEI), and from excitatory to inhibitory neu-

rons (NIE), although the total number of synapses is identical for both circuits6.

The difference is largest for NII , which is for the Thomson et al. circuits more

than 3 times larger. We will refer to the randomized networks generated from the

two microcircuit templates as amorphous Thomson et al. (amorphous Binzegger

et al.) circuits7.

Degree-controlled circuits (Kannan et al., 1999; Maslov and Sneppen, 2002)

preserve the degree distributions of neurons in all layers but otherwise lack a

laminae-specific connectivity pattern. The degree of a neuron is defined as the

total number of incoming and outgoing synaptic connections. Degree-controlled

circuits were constructed from data-based circuits by randomly exchanging the

target neurons of pairs of recurrent synaptic connections that emerge from the

same neuron, and have neurons of the same type (excitatory/inhibitory) as target.

Small-world control circuits have identical cluster coefficient and average short-

est path lengths as Thomson et al. circuits (but without laminae-specific synaptic

connectivity pattern). They were constructed with two different algorithms, i.e.

the spatial growth algorithm described in (Kaiser and Hilgetag, 2004) (with pa-

rameters α = 4, β = 1.32) and the algorithm proposed by (Watts and Strogatz,

1998) (with parameter β = 0.319). Both algorithms were applied to generate

undirected graphs that have the same size (560 nodes), clustering coefficient, and

average shortest path length as Thomson et al. circuits. Each node in these

graphs was replaced by a randomly drawn excitatory or inhibitory neuron (with-

out replacement) located in one of the 6 populations of Thomson et al. circuits.

Subsequently the undirected graphs were converted to directed graphs by ran-

domly replacing each edge with a synapse (that is randomly oriented) or a recip-

rocal synaptic connection, with a probability so that the total number of synaptic

connections and reciprocal synaptic connections is identical to the corresponding

number for Thomson et al. circuits 8.

For all control circuits the assignment of neurons to layers, the target neurons

of input synapses, and the set of presynaptic neurons for hypothetical readouts

was the same as for the corresponding data-based circuits.

6For Thomson et. al circuits (Binzegger et al. circuits) the average values of NEE , NII , NEI ,

and NIE are 31011 (32243), 2533 (785), 5370 (4762), and 3086 (4210), respectively.
7Note that the connection probabilities for amorphous circuits are not uniform, but differ for

each of the four synaptic connection types.
8It should be noted that this procedure does not reproduce the same fraction of synapse types

as for data-based circuits and amorphous circuits.
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2.2.3 Graph properties

A cortical microcircuit can be described by a directed graph with nodes (neurons)

and edges (synaptic connections). A connected sub-graph with M nodes is called

a motif of size M and has at least M − 1 and at most M(M − 1) edges (ignoring

self-edges). The motif count COUNT is defined as the total number of motifs

of a certain type occurring in a directed graph that corresponds to a cortical

microcircuit generated from a specific microcircuit template. The probability of

a motif is defined as the probability that M randomly drawn neurons within a

microcircuit (that was randomly drawn from a specific microcircuit template) are

connected according to the sub-graph defined by the motif (with no additional

edges except self-edges). We analyzed sets of motifs of size M = 2, M = 3 and

M = 4 consisting of 2, 13 and 199 sub-graphs, respectively. According to (Milo

et al., 2002, 2004) we didn’t consider motifs that contain self-edges.

The motif probabilities for data-based microcircuits, amorphous circuits and

degree-controlled circuits can be calculated analytically from the corresponding

microcircuit templates. The templates for the connection probabilities of amor-

phous circuits can be obtained from data-based circuits (defined in Fig. 2.1 and

Fig. 2.2) by setting the probability of each synaptic connection to the weighted

average probability of all synaptic connections of the same type (defined by the

type of the pre- and postsynaptic population of neurons, i.e. excitatory or in-

hibitory). The contribution of each synaptic connection probability to the average

is weighted proportional to the product of the pre- and postsynaptic population

size. The templates for the connection probabilities of degree-controlled circuits

can be obtained from data-based templates by carrying out the following pro-

cedure for each type of synaptic connection. First the probability P s(i) that a

randomly selected synapse of a specified type targets a specific population i is cal-

culated from the data-based template. Subsequently the probability of a synaptic

connection between presynaptic population j and postsynaptic population k is set

to the value P s(k) resulting in a connectivity pattern that is independent of the

presynaptic population. Finally, the probabilities of all connections with identical

presynaptic population are multiplied by a common scaling factor to obtain the

same average total number of outgoing synapses for each population as for the

data-based microcircuit template.

The probability of a certain motif PM is defined as the product of the probabil-

ities for the existence or absence of each edge of a sub-graph (excluding self-edges).

Care has to be taken to account for permutations of neurons and different pop-

ulations sizes. For a distribution of circuits consisting of N neurons that were

generated from a specific circuit template the mean motif count is given by

COUNT =

(

N

M

)

· PM
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and the standard deviation of the motif count is defined by

std(COUNT) =

√

(

N

M

)

· PM (PM − 1)

The motif distributions for small-world circuits were sampled using 200 circuits.
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Figure 2.1: Cortical microcircuit template estimated from paired in-

tracellular recordings according to (Thomson et al., 2002)

Numbers at arrows denote connection strengths (mean amplitude of postsynap-

tic potentials, PSPs, measured at soma in mV) and connection probabilities (in

parentheses), for connections between cortical neurons in 3 different layers, each

consisting of an excitatory (E) and an inhibitory (I) population, with an estimated

maximal horizontal distance of up to 100µm. The width of arrows is proportional

to the product of these two numbers. Most of the data are from rat cortex, except

for interconnections in layer 4 (italic), which are from cat. Input stream 1 mod-

els feedforward inputs, and input stream 2 models top-down or lateral input to

the cortical microcircuit. Percentages at input streams denote connection proba-

bilities for input neurons (that produce these input streams) in our simulations.

Figure reproduced with permission of (Häusler and Maass, 2007).
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Figure 2.2: Cortical microcircuit template predicted from bouton and

target densities estimated from three-dimensional cell reconstructions

according to (Binzegger et al., 2004)

Numbers at arrows denote connection strengths (mean amplitude of postsynap-

tic potentials, PSPs, measured at soma in mV) and connection probabilities (in

parentheses), for connections between cortical neurons in 4 different layers, each

consisting of an excitatory (E) and an inhibitory (I) population. Connection prob-

abilities were estimated from 39 three-dimensional single neuron reconstructions

from cat primary visual cortex. Connection strengths were taken from the cortical

microcircuit template described in (Thomson et al., 2002) (see Fig. 2.1). Weights

with question marks denote unspecified connections (see text).
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Figure 2.3: Input distributions for the spike pattern classifica-

tion/memory and exclusive-or (XOR) tasks

The spike trains of each of the two input streams were of length 450 ms and con-

sisted of 15 time segments of length 30 ms. For each segment 2 templates were

generated randomly (40 Poisson spike trains at 20 Hz). The actual spike trains

of each input of length 450 ms used for training or testing were generated by

choosing for each segment one of the two previously chosen associated templates,

and then generating a jittered version by moving each spike by an amount drawn

from a Gaussian distribution with mean 0 and a SD 1 ms (a sample for two time

segments is shown in the panel on the right hand side). Figure reproduced with

permission of (Häusler and Maass, 2007)
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2.3 Results

2.3.1 Graph properties of the two microcircuit templates

We analyzed the two data-based cortical microcircuit templates9 shown in Fig. 2.1

and Fig. 2.2 for their differences and similarities in connectivity structure. In

order to evaluate the significance of specific structural features of the two data-

based microcircuit templates we compared them with random control circuits

which consist of the same number of components, i.e. neurons and synapses, but

lack a laminae-specific connectivity pattern. These random control circuits were

generated from data-based circuits by randomly rewiring synaptic connections10.

This rewiring was carried out under the constraint that the pre- and postsynaptic

neuron type (i.e. excitatory or inhibitory) of each synaptic connection stays the

same, in order to maintain the stereotypical neuron to synapse type alignment

observed for short-term synaptic plasticity (Gupta et al., 2000) that we have

implemented in our models. We will refer to the randomized networks generated

from the two microcircuit templates as amorphous Thomson et al. (amorphous

Binzegger et al.) circuits.

In general the connectivity graph of Binzegger et al. circuits is more similar to

the connectivity graph of the corresponding amorphous circuits than for Thom-

son et al. circuits. The connection probabilities defined by the laminae-specific

connectivity templates (see Fig. 2.1 and Fig. 2.2) correlate with the connection

probabilities of the corresponding amorphous templates with a correlation coeffi-

cient of 0.3 for Binzegger et al. circuits and 0.2 for Thomson et al. circuits.

Three graph properties have primarily been used for the characterization of

naturally occurring directed graphs: clustering, degree distribution and motif dis-

tribution. A quantity often studied in relation with clustering is the small-world

property defined by (Watts and Strogatz, 1998). In small-world networks neigh-

bors of a node are more likely to be neighbors themselves when compared to

random graphs, thereby causing a so-called small-world effect. Nevertheless any

two nodes in a small-world network are connected by a relative small number of

edges, providing fast communication between any two nodes11. Thomson et al.

circuits as well as the Binzegger et al. circuits exhibit a significant small-world

property. Their cluster coefficient, that is defined as the fraction of existing edges

between direct neighbors of a node, is 0.36 and 0.33, respectively, which is 37%

and 30% larger than in the corresponding amorphous circuits. Both data-based

microcircuit templates imply an average shortest path length of 1.77 edges, which

is comparable to the average shortest path length of 1.74 edges for amorphous

9To be precise, each of these two templates is actually a probability distribution over graphs,

rather than a specific graph.
10But no synaptic connection was allowed to occur more than once.
11Note that both properties refer to the structure of the underlying undirected graph, where

directed edges are replaced by undirected edges.
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control circuits.

The higher cluster coefficient of Thomson et al. circuits is mainly due to exci-

tatory and inhibitory neurons located in layer 2/3, which form highly connected

hubs. The amount of convergence and divergence of a node in a graph can be

specified by its degree, defined as the total number of its incoming and outgoing

connections. The average degree of a layer 2/3 neuron in Thomson et al. circuits

is 251, which is 20.3% larger than the average degree of 208.7 for a layer 2/3

neuron in Binzegger et al. circuits. The average degree in the remaining layers

was somewhat smaller and ranged from 77.6 to 137.3 for Thomson et al. circuits

and from 14.1 to 188.3 for Binzegger et al. circuits (without layer 1). Overall the

average degrees of neurons in layer 2/3, 4 and 5 are correlated for both data-based

circuits with a correlation coefficient of 0.74.
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Figure 2.4: Motif distributions for the cortical microcircuit templates

Motif distributions of Thomson et al. (2002) (see Fig. 2.1) and Binzegger et al.

(2004) (see Fig. 2.2). A: Definition of motifs. B: Motif probabilities for pairs (left

panel) and triplets (right panel) of neurons for Thomson et al. circuits. C: Z score

(defined as the difference in the average motif count for the specified circuits and

corresponding amorphous circuits measured in units of the standard deviation

of the motif count for amorphous circuits) for pairs and triplets of neurons for

Thomson et al. circuits consisting of 560 neurons and on average 42540 synapses.

D: Motif probabilities for pairs and triplets of neurons for Binzegger et al. circuits.

E: Z score for Binzegger et al. circuits consisting of 560 neurons and on average

42540 synapses. The Motif distribution for the two cortical microcircuit templates

differs significantly.

A third approach to characterize graphs, which also takes the direction of
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edges into account, is to analyze which subgraphs (motifs) occur with a frequency

significantly higher or lower than in corresponding amorphous networks (see sec-

tion 2.2.3). The motif distributions of Thomson et al. circuits and Binzegger et

al.circuits are shown in Fig. 2.4 for motifs consisting of two and three nodes.

The deviation of the motif distribution of the data-based microcircuits from

the motif distribution of the corresponding amorphous circuits was evaluated for

each motif by means of its Z score (Milo et al., 2002, 2004) defined as

Z =
COUNTdata−based − COUNTamorphous

std (COUNTamorphous)
,

where std denotes the standard deviation and COUNT denotes the mean motif

count obtained for a distribution of circuits that were generated from a specific

circuit template. Remarkably the procedure of generating amorphous control

circuits generates more reciprocal connections for the Thomson et al. circuits but

fewer reciprocal connections for the Binzegger et al. circuits, as indicated by the

Z scores for motif number 2 for the motif class consisting of two nodes (M = 2),

see Fig. 2.4C, E. Also the Z scores for motifs consisting of three nodes differ

significantly for the two templates. In particular, the motifs 3, 5 and 11 (which

represent converging or diverging sub-graphs) are over-represented, whereas the

motifs 2, 4 and 7 (which represent feed-forward or circular sub-graphs) are under-

represented in Thomson et al. circuits. The more frequent appearance of motif 5

in Thomson et al. circuits can be attributed to the typical structure of connections

from layer 4 to layer 2/3 and from layer 2/3 to layer 5. In both cases excitatory

neurons within the target and the source layer are often directly synaptically

connected (corresponding to the edge from the right to the top node of motif 5).

Additionally, excitatory neurons in the target layer receive input from inhibitory

neurons in the source layer (edge from the left to the top node of motif 5) that

receive input from excitatory neurons within the source layer (edge from the right

to the left node of motif 5). Therefore the excitation spreading from layer 4 (layer

2/3) to layer 2/3 (layer 5) is balanced by an inhibitory pathway passing through

inhibitory neurons in layer 4 (layer 2/3).

In contrast, motifs with 3 nodes in Binzegger et al. circuits that consist only

of two edges are significantly under-represented, whereas motifs with many edges

appear more frequently than in corresponding amorphous circuits (see Fig. 2.4E.

This may be partially attributed to the more frequent appearance of reciprocal

connections compared to amorphous circuits.

The characteristic shape of the motif distribution of Binzegger et al. circuits

is not due to the additional connections with layer 6, which are not specified in

Thomson et al. circuits. The motif distributions of Binzegger et al. circuits with

and without layer 6 have a correlation coefficient of 0.96. Moreover the character-

istic shape of their motif distribution is also not caused by the comparatively high

number of connections with low probability (< 10%). The correlation coefficient
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of the motif distributions of Binzegger et al. circuits and pruned Binzegger et al.

circuits, for which all connections with a connection probability lower than 10%

were removed (dashed lines in Fig. 2.2), is 0.97.

2.3.2 Relationships between graph theoretical properties

In order to identify the structural aspects of data-based microcircuit templates

that are responsible for the characteristic deviation in their motif distributions,

we generated additional random control circuits which preserve the degree distri-

butions of neurons in all layers, but otherwise lack a layer specificity of synaptic

connections. These degree-controlled circuits (Kannan et al., 1999; Maslov and

Sneppen, 2002) were constructed from data-based circuits by randomly exchang-

ing the target neurons of pairs of synapses that emerge from the same neuron, and

have neurons of the same type (excitatory/inhibitory) as target. In contrast to the

scrambling procedure that generates amorphous circuits, this procedure preserves

not only the type but also the identity of the presynaptic neuron.
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Figure 2.5: Distributions of motifs with three nodes for three different control

circuits

A: Z score for small-world control circuits generated with the spatial growth

algorithm described in (Kaiser and Hilgetag, 2004). The result for a second type

of small-world control circuits generated with the algorithm proposed by (Watts

and Strogatz, 1998) is nearly identical (correlation coefficient 0.99). B: Z score

for degree-controlled control circuits generated from Thomson et al. circuits.

C: Z score for degree-controlled control circuits generated from Binzegger et al.

circuits. The degree-controlled circuits generated from Thomson et al. circuits

have a Z score that resembles the Z score of Thomson et al. circuits (the average

absolute difference in Z score represents 40% of the average absolute Z score

for data-based circuits). In contrast, the motif distribution of degree-controlled

circuits generated from Binzegger et al. circuits is more similar to the one for

corresponding amorphous circuits (the average absolute difference in Z score is

65% of the average absolute Z score for data-based circuits).
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The motif distribution of Thomson et al. circuits changes very little through

this scrambling procedure (compare Fig. 2.5B with Fig. 2.4C). The motifs 2 and

5 that represent feed-forward pathways from the right to the top node of the

sub-graph (see Fig. 2.4A) appear less frequent, but nevertheless the Z score for

data-based circuits and degree-controlled circuits correlates with a correlation co-

efficient of 0.94. Therefore the characteristic motif distribution of Thomson et al.

circuits is mainly induced by the specific distribution of degrees of neurons over

layers.

In contrast, the motif distribution of degree-controlled circuits generated from

Binzegger et al. circuits resembles the one for amorphous circuits (see the Z-score

plotted in Fig. 2.5C). In particular, motifs consisting of many edges appear less

frequently in degree-controlled circuits compared to data-based circuits. Although

the Z score is smaller for the majority of motifs in degree-controlled circuits, it

nevertheless correlates with the Z score of the Binzegger et al. circuits with

a correlation coefficient of 0.79. Thus the motif distribution of Binzegger et al.

circuits is induced by the laminae-specific connectivity pattern between layers and

less by the specific degree distributions of neurons. Similar results are obtained

for the distributions of motifs consisting of 4 nodes (see Fig. 2.6). 12

In order to demonstrate that the motif distribution of Thomson et al. cir-

cuits can not only be attributed to its specific clustering properties (small world

property), we additionally generated control circuits with identical cluster coef-

ficient and average shortest path length as Thomson et al. circuits but without

laminae-specific synaptic connectivity pattern. In order to show that the motif

distribution does not depend on a specific construction algorithm we generated

two types of small-world control circuits. The first one was constructed with the

spatial growth algorithm described in (Kaiser and Hilgetag, 2004) and the second

type of control circuits was generated with the algorithm proposed by (Watts and

Strogatz, 1998). The spatial growth algorithm of (Kaiser and Hilgetag, 2004) is

capable of constructing networks with multiple, interconnected clusters, whereas

the algorithm described by (Watts and Strogatz, 1998) doesn’t preferentially con-

nect highly connected hubs with each other. Note that both algorithms generate

undirected graphs that were subsequently converted to directed graphs by ran-

domly replacing each edge with a synapse (that is randomly oriented) or a recip-

rocal synaptic connection, with a probability so that the total number of synaptic

connections and reciprocal synaptic connections is identical to the corresponding

number for data-based circuits. 13 The M = 3 motif distribution for both types

of small-world circuits is similar but differs significantly from the motif distribu-

tion of data-based microcircuits (see Fig. 2.5A). The correlation coefficient for the

12For M = 4 motifs the Z score for Thomson et al. circuits (Binzegger et al. circuits) and the

corresponding degree-controlled circuits correlates with a correlation coefficient of 0.91 (0.41).
13It should be noted that this procedure does not reproduce the same fraction of synapse types

as for data-based circuits and amorphous circuits.
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Figure 2.6: Distributions of motifs with four nodes

A: Z score for Thomson et al. circuits. B: Z score for degree-controlled circuits

generated from Thomson et al. circuits. C: Z score for Binzegger et al. cir-

cuits. D: Z score for degree-controlled circuits generated from Binzegger et al.

circuits. These plots show that the degree-controlled scrambling of the connectiv-

ity structure mainly preserves the Z score for Thomson et al. circuits (correlation

coefficient of 0.91) but not for Binzegger et al. circuits (correlation coefficient of

0.41).

motif distribution of small-world circuits, and Thomson et al. circuits and the

Binzegger et al. circuits is 0.37 and -0.29, respectively.

2.3.3 Dynamical properties

We investigated the dynamical properties of Thomson et al. circuits and Binzegger

et al. circuits by analyzing computer simulations of detailed cortical microcircuit

models (see Methods). Fig. 2.7 shows a comparison of various statistical proper-

ties of the circuit dynamics in response to generic spike inputs consisting of 40

Poisson spike trains at 20 Hz into layer 4 and layers 2/3 for both data-based circuit

templates (black lines).
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Figure 2.7: Statistical properties of the circuit dynamics of Thomson et al. circuits

(left panels) and Binzegger et al. circuits (right panels). The statistical properties of

each of the two data-based microcircuits (black lines) are compared to the properties of

corresponding control circuits, i.e. amorphous circuits (red lines) and degree-controlled

circuits (blue lines). A,B: Power spectral densities (PSD) of the mean firing rate (bin

size 1 ms). The majority of neurons has excess power at low frequencies. C,D: Interspike

interval (ISI) distributions for different neurons. All ISI distributions are well described

by exponential distributions (corresponding to straight lines in semi-log plots) predicted

by Poisson processes. E,F: Coefficient of variation of interspike intervals (CV(ISI)) for

different neurons. Only for Thomson et al. circuits the corresponding amorphous circuits

show different statistical properties. Error bars are negligible and omitted for clarity.

We found that Thomson et al. circuits and Binzegger et al. circuits have very

similar dynamical properties. The mean firing rate of neurons is about 24 Hz and

the power spectral densities (PSD) of the mean firing rates show an excess power

at low frequencies between 5 and 50 Hz. Moreover for both circuit templates

the interspike interval (ISI) distributions have an exponential tail as predicted

by Poisson processes. A peak in the ISI distribution around 7 ms indicates the

occurrence of bursts, that is a higher probability of observing two or more spikes

within a short time window of a few ms than predicted by Poisson processes
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Figure 2.8: Correlation of statistical properties of data-based circuits and correspond-

ing control circuits for 40 randomly chosen scaling parameters for the synaptic weights of

the input and the recurrent connections. Shown are correlation coefficients of the mean

firing rates, the mean cross covariances of the firing rates of single neurons and the mean

coefficients of variation of interspike intervals (CV(ISI)) for A: Thomson et al. circuits

and corresponding amorphous circuits, B: Thomson et al. circuits and corresponding

degree-controlled circuits, C: Binzegger et al. circuits and corresponding amorphous cir-

cuits, and D: Binzegger et al. circuits and corresponding degree-controlled circuits. Only

degree-controlled circuits preserve the mean cross covariance and the CV(ISI) of data-

based circuits. Results shown are bias corrected bootstrap estimates.

with identical mean firing rates. Furthermore the distribution of the coefficient

of variation of interspike intervals (CV(ISI)) of single neurons peaks at 0.72 for

both circuit templates. However, the mean CV(ISI) differs significantly with a

value of 0.78 (SD of 0.008) and 0.99 (SD of 0.009) for Thomson et al. circuits

and Binzegger et al. circuits, respectively. As a measure of synchronous spiking

activity we calculated the average cross covariance of firing rates (CC) within

time bins of 1 ms for pairs of neurons (cross correlogram at time lag 0). The

CC for Thomson et al. circuits and Binzegger et al. circuits is 0.035 and 0.066,

respectively. Therefore, Binzegger et al. circuits operate in a more synchronous

firing regime than Thomson et al. circuits.

2.3.4 Relationship between the graph structure of neural circuits
and their dynamical properties

We related the dynamical properties of the data-based microcircuits to their con-

nectivity structure by comparing the statistical properties of their circuit dynamics

with the properties of corresponding control circuits (see Sec. 2.2.2).
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Fig. 2.7 shows that degree-controlled circuits (blue lines) have similar dy-

namical properties when compared to corresponding data-based circuits (black

lines). Only the power spectral density of degree-controlled circuits generated

from Thomson et al. circuits shows a small deviation with a peak around 20 Hz.

Additionally, for degree-controlled circuits generated from Binzegger et al. cir-

cuits the cross covariance of the firing rates of single neurons drops to a value of

0.05 (not shown).

In contrast, amorphous circuits have different statistical properties than data-

based circuits. In particular, amorphous circuits generated from Thomson et al.

circuits have a different power spectral density with a shift in power from high to

low frequencies (see Fig. 2.7A). Furthermore the distribution of CV(ISI) differs

significantly for amorphous circuits generated from Thomson et al. circuits with

a higher mean CV(ISI) of 0.93 (Fig. 2.7E). For amorphous circuits generated from

Binzegger et al. circuits the change in the CV(ISI) distribution is less pronounced

with a significant drop in peak count by 7%. The mean cross covariance of the

firing rates of single neurons in amorphous circuits drops significantly to a value

of 0.033 and 0.045 for Thomson et al. circuits and Binzegger et al. circuits,

respectively.

In order to verify that these results are in fact related to the connectivity

structure and not an artifact of the specific set of scaling parameters that we had

chosen for the synaptic weights of the input and the recurrent connections (see

Methods) we repeated the analysis for 40 randomly chosen scaling parameters

(SRW , SI1, and SI2) that were drawn uniformly from the interval [0.2, 2] times

the standard values. Subsequently we correlated the 40 values for each of three

statistical properties for pairs of circuit types to quantify their difference in circuit

dynamics. Fig. 2.8A illustrates the results for Thomson et al. circuits and corre-

sponding amorphous circuits. Amorphous circuits preserve the mean firing rate

of Thomson et al. circuits but change the cross covariance of the firing rates of

single neurons and the coefficient of variation of ISI. In contrast, degree-controlled

circuits largely preserve all three statistical properties of Thomson et al. circuits

as indicated in Fig. 2.8B. Similar results are obtained for Binzegger et al. circuits

(Fig. 2.8C and D).

2.3.5 Computational properties

We compared the computational properties of Thomson et al. circuits (as inves-

tigated in detail in (Häusler and Maass, 2007)) with the corresponding results

for Binzegger et al. circuits. For this purpose we analyzed to what extent these

cortical microcircuit templates support computations on information contained in

generic spike inputs into layer 4 and layers 2/3, and how well they make results of

these computations accessible to (hypothetical) projection neurons in layers 2/3

and layer 5. These projection neurons were modeled as linear readout neurons
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that were trained in a supervised manner to perform a variety of information

processing tasks that are likely to be related to actual computations of cortical

microcircuits.

A comparison of the performance of Thomson et al. circuits (black bars) and

Binzegger et al. circuits (gray bars) for these information processing tasks is

shown in Fig. 2.9. The performance of trained readout for test inputs (which are

generated from the same distribution as the training examples, but not shown

during training) was measured for all binary classification tasks by the kappa

coefficient, which ranges over [-1,1], and assumes a value ≥ 0 if the resulting

classification of test examples makes fewer errors than random guessing. 14 For

tasks that require an analog output value the performance of the trained readouts

was measured on test examples by its correlation coefficient with the analog target

output.

It turns out that the mean performance (averaged over all tasks and readouts)

for both data-based circuit models is the same, i.e. 0.50, but the performance for

individual tasks differs significantly 15. In particular for tasks involving memory or

non-linear computations the performance changes heterogeneously and does not

depend on the readout type or task in an obvious manner. Binzegger et al. circuits

perform significantly better for the non-linear spike template classification task

that involves information from both input streams during the last 30 ms (XOR

task), although they have only a similar performance as Thomson et al. circuits for

the classification of individual spike templates from this time segment (on which

the non-linear classification is based). This suggests that Binzegger et al. circuits

better support non-linear fusion of recent information from both input streams.

Also the classification of earlier spike patterns in input stream 2 (tcl2(t− ∆t)) is

significantly better supported by these circuits. A similar effect can be observed for

layer 5 readout neurons performing computations based on the firing rates of both

input streams. The performance for the total task including the linear component

of the computation doesn’t differ significantly, whereas the performance on the

purely non-linear component is significantly better for Binzegger et al. circuits.
16

One of the main structural features of Binzegger et al. circuits is the ad-

ditional feedback loop from excitatory neurons in layer 6 to excitatory neurons

14The kappa coefficient measures the percentage of agreement between two classes expected

beyond that of chance and is defined as (Po - Pc)/(1 - Pc), where Po is the observed agreement

and Pc is the chance agreement. Thus for classification into 2 equally often occurring classes one

has PC = 0.5.
15The performance difference for each classification tasks stays qualitatively the same for Pois-

son inputs at different rates (i.e. 10 Hz and 30 Hz), although the precise value of the difference

and its dependence on the input firing rates differs for individual tasks and readouts.
16This non-linear component of the target functions r1/r2 and (r1−r2)2 resulted by subtracting

from these functions an (for the considered distribution of input firing rates r1 and r2) optimally

fitted linear function.
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Figure 2.9: Performance of trained linear readout neurons in layers 2/3 and layer 5 (see

Methods) for various classification tasks on spike patterns and computations performed

on the rates of the two input streams for Thomson et al. circuits (black bars) and for

Binzegger et al. circuits (gray bars). tcl1/2(t) denotes retroactive classification of noisy

spike patterns in input streams 1 or 2 that were injected during the preceding time interval

[t-30ms,t] into two classes according to the template from which each spike pattern had

been generated (see Methods for details). tcl1/2(t−∆t) refers to the more difficult task to

classify at time t the spike pattern before the last one that had been injected during the

time interval [t−60 ms, t−30 ms]. For XOR classification the task is to compute at time

t = 450 ms the XOR of the template labels (0 or 1) of both input streams injected during

the preceding time segment [420 ms, 450 ms]. On the right hand side the performance

results for real-time computations on the time-varying firing rates r1(t) of input stream 1

and r2(t) of input stream 2 (both consisting of 4 Poisson spike trains with independently

varying firing rates in the two input streams). The light bars show performance results

for the two target functions r1(t)/r2(t) and (r1(t) − r2(t))
2, and the bold bars for the

performance on the nonlinear components of these real-time computations at any time

t (on the actual firing rates in both input streams during the last 30 ms). The average

computational performance for both types of cortical microcircuits is similar (with a value

of 0.50) but the performance for specific tasks differs significantly.
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in layer 4. This feedback loop turns the cortical feed-forward pathway into an

intracortical closed-loop system. Remarkably, removal of this synaptic feedback

doesn’t significantly change the average readout performance (averaged over tasks

and readouts), but changes the performance for specific tasks. Binzegger et al.

circuits without feedback perform significantly better for the two template classi-

fication tasks, i.e. classification of the previously injected spike template in input

stream 1 (tcl1(t)) for layer 2/3 readout neurons and classification of the spike

template injected before the last one in input stream 1 (tcl1(t − ∆t)) for layer

5 readout neurons. On the other hand the feedback loop improves the average

performance for rate tasks significantly by 25% (not shown).

2.3.6 Relationship between structure, dynamics, and computa-
tional properties of the circuits

In (Häusler and Maass, 2007) it was shown that the data-based laminae-specific

cortical microcircuit model introduced by (Thomson et al., 2002) exhibits specific

computational advantages compared to various control circuits that have the same

components and the same global statistics of neurons and synaptic connections,

but are missing the laminae-specific connectivity pattern. In particular it was

shown that degree-controlled circuits have similar average computational perfor-

mance (averaged over all tasks and readouts) when compared to Thomson et al.

circuits.

