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Abstract 

The analysis and stability assessment of rock blocks forms part of the tasks 
covered by rock mechanics. Rock blocks are defined by fractures or other zones 
of weakness (discontinuities) within the rock mass. It is thus crucial to correctly 
determine the fracture system of a rock mass for a meaningful block stability 
assessment. Fractures have traditionally been mapped and characterised by using 
the methods of engineering geology. In the past decade remote measurement 
systems based on laser technology or photogrammetry have been developed and 
applied for the collection of discontinuity data at exposed rock faces. Especially 
3D imaging systems are suitable to identifying relevant fractures and measuring 
the corresponding geometric properties. Geologic assessments of 3D images 
mark a new data quality in engineering geology. Methods for a fast and 
consistent processing of these data towards rock mechanics analyses are, 
anyhow, still missing. 

This work presents a procedure for integrating discontinuity measurements from 
3D images into a block analysis method. The procedure includes (1) data 
collection in the field using an image based remote measurement system, (2) 3D 
image generation and registration, (3) assessment of the 3D image with respect to 
discontinuities, (4) establishment of a geometric model of the rock surface and 
discontinuities, (5) identification of finite (isolated) blocks, (6) determination of 
the blocks’s metric properties, (7) analysis of the kinematic movability of finite 
blocks, and (8) analysis of the block stability. Methods from engineering 
geology, digital photogrammetry, computer vision, digital image processing, 
computational geometry, numerical analysis, laboratory testing, general 
mechanics, and rock mechanics are applied in this procedure.  

In detail, the dissertation discusses important requirements on remote 
measurement systems for geologic data collection at exposed rock faces such as 
accuracy, resolution, working range, etc. It reviews frequently used systems 
including laser scanning, image based systems, and radar systems. As a result, 
image based systems comply with the requirements on geologic data collection. 
ShapeMetriX3D, a 3D imaging system based on computer vision and 
photogrammetry has been exemplarily applied within this work. Its principles, 
field application, and provided results and measurements are described and their 
practical reliability investigated.  

Discontinuity measurements from a 3D image and the excavation topography are 
used to establish a geometric model of the excavation surface. The geometric 
model is a trace network on an irregular surface. A trace search and intersection 
algorithm together with Goodman & Shi’s theorem of finiteness allows 
identifying isolated blocks within the geometric model. The definition of the 
block geometry requires the vertex co-ordinates, the block planes and the 
corresponding blockside halfspaces, and the connectivities of the parameters. The 



blocks’s metric properties such as mass or the inertia tensor are directly 
calculated using the blocks’s vertex coordinates obtained in the previous process.  

The sliding behaviour of rock blocks is, most of all, dominated by the properties 
of the joints between the blocks and the rock mass. Three typical stages of the 
shear behaviour of rough, unfilled joints are distinguished including mobilisation 
of shear stress, mobilisation of dilation, and surface degradation. A constitutive 
relationship describes the normal and shear stresses, and normal and shear 
displacements for each of the stages. The constitutive law considers material 
properties (friction angle, compressive strength, etc.), surface properties 
(roughness), and initial and boundary conditions (constraints). A parametric 
study outlines the behaviour of the constitutive law and discusses the influence of 
the input parameters. 

Isolated blocks might be prone to motion. It is the aim of the kinematic analysis 
to distinguish movable and non-movable blocks. As a basis position, 
displacements, velocities and accelerations of unconstrained and constrained 
rigid bodies are described. The possible kinematic constraints of a block are 
introduced as the kinematic constraint equations – algebraic equations describing 
kinematic constraints mathematically at position, velocity, and acceleration level. 
For a single rock block 16 basic kinematic modes are distinguished each of 
which related to a set of kinematic constraint equations.  

The kinematic analysis of rock blocks is limited to the investigation of the block 
movability at the instant of incipient motion. A complete kinematic analysis 
throughout the block’s motion is not possible since kinematic constraints depend 
on the (at this stage unknown) reaction forces. Goodman & Shi’s block theory 
provides a general analytical solution for translations of blocks with arbitrary 
geometries. The kinematic analysis of rotational modes has been restricted to 
tetrahedral blocks only. This work establishes an analytical method for the 
kinematic analysis of pure rotational motion of blocks including corner and edge 
rotation, and a numerical method for the kinematic analysis of remote axis 
rotation. The analytical methods for translation and pure rotations give a 
complete picture of a block’s movability with respect to the investigated modes. 
The numerical method for remote axis rotation, in contrast, gives only one set of 
solution parameters, if there is any. The application of the kinematic analysis 
allows distinguishing movable blocks from unmovable (tapered) ones just based 
on geometric information of the block. 

The stability of a movable block is a major concern in any block analysis. Most 
of all, limit equilibrium methods have traditionally been applied for the block 
stability assessment. Although their application is easy, they do not comply with 
the full set of Newton’s and Euler’s equations of motion. This may lead to a 
wrong stability assessment independent of it would be conservative or 
unconservative. This work derives the full set of equations of motion for a 
constrained rigid block subjected to conservative and non-conservative forces. It 
outlines the integration of the equations of motion based on an implicit multi-step 



 
 
method for describing and analyzing the block behaviour dynamically. 
Equilibrium is a necessary criterion for block stability. It is a particular case of a 
block’s dynamic behaviour. A procedure based on the continuation method and 
derived from the equations of motion is established in order to approach an 
equilibrium state or failure directly. The procedure considers large block 
deformations, kinematic constraints, and conservative and non-conservative 
forces. The equilibrium path plots displacements versus loads or load related 
parameters and monitors the behaviour of a block with increasing loading and/or 
displacement. The proposed procedure allows identifying critical points along the 
equilibrium path, the static and dynamic mode of failure, and the verification of 
the stability of the equilibrium path itself.  

This work integrates geologic data from remote measurement systems in general 
and discontinuity measurements in particular into a mechanical analysis of rock 
blocks. The method features different levels of automatic measurements 
including interaction, semi-automatic (guided) analysis, and fully automatic 
analysis. The kinematic analysis and the stability analysis have been generalised 
to arbitrary block shapes, arbitrary motion, general loading conditions, and non-
conservative forces. The presented procedure allows automatically identifying 
single isolated blocks from a discontinuity trace map which has been generated 
from measurements on 3D images. With analytical methods the kinematic 
movability of block can be determined for both, translational and rotational 
motion by only knowing the geometry of the block. More complex numerical 
methods are necessary to perform a block stability analysis considering general 
motion and loading conditions. 

 





 
 

Kurzfassung 

Die Bestimmung der Standsicherheit von einzelnen Felsblöcken wird den 
Methoden der Felsmechanik zugeordnet. Felsblöcke werden durch Klüfte, 
Störungen oder andere Schwächezonen (sogenannte Trennflächen) im Gebirge 
gebildet. Es ist für eine aussagekräftige Standsicherheitsuntersuchung daher 
wichtig, das Trennflächensystem eines Gebirges sorgfältig und richtig zu 
bestimmen. Trennflächen werden konventionell mit Hilfe der Methoden der 
Ingenieurgeologie kartiert und charakterisiert. Im vergangenen Jahrzehnt wurden 
Systeme der Fernerkundung vermehrt für die Datenerfassung von Trennflächen 
an Felsaufschlüssen entwickelt und eingesetzt. Der Großteil der angewendeten 
Systeme verwenden Lasertechnologie oder Photogrammetrie. Speziell 3D 
Bilderfassungssysteme sind dazu geeignet, relevante Trennflächen zu erkennen 
und deren geometrische Eigenschaften zu messen. 3D Bildmessungen von 
Trennflächen stellen demzufolge einen neuen Qualitätsstandard in der 
Ingenieurgeologie dar. Es fehlen jedoch nach wie vor Methoden, mit denen die 
so gewonnenen Daten schnell und konsistent einer felsmechanischen Analyse 
zugeführt werden können.  

Diese Arbeit stellt eine Prozedur vor, welche Trennflächenmessungen aus 3D 
Bildern in eine Methode zur Blockanalyse integrieren. Die Prozedur umfasst (1) 
die Datenerfassung im Gelände mit einem bildbasierten Fernerkundungssystem, 
(2) die 3D Bilderzeugung und –referenzierung, (3) die Auswertung der 3D Bilder 
hinsichtlich etwaiger Trennflächen, (4) die Erzeugung eines geometrischen 
Modells der Felsoberfläche und den Trennflächen, (5) die Identifikation endlich 
großer (isolierter) Blöcke, (6) die Bestimmung der metrischen Eigenschaften der 
Felsblöcke, (7) die Analyse der kinematischen Beweglichkeit der endlich großen 
Blöcke, und (8) die Bestimmung der Standsicherheit der Felsblöcke. In der 
vorgeschlagenen Prozedur werden Methoden der Ingenieurgeologie, digitalen 
Photogrammetrie, Computer Vision, digitalen Bildverarbeitung, algorithmischen 
Geometrie, numerischen Mathematik, felsmechanischen Laborversuchstechnik, 
allgemeinen Mechanik und Felsmechanik eingesetzt.  

Im Detail werden in der Dissertation wichtige Anforderungen an 
Fernerkundungssysteme zur geologischen Datenerfassung an Felsaufschlüssen 
erläutert, wie zum Beispiel Anforderungen an Genauigkeit, Auflösung, 
Reichweite, usw. Es werden die häufig eingesetzten Systeme Laserscanning, 
Photogrammetrie und Computer Vision, und Radar besprochen. Die 
Besprechung zeigt, dass bildbasierte Systeme wesentliche Anforderungen zur 
geologischen Datenerfassung erfüllen. In dieser Arbeit wurde ShapeMetriX3D, 
ein bildbasiertes Messsystem, beispielhaft eingesetzt. Es werden die Grundlagen 
des Systems, die Anwendung im Gelände und die gewonnenen Ergebnisse und 
Messungen beschrieben und deren Zuverlässigkeit untersucht. 

 



Die Topographie der Felsoberfläche und die Trennflächenmessungen aus einem 
3D Bild werden zu einem geometrischen Modell der zu untersuchenden 
Gebirgsoberfläche verarbeitet. Das geometrische Modell ist im Wesentlichen ein 
Netzwerk der Ausbisslinien auf einer unregelmäßigen Oberfläche. Innerhalb des 
geometrischen Modells werden isolierte Blöcke durch die Anwendung eines 
Suchalgorithmus entlang vorhandener Ausbisslinien, eines Verschnittalgorithmus 
und des Endlichkeitstheorems für Blöcke nach Goodman & Shi identifiziert. Die 
Blockgeometrie wird durch die Koordinaten der Eckpunkte, die 
blockbegrenzenden Ebenen, die blockbildenden Halbräume und die 
Konnektivitäten untereinander beschrieben. Aus den Koordinaten der Eckpunkte 
werden die metrischen Eigenschaften der identifizierten Blöcke wie zum Beispiel 
die Masse oder der Trägheitstensor berechnet.  

Das Gleitverhalten von Felsblöcken wird neben den metrischen 
Blockeigenschaften auch vom den Eigenschaften des Kontakts des Blockes zum 
umgebenden Gebirge entlang von Trennflächen bestimmt. Es werden drei 
typische Stufen des Scherverhaltens einer rauen, ungefüllten Trennfläche 
unterschieden. Die Stufen umfassen die Mobilisierung der Schubspannung, die 
Mobilisierung der Dilatation und die Abnahme der Oberflächenrauheit. Ein 
Stoffgesetz beschreibt die entsprechenden Normal- und Schubspannungen und 
die Normal- und Scherverschiebungen in den einzelnen Stufen. Das Stoffgesetz 
berücksichtigt die Materialeigenschaften des Felses (z.B. Reibungswinkel, 
Druckfestigkeit, usw.), Oberflächeneigenschaften (z.B. Rauheit), und Anfangs- 
und Randbedingungen (Bindungen). Das Verhalten des Stoffgesetzes und der 
Einfluss der Eingabeparameter auf das Verhalten werden in einer 
Parameterstudie gezeigt. 

Durch Trennflächenverschnitte gebildete Blöcke können beweglich sein. Die 
kinematische Analyse zielt auf die Unterscheidung beweglicher und 
unbeweglicher Blöcke ab. Als Grundlage werden die Position, die 
Verschiebungen, die Geschwindigkeiten und die Beschleunigungen 
ungebundener und gebundener starrer Körper beschrieben. Mögliche 
kinematische Bindungen eines Blocks werden als kinematische Bindungs-
gleichungen eingeführt – das sind algebraische Gleichungen, welche die 
kinematischen Bindungen mathematisch auf den Positions-, Geschwindigkeits- 
und Beschleunigungsebenen beschreiben. Für einen einzelnen Block werden 16 
kinematische Modi unterschieden, denen jeweils eine bestimmte Anzahl 
kinematischer Bindungsgleichungen zugeordnet werden. 

Die kinematische Analyse von Felsblöcken beschränkt sich auf die Untersuchung 
der Blockbeweglichkeit im Moment der anfänglichen Bewegung. Eine 
umfassende kinematische Analyse über die gesamte Blockbewegung ist nicht 
möglich, da die kinematischen Bindungen von den hervor gerufenen 
Reaktionskräften abhängen. Diese sind jedoch in dieser Phase nicht bekannt. Die 
Blocktheorie nach Goodman & Shi beinhaltet unter anderem eine allgemeine 
analytische Methode für die kinematische Untersuchung von Translations-
bewegungen von Blöcken mit beliebiger Geometrie. Die kinematische Analyse 



 
 
für Rotationsbewegungen ist nach wie vor auf tetraederförmige Blöcke 
beschränkt. Diese Arbeit führt eine analytische Methode für die kinematische 
Untersuchung der reinen Drehbewegungen, d.h. der Eck- und Kantenrotation, 
und eine numerische Methode für die kinematische Untersuchung der 
Drehbewegungen mit einer vom Block getrennten Drehachse ein. Die 
analytischen Methoden für Translationen und reine Rotationen geben ein 
vollständiges Bild über die Blockbeweglichkeit bezüglich der untersuchten Modi 
wieder. Die numerische Methode für den Modus mit einer vom Block getrennten 
Drehachse hingegen ergibt lediglich einen Satz von Lösungsparametern, falls 
einer existiert. Mit Hilfe der kinematischen Analyse können unbewegliche 
Blöcke von beweglichen unter ausschließlicher Kenntnis geometrischer 
Parameter unterschieden werden. 

Die Bestimmung der Standsicherheit beweglicher Felsblöcke ist eine 
Kernaufgabe jeder Blockanalyse, wobei überwiegend Grenzgleichgewichts-
betrachtungen zum Einsatz kommen. Ihre Anwendung ist vergleichsweise 
einfach, jedoch erfüllen die üblicherweise verwendeten Methoden nicht alle 
Bewegungsgleichungen nach Newton und Euler. Das kann zu einer falschen 
Einschätzung der Standsicherheit führen, unabhängig davon, ob sie konservativ 
oder nicht konservativ sei. In dieser Arbeit werden die Bewegungsgleichungen 
eines gebundenen Starrkörpers, welcher konservativen und nicht konservativen 
Einwirkungen ausgesetzt ist, hergeleitet. Die Integration der Bewegungs-
gleichungen erfolgt mit einem impliziten Mehrschrittverfahren und führt zur 
Beschreibung des dynamischen Blockverhaltens. Gleichgewicht ist eine 
notwendige Bedingung der Standsicherheit eines Blocks. Es stellt einen 
Sonderfall des dynamischen Verhaltens dar. Aus den Bewegungsgleichungen 
wird eine auf einem Homotopieverfahren basierende Prozedur zur direkten 
Annäherung an einen Gleichgewichts- oder Versagenszustand abgeleitet. Die 
Prozedur berücksichtigt große Blockverschiebungen, kinematische Bindungen 
und konservative und nicht konservative Einwirkungen. Der Gleichgewichtspfad 
beschreibt das Verhalten des Blocks vom Anfangszustand bis zum Gleichgewicht 
bzw. Versagen. Typischerweise werden Verschiebungen und Lasten bzw. 
lastbezogene Parameter gegenüber gestellt. Mit der vorgeschlagenen Prozedur 
werden kritische Punkte entlang des Gleichgewichtspfades, der statische und 
dynamische Versagensmodus erkannt und die Stabilität des Gleichgewichts-
pfades verifiziert. 

Die Arbeit verbindet geologische Daten aus speziellen Fernerkundungssystemen 
im Allgemeinen und Trennflächenmessungen im Speziellen mit der fels-
mechanischen Analyse von Blöcken. Die vorgestellte Methode bietet unter-
schiedliche Automatisierungsebenen, nämlich Interaktion, semi-automatische 
(geführte) Analyse und vollautomatische Analyse. Die Ansätze der 
kinematischen Analyse und Standsicherheitsuntersuchung wurden ver-
allgemeinert, um beliebige Blockgeometrien, beliebige Bewegungen, allgemeine 
Belastungssituationen und nicht konservative Einwirkungen. Mit der 
vorgestellten Prozedur werden isolierte Blöcke automatisch in einem 
Trennfächennetzwerk identifiziert. Das Trennflächennetzwerk wurde im 



Speziellen aus 3D Bildmessungen erstellt. Mit analytischen Methoden kann die 
kinematische Beweglichkeit eines isolierten Blocks hinsichtlich Translations- 
und Rotationsbewegungen einzig durch Kenntnis der Blockgeometrie bestimmt 
werden. Für eine konsistente und umfassende Standsicherheitsuntersuchung 
werden komplexere numerische Methoden eingesetzt. 
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1 Introduction 1 
 

1 Introduction 
1.1 Problem statement 

Rock mechanics deals with the description and analysis of the mechanical 
behaviour of rock masses. They exhibit a broad variety of different behaviours. A 
sub-discipline covers the analysis of failure of discrete blocks. Zones of 
weakness in the rock mass such as joints, faults, shears, bedding planes, etc., 
control their failure. They define the size and shape of blocks, and also the 
properties of contacts. For a meaningful analysis it is a paramount requirement to 
thoroughly collect information on discontinuities in the rock mass. Traditionally, 
information could only be obtained at locations with direct access to the 
discontinuity at an outcrop or at samples extracted from the rock mass, e.g. 
samples from core drillings (e.g. Riedmüller et al. 2002, Brosch et al. 2001, 
Harer 2009). In the last decade new technologies emerged in the field of rock 
mechanics for the contact-free measurement of surfaces (Roberts & Poropat 
2000, Fasching et al. 2001, Slob et al. 2002, Gaich et al. 2003, Kemeney et al. 
2003, Haneberg 2008). The technologies are mostly related to laser scanning and 
3D imaging. They provide new possibilities to characterise the rock mass, and 
more specifically, to collect information about discontinuities without the need of 
physical access. 3D imaging technology provides both accurate geometric 
information and aligned photorealistic image information. This allows the user to 
determine discontinuity measurements wherever visible and resolved in a 3D 
image. The knowledge of the size at the outcrop, position and orientation of 
specific discontinuities opens up new ways to approach analyses in rock 
mechanics. With focus on block failures, a major part of the necessary data for 
determining the geometry of rock blocks has become available. The data have 
not been integrated in a standard rock mechanics design, nor have 
straightforward tools been available to process and use the data.  

Mechanical analyses of rock blocks aim at determining their stability and the 
associated factor of safety. Practically applied methods are often limited to limit 
equilibrium analyses accounting typically only for cohesion and friction of 
discontinuities and inherently assume a translational failure mode (John & 
Deutsch 1974, Kovári & Fritz 1978, Hoek & Bray 1981, Gianni 1992, Brady & 
Brown 2004). Block theory (Warburton 1981, Goodman & Shi 1985) provides a 
consistent framework for analysing different translational failure modes of blocks 
depending on the resultant external force. Complex loading conditions, however, 
can only be considered with coarse simplifications. In contrast to these methods, 
it is supposed that a block failure is more likely to happen through a combined 
translational-rotational failure mode (Chan & Einstein 1981). A general method 
for determining the stability of a rock block under a true (not assumed) failure 
mode is not available in rock mechanics unless extensive numerical methods are 
applied (Hart et al. 1988, Eberhardt 2003). 



2 1 Introduction 

1.2 Objectives 

The dissertation pursues several objectives. A key objective is to establish a 
method to integrate discontinuity measurements from remote sensing data into an 
analysis procedure for determining the stability of rock blocks. Discontinuity 
measurements comprising their size, position and orientation are obtained from a 
three-dimensional photorealistic model (3D image) of the exposed rock surface 
which in turn defines the free surface. Based on this information fully defined 
blocks shall be identified in the discontinuity network. The identified rock blocks 
are subject to the mechanical analysis including kinematic analysis and stability 
analysis. 

