
GRAZ UNIVERSITY OF TECHNOLOGY

DISSERTATION
to obtain the title of

Doctor of Technical Sciences

of Graz University of Technology

Defended by

Michael Andreas Pfeiffer

Concepts and Methods from
Machine Learning as Tools for
the Analysis of Computations

in Nervous Systems

Thesis Advisor: Univ.Prof. DI Dr. Wolfgang Maass

defended on February 4, 2010

Jury :

Advisor : Univ.Prof. DI Dr. Wolfgang Maass - TU Graz

Reviewer : Univ.Prof. Dr. Rodney J. Douglas - ETH Zürich

Dean of Studies: Univ.Doz. DI Dr. Oswin Aichholzer - TU Graz

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst, an-

dere als die angegebenen Quellen / Hilfsmittel nicht benutzt, und die den benutzten

Quellen wörtlich und inhaltlich entnommene Stellen als solche kenntlich gemacht

habe.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other

than the declared sources / resources, and that I have explicitly marked all material

which has been quoted either literally or by content from the used sources.

Graz, 11 January 2010

(signature)

iii

Abstract

This thesis investigates how innovative machine learning methods, which au-

tonomously extract information from data, can be used to gain insights into neu-

ral information processing. The brain provides a framework which has been opti-

mized through evolution to support fast and robust adaptation to the environment,

thereby increasing chances of survival. Building upon the mathematically frame-

work of machine learning allows us to study the role of experimentally observed

synaptic learning phenomena, or to use analogies from neuroscience in order to

improve machine learning algorithms for difficult real-world tasks.

My dissertation is structured into several parts, which highlight the multiple

possibilities where machine learning and computational neuroscience can fruitfully

interact. The first part studies auditory information processing by insects in real-

world scenarios. Analyzing recordings that were performed in the natural habitats

of the insects in the tropical rainforest, we find that neural coding with charac-

teristic burst firing patterns provides a reliable way of transmitting information in

situations where signals are heavily distorted by environmental noise. The second

part uses neural network techniques to construct models of high-level human be-

havior. The relevance of text that humans were reading was classified from the

movements of their eyes. Our approach was so successful that it finished first in

an international competition. In the third part a new algorithm for reward-based

learning in continuous state- and action spaces is presented, which draws inspiration

from neuroscientific concepts of motor control. In combination with sample-based

models and innovative exploration policies this leads to an improvement over ex-

isting algorithms, which are applicable for robotics tasks. The final parts of my

thesis links biologically plausible Hebbian learning mechanisms to mathematical

concepts of learning and decision making. Neural network models are presented

in which simple synaptic plasticity rules with strong convergence guarantees lead

to approximately optimal decisions in a Bayesian sense. This shows how nervous

systems can learn strategies for a rich variety of tasks with apparently very simple

and limited basic units of computations, i.e. neurons and synapses. The presented

approach makes concrete predictions for sparse, redundant neural codes for input

signals, with which Hebbian learning can quickly and robustly lead to sensible deci-

sions. We first present mechanisms for supervised learning, and extend these rules

to reward-modulated learning in winner-take-all networks, where action selection

policies are learned from rewards and punishments. Finally, we explore functional

roles for spike-timing dependent plasticity (STDP) in soft winner-take-all circuits of

spiking neurons. It is shown that spiking neurons can learn implicit internal models

of high-dimensional input signals without supervision, thereby identifying hidden

causes of inputs. In particular, it is shown that STDP is able to approximate a

stochastic online Expectation-Maximization algorithm for modeling the input data.

Keywords: Machine learning, computational neuroscience, reinforcement learning,

Hebbian plasticity, Bayesian methods

iv

Zusammenfassung

In dieser Arbeit wird untersucht, wie man neue Einblicke in neuronale Infor-

mationsverarbeitung gewinnen kann durch den Einsatz neuartiger Methoden des

Maschinellen Lernens. Das Gehirn stellt ein durch die Evolution optimiertes

Gerüst für schnelle und robuste Anpassung an die Umgebung dar, um die

Überlebenschancen von Organismen zu erhöhen. Aufbauend auf mathematischen

Konzepten kann man die Rolle von experimentell beobachteten Lernvorgängen

studieren, oder Analogien zur Hirnforschung verwenden um Algorithmen für kom-

plexe real-world Anwendungen zu verbessern.

Die verschiedenen Teile meiner Dissertation zeigen die vielfältigen Möglichkeiten

einer fruchtbaren Verbindung von Neurowissenschaft und Maschinellem Lernen auf.

Zuerst wird auditorische Informationsverarbeitung von Insekten in ihrer natürlichen

Umgebung untersucht. Bei der Analyse von Aufzeichnungen im natürlichen Habi-

tat der Insekten konnte ein neuronaler Code mit charakteristischen Feuermustern

in Form von Bursts identifiziert werden, der als Grundlage der Übermittlung von

Information bei starken natürlichen Hintergrundgeräuschen dient. Im zweiten Teil

wurden Neuronale Netzwerke verwendet um menschliches Leseverhalten aufgrund

von Augenbewegungen vorherzusagen. Unser Ansatz um die Relevanz eines gelese-

nen Texts vorherzusagen gewann den ersten Preis bei einem internationalen Wet-

tbewerb. Im dritten Teil wird ein Algorithmus für Reinforcement Learning in kon-

tinuierlichen Umgebungen präsentiert, der durch neurowissenschaftliche Erkennt-

nisse aus dem motorischen System inspiriert wird. Zusammen mit neuartigen Meth-

oden für Modell-Lernen und Exploration führt dieser Ansatz zu verbesserten Algo-

rithmen z.B. für Robotik-Anwendungen. Im letzten Teil der Dissertation wird eine

Verbindung von biologisch plausibler Hebb’scher Plastizität und mathematischen

Modellen für Lernen und Entscheidungsfindung hergestellt. Es werden neuronale

Netzwerk-Modelle präsentiert, in denen einfache synaptische Lernregeln zuverlässig

zu annähernd Bayes-optimalen Entscheidungen führen. Dies zeigt, wie Nerven-

systeme Strategien für komplexe Aufgaben mittels Neuronen und Synapsen lernen

können. Der vorgestellte Ansatz macht konkrete Vorhersagen, wie Neuronale Codes

für Inputsignale aussehen könnten, mit denen Hebb’sches Lernen schnell und robust

Entscheidungen findet. Mechanismen für supervised Learning werden erweitert auf

reward-modulierte Lernregeln in sogenannten winner-take-all networks, wodurch

Entscheidungs-Strategien anhand von Feedback gelernt werden. Abschließend wird

die funktionale Aufgabe von Spike-timing Dependent Plasticity (STDP) in soft

winner-take-all Netzwerken spikender Neuronen untersucht. Spikende Neuronen

bilden ohne externen Supervisor implizite interne Modelle ihrer hoch-dimensionalen

Inputs, und identifizieren dadurch versteckte Features des Inputs. Insbesondere

wird gezeigt, dass STDP einen stochastischen online Expectation-Maximization Al-

gorithmus zur Modellierung der Input-Verteilung approximiert.

Keywords: Maschinelles Lernen, Computational Neuroscience, Reinforcement

Learning, Hebb’sche Plastizität, Bayes’sche Methoden

v

Acknowledgments

It is a pleasure to thank the many people who have helped making this thesis

possible. First of all, I want to thank my advisor Wolfgang Maass, who has made

his support available in a number of ways. He enabled me to work on very exciting

topics, and attracted me to look into fields of science that were new to me. His

expertise and visions have greatly inspired my research. I am also very grateful to

Rodney Douglas, in particular for taking time out from his very busy schedule to

review my thesis and attend my defense. I also want to thank him for the fruitful

collaboration within the SECO project, which has lead to the very nice joint paper

that is the basis of Chapter 6.

I would like to show my gratitude to my co-authors and colleagues Bernhard

Nessler, Gerhard Neumann, Amir Saffari, and Andreas Juffinger, who have con-

tributed substantial ideas to our joint publications. I also want to thank Heinrich

Römer and Manfred Hartbauer from the Institute of Zoology at Karl Franzens Uni-

versity Graz for the nice and inspiring collaboration that has lead to the results

presented in Chapter 2.

My deepest thanks also goes to my current and former colleagues at the Insti-

tute for Theoretical Computer Science, in particular Oliver Friedl, Stefan Häusler,

Daniela Potzinger, and Ingrid Preininger. I also want to acknowledge that this the-

sis would not have been possible without the financial support by Graz University

of Technology, the Austrian Science Fund FWF, and the research programs of the

European Union.

I would like to thank my family and friends for the endless support they have

provided to me. I have been really lucky to have so many good friends by my

side while writing this thesis. So a big “Thank you” goes to all of you - you know

who I mean! I owe my deepest gratitude to my parents, who have supported me

in all possible ways throughout my whole life. I will also always remember my

grandmother Rosa, who passed away too early to see me finishing my doctorate. I

am more than grateful to my beloved Judith, who has always been an invaluable

source of joy and encouragement to me.

Contents

1 Introduction 1

1.1 Organization of the Thesis . 2

2 Probing real sensory worlds of receivers with clustering 5

2.1 Introduction . 6

2.2 Material and Methods . 8

2.2.1 Animals and Physiological Preparation 8

2.2.2 Study site and experimental procedure 10

2.2.3 Burst Detection . 11

2.2.4 Spike Metrics . 12

2.2.5 Clustering with Affinity Propagation 12

2.3 Results . 14

2.3.1 Recordings in Natural Habitats 14

2.3.2 Analysis of Bursts . 14

2.3.3 Clustering of Bursts . 15

2.3.4 Separability of Artificial Stimulus Classes 18

2.3.5 Matching Clusters of Bursts 18

2.3.6 Matching Clusters of Bursts in two Simultaneous Recordings

of the same Cell . 22

2.4 Discussion . 25

2.4.1 Coding problems for stimuli in the natural environment . . . 25

2.4.2 Detecting spike patterns with unsupervised learning 27

2.4.3 Bursts and Neural Codes based on Temporal Firing Patterns 28

2.4.4 Number of burst variants, the consequences for reliable acous-

tic communication, and outlook for necessary refinements of

the algorithm . 29

2.5 Conclusion . 30

2.6 Acknowledgments . 31

3 Predicting Text Relevance from Eye Movements 33

3.1 Introduction . 33

3.2 Feature Extraction . 34

3.2.1 Features for Competition One 34

3.2.2 Statistical Analysis . 36

3.3 Classification and Results . 38

3.3.1 Correct Line Identification . 38

3.3.2 Relevant vs. Irrelevant Lines Identification 39

3.4 Conclusion . 40

3.5 Acknowledgments . 40

viii Contents

4 Continuous-Time RL with Adaptive State Graphs 41

4.1 Introduction . 41

4.2 Graph Based Reinforcement Learning 43

4.3 Structure of the Algorithm . 44

4.4 Building the Adaptive State Graph 45

4.4.1 Generating Samples . 46

4.4.2 Evaluating Exploration Nodes 46

4.4.3 Integrating New Exploration Nodes 47

4.4.4 Re-planning within the Graph 48

4.4.5 Action Selection and Incorporation of Actual Experience . . . 48

4.4.6 Inserting New Nodes . 48

4.4.7 Practical Implementation Issues 49

4.5 Experiments . 49

4.5.1 Static Puddle World . 49

4.5.2 3-Link Arm Reaching Task 51

4.6 Conclusion . 51

4.7 Acknowledgments . 52

5 Hebbian Learning of Bayes Optimal Decisions 55

5.1 Introduction . 55

5.2 A Hebbian rule for learning log-odds 56

5.2.1 Learning rate adaptation . 58

5.3 Hebbian learning of Bayesian decisions 59

5.3.1 Learning Bayesian decisions for arbitrary distributions 60

5.4 Experimental Results . 61

5.5 Discussion . 62

5.6 Acknowledgments . 64

6 Reward-modulated Hebbian Learning 65

6.1 Introduction . 66

6.2 The Bayesian Hebb rule . 70

6.2.1 Action selection strategies and goals for learning 70

6.2.2 A local rule for learning reward log-odds 72

6.2.3 Convergence properties of the Bayesian Hebb rule in rein-

forcement learning . 73

6.3 The Linear Bayesian Hebb rule . 75

6.3.1 Convergence of the Linear Bayesian Hebb Rule 76

6.4 Population codes for Hebbian learning 78

6.4.1 Learning decisions for arbitrary discrete distributions 81

6.5 Results of Computer Simulations . 83

6.5.1 Approximations to the Bayesian Hebb rule 85

6.5.2 Adaptation to changing reward distributions 86

6.5.3 Simulations for large input and action spaces 88

6.5.4 Performance of the Rescorla-Wagner rule with preprocessing 88

Contents ix

6.6 Decision making with continuous inputs 89

6.6.1 Computer Experiments with continuous input 93

6.7 Discussion . 93

6.7.1 Summary and open problems 93

6.7.2 Related Work . 98

6.7.3 Conclusion . 103

6.8 Acknowledgments . 104

7 STDP enables spiking neurons to

detect hidden causes of their inputs 105

7.1 Introduction . 106

7.2 Discovery of hidden causes for a benchmark dataset 106

7.3 Underlying theoretical principles . 108

7.3.1 Reduction to EM . 111

7.3.2 A Hebbian learning rule for the M-step 112

7.3.3 Stochastic online EM . 113

7.3.4 Impact of missing input values 114

7.3.5 Relationship between the spiking and the non-spiking network 115

7.4 Discussion . 115

7.5 Acknowledgments . 116

A List of Publications 117

A.1 Comments and Contributions to Publications 118

References 121

Chapter 1

Introduction

Can the brain understand the brain? Can it understand the mind? Is

it a giant computer, or some other kind of giant machine, or something

more?

— David Hubel, (1979)

Understanding the brain has always been considered one of the last frontiers for

science. There is historical evidence that the anatomy and pathology of the brain

had been studied already before Christ, but our knowledge of the function of the

brain has taken a giant step forward in the twentieth century with the development

of new tools for neuroscience. Large credit has to be given to advances in molec-

ular biology and electrophysiology, but no other tool has arguably influenced our

understanding of the function of our nervous system more than the computer.

As Hubel suggested in the above quote, the question may be asked whether the

brain is actually all that different from a computer? Since computers are among

the most complex machines ever built by humans, they may represent the best

analogy that we have, and that we understand well enough. We know of many

significant differences in the ways that current computers and nervous systems

operate, e.g. the massive parallelism in the brain, but on a more abstract level one

can also find obvious analogies: The brain receives input through sensory organs,

processes the incoming information as well as information stored in the memory,

and produces output e.g. by activating muscles. At the same time – to stress

the analogy – an ’operating system’ maintains the basic functions of our brain

and body to supply energy and resources. The analogy should end here because

computations performed by the brain are very different from computations inside

our current computers. The human brain consists of billions of small processing

units (neurons), which are organized in more or less densely connected networks,

and compute in parallel without any obvious central synchronization mechanism. In

addition, the synaptic connections between neurons constantly undergo changes in

their connectivity patterns or transmission properties during lifetime. In contrast,

the typical PC has a fixed architecture with one, or a small number of tightly

synchronized central processing units, and small alterations of the hardware may

result in a crash of the whole system. As a consequence, the tasks at which brains

or computers excel are very different, and extremely hard to achieve for the other

system, like e.g. controlling hundreds of muscles to walk over uneven terrain, versus

searching billions of database entries in a fraction of a second to answer a search

query. To date it seems impossible to simulate all the computations within a brain

2 Chapter 1. Introduction

on a single computer, and enormous supercomputers are required to simulate tiny

cortical areas with reasonable precision (Markram, 2006).

We can however greatly gain insight into particular computational processes in

nervous systems by building computer models that abstract apparently irrelevant

details. In this thesis my focus is on concepts and methods from machine learning

to analyze computations in nervous systems. Machine learning is the sub-field of

computer science that is concerned with the construction of computer programs that

autonomously extract information from data and improve with experience. It is a

particularly useful tool for the analysis of neural computations for multiple reasons:

Firstly, processing large amounts of structured data is obviously one of the major

strengths of silicon computers, and machine learning allows us to analyze biological

data from neural recordings in order to identify the key concepts that underlie

neural information processing. Depending on the type of data that is available, one

can analyze mechanisms at various levels of details, e.g. by investigating processes

at the synaptic or neuronal level, or more abstract, cognitive processes, e.g. the

behavior of animals or humans.

Secondly, the task of learning from data also plays a crucial role for biological

organisms, because the number of neurons and synapses in brains is far too large to

encode all information necessary for survival in the genetic code. Instead, organisms

have to learn from different forms of feedback, which may also be corrupted by

large amounts of noise. Already in the early days of machine learning, mechanisms

like the perceptron (Rosenblatt, 1962) tried to find analogies between plasticity

observed in biology, and mathematical models for learning in computers. This

has lead to a fruitful interaction of disciplines. On the one hand, mathematical

theories like e.g. liquid-state machines (Maass, Natschlaeger, & Markram, 2002),

winner-take-all circuits (Douglas & Martin, 2004), population codes (Pouget &

Latham, 2002), or spike-timing dependent plasticity (Bi & Poo, 1998), have helped

in understanding learning and computation in neural systems, and allowed the

design of new experiments that specifically aimed at verifying or falsifying those

theories. On the other hand, machine learning algorithms (e.g. neural networks,

genetic algorithms, reward-based learning, ...) have often been inspired by biology,

and translated experimental observations into algorithms with high performance

also on non-biological data.

In this thesis machine learning is used for a variety of tasks that investigate

computations in nervous systems at different levels of details, from learning at a

single synapse to modeling human behavior at a high level. New machine learning

algorithms were developed based on known biological findings, and existing machine

learning algorithms were applied to improve our understanding of biological data.

1.1 Organization of the Thesis

This thesis is comprised of 6 chapters which are based on publications to which I

contributed during my PhD studies, and which have been published in competitive

1.1. Organization of the Thesis 3

journals and conferences.

In Chapter 2, unsupervised machine learning is used to study neural record-

ings. The data originate from spike train recordings in single auditory interneurons

in acoustic insects, which were conducted under natural noise conditions in their

natural habitat, which is the tropical rainforest. Recently developed techniques for

clustering and spike metrics that yield quantitative similarity measures for differ-

ent spike trains were used to identify patterns of activity in response to auditory

stimuli. We found characteristic patterns of bursts in response to particular artifi-

cial stimuli, although the stimuli were disturbed by a very high noise level in the

jungle. Our analysis showed a very high firing precision, even in the presence of

severe background noise. We even found very similar responses of different insect

preparations to identical stimuli, although the background noise conditions were

completely different. This study is a good example of how machine learning algo-

rithms, which were not particularly designed to model neural processes, can help

us analyzing information processing in the nervous system.

Chapter 3 presents a study where supervised machine learning algorithms were

used to predict human reading behavior from a number of high-level features. The

task was to extract from the eye movements of human test subjects information

about the relevance of sentences that they were reading. The data originated from

an international machine learning contest organized by the PASCAL network of

excellence and the Helsinki University of Technology (Salojärvi et al., 2005), in

which our approach finished in first place. This study shows that with a good

choice input features, established machine learning methods can be used to learn

high-level models for human behavior.

A new algorithm for reinforcement learning, i.e. learning action strategies from

rewards and punishments, is presented in Chapter 4. This algorithm draws inspi-

ration from the neuroscientific concept of motor primitives (Mussa-Ivaldi & Bizzi,

2000), which represent simple sub-policies that can be combined to solve difficult

control tasks. The hierarchical approach of splitting a difficult motor control task

into a combination of multiple simpler tasks with pre-programmed primitive solu-

tions allows a more efficient way of solving such problems. In neuroscience, motor

primitives are e.g. used to represent modular force fields that control limb move-

ments, and are activated by signals from the spinal cord. Our new reinforcement

learning algorithms uses this concept for a difficult continuous control and planning

problem. Combining theoretical ideas like sample-based models of the continuous

environment, and innovative exploration policies, in combination with motor prim-

itives leads to an algorithm, which learns very fast and learns close to optimal

solution trajectories. This is a successful example of an idea from neuroscience

that has greatly contributed to the improvement of existing learning algorithms for

artificial systems like e.g. robots.

The final three chapters of this thesis investigate an interesting mathematical

concept for learning synaptic weights with purely Hebbian mechanisms. Hebb’s

theory (Hebb, 1949) that potentiation occurs at synapses where presynaptic firing

repeatedly induces postsynaptic firing is conceptually simple, and is well supported

4 Chapter 1. Introduction

by experimental data. We provide a theoretical framework that links these simple

update rules to Bayesian optimality concepts and thereby provides strong conver-

gence guarantees. These studies show that even though the computations performed

in the basic elements of nervous systems (neurons and synapses) appear to be very

simple and limited, a rich variety of tasks can be learned with the right choice of

connectivity patterns for neural circuits, and plasticity rules in synapses.

Chapter 5 presents a pure Hebbian learning rule for a simple neural network

architecture in a supervised learning context. We show that the simple learning rule

provably converges to log-probability ratios of binary variables. In combination with

a suitable sparse, redundant population code for input signals, this framework can

in principle learn to infer optimal Bayesian decisions. In Chapter 6 we extend the

results of Chapter 5 and present Hebbian mechanisms for the learning of decisions

from reward signals. Weights in a winner-take-all (WTA) circuit, a type of neuronal

microcircuit which is hypothesized to be of great importance for computations in

the neocortex (Douglas & Martin, 2004), are trained with our reward-modulated

learning rule and lead to near-optimal action selection performance.

Finally, the theoretical model developed in Chapter 7 identifies clustering as one

possible task for spiking neurons in simple network models. We were able to relate

experimentally observed neural architectures like WTA, and synaptic learning rules

like Spike-Timing Dependent Plasticity (STDP), to the mathematical framework of

Expectation-Maximization (EM). This is another good example of how seemingly

unrelated biological observations and mathematical theories can be integrated to

provide a plausible model for the function of neural circuits.

Chapter 2

Probing real sensory worlds of

receivers with unsupervised

clustering

Contents

2.1 Introduction . 6

2.2 Material and Methods . 8

2.3 Results . 14

2.4 Discussion . 25

2.5 Conclusion . 30

2.6 Acknowledgments . 31

The task of an organism to extract information about the external environment

from sensory signals is based entirely on the analysis of ongoing afferent spike activ-

ity provided by the sense organs. We investigate the processing of auditory stimuli

by acoustic insects, which extract behaviorally relevant information from minute

variations of stimuli, and therefore require a particularly precise neural encoding.

Interneurons in the auditory system of insects encode stimulus features by bursts

of spikes, which are more reliable sources of information than single spikes, but

still exhibit significant spike train variability. For this study, we recorded for multi-

ple hours from an identified acoustic interneuron directly in the natural habitat of

the insect in the tropical rainforest, which yields a representative sample of neural

responses to sounds that the acoustic receivers experience in the real world. In con-

trast to typical recordings in sound proof laboratories, strong environmental noise

from multiple sound sources interferes with acoustic signals in these realistic scenar-

ios. Still we find very precise firing patterns for bursts elicited by acoustic stimuli.

This demonstrates how acoustic interneurons can communicate large amounts of

information to the central nervous system under natural conditions. We explore a

recently developed unsupervised machine learning algorithm based on probabilistic

inference to find frequently occurring firing patterns in the response of the acoustic

interneuron. Our approach learns to distinguish burst responses to environmental

noise from responses to a set of artificial acoustic stimuli without the help of an

external supervisor. The reliability of burst coding in the time domain is so high

that spike patterns in response to identical stimuli show a high degree of similarity

6 Chapter 2. Probing real sensory worlds of receivers with clustering

for different preparations from different nights, and also for recordings that were

either performed in the sound proof lab, or under realistic conditions in the rain-

forest. We analyze simultaneous recordings from the same identified neuron in two

preparations under real world conditions and observe that temporal firing charac-

teristics of bursts are largely preserved among individuals of the same species, but

not exact spike times or average firing rates over larger time windows. We discuss

our findings with respect to the reliability of signal classification and discrimination

of receivers under real world conditions.

2.1 Introduction

In order to fulfill its task of shaping the behavior of organisms, the sensory sys-

tem and the brain have to rely on information about the “outside” physical world,

provided by the sense organs, which respond to different forms of energy. The infor-

mation is transmitted via afferent nerves and encoded in trains of action potentials.

The brain, by decoding this information, has to make adaptive assumptions about

what had happened in the physical world. A central issue in sensory physiology

deals with the coding and decoding mechanism(s) in the sense organs and CNS,

respectively. Whereas early work concentrated on information provided by the av-

erage spike count over an appropriate time window (or firing rate in AP’/s), it soon

became clear that codes using the precise timing of action potentials would make

more efficient use of the capacity of afferent lines to the brain. Yet, the mechanisms

by which stimuli are represented in the timing of spikes are still not fully understood

(Rieke et al., 1997; Eggermont, 1998; Lestienne, 2001).

Irrespective of the sensory system investigated, recordings of single sensory neu-

rons, or first-order sensory interneurons, always reveal isolated spikes and spikes

grouped as bursts, i.e. short episodes of high-frequency AP firing (e.g. Krahe &

Gabbiani, 2004; Eggermont & Smith, 1996; Metzner et al., 1998). These bursts - in

contrast to single spikes - have been suggested to have particular importance for the

function of the brain (review Lisman, 1997), and in sensory systems bursts convey

the important stimulus features (Marsat & Pollack, 2006; Metzner et al., 1998).

Yet, the problem of extraction of characteristic features within these bursts for

identifying stimulus features and for object classification is difficult because spike

trains exhibit variability. For insects and the acoustic modality, Ronacher et al.

(2004) reviewed the sources for such variability, and how it affects the processing of

temporal patterns of acoustic signals. For example, one important source for such

variability in the auditory modality results from the fact that in real world situa-

tions individuals are exposed to multiple sound sources, originating from different

locations, or that signals are degraded and attenuated on the transmission channel

between sender and receiver (Wiley & Richards, 1978, 1982; Morton, 1975; Römer

& Lewald, 1992; Römer, 1998). Internal noise as a result of stochastic processes

within the nervous system is a further source for spike train variability.

As a result of the unavoidable noisiness of spike trains in neurons of sensory

2.1. Introduction 7

pathways one should expect the evolution of mechanisms in the nervous system

leading to a reduction of the effects caused by false stimulus feature extraction

and/or classification due to noise. On the other hand, minute variations in spike

trains may well reflect differences between objects or object classes which are impor-

tant for the receiver, such as small differences in the size of a sender, or the loudness

or frequency composition in the sound signal of a mate. Such small differences, in

contrast to those caused by noise, should be preserved during sensory processing,

since they represent the neuronal basis for discrimination between mates or other

decisions of importance for the receiver.

If bursts of action potentials contain the information about relevant features

of objects or object classes, it should be possible to unambiguously distinguish 1)

bursts of spikes elicited in response to a given stimulus from those bursts which

resulted from noise, and 2) from bursts elicited in response to stimuli with different

features. Various attempts have been made in the past to identify algorithms for

such a task.

In this paper we present a set of machine learning tools to analyze and dis-

criminate burst data without losing information about precise firing times, which

is crucial within the auditory system. Spike train data typically comes in the form

of sequences of firing times of variable length, which is not compatible with the

requirements of traditional machine learning methods to receive inputs in the form

of fixed-size, real-valued vectors. One can circumvent this problem by discretizing

the spike trains into time bins, or extracting sets of numerical features, but both

methods inevitably lead to a loss of information and temporal precision. Preserving

temporal precision in spike timing is a necessary prerequisite for the analysis of au-

ditory neural codes, where fast temporal fluctuations provide important information

about the nature of the incoming stimulus. One way to analyze neural data without

further preprocessing, is to use non-parametric machine learning methods (see e.g.

Narayan et al., 2006; L. Wang et al., 2007). These methods require similarity mea-

sures for spike train data, which work directly on the exactly measured spike times.

A number of spike metrics (e.g. Victor, 2005; Christen et al., 2006; van Rossum,

2001; Schrauwen & Campenhout, 2007), and kernel functions (Shpigelman et al.,

2003; Eichhorn et al., 2004) for spike data have been proposed for this purpose.

These methods were designed for supervised classification or regression, and

therefore require a labeling of the spike trains by an external supervisor. The

same ideas, however, can be used for unsupervised learning methods, where only

statistical differences of firing patterns are considered for the formation of different

classes or clusters. One of the most promising techniques for clustering is the

recently developed affinity propagation algorithm (Frey & Dueck, 2007), which is

based on principles from probabilistic inference, and has lead to excellent results

for a number of large datasets. Our study presents the first application of affinity

propagation to the discovery of groups of related bursts, by combining it with the

spike metric proposed by Victor (2005). This allows us to find meaningful spike

patterns also in the responses to environmental noise signals, which may carry

information about the identity or location of different sound sources.

8 Chapter 2. Probing real sensory worlds of receivers with clustering

In this study we present data from a model system using an identified neuron

approach in an acoustically communicating insect. This system offers several advan-

tages for studying sensory burst coding over previous ones: 1) All recordings stem

from the same identified neuron (called omega-neuron; Molina & Stumpner, 2005)

in different preparations. 2) The first-order neuron in the auditory pathway inte-

grates sensory information from a very limited number of receptor cells in the ear

(20 - 40 receptors). 3) Recordings can be obtained for several hours, and most im-

portantly, 4) portable preparations have been developed to make recordings directly

in the insects’ natural environment, such as the tropical rainforest (Rheinlaender

& Römer, 1986; Römer & Lewald, 1992; Lang et al., 2005). This enables to study

sensory coding under the most natural conditions possible. Broadcasting well de-

fined acoustic stimuli from some distance to the preparation, while recording the

response of the neuron to these stimuli and to the background noise allows us to

gain new insights about the characteristics and reliability of burst coding.

Our results indicate that the omega-neuron communicates through bursts of

spikes large amounts of information about acoustic stimuli to the central nervous

system, even in the presence of strong environmental noise in the natural habitat.

The temporal characteristics of bursts in response to identical stimuli are well pre-

served under natural or laboratory conditions, as well as for different preparations,

although exact spike times or average firing rates over longer time windows are

quite different. The presented techniques for clustering of bursts of spikes promises

to be potentially very useful for the analysis of spike train data from various other

neural systems.

2.2 Material and Methods

2.2.1 Animals and Physiological Preparation

A total of 27 adult male and female bushcrickets (Docidocercus gigliotosi) were used

for this study. We recorded the activity of an identified auditory interneuron, the

so-called omega neuron, in the field, using a technique introduced by Rheinlaender

and Römer (1986) and Römer and Bailey (1986). The morphology of the cell, as

revealed from intracellular dye injection, is shown in Figure 2.1 (inset). It is a local

neuron in the prothoracic ganglion and receives excitatory input from almost all

of the 20 - 40 receptors in the hearing organ (Römer et al., 1988). The tuning

of the cell reflects the broad-band hearing sensitivity of the insect, matching both

the frequencies of the conspecific calling song, and ultrasonic frequencies up to 100

kHz, thus including bat echolocation calls as well. As in other bushcricket species,

the sensitivity of auditory receptors in D. gigliotosi differs by only a few dB from

the sensitivity of the omega cell at most frequencies except below 5 kHz (Römer,

1985). Furthermore, in response to a stimulus above its threshold, the neuron fires

bursts of action potentials and copies the temporal pattern of an acoustic stimulus

in a tonic manner. Altogether these attributes make outdoor recordings of the

activity of the omega cell very suitable for studying sensory coding under realistic,

2.2. Material and Methods 9

i.e. outdoor conditions in the animals’ own natural habitat.

The methods of the preparation and for obtaining extracellular action-potential

recordings of the neuron have been described in detail by Römer et al. (2002). In

short, the prothoracic ganglion was surgically exposed in a preparation ventral side

up and the tip of an electrolytically sharpened tungsten electrode (0.7 − 1.3MΩ

resistance) was inserted into the anterior part of the ganglion, slightly lateral to

where the neurite of the omega-neuron crosses the ganglionic midline (see Figure

2.1). Then the opening in the cuticle was sealed with petroleum jelly to prevent

dessication.

signal generation single cell
recording

10s

Figure 2.1: Experimental arrangement for long-term recordings of single cell activity

in the tropical rainforest, and examples of recordings made at about one hour before

sunset (upper line), and 45 minutes after sunset, when the background noise level

had increased from 40 dB SPL to 65 dB SPL. Note that in the low noise situation

only a stimulus (arrow) elicited a short burst of spikes, whereas after sunset the

neuron fires many bursts also in response to the acoustic background. The inset

shows the morphology of the cell within the prothoracic ganglion after intracellular

dye injection (upper part), and a prototype of the portable preparation.

10 Chapter 2. Probing real sensory worlds of receivers with clustering

Class 2 Class 3 Class 4 Class 5

10 ms 30 ms 70 ms

Class 1

2 x 10 ms 4 x 10 ms

Figure 2.2: Illustration of the five stimulus classes played to bushcrickets during

experiments. 1) Single pulse of 10 ms; 2) double pulse with 10 ms duration each,

separated by an interval of 10 ms; 3) 30 ms pulse; 4) four repetitive pulses, 10 ms

each, separated by an interval of 10 ms; 5) 70 ms pulse.

2.2.2 Study site and experimental procedure

The study was conducted on Barro Colorado Island (BCI), located in central

Panama within Gatún Lake, part of the Panama Canal. Data collection took place

in February/March and June/July 2002, 2003 and 2004. D. gigliotosi is a tropi-

cal insect living predominantly in the rainforest understorey, and all its activity,

including acoustic communication, is restricted to the night. Thus, all recordings

were made during times after sunset (about 6 p.m. local time) except for control

measurements (see below and Figure 2.1).

First, the preparation was tested for intrinsic spontaneous activity and for its

response to the stimuli without background noise in an anechoic chamber in the

laboratory. Background noise level in this chamber was below 30 dB SPL and

thus below the threshold of the omega-cell preparation. Five different stimuli were

broadcast through a speaker (TW8 spezial) at an intensity of either 10 or 20 dB

above the threshold of the preparation. They consisted of the same carrier frequency

of 20 kHz, but differed in duration and the number of pulses (see Figure 2.2). The

rise- and fall-time of all sound pulses was 1 ms. Stimulus intervals were 10 seconds,

which is within the range of the naturally occurring intervals in the calling song of

this insect (Lang et al., 2005). Action potential responses of the omega cell were

digitally recorded at a rate of 20 kHz together with the trigger for a stimulus, on

separate channels of a data acquisition system (PowerLab, ADInstruments Inc.).

After completion of the control experiments indoors, the preparation with the

single cell recording was mechanically stable enough to be transferred to a position

within the rainforest about 200 meters from the lab, and fixed at a distance of 2m

from a speaker at a height of 1m from the ground. The same stimulation regime as

in the laboratory was used for outdoor recordings. Since some recordings lasted for

several hours (max of 9.5hrs), at the end of a stimulation regime we controlled for

a change in sensitivity of the preparation. If the sensitivity was decreased by 5 dB

or more (which happened in four cases), the recording was discarded.

2.2. Material and Methods 11

2.2.3 Burst Detection

The goal of the burst detection mechanism is to extract from several hours of spike

recordings those short segments in which the omega neuron is bursting. A burst in

a spike train can be qualitatively defined as a short sequence of spikes with high

firing rate, separated by time windows of low or no firing. There is no exact math-

ematical definition of what constitutes a burst, and many different approaches for

burst detection in a sequence of spikes have been proposed (e.g. Cocatre-Zilgien

& Delcomyn, 1992; Turnbull et al., 2005; Gourevitch & Eggermont, 2007; Chiap-

palone et al., 2005). Furthermore, every approach needs to be slightly tuned to the

parameters of the neurons under investigation, because different neurons may have

slightly different background firing rates or refractory periods.

For our study we defined a heuristic set of rules to extract bursts from the

recordings, which is similar to the method used by Cocatre-Zilgien and Delcomyn

(1992). Before a burst starts, there must be a time window of at least 60 ms in

which no spike occurs. The first spike of a burst must be followed by another spike

no later than 15 ms afterward. The end of the burst is detected when the first

time interval of 30 ms or longer occurs, or if two consecutive intervals combined are

longer than 45 ms. A burst is only accepted as such if it contains at least 5 spikes

and is longer than 8 ms. Figure 2.3 illustrates the criteria that define a burst.

This set of rules could reliably extract all bursts from the recordings, which are

often obvious from visible inspection. A variant of this algorithm has been used for

previous studies (Lang et al., 2005). Other burst extraction methods did not lead

to a (subjectively) better performance.

When artificial stimuli were broadcast to the animals, most stimuli were followed

by a burst in the omega neuron with a short latency of about 10 ms. We associated

stimulus and burst if the onset of the burst occurred not more than 50 ms before

or after the onset of the stimulus (the burst may start before the stimulus if the

burst detection algorithm includes spikes elicited by background noise immediately

before the stimulus associated burst begins). Every burst was assigned one of 6 class

labels: it is either associated with one of the five different stimuli (see Figure 2.2),

0 50 100 150 200

Time [ms]

Burst

Figure 2.3: Detection of bursts in spike trains. The 6 spikes in the shaded area

constitute a burst, because they are separated by time window of at least 60 ms

from the first spike, the interspike-interval is never larger than 30 ms, the burst

duration is longer than 8 ms and there are more than 5 spikes.

12 Chapter 2. Probing real sensory worlds of receivers with clustering

or it is a noise burst, in response to a random signal in the acoustic background.

2.2.4 Spike Metrics

In order to find re-occurring burst patterns in neural signals, one needs an objective

measure of how similar two bursts are. Many different similarity measures for

sequences of spikes have been proposed in the literature (e.g. Victor, 2005; Christen

et al., 2006; van Rossum, 2001; Schrauwen & Campenhout, 2007). We chose to

use the spike-time metric by Victor (2005), which computes the minimal costs of

transforming one spike train into the other. The algorithm applies three operators

with variable costs for the transformations: Insertion or deletion of a spike at an

arbitrary time point constitutes a cost of 1. The third operator is a shift of a

single spike, which has a cost of q · ∆, where ∆ is the duration of the shift, and

q is a parameter that needs to be defined in advance. High q will tend to prefer

insertion and deletion of spikes to shifting, so small spike-time differences have a

large influence on the distance. Low q, on the other hand, is more tolerant with

respect to small spike-time differences, so the dominating factor is the difference in

the number of spikes in the two bursts. Shifting is preferred to insertion and deletion

as long as two spikes occur within an interval of 2/q seconds (Victor, 2005).