Here we show that the procedure of generating degree-controlled circuits, which

just leaves the distribution of degrees of excitatory and inhibitory neurons in the

circuit intact (as well as their roles as input-receiving node or readout-node), but

randomizes their interconnectivity, does not change the computational perfor-

mance of both data-based microcircuit templates in any significant manner: For

Thomson et al. circuits it causes a drop by 1.6% in the average performance for

the 7 computational tasks, and for Binzegger et al. circuits a drop by 1.1%. There-

fore the degree distribution not only preserves statistical properties of the circuit

dynamics, but also computational properties for both microcircuit templates.

On the other hand it was shown in (Häusler and Maass, 2007) that the average

performance of amorphous circuits (generated from Thomson et al. circuits),

which no longer have the motif distribution of Thomson et al. circuits, drops

by 25%. In contrast, for Binzegger et al. circuits the procedure of generating

amorphous control circuits, which changes also for these circuits the distribution

of motifs, causes a small but significant average performance improvement by

5.0%.

In order to verify that these results are general properties of the connectivity

structure, and do not depend on the specific choice of the three scaling parameters

SI1, SI2 and SRW for the synaptic weights of the input and the recurrent con-

nections we repeated the analysis for 40 randomly chosen values of these scaling
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parameters. We obtained similar results as for our standard values of these scaling

parameters: The average performance of degree-controlled circuits doesn’t change

significantly compared to data-based circuits with an average performance im-

provement by 2.6% and 0.8% for degree-controlled circuits generated from Thom-

son et al. circuits and Binzegger et al. circuits, respectively. In contrast, the

average performance of amorphous circuits generated from Thomson et al. cir-

cuits drops significantly by 26.7% and the performance of amorphous circuits

generated from Binzegger et al. circuits increases significantly by 6.0%.

That scrambling of the connectivity structure has a different effect on the aver-

age computational performance of both data-based cortical microcircuits models

may be attributed to three difference in the connectivity structure of their amor-

phous circuits, i.e. 1) different fractions of excitatory and inhibitory synapses

for both microcircuit templates, 2) a different distribution of synaptic weights for

Binzegger et al. circuits (e.g. differences in synaptic strengths due to additional

synaptic connections from and to layer 6 and a rescaled average synaptic weight

to achieve similar firing rates for both data-based microcircuit templates) and 3)

a different set of neurons within the microcircuit that is connected to the readout

neurons. Note that the strengths of synaptic connection to and from layer 6 are

unknown and were set to average values. Presumably a change in the strength of

these connections has an effect on the computational performance of Binzegger et

al. circuits.

The results for the two different microcircuit templates leave open the pos-

sibility, that specific motif distribution enhance the computational performance.

But they certainly do not verify such conjecture. To do that, one would need to

be able to construct circuits with many different motif distributions. The pro-

cedure of generating degree-controlled circuits destroys the motif distribution of

Binzegger et al. circuits, see Fig. 2.4E, 2.5C, but leaves the motif distribution

of Thomson et al. circuits largely unchanged (Fig. 2.4C, 2.5B). It also changes

the number of reciprocal connections, because the magnitude of the Z score of

the second M = 2 motif drops consistently by 56% and 38% for Thomson et al.

circuits and Binzegger et al. circuits, respectively. These results show that there

are cases where the motif distribution changes significantly, but the computational

performance remains largely the same.

In order to investigate whether the computational properties can be in fact

related to specific dynamical properties that are preserved by degree-controlled

circuits we correlated three statistical measures for circuit dynamics with the

average computational performance (averaged over all tasks and readouts) for 40

randomly chosen values of the scaling parameters for the synaptic weights of the

input and the recurrent connections. Fig. 2.10 shows that the mean coefficient of

variation of ISIs and the mean cross covariance of the firing rate of single neurons

correlate with the average computational performance for Thomson et al. circuits
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Figure 2.10: Correlation of the mean computational performance (averaged over all

tasks and readouts in Fig. 2.9) and three statistical properties of the circuit dynamics

for 40 randomly chosen scaling parameters for the synaptic weights of the input and the

recurrent connections. A: Results for Thomson et al. circuits. B: Results for Binzegger

et al. circuits. These results suggest that the best performance is achieved in the regular

asynchronous firing regime. Results shown are bias corrected bootstrap estimates.

and Binzegger et al. circuits (although with a somewhat smaller value for the

correlation coefficient between performance and mean cross covariance of the firing

rates). Therefore, for the set of computational tasks considered in this article the

best performance is achieved in the regular asynchronous firing regime with small

values for the mean cross covariance and the mean coefficient of variation of ISIs.

For both data-based microcircuit models the mean firing is positively correlated

with the average performance.

2.4 Discussion

We found that (i) the microcircuit template by (Binzegger et al., 2004) and the

cortical microcircuit template by (Thomson et al., 2002) have significant small-

world properties, but quite different motif distributions ; (ii) both data-based

microcircuits have similar circuit dynamics and average computational capabil-

ities but different computational properties for individual tasks ; and (iii) the

degree distribution is the aspect of the connectivity structure of both data-based

microcircuit templates that is responsible for their dynamical properties and their

computational properties.

(i) Similar global structural properties but different motif distributions

Thomson et al. circuits and Binzegger et al. circuits have similar small-world

properties and their degree-distributions share characteristic main features. For
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both circuit templates the average degree was highest for excitatory neurons in

layer 2/3, suggesting the importance of hubs in a layer where both cortical input

streams merge. Furthermore the average degree of neurons in layer 2/3, layer 4 and

layer 5 correlates for both cortical microcircuit templates (correlation coefficient

of 0.74).

The somewhat more amorphous-like connectivity pattern of Binzegger et al.

circuits may be attributed to a few diffuse synaptic connections that are emerg-

ing at the boundaries between two adjacent layers. These might be the results

of slightly shifted layer boundaries for several 3-dimensional cell reconstructions

obtained at different locations in the primary visual cortex. Dendritic and axonal

arbors of two cells, which are non-overlapping in case of precise layer boundaries,

could in case of shifted layer-boundaries account for additional diffuse synaptic

connectivity.

The most distinct structural difference between the two microcircuit templates

is expressed in their motif distribution (Fig. 2.4 and 2.6).17

The number of reciprocal connections for Thomson et al. circuits is smaller

than for the corresponding amorphous circuits (Fig. 2.4C), whereas for the Binzeg-

ger et al. circuits it is twice as large as for amorphous circuits (Fig. 2.4D). Fur-

thermore only for Binzegger et al. circuits highly connected motifs consisting

of 3 nodes are over-represented (Fig. 2.4E), whereas the motif distribution for

Thomson et al. circuits (Fig. 2.4C) can be primarily attributed to their degree-

distribution. Scrambling the connectivity structure while leaving the degrees of

nodes invariant does not change the motif distribution for Thomson et al. circuits

(see Fig. 2.5 and Fig. 2.6) but for Binzegger et al. circuits.

Remarkably, the motif distribution of Thomson et al. circuits matches to

some degree the motif distribution of a superfamily of biological information-

processing networks reported in (Milo et al., 2004). Their connectivity patterns

show highly over-represented three node motifs 5, 8, and 11 and are lacking motifs

1, 3, 4, and 6 when compared to random networks. Analogous, in Thomson et

al. circuits motifs 5 and 11 occur with a frequency significantly higher than in

random networks, whereas motif 4 is under-represented. The feedforward motif 5

has been theoretically and experimentally linked to signal-processing tasks such as

persistence detection and pulse generation (see Alon, 2006). However, the frequent

occurrence of motif 3 is atypical for this superfamily.

It should be noted that the different results for Thomson et al. circuits and

Binzegger et al. circuits are not contradictory but rather point out structural

differences between potential synaptic connectivity specified by Binzegger et al.

circuits and functional synaptic connectivity specified by Thomson et al. circuits.

17The motif distributions for both data-based cortical microcircuits differ significantly from

the motif distributions of corresponding amorphous circuits that were generated from the two

data-based cortical microcircuits by scrambling their connectivity structure, but these differences

are not consistent for both data-based cortical microcircuits.
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In principle Thomson et al. circuits can be considered as sub-graphs of Binzegger

et al. circuits which were shaped by synaptic plasticity according to their specific

functional role. Furthermore the number of synapses in a microcircuit has an effect

on the local and global structural properties. We introduced for each cortical

microcircuit template to some extent arbitrarily a global constant factor that

scales all synaptic connection probabilities to match the average total number of

synaptic connections for Thomson et al. circuits and Binzegger et al. circuits.

(ii) Similar circuit dynamics and average computational capabilities but

different computational properties

Both microcircuit templates have similar circuit dynamics (Fig. 2.7). The power

spectral densities show an excess power at low frequencies between 5 and 50 Hz,

which is consistent with experimental results showing peaks in the 20-60 Hz range

for cells in area MT in behaving Monkey (Bair et al., 1994). The interspike inter-

val distributions show no evidence for power-law behavior but have exponential

tails as predicted by Poisson processes. Neurons slightly tend to burst with longer

periods of low firing activity resembling experimental results obtained in cat cere-

bral cortex during slow wave sleep (Destexhe et al., 1999; Steriade, 2003; Bedard

et al., 2006). The most frequently occurring value of the coefficient of variation

of interspike intervals for neurons in the circuits that we considered was for both

microcircuit templates 0.72. This value is lower than the reported value of about

1 for MT cells and V1 cells in behaving monkey (Softky and Koch, 1992, 1993)

in response to bars and textured stimuli. This might be attributed to a missing

diversity in neuron types (e.g. bursting and stuttering cells), synapse types (e.g.

NMDA receptors), and a missing calcium dynamics that introduces processes on

many different time scales.

It turned out that the average information processing capabilities of Thomson

et al. circuits and Binzegger et al. circuits are similar but differ for specific tasks

(Fig. 2.9). In particular for the chosen set of seven computational tasks Binzegger

et al. circuits support slightly superior non-linear fusion of information contained

in both input streams.

(iii) The degree distribution determines the dynamical properties and

the computational properties

The degree distribution of neurons largely determines the circuit dynamics for both

microcircuit templates. Degree-controlled circuits largely preserve the mean cross

covariances of the firing rates of neurons and the mean coefficients of variation

of interspike intervals of data-based circuits independent of the dynamic regime

controlled by the scaling parameters for the synaptic weights of the input and the

recurrent connections (Fig. 2.8).



2.4. Discussion 41

When we changed the connectivity structure of these two microcircuit models

in order to see which aspects of it are essential for the computational performance,

we found in agreement with (Häusler and Maass, 2007) that the distribution of

degrees of nodes is also a key factor for their computational performance. Scram-

bling the connectivity structure but leaving the degree distribution of neurons

invariant did not result in a change in the average computational performance

(see section 2.3.6).

These results suggest that the degree-controlled scrambling of the connectivity

structure preserves specific statistical properties of the circuit dynamics that are

crucial for information processing and correlate with the average computational

performance (Fig. 2.10). For the chosen set of information processing tasks the

best performance is achieved in the regular asynchronous firing regime.

It is interesting to relate these results to theoretical results obtained for much

simpler models. (Ganguli et al., 2008) showed for networks consisting of linear

neurons that the graph structure has an impact on the computational properties,

more precisely the memory capacity of the network.

Furthermore (Schrauwen et al., 2009) have shown by means of mean-field anal-

ysis that the performance of randomly connected recurrent networks built from

neurons whose output can only take one of two values (binary output) depends

strongly on the network connectivity structure and is related to the in-degree of

neurons in addition to the distribution of synaptic weights.

That scrambling of the connectivity structure can have different effects on the

average computational performance can be verified by amorphous control circuits.

The average performance of amorphous circuits generated from Binzegger et al.

circuits is improved, whereas the performance for amorphous circuits generated

from Thomson et. al circuits decreases. This suggests that only Thomson et al.

circuits are optimized for a specific set of computations, whereas Binzegger et al.

circuits represent potential synaptic connections that provide the possibility of

implementing various different sets of computations.

Suggestions for further experimental and simulation based research

The results of this article point to three directions for further research. First,

further work is needed to provide more reliable microcircuit models. The two

data-based cortical microcircuit templates were estimated with different experi-

mental techniques, i.e. dual intracellular recordings in vitro and three-dimensional

cell reconstructions, and it is up to now unclear how to relate them to each other

or if possible merge them to one unified cortical microcircuit template. Both

microcircuit templates do not account for the lateral connectivity patterns of the

neocortex. The Thomson et al. microcircuit template was estimated from neurons

in slices within a maximum horizontal distance of 100 µm, whereas the Binzeg-

ger et al. microcircuit template was obtained by averaging statistical data of
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whole cell reconstructions discarding information about horizontal locations of

neurons. Current work in progress (Potjans and Diesmann, 2008) suggests that

the assumption of Gaussian lateral connectivity patterns presumably explains to

some extent the discrepancies between both microcircuit templates. Merging both

datasets could potentially result in a unified microcircuit template with compu-

tational properties and circuit dynamics in between those obtained for the two

microcircuit templates analyzed in this study.

Secondly, a thorough empirical analysis of the distribution of motifs (especially

for more than two nodes) in cortical microcircuits is needed. So far we can only

analyze the distribution of motifs that is induced by data connection probabilities

for any two neurons A and B. Preliminary data suggest however, that the proba-

bility of a synaptic connection from B to A depends on the presence of a synaptic

connection from A to B. For instance whole-cell recordings of layer 5 pyramidal

neurons of somatosensory, visual and prefrontal areas have shown that reciprocal

connections are ≥ 3 times more likely than in random networks (Markram, 1997;

Holmgren et al., 2003; Song et al., 2005; Wang et al., 2006). Similarly for 3 neu-

rons A, B, C (of specific types) the probability of a synaptic connection from

C to A is likely to depend on the presence or absence of other synaptic connec-

tions between A, B, C. This was confirmed by triple and quadruple whole-cell

recordings of layer 5 pyramidal neurons in the rat visual cortex that showed that

motifs consisting of many edges are over-represented when compared to random

networks (Song et al., 2005). Likewise the probability that a layer 2/3 pyrami-

dal neuron in rat somatosensory cortex makes a synaptic connection with two

layer 5 neurons is fourfold higher compared with random connectivity if the layer

5 neurons are synaptically connected (motif 5 and 8) (Kampa et al., 2006). In

contrast the probability that a layer 5 pyramidal neuron receives input from two

layer 2/3 pyramidal neurons is threefold higher compared with random networks

if the layer 2/3 pyramidal neurons are not connected (motif 1). Reliable data

for such conditioned connection probabilities are needed not only for all possible

types of neurons A, B, C, but also for all possible laminar locations of these three

neurons.

Finally, the microcircuit templates should be tested on a larger variety of com-

putational tasks. Our results on the computational performance of the two micro-

circuit templates and several variations of them depend on a somewhat arbitrary

choice of 7 concrete computational tasks, and on the decision to only specialize

the synaptic weights of readout neurons for a specific computational task, while

having the weights within the circuit chosen from data-based probability distri-

butions(hence not specialized for a particular computational task). Furthermore

the results presumably depend also on the specific choice of distributions for input

spike trains from external sources. In particular, geniculate relay cells have a firing

pattern that can vary between tonic and bursting (Sherman, 1996). Burst firing
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has been shown to make a strong contribution to the initial phasic part of visual

responses to gratings (Guido et al., 1992) and flashed spots (Guido and Sherman,

1998).

Conclusions

This article has shown that the two available templates for cortical microcir-

cuits have quite interesting structural, dynamical, and computational features.

In particular we have shown that it is possible to relate the structure and the

(conjectured) computational function of these two microcircuit templates. This

positive result will hopefully stimulate further systematic experimental work on

the anatomy and physiology of cortical microcircuits, that is needed in order to

arrive at a definite understanding of the computational function of cortical micro-

circuits and their genetically encoded structural basis.
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Recent developments in neuromorphic hardware engineering make mixed-signal

VLSI neural network models promising candidates for neuroscientific research

tools and massively parallel computing devices, especially for tasks which ex-

haust the computing power of software simulations. Still, like all analog hard-

ware systems, neuromorphic models suffer from a constricted configurability and

production-related fluctuations of device characteristics. Since also future sys-

tems, involving ever-smaller structures, will inevitably exhibit such inhomogeities

on the unit level, self-regulation properties become a crucial requirement for their

successful operation. By applying a cortically inspired self-adjusting network ar-

chitecture, we show that the activity of generic spiking neural networks emulated

on a neuromorphic hardware system can be kept within a biologically realistic

firing regime and gain a remarkable robustness against transistor-level variations.

As a first approach of this kind in engineering practice, the short-term synap-

tic depression and facilitation mechanisms implemented within an analog VLSI

model of I&F neurons are functionally utilized for the purpose of network level

stabilization. We present experimental data acquired both from the hardware

model and from comparative software simulations which prove the applicability

of the employed paradigm to neuromorphic VLSI devices.
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3.1 Introduction

Software simulators have become an indispensable tool for investigating the dy-

namics of spiking neural networks (Brette et al., 2007). But when it comes to

studying large-scale networks or long-time learning, their usage easily results in

lengthy computing times (Morrison et al., 2005). A common solution, the dis-

tribution of a task to multiple CPUs, raises both required space and power con-

sumption. Thus, the usage of neural networks in embedded systems remains

complicated.

An alternative approach implements neuron and synapse models as physical

entities in electronic circuitry (Mead, 1989). This technique provides a fast em-

ulation at a maintainable wattage (Douglas et al., 1995a). Furthermore, as all

units inherently evolve in parallel, the speed of computation is widely indepen-

dent of the network size. Several groups have made significant progress in this

field during the last years (see for example Indiveri et al., 2006; Merolla and Boa-

hen, 2006; Vogelstein et al., 2007; Schemmel et al., 2007, 2008; Mitra et al., 2009).

The successful application of such neuromorphic hardware in neuroscientific mod-

eling, robotics and novel data processing systems will essentially depend on the

achievement of a high spatial integration density of neurons and synapses. As a

consequence of ever-smaller integrated circuits, analog neuromorphic VLSI devices

inevitably suffer from imperfections of their components due to variations in the

productions process (Dally and Poulton, 1998). The impact of such imperfections

can reach from parameter inaccuracies up to serious malfunctioning of individual

units. In conclusion, the particular, selected emulation device might distort the

network behavior.

For that reason, designers of neuromorphic hardware often include auxiliary

parameters which allow to readjust the characteristics of many components. But

since such calibration abilities require additional circuitry, their possible extent

of use usually has to be limited to parameters that are crucial for the operation.

Hence, further concepts are needed in order to compensate the influence of hard-

ware variations on network dynamics. Besides increasing the accuracy of unit

parameters like threshold voltages or synaptic time constants, a possible solution

is to take advantage of self-regulating effects in the dynamics of neural networks.

While individual units might lack adequate precision, populations of properly in-

terconnected neurons can still feature a faultless performance.

Long-term synaptic potentiation and depression (Morrison et al., 2008) might

be effective mechanisms to tailor neural dynamics to the properties of the respec-

tive hardware substrate. Still, such persistent changes of synaptic efficacy can

drastically reshape the connectivity of a network. In contrast, short-term synaptic

plasticity (Zucker and Regehr, 2002) alters synaptic strength transiently. As the

effect fades after some hundred milliseconds, the network topology is preserved.

We show that short-term synaptic plasticity enables neural networks, that are
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emulated on a neuromorphic hardware system, to reliably adjust their activity to

a moderate level. The achievement of such a substrate on a network level is an

important step towards the establishment of neuromorphic hardware as a valuable

scientific modeling tool as well as its application as a novel type of adaptive and

highly parallel computing device.

For this purpose, we examine a generic network architecture as proposed and

studied by (Sussillo et al., 2007), which was proven to feature self-adjustment

capabilities. As such networks only consist of randomly connected excitatory and

inhibitory neurons and exhibit little specialized structures, they can be found in

various cortical network models. In other words, properties of this architecture

are likely to be valid in a variety of experiments.

Still, the results of (Sussillo et al., 2007) not necessarily hold for neuromor-

phic hardware devices: The referred work addressed networks of 5000 neurons.

As the employed prototype hardware system (Schemmel et al., 2006, 2007) only

supports some hundred neurons, it remained unclear whether the architecture is

suitable for smaller networks, too. Furthermore, the applicability to the specific

inhomogeneities of the hardware substrate have not been investigated before. We

proof that even small networks are capable of leveling their activity. This suggests

that the studied architecture can enhance the usability of upcoming neuromorphic

hardware systems, which will comprise millions of synapses.

The successful implementation of short-term synaptic plasticity into neuromor-

phic hardware has been achieved by several work groups, see e.g. (Boegershausen

et al., 2003) or (Bartolozzi and Indiveri, 2007). Nevertheless, this work presents

the first functional application of this feature within emulated networks. It is

noteworthy, that the biological interpretation of the used hardware parameters

is in accord with physiological data as measured by (Markram et al., 1998) and

(Gupta et al., 2000).

Since the utilized system is in a prototype state of development, the emula-

tions have been prepared and counter-checked using the well-established software

simulator PCSIM (Pecevski et al., 2009). In addition, this tool allowed a de-

cent analysis of network dynamics because the internal states of all neurons and

synapses can be accessed and monitored continuously.

3.2 Material and Methods

The applied setup and workflow involve an iterative process using two comple-

mentary simulation back-ends: Within the FACETS research project (FACETS,

2009), the FACETS Stage 1 Hardware system (Schemmel et al., 2006, 2007) and

the software simulator PCSIM (Pecevski et al., 2009) are being developed.

First, it had to be investigated whether the employed network architecture

exhibits its self-adjustment ability in small networks fitting onto the current pro-
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totype hardware system. For this purpose, simulations have been set up on PC-

SIM which only roughly respected details of the hardware characteristics, but

comprised a sufficiently small number of neurons and synapses. Since the trial

yielded promising results, the simulations were transferred to the FACETS Hard-

ware. At this stage the setup had to be readjusted in order to meet all properties

and limitations of the hardware substrate. Finally, the parameters used during

the hardware emulations were transferred back to PCSIM in order to verify the

results.

In Section 3.2.1 and Section 3.2.2 both back-ends are briefly described. Section

3.2.3 addresses the examined network architecture and the parameters applied. In

Section 3.2.4, the experimental setup for both back-ends is presented.

3.2.1 The Utilized Hardware System

The present prototype FACETS Stage 1 Hardware system physically implements

neuron and synapse models using analog circuitry (Schemmel et al., 2006, 2007).

Beside the analog neural network core (the so-called Spikey chip) it consists of dif-

ferent (mostly digital) components that provide communication and power supply

as well as a multi-layer software framework for configuration and readout (Grübl,

2007; Brüderle et al., 2009).

The Spikey chip is built using a standard 180 nm CMOS process on a 25 mm2

die. Each chip holds 384 conductance-based leaky integrate-and-fire point neurons,

which can be interconnected or externally stimulated via approximately 100,000

synapses whose conductance courses rise and decay exponentially in time. As all

physical units inherently evolve both in parallel and time-continuously, experi-

ments performed on the hardware are commonly referred to as emulations. The

dimensioning of the utilized electronic components allows a highly accelerated op-

eration compared to the biological archetype. Throughout this work, emulations

were executed with a speedup factor of 105.

In order to identify voltages, currents and the time flow in the chip as param-

eters of the neuron model, all values need to be translated between the hardware

domain and the biological domain. The configuration and readout of the system

has been designed for an intuitive, biological description of experimental setups:

The Python-based (Rossum, 2000) meta-language PyNN (Davison et al., 2008)

provides a back-end independent modeling tool, for which a hardware-specific

implementation is available (Brüderle et al., 2009). All hardware-specific con-

figuration and data structures (including calibration and parameter mapping),

which are encapsulated within low-level machine-oriented software structures, are

addressed automatically via a Python Hardware Abstraction Layer (PyHAL).

Using this translation of biological values into hardware dimensions and vice

versa which is performed by the PyHAL, all values given throughout this work

reflect the biological interpretation domain.
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3.2.1.1 Short-Term Synaptic Plasticity

All synapses of the FACETS Stage 1 Hardware support two types of synaptic

plasticity (Schemmel et al., 2007). While a spike-timing dependent plasticity

(STDP) mechanism (Bi and Poo, 1997; Song et al., 2000) is implemented in ev-

ery synapse, short-term plasticity (STP) only depends on the spiking behavior

of the pre-synaptic neuron. The corresponding circuitry is part of the so-called

synapse drivers and, thus, STP-parameters are shared by all synaptic connections

operated by the same driver. Each pre-synaptic neuron can project its action po-

tentials (APs) to two different synapse drivers. Hence, two freely programmable

STP-configurations are available per pre-synaptic neuron. The short-term plas-

ticity mechanism implemented in the FACETS Stage 1 Hardware is inspired by

(Markram et al., 1998). But while the latter model combines synaptic facilitation

and depression, the hardware provides the two modes separately. Each synapse

driver can either be run in facilitation or in depression mode or simply emu-

late static synapses without short-term dynamics. Despite this restriction, these

short-term synapse dynamics support dynamic gain-control mechanisms as, e.g.,

reported in (Abbott et al., 1997).

In the Spikey chip, the conductance g(t) of a synapse is composed of a discrete

synaptic weight multiplier wn, the base efficacy w0(t) of a synapse driver and the

conductance course of the rising and falling edge p(t):

g(t) = wn · w0(t) · p(t) =: w(t) · p(t)

with wn ∈ {0, 1, 2, . . . , 15}. In this framework, STP alters the base efficacy w0(t)

while the double-exponential conductance course of a single post-synaptic poten-

tial is modeled via p(t) ∈ [0, 1]. Whenever an action potential is provoked by the

pre-synaptic neuron, p(t) is triggered to run the conductance course. To simplify

matters, the product wn · w0(t) often is combined to the synaptic weight w(t) or

just w in case of static synapses.

Both STP-modes, facilitation and depression, alter the synaptic weight in a

similar manner using an active partition I(t) ∈ [0, 1]. The strength wstat of a

static synapse is changed to

wfac(t) = wstat · [1 + λ · (I(t) − β)] ,

wdep(t) = wstat · [1 − λ · I(t)] (3.1)

in case of facilitation and depression, respectively. The parameters λ and β are

freely configurable. For technical reasons, the change of synaptic weights by STP

cannot be larger than the underlying static weight. Stronger modifications are

truncated. Hence, 0 ≤ wfac / dep ≤ 2 · wstat.

The active partition I obeys the following dynamics: Without any activity I

decays exponentially with time constant τSTP, while every AP processed increases
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I by a fixed fraction C towards the maximum,

dI

dt
= − I

τSTP

+ C · (1 − I) · δ (t− tAP) .

For C ∈ [0, 1], I is restricted to the interval mentioned above. Since the active

partition affects the analog value w0(t), the STP-mechanism is not subject to the

weight-discretization wn of the synapse arrays but alters weights continuously.

Fig. 3.1 shows examples of the dynamics of the three STP-modes as measured

on the FACETS Stage 1 Hardware. The applied parameters agree with those of

the emulations presented throughout this work.

Figure 3.1: STP-mechanism of the FACETS Stage 1 Hardware.

A neuron is excited by an input neuron that spikes regularly at 20 Hz. 300 ms

after the last regular spike a single spike is appended. Additionally, the neuron

is stimulated with Poisson spike trains from further input neurons. The figure

shows the membrane potential of the post-synaptic neuron, averaged over 500

experiment runs. As the Poisson background cancels out, the EPSPs provoked by

the observed synapse are revealed. Time and voltage are given in both hardware

values and their biological interpretation. The three traces represent different

modes of the involved synapse driver. Facilitation: The plastic synapse grows

in strength with every AP processed. After 300 ms without activity the active

partition has partly decayed. Depression: High activity weakens the synapse.

Static: The synapse keeps its weight fixed.
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3.2.1.2 Hardware Constraints

Neurons and synapses are represented by physical entities in the chip. As similar

units reveal slightly different properties due to the production process, each unit

exhibits an individual discrepancy between the desired configuration and its actual

behavior. Since all parameters are controlled by voltages and currents, which

require additional circuitry within the limited die, many parameters and sub-

circuits are shared by multiple units. This results in narrowed parameter ranges

and limitations on the network topology.

Beyond these intentional design-inherent fluctuations and restrictions, the cur-

rent prototype system suffers from some malfunctions of different severity. These

errors are mostly understood and will be fixed in future systems. In the follow-

ing, the constraints which are relevant for the applied setup will be outlined. For

detailed information the reader may refer to the respective literature given below.

Design-inherent constraints

• As described above, synaptic weights are discrete values w = wn · w0 with

wn ∈ {0, 1, 2, . . . , 15} (Schemmel et al., 2006). Since biological weights are

continuous values, they are mapped probabilistically to the two closest dis-

crete hardware weights. Therefore, this constraint is assumed to have little

impact on large, randomly connected networks.

• Each pre-synaptic neuron allocates two synapse drivers to provide both

facilitating and depressing synapses. Since only 384 synapse drivers are

available for the operation of recurrent connections, this restricts the maxi-

mum network size to 384/2 = 192 neurons. After establishing the recurrent

connections, only 64 independent input channels remain for excitatory and

inhibitory external stimulation via Poisson spike trains. (see Bill, 2008,

Chapter VI.3)

• Bottlenecks of the communication interface limit the maximum input band-

width for external stimulation to approximately 12 Hz per channel when 64

channels are used for external stimulation with Poisson spike trains. Future

revisions are planned to run at a speedup factor of 104 instead of 105, effec-

tively increasing the input bandwidth by a factor of 10 from the biological

point of view (see Grübl, 2007, Chapter 3.2.1 and Brüderle, 2009, Chapter

4.3.7).

Malfunctions

• The excitatory reversal potential was found to be unstable under high load.

A frequent global activity of excitatory synapses has been shown to decrease

EPSP amplitudes up to a factor of two. This load-dependent error cannot be
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counterbalanced by calibration or tuning the configuration and is considered

crucial for the presented experimental setup (see Brüderle, 2009, Chapter

4.3.4).

• The current system suffers from a disproportionality between the falling-

edge synaptic time constant τsyn ≈ 30ms and the membrane time constant

τmem ≈ 5ms, i.e. a fast membrane and slow synapses. This was taken into

consideration when applying external stimulation, as presented in Section

3.2.3.2 (see Kaplan et al., 2009 and Brüderle, 2009, Chapter 4.3.5).

• Insufficient precision of the neuron threshold comparator along with a lim-

ited reset conductance result in a rather wide spread of the neuron threshold

and reset voltages Vthresh and Vreset. As both values are shared by multiple

neurons, this effect can only be partially counterbalanced by calibration.

The used calibration algorithms lead to σVthresh
≈ 3mV and σVreset ≈ 8mV

(see Brüderle, 2009, Chapter 4.3.2 and Bill, 2008, Chapter IV.4).

• Insufficient dynamic ranges of control currents impede a reasonable config-

uration of the short-term plasticity parameters λ and β in Equation 3.1

without additional technical effort. The presented emulations make use of a

workaround which allows a biologically realistic setup of the STP-parameters

at the expense of further adjustability. The achieved configuration has been

measured and is used throughout the software simulations, as well (see Bill,

2008, Chapter IV.5.4).