The kinematic analysis can already be performed with the sole knowledge about 
geometric data and provides information about potential movability of a rock 
block. Translational kinematics has already been described comprehensively by 
several authors (Londe et al. 1969 and 1970, Warburton 1981, Goodman & Shi 
1985). Unlike translations, rotational kinematics has been limited to pure rotation 
modes of tetrahedral blocks (Mauldon & Goodman 1990 and 1996, Tonon 1998). 
Another key objective is the extension of the theory of block kinematics to 
general roto-translational motion for arbitrary block geometries.  

Any consistent mechanical analysis in engineering in static or low-velocity 
environment shall be based on Newton’s and Euler’s equations of motion. For a 
rock block whose deformability compared to the movability along bounding 
joints is low, there are six degrees of freedom, three translational and three 
rotational. Due to its low deformability the rock block can be considered as a 
rigid body. Another key objective is to establish a method for the mechanical 
analysis of rigid blocks to assess their stability under general non-conservative 
loading conditions. Stability shall be assessed without predefining displacements 
as shown by Karzulovic (1988) and Pötsch (2002). The method shall be able to 
process any type of mechanical loading and comply with the kinematic 
constraints imposed by discontinuities.  

 

1.3 Structure of the dissertation 

The dissertation is organised into seven chapters. The current chapter introduces 
the topic, outlines the goals of the work, and provides an overview and basics to 
the topic. 

The second chapter introduces the remote sensing technology and its application 
to geologic and geotechnical data acquisition. It outlines the requirements on the 
measurement system for the intended application (geologic mapping and data 
collection) and reviews different approaches. In this work a computer vision 
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system based on stereo-photogrammetry has been used. The principles of the 
system as well as its field application are addressed. Finally, discontinuity 
measurements are described and their reliability discussed. This chapter answers 
the question whether reasonable remote sensing systems are available for 
geologic data collection, how they can be practically used and if the 
measurements are reliable enough to be used in a relevant rock mechanics 
analysis. 

The third chapter investigates the zones of weakness (discontinuities) forming 
the block. It deals with their properties and the associated mechanical behaviour 
with special focus on the shear behaviour. After addressing factors influencing 
the discontinuity shear behaviour the stages of shearing of an unfilled, matched 
and rough discontinuity are described. Based on the findings, a constitutive 
model for constrained discontinuity shear behaviour is formulated. The 
constitutive model provides a framework which can be used to determine the 
interaction of a block with the rock mass in terms of displacements and stresses. 
A parametric study highlights the sensitivity of the constitutive model to 
variation of the input parameters. 

The forth chapter deals with properties of blocks with an arbitrary polyhedral 
geometry. The chapter provides a method for distinguishing fully defined blocks 
(finite blocks) from infinite blocks. The method is based on Goodman & Shi’s 
theorem of finiteness of non-convex blocks (Goodman & Shi 1985). The chapter 
continues with the descriptions of the calculations for determining the metric 
properties such as the block’s volume or inertia matrix. A method for identifying 
finite blocks in a three-dimensional discontinuity network is also presented. This 
chapter provides methods for determining all block data required for the 
subsequent kinematic and stability analysis. 

The fifth chapter is dedicated to the kinematics of a rigid body. It extensively 
discusses the mathematical relationships of feasible block displacements and 
outlines the algebraic kinematic constraint equations. Thereupon the methods for 
the kinematic analysis of translational, rotational and roto-translational motion 
are reviewed and established, respectively. The chapter has two major impacts. 
On the one hand, it provides the constraint equations which are later used for 
formulating the equations of motion of a constrained block. On the other hand, 
the methods for the kinematic analysis allow distinguishing movable from 
unmovable blocks. Critical blocks are limited to the set of movable ones. 
Valuable information can be obtained from a comprehensive kinematic analysis 
only with geometric input data. 

The sixth chapter finally introduces a method for assessing the stability of a rock 
block. It is based on the complete set of Newton’s and Euler’s equations of 
motion and takes advantage of the methods developed in the previous chapters. 
In detail, the equations of motion are derived for a constrained rigid body and 
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methods for their integration are provided. The methods are cast into a concept to 
derive relevant conclusions for the stability of a block. 

The seventh chapter concludes the dissertation. It summarises the key 
achievements and findings, but also lists topics which have not been 
(sufficiently) addressed. 

Every chapter is more or less a complete sub-topic. Every chapter is introduced 
by a review of the state of the art and relevant articles. Unlike the introduction 
chapter every other chapter concludes with a summary of the findings and points 
out the need for the next topic. 

 

1.4 Symbols and abbreviations 

1.4.1 Vectors and matrices 
  
A(ij) Rotation matrix between coordinate system i and j 
CjR Vector pointing from point Cj to point R 
d Normal distance vector 
D Plane code vector 

DP 
Matrix transforming generalised block displacement to point 
displacements 

dij Vector pointing from body i to body j 
δπ  Virtual rotation 
δr Virtual displacement 
Δx Corner displacement 
E Euler parameter transformation matrix 
ei Unit vector of coordinate axis i 
eij Edge vector between points i and j 
Fa External force vector 
fi, gi Vector fixed to body i 
G Euler parameter transformation matrix 
Hp Matrix rotating a block fixed vector to its new orientation 
I Identity matrix 
Iij Intersection vector between two planes 
 Signed intersection matrix 
J Inertia matrix 
ki Edge vector at body i 
K Stiffness matrix of a block 
Ma External moment vector 
ni Normal vector of a plane i 
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N Normal vector matrix 
p Vector of Euler parameters (Quaternion) 
q Generalised displacements 
Q Generalised forces 
r Position vector 
R Position vector of a point along the rotation axis 
res Residual force vector 
s Body fixed vector 
S Scaling matrix 
T Testing matrix 
u Rotation axis 
vC Displacement vector of the centre of gravity 
vN Normal displacement vector of a point 
vP Displacement vector of a point 
vS Shear displacement vector of a point 
z Vector of the stiffness matrix’s null space 
γ  Constraint factor 
λ  Lagrange multiplier 
ω  Angular velocity 

 

1.4.2 Scalars 
  
A Area 
a Seywald’s correlation factor 
A0 Maximum potential contact area 
C  Grasselli’s roughness parameter 
c1, c2 Degradation parameters 
Cijk Corner number of plane intersection i, j, and k 
ei Euler parameter 
Gk Dissipative forces 
i Dilation angle 
Jii, Jij Moment or product of inertia 
kn Normal stiffness 
ks Shear stiffness 
Ktot Total normal stiffness 
L Length  
Lstep Increment size 
m Mass 
Nf Number of property f 
O Origin of coordinate system 
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p Eigenvalues of the differential equation of the unforced and 
undamped block 

pV Penalty value 
t Spline control parameter 
t Time 
T* Fictitious kinetic energy 
u Shear displacement 
upeak Shear displacement at peak shear strength 
V Volume 
v Normal displacement 
V* Fictitious potential 
vm Maximum joint closure 
W Shear energy 
α Angle between displacement vector and normal vector 
αmax Maximum asperity angle 
β 

p, β 

c Adams-Bashforth-Moulton integration terms 
ε Rotation angle 
ϕ Friction angle 
ϕb Basic friction angle 
ϑijk Vector turn angle at corner Cijk 
λstage Stage control parameter 
ν Poisson’s ratio 
Θ Kinematic constraint equation 
Θ*

max Maximum apparent asperity angle 
ρ Density 
σn Normal stress 
τ Shear stress 
ψ Scaling parameter 

 

1.4.3 Abbreviations 
  
BP Block pyramid 
CNL Constant normal load 
CNS Constant normal stiffness 
EP Excavation pyramid 
JCS Joint wall compressive strength 
JP Joint pyramid 
JPC Corner joint pyramid 
JRC Joint roughness coefficient 
SP Space pyramid 
UCS Unconfined compressive strength 
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1.5 Mathematical peculiarities 

The applied formalism uses matrix operations. Vectors are considered as column 
matrices. All rules for matrix operations are applicable including rules for 
addition, subtraction, products, transposing, and inverting. Since many operations 
originate from vector operations, equivalent operations of the scalar and vector 
product have to be used. For the scalar product one can use expression (1). 

   

€ 

n m = nT ⋅ m (1) 

The vector product can be expressed with a matrix multiplication (2) by 
introducing an operation transforming the vector to a skew symmetric matrix. 

 

€ 

k = n ×m→k = n* ⋅ m (2) 

The skew symmetric matrix n* is defined as shown in expression (3). 

 

€ 

n = n1 n2 n3( )T ↔ n* =

0 −n3 n2
n3 0 −n1
−n2 n1 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 (3)  

The asterisk operation of matrices obeys also the following relationships: 

 

€ 

n*T = −n*

n* ⋅ m = −m* ⋅ n
n* ⋅ m* =m⋅ nT −nT ⋅ m⋅ I

n* ⋅ m( )* =m⋅ nT −n⋅ mT = n* ⋅ m* −m* ⋅ n*

 (4)  
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2 Geological and geotechnical data 
collection 
Application of remote measurement systems at 
exposed rock faces 

Remote measurement systems for the collection of rock mass parameters have 
been gaining increasing use and importance in the daily engineering geologic 
work. The developments in this respect in the last few decades focused on 
increasing the working range and speed, and easing the field application at an 
affordable cost. The advances in computational power and sensing capabilities 
together with the development of specific software tools to handle the obtained 
data led to mature systems which can be applied in the daily work. This chapter 
gives a brief introduction to remote measurement systems for geological and 
geotechnical data acquisition at exposed rock faces. It shows also a list of 
characteristics and requirements for performing the stated tasks. Subsequently, 
the chapter describes the application of an image based measurement system with 
its principles and required field and computational procedures. The chapter 
concludes with the discussion of the obtained data, as well as the prime use of 
these systems to rock face characterisation. 

 

2.1 Remote measurement systems 

Remote measurement systems in geological data collection aim at the 
measurement of the rock mass structure and the geometry of a rock face. 
Surveyed structures are in this case rock fractures such as joints, faults, foliation 
and bedding planes, contacts, etc. Typical figures of the rock face geometry are 
the height and dip of the slope as well as the change of the geometry over time. 

 

2.1.1 Characteristics and requirements 

Geological and geotechnical data collection is basically a surveying task. Due to 
the nature of the investigated data and the number of required measurements the 
measurement systems have to comply with several requirements whose 
importance is different to conventional surveying. A conventional survey focuses 
on the determination of the position of a certain point in space at a sufficiently 
high accuracy (Joeckel et al. 2008). Geological and geotechnical data collection 
focuses on the identification and survey of relevant structures in a rock mass and 
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its special relation to the free faces. One significant difference between the two 
methods is that in the latter we do not know during the data acquisition where the 
relevant measurement has to be placed. For spatial measurements we need 
therefore a high density of points (a point cloud) and a means of relating the 
relevant structures to the point cloud. State-of-the art systems as introduced in the 
following sections provide a dense cloud of points. The point cloud is 
triangulated which forms an irregular surface – in most of the cases this is a 
triangulated irregular network. Additional attributes can be assigned to the points 
or surface triangles. The following list gives an overview of the characteristics of 
measurement systems. It addresses point or surface attributes, the point density, 
the relative point accuracy, the accuracy of the absolute position in space, the 
ground resolution, and the working distance. 

Point or surface attributes: 
• None: If no other than geometric information is available, the surface can 

be represented only in a shaded manner. Surface irregularities can be 
geometrically, but hardly visually identified (Figure 1 top left). 
 
 

    

     

Figure 1: Top left: grey shaded irregular surface of a rock face without 
additional point attributes – Top right: laser intensity image from 
Bellian (2003) – Bottom left: 3D image of a rock face in RGB colour 
– Bottom right: ASTER (Advanced spaceborne thermal emission and 
reflection radiometer) image of Escondida mine, Chile. Colours 
indicate different rock types and alteration (downloaded from 
http://asterweb.jpl.nasa.gov/ on January 24, 2009).  
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• Intensity: The intensity value gives information on the reflective 
properties of the rock mass additionally to the geometry. Intensity changes 
can indicate different humidity or rock types, but not in an absolute scale 
(Figure 1 top right).  

• Colour: Colour information with 24 or 48 bit depth allows a true 
representation of the rock mass. The colour information together with an 
irregular surface is referred to as a 3D image (Figure 1 bottom left). 

• Multi-spectral information: Today sensors are available which capture the 
electromagnetic radiation emitted by the rock mass (Prost 1980, Ninomiya 
et al. 2005). Since rock types comprise a characteristic set of minerals 
each related to a frequency of radiation, multi-spectral information allows 
identifying rock types and weathering degrees in an absolute scale (Figure 
1 bottom right). To the author’s knowledge, these types of sensors are 
currently applied in remote sensing and exploration but not as a standard 
tool in daily engineering geological and geotechnical investigation. 

 

Point density: The point density describes the number of 3D points per unit area. 
The point density of a point cloud varies due to different distances of the rock 
face to the sensor. An average value over the entire point cloud is characteristic. 
The point density is important for several respects.  

• It determines the level of detail of the investigated rock face’s model. The 
more detail the point cloud has, the more accurately it describes the real 
shape of the face, and also the more detailed structures and smaller-scale 
properties can be determined.  

• The higher the point density, the more robust are orientation 
measurements taken from a point cloud (see below).  

The point density can depend on the size of the rock face, the working distance, 
the angular or image resolution of the sensor, etc. 

 

Relative point accuracy: The relative point accuracy describes the spatial 
variation of the points within a point cloud. It is also called measurement noise or 
point cloud thickness. The latter name is derived from the phenomenon that a 
point cloud of real point measurements of a plane is not planar but shows a small 
thickness. The relative point accuracy together with the point density influences 
orientation and joint roughness measurements.  
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Figure 2:  Model for the analysis of theoretical errors of plane orientation 
measurements 

Ferrero et al. (2008) discuss the influence of the relative point accuracy on dip 
angle and dip direction measurements, but they do not discuss the true angular 
deviation (angle between the true and measured normal vector of a plane). Their 
error analysis has been performed through computing variance propagation and 
investigates the orientation errors due to plane orientations, point density, shape 
of the plane, and measurement noise. 

The following paragraphs outline a similar study performed by Monte Carlo 
simulation. The study also considers the absolute angular deviation between true 
and measured normal vector increasing the significance of the findings compared 
to analysing dip direction and dip angle alone. The model considers the relative 
point accuracy, the size and shape of the plane, the grid spacing, and the 
orientation of the plane relative to the measurement system (dip direction and dip 
angle). The applied range of values is typical for point clouds obtained from 
remote measurement systems.  

Figure 2 shows model for the analysis of errors of plane orientation 
measurements using point clouds obtained from a remote measurement system. 
The point cloud originates from a plane. The orientation measurement is related 
to the best-fit plane to the point measurements. It is assumed that the point 
accuracy is isotropic and normally distributed. Figure 3 and Figure 4 show 
selected results for the theoretical orientation measurement errors. The diagrams 
show the absolute angular deviation (i.e. the angle between the true and 
measured normal vector), and the deviations of the dip angle and dip direction. 
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Figure 3:  Orientation measurement errors from point clouds. Relative point 
accuracy is 0.5% of the maximum plane dimension. Grid spacing is 
10% of the maximum plane dimension. 

Figure 3 investigates the shape of the plane (ratio between width and height) and 
the dip angle of the plane. It shows that narrow shapes result in a stronger 
deviation from the true value than square shapes. The absolute angular deviation 
is insensitive to the plane’s aspect ratio. The dip angle is more sensitive to wider 
rectangles, while the dip direction is more sensitive to higher rectangles. Flat 
planes (below 10° dip angle) strongly influence the dip direction although they 
do not affect the absolute angular deviation. No significant influence of the 
plane’s dip direction towards the measurement device has been encountered.  

Figure 4 shows the influence of the grid spacing and relative point accuracy on 
the measured orientation in case the plane is a square. The dip angle is 5°. Red 
lines refer to a ten times higher relative point accuracy than black lines. Solid 
lines refer to an 11x11 point grid while dot-dashed lines refer to a 3x3 point grid. 
 

 

Figure 4:  Orientation measurement errors from point clouds. Ratio between 
width and height is 1. Dip angle is 5°. 
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The results show that the absolute angular deviation and dip angle deviation 
remain widely below one degree. The deviation of dip direction is noticeable for 
the lower relative point accuracies and even more pronounced with lower point 
density. It shall be noted that the latter observation involves pessimistic 
assumptions such as flat dip angle, low point density and low relative point 
accuracy. 

The results in measurement deviations agree well with the observations of 
Ferrero et al. (2008). Anyhow, the most relevant absolute angular deviation 
remains in most of the cases below 1°. It can be concluded that orientation 
measurements are sufficiently reliable with point densities and accuracies 
typically achieved with remote measurement systems.  

 

Accuracy of the absolute position of a point in space: This characteristic 
describes the deviation of a point measurement from the true value within a 
superior coordinate system. Superior coordinate systems can be global, national, 
site or project-specific coordinate systems. The absolute position in space can 
only be checked at points with known coordinates, so-called ground control 
points. It shall be noted that even a real measurement of a ground control point 
wears an error depending on the applied measurement system (e.g. total station). 

The accuracy of the absolute position in space is the mean of the control point 
deviations. It is a measure how well a 3D point cloud fits into a given coordinate 
frame. Its influence on geological measurements is minor. Figure 5 shows as an 
example a model for determining joint orientations due to errors in absolute 
position in space.  

 

 

Figure 5:  Model for deviations in joint orientation due to errors in absolute 
position in space. 
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The point cloud is registered at the control points with residuals (deviation vector 
at control point). The control point region (containing 6 control points) has a 
height of 11 m and a width of about 35 m. The deviation vectors have 
exemplarily a mean length of 0.1 m (which is considered as a bad accuracy). The 
vector length is normally distributed; the vector orientation is random. 

Figure 6 shows the deviations of the orientation measurement for a 5° dipping 
joint and the model deviation from the true values. No significant deviation from 
the true value can be observed; only the dip direction shows a deviation of 2°. No 
influence of the dip direction of the joint on the deviation could be observed. 
Angular deviations become smaller with increasing control point distance and 
improved control point accuracy. 

 

 

Figure 6:  Absolute frequency diagram of orientation measurement error for a 
flatly dipping joint  

 

Ground resolution: Sensors can resolve the ground to a certain limit. Image 
based systems describe the resolution with the ground pixel size, i.e. the square 
area of ground covered by one pixel. Laser based systems give a beam 
divergence angle, i.e. the divergence of the laser beam with distance. One can 
determine the diameter of the laser beam’s footprint on the ground using the 
beam divergence. 

 



2 Geological and geotechnical data collection 15 
 
Working range: The working range of a system indicates the applicable distances 
from the measuring unit to the rock face which still deliver reasonable results. 
The larger the working range, the more flexible is its field application. Working 
ranges of measurement systems currently used for geological data acquisition are 
from less than a metre up to a couple of hundred / thousand metres depending on 
the principle. For more details refer to sections 2.1.2 and 2.1.3. 

The above parameters describe the expected quality and suitability of a point 
cloud for geotechnical evaluations. Depending on the measurement system these 
parameters can be partially adjusted to meet specific requirements. A higher 
quality can be achieved by enhancing the applied hardware, the registration 
method, increasing the resolution of the object, or increasing the number of 
control points. An enhanced hardware refers to, for example, a camera with a 
higher image size, or a laser scanner with a smaller angular increment. This leads 
finally to a higher number of points per unit area. Subdividing an object into 
overlapping patches also increases the object’s resolution. The use of control 
points increases the accuracy of the spatial position while an increased number of 
control points provides redundant information and enables error balancing. All 
these measures lead to an increased effort for the data acquisition, especially 
during the field work. 

A frequent application of a measurement system though requires an easy 
application in the field and delivers the data fast and robustly. The author has 
also experienced a more frequent application of remote measurement systems, 
the more portable and less bulky the hardware has been.  

 

2.1.2 Brief review of image based systems 

Image based measurement systems acquire the information on the rock mass 
primarily from one or several images of the rock mass. The images have 
traditionally been photographs taken with film cameras. Nowadays, digital 
cameras are available and allow taking photographs in formats suitable for digital 
image processing. 