One problem with the automatic detection of bursts is that spikes that are

results of background noise, rather than responses to the stimulus that caused the

burst, may occur shortly before the beginning of a burst. These spikes cannot be

separated from the rest of the burst if they fulfill all criteria for a burst spike. For

the metric proposed by Victor (2005), a burst that is temporally shifted because

of noise spikes before the actual burst can look very different from another burst

with the same temporal pattern, but without initial noise spikes. We therefore

modified the metric of Victor (2005) and introduced another operation, the burst-

shift operator. The burst-shift operator can delete up to Nshift initial spikes from

every burst for a cost of 1 per spike, and adds the distance between the remaining

spike trains, which is computed by the metric from Victor (2005). For our purposes

we set Nshift = 5. This compensates occasional unavoidable errors in the burst

detection process.

For two spike trains A and B the distance Dn
q (A,B) between the two spike

trains is defined, using the cost factor q and Nshift = n (for concise notation, q and

n will be omitted wherever obvious). For two sets of spike trains Σ = {A1, . . . , An1}

and Θ = {B1, . . . , Bn2}, we define a n1×n2 distance matrix D(Σ,Θ) = (dij), where

dij = Dn
q (Ai, Bj). For a single set of bursts Σ the matrix D(Σ) = D(Σ,Σ) yields

all distances between bursts within the same data set.

2.2.5 Clustering with Affinity Propagation

Clustering is an unsupervised machine learning technique that finds groups of re-

lated data objects, based on a measure of similarity or distance. Many of the

standard clustering methods, like e.g. k-means (Hastie et al., 2001), are not suit-

2.2. Material and Methods 13

able for clustering spike train data, because they work only in Euclidean space, and

require direct manipulations of the data points, e.g. for computing means of groups

of data points. For neural recordings it is not defined what the “average” spike

train of a group of multiple spike trains is. Clustering a set of spike trains Σ there-

fore requires a clustering algorithm that works only on the matrix of spike-train

distances D(Σ), or equivalently the similarity matrix S(Σ) = −D(Σ). There are

several clustering algorithms that meet this requirement, such as e.g. k-medoids,

hierarchical clustering methods (Hastie et al., 2001) or spectral clustering (Ng et

al., 2001). For this study the affinity propagation algorithm by Frey and Dueck

(2007) was chosen, which is very fast and reliable, and which has exhibited superior

performance over comparable methods on a variety of datasets.

Affinity propagation defines every cluster through one central data point, the

cluster exemplar. The algorithm assigns all data points to clusters in order to min-

imize an energy function based on the similarity between data points and their

assigned exemplars. The number of clusters, k, does not have to be specified in

advance. In contrast, the algorithm initially considers all data points as exemplars,

and then iteratively applies a message passing algorithm on a factor graph repre-

sentation (Kschischang et al., 2001) of the data set, until a suitable set of clusters

and exemplars emerges. The factor graph and the messages that are passed along

the edges are directly derived from the similarity matrix S(Σ). Messages between

nodes indicate the affinity that a data point has for choosing another point as its

exemplar, and the “availability” of single data points to become exemplars.

The number of clusters can be implicitly controlled by scaling the diagonal

entries si,i of the similarity matrix, which define the preference of a data point to

choose itself as its exemplar. Larger self-preference values lead to a larger number

of clusters. While normally the distance of a spike-train to itself is 0, a successful

strategy in practice is to use the median of similarities M̄i = median(si,j, j =

1, . . . , n) as the self-preference si,i, which leads to a moderate number of clusters.

In practice we always used a multiple α ·M̄i, where α is a constant between 1 and 20

to produce a smaller number of clusters. In contrast to other methods that require

the exact number of desired clusters as input, this method is much easier to tune to

obtain satisfactory results. The method is also insensitive to random assignments

of cluster exemplars, so it is not necessary to run the clustering algorithm multiple

times and choose the best clustering.

To visualize the results of the clustering algorithm, the clusters are arranged in

a dendrogram, applying the group average hierarchical clustering method (Hastie et

al., 2001) to the distances of the cluster exemplars. Clusters with similar exemplars

are then grouped together in the same branch.

14 Chapter 2. Probing real sensory worlds of receivers with clustering

2.3 Results

2.3.1 Recordings in Natural Habitats

A typical result for the effect of background noise on sensory coding is shown in

Figure 2.1. The receiver was placed within the rainforest at 17.00 hrs 2m from

a speaker broadcasting a single sound pulse of 10ms, at a sound pressure level of

20 dB above the threshold of the cell. Since a female has no a priori knowledge

about the presence of a male signal, her only information about a signal is encoded

in afferent nervous activity such as the one shown in the upper recording. Before

sunset each burst of action potential activity was caused by a stimulus. A detection

criterion based on bursts of action potentials or the corresponding increase in spike

rate would give “hits” in term of signal detection (Green & Swets, 1966). Indeed,

in all cases when there was an acoustic signal during the experiment at 17.00 hrs,

there was bursting activity in the nerve cell and there was no, or only single spike

spontaneous activity when a signal was absent, therefore there were no “misses” or

“false alarms” respectively.

After sunset, however, this ideal situation for signal detection changed due to

the strong increase in background noise. The same preparation at exactly the same

position in the rainforest now exhibited high action potential activity (Figure 2.1,

lower trace), and only an a priori knowledge of the time of signal presentation

(arrow) would allow correct detection of the stimulus. Using the same detection

criterion as in the situation before sunset would result in many false alarms (i.e.

identifying background noise as signals).

Apparently, analyzing neural signals recorded under natural conditions poses

new and different challenges in comparison to laboratory experiments. The back-

ground noise mainly constitutes the communication activity of different individuals

and species of insects, frogs and vertebrates, and their acoustic signals may be of

different importance for the survival and reproductive success of the receiver. Some

of the noise comes from individuals of the same species of bushcricket, which may

be potential mates or rivals, but the majority of noise comes from heterospecifics

with no relevance. A third category may be sound originating from predators, such

as bats.

An analysis of a typical recording of a longer sequence of spike activity is shown

in Figure 2.4, and it is obvious that there are considerable fluctuations in firing and

bursting rates, mainly due to background noise. In this example, firing rates vary

from 7 Hz to 17 Hz over the time period of 200 minutes of recording, and burst

rates vary from about 0.2 to 0.8 Hz. The curves for firing and bursting rates are

visibly correlated (correlation coefficient ρ = 0.37).

2.3.2 Analysis of Bursts

We analyzed the recordings from different dates to find bursts and optimize the

parameter of the spike metrics. In Figure 2.5A we show as an example the analysis

of one particular recording (Feburary 22 2004). The joint interspike-interval (ISI)

2.3. Results 15

21:40 22:00 22:20 22:40 23:00 23:20 23:40 00:00 00:20
5

10

15

20

Time

M
ea

n
F

iri
ng

 R
at

e
[H

z]

Mean Firing Rate on November 18 2003

21:40 22:00 22:20 22:40 23:00 23:20 23:40 00:00 00:20
0

0.2

0.4

0.6

0.8

1

Time

M
ea

n
B

ur
st

 R
at

e
[H

z]

Mean Burst Rate on November 18 2003

Figure 2.4: Firing (top) and bursting rates (bottom) of the spike activity of the

omega-neuron from 21.20 hrs to 0.40 hrs at night (November 18; 2003) in the

natural habitat. The fluctuation in both rates is high, but firing and burst rates

are correlated with a correlation coefficient of ρ = 0.37. The mean firing rate over

the entire night is 11.5 Hz, and the mean bursting rate is 0.33 Hz.

diagram, which shows the duration of the next ISI as a function of the preceding ISI,

one can see the presence of bursts in the recordings. The accumulation of points in

the lower left corner shows that there are numerous periods of fast firing, preceded

or followed by longer ISIs. The intervals between bursts display no clear pattern,

but the histogram of inter-burst intervals in Figure 2.5B shows that most intervals

are short, and the frequency of longer inter-burst intervals decays. The bursts in

response to the five stimulus classes can be aligned to the onset of the stimulus.

Figure 2.5C and D show the bursts that follow these stimuli as PSTHs and as firing

rate histograms, respectively.

A comparison of the bursts of three different preparations and recording sessions,

when aligned to the onset of the stimuli (Figure 2.6) indicates qualitatively that the

firing patterns are very similar, with slight variations in the latency of the burst or

the variability of firing.

2.3.3 Clustering of Bursts

For the first experiment we used recordings in which artificial stimuli were broadcast

to the preparations in their natural habitat after sunset. The five artificial stimuli

used for playbacks differed in duration and temporal structure (see Figure 2.2).

Bursts were extracted from multiple hours of spike data recordings, and bursts at

the time of the onset of the artificial stimulus were labeled with the class of the

associated stimulus. The labels of the bursts were only used for evaluation purposes,

but were not provided to the clustering algorithm, since we were interested whether

a purely unsupervised method could reconstruct the groups of bursts according to

16 Chapter 2. Probing real sensory worlds of receivers with clustering

A C D

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Previous ISI [ms]

N
ex

t I
S

I [
m

s]

B

0 5 10 15 20
0

5

10

15

Inter−Burst Interval [s]

R
el

at
iv

e
F

re
qu

en
cy

 [%
]

0 20 40 60 80 100
0

100

200
Stimulus Class 1

0 20 40 60 80 100
0

100

200
Stimulus Class 2

0 20 40 60 80 100
0

100

200
Stimulus Class 3

B
ur

st
 In

de
x

0 20 40 60 80 100
0

100

200
Stimulus Class 4

0 20 40 60 80 100
0

100

200
Stimulus Class 5

Time after stimulus [ms]

0 20 40 60 80 100
0

250

500
Stimulus Class 1

0 20 40 60 80 100
0

250

500
Stimulus Class 2

0 20 40 60 80 100
0

250

500
Stimulus Class 3

F
iri

ng
 R

at
e

[H
z]

0 20 40 60 80 100
0

250

500
Stimulus Class 4

0 20 40 60 80 100
0

250

500
Stimulus Class 5

Time after stimulus [ms]

Figure 2.5: Analysis of bursts extracted from the spike data. A) The joint

interspike-interval plot for recordings from February 22; 2004 indicates the pres-

ence of bursts by a large cluster of points in the lower left corner, which represents

periods of fast firing. B) Histogram of inter-burst intervals (bin size: 0.5 s). C)

Bursts in response to the five artificial stimuli, plotted aligned to the onset of the

stimulus. D) Peri-stimulus time histograms (bin size: 2 ms) for the five classes of

artificial stimuli.

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

Time after Stimulus [ms]

Stimulus Class 1

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

Time after Stimulus [ms]

Stimulus Class 2

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

Time after Stimulus [ms]

Stimulus Class 4

Nov 18

Nov 16

Nov 11

Figure 2.6: Bursts in response to three artificial stimuli, recorded at different record-

ing dates with three different insect preparations and aligned to the stimulus onset.

One can see a clear similarity of the responses, but also different latencies and

variabilities of firing.

2.3. Results 17

the stimulus that caused the neural response.

The result of the clustering is illustrated in Figure 2.7. Here the distance matrix

is shown before and after the clustering process (dark values show high similarity).

Before the clustering, the distance matrix for 1000 randomly picked bursts is dis-

played, where the ordering of the burst indices corresponds to the order in which

they were recorded. After the clustering, the order of the bursts is rearranged, and

one can clearly observe groups of bursts that cluster homogeneously together, and

have larger distance to other groups of bursts.

Burst Index

B
ur

st
 In

de
x

Distance Matrix Unsorted

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

Burst Index

B
ur

st
 In

de
x

Distance Matrix after Clustering

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

Figure 2.7: Distance matrices before and after clustering from recordings from the

natural habitat on February 22 2004. Light pixels indicate high similarity of bursts,

whereas dark pixels show larger distances. Clearly, groups of bursts are formed by

the clustering process.

Figure 2.8 shows the resulting groups of bursts, drawing bursts following stimuli

in red, and bursts as a result of background noise in black. The labels of some clus-

ters are very homogeneous, in particular those in the upper part of the dendrogram

with clusters of long and relatively unstructured bursts, which are almost exclusively

bursts in response to background noise. These bursts are grouped together because

they have a similar mean firing rate and a similar number of spikes, although their

firing patterns do not exactly match. Two other groups of homogeneous clusters are

comprised almost exclusively of bursts in response to two artificial stimuli (classes 4

(a four-pulse-stimulus) and 5 (a pulse of 70ms duration) in Figure 2.2); only rarely

do we find in the same cluster bursts not elicited by these stimuli. In some cases,

however, the unsupervised clustering algorithm produced inhomogeneous clusters,

which include both bursts in response to stimuli as well as bursts in response to

the background noise. This is true for the two bottom clusters in Figure 2.8A, but

also for two clusters with bursts in response to the shorter 30 ms pulse and the

two-pulse stimulus, which cluster together with background noise bursts. Figure

2.8B shows a clustering for another recording with a different preparation and night,

and again it can be seen that bursts following one of the longer or more structured

artificial signals (classes 4 and 5) fall into more homogeneous clusters than bursts

18 Chapter 2. Probing real sensory worlds of receivers with clustering

after stimuli with shorter pulses. One can further observe in both plots that there

are some very homogeneous clusters of bursts with precisely timed firing patterns

in response to unidentified background noise events.

2.3.4 Separability of Artificial Stimulus Classes

Figure 2.8 demonstrates that bursts in response to particular classes of artificial

stimuli form very homogeneous clusters, e.g. bursts in response to the four pulse

pattern (class 4). On the other hand, some stimulus evoked bursts are mostly mixed

together with bursts in response to background noise in the habitat, or bursts in

response to different stimuli. We evaluated this separability property of stimulus

evoked bursts over data from six recordings sessions, of which three used all 5

stimulus classes, and three contained only stimuli of classes 1, 2, and 4.

As a measure of homogeneity we used the mutual information between the clus-

ter index and the class label. The mutual information is an information-theoretic

measure, which computes for two random variables X and Y (here assumed dis-

crete), the amount of information that one variable contains about the other. For-

mally, the mutual information I(X;Y) is defined as the difference between the

entropy H(X) of X and the conditional entropy H(X|Y), and can be calculated as

I(X;Y) =
∑

y∈Y

∑

x∈X

p(x, y) log

(

p(x, y)

p(x)p(y)

)

. (2.1)

The mutual information is high if knowing one variable reduces the uncertainty

about the other. In our case this would mean that knowing the cluster label should

provide high information about the classes of bursts that are found within the

cluster. For every stimulus class c we measure the mutual information between the

variables L, which indicates the cluster label for all clusters that contain at least

one burst of class c, and Cc, which indicates whether a burst b belongs to class

c (in that case Cc(b) = 1), or to another class (Cc(b) = 0). For each of the six

recording sessions we compute the clustering, and measure the mutual information

I(L;Cc) separately for every stimulus class. Figure 2.9 shows the average results

over all recordings for every class. Although these statistics are based on only six

recording sessions, and the standard deviations are large, one can observe the same

trend that was qualitatively visible from Figure 2.8. The mutual information is

high for classes of bursts in response to long and/or temporally structured stimuli

(classes 2, 4, and 5), and much lower for the single pulses of classes 1 and 3. This

indicates that classes 2, 4, and 5 can be better discriminated from other artificial

or background signals than the single pulse stimuli. Due to the limited amount of

available data, these results are statistically not significant, and more measurements

would be required.

2.3.5 Matching Clusters of Bursts

The two clustering results in Figures 2.8A and 2.8B indicate that similar clusters of

bursts can be found in both recordings, even though the recordings stem from dif-

2.3. Results 19

A

4003002001000

N

N

N

N

N

N

N

N

N

N

N

Time [ms]

S
tim

ul
us

 C
la

ss

Clusters on February 22 2004

B

1000

N

N

N

N

N

N

N

N

Time [ms]

S
tim

ul
us

 C
la

ss

Clusters on February 27 2004

Figure 2.8: Clusters of bursts from a recording in the natural habitat (A) February

22 2004, B) February 27 2004). Bursts associated with artificial stimuli are plotted

red, bursts associated with noise are plotted in black. On the right is an illustration

of the stimulus that caused the bursts, or N if the cluster mainly consists of bursts

resulting from noise signals. The clusters are arranged hierarchically, grouping

clusters with similar exemplars together. Longer and more structured bursts form

more homogeneous groups than bursts after short pulse signals (e.g. clusters at

the bottom of diagram B). Clusters in A) contain between 140 and 501 bursts, and

between 145 and 328 bursts in B).

20 Chapter 2. Probing real sensory worlds of receivers with clustering

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Class
M

ut
ua

l I
nf

or
m

at
io

n

Figure 2.9: Mutual information between cluster indices and class labels for every

class of artificial stimuli, averaged over six recording sessions (errorbars denote

standard deviations). Classes of bursts with higher mutual information form more

homogeneous clusters. Artificial stimuli that consist of temporally more structured

and/or longer stimuli (classes 2, 4, and 5) are better separable from noise or other

stimuli than single pulse stimuli (classes 1 and 3).

ferent preparations and different recording sessions. Furthermore, the background

noise in the natural habitat is not constant over the recording periods, since dif-

ferent sound sources may be present and located at different positions in compar-

ison to other recording sessions in different nights, and even years. We therefore

searched for burst clusters from one recording session that have corresponding clus-

ters of bursts in different recording sessions with similar firing patterns. Starting

from the previously computed clusterings of bursts from single recording sessions,

the spike-time metric described in methods was used to calculate distances among

cluster exemplars from different sessions. For every cluster in one recording the

best-matching cluster in the other recording was then computed. A high similar-

ity of two clusters in different sessions would suggest that they contain bursts in

response to the same type of sound source. Furthermore, for several preparations

we recorded the response to artificial stimuli in the laboratory, and for others out-

doors. Hence, the similarity of clusters in response to the same stimuli under two

different acoustic conditions could be analyzed. Obviously these recording condi-

tions are very different, because the majority of bursts in outdoor recordings stems

from background noise, while in the laboratory bursts occur almost exclusively in

response to artificial stimuli.

In Figure 2.10 the clusters of bursts found in a laboratory experiment, in which

only artificial stimuli were broadcast, were matched to clusters from outdoor record-

ings. As can be seen from a comparison of clusters in response to artificial stimuli

type 1, 3 and 4 (compare with Figure 2.2), there are close matches of laboratory-

burst clusters to clusters from outdoor recordings. On the other hand, the responses

to the four-pulsed stimulus in the laboratory condition reveal a more precise timing

of spikes within the burst compared to the responses recorded outdoors. This indi-

2.3. Results 21

cates that the specific acoustic conditions of the noisy nocturnal rainforest caused

some changes in this timing within bursts.

0 20 40 60 80 100
0

200

400
Best Cluster−Match: D=2.85

Time [ms]
0 20 40 60 80 100

0

100

200

300
Best Cluster−Match: D=1.41

Time [ms]

0 20 40 60 80 100
0

100

200

300
Best Cluster−Match: D= 2

Time [ms]
0 20 40 60 80 100

0

100

200

300
Best Cluster−Match: D=1.14

Time [ms]

Figure 2.10: Clusters of bursts from laboratory recordings (black; November 11

2003), matched to clusters of bursts from outdoor recordings (red; November 18

2003 and February 22 2004). For these laboratory clusters, closely matching clusters

can be found in the outdoor recordings. D defines the distance between the cluster

exemplars under the spike metric.

In a similar way we matched clusters of bursts from different outdoor recording

sessions, in which the activity of omega neuron from different animals was recorded

at different nights (sometimes in different years). The results in Figure 2.11 show

that also under these conditions it is possible to find close matches for some clusters

of bursts. Comparing the similarity indices D in Figures 2.10 and 2.11 would

indicate that some of the cluster matches between different animals in different

outdoor recording conditions are closer than the cluster matches between outdoor

and laboratory recording conditions.

On the other hand, the cluster matching procedure also revealed several clusters

of bursts for which no good match in the other recording session was found. This

holds in particular for clusters of long bursts without clear temporal structure.

Figure 2.12 shows some examples of such ’matchings’. Notice the substantially

higher distance value D between cluster exemplars, which is due to the fact that

these bursts include more spikes, and so more shifts or insertions may have to be

made in order to transform one spike train into another. Bursts within these clusters

do not show the precise temporal signature that could be observed in the previous

analysis.

22 Chapter 2. Probing real sensory worlds of receivers with clustering

0 50 100 150
0

200

400

600
Best Cluster−Match: D=0.887

Time [ms]
0 50 100 150

0

200

400
Best Cluster−Match: D=0.937

Time [ms]

0 50 100 150
0

200

400

600
Best Cluster−Match: D=0.116

Time [ms]
0 50 100 150

0

200

400
Best Cluster−Match: D=0.213

Time [ms]

0 50 100 150
0

100

200

300
Best Cluster−Match: D=1.06

Time [ms]
0 50 100 150

0

200

400
Best Cluster−Match: D=0.346

Time [ms]

0 50 100 150
0

200

400
Best Cluster−Match: D=1.12

Time [ms]
0 50 100 150

0

200

400
Best Cluster−Match: D=1.88

Time [ms]

Figure 2.11: Clusters of bursts from two different outdoor recordings and their best

matching cluster. D defines the distance between the cluster exemplars under the

spike metric.

2.3.6 Matching Clusters of Bursts in two Simultaneous Recordings

of the same Cell

In the previous section we compared the similarity of burst activity in the omega-

neuron between lab and outdoor recordings, or between different cells in different

nights. The “biological microphone approach” offers in addition one unique oppor-

tunity to test the power of our method, by comparing the burst responses of omega

cells from two different preparations recorded simultaneously, and placed next to

each other, so that they experience the same acoustic events. For the experiment

presented in Figures 2.13 and 2.14 the two preparations were placed in the noc-

turnal rainforest, at a distance of about 10 cm from each other, so that they were

exposed to the same acoustic environment. Prior to these recordings, the threshold

of each omega-cell in response to a pure tone, 20 kHz stimulus was determined in

the laboratory, and one preparation was 5 dB less sensitive compared to the other

preparation. In this experiment, no artificial sound stimuli were broadcast to the

2.3. Results 23

0 50 100 150
0

200

400
Best Cluster−Match: D=4.04

Time [ms]
0 50 100 150

0

200

400
Best Cluster−Match: D=4.41

Time [ms]

0 50 100 150
0

200

400
Best Cluster−Match: D=4.11

Time [ms]
0 50 100 150

0

200

400
Best Cluster−Match: D=4.04

Time [ms]

0 50 100 150
0

200

400
Best Cluster−Match: D=2.07

Time [ms]
0 50 100 150

0

200

400

600
Best Cluster−Match: D=6.24

Time [ms]

Figure 2.12: Clusters of long bursts from two different outdoor recordings and their

best matching cluster. D defines the distance between the cluster exemplars under

the spike metric.

preparations, so all bursts had been elicited as a result of background noise alone.

Figure 2.13A shows a short sequence of the original spike recording of both cells,

and in Figure 2.13B the firing and burst rates of both cells are illustrated for a se-

quence of continuous 20 minutes of recording. The gross firing and bursting pattern

of both cells is rather similar (Figure 2.13A), although the less sensitive cell exhibits

a reduced firing rate (Figure 2.13B). The firing rates are actually correlated with a

correlation coefficient of ρ = 0.34, the bursting rates are correlated with ρ = 0.27.

Even though the firing behavior of the two omega-cells is somewhat different

due to the threshold difference of 5 dB, one should find similar spiking patterns

in the bursts, as the two preparations had been exposed to the same background

noise. For both preparations the bursts were extracted, and the affinity propaga-

tion algorithm was used to find clusters in the aggregated set of bursts from both

preparations. Figure 2.14 shows the resulting cluster dendrogram, where bursts

from the first preparation are drawn in red, and bursts from the second prepara-

tion in black. Every cluster contains bursts from both preparations, and no cluster

contains significantly more than 50% of bursts from only one preparation.

These results suggest that there are no firing patterns that are uniquely found

only in one preparation, but not in the other. Instead, the bursting patterns in

response to the same acoustic background are very similar for different preparations.

24 Chapter 2. Probing real sensory worlds of receivers with clustering

A

10s

1s

B

20:00 20:10 20:20
5

10

15

20

25

Time

M
ea

n
F

iri
ng

 R
at

e
[H

z]

Mean Firing Rate on February 10 2004

Preparation 1
Preparation 2

20:00 20:10 20:20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

M
ea

n
B

ur
st

 R
at

e
[H

z]

Mean Burst Rate on February 10 2004

Preparation 1
Preparation 2

Figure 2.13: A) Short sequence of the original spike recording of both cells recorded

simultaneously. B): Firing and burst rates of both cells for a duration of 20 minutes.

The firing rates of preparation 1 and 2 are correlated with a correlation coefficient

of ρ = 0.34. The burst rates are correlated with ρ = 0.27. Mean firing rates over

the entire 20 minute recordings are 9.38 Hz (preparation 1) and 13 Hz (preparation

2), and mean bursting rates are 0.47 Hz and 0.46 Hz respectively.

2.4. Discussion 25

3002001000
Time [ms]

Clusters on February 10 2004

Figure 2.14: Clusters for the aggregated bursts of two omega-cell preparations

recorded simultaneously in their natural habitat (February 10 2004); no broadcast

of artificial stimuli. Bursts from preparation 1 are drawn in red, and bursts from

preparation 2 in black. Every cluster contains about half of its bursts from one

preparation.

2.4 Discussion

2.4.1 Coding problems for stimuli in the natural environment

For the two major tasks of sensory systems of object classification and discrim-

ination the central nervous system needs to interpret the ongoing afferent spike

activity. Consistent with a number of previous studies on sensory coding in dif-

ferent modalities we view short bursts of action potentials as the basic units for

the representation of information. The importance of bursts, in contrast to single

spikes, has been discussed in the context of the efficiency of synaptic transmission

and thereby synaptic plasticity (Lisman, 1997), in the selective distribution of in-

formation to different target neurons (Izhikevich et al., 2003), or the dynamics of

encoding behaviorally relevant stimulus features (Gabbiani et al., 1996; Oswald et

al., 2004; Alitto et al., 2005; Marsat & Pollack, 2007; Krahe & Gabbiani, 2004).

Bursts can be viewed as robust symbols for the neural coding alphabet; they can

carry information in their duration, the number of spikes, or the exact timing of

the firing pattern, and specifically tuned synapses may read out such a code easily

(Kepecs & Lisman, 2003).

However, classification and discrimination are severely impaired by variation

in afferent spike trains, either as a result of intrinsic noise in nervous systems,

26 Chapter 2. Probing real sensory worlds of receivers with clustering

or external noise resulting from interactions of the stimulus with the transmission

channel. A further source of variability of high relevance for a receiver is introduced

as a result of small differences in the features of signals from different sources,

such as the signals of mates. Ronacher et al. (2004) reviewed the sources of spike

train variability and the associated problems and constraints for producing adaptive

behavior in grasshoppers. In the case of the auditory system, a further problem

results from the background noise of many natural environments, so that relevant

stimuli (and stimulus variants) have to be discriminated from irrelevant background

noise. Research in the past decade demonstrated that the auditory system of many

animals evolved mechanisms to cope with such noise (Brumm & Slabbekoorn, 2005).

In this paper we therefore argue that it is important to study sensory coding

under the most realistic conditions, using stimuli in the natural habitat of the

organism. It is now widely agreed that the encoding of stimuli by sensory neurons

is adapted to the statistics of stimuli in the environment in which an organism lives

(Rieke et al., 1995). Variants of the efficient coding hypothesis, for example, have

been studied for over 50 years (Barlow, 1961; Attneave, 1954). The hypothesis

suggests that stimuli that occur frequently in the natural environment are encoded

particularly efficiently by sensory neurons. Under this hypothesis the benefit of

particular coding schemes for natural stimuli can be quantified with tools from

information theory. Early studies for the visual system (Barlow, 1961) have also

suggested that early sensory neurons reduce redundancies in the input, in order to

use available computing resources most efficiently. A similar argument was made in

the “matched filter hypothesis” in that rather peripheral ’matched filters’ may relax

the nervous system from computational strain (Capranica & Moffat, 1983; Wehner,

1987). A more recent review of the implications of the efficient coding hypothesis for

visual systems can be found in Simoncelli and Olshausen (2001). As is pointed out

in this review, efficient coding of natural stimuli should not be studied in isolation,

but must also take into account the robustness of neural representations to noise in

the environment and stochastic processes at the neuronal level.

The efficient coding hypothesis has recently been challenged by Neuhofer et

al. (2008), using a comparative study of homologous neurons in two grasshopper

species. They demonstrated that stimuli of high relevance for one species were

processed in the afferent auditory system of the other species in exactly the same,

quantitatively indistinguishable way, although being “meaningless” in terms of any

behavioral relevance (for a similar finding see Ronacher and Stumpner (1988)). This

suggests that neuronal elements of the sensory system have been strongly conserved

during the evolutionary convergence of the two species. Similarly, in our study we

used as a model system a single interneuron, the so-called omega neuron, which has

been identified in all species of crickets and bushcrickets so far studied (Molina &

Stumpner, 2005). We do not argue, therefore, that the burst coding we found in our

study demonstrates specific adaptive properties of the species under study. Rather,

we chose to use this insect preparation because of the simple architecture of insect

auditory pathways, and their remarkable precision and discrimination abilities in

general (Machens et al., 2001, 2005; Rokem et al., 2006). A further reason was that

2.4. Discussion 27

the interneuron is part of an early processing stage, directly postsynaptic to almost

all 20-40 auditory receptor cells in the ear (Römer et al., 1988), so that it integrates

signals from almost all receptor cells and a wide range of carrier frequencies from

less than 10 kHz far into the ultrasonic range. Thus, monitoring the activity of

the cell directly in the animals’ own environment provides information about the

complete acoustic input of the animal under study, encoded in its spike activity.

Therefore, our study is among the first to investigate sensory coding under the

natural environmental conditions of an organism, instead of idealized lab conditions.

2.4.2 Detecting spike patterns with unsupervised learning

We have used clustering as an unsupervised tool to detect burst patterns in raw

neural recordings. Bursts are characterized by their similarity to all other bursts,

measured by a spike metric (Victor, 2005). In a good clustering, bursts that are

grouped into the same cluster are similar to each other, but dissimilar to bursts in

other clusters. The result of a clustering therefore provides a characterization of

different spike patterns that occur frequently in the recorded spike train. Our clus-

tering is based on exact firing patterns, but it is also possible to compute clusterings

based on numerical features extracted from bursts (such as firing rate, duration, ...).

The disadvantage of this method is that information is lost by replacing the exact

pattern with a lower-dimensional feature vector.

Spike-metrics, which we use in our approach for computing similarities of spike

trains, have been used in a number of other studies for auditory discrimination.

L. Wang et al. (2007) and Narayan et al. (2006) analyzed the time scales at which

different conspecific songs could be discriminated by auditory cortical neurons of

songbirds under idealized lab conditions. They used different spike metrics such as

those proposed by Victor and Purpura (1997) or van Rossum (2001) with different

temporal resolutions. Performance was highest for spike timing metrics with short

time-scales, which emphasize precise firing times in contrast to firing rates. Their

learning framework was based on supervised classification, i.e. template patterns

for every sender were known, which is different from the unsupervised approach

used in the present paper, where important spike templates are extracted from the

recording stream. In a similar approach, Machens et al. (2003) used the metric

by van Rossum (2001) for supervised spike train discrimination, and showed that

individual calling songs of grasshoppers can be discriminated reliably at the single

receptor level, if a metric with high temporal resolution (5 ms) is used.

Finding firing patterns in spike train recordings requires a clustering algorithm

which is suitable for this kind of data. Spike trains are not objects in Euclidean

space, which is required for basic clustering methods like k-means. We have pre-

sented one of the first applications of the affinity propagation algorithm (Frey &

Dueck, 2007) to neural recordings. It is fast, reliable, and does not require a lot

of parameter tuning for finding suitable firing patterns. Fellous et al. (2004) and

Toups and Tiesinga (2006) were the first to use unsupervised methods for find-

ing firing patterns. Their approach was based on the assumption that every spike

28 Chapter 2. Probing real sensory worlds of receivers with clustering

train is associated with a particular event (which could be e.g. the presence of a

particular sender, or the onset of a stimulus). Spike metrics are used as similarity

measure, and clustering was performed on the (Euclidean) vectors of distances from

one spike train to all other spike trains with a fuzzy k-means algorithm. They dis-

covered various spike patterns in response to artificial stimuli for recordings from

rats, monkeys, and cats. One cell could produce several different spike patterns in

response to the same stimulus, depending on the history of the cell. The approach

of encoding one spike train by the distance vector to all other spike trains is only

practical for relatively small datasets, because the feature vectors become larger

with every new training example, and clustering becomes increasingly difficult in

higher dimensional feature spaces. The last point is not a problem for affinity prop-

agation, because it does not embed the data in a feature space, and instead uses

only distances between data points. Memory limitations are still an issue, but in

this study we could apply affinity propagation to very large datasets with more

than 10, 000 bursts, and Frey and Dueck (2007) have proposed efficient approxi-

mations to handle even larger problems by using sparse distance matrices (these

approximations were not used in our study).

2.4.3 Bursts and Neural Codes based on Temporal Firing Patterns

The results obtained with unsupervised clustering demonstrate that information in

the omega neuron is not simply encoded by the presence or absence of a burst.

The reliability of burst coding in the time domain was very high, so that bursts

in response to one of the presented stimuli clustered differently from bursts in re-

sponse to background noise. On the other hand, it was difficult to distinguish neural

responses to short pulse signals from acoustic background noise, since they often

clustered together with bursts induced by the background. This would indicate

that reliable coding of short signals with little amplitude modulation is severely

impaired under high background noise conditions of the nocturnal rainforest. Most

remarkably, preparations from different nights show a higher degree of similarity

(as quantified by the similarity index D) than bursts of a cell preparation in re-

sponse to the same stimulus recorded in the sound proof room compared to outdoor

conditions. This indicated a high sensitivity of the algorithm for the details of the

temporal firing pattern within bursts, since the same homologous cell in different

preparations placed at the same position in different nights may experience the same

/ similar broadcast signals of other animals, and these elicit a rather similar firing

pattern. By contrast, the similarity of two bursts recorded in the lab and outdoors

can be reduced, since the omega neuron is known for its gain-control mechanism

(Pollack, 1988; Römer & Krusch, 2000), which may be activated by high levels of

background noise, thus altering the finer details of temporal firing within a burst.

Whereas our results clearly demonstrate the importance of precise spike tim-

ing within bursts, it is an ongoing debate whether neural systems use codes that

rely more on firing rates, or on exact timing of spikes (Shadlen & Newsome, 1994;

Eggermont, 1998). Codes based on bursts are another alternative, but also there

2.4. Discussion 29

it is not known whether spike timing, firing rates, burst durations, or spike count

provide the most efficient encoding of stimuli. It has also been argued that dif-

ferent areas of primate brains may use different encoding strategies (Nicolelis et

al., 1998). For single neurons, the general assumption is that firing rates are more

robust to intrinsic noise, but require integration of information over longer time

scale, and thus cannot encode fast stimulus modulations such as those found in

auditory signals. Recent studies on grasshopper receptor neurons revealed a strong

dependence of burst occurrence and burst characteristics on temporal modulations

of the acoustic input stimuli (Eyherabide et al., 2008, 2009). They found that burst

codes based on either the number of spikes or on spike-timing patterns, but not rate

codes, could reliably transmit various features of the input. For cortical neurons

it was shown that sub-millisecond variations of spike times represent information

about fast fluctuations of input stimuli (Mainen & Sejnowski, 1995). Thus, precise

firing times may rather encode important features of the stimulus, especially for

stimuli with high behavioral importance, instead of being artifacts of noise in spike

generation mechanisms.

2.4.4 Number of burst variants, the consequences for reliable

acoustic communication, and outlook for necessary refine-

ments of the algorithm

Depending on the individual preparation and the particular recording session, the

clustering revealed a variable number of different clusters of bursts over the period

of some hours (see e.g. Figure 2.8). If we assume that these different bursts are

representations of different signalers, the data give some hints for the requirements

of the discrimination task(s) of insect receivers. The number of variants to be

discriminated (and thus the difficulty of the task) will affect the speed and accuracy

with which it is solved, and can result in speed - accuracy trade-offs in animal

decision making (Chittka et al., 2009). First, they need to distinguish conspecific

mates and rivals from heterospecific (irrelevant) signalers. This task is probably the

easiest, because the amplitude-modulation of most insect calling songs differ from

species to species considerably (Gerhardt & Huber, 2002), as should be the case with

their representation at early stages of the afferent sensory system. Nevertheless, the

transmission channel for sound can impose strong fluctuations on these amplitude

modulations (Richards & Wiley, 1980; Römer & Lewald, 1992; McGregor & Krebs,

1984), an effect which increases with distance, so that even this classification task

is not without any problems. Furthermore, the probability of signal interference

increases with the number of signalers obscuring important features necessary for

species recognition. We have seen in our comparison of bursts always recorded at the

same position in the rainforest, but at different nights (or years), that some bursts

cluster very close together (see quantitative values of D). This would indicate that

the specific amplitude-modulated signal of the same individual (or species) elicited

rather similar bursting activity in the different receivers, so that these species-

specific signals appear to be well represented in the sensory system.