• An error in the spike event readout circuitry prevents a simultaneous record-

ing of the entire network. Since only three neurons of the studied network

architecture can be recorded per emulation cycle, every configuration was

rerun 192/3 = 64 times with different neurons recorded. Thus, all neurons

have been taken into consideration in order to determine average firing rates.

But since the data is obtained in different cycles, it is unclear to what extent

network correlation and firing dynamics on a level of precise spike timing

can be determined (see Müller, 2008, Chapter 4.2.2).

A remark on parameter precision. The majority of the parameter values

used in the implemented neuron model are generated by complex interactions

of hardware units, as transistors and capacitors. Each type of circuitry suffers

from different variations due to the production process, and these fluctuations

sum up to intricate discrepancies of the final parameters. For that reason, both

shape and extent of the variances often cannot be calculated in advance. On

the other hand, only few parameters of the neuron and synapse model can be

observed directly. Exceptions are all kind of voltages, e.g. the membrane voltage

or reversal potentials. The knowledge of all other parameters was obtained from
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indirect measurements by evaluating spike events and membrane voltage traces.

The configuration given in Section 3.2.3.2 reflects the current state of knowledge.

This means that some specifications – especially standard deviations of parameters

– reflect estimations which are based on long-term experience with the device. But,

compared to the above-described malfunctions of the prototype system, distortions

arising from uncertainties in the configuration can be expected to be of minor

importance.

3.2.2 The Parallel neural Circuit SIMulator (PCSIM)

All simulations were performed using the PCSIM simulation environment and

were set up and controlled via the associated Python interface (Pecevski et al.,

2009).

The neurons were modeled as leaky integrate and fire cells (LIF) with con-

ductance based synapses. The dynamics of the membrane voltage V (t) is defined

by

Cm
dV (t)

dt
= − gleak · (V (t) − Vrest)

−
Ne
∑

k=1

ge,k(t) · (V (t) − Ee)

−
Ni
∑

k=1

gi,k(t) · (V (t) −Ei)

+ Inoise(t) ,

where Cm is the membrane capacity, gleak is the leakage conductance, Vrest is the

leakage reversal potential, and ge,k(t) and gi,k(t) are the synaptic conductances

of the Ne excitatory and Ni inhibitory synapses with reversal potentials Ee and

Ei, respectively. The white noise current Inoise(t) has zero mean and a standard

deviation σnoise = 5pA. It models analog noise of the hardware circuits.

The dynamics of the conductance g(t) of a synapse is defined by

dg(t)

dt
= −g(t)

τsyn
+ w · δ(t − tAP) ,

where g(t) is the synaptic conductance and w is the synaptic weight. The conduc-

tances decrease exponentially with time constant τsyn and increase instantaneously

by adding w to the running value of g(t) whenever an action potential occurs in

the pre-synaptic neuron at time tAP. Modeling the exponentially rising edge of the

conductance course of the FACETS Stage 1 Hardware synapses was considered

negligible, as the respective time constant was set to an extremely small value for

the hardware emulation.
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Figure 3.2: Schematic of the self-adjusting network architecture pro-

posed in (Sussillo et al., 2007).

Depressing (dep) and facilitating (fac) recurrent synaptic connections level the

network activity.

If we used static synapses the weight w of a synapse was constant over time.

Whereas for simulations with dynamic synapses, the weight w(t) of each synapse

was modified according to the short-term synaptic plasticity rules described in

Section 3.2.1.1.

The values of all parameters were drawn from random distributions with pa-

rameters as listed in Table 3.1.

3.2.3 Network Configuration

In the following, the examined network architecture is presented. Rather than

customizing the configuration to the employed device, we aimed for a generic,

back-end agnostic choice of parameters. Due to hardware limitations in the input

bandwidth, a dedicated concept for external stimulation had to be developed.



3.2. Material and Methods 55

Description Name Unit Mean µ σ/µ π/µ Comment

Network Architecture

Number of exc neurons Ne 144
Number of inh neurons Ni 48
Conn prob from exc to exc neurons pee 0.1
Conn prob from exc to inh neurons pie 0.2
Conn prob from inh to exc neurons pei 0.3
Conn prob from inh to inh neurons pii 0.6

Neurons (Excitatory and Inhibitory)

Membrane capacitance Cm nF 0.2 0 0 by definition

Leakage reversal potential Vrest mV -63. . . -55 variable parameter

Firing threshold voltage Vthresh mV -55.0 0.05 0.1
Reset potential Vreset mV -80.0 0.1 0.2
Excitatory reversal potential Ee mV 0.0 0 0 unstable

Inhibitory reversal potential Ei mV -80.0 0 0
Leakage conductance gleak nS 40.0 0.5 0.5 *)

Refractory period τref ms 1.0 0.5 0.5

Recurrent Synapses

Weight of exc to exc synapses wee nS 1.03 0.6 0.7 *) values refer to

Weight of exc to inh synapses wie nS 0.52 0.6 0.7 *) static synapses

Weight of inh to exc synapses wei nS 3.10 0.6 0.7 *)

Weight of inh to inh synapses wii nS 1.55 0.6 0.7 *)

Cond time constant for all synapses τsyn ms 30.0 0.25 0.5
Conversion factor for facilitation 1.10 to match with static syns

Conversion factor for depression 1.65 at regular firing of 20 Hz

Strength of STP λ 0.78 0.1 0.2
Bias for facilitation β 0.83 0.1 0.2
STP decay time constant τSTP ms 480 0.2 0.4
Step per spike for facilitation Cfac 0.27 0.1 0.2
Step per spike for depression Cdep 0.11 0.1 0.2

External Stimulus: Poisson Spike Trains

Number of exc external spike sources Next, e 32
Number of inh external spike sources Next, i 32
Number of exc inputs per neuron 4 - 6 uniform distribution

Number of inh inputs per neuron 4 - 6 uniform distribution

Firing rate per input spike train νinp Hz 11.8 0.2 0.2 *)

Weight of exc input synapses winp, e nS 0.26. . . 1.29 0.6 0.7 *) varied via Winput and

Weight of inh input synapses winp, i nS 0.77. . . 3.87 0.6 0.7 *) refer to Vrest = −60mV

Cond time constant for all synapses τsyn ms 30.0 0.25 0.5

Experiment

Simulated time per exp run Texp ms 4500 only t ≥ 1000 ms evaluated

Number of exp runs per param set nrun 20 ×64 in hardware with same network

Table 3.1: Full set of parameters. All values given in biological units. If not

stated otherwise, values are drawn from a bound normal distribution with mean

µ, standard deviation σ and bound π. Parameters marked by a *) have been

spread for the hardware emulations by configuration.
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3.2.3.1 Network Architecture

We applied a network architecture similar to the setup proposed and studied by

(Sussillo et al., 2007) which was proven to feature self-adjustment capabilities. A

schematic of the architecture is shown in Fig. 3.2. It employs the short-term plas-

ticity mechanism presented above. Two populations of neurons – both similarly

stimulated externally with Poisson spike trains – are randomly connected obeying

simple probability distributions (see below). Connections within the populations

are depressing, while bridging connections are facilitating. Thus, if excitatory

network activity rises, further excitation is reduced while inhibitory activity is

facilitated. Inversely, in case of a low average firing rate, the network sustains

excitatory activity.

(Sussillo et al., 2007) studied the dynamics of this architecture for sparsely

connected networks of 5000 neurons through extensive computer simulations of

leaky integrate-and-fire neurons and mean field models. In particular, they ex-

amined how the network response depends on the mean value and the variance

of a Gaussian distributed current injection. It was shown that such networks are

capable of adjusting their activity to a moderate level of approximately 5 to 20 Hz

over a wide range of stimulus parameters while preserving the ability to respond

to changes in the external input.

3.2.3.2 Applied Parameters

With respect to the constraints described in Section 3.2.1.2, we set up recurrent

networks comprising 192 conductance-based leaky integrate-and-fire point neu-

rons, 144 (75%) of which were chosen to be excitatory, 48 (25%) to be inhibitory.

Besides feedback from recurrent connections, each neuron was externally stimu-

lated via excitatory and inhibitory Poisson spike sources. The setup of recurrent

connections and external stimulation is described in detail below.

All parameters specifying the networks are listed in Table 3.1. Most values

are modeled by a bound normal distribution which is defined by its mean µ, its

standard deviation σ and a bound π: The random value x is drawn from a normal

distribution N (µ, σ2). If x exceeds the bounds, it is redrawn from a uniform

distribution within the bounds.

In case of hardware emulations, some of the deviations σ only reflect chip-

inherent variations, i.e. fluctuations that remain when all units are intended to

provide equal values. For other parameters – namely for all synaptic efficacies w,

the leakage conductance gleak and the input firing rate νinp – the major fraction

of the deviations σ was intentionally applied by the experimenter. If present, the

variations of hardware parameters are based on (Brüderle et al., 2009).

In case of software simulations, all inhomogeneities are treated as independent

statistical variations. Especially, systematic effects, like the instability of the
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excitatory reversal potential Ee or the unbalanced sensitivity between the neuron

populations (see Section 3.3.1), have not been modeled during the first simulation

series.

Recurrent connections. Any two neurons are synaptically connected with

probability ppost, pre and weight wpost, pre. These values depend only on the popu-

lations the pre- and post-synaptic neurons are part of.

Synaptic weights always refer to the strength of static synapses. When a

synapse features short-term plasticity, its weight is multiplicatively adjusted such

that the strengths of static and dynamic synapses match at a constant regular

pre-synaptic firing of 20 Hz for t → ∞. This adjustment is necessary in order

to enable dynamic synapses to be both stronger or weaker than static synapses

according to their current activity.

Although the connection probabilities and synaptic weights used for the ex-

periments do not rely on biological measurements or profound theoretical studies,

they follow some handy rules. The mean values of the probability distributions

are determined by three principles:

1. Every neuron has as many excitatory as inhibitory recurrent input synapses:

ppost, e ·Ne = ppost, i ·Ni.

2. Inhibitory neurons receive twice as many recurrent synaptic inputs as exci-

tatory neurons. This enables them to sense the state of the network on a

more global scale: pi,pre ·Npre = 2 · pe,pre ·Npre

3. Assuming a uniform global firing rate of 20 Hz and an average membrane po-

tential of V = −60mV, synaptic currents are well-balanced in the following

terms:

(a) For each neuron the excitatory and inhibitory currents have equal

strength,

(b) each excitatory neuron is exposed to as much synaptic current as each

inhibitory neuron.

Formally, we examine the average current induced by a population pre to a

single neuron of the population post :

Ipost, pre ∝ ppost, pre ·Npre · wpost, pre · |Epre − V | .

Principle 3 demands that Ipost, pre is equal for all tuples (post, pre) under the men-

tioned conditions. Given the sizes of the populations and the reversal potentials,

the principles 1 and 2 determine all recurrent connection probabilities ppost,pre

and weights wpost, pre except for two global multiplicative parameters: one scaling

all recurrent connection probabilities, the other one all recurrent weights. While
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the ratios of all ppost,pre as well as the ratios of the wpost, pre are fixed, the scaling

factors have been chosen such that the currents induced by recurrent synapses

exceed those induced by external inputs in order to highlight the functioning of

the applied architecture.

External stimulation. In order to investigate the modulation of activity by the

network, external stimulation of different strength should be applied. One could

think of varying the total incoming spike rate or the synaptic weights of excitation

and inhibition. In order to achieve a biologically realistic setup, one should choose

the parameters such that the stimulated neurons will reach a high-conductance

state (see Destexhe et al., 2003 and Kaplan et al., 2009). Neglecting the influence

of recurrent connections and membrane resets after spiking, the membrane would

tune in to an average potential µV superposed by temporal fluctuations σV.

As mentioned above, the FACETS Stage 1 Hardware suffers from a small

number of input channels if 2× 192 synapse drivers are reserved for recurrent con-

nections. At the same time, even resting neurons exhibit a very short membrane

time constant of τmem ≈ 5ms. Due to these limitations, we needed to apply an

alternative type of stimulation to approximate appropriate neuronal states:

Regarding the dynamics of a conductance-based leaky integrate-and-fire neu-

ron, the conductance course towards any reversal potential can be split up into

a time-independent average value and time-dependent fluctuations with vanish-

ing mean. Then, the average conductances towards all reversal potentials can be

combined to an effective resting potential and an effective membrane time con-

stant (Shelley et al., 2002). In this framework, only the fluctuations remain to be

modeled via external stimuli.

From this point of view, the hardware neurons appear to be in a high-

conductance state with an average membrane potential µV = Vrest without stimu-

lation due to the short membrane time constant τmem. Ex post, the available input

channels can be used to add fluctuations. The magnitude σV of the fluctuations

is adjusted via the synaptic weights of the inputs.

Throughout all simulations and emulations, 32 of the 64 input channels were

used for excitatory stimulation, the remaining 32 input channels for inhibitory

stimulation. Each neuron was connected to 4 to 6 excitatory and 4 to 6 inhibitory

inputs using static synapses. The number of inputs was randomly drawn from a

uniform distribution for each neuron and reversal potential. The synaptic weights

of the connections were drawn from bound normal distributions. The mean value

of these distributions was chosen such that the average traction w ·(Erev − µV) was

equal for excitatory and inhibitory synapses. The values listed in Table 3.1 refer

to µV = Vrest = −60mV. In case of other resting potentials, the synaptic weights

were properly adjusted to achieve an equal average current towards the reversal

potentials: In case of excitatory inputs the weight was set to winp, e ·
∣

∣

∣

Ee−(−60 mV)
Ee−Vrest

∣

∣

∣
.



3.2. Material and Methods 59

Similarly, inhibitory input weights were adjusted to winp, i ·
∣

∣

∣

Ei−(−60mV)
Ei−Vrest

∣

∣

∣
.

Thus, neglecting the influence of recurrent connections and resets of the mem-

brane after APs, the average input-induced membrane potential µV always equals

Vrest. The magnitude of the fluctuations was controlled via a multiplicative weight

factor Winput affecting all input synapses.

A unconnected, mean activity B dynamic syn., mean activity C static synapses, mean activity

D unconnected, balance E dynamic synapses, balance F static synapses, balance

Figure 3.4: Results of the emulations on the FACETS Stage 1 Hard-

ware.

External stimulation of diverse strength is controlled via Vrest and Winput. For

every tile, 20 randomly connected networks with new external stimulation were

generated. The resulting average firing rates are illustrated by different shades

of gray. Inevitably, differing saturation ranges had to be used for the panels.

HORIZONTAL: different types of recurrent synapses. Left: Solely input driven

networks without recurrent connections. Center: Recurrent networks with dy-

namic synapses using short-term plasticity. Right: Recurrent networks with static

synapses. VERTICAL: Mean activity of the entire network (top) and the balance

of the populations, measured by the difference between the mean excitatory and

inhibitory firing rates (bottom).

3.2.4 Measurement

In order to study the self-adjustment capabilities of the setup, three types of

networks were investigated:
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- unconnected All recurrent synapses were discarded (w = 0) in order to deter-

mine the sole impact of external stimulation.

- dynamic All recurrent synapses featured short-term plasticity. The mode (fa-

cilitating, depressing) depended on the type of the connection as shown in

Figure 3.2.

- static The STP-mechanism was switched off in order to study the relevance of

short-term plasticity for the self-adjustment ability.

Rather than on the analysis of the dynamics of a specific network, we aimed

at the investigation of the universality of application of the examined network

architecture.

Therefore, random networks were generated obeying the above described prob-

ability distributions. Besides the three fundamentally different network types

(unconnected, dynamic and static), external stimulation of different strength was

applied by sweeping both the average membrane potential Vrest and the magnitude

of fluctuations Winput.

For every set of network and input parameters, nrun = 20 networks and input

patterns were generated and run for Texp = 4.5 seconds. The average firing rates

of both populations of neurons were recorded. To exclude transient initialization

effects, only the time span 1 s ≤ t ≤ Texp was evaluated. Networks featuring

the self-adjustment property are expected to modulate their activity to a medium

level of about 5Hz to 20 Hz over a wide range of external stimulation.

This setup was both emulated on the FACETS Stage 1 Hardware system and

simulated using PCSIM in order to verify the results.

3.3 Results

First we present the results of the hardware emulation and compare them with

the properties of simulated networks. Beside the capability of adjusting network

activity in principle, we examine to what extent the observed mechanisms are

insusceptible to changes in the hardware substrate. Finally we take a look at the

ability of such networks to process input streams.

3.3.1 Self-Adjustment Ability

The results of the hardware emulation performed according to the setup descrip-

tion given in Sections 3.2.3 and 3.2.4 are shown in Fig. 3.4. The axes display

different input strengths, controlled by the average membrane potential Vrest and

the magnitude of fluctuation Winput. Average firing rates are indicated by the

shade of gray of the respective tile.
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The average response of networks without recurrent connections is shown in

Fig. 3.4A. Over a wide range of weak stimulation (lower left corner) almost no

spikes occur within the network. For stronger input, the response steadily rises

up to ν ≈ 29Hz. In Fig. 3.4D the activity of the excitatory and the inhibitory

population are compared. Since external stimulation was configured equally for

either population, one expects a similar response νexc − νinh ≈ 0, except for slight

stochastic variations. Obviously, the used hardware device exhibits a strong and

systematic discrepancy of the sensitivity between the populations, which were

located on different halves of the chip. The mean firing rate of excitatory neurons

is about three times as high as the response of inhibitory neurons.

A unconnected, mean activity B dynamic syn., mean activity C static synapses, mean activity

D unconnected, balance E dynamic synapses, balance F static synapses, balance

Figure 3.5: Results of the software simulation.

The experimental setup and the arrangement of the panels are equal to Figure 3.4.

Also, the general behavior is consistent with the hardware emulation, though the

average network response is more stable against different strengths of stimulation

and all firing rates are higher. Accordingly, in case of dynamic recurrent synapses,

the plateau is located at νtotal ≈ 17Hz.

The mid-column – Fig. 3.4B and (E) – shows the response of recurrent net-

works featuring dynamic synapses with the presented short-term plasticity mecha-

nism. Over a wide range of stimulation, the mean activity is adjusted to a level of

9 Hz to 15 Hz. A comparison to the solely input driven setup proves that recurrent

networks with dynamic synapses are capable of both raising and lowering their

activity towards a smooth plateau. A closer look at the firing rates of the pop-
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ulations reveals the underlying mechanism: In case of weak external stimulation,

excitatory network activity exceeds inhibition, while the effect of strong stimuli

is attenuated by intense firing of inhibitory neurons. This functionality agrees

with the concept of depressing interior and facilitating bridging connections, as

described in Section 3.2.3.1.

In spite of the disparity of excitability between the populations, the applied

setup is capable of properly adjusting network activity. It is noteworthy that

the used connection probabilities and synaptic weights completely ignored this

characteristic of the underlying substrate.

To ensure that the self-adjustment ability originates from short-term synaptic

plasticity, the STP-mechanism was switched off during a repetition of the exper-

iment. The respective results for recurrent networks using static synapses are

shown in Fig. 3.4C and (F). The networks clearly lack the previously observed

self-adjustment capability, but rather tend to extreme excitatory firing. It must

be mentioned that such high firing rates exceed the readout bandwidth of the

current FACETS Stage 1 Hardware system. Thus, an unknown amount of spike

events was discarded within the readout circuitry of the chip. The actual activity

of the networks is expected to be even higher than the measured response.

3.3.2 Comparison to PCSIM

While the results of the hardware emulation draw a self-consistent picture, it

ought to be excluded that the observed self-adjustment arises from hardware spe-

cific properties. Therefore, the same setup was applied to the software simulator

PCSIM. The results of the software simulation are shown in Fig. 3.5. The six

panels are arranged like those of the hardware results in Figure 3.4.

In agreement with the hardware emulation, the average response of networks

without recurrent connections rises with stronger stimulation, see Fig. 3.5A. But

as the disparity in the population excitability was not modeled in the simulation,

their balance is only subject to statistical variations, see Fig. 3.5D.

Generally, the software simulation yields significantly higher firing rates than

the hardware emulation. Two possible causes are:

• The instability of the excitatory reversal potential Ee certainly entails re-

duced network activity in case of the hardware emulation.

• The response curve of hardware neurons slightly differs from the behavior

of an ideal conductance-based LIF model (Brüderle, 2009, Figure 6.4).

Consistently, an increased activity is also observed in the simulations of re-

current networks. Fig. 3.5B and (E) show the results for networks with synapses

featuring short-term synaptic plasticity. Obviously, the networks exhibit the ex-

pected self-adjustment ability. But the plateau is found at approximately 17Hz
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compared to 12Hz in the hardware emulation. Finally, in case of static recurrent

synapses – see Fig. 3.5C and (F) – the average network activity rises up to 400Hz

and lacks any visible moderation.

In conclusion, the hardware emulation and the software simulation yield similar

results regarding the basic dynamics. Quantitatively, the results differ approxi-

mately by a factor of two.

In order to estimate the influence of an unstable reversal potential, which

is suspected to be the leading cause for the inequality, the excitatory reversal

potential was globally set to Ee = −20mV during a repetition of the software

simulation.

Indeed, the results of the different back-ends become more similar. The average

activity of networks with dynamic synapses (corresponding to Figure 3.4B and

3.5B) is shown in Fig. 3.6.

Due to the obviously improved agreement, all further software simulations have

been performed with a lower excitatory reversal potential Ee = −20mV.

Figure 3.6: Software simulation: Lower excitatory reversal potential.

Average network response of recurrent networks with dynamic synapses. In or-

der to approximate the instability of the excitatory reversal potential in the chip,

Ee was set to −20mV for subsequent software simulations. Compare with Fig-

ure 3.4B.

3.3.3 Robustness

We show that the observed self-adjustment property of the network architecture

provides certain types of activity robustness that are beneficial for the operation

of neuromorphic hardware systems.
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A FACETS Stage 1 Hardware B Software simulation

Figure 3.7: Reliable and realistic network activity.

Each point is determined by 20 random networks generated from equal probability

distributions. The average firing rate of all networks is plotted on the x-axis,

the standard deviation between the networks on the y-axis. Recurrent networks

featuring short-term plasticity (triangles) can reliably be found within a close

range. Setups with static synapses (circles) exhibit both larger average firing

rates and larger standard deviations. (A) Emulation on the FACETS Stage 1

Hardware. (B) Software simulation with lowered excitatory reversal potential Ee.

Reliable and relevant activity regimes. By applying the network architec-

ture presented in Section 3.2.3.1, we aim at the following two kinds of robustness

of network dynamics:

• A high reliability of the average network activity, independent of the precise

individual network connectivity or stimulation pattern. All networks with

dynamic synapses that are generated and stimulated randomly, but obeying

equal probability distributions, shall yield a similar average firing rate νtotal.

• The average firing rate νtotal shall be kept within a biologically relevant

range for a wide spectrum of stimulation strength and variability. For awake

mammalian cortices, rates in the order of 5 to 20Hz are typical, see e.g.

(Steriade, 2001; Steriade et al., 2001; Baddeley et al., 1997).

The emergence of both types of robustness in the applied network architecture

is first tested by evaluating the PCSIM data. Still, it is not a priori clear that

the robustness is preserved when transferring the self-adjusting paradigm to the

hardware back-end. The transistor-level variations discussed in Section 3.2.1.2

might impede the reliability of the moderating effects, e.g. by causing an increased
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excitability for some of the neurons, or by too heterogeneous characteristics of

the synaptic plasticity itself. Therefore, the robustness is also tested directly

on a hardware device and the results are compared with those of the software

simulation.

While each tile in Figure 3.4 represents the averaged overall firing rate νtotal of

20 randomly generated networks and input patterns, Fig. 3.7 shows the standard

deviation σν of the activity of networks obeying equal probability distributions as

a function of νtotal. Networks using dynamic synapses are marked by triangles,

those with static synapses by circles. Only setups with νtotal > 1Hz are shown.

For both the hardware device and the software simulation, the data clearly

show that the required robustness effects are achieved by enabling the self-

adjusting mechanism with dynamic synapses. The fluctuation σν from network

to network is significantly lower for networks that employ dynamic recurrent con-

nections. Moreover, only for dynamic synapses the average firing rate νtotal is

reliably kept within the proposed regime, while in case of static synapses most of

the observed rates are well beyond its upper limit.

This observation qualitatively holds both for the hardware and for the software

data. In case of networks with static synapses emulated on the hardware system,

the upper limit of observed firing rates at about 100Hz is determined technically

by bandwidth limitations of the spike recording circuitry. This also explains the

dropping variation σν for firing rates close to that limit. If many neurons fire at

rates that exceed the readout bandwidth, the diversity in network activity will

seemingly shrink.

While the software simulation data prove that the self-adjusting principle pro-

vides the robustness features already for networks as small as those tested, the

hardware emulation results show that the robustness is preserved despite of the

transistor-level variations. Even though the different biological network descrip-

tions are mapped randomly onto the inhomogeneous hardware resources, the stan-

dard deviation of firing rates is similar in hardware and in software.

Independence of the emulation device. Besides the ambiguous mapping of

given biological network descriptions to an inhomogeneous neuromorphic hardware

system as discussed above, the choice of the particular emulation device itself im-

poses another source of possible unreliability of results. Often, multiple instances

of the same system are available to an experimenter. Ideally, such chips of equal

design should yield identical network dynamics. But due to process-related in-

homogeneities and due to the imperfections as discussed in Section 3.2.1.2, this

objective is unachievable in terms of precise spike timing whenever analog cir-

cuitry is involved. Nevertheless, one can aim for a similar behavior on a more

global scale, i.e. for alike results regarding statistical properties of populations of

neurons.
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All previous emulations have been performed on a system which was exclu-

sively assigned to the purpose of this work. In order to investigate the influence

of the particular hardware substrate, a different randomly chosen chip was set

up with the same biological configuration. In this context, biological configuration

denotes that both systems had been calibrated for general purpose. The high-level

pyNN-description of the experiment remained unchanged – only the translation

of biological values to hardware parameters involved different calibration data.

This customization is performed automatically by low-level software structures.

Therefore, the setup is identical from the experimenter’s point of view.

In the following, the two devices will be referred to as primary and comparative,

respectively. Just as on the primary device, networks emulated on the comparative

system featured the self-adjustment ability if dynamic synapses were used for

recurrent connections. But network activity was moderated to rather low firing

rates of 2Hz to 6Hz. The response of networks without recurrent connections

revealed that the used chip suffered from a similar disparity of excitability as the

primary device. But in this case, it was the inhibitory population which showed

a significantly heightened responsiveness.

Apparently, the small networks were not capable of completely compensating

for the systematic unbalance of the populations. Nevertheless, they still were

able to both raise and lower their firing rate compared to input induced response.

Fig. 3.8 shows the difference of the activity between recurrent networks with short-

term synaptic plasticity and solely input driven networks without recurrent con-

nections,

∆ν := νtotal, dyn − νtotal, input .

For this chart, the Vrest - Winput diagonal of Figure 3.4 has been mapped to the

x-axis, representing an increasing input strength. ∆ν is plotted on the y-axis.

Independent of the used back-end, recurrent networks raise activity in case of

weak external excitation, while the effect of strong stimulation is reduced.

To allow for the inverse disparity of excitability of the comparative device, the

mapping of the excitatory and the inhibitory population, which were located on

different halves of the chip, was mirrored during a repetition of the emulation.

Thus, the excitatory population exhibited an increased responsiveness resembling

the disparity of the primary device. The ∆ν-curve of the mirrored repetition on

the comparative system can also be found in Figure 3.8. As expected, with this

choice of population placing, the moderating effect of the applied self-adjusting

paradigm matches better the characteristics of the primary device.

These observations suggest that differing emulation results rather arise from

large-scaled systematic inhomogeneities of the hardware substrate than from sta-

tistically distributed fixed pattern noise of individual units.

Therefore, it can be stated that the applied architecture is capable of reliably

compensating statistical fluctuations of hardware unit properties, unless varia-
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Figure 3.8: Self-adjusting effect on different platforms.

The difference ∆ν := νtotal, dyn − νtotal, input is plotted against an increasing

strength and variability of the external network stimulation. The diamond sym-

bols represent the data acquired with PCSIM. The square (circle) symbols repre-

sent data measured with the primary (comparative) hardware device. Measure-

ments with the comparative device, but with a mirrored placing of the two network

populations, are plotted with triangle symbols. See main text for details.

tions extend to a global scale. But even in case of large-scale deviations, the

applied construction principle preserves its self-adjustment ability and provides

reproducible network properties, albeit at a shifted working point.

3.3.4 Responsiveness to Input

While it was shown that the applied configuration provides a well-defined network

state in terms of average firing rates, it remains unclear whether the probed ar-

chitecture is still able to process information induced by external input. It can

be suspected that the strong recurrent connectivity “overwrites” any temporal

structure of the input spike trains. Yet, the usability of the architecture regarding

a variety of computational tasks depends on its responsiveness to changes in the
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A Average response to increased ex-

citation

B Retroactive pattern classification

and XOR task

Figure 3.9: Network traces of transient input.

Results of software simulations testing the response of recurrent networks with

dynamic synapses to transient input. (A) Firing rate of the excitatory input

channels and average response of either population to an excitatory input pulse

lasting for 3 seconds. The steep differential change in excitation is answered by

a distinct peak. After some hundred milliseconds the networks attune to a new

level of equilibrium. (B) Average performance of the architecture in a retroactive

pattern classification task. The network states contain information on input spike

patterns which were presented some hundred milliseconds ago. The latest patterns

presented are to be processed in a non-linear XOR task.

input. A systematic approach to settle this question exceeds the scope of this

work. Therefore, we address the issue only in brief.

First, we determine the temporal response of the architecture to sudden

changes in external excitation. Then, we look for traces of previously presented

input patterns in the current network state and test whether the networks are

capable of performing a non-linear computation on the meaning assigned to these

patterns.

For all subsequent simulations the input parameters are set to Vrest = −59mV

and Winput = 4.0 (cf. Figure 3.6). Only networks featuring dynamic recurrent

connections are investigated. Due to technical limitations of the current hardware

system as discussed in Section 3.2.1.2, the results of this section are based on

software simulations, only. For example, the additional external stimulation, as

applied in the following, exceeds the current input bandwidth of the prototype

hardware device. Furthermore, the evaluation of network states requires access to

(at least) the spike output of all neurons, simultaneously. The current hardware

system only supports the recording of a small subset of neurons at a time.

In Fig. 3.9A the average response of the excitatory and inhibitory populations
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to increased external excitation are shown. For this purpose, the firing rate of all

excitatory Poisson input channels was doubled from 11.8Hz to 23.6Hz at t = 4 s.