One image, either analogue or digital, serves for identifying the structure of a 
rock mass. It allows identifying joint traces and daylighting areas including their 
boundaries. Since only two coordinates describe the position of a point in a 
photograph, no 3D measurements can be performed. However, it is possible to 
determine relative lengths and apparent angles from a photograph. Goodman 
(1976) describes the use of a gnomonic net for measuring angles of joint traces 
from a photograph. It requires the knowledge of the interior orientation of the 
camera (without lens distortion).  
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3D measurements require at least two images of the same object taken from 
different positions. This is referred to as stereoscopic view and the corresponding 
photographs are called a stereoscopic image pair, or, simply, a stereo pair. The 
reconstruction of a 3D point from a stereoscopic image pair has already been 
addressed by photogrammetry and described in textbooks (e.g. Wolf & Dewitt 
2000). Point reconstructions from photographs of film cameras are tedious and 
never found a routine application in rock mass characterisation. Applications 
have been reported, anyhow, by Linkwitz (1963), Rengers (1967), Vieten (1970), 
Ross-Brown et al. (1973), Hagan (1980), Franklin et al. (1988), Rorke & 
Brummer (1985), and Crosta (1997). Digital photogrammetry covers the 
principle of classical photogrammetry and peculiarities of digital photography 
and image processing. A 3D point can be reconstructed if the positions and 
attitudes of the two cameras and the corresponding points in the two images are 
known. One application has been reported by Roberts & Poropat (2000) where 
camera orientations have been determined by external measurements. This 
requires surveying the cameras in the field and is thus difficult to apply. Another 
possibility of determining the external camera orientation is the observation of 
well-defined control points with known coordinates. The corresponding method 
is the block bundle adjustment (e.g. Wolf & Dewitt 2000). Lee et al. (2000) 
present a model and field test of digital stereophotogrammetry and report 
orientation errors between manual and photogrammetry measurements less than 
5°. 

In the 1990s new approaches and algorithms emerged easing the coding and 
steps for data acquisition and computation. These newer methods are all 
summarised under the term Computer Vision (Faugeras 1993). Computer Vision 
addresses besides the principles of photogrammetry also the determination of the 
relative camera orientations without any control points, the calibration of 
cameras with zoom lenses, and the point reconstruction from multiple view 
images. Gaich et al. (2003) addressed also calibration and 3D image generation 
using high-resolution panoramic cameras for geotechnical data acquisition in 
tunnelling. 

 

2.1.3 Brief review of laser based systems 

Laser based systems rely on the feedback of a laser pulse emitted by a laser diode 
and detected by a sensor. Laser distance meters and range finders provide the 
distance from the instrument’s position to the point at which the laser signal has 
been reflected (Joeckel et al. 2008).  

A total station or tachymeter is a theodolite combined with a laser distance meter 
both calibrated to the viewing direction (Joeckel et al. 2008). Thus, it allows the 
measurement of a 3D point with an oriented laser beam. The 3D point 
coordinates can be determined using calculations in polar co-ordinates. 
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Depending on the required positional accuracy of the point and its distance to the 
measurement unit, correction factors considering earth curvature, temperature 
and air pressure, have to be used. Although Feng et al. (1999) and Bulut & Tüdes 
(1996) have reported such an approach, total stations have not been used as a 
standard tool in geological data acquisition.  

The realisation of narrow-focused laser beams and the rapid measurability of 
laser pulses led to the development of 3D laser scanners (also known as LIDAR). 
Originally used for airborne application, laser scanners are now available for 
terrestrial applications. Rotating mirrors inside the equipment guide the laser 
pulse and control its emitted direction (Joeckel et al. 2008). Modern laser 
scanners determine the distance to the point of reflexion with two possible 
methods. The first method is the “Time of Flight” (ToF) measurement. A highly 
accurate clock detects the time of departure and arrival of the laser pulse. The 
elapsed time together with the speed of light in the corresponding medium 
determines the distance. The second method is the “phase shift” (PS) 
measurement. It relies on counting the periods of a modulated signal and 
evaluating the phase shift between emitted and detected signal (Joeckel et al. 
2008). Applied ToF lasers nowadays have a range up to approx. 2000 m while 
PS lasers have a range up to approx. 200 m (U.S. Department of Transportation 
2008). Compared to PS lasers ToF lasers are slower. Since the laser signal only 
gives the coordinate of a point and the intensity of the reflexion, laser scanners 
have been equipped with cameras in order to gather colour information of the 
object (Przybilla 2006). Both perspective and panoramic cameras have been 
used. The mounting of the camera must be defined to the laser. Terrestrial laser 
scanners register the data either through defined installation over a known point 
or at ground control points within the scanning area. 

Application of terrestrial laser scanners to geological and geotechnical problems 
have been presented, for instance, by Kemeny et al. (2003), Slob et al. (2005), 
Strouth & Eberhardt (2006), Ghirotti & Genevois (2007), and Sturzenegger et al. 
(2007). 

 

2.1.4 Comment on radar based systems 

More recently, bigger open cut mines have been using mobile radar systems for 
slope monitoring (Harries et al. 2006). The system is used for continuous 
monitoring of slope movements. The achieved accuracy of absolute position in 
space is beyond one millimetre and thus suitable for remote displacement 
monitoring. Although their accuracy is high, the achieved resolution of currently 
used systems is lower than one metre per pixel. These systems are not capable of 
gathering data on the rock mass structure. It is also difficult to relate observed 
movements to their origin. A thorough analysis is required to distinguish between 
moving vehicles, falling rock blocks and large and fast slope displacements. 
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2.2 Application of a computer vision system 

In this work a computer vision system is used for the remote geological data 
acquisition. The reasons for selecting a computer vision system are manifold: 

• An image based measurement system is especially suitable for the 
geological / geotechnical data collection due to combined geometric and 
image information 

• The computer vision approach used entails simpler field work and data 
processing only with minor user-interaction compared to classical 
photogrammetry systems. 

• Cameras can be properly selected for a variety of applications depending 
on the working distance or rock face height.  

• Data acquisition procedures can be easily adjusted to meet specific site 
criteria. 

• Equipment is not bulky – it entails only a camera and portable scaling 
figures. Thus, the application in rough terrain is no problem 

The used computer vision system is commercially available as JointMetriX3D 
for calibrated high-resolution panoramic line scan cameras, and ShapeMetriX3D 
for calibrated off-the-shelf digital SLR cameras. 

 

2.2.1 Principles 

The system relies on stereoscopic imaging, i.e. two digital images of the same 
area from different positions are required. The images serve for determining the 
corresponding points in the image pair, the relative orientation between the two 
cameras and the reconstruction of the spatial position of the points relative to the 
cameras. The principle is also known as Shape from Stereo (Figure 7). Several 
computation steps are necessary to obtain a 3D image allowing for true-scale 
measurements: 

Image matching 

Image matching is the process of fully automatically, robustly, and accurately 
finding corresponding points between two images of the same object (Sonka et 
al. 1999). For a realistic description of the rock surface a dense grid of points is 
indispensable. A 3D image used for discontinuity measurements comprises at 
least a couple of hundred thousand points. Image matching for about 300,000 
points takes on a 2GHz dual core processor about 1 minute. Point 
correspondences in a digital image can be found at an accuracy of 0.1 pixels 
(Sonka et al. 1999). 
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Figure 7:  Shape from Stereo. A stereoscopic image pair taken with a calibrated 
camera system is used to identify a dense grid of match points; 
determine the exterior orientation; reconstruct the point cloud; and 
render the rock face surface combined with a digital photograph. 

 
Relative camera orientations 

Based on the set of match points the system determines the relative orientation 
between the two cameras. Relative camera orientations are determined using 
computer vision principles and optimisation procedures (3G Software & 
Measurement 2006). 

Point reconstruction, triangulation and image alignment 

Once the match points and relative camera orientation has been determined, the 
original points are reconstructed using the Shape from Stereo principle (see 
Figure 7). The result is a so-called point cloud, a set of a high number of 
unordered points. In order to obtain an irregular surface the point cloud is 
triangulated and, finally, the digital image aligned with the surface using the 
connectivity between match points and 3D points. Since every point has its origin 
at a photograph, the alignment of a photograph is determined for every point and 
does not need interpolation. The 3D image at this stage is geometrically correct 
but has no transformation to the real world, i.e. it has an arbitrary orientation and 
scale. This is referred to as a generic 3D image. 
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Camera calibration 

Camera calibration refers to the determination of the image formation process 
within a camera. It includes the determination of the accurate focal length 
(distance from the image sensor to the focal point), the principal point (piercing 
point of the optical axis), and the lens distortion. This is also referred to as the 
interior orientation. Since off-the-shelf cameras have originally not been intended 
for measurements, their mechanical stability and manufacturing accuracy does 
not yield accurate measurements.  

Classical photogrammetry requires the use of three-dimensional calibration 
objects, i.e. which have depth in all three spatial directions together with lenses 
with a fixed focal length. The computer vision approach introduces the use of 
zoom lenses and planar calibration patterns (Figure 8) – all of it easing the field 
work and use of the camera. Pre-calibrated cameras can be used. 

The lens distortion results in a deviation of points of the ideal image and the real 
image. This deviation is almost zero in the centre of the image at the principal 
point and increases with the distance. Distortions may be distinguished into 
radial and decentering contributions (Brown 1971). Deviations may be as high as 
40 pixels especially with short focal lengths (smaller than 20 mm).  

 

    

Figure 8:  Planar calibration target with a regular point pattern (left). Deviations 
between ideal and real image of a regular pattern. Deviations are 
largest at the corners (right). 
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Registration of a generic 3D image 

In order to obtain measurements in a real world coordinate system the generic 3D 
image needs registration to a known coordinate system. It is done by observation 
of a known figure which is visible in the stereoscopic image pair. The known 
figures are traditionally ground control points, i.e. non-collinear points with 
known coordinates distributed over the rock face or its boundary, respectively. 
This kind of registration is referred to as georeferencing, especially if the 
reference system is a global or national coordinate system. A minimum of three 
ground control points is required to define the transformation. Any additional 
point gives redundancy and allows for error analysis. The ground control 
coordinates are usually determined with a total station or accurate GPS 
(differential, RTK, etc.). Control point accuracy should be better than ±5 cm, 
otherwise the control point error governs the accuracy of the 3D image. 

ShapeMetriX3D also features the use of range poles to transform a generic to a 
scaled 3D image. Although the absolute position in space is less accurate 
compared to the use of ground control points, it turned out that for geological 
mapping the position accuracy is more than sufficient. A range pole is a 
vertically installed pole comprising two targets at a known distance (Figure 9 
left). At least one range pole is required. The range pole allows the 
transformation to the vertical and the correct size. 

 

           

Figure 9:  Installing a range pole in front of a rock face (left). Determining the 
azimuth of a reference line for North correction. Note the two 
marking elements (right). 
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The azimuth can be corrected to north using the observation of a reference line 
between to points. It is sufficient to measure the azimuth with a compass (Figure 
9 right). If these measurements should be related to a geographic coordinate 
system, deviation between geographic and magnetic North may need to be 
considered. In case of the presence of magnetite or other magnetic rocks, 
compass readings may be replaced by coordinate or gyro measurements. To the 
author’s knowledge, gyro measurements in this context have not been reported so 
far. 

The reference figures must be well visible in the stereoscopic image pair. Each 
target requires a minimum of eight by eight pixels for defining its centre 
consistently. In consequence, the size of the targets and the used camera (image 
size) limit the height of the rock face. Using a 10 Megapixel camera and targets 
with 25 cm diameter the practical upper limit of the rock face is 50 m. 

 

 

Figure 10: Merging of 3D images. Two single 3D images show a partial overlap 
(top). The overlap is used to align the two images and unify them 
(bottom) 
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Merging of 3D images 

If 3D images have a sufficiently big overlap, they can be merged to one 
combined 3D image (Figure 10). Merging follows a master-slave strategy in 
which the slave 3D image is registered at the master 3D image. It is necessary to 
have geometric point information in the overlap. For performing the 
transformation a good initial guess of the correspondence has to be interactively 
provided. 

 

2.2.2 Field procedures 

The field procedures corresponding to 3D image data using the described 
computer vision system basically focus on the proper capture of the stereoscopic 
image pair. For merged models sufficient overlap between single stereo pairs is 
recommended. It should be around one third to one quarter of the image height or 
width, respectively. In general, the field procedures include the installation of the 
reference figures (control targets or range pole), and capturing the images. The 
process is essentially the same for underground and open-air applications. 

 

Taking the photographs 

It is not necessary to survey the camera positions and attitudes. Therefore, the 
images can be taken free-hand. It is necessary that the lens settings remain the 
same for one stereo pair. The images of a stereo pair can have an overlap of 
almost 100 percent. Flash must not be used.  

In underground environments with low light conditions, the camera should be 
used on a tripod in order to provide stability during exposure. Survey of the 
camera is not necessary. The automatic cameras should be used in the aperture 
control mode with the aperture kept on a high value, for instance F8 or F16. This 
ensures a wide range of depth sharpness. Increased exposure time with high 
aperture is not a problem when using a tripod. Shaking the camera during shutter 
release can be avoided by using a remote trigger. Flash must not be used because 
image quality becomes bad due to dusty air. Flash fixed to the camera 
additionally causes different shadows on the face (light emission from different 
positions). The image processing in consequence would partially deliver 
geometrically incorrect point correspondences.  
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The stereoscopic image pair 

The next step is the capture of the stereoscopic image pair. Two images of the 
same rock face from different positions are necessary. The line between the two 
imaging positions is called the base line and the distance between is the base 
length. The base line should be at best parallel to the strike of the rock face. The 
base length should be between one fifth to one eighth of the distance to the rock 
face; for example, if the imaging distance is 50 m, the base length is in the range 
of 6 m to 10 m. Selection of the base length is a trade-off between accuracy and 
matching. Matching performance increases the smaller is the base length, while 
accuracy improves with increasing base length. If the base length becomes too 
big, the perspective distortion of the two images is too big: The images do not 
show the same object – matching would fail. If the base length becomes too 
small, the holonomic rays intersect at an acute angle and point position becomes 
insecure and the determination of camera orientation fails.  

The images should be taken from about the same altitude and with the same lens 
setting, i.e. same focal length and focus. 

 

Ground control points – open air 

Ground control points (GCP) are used if the area captured by a photographic 
survey becomes larger than the limits outlined for the range pole (typically 40 -
 50 m) or if the measurements are necessary directly in a certain coordinate 
frame. This is especially the case for panoramic surveys or for merged 3D 
images.  

Instead of a reference figure, points with known coordinates in the coordinate 
frame can also be used. A minimum of three points is necessary to define the 
transformation. A higher number of points is redundant but allows for error 
analysis. The ground control points or reference points are marked with targets 
sufficiently large to be visible in the images. Their arrangement must not be 
collinear – collinear points only define an axis. The ground control points have to 
be defined in a right-handed coordinate system. Using ground control points the 
3D image is directly transformed into the target coordinate system; that is, into a 
geographic coordinate system as opposed to compass directions. The deviation 
between geomagnetic and geographic north depends on the position on earth and 
may reach significant values. The Geological Survey of Canada provides an 
online calculator for the determination of the magnetic declination at 
http://geomag.nrcan.gc.ca/apps/mdcal-eng.php depending on current time and 
geographic position (longitude and latitude). 
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Applying more than three ground control points, the errors between the 3D image 
measurements and the GCP can be analysed. The deviations are typically in the 
range of < 5 cm with single convergent image pairs and 2 – 15 cm in case of 
merged 3D images. The accuracy of the ground control points should thus be in 
the range of only a few centimetres (ca. 1 - 3 cm), otherwise the accuracy of the 
ground control points governs the accuracy of the 3D image.  

 

Ground control points – underground 

Ground control points are also used in underground excavations, especially if 
they are present at the tunnel face. From the imaging point of view, ground 
control points would be most favourable when directly on the face. However, 
installation of GCP on the face in a standard procedure is time consuming and 
thus not reasonable. In some cases targets from displacement monitoring appear 
in a stereo pair. The coordinates of these targets can be used without any 
additional effort.  

A specific method for referencing in relation to panoramic cameras is used in 
underground excavations. The panoramic camera’s attitude extends to capture 
not only the face but also the already excavated tunnel. In civil tunnelling there 
are displacement monitoring targets available for referencing. This approach is 
possible due to the defined scanning of the tunnel, i.e. the angle between the 
targets and face is inherently given by the panoramic photographs. This is much 
more difficult with conventional cameras, since an entire model of the tunnel 
including face, sidewalls, and lining back to the portal would be required. For 
this reconstruction a merged 3D image is required and additionally the entire 
tunnel would have to be illuminated. An example is provided in the next section. 
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2.2.3 Examples 

This section gives some examples of 3D images obtained with the described 
computer vision system. It includes both surface and underground examples.  

 

2.2.3.1 3D images from single stereo pairs 

3D images from single stereo pairs are obtained with minor field effort and few 
computation steps. They are primarily used for fast assessments (on site and short 
term) and mobile applications, especially at remote locations. Figure 11 (left) 
shows a 3D image from a bench face generated from a single stereo pair. The 
right hand side shows the stereo pair corresponding to the 3D image. It is slightly 
converging. One should note that only a part of the photos has been used for 3D 
image generation. A range pole has been placed on the left hand side of the rock 
face.  

Figure 12 shows a series of 3D images from drift tunnel faces. The face of each 
round has been gathered and a 3D image generated. 3D images have been 
registered to the same coordinate system using four to seven ground control 
points at the face. The right hand side of Figure 12 shows the general setup of the 
cameras relative to the face. 

 

 

Figure 11:  3D image from a bench from a single stereo pair (left). Stereoscopic 
image pair used for 3D image generation (right). 
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Figure 12:  Series of 3D images of a drift tunnel. Each 3D image has been 
generated from a single stereo pair and georeferenced to the same 
coordinate system using ground control points (left). General camera 
setup relative to the face (right). 

 

Images from panoramic cameras have some advantages over images from still 
cameras. Panoramic images nowadays still have a significant higher image size 
(up to 400 Megapixel). This entails the conservation of fine details in one image. 
Panoramic images show the tunnel area in both directions, to the face and the 
portal. The area towards the portal captures also existing displacement 
monitoring targets which are used for georeferencing of the 3D image. Figure 13 
top shows two parts of a panoramic image, one is used for 3D image generation 
while the other is used for registration. Figure 13 bottom shows the setup of 
panoramic cameras for tunnel face mapping and the 3D image obtained from a 
panoramic image pair. 
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Figure 13:  3D image generation and registration from panoramic images in 
tunnelling. Panoramic image provides information for 3D image 
generation and registration (top). Scanning areas and positioning of 
panoramic cameras for tunnel face mapping (bottom left). 3D image 
of a tunnel face obtained from a panoramic image (bottom right). 

 

2.2.3.2 Merged 3D images 

Merged 3D images are those combined from two or more overlapping individual 
3D images. The generation of a merged 3D image involves more steps. Apart 
from the generation of the individual 3D images, it requires the definition of the 
overlap and merging calculation.  

Figure 14 (left) shows a merged 3D image of a quarry covering an area of about 
150 m height and 200 m width. Stereo pairs have been acquired from a dam at 
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the toe of the slope and from opposing benches within the quarry. Figure 14 
(right) shows the patches of the single 3D images and the corresponding camera 
positions (grey cones). The 3D image comprises 11 convergent image pairs. 

    

Figure 14:  Merged 3D image from a quarry. It comprises 11 stereo pairs. The 3D 
image covers a height of about 150 m and width of about 200 m 
(left). Individual 3D point clouds in the merged position and camera 
positions (right). 

 

Figure 15 is an example from an underground drift tunnel showing the face 
together with the sidewalls and the crown. It has been merged from four single 
3D images whose patches are shown on the right hand side. The patches are 
shown with the corresponding camera positions. The 3D image has been scaled 
and oriented using a range pole and compass.  

   

Figure 15:  Merged 3D image from a drift tunnel showing the face, crown and 
sidewalls. Note the range pole at the left hand side of the face (left). 
Individual 3D point clouds in the merged position and camera 
positions (right). 
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2.3 Discontinuity measurements from scaled 3D 
images 

From a rock mechanics aspect the prime use of a 3D image is, aside from the 
description of the slope and/or free faces, the measurement of discontinuity 
parameters. The considered parameters include at large scale the position, 
orientation and extent of discontinuities and at small scale the surface irregularity 
and roughness of the joints (Priest 1993). This section describes in detail the 
measurements which can be taken with the JMX Analyst software and using the 
data from the above described computer vision system. JMX Analyst is an 
assessment software for 3D images and forms part of the ShapeMetriX3D and 
JointMetriX3D software (3G Software & Measurement 2010). 