30 Chapter 2. Probing real sensory worlds of receivers with clustering

The second task, namely the discrimination between different variants of signals

produced by different signalers of conspecifics, is certainly more demanding. In their

study on the representation of such variants in grasshopper receptors Machens et

al. (2003) have shown that the precise timing of spikes would indeed allow such dis-

crimination under ideal laboratory conditions. However, in the real world situations

the precise timing of spikes will be modified by background noise or transmission

effects (see the burst comparison in response to the same signal in the lab and

outdoors in Figure 2.6), so that such signals (and their variants) need not only be

classified as relevant and different from the acoustic background, but there is also

the need to discriminate strongly against any burst activity as a result of predator

action/vocalisation. Acoustic insects face a variety of such predators, and one of

the best studied are the defense and avoidance behaviors in response to insectivo-

rous bats (Fullard, 1998; Hoy, 1992). Behavioral studies on crickets indicate that

the discrimination of “good” and “bad” (conspecific from predatory bats) is based

on categorical perception (Wyttenbach et al., 1996), and is rather reliable, since

it is based on input within a low-frequency and an ultrasonic frequency channel.

In bushcrickets, such a discrimination based on frequency is impossible, since con-

specifics and bats use similar carrier frequencies. Thus, the important information

about predators must be based in the amplitude modulation as well, and should be

present in afferent bursting activity recorded at night. For example, in the predator

detection system of noctuid moths, Waters (1996) demonstrated that even intrinsic

noise in the form of spontaneous action potentials may reduce the ability of moths

to discriminate bat from non-bat signals. He proposed that a moth would only be

able to recognize an approaching bat from the repetitious nature of the search calls

of a bat.

This points to a need for further refinement of our approach, since the algo-

rithm so far developed does not allow for clustering repetitive bursting activity,

which should be elicited by the 7 - 20 Hz repetition rate of echolocation calls in the

search phase of bats. Similarly, many acoustic insects use characteristic repetition

of the same basic call elements, which could also not be detected by the presented

algorithm. The classes of bursts identified by our method could, however, be used

as a starting point for identifying longer burst sequences in hierarchical approaches.

We expect that the identified firing patterns of bursts will serve as robust symbols

in the neural coding alphabet, and their temporal alignment provides relevant in-

formation about the identity, location, and other important characteristics of an

acoustic sender.

2.5 Conclusion

We have demonstrated how unsupervised machine learning techniques in combina-

tion with spike metrics may be used to find common spike patterns in neuronal

responses to auditory stimuli. The spike trains were recorded from a single iden-

tified interneuron in bushcrickets under the most natural possible conditions: by

2.6. Acknowledgments 31

placing the insect preparation in its natural environment. Under the assumption

that the sensory system of the insect is optimized for the conditions of its natu-

ral habitat, recordings under these circumstances reveal more about neural coding

mechanisms than laboratory experiments without distractor sounds. Our results

support this view, since the clustering algorithm produces various stable firing pat-

terns, although there is a substantial level of background noise in the rainforest.

We have also found very similar spike patterns in different preparations and under

different recording conditions. This may point to a common neural coding mech-

anism in the omega neuron that is responsible for noise suppression, in order to

facilitate the processing for higher areas in the insect brain.

2.6 Acknowledgments

This chapter is based on the paper Probing real sensory worlds of receivers with

unsupervised clustering, which was written by myself (MP), Manfred Hartbauer

(MH), Heinrich Römer (HR), and Wolfgang Maass (WM). The data was recorded

by MH and HR, the data analysis and the experiments were designed and performed

by MP, and the paper was written jointly by all four authors.

Chapter 3

Predicting Text Relevance from

Sequential Reading Behavior

Contents

3.1 Introduction . 33

3.2 Feature Extraction . 34

3.3 Classification and Results . 38

3.4 Conclusion . 40

3.5 Acknowledgments . 40

In this study we show that it is possible to make good predictions of text rel-

evance, from only features of conscious eye movements during reading. We pay

special attention to the order in which the lines of text are read, and compute

simple features of this sequence. Artificial neural networks are applied to classify

the relevance of the read lines. The use of ensemble techniques creates stable pre-

dictions and good generalization abilities. Using these methods we won the first

competition of the PASCAL Inferring Relevance from Eye Movement Challenge

(Salojärvi et al., 2005).

3.1 Introduction

The objective of the PASCAL Inferring Relevance from Eye Movement Challenge

(Salojärvi et al., 2005) was to predict relevance of lines of text from eye movements

of readers. The subjects were first shown a question and then a list of ten possible

answers on a computer screen. The subject had to find the correct answer, then

press ’Enter’ and finally type in the chosen line number. Among the non-correct

lines, there were four sentences which were relevant for the question, five were

irrelevant. The task in the challenge is to identify not only the correct, but also the

relevant lines of text, being provided only measurements of the eye movements of the

subject. The gaze location on the screen and the pupil diameter were tracked during

each assignment. For the first competition, the organizers had already segmented

the trajectory data from the eye tracker and assigned fixations and saccades to the

corresponding words and lines. 22 features that are commonly used in psychological

eye movement studies were computed for every word. This made competition one a

pure classification problem. In the second competition only the raw eye movement

34 Chapter 3. Predicting Text Relevance from Eye Movements

data and word coordinates were available. Thus preprocessing by segmentation and

feature extraction was a main part of the problem. Our work focuses on competition

one.

Eye movements during reading have been extensively studied in the psychologi-

cal literature (Rayner, 1998). Different models pay more attention to either higher-

level processes governing the reading behavior, or unconscious eye movements. In

our approach, however we more or less neglected unconscious information, and

computed features only from the sequence, in which the lines were read. Statistical

analysis showed that for this task our simple features contained enough information

for standard classifiers to obtain good results.

3.2 Feature Extraction

3.2.1 Features for Competition One

The organizers already provided a dataset with pre-computed features which have

shown to be useful in other eye movement studies. Our approach, however, was

quite different, since we wanted to find out as much as possible about the relevance

of the sentences, only from the order in which the lines were read. This would imply

that a much smaller fraction of data, namely only the line number, would have to

be measured in order to distinguish between correct, relevant and irrelevant lines.

Our features were computed for every seen line in an assignment, and classification

was then done on this reduced feature set.

We found out from analyzing individual assignments, that there are some reoc-

curring patterns of sequential reading behavior. Due to the nature of the task, it

was obvious that most readers usually look at the line containing the correct an-

swer before pressing ’Enter’ and thereby finishing his task. A heuristic rule which

assigns the label correct to the last read line in each assignment, identifies 93.75%

of all correct answers in the training set. This rule is facilitated by the fact that all

assignments with incorrect answers have been filtered out by the organizers.

Additionally we noticed that the subjects spent significantly more time reading

correct or relevant sentences than irrelevant ones. So we simply counted the number

of measurements for each sentence, which turned out to be a very useful feature

for classification. Secondly, the subjects jumped between lines of text while they

are thinking about the correct answer. When they are deciding between different

possibilities for a correct answer, it seems natural that their focus jumps between

the lines within their consideration. Another assumption is that relevant sentences

would rather be considered as a possible answer than an irrelevant sentence. We

therefore counted, how often the subjects returned to a sentence they had already

read before. This gave us a good estimation of the relevance that was attributed

to this sentence by the subject, since the number of returns is significantly higher

for correct or relevant lines. We also calculated jumps between the presumably

correct line and all other sentences as another feature, but this did not improve the

performance.

3.2. Feature Extraction 35

Most subjects showed a stereotypical reading behavior, i.e. they started with

line number 1 and continued to read subsequent sentences, eventually jumping back

to known answers. Therefore the position of a sentence within the list also plays a

role, since some lines are almost always seen (like line 1), and some are more often

skipped.

Table 3.1: Definition of features used for classification for every sentence in an

assignment. Features marked with * are constant for all sentences in an assignment.

Feature Description

1 lineNr Line number within the 10 possible answers

2 isLastLine 1 if this sentence was the last one read dur-

ing this assignment

3 count Total number of measurements for this sen-

tence

4 returns Number of jumps to this sentence after first

reading

5 nrReadLines* Number of lines read during this assignment

6 readAllLines* 1 if all possible lines were read

7 newLinesBefore Number of different sentences that the sub-

ject started to read before reading this line

8 newLinesAfter Number of different sentences that the sub-

ject started to read after reading this line

A problem we had to deal with was that not all of the possible answers in an

assignment were read. Actually only in 40.8% of all assignments in the training

set there was at least one measurement for every sentence. The subject was only

instructed to look for the correct answer, but he was not told that the remaining

lines contain either relevant or irrelevant sentences. Therefore it happened that

the subject found the correct answer very early and did not even read a single

relevant sentence. In this case it is of course almost impossible to make a distinction

between relevant and irrelevant sentences. So we included the number of read

lines as valuable context information, and also included a binary flag if all possible

answers were read.

Since subjects tended to stop reading after they found the correct answer, we

calculated the number of different sentences that the subjects read after or before

having read that line. It turned out that the subjects read significantly fewer lines

after reading the correct answer. In combination with the line number this feature

thus provides evidence whether a sentence is the correct answer or not. Table 3.1

summarizes the 8 features that were used:

36 Chapter 3. Predicting Text Relevance from Eye Movements

3.2.2 Statistical Analysis

In this section we analyze the statistical properties of our extracted features on the

training set. We use mutual information (MI), a measure for arbitrary dependency

between random variables, and linear correlation (LC) to compare the calculated

features against the provided features for competition one. Mutual information

has been used extensively in the literature for feature selection (Blum & Langley,

1997) because mutual information is invariant under linear transformations and

takes into account the entire dependency structure of the random variables. On the

other hand linear correlation is a natural measure for variable dependency. These

measures are therefore good estimators for the relevance of features, although they

do not take into account correlations among different features.

Firstly, we calculated the linear correlation and mutual information for each

feature provided in the challenge with the class labels. We found that the original

features are poorly correlated, as can be seen in the left columns of Figures 3.1 (a)

and (b) respectively. In the first row of Figure 3.1(a) the LC and in 3.1(b) the

MI, is shown for the correct vs. non-correct labels. The second rows show relevant

vs. non-relevant and the third rows irrelevant vs. non-irrelevant. The last rows

display LC and MI for the relevant vs. irrelevant problem, where correct lines have

been removed. The provided features in general exhibit small MI values, except for

features 12 (lastSaccLen), 21 (regressDur), and 25 (nWordsInTitle). The higher

information of feature 12 about the correct labels confirmed the earlier statement

about jumps between the correct answer and other titles. The high MI value for

feature 21 is based on the same concept of going back for regression and re-reading.

The duration of a regression is therefore more significant for classification than all

other features.

Secondly, the mutual information and linear correlation for each of our extracted

features were computed (see Figure 3.1 - right columns). The results confirm that

most of these features are significantly more correlated with the class labels than

the original features. Note that feature 21 has the highest MI value with 0.072,

which is four times smaller than the maximum value for the new features (feature

2, with a MI value of 0.3042).

Some of the features exhibit neither high correlation nor high mutual informa-

tion with the class labels. Nevertheless their inclusion boosted the performance of

the classifiers. To explain this effect we calculated the MI of pairs of features with

the class labels. We discovered that all features except number 2 (isLastLine,

which is a good predictor on its own) show higher MI values in combination with

each other than the sum of their individual MI values. This means that even though

some features are weak individual predictors, together they form a strong feature

set.

We also calculated the MI and LC for our feature set after removing the correct

titles to identify the features which are most significant for the relevant vs. irrelevant

problem (see Figure 3.1 - last row). Feature 2 was almost constant for this dataset

and therefore was not used for identifying relevant or irrelevant lines. Including

3.2. Feature Extraction 37

5 10 15 20 25
−0.5

0

0.5

1

C
or

re
ct

Provided Features

5 10 15 20 25

−0.2

0

0.2
R

el
ev

an
t

5 10 15 20 25
−0.4

−0.2

0

0.2

Ir
re

le
va

nt

1 2 3 4 5 6 7 8
−0.5

0

0.5

1
Extracted Features

1 2 3 4 5 6 7 8

−0.2

0

0.2

1 2 3 4 5 6 7 8
−0.4

−0.2

0

0.2

1 2 3 4 5 6 7 8

−0.2

0

0.2

R
el

ev
an

t v
s.

Ir
re

le
va

nt

(a) Linear Correlation

5 10 15 20 25
0

0.2

C
or

re
ct

Provided Features

5 10 15 20 25
0

0.05

R
el

ev
an

t

5 10 15 20 25
0

0.05

Ir
re

le
va

nt

1 2 3 4 5 6 7 8
0

0.2

Extracted Features

1 2 3 4 5 6 7 8
0

0.05

1 2 3 4 5 6 7 8
0

0.05

1 2 3 4 5 6 7 8
0

0.01

0.02

R
el

ev
an

t v
s.

Ir
re

le
va

nt

(b) Mutual Information

Figure 3.1: Correlation and mutual information analysis of different feature sets.

38 Chapter 3. Predicting Text Relevance from Eye Movements

all remaining features, even if their correlation and mutual information values were

low, resulted in the best performance. Combined MI analysis again explained this

effect.

3.3 Classification and Results

In this section we present our strategies and methods for building proper classifiers

for the challenge datasets. Since the task is a 3-class classification problem, there

exist two main strategies to solve the problem: the first one is to build a multi-

class classifier, which gets the input pattern and assigns it to one of 3 classes. The

second method, that we used in our systems, is to use a hierarchical classifier that

first checks if the input pattern is a member of one of preselected classes (correct

lines in this challenge) or not. If the result is negative, it passes the pattern to

another classifier that assigns it to one of the other two remaining classes (relevant

vs. irrelevant). In other words this technique decomposes a multi-class problem to

a series of two-class pattern recognition problems.

Table 3.2: Correct detection rate (in %) of different 3-class classifiers.

C4.5 AdaBoost SVM MLP

Train 68.17 68.62 63.85 66.71

Validation 69.19 65.24 66.23 71.09

We used the WEKA 3.4 package (Witten & Frank, 2005), which allowed us

to quickly compare a variety of pattern recognition algorithm for this task. After

manual tuning of the hyperparameters we calculated detection rates for different

learning algorithms for training and validation sets averaged over 10 runs. The

results are summarized in Table 3.2, showing an advantage for Multi-Layer Percep-

trons (MLP) on the validation set. Note that these values are for 3-class classifiers,

but we tried the same experiments for the two stage classification strategy men-

tioned above and the results were very similar.

3.3.1 Correct Line Identification

As can be seen in Figure 3.1, linear correlation and mutual information analysis

shows that the features isLastLine, count, and returns are the most informative

ones for identification of correct lines. Because of this we used only these features

as input to our classifiers. We also changed the target labels to +1 for correct lines

and -1 for the rest (relevant and irrelevant).

For the rest of the project we switched to a more efficient and flexible tool for

training neural networks, namely the MATLAB Neural Networks Toolbox. A MLP

with 3 hidden neurons and hyperbolic tangent activation functions was trained with

scaled conjugate gradient backpropagation. We tried different numbers of hidden

3.3. Classification and Results 39

neurons, but since the performance did not change significantly with more neurons,

we chose the simplest network to avoid overfitting. In addition the error on the

validation set was used as stopping criterion for training. The overall performance

on training, validation, and test sets are shown in Table 3.3. Ensemble methods,

as discussed in the next section, were also tried out for this task, but since the

recognition rate was almost constant for different MLPs, we decided to use a single

classifier instead.

3.3.2 Relevant vs. Irrelevant Lines Identification

For this task we first removed the predicted correct lines from the previous classifier

for training, validation, and test sets. Then the feature isLastLine was removed,

since correlation and mutual information analysis showed that it had no major

contribution to this task. We also changed the target labels to +1 for relevant and

-1 for irrelevant lines. As another preprocessing step, we normalized the feature

values to have zero mean and unit variance according to the combined training,

validation and test sets.

Different MLPs were trained, and for each network the numbers of hidden neu-

rons was randomly selected between 4 and 10. The activation function was hy-

perbolic tangent for all neurons and we trained our networks using the Levenberg-

Marquardt backpropagation algorithm of MATLAB’s Neural Networks Toolbox.

As before we used the error on the validation set as stopping criterion.

Table 3.3: Correct detection rate (in %) for two stage classifiers. Row 2 shows the

average performance of single MLPs, rows 3 and 4 correspond to the two different

ensemble methods for relevant vs. irrelevant line classification. Overall accuracy

for the 3-class predictions is shown in parentheses.

Train Validation Test

Correct vs. Rest 98.54 98.52 98.72

Single MLP 63.01 (67.26) 66.57 (69.81) 67.91 (71.03)

Best-Of Ensemble 64.21 (68.02) 68.01 (71.25) 69.26 (72.31)

Outlier-Filtered Ensemble 64.25 (68.06) 67.73 (71.17) 69.09 (72.16)

The main difference compared to the previous setup for correct line identifica-

tion was that we used an ensemble averaging method to improve and stabilize our

recognition rate and avoid possible overfitting. It has been shown that in most

cases ensemble averaging methods improve the generalization properties of classi-

fiers (Opitz & Maclin, 1999; Bauer & Kohavi, 1999). So we averaged the confidence

values (outputs of the networks) over all ensemble members and then used it as a

decision criterion. We used two different methods to select ensemble members: one

method, named Best-Of ensemble, selected the best 10 networks out of 15 different

trained networks. The other approach, named Outlier-Filtered ensemble, filtered

40 Chapter 3. Predicting Text Relevance from Eye Movements

out networks that showed relatively high error rates. 5 networks were selected, and

the selection threshold was set at an error rate of 38%. For both methods we used

the error on the validation set as our selection criterion.

The overall results are given in rows 2-4 of Table 3.3 for training, validation

and test sets. We first show the average performance of single MLPs, and then the

accuracy for both ensemble selection methods in the last two rows. The benefits of

using ensemble methods can be seen by comparing row 2 with rows 3 and 4, since

the error on all sets was on average reduced by more than 1% (for both methods).

In addition the variance of the classification error was also significantly reduced. In

competition one, Best-Of ensemble finished first, Outlier-Filtered ensemble finished

second. The next best result was 0.9% lower than our best performance.

Furthermore, we tried a post-processing step in which the main goal was to

correct inconsistent decisions such as having more than 4 relevant or more than 5

irrelevant detections. The confidence values of the ensemble were used as the basis

for the post-processing decision. We tried to change the labels of less probable

excessive detections to the other class. The major problem was that in most cases

the confidence value was not a good representative of being a member of a class

when there were excessive detections. So we decided not to use this post-processing

method for our classifiers.

3.4 Conclusion

Our feature extraction and classification approaches were highly successful in this

challenge. The ensemble methods proved to be very stable and exhibited very good

generalization performance. In addition we showed that a lot of information about

the relevance of read lines can be extracted from features about sequential reading

behavior. We do not claim, however that unconscious eye movements during reading

are not informative for this task, but our results show that reasonable accuracy can

be obtained without them.

3.5 Acknowledgments

This chapter is based on the paper Predicting Text Relevance from Sequential Read-

ing Behavior, which was written in collaboration with Amir Saffari and Andreas

Juffinger, who contributed ideas for the design of features and helped in preparing

the manuscript.

Chapter 4

Efficient Continuous-Time

Reinforcement Learning with

Adaptive State Graphs

Contents

4.1 Introduction . 41

4.2 Graph Based Reinforcement Learning 43

4.3 Structure of the Algorithm 44

4.4 Building the Adaptive State Graph 45

4.5 Experiments . 49

4.6 Conclusion . 51

4.7 Acknowledgments . 52

We present a new reinforcement learning approach for deterministic continuous

control problems in environments with unknown, arbitrary reward functions. The

difficulty of finding solution trajectories for such problems can be reduced by in-

corporating limited prior knowledge of the approximative local system dynamics.

The presented algorithm builds an adaptive state graph of sample points within the

continuous state space. The nodes of the graph are generated by an efficient prin-

cipled exploration scheme that directs the agent towards promising regions, while

maintaining good online performance. Global solution trajectories are formed as

combinations of local controllers that connect nodes of the graph, thereby natu-

rally allowing continuous actions and continuous time steps. We demonstrate our

approach on various movement planning tasks in continuous domains.

4.1 Introduction

Finding near-optimal solutions for continuous control problems is of great impor-

tance for many research fields. In the weighted region path-planning problem, for

example, one needs to find the shortest path to a goal state through regions of

varying movement costs. In robotics specific reward functions can be used to en-

force obstacle avoidance or stable and energy-efficient movements. Most existing

approaches to these problems require either complete knowledge of the underlying

42 Chapter 4. Continuous-Time RL with Adaptive State Graphs

system, or are restricted to simple reward functions. In this study we address the

problem of learning high quality continuous-time policies for tasks with arbitrary

reward functions and environments that are initially unknown, except for minimal

prior knowledge of the local system dynamics.

Reinforcement learning (RL) (Sutton & Barto, 1998) is an attractive framework

for the addressed problems, because it can learn optimal policies through interaction

with an unknown environment. For continuous tasks, typical approaches that use

parametric value-function approximation suffer from various problems concerning

the learning speed, quality, and robustness of the solutions (Boyan & Moore, 1995).

Several authors have therefore advocated non-parametric techniques (Ormoneit &

Sen, 2002; Jong & Stone, 2006), where the value function for the continuous problem

is only computed on a finite set of sample states. In this case stronger theoretical

convergence and performance guarantees apply (Ormoneit & Sen, 2002). Still, few

RL algorithms can cope with continuous actions and time steps.

Sampling-based planning methods (Kavraki et al., 1996; Guestrin & Ormoneit,

2001), on the other hand, can efficiently construct continuous policies as combi-

nations of simple local controllers, which navigate between sampled points. Local

controllers for small regions of the state space are often easily available, and can

be seen as minimal prior information about the task’s underlying system dynamics.

Local controllers do not assume complete knowledge of the environment (e.g. loca-

tion of obstacles), and are therefore not sufficient to find globally optimal solutions.

Instead, a graph is built, consisting of random sample points that are connected by

local controllers. A global solution path to the goal is constructed by combining

the paths of several local controllers.

Planning techniques are very efficient, but their application is limited to com-

pletely known environments. Guestrin and Ormoneit (2001), e.g., have used com-

binations of local controllers for path planning tasks in stochastic environments.

Their graph is built from uniform samples over the whole state space, rejecting

those that result in collisions. They also assume that a detailed simulation of the

environment is available to obtain the costs and success probabilities of every tran-

sition. In this study we address problems in which the exact reward function is

unknown, and the agent has no knowledge of the position of obstacles.

We propose an algorithm for efficiently exploring such unknown continuous en-

vironments in order to construct sample-based models. The algorithm builds an

adaptive state graph of sample points that are connected by given local controllers.

Feedback from the environment, like reward signals or unexpected transitions, is

incorporated online. Efficiently creating adaptive state graphs can be seen as an

optimal exploration problem (Simsek & Barto, 2006). The objective is to quickly

find good paths from the start to the goal region, not necessarily optimizing the

online performance. Initial goal-directed exploration creates a sparse set of nodes,

which yields solution trajectories that are later improved by refining the sampling

in critical regions. Planning with adaptive models combines the advantages of rein-

forcement learning and planning. We regard our algorithm more as a RL method,

in the spirit of model-based RL (Sutton & Barto, 1998; Moore & Atkeson, 1993),

4.2. Graph Based Reinforcement Learning 43

since the agent learns both its policy and its world model from actual experience.

The adaptive state graph transforms the continuous control problem into a

discrete MDP, which can be exactly solved e.g. by dynamic programming (Sutton

& Barto, 1998). This results in more accurate policies and reduced running time in

comparison to parametric function approximation. The obtained policy still uses

continuous actions and continuous time steps, leading to smoother and more natural

trajectories than in discretized state spaces. Here we address primarily deterministic

and episodic tasks with known goal regions, but with small modifications these

restrictions can be relaxed. Prior knowledge of the goal position, for example, speeds

up the learning process, otherwise the agent will uniformly explore the state space.

We demonstrate in comparisons of our algorithm to standard RL and planning

techniques that fast convergence and accurate solution trajectories can be achieved

at the same time.

In the next section we introduce the basic setup of the problem. We show the

structure of the algorithm in Section 4.3 and present the details of the adaptive

state graph construction in Section 4.4. In Section 6.5 we evaluate our algorithm

on a continuous path finding task and a planar 3-link arm reaching task, before

concluding in Section 6.7.3.

4.2 Graph Based Reinforcement Learning

We consider episodic, deterministic control tasks in continuous space and time.

The agent’s goal is to move from an arbitrary starting state to a fixed goal region,

maximizing a reward function, which evaluates the goodness of every action. In

the beginning, the agent only knows the locations of the start state and the goal

region, and can use local controllers to navigate to a desired target state in its

neighborhood.

Let X define the state space of all possible inputs x ∈ X to a controller. We

require X to be a metric space with given metric d : X ×X → IR+
0 . Control outputs

u ∈ U change the current state x according to the system dynamics ẋ = f(x, u).

In this study we assume that only an approximative local model f̂(x, u) is known,

which does not capture possible nonlinearities due to obstacles. The objective is

to find a control policy µ : X → U for the actual system dynamics f(x, u) that

returns for every state x a control output u = µ(x) such that the agent moves from

a starting state xS ∈ X to a goal region XG ⊂ X with maximum reward.

Our algorithm builds an adaptive state graph G = 〈V, E〉, where the nodes in

V = {x1, . . . , xN} ⊂ X form a finite subset of sample points from X . We start with

V0 =
{

xS
}

, E0 = ∅ and let the graph grow in subsequent exploration phases. The

edges in E ⊆ V × V correspond to connections between points in V that can be

achieved by a given local controller. The local controller a(e) for an edge e = (xi, xj)

tries to steer the system from xi to xj , assuming that the system dynamics along

the path corresponds to f̂(x, u). If an edge can be traversed with a local controller,

it is inserted into E, and r(e), the total reward obtained on the edge is stored. The

44 Chapter 4. Continuous-Time RL with Adaptive State Graphs

combination of multiple edges yields globally valid trajectories.

For a given graph G the actual task is to find an optimal task policy π from

the starting state xS to the goal region XG. We therefore have to find the optimal

sequence of edges 〈ei〉 in the graph from xS to XG such that the sum of rewards

Rπ :=
∑n

i=0 r(ei) is maximized. The problem is solved by calculating the optimal

value function V π through dynamic programming. This method is guaranteed to

converge to an optimal policy (Sutton & Barto, 1998), based on the knowledge

contained in the adaptive state graph.

The quality of the resulting policy depends on the available edges and nodes of

the graph, but also on the quality of the local controllers. We assume here that

local controllers can compute near-optimal solutions to connect two states in the

absence of unforeseen events. Feedback controllers can compensate small stochastic

effects, but the presented algorithm in general assumes deterministic dynamics. We

restrict ourselves here to rather simple system dynamics, for which controllers are

easily available, e.g. straight-line connections in Euclidean spaces.

While the agent is constructing the graph it is following an exploration policy

πexp, which can be different from the task policy π. πexp does not always take

the best known path to the goal, but also traverses to nodes where the creation

of additional nodes and edges may lead to better solutions for the actual task.

Virtual exploration edges to unvisited regions with heuristic exploration rewards

are therefore inserted into the graph. This creates incentives for the algorithm to

explore new regions. Whenever such virtual edges are chosen by the exploration

policy, the graph is expanded to include new nodes and edges.

4.3 Structure of the Algorithm

The adaptive state graph G is grown from the start state towards the goal region.

We use the approximative model f̂(x, u) to generate new potential successor states

from existing nodes, and rank them by a heuristic exploration score. An exploration

queue Q stores the most promising candidates for exploration, and the exploration

policy, defined via the value function V exp directs the agent towards one of these

targets. Since our goal is finding a good policy from the start, not necessarily

maximizing the online performance, the selection of the exploration target involves

an exploration-exploitation trade-off inherent to all RL methods. Our method uses

the information in the graph to efficiently concentrate on relevant regions of the

state space. Whenever a new state is visited, it is added as a node into the graph.

We also add all possible edges to and from neighboring nodes that can be achieved

by local controllers. Initial optimistic estimates for the reward come from the local

controller, but are updated when actual experience becomes available.

Algorithm 1 shows a pseudo-code implementation of the basic algorithm. Details

of the subroutines are explained in Section 4.4. Roughly the algorithm can be

structured into 3 parts: the first part in lines 5-11 deals with the generation of

new exploration nodes and is described in Sections 4.4.1-4.4.3. The second part in

4.4. Building the Adaptive State Graph 45

lines 12-15 first updates the value functions, and then executes the local controller

to move to a different node (see Sections 4.4.4-4.4.5). In the remaining part (lines

16-26) we incorporate the feedback received from the environment to update the

graph (see Section 4.4.6).

Algorithm 1 Graph-based RL

Input: Start xS, goal region XG, local controller a

1: Initialize V = {xS}, E = ∅, G = 〈V, E〉, Q = ∅

2: repeat (for each episode):

3: Initialize x = xS

4: repeat (for each step of the episode):

5: for i = 1 to Nt do

6: x̃i = sample new node()

7: [σ(x̃i), varσ(x̃i)] = exploration score(x̃i, V)

8: if varσ(x̃i) > θexp
min then

9: insert exploration node(x̃i)

10: [V, V exp,Q] =replan(G)

11: Select next edge e = (x, x′) stochastically (e.g. ε-greedy) from V exp

12: Execute local controller a(x, x′)

13: Receive actual state x̂′ and reward r of transition

14: if d(x′, x̂′) > δ then {different state than predicted was reached }

15: Delete edge (x, x′) from G and insert edge (x, x̂′)

16: Set x′ = x̂′

17: if x′ was previously unvisited then

18: insert new node(x′)

19: update edge(x, x′, r)

20: [V, V exp,Q] =replan(G)

21: else

22: update edge(x, x′, r)

23: until x is terminal

Output: Task policy π, derived from G and V

4.4 Building the Adaptive State Graph

A key for efficient exploration of the state space is the generation of sample states.

Previous approaches for sampling-based planning, e.g. (Guestrin & Ormoneit, 2001;

Kavraki et al., 1996), have used uniform random sampling of nodes over the whole

state space. This requires a large number of nodes, of which many will lie in

irrelevant or even unreachable regions of the state space. On the other hand, a

high density of nodes in critical regions is needed for fine-tuning of trajectories.

The presented algorithm iteratively builds a graph by adding states that are visited

during online exploration. It thereby fulfills two objectives: Firstly, the exploration

46 Chapter 4. Continuous-Time RL with Adaptive State Graphs

x̃1

x̃2

Exploration Node
Start
Goal
Graph Node
Graph Edge
Direct Path to Goal
Path to x̃i

−1 −0.5 0 0.5 1

−1.6

−1.4

−1.2

−1

−0.8

P
re

di
ct

ed
 V

al
ue

x

Mean Prediction

Training Points

Variance

Optimistic Value

(a) (b)

Figure 4.1: (a) Illustration of the exploration process. Exploration node x̃1 is pre-

ferred over x̃2, because the reward to reach x̃2 is strongly negative. (b) Illustration

of value prediction with Gaussian processes on an artificial 1-D dataset. The pre-

diction approaches the optimistic value and has larger variance for points that are

farther away from training points.

is directed to search towards a goal state, and secondly, it optimizes the current

policy in regions where the number of nodes is insufficient.

4.4.1 Generating Samples: sample new node

Whenever a node x in the graph is visited the algorithm stochastically creates a

number of potential exploration nodes for that state. New exploration nodes are

created uniformly in the neighborhood of the current node. We therefore first

uniformly sample an execution time ti ∈ [tmin, tmax], and a constant control action

ui in U . Then we simulate the local dynamics f̂(x, u) from x with action ui for

time ti, and reach a new node x̃i. For efficiency reasons the number of generated

samples Nt should be reduced over time. Similarly the minimum and maximum

execution time is reduced over time to create finer sampling and achieve fine-tuning

of the policy.

4.4.2 Evaluating Exploration Nodes: exploration score

Efficient exploration preferentially visits regions where an improvement of the task

policy is possible, but avoids creating unnecessary nodes in already densely sampled

regions. We estimate the utility of every potential exploration target x̃ by an

exploration score σ(x̃), and direct the agent towards the most promising such nodes.

Informed search methods like A* (Hart et al., 1968) estimate the utility of x̃ as the

expected return of a path from the start xS to the goal region XG via x̃. This can

be decomposed into the path costs c(xS , x̃) from xS to x̃ plus the estimated value

V̂ (x̃), i.e. the estimated rewards-to-goal. Therefore σ(x̃) = c(xS , x̃) + V̂ (x̃).

For calculating the path costs c(xS , x̃) we use only visited edges of the state graph.

Otherwise the optimistic initialization of edge rewards will almost always lead to

an underestimation of the path costs, and therefore all exploration nodes will ap-

4.4. Building the Adaptive State Graph 47

pear similarly attractive. V̂ (x̃) must be an optimistic estimate of the value, e.g.

the estimated costs of the direct path to the goal in the absence of obstacles. If

the goal is not known, a constant value must be used. This prior estimate for

the value of a new node x̃ can be improved by considering also the task-policy

values V (x′) of nearby existing nodes x′. Gaussian process regression (Rasmussen

& Williams, 2006) is a suitable method to update predictions of a prior function

by taking information from a finite set of training examples into account, thereby

creating a more-exact posterior. The contributions of individual training examples

are weighted by a kernel k(x, x′), which measures the similarity between a training

point x′ and test point x. Typical kernels monotonically decrease with growing

distance to a training point. Therefore the prediction for a new node that is far

away from existing points approaches the optimistic prior estimation, whereas a

point close to existing nodes will receive a prediction similar to the weighted mean

of values from neighboring nodes. The range in which training points contribute

to predictions can be controlled by a bandwith parameter β of the kernel, which is

task dependent and needs to be chosen in advance. In our experiments we use a

standard squared exponential kernel k(x, x′) = exp
(

−d(x,x′)2

2β2

)

.

Since the prior estimate is an optimistic estimation of the true value, the predic-

tions for an exploration node will usually increase the further the new node is away

from existing nodes (see Figure 4.1(b)). Therefore this approach enforces explo-

ration into unvisited areas. Additionally to the value estimate V̂ (x̃) the Gaussian

process returns the variance varσ(x̃) of the prediction. Since the variance increases

with distance to training points, we can use varσ(x̃) as a measure for the sampling

density around x̃. To control the number of nodes we reject exploration nodes

with variance lower than θexp
min. This threshold may be lowered over time, to ensure

refinement of the adaptive state graph in later episodes.

4.4.3 Integrating New Exploration Nodes:

insert exploration node

Newly generated exploration nodes x̃i are placed on the exploration queue Q, which

is a priority queue ranked by the exploration scores σ(x̃i). The highest scored

exploration targets in Q are the most promising candidates for exploration. If σmax

is the best score of a node on the queue, we consider all exploration nodes with a

score not worse than σmax − θσ, with θσ ≥ 0 as targets for the exploration policy

πexp. Virtual and terminal exploration edges are added to the graph for each such

node x̃, originating from the node from which x̃ was created. The rewards of these

edges are the estimated rewards-to-goal, given by V̂ . The exploration policy may

then either choose an exploration edge, thereby adding a new node to the adaptive

state graph, or move to an already visited node. The latter indicates that exploring

from other nodes seems more promising than continuing the exploration at the

current node.

The threshold parameter θσ has an interesting interpretation in the context of

the exploration-exploitation dilemma. If θσ = 0 then the agent will always choose

48 Chapter 4. Continuous-Time RL with Adaptive State Graphs

the most promising exploration target, similar to A* search (Hart et al., 1968)

on a partially unknown graph. This will however yield a bad online performance,

because the agent may have to travel all the way through the state space if it

discovers that another node promises better solutions. θσ =∞ will lead to greedy

search, and ultimately to inefficient uniform sampling of the whole state space. By

adjusting θσ > 0 one can balance the trade-off between online performance and

finding near-optimal start-to-goal paths as soon as possible.

4.4.4 Re-planning within the Graph: replan

The adaptive state graph yields a complete model of the reduced MDP, which can be

solved by dynamic programming methods. In practice we use efficient re-planning

techniques like Prioritized Sweeping (Moore & Atkeson, 1993) to minimize the

number of updates in every iteration. In most steps this requires only a very small

number of iterations on a small set of nodes. Only when important connections are

found, and the value of many states changes, we need to compute more iterations.

Re-planning is run twice: once on the graph that includes only exploration

targets in Q with score larger than σmax − θσ as terminal states. This yields the

value function V exp for the exploration policy πexp. We also compute the value

function V for the task policy π, using all available targets fromQ as terminal nodes.

This policy attempts to reach the goal optimally, without performing exploratory

actions. It is therefore used in the computation of exploration scores, because there

we are only interested in the optimistic rewards-to-goal.

4.4.5 Action Selection and Incorporation of Actual Experience

At the current node x the agent selects an outgoing edge e = (x, x′) through its

exploration policy πexp, which is derived stochastically (e.g. ε-greedy) from V exp.

The local controller a(x, x′) then moves towards x′. If the agent reaches a small

neighborhood around x′ the controller is deactivated, and the reward of the tra-

versed edge in G is updated. If the local controller does not reach the vicinity of x′

within a given maximum time, the controller stops at a state x̂′. We then delete the

edge e = (x, x′) from the graph G, since it cannot be completed by a local controller,

and insert an edge from x to x̂′ instead.

4.4.6 Inserting New Nodes: insert new node

When a node x′ is visited for the first time, it is inserted as a new node into the

graph. Local controllers to and from all nodes in a certain neighborhood around

x′ are simulated to create incoming and outgoing edges. If a connection seems

possible we insert the edge into G and store an optimistic estimate of the reward,

e.g. the negative estimated transition time of the local controller in absence of

obstacles. Inserting a new node x′ also invalidates existing exploration nodes in

the neighborhood, if their exploration score variance would fall below the threshold

θexp
min (see Section 4.4.2).

4.5. Experiments 49

If a newly inserted edge e = (x′, x′′) with estimated reward r̂(e) reduces the

path costs from xS to x′′, the edge becomes an attractive target for exploration.

We then insert e as an exploration edge into the queue Q. The exploration score

is σ(e) = c(xS , x′) + r̂(e) + V (x′′), which is the estimated return of a path from xS

to XG that uses e. For the exploration policy the agent may then equally select

exploration nodes or edges as its best exploration targets.