It was reset to 11.8Hz at t = 7 s, i.e. the applied stimulation rate was shaped as

a rectangular pulse. In order to examine the average response of the recurrent

networks to this steep differential change in the input, nrun = 1000 networks

and input patterns have been generated. While the network response obtained

from a single simulation run is subject to statistical fluctuations, the influence

of the input pulse is revealed precisely by averaging over the activity of many

different networks. For analysis, the network response was convolved with a box

filter (50ms window size). In conclusion, the temporal response of the recurrent

networks is characterized by two obvious features:

1. Immediately after the additional input is switched on or off, the response

curves show distinct peaks which decay at a time scale of τ ≈ 100ms.

2. After some hundred milliseconds, the networks level off at a new equilib-

rium. Due to the self-adjustment mechanism, the activity of the inhibitory

population clearly increases.

These findings confirm that the investigated networks show a significant re-

sponse to changes in the input. This suggests that such neural circuits might

be capable of performing classification tasks or continuous-time calculations if a

readout is attached and trained.

We tested this conjecture by carrying out a computational test proposed in

(Häusler and Maass, 2007). The 64 external input channels were assigned to

two disjunct streams A and B. Each stream consisted of 16 excitatory and 16

inhibitory channels. For each stream two Poisson spike train templates (referred

to as +S and −S, S ∈ {A,B}) lasting for 2400ms were drawn and partitioned

to 24 segments ±S,i of 100ms duration. In every simulation run the input was

randomly composed of the segments of these templates, e.g.

StreamA : +A23 −A22 . . . −A1 +A0

StreamB : −B23 +B22 . . . −B1 −B0

leading to 224 possible input patterns for either stream. Before the input was

presented to the network, all spikes were jittered using a Gaussian distribution

with zero mean and standard deviation 1ms. The task was to identify the last 4

segments presented (0 ≤ i ≤ 3) at the end of the experiment. For that purpose,

the spike response of the network was filtered with an exponential decay kernel

(τdecay = τsyn = 30ms). The resulting network state at t = 2400ms was presented

to linear readout neurons which were trained via linear regression as in (Maass
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et al., 2002). The training was based on 1500 simulation runs. Another 300 runs

were used for evaluation. In order to determine the performance of the architecture

for this retroactive pattern classification task, the above setup was repeated 30

times with newly generated networks and input templates.

The average performance of networks with recurrent dynamic synapses is

shown in Fig. 3.9B. The error bars denote the standard error of the mean. Ob-

viously, the network state at t = 2400ms contains significant information on

the latest patterns presented and preserves traces of preceding patterns for some

hundred milliseconds. For comparison, recurrent networks using static synapses

performed only slightly over chance level (not shown). In addition to the pattern

classification task, another linear readout neuron was trained to compute the non-

linear expression XOR(±A0,±B0) from the network output. Note that this task

cannot be solved by a linear readout operating directly on the input spike trains.

Summing up, the self-adjusting recurrent networks are able of perform multiple

computational tasks in parallel. Since the main objective of this work was to

verify the self-adjustment ability of small networks on a neuromorphic hardware

device, both connection probabilities and synaptic weights of recurrent connections

had been chosen high compared to the strength of external stimulation. Still,

the networks significantly respond to changes in the input and provide manifold

information on present and previous structure of the stimulus.

Recent theoretical work (Buesing et al., 2010) stressed that the computational

power of recurrent networks of spiking neurons strongly depends on their con-

nectivity structure. As a general rule, it has been shown to be beneficial to

operate a recurrent neural network in the edge-of-chaos regime (Bertschinger and

Natschläger, 2004). Nevertheless, as addressed in (Legenstein and Maass, 2007),

the optimal configuration for a specific task can differ from this estimate. Ac-

cordingly, task-dependent recurrent connectivity parameters might be preferable

to achieve good experimental results (see, e.g., (Haeusler et al., 2009)). While net-

works of randomly connected neurons feature favorable kernel qualities, i.e. they

perform rich non-linear operations on the input, theoretical studies of (Ganguli

et al., 2008) prove that networks with hidden feedforward structures provide supe-

rior memory storage capabilities. Future research might identify such connectivity

patterns in seemingly random cortical circuits and improve our understanding of

working memory.

While the examined recurrent network architecture was not optimized for com-

putation, neither regarding its kernel quality nor its memory traces, the cited stud-

ies suggest that the performance will increase if network parameters are attuned

to particular tasks. Further research is needed to explore under which conditions

the examined architecture provides a stable operating point, a high responsiveness

to stimuli, and appropriate memory traces.
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3.4 Discussion

We showed that recurrent neural networks featuring short-term synaptic plastic-

ity are applicable to present neuromorphic mixed-signal VLSI devices. For the

first time dynamic synapses play a functional role in network dynamics during

a hardware emulation. Since neuromorphic hardware devices model neural infor-

mation processing with analog circuitry, they generally suffer from process-related

fluctuations which affect the dynamics of their components. In order to minimize

the influence of unit variations on emulation results, we applied a self-adjustment

principle on a network level as proposed by (Sussillo et al., 2007).

Even though the employed prototype system only supports a limited network

size, the expected self-adjustment property was observed on all used back-ends.

The biological description of the experimental setup was equal for all utilized chips,

i.e. the configuration was not customized to characteristics of the specific hard-

ware system. Beyond the validation of the basic functioning of the self-adjusting

mechanism, we addressed the robustness of the construction principle against both

statistical variations of network entities and systematic disparities between differ-

ent chips. We showed that the examined architecture reliably adjusts the average

network response to a moderate firing regime. While congeneric networks em-

ulated on the same chip yielded a widely similar behavior, the operating point

achieved on different systems still was affected by large-scale characteristics of the

utilized back-end.

All outcomes of the hardware emulation were qualitatively confirmed by soft-

ware simulations. Furthermore, the major imperfection of the current revision of

the FACETS Stage 1 Hardware, the instability of the excitatory reversal potential,

was identified by the accompanying application of the simulator PCSIM.

Presumably, the performance of the applied architecture will improve with

increasing network size. Upcoming neuromorphic emulators like the FACETS

Stage 2 Wafer-scale Integration system (see Schemmel et al., 2008; Fieres et al.,

2008) will comprise more than 100,000 neurons and millions of synapses. Even

earlier, the present chip-based system will sustain the interconnection of multiple

chips and thus provide a substrate of some thousand neurons. As such large-scale

mixed-signal VLSI devices will inevitably exhibit variations in unit properties, de-

tailed knowledge of circuitry design is required by the user to reduce distortions of

experimental results on the level of single units. On the other hand, the beneficial

application of neuromorphic VLSI devices as both neuro-scientific modeling and

novel computing tools will require that it does not demand an expert in electronic

engineering to run the system. We showed that self-regulation properties of neu-

ral networks can help to overcome disadvantageous effects of unit level variations

of neuromorphic VLSI devices. The employed network architecture might ensure

a highly similar network behavior independent of the utilized system. Therefore

this work displays an important step towards a reliable and practicable operation
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of neuromorphic hardware.

The applied configuration required strong recurrent synapses at a high con-

nectivity. The results of (Sussillo et al., 2007) show that even sparsely connected

networks can manage to efficiently adjust their activity, provided they comprise a

sufficiently large number of neurons which will be sustained by future hardware

systems. Thereby, the examined construction principle will become applicable to

a variety of experimental setups and network designs. As touched upon in Sec-

tion 3.3.4, the presented self-adjusting networks still are sensitive and responsive

to changes in external excitation. Furthermore, we verified that even networks

with disproportionately strong recurrent synapses can perform simple non-linear

operations on transient input streams. By applying biologically more realistic

connectivity parameters, it has been shown that randomly connected networks

of spiking neurons are able to accomplish ambitious computational tasks (Maass

et al., 2004) and that short-term synaptic plasticity can improve the performance

of such networks in neural information processing (Maass et al., 2002). Thus, this

architecture provides a promising application for neuromorphic hardware devices

while the high configurability of novel systems as well supports the emulation of

circuits tailored to specific tasks.
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A major goal of computational neuroscience is the creation of computer models

for cortical areas whose response to sensory stimuli resembles that of cortical areas

in-vivo in important aspects. Although often based on detailed anatomical data,

it is seldom considered whether the simulated spiking activity is realistic (in a sta-

tistical sense) in response to relevant natural stimuli. Because certain statistical

properties of spike responses were suggested to facilitate ongoing computations

in the cortex, acquiring a realistic firing regime in cortical network models might

be a prerequisite for analyzing their emergent computational functions. We here

present a characterization and comparison of the statistical response properties of

the primary visual cortex (V1) in vivo and in silico in response to natural movie

stimuli. We recorded from multiple electrodes in area V1 of 4 macaque monkeys,

and developed a large state-of-the-art network model for a 5 mm x 5 mm patch

of V1 composed of 35000 neurons and 3.9 million synapses that integrates many
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previously published anatomical and physiological details. By quantitative com-

parison of the model response to the “statistical fingerprint” of responses in vivo,

we find that our model for a patch of V1 responds to the same movie (using

a simple model for retina and LGN as pre-processors) in a way which matches

the statistical structure of the recorded data surprisingly well. In particular, the

deviation between the firing regime of the model and the in vivo data is on the

same level as deviations among monkeys and sessions. To reach a realistic firing

state, it was not only necessary to include both NMDA and GABAB synaptic

conductances in our model, but also to dramatically increase the strength of ex-

citatory synapses onto inhibitory neurons (more than two-fold) in comparison to

literature values, suggesting that the strength of inhibition is underestimated in

current network models.
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4.1 Introduction

Numerical simulations of detailed biophysical models of cortical microcircuits or

even whole brain regions provide powerful tools to approach complex questions

in neuroscience, and are commonly regarded as a promising tool to understand

the mechanistic link from anatomical structure and physiological properties to

computational functions of cortical circuits. In general, approaches along this

line incorporate selected aspects of the known anatomy and physiology to repli-

cate experimental data on emergent functional properties, such as for instance

the structure of preferred orientation maps of the primary visual cortex (Adorjan

et al., 1999; Bartsch and van Hemmen, 2001; Blumenfeld et al., 2006), direction

selectivity maps (Ernst et al., 2001; Wenisch et al., 2005), and simple/complex

cells (Chance et al., 1999; Wielaard et al., 2001; Tao et al., 2004), or success-

fully exemplifying theoretical ideas about information processing in the brain (e.g.

(Diesmann et al., 1999; Maass et al., 2002; Vogels and Abbott, 2005)). However,

these increasingly complex recurrent network models are often still a strong ab-

straction from reality and it is not clear whether the responses of such network

models exhibit at least a general likeness to its counterpart in reality.

Constraining the firing regime of in silico models with that observed in vivo

is important for at least two reasons: First, it will benchmark current models

to achieve a realistic firing response, and thus will further help to open new re-

search directions because it will hint at current short-comings of existing models.

Second, it has been suggested theoretically, that there might be a firing regime

or state that is favorable for ongoing computation within recurrent neural net-

works (Brunel, 2000; Vogels and Abbott, 2005; Legenstein and Maass, 2007). One

might thus postulate that during evolution the brain has shaped a particular use-

ful firing regime which is in some way supporting the computational function of

the neural tissue. Therefore achieving a realistic firing activity in cortical circuit

models might be an important but rarely considered prerequisite to employing

these models for analyzing aspects of cortical computational functions. If a realis-

tic firing regime cannot be achieved easily, the validity of conclusions drawn from

these model circuits might be corrupted, or efforts have to be made to tune these

models towards a realistic regime. To investigate this issue, we ask in this study

if a state-of-the-art network model of a cortical circuit is able to reproduce the

characteristic firing regime of the cortex.

We focus on the primary visual system (V1). Its anatomical and neurophysio-

logic details are relatively well known, and its position in visual sensory processing

is relatively well established. Moreover, V1 already serves as a reference cortical

area to investigate large scale network models (Johansson and Lansner, 2007;

Kremkow et al., 2007), although still many aspects of its computational organi-

zation and the underlying mechanisms remain poorly understood (Olshausen and

Field, 2005). To compare the firing state of V1 in vivo with that of simulated
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responses of a cortical network model in silico, we first recorded spike responses

with multi-electrode arrays in V1 of 4 anesthetized monkeys while presenting sev-

eral minutes lasting semi-natural movies. Given the complex naturalistic stimuli,

we thus expect that V1 will likely be in an operating regime, where its computa-

tions are usually performed. We characterized this firing regime by its “statistical

fingerprint” using a number of salient statistical features, measuring the spike

variability, the burst behavior, and the correlation structure. We then compared

this “statistical fingerprint“ to that obtained from the response of a state-of-the-

art cortical circuit model of a 5 mm x 5 mm patch of V1, comprising about 35000

neurons and 3.9 million synapses situated in several hypercolumns. The devel-

oped spiking neuron network model is based on the cortical microcircuit model

described in (Häusler and Maass, 2007), which implements experimental data

from (Thomson et al., 2002) on lamina-specific connection probabilities, and data

from (Markram et al., 1998) and (Gupta et al., 2000) regarding stereotypical dy-

namic properties (such as paired pulse depression and paired pulse facilitation)

of synaptic connections. We extended this cortical microcircuit model laterally

and incorporated many anatomical properties of V1 in macaques to ensure the

comparability to our in vivo recordings.

Our combinative approach, using both electrophysiological recordings and

model circuit simulation, provided us with the unique possibility to use the same

movie stimuli for the model simulations and during in vivo recordings. Given this

comparability, we were able to investigate whether the firing regime of a model

achieves a realistic state, and if not, whether a set of global parameters were suffi-

cient to tune the models firing regime to become more realistic. We found that the

response of the detailed model circuit adopts a firing regime that is remarkably

similar to the in vivo response and is on average close to the deviations across

different sessions and different monkeys. This close match was achieved by tuning

only a few parameters: an overall synaptic weight scaling factor compensating for

the reduced number of modeled neurons, the relative synaptic weight from excita-

tory to inhibitory neurons, and the relative strength of patchy lateral long-range

excitatory weights. We found that the firing response statistics was not simply

induced by the statistics of the complex input stimuli but instead depended sig-

nificantly on the internal dynamics. This good fit suggests that current network

models comprising realistic neuron dynamics, as well as realistic time courses of

synaptic activation, which included short-term depression and facilitation, are ca-

pable of generating a similar diverse network response behavior as can be observed

in in vivo recordings. We are convinced that the analysis of computational func-

tion of realistic circuits is closely linked to its firing regime. We therefore expect

that this characterization of the firing regime provided here and the possibility to

use a few parameters to calibrate a complex model will greatly ease the analysis

of the computational properties of realistic, detailed circuit models in future.
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4.2 Materials and Methods

4.2.1 Experimental Methods

4.2.1.1 Electrophysiological recording

The electrophysiological recordings were previously described (Montemurro et al.,

2008), where the same data had been analyzed from a different perspective. How-

ever for completeness we include a detailed description here. Four adult rhesus

monkeys (Macaca mulatta) participated in these experiments. All procedures were

approved by the local authorities (Regierungspräsidium) and were in full compli-

ance with the guidelines of the European Community (EUVD 86/609/EEC) for

the care and use of laboratory animals. Prior to the experiments, form-fitted head

posts and recording chambers were implanted during an aseptic and sterile surgical

procedure (see e.g. (Logothetis et al., 2002)). To perform the neurophysiologi-

cal recordings, the animals were anesthetized (remifentanil (0.5-2 µg/kg/min)),

intubated, and ventilated. Muscle relaxation was achieved with a fast acting par-

alytic, mivacurium chloride (5 mg/kg/h). Body temperature was kept constant

and lactated Ringer’s solution was given at a rate of 10 ml/kg/h. During the

entire experiment, the vital signs of the monkey and the depth of anesthesia were

continuously monitored (as described in (Logothetis et al., 1999)). For the proto-

col used in these experiments, we had previously examined the concentration of

all stress hormones (catecholamines) (Logothetis et al., 1999) and found them to

be within the normal limits. Drops of 1% ophthalmic solution of anticholinergic

cyclopentolate hydrochloride were instilled into each eye to achieve cycloplegia

and mydriasis. Refractive errors were measured and contact lenses (hard PMMA

lenses by Wöhlk GmbH, Germany) with the appropriate dioptric power were used

to bring the animal’s eye into focus on the stimulus plane. The electrophysiologi-

cal recordings were performed with electrodes that were arranged in a 4 x 4 square

matrix (inter-electrode spacing varied from 1 mm to 2.5 mm) and introduced each

experimental session into the cortex through the overlying dura mater by a micro-

drive array system (Thomas Recording, Inc., Giessen, Germany). Electrode tips

were typically (but not always) positioned in the upper or middle cortical layers.

The impedance of the electrode varied from 300 to 800 kOhm. Both spontaneous

and stimulus-induced neural activity were collected and recorded for periods up

to 6 minutes. Signals were amplified using an Alpha Omega amplifier system (Al-

pha Omega GmbH, Ubstadt-Weiher, Germany). The amplifying system filtered

out the frequencies below 1 Hz. Recordings were performed in a darkened booth

(Illtec, Illbruck acoustic GmbH, Germany). The site receptive fields were plot-

ted manually and the position and size of each field were stored together with

the stimulus parameters and the acquisition data. The visual stimulator was a

dual processor Pentium II workstation running Windows NT (Intergraph Corp.,

Huntsville, Alabama) and equipped with OpenGL graphics cards (3Dlabs Wildcat
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series). The resolution was set to 640 by 480 pixels. The refresh rate was 60 Hz

and the movie frame rate was 30 Hz. All image generation was in 24 bit true-

color, using hardware double buffering to provide smooth animation. The 640x480

VGA output drove the video interface of a fiber-optic stimulus presentation sys-

tem (Avotec, Silent Vision, Florida) and also drove the experimenter’s monitor.

The field of view (FOV) of the system was 30Hx23V degrees of visual angle and

the focus was fixed at 2 diopters. The system’s effective resolution, determined

by the fiber-optic projection system was 800Hx225V pixels (the fiber-optic bun-

dle is 530x400 fibers). Binocular presentations were accomplished through two

independently positioned plastic, fiber-optic glasses. Positioning was aided by a

modified fundus camera (Zeiss RC250) that permitted simultaneous observation

of the eye-fundus. The fundus camera has a holder for avotec projector so that

the center of camera lens and avotec projector is aligned in the same axis. This

process ensured the alignment of the stimulus-center with the fovea of each eye.

To ensure accurate control of stimulus presentation a photo-diode was attached

to the experimenter’s monitor permitting the recording of the exact presentation

time of every single frame. The visual stimuli were binocularly presented 3.5

to 6 minute long natural color movies (segments of the commercial movie “Star

Wars”). During each of 10 recording sessions the movie was repeated 12–40 times.

4.2.1.2 Spike detection

In order to extract spike times from the electrophysiological recordings, the

20.83 kHz neural signal was filtered in the high-frequency range of 500–3500 Hz.

The threshold for spike detection was set to 3.5 standard deviations. A spike was

recognized as such only if previous spikes have occurred more than one millisecond

earlier. Spikes detected with this simple threshold method represented the spik-

ing activity of a small population of cells rather than well separated spikes from a

single neuron. For spike sorting we used the method described by (Quian Quiroga

et al., 2004). The spike waveforms were extracted around the detection times as

described above (in a region of 0.25 ms before to 0.5 ms after the detected spike).

These spike forms were interpolated and 10 wavelet features (with 4 scales) were

extracted (Quian Quiroga et al., 2004). From this feature pool the 10 features

(KS-test) were used as input for the clustering algorithm. We then sorted the

spikes using the paramagnetic algorithm of (Quian Quiroga et al., 2004). For

each electrode a few reasonable clusters were selected by visual inspection of the

spike waveforms ensuring a reasonable distinguishable average waveform among

clusters. After this initial selection, spikes which initially were not classified in a

particular cluster (or belonging to not selected clusters) were forced to belong to

the nearest selected cluster (Mahalanobis distance (Quian Quiroga et al., 2004)).

A cluster that maintained very similar waveforms after this step was deemed to

be a well-isolated cluster and was considered for further analysis. Otherwise the
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cluster was not considered further for spike sorting.

4.2.2 Model

In this section we describe a data based model, developed to compare its spiking

activity with the electrophysiological recordings from macaque. It consists of an

input model (representing the retina and lateral geniculate nucleus (LGN) of the

thalamus) and a model of a patch of V1, receiving and processing the spikes of the

input model. In the following we will first describe the V1 model and subsequently

the input model.

4.2.2.1 V1 Model

Our model for a 5 mm x 5 mm patch of area V1 consisted of 34596 neurons and

3.9 million synapses. Various anatomical and physiological details were included

in our model. The connectivity structure of the V1 model was similar to that of

the generic cortical microcircuit model discussed in (Häusler and Maass, 2007).

The neurons of that model were equally distributed on three layers, corresponding

to the cortical layers 2/3, 4 and 5. Each layer contained a population of excitatory

neurons and a population of inhibitory neurons with a ratio of 4:1 (Beaulieu et al.,

1992; Markram et al., 2004). The inter- and intra-layer connectivity (probability

and strength) was chosen according to experimental data from rat and cat cortex

assembled in (Thomson et al., 2002). Although there are differences, the con-

nectivity structure in macaque is similar to that of the cat (Callaway, 1998). In

particular, if one identifies layer 2/3 and 4 in cat with 2-4B and 4C in macaque,

respectively. The major geniculate input reaches in both species first layer 4C.

Layer 4C projects to layer 2-4B, which in turn projects further to layer 5 (and

layer 6 via layer 5), where feedback connections are made to layers 2-4B (see

(Callaway, 1998) for a review). Further, the sub-laminar organization, e.g., the

structure built by cytochrome-oxidase blobs in layer 2/3 (Callaway 1998), was

neglected for simplicity, and for the lack of precise data. However, as described

below, the V1 model contained in addition to the microcircuit model of (Häusler

and Maass, 2007) a realistic thalamic input, a smooth orientation map, and patchy

long-range connections in the superficial layer.

In contrast to (Häusler and Maass, 2007), we set the relative amount of neu-

rons per layer to 33%. This partitioning corresponds to experimental data from

macaques (O’Kusky and Colonnier, 1982; Beaulieu et al., 1992; Tyler et al., 1998),

although we slightly adjusted the relative amount of neurons compared to the ex-

perimental values (where layer 4 has about 33% more neurons), compensating for

the fact that our model neglects the magnocellular and koniocellular pathways

in favor of the parvocellular pathway (Callaway, 1998). The three layers of the

model can be identified with layers 2-4B, 4Cβ and 5-6 in macaque V1. To avoid
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confusion with the terminology of (Häusler and Maass, 2007) we will, nevertheless,

call them layer 2/3, 4, and 5 in the following.

In macaque each of these three layers contains approximately 50000 neurons

under a surface area of 1 mm2 (Beaulieu et al., 1992). In our model we neglected

that neuron density varies up to 1.5 fold between the layers (Beaulieu et al., 1992)

and assumed instead that the neurons are uniformly distributed throughout the

cortex. Thus, for simplicity, we positioned all neurons on a cuboid grid with

a constant grid spaces. Using the experimentally measured neuron density, e.g.

for layer 2/3, the grid spacing would be 20µm for all directions. Because the

simulation of such a dense network would take too much computation time, we

diluted the neuron density by increasing the lateral grid spacing to 80µm and the

vertical spacing to about 200µm.

We used a conductance-based single-compartment neuron model. Due to a

considerable gain in computational speed we employed a neuron model suggested

by (Izhikevich, 2003), which can be adjusted to express different firing dynamics

(Izhikevich, 2006). We randomly drew the parameters for each neuron in the

network according to the bounds provided by (Izhikevich et al., 2004). On the

basis of these parameter distributions the excitatory pools consisted of regular

spiking cells, intrinsically bursting cells, and chattering cells, with a bias towards

regular spiking cells. The inhibitory pools consisted of fast spiking neurons and

low-threshold spiking neurons.

In addition to the synaptic input from other neurons in the model, each neuron

received as additional input synaptic background input, modeling the bombard-

ment of each neuron with synaptic inputs from a large number of neurons that are

not represented in our model. This synaptic background input causes a depolar-

ization of the membrane potential and a lower membrane resistance, commonly

referred to as the “high conductance state” (Destexhe et al., 2001). The conduc-

tances of the background input was modeled according to (Destexhe et al., 2001)

by Ornstein-Uhlenbeck processes with means gexc = 0.012 µS and ginh = 0.047 µS,

variances σexc = 0.003 µS and σinh = 0.0066 µS, and time constants τexc = 2.7 ms

and τinh = 10.5 ms, where the indices exc/inh refer to excitatory and inhibitory

background conductances, respectively. During the parameter optimization we

scaled the variances of both processes. The scaling factor of both variances affects

the amount of noise added to the conductance of a neuron.

Short term synaptic dynamics was implemented according to (Markram et al.,

1998), with synaptic parameters chosen as in (Maass et al., 2002) to fit data from

microcircuits in rat somatosensory cortex (based on (Gupta et al., 2000) and

(Markram et al., 1998)). For further details we refer to (Häusler and Maass, 2007).
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Lateral connectivity structure The generic microcircuit model of (Häusler

and Maass, 2007) was based on data for a column of about 100 µm diameter with

uniform connectivity per layer and neuron type. Here we extended the model lat-

erally to several millimeters. Thus connection probabilities in our model depend

on the lateral distance. For inter- and intra-cortical connections we generally used

a bell-shaped (Gaussian) probability distribution for determining the lateral ex-

tent. The standard deviation of the Gaussian was set to 200µm for excitatory

neurons (Lund et al., 2003; Blasdel et al., 1985; Buzas et al., 2006) and to 150µm

for inhibitory neurons to incorporate the observed occurrence of extremely nar-

row inhibitory dendritic and axonal spreads (70µm, (Lund et al., 2003)). The

arborization of excitatory neurons in layer 5 seems to be wider, more diffuse and

has a spread of more than 500 µm laterally from the soma (Blasdel et al., 1985).

Thus, for these connections we set the standard deviation to 300µm. Note that

the value for the standard deviation is about half the expected maximal extent of

95% of the arborizations.

To ensure consistency with the connectivity data of (Thomson et al., 2002), we

scaled the Gaussian profiles such that the peak probabilities correspond to their

experimentally measured connection probabilities. Therefore, their connectivity

pattern was locally preserved.

According to (Song et al., 2005) the number of bidirectional connections be-

tween excitatory neurons in layer 5 is four times higher than the expected number

under the assumption that the conditional probabilities, whether an unidirectional

connection exists or not, are the same. We incorporated this probability increase

into our model.

Patchy lateral long-range connections In cat and macaque, many pyrami-

dal cells in layer 2/3 of the striate cortex (and also elsewhere in the cortex (Lund

et al., 2003)) have characteristic long-range projections targeting laterally 80% ex-

citatory and 20% inhibitory cells (McGuire et al., 1991) which are up to 6 mm and

more away (Gilbert et al., 1996; Lund et al., 2003; Buzas et al., 2006). Moreover,

the targeted neurons tend to have similar feature preference as its origin, resulting

in patchy connections linking similar preferred orientations (Gilbert et al., 1996;

Buzas et al., 2006). Combining anatomical reconstructions of neurons and optical

imaging of orientation maps, (Buzas et al., 2006) proposed a formula to calculate

the bouton density ρ of a typical layer 2/3 pyramidal cell:

ρ(r,∆φ) = Z

(

e
− r

2

2σ2
1 +me

− r
2

2σ2
2 eκ cos(2(∆φ−µ))

)

(4.1)

r is the lateral (Euclidean) distance between the pre- and the post-synaptic neuron,

and ∆φ is the difference of preferred orientations of the two neurons. Parameter

µ is an offset in the orientation preference and parameter m is a scaling factor
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which accounts for the importance of the long-range orientation dependent term

against the local orientation independent term. Standard deviations σ1 and σ2

regulate the spatial width of the non-oriented and oriented term, respectively.

Parameter κ signifies the “peakiness” of the density on the orientation axis. Z is

a normalization constant.

Since we defined preferred orientations in a hard-wired manner via “oriented”

input connections (see Section 4.2.2.1), we could apply Eq. 4.1 for the lateral

connections in layer 2/3, more specifically,for projections from excitatory cells

targeting excitatory and inhibitory cells (McGuire et al., 1991).

Analogous to connections between other layers, we set σ1 = 200µm for the

local non-oriented term. We set µ = 0◦ and σ2 = 1000µm (estimated from the

measurements of (Buzas et al., 2006)). We chose a higher κ = 20 than reported

because of the following reasoning. As described above, the neuron density of

our circuit model is much smaller than in reality. We compensated this neuron

dilution by a noise process fed into each modeled neuron, which implicitly models

activation of omitted neurons. Because any (implicit) input from omitted neurons

is independent of orientation preference, neurons in the circuit should have a

strong bias towards orientation preference dependent connections. To account for

this bias, we therefore increased κ.

Finally, the parameter m was set so that 58 % of the excitatory synapses

onto an excitatory neuron in layer 2/3 were long-range connections. As before,

the connection probability was scaled, according to (Thomson et al., 2002), by

setting Z to appropriate values. Thus, locally, i.e., for a neuron at the same

lateral position (and orientation preference), such as a neuron located in the same

layer beneath or above the pre-synaptic neuron, the connection probabilities were

preserved. However, the weight distribution of the long-range connection was not

constrained by (Thomson et al., 2002). Hence, we scaled the recurrent weight

reported by (Thomson et al., 2002). We used a value of 1.0 for this parameter

that is the same average weight as in (Thomson et al., 2002).

Distance dependent synaptic delay Synaptic delays differ for inhibitory and

excitatory neurons. They were set according to measurements by (Gupta et al.,

2000) (for details see (Häusler and Maass, 2007)). These delays stem from molec-

ular processes of synaptic transmission. In addition, a second delay originating

from finite spike propagation velocity of the fibers was included. This delay de-

pends on the (Euclidean) distance between the pre- and the post-synaptic neuron.

(Girard et al., 2001) found a median conduction velocity of 0.3 m/s for the up-

per layers, and 1 m/s for the lower layers of V1 in macaque monkeys. Thus, we

sampled the velocity for each excitatory synapse in layer 2/3 from a Gaussian dis-

tribution with mean 0.3 m/s and standard deviation 0.5 m/s (with enforced lower

and upper bounds of 0.05 and 5 m/s, respectively). For the other layers, the con-
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duction velocities were drawn from a Gaussian distribution with mean 1 m/s and

standard deviation 0.9 m/s (with same bounds as before). Due to myelination,

conduction velocities of inhibitory fibers are generally higher than for excitatory

cells (Thomson et al., 2002). Lacking exact measurements in the literature for

all inhibitory cells, we sampled the velocities from a distribution with mean and

standard deviation twice as high as for excitatory neurons in the deep layers (the

enforced upper bound was set to 10 m/s).