 

2.3.1 Basic measurements 

Individual orientations 

Any location on the 3D image can be touched with a special kind of cursor. It 
follows the actual 3D shape of the reconstructed surface and changes its pointing 
direction according to the actual orientation of the surface. In this way orientation 
measurements are possible corresponding to the application of a compass-
clinometer device on any particular location (Figure 16 left). 

 

Linear features 

The measurement of linear rock mass features such as joints, lithological borders, 
or strata is performed by marking the visible joint trace on the 3D image. The 
result of these markings is a three-dimensional poly-line. It consists of 3D 
surface point measurements. If the 3D poly-line shows a significant change in 
depth, a plane is automatically fitted to the set of surface points. The orientation 
of the fitted plane corresponds to the spatial orientation of the discontinuity that 
was marked, thus the three-dimensional orientation is determined only by 
marking the joint trace (Figure 16 middle). 
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Figure 16:  Left: Individual orientation measurements. Middle: Joint trace at an 
outcrop. The joint orientation is determined by fitting a plane through 
the spatial joint polygon. It is represented by a square. Right: Joint 
plane as an area. The joint orientation is determined as the mean 
orientation of the surface elements enclosed by the polygon. It is 
represented by the upward normal vector. 

 

Areas 

Areas are regions of similar geological attributes (e.g. lithology or same degree 
of fracturing) or joint surfaces. When an area is marked, a closed 3D poly-line is 
defined. Without difficulty it is possible to determine that part of the 3D surface 
that is inside the marked area. From the marked part the mean orientation is 
computed and instantly provided as dip angle and dip direction. Figure 16 right 
shows an example of a marked area and the resulting surface normal that 
indicates the spatial orientation. 

 

Structure maps 

Basic measurements, such as joints and areas, orientations, as well as 
coordinates, or distances are organised in structure maps. Structure maps 
comprise one or several structure sets that can represent geological units, e.g. 
discontinuity sets. Figure 17 shows an example of a 3D image with several 
structure sets marked. Structure sets allow for automatic calculation of set-related 
rock mass parameters such as orientation statistics, spacing and trace length 
distributions of discontinuities, etc. The combined information on orientation and 
spacing eases the determination of true and apparent spacing values. 
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Figure 17:  3D image with structure map, orientation measurements in 
stereographic projection, and joint spacing for one structure set. 

 

2.3.2 Practical reliability of measurements 

Besides the theoretically achievable measurement accuracy as shown in section 
2.1.1 the measurements for practical applications are faced with an additional 
number of influencing factors. The most important of these influencing factors 
are: 

• Non-planarity of fracture surfaces:  
The manual measurement is strongly influenced by the local orientation of 
a fracture surface (comprising waviness and roughness) while the remote 
measurement averages the orientation over the exposed fracture area.  
 
 



2 Geological and geotechnical data collection 33 
 

• Relative orientation of rock face to the viewing direction of the 
measurement device:  
Fractures striking sub-parallel to the instrument’s viewing direction appear 
less prominent in a point cloud and are predominantly visible as traces. 

• Partially or completely invisible fractures:  
Data acquisition from one or few similar positions may not show the 
entire fracture system since fractures may be blind due to rock face 
orientation and small size, or obstacles. Fractures may also be seen just as 
traces rather than areas. 

• Resolution of the image:  
The image resolution determines the smallest feature (fracture or 
composition of fractures) identifiable from a 3D image. 

• Resolution of the point cloud:  
Point cloud resolution determines the smallest feature which can be 
measured from a 3D image. 

 
These factors do not necessarily decrease the model accuracy but they complicate 
comparisons with single manual measurements. They may also induce 
directional bias. We note that different features may be represented at different 
levels of detail (Sturzenegger & Stead 2009). The following sections show 
comparisons of manually and remotely mapped fractures using a geological 
compass and remote measurement system, respectively. The author emphasises 
that this is a comparisons between two methods; since each measurement has its 
own technical implications with respect to accuracy, the ground truth is 
unknown, or known with uncertainty! 
 

2.3.2.1 Mean orientations 

Table 1 shows four comparisons of mean orientations between hand-mapped and 
remotely-mapped fractures (Pischinger 2006, Ferrero et al. 2007, Coggan et al. 
2007). The table includes the mean orientations of the fracture sets in terms of 
dip direction and dip angle, the difference between the mean orientations for each 
set in terms of dip direction, dip angle, and absolute angular deviation, and the 
remote sensing method. Case study Feiglbauer includes 118 hand mapped 
fractures and 544 fractures mapped with 3D images. Case study Arnad comprises 
about 190 hand mapped fractures (including 1 principal and 3 secondary sets not 
mentioned in Table 1) and 288 fractures mapped with photogrammetry. Case 
study Tremough entrance comprises 149 hand mapped, and 276 and 280 
fractures mapped with laser scanning and photogrammetry, respectively. 
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Table 1:  Comparison between hand-mapped and remotely-mapped fracture 
orientations. The shown values are mean orientations of sets. 
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Table 1 shows that the absolute angular deviation between hand mapped and 
remotely measured for all the reported joint sets is smaller than 9 degrees. The 
majority of the deviation is smaller than 6 degrees. As would be expected from 
section 2.1.1, the dip direction shows a stronger variance than the dip angle, thus 
is more sensitive to influencing factors and measurement bias. The stereographic 
projection in Figure 18 is related to the data from Pischinger (2006). On the left 
hand side, the hand mapped data and on the right hand side the data from 3D 
images are shown. The three joint sets SF, KH1 and KH2 are well defined in 
both data sets while one joint set KH3 is only prominent in the data from 3D 
images. The reason has been that accessibility was not granted for mapping 
manually KH3. Pischinger (2006) also reports a decrease of the cone of 
confidence in this example to about 50 % from manual to remote measurement, 
i.e. the mean orientation becomes more confident. 

 

 

Figure 18:  Stereographic projection of fracture orientations (poles) measured by 
hand (left) and photogrammetry (right) from Pischinger (2006). 

 

2.3.2.2 Single orientation measurements 

Non-planarity of fractures strongly influences the comparison between manual 
and remote measurements, but also as shown in the examples below, the 
resolution of the model with respect to identification and possibility for taking 
the correct measurement. Figure 19 shows histograms of the absolute frequency 
of angular deviations between direct compass and 3D image measurements. The 
upper example comprises 28 samples where the majority of the measurements 
show a deviation smaller than 3 degrees irrespective of comparisons of dip 
direction or dip angle. The average point spacing of the 3D images has been 
about 4 cm. Orientation measurements have been taken approximately at the 
same position. The lower example comprises 9 samples. The majority of the 
deviations is also lower than 3 degrees although this behaviour is less 
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pronounced than in the previous example. Indications for the higher spread and 
higher deviations may be the lower number of samples and the higher average 
point spacing of the 3D image (approx. 20 cm).  

 

 

Figure 19:  Histograms comparing single fracture orientations manually and 
remotely measured. The average point spacing of the 3D image in the 
upper and lower diagram is 4 cm and 20 cm, respectively. 

 

2.3.3 Interactive and automatic measurements 

Digital data promote the application of automatic measurement algorithms. They 
increase the objectivity and productivity of the geological data acquisition. 
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Objectivity increases since robust algorithms1 come up with the same result even 
when slightly changing the input parameters of an objective function. 
Productivity increases since the computer takes over the segmentation between 
similar and distinctive data sets using algorithms. Automatic measurements for 
geological data acquisition from 3D images can be distinguished into three levels 
(Ferrero et al. 2008) – interactive, automatic and semi-automatic measurements: 

 

2.3.3.1 Interactive measurements 

Measurements are taken interactively on the 3D image (or other representations: 
point cloud, 2D image). The position and/or extent (length, area) of the 
measurement (see section 2.3.1) are marked with the computer mouse (or any 
other suitable input tool) after inspection of the 3D image and identification of a 
rock structure. The judgement of the relevance and proper placing and 
delineation of a structure is entirely left to the user. The user has to be a person 
with proper knowledge and experience on geologic mapping. Interactive 
measurements are a digital simulation of geological field mapping. Interactive 
measurements have been described by Gaich et al. (2004). 

 

2.3.3.2 Automatic measurements 

Position, extent and delineation of measurements are fully algorithmically 
determined based on a set of input data. Reported algorithms in geological 
literature work on the point cloud or the digital images. Hybrid point cloud – 
image algorithms have not been reported to the author’s knowledge. Point cloud 
algorithms aim at the segmentation of planar regions within the point cloud 
(Figure 20 left). These regions are then related to daylighting areas of 
discontinuities. Image processing algorithms aim at the delineation of 
discontinuity traces and areas. They use significant contrast in the image to 
determine these boundaries (Figure 20 right). Automatic segmentation and 
delineation algorithms for rock masses have been described by Reid & Harrison 
(2000), Lemy & Hadjigeorgiou (2003), Tseng & Wang (2005), or Kemeny et al. 
(2006). Kemeny & Post (2003) present a method for estimating fracture 
orientation from digital images based on automatic fracture delineation and 
genetic algorithms. Voyat et al. (2006) use the Ransac approach (Fischler & 
Bolles 1981) for segmenting a point cloud into planar patches without outliers. 

                                            
1 A robust algorithm integrates the solution of a geometric problem, the treatment of degenerate cases and 
numerical calculation. It provides a consistent solution in case of non-perfect "natural" input data. 
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Figure 20:  Left: Automatic delineation of daylighting fracture patches as green 
polygons (from Kemeny et al. 2006) Right: Automatic delineation of 
fracture traces (from Lemy & Hadjigeorgiou 2003) 

 

2.3.3.3 Semi-automatic measurements 

The semi-automatic approach is a combination of interactive and automatic 
measurements. The user defines initial values for the used objective function of 
the measurement. Initial values are positions and orientations in the point cloud 
or image. The initial values are typically provided by so-called seed points – 
interactively defined points around which the user assumes a feature complying 
with the corresponding objective function. Subsequent algorithms aim at finding 
traces or areas in the vicinity of the initial values.  

 

 

Figure 21:  Semi automatic delineation of fracture traces 
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An algorithm working on the point cloud aims at the detection of the extension of 
a joint surface and its orientation based on one single marked location on the 
joint surface. Usually a planar joint surface is assumed. An algorithm working on 
the digital images aims at the detection of lineaments. Only a few seed points are 
marked on the 3D image and the points in between are detected automatically 
based on image processing algorithms (Figure 21). This approach is also known 
under the term “live wire” (Falcao et al. 2000). 

 

2.3.3.4 Discussion 

The interactive approach leaves the responsibility for the evaluation with the 
geologist or geological engineer. Since all structures have to be marked 
manually, it is the least productive approach of the three mentioned ones. The 
fully automatic analysis of rock mass features has limits in the detection of rock 
mass properties encountered during practical work, especially when facing 
changing rock mass conditions and image resolutions. Problems observed thus 
far include the following:  

• Artificial lineaments – excavator scratches or half-barrels from drilling, or 
even boundaries between light and shadow – may be mistakenly included 
in the discontinuity data set. Unfortunately, such features are often even 
more prominent than rock mass features. 

• Identification of lineaments strongly depends on the resolution of the 
images, i.e. the level of detail (Sturzenegger & Stead 2009). 

• The automatic identification of joint sets based on topographic surface 
analysis is only reasonable when a blocky rock mass is present. Analysing 
the point cloud does not consider difference between rock joints and 
artificial surfaces. 

A semi-automatic approach that supports the interactive assessment from the 
author’s perspective is the most promising for practical applications. It speeds up 
interactive marking of geological features but still leaves the decision on the 
geological relevance of a feature with the experienced geologist or engineer in 
front of the computer. 

 

2.4 Summary 

New technologies for the data acquisition of rock masses emerged during 
elaborating this work and have proved to be valuable tools for the daily 
engineering geological and geotechnical practice. This section has given a basic 
introduction to remote measurement systems including image based and laser-
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based technologies and outlined the characteristics involved with these 
technologies for an appropriate selection to a practical problem. The author 
discussed the application of a computer vision system for geological and 
geotechnical data acquisition using digital SLR and panoramic cameras. During 
this work the system has been developed by the software and measurement 
device manufacturer 3G Software & Measurement and modified for routine 
application in the field of mining and rock engineering. As a basic principle, the 
system generates 3D images from a set of stereoscopic image pairs.  

The last section of this chapter focuses on the measurements related to rocks 
taken from a 3D image and presents data on the reliability of these 
measurements. It has been shown that mean orientations could be determined 
with a difference of less than 9° between hand mapped and remotely measured 
structures (with a majority of measurements less than 5°) together with a typical 
decrease of the aperture of the cone of confidence of about 50%. The majority of 
single orientation measurements differs only by 3°. In these comparisons, it is not 
clear which set of measurements – from 3D images or by hand – is the more 
correct one; thus neither can be accepted as the control set. 

The final section discusses automatic measurements to enhance objectivity and 
productivity in data acquisition. Available approaches include interactive, 
automatic, and semi-automatic assessments. Semi-automatic assessments are 
preferred since they increase productivity, robustness, and objectivity while 
leaving the final decision about the relevance of the measurement at the assessing 
geologist or engineer. 
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3 The shear behaviour of discontinuities 
The mechanical behaviour of blocks depends on the blocks’s properties and the 
properties of the blocks’s faces, edges and corners abutting the rock mass.. 
Discontinuities are fractures in the rock mass that fully separate the block; they 
are usually approximated by planes. The shear behaviour is especially important 
if sliding on discontinuities is involved with block motion. This chapter discusses 
the parameters involved with respect to the sliding mechanisms and outlines the 
different stages of the shear behaviour of a matched discontinuity. Based on the 
conclusions from literature (which are outlined in the following section) and a 
more detailed investigation described by Schieg (2006) and Seywald (2006) a 
constitutive model for the joint shear behaviour under general boundary 
conditions is proposed including a summary of the required parameters and their 
determination. The chapter concludes with a parametric study of the constitutive 
model. 

 

3.1 Shear behaviour and influencing factors 

The shear behaviour of a discontinuity is the response of the shear and normal 
stresses acting on a discontinuity and the related shear and normal displacements 
of the contact area due to a loading and/or constraint. The formal description of 
these relationships is the constitutive model, allowing studying, analysing, 
simulating and predicting the shear behaviour mathematically. The shear 
behaviour depends on several factors, summarised below: 

 
• Friction of the rock material:  

The friction concept basically is an engineering substitute for the 
quantification of electromagnetic processes and interactions taking place 
at irregularities at a microscopic scale (Persson 2000). Friction in a rock 
mechanics sense is the sliding resistance of technically planar rock joints 
which is also referred to as the Coulomb friction model. In this model the 
frictional resistance is directly proportional to the normal load and 
independent of the sliding velocity. The friction is expressed in terms of 
the friction angle ϕ; tan ϕ determines the ratio between frictional strength 
and normal load. This friction angle ϕ  is also called the basic friction 
angle ϕ b.. 
 

• Surface irregularity of the discontinuity plane (roughness):  
The discontinuity roughness is the irregularity of a natural joint surface, 
i.e. its deviation from a plane. It can be classified into the waviness and 
unevenness (ISRM 1977). Waviness corresponds to large scale 
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undulations while unevenness is the small scale irregularity. The term 
“small scale” refers to a lower bound of irregularity size which can be 
measured by available methods such as a comb (Barton & Choubey 1977), 
linear profiling, compass-disc-clinometers, and mechanical and contact-
free methods (mechanical profilometers, 3D laser scanners, 
photogrammetry, etc.). 
The roughness influences various aspects of the shear behaviour. Due to 
the slope of the rising asperities, the relative angle between the resulting 
force and the shear plane increases; this increases the shear resistance 
(Patton 1966). At even higher normal loads the asperities fail and cause a 
“cohesional” contribution to the shear resistance (Patton 1966, Ladanyi & 
Archambault 1970, Handanyan et al. 1990, Maksimovic 1996, Seidel & 
Haberfield 2002). In confined conditions the displacements perpendicular 
to the shear plane (due to the slope of the asperities) increase the normal 
load and the corresponding shear resistance (Archambault et al. 1990, 
Ohnishi & Dharmaratne 1990). 
 

• Discontinuity aperture:  
In nature it is common to find discontinuities, appearing open, i.e. 
opposing joint walls, are separated. The aperture is defined as the distance 
between the joint walls along the mean normal vector of the plane (Priest 
1993). Completely open discontinuities without any contact area and 
stress transfer potential are beyond the scope of this chapter. 
Discontinuities can display a certain aperture yet retain partial contacts. 
This is called a mismatched joint. The upper bound of the aperture for a 
mismatched joint is, by virtue of geometrical conditions, twice the 
amplitude of the roughness. 
Aperture basically influences the deformability of a joint perpendicular to 
its plane. The normal stiffness decreases with increasing aperture 
following a hyperbolic law (Priest 1993, Bandis et al. 1983 cited in Bandis 
1990, Goodman 1976). It is supposed that the shear stiffness also 
decreases with increasing aperture, although no investigation results could 
be found. 
The aperture influences also the dilational behaviour. Matched joints 
usually show a purely dilational characteristic (Seywald 2006) while 
mismatched joints can show a contractual behaviour, especially during the 
initial stage of shearing (Barton & Choubey 1977).  
 

• Infillings:  
Infillings are frequently encountered in open discontinuities. They can 
consist of recrystallised minerals (e.g. quartz), granular soil, or clayey 
material. While a compact recrystallised or cemented material tends to act 
as a sealing and reinforces the rock mass, the others tend to weaken the 
joint and influence the shear behaviour (Indraratna & Haque 2000). 
Critical parameters are the infilling material and the relative thickness of 
the infilling. The relative thickness is defined as the ratio between the 
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mean thickness of the infilling and the amplitude of the joint roughness. 
Indraratna & Haque (2000) concluded the following important facts: 

 
o The shear strength drops significantly towards the strength of the 

infilling even with a small infilling thickness. 
 

o The shear behaviour is exclusively controlled by the infilling 
material beyond a critical value of the relative thickness. 
Depending on the joint roughness, infilling material and boundary 
conditions (confinement) the critical value of the relative thickness 
may be between 1.2 and 1.8. A relative thickness below this value 
causes an interaction between infilling and surface asperities. 
 

o The shear displacement at peak shear strength significantly 
decreases if the relative thickness exceeds the critical value. This 
observation requires further explanation. The authors consider the 
absolute peak shear strength – a value which includes shear 
strength increase due to normal stress increase caused by 
suppressed dilation (CNL tests). If the joint is clear or the infilling 
is thin, normal stress increases with shear displacement. If the joint 
(soft) infilling is thick, the joint does not tend to dilate and no 
significant increase of the normal stress is observed. The peak 
shear strength occurs when the infilling fails at relatively low shear 
displacements. In this dissertation the author uses the relative shear 
strength (the ratio between current shear and normal stress) instead 
of the absolute shear strength. This parameter provides more 
meaningful insights into the shear behaviour and eases the 
interpretation. 
 

o The peak shear stress drops exponentially with increasing relative 
thickness until the critical relative thickness. 
 

o Filled joints are prone to contractive behaviour. 
 

o Consolidation of the infilling plays an important role with varying 
shear displacement rates which is critical, for instance, with seismic 
loading. 

 

Indraratna et al. (2005, 2008) have performed further experimental and 
theoretical investigations. Figure 22 shows the role between ϕb and ϕfill after 
Indraratna et al. (2005). If the discontinuity is perfectly closed, the frictional 
resistance is directly related to the basic friction angle and the surface 
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irregularity. If the relative thickness in the discontinuity exceeds the critical value 
of 1.4, the shear resistance is exclusively controlled by the frictional properties of 
the infilling. In the transition zone an approximate negative exponential decrease 
of the shear resistance of the discontinuity is observed. 

 

 

Figure 22:  Shear strength model for infilled joints showing the role of ϕb and ϕfill 
(figure modified after Indraratna et al. 2005) 

 
• Strength of the rock material:  

The strength of the rock material controls the transition between asperity 
sliding mode and asperity shearing mode. It affects the peak shear strength 
and dilational behaviour. The existing models describe the asperity 
strength either by the unconfined compressive strength (Barton & 
Choubey 1977), tensile strength (Handanyan et al. 1990), cohesion and 
friction angle (Patton 1966), or all of them combined (Ladanyi & 
Archambault 1970). 
 