4.4.7 Practical Implementation Issues

Efficient data structures like kd-trees reduce the search time for neighbors during

the training phase. The CPU time is still higher than for model-based RL methods

with fixed discretizations, e.g. Prioritized Sweeping (Moore & Atkeson, 1993). The

construction of an adaptive state graph is an overhead, but on the other hand, it

permits better solutions and faster learning.

4.5 Experiments

In this section we show that our algorithm can solve several continuous control

problems that are challenging for standard reinforcement learning techniques. We

show that the algorithm requires less actual experience than existing methods and

finds more accurate trajectories.

4.5.1 Static Puddle World

The puddle world task is a well-known benchmark for reinforcement learning algo-

rithms in continuous domains. The objective is to navigate from a given starting

state to a goal state in a 2-dimensional environment which contains puddles, rep-

resenting regions of negative reward. Every transition inflicts a reward equal to

the negative required time, plus additional penalties for entering a puddle area.

The puddles are oval shapes, and the negative reward for entering a puddle is

proportional to the distance inside the puddle. The 2-dimensional control action

u = (vx, vy) corresponds to setting velocities in x and y directions, leading to the

simple linear system dynamics (ẋ, ẏ) = (vx, vy). We can safely assume to know this

dynamics, but planning a path to the goal state and avoiding the unknown puddles

remains a difficult task.

Figure 4.2 shows various stages of the exploration process in a maze-like puddle

world with multiple puddles. As optimistic value estimate V̂ (x̃) we use the negative

time needed for the direct path to the goal (ignoring any puddles). In Figure 4.2(a)

it can be observed that the agent directs its initial exploration towards the goal,

while avoiding paths through regions of negative reward. Less promising regions

like the upper left part are avoided. When the agent has reached the goal the first

time (Figure 4.2(b)) the agent knows a coarse path to the goal. With continuing

learning time, the agent refines the graph and adds more nodes in relevant regions,

50 Chapter 4. Continuous-Time RL with Adaptive State Graphs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)

Figure 4.2: Static Puddle World: (a) and (b) shows the graph at the beginning of

learning and when the agent has found the goal for the first time. (c) results from

further optimization of the graph. The red line indicates the best known policy to

the target.

which is illustrated in Figure 4.2(c). The path is almost optimal and avoids all

puddles on the way to the goal.

Standard TD-learning (Sutton & Barto, 1998) with CMAC or RBF function ap-

proximation needs several thousands of episodes to converge on this task, because a

rather fine discretization is required. It is therefore not considered for comparison.

Better results were achieved by Prioritized Sweeping (Moore & Atkeson, 1993), a

model-based RL algorithm which discretizes the environment and learns the transi-

tion and reward model from experience. In Figure 4.3 we compare the performance

of RL with adaptive state graphs to prioritized sweeping with different discretization

densities. We also compare the performance of a greedy search method on a graph

with 500 and 1000 uniformly sampled nodes, which updates its reward estimates

after every step. We evaluate the performance of the agent by measuring the sum of

rewards obtained by its greedy policy at different training times. The training time

is the total amount of time spent by the agent for actually moving within the state

space during the training process. Figure 4.3(a) shows that the graph-based RL

algorithm achieves reasonable performance faster than prioritized sweeping (even

with coarse discretization), and the best found policy slightly outperforms all other

methods. Our refined graph in the end contains about 730 nodes, which is approx-

imately a fourth of the number of states used by prioritized sweeping on the fine

grid. Greedy search on estimated edges initially finds the goal faster, but it either

converges to a suboptimal policy, which is due to the uniform sampling, or needs

longer to optimize its policy.

In Figure 4.3(b) we added small Gaussian movement noise (variance is 10%

of movement velocity), and used local feedback-controllers. Our algorithm still

converges quickly, but due to the stochasticity it cannot reach the same performance

as in the deterministic case. We also investigated the (deterministic) problem in

which the goal state is unknown. Since the agent has to explore uniformly in the

beginning, it needs longer to converge, but ultimately reaches the same performance

level.

4.6. Conclusion 51

0 500 1000 1500 2000 2500 3000
−15

−10

−5

Training Time [s]

S
um

 o
f R

ew
ar

ds

Graph−based RL

PS 20x20

PS 50x50

Uniform 500

Uniform 1000

0 500 1000 1500 2000 2500 3000
−15

−10

−5

Training Time [s]

S
um

 o
f R

ew
ar

ds

Graph−based RL
Stochastic 10%
Unknown Target

(a) (b)

Figure 4.3: Learning performance on static puddle world from Figure 4.2. (a)

Comparison of RL with adaptive state graphs to prioritized sweeping (PS), and

greedy search on uniformly sampled nodes (Uniform) with different discretization

densities. (b) Influence of stochasticity (10% movement noise) and unknown target

states on performance of graph-based RL. (Average over 10 trials.)

4.5.2 3-Link Arm Reaching Task

The joints of a simulated planar 3-link robot arm are steered under static stability

constraints in an environment with several obstacles (see Figure 4.4). The objective

is to reach a goal area with the tip. The robot consist of a body (point mass with

1 kg), around which the arm - modeled as upper arm (length 0.5 m / weight 0.2 kg),

fore arm (0.5 m / 0.1 kg) and hand (0.2 m / 0.05 kg) - can rotate. The center of

mass (CoM) of the robot needs to be kept inside a finite support polygon. If the

CoM leaves a neutral zone of guaranteed stability ([−0.2, 0.2] in x and [−0.1, 0.1]

in y), the agent receives negative reward that grows quadratically as the CoM

approaches the boundary of the support polygon. Under these constraints the trivial

solution of rotating the arm around the top left obstacle achieves lower reward than

the trajectory that maneuvers the arm through the narrow passage between the

obstacles.

The 3-dimensional state space consists of the three joint angles, and the control

actions correspond to setting the angular velocities. The approximative model f̂

is a simple linear model, but the true system dynamics f contains nonlinearities

due to obstacles, which are not captured by f̂ . The optimistic value estimate V̂ (x)

is the negative time needed by a local controller to reach a target configuration,

calculated by simple inverse kinematics. Figure 4.5 shows that graph-based RL

converges much faster to more accurate trajectories than prioritized sweeping with

different levels of discretization.

4.6 Conclusion

We introduced a new efficient combination of reinforcement learning and sampling-

based planning for continuous control problems in unknown environments. We

use minimal prior knowledge in the form of approximative models and local con-

52 Chapter 4. Continuous-Time RL with Adaptive State Graphs

COM
X

C
O

M
Y

−0.4 −0.2 0 0.2 0.4
−0.2

0

0.2

Figure 4.4: Arm reaching task with stability constraints. Left: Solution trajectory

found by our algorithm. The agent must reach the goal region (red) from the

starting position (green), avoiding the obstacles. Right: Trajectory of the CoM of

the robot (red) inside the neutral zone (green).

0 1 2 3 4

x 10
4

−7

−6

−5

−4

−3

−2

−1

0

Training Time [s]

S
um

 o
f R

ew
ar

ds

Graph−based RL
PS 20x40x40
PS 10x20x20

Figure 4.5: Learning performance on the 3-link arm reaching task for RL with

adaptive state graphs and prioritized sweeping (PS) with different discretization

densities. (Average over 10 trials)

trollers to increase the learning speed. Our algorithm builds an adaptive state graph

through goal-directed exploration. We demonstrated on various movement planning

tasks with difficult reward functions that RL with adaptive state graphs requires

less actual experience than existing methods to obtain high quality solutions. The

approach is particularly promising for complicated tasks that can be projected to

low dimensional representations, such as balancing humanoid robots using motion

primitives (Hauser et al., 2007).

4.7 Acknowledgments

This chapter is based on the paper Efficient Continuous-Time Reinforcement Learn-

ing with Adaptive State Graphs, which was written by Gerhard Neumann (GN),

4.7. Acknowledgments 53

myself (MP), and Wolfgang Maass (WM). The presented algorithm was jointly de-

veloped by GN and MP, the experiments were performed by MP and GN, and the

manuscript was prepared by MP and GN with additional input from WM.

Chapter 5

Hebbian Learning of Bayes

Optimal Decisions

Contents

5.1 Introduction . 55

5.2 A Hebbian rule for learning log-odds 56

5.3 Hebbian learning of Bayesian decisions 59

5.4 Experimental Results . 61

5.5 Discussion . 62

5.6 Acknowledgments . 64

Uncertainty is omnipresent when we perceive or interact with our environment,

and the Bayesian framework provides computational methods for dealing with it.

Mathematical models for Bayesian decision making typically require data-structures

that are hard to implement in neural networks. This study shows that even the

simplest and experimentally best supported type of synaptic plasticity, Hebbian

learning, in combination with a sparse, redundant neural code, can in principle

learn to infer optimal Bayesian decisions. We present a concrete Hebbian learning

rule operating on log-probability ratios, which has strong convergence guarantees.

Empirically the Hebbian rule learns very fast for a variety of tasks, and in combina-

tion with appropriate population codes for the inputs obtains optimal performance.

In the subsequent Chapter 6 we show that a similar Hebbian plasticity rule, mod-

ulated by reward-signals, also provides a new perspective for understanding how

Bayesian inference could support fast reinforcement learning in the brain.

5.1 Introduction

Evolution is likely to favor those biological organisms which are able to maximize

the chance of achieving correct decisions in response to multiple unreliable sources

of evidence. Hence one may argue that probabilistic inference, rather than logical

inference, is the ”mathematics of the mind”, and that this perspective may help

us to understand the principles of computation and learning in the brain (Rao,

2007). Bayesian inference, or equivalently inference in Bayesian networks (Bishop,

2006) is the most commonly considered framework for probabilistic inference, and

a mathematical theory for learning in Bayesian networks has been developed.

56 Chapter 5. Hebbian Learning of Bayes Optimal Decisions

Various attempts to relate these theoretically optimal models to experimentally

supported models for computation and plasticity in networks of neurons in the brain

have been made. Rao (2007) models Bayesian inference through an approximate

implementation of the Belief Propagation algorithm (see (Bishop, 2006)) in a net-

work of spiking neurons. For reduced classes of probability distributions, Deneve

(2008a) proposed a method for spiking network models to learn Bayesian inference

with an online approximation to an EM algorithm. The approach of Sandberg et

al. (2002) interprets the weight wji of a synaptic connection between neurons rep-

resenting the random variables xi and xj as log
p(xi,xj)

p(xi)·p(xj)
, and presents algorithms

for learning these weights.

Neural correlates of variables that are important for decision making under

uncertainty had been presented e.g. in the recent experimental study by Yang and

Shadlen (2007). In their study they found that firing rates of neurons in area LIP

of macaque monkeys reflect the log-likelihood ratio (or log-odd) of the outcome of

a binary decision, given visual evidence. The learning of such log-odds for Bayesian

decision making can be reduced to learning weights for a linear classifier, given an

appropriate but fixed transformation from the input to possibly nonlinear features

(Roth, 1999a). We show that the optimal weights for the linear decision function

are actually log-odds themselves, and the definition of the features determines the

assumptions of the learner about statistical dependencies among inputs.

In this work we show that simple Hebbian learning (Hebb, 1949) is sufficient to

implement learning of Bayes optimal decisions for arbitrarily complex probability

distributions. We present and analyze a concrete learning rule, which we call the

Bayesian Hebb rule, and show that it provably converges towards correct log-odds.

In combination with appropriate preprocessing networks this implements learning

of different probabilistic decision making processes like e.g. Naive Bayesian classifi-

cation. In Chapter 6 a reward-modulated version of this this Hebbian learning rule

is presented, which can solve simple reinforcement learning tasks, and also provides

a model for the experimental results of Yang and Shadlen (2007).

5.2 A Hebbian rule for learning log-odds

We consider the model of a linear threshold neuron with output y0, where y0 =

1 means that the neuron is firing and y0 = 0 means non-firing. The neuron’s

current decision ŷ0 whether to fire or not is given by a linear decision function

ŷ0 = sign(w0 · constant +
∑n

i=1 wiyi), where the yi are the current firing states of

all presynaptic neurons and wi are the weights of the corresponding synapses.

We propose the following learning rule, which we call the Bayesian Hebb rule:

∆wi =







η (1 + e−wi), if y0 = 1 and yi = 1

−η (1 + ewi), if y0 = 0 and yi = 1

0, if yi = 0.

(5.1)

This learning rule is purely local, i.e. it depends only on the binary firing state of

5.2. A Hebbian rule for learning log-odds 57

the pre- and postsynaptic neuron yi and y0, the current weight wi and a learning

rate η. Under the assumption of a stationary joint probability distribution of the

pre- and postsynaptic firing states y0, y1, . . . , yn the Bayesian Hebb rule learns log-

probability ratios of the postsynaptic firing state y0, conditioned on a corresponding

presynaptic firing state yi. We consider here the use of the rule in a supervised,

teacher forced mode (see Section 5.3). A reward-modulated version of this rule

for reinforcement learning is presented in Chapter 6. We will prove that the rule

converges globally to the target weight value w∗
i , given by

w∗
i = log

p(y0 = 1|yi = 1)

p(y0 = 0|yi = 1)
. (5.2)

We first show that the expected update E[∆wi] under (5.1) vanishes at the

target value w∗
i :

E[∆w∗
i] = 0 ⇔ p(y0=1, yi=1)η(1 + e−w∗

i)− p(y0=0, yi=1)η(1 + ew∗

i) = 0

⇔
1 + ew∗

i

1 + e−w∗

i

=
p(y0=1, yi=1)

p(y0=0, yi=1)

⇔ w∗
i = log

p(y0=1|yi=1)

p(y0=0|yi=1)
. (5.3)

Since the above is a chain of equivalence transformations, this proves that w∗
i is the

only equilibrium value of the rule. The weight vector w∗ is thus a global point-

attractor with regard to expected weight changes of the Bayesian Hebb rule (5.1)

in the n-dimensional weight-space R
n.

Furthermore we show, using the result from (5.3), that the expected weight

change at any current value of wi points in the direction of w∗
i . Consider some

arbitrary intermediate weight value wi = w∗
i + 2ε:

E[∆wi]|w∗

i +2ε = E[∆wi]|w∗

i +2ε − E[∆wi]|w∗

i

∝ p(y0=1, yi=1)e−w∗

i (e−2ε − 1)− p(y0=0, yi=1)ew∗

i (e2ε − 1)

= (p(y0=0, yi=1)e−ε + p(y0=1, yi=1)eε)(e−ε − eε) . (5.4)

The first factor in (5.4) is always non-negative, hence ε < 0 implies E[∆wi] > 0, and

ε > 0 implies E[∆wi] < 0. The Bayesian Hebb rule is therefore always expected to

perform updates in the right direction, and the initial weight values or perturbations

of the weights decay exponentially fast.

Already after having seen a finite set of examples 〈y0, . . . , yn〉 ∈ {0, 1}
n+1, the

Bayesian Hebb rule closely approximates the optimal weight vector ŵ that can be

inferred from the data. A traditional frequentist’s approach would use counters

ai = #[y0=1 ∧ yi=1] and bi = #[y0=0 ∧ yi=1] to estimate every w∗
i by

ŵi = log
ai

bi

. (5.5)

A Bayesian approach would model p(y0|yi) with an (initially flat) Beta-distribution,

and use the counters ai and bi to update this belief (Bishop, 2006), leading to the

58 Chapter 5. Hebbian Learning of Bayes Optimal Decisions

same MAP estimate ŵi. Consequently, in both approaches a new example with

y0 = 1 and yi = 1 leads to the update

ŵnew
i = log

ai + 1

bi
= log

ai

bi

(

1 +
1

ai

)

= ŵi + log(1 +
1

Ni
(1 + e−ŵi)) , (5.6)

where Ni := ai + bi is the number of previously processed examples with yi = 1,

thus 1
ai

= 1
Ni

(1 + bi

ai
). Analogously, a new example with y0 = 0 and yi = 1 gives

rise to the update

ŵnew
i = log

ai

bi + 1
= log

ai

bi

(

1

1 + 1
bi

)

= ŵi − log(1 +
1

Ni
(1 + eŵi)). (5.7)

Furthermore, ŵnew
i = ŵi for a new example with yi = 0. Using the approximation

log(1 + α) ≈ α the update rules (5.6) and (5.7) yield the Bayesian Hebb rule (5.1)

with an adaptive learning rate ηi = 1
Ni

for each synapse.

In fact, a result of Robbins-Monro (see (Bertsekas & Tsitsiklis, 1996) for a

review) implies that the updating of weight estimates ŵi according to (5.6) and

(5.7) converges to the target values w∗
i not only for the particular choice η

(Ni)
i = 1

Ni
,

but for any sequence η
(Ni)
i that satisfies

∑∞
Ni=1 η

(Ni)
i = ∞ and

∑∞
Ni=1(η

(Ni)
i)2 <

∞. More than that the Supermartingale Convergence Theorem (see (Bertsekas &

Tsitsiklis, 1996)) guarantees convergence in distribution even for a sufficiently small

constant learning rate.

5.2.1 Learning rate adaptation

One can see from the above considerations that the Bayesian Hebb rule with a

constant learning rate η converges globally to the desired log-odds. A too small

constant learning rate, however, tends to slow down the initial convergence of the

weight vector, and a too large constant learning rate produces larger fluctuations

once the steady state is reached.

(5.6) and (5.7) suggest a decaying learning rate η
(Ni)
i = 1

Ni
, where Ni is the

number of preceding examples with yi = 1. We will present a learning rate adapta-

tion mechanism that avoids biologically implausible counters, and is robust enough

to deal even with non-stationary distributions.

Since the Bayesian Hebb rule and the Bayesian approach of updating Beta-

distributions for conditional probabilities are closely related, it is reasonable to

expect that the distribution of weights wi over longer time periods with a non-

vanishing learning rate will resemble a Beta(ai, bi)-distribution transformed to the

log-odd domain. The parameters ai and bi in this case are not exact counters

anymore but correspond to virtual sample sizes, depending on the current learning

rate. We formalize this statistical model of wi by

σ(wi) =
1

1 + e−wi
∼ Beta(ai, bi) ⇐⇒ wi ∼

Γ(ai + bi)

Γ(ai)Γ(bi)
σ(wi)

aiσ(−wi)
bi ,

5.3. Hebbian learning of Bayesian decisions 59

In practice this model turned out to capture quite well the actually observed quasi-

stationary distribution of wi. Analytically it can be proven that E[wi] ≈ log ai

bi

and Var[wi] ≈
1
ai

+ 1
bi

. A learning rate adaptation mechanism at the synapse that

keeps track of the observed mean and variance of the synaptic weight can therefore

recover estimates of the virtual sample sizes ai and bi. The following mechanism,

which we call variance tracking implements this by computing running averages of

the weights and the squares of weights in w̄i and q̄i:

ηnew
i ←

q̄i−w̄2
i

1+cosh w̄i

w̄new
i ← (1− ηi) w̄i + ηi wi

q̄new
i ← (1− ηi) q̄i + ηi w2

i .

(5.8)

In practice this mechanism decays like 1
Ni

under stationary conditions, but is also

able to handle changing input distributions. It was used in all presented experiments

for the Bayesian Hebb rule.

5.3 Hebbian learning of Bayesian decisions

We now show how the Bayesian Hebb rule can be used to learn Bayes optimal

decisions. The first application is the Naive Bayesian classifier, where a binary

target variable x0 should be inferred from a vector of multinomial variables x =

〈x1, . . . , xm〉, under the assumption that the xi’s are conditionally independent given

x0, thus p(x0,x) = p(x0)
∏m

1 p(xk|x0) (see Figure 5.1 B for an example graphical

representation of this distribution). Using basic rules of probability theory the

posterior probability ratio for x0 = 1 and x0 = 0 can be derived:

p(x0=1|x)

p(x0=0|x)
=

p(x0=1)

p(x0=0)

m
∏

k=1

p(xk|x0=1)

p(xk|x0=0)
=

(

p(x0=1)

p(x0=0)

)(1−m) m
∏

k=1

p(x0=1|xk)

p(x0=0|xk)
=

(5.9)

=

(

p(x0=1)

p(x0=0)

)(1−m) m
∏

k=1

mk
∏

j=1

(

p(x0=1|xk=j)

p(x0=0|xk=j)

)I(xk=j)

,

where mk is the number of different possible values of the input variable xk, and

the indicator function I is defined as I(true) = 1 and I(false) = 0.

Let the m input variables x1, . . . , xm be represented through the binary firing

states y1, . . . , yn ∈ {0, 1} of the n presynaptic neurons in a population coding man-

ner. More precisely, let each input variable xk ∈ {1, . . . ,mk} be represented by

mk neurons, where each neuron fires only for one of the mk possible values of xk.

Formally we define the simple preprocessing (SP)

yT =
[

φ(x1)
T, . . . ,φ(xm)T

]

with φ(xk)
T = [I(xk = 1), . . . , I(xk = mk)] .

(5.10)

60 Chapter 5. Hebbian Learning of Bayes Optimal Decisions

The binary target variable x0 is represented directly by the binary state y0 of the

postsynaptic neuron. Substituting the state variables y0, y1, . . . , yn in (5.9) and

taking the logarithm leads to

log
p(y0 = 1|y)

p(y0 = 0|y)
= (1−m) log

p(y0 = 1)

p(y0 = 0)
+

n
∑

i=1

yi log
p(yi = 1|y0 = 1)

p(yi = 1|y0 = 0)
.

Hence the optimal decision under the Naive Bayes assumption is

ŷ0 = sign((1−m)w∗
0 +

n
∑

i=1

w∗
i yi) .

The optimal weights w∗
0 and w∗

i

w∗
0 = log

p(y0 = 1)

p(y0 = 0)
and w∗

i = log
p(y0 = 1|yi = 1)

p(y0 = 0|yi = 1)
for i = 1, . . . , n.

are obviously log-odds which can be learned by the Bayesian Hebb rule (the bias

weight w0 is simply learned as an unconditional log-odd).

5.3.1 Learning Bayesian decisions for arbitrary distributions

We now address the more general case, where conditional independence of the input

variables x1, . . . , xm cannot be assumed. In this case the dependency structure of

the underlying distribution is given in terms of an arbitrary Bayesian network BN

for discrete variables (see e.g. Figure 5.1 A). Without loss of generality we choose

a numbering scheme of the nodes of the BN such that the node to be learned is x0

and its direct children are x1, . . . , xm′ . This implies that the BN can be described

by m + 1 (possibly empty) parent sets defined by

Pk = {i | a directed edge xi → xk exists in BN and i ≥ 1} .

The joint probability distribution on the variables x0, . . . , xm in BN can then be

factored and evaluated for x0 = 1 and x0 = 0 in order to obtain the probability

ratio

p(x0 = 1,x)

p(x0 = 0,x)
=

p(x0 = 1|x)

p(x0 = 0|x)
=

p(x0 = 1|xP0)

p(x0 = 0|xP0)

m′

∏

k=1

p(xk|xPk
, x0 = 1)

p(xk|xPk
, x0 = 0)

m
∏

k=m′+1

p(xk|xPk
)

p(xk|xPk
)

.

Obviously, the last term cancels out, and by applying Bayes’ rule and taking the

logarithm the target log-odd can be expressed as a sum of conditional log-odds only:

log
p(x0=1|x)

p(x0=0|x)
= log

p(x0=1|xP0)

p(x0=0|xP0)
+

m′

∑

k=1

(

log
p(x0=1|xk,xPk

)

p(x0=0|xk,xPk
)
− log

p(x0=1|xPk
)

p(x0=0|xPk
)

)

.

(5.11)

We now develop a suitable sparse encoding of of x1, . . . , xm into binary variables

y1, . . . , yn (with n ≫ m) such that the decision function (5.11) can be written

5.4. Experimental Results 61

as a weighted sum, and the weights correspond to conditional log-odds of yi’s.

Figure 5.1 C illustrates such a sparse code: One binary variable is created for every

possible value assignment to a variable and all its parents, and one additional binary

variable is created for every possible value assignment to the parent nodes only.

Formally, the previously introduced population coding operator φ is generalized

such that φ(xi1 , xi2 , . . . , xil) creates a vector of length
∏l

j=1 mij that equals zero

in all entries except for one 1-entry which identifies by its position in the vector

the present assignment of the input variables xi1 , . . . , xil . The concatenation of all

these population coded groups is collected in the vector y of length n

yT =
[

φ(xP0)
T, φ(x1,xP1)

T,−φ(xP1)
T, . . . , φ(xm,xPm)T,−φ(xPm)T

]

. (5.12)

The negated vector parts in (5.12) correspond to the negative coefficients in the

sum in (5.11). Inserting the sparse coding (5.12) into (5.11) allows writing the Bayes

optimal decision function (5.11) as a pure sum of log-odds of the target variable:

x̂0 = ŷ0 = sign(

n
∑

i=1

w∗
i yi), with w∗

i = log
p(y0=1|yi 6=0)

p(y0=0|yi 6=0)
.

Every synaptic weight wi can be learned efficiently by the Bayesian Hebb rule (5.1)

with the formal modification that the update is not only triggered by yi=1 but

in general whenever yi 6=0 (which obviously does not change the behavior of the

learning process). A neuron that learns with the Bayesian Hebb rule on inputs that

are generated by the generalized preprocessing (GP) defined in (5.12) therefore

approximates the Bayes optimal decision function (5.11), and converges quite fast

to the best performance that any probabilistic inference could possibly achieve (see

Figure 5.2B).

5.4 Experimental Results

We have tested the Bayesian Hebb rule on 400 different prediction tasks, each

of them defined by a general (non-Naive) Bayesian network of 7 binary variables.

The networks were randomly generated by the algorithm of Ide and Cozman (2002).

From each network we sampled 2000 training and 5000 test examples, and measured

the percentage of correct predictions after every update step.

The performance of the predictor was compared to the Bayes optimal predictor, and

to online logistic regression, which fits a linear model by gradient descent on the

cross-entropy error function. This non-Hebbian learning approach is in general the

best performing online learning approach for linear discriminators (Bishop, 2006).

Figure 5.2A shows that the Bayesian Hebb rule with the simple preprocessing (5.10)

generalizes better from a few training examples, but is outperformed by logistic

regression in the long run, since the Naive Bayes assumption is not met. With the

generalized preprocessing (5.12), the Bayesian Hebb rule learns fast and converges

to the Bayes optimum (see Figure 5.2B). In Figure 5.2C we show that the Bayesian

Hebb rule is robust to noisy updates - a condition very likely to occur in biological

62 Chapter 5. Hebbian Learning of Bayes Optimal Decisions

A B

C

Figure 5.1: A) An example Bayesian network with general connectivity. B) Rep-

resentation of the same Bayesian network under the Naive Bayes assumption. C)

Population coding applied to the Bayesian network shown in panel A. For each

combination of values of the variables {xk,xPk
} of a factor there is exactly one neu-

ron (indicated by a black circle) associated with the factor that outputs the value

1. In addition OR’s of these values are computed (black squares). We refer to the

resulting preprocessing circuit as generalized preprocessing (GP).

systems. We modified the weight update ∆wi such that it was uniformly distributed

in the interval ∆wi ± γ%. Even such imprecise implementations of the Bayesian

Hebb rule perform very well. Similar results can be obtained if the exp-function in

(5.1) is replaced by a low-order Taylor approximation.

5.5 Discussion

We have shown that the simplest and experimentally best supported local learn-

ing mechanism, Hebbian learning, is sufficient to learn Bayes optimal decisions.

We have introduced and analyzed the Bayesian Hebb rule, a training method for

synaptic weights, which converges fast and robustly to optimal log-probability ra-

tios, without requiring any communication between plasticity mechanisms for dif-

ferent synapses. We have shown how the same plasticity mechanism can learn

Bayes optimal decisions under different statistical independence assumptions, if it

is provided with an appropriately preprocessed input. We have demonstrated on a

5.5. Discussion 63

A

0 200 400 600 800 1000
0.7

0.75

0.8

0.85

0.9

0.95

1

Training Examples

C
or

re
ct

ne
ss

Bayesian Hebb SP
Log. Regression η=0.2
Naive Bayes
Bayes Optimum

B

0 200 400 600 800 1000
0.7

0.75

0.8

0.85

0.9

0.95

1

Training Examples

C
or

re
ct

ne
ss

Bayesian Hebb GP
Bayesian Hebb SP
Bayes Optimum

C

0 200 400 600 800 1000
0.7

0.75

0.8

0.85

0.9

0.95

1

Training Examples

C
or

re
ct

ne
ss

Without Noise
50% Noise
100% Noise
150% Noise

Figure 5.2: Performance comparison for prediction tasks. A) The Bayesian Hebb

rule with simple preprocessing (SP) learns as fast as Naive Bayes, and faster than

logistic regression (with optimized constant learning rate). B) The Bayesian Hebb

rule with generalized preprocessing (GP) learns fast and converges to the Bayes

optimal prediction performance. C) Even a very imprecise implementation of the

Bayesian Hebb rule (noisy updates, uniformly distributed in ∆wi ± γ%) yields

almost the same learning performance.

64 Chapter 5. Hebbian Learning of Bayes Optimal Decisions

variety of prediction tasks that the Bayesian Hebb rule learns very fast, and with an

appropriate sparse preprocessing mechanism for groups of statistically dependent

features its performance converges to the Bayes optimum. Our approach therefore

suggests that sparse, redundant codes of input features may simplify synaptic learn-

ing processes in spite of strong statistical dependencies. In the subsequent Chapter

6 we show that Hebbian learning also suffices for simple instances of reinforcement

learning. The Bayesian Hebb rule, modulated by a signal related to rewards, en-

ables fast learning of optimal action selection. Experimental results of Yang and

Shadlen (2007) on reinforcement learning of probabilistic inference in primates can

be partially modeled in this way with regard to resulting behaviors.

An attractive feature of the Bayesian Hebb rule is its ability to deal with the

addition or removal of input features through the creation or deletion of synaptic

connections, since no relearning of weights is required for the other synapses. In

contrast to discriminative neural learning rules, our approach is generative, which

according to Ng and Jordan (2002) leads to faster generalization. Therefore the

learning rule may be viewed as a potential building block for models of the brain

as a self-organizing and fast adapting probabilistic inference machine.

5.6 Acknowledgments

This chapter is based on the paper Hebbian learning of Bayes optimal decisions,

which was written by Bernhard Nessler (BN), myself (MP), and Wolfgang Maass

(WM). The theory of the Bayesian Hebb rule was developed by BN with input from

WM and MP, the experiments were performed by MP, and the paper was written

by MP and BN with additional input from WM.

Chapter 6

Reward-modulated Hebbian

Learning of Decision Making

Contents

6.1 Introduction . 66

6.2 The Bayesian Hebb rule . 70

6.3 The Linear Bayesian Hebb rule 75

6.4 Population codes for Hebbian learning 78

6.5 Results of Computer Simulations 83

6.6 Decision making with continuous inputs 89

6.7 Discussion . 93

6.8 Acknowledgments . 104

We introduce a framework for decision making in which the learning of decision

making is reduced to its simplest and biologically most plausible form: Hebbian

learning on a linear neuron. Extending the supervised framework introduced in

Chapter 5, we cast our Bayesian-Hebb learning rule as reinforcement learning in

which certain decisions are rewarded, and prove that each synaptic weight will on

average converge exponentially fast to the log-odd of receiving a reward when its pre-

and post-synaptic neurons are active. In our simple architecture, a particular action

is selected from the set of candidate actions by a winner-take-all operation. The

global reward assigned to this action then modulates the update of each synapse.

Apart from this global reward signal our reward-modulated Bayesian Hebb rule

is a pure Hebb update that depends only on the co-activation of the pre- and

postsynaptic neurons, and not on the weighted sum of all presynaptic inputs to

the post-synaptic neuron as in the perceptron learning rule or the Rescorla-Wagner

rule. This simple approach to action-selection learning requires that information

about sensory inputs be presented to the Bayesian decision stage in a suitably pre-

processed form resulting from other adaptive processes (acting on a larger time

scale) that detect salient dependencies among input features. Hence our proposed

framework for fast learning of decisions also provides interesting new hypotheses

regarding neural nodes and computational goals of cortical areas that provide input

to the final decision stage.

66 Chapter 6. Reward-modulated Hebbian Learning

6.1 Introduction

A typical decision making task of an organism requires the evaluation of multiple

alternative actions, with the goal of maximizing the probability of obtaining pos-

itive reward. If input signals provide only uncertain cues, and reward is obtained

stochastically in response to actions, then Bayesian statistics provides a mathe-

matical framework for the optimal integration of all available information. Bayes’

theorem can be used to calculate the probability that an action yields a reward,

given the current sensory input and the current internal state of an organism. The

goal of this article is to present the simplest possible neural network model that

can make such an evaluation, where simplicity is assessed both in terms of compu-

tational operations, and the complexity of the learning method.

A large number of experimental results suggest that animals do indeed make de-

cisions based on Bayesian integration of information about stimulus-action-reward

contingencies. For example, Sugrue et al. (2004) (see (Sugrue et al., 2005) for a

review) e.g. have shown that monkeys use the matching behavior strategy, in which

the frequency with which a particular action is chosen matches the expected reward

for that action. Yang and Shadlen (2007) have shown that the previous experience

of macaque monkeys in probabilistic decision tasks is represented by the firing rates

of neurons in area LIP in the form of the log-likelihood ratio (or log-odd) of receiv-

ing a reward for a particular action a in response to a stimulus x (in an experiment

where the monkey received in each trial either no reward, or a reward of unit size,

depending on the choice of the monkey among two possible actions).

We show that an optimal action selection policy can be reduced to a

Winner-Take-All (WTA) operation applied to linear gates, which receive suitably

preprocessed inputs (see Figure 6.1). Furthermore, we show that the updating of

the WTA circuit in the face of new evidence can be reduced to the application of

a local reward-modulated Hebbian learning rule to each linear gate. We call this

rule the Bayesian Hebb Rule. Despite the simplicity of this model, one can prove

that it enables fast learning of near optimal decision making, which is remarkable

because rigorous insight into convergence properties of Hebbian learning rules is

often lacking.

WTA (see (Yuille & Geiger, 2003) for a review) is a very simple computational

operation that selects the largest among l values L1, . . . , Ll. This selection is usually

encoded through l binary outputs z1, . . . , zl, where za = 1 if La is selected as the

largest input (ties can be broken arbitrarily), else za = 0 (see Figure 6.1). In an

action selection framework this output then triggers the selection of the ath among

l possible actions. Each value La is just a weighted sum

La =
n
∑

i=0

wa,i yi

of variables y1, . . . , yn (and a dummy variable y0 ≡ 1 that allows to use wa,0 as

6.1. Introduction 67

Figure 6.1: Winner-Take-All (WTA) architecture for learning of decision making.

First, the multinomial input variables x1, . . . , xm are preprocessed by a fixed cir-

cuit (which implements some type of population coding) to yield binary variables

y1, . . . , yn. For every possible action a there is an associated linear neuron La which

computes a weighted sum
∑n

i=0 wa,iyi of the variables y1, . . . , yn. The neuron La

with the largest weighted sum “wins”, i.e. za = 1, and action a is selected.

a bias). Despite its simplicity, the resulting WTA-circuit is computationally quite

powerful (Maass, 2000).

The main contribution of this article is a novel learning algorithm for the weights

wa,i of the linear gates La. We show that for a suitable fixed preprocessing (that

transfers the original input variables xk into binary variables yi) the optimal value

w∗
a,i for the weight wa,i in Figure 6.1 is the log-likelihood ratio (or log-odd) of

receiving a reward for a particular action a, provided that the binary feature yi is

activated by the preprocessing function, i.e.

w∗
a,i = log

p(r = 1|yi = 1, a)

p(r = 0|yi = 1, a)
. (6.1)

In the asymptotic case, where all weights wa,i have converged to their respective

target values w∗
ai

, the policy of the WTA-circuit in Figure 6.1 is optimal in the sense

that for any input signal the action with the highest chance to deliver reward is

chosen. We also show that after finitely many training trials steps the weights

closely approximate the optimal weights that can be inferred from the previously

observed data.

Our algorithm for reward-modulated learning of optimal weights uses only Heb-

bian learning, a form of learning for which there is strong experimental evidence

(Abbott & Nelson, 2000; Fregnac, 2003; Caporale & Dan, 2008). Hebb (1949)

68 Chapter 6. Reward-modulated Hebbian Learning

proposed (see (Fregnac, 2003) for a recent review) that a synapse from neuron A

to neuron B is strengthened if A and B often fire together. But several studies

have shown that Hebbian synaptic plasticity requires a third signal (often in the

form of neuromodulators) in order to consolidate weight changes (Bailey et al.,

2000; Reynolds et al., 2001; Farries & Fairhall, 2007; Legenstein et al., 2008). It

is often assumed that the third signal provides information about reward or re-

ward expectations. Hence learning rules involving these signals are referred to as

reward-modulated learning rules.

Hebbian learning, such as in the proposed Bayesian Hebb rule should be con-

trasted with non-Hebbian learning rules such as the perceptron learning rule (also

referred to as Delta-rule), or the Rescorla-Wagner rule (Rescorla & Wagner, 1972),

which are harder to support on the basis of experimental data for synaptic plas-

ticity. In these latter learning rules the change ∆wi of a synaptic weight wi at a

single synapse depends not only on the current activation values of the pre- and

postsynaptic neuron and the current value of wi (and possibly a reward-related

third signal), but also on the current values of the other weights and the activation

values of all other neurons that provide synaptic input to the same postsynaptic

neuron (more precisely: on the value of the weighted sum of all presynaptic inputs).

We present a mechanism for reward-modulated local learning of the weights wa,i

that permits them to converge (on average) to the ideal value (6.1). Learning from

rewards is conceptionally different from learning with a supervisor that informs

the learner about the correct choice. In reward-based learning, the learner must

explore different actions multiple times, even if he assumes that other actions would

be better in the given situation. This strategy is necessary to avoid premature

convergence to suboptimal policies.

We want to make clear that in this article we do not study the learning of

sequences of actions as in general reinforcement learning (Sutton & Barto, 1998),

but investigate scenarios like in operant conditioning, where decisions have to be

made based on learned immediate reward probabilities for single actions. We follow

however the terminology proposed for example in (Dayan & Abbott, 2001), and

subsume the latter also under the term reinforcement learning.