Synaptic conductances A spike, arriving at a synapse, causes a change in the

synaptic conductance in the post-synaptic neuron. The dynamic of the conduc-

tance depends on the receptor kinetics. Each excitatory synapse in our model

contains α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) recep-

tors having relatively fast kinetics (modeled as exponential decay with time con-

stant τAMPA = 5 ms, reversal potential 0 mV). A fraction fNMDA of all excita-

tory synapses contain additionally relatively slow, post-synaptic voltage depen-

dent N-methyl-D-aspartate (NMDA) receptors (τNMDA = 150 ms, reversal poten-

tial 0 mV,(Gerstner and Kistler, 2002; Dayan and Abbott, 2001)), and there-

fore exhibit a superposition of conductance kinetics. The ratio of NMDA to

AMPA receptors in a synapse was drawn from a Gaussian distribution with mean

µNMDA/AMPA = 0.47 and standard deviation σ = 0.2µNMDA/AMPA (Myme et al.,

2003).

Analogously, the inhibitory synaptic synapses were modeled as a mixture of

GABAA and GABAB receptors. Whereas the GABAA kinetic was again modeled

as arelatively fast exponential decay (τGABAA
= 5 ms, reversal potential −70 mV),

the conductance kinetic of the GABAB receptors was implemented according to

a model proposed by (Destexhe et al., 1994) with parameter values taken from

(Thomson and Destexhe, 1999) (reversal potential −90 mV). The GABAB-to-

GABAA-ratio of an individual inhibitory synapse was drawn from an uniform

distribution between zero and a maximum ratio minh = 0.3.

Orientation map generation It is well established that orientation preference

and other features (such as visual field position, ocular dominance, or direction

preference) form intertwined maps, where neighboring neurons tend to respond to

similar features (Hubel and Wiesel, 1977; Obermayer and Blasdel, 1993).

We employed Kohonen’s Self-Organizing Map algorithm (Kohonen, 1982) to

create orientation maps across the cortical surface. An orientation attribute was

necessary for each neuron for defining thalamic inputs, as well as for preferred

orientation dependent patchy lateral long-range connections. The algorithm has

been used to generate feature maps, which resembled cortical measured feature

maps in their overall appearance, as well as e.g. the occurrence of pinwheels

(Obermayer et al., 1990, 1992; Obermayer and Blasdel, 1993; Erwin et al., 1995;
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Brockmann et al., 1997). Basically, the Kohonen’s Self-Organizing Map algorithm

tries to map a low-dimensional manifold (a horizontal sheet of neurons) to a high-

dimensional feature space, while ensuring that neighboring points on the manifold

exhibit similar feature preference. Let z = (x, y, q cos(2φ), q sin(2φ))T define a

feature vector, where 0 ≤ x, y < k are the positions in visual space, 0 ≤ q < 1

is the orientation preference (or tuning strength) and 0 ≤ φ < π is the preferred

orientation. We did not model ocular dominance because our V1 model received

input only from one retina. If one uses the low-dimensional variant of the learning

rule (Erwin et al., 1995; Obermayer and Blasdel, 1993), one attributes to each

point on the manifold, i.e. each neuron having cortical 2D surface coordinates u =

(u1, u2)
T , its current “optimal” feature vector w(u). Relations between neurons

u and v are enforced by the neighborhood function h(u, v) = exp
(

− |u−v|2

2δ2

)

. The

update of the feature vector of a neuron v can be written as

∆w(v) = αh(u∗, v) (z− w(u∗)) . (4.2)

Note that in each learning step the neuron u∗, showing maximal response to

the current input z, is updated in the direction of the input, weighted by a learning

rate α. Depending on the cortical distance to the maximally activated neuron, the

preferred features of the remaining neurons will be updated to a lesser extent in the

same direction (mediated by the neighborhood function). In this rule we took the

maximally activated neuron to be the nearest in feature space to the current input,

u∗ = argmin|w(u)− z|. We sampled the input features from uniform distribution

(within the above bounds). k regulates the hierarchy between different features

(Obermayer et al., 1992) and was set to k = 5. If one starts from a retinotopic

initial condition, a high value for k ensures that cortical position corresponds

to visual space in an approximate one-to-one map. The characteristic length

scale δ was set to match the experimental observed correlation length in cortical

orientation maps (corresponding to the distance of neighboring pinwheel center) of

dpin = 660µm (Obermayer and Blasdel, 1993). We used the approximate formula

δ =
√
k dpin/D/8, where D denotes the lateral extent of our V1 model.

4.2.2.2 Input model

The electrophysiological recordings were done during presentation of natural

movies. Although our modeling effort was concentrated on the V1 model, we

needed a sufficiently realistic transformation of movie stimulus to (V1 input) spike

trains. Therefore, the retina and the lateral geniculate nucleus (LGN) were mod-

eled, according to (Dong and Atick, 1995), as a spatio-temporal filter bank with

nonlinearities, which seems to be a good compromise between simplicity and re-

alism (Gazeres et al., 1998). The filter bank converted time varying input sig-

nals on the retina, such as movies, into firing rates of LGN neurons. Note that

this feed-forward, rate-based model neglects any feedback connections from V1 to
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LGN (Callaway, 1998). Moreover, we neglected that the ganglion cells typically

react to color opponency rather than to pure luminance differences (Perry et al.,

1984). Thus, the color movie was converted to a gray scale movie.

Retina model The 2-dimensional retinal inputs (movie frames) were filtered

by “Mexican hat” (difference of Gaussians) spatial filters (Rodieck, 1965; Enroth-

Cugell and Robson, 1966; Dong and Atick, 1995). Filter sizes (describing the

receptive fields of ganglion cells) were adapted to the geometry of parvocellular

cells of macaque, where the standard deviations of the Gaussian for center and

surround were estimated to be σcenter = (0.0177◦ + 0.00196ǫ) and σsurround ≈
6.67σcenter at eccentricity ǫ, respectively (in visual degrees; estimated from Figure

4 a and b in (Croner and Kaplan, 1995)). After the convolution of the stimulus

luminance portrait with these kernels (yielding Scenter and Ssurround), the response

of a retinal ON-cell at visual field position r can be described by

RON(r) = C(r) [Scenter(r) − ωSsurround(r)]+ (4.3)

Following (Croner and Kaplan, 1995), we set the ratio of center to surround

ω = 0.642. The positive part of the center and surround interaction (indicated by

the brackets [. . .]+) was assigned to the response of an ON-cell and, analogously,

the absolute value of the negative part to the response of an OFF-cell (Dong

and Atick, 1995). For simplicity we assumed that the origins of the center and

surround summation fields are identical, although a recent study suggests that

there might be an offset between them (Conway and Livingstone, 2006).

Applying the Difference-of-Gaussians model to the luminance of a stimulus

results in a quantity called “contrast gain” (Croner and Kaplan, 1995; Enroth-

Cugell and Robson, 1966; Rodieck, 1965). To calculate the firing rate of ganglion

cells, one has to multiply the “contrast gain” with the local contrast C(r) (as done

in Eq. 4.3), if one neglects non-linear saturation in the high contrast regime, which

is typically not reached for the natural stimuli we used here. Locality is impor-

tant because the concept of a global contrast, easily defined for full-field grating

stimuli commonly used in experiments, is not applicable for real world images and

movies (Tadmor and Tolhurst, 2000). Following (Tadmor and Tolhurst, 2000) we

estimated the local contrast using the same kernels as

C(r) =
|Scenter(r) − Ssurround(r)|
Scenter(r) + Ssurround(r)

(4.4)

where we additionally set the contrast to be zero in the case of darkness. Note

that applying Eq. 4.4 results in a response RON(r) that is sparser than for a

constant global contrast, since the response is now quadratic in the center and

surround luminance difference (see Eq. 4.3).
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LGN model The retinal output was filtered by the LGN model using a temporal

kernel. The temporal kernel combines a phasic (taken from (Dong and Atick,

1995)) and a tonic component (as in (Gazeres et al., 1998)), i.e. kLGN = kphasic +

ktonic. It is for non-negative times

kphasic(t) = t (1 − πwct) exp(−2πwct) (4.5)

and

ktonic(t) = A exp(−t/τ)/τ. (4.6)

Parameter A = 0.3 is the fraction of tonic activation (with respect to the peak

firing rate) for a given stimulus, integrated over a time window of τ = 15 ms.

Parameter wc = 5.5 s−1 defines the shape of the phasic kernel (Dong and Atick,

1995).

The positive parts and the absolute values of the negative parts of the tempo-

ral convolutions were assigned to non-lagged and lagged cells, respectively. Alto-

gether, there are four different time-varying rate outputs, i.e. that of any combi-

nation of non-lagged or lagged cells in the LGN with either ON- or OFF-cells from

the retina (Dong and Atick, 1995). Following (Gazeres et al., 1998) a so-called

“switching Gamma renewal process” was used to convert these time-varying rates

to spike trains. This process, which was suggested to fit experimental data from

cat LGN X-cells (Gazeres et al., 1998), adopts a higher spike time regularity for

high input rates (≥ 30 Hz; regularity parameter r = 5) and switches to a Poisson

process for low rates (< 30 Hz). The spontaneous background activity of each

LGN neuron was set to a low value of 0.15 Hz. The peak LGN spike rate fmax

was adjusted to achieve a mean firing rate of about 7 Hz under movie stimulation,

when the four input channels were combined. The 7 Hz mean rate was estimated

from our electrophysiological data from macaque monkey. Applying a typical 50 s

movie section, we found that a mean rate of 7 Hz was achieved for fmax = 250 Hz.

The peak response would be evoked by a dot of highest contrast filling the center

region of a ganglion cell with optimal duration. This value is in good agreement

with (Gazeres et al., 1998), they reported peak rates in the range of 50 to 400 Hz.

Input connectivity to V1 The visual field is retinotopically arranged on the

cortical surface. However, while there exists only one retinal ganglion cell per LGN

cell corresponding to the same visual field position at all eccentricities in macaque,

there is a considerable magnification in density of cortical neurons in V1 per degree

of visual field (Schein and de Monasterio, 1987; Tootell et al., 1982). Comparing

several earlier studies, (Schein and de Monasterio, 1987) estimated the cortical

magnification factor (CMF) at eccentricity ǫ to be (in mm cortex per degree of

visual field)

CMF =
12.2

ǫ+ 0.94
. (4.7)
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This definition of the cortical magnification factor (Eq. 4.7) is very convenient:

for a fixed eccentricity and distance between adjacent neurons (grid spacing), one

can calculate the lateral extent of the network needed to cover a given visual field

size. Note, however, that this estimate is only useful when the lateral exten of the

network model can be regarded as small compared to the variation in lateral cell

density.

LGN neurons, belonging to the parvocellular pathway, typically project to

layer 4Cβ of V1. There is still an ongoing debate, to which extent oriented input

shapes the orientation selectivity of neurons in the primary visual cortex or to

what extent local cortical processing is involved (see (Teich and Qian, 2006) for

a review). It seems that in macaques, orientation selectivity is thought to arise

from the interaction of cells with gradually shifted input characteristics across the

sublamina of the layer 4C (Lund et al., 2003; Callaway, 1998), whereas the inputs

to a single cell might not be oriented in macaques as suggested for the cat (Hubel

and Wiesel, 1977). However, since we did not model sublamina, we simplified

the circuitry by, nevertheless, assuming that input connections to each neuron

generate orientation tuning. This allows the definition of orientation maps in a

straightforward “hard-wired” manner in our model.

We employed Kohonen’s Self-Organizing Map algorithm (Kohonen, 1982) to

create orientation maps across the cortical surface, which is known to generate

orientation maps with good correspondence to V1 orientation maps (Obermayer

et al., 1990, 1992; Obermayer and Blasdel, 1993; Erwin et al., 1995; Brockmann

et al., 1997). See Fig. 4.1 C for a typical orientation map generated by this

algorithm (see Section 4.2.2.1 for details on the implementation of the algorithm).

Based on the generated orientation preferences for each cortical position, the

thalamic input connection probability to a cell in the circuit could thus be mod-

eled as an oriented Gabor function, i.e. a 2-dimensional Gaussian multiplied by a

cosine function. The absolute value of the Gabor function corresponds to the con-

nection probability of LGN neurons with a cortical cell positioned at the cortical

equivalent position of the origin of the Gabor patch in the visual field. Positive

and negative regions correspond to the connection probabilities of LGN ON- and

OFF-response cells, respectively. Lagged and non-lagged cells connected equally

likely to cortical cells. Following (Troyer et al., 1998), we expressed the Gabor

function in parameters defining the number of sub-regions ns, the aspect ratio of

the width and the height of the Gaussian envelope a, the orientation φ, the offset

of the cosine ψ, and the frequency of the cosine f . Given these parameters, one

calculates the standard deviation of the Gaussian envelope as (see (Troyer et al.,

1998))

Σ
1
2 =

1

4 · 2.448 f

(

ns 0

0 a

)

(4.8)

while using coordinates rotated by φ. The advantage of using these parameters
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is that the frequency defines implicitly the size of the Gabor patch, while the num-

ber of sub-regions is kept constant. Therefore, the receptive fields of macaque V1,

which are much smaller than those of the cat, can be easily included in this frame-

work. We used data from (Bredfeldt and Ringach, 2002) and chose the frequency

f from a Gaussian distribution with a mean of 3.7deg−1 and a standard deviation

of 2.1deg−1 (with an enforced minimum of 0.7deg−1 and maximum of 8.0deg−1).

The number of sub-regions ns and phase shifts ψ were drawn from uniform distri-

butions with ranges of (1.85, 2.65) and (0, 2π), respectively (experimental values

from cat as in (Troyer et al., 1998)).

To incorporate the smooth maps of preferred orientation φ and orientation

preference q depending on cortical position u (see Section 4.2.2.1), we set φ = φ(u)

and the aspect ratio to a(u) = (amax −amin) q(u)+amin. We used values reported

by (Troyer et al., 1998) for the bounds amin = 3.8 and amax = 4.54 for excitatory

neurons, and for the generally less well tuned inhibitory neurons amin = 1.4 and

amax = 2.0.

The overall connection probability, defined by the Gabor functions, was scaled

to achieve an average number of 24 input synapses for both excitatory and in-

hibitory neurons, which is the estimated number of parvocellular afferent connec-

tion per cortical neuron in layer 4C of macaques (Peters et al., 1994). There is

evidence that layer 6 receives occasional collaterals of the LGN input to layer 4

(Callaway, 1998). Thus, we set the connection probability to excitatory neurons

in layer 5 (comprising layer 5 and layer 6 in our model) to 20% of that of the in-

put to layer 4. These values are in good agreement with the data from (Binzegger

et al., 2004) estimated from cat. In macaques, layer 2/3 receives only koniocellular

input (Callaway, 1998). As we omitted the koniocellular pathway in our model,

layer 2/3 did not receive any thalamic input.

Due to finite conduction velocities of the fibers, signals from the retina reach

V1 with a characteristic delay of about 30 ms (Maunsell et al., 1999). We sampled

the delay of the LGN input synapses from a Gaussian distribution with mean 31 ms

and standard deviation 5 ms (and additionally enforced delays below 24 ms and

above 50 ms to a value uniformly in the latter range). These values were taken

from Figure 3 of (Maunsell et al., 1999).

Top-down connections In addition to the thalamic input, V1 neurons receive

multiple feedback connections from extra-striate cortical areas (Felleman and Es-

sen, 1991), especially from V2, where the feedback connections are almost as

numerous as the feed-forward connections (see (Sincich and Horton, 2005) for a

review). Feedback projections predominantly project to targets in the upper layers

but also to layer 5 (Rockland and Virga, 1989; Sincich and Horton, 2005).

Because our model is restricted to V1 and we do not have any recordings from

V2 available, we decided to not include any top-down input stream explicitly.
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However, implicitly additional input to V1 neurons is included by modeling the

“high conductance state” of each neuron, which reflects the synaptic background

input arriving from distal neurons (Destexhe et al., 2001) (see Section 4.2.2.1).

4.2.3 Comparing the V1 model to electrophysiological data

4.2.3.1 Setup of the stimulus to the model

The stimulus, presented to the V1 model during simulation, resembled the one

presented to the monkeys. We used a 10 s fragment of one of the movie segments

(sw21) shown during the electrophysiological recordings as input movie for the

model. However, modeling the whole 10◦×7◦ visual field was not feasible because

of computational costs. Therefore, we trimmed the movie frames to a smaller

size, covering 3 × 3◦ of the visual field. The center of the extracted region was

aligned to the center of a receptive field of one of the electrodes (channel 7) of a

particular session (“d04nm1”). Since the diameter of the receptive field of that

electrode was experimentally determined to be 1.2◦, the reduced stimulus should

at least contain all direct input information available for neurons recorded by that

electrode. On the retina, this receptive field was centered at (0.69◦,−2.39◦) ec-

centricity relative to the fovea. In the model, we set the eccentricity, nevertheless,

to 5◦, since otherwise the lateral extent (and, therefore, the amount of neurons in

the model) per visual degree would be prohibitively large (compare to Eq. 4.7).

At 5◦ eccentricity a V1 model covering 2.4◦×2.4◦ has a lateral extent of 5×5mm2

cortical surface and neurons are positioned on a virtual grid of size 62 × 62 × 9

if one assumes a lateral grid spacing of 80 µm. Vertically, the grid spacing corre-

sponds to 200 µm (see Method Section 4.2.2.1). The visual field covered by the

V1 model is somewhat smaller than the stimulus to avoid boundary effects in the

input connectivity. For analogous reasons, the LGN neurons were set to cover an

intermediate area of 2.8◦ × 2.8◦ (77 × 77 grid).

4.2.4 Estimating the relative strength of the thalamic input

In the recorded spike trains, the mean firing rate of multiple trials (5 min duration)

across monkeys and V1 electrode channels was on average 5.1 (4.8) Hz (standard

deviation) during movie stimulation and 1.9 (3.3) Hz during spontaneous activity

(blank screen). Thus, one could state that due to the thalamic input the mean

firing rate of the circuit increases by about 3 Hz. From simultaneous extracellular

recordings in LGN, we analogously find a mean firing rate of 7.1 (2.9) Hz during

visual stimulation and 4.4 (2.1) Hz during absence of visual stimulation. Hence,

in the LGN the movie stimulus increases the mean firing rate by about 60 % of

the spontaneous activity.

We used these values to determine the synaptic input weight scale (WIn,scale),

i.e. the scaling factor of the peak conductances originating from LGN neurons, in



90 Chapter 4. Spike statistics of area V1 in vivo and simulations

Figure 4.1: Long-range connectivity of the V1 model.

Long-range patchy connectivity of an example neuron implemented in a model

circuit having 165× 165× 3 neurons in layer 2/3 positioned on a cuboid grid with

a spacing of 25 µm. (Note, these dimensions are different from that used in the

simulations of the Results section, but they are used here for better visualization)

A and B: Conditional probability that the neuron (marked with a white square

in the center of C) is connected to a neuron having lateral distance r or orien-

tation selectivity φ, respectively. The connection probability to a post-synaptic

neuron at zero lateral distance and same orientation preference was scaled to ex-

perimental data (≈ 0.24%; (Thomson et al., 2002)). Blue and red curves show the

connection probabilities for neurons which have aligned or orthogonal preferred

orientation to the pre-synaptic neuron, respectively. C: Connections established

according to the probability distributions for a pre-synaptic neuron in the origin

of the circuit (white square). Small white dots represent lateral positions of post-

synaptic neurons. Colors code for orientation tuning of a neuron (generated by

a self-organizing map). The conditional connection probabilities are indicated by

contour lines. One notes that the connection probability rises for regions with

similar orientation as the pre-synaptic neuron (about 90◦) thereby generating a

patchy appearance. Only the orientated (long-range) part of Eq. 4.1 (second term)

is used for establishing connections in this example plot. The orientation map ad-

ditionally determines the orientation of thalamic input connections (see Methods

section).
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Table 4.1: Parameters investigated in their optimization potentials together

with their standard value pst. Standard values for 5 of the parameters could be

extracted from the literature. If no reference is given, the standard value was

chosen heuristically.

Parameter std. Reference

value

p1 noise level scale 1.0 (Destexhe et al., 2001)

p2 fraction of synapses with NMDA 0.9

p3 NMDA-to-AMPA ratio 0.47 (Myme et al., 2003)

p4 width of inh. connections (µm) 150 (Lund et al., 2003))

p5 max. fraction of GABAB conductance 0.3

p6 inh. to exc. connections weight scale 1.0 (Thomson et al., 2002)

p7 exc. to inh. connections weight scale 1.0 (Thomson et al., 2002)

p8 long-range weight scale 1.0

the following manner: In the absence of all inter-cortical connections, the weight

scaling factor of the input stream was set to a value achieving closest match to a

given target mean firing rate rtarget in each neuron population (minimal Euclidean

distance). Assuming that the main input drive to V1 (during visual stimulation)

is from the thalamus, we set the target mean rate for the circuit to 2 Hz, which

roughly corresponds to the activity increase seen during visual stimulation in our

experimental data.

4.2.5 Characterization of the spiking statistics

We defined 10 statistical measures to characterize the spike train statistics. Each

statistical measure was calculated on all available spike trains of the experimental

session and the simulation, respectively. If not mentioned otherwise, we calculated

the spike statistics using time windows with a length of 2 s. The time windows

were overlapping with a step size of 0.2 s. The 10 chosen statistical measures are

the following:

Firing rate distribution The distribution of mean firing rates in windows of

2 s duration.

Fano factor over different time scales To characterize spike count variabil-

ity over a range of time scales, we estimated Fano factors of the spike count-

distribution. These Fano factors are defined as the ratio of the variance to the

mean of the spike-count distribution estimated over time windows of fixed length.

We compared the average Fano factors for a range of time window durations (from

10−2.5 s to 100.4 s).
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Population Fano factors For different time windows (from 10−2.5 s to 100.4 s),

we calculated the temporal mean spike count of the whole population of neurons

and its variance. From these values we calculated the Fano factors. These Fano

factors describe the variability of the population firing rate.

Burst rate distribution Burst events can be defined as having at least 2 spikes

with an average ISI of at most 5 ms (Lisman, 1997). The burst rate is the frequency

of burst occurrence estimated within a period of time. The burst rate distribution

describes the probability of different burst frequencies and was again estimated

on time windows of 2 s duration.

Burst rates for different burst sizes To analyze the occurrence of larger

bursts, we calculated the burst rate distribution for burst events having at least n

spikes with an average ISI of at most 5 ms. We then took the average burst rates

for a set of n minimal spikes (n = 2 . . . 25) as another statistical measure.

Inter-spike interval (ISI) distribution This is the distribution of the inter-

vals between two consecutive occurring spikes of one neuron. The distribution

was estimated on the full length of the spike response to include longer intervals

in the analysis. As before, we took all available trials and neurons to calculate a

population statistic.

2-ISI distributions For neurons, placed in a recurrent network, the generation

of a spike might depend in a systematic way on the relative timing of the previous

spikes. To compare such dependencies, we estimated the 2-ISI distributions. We

define the 2-dimensional 2-ISI distribution p(τ1, τ2) as the probability of occurrence

of two sequential spike intervals of lengths τ1 and τ2. These distributions were

estimated on the full length of the spike response.

ISI coefficient of variation distribution Another estimation of the variabil-

ity of spike trains is the coefficient of variation of the inter-spike interval distri-

bution (CV(ISI). The coefficient is defined as the ratio of the standard deviation

to the mean of the ISI-distribution. The CV(ISI) was estimated on the available

ISIs of each window of 2 s duration, and the resulting population statistics were

taken for comparison. If there were less then 3 spikes in a given time window, we

set the value of the CV(ISI) to zero.

Neuron synchronization We defined synchronization as the mean cross-

correlogram of spike activity between two neurons, that is the cross-covariance

of the binned spike trains divided by the square root of the product of the vari-

ances (with a temporal bin size of 25 ms). We averaged over all spike clusters
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available in the sorted electrophysiological recorded spike trains and over 20000

randomly drawn neuron pairs of the model circuit.

Spike time correlation as a function of distance Lateral decorrelation of

neural activity might be another important prerequisite for computational func-

tion of a neural circuit. Thus, we calculated the cross-correlogram as a function

of the Euclidean distance between two model neurons or recording sites. The

temporal bin size was 50 ms and the spatial bin size was 500 µm. The correlation

was averaged over time lags from -0.5 s to 0.5 s.

4.2.6 Evaluating the deviation between model response and
in vivo recordings

To compare the firing regime of the model with that of the in vivo recordings,

we evaluated the discrepancy between a set of 10 statistical features calculated

from the model response and the recorded spike trains (see Section 4.2.5). After

estimating a statistical feature on the experimental data and the model response,

their deviation was calculated using Kulback-Leibler divergence, or by calculated

the mean squared error, depending whether the features resulted in an estimated

probability distribution or not, respectively. This deviation was normalized by

the average deviation seen in this features if tested between any two experimental

sessions (different monkeys or different movie stimulus). We call this experimen-

tal data weighted deviation the “normalized deviation” (ND) for each statistical

features. We report the normalized deviation averaged across all statistical fea-

tures as a measure for the goodness of fit, and abbreviate it in the following with

“mean normalized deviation” (MND). Note that by construction a MND value of

1 indicates that the deviation between the model response and the in vivo data

(average over all sessions) equals (on average over the 10 statistical features) the

average deviation between individual experimental sessions. We used only one

model random seed for the evaluation of the fitting error for each parameter set-

ting to reduce computational costs. To compensate for a lack of synaptic drive

due to a much smaller neuron density in the model compared to reality, we in-

troduce two scaling parameters WIn,scale and Wscale. The WIn,scale parameter, a

multiplicative factor applied to all weights of the input connections, was set by

a heuristic approach to approximately match the input strength observed in the

experiments (described in Methods Section 4.2.4). The second scaling parameter,

the weight scale parameter Wscale, accounts for the recurrent synaptic drive ad-

justments and is a multiplicative factor applied to all recurrent weights. As this

parameter is inherent to the model design, it cannot be constrained by literature

values. Therefore, to estimate the weight scale parameter Wscale, we used the

value that minimizes the deviation of the model firing response statistics to the

“statistical fingerprint” of the firing regime of the in vivo recordings. To measure
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its deviation, we used the MND as described above. We restricted the analysis on

the response of excitatory neurons only, because we expect that due to the gen-

erally larger size of excitatory neurons, the experimental recordings were strongly

biased to record spikes originating from excitatory cells.

4.2.7 Simulation techniques

All simulations were performed using the PCSIM simulation environment

(Pecevski et al., 2009). It takes about 5 hours on a quad core machine (2664

MHz) to simulate the described model for 10 seconds of biological time (depend-

ing on the mean firing rate). All simulations were performed in a distributed

fashion on a cluster of 30 such quad core machines.
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4.3 Results

We first established the “statistical fingerprint” of the spiking activity of the pri-

mary visual cortex (V1) under naturalistic stimulus conditions in vivo. The ex-

tracted statistical features provided the grounds for comparison with the simulated

firing response of a detailed circuit model. Since we hypothesize that V1 works

in a characteristic firing regime favorable for its ongoing computations, we were

particular interested in features possibly characterizing a computational advanta-

geous regime. For instance, such a regime might consist of highly irregular firing

and low correlations between neurons (Brunel, 2000; Legenstein and Maass, 2007).

We therefore extracted 10 salient statistical features, which are sensitive to vari-

ous aspects of the spiking response, such as response strength, response variability,

spike correlations, bursting behavior, and the possible usage of spiking codes with

non-linear dependencies on consecutive spike intervals (see Section 4.2.5, for exact

definitions).

4.3.1 Statistical characterization of the spike response to movies
in monkey area V1

We first analyzed electrophysiological recordings from V1 of anesthetized macaque

monkeys during stimulation with natural movies. The data comprised spike re-

sponses measured in 10 sessions (from 4 anesthetized macaque monkeys), each

with 12-40 repeated representations of a movie of 3.5 to 6 minute length. In

Fig. 4.2 D and E, typical spiking responses of selected neurons are depicted. We

characterized the firing statistics of this experimental data using a set of 10 sta-

tistical features (see Fig. 4.3).

We found that spike responses of V1 under naturalistic stimuli conditions were

typically highly variable over time and moderately low correlated between differ-

ent neurons having a smooth fall-off for long time lags. Firing rate and burst

rate distributions followed exponential distributions, burst size frequencies and

ISI distributions exhibited a power-law structure. This described general picture

is consistent with previous published values. In detail, the exponential distributed

firing rates (Fig. 4.3 A) exhibited exponents varying between monkeys and experi-

mental trials in the range of −2.35 s to −0.23 s (mean −0.81 s, standard deviation

(SD) 0.62 s). The overall mean firing rate of the experimental data averaged over

the different sessions was 5.06±0.75 Hz (mean±SD). The exponential distribution

of firing rates is consistent with results from the V1 of cats (Baddeley et al., 1997).

Spike train variability is generally high. We tested for the variability in the spiking

response using the distribution of Fano factors of individual neurons for multiple

time scales (see e.g. (Teich et al., 1997)), and the Fano factor of the network pop-

ulation spike response, to measure the response variability of the population code.

For individual neurons (Fig. 4.3 B) the Fano factor approached 1 on average for
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small window sizes in the order of 10 milliseconds, indicating a Poisson process

with stationary rates. On larger time scales, however, the Fano factor increased.