• Deformability of the rock material:  
The deformability of the asperities influences the elastic shear stiffness 
and subordinately the dilation under varying normal stress (Seidel & 
Haberfield 1995). 
 

• Initial normal stress:  
The normal stress acting perpendicularly on the joint predominantly 
influences the shear resistance. Additionally, the initial normal stress 
defines the initial normal stiffness (Bandis et al. 1983). Thus, it affects the 
development of dilation. It also controls the transition between the 
asperity sliding and shearing modes.  
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• Boundary conditions:  
The boundary conditions are referred to as the perpendicular confinement 
of the joint. Boundary conditions are related to the joint normal stiffness 
adjacent to the joint and act like a spring. If the normal stiffness does not 
vary with the displacement, this condition is defined as a constant normal 
stiffness (CNS). Since normal displacements occur during shearing of a 
rough joint, the normal stiffness affects the normal stress, and hence, 
influences dilation and peak shear stress. In the absence of normal 
stiffness the condition is referred to as a constant normal load (CNL). 
 

• Petrographical properties:  
The properties of the minerals, especially hardness and brittleness, 
influence the behaviour of the material that is formed after asperity 
shearing (asperity wear). Depending on normal stress and mineral 
composition, sheared asperities can form granular or cohesive layers. 
Under certain circumstances the formation of slickensides is possible as 
well. Slickensides significantly reduce the residual friction angle (Seywald 
2006). 
 

• Rock fabric:  
Foliation of the rock may influence the asperity failure mechanisms 
depending on the orientation relative to the shear plane as shown by the 
experimental investigations of Button (2004). 

 

3.2 The shear behaviour of matched discontinuities 

This chapter describes the mechanical phenomena occurring during shearing 
which provide the basis for the establishment of the constitutive model in section 
3.3. In order to account for the interaction with blocks, the general description of 
the joint shear behaviour requires the determination of the shear stress, normal 
stress, and dilation throughout the shear displacement, and the stress path. The 
shear behaviour of a rough joint has several typical stages. In the following 
paragraphs these stages are described for a quasi-homogeneous and isotropic 
material, well-matching joint walls, and for constant normal load conditions. At 
the end of the chapter the peculiarities of other influencing factors are addressed. 

 

3.2.1 Stage A: Mobilisation of the shear stress 

Before shearing takes place, the joint is perpendicularly loaded resulting in 
stresses acting on each asperity face in contact. After shear initiation a stress 
redistribution takes place loading the asperity slopes facing the shear direction 
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and unloading the slopes opposing the shear direction. The asperities are 
deformed by elastic strains. Slip in the contact areas does not take place. Thus, 
the joint does not dilate. The shear load increases almost linearly with the shear 
displacement. 

 

3.2.2 Stage B: Mobilisation of dilation 

With increasing shear displacement the joint starts slipping at portions of the 
joint area at which the local resultant force exceeds the slip limit (Coulomb’s 
law). Typically, these portions are flat relative to the shear direction or point 
towards it. The slip leads to an additional stress redistribution to steep asperities 
(opposing the shear direction) which are not at slip yet. With increasing shear 
load the areas at which slip occurs, become gradually steeper. The upper limit of 
asperity angles at which slip can occur depends on the ratio between shear and 
normal load, and the surface friction angle. This value is defined as αmax in 
expression (5). H in this case is the shear load while V is the normal load. Since 
H and V can also be considered to be external loads (instead of local forces), αmax 
is the maximum global angle that can result from joint dilation. Asperities which 
are steeper than the maximum asperity angle are consequently sheared off. 

 

€ 

αmax = arctanH −V ⋅ tanϕ
H +V ⋅ tanϕ  (5)  

In this stage relative shear displacements between the joint walls take place. For 
kinematical reasons displacements perpendicular to the shear plane take place as 
well. Since with increasing shear displacements the slip portions become steeper, 
the dilation rate successively increases. During this stage the mobilisation of 
dilation takes place due to sliding on asperities and also shearing off steep ones. 
The shear stress curve is typically non-linear. 

Figure 23 highlights the shear behaviour during the stages A and B by data 
obtained from a CNL shear test. The bold solid line represents the mobilised 
shear resistance in terms of the apparent friction angle. It is the inclination of the 
resultant of the external forces. The dashed lines are the mobilised dilation angle 
of the joint and the basic friction angle, respectively.  

In stage A the shear stress mobilises almost linearly with displacement which can 
be observed in the bold solid line. The joint does not dilate. Once the inclination 
of the external resultant exceeds the basic friction angle, the joint starts dilating 
following a non-linear mobilisation law (Stage B). The mobilisation of dilation 
reaches the peak together with the maximum shear resistance which represents 
the end of stage B.  
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Figure 23:  Shear behaviour of a matched rough joint during stages A and B, 
assuming that the tangential component of joint slip is restricted to a 
single linear path.  

 

3.2.3 Stage C: Surface degradation 

After reaching the maximum shear resistance the joint is fully at slip and dilating 
at its maximum rate. In the same instance the contact area becomes gradually 
smaller due to asperity sliding. The smaller contact area increases local stresses 
on the asperities together with a decrease of the asperity section. As a 
consequence, the asperities degrade causing a decrease of the joint’s potential for 
dilation. Degradation is a result of shearing of asperities, grinding of sheared 
asperities, filling the void with sheared material, material compaction, etc. 
(Huang et al. 1993).  
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Figure 24:  Shear behaviour of a rough rock joint in stage C – asperity 
degradation 

 

Figure 24 shows the shear behaviour after the maximum shear resistance. The 
shear stress decreases proportionally to the dilation rate. The assumption of a 
constant basic friction angle throughout the shear displacement is reasonable as 
well. For the tested material, the basic and residual friction angles are almost 
identical under the applied normal stress level; this has also been addressed by 
Ladanyi & Archambault (1970). 

The degradation gradient decreases with the shear displacement. The dilation 
curve also shows a smooth kink at an approximate shear displacement of four 
millimetres (in the test shown in Figure 24). These phenomena can be explained 
by the wear theory of Plesha (1987). In this theory the dilation angle of a rough 
joint with degrading asperities decreases following a negative exponential law. 
The asperity surface degradation is inversely proportional to the performed shear 
energy. The shear energy is the plastic tangential work per unit volume and the 
integral sum of the shear stress over the shear displacement. The kink in the 
dilation curve is a consequence of the surface morphology. Plesha classifies the 
asperities into first-order and second-order asperities following the ideas of 
Deere et al. (Deere et al. 1966 cited in Plesha 1987). Figure 25 shows the concept 
of first and second order asperities. It becomes obvious that the first order 
asperities are the mean of the second order asperities considering a finite 
sampling length. It is also obvious that the orientation of the second order 
asperities varies more significantly than those of the first order ones, and that 
second order asperities are steeper than first order ones relative to the shear 
plane. For this reason second order asperities are earlier sheared off and the 
surface degradation exhibits a higher gradient compared to shearing off the first 
order asperities. The kink represents the transition from shearing second-order 
asperities to first-order asperities. 
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Figure 25:  The concept of first and second order irregularities (asperities), 
modified and redrawn after Deere et al. (1966) 

 

3.2.4 Stage D: Residual stage 

Ideally, after sufficient shear displacement all asperities failed and the void had 
filled with debris. The surface has a residual shape. In this stage the shear stress 
approaches the residual value while dilation does not take place any longer. 

 

3.2.5 Peculiarities 

The above outlined behaviour is typical for a joint with matched walls, 
homogeneous and isotropic material, and constant normal load. For a foliated 
material the orientation of foliation planes relative to the shear direction plays an 
important role in the failure of the asperities. It can induce contractive behaviour 
if the foliation dips towards the shear direction. Different orientations of the 
foliation can even cause a complete change of the asperity failure mechanisms, 
for instance from interlayer slip to rotational mechanisms such as micro-toppling 
(Button 2004). If a porous material is sheared, contraction rather than dilation 
occurs under sufficiently high normal stresses. The behaviour will also be 
different if the shearing of asperities dominates the asperity sliding mechanism. 
In this case the principles of shearing of intact rock seem to be more suitable. It is 
the case if the stresses concentrated in the solid portion of the asperities are in the 
order of their strength (irrespective of the occurring asperity failure mode), or if 
the majority of asperity slopes are steeper than the sliding limit defined in 
expression (5). For a mismatched joint it is likely that contraction takes place in 



50 3 The shear behaviour of discontinuities 

the initial shear stages until the joint walls have come into contact. This has been 
observed by a number of authors, for instance (Barton & Choubey 1977, 
Szymakowski & Haberfield 2001, Olsson & Barton 2001). As a side comment, 
contractive behaviour has also been observed after overriding distinctive 
asperities. This behaviour has been shown, for instance, by Boulon et al. (2002) 
on joints in granodiorite and Indraratna et al. (2005) on artificial saw-teeth 
shaped samples. 

Another remarkable property is the decrease of the residual friction angle with 
increasing normal stress as observed by Seywald (2006). Figure 26 shows the 
results for three test series, one obtained from CNL multi-stage shear tests at a 
sheared surface, the other ones were obtained from CNS tests where in the latter 
no dilation was admitted. The normal stress is considered at peak shear strength 
at the beginning of stage C. The decrease of the residual friction angle can be 
explained by compaction of sheared material and grinding of the surface in case 
of the CNL test, and the formation of slickensides in case of the CNS tests. 
Seywald (2006) reports a strong formation of slickensides in case of the “zero 
dilation” test, decreasing the residual friction angle from 39° to 29° for high 
normal stresses. The maximum normal stress at the peak shear strength has been 
observed with 23% of the unconfined compressive strength of the sample 
material. The normal stress has increased to maximum 28% of the unconfined 
compressive strength during shearing. 

 

 

Figure 26:  Decrease of residual friction angle with increasing normal stress 
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3.3 Constitutive model 

The facts of section 3.2 lead to the formulation of a constitutive model for the 
shear behaviour of matched rough joints. It includes only parameters which can 
be obtained by engineering testing methods, either laboratory or field methods. 
The constitutive model comprises the stages A, B, and C: the linear mobilisation 
of shear stress, the mobilisation of dilation and the surface degradation. Stage D 
is considered to be the limit value after a theoretically infinitely long shear 
displacement. The constitutive model considers shear and normal displacements. 
Hence, it is capable to describe the behaviour under normal stiffness boundary 
conditions. 

 

3.3.1 Assumptions 

Most of the constitutive models include assumptions that only approximately 
match nature. However, for the engineering level of accuracy these inadequacies 
are either of limited significance or conservative. The proposed constitutive 
model relies on the following assumptions: 

• Joints cannot sustain tensile stress. 
It does not apply to healed or cemented, or only partially persistent joints. 

• The shear resistance of local joint wall contacts is only frictional, i.e. 
cohesion of the contact is not considered. 

• The asperity material is isotropic and homogeneous. 
Rock types often possess an expressed fabric (e.g. phyllites, schists, etc.) 
which governs their mechanical behaviour. 

• The average normal stress in the joint is significantly lower than the 
unconfined compressive strength of the asperity material. Hence, the shear 
behaviour is dominated by dilation and asperity degradation. 
The shear behaviour of joints in weak rock masses at great depth is 
governed by influencing factors not covered by the proposed constitutive 
law.  

• Asperity degradation corresponds to the performed shear energy. 
This has not been proved for a practically relevant variety of rock types 
and thus requires more research and understanding. 

• The residual friction angle of the joint material is equal to the basic 
friction angle. 
Differences between the two parameters might be caused by certain 
montmorillonitic fillings or the formation of slickensides during shearing. 

• The dilation angle i corresponds to the dilation rate of the joint and must 
not be confused with the asperity angle. 
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• Lateral dilation and end effects are not considered. 
Lateral dilation tends to be suppressed, for instance, in case of slender 
rock wedges. 

 

3.3.2 Mobilisation of shear stress (Stage A):  

Relative displacements between joint walls (joint slip) cannot take place due to 
the stress condition according to expression (5). Shear displacements are a result 
of elastic strains in the rock surrounding the joint. The absence of joint slip also 
omits dilation. The shear stress increases linearly with the shear displacement 
following expression (6). The normal stress remains constant. ks is the joint shear 
stiffness at the initial stage of shearing. 

 

€ 

Δτ = ks⋅ Δu
Δσ n = 0  (6)  

Stage A controls the shear behaviour only until joint slip occurs at joint areas 
parallel to the shear direction, i.e. when inclination of the resultant force relative 
to the shear plane exceeds the basic friction angle ϕb. Assuming Coulomb 
friction the shear displacement uini at which slip initiates can be determined by 
expression (7): 

 

€ 

uini =
σn ⋅ tanϕb

ks
 (7)  

The shear stiffness in this model is a tangential stiffness and only determined by 
the rock properties. According to Kulhawy (1975) the shear stiffness is 
determined by the shear modulus, and therefore should be related as shown in 
expression (8). kn is the rock mass stiffness with fully closed joints as outlined 
below in section 3.3.6. Priest (1993) lists other expressions for the tangential 
shear stiffness which are, however, related to other constitutive concepts. 

 

€ 

ks =
kn

2⋅ 1+υ( )  (8)  

 

3.3.3 Mobilisation of dilation (Stage B): 

The joint starts dilating when partial slip on asperities and shearing of steep 
asperities takes place. With dilation the normal stress also increases. The normal 
stress increment in the joint corresponds to the mobilised dilation angle i and the 
total normal stiffness Ktot of the joint (Expression (9)). The first part of Patton’s 
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law (Patton 1966) in which the effective friction angle is the sum of the basic 
friction angle ϕb and the dilation angle i, controls the shear stress (Expression 
(10)). 

 

€ 

Δσn = Ktot ⋅ tani⋅ Δu (9)  

 

€ 

τ =σ n ⋅ tan ϕb + i( ) (10)  

The unknown parameters in this formulation are i and Ktot. In this expression, Ktot 
is the total joint normal stiffness and refers to the boundary conditions. Its 
estimation is outlined in section 3.3.6. For CNL conditions which can be 
assumed at this point without losing generality, it is zero. The dilation angle i in 
stage B is a function of the shear displacement. Its development is a quite 
complex process involving sliding and shearing of irregular asperities. 
Investigations on sheared rock joints showed a typical non-linear development of 
the current dilation angle (see section 3.2.2). This behaviour can be approximated 
by a second-order parabola which has to obey two constraints:  

• The shear stress curve at the transition between stage A and B has to be 
smooth (i.e. continuous and C1 differentiable).  

• The point at the maximum dilation angle is a relative maximum.  

A useful function for modelling gradient boundary conditions is the Bezier 
spline. An introduction to Bezier splines can be found, for instance, in Boehm & 
Müller (1999). A Bezier spline is surrounded by a so-called control polygon 
which defines the location and the shape of the spline with respect to gradient 
and curvature. For the modelling of the mobilisation of dilation an open, two-
sided polygon is used (Figure 27).  

 

 

Figure 27:  Bezier spline, control polygon, and algorithm of de Casteljau 
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The chords at the polygon’s endpoints define the local gradients. The original 
formulation of the Bezier spline is parametric. Nevertheless, a corresponding 
quadratic Bezier spline can be explicitly formulated based on the coordinates of 
the corners of the control polygon. The relationship between control polygon, 
Bezier spline, and control parameter st is shown in Figure 27 (Algorithm of de 
Casteljau (Boehm & Müller (1999)). 

For the constitutive model, however, a formulation with respect to the shear 
displacement u is required. This can be accomplished by a back-calculation of 
the control parameter st from the current shear displacement and the control 
polygon (Expression (11)). st is input in the original spline formulation in order 
to obtain the corresponding dilation angle (Expression (12)). 

€ 

st u( ) =
uini − uc( ) + uc − uini( )2 − upeak + uini − 2⋅ uc( )⋅ uini − u( )

upeak + uini − 2⋅ uc
 (11)  

€ 

i u( ) = 1− st u( )( )
 2
⋅ iini + 2⋅ st u( ) ⋅ 1− st u( )( )⋅ ic + st u( )

2 ⋅ ipeak  (12)  

The task is now determining the parameters of the control polygon. The control 
polygon comprises the corners (uini/iini), (uc/ic) and (upeak/ipeak). uini can be 
obtained from expression (7). iini is zero. These two parameters define the first 
point.  

upeak is an input parameter for the constitutive model and has to be separately 
defined. It is also the upper limit of shear displacements in stage B. Expression 
(13) is a well-accepted formula to estimate the peak shear displacement. 
Nevertheless, the author recommends to correlate this relationship with 
laboratory or, better, with field tests. The corresponding peak dilation angle ipeak 
is derived from existing peak shear strength criteria. It is described in section 
3.3.5 for Barton’s JRC model (Barton & Choubey 1977) and Grasselli’s model 
(Grasselli 2001).  

 

€ 

upeak =
Ln
500

⋅
JRCn

L0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−0.33

 (13)  

ic equals to ipeak which ensures a horizontal tangent in the spline’s endpoint. uc 
can be obtained by intersection of the chord at the spline’s initiation and the 
horizontal chord. As stated above, the shear stress curve at the transition of stage 
A and B has to be smooth. This is only the case if the shear stress gradient from 
stage A and B at the transition are identical. The shear stress gradient dτ/du in 
stage A is ks. In stage B the same gradient is obtained by derivating expression 
(10). For normal stiffness boundary conditions both, i and σn depend on the shear 
displacement u. Hence, the determination of the derivative of expression (10) 
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would result in an extensive calculation. The solution can be more easily 
obtained with a closer examination of expression (5). 

Section 3.2.2 has shown that the effective dilation curve can be obtained by the 
Coulomb criterion for maximum asperity angle αmax depending on the current 
external loads and this complies with Patton’s law of friction and dilation (Figure 
23). On the other hand, the external stresses at the transition point (between stage 
A and B) are known. Hence, in order to obtain a smooth shear stress transition 
the gradient of the dilation curve obtained from expression (5) is sufficient if the 
stresses from stage A are input. The expressions for the forces have to be 
replaced by the equivalents for the stresses. In this case this is reasonable because 
the shear and normal stresses are only normalised values of the shear and normal 
forces by the average shear area. Consequently, the expression for αmax is: 

 

€ 

α = arctan τ −σ n ⋅ tanϕb

τ +σ n ⋅ tanϕb

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (14)  

At the transition point τ equals ks
.u. Hence, the first derivative is: 

 

€ 

dα
du =

ks⋅ σ n − u⋅
dσ n

du
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

σ n
2 + ks

2 ⋅ u2  (15)  

At the transition point the gradient of the normal stress dσn/du is zero since no 
normal stress variation takes place in stage A. This criterion provides also a 
smooth transition of the normal stress curve. Finally, the shear displacement at 
the transition point can be obtained from expression (7). Expression (16) is the 
gradient of the dilation curve at the transition point.  

 

€ 

dα
du α=0

=
ks

σ n ⋅ 1+ tan2ϕb( )  (16)  

Using expression (16) as the gradient of the control polygon in the transition 
point, the intermediate control point uc can be determined which completely 
defines the dilation curve. For comparison, the solution of expression (7) 
assuming u = uini and iini = 0 after uc yields the same result. Expression (7) uses 
the derivatives of expressions (6), (10), and (31). At the transition point all 
stiffness-controlled terms vanish, since the dilation gradient is zero. 

€ 

dτStageA
du

=
dτStageB
du

↔ ks =
dσ n

du
⋅ tan ϕ + i( ) +

σ n

cos2 ϕ + i( )
⋅
di
du  (17)  
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3.3.4 Surface degradation (Stage C) 

After exceeding upeak shearing with the applied normal load causes surface 
degradation. Effectively, the rough joint surface becomes gradually smoother 
leading to a decrease of the dilation angle. It has been shown by several authors 
(Plesha 1987, Lee et al. 2001, Hutson & Dowding 1990, Nguyen & Selvadurai 
1998, Huang et al. 1993, Qui et al. 1993), that the decrease of the dilation angle 
follows a negative exponential law with the accumulation of shear energy. Since 
natural joint surfaces have a rather complex geometry, a two-level negative 
exponential function proved to be most suitable to describe the degradation of 
asperities (Seywald 2006). The two-level function (Expression (18)) accounts for 
first and second order asperities of the joint roughness.  

 

€ 

i u( ) = i1⋅ e
−c1 ⋅W u( ) + i2 ⋅ e

−c2 ⋅W u( )  (18)  

i1 and i2 are conceptionally the first and second order asperity angles in Deere 
(1966). Seywald (2006) determined the first and second order asperity angles for 
one joint surface corresponding to the peak dilation angle by back-analysis from 
direct shear tests. Figure 28 shows a decrease of the asperity angle ratio with 
increasing acting normal stress. Physically, this reveals the predominant 
influence of first order asperities on the dilation rate at higher normal stresses 
which was also observed by Ueng et al. (2003). First order asperities may also 
sustain higher loads due to their physically wider base. Second order asperities 
are already sheared off at lower normal stresses. 