We will provide in this article a rigorous theoretical analysis of the conver-

gence properties of the Bayesian Hebb rule. Because our learning rule makes online

updates after every training trial, rather than performing a batch update after col-

lecting a set of data, we are interested in the asymptotic behavior of the rule, as

well as its online performance. Non-Hebbian learning rules usually perform gra-

dient descent optimization along an error surface. If local minima exist on the

error surface, this approach always carries the risk of becoming trapped in subop-

timal solutions, from which it cannot escape. In contrast, the optimal values of the

weights to be learned by the Bayesian Hebb rule act as global fixed point attrac-

tors in weight-space with regard to expected weight updates of the Bayesian Hebb

rule. Our analysis shows that the weights learned during training are very close to

the optimal values that can be inferred from finitely many training trials, and they

converge exponentially fast to the optimal values. We will also demonstrate that an

6.1. Introduction 69

extremely simple linear approximation to the Bayesian Hebb rule performs almost

equally well.

Bayesian decision making combines information from many variables, and there-

fore must consider statistical dependencies amongst them. An influential paper by

Roth (1999b) noted that decision making can be reduced to the computation of

weighted sums, provided that the input signals are properly pre-processed (see also

(Domingos & Pazzani, 1997)). This observation motivates our use of the neural

network model shown in Figure 6.1. Roth (1999b) proved his results in the con-

text of linear statistical queries for probabilistic classification. We now extend this

approach to the case of policy learning by incorporating a WTA gate for action se-

lection. Roth (1999b) noted that the set of features produced by the preprocessing

function must be related to independence assumptions among input variables. We

show that these features correspond to the factors in a factor graph (Kschischang

et al., 2001) of the input- and reward distribution.

One particularly simple case is Naive Bayes, which assumes that all input vari-

ables are conditionally independent given one particular target variable, e.g. the

occurrence of reward. In this case it is sufficient to know the reward-prediction

probabilities for every input variable and every action separately, since then the

reward probability given the complete input is the product of all individual pre-

dictors. We provide a simple preprocessing function for this case, which does not

use any information about statistical dependencies of input variables, but leads to

satisfactory policies.

The general case, in which there are statistical dependencies among input vari-

ables, requires more complex algorithms for Bayesian inference. Graphical models

like Bayesian networks (Bishop, 2006) and factor graphs (Kschischang et al., 2001)

are used to model conditional dependencies among variables, and inference algo-

rithms operate by passing messages along edges of the graphs. Factor graphs are

particularly useful tools. They consider groups of dependent variables as factor

nodes, in which functions of all connected variable nodes are computed. Infer-

ence in these models is performed using the sum-product algorithm (Bishop, 2006;

Kschischang et al., 2001), which is conceptually simpler than the belief propagation

algorithms used for inference in general Bayesian networks. Recent work (Steimer,

Maass, & Douglas, 2009) has shown that these factor nodes can be implemented

in networks of spiking neurons. In this chapter we define an optimal generalized

preprocessing function based on the factor graph representation of the reward dis-

tribution. This provides a concrete processing goal for multimodal integration in

sensory areas, and links the theory of factor graphs to experimentally observed neu-

ral population codes. These codes, as all other components of our framework, are

easily implemented in neural networks, and allow fast and robust learning with the

Hebbian learning algorithms presented in this chapter.

We assume here that the graph structure of the underlying Bayesian network

is known, but not the parameters of it (i.e., the probability distribution). We do

not address the problem of structure learning, which is a very different task, and

thus requires different algorithms. Whereas the parameters that define decision

70 Chapter 6. Reward-modulated Hebbian Learning

strategies require very fast adaptation, statistical dependencies between inputs re-

flect invariances in the environment, which could be learned by separate learning

processes on much longer time scales.

This chapter is organized as follows: We present the Bayesian Hebb rule for

reinforcement learning tasks in section 6.2, and analyze its convergence behavior

for learning reward log-odds. In section 6.3 we present a linear approximation to

the Bayesian Hebb rule that is much simpler to implement, but exhibits similar

convergence behavior. In section 6.4 we show that after a suitable preprocessing

of sensory variables x one arrives at a population code y for which optimal de-

cisions can be represented by WTA applied to weighted sums of the variables yi.

The required weights can be learnt quite fast with the Bayesian Hebb rule, even

if there exist conditional dependencies among the input variables x. Section 6.5

gives experimental results on the performance of the Bayesian Hebb rule in various

action selection tasks. Section 6.5.2 addresses the case of non-stationary reward

distributions. In section 6.6 the learning rule is generalized to handle tasks in envi-

ronments with continuous input signals x. We discuss in section 7.4 salient aspects

of the presented results, an application of the Bayesian Hebb rule to model the

experimental data of (Yang & Shadlen, 2007), related work, and open problems.

6.2 The Bayesian Hebb rule

In this section we introduce a simple local learning rule, the reward-modulated

Bayesian Hebb rule, which learns log-odds of reward probabilities conditioned on

binary input variables. Analyzing the convergence behavior of the rule one sees that

the true reward log-odds are fixed point attractors for expected weight changes

under the reward-modulated Bayesian Hebb rule. The Bayesian Hebb rule also

learns fast, since the online learned weights are close to what an optimal Bayesian

learning approach, using (biologically unrealistic) counters and auxiliary variables,

would achieve. It is further shown that an even simpler rule - which approximates

the Bayesian Hebb rule - learns weights which are close to the optimum, and is

sufficient for reliable decision making.

6.2.1 Action selection strategies and goals for learning

We consider the standard operant conditioning scenario, where the learner receives

at each trial an input x = 〈x1, . . . , xm〉 (e.g. a sensory stimulus or internal state

signals of the organism) with multinomial variables xj, chooses an action a out

of a set of l possible actions A = {a1, . . . , al}, and receives a reward r ∈ {0, 1}

with probability p(r|x, a). The learner’s goal is to learn (as fast as possible) a

policy π(x, a) = p(a|x) (or π(x) in the case of a deterministic policy) so that

action selection according to this policy maximizes the average reward. A structural

difference to supervised prediction problems is that it does not suffice that the

learner passively observes the outcomes of trials, since the reward received for action

a in response to stimulus x provides no information about the probability of rewards

6.2. The Bayesian Hebb rule 71

for alternative actions a′ in response to the same stimulus x. He therefore needs

to try out different actions for the same input through an exploration process, in

order to learn the reward-probabilities for all actions.

In this study the goal of the learner is fast learning of a policy that approx-

imates the optimal policy. The learner does not necessarily maximize the online

performance during learning, and does not specifically try to reduce uncertainty

about the outcome of unexplored action. The strategies employed during learn-

ing are therefore not Bayes-optimal in the sense of decision theory and sequential

analysis (Dayan & Daw, 2008). Optimal solutions to the exploration problem for a

restricted subclass of tasks can be computed (Gittins, 1979; Lai & Robbins, 1985;

Auer et al., 2002), but neural network implementations of these mechanisms are

beyond the scope of this study. During learning we follow heuristic strategies that

are commonly used in reinforcement learning (Sutton & Barto, 1998). The actions

are chosen based on the currently learned weights, which approximate the Bayes

optimal estimates for the reward log-odds. In order to maintain a rather high

level of rewards during exploration, the agent might for example choose actions

stochastically with p(a|x) = p(r=1|x, a). This corresponds to the matching behav-

ior phenomenon observed in biology, where the fraction of choices for one action

exactly matches the fraction of total rewards from that action (Sugrue et al., 2004).

This policy was used during training in all our computer experiments.

If the goal of the agent is to accumulate as many rewards as possible, and

rewards are binary, the agent will choose the action with the highest probability

p(r = 1|x, a) to yield reward. Since the function which maps a probability p onto

log p
1−p

is strictly monotonically increasing, the agent can choose instead the action

a which has the highest log-odd

log
p(r = 1|x, a)

p(r = 0|x, a)
. (6.2)

Hence the optimal policy for maximizing the probability of reward can be written

in the form

π(x) = arg max
a∈A

log
p(r = 1|x, a)

p(r = 0|x, a)
. (6.3)

We assume for now that the input x = 〈x1, . . . , xm〉 consists of m input vari-

ables which are arbitrary multinomial discrete random variables with unknown joint

distribution (in section 6.6 we will consider the case of continuous inputs x). We

assume that these m variables are represented through binary states (firing / non-

firing) y = 〈y1, . . . , yn〉 of n neurons in a population coding manner. We will define

the encoding scheme later in section 6.4 and show that different encodings allow

different representations of statistical dependencies. For every possible action a

there exists in our simple model (see Figure 6.1) a linear neuron which receives as

inputs the components y1, . . . , yn of y. The activation La of this linear neuron is

defined by the weighted sum

La = wa,0 +
n
∑

i=1

wa,i yi. (6.4)

72 Chapter 6. Reward-modulated Hebbian Learning

Our approach aims at learning weights wa,i for every action a such that La corre-

sponds to the reward log-odd (6.2), which indicates how desirable it is to execute

action a in the current situation defined by x and its neural encoding y. The ac-

tion with the highest assumed probability of yielding reward is then selected by

a Winner-Take-All (WTA) operation that is formally defined through the binary

outputs z1, . . . , zl as follows:

za =

{

1, if La ≥ Lb for b 6= a

0, else .
(6.5)

This action selection strategy is commonly referred to as the greedy strategy.

If the goal is not only to exploit preceding experience in order to choose an

action that maximizes the probability of reward for the current stimulus x, but

to simultaneously keep on learning and exploring reward probabilities for other

actions, the previously mentioned matching behavior strategy (Sugrue et al., 2005)

offers an attractive compromise. It can be implemented with the help of the learned

parameters wa,i in the following way: The linear gate La in Figure 6.1 is replaced

by a sigmoidal gate (i.e., the weighted sum La according to (6.4) is replaced by

σ(La) = 1
1+exp(−La) , and the deterministic WTA gate is replaced by a stochastic

soft-WTA gate (which selects a as winner with probability σ(La)
P

b σ(Lb)
).

6.2.2 A local rule for learning reward log-odds

We will now present a learning rule and an appropriate input encoding for learning

weights, which asymptotically approach target values such that the architecture in

Figure 6.1 selects actions optimally. Consider first the case where for a single binary

input yi and action a the reward log-odd log p(r=1|yi=1,a)
p(r=0|yi=1,a) should be learned in the

weight wa,i. A traditional frequentist’s approach would use counter variables

αa,i = #[r = 1 ∧ yi = 1 ∧ action a selected],

βa,i = #[r = 0 ∧ yi = 1 ∧ action a selected]

to estimate the reward log-odds w∗
a,i after finitely many steps by

ŵa,i = log
αa,i

βa,i
for i = 1, . . . , n.

In a rewarded trial (i.e. r = 1) where yi = 1 and action a is selected this leads to

the update

ŵnew
a,i = log

αa,i + 1

βa,i

= log
αa,i

βa,i

(

1 +
1

αa,i

)

= ŵa,i+log(1+
1

Na,i

(1+e−ŵa,i)) , (6.6)

where Na,i := αa,i + βa,i is the total number of previous updates, thus 1
αa,i

=

1
Na,i

(1 +
βa,i

αa,i
). Analogously, an update after a new unrewarded trial (r = 0) gives

rise to the update

ŵnew
a,i = ŵa,i − log(1 +

1

Na,i

(1 + eŵa,i)). (6.7)

6.2. The Bayesian Hebb rule 73

Using the approximation log(1 + x) ≈ x, and using a constant learning rate η

instead of the factor 1
Na,i

, the update rules (6.6) and (6.7) can be combined to yield

a new local learning rule, which does not use any counters. 1 We call this rule the

reward-modulated Bayesian Hebb rule. The update for weight wa,i, whenever action

a is selected and yi = 1 is:

∆wa,i =

{

η · (1 + e−wa,i), if r = 1

−η · (1 + ewa,i), if r = 0.
(6.8)

This rule increases the weight whenever reward is encountered, and decreases the

strength of the synapse otherwise. This learning rule (6.8) is purely local, i.e. it

depends only on quantities that are available at the trained synapse, but not on the

activity of other presynaptic neurons.

The approximation of the reward-modulated Bayesian Hebb rule to the exact

counting model, which computes for every parameter the Bayes-optimal estimate

that can be inferred from a fixed finite set of data, is illustrated in Figure 6.2A. In

order to estimate a single parameter qa,i = p(r = 1|yi = 1, a), a uniform prior on

[0, 1] was initially imposed on qa,i. The counters αa,i and βa,i, as defined above, were

incremented as training samples became available, and the posterior distribution for

qa,i was given by the Beta(αa,i + 1, βa,i + 1) distribution (Neapolitan, 2004). The

same samples were simultaneously used to update the weight wa,i by rule (6.8).

The weights wa,i, which represent log-odds log p(r=1|yi=1,a)
p(r=0|yi=1,a) were transformed into

probabilities via the transformation

q̂a,i =
1

1 + exp(−wa,i)
.

Figure 6.2A shows the optimal posterior for a single qa,i after every update, and

the approximation obtained by (6.8). The probability estimated by the Bayesian

Hebb rule is always close to the Bayes-optimal estimate.

6.2.3 Convergence properties of the Bayesian Hebb rule in rein-

forcement learning

The Bayesian Hebb rule is an online learning rule which has no prior knowledge

of its target values. However, one can prove that the weights learned with (6.8)

converge (in expectation) to their optimal values w∗
a,i = log p(r=1|yi=1,a)

p(r=0|yi=1,a) , just on the

basis of the statistics of pre- and postsynaptic values they encounter. This is in fact

very easy to prove, since the equilibrium of the rule is reached when the expected

update E[∆wa,i] under the rule (6.8) vanishes, and this can be written as

E[∆wa,i] = 0 ⇔ p(r = 1|yi = 1, a) · η · (1 + e−wa,i)−

−p(r = 0|yi = 1, a) · η · (1 + ewa,i) = 0 .

1Using the approximation log(1 + x) ≈ x did not visibly affect the performance of the learning

rule in the computer simulations in Section 6.5.

74 Chapter 6. Reward-modulated Hebbian Learning

A B

Trials

p(
r=

1
| y

, a
)

Bayes Optimal Learning of Reward Probabilities

50 100 150 200

1

0.8

0.6

0.4

0.2

0

po
st

er
io

r
de

ns
ity

0

2

4

6

8

10

12

−4 −2 0 2
−2

−1

0

1

2

3
Expected update for two weights

w
1

w
2

Figure 6.2: Convergence behavior of the Bayesian Hebb rule. A) The weights

learned by the Bayesian Hebb rule approximate Bayes-optimal learning. The pos-

terior for the reward probability qa,i = p(r = 1|yi = 1, a) at every training trial

was modeled by a Beta(αa,i + 1, βa,i + 1) distribution, with counters αa,i and

βa,i for rewarded and unrewarded trials. The color shows the estimated posterior

density function for qa,i at every training trial. The white curve shows the ap-

proximation learned by the Bayesian Hebb rule (6.8) (with constant learning rate

η = 0.02). The weight wa,i was transformed into an estimated reward probability

by q̂a,i = 1
1+exp(−wa,i)

. One can see that the approximation follows the optimal

estimate closely. B) Attractor property of the Bayesian Hebb rule (6.8) plotted for

two weights w1 and w2. The expected update (indicated by a blue arrow) is always

in the direction of the optimal weights (marked by a red star). Gray curves connect

points with the same amount of expected weight change.

As we show in the following section 6.2.3.1, the latter explicitly holds iff wa,i is at

the target value w∗
a,i = log p(r=1|yi=1,a)

p(r=0|yi=1,a) . If a vector of n + 1 weights 〈wa,0, . . . , wa,n〉

for an action a is learned simultaneously, the point 〈w∗
a,0, . . . , w

∗
a,n〉 is a global fixed

point attractor in the weight space R
n+1 with regard to expected weight changes

under the Bayesian Hebb rule (see Figure 6.2B).

Another unusual feature of the Bayesian Hebb rule is that one can prove that it

converges exponentially fast to w∗
a,i (w.r.t. E[∆wa,i]). In particular, weight updates

move the weight in larger steps towards the attractor w∗
a,i if they are farther off,

without requiring any change of the learning rate, or knowledge of the ideal values

w∗
a,i.

6.2.3.1 Convergence proofs for the Bayesian Hebb rule

We assume that p(r|y, a), the reward probability conditioned on the current input

and action, is stationary, and p(yi = 1, a) > 0 for all a ∈ A and i ∈ {1, . . . , n}. Apart

6.3. The Linear Bayesian Hebb rule 75

from the latter assumption, the equilibrium is independent of the exploration policy

π(x, a). The constraint on p(yi = 1, a) means that all values of all input variables

must have a non-zero probability in the input-distribution, and every action must

have a non-zero probability of being tried out. If p(yi = 1, a) = 0 for some yi and

a, then such trials are never encountered, and no meaningful weight wa,i can be

learned.

Since updates of wa,i in (6.8) are only made when a is executed and yi = 1, one

can write

E[∆wa,i] = 0 ⇔ p(r = 1|yi = 1, a) · η · (1 + e−wa,i)−

−p(r = 0|yi = 1, a) · η · (1 + ewa,i) = 0

⇔
1 + ewa,i

1 + e−wa,i
=

p(r = 1|yi = 1, a)

p(r = 0|yi = 1, a)

⇔ ewa,i =
p(r = 1|yi = 1, a)

p(r = 0|yi = 1, a)

⇔ wa,i = log
p(r = 1|yi = 1, a)

p(r = 0|yi = 1, a)
.

The above is a chain of equivalence transformations, therefore w∗
a,i = log p(r=1|yi=1,a)

p(r=0|yi=1,a)

is the only equilibrium value of rule (6.8).

One can also show that the expected update of weights wa,i is always in the

right direction:

E[∆wa,i]|w∗

a,i+2ε = E[∆wa,i]|w∗

a,i+2ε − E[∆wa,i]|w∗

a,i

∝ p(r=1|yi = 1, a)e−w∗

a,i(e−2ε − 1)− p(r=0|yi = 1, a)ew∗

a,i(e2ε − 1)

= p(r=0|yi = 1, a)(e−2ε − 1)− p(r=1|yi = 1, a)(e2ε − 1)

=
[

(p(r=0|yi = 1, a)e−ε + p(r=1|yi = 1, a)eε
]

(e−ε − eε). (6.9)

The first term in (6.9) is always positive, and from the last term in (6.9) one can

see that whenever wa,i > w∗
a,i, i.e. ε > 0, the expected change of wa,i is negative,

and positive if ε < 0. The expected change of weights is therefore always in the

direction of the optimal weight, and the initial weight values or pertubations of the

weights decay exponentially fast. Furthermore, trajectories of weights that start

at different initial values converge exponentially fast. Hence the resulting weight

dynamics is contracting in the sense of Lohmiller and Slotine (1998).

6.3 The Linear Bayesian Hebb rule

The reward-modulated Bayesian Hebb rule (6.8) includes exponential terms

exp(−wa,i) and exp(wa,i). One may argue that an exact calculation of the expo-

nential function is beyond the capabilities of a synaptic learning process. Therefore

we have also analyzed a linear approximation to the Bayesian Hebb rule. The

76 Chapter 6. Reward-modulated Hebbian Learning

exponential function is defined by the Taylor series

exp(x) =
∞
∑

ı=0

xi

i!
. (6.10)

Thus, the first order approximations for exp(wa,i) and exp(−wa,i) are

exp(w) ≈ 1 + w (6.11)

exp(−w) ≈ 1−w. (6.12)

Inserting the approximations (6.11) and (6.12) into (6.8), a computationally simpler

learning rule is obtained, which we call the linear Bayesian Hebb rule. Whenever

action a is selected and yi = 1, it updates weight wa,i by:

∆wa,i =

{

η · (2− wa,i), if r = 1

−η · (2 + wa,i), if r = 0.
(6.13)

This new rule resembles strongly the typical Hebb rule with a regularization term.

The weights are increased by a constant if the pre- and postsynaptic neurons “fire

together” (i.e., yi = 1 and action a is selected), and decreased by a constant if

they don’t. The ±wa,i term prevents the weights from growing too large or too

small. Actually, for η ≤ 1 it always keeps the weights within the range [−2, 2]. This

shows immediately that the linear Bayesian Hebb rule cannot learn the true reward

log-odds for arbitrary distributions, but only an approximation. Figure 6.3A shows

the updates by the linear Bayesian Hebb rule (dashed lines) in comparison to those

of the exact rule (6.8) (solid lines). One can see that the difference between the

updates grows for larger values of the target weight w∗
a,i. However, our computer

experiments in Section 6.5 will demonstrate that the linear Bayesian Hebb rule

performs remarkably well for many benchmark tasks.

6.3.1 Convergence of the Linear Bayesian Hebb Rule

We show in the following section 6.3.1.1 that the equilibrium value for the linear

Bayesian Hebb rule (6.13), i.e. the weight value where E[∆wa,i] = 0, is at

w+
a,i = −2 + 4 · p(r = 1|yi = 1, a)

= 2 · (p(r = 1|yi = 1, a)− p(r = 0|yi = 1, a)) .

This equilibrium value is monotonically increasing with w∗
a,i, the equilibrium value

of the exact Bayesian Hebb rule (6.8). They are only equal when p(r = 1|yi =

1, a) = p(r = 0|yi = 1, a), i.e. w∗
a,i = w+

a,i = 0.

In Figures 6.3B and C the evolution of two weights during learning for a

random distribution is shown. In 6.3B, the target value is close to zero, where the

target values for the exact rule (6.8) and the linear Bayesian Hebb rule (6.13) are

very similar. Thus, no big difference in weight space is visible. In 6.3C, however,

6.3. The Linear Bayesian Hebb rule 77

A B C

−2 −1 0 1 2
−0.1

−0.05

0

0.05

0.1

w
i

∆
w

i

r=1

r=0

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

1.5

Training Trials

w
i

Bayesian Hebb Rule
Linear Bayesian Hebb Rule

0 200 400 600 800 1000
−3

−2.5

−2

−1.5

−1

−0.5

0

Training Trials

w
i

Bayesian Hebb Rule
Linear Bayesian Hebb Rule

Figure 6.3: Linear approximation of the Bayesian Hebb rule. A) Update ∆wi of

the Bayesian Hebb rule (6.8) (solid lines) and the linear Bayesian Hebb rule (6.13)

(dashed lines) plotted as a function of the current weight value wi for training trials

with r = 1 (blue curves) and r = 0 (red curves). B) Example of the evolution of

a single weight under the Bayesian Hebb rule (6.8) and the linear Bayesian Hebb

rule (6.13). The target value is close to 0, where the approximation of the linear

Bayesian Hebb rule is very good. C) Another example of the weight evolution, in

which the two rules converge to different weights. The target weight is close to

−2, which is the border of the weight-range that the linear Bayesian Hebb rule can

cover. The approximation error is therefore large compared to B.

the target value is close to the maximum value that the linear rule can represent,

therefore the two rules do not converge to the same value, indicating a larger

approximation error for the linear rule. Hence the linear Bayesian Hebb rule can

be expected to perform well if the target values of the weights have small absolute

values.

6.3.1.1 Convergence proof for the Linear Bayesian Hebb rule

The expected update of the linear Bayesian Hebb rule (6.13) vanishes when

E[∆wa,i] = 0 ⇔ p(r = 1|yi = 1, a) · η · (2− wa,i)− p(r = 0|yi = 1, a) · η · (2 + wa,i) = 0

⇔ 2(p(r = 1|yi = 1, a)− p(r = 0|yi = 1, a)) =

= wa,i · (p(r = 1|yi = 1, a) + p(r = 0|yi = 1, a)) = wa,i

⇔ wa,i = 2(p(r = 1|yi = 1, a) − 1 + p(r = 1|yi = 1, a))

⇔ wa,i = −2 + 4 · p(r = 1|yi = 1, a) .

We have used here that the reward is binary, and so

p(r = 0|yi = 1, a) + p(r = 1|yi = 1, a) = 1 .

The above is a chain of equivalence transformations, so w+
a,i = −2+ 4 · p(r = 1|yi =

1, a) is the only equilibrium value of (6.13).

78 Chapter 6. Reward-modulated Hebbian Learning

6.4 Population codes for Hebbian learning of asymp-

totically optimal decisions

In this section two preprocessing mechanisms are presented, which are based on dif-

ferent assumptions about statistical dependencies among input variables. Applied

to these population encodings of the input, the WTA circuit in Figure 6.1 selects

actions that maximize the probability of obtaining reward, according to the current

statistical model represented by the input encoding and the reward log-odds learned

with the Bayesian Hebb rule.

We have previously shown that the reward-modulated Bayesian Hebb rule (6.8)

has a unique equilibrium at the reward log-odd

w∗
a,i = log

p(r = 1|yi = 1, a)

p(r = 0|yi = 1, a)
. (6.14)

In order to approximate the true reward probabilities for every action as

weighted sums as in (6.4), every vector of input variables x = 〈x1, . . . , xm〉 needs

to be suitably preprocessed into a population code vector y = 〈y1, . . . , yn〉. If the

weights wa,i for every yi and every action a are learned with the Bayesian Hebb

rule, our previous analysis guarantees that the resulting policy will asymptotically

approach the best policy that can be inferred for the given preprocessing function.

Let the input variables x1, . . . , xm be some arbitrary multinomial random vari-

ables with unknown joint distribution, where each variable xk assumes mk dif-

ferent values vk
1 , . . . , vk

mk
. For the sake of simplicity we assume that vk

j = j for

j = 1, . . . ,mk and k = 1, . . . ,m.

We first present a very simple population coding, which is sufficient to represent

the optimal policy as a weighted sum if the Naive Bayes assumption holds for the

input variables, i.e. the input variables xk are conditionally independent of each

other given the selected action a and the reward r:

p(xk|r, a, x1, . . . , xk−1, xk+1, . . . , xm) = p(xk|r, a) for all k ∈ {1, . . . ,m}. (6.15)

In this case it holds that

p(r = 1|x, a)

p(r = 0|x, a)
=

p(r = 1|a)

p(r = 0|a)

m
∏

k=1

p(xk|r = 1, a)

p(xk|r = 0, a)
. (6.16)

Every xk is discrete and can only take on finitely many different values. Each

discrete conditional distribution p(xk|r, a) for a fixed action a and a fixed value of

r is therefore fully described by mk probability values, one for each possible value

of xk, and can be written in the form

p(xk|r, a) = p(xk = 1|r, a)I(xk=1) · p(xk = 2|r, a)I(xk=2) · . . . · p(xk = mk|r, a)I(xk=mk),

where the indicator function I is defined as I(true) = 1 and I(false) = 0. With

this notation, and with an application of Bayes’ theorem, (6.16) can be rewritten

6.4. Population codes for Hebbian learning 79

as

p(r = 1|x, a)

p(r = 0|x, a)
=

p(r = 1|a)

p(r = 0|a)

m
∏

k=1

mk
∏

j=1

(

p(xk = j|r = 1, a)

p(xk = j|r = 0, a)

)I(xk=j)

=
p(r = 1|a)

p(r = 0|a)

m
∏

k=1

mk
∏

j=1

(

p(r = 1|xk = j, a)

p(r = 0|xk = j, a)
·
p(r = 0|a)

p(r = 1|a)

)I(xk=j)

=

(

p(r = 1|a)

p(r = 0|a)

)1−m m
∏

k=1

mk
∏

j=1

(

p(r = 1|xk = j, a)

p(r = 0|xk = j, a)

)I(xk=j)

=
p(r = 1|a)

p(r = 0|a)

m
∏

k=1





p(r = 0|a)

p(r = 1|a)

mk
∏

j=1

(

p(r = 1|xk = j, a)

p(r = 0|xk = j, a)

)I(xk=j)


 .

(6.17)

This suggests to represent every xk by a population code, which has mk + 1 binary

variables, one for every possible value of xk, and one bias variable to account for

the term p(r=0|a)
p(r=1|a) . Formally we define the simple preprocessing (SP) φ(xk) for a

single variable xk as

φ(xk) = [−1, ϕ1, . . . , ϕmk
]T , where ϕj =

{

1, if xk = j

0, otherwise.
(6.18)

As an example we consider the simple reward distribution with 2 input variables

x = 〈x1, x2〉, modeled by the Bayesian network in Figure 6.4A. Under the Naive

Bayes assumption the dependency of x2 on the input variable x1 is neglected, i.e.

the arrow x1 → x2 in the Bayesian network is ignored. For binary xk, the population

code under this assumption is illustrated in Figure 6.4C. Each input variable xk is

encoded separately by 3 variables yi, where one is constantly −1, and only one other

yi is active, depending on the value of xk.

The vectors φ(xk) for k = 1, . . . ,m are concatenated into one population code

vector y for the whole input. y has n = 1 + m +
∑m

k=1 mk entries, of which exactly

2 · m + 1 are non-zero, and the first entry y0 ≡ 1 corresponds to the bias term
p(r=1|a)
p(r=0|a) in (6.17):

y = Φ(x) =















1

φ(x1)

φ(x2)
...

φ(xm)















. (6.19)

Substituting the definition of y from (6.18) and (6.19) into (6.17) and taking the

logarithm then yields the log-odd function

log
p(r = 1|y, a)

p(r = 0|y, a)
= log

p(r = 1|a)

p(r = 0|a)
+

n
∑

i=1

yi log
p(r = 1|yi 6= 0, a)

p(r = 0|yi 6= 0, a)
. (6.20)

80 Chapter 6. Reward-modulated Hebbian Learning

A B

C D

Figure 6.4: Preprocessing for tasks with arbitrary statistical dependencies. A) An

example Bayesian network for the joint distribution of sensory inputs x = 〈x1, x2〉

and reward r. B) Factor graph representation for the prediction of r, according

to the Bayesian network in panel A. Here, f0 represents the prior p(r), and the

factors f1 and f2 represent the conditional probabilities p(x1|r) and p(x2|x1, r),

respectively. C) Population coding under the Naive Bayes assumption, which we

refer to as simple preprocessing (SP). For every possible value of the variables xk

(here x1, x2 are binary), there is one variable yi (indicated by a black circle) that

outputs the value 1. Additionally there is one variable yi for every xk, which is

constantly at −1 (black square). The constant bias term y0 is not shown. D)

Population coding applied to the factors in the factor graph shown in panel B. For

each combination of values of the variables {xk,xPk
} of a factor there is exactly

one variable yi (indicated by a black circle) associated with the factor that outputs

the value 1. Other variables yi represent OR’s of these values (black squares), and

yield either 0 or −1. The constant bias term y0 is not shown. We refer to the

resulting preprocessing circuit that maps sensory inputs x onto internal variables

y that support Hebbian learning of optimal decisions as generalized preprocessing

(GP).

6.4. Population codes for Hebbian learning 81

If we use the population code (6.19) for y, we can apply the reward-modulated

Bayesian Hebb rule (6.8) for every yi to learn reward log-odds conditioned on feature

yi being active2. For a yi that is constantly active, such as y0, the weight wa,i will

converge to the prior reward probability log p(r=1|a)
p(r=0|a) for action a. Inserting the

target values (6.14) of the weights into (6.20), we can therefore write

log
p(r = 1|y, a)

p(r = 0|y, a)
=

n
∑

i=0

w∗
a,i yi . (6.21)

During learning the current values of the weights wa,0, . . . , wa,n are used to approx-

imate the true reward log-odd for every action a as the weighted sums in (6.4).

Actions are selected by a heuristic method according to their predicted probability

of yielding reward (e.g. greedy or matching behavior). If the Naive Bayes assump-

tion holds, the reward-modulated Bayesian Hebb rule in combination with a simple

population coding for every input variable xk is therefore sufficient to asymptotically

learn the optimal action selection policy.

6.4.1 Learning decisions for arbitrary discrete distributions

We now address the more general case, where conditional independence of the input

variables x1, . . . , xm cannot be assumed. We show that with a fixed preprocessing of

the input that takes their dependencies into account, the Bayesian Hebb rule enables

the resulting neural network to converge quite fast to the best performance that any

action selection mechanism could possibly achieve. The dependency structure of the

underlying input and reward distribution is given in terms of an arbitrary Bayesian

Network BN for discrete variables (like e.g. Figure 6.4A). BN can be represented,

like every Bayesian network, by a directed graph without directed cycles. We do

not assume any further restrictions on the structure of the Bayesian network, so

BN does not have to be a tree (as assumed in (Deneve, 2008b)), and it is not

required to have no undirected cycles (as necessary for guaranteed convergence of

belief propagation algorithms (Bishop, 2006)).

Without loss of generality we choose a numbering scheme such that the direct

children of the reward node r in BN are x1, . . . , xm′ . The dependencies in BN can be

described by m+1 parent sets Pk, which are possibly empty, and explicitly exclude

the reward node r. Pk is thus defined as

Pk = {i | a directed edge xi → xk exists in BN and xi 6= r} .

Additionally we define Pr as the set of all parents of the reward-node r. The joint

probability distribution on the variables r, x1, . . . , xm in the Bayesian network for

action a can then be factored, giving rise to a factor graph (Kschischang et al.,

2We consider a feature yi active if it is non-zero, i.e. both yi = 1 and yi = −1 are active

features.

82 Chapter 6. Reward-modulated Hebbian Learning

2001) as indicated in Figure 6.4B:

p(r,x|a) = p(r|xPr , a)
m′

∏

k=1

p(xk|xPk
, r, a)

m
∏

k=m′+1

p(xk|xPk
, a). (6.22)

When calculating the log-odd of obtaining reward or not, the last terms in (6.22)

cancel out, and a simple application of Bayes’ theorem leads to

log
p(r = 1|x, a)

p(r = 0|x, a)
= log

p(r = 1|xPr , a)

p(r = 0|xPr , a)
+

+
m′

∑

k=1

(

log
p(r = 1|xk,xPk

, a)

p(r = 0|xk,xPk
, a)
− log

p(r = 1|xPk
, a)

p(r = 0|xPk
, a)

)

. (6.23)

This is a sum of conditional reward log-odds, which can all be learned with the

reward-modulated Bayesian Hebb rule. We now develop a suitable sparse encoding

of x1, . . . , xm into binary variables y1, . . . , yn (with n ≫ m), such that the reward

log-odd can be written as a weighted sum

log
p(r = 1|y, a)

p(r = 0|y, a)
=

n
∑

i=1

wa,i yi,

and the weights wa,i correspond to conditional reward log-odds of yi’s. For

the example Bayesian network in Figure 6.4A, the corresponding sparse code is

illustrated in Figure 6.4D: One binary variable is created for every possible value

assignment to a variable xk and all its parents xPk
, and additional binary variables

are created for every possible value assignments to the parent nodes only. One

should contrast this with the simple population code in Figure 6.4C, which assumes

that the Naive Bayes condition holds, and therefore ignores that x2 is dependent

on x1.

BN can also be viewed as a factor graph (see Figure 6.4B), in which there is for

every variable xk a factor fk, which is connected to r, xk and xPk
, the parents of

xk in BN. The preprocessing is then computed separately for every factor fk. We

define the fixed generalized preprocessing (GP) operation for fk with k ≥ 1 as

Φ(xk,xPk
) =

[

φ(xk,xPk
)

−φ(xPk
)

]

. (6.24)

The summands of the sum on the r.h.s. of (6.23) are split into two parts, and

φ(xk,xPk
) defines the preprocessing for the first part, whereas −φ(xPk

) defines

the preprocessing for the latter part. The variables 〈xk,xPk
〉 are viewed as a single

multinomial variable, and φ(xk,xPk
) is a representation of this multinomial variable

through simple population coding. Thus, φ(xk,xPk
) has as many binary output

variables yk,i as there are different assignments of values to all variables in 〈xk,xPk
〉,

and exactly one variable yk,i has value 1 for each such assignment. Let yk,i be the

6.5. Results of Computer Simulations 83

binary output variable that corresponds to some assignment xk = j, xPk
= u, then

the corresponding weight wa,k,i for action a can be learnt through the same reward-

modulated Bayesian Hebb rule (6.8) as in the Naive Bayes case. The target value,

to which wa,k,i will converge is then

w∗
a,k,i = log

p(r = 1|yk,i = 1, a)

p(r = 0|yk,i = 1, a)
= log

p(r = 1|xk = j,xPk
= u, a)

p(r = 0|xk = j,xPk
= u, a)

. (6.25)

Analogously, the application of the reward-modulated Bayesian Hebb rule (6.8) for

every component yPk,i of −φ(xPk
) leads to the target weights

w∗
a,Pk,i = log

p(r = 1|yPk,i = −1, a)

p(r = 0|yPk,i = −1, a)
= log

p(r = 1|xPk
= u, a)

p(r = 0|xPk
= u, a)

, (6.26)

with the only formal modification to the update rule (6.8) being that updates are

not only made when yi = 1, but also when yi = −1, which obviously does not change

the behavior of the learning process. Formally, all preprocessed vectors Φ(xk,xPk
)

are concatenated into one vector y with n =
∑m′

k=1 Nk + NPk
entries

y =











Φ(xPr)

Φ(x1,xP1)
...

Φ(xm′ ,xPm′
)











.

This sparse, redundant input encoding provides a weighted sum representation of

the reward log-odd

log
p(r = 1|y, a)

p(r = 0|y, a)
=

n
∑

i=1

wa,i yi,

where the weights wa,1, . . . , wa,n can all be learnt through the reward-modulated

Bayesian Hebb rule (6.8) as described above.

6.5 Results of Computer Simulations

We now evaluate the performance of the reward-modulated Bayesian Hebb rule and

its linear approximation and compare it to the standard learning model for simple

conditioning tasks, the non-Hebbian Rescorla-Wagner rule (Rescorla & Wagner,

1972).