This increase in variability could reflect the internal dynamics, but might be partly

induced by the movie stimulus, which mean brightness often varies on a time scale

in the order of seconds. The population Fano factor (Fig. 4.3 C), measuring the

response variability of the neuron population, showed a similar time window de-

pendence as the Fano factor of individual neurons. However, the absolute value of

the population Fano factor was markedly smaller, indicating that the population

response was less variable over time on short time scales. On a longer time scale,

however, the Fano factor of the population response increased, indicating that the

neurons in the recorded population tend be active or silent together. This might

hint at population burst-like activity, also evident when examining the concrete

spike trains in the recordings (see (Montemurro et al., 2008) for a discussion of

how these clusters of spikes relate to the local field potential fluctuations in the

same data). Another evidence for the high variability in the in vivo data is given

by the coefficient of variation of the inter-spike intervals (CV(ISI)), plotted in

Fig. 4.3 H. High probabilities were typically found for CV(ISI) values above one,

indicating a high variability in the spike response. Such a high peak value is con-

sistent with previously published data (Softky and Koch, 1993; Holt et al., 1996;

Shadlen and Newsome, 1998; Stevens and Zador, 1998). Spike bursts, i.e. abrupt

events of high spiking activity, have been suggested to be an important aspect of

neuronal coding of information. For instance, bursts might convey additional and

independent information about the sensory inputs (Cattaneo et al., 1981; Lisman,

1997). Thus we included two statistics to measure the occurrence of bursts in

neuron spike trains, a feature rarely examined in the literature. Fig. 4.3 D shows

the burst rate distribution, measuring the frequency of spiking events having at

least two spikes within an (average) inter-spike interval of 5 ms. Fig. 4.3 E shows

the average burst rate for different sizes of bursts (see Section 4.2.5 for exact def-

initions). Qualitatively, the burst rate distributions of different sessions looked

similar, having exponential distributions. The exponent varied in the range of

−5.07 s to −3.18 s (mean −4.54 s, SD 0.56 s). The average bursts rate of all ex-

perimental data was 0.51±0.17 Hz (mean ± SD). However, in some sessions there

was a deviation from the exponential distribution and higher burst rates occurred

more often than expected. Fig. 4.3 E shows that the burst rate as a function of the

burst size can be described by a power law (a straight line in a log-log plot). We

found exponents in the range of −3.52 to −2.29 (mean −2.88, SD 0.43). Individual

spike precision might be important for information coding. It is conceivable that a

certain inter-spike interval (ISI) distribution might be characteristic for the firing

regime of the cortex. Inter-spike interval (ISI) distributions (Fig. 4.3 F) were very

similar for different monkeys and different sessions. There was a high probability

for the occurrence of long inter-spike intervals. The distribution of inter-spike
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intervals similarly followed a power law with an average exponent of −1.20± 0.19

(range from −1.47 to −0.98). Additionally, to account for any local temporal

correlations in the spike timings, we also estimated the 2-ISI distribution, which

is a 2-dimensional distribution of the joint event of one inter-spike interval and

the immediately following inter-spike interval (Fig. 4.7 K). The ISI distribution

for the following ISI when conditioned on a very short current ISI had a similar

power-law shape as the marginal ISI distribution (Fig. 4.3 G), although the oc-

currence of a short ISI following a short ISI was more likely. Similar to the full

ISI distribution, we found a relatively low variability across sessions and monkeys.

In general, we found that two neurons in V1 were on average correlated for lags

up to about 250 ms having moderately low peak correlations. Other studies also

reported low (signal) correlations between pairs of neurons for naturalistic stimuli

(Yen et al., 2007; Reich et al., 2001) and even lower correlations in awake animals

(Vinje and Gallant, 2000). To be able to better compare our data to the literature,

we calculated the shift-corrected cross-correlogram (Bair et al., 2001; Kohn and

Smith, 2005; Smith and Kohn, 2008) and the noise correlations (rsc, e.g. (Ecker

et al., 2010)) and found that the correlation structure in our data agreed very well

with that of Smith and Kohn (see Fig. 4.8). The strength of correlations however

depended on the monkey and movie stimuli (Fig. 4.8 A and C). The mean value

was rsc = 0.26 ± 0.03 (mean ± SEM).

We further analyzed the cross-correlation for pairs of neurons as a function

of their distance (Fig. 4.3 J, and Fig. 4.8 A). In agreement with others (Smith

and Kohn, 2008), the cross-correlation was higher for neurons (clusters) recorded

by the same electrode and decreased for longer electrode distances, where the

correlation remained on a low level. In summary, we have computed a set of

statistical features characterizing the “statistical fingerprint” of the spiking ac-

tivity under semi-natural movie stimulus condition in vivo. Certain features of

the obtained “fingerprint”, namely the high variability of inter-spike intervals, low

cross-correlation, and the power-law distributions of burst events suggest that the

V1 during movie stimulation might indeed reach an operating state, which is fa-

vorable for recurrent neural networks for performing computational tasks. The

results presented here agree in general with published literature. However, since

we characterized the firing regime not only by a small set of mean values but

instead by 10 different functions (or estimated probability distributions), we were

able to quantify the deviation of the firing regime of a simulated model from that

exhibited in vivo in great detail. Moreover, the dataset provided us with the

unique possibility to test the importance of physiological meaningful parameters

to optimize the model response behavior to closely reach a realistic state.
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Figure 4.2: Spiking response to movie stimulus in model simulation

and in vivo

A: Movie input to the model circuit in true colors (in the model we used a grayscale

version of this movie). Pixels of the movie frames are lined up vertically. B: LGN

model response to the movie in A. 70 input channels were randomly selected for

plotting (in total there are 4900 LGN inputs) C: Spike trains elicited by neurons

in the V1 model in response to the LGN output (B) are plotted in separate panels

for each of the layers 2/3, 4C, and 5-6. For better visualization, 70 neurons (of

11532) are randomly chosen from each layer. Inhibitory and excitatory neurons are

colored red and black, respectively. One notes a high variability in the statistical

structure across neurons. D: Spike trains of the spike sorted experimental data

in response to the same movie segment are shown. Different colors represent

different sessions of the same monkey - green (blue): two trials of session d04nm1

(d04nm2). We show two trials to allow for an easier comparison of the statistical

structure of the spike trains in vivo with the model response (C). Note that the

receptive field of some electrode channels lie outside of the depicted movie region

(A) (see Method section for details). E-F: Multiple trials of two selected neurons

in experiment (E) and model (F). Note that trial-to-trial variability is comparable

in silico and in vivo.
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Figure 4.3: Spike statistics of the experimental data.

Each panel corresponds to a particular statistical feature (see Section 4.2.5 for

exact definitions). Data from 10 experimental sessions (from 4 monkeys) during

movie stimulation are plotted separately in color code (first monkey - brown,

second monkey - green, third monkey - shades of blue, fourth monkey - shades of

red). In the legend the first three letters of a session code indicate the animal, the

second three letters the recording session. The shown segment of the presented

movie (Star Wars) is indicated in brackets. All available trials are included. Values

greater than the plot limits were included in the last bin (where applicable),

resulting in a disproportional large probability in the last bin. Note that the

2-ISI distribution is a 2-dimensional distribution. G shows the conditional ISI

distribution given that the first ISI is shorter than 5 ms.
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4.3.2 Quantification of the discrepancy between the firing regime
of a model for a patch of V1 and the firing state exhibited
in vivo

Having characterized the V1 in vivo recordings, we proceeded with characterizing

the simulated responses of the circuit model of V1 in silico. The V1 model was

based on anatomical and physiological details of macaque monkeys and was built

to model the neural activation in a 5 mm x 5 mm cortical patch of V1 (see Methods

Section for a detailed description of the V1 model). We simulated the model and

recorded the spiking activity in response to 10 s of a typical movie segment (sw21)

that had also been used for in vivo recordings.

Differences in the firing regime in silico and in vivo were quantified by estimat-

ing the deviations in all statistical features. We calculated the mean normalized

deviation (MND) between the model and the in vivo response (see Methods for

definitions). Note that MND = 1 indicates that the deviation of the model re-

sponse to the mean response over all sessions equals the mean deviation between

all pairs of sessions. Our measure thus relates to the deviation among individ-

ual experimental sessions. Moreover, the MND weights the importance of each

statistical feature in a manner that features showing a high variability between

experimental sessions are deemed less important and those features conserved

across sessions are emphasized. By setting parameters of the model to values

derived from the literature (see Table 4.1) and minimizing the fitting error in re-

spect to the overall recurrent connections weight scale, which is inherent to the

model design (Wscale; see Methods), we found a mean normalized deviation of

MND = 1.97, indicating that the deviation is on average about twice as high as

between experimental sessions and monkeys. Since we presented complex movie

stimuli, it is not clear whether the firing regime of the model was indeed gener-

ated by internal dynamics or was instead solely induced by the statistics of the

input. To test the possibility of induced dynamics, we calculated the MND on the

input spike trains generated by the LGN model (omitting the now meaningless

lateral cross-correlation feature), and found a value of MND = 2.5. This value

is considerably higher than for the model response. We repeated the statistical

analysis for the model network after abolishing all recurrent connections, leaving

only the input connections intact. By varying the strength of the synaptic input

connections, we found a minimal value of MND = 4.37. Thus the fit of the fir-

ing statistics was much worse than with intact recurrent connections, implicating

that the recurrent dynamics of the network indeed shaped the firing response.

We concluded that by simply optimizing an overall scale parameter (Wscale), the

model dynamics shaped its statistical response properties in direction of that of

the in vivo response. However, deviations from the realistic firing regime in vivo

were still considerable.
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4.3.3 Improvement of the firing regime when optimizing the
model

Can the firing regime of the model be adjusted by physiological meaningful param-

eters to improve the fit to the in vivo data? Finding such parameters would shed

light on parameters that exert control over certain statistics. Therefore we chose 8

physiological meaningful parameters (see Table 4.1 for an overview), which we be-

lieved to influence the firing dynamics. We then optimized the model in respect to

each parameter and evaluated each parameter’s ability to improve the discrepancy

between model and in vivo recordings. Unfortunately, simultaneous optimization

of multiple parameters was computational prohibitive. Therefore, we varied each

parameter individually around the “standard” parameter values taken from the

literature (pst), which we used to establish the initial “fingerprint” of the model’s

response (see above). Since the optimal Wscale might change during the variation

of a parameter, we additionally varied Wscale resulting in two-dimensional land-

scapes (see Fig. 4.4, see Table 4.2 for a summary of the quantitative results of

the optimization). The effects of parameter optimizations on the improvement of

each statistical feature are analyzed in Fig. 4.5. We first chose a parameter vary-

ing the background noise strength (parameter p1). The background noise strength

implicitly regulates the strength of how neurons not modeled in the circuit affect

the modeled neurons (see Methods section). When varying this parameter, we

did not find a strong dependence on the quality of the fit (Fig. 4.4 A), suggesting

that this background noise strength was of minor importance. Although vary-

ing the noise strength improved some individual statistical features in respect to

the literature values (such as Fano factors, burst sizes and ISI distributions, see

Fig. 4.5 A), the effect was typically below 10 % ND improvement. Indeed, even if

we disabled the background noise, the fit to all statistical features simultaneously

was only compromised by a negligible decrease of the MND of 3 % (Fig. 4.5 B).

This suggests that our network was already big enough to explicitly provide real-

istic synaptic background inputs to any neuron. In our model, the lateral width of

inhibitory neurons was relatively small (standard deviation 150 µm, see Methods).

We tested whether the fit could be improved by varying the lateral spread of the

inhibitory connections (p4). However, this was not the case: a good range for this

parameter lied between 150 µm and 250 µm, depending on the overall strength of

the synapses (Wscale, see Fig. 4.4 D). Although, the ND of burst sizes and Fano

factors could be markedly improved (see Fig. 4.5 A, and Fig. 4.6), these features

had only a small influence on the MND because their variance between experi-

mental sessions was high and, moreover, they were already well fitted by a model

with parameters set to standard values (compare to Fig. 4.6 right marginal plot).

In consequence, the MND could only be improved by about 5 % by optimizing the

lateral connection width of inhibitory neurons, suggesting that our original value

was adequate.
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Table 4.2: Optimized parameter values.

The best value (and the correspondingWscale) for each parameter were inferred by

grid search (see Fig. 4.4). The “5 % range” indicates the range where the MND

changed by at most 5 % (in respect to its best value) and was estimated using a

quadratic fit around the best value (with fixed Wscale).

Parameter std. best 5 % range Wscale MND

value value

p1 noise level scale 1.00 0.76 0.42 - 1.10 160.4 1.92

p2 fraction of synapses with NMDA 0.90 0.95 0.78 - 1.13 156.5 1.88

p3 NMDA-to-AMPA-ratio 0.47 0.86 0.73 - 0.98 107.4 1.74

p4 width of inh. connections (µm) 150 208 182 - 233 223.8 1.79

p5 max. fraction of GABAB cond. 0.30 0.40 0.25 - 0.56 150.8 1.89

p6 inh. to exc. weight scale 1.00 1.11 0.96 - 1.27 151.5 1.90

p7 exc. to inh. weight scale 1.00 2.25 2.14 - 2.36 146.1 1.57

p8 long-range weight scale 1.00 0.11 0.0 - 0.46 139.3 1.65

In general, we expected the synaptic receptor composition to be critical for

achieving a realistic regime. Since NMDA conductances are activated on a slow

time scale and thus might affect the variability of the model especially on a longer

time scale, we tested two parameters varying the amount of NMDA receptors in

different ways: the fraction of synapses having NMDA receptors (p2) and the aver-

age NMDA-to-AMPA ratio of a synapse (having NMDA receptors) (p3). Knowing

that the latter ratio shows a relatively high fluctuation in experimental literature

(Myme et al., 2003) and that NMDA receptor function might be influenced by

anesthesia (Guntz et al., 2005), these parameters might need to be adjusted in

the model. Remarkably, when NMDA conductances were not included in the

model at all, the fit degraded significantly (about 20 % decrease in MND), com-

promising mostly the fit to the ISI structure and the Fano Factors, but also the fit

to the lateral cross-correlation (see Fig. 4.5 B). This suggests that the NMDA con-

ductances were a necessary component of the network model to achieve a realistic

firing regime especially for the variability on a longer time scale. However, we also

noticed that varying these parameters led to only minor improvements (within

10 % change of MND in respect to the standard parameters, see Fig. 4.4 B and

C). Thus we concluded that the standard literature values for the NMDA-to-

AMPA ratio and the fraction of synapses having NMDA receptors were already

adequately chosen. GABAB conductances are activated non-linearly only in case

of high pre-synaptic activity events (Thomson and Destexhe, 1999), and further-

more exhibit relatively slow dynamics. We thus expected that the adjustment of

the maximal fraction of GABAB conductances (p5) would affect the population

spike structure. Indeed, we found that the GABAB conductances were critical
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Figure 4.4: Improvement in the goodness of fit between in vivo and

in silico firing regimes when varying physiological meaningful general

parameters.

The improvement in MND in respect to the standard parameters is plotted in

color code when varying 8 general parameters individually (see Table 4.1 for a

description of the parameters). Each parameter was varied together with an over-

all scaling factor applied to all synaptic weights (Wscale), while other parameters

were held constant. Adjusting some of the parameters considerably improved the

fit to in vivo data. For instance, the relative synaptic weights of excitatory to

inhibitory neurons needed to be increased dramatically (G). The standard pa-

rameter values and the settings showing the best fit in the statistical properties

(minimal MND) are indicated with black diamonds and red circles, respectively.

The minimal MND values are indicated in the titles. I shows the minimal MND

(relative to standard parameters) versus Wscale for the 8 parameters.
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in our model: including these conductances in the model dramatically improved

the fit (about 80 % improvement, see Fig. 4.5 B). One possible reason for this

dependence on GABAB conductances could be the crucial lack of long lasting or

the non-linear activation of inhibitory neurons when GABAB conductances were

absent. The strong effect suggested that sufficient activation of inhibitory neurons

was necessary for achieving a realistic firing state.
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Figure 4.5: Effects of parameter optimization on individual statistical

features A: The percentage change in ND in respect to standard parameter set-

tings when optimizing parameters p1, . . . , p8 individually is plotted in color code

(see Table 4.1 for a description of the parameters). One notes that individual

parameters have different influences on statistical features. The bottom margin

displays the improvement in MND (averaged over all statistical features). Same

simulation data as in Fig. 4.4. B: Impact of the inclusion of different components

in the model. Selected components of the model: background noise (p1), NMDA

conductances (p3), GABAB conductances (p5), or patchy long-range connections

(p8). The improvements of the fit when including a component are plotted in

color code (relative to the standard parameter settings, having all components in-

cluded). One notes that including GABAB conductances had the most pronounced

effects, improving the fit to multiple statistics profoundly. When components were

switched on and off Wscale was again optimized in respect to MND.

However, similar to the NMDA conductances varying the maximal fraction of

GABAB conductances did not considerably improve the MND value in respect

to standard parameters (Fig. 4.4 E). One might hypothesize that the balance of
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excitation and inhibition was not established appropriately in the network model.

To vary the overall connection strength between neuron pools, we chose relative

synaptic weight scaling factors from inhibitory to excitatory neurons (p6) and

from excitatory to inhibitory neurons (p7) as parameters. Whereas varying the

inhibitory to excitatory connection strengths did not yield any overall improve-

ment (Fig. 4.4 F), varying the reverse, the excitatory to inhibitory connection

strengths had a strong effect. We noticed that increasing p7 2.25-fold resulted in

an 18 % improvement of the fit to in vivo data (Fig. 4.4 G), indicating the im-

portance of correctly balancing inhibition and excitation for acquiring a realistic

firing regime. Judging from the discontinuity of the error landscape (Fig. 4.4 G),

an almost 3-fold increase in p7 seemed to switch the firing regime into a new state,

which was much more similar to the firing regime in nature. This strong overall

improvement in the MND was mainly mediated by the ND improvement in the

correlation structure (lateral cross-correlation and synchronizations), which could

be improved by about 40 % in comparison to the simulation using standard lit-

erature values (see Fig. 4.5 A). Additionally, deviations in firing rate distribution

and both Fano factors were also decreased by high percentages (see Fig. 4.5 A).

Finally, we chose the relative synaptic weights scaling factor of the patchy lateral

long-range connections (p8) because it is not well constrained by the literature

(see Methods Section for details). We found that the initial weight scale was

somewhat too high: decreasing the weight of the long-range connections improved

the variability of the network response. Indeed, the removal of long-range con-

nections decreased the MND only by 3 % (Fig. 4.5 B). The decrease of the MND

by 14 %, when optimizing for the relative strength of the long-range connection

(Fig. 4.4 H), was mainly mediated by improving the burst structure (more than

50 % improvement in the burst sizes and the burst rate distribution), as well as

the CV(ISI) distribution (about 35 %, see Fig. 4.5 A). When inspecting the spike

responses visually, we noticed a slow rhythmic bursting for high p8 values (near

1). These periodic population bursts were not seen after decreasing p8. The rel-

ative weight of the lateral long-range connections therefore had to be reduced to

avoid the induction of population bursts resulting in a much better fit to responses

in vivo, in particular reducing the deviation in the statistical features sensitive to

the burst structure.

In summary, for the majority of the selected parameters its literature value

could not be markedly improved. The improved MND deviated less than 5 % from

the MND values in case of standard parameters. An intermediate effect could be

seen when varying the NMDA-to-AMPA ratio (p3). Here the improvement with

respect to the standard parameters reached 9 %. The most striking improvement,

however, could be gained by varying the relative weight scaling factors of the long-

range connections (p8) and of the excitatory to inhibitory connections (p7). Here

the MND improved by 14 % and 18 %, respectively.



4.3. Results 107

Next, we tested whether the fit could be further improved by varying the

combination of the two most promising parameters together, i.e. the relative

weight factors of excitatory to inhibitory connections and of patchy long-range

connections, respectively p7 and p8. By setting p7 to its best value (2.25) and again

varying p8 (as in Fig. 4.4 H) the goodness of fit improved further to MND = 1.19

(for p8 = 0.3). We simulated this optimized model for multiple trials (changing

the random seed of the simulation) and found a mean MND value of 1.30 ± 0.01

(mean ± standard error of mean, SEM). This is a 32 % improvement over the

model using standard parameters. Finally, if a longer, non-intersecting section

of the movie (25 s) was tested with this optimized parameters, the MND value

decreased to a value of 1.10. Varying other parameters while using the best value

for p7 did not further improve the fit (not shown).

Are these improvements robust towards changes in the network structure?

Since we used only one network to optimize the firing regime to reduce computa-

tional costs, we have to test the robustness of our findings in respect to a change in

the network instance. Exemplarily, we tested whether ten networks with different

construction random seeds achieved similar fits for the case of adjusting parameter

p7 and p8. The goodness of fit generally depended somewhat on the particular

network instance. We found an average MND value of 1.32 ± 0.09 (mean±SEM

for different trials and different networks on the 25 s movie segment), when vari-

ables were initiated by the optimized parameters described above (and connection

weights, time delays etc. of individual neurons and synapses were drawn randomly

from distributions specified by general parameters). In general, the MND values

therefore remained very stable when changing the network instance. However, in

one exceptional network instance we observed an outlier value of MND = 2.81

for the same movie section. To test whether the optimal parameters are different

in case of this outlier network and whether it could be re-adjusted to a realistic

firing regime, we recomputed the optimization exemplarily for the parameter p7.

We found that the overall shape of the fitness landscape was almost identical to

the original network (Fig. 4.4 G), except that we had to reduce the overall weight

scale (from 146 to 131) to reach a good MND value of 1.41. Remarkably, the

optimal value for parameter p7 remained the same (2.25).

We conclude that the particular instance of the random network structure will

commonly not have major influences as long as not too extreme weight configura-

tions are drawn by accident. Therefore the amount of neurons in the network is

large enough to sample over random instances of connection weights for individual

neurons.

In conclusion, by comparing the model response statistics to in vivo data, the

contribution of physiological meaningful parameters for achieving a realistic firing

state could be revealed and the effect on statistical features quantified. Individ-

ual statistical features as well as the overall fit could be robustly improved by
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varying selected parameters. It was most effective to adjust the synaptic weights

of the lateral long-range connection and to balance inhibition and excitation by

strengthening the connections from excitatory to inhibitory neurons. The optimal

parameter values were generally robust across network instances. The optimized

network achieved a mean normalized deviation of MND = 1.10 (calculated on a

long movie section), which is remarkably close to the average deviation between

experimental sessions. In addition, for achieving a realistic regime, both NMDA

and GABAB conductances were crucially important components of the network

model.



4.3. Results 109

Firing rates

Fano Factors (FF)

Population FF

Burst rates

Burst sizes

ISI

2−ISI

CV(ISI)

Synchronization

X−Corr (distance)
 

 

ND improvement in respect to  p
st

 [%]

<=0 25 50 75 >=100

1 2 3 4 5 6 7 8
0

50

100

Parameter # optimized

Im
pr

ov
em

en
t

[%
]

 

 overall (MND)

average percent (ND)

0 2 4

minimal ND

 

 

Parameter #
12345678

Figure 4.6: Optimization of statistical feature individually (as com-

pared to optimize the mean over all).

The improvement in normalized deviation (ND) relative to the standard parame-

ters is plotted in color code. The ND of individual statistical features was always

optimized in respect to Wscale. Parameters (listed in Table 4.1) have different

impact on statistical features. The bottom margin indicates the cumulative ND

improvements and the improvements in MND (where Wscale is optimized on MND

instead of ND). Left margin displays the actual ND values for each parameter

(color coded bars). Note that an ND of 1 means a deviation equal to the average

deviation between experimental sessions (and monkeys). Black lines are plotted in

case of standard parameters. One notes that some statistical features were more

difficult to fit whereas others were less problematic (reaching a value well below

1).
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4.3.4 Deviations of the model response to the in vivo firing
regime

After having optimized the firing regime of the model, how does the model re-

sponse still deviate from the in vivo data? To illustrate the spike responses of

the model (after improving parameters), we plotted its response to a section of

the movie together with the in vivo responses (Fig. 4.2). The general appear-

ances of in vivo and in silico responses were very similar: high activity periods

were followed by low activity periods, bursts were induced by salient features in

the movie, and trial-to-trial variability was comparable. Fig. 4.7 plots the sta-

tistical features for the optimized model (25 s movie presentation, MND = 1.10)

together with the average over in vivo data. As the MND value already indicated,

the overall correspondences were good, but deviations were still noticeable. In

particular, there was a tendency that high-activity periods were overrepresented

across neurons of the network, as can be seen in the tails of the firing rate and

burst rate distributions (Fig. 4.7 A and D). A lack of long ISIs (above 500 ms)

was evident in the ISI distribution (Fig. 4.7 F). This lack of long intervals was

consistent across all performed parameter variations. In Fig. 4.6 we examined

the improvement of the ND of individual statistical features when varying a pa-

rameter (in contrast to the improvement in MND, see Fig. 4.4 and Fig. 4.5). In

fact, the ISI distribution is most difficult to fit to in vivo responses, as the best

ND is only around 3, i.e. three times worse than the deviation between sessions

on average (see Fig. 4.6 right margin plot). It seems that neurons in vivo can

exhibit dynamics on multiple time scales in contrast to the model, which tended

to be strongly active for certain times and just silent for others. This stronger

dependence of one ISI on the following ISI in the model response can be observed

in Fig. 4.7 K and L. If the current ISI was very short, in vivo and model re-

sponses matched very well, having a relatively high probability that the following

ISI was also very short and an exponential fall-off for the probability of longer ISIs

(Fig. 4.7 G) that was described well by a power-law behavior (i.e. straight line

in log-log plot, not shown). However, for longer ISIs in vivo and model responses

qualitatively differed. We found that in vivo the shape of the distribution for

the following ISI did not change qualitatively for longer ISI if conditioned on the

current ISI (despite a small increase of the probability for longer ISIs). In par-

ticular, the conditional probability had still a power-law shape implicating that

the probability for an ISI below and up to 50 ms was relatively high regardless

of the current ISI (Fig. 4.7 K). In contrast, in the model responses the shape of

the distribution changed if conditioned on longer ISIs: if the current ISI was long

(> 100 ms) either the next ISI was very short (< 10 ms), possibly belonging to

the onset of a population burst, or the length of the next ISI had nearly uniform

probability up to about 120 ms (Fig. 4.7 L). Varying the parameters had little

effect on the deviation of the 2-ISI distributions, the strongest effect was exerted
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by the NMDA-to-AMPA ratio (p3), reaching 13 % improvement in respect to the

standard parameters. This lack of structured variability on multiple time scales

in the model response was corroborated by the systematic underrepresentation of

periods of high CV(ISI) (see Fig. 4.7 H).

Finally, the synchronization between two neurons and the lateral cross-

correlation were generally too low in comparison with our experimental data

(Fig. 4.7 J and K). In particular, synchronization between neurons on lags longer

than 50 ms was much weaker (Fig. 4.7 J, see also Fig. 4.8 D), suggesting that

dynamics on slow times scales were still lacking in the model. The correla-

tion structure was most effectively influenced by four parameters (see Fig. 4.6):

The strength of the background noise (p1), the NMDA-to-AMPA ratio (p3), the

GABAB fraction (p5), and the relative weight of the inhibitory to excitatory con-

nections (p7). As expected, introducing synaptic dynamics on a longer time scale

(p3 and p5) improved the synchronization structure. Background noise likely helps

to smooth the sharp peak in the synchronizations. It is not immediately clear why

the strongest improvement in the synchronization (76 %) and the lateral cross-

correlation (83 %) was mediated by the increase of the strength of excitatory to

inhibitory connections. We think that this strengthening of excitatory synapses

onto inhibitory neurons might have recruited local negative feedback loops and

thus initiated dynamics on intermediate and longer time scales.

In summary, analyzing the deviations of the statistical features in detail sug-

gested that the response of the model was limited in reproducing the broad tem-

poral range of the dynamics in vivo. Especially, abruptly switching from activity

to silence, low probability of bursting, and the temporal correlation of neurons on

a longer time scale were difficult to achieve.
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Figure 4.7: The spike statistics of the model in comparison to the

statistics of the in-vivo recordings.

The mean of the statistical feature estimated on the in vivo data is plotted as

a black line. The gray area indicates the standard deviation between different

sessions. We used a 25 s part of the movie “sw21” as stimulus for the model.

The spike statistics of the simulated model with optimized parameters (adjusted

relative weight scaling factors of the patchy lateral long-range connections and of

the connections from excitatory to inhibitory neurons) are plotted in green. The

goodness of fit is MND=1.10. Each panel corresponds to a particular statistical

feature analogous to Fig. 4.3. Note that the 2-ISI distributions (K and L) are

plotted conditioned on the first ISI.
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Figure 4.8: Correlation structure in the model and in vivo.

For better comparability with literature values correlations were plotted in terms

of noise correlations (A and B) and shift-corrected cross-correlograms (CCG, C

and D). Sessions of experimental data were plotted as in Fig. 4.3 (A and C). B

and D depict the corresponding statistics calculated on the model response (for

optimized parameter settings). Correlation structure in the model response were

calculated on each layer separately showing a systematic difference in the strength

of correlation in each layer (no layer information was available for the in vivo data).

Correlations in the model were generally lower than in the in vivo data.
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4.4 Discussion

In this article we investigated network spiking activity from the primary visual

cortex under naturalistic stimulus presentation in vivo and in silico. We asked the

question whether a state-of-the-art connectionists’ model is capable of reproduc-

ing the firing statistics observed in vivo, without any arbitrary (unconstrained)

adjustments of millions of variables, such as synaptic weights or temporal param-

eters of synapse dynamics. We concentrated on characterizing the firing regime

of the primary visual cortex (V1), since it is an anatomically and physiologically

well studied cortical area. We characterized its firing regime by extracting ten

statistical features from in vivo spike recordings from V1 of macaques under natu-

ralistic stimulus conditions. We then built and simulated a state-of-the-art circuit

model reproducing a 5 mm x 5 mm patch of V1 cortical circuitry, and investi-

gated the discrepancy between the firing regimes of the simulated model and in

vivo recordings. The comparison revealed that the firing regime of the detailed

laminar circuit model was comparable to in vivo recordings if parameters were set

to values constrained by the literature: Responses were rich, showing high coef-

ficient of variation of inter-spike intervals of individual neurons. We obtained a

deviation averaged over all extracted statistics of about 2, meaning that the devi-

ation was about twice as large as the average deviation between any two recording

sessions. We found that the deviation can be decreased dramatically (by 32 %)

if the relative synaptic weight of excitatory neurons to inhibitory neurons was

increased more than 2–fold (as compared to the literature values) and relative

synaptic weights of the patchy long-range connections were adjusted to avoid slow

rhythmic population activity. This indicates the importance of the balance of ex-

citation and inhibition to achieve a realistic firing state in a network model. We

further found that selected physiological meaningful parameters affected statisti-

cal features of the response in a selective manner, and that some ingredients of our

network, such as the NMDA and GABAB conductances, were crucially important

for achieving a realistic firing state.

4.4.1 Evidence for a characteristic firing state in V1

This study does not answer whether there is indeed a computational advantageous

firing regime in neural tissue but instead tries to generally characterize a “statisti-

cal fingerprint” of spiking activity in vivo in order to compare the spiking activity

to simulated responses in silico. Our characterization of the firing statistics of in

vivo responses generally agrees very well with findings of previous studies, which

also used natural stimuli. We have found some evidence that V1 might be in a

characteristic state. Our finding that the ISI distribution follows a power law is

consistent with the ISI distribution of V1 cells of anesthetized cats and of IT cells

of awake monkeys (Baddeley et al., 1997; Yen et al., 2008), as well as of neurons in
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motor cortex of awake rats (Tsubo et al., 2009). A power law distribution has par-

tially been reported for in-vivo spike data (Bedard et al., 2006) and the (spatial)

size of neural avalanches recorded via LFP (Beggs and Plenz, 2003, 2004). Power-

law distributions have been conjectured on theoretical grounds as characteristic

features of self-organized critical states in large complex systems (Jensen, 1998).