 

 

Figure 28:  Influence of the normal stress at maximum apparent friction angle on 
the ratio between first and second order asperity angles 
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The asperity angle ratio at zero normal stress depends on the roughness of the 
joints. Ideas for its determination can be taken from Yang et al. (2001) or 
Renger’s method of asperity angle scatters (Fecker & Rengers 1971). Plesha 
(1987) reports first order asperity angles between 5 and 20° and second order 
asperity angles between 15 to 45°. 

c1 and c2 are degradation parameters and affect the curvature of the exponential 
function. They mainly depend on the material properties of the rock material and 
the surface roughness (Hutson & Dowding 1990). The unit of the degradation 
parameters is [m2/kJ]. W is the accumulated shear energy and it is defined by 
expression (19). Its unit is [kJ/m2]. The total energy accumulated during direct 
shear includes also contributions from normal stresses. Although normal and 
shear stress are in the same order of magnitude, the main factor dominating the 
total energy is the shear displacement. The contribution from the normal energy 
is low due to the relatively small normal displacements. Nevertheless, the effects 
of the normal stress variations are inherently coupled with the shear stress and 
find their way into the shear energy. 

 

€ 

W u( ) = τ u( ) ⋅
0

u

∫ du  (19)  

In this stage the normal and the shear stresses can be calculated with expression 
(9) and (10), respectively. Figure 29 shows the degradation function for the 
dilation angle and the accumulated shear energy.  

 

 

Figure 29:  Behaviour of the joint dilation during surface degradation. The 
degradation function (blue) is considered from upeak to infinity. The 
red line represents the accumulated shear energy W. 
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In the early stage of degradation the first and second order asperities contribute to 
the degradation function which causes a rapid drop of the dilation angle. In the 
final stage of shearing only first order asperities have an influence. The gradient 
of the dilation function becomes smaller. Additionally, the shear energy shows a 
regressive behaviour which damps the degradation as well. 

 

3.3.5 Peak dilation angle 

A crucial part for the determination of the shear behaviour in the concept of the 
constitutive model is the correct prediction of the peak dilation angle. The peak 
dilation angle depends on the joint roughness, normal stress, basic friction angle, 
the asperity strength, and the joint size (scale effect). Rougher joints have a 
higher peak dilation angle up to a degree which depends on the surface friction 
angle and the current stress condition (Barton & Choubey 1977, Boulon et al. 
2002, Homand 2001). The surface friction angle decreases the peak dilation 
angle especially under low normal stresses (compare expression (5)). Increasing 
normal stresses also decrease the peak dilation angle due to the increased number 
of asperity failures (Seywald 2006, Schieg 2006). Larger joints show also a lower 
peak dilation angle. The relative roughness decreases with increasing joint size 
(Fardin et al. 2001, Fardin et al. 2004, Barton 1973). In this work two methods 
are presented to determine, algorithmically, the peak dilation angle for the 
proposed joint constitutive model. The first method relies on the JRC concept 
while the second method considers a three-dimensional characterisation of the 
joint surface. 

 

3.3.5.1 Barton’s JRC model 

Barton & Choubey (1977) proposed a shear strength model shown in expression 
(20) which depends on the current normal stress σn, the joint roughness JRC, the 
strength of the joint wall JCS and the basic friction angle ϕb. Its formulation is 
similar to Patton’s criterion of friction and dilation (Patton 1966).  
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τ peak =σ n ⋅ tan ϕb + JRC⋅ log10
JCS
σ n
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The dilational part is represented by expression (21). This expression suggests 
that the peak dilation angle decreases with increasing normal stress and 
decreasing joint wall compressive strength. Experiments on the shear behaviour 
on artificial rock joints showed an expressed logarithmic behaviour. 
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ipeak = JRC⋅ log10
JCS
σn
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⎠ 
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Figure 30 shows test results for the peak dilation angle and the influence of the 
ratio between normal stress and unconfined compressive strength determined 
from direct shear tests. On the left hand side, results from joint replicas of tensile 
fractures are shown (Barton 1973). The solid line is the logarithmic best-fit 
approximation of the data set while the dashed line is the best-fit following 
expression (21). As that author mentions that these fractures have been very 
rough representing the upper practical limit of joint roughness, a JRC of 20 could 
be derived.  

 

 

Figure 30:  Influence of the ratio between normal stress and unconfined 
compressive strength on the peak dilation angle. Left: Results from 
(assumed) CNL shear tests, modified after Barton (1973). Right: 
Results from CNS and CNL shear tests after Schieg (2006) (grey) and 
Seywald (2006) (black). 

 

On the right hand side, tests results from Schieg (2006) and Seywald (2006) on 
replicas of a natural joint surface consisting of mortar are shown. These tests 
show a significant logarithmic behaviour as well. The solid line is the least-
square estimation of the data set resulting in a JRC of 8.8 while the dot and dash 
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line is a prediction of the dilation angle using expression (21) with a JRC of 7.9 
(Pötsch et al. 2007). This value has been determined as a mean out of a sample of 
20 expert estimations of the surface’s JRC. The right hand side comprises data 
from CNL and CNS tests while no information about the shear test procedure has 
been available for the left hand side. However, CNL or multi-stage tests have 
been assumed.  

In CNS tests the normal stress varies with the shear displacement. Thus, the 
correlation between the peak dilation angle and the normal stress has to be 
defined. It has been shown by several authors (Barton 1971, Coulson 1970, 
Drozd 1967 cited in Seywald (2006)) that the peak dilation angle corresponds to 
the peak shear strength. In CNS tests the behaviour of the shear and normal stress 
is different. Due to the joint dilation the normal stress increases, hence the shear 
stresses also increase according to Coulomb’s rule even if the surface is almost 
flattened. The maximum dilation angle occurs when the ratio between τ and σn 
becomes a maximum which can be seen in the diagram of the apparent friction 
angle ϕ+i. The peak dilation angle has been plotted in Figure 30 (right) against 
the normal stress at the maximum apparent friction angle. A logarithmic 
correlation similar to CNL tests can be observed.  

Barton & Choubey (1977) concluded from their tests that the peak dilation angle 
determined with the applied methods falls in the range shown by expression (22). 
For the design purposes they recommend to use half of the value obtained by 
expression (21). Bandis et al. (1985) outlined to use expression (21) for low 
normal stresses or high rock wall strength, otherwise expression (22) shall be 
used; this was later addressed as the damage factor concept (see Bandis 1990). 
The works from Schieg (2006) and Seywald (2006) showed a significant 
coincidence of expression (21) with the test results which can be observed in 
Figure 30 right. Anyhow, Figure 30 left on the other hand agrees well with the 
expression (22) applying the factor ½ if a JRC of 20 is assumed (as by Barton 
1971). 
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ipeak = (12 ÷ 2)⋅ JRC⋅ log10 JCSσn
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As mentioned above in section 3.2, the current stress condition and the surface 
friction limits the maximum asperity angle at which sliding can take place 
(Expression (5)). For zero normal stress it suggests a maximum sliding angle of 
ipeak = 90-ϕres. Asperities steeper than this limit are sheared off. In contrast, 
expression (21) approaches infinity with decreasing normal stress. Barton (1973) 
empirically limits the maximum shear stress for design purposes with τ = σn

.tan 
70° exceeding a ratio of 100 between JCS and σn. A corresponding maximum 
peak dilation angle with ipeak = 70-ϕres can be derived. 

The peak dilation angle of a rough joint depends also on the size of the joints. 
The scale-dependant influencing parameters are JRC and JCS. Barton & 
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Choubey (1977) already established empirical upscaling formulas shown in 
expression (23) and (24) which have been well-established until now. The index 
0 denominates the value at which scale the parameter has been determined. 
Usually it is a lab scale of 0.1 m. The index n denominates the in-situ scale. More 
recent investigations to the scale-dependence of joint roughness have been done 
by Fardin et al. (2001) and Fardin et al. (2004) using 3D point clouds and fractal 
methods. Ueng et al. (2003) report higher shear strengths of smaller joints at the 
same roughness, but no scale effect if the roughness is proportionally scaled with 
sample enlargement. 
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JRCn = JRC0 ⋅
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L0
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 (23)  
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 (24)  

The major disadvantage in Barton’s model is related to the determination of the 
JRC. Although Barton recommended its determination from back-calculation of 
direct shear tests or at least from tilt or push tests, it is engineering practice to 
derive the JRC from selected roughness profiles of the joint. The obtained values 
are therefore individual estimations which may have a strong deviation from the 
true value up to ±5° to ±8° as shown by Schieg (2006) and Beer et al. (2002), 
respectively. Apart of the strong impact on the dilation and shear strength, the 
estimation of the JRC by visual comparison provides a value independent from 
the shear direction. This would only be reasonable for statistically isotropic joints 
surfaces. In the recent times the call for a more objective determination or 
consideration of the joint roughness has become stronger. A number of authors 
proposed methods for the geometrical characterisation of irregular surfaces. 
These methods basically rely on fractal theory (Seidel & Haberfield 1995, Yang 
et al. 2001), geostatistics and/or kriging (Gentier et al. 2000, Lopez et al. 2003), 
or combinations (Kulatilake et al. 1995, Kulatilake 2006). The following section 
shows an approach for the determination of the peak dilation angle based on 
Grasselli’s method for the characterisation of the surface roughness. 

 

3.3.5.2 Grasselli’s model 

Grasselli introduced a constitutive model for the shear behaviour of rough rock 
joints based on a quantified surface description (Grasselli 2001, Grasselli et al. 
2002, Grasselli & Egger 2003). The description of the surface morphology is 
derived from a triangulated irregular network representing the rough joint 
surface. The irregular surface is evaluated with respect to maximum potential 
contact area A0, maximum apparent asperity angle Θ*

max and the roughness 
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parameter C which are purely geometrical and depend on the considered shear 
direction. Thus, anisotropic roughness can be taken into account. 

Based on the surface parameters A0, Θ*
max, and C Grasselli formulated a peak 

shear strength criterion. Seywald (2006) used this model for the back-calculation 
of the peak dilation angle. Unfortunately, Grasselli’s formulation of the peak 
shear strength does not have the form of the apparent friction angle after Patton 
(ϕ + i). The expression for the peak dilation angle becomes rather complex 
(expression (25)). 
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The factor a has been introduced by Seywald in order to account for the 
deviations of the predicted values from the measured ones. It shifts the values 
from Grasselli’s original formulation. a can be assessed with expression (26). 
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a = 0.62⋅ σn,(ϕ + i)max + 3.1 (26)  

Figure 31 shows a synopsis of the measured values the two presented prediction 
formulae for ipeak. The solid line is based on Barton’s model using a JRC of 8.8. 
The dot-dashed line is based on the modified model from Grasselli. The surface 
parameters are as follows: A0 = 0.50, Θ*

max = 58, C = 1.79. It can be observed 
that within approximately 90% of the measured stress range the Grasselli’s curve 
fits quite well to the measured values. The mean error is 0.87° with a standard 
deviation of 0.74°. However, outside of the tested stress ranges the model shows 
increasing deviations from the logarithmic behaviour. In the literature there are 
no data available showing the behaviour of the dilation angle in the stress range 
of σn / σc higher than 0.25 and lower than 0.005. Only Maksimovic’s theoretical 
(Maksimovic 1996) approach suggests an S-type behaviour of the dilation angle 
over the logarithmic normal stress scale. Although one would assume a 
logarithmic behaviour, further investigations have to be performed for 
verification. From the current knowledge both models, Barton’s and Grasselli’s, 
should only be applied in the proposed stress range. 

 

3.3.6 Incorporation of the boundary conditions 

The above stated conclusions have been derived regardless of the behaviour of 
the normal stress. Boundary conditions influence the normal stress and in 
consequence the shear behaviour. Typically, boundary conditions are referred to 
as the normal stiffness which confines the normal displacement of the joint.  
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Figure 31:  Comparison of measured values and the prediction models for the 
peak dilation angle. The solid line follows expression (21) while the 
dot-dashed line follows expression (25). 

 

As shown above, the determination of the normal stress increment considers the 
parameter Ktot. It represents the total normal stiffness imposed at the joint. 
Although it is defined as a boundary condition, its magnitude depends on the 
properties of the joint and the surroundings. It is necessary to distinguish between 
the external and internal normal stiffness. The external normal stiffness considers 
boundary conditions such as support or elastic properties of the rock mass. For 
reasons of simplicity the external normal stiffness is usually assumed to be 
constant (CNS) leading to a linear stress-displacement relationship. It is, 
however, possible to apply any stiffness characteristics without the loss of 
applicability. The internal normal stiffness describes the behaviour within the 
joint. It considers the effects of joint closure and aperture, as well as the elastic 
deformation of the asperities. The normal stiffness concept has already been 
applied by several authors for the simulation and prediction of the joint shear 
behaviour under CNS conditions (Goodman 1976, Bandis et al. 1985, Saeb & 
Amadei 1992, Dong & Pan 1996, Indraratna & Haque 2000, Seidel & Haberfield 
2002). Pötsch (2002) showed the application of the CNS concept for detaching 
joint walls under an initial stress state. Most of them used a simplified dilation 
model which would lead to non-relevant predictions of the shear behaviour for a 
natural rock joint as shown by Seywald (2006). 
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Several authors showed that the relationship between normal stress and normal 
displacement of a discontinuity is non-linear. It follows a combined linear and 
hyperbolic law described by Bandis et al. (1983), Bandis (1990), and earlier 
Goodman (1976). Expression (27) shows the hyperbolic joint normal stiffness 
after Bandis. 
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Expression (27) indicates that the internal normal stiffness khyp depends on the 
current normal stress σn and the maximum joint closure vm. Figure 32 shows a 
typical stress-displacement behaviour of a rough rock joint perpendicular to its 
plane. The black dots are data obtained from laboratory tests. The red curve is the 
functional approximation of the measurement data by a combined linear and 
hyperbolic relationship. The green curve represents the linear normal stiffness 
behaviour while the blue curve refers to the hyperbolic behaviour of expression 
(27). It can be observed that a completely closed joint does not deform even if 
the normal stress increases. 

 

 

Figure 32:  Typical stress-displacement behaviour of a rock joint perpendicular to 
its median plane 

 

It can be seen that several stiffness characteristics influence the boundary 
condition of the joint. These different characteristics have to be combined to the 
total normal stiffness. Mechanically, a multi spring model is used to derive the 
total joint normal stiffness Ktot of a joint (Figure 33). In a general denomination 
kn,i represents the internal normal stiffness while kn,j is the external normal 
stiffness. Consider the lower block in Figure 33 as vertically fixed and the upper 
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block as movable. The normal displacement dv is due to the shear displacement 
du and the asperity angle i. The normal displacement affects the normal stress σn 
with kn,i and kn,j. In the following paragraphs the determination of the total 
normal stiffness is outlined for two springs. This procedure can be simply 
extended to an arbitrary number of springs regardless of internal or external 
normal stiffness. Since the presented formulation is incremental, it eases general 
non-linear spring characteristics. 

On the one hand, an incremental variation of the normal stress causes a normal 
displacement within the joint affected by the internal normal stiffness kn,i. 
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dv − dv* =
dσn

kn,i
 (28)  

On the other hand, the same incremental variation of the normal stress causes a 
normal displacement dv* which can be detected outside the joint. It is affected by 
the external normal stiffness kn,j. 
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dv* =
dσn

kn, j
 (29)  

 

 

Figure 33:  Multi spring model of a joint 

 

The normal displacement increment of a joint with a variation of the normal 
stress can be calculated by expression (30). It is obtained after inserting 
expression (29) into (28) and subsequent rearrangement. 
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dv =
dσn

kn,i
+
dσn

kn, j
 (30)  

Conversely, the variation of the normal stress due to a joint normal displacement 
can be calculated by expression (31). The fraction term is a combined stiffness of 
two springs and refers to as the total normal stiffness Ktot. 
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dσn =
kn,i ⋅ kn, j
kn,i + kn, j

⋅ dv  (31)  

If a normal stiffness component obeys a nonlinear relationship, the values for kn 
have to be determined for the current normal displacement or normal stress. 
Different or combined characteristics of the internal or external normal stiffness 
can be considered by adding the appropriate stiffness function to either 
expression (28) or (29). In the end it does not matter for the determination of the 
total normal stiffness whether the added normal stiffness is internal or external, 
as can be seen from expression (30). Following the procedure of expressions (28) 
to (31) the formula for the calculation of the total normal stiffness with an 
arbitrary number of normal stiffness components is given by expression (32) in 
which m is the number of stiffness components. 
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Three typical situations have to be considered for the use of expression (32). 
 

(a) All components are positive finite and non-zero. Ktot is also finite. 
(b) One or more components are zero. Ktot is zero since the numerator 

becomes zero and the denominator remains finite. This is consistent 
with the mechanical point of view: If there is in any position no 
resistance, then the external springs are not affected by normal 
displacement. 

(c) One or more components are infinite. Infinite components must not be 
considered in expression (32). If one or more components are infinite, 
the fraction results in an indefinite term ∞ ⁄ ∞. It can be solved by 
l’Hôpital’s rule using the first derivations of numerator and 
denominator. In this case, infinite components disappear. 
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3.3.7 Determination of model parameters 

The proposed constitutive model comprises several input parameters for the 
description of the outlined behaviour. In this chapter these parameters are 
summarised and their determination is discussed. Their determination could not 
always be extensively investigated within this work. 

 

3.3.7.1 Material parameters 
 

• Friction angle ϕ, ϕb, ϕres:  

o Tilt and push test on a technically flat surface 
o Multi-stage shear test on a technically flat surface (basic friction 

angle) 
o Multi-stage shear test on a shear surface (residual friction angle) 

 
• Unconfined compressive strength UCS, JCS 

o Unconfined compression test 
o Schmidt hammer rebound test 
o Weathering of joint wall has to be considered 

 
• Joint shear stiffness ks 

o Expression (8) 
o Cyclic shear tests with low shear displacements 

 
• Peak shear displacement upeak 

o Expression (13) 
o Laboratory shear test under conditions similar to in-situ conditions 
o Large scale shear test under conditions similar to in-situ conditions 

 
• Degradation parameters c1, c2 

o Back-calculation from a shear test under conditions similar to in-
situ conditions (the author recommends the perform more 
investigations in this respect) 
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3.3.7.2 Surface parameters 
 

• Joint roughness coefficient JRC 
o Comb measurements and standardised profiles 
o Tilt tests 
o Back-calculation from shear tests; particularly from a shear test at 

normal stress equal to one tenth of the asperity compressive 
strength 

o 3D surface analysis 
 

• Potential contact area A0, maximum relative asperity angle Θ*
max and  

roughness parameter C 
o 3D surface analysis 

 
• Ratio between first and second order asperity angles i1/i2 

o Fractal analysis, asperity angle scatter analysis (the author 
recommends the perform more investigations in this respect) 

 

3.3.7.3 Initial and boundary conditions 
 

• Initial normal stress σni 

o Dead load calculation 
o Approximations with analytical plane strain methods 
o Estimations with numerical methods (finite element, boundary 

element) 
o Stress measurement and stress transformation 

 
• External normal stiffness kext 

o Stiffness of support including bolts, anchors, shotcrete, etc. in the 
designed / constructed assembly 

o Stiffness of adjacent rock masses or other containing elements 
 

• Initial joint normal stiffness kni 
o Normal loading loops on joints in normal stress ranges similar to 

in-situ conditions 
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• Maximum joint closure vm 
o Normal loading loops on joints in normal stress ranges similar to 

in-situ conditions 
o Measurement of in-situ joint aperture 

 
• Linear joint normal stiffness klin 

o Boundary element method 
o Elastic settlement of an equivalent circular area of influence 

(Tonon 2007b) 
o Areas close to corners may have a normal stiffness significantly 

different from areas in the centre of a joint. 