The reward-modulated Bayesian Hebb rule (6.8) was tested on a variety of

action selection tasks with 4 possible actions. A Bayesian network with dependency

structure as in Figure 6.4A was used to model the distribution p(r, x1, x2|a) for

every action a, where r is the binary reward signal, and x1, x2 are the two binary

input signals. We assigned a constant reward prior p(r|a) = 0.25 to every action

a, and randomly generated the conditional probability tables for p(x1|r, a) and

p(x2|x1, r, a): for every action a, every xk (k ∈ {1, 2}), and every possible value

84 Chapter 6. Reward-modulated Hebbian Learning

assignment to the parent nodes 〈xPk
, r〉, a random sample q ∈ [0, 1] was drawn from

a Beta-distribution, and p(xk = 1|xPk
, r, a) was set to q.

The Bayesian networks which model the reward distribution were also used to

create the samples of input vectors x = 〈x1, x2〉 for every training trial. First, one

of the four Bayesian networks was chosen randomly with equal probability, so the

distribution of input or test samples does not depend on the action selection during

learning. Inputs x were drawn as random samples from the selected network. The

agent then received the input x and chose its action a. The binary reward signal

r was sampled from the distribution p(r|x, a), and thus depends on the chosen

action. The agent used the tuple 〈x, a, r〉 to update its weights wa,i. Training

consisted of 2000 trials, in which the matching behavior strategy (see section 6.2.1)

was used for action selection during learning. The evaluation of the performance of

the resulting policy after every trial used the greedy strategy (6.3), choosing actions

on 500 independent test trials and measuring the average reward. The experiment

was averaged over 250 different tasks with different reward distributions.

The preprocessed binary vectors y = Φ(x) ∈ {0, 1}n were created either by

simple population coding (see (6.19) and Figure 6.4C), which is suitable for the

Naive Bayes case (6.15), or generalized preprocessing (see (6.24) and Figure 6.4D).

The former mechanism is referred to as Bayesian Hebb SP in Figure 6.5 and the

remainder of this chapter, whereas the generalized preprocessing mechanism is re-

ferred to as Bayesian Hebb GP. The Bayesian Hebb rule with these two kinds of

preprocessing mechanisms was compared to the non-Hebbian Rescorla-Wagner rule

(Rescorla & Wagner, 1972). This rule predicts the value of a (multi-dimensional)

stimulus as a linear sum,

V (y) = w0 +

n
∑

i=1

wiyi ,

and minimizes the prediction error with a delta learning rule

∆wi = ηyi

(

r − w0 −
n
∑

i=1

wiyi

)

. (6.27)

It can be seen from equation (6.27), that for the update of a single weight, the

complete prediction of value for the current state, which depends on all weights,

is needed. In the experiments the Rescorla-Wagner rule was used to learn weights

for every action separately. The classical Rescorla-Wagner rule (6.27) , which we

use for comparison, is directly applied to the inputs x. We show in section 6.5.4

that the performance and learning speed of Rescorla-Wagner can also be improved

if it is applied to the preprocessed vectors y = Φ(x), using the same SP and GP

preprocessing mechanisms as for the Bayesian Hebb rule.

In addition, the reward-modulated Bayesian Hebb rule was also compared to

a Bayes-optimal weight learning rule. In this case the conditional probabilities in

the Bayesian network in Figure 6.4A were estimated using counter variables (see

6.5. Results of Computer Simulations 85

section 6.2.2), and exact inference was used to compute reward probabilities for

every action.

Figure 6.5 shows that the reward-modulated Bayesian Hebb rule for both types

of preprocessing learns faster than the non-Hebbian Rescorla-Wagner rule and con-

verges to better policies. If generalized preprocessing is used, the learned policy

after approximately 200 trials is almost indistinguishable from the policy of an op-

timal learner, and after approximately 1000 trials the performance is very close to

the optimal performance level.

0 50 100 150 200
0.5

0.55

0.6

0.65

0.7

Trials

A
ve

ra
ge

 R
ew

ar
d

0 400 800 1200 1600 2000
0.5

0.55

0.6

0.65

0.7

Trials
A

ve
ra

ge
 R

ew
ar

d

Optimal Learner
Bayesian Hebb SP
Bayesian Hebb GP
Rescorla−Wagner

Figure 6.5: Performance of the reward-modulated Bayesian Hebb rule for action

selection in a 4-action task with stochastic rewards. Each learner was trained on

2000 trials, and after every trial the performance was measured as the average

reward of the greedy policy of each learner on 500 independent test trials (left:

performance during the first 200 training trials). The results were averaged over

250 different problems, all having the statistical dependency structures as in Figure

6.4A, but random reward distributions (average learning and preprocessing time per

problem on a dual-core 2.66 GHz, 16GB RAM PC: 0.9 s for SP, and 4.1 s for GP).

The horizontal dashed line reflects the best possible performance of an optimal

policy. The Bayesian Hebb rule with simple population coding (Bayesian Hebb

SP) and generalized preprocessing (Bayesian Hebb GP) were compared to action-

learning with the non-Hebbian Rescorla-Wagner rule. The learning rate was set to

1/Na,i, and stochastic action selection was used for exploration during training. The

Bayesian Hebb rule for both preprocessing methods learned faster than the non-

Hebbian Rescorla-Wagner rule and converged to better policies. With generalized

preprocessing, the Bayesian Hebb rule converged to the optimal action-selection

policy, as predicted by the theoretical analysis. Error bars are in the range of 10−3

and are omitted for clarity.

6.5.1 Approximations to the Bayesian Hebb rule

We have shown in section 6.3 that the linear Bayesian Hebb rule (6.13) can be

derived as a first-order Taylor approximation of the reward-modulated Bayesian

Hebb rule (6.8). There are no theoretical guarantees that the linear Bayesian Hebb

rule will asymptotically converge towards weight values that allow optimal decision

making. We compared the two rules on the same random Bayesian network tasks

86 Chapter 6. Reward-modulated Hebbian Learning

for action selection empirically, using both the simple preprocessing (SP) for the

Naive Bayes case, and the generalized preprocessing (GP) for arbitrary reward

distributions. Figure 6.6 shows that this even simpler rule found good policies as

quick as the exact rule. The quality of the final policy was almost indistinguishable

from the policies found by the exact Bayesian Hebb rule.

6.5.2 Adaptation to changing reward distributions

In most realistic scenarios an organism experiences during its lifetime changes in

the environment in which it lives. It is therefore important that a learning rule can

adapt quickly to a changing reward or input distribution. It is clear that a learning

rate that decays with 1
Ni

(where Ni is the number of updates for a weight wi) is not

suitable for changing environments. We therefore used for this task the variance

tracking mechanism for learning rate adaptation, which was first introduced by

Nessler et al. (2009). This mechanism keeps track of the variance of each weight,

and adapts learning rates accordingly. Learning rates are reduced for weights with

small fluctuations, whereas they are increased for weights with high variance, which

is an indication that those weights have not yet settled at their equilibrium values.

The learning rate adaptation mechanism uses two auxiliary variables, which

can be locally estimated for every weight wi: a running average of the weight is

computed in w̄i, and a running average of the squared weight in q̄i, using the

following simple update rules:

w̄new
i ← (1− ηi) w̄i + ηi wi

q̄new
i ← (1− ηi) q̄i + ηi w2

i .
(6.28)

With these values the short-time variance of each weight can be estimated as q̄i−w̄2
i .

Assuming that samples are drawn from stationary input distributions, it was shown

in (Nessler et al., 2009) that the variance of a weight wi can be related to the

sample size Ni in the Bayes-optimal learning case (see also section 6.2.2), where

exact counters for all combinations of inputs, actions and rewards are used, and

conditional reward probabilities are modeled with Beta-distributions. According to

this analysis, the new learning rate ηnew
i can be set as

ηnew
i ←

q̄i−w̄2
i

1+cosh w̄i
. (6.29)

In practice this mechanism decays like 1
Ni

under stationary conditions. It can also

handle changing input distributions, because a new target value for wi leads to

larger updates ∆wi, thus increasing the short-time variance of the weight, and by

(6.29) the learning rate ηi. Further details, and the theory behind this mechanism

are described in (Nessler et al., 2009).

The variance tracking mechanism is an analytically justified rule for setting

learning rates. Biological implementations of qualitatively similar processes are

plausible, since all auxiliary quantities can be observed locally at the synapse.

What is required is essentially a process that locally modulates potentiation or

6.5. Results of Computer Simulations 87

0 50 100 150 200
0.5

0.55

0.6

0.65

0.7

Trials

A
ve

ra
ge

 R
ew

ar
d

0 400 800 1200 1600 2000
0.5

0.55

0.6

0.65

0.7

Trials

A
ve

ra
ge

 R
ew

ar
d

Optimal Learner
Bayesian Hebb SP
Linear Bayesian Hebb SP
Bayesian Hebb GP
Linear Bayesian Hebb GP

Figure 6.6: Performance of the linear approximations to the reward-modulated

Bayesian Hebb rule in the same 4-action tasks as in Figure 6.5 (left: performance

during the first 200 training trials). Both for simple population coding (SP) and gen-

eralized preprocessing (GP), the linear approximation to the learning rule learned

as well as the exact rule. Error bars are in the range of 10−3 and are omitted for

clarity.

A B

0 1000 2000 3000 4000 5000 6000 7000 8000
0.2

0.3

0.4

0.5

0.6

0.7

Trials

A
ve

ra
ge

 R
ew

ar
d

Bayesian Hebb SP
Linear Bayesian Hebb SP

0 500 1000 1500 2000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Updates

w
a,

 i

Bayesian Hebb SP
Linear Bayesian Hebb SP

Figure 6.7: Behavior of the Bayesian Hebb rule when the reward distribution

changes during training. A) Performance of the agent if a new reward distribu-

tion is introduced after 4000 training trials. There is an immediate drop when the

distribution changes, but good performance is recovered quickly by both rules. B)

Evolution of a single weight wa,i when the reward distribution changes. The weights

are plotted at every trial where action a is selected, and an update for the plotted

weight occurs. The weight first settles at the desired value for the first distribution,

and then quickly adapts to the new target value when the distribution changes

(indicated by the black dashed line).

88 Chapter 6. Reward-modulated Hebbian Learning

depression of synapses, and itself is dependent on the magnitude of recent local

synaptic weight changes. This could in principle be achieved by a large variety

of metaplasticity mechanisms that are known to modulate synaptic plasticity (see

(Abraham, 2008) for a recent review). Neuromodulators such as acetylcholine and

norepinephrine could play a special role in the control of learning rates and the

reduction of oscillations of weight updates (Doya, 2002; Yu & Dayan, 2003).

In the experiment shown in Figure 6.7, the weights were learned in 4000 training

trials, after which the environment was changed and the learner was trained for

another 4000 trials on the new input and reward distributions. Figure 6.7A shows

that the performance of the learners initially improved, then dropped as soon as the

distributions were switched, but quickly adapted to the new distribution, reaching

almost the same performance. Figure 6.7B shows the evolution of a single weight in

this scenario, for all trials in which it was updated. It can be seen that the weight

first settled around the equilibrium value of the first distribution, and grew to reach

the new target value after the switch.

6.5.3 Simulations for large input and action spaces

The Bayesian Hebb rule also works well for significantly larger problems. The same

algorithms as in the previous sections were applied to problems with 100 binary

input attributes, and 10 possible actions. The structures of the Bayesian networks

that define the reward distributions for every action were generated randomly, using

the algorithm described in (Ide & Cozman, 2002). Every node in the network could

have a maximum of 5 parent nodes. The protocol for the generation of training

samples and rewards was the same as for the previous experiments (see beginning

of section 6.5). During learning actions were selected randomly, and the greedy

policy was used for the evaluation on 1000 independent test trials (once every 1000

training trials).

Figure 6.8 shows that the Bayesian Hebb rule learns fast, both for simple popula-

tion coding (SP), and generalized preprocessing (GP). The latter initially performs

worse than SP, because the number of weights to learn is very large (about 1000

weights for every action), and approximation errors sum up. Given more training

data, the Bayesian Hebb rule with generalized preprocessing approaches the perfor-

mance of an optimal learner. The linear approximations to the reward-modulated

Bayesian Hebb rule perform equally well on this task for both types of preprocessing.

6.5.4 Performance of the Rescorla-Wagner rule with preprocessing

The performance of the Rescorla-Wagner rule (6.27) can be improved by prepro-

cessing input signals before the learning rule is applied. Figure 6.9 shows the av-

erage reward for the two tasks studied in Figure 6.5 (with 2 binary inputs and

4 actions), and Figure 6.8 (with 100 binary inputs and 10 actions). When the

Rescorla-Wagner rule (6.27) was applied to simple population coding (SP) or to

generalized preprocessing (GP), it learned faster and converged to better policies,

6.6. Decision making with continuous inputs 89

0 1000 2000 3000 4000 5000

0.5

0.6

0.7

0.8

0.9

1

Trials

A
ve

ra
ge

 R
ew

ar
d

0 5000 10000 15000 20000

0.5

0.6

0.7

0.8

0.9

1

Trials

A
ve

ra
ge

 R
ew

ar
d

Optimal Learner
Bayesian Hebb SP
Bayesian Hebb GP
Rescorla−Wagner

Figure 6.8: The Bayesian Hebb rule works well also for simulations with large input

and action spaces. Each learner was trained on 20,000 trials of action selection

problems with 10 actions, 100 binary input attributes, and stochastic rewards. Ev-

ery 1000 trials the performance was measured as the average reward of the greedy

policy of each learner on 1000 independent test trials (left: performance during the

first 5000 training trials). The results were averaged over 40 different problems with

random statistical dependency structures and random reward distributions (aver-

age learning and preprocessing time per problem on a 2-core 2.66 GHz, 16GB RAM

PC: 27.8 s for SP, and 301.6 s for GP). The learning rates were set to 1/Na,i, and

random action selection was used for exploration during training. With generalized

preprocessing, the Bayesian Hebb rule approached the performance of an optimal

learning mechanism. Error bars are in the range of 10−2 and are omitted for clarity.

although the performance of the Bayesian Hebb rule was mostly superior. These

results suggest that the preprocessing methods presented in section 6.4, could also

be beneficial for other learning mechanisms. The Augmented Rescorla-Wagner rule

(Yuille, 2006) uses a preprocessing mechanism similar to GP, but it did not perform

better for the experiments in this study.

6.6 Decision making with continuous inputs

The Bayesian Hebb rule can be generalized to action-selection problems defined on

continuous input distributions. A rule very similar to (6.8) learns reward log-odds

on a continuous input encoding, comparable to population codes with bell-shaped

tuning curves that are observed in the brain.

The Bayesian Hebb rule has previously been defined only for discrete inputs

xk, which were mapped to binary variables yi with various ways of preprocessing.

We now present a learning rule to approximate distributions of a binary reward

variable for continuous inputs. The preprocessing for this case is a population code,

which uses radial-basis functions (RBFs) 3 to map continuous input variables xk to

new continuous features yi, which may e.g. correspond to firing rates in a neural

population code. Population codes with RBF- or bell-shaped tuning curves have

3Other mappings are also possible, but are not presented here.

90 Chapter 6. Reward-modulated Hebbian Learning

A

0 50 100 150 200
0.5

0.55

0.6

0.65

0.7

Trials

A
ve

ra
ge

 R
ew

ar
d

0 400 800 1200 1600 2000
0.5

0.55

0.6

0.65

0.7

Trials

A
ve

ra
ge

 R
ew

ar
d

Optimal Learner
Bayesian Hebb SP
Bayesian Hebb GP
Rescorla−Wagner SP
Rescorla−Wagner GP
Rescorla−Wagner

B

0 1000 2000 3000 4000 5000

0.5

0.6

0.7

0.8

0.9

1

Trials

A
ve

ra
ge

 R
ew

ar
d

0 5000 10000 15000 20000

0.5

0.6

0.7

0.8

0.9

1

Trials

A
ve

ra
ge

 R
ew

ar
d

Optimal Learner
Bayesian Hebb SP
Bayesian Hebb GP
Rescorla−Wagner SP
Rescorla−Wagner GP
Rescorla−Wagner

Figure 6.9: The performance of the Rescorla-Wagner rule can be improved by pre-

processing input signals. The Rescorla-Wagner rule was applied to preprocessed

inputs using simple population coding (Rescorla-Wagner SP), or generalized pre-

processing (Rescorla-Wagner GP). The Rescorla-Wagner rule with preprocessing

generally learned faster, and converged to better policies than the classical Rescorla-

Wagner rule. A) Performance for the same 4-action tasks with 2 binary input vari-

ables as in Figure 6.5. B) Performance in the same 10-action tasks with 100 binary

input variables as in Figure 6.8.

been observed, for example, in area MT of the visual system for direction sensitive

cells (see (Pouget & Latham, 2002) for a review), place cells in rat hippocampus

(O’Keefe et al., 1998), or for the encoding of movement directions in primate motor

cortex (Georgopoulos et al., 1986). Networks of RBF units are also commonly used

for models of visual object recognition (Riesenhuber & Poggio, 1999).

Consider the input variables x = 〈x1, . . . , xm〉 ∈ X ⊆ R
m, and a binary reward

variable r ∈ {0, 1}. The continuous input x is mapped to a new set of n contin-

uous non-negative features yi. The activation of feature yi is proportional to the

activation of a RBF-kernel φi(x):

φi(x) = exp

(

−
m
∑

k=1

|xk − ci,k|
2

s2
i,k

)

. (6.30)

The centers of the RBF kernels are located at ci = 〈ci,1, . . . , ci,m〉, and the widths

6.6. Decision making with continuous inputs 91

of the kernels are given by si,k (different widths may be used for different input

dimensions). The preprocessed vector y = 〈y1, . . . , yn〉 is obtained by calculating

the activations of all n different RBFs and normalizing the vector:

yi(x) =
φi(x)

∑n
j=1 φj(x)

. (6.31)

Notice that this kind of preprocessing can take combinations of variables into ac-

count, such as RBF kernels on R
m, not only single variables. Figure 6.10 illustrates

a simple continuous population code for 5 RBF kernels in one input dimension.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

F
ea

tu
re

 A
ct

iv
at

io
n

φ

i
(x)

y
i
(x)

Figure 6.10: Example of a continuous population code with 5 equally spaced RBF

kernels (width s = 0.2) for a 1-dimensional input x. The activations of the RBF-

kernels φi(x) depend on the distance between x and the center ci of the kernel. The

normalized features yi(x) are obtained by dividing every φi(x) by the total sum of

activations. The RBF-kernel activations φi(x) (red crosses mark the intersection

of the vertical line at x = 0.35 with the 5 RBF-kernels indicated by blue dotted

lines), and the normalized feature activations yi(x) (blue bars) are here shown for

an example input at x = 0.35 (green dashed line).

A rule for learning reward log-odds conditioned on a single feature yi = yi(x)

can be defined by generalizing the reward-modulated Bayesian Hebb rule (6.8).

Whenever action a is selected, every weight wa,i is updated by:

∆wa,i =

{

η · yi(x) · (1 + e−wa,i), if r = 1

−η · yi(x) · (1 + ewa,i), if r = 0 .
(6.32)

This rule is a generalization of rule (6.8), in which the updates are weighted

by the activation of feature yi. For the previously described discrete population

codes, where yi is either 0 or 1, the rule (6.32) is equivalent to (6.8).

For the analysis of the equilibrium of rule (6.32), we use an alternative popu-

lation code of virtual binary features ỹ1, . . . , ỹn. We interpret y1(x), . . . , yn(x) as

(non-normalized) probabilities for randomly selecting one i ∈ {1, . . . , n}, for which

one sets ỹi = 1 (while setting ỹj = 0 for j 6= i). This gives a new interpretation

92 Chapter 6. Reward-modulated Hebbian Learning

to the continuous population code features yi(x), because they are proportional to

the probability that ỹi = 1 (we then say that “feature ỹi is active”).

To find the equilibrium of the rule (6.32) for the weight wa,i, we set the expected

update E[∆wa,i] to zero, and rewrite it as

E[∆wa,i] = 0 ⇔ (1 + e−wa,i)

∫

X

yi(x) p(r = 1,x|a) dx

−(1 + ewa,i)

∫

X

yi(x) p(r = 0,x|a) dx = 0 .

We now show that this condition is fulfilled if and only if wa,i is at the target value

w∗
a,i = log

p(r = 1|ỹi = 1, a)

p(r = 0|ỹi = 1, a)
,

using the interpretation of yi(x) as p(ỹi = 1|x). Since the virtual population code

feature ỹi depends only on x, but not on r, one can assume that r and ỹi are

conditionally independent given x, i.e.

p(r, ỹi|x, a) = p(r|x, a) · p(ỹi|x) .

This assumption, and simple transformations using basic laws of probability lead

to

E[∆wa,i] = 0 ⇔
1 + ewa,i

1 + e−wa,i
=

∫

X
p(ỹi = 1|x) p(r = 1|x, a) p(x|a) dx

∫

X
p(ỹi = 1|x) p(r = 0|x, a) p(x|a) dx

⇔ ewa,i =

∫

X
p(ỹi = 1, r = 1|x, a) p(x|a) dx

∫

X
p(ỹi = 1, r = 0|x, a) p(x|a) dx

⇔ ewa,i =

∫

X
p(ỹi = 1, r = 1,x|a)dx

∫

X
p(ỹi = 1, r = 0,x|a)dx

⇔ ewa,i =
p(ỹi = 1, r = 1|a)

p(ỹi = 1, r = 0|a)

⇔ ewa,i =
p(r = 1|ỹi = 1, a)

p(r = 0|ỹi = 1, a)

⇔ wa,i = log
p(r = 1|ỹi = 1, a)

p(r = 0|ỹi = 1, a)
.

If the active (virtual) feature ỹi was known, the corresponding weight wa,i would

directly indicate the log-odd of obtaining reward with action a. In this scenario,

however, only the continuous features yi(x), i = 1, . . . , n are known. Due to the

normalization, the feature values sum up to 1, and one can therefore weight every

wa,i by yi(x), yielding

La(x) =

n
∑

i=1

wa,i yi(x) , (6.33)

which is an interpolation between the reward log-odds wa,i for different features

ỹi. The interpolation weights are in this case the factors yi(x), which means that

6.7. Discussion 93

those features ỹi which are more likely to be active contribute more to the weighted

sum, since yi(x) is proportional to p(ỹi = 1|x). La(x) thus approximates the reward

log-odd log p(r=1|x,a)
p(r=0|x,a) , and the reward probability p(r = 1|x, a) can be approximated

by

p(r = 1|x, a) ≈ σ(La(x)) =
1

1 + e−La(x)
, (6.34)

where σ(.) is the log-sigmoidal transfer function.

6.6.1 Computer Experiments with continuous input

For the following experiment reward distributions were defined on single continu-

ous input variables x ∈ [0, 1]. For every action a different reward distribution was

modeled, and the learner’s task was to approximate the true reward distributions

with the continuous Bayesian Hebb rule (6.32), and to choose the action with the

highest reward probability. 2000 training trials with inputs drawn from a uniform

distribution on [0, 1] were used, and the performance after every update was mea-

sured on 500 independent test trials. 20 RBFs with constant widths s = 0.05 were

used for the input preprocessing. The centers of the RBFs were equally distributed

in the interval [0, 1].

Figure 6.11 shows the performance at every training trial, and the approximations of

the reward distributions that were obtained after 2000 training trials. The average

reward obtained after training is close to the best possible performance, and the

reward distributions are learned accurately.

6.7 Discussion

6.7.1 Summary and open problems

We have proposed in this chapter a simple neural network architecture for learning

and decision making, which makes use of two learning processes that operate on

two different time scales. We assume that generic dependencies among sensory in-

put variables or features, or in other words, the factors of the underlying Bayesian

network, are detected on a larger time scale, and that combinations of conditionally

dependent input features are presented to the decision stage through sparse popu-

lation coding. We have shown that on the basis of such preprocessing, the optimal

policy can be represented as a WTA operation applied to weighted sums, and the

corresponding weights can be learnt very fast. In fact, we have shown that a very

simple Hebbian learning rule (the reward-modulated Bayesian Hebb rule) can in-

tegrate information from past experience in a close to optimal way. The models

that we presented and analyzed are biologically plausible and arguably minimal

with regard to their complexity, but nevertheless can be shown to asymptotically

approximate theoretically optimal performance. All information from past experi-

ence is stored in synaptic weights of simple linear neuron models, and can therefore

immediately be used for online decision making. In contrast to other learning

94 Chapter 6. Reward-modulated Hebbian Learning

A

0 50 100 150 200
0.5

0.6

0.7

0.8

0.9

1

Trials

A
ve

ra
ge

 R
ew

ar
d

0 400 800 1200 1600 2000
0.5

0.6

0.7

0.8

0.9

1

Trials

A
ve

ra
ge

 R
ew

ar
d

Bayesian Hebb continuous

B

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p(
r

| x
, a

)

x

Action 1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p(
r

| x
, a

)

x

Action 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p(
r

| x
, a

)

x

Action 3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

p(
r

| x
, a

)
x

Action 4

Figure 6.11: Performance of the Bayesian Hebb rule for continuous inputs. The

input preprocessing consists of 20 RBF kernels that yield a population code y

for the continuous inputs x. A) Average reward of the learner obtained on 500

independent test trials during training on 2000 trials (left: performance during

the first 200 training trials). The performance level rises quickly and in the end

is close to the best possible performance of an optimal action selector (horizontal

dashed line). Error bars are in the range of 10−3 and are omitted for clarity.

Results are averaged over 32 runs. B) Approximation of the reward probabilities

learned by the continuous Bayesian Hebb rule after 2000 training trials. The learned

approximation (red, dashed line) is very close to the true reward distribution (blue,

solid line).

6.7. Discussion 95

rules that have previously been proposed for modeling animal learning — such as

the Rescorla-Wagner rule (Rescorla & Wagner, 1972; Yuille, 2006), the perceptron

learning rule, or learning rules based on the Kalman-filter model (Sutton, 1992;

Dayan & Kakade, 2001) — this new learning rule is a truly Hebbian learning rule.

Its weight updates depend on the current pre- and postsynaptic activity, as well

as on a third signal (Bailey et al., 2000) that contains information about success

or failure of the currently selected decision, but not on the current values of the

other weights (or the resulting weighted sums of input variables). All information

required for the weight update is therefore available locally at the synapse.

A major advantage of the local nature of purely Hebbian learning rules is that

synapses can be removed or added to a neuron, without changing the target weights

of the other synapses. One can therefore view the reward-modulated Bayesian Hebb

rule as a candidate for learning in self-organizing organisms with developing neural

structure. Assume, for example, that an input variable xnew is added, and the

population code is appropriately modified. Then all weights belonging to factors

in the factor graph that are not connected to xnew are unaffected, and can still be

used for decision making. Removal or addition of single weights does however affect

the decision making process, if the resulting population code does not match either

the SP or GP encoding.

The Bayesian Hebb rule is one of very few online learning rules that admit a rig-

orous theoretical analysis of their convergence properties. We have shown that the

theoretically optimal values of the weights are fixed point attractors for expected

weight changes (see Figure 6.2B). This implies in particular, that learning cannot

get stuck in local minima of some loss function. In fact, one can easily show that the

expected weight updates give rise to an exponentially fast contracting dynamical

system in weight space. Hence, this learning process falls into the theoretical frame-

work of contracting systems, proposed by Lohmiller and Slotine (1998). According

to this theory, this learning process can therefore be combined with other adaptive

processes that also exhibit a contracting dynamics of adaptive parameters. Their

theory guarantees that the resulting hybrid learning system will also converge.

We have also considered in section 6.3 a computationally simpler linear version of

the Bayesian Hebb rule. Although this rule is only an approximation to the Bayesian

Hebb rule, and theoretical convergence results are weaker (see the discussion in

Section 6.3.1), we have shown that it performs almost equally well in a large number

of complex decision making tasks (see Figures 6.6, 6.7, 6.12). The linear Bayesian

Hebb rule is similar to well-known mathematical models for Hebbian learning, and

may therefore provide a new interpretation of these learning rules as approximations

to more complex plasticity mechanisms

In this chapter we have studied the scenario of online reward-based learning

of decision making with multiple alternatives from stochastic rewards and input

signals, which is important for fields like operant conditioning or reinforcement

learning. In section 6.2.2 we have shown analytically and empirically (Figure 6.2A)

that the Bayesian Hebb rule achieves near optimal learning in terms of learning

speed, and asymptotically approaches the optimal policy for the given preprocess-

96 Chapter 6. Reward-modulated Hebbian Learning

ing mechanism. We have supported this theoretical prediction through a variety

of computer simulations of decision tasks (see Figures 6.5, 6.8, 6.11). The result-

ing higher learning speed is particularly interesting in our context of reward-based

learning, where most learning algorithms are too slow to be applicable to real-world

problems. Hence the contribution of this study can be seen as another step in the

program to speed up reinforcement learning by making near optimal use of previous

experience. We have shown in section 6.5.2 that this approach can also be applied

to non-stationary distributions of inputs and rewards.

The question, how the brain forms decisions that involve more than two alterna-

tives, is one of the most important open research problems (Gold & Shadlen, 2007).

For binary decisions, Wald’s sequential probability ratio test (Wald & Wolfowitz,

1948) provides a theoretically optimal tool for learning and decision making from

limited evidence. In this case it is sufficient to update a single decision variable,

and compare it to a threshold value. For problems with more than 2 alternatives it

is unclear whether an optimal test exists, and tests that guarantee asymptotic opti-

mality, such as the method developed by Dragalin et al. (1999) become much more

complex (see (Gurney & Bogacz, 2006) for a possible neural implementation). Here

we have studied a simpler network model, which does not select actions optimally

in the sense of sequential analysis. It converges asymptotically to an optimal policy,

and uses heuristic strategies for choosing actions during learning. We have analyzed

a model that is based on the Winner-Take-All (WTA) operation, and directly uses

the learned weights for the evaluation of actions. We have shown that if WTA is

applied to several linear neurons, each of which learns via the Bayesian Hebb rule to

approximate the log-odd of receiving a reward for an associated action (see Figure

6.1), our simple model can handle the case of more than two decision alternatives

without any extra effort (see sections 6.2 and 6.3 for the theoretical analysis and

Figures 6.5, 6.6, 6.8, 6.11 for empirical tasks).

WTA-circuits are of interest in the context of neural network models for action

selection, since it has been suggested that generic cortical microcircuits implement

a soft version of WTA-circuits (where za > 0 also for the runner-ups in the com-

petition among the La), see (Douglas & Martin, 2004). This view is supported

by the anatomical observation that the output cells (pyramidal neurons) of corti-

cal microcircuits are subject to lateral inhibition (each pyramidal neuron excites

inhibitory interneurons that target other pyramidal neurons). It is also supported

by the physiological observation that simultaneous activation of very large num-

bers of sensory neurons (for example in the retina) is transformed through cortical

processing into sparse activity of neurons in higher sensory areas (e.g., area IT).

Consequently, WTA-circuits have become a primary target for the design of neurally

inspired electronic hardware (Hahnloser et al., 2000; Neftci et al., 2008).

The components of our neural network model (Figure 6.1) have substantial ex-

perimental and theoretical support. Hebbian learning, and the use of weighted

sums for decision making (Roth, 1999b) is clearly feasible for biological neurons.

The other essential ingredient of our model for reward-based learning of decision

making is a suitable preprocessing of variables x (typically representing sensory

6.7. Discussion 97

inputs) that form the evidence on which a decision has to be based in a single trial.

Our model requires a sparse population coding of the values of these variables (both

for variables with discrete and for variables with continuous values, see section 6.6).

Sparse encodings (Olshausen & Field, 1996), or population codes are common mod-

els for coding strategies of the brain, and experimental evidence for the existence

of such codes has been found in various brain areas of different species (see e.g.

Pouget & Latham, 2002; O’Keefe et al., 1998; Georgopoulos et al., 1986).

Furthermore, in the case of conditioned dependencies among variables our model

assumes that there exists a population coding for “complex features” (reminiscent

of neural codes reported for example for visual areas V2 and IT), i.e. for com-

binations of variables (see Figure 6.4 for an example). Hence, our simple neural

network model for learning decision making entails concrete predictions for the

computational strategies, neural codes, and learning mechanisms in those cortical

areas that provide information about sensory inputs in a highly processed form to

other cortical areas where decisions are made. It proposes that those subgroups of

sensory variables (from the same or different sensory modalities) that have statisti-

cal dependencies, such as those represented by a factor graph (Kschischang et al.,

2001), are brought together in some cortical microcircuits, and that projection neu-

rons from these cortical microcircuits each assume a high firing rate for a particular

combination of values of these variables (thereby mimicking the output variables yi

of our general preprocessing, see section 6.4.1).

This link of factor graph theory and experimentally observed population codes

provides a novel view on the potential role of sensory areas that provide input to

higher decision making stages in the brain. The proposed preprocessing has the

advantage of relieving the subsequent decision stage from complex computations

(such as belief propagation via message passing) and nonlinear learning devices.

In fact, it enables the decision stage to use only linear operations in conjunction

with WTA. It also enables the decision stage to accumulate evidence from history

through the very simple and robust Hebbian learning processes that were discussed

in this chapter.

In this study we assume that the graph structure of the factor graph is known,

which is a very common assumption for parameter learning algorithms in graphical

models (see e.g. Neapolitan, 2004; Jensen & Nielsen, 2007). The evolution of

preprocessing circuits is obviously a complex process, and the design of learning

algorithms that generate such preprocessing of sensory inputs is an interesting open

problem. Testing variables for (conditional) dependence is perhaps a less formidable

problem for a neural network than it may appear on first sight, provided one assumes

that numerous autonomous learning processes try to predict each variable in terms

of others. Dependencies among the variables exist, and can in principle be found

autonomously by this process, whenever such prediction learning turns out to be

successful. As mentioned above, such relationships between input signals may be

learned on much longer time scales than decision strategies, which require very fast

adaptation.

Other obvious open problems that arise from our model are whether it can be

98 Chapter 6. Reward-modulated Hebbian Learning

implemented with spiking neurons, and whether there exist relationships between

the theoretically optimal reward-modulated Bayesian Hebb rule and concrete het-

erosynaptic learning mechanisms of biological synapses such as those discussed in

(Bailey et al., 2000). Another open problem concerns a possible extension of our

model to rewards signals with more than two values, to third signals that represent

predictions of rewards, and to reward based learning in continuous time.

Altogether our simple neural network model for learning decision making has

shown that this problem is in some aspects less difficult than it may appear on first

sight. It remains to be explored whether biological neural systems have adopted

related implementation strategies, or have found even simpler solutions to this prob-

lem.

6.7.2 Related Work

6.7.2.1 Models for Decision Making

The study of decision making in biological systems dates back to the classical ex-

periments by Pavlov, in which dogs learned associations between cues and rewards.

On the other hand, operant or instrumental conditioning is concerned with associ-

ations between actions and rewards, and how behavior is modified through reward

and punishment. The goal is to learn a policy, i.e. a way to select actions near-

optimally in response to environmental stimuli. According to Sugrue et al. (2005),

biological organisms first transform sensory input into decision related variables,

e.g. value representations in area LIP for visual discrimination tasks in monkeys

(Yang & Shadlen, 2007). An unknown computational mechanism maps the values

of these variables to the probability of reward for executing various actions, which

then leads to a motor response. An actor-critic model is assumed, in which the

actor and the critic are two modules that operate with a common reward currency.

The critic adapts the value of every action to the perceived reward probabilities,

thereby altering the decision transformation, which the actor uses to choose actions.

An example for models of instrumental conditioning is the experiment of Montague

et al. (1995), in which the behavior of a foraging bee is simulated with a neural

network model and a suitable learning rule (a variation of the Rescorla-Wagner

rule). X. J. Wang (2002) has described a recurrent cortical network model, which

uses feedback and winner-take-all mechanisms to integrate information in visual

discrimination tasks with two possible outcomes. Gurney and Bogacz (2006) have

presented a model for optimal decision making with multiple actions, which models

the functionality of the basal ganglia. Further neural network models for decision

making have been reviewed in (Sakai, Okamoto, & Fukai, 2006).

6.7.2.2 Learning Rules for Decision Making

The classical model for learning associations of stimuli, actions, and rewards is the

Rescorla-Wagner rule (Rescorla & Wagner, 1972). It was the first mathematical

model for learning that could explain most of the effects observed in animal behavior

6.7. Discussion 99

studies. In particular it was able to explain reactions based on combinations of

stimuli. Reward associations for many conditioning paradigms, such as e.g. partial

reinforcement, inhibitory conditioning, or extinction can be learned by the Rescorla-

Wagner rule (and also by the Bayesian Hebb rule). The associative model of the

Rescorla-Wagner rule represents the predicted amount of reward as a weighted sum

of stimuli, and weights are updated using the difference between the predicted and

the actually received reward (see (6.27)). The Rescorla-Wagner rule is therefore not

a strictly Hebbian learning rule, because this error signal, rather than the activation

of the post-synaptic neuron is required for the update. Studies by Schultz et al.

have however indicated that such an error signal may be available in the form of

the neuromodulator dopamine (Schultz, Dayan, & Montague, 1997).

Learning rules that minimize prediction errors were also useful to explain block-

ing phenomena in conditioning (Dayan & Abbott, 2001). However, some observed

effects like backward blocking — an established reward association is unlearned,

because another stimulus sufficiently explains the occurrence of rewards — can

neither be sufficiently captured by the Rescorla-Wagner rule, nor by the Bayesian

Hebb rule. The reason for this is that weights in these models can only be reduced,

if unrewarded trials are observed (which is not the case in the backward blocking

paradigm). Algorithms that specifically address learning of reward associations in

the backward blocking scenario are based on Kalman filter models for conditioning

(Sutton, 1992). Dayan and Yu (2003) argue that in addition to error correction, it is

necessary to model the uncertainty in the parameter estimates during learning, and

neuromodulators like acetylcholine or norepinephrine could signal such uncertainty

in biological systems (Yu & Dayan, 2003). An artificial recurrent neural network

model, which approximates the Kalman filter estimates of reward associations for

backward blocking was presented by Dayan and Kakade (2001). A different learning

mechanism is suggested by Griffiths and Tenenbaum (2005), who argue that phe-

nomena like backward blocking could also be modeled by learning changes in the

causal structure of the problem, rather than by learning new reward associations.