On the other hand, (Bedard et al., 2006) report that the ISI distributions derived

from cat parietal association cortex during wakefulness and slow wave sleep show

no evidence for a power-law behavior. This might indicate that the primary visual

cortex and the parietal association cortex are working in different firing regimes.

There is still an ongoing debate on how strongly neighboring neurons are cor-

related, especially under natural conditions. Adding to this debate, Ecker and

coauthors recently reported that in awake and behaving monkeys the spike count

correlations rsc are surprisingly low even between nearby neurons (in the range

from 0.001 to 0.01). They claim that earlier studies have overestimated this value

considerably by generally reporting values that are at least 10 times higher (Ecker

et al., 2010). In our dataset we found an average value of rsc = 0.26 ± 0.03

(Mean±SEM). This finding is in agreement with the earlier studies and therefore

stands similarly in contrast to the very low spike count correlations reported by

(Ecker et al., 2010). The discrepancy is likely to arise from superior recording

techniques used by Ecker and colleagues. As they convincingly show, the use of

chronically implanted tetrodes considerably improves the quality of the record-

ings from single neurons. In contrast, when using single tip electrodes, spikes

are far less distinguishable. Thus our spike trains likely contained a mixture of

spikes originating from different neurons rather than from single neurons. These

erroneous classifications may result in an artificial increase of spike count cor-

relations between spike sorted neuron clusters. Indeed, it was very difficult to

reach a high spike count correlation between neurons of the model under our

stimulus paradigm. In fact, the average spike count correlation in our model

is rsc = 0.06 ± 0.01 (mean±SEM) for nearby neurons (distances below 1 mm)

and thus is very similar to the very low values reported by (Ecker et al., 2010).

Moreover, the intra-layer spike count correlation in the model response (plotted

in Fig. 4.8 B and D) was very similar to recently reported layer-wise recorded V1

data (Smith and Kohn, 2009) in that it showed a very low correlation for layer 4,

an intermediate correlation in deep layers and the highest correlation within neu-

rons from superficial layers. This low correlation in our model match well the

picture presented by (Ecker et al., 2010) and suggests that the correlation of our

data is artificially enhanced by the recording techniques used.

4.4.2 Is the model in a realistic state?

We used recordings done in anesthetized macaques during the presentation of a

commercial movie stimulus. In previous complementary studies, with participa-
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tion of some of the present authors, this data has already been proven insightful in

the analyses of information coding of the movie stimulus in the neural responses

(Belitski et al., 2008; Montemurro et al., 2008) and in investigating the relation

of spikes to local field potentials (Rasch et al., 2007, 2009). We thus expect this

dataset useful for describing a firing regime under naturalistic stimulus conditions.

The firing regime will likely depend on the current behavioral state of the animal.

Because we used recordings from anesthetized animals, we actually characterized

the firing regime during anesthesia. Since most of the parameters constraining

the model were not measured in behaving animals, the anesthetized state might

actually be “more natural” for our network model. We expect that the firing

regime of awake and behaving animals will put stronger constraints on a current

connectionist’s model to achieve. Our model showed a good correspondence to our

in vivo recordings. However, this does not necessarily implicate that the model

would be able to perform any computational function of V1, nor does this mean

that the fit of the model to any kind of in vivo data could not in principle be im-

proved further. We expect if more neurons could simultaneously be recorded, the

deviations between model and experiment will increase because more constraints

were set on the model design. Due to the small number of recorded neurons our

data was limited in the sense that we could only test whether our model does

reproduce the general likeness of randomly selected neurons from V1. However,

we argue here that benchmarking of network models of cortical areas to reproduce

the general likeness is an important prerequisite to analyze realistic computational

functions in network models.

Given the diversity of cortical functions even within V1 (Olshausen and Field,

2005), we assume that a computational advantageous firing regime has to be quite

general. We follow earlier setups of neural networks used for analyzing computa-

tional functions (Maass et al., 2002; Häusler and Maass, 2007) in that we draw

synaptic weights and neuron to neuron connectivity from random distributions,

without any specific learning of weights. Although the specific weight structure

will influence the network response, we suppose that the general firing statistics

will nevertheless be similar in a statistical sense if the network is not too special-

ized. Supporting this view, we found that different random seed in the network

generation in general only slightly changed the goodness of fit. It is therefore a

promising research direction to investigate self-organization of synaptic weights

for instance by using an intrinsic plasticity rule to achieve a computationally ad-

vantageous firing regime of recurrent networks (Triesch, 2007; Schrauwen et al.,

2008).

Since we extract a number of different statistical features, measuring variabil-

ity, correlation structure, and spike time dependency, it is likely that a hypothet-

ical computational advantageous firing state of the cortex leaves its traces in the

pool of extracted statistical features. Using a plethora of features has the ad-
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vantage to minimize the bias of the investigator towards a particular aspect of

the response. We also tested different error measures (such as a normalized mean

squared error on the logarithm of the distributions instead of the Kullback-Leibler

divergence), which slightly differed in the obtained optimal parameter values, be-

cause different aspects are deemed more important by other error measures (such

as a good correspondence of the tail of the firing rate distribution). If there would

be prior knowledge about the importance of statistical features, one could include

this knowledge by changing the weighting for important features in the error mea-

sure (such as the deviation of the firing rate distribution from an exponential

shape).

4.4.3 Which general parameters should be optimized in a cortical
network model?

We developed a cortical network model for a 5 mm x 5 mm patch of area V1.

This model, consisting of about 35000 neurons and 3.9 million synapses, expands

a previously published model for generic cortical microcircuits (Häusler and Maass,

2007) that was based on data from (Thomson et al., 2002) regarding layer-specific

connection probabilities and data from (Markram et al., 1998) and (Gupta et al.,

2000) regarding short-term depression and facilitation of synaptic connections.

Additional, our model comprised data-based patchy long-range connections, two

types of excitatory receptors (AMPA and NMDA), and two types of inhibitory

receptors (GABAA and GABAB). The last years have seen several attempts to

model large areas of the brain with similar components, such as inter- and intra-

laminar connectivity, laterally structured connectivity, synaptic depression and

facilitation, and neurons having one or a few compartments (e.g. (Izhikevich

and Edelman, 2008; Johansson and Lansner, 2007; Tao et al., 2004; Kremkow

et al., 2007)) These models, as well as ours, incorporate many anatomical and

physiological details, but they are, of course, still a strong abstraction of reality.

Given the complexity of these models, it would be desirable to pin-point a

few general parameters which are sufficient to tune for achieving a realistic firing

regime. Then models could easily be adjusted and investigations of its compu-

tational functions could start from a realistic basis. Our analyses of optimizing

a state-of-the-art cortical network model resulted in the following observations.

At the outset, the overall synaptic connection weight scale has to be adapted to

account for the specific synaptic drive of each neuron, which is commonly lower

in models because of the much smaller number of synapses. Furthermore, we had

to adjust the relative weight of the patchy long-range connections, to dampen the

excitability of the network to avoid the tendency to produce periodic population

bursts. This parameter was not well defined in the literature because synaptic

contacts and weights of the long-range connections are unknown. We suspect

that lateral interaction is tightly linked to computation in V1, and it is therefore
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likely that synaptic targets and weights are carefully selected by experience de-

pendent learning mechanisms. Although we incorporated a higher probability for

long-range connections towards similar orientated hypercolumns, our approach of

drawing random weights is likely too unspecific in the target neuron selection.

Thus long-range connections in our network might form a too generic source of

excitation, which has to be damped to avoid rhythmic population bursts. On the

other hand, the easiness of inducing periodic patterns on a very slow time scale

(below 10 Hz and down to less than 1 Hz) by varying the overall strength of the lat-

eral long-range connections in our network model indicates a possible mechanism

for the generation of slow-wave activity commonly seen in the visual cortex and

suggested to be important for information coding (Montemurro et al., 2008). In

the present study, the most effective parameter for tuning the model behavior was

the relative synaptic weight scaling factor for the connections from excitatory to

inhibitory neurons. To achieve a realistic regime, we had to dramatically increase

this parameter (more than two fold compared to literature values). Additionally,

the fact that the GABAB inhibition was crucially important further supports that

inhibition has to be powerful enough over a long periods to cope with the excita-

tory drives. The necessity to increase the strength of inhibitory action in relation

to literature values suggests that our implementation of the interaction between

excitatory and inhibitory neurons underestimates the drive of inhibitory neurons

in nature. Since our point neuron model ignores any spatial extent, dendritic and

axonal tree architectures were not part of our model. However, it is known that

dendrites are capable of non-linearly integrate their synaptic inputs (Koch et al.,

1983; Borg-Graham et al., 1998). For instance, some types of inhibitory neurons

tend to target more soma proximal regions, whereas excitatory synapses are usu-

ally located in more distal parts of the dendritic tree (Markram et al., 2004). This

arrangement gives rise to shunting inhibition (with appropriate reversal poten-

tials, (Koch et al., 1983), where inhibitory inputs non-linearly overrule excitatory

input. This mechanism effectively increases the strength of inhibitory action (as

compared to our point neuron model). It is likely that by increasing the weight

of excitatory synapses on inhibitory targets in our model, the lack of non-linear

inhibition was partly compensated because inhibitory neurons where made more

sensitive, which resulted in a more realistic state. We conclude that incorporating

dendritic morphology (or other means to render the effect of inhibitory neurons

more realistically) is a promising research direction and will likely improve firing

states of network models.

Additionally, to keep the modeling effort tractable, many details of the pri-

mary visual system were neglected. For instance, the color processing pathways

(Sincich and Horton, 2005), motion processing pathways (dorsal stream), and a

more accurate model of the LGN including feedback from V1 to the thalamus were

not modeled. Whereas color and motion processing will only influence the movie
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features that are processed in V1, we expect the LGN to have more profound

influences on the V1 firing state. For instance, it has been shown that irregular

but correlated inputs to a neuron increase its CV(ISI) (Softky and Koch, 1993;

Stevens and Zador, 1998; Salinas and Sejnowski, 2000) and amplification of syn-

chronous inputs due to nonlinear interactions within dendrites further enhances

the variability. Because the LGN is likely to deliver highly synchronous inputs

to V1 (Wang et al., 2010) and furthermore might code information in bursts of

activity (Reinagel et al., 1999), as well as because cortical feedback are known to

induce thalamocortical spindle oscillations (Steriade et al., 1993), a more accurate

LGN model may further improve the fit to in vivo data. Although we used a

switching Gamma process as a model for the LGN input, and thus adopted spe-

cial means to more realistically model episodes of high firing rates, the input still

has independent Poissonian character for low firing rates. Our LGN model might

not be realistic enough, in that generated spikes are less synchronous than in vivo

(Wang et al., 2010).

In general, we noticed that variability in the dynamics on a multiple time scale

was still underrepresented in our model. This was observable in the lack of high

variability regions (CV(ISI) distribution), the underrepresentation of long ISIs,

and the too weak correlations between neurons spiking for lags longer than 10 ms.

It is therefore possible that our network is still not complex enough to generate a

non-stereotyped long-lasting dynamics seen in vivo. Since we used point neurons

models, neither compartimentization of dendrites or axons nor any diffusion of

neurotransmitter, nor dynamics of second messengers (such as Calcium ions),

nor any other cellular process were integrated in our model. The only processes

reaching a time scale of a few hundreds of milliseconds in our model were slow

synaptic conductances and synaptic short term facilitation and depression. We

suspect that dynamics of second messengers, which generally happen on a slower

times scale than spike interactions, might be necessary ingredients for achieving a

more realistic firing regime (in particular on longer time scales).

4.4.4 Conclusion

The characterization of the in-vivo response of neurons in monkey area V1 that

we have presented provides useful information for the investigation of large scale

models for cortical areas. It is remarkable that a model for a patch of V1 that is

based on previously published anatomical and physiological data produces (after

adjusting a few general parameters) a spike response that matches the statistical

properties of our in vivo data quite well. However, although similar in general

statistical measures, we are still a long way of understanding the detailed neural

coding properties of the cortex, which are manifested in the fine-structure of the

interaction between neurons. The advent of techniques with the possibility to

record from hundreds of neurons simultaneously will put forward new challenges
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for cortical network models. We expect that benchmarking models with in vivo

data, as exemplified in this study, will foster the development of new and more

realistic models for cortical areas, which will be important tools to ultimately

understand neural functions.
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We show that the temporal dynamics of information about sequences of visual

stimuli contained in neural responses in cat primary visual cortex can be replicated

by a detailed model of a 4.5 mm×4.5 mm patch of cat primary visual cortex that

implements stereotypical lamina-specific cortical synaptic connectivity. In partic-

ular we verify that the generic model accounts for experimental results on fading

information about previously shown visual stimuli, the non-linear superposition

of information about visual input presented at different moments in time, and the

information content in the fine temporal structure of neural responses.

Additionally, we make the following three predictions about properties of cat

primary visual cortex that could not be deduced from experimental data. First,

the firing rate profiles of neurons in response to sequences of visual stimuli depend

on the depth of the neurons recorded from within the neural tissue. Secondly,

all information that could be extracted from the neural responses is contained in

first and second order correlations between discharge patterns of cortical neurons.

Thirdly, the long duration of neural responses to single letter presentations of up

to 1 s can not only be attributed to local generic synaptic connectivity but is

presumably induced by feedback loops with higher cortical areas.
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5.1 Introduction

The fundamental aspects of the organization of computations in visual cortex

are still unknown (Olshausen and Field, 2006). Traditionally visual processing

is considered to be carried out by specialized neural circuits that are organized

through precisely structured maps of columns. Complex vision tasks, such as

visual object recognition, are then implemented by a subsequent hierarchy of other

processing layers that carry out additional computational operations (Serre et al.,

2005). In this postulated precisely organized sequence of processing steps, each

layer works at any moment in time on a single frame of current or past sensory

input.

But recently, (Nikolic et al., 2009) reported that the response properties of

neurons in cat primary visual cortex (V1) are in conflict with these classical mod-

els for visual processing, which emphasize sequential step-by-step processing of

single frames of visual input. In contrast, they conjectured that the reported evi-

dence of slowly fading information about a previously shown visual stimuli and the

non-linear superposition of information about visual input presented at different

moments in time supports alternative computational models that are based on

generic recurrent microcircuits (Maass et al., 2002). Such superposition of infor-

mation about subsequent frames of online inputs was shown in (Natschläger and

Maass, 2005) to be a direct consequence of the recurrent network connectivity.

The exact computational operations that are carried out by neurons in the recur-

rent network are less relevant for this computational model, as long as a number of

large scale properties for the simultaneous response of large ensembles of neurons

are met. Such desirable properties are diversity of responses of individual neurons

and fading information about previously shown stimuli.

Here we show that indeed most of the results reported in (Nikolic et al.,

2009) can be replicated by a detailed generic recurrent microcircuit model of a

4.5 mm×4.5 mm patch of cat V1. The model is based on the cortical microcircuit

model described in (Häusler and Maass, 2007) that implements experimental data

on stereotypical lamina-specific connectivity that is repeated throughout many

cortical areas (Thomson et al., 2002). Additionally, the cortical model comple-

mented by a model for the visual pathway located upstream to V1, i.e. the retina

and the lateral geniculate nucleus (LGN) of the thalamus. In particular we verify

that the generic model accounts for the experimental results on fading information

about previously shown visual stimuli, the non-linear superposition of information

about visual input presented at different moments in time, and the information

content in the fine temporal structure of neural responses.

In addition, we address three questions about the dynamical and computa-

tional properties of V1 that could not be answered based on the experimental

results reported in (Nikolic et al., 2009). This was in part because of a lack of

data and in part because of a lack of means to manipulate specific properties of
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the synaptic connectivity. First, a variety of different firing rate profiles of the

neural responses was observed for different animals and recording sessions. Can

this variety of rate profiles be explained in terms of the location of the record-

ing electrodes within the neural tissue? Secondly, all information about stimulus

properties that could be extracted from the neural responses was contained in first

and second order correlations between the discharge patterns of neurons. Can the

lack of additional information contained in higher-order correlations be attributed

to the limited size of the datasets? Thirdly, neural responses to presentations of

single letter stimuli showed increased firing rates within durations of more than

one second. Can these prolonged neural responses be explained in terms of per-

sistant activity maintained by local synaptic connectivity mediated by NMDA

receptors? NMDA receptor activity is known to be altered due to the application

of anesthetics. This raises the question if the corresponding results for awake an-

imals might differ from the results for anesthetized animals reported in (Nikolic

et al., 2009).

Simulation studies represent an appropriate tool to answer these questions

because of the possibility to carry out a large number of trial repetitions and

the capability to analyze the effect of each model component on the performance

properties of the model. For each of the three questions the cortical microcircuit

model provides a prediction that remains to be verified experimentally.
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Figure 5.1: Receptive fields and connectivity of recorded neurons

A: Outlines of the receptive fields of 16 recorded neurons located in layer 4 of

the model. B: The connection probabilities of LGN neurons to a given neuron

in layer 4 of the cortex. The actual selected connections are marked as red and

blue circles originating from ON- and OFF-cells of the LGN, respectively. C: Ori-

entation map of the simulated model. The electrodes are denoted as red circles.

The positions of the recorded neurons are marked as black crosses. For one of

the recorded neurons (white star) in layer 2/3 the incoming connections are plot-

ted (white circles and white squares denote excitatory and inhibitory connections,

respectively).

5.2 Materials and Methods

5.2.1 Model

The model consists of an input model (representing the retina and the lateral

geniculate nucleus (LGN) of the thalamus) and a model of a patch of V1, receiving

and processing the spikes of the input model. We will first describe the V1 model

and subsequently the input model.

5.2.1.1 V1 Model

The V1 model is based on the cortical microcircuit model described in (Häusler

and Maass, 2007), which implements experimental data from (Thomson et al.,

2002) on lamina-specific connection probabilities and connection strengths be-

tween excitatory and inhibitory neurons of three cortical layers, and data from

(Markram et al., 1998) and (Gupta et al., 2000) regarding stereotypical dynamic

properties (such as paired pulse depression and paired pulse facilitation) of synap-

tic connections between excitatory and inhibitory cortical neurons. We extended

this microcircuit model laterally and incorporated specific anatomical properties

of V1 in cat. Due to the lateral extent of the model, it was possible to include

lateral long-range connections, which are thought to be essential for the computa-
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tional functions of V1, such as spatial integration of extra-classical receptive field

context (Gilbert et al., 1996).

The model for a 4.5 mm×4.5 mm patch of area V1 consisted of 32400 neurons

and almost 2.8 million synapses. Since the number of neurons in the model was

substantially smaller than in a 4.5 mm×4.5 mm patch of area V1, the scale of all

synaptic weights was adjusted in order to achieve biologically realistic firing rates.

This was carried out by choosing a suitable value for the scaling factor, with which

the weights of the synaptic connections between neurons in the V1 model were

multiplied. Since the LGN model also consisted of much fewer neurons (namely

10000 neurons) than the LGN in cat, another scaling factor was used, which scaled

the strength of all synaptic connections from the LGN model to the V1 model.

The neurons of the V1 model were equally distributed on three layers, corre-

sponding to the cortical layers 2/3, 4 and 5. Each layer contained a population

of excitatory neurons and a population of inhibitory neurons with a ratio of 4:1

(Beaulieu et al., 1992; Markram et al., 2004). The inter- and intra-layer connec-

tivity (probability and strength) was chosen according to experimental data from

rat and cat cortex assembled in (Thomson et al., 2002).

In our model, we assumed that the neurons are uniformly distributed through-

out the cortex. Thus we positioned all neurons on a cuboid grid with a con-

stant grid spacings. Using the experimentally measured neuron density, e.g. for

layer 2/3, the grid spacing would be 20µm for all directions. Because the simula-

tion of such a dense network would be computationally to expensive, we diluted

the neuron density by increasing the lateral grid spacing to 75µm and the vertical

spacing to about 200µm.

Due to a considerable gain in computational speed, we used the neuron model

suggested by (Izhikevich, 2003), which can be adjusted to express different firing

dynamics (Izhikevich, 2006). We randomly drew the parameters for each neuron

in the network according to the bounds provided by (Izhikevich et al., 2004). On

the basis of these parameter distributions the excitatory pools consisted of regular

spiking cells, intrinsically bursting cells, and chattering cells, with a bias towards

regular spiking cells. The inhibitory pools consisted of fast spiking neurons and

low-threshold spiking neurons.

In addition to the synaptic input from other neurons in the model, each neuron

received synaptic background input, modeling the bombardment of each neuron

with synaptic inputs from a large number of neurons that are not represented

in our model. This synaptic background input causes a depolarization of the

membrane potential and a lower membrane resistance, commonly referred to as

the “high conductance state” (Destexhe et al., 2001). The conductances of the

background input was modeled according to (Destexhe et al., 2001) by Ornstein-

Uhlenbeck processes with means gexc = 0.012 µS and ginh = 0.047 µS, variances

σexc = 0.003 µS and σinh = 0.0066 µS, and time constants τexc = 2.7 ms and



126 Chapter 5. Temporal dynamics of information in a model of V1

τinh = 10.5 ms, where the indices exc/inh refer to excitatory and inhibitory back-

ground conductances, respectively. Furthermore, these conductances account for

the low neuron density in the model in comparison to the density in the cat cortex.

Short term synaptic dynamics were implemented according to (Markram

et al., 1998), with synaptic parameters chosen as in (Maass et al., 2002) to fit data

from microcircuits in rat somatosensory cortex (based on (Gupta et al., 2000) and

(Markram et al., 1998)). For further details we refer to (Häusler and Maass, 2007).

Lateral connectivity structure The generic microcircuit model of (Häusler

and Maass, 2007) was based on data for a column of about 100 µm diameter with

uniform connectivity per layer and neuron type. Here we extended the model

laterally to several millimeters. Thus connection probabilities in our model de-

pend on the lateral distance. For inter- and intra-cortical connections we used

a bell-shaped (Gaussian) probability distribution for determining the lateral ex-

tent. The standard deviation of the Gaussian was set to 200µm for excitatory

neurons (Lund et al., 2003; Blasdel et al., 1985; Buzas et al., 2006) and to 150µm

for inhibitory neurons to incorporate the observed occurrence of extremely narrow

inhibitory dendritic and axonal spreads (70µm, (Lund et al., 2003)). To ensure

consistency with the connectivity data of (Thomson et al., 2002), we scaled the

Gaussian profiles such that the peak probabilities correspond to their experimen-

tally measured connection probabilities. Therefore, their connectivity pattern was

locally preserved.

Patchy lateral long-range connections In cat, many pyramidal cells in layer

2/3 of the striate cortex (and also elsewhere in the cortex (Lund et al., 2003)) have

characteristic long-range projections targeting laterally 80% excitatory and 20%

inhibitory cells (McGuire et al., 1991) which are up to 6 mm and more away

(Gilbert et al., 1996; Lund et al., 2003; Buzas et al., 2006). Targeted neurons tend

to have similar feature preference as its origin, resulting in a patchy connectivity,

which connects neurons with similar preferred orientations (Gilbert et al., 1996;

Buzas et al., 2006). (Buzas et al., 2006) combined the anatomical reconstructions

of neurons and the optical imaging of orientation maps and proposed a formula

to calculate the bouton density ρ of a typical layer 2/3 pyramidal cell:

ρ(r,∆φ) = Z

(

e
− r

2

2σ2
1 +me

− r
2

2σ2
2 eκ cos(2(∆φ−µ))

)

(5.1)

r is the lateral (Euclidean) distance between the pre- and the post-synaptic neuron,

and ∆φ is the difference of preferred orientations of the two neurons. The scaling

factor m accounts for the importance of the long-range orientation dependent

term against the local orientation independent term. The orientation dependent



5.2. Materials and Methods 127

term is a product of a Gaussian and a von Mises distribution and accounts for the

higher likelihood of connecting neurons with preferred orientations, which differ in

the range of µ degree. Standard deviations σ1 and σ2 regulate the spatial width

of the non-oriented and oriented term, respectively. Parameter κ regulates the

“peakiness” of the density on the orientation axis. Z is a normalization constant.

The bouton density defined by Eq. 5.1 can be seen as an estimate for the

connection probability of a neuron to neurons at distance r having preferred ori-

entation difference ∆φ if one assumes that in first approximation dendrites and

axons have no spatial extent (i.e. they collapse to a point at the position of the

soma). Since we defined the preferred orientations of neurons in a hard-wired

manner via “oriented” input connections (see Section 5.2.1.3), we could apply

Eq. 5.1 for the lateral connections in layer 2/3. Thus, we applied Eq. 5.1 for the

connections of excitatory cells targeting excitatory and inhibitory cells (McGuire

et al., 1991).

As for the connections between other layers, we set σ1 = 200µm for the local

non-oriented term. In (Buzas et al., 2006) the values of µ jitter around zero degree

for individual cells. Therefore, we set µ = 0◦, implicating that the connection

probability was highest for iso-oriented cells. We set other parameters to values

in between the two populations described by (Buzas et al., 2006), but in the

vicinity of the population 1, where the experimentally mapped cortical surface

region was bigger. Thus we set σ2 = 1000µm, κ = 1, and m = 10. As before, the

connection probability was scaled, according to (Thomson et al., 2002), by setting

Z to appropriate values. Thus, locally, i.e., for neurons at the same lateral position

(and orientation preference), the connection probabilities were preserved. The

weights of the the long-range connections were drawn from the same distribution

as the short range connections in layer 2/3.

Distance dependent synaptic delay Synaptic delays differ for inhibitory and

excitatory neurons. They were set according to measurements by (Gupta et al.,

2000) (for details see (Häusler and Maass, 2007)). These delays stem from molec-

ular processes of synaptic transmission. In addition, a second delay originating

from finite spike propagation velocity of the fibers was included. This delay de-

pends on the (Euclidean) distance between the pre- and the post-synaptic neuron.

(Girard et al., 2001) measured spike propagation orthodromically as well as an-

tidromically. They found a median conduction velocity of 0.3 m/s for the upper

layers, and 1 m/s for the lower layers of V1 in macaque monkeys. Thus, we

sampled the velocity for each excitatory synapse in layer 2/3 from a Gaussian dis-

tribution with mean 0.3 m/s and standard deviation 0.5 m/s (with enforced lower

and upper bounds of 0.05 and 5 m/s, respectively). For the other layers, the con-

duction velocities were drawn from a Gaussian distribution with mean 1 m/s and

standard deviation 0.9 m/s (with same bounds as before). Due to myelination,
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conduction velocities of inhibitory fibers are generally higher than for excitatory

cells (Thomson et al., 2002). Lacking exact measurements in the literature for

all inhibitory cells, we sampled the velocities from a distribution with mean and

standard deviation twice as high as for excitatory neurons in the deep layers (the

enforced upper bound was set to 10 m/s).

Synaptic conductances A spike, arriving at a synapse, causes a change in the

synaptic conductance in the post-synaptic neuron. The dynamic of the conduc-

tance depends on the receptor kinetics. Each excitatory synapse in our model

contains α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) recep-

tors having relatively fast kinetics (modeled as exponential decay with time con-

stant τAMPA = 5 ms, reversal potential 0 mV). A fraction fNMDA of all excita-

tory synapses contain additionally relatively slow, post-synaptic voltage depen-

dent N-methyl-D-aspartate (NMDA) receptors (τNMDA = 150 ms, reversal poten-

tial 0 mV,(Gerstner and Kistler, 2002; Dayan and Abbott, 2001)), and there-

fore exhibit a superposition of conductance kinetics. The ratio of NMDA to

AMPA receptors in a synapse was drawn from a Gaussian distribution with mean

µNMDA/AMPA = 0.47 and standard deviation σ = 0.2µNMDA/AMPA (Myme et al.,

2003).

5.2.1.2 Input model

We needed a sufficiently realistic transformation of stimulus sequences to spike

trains. Therefore, the retina and the lateral geniculate nucleus (LGN) were mod-

eled, according to (Dong and Atick, 1995), as a spatio-temporal filter bank with

nonlinearities, which seems to be a good compromise between simplicity and re-

alism (Gazeres et al., 1998). The filter bank converted time varying input signals

on the retina into firing rates of LGN neurons.

Retina model The 2-dimensional retinal inputs (movie frames) were filtered

by difference of Gaussians (DoG) spatial filters (Rodieck, 1965; Enroth-Cugell

and Robson, 1966; Dong and Atick, 1995). Filter sizes (corresponding to the

receptive fields of ganglion cells) were adapted to the geometry of cats, where

the standard deviations of the Gaussian for center and surround were estimated

to be σcenter = (0.0177◦ + 0.00196ǫ) and σsurround ≈ 6.67σcenter at eccentricity

ǫ, respectively (in visual degrees; estimated from (add correct ref.). After the

convolution of the stimulus luminance portrait with these kernels (yielding Scenter

and Ssurround), the response of a retinal ON-cell at visual field position r can be

described by

RON(r) = C(r) [Scenter(r) − ωSsurround(r)]+ (5.2)

We set the ratio of center to surround ω = 1.0. The positive part of the center

and surround interaction (indicated by the brackets [. . .]+) was assigned to the
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response of an ON-cell and, analogously, the absolute value of the negative part to

the response of an OFF-cell (Dong and Atick, 1995). For simplicity we assumed

that the origins of the center and surround summation fields are identical, although

a recent study suggests that there might be an offset between them (Conway and

Livingstone, 2006).

Applying the Difference-of-Gaussians model to the luminance of a stimulus

results in a quantity called “contrast gain” (Croner and Kaplan, 1995; Enroth-

Cugell and Robson, 1966; Rodieck, 1965). To calculate the firing rate of ganglion

cells, one has to multiply the “contrast gain” with the local contrast C(r) (as

done in Eq. 5.2), if one neglects non-linear saturation in the high contrast regime.

Locality is important because the concept of a global contrast, easily defined for

full-field grating stimuli commonly used in experiments, is not applicable for real

world images and movies (Tadmor and Tolhurst, 2000). Following (Tadmor and

Tolhurst, 2000) we estimated the local contrast using the same kernels as

C(r) =
|Scenter(r) − Ssurround(r)|
Scenter(r) + Ssurround(r)

(5.3)

where we additionally set the contrast to be zero in the case of darkness. Note

that applying Eq. 5.3 results in a response RON(r), which is sparser than for a

constant global contrast, since the response is now quadratic in the center and

surround luminance difference (see Eq. 5.2).

LGN model The output of the retina was filtered by the LGN model using a

temporal kernel. The temporal kernel consists of a phasic (taken from (Dong and

Atick, 1995)) and a tonic component (as in (Gazeres et al., 1998)), i.e. kLGN =

kphasic + ktonic. It is for non-negative times

kphasic(t) = t (1 − πwct) exp(−2πwct) (5.4)

and

ktonic(t) = A exp(−t/τ)/τ. (5.5)

Parameter A = 0.3 is the fraction of tonic activation (with respect to the peak

firing rate) for a given stimulus, integrated over a time window of τ = 15 ms.