 

3.3.7.4 Others 
 

• In-situ joint size Ln 
o Mean diameter / mean chord length of sliding face 
o Cross joint spacing 
o Discrete fracture network modelling 
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3.4 Parametric study 

This study on the joint constitutive model shall outline the influence of the model 
parameters on the response and their interactions. The study commences with the 
parameters governing the pre-peak behaviour and peak shear strength in section 
3.4.1 including the shear stiffness ks, peak shear displacement upeak and joint 
roughness coefficient JRC, and the influence of the initial normal stress σni on 
the pre-peak behaviour. The influence of the joint wall compressive strength is 
not shown. Its influence depends on the ratio between the joint wall compressive 
strength and the normal stress. It has already been discussed by Barton (1971) 
and Barton & Choubey (1977). Section 3.4.2 discusses the influence of the post-
peak parameters on the joint response. Section 3.4.1 and 3.4.2 consider CNL 
conditions. The diagrams show the current ratio between shear and normal stress 
in terms of the apparent friction angle ϕ+i. Since the normal stress is constant, 
the diagrams can be directly related to the shear stress and also the dilation angle. 

Section 3.4.3 shows the influence of the external and initial normal stiffnessess 
kext and kni, and the maximum joint closure vm on the total normal stiffness Ktot. 
Section 3.4.4 shows, finally, the influence of initial and boundary conditions, and 
post-peak parameters on the joint behaviour under constrained shearing. The 
diagrams include the ϕ+i lines, the stress paths, and the normal and shear stress 
over shear displacement. For all examples in these sections unless otherwise 
indicated the joint wall compressive strength is 100 MPa and the basic / residual 
friction angle ϕ  30°. 

 

3.4.1 Pre-peak behaviour and peak shear strength 

Figure 34 shows the shear behaviour for six sets of parameters affecting the shear 
stiffness and peak shear displacement. The constant normal stress is 1.0 MPa and 
JRC is 10. The peak shear displacement varies from 0.5 mm to 2.0 mm and the 
shear stiffness from 1.0 MPa/mm to 5.0 MPa/mm. For the black, red and blue set 
the shear stiffness has been kept constant. A change in the peak shear 
displacement only affects the Bezier spline of stage B but also keeps the initial 
gradient of the spline equal to the shear stiffness. The blue, green and orange sets 
have the same peak shear displacement, only the shear stiffness shows a 
variation. This variation affects both, the behaviour in stage A and B. Lower 
shear stiffness causes a lower gradient of the curve. 

Figure 35 shows the influence of the joint roughness coefficient and the normal 
stress on the shear behaviour in stages A and B. The shear stiffness ks is 
10.0 MPa/mm and the peak shear displacement upeak is 0.5 mm. The black, red 
and blue sets have a JRC of 5, 10 and 15, respectively.  
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Figure 34.  Variation of the shear stiffness ks and the peak shear displacement 
upeak. CNL conditions. σni = 1.0 MPa. JRC = 10. 

 

 

Figure 35:  Variation of the joint roughness coefficient JRC and the normal stress 
σni. CNL conditions. ks = 10 MPa/mm. upeak = 0.5 mm 

 

As expected, a higher JRC causes a higher shear resistance at the same normal 
load. The increase of the normal load, on the other hand, causes a decrease of the 
relative shear resistance (ratio between shear and normal stress in degrees) for 
the same joint roughness coefficient. This must not be mixed up with the 
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absolute shear resistance (shear stress, e.g. in MPa) which, of course, grows with 
a normal load increase. The relative shear resistance changes from 41.5° to 36.5° 
for JRC 5, from 53° to 43° for JRC 10, and from 64.4° to 49.5° for JRC 15 with 
an increase of the normal stress from 0.5 MPa to 5.0 MPa. It also appears in 
Figure 35 that the gradient in stage A decreases with increasing normal stress 
despite the same shear stiffness. The shear stress at a certain shear displacement 
in stage A is the same for all sets. The ratio between shear and normal stress 
decreases with increasing normal stress resulting in a lower gradient of the curve 
in stage A.  

 

3.4.2 Post-peak behaviour 

This section discusses the influence of the degradation parameters, the ratio of 
asperity angles and the influence of normal stress on the shear behaviour in stage 
C.  

Figure 36 shows the shear behaviour resulting from 12 parameter sets for CNL 
conditions and identical behaviour in stage A and B. The different colours 
indicate different values of c2, while different line styles indicate different values 
of c1. Generally, the higher the values of the degradation parameters, the faster 
the apparent friction angle decreases. Usually, c2 is higher than c1 and i2 higher 
than i1. c2 has its influence sphere directly after the peak while c1 becomes more 
relevant in an advanced stage of shearing. The green and the blue line show this 
property clearly. 

Figure 37 shows the influence of the ratio between i1 and i2 on the shear 
behaviour. Low values relate to a dominating influence of i2 (secondary 
asperities) while a value of 1 means an equal influence. The lower the ratio, the 
higher is the curvature in the apparent friction angle line and the more expressed 
is the decrease of the same after peak. A low value together with a high 
degradation parameter signifies a sudden breakdown of a rough surface. 

Figure 38 includes results for parameter sets with varying normal stress. The line 
styles are related to different normal stresses while the black set corresponds to a 
low degradation parameter c2 and the red line to a high degradation parameter. 
The JRC has been adjusted to the applied normal stress in order to obtain the 
same peak shear strength for all sets. This eases the comparison. An increase of 
the normal stress also increases the shear stress, thus more shear energy 
accumulates. The decrease in the apparent friction angle is significantly higher 
compared to lower normal stresses. This is consistent with experiments where 
higher normal loads lead to a sheared surface, which is smoother, more compact 
and shows more crushed areas (Seywald 2006). 
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Figure 36:  Variation of the degradation parameters c1 and c2. CNL conditions. 
σni =1.0 MPa. upeak = 0.5 mm. ks = 10 MPa/mm. i1/i2 = 0.5. JRC = 10. 

 

 

 

Figure 37:  Variation of the degradation parameters c1 and c2 and the ratio 
between the asperity angles i1 and i2. CNL conditions. σni =1.0 MPa. 
upeak = 0.5 mm. ks = 10 MPa/mm. JRC  = 10. 
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Figure 38 shows also the accumulated shear energy for the simulations with 
5.0 MPa normal stress. The decrease in the shear resistance due to the higher 
degradation parameter causes less energy accumulation. Thus, the gradient 
decreases after a certain shear displacement compared to a lower degradation 
parameter. 

 

 

Figure 38:  Variation of the normal stress σni and the degradation parameter c2 
with constant peak dilation angle ipeak. upeak = 0.5 mm. ks = 
10 MPa/mm. c1 = 0.05 m2/kJ. 

 

3.4.3 Joint normal stiffness 

The joint normal stiffness is one of the most essential parameters influencing the 
shear behaviour under constrained conditions. The author distinguished between 
linear and hyperbolic contributions. The hyperbolic contributions depend on the 
maximum joint closure, the initial normal stiffness and the current normal stress, 
each of which are related to the joint. The linear contributions are basically 
model simplifications covering the deformation properties of the rock and 
support. Figure 39 shows the behaviour of the total normal stiffness Ktot over the 
current normal stress. The values have been determined using expression (27) 



3 The shear behaviour of discontinuities 75 
 
and (32). Different colours indicate the parameter sets outlined in the legend. The 
curves of one parameter set relate to different maximum joint closures, those 
values are shown in the rectangles adjacent to the curves. All the sets include a 
linear normal stiffness klin of 20 MPa/mm. The total normal stiffness curve starts 
at a lower boundary and approaches an upper boundary with increasing normal 
stress. The upper boundary of the values (at high normal stress) depends on the 
linear contributions klin and kext. The maximum joint closure influences the 
curvature. The lower the maximum joint closure, the lower is the normal stress at 
which it reaches the upper boundary. The initial normal stiffness (hyperbolic 
contribution) affects the interval between upper and lower boundary. The lower 
the initial normal stiffness, the higher is the interval of the total normal stiffness 
across the normal stress variation. 

 

 

Figure 39:  Total normal stiffness and variation of initial normal stiffness kni, 
external normal stiffness kext, and maximum joint closure vm 
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3.4.4 Influence of the joint normal stiffness on the 
shear response 

This section shows two examples for the influence of the total normal stiffness 
on the shear behaviour of a dilating joint. The first example includes variations of 
the initial normal stress σni and the external normal stiffness kext. The second 
example includes a variation of the post peak parameters c1, c2, and i1/i2, and the 
maximum joint closure vm. For all the sets the peak shear displacement has been 
1 mm, the shear stiffness 10 MPa/mm, the JRC 10, the initial normal stiffness 
5 MPa/mm, and the linear normal stiffness 20 MPa/mm. The corresponding 
figures include the apparent friction angle and the shear and normal stresses over 
shear displacement, and the stress path. 

Figure 40 shows the behaviour for an initial normal stress of 0.5 MPa and 
2.5 MPa, respectively. The lower initial normal stress results in less 
accumulation of shear energy, thus less surface degradation. In consequence, the 
normal stress increases with a higher rate from a lower normal stress level 
compared to the higher normal stress level. It also remains at a higher normal 
stress rate for a longer shear displacement. At an external normal stiffness of 
10 MPa/mm the normal stress almost increases from 0.5 MPa normal stress level 
to the same level as from 2.5 MPa normal stress level. The shear stress increases 
steadily throughout shear displacement at the two higher normal stiffness levels 
for the 0.5 MPa initial normal stress curves. It only increases steadily throughout 
shear displacement for the highest normal stiffness for the 2.5 MPa initial normal 
stress curve. This is explained by the stronger roughness degradation at higher 
normal loads. 
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Figure 40:  Shear behaviour under different normal stiffnesses kext and initial 
normal stresses σni 
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Figure 41 shows the influence of the post peak parameters and the maximum 
joint closure on the shear behaviour. The initial normal stress was kept at 
0.5 MPa for all variations. The maximum joint closure has been 0.1 mm and 
1.0 mm resulting in different normal stiffness behaviours. In consequence, under 
constrained conditions the normal stress is also different causing different peak 
dilation angles. Thus, the maximum joint closure affects the shear behaviour 
already in the pre peak stage B. 

The influence of the post peak parameters on the apparent friction angle has 
already been discussed in section 3.4.2 under CNL conditions. The dilatational 
part now causes also a normal stress variation which subsequently influences the 
joint normal stiffness and also the accumulated shear energy. Stronger 
degradation means less dilation, less normal stress increase, and a lower gradient 
of the shear energy accumulation. On the other hand, less shear energy damps the 
degradation. Less normal stress also results in less normal stiffness. The shear 
behaviour in the post peak stage is thus a complex interaction between 
degradation, normal stress and normal stiffness. From Figure 41 one can derive 
the following influences: 

• Increasing the maximum joint closure results in less shear and 
normal stress mobilisation 

• Higher degradation parameters result in less shear and normal 
stress mobilisation 

• A lower ratio i1/i2 causes less mobilisation of shear and normal 
stresses 

The author recommends increasing the knowledge about this model in a more 
extensive parametric study. 
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Figure 41:  Shear behaviour under constrained conditions with different post-
peak parameters 
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3.5 Summary 

This section described and discussed the shear behaviour of rough rock joints 
under shear and normal loading and under constrained normal stiffness 
conditions. The focus was pointed but not limited to matched discontinuities. The 
most relevant factors influencing the discontinuity shear behaviour have been 
identified as the friction of the rock material, surface irregularity, aperture, 
infillings, strength of the rock material, deformability of the rock material, initial 
normal stress, boundary conditions (confinement), petrographical properties, and 
rock fabric.  

The typical stages of the shear behaviour of a matched rough discontinuity have 
been described, based on experience from literature and a shear test series 
performed by Schieg (2006) and Seywald (2006). The stages include the 
mobilisation of shear stress, the mobilisation of dilation, surface degradation, and 
the residual stage. The author especially pointed out the importance of dilation of 
a joint in the shear behaviour. Mathematically, an established constitutive model 
describes these stages of shearing. The constitutive model allowed investigating 
the influencing factors and provided further insight in the complex interactions 
between material properties, surface roughness, accumulated shear energy and 
wear, boundary conditions and the resulting stresses and strength. Results were 
presented in a parametric study with stress-displacement curves and stress paths. 
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4 Description and properties of blocks 
The mechanical analysis of a block may aim at different directions such as 
stability analysis, design of support, dynamic response, rock fall simulation, etc. 
each of which is based on the laws of motion. The formulation of the differential 
equations of motion depends on the geometry of the mechanical system, inertia 
properties of the involved bodies and, of course, the forces acting on the body 
(Goldstein et al. 2006). In a rock engineering sense, the bodies are rock blocks 
enclosing a finite volume of rock. In the idealised mechanical model, blocks are 
bounded by a closed surface comprising planar facets, each of which is bounded 
by a polygon. The considered block geometries are arbitrary simple polyhedra. 
This chapter introduces a suitable representation of polyhedral block geometries, 
discusses the finiteness theorem of blocks, and finally provides algorithms and 
analytical formulae for the calculation of the metric properties of a block 
required for a comprehensive mechanical analysis.  

 

4.1 Geometric description of blocks 

4.1.1 Characteristics of a polyhedron 

A polyhedron is a subset of the Euclidean space comprising piecewise planar 
elements. If the polyhedron can be completely enclosed by a sphere, the 
polyhedron is bounded (Klee 1959). Descriptions include quantities which can be 
measured (metric properties) and which can only be counted (topological 
properties). Metric properties are, for instance, the volume, mass, face areas, 
angles, etc, while topological properties include the number of vertices, edges 
and faces (Jing 2000). A simple polyhedron is topologically equivalent to a 
sphere and consists only of simple polygons. A simple polygon consists only of a 
single polygonal chain that does not intersect itself (de Berg et al. 2000). 

A polyhedron consists of vertices, edges, and faces. A vertex is the intersection 
of three faces or three edges. An edge is the line of intersection between two 
faces bounded by two vertices. A face is a planar subset of 3D space bounded by 
a closed polygonal loop of edges. All of these elements except vertices can be 
directed which leads to the definitions given by Lu (2002): 

Directed edge:  

A directed edge is an edge of finite length between its starting and end vertices 
according to its orientation. The twin edge is a directed edge with the same 
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vertices but switched starting and end vertex. Thus, it has the opposite 
orientation. Two faces can be associated to a directed edge. 

Directed loop:  

A directed loop is a closed planar polygon formed by ordered and directed edges 
such that the end vertex of a directed edge coincides with the starting vertex of 
the following edge, and additionally having a counterclockwise spin if the 
normal vector of the associated face points towards the observer. Lu (2002) 
defines this as an exterior loop in contrast to interior loops – a distinction we 
omit since we neglect holes. 

Directed face:  

A directed face is a plane with finite size bounded by its directed loop and its 
normal pointing outside of the polyhedron. 

Directed polyhedron:  

A directed polyhedron is a finite space enclosed by directed faces. 

An important topological characteristic of a polyhedron is the Euler-Poincaré 
characteristic stated in expression (33). 

 

€ 

Nv + N f − Ne = 2⋅ Nb − Nh( )  (33)  

In this expression Nv, Nf, Ne, Nb, and Nh are the number of vertices, faces, edges, 
bodies, and holes, respectively. In the following we consider only polyhedra 
which have no holes. The Euler-Poincaré characteristic for one polyhedron 
without holes is 2. These types of polyhedra are relevant for rock engineering. 
The algorithms, anyhow, described in the subsequent sections can be extended 
for polyhedra with holes with low effort.  

Mechanical analyses require the inertia properties (mass, moments of inertia, 
products of inertia) of the considered blocks. They are derived from the 
geometric properties. Analytical formulas are usually not available for arbitrary 
polyhedra. Section 0 and 4.5 describe algorithms and formulas aiming at the 
determination of the required metric properties and include polyhedron 
decomposition into simplices and merging of simplex properties. All formulas 
are based on the block’s vertex coordinates. 
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4.1.2 Parameters for the description of a polyhedron 

This section proposes the minimum set of parameters to define an arbitrary 
polyhedral block (a simple polyhedron). For an integral description we need to 
link vertices, edges and faces as they have been defined in section 4.1.1. 
Degenerate cases such as intersection of four planes in one point are not 
described but have to be treated separately. 

First of all, a description of the planes forming the faces is required. It includes 
the position and orientation of the plane, and the corresponding halfspace 
forming part of the block. The position vector of an arbitrary point rP,i on plane i 
represents the position, two angles known as the dip direction and dip angle 
represent orientation, and an index for the upper or lower halfspace represent the 
halfspace. Dip direction and dip angle allow determining the normal vector ni of 
the plane. The halfspace index is required to determine which side of the plane 
forms the block. For an arbitrary polyhedron this needs to be valid only in the 
close vicinity of the plane. These data are already sufficient for the computation 
of a convex block which is the intersection of all halfspaces of the corresponding 
plane. Goodman & Shi (1985) describe, for instance, the convex block algorithm. 

For a non-convex polyhedron it is not possible to determine all the required links 
from the plane data alone. A connectivity list provides the topological 
relationships. The connectivity list links the plane data to the vertices, i.e. each 
vertex Cijk is linked to three planes i, j, and k forming the vertex. The connectivity 
list together with the plane data allows determining:  

• the position of a block vertex rP,ijk as the intersection of three planes i, j, 
and k using expression (34). Figure 42a shows the relationships. 
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rP,ijk =N−1⋅ d  where (34)  
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• the block edges: every pair of vertices having the same two plane indices 
form a block edge. Switching the two indices forms the twin edge pointing 
in the opposite direction (Figure 42b). 

• the faces – every face comprises only vertices having the index of the 
corresponding plane. The face vertices are oriented and ordered such that 
each starting point of a face edge is the end point of the previous face edge 
(Figure 42c).  
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Figure 42:  Description of polyhedra and topological links 

For the initial description using the connectivity list the halfspace information is 
not required. It becomes effective for decomposition strategies and analysis of 
kinematics. The halfspace information allows distinguishing between the face’s 
normal vector pointing outside and inside the block in the vicinity of the plane. 
For directing a face, the outside normal vector comes into play. A directed face 
belonging to a directed polyhedron owns a counterclockwise loop of edges when 
looking from outside into the block. A loop has a counterclockwise spin if the 
sum of the turn angles ϑijk between two directed edges of a loop is 2π (Chan 
1987). Otherwise, the loop has a clockwise spin. Figure 42d shows the 
relationships and expression (35) the determination of the turn angles ϑijk. 
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4.2 Finiteness of blocks 

The finiteness theorem is a cornerstone of block theory (Goodman & Shi 1985). 
In its first hierarchy block theory distinguishes finite and infinite blocks. Only 
finite blocks can be subject to movement and instability, thus merit further 
analysis. The second hierarchy is related to the kinematics (see chapter 5) where 
moveable blocks are separated from non-movable blocks. Blocks are simple 
polyhedra bounded by piecewise planar areas and described according to section 
4.1. Proving finiteness is also essential when having only limited data on the 
block geometry such as in exposed rock faces. 

The finiteness theorem in block theory states that a convex block is finite if its 
block pyramid is empty (Goodman & Shi 1985). Conversely, a convex block is 
infinite if its block pyramid is not empty. At a first glance this statement may 
appear simple. This section outlines the general finiteness theorem and some 
peculiarities relevant to arbitrary polyhedra in excavation faces.  

 

4.2.1 Plane pyramids 

A plane subdivides the space into two halfspaces. A block bounded by planes is 
the intersection of halfspaces of these planes and, occasionally, the union of these 
intersections. The intersection of halfspaces contains all points common in the 
entire set of halfspaces. The union of halfspaces contains all points which are 
contained in at least one of the halfspaces of the set.  

Let us consider the set of planes bounding the block. The planes are 
distinguished into joints and free faces. Shifting the set of planes with their 
halfspaces into the origin without any rotation forms a pyramid with the origin as 
the apex. Goodman & Shi’s block theory denominates these intersections of 
different sets of planes for a convex block: 

• The block pyramid BP is the intersection of origin-shifted blockside-
halfspaces of all planes bounding the convex block. 

• The joint pyramid JP is the intersection of origin-shifted blockside-
halfspaces of all joint planes of the convex block. 

• The excavation pyramid EP is the intersection of origin-shifted blockside-
halfspaces of all free faces of the convex block. 