The mathematical problem of learning optimal action selection is also well-

studied in the field of reinforcement learning (RL) (Sutton & Barto, 1998). Typical

RL algorithms learn value- or Q-functions, which estimate the expected reward re-

sulting from the execution of action a in state x. The goal of RL is to converge

to optimal policies, which select for every state those actions that maximize the

expected reward (typically a discounted long-term reward for sequential decision

problems). Classical RL algorithms do not directly aim at maximizing the online

performance, i.e. the amount of reward obtained during learning, but typically em-

ploy some heuristics to tackle the exploration-exploitation dilemma. This dilemma

concerns the trade-off of online performance (exploitation) and exploration of un-

seen parts of the state- and action space in order to improve the final policy. More

recently the problem of optimizing online performance has attracted more attention

in the RL literature (e.g. Kearns & Singh, 1998; Audibert et al., 2007; Auer et al.,

2009). Asymptotic convergence of RL algorithms to the optimal policy can only be

guaranteed for discrete environments, if action values are stored in look-up tables

100 Chapter 6. Reward-modulated Hebbian Learning

with one entry for every combination of state and action. Such tabular representa-

tions are biologically not realistic, and for computers the memory requirements are

too large for most real-world applications. Value functions are therefore approxi-

mated, but convergence results exist only for a limited number of approximation

schemes (Bertsekas & Tsitsiklis, 1996).

Using Bayesian inference for action selection in uncertain environments was e.g.

studied by Attias (2003), and Verma and Rao (2006). They consider the problem of

planning action sequences of fixed length for partially observable Markov decision

processes with one or more fixed goal states. The dynamics of the environment are

initially unknown. The learning part uses frequency counters to update conditional

probabilities for transition and reward models. Planning is reduced to Bayesian

inference in graphical models based on the learned parameters, which is computed

with standard algorithms, like e.g. belief propagation or the junction tree algorithm

(Bishop, 2006). The posterior over actions, given that start and goal state are fixed,

is computed and the maximally likely sequence of actions (and intermediate states

in (Verma & Rao, 2006)) is selected. This approach is conceptually quite differ-

ent from our approach, since our approach does not learn sequences of actions,

and does not require a defined goal-state. The learned parameters in our model

(the weights wa,i) are not auxiliary variables, but are directly used in the decision

making process. Furthermore, our approach only requires very basic and appar-

ently biologically feasible mechanisms like Hebbian learning, weighted summations,

and winner-take-all. Implementing full Bayesian inference is a much more difficult

process, for which it is not clear how the brain can achieve it efficiently, although

some models have been proposed (e.g. (Rao, 2007; Deneve, 2008b)). Lansner and

Ekeberg (1998); Kononenko (1998); Lansner and Holst (1996) and Sandberg et al.

(2002) have studied various learning rules (although not in a reinforcement learning

context) that approximate optimal Bayesian inference. The learning rules differ

from the Bayesian Hebb rule that was introduced in this chapter primarily by fact

that they require auxiliary counters for storing evidence from past experience.

6.7.2.3 Analogies to recent experimental studies of decision making in

primates

Recent experimental results by Yang and Shadlen (2007) have shown that the pre-

vious experience of macaque monkeys in probabilistic decision tasks is represented

by the firing rates of neurons in area LIP in the form of the log-likelihood ratio of re-

ceiving a reward for a particular action a in response to a stimulus x, like in equation

(6.1) of our framework. In their experiment a monkey had to choose at each trial

between two possible actions. It could choose to move the eyes either towards a red

target R (a = R) or a green target G (a = G). The probability that a reward was

received at either choice depended on four visual input stimuli x = (x1, x2, x3, x4)

that had been shown at the beginning of the trial. Every stimulus xk, k = 1, . . . , 4,

was one shape sj out of a set of ten possibilities {s1, . . . , s10} and had an associated

weight ωk = ω(sj), which had been defined by the experimenter. The log-odd of

6.7. Discussion 101

obtaining a reward was equal to the sum of ω1, . . . , ω4:

log
p(r = 1|x, a = R)

p(r = 1|x, a = G)
=

4
∑

k=1

ωk . (6.35)

The monkey thus had to combine the evidence from four visual stimuli to optimize

its action selection behavior. It also had to find out that reward probabilities

only depended on the presented shapes, but not on the order or location in which

they were presented. A reward was assigned before the trial to one of the targets

according to the distribution (6.35).

One can easily model this task in our framework, using a simple population code

y = Φ(x) as in (6.19), where the stimulus x was encoded by a 40-dimensional binary

vector y with exactly m = 4 inputs being 1. The positions of the 1’s corresponded

to the four visual shapes that were shown during a trial. The log-odd of obtaining

reward with action a = R can then be written as a weighted sum

log
p(r = 1|y, a = R)

p(r = 0|y, a = R)
=

40
∑

i=1

w∗
i yi , (6.36)

with

w∗
i = log

p(r = 1|yi = 1, a = R)

p(r = 0|yi = 1, a = R)
. (6.37)

Due to the symmetry of the task (reward is either at R or G), the log-odds in (6.35)

and (6.36) are equivalent. The weights wi can be learned with an efficient version

of the reward-modulated Bayesian Hebb rule (6.8), which takes this symmetry into

account. The equilibrium w∗
i of weight wi under this slightly modified rule is then

exactly at the desired value (6.37). We simulated this task, using a learner with the

reward-modulated Bayesian Hebb rule and a 1/Ni learning rate for every weight.

Figure 6.12A shows that this task can be successfully learned both by the exact

reward-modulated Bayesian Hebb rule (6.8) and the linear approximation (6.13).

The learning rules learn as fast as the non-Hebbian Rescorla-Wagner rule (6.27),

and their performance is close to the theoretical optimum after 1000 training trials.

Furthermore Figures 6.12B and C show that the intermediate and final policies

resemble the behavior that was reported for two monkeys in (Yang & Shadlen,

2007).

The experimental data of Yang and Shadlen (2007) are consistent with the

assumption that monkeys apply a WTA-operation to the log-likelihood ratios

La = log
p(r = 1|x, a)

p(r = 0|x, a)
,

which are, according to their model, represented through firing rates of neurons in

area LIP. It is not known, which values are represented by the firing rates yi of the

presynaptic neurons of these neurons. In our simple model we model the neurons

102 Chapter 6. Reward-modulated Hebbian Learning

A

0 50 100 150 200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Trials

A
ve

ra
ge

 R
ew

ar
d

0 200 400 600 800 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Trials

A
ve

ra
ge

 R
ew

ar
d

Bayesian Hebb SP
Linear Bayesian Hebb SP
Rescorla−Wagner

B

−4 −2 0 2 4
0

20

40

60

80

100

Evidence for red (logLR)

P
er

ce
nt

ag
e

of
 r

ed
 c

ho
ic

es

−4 −2 0 2 4
0

20

40

60

80

100

Evidence for red (logLR)

P
er

ce
nt

ag
e

of
 r

ed
 c

ho
ic

es

−4 −2 0 2 4
0

20

40

60

80

100

Evidence for red (logLR)

P
er

ce
nt

ag
e

of
 r

ed
 c

ho
ic

es

C

−4 −2 0 2 4
0

20

40

60

80

100

Evidence for red (logLR)

P
er

ce
nt

ag
e

of
 r

ed
 c

ho
ic

es

−4 −2 0 2 4
0

20

40

60

80

100

Evidence for red (logLR)

P
er

ce
nt

ag
e

of
 r

ed
 c

ho
ic

es

−4 −2 0 2 4
0

20

40

60

80

100

Evidence for red (logLR)

P
er

ce
nt

ag
e

of
 r

ed
 c

ho
ic

es

Figure 6.12: Performance of the reward-modulated Bayesian Hebb rule in the model

for the conditioning task by Yang and Shadlen (see (Yang & Shadlen, 2007) for

details). A) The reward-modulated Bayesian Hebb rule learns as fast as the non-

Hebbian Rescorla-Wagner rule (curves result from averaging over 32 repetitions

of the experiment, where the average reward was measured on 500 independent

test trials). The horizontal dashed line reflects the theoretically best possible per-

formance. Error bars are in the range of 10−2 and are omitted for clarity. B,

C) Action selection policies (greedy policy according to (6.3)) resulting from the

model using the exact Bayesian Hebb rule (6.8) (B) or the linear Bayesian Hebb rule

(6.13) (C) after 100 (left), 500 (middle), and 1000 (right) trials, fitted by sigmoidal

curves (results are from 32 repetitions of the experiment, where the behavior was

measured on 1000 independent test trials). The policies represented by the left and

right panels are qualitatively similar to the policies adopted by monkeys H and J

in the experiments by Yang and Shadlen (2007) after learning (see Figure 1b in

(Yang & Shadlen, 2007)).

6.7. Discussion 103

within the WTA circuit as linear neurons, and assume that their output La can be

written as a linear sum La =
∑n

i=0 wa,i yi of variables yi that represent a population

coding of the sensory input x. As we have shown in section 6.4, if this population

coding is chosen in a suitable way, the true reward log-odd log p(r=1|x,a)
p(r=0|x,a) can in fact

be written as such weighted sum. Hence our theoretical framework makes concrete

predictions about the nature of the transformation of raw sensory inputs x to inputs

y for higher brain areas that select suitable responses. The required weights wa,i

can be learnt by the reward-modulated Bayesian Hebb rule, and a linear Poisson

neuron whose weights are updated according to this rule will adapt for each trial

a firing rate proportional to the log-likelihood ratio log p(a=R|x)
p(a=G|x) . This response

matches that of the neurons in area LIP shown in Figure 2c and 3b of (Yang &

Shadlen, 2007).4

The Bayesian Hebb rule provides an arguably minimal model for the biological

data of Yang and Shadlen (2007). One difference between their results and our

model is that learning is much faster in our model. This could be explained by

the fact that many aspects of the probabilistic decision task of Yang and Shadlen

(2007) - e.g. the fact that the reward policy was stationary, the fact that the

reward probabilities did not depend on the order of appearance, or the spatial

location of the shown icons, and the fact that reward probabilities did not depend

on any other aspects that the monkeys had perceived before or during a session

- also had to be learned by the monkeys, whereas they were assumed as given in

our model. Learning of these invariances and symmetries was actually quite hard

in the set-up of Yang and Shadlen (2007) since rewards were given stochastically,

rather than by deterministic laws (note that even many humans believe to ”learn”

various misleading reward-predictors while gambling for a long time in the lottery or

casinos). An interesting open question is whether reward-based learning of decision

making by humans or animals can approach the learning speed of the Bayesian

Hebb rule when such differences between the learning tasks of the living organisms

and the mathematical model have been removed.

6.7.3 Conclusion

We have demonstrated the functionality of a simple neural network model for learn-

ing of asymptotically optimal action selection, which uses only biologically plausible

mechanisms such as reward-modulated Hebbian learning, sparse population coding,

and winner-take-all computations. Furthermore we have shown that on the basis

of a suitable preprocessing that takes dependencies among salient variables into

account, a very simple Hebbian learning rule can converge towards optimal poli-

cies extremely fast. On the side, our approach offers concrete processing goals for

brain areas that integrate multi-modal sensory input, in order to facilitate learn-

ing and decision making in higher brain areas. Empirical results have confirmed

that the new reward-modulated Bayesian Hebb rule, and an even simpler linear

4Note that the optimal weights w∗

i are equal to the weights ωk = ω(sj) that were assigned to

the different visual shapes sj .

104 Chapter 6. Reward-modulated Hebbian Learning

approximation to it, compare favorably to well-known non-Hebbian learning rules

for action-selection tasks. Our results suggest that learning and decision making

under uncertainty can be implemented very efficiently in biological neural systems.

6.8 Acknowledgments

This chapter is based on the paper Reward-modulated Hebbian Learning of Decision

Making, which was written by myself (MP), Bernhard Nessler (BN), Rodney J.

Douglas (RD), and Wolfgang Maass (WM). The theory of the reward-modulated

Bayesian Hebb rule was developed by MP, based on previous results by BN. All

experiments were performed by MP, and the paper was written by MP, WM, and

RD with additional input from BN.

Chapter 7

STDP enables spiking neurons

to

detect hidden causes of their

inputs

Contents

7.1 Introduction . 106

7.2 Discovery of hidden causes for a benchmark dataset 106

7.3 Underlying theoretical principles 108

7.4 Discussion . 115

7.5 Acknowledgments . 116

The principles by which spiking neurons contribute to the astounding computa-

tional power of generic cortical microcircuits, and how spike-timing-dependent plas-

ticity (STDP) of synaptic weights could generate and maintain this computational

function, are unknown. We show here that STDP, in conjunction with a stochastic

soft winner-take-all (WTA) circuit, induces spiking neurons to generate through

their synaptic weights implicit internal models for subclasses (or “causes”) of the

high-dimensional spike patterns of hundreds of pre-synaptic neurons. Hence these

neurons will fire after learning whenever the current input best matches their inter-

nal model. The resulting computational function of soft WTA circuits, a common

network motif of cortical microcircuits, could therefore be a drastic dimensionality

reduction of information streams, together with the autonomous creation of inter-

nal models for the probability distributions of their input patterns. We show that

the autonomous generation and maintenance of this computational function can be

explained on the basis of rigorous mathematical principles. In particular, we show

that STDP is able to approximate a stochastic online Expectation-Maximization

(EM) algorithm for modeling the input data. A corresponding result is shown for

Hebbian learning in artificial neural networks.

106
Chapter 7. STDP enables spiking neurons to

detect hidden causes of their inputs

7.1 Introduction

It is well-known that synapses change their synaptic efficacy (“weight”) w in depen-

dence of the difference tpost − tpre of the firing times of the post- and presynaptic

neuron according to variations of a generic STDP rule (see (Dan & Poo, 2004) for

a recent review). However, the computational benefit of this learning rule is largely

unknown (Abbott & Nelson, 2000; Morrison et al., 2007). It has also been observed

that local WTA-circuits form a common network-motif in cortical microcircuits

(Douglas & Martin, 2004). However, it is not clear how this network-motif con-

tributes to the computational power and adaptive capabilities of laminar cortical

microcircuits, out of which the cortex is composed. Finally, it has been conjectured

for quite some while, on the basis of theoretical considerations, that the discovery

and representation of hidden causes of their high-dimensional afferent spike inputs

is a generic computational operation of cortical networks of neurons (Hinton &

Ghahramani, 1997). One reason for this belief is that the underlying mathematical

framework, Expectation-Maximization (EM), arguably provides the most powerful

approach to unsupervised learning that we know of. But one has so far not been

able to combine these three potential pieces (STDP, WTA-circuits, EM) of the puz-

zle into a theory that could help us to unravel the organization of computation and

learning in cortical networks of neurons.

We show in this chapter that STDP in WTA-circuits approximates EM for

discovering hidden causes of large numbers of input spike trains. We first demon-

strate this in section 7.2 in an application to a standard benchmark dataset for

the discovery of hidden causes. In section 7.3 we show that the functioning of

this demonstration can be explained on the basis of EM for simpler non-spiking

approximations to the spiking network considered in section 7.2.

7.2 Discovery of hidden causes for a benchmark dataset

We applied the network architecture shown in Fig. 7.1A to handwritten digits from

the MNIST dataset (LeCun et al., 1998).1 This dataset consists of 70, 000 28× 28-

pixel images of handwritten digits2, from which we picked the subset of 20, 868

images containing only the digits 0, 3 and 4. Training examples were randomly

sampled from this subset with a uniform distribution of digit classes.

Pixel values xj were encoded through population coding by binary variables yi

(spikes were produced for each variable yi by a Poisson process with a rate of 40

1A similar network of spiking neurons had been applied successfully in (Gupta & Long, 2007)

to learn with STDP the classification of symbolic (i.e., not handwritten) characters. Possibly our

theoretical analysis could also be used to explain their simulation result.
2Pixels were binarized to black/white. All pixels that were black in less than 5% of the training

examples were removed, leaving m = 429 external variables xj , that were encoded by n = 858

spiking neurons yi. Our approach works just as well for external variables xj that assume any finite

number of values, provided that they are presented to the network through population coding with

one variable yi for every possible value of xj . In fact, the approach appears to work also for the

commonly considered population coding of continuous external variables.

7.2. Discovery of hidden causes for a benchmark dataset 107

0

0

t
post

 − t
pre

∆
w

ki

c · e−wki -1

σ
-1

Simple STDP curve
Complex STDP curve

A B

Figure 7.1: A) Architecture for learning with STDP in a WTA-network of spiking

neurons. B) Learning curve for the two STDP rules that were used (with σ = 10ms).

The synaptic weight wki is changed in dependence of the firing times tpre of the

presynaptic neuron yi and tpost of the postsynaptic neuron zk. If zk fires at time t

without a firing of yi in the interval [t−σ, t+2σ], wki is reduced by 1. The resulting

weight change is in any case multiplied with the current learning rate η, which was

chosen in the simulations according to the variance tracking rule (see footnote 7).

Hz for yi = 1, and 0 Hz for yi = 0, at a simulation time step of 1ms, see Fig. 7.2A).

Every training example x was presented for 50ms. Every neuron yi was connected

to all K = 10 output neurons z1, . . . , z10. A Poisson process caused firing of one of

the neurons zk on average every 5ms. The WTA-mechanism ensured that only one

of the output neurons could fire at any time step. The winning neuron at time step

t was chosen from the soft-max distribution

p(zk fires at time t|y) =
euk(t)

∑K
l=1 eul(t)

, (7.1)

where uk(t) =
∑n

i=1 wkiỹi(t) + wk0 represents the current membrane potential

of neuron zk (with ỹi(t) = 1 if yi fired within the time interval [t − 10ms, t], else

ỹi(t) = 0).3

STDP with the learning curves shown in Fig. 7.1B was applied to all synapses

wki for an input consisting of a continuous sequence of spike encodings of hand-

written digits, each presented for 50ms (see Fig. 7.2A).4 The learning rate η was

3This amounts to a representation of the EPSP caused by a firing of neuron yi by a step function,

which facilitates the theoretical analysis in section 7.3. Learning with the spiking network works

just as well for biologically realistic EPSP forms.
4Whereas the weights in the theoretical analysis of section 7.3 will approximate logs of proba-

bilities (see (7.6)), one can easily make all weights non-negative by restricting the range of these

log-probabilities to [−5, 0], and then adding a constant 5 to all weight values. This transformation

gives rise to the factor c = e5 in Fig. 7.1B.

108
Chapter 7. STDP enables spiking neurons to

detect hidden causes of their inputs

chosen locally according to the variance tracking rule (see footnote 7).Fig. 7.2C

shows that for subsequent representations of new handwritten samples of the same

digits only one neuron responds during each of the 50ms while a handwritten digit

is shown. The implicit internal models which the output neurons z1, . . . , z10 had

created in their weights after applying STDP are made explicit in Fig. 7.3B and C.

Since there were more output neurons than digits, several output neurons created

internal models for different ways of writing the same digit. When after applying

STDP to 2000 random examples of handwritten digits 0 and 3 also examples of

handwritten digit 4 were included in the next 2000 examples, the internal models of

the 10 output neurons reorganized autonomously, to include now also two internal

models for different ways of writing the digit 4. In order to efficiently observe the

effect of the ongoing learning process on the synaptic weights in the spiking net-

work we calculated the firing probabilities at the presentation of the test examples

without the influence of the stochastic spike generation, by setting ỹi(t) = yi in

(7.1). This leads to one static firing probability p(zk = 1|y) for each example y.

The adaptation of the synaptic weights is measured in Fig. 7.3.A by the normal-

ized conditional entropy H(L|Z)/H(L,Z) over all examples y, where L denotes the

correct classification of each handwritten digit y, and Z is a random variable with

p(Z = k|y) = p(zk = 1|y).

Since after training by STDP each of the output neurons fire preferentially for

one digit, we can measure the emergent classification capability of the network.

After 2000 training steps we obtain a classification error of 2.13% on the training

set with 2 classes of digits. After 4000 training steps we obtain a classification error

of 3.92% on the 3-class training set.

7.3 Underlying theoretical principles

We show in this section that one can analyze the learning dynamics of the spik-

ing network considered in the preceding section (with the simple STDP curve of

Fig. 7.1B with the help of Hebbian learning (using rule (7.12)) in a corresponding

non-spiking neural network Nw. Nw is a stochastic artificial neural network with

the architecture shown in Fig. 7.1A, and with a parameter vector w consisting of

thresholds wk0 (k = 1, . . . ,K) for the K output units z1, . . . , zK and weights wki

for the connection from the ith input node yi (i = 1, . . . , n) to the kth output unit

zk. We assume that this network receives at each discrete time step a binary input

vector y ∈ {0, 1}n and outputs a binary vector z ∈ {0, 1}K with
∑K

k=1 zk = 1, where

the k such that zk = 1 is drawn from the distribution over {1, . . . ,K} defined by

p(zk = 1|y,w) =
euk

K
∑

l=1

eul

with uk =

n
∑

i=1

wki yi + wk0 . (7.2)

We consider the case where there are arbitrary discrete external variables

x1, . . . , xm, each ranging over {1, . . . ,M} (we had M = 2 in section 7.2), and

7.3. Underlying theoretical principles 109

Time [ms]

In
pu

t N
eu

ro
ns

Input Spike Trains

0 50 100 150

100

200

300

400

500

600

700

800

Time [ms]

O
ut

pu
t N

eu
ro

ns

Output before Learning

0 50 100 150

1

2

3

4

5

6

7

8

9

10

Time [ms]

O
ut

pu
t N

eu
ro

ns

Output after Learning

0 50 100 150

1

2

3

4

5

6

7

8

9

10

A B C

Figure 7.2: Unsupervised classification learning and sparsification of firing of output

neurons after training. For testing we presented three examples from an indepen-

dent test set of handwritten digits 0, 3, 4 from the MNIST dataset, and compared

the firing of the output-neurons before and after learning. A) Representation of

the three handwritten digits 0, 3, 4 for 50ms each by 858 spiking neurons yi. B)

Response of the output neurons before training. C) Response of the output neu-

rons after STDP (according to Fig. 7.1B) was applied to their weights wki for a

continuous sequence of spike encodings of 4000 randomly drawn examples of hand-

written digits 0, 3, 4, each represented for 50ms (like in panel A). The three output

neurons z4, z9, z6 that respond have generated internal models for the three shown

handwritten digits according to Fig. 7.3C.

assume that these are encoded through binary variables y1, . . . , yn for n = m ·M

with
∑n

i=1 yi = m according to the rule

y(j−1)·M+r = 1 ⇐⇒ xj = r , for j = 1, . . . ,m and r = 1, . . . ,M. (7.3)

In other words: the group Gj of variables y(j−1)·M+1, . . . , y(j−1)·M+M provides

a population coding for the discrete variable xj .

We now consider a class of probability distributions that is particularly relevant

for our analysis: mixtures of multinomial distributions (Meilă & Heckerman, 2001),

a generalization of mixtures of Bernoulli distributions (see section 9.3.3 of (Bishop,

2006)). This is a standard model for latent class analysis (McLachlan & Peel, 2000)

in the case of discrete variables. Mixtures of multinomial distributions are arbitrary

mixtures of K distributions p1(x), . . . , pK(x) that factorize, i.e.,

pk(x) =

m
∏

j=1

pkj(xj)

for arbitrary distributions pkj(xj) over the range {1, . . . ,M} of possible values for

xj. In other words: there exists some distribution over hidden binary variables

110
Chapter 7. STDP enables spiking neurons to

detect hidden causes of their inputs

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Training Examples

C
on

di
tio

na
l E

nt
ro

py

Spiking Network (simple STDP curve)
Spiking Network (complex STDP curve)
Non−spiking Network (no missing attributes)
Non−spiking Network (35% missing attributes)

A B C

Figure 7.3: Analysis of the learning progress of the spiking network for the MNIST

dataset. A) Normalized conditional entropy (see text) for the spiking network with

the two variants of STDP learning rules illustrated in Fig. 7.1B (red solid and

blue dashed lines), as well as two non-spiking approximations of the network with

learning rule (7.12) that are analyzed in section 7.3. According to this analysis

the non-spiking network with 35% missing values (green line) is expected to have

a very similar learning behavior to the spiking network. 2000 random examples

of handwritten digits 0 and 3 were presented (for 50ms each) to the spiking net-

work as the first 2000 examples. Then for the next 2000 examples also samples of

handwritten digit 4 were included. B) The implicit internal models created by the

neurons after 2000 training examples are made explicit by drawing for each pixel

the difference wki−wk(i+1) of the weights for input yi and yi+1 that encode the two

possible values (black/white) of the variable xj that encodes this pixel value. One

can clearly see that neurons created separate internal models for different ways of

writing the two digits 0 and 3. C) Re-organized internal models after 2000 further

training examples that included digit 4. Two output neurons had created internal

models for the newly introduced digit 4.

zk with
∑K

k=1 zk = 1, where the k with zk = 1 is usually referred to as a hidden

“cause” in the generation of x, such that

p(x) =
K
∑

k=1

p(zk = 1) · pk(x). (7.4)

We first observe that any such distribution p(x) can be represented with some

suitable weight vector w by the neural network Nw, after recoding of the multino-

mial variables xj by binary variables yi as defined before:

p(y|w) =
K
∑

k=1

eu∗

k with u∗
k :=

n
∑

i=1

w∗
ki yi + w∗

k0 , (7.5)

7.3. Underlying theoretical principles 111

for

w∗
ki := log p(yi = 1|zk = 1) and w∗

k0 := log p(zk = 1) .

(7.6)

In addition, Nw defines for any weight vector w whose components are normal-

ized, i.e.

K
∑

k=1

ewk0 = 1 and
∑

i∈Gj

ewki = 1 , for j = 1, . . . ,m; k = 1, . . . ,K, (7.7)

a mixture of multinomials of the type (7.4).

The problem of learning a generative model for some arbitrarily given input

distribution p∗(x) (or p∗(y) after recoding according to (7.3)), by the neural network

Nw is to find a weight vector w such that p(y|w) defined by (7.5) models p∗(y) as

accurately as possible. As usual, we quantify this goal by demanding that

Ep∗ [log p(y|w)] (7.8)

is maximized.

Note that the architecture Nw is very useful from a functional point of view,

because if (7.7) holds, then the weighted sum uk at its unit zk has according to

(7.2) the value log p(zk = 1|y,w), and the stochastic WTA rule of Nw picks the

“winner” k with zk = 1 from this internally generated model p(zk = 1|y,w) for

the actual distribution p∗(zk = 1|y) of hidden causes. We will not enforce the

normalization (7.7) explicitly during the subsequently considered learning process,

but rather use a learning rule (7.12) that turns out to automatically approximate

such normalization in the limit.

Expectation Maximization (EM) is the standard method for maximizing

Ep∗ [log p(y|w)]. We will show that the simple STDP-rule of Fig. 7.1B for the spik-

ing network of section 7.2 can be viewed as an approximation to an online version of

this EM method. We will first consider in section 7.3.1 the standard EM-approach,

and show that the Hebbian learning rule (7.12) provides a stochastic approximation

to the maximization step.

7.3.1 Reduction to EM

The standard method for maximizing the expected log-likelihood Ep∗[log p(y|w)]

with a distribution p of the form p(y|w) =
∑

z
p(y, z|w) with hidden variables z,

is to observe that Ep∗[log p(y|w)] can be written for arbitrary distributions q(z) in

the form

Ep∗[log p(y|w)] = L(q,w) + Ep∗[KL(q(z)||p(z|y,w))] (7.9)

L(q,w) = Ep∗

[

∑

z

q(z) log
p(y, z|w)

q(z)

]

, (7.10)

112
Chapter 7. STDP enables spiking neurons to

detect hidden causes of their inputs

where KL(.) denotes the Kullback-Leibler divergence.

In the E-step one sets q(z) = p(z|y,wold) for the current parameter values

w = wold, thereby achieving Ep∗ [KL(q(x)||p(z|y,wold))] = 0. In the M -step one

replaces wold by new parameters w that maximize L(q,w) for this distribution q(z).

One can easily show that this is achieved by setting

w∗
ki = log p∗(yi = 1|zk = 1), and w∗

k0 = log p∗(zk = 1), (7.11)

with values for the variables zk generated by q(z) = p(z|y,wold), while the values

for the variables y are generated by the external distribution p∗. Note that this

distribution of z is exactly the distribution (7.2) of the output of the neural network

Nw for inputs y generated by p∗.5 In the following section we will show that this

M -step can be approximated by applying iteratively a simple Hebbian learning rule

to the weights w of the neural network Nw.

7.3.2 A Hebbian learning rule for the M-step

We show here that the target weight values (7.11) are the only equilibrium points

of the following Hebbian learning rule:

∆wki=







η (e−wki − 1), if yi=1 and zk=1

−η, if yi=0 and zk=1

0, if zk = 0,

(7.12)

∆wk0=

{

η (e−wk0 − 1), if zk=1

−η, if zk=0
(7.13)

It is obvious (using for the second equivalence the fact that yi is a binary variable)

that

E[∆wki] = 0 ⇔ p∗(yi=1|zk=1)η(e−wki − 1)− p∗(yi=0|zk=1)η = 0

⇔ p∗(yi=1|zk=1)(e−wki − 1) + p∗(yi=1|zk=1)− 1 = 0

⇔ p∗(yi=1|zk=1)e−wki = 1

⇔ wki = log p∗(yi=1|zk=1) . (7.14)

Analogously one can show that E[∆wk0] = 0 ⇔ wk0 = log p∗(zk=1). With similar

elementary calculations one can show that E[∆wki] has for any w a value that

moves wki in the direction of w∗
ki (in fact, exponentially fast).

One can actually show that one single step of (7.12) is a linear approximation

of the ideal incremental update of wki = log aki

Nk
, with aki and Nk representing

the values of the corresponding sufficient statistics, as log aki+1
Nk+1 = wki + log(1 +

5Hence one can extend p∗(y) for each fixed w to a joint distribution p∗(y, z), where the z are

generated for each y by Nw.

7.3. Underlying theoretical principles 113

ηe−wki)− log(1 + η) for η = 1
Nk

. This also reveals the role of the learning rate η as

the reciprocal of the equivalent sample size6.

In order to guarantee the stochastic convergence (see (Kushner & Yin, 1997)) of

the learning rule one has to use a decaying learning rate η(t) such that
∑∞

t=1 η(t) =∞

and
∑∞

t=1(η
(t))2 = 0.7

The learning rule (7.12) is similar to a rule that had been introduced in (Nessler

et al., 2009) in the context of supervised learning and reinforcement learning. That

rule had satisfied an equilibrium condition similar to (7.14). But to the best of

our knowledge, such type of rule has so far not been considered in the context of

unsupervised learning.

One can easily see the correspondence between the update of wki in (7.12) and

in the simple STDP rule of Fig. 7.1B. In fact, if each time where neuron zk fires

in the spiking network, each presynaptic neuron yi that currently has a high firing

rate has fired within the last σ = 10ms before the firing of zk, the two learning rules

become equivalent. However since the latter condition could only be achieved with

biologically unrealistic high firing rates, we need to consider in section 7.3.4 the case

for the non-spiking network where some input values are missing (i.e., yi = 0 for

all i ∈ Gj ; for some group Gj that encodes an external variable xj via population

coding).

We first show that the Hebbian learning rule (7.12) is also meaningful in the

case of online learning of Nw, which better matches the online learning process for

the spiking network.

7.3.3 Stochastic online EM

The preceding arguments justify an application of learning rule (7.12) for a number

of steps within each M-step of a batch EM approach for maximizing E∗
p[log p(y|w)].

We now show that it is also meaningful to apply the same rule (7.12) in an online

stochastic EM approach (similarly as in (Sato, 1999)), where at each combined EM-

step only one example y is generated by p∗, and the learning rule (7.12) is applied

just once (for zk resulting from p(z|y,w) for the current weights w, or simpler: for

the zk that is output by Nw for the current input y).

Our strategy for showing that a single application of learning rule (7.12) is

expected to provide progress in an online EM-setting is the following. We consider

6The equilibrium condition (7.14) only sets a necessary constraint for the the quotient of the

two directions of the update in (7.12). The actual formulation of (7.12) is motivated by the goal

of updating a sufficient statistics.
7In our experiments we used an adaptation of the variance tracking heuristic from (Nessler et

al., 2009). If we assume that the consecutive values of the weights represent independent samples of

their true stochastic distribution at the current learning rate, then this observed distribution is the

log of a beta-distribution of the above mentioned parameters of the sufficient statistics. Analytically

this distribution has the first and second moments E[wki] ≈ log aki

Ni
and E[w2

ki] ≈ E[wki]
2+ 1

aki

+ 1
Ni

, leading to the estimate ηnew
ki = 1

Ni
=

E[w2
ki

]−E[wki]
2

e−E[w
ki

]+1
. The empirical estimates of these first two

moments can be gathered online by exponentially decaying averages using the same learning rate

ηki.

114
Chapter 7. STDP enables spiking neurons to

detect hidden causes of their inputs

the Lagrangian F for maximizing Ep∗[log p(y|w)] under the constraints (7.7), and

show that an application of rule (7.12) is expected to increase the value of F . We

set

F (w,λ) = Ep∗ [log p(y|w)] − λ0

(

1−
K
∑

k=1

ewk0

)

−
K
∑

k=1

m
∑

j=1

λkj



1−
∑

i∈Gj

ewki



 .

(7.15)

According to (7.5) one can write p(y|w) =
∑K

k=1 euk for uk =
∑K

i=1 wki yi+wk0.

Hence one arrives at the following conditions for the Lagrange multipliers λ:

K
∑

k=1

∂F

∂wk0
=

K
∑

k=1

(

Ep∗ [
euk

∑K
l=1 eul

]− λ0e
wk0

)

= 0 (7.16)

∑

i∈Gj

∂F

∂wki

=
∑

i∈Gj

(

Ep∗[yi
euk

∑K
l=1 eul

]− λkje
wki

)

= 0, (7.17)

which yield λ0 = 1 and λkj = Ep∗ [
euk

PK
l=1 eul

].

Plugging these values for λ into ∇wF · E∗
p[∆w] with ∆w defined by (7.12)

shows that this vector product is always positive. Hence even a single application

of learning rule (7.12) to a single new example y, drawn according to p∗, is expected

to increase Ep∗ [log p(y|w)] under the constraints (7.7).

7.3.4 Impact of missing input values

We had shown at the end of 7.3.2 that learning in the spiking network corresponds to

learning in the non-spiking network Nw with missing values. A profound analysis

of the correct handling of missing data in EM can be found in (Ghahramani &

Jordan, 1997). Their analysis implies that the correct learning action is then not

to change the weights wki for i ∈ Gj . However the STDP rule of Fig. 7.1B, as well

as (7.12), reduce also these weights by η if zk fires. This yields a modification of

the equilibrium analysis (7.14):

E[∆wki] = 0 ⇔ (1− r)
(

p∗(yi=1|zk=1)η(e−wki − 1)− p∗(yi=0|zk=1)η
)

− rη = 0

⇔ wki = log p∗(yi=1|zk=1) + log(1− r) , (7.18)

where r is the probability that i belongs to a group Gj where the value of xj is miss-

ing. Since this probability r is independent of the neuron zk and also independent

of the current value of the external variable xi, this offset of log(1− r) is expected

to be the same for all weights. It can easily be verified, that such an offset does

not change the resulting probabilities of the competition in the E-step according to

(7.2).

7.4. Discussion 115

7.3.5 Relationship between the spiking and the non-spiking net-

work

As indicated at the end of section 7.3.2, the learning process for the spiking network

from section 7.2 with the simple STDP curve from Fig. 7.1B (and external variables

xj encoded by input spike trains from neurons yi) is equivalent to a somewhat

modified learning process of the non-spiking network Nw with the Hebbian learning

rule (7.12) and external variables xj encoded by binary variables yi. Each firing

of a neuron zk at some time t corresponds to a discrete time step in Nw with

an application of the Hebbian learning rule (7.12). Each neuron yi that had fired

during the time interval [t− 10ms, t] contributes a value ỹi(t) = 1 to the membrane

potential uk(t) of the neuron zk at time t, and a value ỹi(0) = 0 if it did not

fire during [t − 10ms, t]. Hence the weight updates at time t according to the

simple STDP curve are exactly equal to those of (7.12) in the non-spiking network.

However (7.12) will in general be applied to a corresponding input y where it may

occur that for some j ∈ {1, . . . ,m} one has yi = 0 for all i ∈ Gj (since none of the

neurons yi with i ∈ Gj fired in the spiking network during [t− 10ms, t]). Hence we

arrive at an application of (7.12) to an input y with missing values, as discussed in

section 7.3.4.

Since several neurons zk are likely to fire during the presentation of an external

input x (each handwritten digit was presented for 50ms in section 7.2; but a much

shorter presentation time of 10ms also works quite well), this external input x gives

in general rise to several applications of the STDP rule. This corresponds to several

applications of rule (7.12) to the same input (but with different choices of missing

values) in the non-spiking network. In the experiments in section 7.2, every example

in the non-spiking network with missing values was therefore presented for 10 steps,

such that the average number of learning steps is the same as in the spiking case.

The learning process of the spiking network corresponds to a slight variation of the

stochastic online EM algorithm that is implemented through (7.12) according to

the analysis of section 7.3.3.

7.4 Discussion

The model for discovering hidden causes of inputs that is proposed in this study

presents an interesting shortcut for implementing and learning generative models

for input data in networks of neurons. Rather than building and adapting an ex-

plicit model for re-generating internally the distribution of input data, our approach

creates an implicit model of the input distribution (see Fig. 7.3B) that is encoded

in the weights of neurons in a simple WTA-circuit. One might call it a Vapnik-style

(Vapnik, 2005) approach towards generative modelling, since it focuses directly on

the task to represent the most likely hidden causes of the inputs through neuronal

firing. As the theoretical analysis via non-spiking networks in section 7.3 has shown,

this approach also offers a new perspective for generating self-adapting networks on

the basis of traditional artificial neural networks. One just needs to add the stochas-

116
Chapter 7. STDP enables spiking neurons to

detect hidden causes of their inputs

tic and non-feedforward parts required for implementing stochastic WTA circuits

to a 1-layer feedforward network, and apply the Hebbian learning rule (7.12) to the

feedforward weights. One interesting aspect of the “implicit generative learning”

approach that we consider in this study is that it retains important advantages

of the generative learning approach, faster learning and better generalization (Ng

& Jordan, 2002), while retaining the algorithmic simplicity of the discriminative

learning approach.