Parameter wc = 5.5 s−1 defines the shape of the phasic kernel (Dong and Atick,

1995).

The positive parts and the absolute values of the negative parts of the tem-

poral convolutions were assigned to non-lagged and lagged cells, respectively. Al-

together, there are four different time-varying rate outputs, i.e. that of any com-

bination of non-lagged or lagged cells in the LGN with either ON- or OFF-cells

from the retina (Dong and Atick, 1995). Following (Gazeres et al., 1998) a so-

called “switching Gamma renewal process” was used to convert these time-varying

rates to spike trains. This process, which was suggested to fit experimental data
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from cat LGN X-cells (Gazeres et al., 1998), adopts a higher spike time regularity

for high input rates (≥ 30 Hz; regularity parameter r = 5) and switches to a

Poisson process for low rates (< 30 Hz). The spontaneous background activity

of each LGN neuron was set to a value of 10 Hz and the peak LGN spike rate

fmax = 600 Hz The peak response would be evoked by a dot of highest contrast

filling the center region of a ganglion cell with optimal duration. This value is in

good agreement with (Gazeres et al., 1998).

Input connectivity to V1 The visual field is retinotopically arranged on the

cortical surface. However, there is a considerable magnification in density of cor-

tical neurons in V1 per degree of visual field. A shift of 1◦ in the visual field

corresponds to a shift of 0.9 mm in the cortex (Troyer et al., 1998).

LGN neurons typically project to layer 4 of V1. In our model, we defined

the orientation maps in a “hard-wired” manner (see Section 5.2.1.3). Therefore,

the thalamic input connection probability to a cell in the circuit was modeled as

an oriented Gabor function, i.e. a 2-dimensional Gaussian multiplied by a cosine

function. The absolute value of the Gabor function corresponds to the connec-

tion probability of LGN neurons with a cortical cell positioned at the cortical

equivalent position of the origin of the Gabor patch in the visual field. Positive

and negative regions correspond to the connection probabilities of LGN ON- and

OFF-response cells, respectively. Lagged and non-lagged cells connected equally

likely to cortical cells. Following (Troyer et al., 1998), we expressed the Gabor

function in parameters defining the number of sub-regions ns, the aspect ratio of

the width and the height of the Gaussian envelope a, the orientation φ, the offset

of the cosine ψ, and the frequency of the cosine f . Given these parameters, one

calculates the standard deviation of the Gaussian envelope as (see (Troyer et al.,

1998))

Σ
1
2 =

1

4 · 2.448 f

(

ns 0

0 a

)

(5.6)

while using coordinates rotated by φ. The advantage of using these parameters

is that the frequency defines implicitly the size of the Gabor patch, while the

number of sub-regions is kept constant. Therefore, the receptive fields of can be

easily included in this framework. In correspondence with the data of (Movshon

et al., 1978), we chose the frequency f from a Gaussian distribution with a mean

of 0.8deg−1 and a standard deviation of 0.1deg−1 (with an enforced minimum of

0.6deg−1 and maximum of 1.0deg−1). The number of sub-regions ns and phase

shifts ψ were drawn from uniform distributions with ranges of (1.85, 2.65) and

(0, 2π), respectively (experimental values from cat as in (Troyer et al., 1998)).

To incorporate the smooth maps of preferred orientation φ and orientation

preference q depending on cortical position u (see Section 5.2.1.3), we set φ = φ(u)

and the aspect ratio to a(u) = (amax −amin) q(u)+amin. We used values reported
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by (Troyer et al., 1998) for the bounds amin = 3.8 and amax = 4.54 for excitatory

neurons, and for the typically weakly tuned inhibitory neurons amin = 1.4 and

amax = 2.0.

Lastly, the overall connection probability defined by the Gabor functions, was

scaled to achieve an average number of 32 input synapses for both excitatory and

inhibitory neurons. Thus, we set the connection probability to excitatory neurons

in layer 5 (comprising layer 5 and layer 6) to 20% of that of the input to layer 4.

These values are in good agreement with the data from (Binzegger et al., 2004)

estimated from cat. An example of such connection probability from LGN neurons

to a given neuron in layer 4 with the actually chosen LGN connections is shown

in Fig. 5.1 B.

We sampled the delay of the LGN input synapses from a Gaussian distribution

with mean 1.5 ms and standard deviation 0.15 ms (and additionally enforced

delays below 0.5 ms and above 18 ms to a value uniformly in the latter range).

Top-down connections In addition to the thalamic input, V1 neurons receive

multiple feedback connections from extra-striate cortical areas (Felleman and Es-

sen, 1991), especially from V2, where the feedback connections are almost as

numerous as the feed-forward connections (see (Sincich and Horton, 2005) for

a review). Feedback projections predominantly project to targets in the upper

layers. In the model, this top-down input consisted of 50 × 50 Poisson spiking

neurons projecting to layer 2/3 with firing rates randomly drawn every 30 ms

independently for each neuron uniformly between 10 and 15 Hz. The connection

probability for such a connections was set to be 10 %.

5.2.1.3 Orientation map

It is well established that orientation preference and other features (such as visual

field position, ocular dominance, or direction preference) form intertwined maps,

where neighboring neurons tend to respond to similar features (Hubel and Wiesel,

1977; Obermayer and Blasdel, 1993).

We employed Kohonen’s Self-Organizing Map algorithm (Kohonen, 1982) to

create orientation maps across the cortical surface. An orientation attribute was

necessary for each neuron for defining thalamic inputs, as well as for preferred ori-

entation dependent patchy lateral long-range connections. The algorithm has been

used to generate feature maps, which resembled cortical measured feature maps in

their overall appearance, as well as e.g. the occurrence of pinwheels (Obermayer

et al., 1990, 1992; Obermayer and Blasdel, 1993; Erwin et al., 1995; Brockmann

et al., 1997). Basically, the algorithm tries to map a low-dimensional manifold (a

horizontal sheet of neurons) to a high-dimensional feature space, while ensuring

that neighboring points on the manifold exhibit similar feature preference. Let

z = (x, y, q cos(2φ), q sin(2φ))T define a feature vector, where 0 ≤ x, y < k are
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the positions in visual space, 0 ≤ q < 1 is the orientation preference (or tuning

strength) and 0 ≤ φ < π is the preferred orientation. We did not model ocular

dominance because our V1 model received input only from one retina. If one uses

the low-dimensional variant of the learning rule (Erwin et al., 1995; Obermayer

and Blasdel, 1993), one attributes to each point on the manifold, i.e. each neuron

having cortical 2D surface coordinates u = (u1, u2)
T , its current “optimal” feature

vector w(u). Relations between neurons u and v are enforced by the neighborhood

function h(u, v) = exp
(

− |u−v|2

2δ2

)

. The update of the feature vector of a neuron v

can be written as

∆w(v) = αh(u∗, v) (z− w(u∗)) . (5.7)

Note that in each learning step the neuron u∗, showing maximal response to the

current input z, is updated in the direction of the input, weighted by a learning

rate α. Depending on the cortical distance to the maximally activated neuron, the

preferred features of the remaining neurons will be updated to a lesser extent in the

same direction (mediated by the neighborhood function). In this rule we took the

maximally activated neuron to be the nearest in feature space to the current input,

u∗ = argmin|w(u)− z|. We sampled the input features from uniform distribution

(within the above bounds). k regulates the hierarchy between different features

(Obermayer et al., 1992) and was set to k = 5. If one starts from a retinotopic

initial condition, a high value for k ensures that cortical position corresponds

to visual space in an approximate one-to-one map. The characteristic length

scale δ was set to match the experimental observed correlation length in cortical

orientation maps (corresponding to the distance of neighboring pinwheel center) of

dpin = 660µm (Obermayer and Blasdel, 1993). We used the approximate formula

δ =
√
k dpin/D/8, where D denotes the lateral extent of our V1 model.

5.2.2 Setup of the stimulus to the model

The stimulus, presented to the V1 model during simulation, resembled the one

presented to the cat in the experiments. On the retina, the receptive field was

centered at 5◦ eccentricity relative to the fovea. The stimulus presented to the

retina model covered a visual field of 8◦ × 8◦ with letters covering about 5◦ × 5◦

of the visual field. The visual field covered by the V1 model is somewhat smaller

(5◦ × 5◦) than the stimulus to avoid boundary effects in the input connectivity.

For analogous reasons, the LGN neurons were set to cover an intermediate area

of 7.1◦ × 7.1◦ (50 × 50 grid). At 5◦ eccentricity a V1 model covering 5◦ × 5◦

has a lateral extent of 4.5 × 4.5mm2 cortical surface. The neurons of the V1

model were positioned on a virtual grid of size 60 × 60 × 9 assuming a lateral

grid spacing of 75 µm. Vertically, the grid spacing corresponds to 200 µm (see

Method Section 5.2.1.1).
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5.2.3 Simulation techniques

The model was implemented and simulated using the PCSIM simulation envi-

ronment (Pecevski et al., 2009). All simulations were performed in a distributed

fashion on a cluster of 30 quad core machines.

5.2.4 Classification tasks

The readout neurons performing a classification task were modeled as leaky in-

tegrate and fire (LIF) neurons. The recorded spike trains were convolved by an

exponentially decaying kernel exp(−t/τ) with a time constant τ = 20 ms. This

corresponds to a typical time course of excitatory postsynaptic potentials (EP-

SPs) in the readout neuron. The optimal firing threshold and weights of the

readout neurons were learned by applying linear support vector machine (SVM).

We used also SVMs with polynomial kernels (see (Schölkopf and Smola, 2002;

Vapnik, 1998)) to evaluate the influence of higher order correlations on the read-

out performance. The parameter C of the SVMs was chosen to be 50. If not

specified otherwise, we performed 150 simulation trials for each stimulus condi-

tion. All readout performance results represent the performance on a test set not

shown during training. For most of the tasks different classifiers were trained for

each time point t. We denote these classifiers as Rt. Classifiers trained on a time

interval (300 ms) are denoted as Rint. These Rint classifiers use only one set of

weights and a fixed threshold to classify the response over the time interval Rint

classifiers typically perform worse than Rt classifiers because they have to gen-

eralize over the time interall, whereas the Rt classifiers can specialize on a given

point in time. For all tasks the readout neuron had to classify two distinct classes,

thus the chance level for a correct classification was 50 %.
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5.3 Results

The model of a patch of cat V1 reproduces the experimental results reported in

(Nikolic et al., 2009). In particular the model reproduces i) the non-linear temporal

dynamics of information observed in the experiments, and ii) the performance

drop caused by adding jitter to the recorded spike times. In addition the model

suggest that iii) the variety of firing rate profiles reported in (Nikolic et al., 2009)

may be partially explained by different positions (depths) of the electrodes, and iv)

higher-order correlations contain little information about stimulus properties even

if more data is available that would allow readouts to extract potential correlations.

Finally, the model shows that the prolonged responses to single letter stimuli

reported for the experiments can only be partially explained by effects of NMDA

that only slightly increases the response durations.

A virtual 4 × 4 electrode array was positioned in the model to reproduce the

setup of (Nikolic et al., 2009). We recorded the spiking activity of 64 neurons

close to the 16 electrodes (4 neurons per electrode). The upper 12 electrodes were

located in layer 2/3 and the remaining 4 lower electrodes in layer 4. Horizontally

the electrodes were separated by 200 µm. The position relative to the retinotopic

map of the cortex of the electrodes was chosen to be very similar as in the ex-

periments (compare (Nikolic et al., 2009, Fig. 1 A) with Fig. 5.1 A). Spike trains

recorded by the virtual electrode are shown in Fig. 5.2. The exact position of the

virtual electrode in the model influences the temporal profile of the recorded mean

firing rate. We analyzed this dependence in more detail in Section 5.3.4.

5.3.1 Similar neural spike responses

The spiking response recorded by the virtual electrode shows characteristic on and

off responses for each letter of the stimulus sequence. The trial-to-trial variability

of the spiking response of a single neuron (see Fig. 5.2 A, upper part) is comparable

to the variability seen in experiment (compare with Fig. 1 A of (Nikolic et al.,

2009)). However, in the experiment, neurons may be nearly silent for a full trial in

a few cases. This effect cannot be seen in the simulation and may be an indication

of some slow processes in the experiments, which are not present in the model.

The Peri-stimulus time histogram (PSTH) plotted in the lower part of Fig. 5.2 A

is very similar for two stimuli conditions (ABE, CBE). The variability in the

responses of different neurons during a trial Fig. 5.2 B) resembles the variability

observed in experimental recordings (compare with Fig. 1 B of (Nikolic et al.,

2009)).

As in (Nikolic et al., 2009) we used two types of readout neurons, the Rt clas-

sifiers, trained for each time point and the Rint classifiers, trained to generalize on

a time interval (see Method section for further details about the readout neurons).

Fig. 5.3 shows the performance of Rt classifiers for a single letter stimulus.
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In the figures, the time interval at which letters are presented are indicated by

gray boxes. The performance of the Rt classifiers correlates with the mean firing

rate of the recorded neurons. The performance achieved very high (near perfect)

values about 50 ms after the stimulus onset. Such a fast performance onset was

also present for cat 4 in (Nikolic et al., 2009). This onset latency corresponds well

to the 30-60 ms latencies after light stimulus reported by (Fries et al., 2001).

The performance stayed above chance level for about 220 ms with some ad-

ditional small peaks significantly above chance level up to 420 ms after stimulus

onset. The experiments showed a high variability across cats regarding the peak

and duration of significant performance.
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Figure 5.2: Circuit activity in response the Stimulus presentation

A: Upper part: Spike times of the recorded neuron with index 10 across 50 stim-

ulation trials for two stimulus sequences (ABE and CBE). The gray boxes indi-

cate the time intervals during which the letters of the stimulus were presented.

Lower part: Peri-stimulus time histogram (PSTH) of the spikes of this neuron (5

ms bins). B: Spike trains of 50 recorded neurons for trial number 40 (compare

with blue spike trains of A). The spikes of neuron with index 10 are plotted in

blue. The spike trains of 50 trails of this neuron are shown in A.
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Figure 5.3: The ability of a readout to classify the identity of a letter

used as stimulus.

The performance of Rt classifiers as a function of time is plotted as a solid line.

The stimulus was presented for 100 ms starting at 0 ms. The presence of a stimulus

is indicated by a gray box. The shaded region around the dotted line indicates

the statistically non-significant deviations from the chance level (p > 0.05). The

mean firing rate of the recorded neurons is plotted as a dash-dotted line.
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5.3.2 Prolonged responses to single letters can not be explained
by local synaptic connectivity

The mean firing rate responses in the experiments are typically longer than the

responses of the model (compare Fig. 5.3 with Fig. 2 of (Nikolic et al., 2009)). The

NMDA-to-AMPA ratio might have to be adjusted to create such a long response in

the model. The NMDA-to-AMPA ratio shows a relatively high fluctuation in the

experimental literature (Myme et al., 2003). Furthermore, the NMDA receptor

function might be influenced by anesthesia (Narimatsu et al., 2002; Guntz et al.,

2005). In order to adjust this parameter of the model to the experimental results,

we increased the NMDA-to-AMPA ratio by a multiplicative factor of 2 and 3 in

the model. Additionally, we simulated the model without NMDA receptors. The

firing rate profile for the different setups is plotted in Fig. 5.4. The overall weight

scale Wscale of the model was decreased in case of a higher NMDA-to-AMPA ratio

and increased for the model without NMDA receptors, respectively, to result in

about the same peak firing rate after the onset of the first letter of the stimulus.

An increased NMDA-to-AMPA ratio resulted in an increased spontaneous firing

rate but only weakly prolonged the response induced by the letter stimulus. The

readout performance was only little affected by an increase of the NMDA-to-

AMPA ratio (not shown).
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Figure 5.4: The impact of the NMDA-to-AMPA ratio on the firing

rates of the recorded neurons.

The mean firing rate of the response is plotted for different NMDA-to-AMPA

ratio. The spontaneous activity is enhanced by higher NMDA-to-AMPA ratios,

but the response to the stimulus is only weakly prolonged.
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5.3.3 Similar non-linear superposition of information

To investigated if a new stimulus erases the memory about the previous stimulus

or if information about succeeding stimuli are superimposed in the circuit activity,

we stimulated the model with sequences of letters.

The performance of the Rt classifiers stays above chance level for about 350 ms

for the first letter (Fig. 5.5 A) and about 320 ms for the second letter (Fig. 5.5 B),

respectively. These time intervals are even longer than for the single-letter stimu-

lus condition. This behavior may be attributed to the firing rate increase during

the presentation of the second letter and the third letter, respectively, because the

readout performance is correlated to the firing rate of the recorded neurons. The

time course of the Rt performance is comparable to the experimental results of

cat 3 in (Nikolic et al., 2009) (compare with Fig. 4 C of (Nikolic et al., 2009)).

Additionally, we analyzed how the model combines two subsequent stimuli in

a non-linear fashion (Fig. 5.5 C). The readout neurons were trained to do a XOR

like classification, i.e. to be active if the first two letters of the sequence are AB

or CD but to be inactive in case of CB or AD. For this task the linear spiking

threshold was removed from the readout neuron to ensure that the non-linearity

originates from the circuitry and not from the readout mechanism. Thus, we

computed the so called point-biserial coefficient of correlation between the binary

coded target value and the depolarization of the readout neuron to evaluate the

performance for this task. For this task, the performance of the model peaks at

about the same time as for cat 3 of (Nikolic et al., 2009), but the peak value is

lower. The peak value of the model is comparable to the peak value during the

experiments of cat 2 (compare with Supporting Fig. S21 of (Nikolic et al., 2009)).

5.3.4 The variety of firing rate profiles correlates with electrode
locations

The time course of the mean firing rate for the three-letter experiments of (Nikolic

et al., 2009) was different for each cat. This might be attributed to the actual

depth, position and orientation (relative to the retinotopic map) of the electrode

in the experiments. We checked if varying the depth, position and orientation of

the virtual electrode in the model results in distinct temporal firing rate profiles.

We computed the mean firing for all possible depths and positions of the electrode

within the circuit for horizontally and vertically (with respect to the retinotopic

map) oriented virtual electrodes. Fig. 5.6 shows three typical temporal firing rate

profiles for vertical (Fig. 5.6A) and horizontally (Fig. 5.6C) oriented electrodes.

These typical profiles were inferred by using a k-medoid clustering algorithm on

the firing rate profiles. All the firing rate profiles resulted from simulations using

the ABE letter sequence stimulus. For both orientations, the shape of the profiles

are clustering mainly depending on the depth of the virtual electrode (compare



140 Chapter 5. Temporal dynamics of information in a model of V1

with Fig. 5.6B,D). For virtual electrodes mainly located in layer 2/3, the first

on response peak is typically smaller than the second on response peak. As the

depth of the virtual electrode increases the ratio of the amplitude of the first to

the second on response peak changes. For deeper electrode positions the first

on response is stronger than the second on response. This observation holds for

horizontally and vertically oriented virtual electrodes.

5.3.5 Similar impact of jitter on the computational performance

As in (Nikolic et al., 2009) we analyzed how strongly the performance of the

readouts depends on the exact spike times of the recorded neurons. We tested

this by applying a jitter to each spike time. Each spike time was moved by a

random time drawn from a Gaussian distribution with zero mean and a predefined

standard deviation (SD). The dependence of the Rt classifier performance on the

amount of jitter added to each spike time is shown in Fig. 5.7 for three time points

of the simulation.

For all three points in time, the classifier performance decreases as the SD of

the jitter increases. During the the presentation of the first letter (Fig. 5.7 A), the

performance of the model drops by about 5% for a jitter with SD = 20 ms. For

the same case, the experimentally measured performance drop was in the range

of about 10% to 17%. Particularly for the time point after the presentation of

the first letter (Fig. 5.7 B), the results of the model correspond very well to the

experimental results. For a jitter with SD = 20 ms the performance decreases by

about 6% for the model and about 6%-10% in the experiment, respectivly. The

maximal performance drop during the presentation of the second letter (Fig. 5.7 C)

was about 8% for the model and about 9%-11% in the experiments.

The similar performance drop for the model and the experiment shows that

this drop may not be attributed to a specific temporal coding of information in

the spike times but is a common result for generic cortical microcircuits based on

random connectivity pattern.
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Figure 5.5: The information about different parts of the stimulus se-

quence is simultaneously available. A: Performance of readouts trained on

individual time points to classify the the first letter of the three letter stimulus

sequence. B: Performance as in A but for the second letter of the stimulus se-

quence. C: Performance in case of XOR classification. The performance for this

task is measured by a point-biserial coefficient of correlation between the stimulus

(binary code) and the depolarization of the readout neuron. Notations are the

same as described in Fig. 5.3.
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Figure 5.6: The temporal profile of the average firing rate of recorded

neurons for different virtual electrode positions in response to a three

letter sequence stimulus (ABE).

A,C: Three prototypical firing rate profiles inferred by a k-medoid clustering for

vertically (A) or horizontally (C) positioned virtual electrodes.

B,D: The assignment of an electrode position to a cluster prototype for the dif-

ferent depths for vertically (B) and horizontally (D) positioned virtual electrodes.

The depth of the virtual electrode increases by 200 µm per panel from top to

bottom.
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Figure 5.7: The classification performance of Rt readouts as a function

of the amount of Gaussian jitter to spike times.

The drop in performance as a function of the SD of the jitter applied to the spike

times during the presentation of the first letter (A), after the first letter (B), and

during the presentation of the second letter (C).
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Table 5.1: Average and maximum performance increase for polynomial kernels

Degree of polynomial kernel 2 3 4 5

Average increase (150 trials) 1.3 % 2.0 % 2.2 % 2.5 %

Average increase (2000 trials) 2.6 % 2.9 % 3.1 % 3.3 %

Maximum increase (150 trials) 9.3 % 13.3 % 17.0 % 15.7 %

Maximum increase (2000 trials) 13.2 % 14.6 % 14.7 % 13.5 %

5.3.6 Higher-order correlations contain little information about
stimulus properties

(Nikolic et al., 2009) analyzed how the performance of Rint classifiers improves if

one uses non-linear kernels. They used polynomial kernels of degree 2 to check if

pairwise correlations can improve the readout performance. They found that for

cat 1 and cat 3 a polynomial kernel of degree 2 increase the readout performance on

average by 5.3 % and 2.0 %, respectively and the maximum performance increase

was about 6 % and 10 %, respectively. As for the experiments with cat 3 of

(Nikolic et al., 2009), we used the time interval 0 − 300 ms relative to the onset

of the stimulus. For polynomial kernels of degree 2, the average performance

increase for the model for 150 trials per stimulus was 1.3 % and the the maximum

increase was 9.3 % (for higher degrees see Table 5.1). These values agree well

with the results of cat 3. The performance improvement for polynomial kernels

peaks at about 250 ms after stimulus onset (Fig. 5.8A) when the second letter

stimulus induces a change in the circuit activity. (Nikolic et al., 2009) argued that

performance of classifiers with higher order kernels may improve if more trials

would be available to the learning algorithm. By using the computer model of V1,

we were able to generate many more trials (2000) than the 150 trials per stimulus

in the experimental setup. Fig. 5.8B shows that the performance for higher order

kernels increases only slightly for a dataset which is more than a magnitude bigger

(2000 trials of the model vs. 150 experimental trials).

For other time intervals the dependence of the performance of the classifiers

on the number of trials was very similar (not shown).
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Figure 5.8: Performance of readouts using linear and polynomial ker-

nels.

A: The performance of Rint readouts using linear and polynomial kernels of differ-

ent degrees using 2000 trials per stimulus. The average performance improvement

relative to the linear readout is given in the brackets of the legend. B: The de-

pendence of the mean readout performance (average over the 0 − 300 ms time

interval) on the number of trials per stimulus for different different degrees of the

polynomial kernel. The error bars denote the standard error (average over the

0 − 300 ms time interval).



146 Chapter 5. Temporal dynamics of information in a model of V1

5.4 Discussion

We have shown that the temporal dynamics of information about sequences of vi-

sual stimuli contained in neural responses in cat primary visual cortex as reported

in (Nikolic et al., 2009) can be replicated by a detailed cortical microcircuit model

that implements stereotypical lamina-specific cortical synaptic connectivity.

The overall good agreement between model and experiment can be ascribed to

certain model components. On one hand the results can be attributed to specific

properties of the LGN model. First, the characteristic firing rate profiles of cortical

neurons are similar for model and experiments. This is because the peaks in the

mean firing rates of neurons within the cortical microcircuit model closely follow

the corresponding peaks in the mean firing rates of cells in the LGN model. The

latter result from characteristic on- and off-responses of LGN cells, which overlap

for consecutive stimuli in a sequences presented at a frequency of 5 Hz. As long as

the firing rates of LGN cells in response to a visual stimulus are high, information

about this stimulus can be extracted from the circuit activity caused by the input.

This was also observed experimentally.

Secondly, the information content in the fine temporal structure of neural

responses is similar for model and experiments. In (Nikolic et al., 2009) it was

shown that jitter with a standard deviation of a few millisecond causes a significant

performance drop for readout neurons that were trained to extract information

about previously presented letters from the spiking activity of cortical neurons.

Furthermore, it was reported that this performance drop can be attributed to a

neural code for which information is contained exclusively in the firing rates of

neurons. These results are in agreement with the corresponding results for the

model. In the model information about visual stimuli is explicitly coded in the

instantaneous firing rates of cortical neurons because the models for the LGN and

the retina transform visual stimuli into firing rates of LGN cells (inhomogeneous

Poisson processes). However, the performance drop in the model after applying

jitter with a standard deviation up to 5 ms is smaller than in the experiments.

This indicates that the changes in the mean firing rates (i.e. the PSTHs) of cortical

neurons in the model are slower compared to experiments.

On the other hand certain properties of the temporal dynamics of information

about past input can be attributed to the recurrent synaptic connectivity within

the cortical microcircuit model. First, the non-linear superposition of information

about visual input presented at different moments in time as observed in exper-

iments, occurs also in the model. This non-linear computation on visual input

is carried out by the recurrent synaptic connectivity of the cortical microcircuit

model because the model for the retina and the LGN perform only linear opera-

tions on visual input and therefore can not contribute to non-linear computations

(as required for the XOR task).

Secondly, the prolonged neural activity in response to visual stimuli results
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from the recurrent synaptic connectivity as well. In particular NMDA synapses

with large decay constants for their post-synaptic potentials with values of about

150 ms have a significant effect on the duration of the prolonged firing activity after

stimulus offset. This is indicated by the positive correlation of the duration of the

prolonged neural activity with the fraction of NMDA receptors within neurons.

However, the fraction of NMDA receptors reported in the literature resulted in a

significantly shorter duration of the neural responses in the model as observed in

experiments.

Additionally, we apply the cortical microcircuit model to make predictions

about three dynamical or computational properties of cat primary visual cortex

that could not be answered in (Nikolic et al., 2009) based on experimental data.

First, the firing rate profiles of neurons in response to sequences of visual stimuli

depend on the location of the neurons within the neural tissue. The deeper the

neurons are located within the neural tissue the more pronounced is their peak

firing rate response to the first stimulus in a sequence. In contrast, neurons located

in superficial layers have larger peak firing rates in response to subsequent stimuli

in a sequence when compared to neurons located in deep layers. Apart from that

the firing rate profiles show only little dependence on the horizontal location of

the neurons. The variety of different firing rate profiles reported in (Nikolic et al.,

2009) for different animals and recording sessions may therefore be attributed to

different electrode positions, which were not identified in this study.

Secondly, all information about stimulus properties that could be extracted

from the neural responses is contained in first and second order correlations be-

tween the discharge patterns of cortical neurons. The application of additional in-

put samples did not provide significant additional information contained in higher-

order correlations as was also observed in (Nikolic et al., 2009). This information

could be missed in case of too small datasets due to the problem of overfitting.

Our findings are consistent with results reported in (Hung et al., 2005) that show

that an artificial readout system can extract stimulus-specific information from the

spiking activity of neurons located in macaque inferotemporal (IT) cortex. Fur-

thermore, previous studies examining synchronization among neuron populations

(Schneidman et al., 2006; Yu et al., 2008) found that second-order correlations

can account for almost all the correlation patterns observed in certain natural

neuronal networks, and thus, higher-order correlations are unlikely to convey ad-

ditional information.

Thirdly, the duration of the prolonged neural responses to single letter presen-

tations can not only be attributed to local synaptic connectivity. Nevertheless the

model exhibits prolonged neural activity on a time scale that is shorter compared

to experiments. We have shown in the model that the duration of this responses

depends on the fraction of NMDA receptors within a neuron, i.e. the more NMDA

receptors the longer the response duration. The NMDA receptor function might
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be influenced by anesthesia (Guntz et al., 2005; Narimatsu et al., 2002). Previous

reports (Narimatsu et al., 2002) indicate that ketamine anesthesia facilitates exci-

tatory synaptic transmission by activating NMDA receptors. However, our results

indicate that the prolonged neural responses reported in (Nikolic et al., 2009) can

not only be attributed to an increased NMDA receptor activation. Tripling the

ratio of NMDA to AMPA receptors in the model only results in an enhanced neu-

ral activity for up to 200 ms but not for up to 1 s as observed experimentally.

These results support the hypothesis that the prolonged neural responses to single

letter presentations reported in (Nikolic et al., 2009) may not simply be an artifact

of the applied anesthetic but may be more likely related to the specific type of

stimulus (white letters on black background were flashed for 100 ms).

All three predictions can be verified experimentally with i) precisely located

recording electrodes, ii) larger datasets, and iii) in vivo recordings carried out in

awake animals or under application of different anesthetics.

The results for the model and the experiments differ in two points. First,

the changes in the mean firing rates (i.e. the PSTHs) of cortical neurons in the

model in response to visual input are slower compared to experiments. This

could be a result of shorter temporal integration time constant for LGN on- and

off-cells in the cat brain. Alternatively, the peak in the firing rates of cortical

neurons in response to LGN input in the cat brain could be sharpened due to

more structured local cortical connectivity that implements for instance feedback

mechanisms like gain control. Secondly, the prolonged neural responses to single

letter stimuli are shorter for the model than for experimental data. A possible

reason for this shorter responses are missing feedback loops with higher cortical

areas that are not explicitly accounted for in the model. Input from higher cortical

areas was modeled as conductance noise that is uncorrelated with visual input and

therefore not capable to prolong stimulus induced activity. Further simulation

studies that extend the current cortical microcircuit model by implementing higher

cortical areas are required to clarify if a generic cortical model can account for the

experimentally observed long lasting neural responses.
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3. S. Häusler, K. Schuch, and W. Maass. Motif distribution and computational

performance of two data-based cortical microcircuit templates. 38th Annual

Conference of the Society for Neuroscience. Program 220.9. 2008
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