Our approach also provides a new method for analyzing details of STDP learn-

ing rules. The simulation results of section 7.2 show that a simplified STDP rule

that can be understood clearly from the perspective of stochastic online EM with

a suitable Hebbian learning rule, provides good performance in discovering hid-

den causes for a standard benchmark dataset. A more complex STDP rule, whose

learning curve better matches experimentally recorded average changes of synaptic

weights, provides almost the same performance. Hence, the experimentally observed

STDP curve could be the result of a suboptimal approximation to a theoretically

optimal (but biologically hard to implement) simpler STDP curve. The large vari-

ance of experimentally observed synaptic weight changes in single trials (see (Dan

& Poo, 2004)) could be viewed as circumstantial evidence for the difficulty of a

biological implementation of a precise STDP update. Alternatively, the experimen-

tally observed STDP learning curves could provide additional functional properties

for learning in networks of spiking neurons. Additional further work will be needed

to determine whether also more realistic shapes of EPSPs, or interactions between

triplets of pre- and postsynaptic spikes, have a significant influence on the optimal

STDP curve for discovering hidden causes of spike-inputs.

7.5 Acknowledgments

This chapter is based on the paper STDP enables spiking neurons to detect hid-

den causes of their inputs, which was written by Bernhard Nessler (BN), myself

(MP), and Wolfgang Maass (WM). The theory and the non-spiking version of the

algorithm was developed by BN. MP conducted all experiments and developed the

extension of the algorithm to spiking neurons. The paper was written by WM, BN,

and MP.

Appendix A

List of Publications

1. M. Pfeiffer. Machine learning applications in computer games. Master’s the-

sis, Institute for Theoretical Computer Science, Graz University of Technol-

ogy. 2003.

2. M. Pfeiffer. Machine learning applications in computer games. ÖGAI-Journal

23 (3). 2004.

3. M. Pfeiffer. Reinforcement Learning of Strategies for Settlers of Catan. Pro-

ceedings of the International Conference on Computer Games: Artificial In-

telligence, Design and Education, Reading, UK. 2004.

4. M. Pfeiffer, A. Saffari A.A., and A. Juffinger. Predicting Text Relevance from

Sequential Reading Behavior. Proceedings of the NIPS Workshop on Implicit

Feedback and User Modeling, Whistler, Canada. 2005. (Winner of PASCAL

Challenge ”Inferring Relevance from Eye Movements”, Competition One)

5. G. Neumann, M. Pfeiffer, and W. Maass. Efficient Continuous-Time Re-

inforcement Learning with Adaptive State Graphs. Proceedings of the 18th

European Conference on Machine Learning (ECML), Warszaw, Poland. 2007.

6. B. Nessler, M. Pfeiffer, and W. Maass. Hebbian learning of Bayes optimal

decisions. Proceedings of Advances in Neural Information Processing Systems

(NIPS) 21, Vancouver, Canada. 2008.

7. M. Pfeiffer, B. Nessler, and W. Maass. A Hebbian learning rule for opti-

mal decision making. Poster at NIPS Workshop on Machine Learning meets

Human learning, Whistler, Canada. 2008.

8. B. Nessler, M. Pfeiffer, and W. Maass. STDP enables spiking neurons to detect

hidden causes of their inputs. Proceedings of Advances in Neural Information

Processing Systems (NIPS) 22, Vancouver, Canada. 2009.

9. M. Pfeiffer, B. Nessler, R.J. Douglas, and W. Maass. Reward-modulated Heb-

bian Learning of Decision Making. Neural Computation, in press. 2009.

10. M. Pfeiffer, M. Hartbauer, W. Maass, and H. Römer. Probing real sensory

worlds of receivers with unsupervised clustering. In preparation. 2009.

118 Appendix A. List of Publications

A.1 Comments and Contributions to Publications

The first three publications resulted from my master’s thesis on Machine learning

applications in computer games, which won the ÖGAI-Award of the Austrian So-

ciety for Artificial Intelligence as the best master’s thesis in the field of Artificial

Intelligence in the years 2002-2003. The results from these papers are not contained

in this thesis.

The paper Predicting Text Relevance from Sequential Reading Behavior was a

joint paper with Amir Saffari and Andreas Juffinger, who contributed ideas for the

design of features and helped in preparing the manuscript. I presented this pa-

per at the NIPS workshop on “Implicit Feedback and User Modeling” in Whistler,

Canada, and the solution presented in the paper won the first place in the inter-

national competition on “Inferring Relevance from Eye Movements”, organized by

the PASCAL network of excellence. This paper is the basis for Chapter 3 of this

thesis.

The paper Efficient Continuous-Time Reinforcement Learning with Adaptive

State Graphs was a joint paper with Gerhard Neumann (GN) and my supervisor

Wolfgang Maass (WM). The presented algorithm was jointly developed by GN and

myself, the experiments were performed by GN and myself, and the paper was

written by myself and GN with input from WM. This paper was accepted for oral

presentation at the 18th European Conference on Machine Learning in Warsaw,

Poland. This paper is the basis for Chapter 4 of this thesis.

The paper Hebbian learning of Bayes optimal decisions was a joint paper with

Bernhard Nessler (BN) and Wolfgang Maass (WM). The theory of the Bayesian

Hebb rule was developed by BN with input from WM and myself, the experiments

were performed by myself, and the paper was written by myself and BN with input

from WM. This paper was presented at the 21st conference on Advances in Neural

Information Processing Systems (NIPS) in Vancouver, Canada. This paper is the

basis for Chapter 5 of this thesis.

The paper Reward-modulated Hebbian Learning of Decision Making was a joint

paper with Bernhard Nessler (BN), Rodney J. Douglas (RD) from ETH Zürich, and

Wolfgang Maass (WM). I developed the theory of the reward-modulated Bayesian

Hebb rule based on results by BN in the previous paper. The experiments were

performed by myself, and the paper was written by myself, WM, and RD with input

from BN. The paper was accepted for publication in the journal Neural Computa-

tion (2008 impact factor 2.378) and is currently in press. This paper is the basis for

Chapter 6 of this thesis. The poster A Hebbian learning rule for optimal decision

making is based on earlier results from that paper and was presented at the NIPS

workshop on “Machine Learning meets Human learning” in Whistler, Canada.

The paper STDP enables spiking neurons to detect hidden causes of their inputs

was a joint paper with Bernhard Nessler (BN) and Wolfgang Maass (WM). The

theory and the non-spiking version of the algorithm was developed by BN, the

experiments and the extension of the algorithm to spiking neurons was done by

myself, and the paper was written by WM, BN, and myself. This paper was accepted

A.1. Comments and Contributions to Publications 119

for spotlight presentation at the 22nd conference on Advances in Neural Information

Processing Systems (NIPS) in Vancouver, Canada. This paper is the basis for

Chapter 7 of this thesis.

The paper Probing real sensory worlds of receivers with unsupervised clustering

is a joint paper with Manfred Hartbauer (MH) and Heinrich Römer (HR) of Karl-

Franzens University Graz, and Wolfgang Maass (WM). The data was recorded by

MH and HR, the data analysis and the experiments were designed and performed

by myself, and the paper was written by myself, HR, MH and WM. This paper is

in preparation and will be submitted in 2009. This paper is the basis for Chapter

2 of this thesis.

References

Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: taming the beast. Nature

Neuroscience, 3 , 1178-1183. 67, 106

Abraham, W. C. (2008). Metaplasiticity: tuning synapses and networks for plas-

ticity. Nature Reviews Neuroscience, 9 , 387–399. 88

Alitto, H., Weyand, T., & Usrey, W. (2005). Distinct properties of stimulus-evoked

bursts in the lateral geniculate nucleus. Journal of Neuroscience, 25 (2), 514–

523. 25

Attias, H. (2003). Planning by probabilistic inference. In Proc. of the 9th Int.

Workshop on Artificial Intelligence and Statistics. 100

Attneave, F. (1954). Some informational aspects of visual perception. Psychological

Review , 61 , 183–193. 26

Audibert, J.-Y., Munos, R., & Szepesvari, C. (2007). Tuning bandit problems in

stochastic environments. In Proc. of the 18th International Conference on

Algorithmic Learning Theory (pp. 150–165). 99

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite time analysis of the

multiarmed bandit problem. Machine Learning , 47 (2/3), 235–256. 71

Auer, P., Jaksch, T., & Ortner, R. (2009). Near-optimal regret bounds for rein-

forcement learning. In Advances in Neural Information Processing Systems

21 (pp. 89–96). Cambridge, MA: MIT Press. 99

Bailey, C. H., Giustetto, M., Huang, Y.-Y., Hawkins, R. D., & Kandel, E. R. (2000).

Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and

memory? Nature Reviews Neuroscience, 1 , 11–20. 68, 95, 98

Barlow, H. (1961). Possible principles underlying the transformation of sensory

messages. In W. Rosenblith (Ed.), Sensory communication (pp. 217–234).

Cambridge, MA: MIT Press. 26

Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification

algorithms: bagging, boosting, and variants. Machine Learning , 36 , 105–142.

39

Bertsekas, D. P., & Tsitsiklis, J. (1996). Neuro-Dynamic Programming. Belmont,

MA: Athena Scientific. 58, 100

Bi, G., & Poo, M. (1998). Synaptic modifications in cultured hippocampal neurons:

dependence on spike timing, synaptic strength, and postsynaptic cell type. J

Neuroscience, 18 (24), 10464-10472. 2

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York:

Springer. 55, 56, 57, 61, 69, 81, 100, 109

Blum, A., & Langley, P. (1997). Selection of relevant features and examples in

machine learning. Artificial Intelligence, 97 (1–2), 245–271. 36

Boyan, J. A., & Moore, A. W. (1995). Generalization in reinforcement learning:

Safely approximating the value function. In Nips 7 (pp. 369–376). 42

122 References

Brumm, H., & Slabbekoorn, H. (2005). Acoustic communication in noise. Advances

in the Study of Behavior , 35 , 151–209. 26

Caporale, N., & Dan, Y. (2008). Spike timing-dependent plasticity: a Hebbian

learning rule. Annu Rev Neuroscience, 31 , 25–46. 67

Capranica, R., & Moffat, J. (1983). Neurobehavioral correlates of sound communi-

cation in anurans. In J.-P. Ewert, R. Capranica, & D. Ingle (Eds.), Advances

in vertebrate neuroethololgy (pp. 701–730). New York: Plenum Press. 26

Chiappalone, M., Novellino, A., Vajda, I., Vato, A., Martinoia, S., & Pelt, J. van.

(2005). Burst detection algorithms for the analysis of spatio-temporal patterns

in cortical networks of neurons. Neurocomputing , 65–66 , 653–662. 11

Chittka, L., Skorupski, P., & Raine, N. (2009). Speed-accuracy tradeoffs in animal

decision making. Trends in Ecology and Evolution, 24 (7), 400–407. 29

Christen, M., Kohn, A., Ott, T., & Stoop, R. (2006). Measuring spike pattern

reliability with the Lempel-Ziv-distance. Journal of Neuroscience Methods,

156 , 342–350. 7, 12

Cocatre-Zilgien, J., & Delcomyn, F. (1992). Identification of bursts in spike trains.

Journal of Neuroscience Methods, 41 , 19–30. 11

Dan, Y., & Poo, M. (2004). Spike timing-dependent plasticity of neural circuits.

Neuron, 44 , 23-30. 106, 116

Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and

mathematical modeling of neural systems. Cambridge, MA: MIT Press. 68,

99

Dayan, P., & Daw, N. (2008). Decision theory, reinforcement learning, and the

brain. Cognitive, Affective, & Behavioral Neuroscience, 8 , 429–453. 71

Dayan, P., & Kakade, S. (2001). Explaining away in weight space. In Advances in

Neural Information Processing Systems 13 (pp. 451–457). Cambridge, MA:

MIT Press. 95, 99

Dayan, P., & Yu, A. (2003). Uncertainty and learning. IETE Journal of Research,

49 , 171–182. 99

Deneve, S. (2008a). Bayesian spiking neurons I, II. Neural Computation, 20 (1),

91-145. 56

Deneve, S. (2008b). Bayesian spiking neurons I: Inference. Neural Computation,

20 (1), 91-117. 81, 100

Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian

classifier under zero-one loss. Machine Learning , 275 (29), 103–130. 69

Douglas, R. J., & Martin, K. A. (2004). Neuronal circuits of the neocortex. Annu

Rev Neurosci , 27 , 419–451. 2, 4, 96, 106

Doya, K. (2002). Metalearning and neuromodulation. Neural Networks, 15 , 495–

506. 88

Dragalin, V., Tartakovsky, A., & Veeravalli, V. (1999). Multihypothesis sequential

probability ratio tests — Part I: Asymptotic optimality. IEEE Transactions

on Information Theory , 45 (7), 2448–2461. 96

Eggermont, J. J. (1998). Is there a neural code? Neuroscience and Biobehavioral

Reviews, 22 , 355–370. 6, 28

References 123

Eggermont, J. J., & Smith, G. M. (1996). Burst-firing sharpens frequency tuning

in primary auditory cortex. NeuroReport , 7 , 753–757. 6

Eichhorn, J., Tolias, A. S., Zien, A., Kuss, M., Rasmussen, C. E., Weston, J., et al.

(2004, 06). Prediction on spike data using kernel algorithms. In 17th annual

conference on neural information processing systems (Vol. 16, p. 1367-1374).

MIT Press. 7

Eyherabide, H., Rokem, A., Herz, A., & Samengo, I. (2008). Burst firing is a neural

code in an insect auditory system. Frontiers in Computational Neuroscience,

2 (3). 29

Eyherabide, H., Rokem, A., Herz, A., & Samengo, I. (2009). Bursts generate a

non-reducible spike-pattern code. Frontiers in Neuroscience, 3 (1), 8–14. 29

Farries, M. A., & Fairhall, A. L. (2007). Reinforcement learning with modulated

spike timing-dependent synaptic plasticity. Journal of Neurophysiology , 98 ,

3648–3665. 68

Fellous, J.-M., Tiesinga, P., Thomas, P., & Sejnowski, T. (2004). Discovering spike

patterns in neuronal responses. Journal of Neuroscience, 24 (12), 2989–3001.

27

Fregnac, Y. (2003). Hebbian synaptic plasticity. In M. A. Arbib (Ed.), The

Handbook of Brain Theory and Neural Networks (pp. 515–522). Cambridge,

MA: MIT Press. 67, 68

Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data

points. Science, 315 (5814), 972–976. 7, 13, 27, 28

Fullard, J. (1998). The sensory co-evolution of moths and bats. In R. Hoy, A. Pop-

per, & R. Fay (Eds.), Comparative hearing: Insects (pp. 279–326). New York,

Berlin, Heidelberg: Springer. 30

Gabbiani, F., Metzner, W., Wessel, R., & C., K. (1996). Coding of time-varying

signals in spike trains. Nature, 384 , 564-7. 25

Georgopoulos, A. P., Schwartz, A. P., & Ketner, R. E. (1986). Neuronal population

coding of movement direction. Science, 233 , 1416–1419. 90, 97

Gerhardt, H., & Huber, F. (2002). Acoustic communication in insects and frogs:

common problems and diverse solutions. Chicago: University of Chicago

Press. 29

Ghahramani, Z., & Jordan, M. (1997). Mixture models for learning from

incomplete data. Computational Learning Theory and Natural Learning

Systems, 4 , 67–85. Available from http://books.google.at/books?id=

TzNao7YzOTYC&printsec=frontcover 114

Gittins, J. (1979). Bandit processes and dynamic allocation indices. Journal of the

Royal Statistical Society , 41 , 148–177. 71

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annu

Rev Neuroscience, 30 , 535–574. 96

Gourevitch, B., & Eggermont, J. J. (2007). A nonparametric approach for detection

of bursts in spike trains. Journal of Neuroscience Methods, 160 , 349–358. 11

Green, D., & Swets, J. (1966). Signal detection theory and psychophysics. New

York: Wiley. 14

124 References

Griffiths, T., & Tenenbaum, J. (2005). Structure and strength in causal induction.

Cognitive Psychology , 51 , 334–384. 99

Guestrin, C. E., & Ormoneit, D. (2001). Robust combination of local controllers.

In Proc. uai (pp. 178–185). 42, 45

Gupta, A., & Long, L. N. (2007). Character recognition using spiking neural

networks. IJCNN , 53–58. 106

Gurney, K., & Bogacz, R. (2006). The basal ganglia and cortex implement optimal

decision making between alternative actions. Neural Computation, 19 , 442–

477. 96, 98

Hahnloser, R. H. R., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung,

H. S. (2000). Digital selection and analogue amplification coexist in a cortex-

inspired silicon circuit. Nature, 405 , 947–951. 96

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic

determination of minimum cost paths. IEEE Trans. SSC , 4 , 100–107. 46, 48

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical

learning. Springer (New York). 12, 13

Hauser, H., Neumann, G., Ijspeert, A. J., & Maass, W. (2007). Biologically inspired

kinematic synergies provide a new paradigm for balance control of humanoid

robots. In Proceedings of the IEEE-RAS 7th International Conference on

Humanoid Robots (Humanoids 2007). 52

Hebb, D. O. (1949). The organization of behavior. New York: Wiley. 3, 56, 67

Hinton, G. E., & Ghahramani, Z. (1997). Generative models for discovering sparse

distributed representations. Philos Trans R Soc Lond B Biol Sci., 352 (1358),

1177–1190. 106

Hoy, R. (1992). The evolution of hearing in insects as an adaptation to predation

from bats. In D. Webster, A. Popper, & R. Fay (Eds.), The evolutionary

biology of hearing (pp. 115–130). New York, Berlin, Heidelberg: Springer. 30

Ide, J. S., & Cozman, F. G. (2002). Random generation of Bayesian networks. In

Proc. of the 16th Brazilian Symposium on Artificial Intelligence: Advances in

Artificial Intelligence (Vol. 2507, pp. 366–375). London: Springer. 61, 88

Izhikevich, E., Desai, N., Walcott, E., & Hoppenstaedt, F. (2003). Bursts as a

unit of neural information: selective communication via resonance. Trends in

Neurosciences, 26 (3), 161–167. 25

Jensen, F. V., & Nielsen, T. D. (2007). Bayesian networks and decision graphs

(2nd edition). New York: Springer. 97

Jong, N., & Stone, P. (2006). Kernel-based models for reinforcement learning. In

ICML Workshop on kernel machines and reinforcement learning. 42

Kavraki, L., Svestka, P., Latombe, J., & Overmars, M. (1996). Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE

T-RA, 12 (4). 42, 45

Kearns, M., & Singh, S. (1998). Near-optimal performance for reinforcement learn-

ing in polynomial time. In Proc. of the 15th International Conference on

Machine Learning (ICML) (pp. 260–268). 99

References 125

Kepecs, A., & Lisman, J. (2003). Information encoding and computation with

spikes and bursts. Network: Computation in neural systems, 14 , 103–118. 25

Kononenko, I. (1998). Bayesian neural networks. Biol. Cybernetics, 61 , 361–370.

100

Krahe, R., & Gabbiani, F. (2004). Burst firing in sensory systems. Nature Review

Neuroscience, 24 , 10731–10740. 6, 25

Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2001). Factor graphs and the

sum-product algorithm. IEEE Transactions on Information Theory , 47 (2),

498–519. 13, 69, 81, 82, 97

Kushner, J., & Yin, G. (1997). Stochastic approximation algorithms and applica-

tions. Springer. 113

Lai, T., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules.

Advances in Applied Mathematics, 6 , 4–22. 71

Lang, A., Teppner, I., Hartbauer, M., & Römer, H. (2005). Predation and noise

in communication networks of neotropical katydids. In P. McGregor (Ed.),

Animal communication networks (pp. 152–169). Cambridge University Press.

8, 10, 11

Lansner, A., & Ekeberg, O. (1998). A one-layer feedback artificial neural network

with a Bayesian learning rule. International Journal of Neural Systems, 1 ,

77–87. 100

Lansner, A., & Holst, A. (1996). A higher order Bayesian neural network with

spiking units. International Journal of Neural Systems, 7 (2), 115–128. 100

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE , 86 (11), 2278–2324.

106

Legenstein, R., Pecevski, D., & Maass, W. (2008). A learning theory for reward-

modulated spike-timing-dependent plasticity with application to biofeedback.

PLoS Computational Biology , 4 (10), 1–27. 68

Lestienne, R. (2001). Spike timing, synchronisation and information processing on

the sensory side of the nervous system. Progress in Neurobiology , 65 , 545–591.

6

Lisman, J. (1997). Bursts as a unit of neural information: making unreliable

synapses reliable. TINS , 20 , 38-43. 6, 25

Lohmiller, W., & Slotine, J. J. (1998). Contraction analysis for nonlinear systems.

Automatica, 34 (6), 683–696. 75, 95

Maass, W. (2000). On the computational power of winner-take-all. Neural Com-

putation, 12 (11), 2519–2536. 67

Maass, W., Natschlaeger, T., & Markram, H. (2002). Real-time computing without

stable states: A new framework for neural computation based on perturba-

tions. Neural Computation, 14 (11), 2531-2560. 2

Machens, C., Gollisch, T., Kolesnikova, O., & Herz, A. (2005). Testing the efficiency

of sensory coding with optimal stimulus ensembles. Neuron, 47 , 447–456. 26

Machens, C., Schütze, H., Franz, A., Kolesnikova, O., Stemmler, M., Ronacher,

126 References

B., et al. (2003). Single auditory neurons rapidly discriminate conspecific

communication signals. Nature Neuroscience, 6 (4), 341–342. 27, 30

Machens, C., Stemmler, M., Prinz, P., Krahe, R., Ronacher, B., & Herz, A. (2001).

Representation of acoustic communication signals by insect auditory receptor

neurons. Journal of Neuroscience, 21 (9), 3215–3227. 26

Mainen, Z., & Sejnowski, T. (1995). Reliability of spike timing in neocortical

neurons. Science, 268 , 1503-1505. 29

Markram, H. (2006). The Blue Brain project. Nature Reviews Neuroscience, 7 ,

153–160. 2

Marsat, G., & Pollack, G. (2006). A behavioral role for feature detection by sensory

bursts. Journal of Neuroscience, 26 , 10542–10547. 6

Marsat, G., & Pollack, G. (2007). Efficient inhibition of bursts by bursts in the

auditory system of crickets. Journal of Comparative Physiology A, 193 , 625–

633. 25

McGregor, P., & Krebs, J. (1984). Sound degradation as a distance cue in great tit

(parus major) song. Behavioral Ecology and Sociobiology , 16 , 49–56. 29

McLachlan, G., & Peel, D. (2000). Finite mixture models. Wiley. 109

Meilă, M., & Heckerman, D. (2001). An experimental comparison of model-based

clustering methods. Machine Learning , 42 (1), 9–29. 109

Metzner, W., Koch, C., Wessel, R., & Gabbiani, F. (1998). Feature extraction by

burst-like spike patterns in multiple sensory maps. Journal of Neuroscience,

18 , 2283–2300. 6

Molina, J., & Stumpner, A. (2005). Effects of pharmacological treatment and

photoinactivation on the directional responses of an insect neuron. Journal of

Experimental Zoology , 303A(12), 1085–1103. 8, 26

Montague, P., Dayan, P., Person, C., & Sejnowski, T. (1995). Bee foraging in

uncertain environments using predictive Hebbian learning. Nature, 377 , 725–

728. 98

Moore, A. W., & Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement

learning with less data and less real time. Machine Learning , 13 , 103–130.

42, 48, 49, 50

Morrison, A., Aertsen, A., & Diesmann, M. (2007). Spike-timing-dependent plas-

ticity in balanced random networks. Neural Computation, 19 , 1437–1467.

106

Morton, E. (1975). Ecological sources of selection on avian sounds. American

Naturalist , 108 , 17–34. 6

Mussa-Ivaldi, F., & Bizzi, E. (2000). Motor learning through the combination of

primitives. Phil. Trans. R. Soc. London B , 355 , 1755–1769. 3

Narayan, R., Graña, G., & Sen, K. (2006). Distinct time scales in cortical dis-

crimination of natural sounds in songbirds. Journal of Neurophysiology , 96 ,

252–258. 7, 27

Neapolitan, R. (2004). Learning Bayesian networks. Upper Saddle River, NJ:

Prentice Hall. 73, 97

Neftci, E., Chicca, E., Indiveri, G., Slotine, J., & Douglas, R. (2008). Contrac-

References 127

tion properties of VLSI cooperative competitive neural networks of spiking

neurons. In Advances in Neural Information Processing Systems. Cambridge,

MA: MIT Press. 96

Nessler, B., Pfeiffer, M., & Maass, W. (2009). Hebbian learning of Bayes optimal

decisions. In Proc. of NIPS 2008: Advances in Neural Information Processing

Systems, 21 . (MIT Press) 86, 113

Neuhofer, D., Wohlgemuth, A., Stumpner, A., & Ronacher, B. (2008). Evolu-

tionarily conserved coding properties of auditory neurons across grasshopper

species. Proceedings of the Royal Society of London, Series B: Biological Sci-

ences, 275 (1646), 1965–1974. 26

Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers:

A comparison of logistic regression and naive Bayes. Advances in Neural

Information Processing Systems (NIPS), 14 , 841–848. 64, 116

Ng, A. Y., Jordan, M. I., & Weiss, Y. (2001). On spectral clustering: Analysis and

an algorithm. In Advances in neural information processing systems (Vol. 14,

pp. 849–856). 13

Nicolelis, M., Ghazanfar, A., Stambaugh, C., Oliveira, L., Laubach, M., Chapin, J.,

et al. (1998). Simultaneous encoding of tactile information by three primate

cortical areas. Nature Neuroscience, 1 (7), 621–630. 29

O’Keefe, J., Burgess, N., Donnett, J., Jeffery, K., & Maguire, E. (1998). Place cells,

navigational accuracy, and the human hippocampus. Philosophical Transac-

tions of the Royal Society of London, 353 (1373), 1333-1340. 90, 97

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field

properties by learning a sparse code for natural images. Nature, 381 , 607–609.

97

Opitz, D., & Maclin, R. (1999). Popular ensemble methods: an empirical study.

Journal of Artificial Intelligence Research, 11 , 169–198. 39

Ormoneit, D., & Sen, S. (2002). Kernel-based reinforcement learning. Machine

Learning , 49 (2-3), 161–178. 42

Oswald, A.-M., Chacron, M., Doiron, B., Bastian, J., & Maler, L. (2004). Par-

allel processing of sensory input by bursts and isolated spikes. Journal of

Neuroscience, 24 (18), 4351–4362. 25

Pollack, G. (1988). Selective attention in an insect auditory neuron. Journal of

Neuroscience, 8 (7), 2635–2639. 28

Pouget, A., & Latham, P. (2002). Population codes. In M. A. Arbib (Ed.), The

Handbook of Brain Theory and Neural Networks, 2nd ed. (pp. 893–897). Cam-

bridge, MA: MIT Press. 2, 90, 97

Rao, R. P. N. (2007). Neural models of Bayesian belief propagation. In K. Doya,

S. Ishii, A. Pouget, & R. P. N. Rao (Eds.), Bayesian brain. (pp. 239–267).

Cambridge, MA: MIT-Press. 55, 56, 100

Rasmussen, C., & Williams, C. (2006). Gaussian processes for machine learning.

MIT Press. 47

Rayner, K. (1998). Eye movements in reading and information processing: 20 years

of research. Psychological Bulletin, 124 , 372–422. 34

128 References

Rescorla, R. A., & Wagner, A. R. (1972). Classical conditioning II. In A. H. Black &

W. F. Prokasy (Eds.), A theory of Pavlovian conditioning: Variations in the

effectiveness of reinforcement and nonreinforcement (pp. 64–99). Appleton–

Century–Crofts. 68, 83, 84, 95, 98

Reynolds, J. N., Hyland, B. I., & Wickens, J. R. (2001). A cellular mechanism of

reward-related learning. Nature, 413 , 67–70. 68

Rheinlaender, J., & Römer, H. (1986). Insect hearing in the field: I. the use of

identified nerve cells as ”biological microphones”. Journal of Comparative

Physiology , 158 , 647–651. 8

Richards, D., & Wiley, R. (1980). Reverberations and amplitude fluctuations in

the propagation of sound in a forest: implications for animal communication.

The American Naturalist , 115 (3), 381–399. 29

Rieke, F., Bodnar, D., & Bialek, W. (1995). Naturalistic stimuli increase the rate

and efficiency of information transmission by primary auditory afferents. Proc.

of the Royal Society of London: Biological Sciences, 262 , 259–265. 26

Rieke, F., Warland, D., Steveninck, R. R. D. van, & Bialek, W. (1997). SPIKES:

Exploring the neural code. MIT Press, Cambridge, MA. 6

Riesenhuber, M., & Poggio, T. (1999). Models of object recognition. Nature

Neuroscience, 2 , 1019–1025. 90

Rokem, A., Watzl, S., Gollisch, T., Stemmler, M., Herz, A., & Samengo, I. (2006).

Spike-timing precision underlies the coding efficiency of auditory receptor neu-

rons. Journal of Neurophysiology , 95 , 2541-2552. 26

Römer, H. (1985). Anatomical representation of frequency and intensity in the

auditory system of orthoptera. In K. Kalmring & N. Elsner (Eds.), Acoustic

and vibrational communication in insects (pp. 25–32). Paul Parey. 8

Römer, H. (1998). The sensory ecology of acoustic communication in insects. In

R. Hoy, A. Popper, & R. Fay (Eds.), Comparative hearing: Insects (pp. 63–

96). New York, Berlin, Heidelberg: Springer. 6

Römer, H., & Bailey, W. J. (1986). Insect hearing in the field: Ii. spacing behaviour

and related acoustic cues for the male mygalopsis marki (tettigoniidae). Jour-

nal of Comparative Physiology , 159 , 627–638. 8

Römer, H., Hedwig, B., & Ott, S. R. (2002). Contralateral inhibition as a sensory

bias: The neural basis for a female preference in a synchronously calling

bushcricket, mecopoda elongata. European Journal of Neuroscience, 15 (10),

1655–1662. 9

Römer, H., & Krusch, M. (2000). A gain-control mechanism for processing of

chorus sounds in the afferent auditory pathway of the bushcricket tettigonia

viridissima (orthoptera; tettigoniidae). Journal of Comparative Physiology A,

186 , 181–191. 28

Römer, H., & Lewald, J. (1992). High-frequency sound transmission in natural

habitats: implications for the evolution of insect acoustic communication.

Behavioral Ecology and Sociobiology , 29 , 437–444. 6, 8, 29

Römer, H., Marquart, V., & Hardt, M. (1988). The organization of a sensory

neuropil in the auditory pathway of grasshoppers and bushcrickets. Journal

References 129

of Comparative Neurology , 275 , 201–215. 8, 27

Ronacher, B., Franz, A., Wohlgemuth, S., & Hennig, R. (2004). Variability of spike

trains and the processing of temporal patterns of acoustic signals - problems,

constraints, and solutions. Journal of Comparative Physiology , 190 , 257–277.

6, 26

Ronacher, B., & Stumpner, A. (1988). Filtering of behaviourally relevant temporal

parameters of a grasshopper song by an auditory interneuron. Journal of

Comparative Physiology A, 163 , 517–523. 26

Rosenblatt, J. F. (1962). Principles of neurodynamics. New York: Spartan Books.

2

Roth, D. (1999a). Learning in natural language. In Proc. of ijcai (pp. 898–904).

56

Roth, D. (1999b). Learning in natural language. In Proc. of the International Joint

Conference on Artificial Intelligence (IJCAI) (pp. 898–904). 69, 96

Sakai, Y., Okamoto, H., & Fukai, T. (2006). Computational algorithms and neu-

ronal network models underlying decision processes. Neural Networks, 19 (8),

1091–1105. 98

Salojärvi, J., Puolamäki, K., Simola, J., Kovanen, L., Kojo, I., & Kaski, S. (2005).

Inferring relevance from eye movements: Feature extraction. (Tech. Rep. No.

Report A82). Helsinki University of Technology, Publications in Computer

and Information Science. 3, 33

Sandberg, A., Lansner, A., Petersson, K. M., & Ekeberg, O. (2002). A Bayesian

attractor network with incremental learning. Network: Computation in Neural

Systems, 13 , 179–194. 56, 100

Sato, M. (1999). Fast learning of on-line EM algorithm. Rapport Technique, ATR

Human Information Processing Research Laboratories. 113

Schrauwen, B., & Campenhout, J. V. (2007). Linking non-binned spike train kernels

to several existing spike train metrics. Neurocomputing , 70 , 1247–1253. 7, 12

Schultz, W., Dayan, P., & Montague, P. (1997). A neural substrate of prediction

and reward. Science, 275 , 1593-9. 99

Shadlen, M., & Newsome, W. (1994). Noise, neural codes and cortical organization.

Current Opinion in Neurobiology , 4 , 569-579. 28

Shpigelman, L., Singer, Y., Paz, R., & Vaadia, E. (2003). Spikernels: Embedding

spiking neurons in inner-product spaces. In Advances in neural information

processing systems (Vol. 15). 7

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural

representation. Annu Rev Neurosci , 24 , 1193–1216. 26

Simsek, Ö., & Barto, A. (2006). An intrinsic reward mechanism for efficient explo-

ration. In Icml (pp. 833–840). 42

Steimer, A., Maass, W., & Douglas, R. (2009). Belief-propagation in networks of

spiking neurons. Neural Computation, 21 , 2502–2523. 69

Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004). Matching behavior and

the representation of value in the parietal cortex. Science, 304 , 1782–1787.

66, 71

130 References

Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2005). Choosing the greater

of two goods: Neural currencies for valuation and decision making. Nature

Reviews Neuroscience, 6 (5), 363–375. 66, 72, 98

Sutton, R. S. (1992). Gain adaptation beats least squares. In Proceedings of the

7th Yale Workshop on Adaptive and Learning Systems (pp. 161–166). New

Haven, CT. 95, 99

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction.

Cambridge, MA: MIT Press. 42, 43, 44, 50, 68, 71, 99

Toups, J., & Tiesinga, P. (2006). Methods for finding and validating neural spike

patterns. Neurocomputing , 69 , 1362–1365. 27

Turnbull, L., Dian, E., & Gross, G. (2005). The string method of burst identification

in neuronal spike trains. Journal of Neuroscience Methods, 145 , 23–35. 11

van Rossum, M. (2001). A novel spike distance. Neural Computation, 13 , 751–763.

7, 12, 27

Vapnik, V. (2005). Universal learning technology: Support vector machines. NEC

Journal of Advanced Technology , 2 , 137–144. 115

Verma, D., & Rao, R. (2006). Goal-based imitation as probabilistic inference over

graphical models. In Advances in Neural Information Processing Systems 18

(pp. 1393–1400). Cambridge, MA: MIT Press. 100

Victor, J. (2005). Spike train metrics. Current Opinion in Neurobiology , 15 (5),

585–592. 7, 12, 27

Victor, J., & Purpura, K. (1997). Metric-space analysis of spike trains: Theory,

algorithms and applications. Network: Computation in neural systems, 8 ,

127–164. 27

Wald, A., & Wolfowitz, J. (1948). Optimal character of the sequential probability

ratio test. Ann. Math. Statist., 19 , 326–339. 96

Wang, L., Narayan, R., a, G. G., Shamir, M., & Sen, K. (2007). Cortical dis-

crimination of complex natural stimuli: Can single neurons match behavior?

Journal of Neuroscience, 27 (3), 582–589. 7, 27

Wang, X. J. (2002). Probabilistic decision making by slow reverberation in cortical

circuits. Neuron, 36 , 955–968. 98

Waters, D. (1996). The peripheral auditory characteristics of noctuid moths: in-

formation encoding and endogenous noise. Journal of Experimental Biology ,

199 , 857–868. 30

Wehner, R. (1987). ’matched filters’ — neural models of the external world. Journal

of Comparative Physiology A, 161 (4), 511–531. 26

Wiley, R., & Richards, D. (1978). Physical constraints on acoustic communication

in the atmosphere: Implications for the evolution of animal vocalizations.

Behavioral Ecology and Sociobiology , 3 , 69–94. 6

Wiley, R., & Richards, D. (1982). Adaptations for acoustic communication in

birds: Sound transmission and signal detection. In D. Kroodsma, E. Miller,

& H. Quellet (Eds.), Acoustic communication in birds (pp. 131–181). New

York: Academic Press. 6

References 131

Witten, I., & Frank, E. (2005). Data mining: Practical machine learning tools and

techniques (2nd ed.). San Francisco, CA: Morgan Kaufmann. 38

Wyttenbach, R., May, M., & Hoy, R. (1996). Categorical perception of sound

frequency by crickets. Science, 273 (5281), 1542–1544. 30

Yang, T., & Shadlen, M. N. (2007). Probabilistic reasoning by neurons. Nature,

447 , 1075–1080. 56, 64, 66, 70, 98, 100, 101, 102, 103

Yu, A., & Dayan, P. (2003). Expected and unexpected uncertainty: ACh and NE

in the neocortex. In Advances in Neural Information Processing Systems 15

(pp. 157–164). Cambridge, MA: MIT Press. 88, 99

Yuille, A. L. (2006). Augmented Rescorla-Wagner and maximum likelihood es-

timation. In Advances in Neural Information Processing Systems 18 (pp.

1561–1568). Cambridge, MA: MIT Press. 89, 95

Yuille, A. L., & Geiger, D. (2003). Winner-take-all networks. In M. A. Arbib (Ed.),

The Handbook of Brain Theory and Neural Networks (pp. 1228–1231). MIT

Press. 66