• The space pyramid SP is the union of origin-shifted spaceside-halfspaces 
of all free faces of the convex block 
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4.2.2 The finiteness theorem for simple polyhedra 

4.2.2.1 Convex blocks 

A convex block B is finite if its block pyramid is empty. Conversely, a convex 
block is infinite if its block pyramid is not empty (Goodman & Shi 1985). Since 
the block pyramid is the intersection of the joint pyramid and the excavation 
pyramid, we can also state: A convex block is finite if the intersection between 
joint pyramid and excavation pyramid is empty (Expression (36a)). This is 
equivalent to the statement that the space pyramid entirely contains the joint 
pyramid (Expression (36b)). Conversely, if the intersection between joint 
pyramid and excavation pyramid is not empty, the block is infinite. If only the 
joint or only the excavation pyramid is empty, the block is finite as well. 
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(a) BP = EP∩ JP = 0
(b) JP ⊂ SP  (36)  

Figure 43 shows joint and excavation pyramids in the stereographic projection. 
The green pyramid is the excavation pyramid and the blue one is the joint 
pyramid. The left side shows the situation for an infinite block. Joint and 
excavation pyramid intersect – the intersection relates to the block pyramid. The 
right side shows the situation for a finite block where the intersection of joint and 
excavation pyramid is empty. 

 

 

Figure 43.  Block pyramids shown as the intersection of joint pyramid (shaded in 
blue) and excavation pyramid (shaded in green) of a convex block. 
The nonempty intersection (left) relates to an infinite block and the 
empty intersection (right) relates to a finite block. 
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4.2.2.2 Non-convex blocks 

Let a non-convex block B be a union of convex subblocks B(Ai) each of which is 
formed by the intersection of a set of halfspaces of B such that each point Ai 
forms part of B(Ai). The properties are summarised in expressions (37) through 
(41). A detailed discussion is found in Goodman & Shi (1985), pages 121ff. 
Zhang & Kulatilake (2003) describe the analysis of a non-convex block with one 
reflex edge2 at the free face. 

 

€ 

B = ∪
i=1

h
B Ai( ), where i=1…h and  are h points of B. (37)  
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B Ai( ) = ∩
l∈D
UB(nl ) , where UB is a halfspace containing the 

blockside normal vector nl. D is the set of halfspaces which 
contain Ai. 

(38)  

According to Goodman & Shi (1985) the necessary condition for the finiteness of 
a non-convex block is similar to the condition for convex blocks shown in 
expression (39). 
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BP = EP∩ JP = 0 (39)  

The joint pyramid of a non-convex block is the intersection of the joint pyramids 
of all convex subblocks. Since the joint pyramids of the convex subblocks are 
also the intersections of related halfspaces of joints, the joint pyramid of a non-
convex block is the intersection of all blockside halfspaces of joints. Thus, 
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JP = ∩
i=1

h
JP Ai( )  (40)  

The excavation pyramid of a non-convex block is the union of the excavation 
pyramids of the individual subblocks. The excavation pyramid of an individual 
subblock is the intersection of the blockside free face halfspaces. Thus, 
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EP = ∪
i=1

h
EP Ai( )  (41)  

Figure 44 shows joint and excavation pyramids related to a non-convex block. 
The joint pyramid in blue is the intersection of joint halfspaces equivalent to 
convex blocks. The green shaded area is the excavation pyramid of the non-
convex block. It is the union of the excavation pyramids of two convex 
subblocks. These excavation pyramids are indicated by a green and red dashed 
line. Since the intersection between excavation pyramid and joint pyramid is 
empty, the situation indicates a finite block. 

                                            
2 The definition of a reflex edge is provided in section 4.2.3. 
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Figure 44.  Block pyramid of a non-convex block. The excavation pyramid 
(shaded in green) is the union of the excavation pyramid of convex 
block subsets. 

 

4.2.3 Determination of the excavation pyramid 

For proving the finiteness of a given block it is necessary to determine the joint 
and excavation pyramid. In any case, the joint pyramid (JP) is just the 
intersection of all joint halfspaces corresponding to the block side of each block-
forming joint. Since the JP is also related to potential block displacements, it is 
outlined in detail in chapter 5. The current chapter shows the determination of the 
excavation pyramid. 

 

 

Figure 45.  Convex and reflex edge 
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The geometry of the free faces in general consists of several simple polygons 
each forming part of a convex subblock. The finiteness theorem is only affected 
by the convexity of the excavation pyramid. The aim of this section is to group 
the free faces into subblocks with convex block surfaces and determine their 
excavation pyramid by intersection of the corresponding blockside halfspaces. In 
the next step the subblock’s excavation pyramids are unified in order to obtain 
the block’s excavation pyramid. Finally, this excavation pyramid is compared to 
the joint pyramid.  

The convex subsets of the excavation pyramid are separated by reflex edges. 
Geometrically, a reflex edge is the intersection of two planes (either free faces or 
joints) between which the angle measured inside the block is also reflex, i.e. 
greater than 180°. In contrast, a convex edge is the intersection of two planes 
between which the angle measured inside the block is acute or obtuse, i.e. 
smaller than 180° (Figure 45). Figure 46 bottom shows a block with both, convex 
and reflex edges. Convex edges are drawn as solid black lines while reflex edges 
are dashed-dotted white lines. 

For an efficient determination of the convex subsets of the excavation pyramid 
one has to find the minimum set of relevant test points Ai. As we consider only 
the excavation pyramid, relevant test points lie only on the free face. As stated 
above, the free face is continuous and finite, and the polyhedron is simple. In 
consequence, it is not necessary to test points inside the free face but only on its 
boundary. Relevant test points are thus linked at least to one joint plane. Relevant 
convex subsets are planes between reflex edges along the boundary of the free 
surface. 

The algorithm is as follows: 
• Find all edges and faces lying on the free face 
• Classify edges into convex and reflex (non-convex) edges 
• Determine the closed directed three-dimensional polygon representing the 

boundary between joints and free surface 
• Separate the closed three-dimensional polygon into open subpolygons 

with endpoints at the reflex edges 
• Find the planes and halfspaces belonging to the subpolygons 
• Group the halfspaces into convex intersections according to their 

affiliation to the subpolygons 
• Compute the excavation pyramid for each convex subset 
• Compute the intersection of the joint pyramid with each of the excavation 

pyramids 
• If all intersections are empty, the block is finite, otherwise it is infinite. 
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Figure 46 shows a block with four joints and a non-convex free surface with five 
planar pieces. The geometric data of this block are shown in Table 2 and Table 3. 
The block has in total 14 corners which have been defined by a connectivity list. 
Joint planes are shaded in blue. The planes of the free surface have different 
colours (red, green and magenta) each corresponding to a convex subset of the 
free surface. The algorithm of this section allowed grouping the planes into the 
shown subsets. The reflex edges indicated by white dashed-dotted lines bound 
the subsets within the free surface. 

 

Table 2.  Corner coordinates for the block shown in Figure 46. 
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Figure 46.  Block with a non-convex free surface. Joints are blue. Convex subsets 
of the free surfaces have different colours (red, green, and magenta). 
The reflex edges are white dashed-dotted lines. 

Table 3.  Data on joints and free faces for the block shown in Figure 46. 
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Figure 47 shows the stereographic projection of the joints and free faces of the 
block shown in Figure 46. Joint planes are shown with blue great circles. The 
joint pyramid is the intersection of the joint halfspaces given in Table 3. It is 
shaded in blue. The free faces are great circles with different colours (red, green, 
and magenta) related to the convex subsets of the free surface according to the 
algorithm of this section. The dashed arcs of the great circles indicate the 
boundaries of the excavation pyramids of the convex subsets which are the 
intersections of the corresponding free face halfspaces. The halfspace of each 
free face is given in Table 3. As it is an upper focal point projection, the lower 
halfspace projects inside the great circles and the upper one outside the great 
circle. The excavation pyramid of the block is the union of the subsets’s 
excavation pyramids. It is shaded in green and surrounded by the envelope of the 
subsets’s excavation pyramids. The intersection between joint and excavation 
pyramid is empty. Thus, the block is finite which has been obvious from the 
perspective view in Figure 46. 

 

4.3 Identification of finite blocks from trace maps 

In order to use the discontinuity data from 3D image measurements as described 
in chapter 2 for block analyses it is necessary to characterise the discontinuity 
network with respect to blocks. Only finite blocks as defined in the previous 
section are relevant. The computation involves three steps including establishing 
a geometrical model of the rock mass, delineating polygonal patches on the 
model surfaces, and determining the block geometries. The properly assessed 3D 
image with discontinuity measurements suffices as input for the subsequent 
computation. 

 

4.3.1 Establishment of a geometrical model 

The geometrical model contains geometric information about the geometry of the 
rock structure (natural slope, benched mine slope, tunnel, cavern, etc.) and the 
discontinuity system. The rock structure forms the free surfaces. It consists of 
intersected planar patches which approximate the irregular rock surface. The free 
surface is defined by the orientations of the plane, and the corners and the edges 
of their intersections.  
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Figure 47.  Joint and excavation pyramid for the block shown in Figure 46. 
Colours of the free faces correspond to convex subsets. The 
excavation pyramids of the subsets are indicated by dashed arcs of the 
great circles. 
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The measured discontinuities are intersected with the free surfaces and form a 
network of joint traces. The position and extension of the joints is directly 
visible. Each trace has the orientation of the joint attached to it. It is assumed that 
the discontinuities persist infinitely into the rock mass although finite extent does 
not limit this approach (for instance the circular disc model (Baecher et al. 1977) 
could be applied). Anyhow, the size of discontinuities is usually not known a 
priori. For the subsequent computation it is not necessary to have the joints 
grouped into sets. Each joint is treated individually. Figure 48 shows a simple 
geometrical model consisting of five rectangular patches forming the free surface 
and several intersecting joint traces along the free surface. 

 

 

Figure 48:  Geometrical model of a slope comprising the traces of the 
joint system (blue) and the geometry of the slope (grey) 

 

4.3.2 Identifying surface patches of blocks 

Once the geometrical model has been established, the trace network is searched 
for closed polygons (loops) of traces in order to identify the superficial block 
faces (Lu 2002). The result is a dense assembly of finite surface patches each of 
which corresponding to a – finite or infinite – block. The patch identfication 
requires the following computational steps after Lu (2002). 

First of all, the traces are subdivided into stretches between their intersections. 
Intersection points are stored. Twin directed traces are assigned to each stretch, 
i.e. one vector points from one intersection point of the stretch to the other and 
another vector (the twin vector) points in the reverse direction (Figure 42b). The 
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first trace is randomly selected. The subsequent traces of the patch are 
determined in a recursive computation until the original starting point has been 
encountered again (Figure 42c). 

The recursive computation comprises steps to determine the trace following the 
current one. At the same time the former endpoint becomes the new starting 
point. Any selected trace is flaged and cannot be selected again for another patch. 
The subsequent trace complies with the following two constraints: 

• The subsequent directed trace must point away from the endpoint of the 
current directed trace. 

• The subsequent directed trace is the one which forms the maximum right-
handed angle with the current directed trace whereby 360° are treated as 
0°. The right-handed angle is determined according to expression (42). 

 

 

Figure 49:  Trace search criterion (modified after Lu (2002)) 

 

Figure 49 represents the sketch of the trace search criterion applied at a random 
corner of a patch. ti indicates the directed traces, εi indicates the right-handed 
angle, and n indicates the normal vector of the plane. t0 is the current trace whose 
subsequent trace has to be determined. t0’ is the reverse directed trace of t0. 
Reverse directed traces of the other traces are not shown in Figure 49. Candidates 
for the subsequent trace are those traces ti which have an index “i” greater than 
zero and t0’ as well. Applying the above stated constraints trace tn is determined 
as the subsequent trace. The endpoint of t0 becomes the new starting point and 
the algorithm is repeated until the traces arrive at the starting point of t0. 
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 (42)  

The trace search criterion is applied to the entire trace map. This results in a 
subdivision of the slope surface into polygons. Each polygon forms part of the 
free surface of a block. Figure 50 shows the resulting polygons of the 
geometrical model in Figure 48. 

 

 

Figure 50:  Polygon patches determined with a trace-search algorithm based on 
the traces shown in Figure 48. 

 

4.3.3 Determination of the block geometry from 
surface patches 

Each of the identified polygons contains the information about the orientation 
and halfspaces of both, the discontinuities and free surfaces. By determining the 
joint and block pyramids, each polygon can be analysed to determine the 
finiteness of the corresponding block (Goodman & Shi 1985 outlined in section 
4.2). This is applied for blocks with one free surface as well as for those at edges 
(two free surfaces), corners (three free surfaces), and more complex slope 
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geometries. Figure 51 shows finite blocks with one free surface for the trace map 
in Figure 48. 

Basic keyblock analyses do not cover the entire block failure mechanisms which 
can occur in rock slopes. A number of blocks which are not necessarily 
individually removable can form a removable keyblock. These types of blocks 
are referred to as united keyblocks. Chan (1987) proposes a mathematical 
formulation for identifying united keyblocks. The drawback of this formulation is 
that it is applicable only for joint sets containing perfectly parallel 
discontinuities. A generalisation for joints sets with non-parallel discontinuities 
has been undertaken but not yet finished. 

Finally, the block geometry including corners, edges and faces has to be 
determined. At this stage it is assumed that from the superficial trace 
discontinuities persist infinitely into the rock mass. If the surface patch is convex, 
then a corresponding finite block is also convex. In this case Goodman & Shi’s 
(1985) method for determining the block geometry can be applied. In case of 
non-convex patches the finite block comprises reflex edges. Algorithmic 
determination of block geometry requires sequential edge intersection of adjacent 
planes, and corner intersection of adjacent edges until all planes and edges are 
connected. The algorithm is similar to the algorithm for geometric roof design. 

 

 

Figure 51:  Finite removable blocks with one free surface 
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4.4 Metric properties of tetrahedra 

A tetrahedron is a simplex3 in three-dimensional Euclidean space. It consists of 
four vertices, each determined by the position vector rP,i with i=1,…,4. Each 
possible vertex triple lies in one plane. This section introduces analytical 
formulae for determining the metric properties required for rigid body dynamics, 
each based on the known vertex coordinates. The derivation of these analytical 
formulae is described in a variety of articles and textbooks; those based on vertex 
coordinates for instance in Goodman & Shi (1985) and Tonon (2004).  

 

 

Figure 52:  Tetrahedron – definitions and relationships 

 

4.4.1 Volume 

The scalar triple product gives the volume of a parallelepiped defined by three 
vectors, each pointing from one vertex to one of the three remaining vertices. A 
parallelepiped is made up of six tetrahedra defined by these vertices. Hence, the 
volume of a tetrahedron is one sixth of the scalar triple product. Expression (43) 
gives the analytical formula. 

                                            
3 A simplex in n-dimensional space is the convex hull of n+1 vertices. 
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=
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⋅
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z2 − z1 z3 − z1 z4 − z1

 (43)  

 

 

4.4.2 Mass 

The mass of a body is a scalar value. With uniform density ρ, it is proportional to 
the volume as shown in expression (44). 
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mi = ρ⋅ V =
ρ
6
⋅

x2 − x1 x3 − x1 x4 − x1
y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1

 (44)  

 

 

4.4.3 Centre of gravity 

The position vector of the centre of gravity of a tetrahedron with uniform density 
is the sum of the vertex vectors divided by the number of vertices following the 
rule for simplices in n-dimensional space. Expression (45) can be obtained 
assuming that median lines for triangles divide by 1:2 and for tetrahedra by 1:3. 
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j=1

4

∑  (45)  

This work does not distinguish between the centre of gravity, centre of mass, and 
centroid, since the gravitation gradient is neglected and uniform density within a 
tetrahedron is assumed. 
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4.4.4 Areas of face triangles 

The norm of the cross product of two vectors is equal to the area of the 
corresponding parallelogram. The area of a triangle is the half of this norm, each 
of the vectors pointing from one vertex towards one of the remaining vertices. 
Expression (46) shows this relationship in matrix formulation. 
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*
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i, j,k=1
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4

  

with [rP,i,  rP, j,  rP,k ] ∈ Ai

 (46)  

 

 

4.4.5 Inertia matrix 

The inertia matrix of a rigid body is a 3x3 symmetric matrix comprising the 
second order mass moments as shown in expression (47). The diagonal elements 
are the mass moments of inertia which can only take positive values. The 
negative off-diagonal elements are the mass products of inertia which can take 
either positive or negative values. 
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 (47)  

The elements of the inertia matrix with respect to the vertex coordinate system 
(position and orientation) are calculated according to the expressions (48a) - 
(48f). The derivation is shown in Tonon (2004). Section 0 discusses the 
translation and rotation of the inertia matrix to different reference frames. 
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4.5 Metric properties of simple polyhedra 

In general blocks have an arbitrary polyhedral shape. Planes define the surface of 
a block, intersecting at edges and corners (vertices). Blocks can have notches and 
entrants, thus can have a non-convex shape significantly different from a 
tetrahedron. The formulae of the previous section can be used for the 
determination of block properties if one accomplishes a suitable segmentation of 
the polyhedral block into tetrahedra. Segmentation strategies are different for 
convex and non-convex polyhedra. After segmentation and determination of the 
properties of the individual tetrahedra merging of the obtained parameters leads 
to the properties of the original block. This section provides methods for 
distinguishing convex and non-convex polyhedra, decomposition strategies for 
both types of polyhedra, and formulae for merging the individual properties. 
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4.5.1 Distinction between convex and non-convex 
polyhedra 

A convex polyhedron is the nonempty intersection of a finite number of 
halfspaces bounded by planes. A non-convex polyhedron can be seen as the 
union of a finite number of convex polyhedra (Edelsbrunner 1995). Two 
necessary criteria for the convexity of a polyhedron are as follows: 

• All vertices of the polyhedron lie on the convex hull of the polyhedron. 
• All faces of the polyhedron are convex polygons. 

In other words, if there is any point inside the convex hull, although all faces are 
convex, the block is non-convex. If there is any face having a non-convex 
boundary, although all points lie on the convex hull, the block is non-convex. 
Figure 53 shows a convex polyhedron (a), a non-convex polyhedron with only 
convex faces (b), and a non-convex polyhedron with all vertices lying on the 
convex hull. The following algorithm covers also the combination of case (b) and 
(c) which has been omitted in the figure. 

 

 

Figure 53:  Characteristics of polyhedra. (a) Convex polyhedron – all points lie 
on the convex hull and all faces are convex polygons. (b) Non-convex 
polyhedron – a set of points lies inside the convex hull, although all 
faces are convex. (c) Non-convex polyhedron – all points lie on the 
convex hull but some faces are non-convex. 

 

The algorithm for determining block convexity is below: 
• Compute the three-dimensional convex hull for the set of block corners 

Algorithms for computing the three-dimensional convex hull are standard 
and available from textbooks on computational geometry, for instance, de 
Berg et al. (2000). The author used the Matlab function convhulln. 
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• Test whether the corners of the block lie on the convex hull 
Increase a test counter by one if no coincidence could be found, and store 
the index of this point. 

• For each face, transform the face corners into a two-dimensional 
coordinate system 

• Compute the two-dimensional convex hull for each set of face points 
Algorithms for computing the two-dimensional convex hull are standard 
and available from textbooks on computational geometry, for instance, de 
Berg et al. (2000). The author used the Matlab function convhull. 

• Test each face whether the points of the face coincide with one of the 
points of the face’s convex hull 
Increase a test counter by one in case no coincidence could be found, and 
store the index of this point. 

• If the test counter is zero, the block is convex – non-convex 
decomposition is not required. Otherwise, the block is non-convex and 
non-convex decomposition has to take place. 

 

4.5.2 Decomposition of convex polyhedra 

The decomposition of a convex polyhedron is straightforward and has been 
already described in various textbooks, for instance, Goodman & Shi (1985), de 
Berg et al. (2000).  

• Select one (and only one) arbitrary corner Cijk of the convex polyhedron. 
The three planes i, j, and k, form this corner.  

• Subdivide all faces of the polyhedron into triangles 
o Select the loops of each face 
o Select one (and only one) arbitrary corner Clmn from the loop 
o Connect every two subsequent corners Clno and Clop of the loop to 

corner Clmn 
o Store an indicator of the number of the original face for each 

triangle 
• Connect the corners of every triangle Clmn-Clno-Clop except those lying in 

planes i, j, and k to the apex point Cijk to form the decomposed tetrahedra 
of the polyhedron. 

The decomposition consists of a link list of tetrahedra each described by four 
indices pointing to the corresponding vertex coordinates. Figure 54 describes the 
algorithm graphically. 
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Figure 54:  Convex decomposition of polyhedra. (a) Convex block comprising 
seven vertices. (b) Triangulation of faces. (c) Connection of triangles 
with stored vertex C6 to form tetrahedral 

 

4.5.3 Decomposition of non-convex polyhedra 

The convex block segmentation fails in the case of non-convex polyhedra. It can 
be even impossible to subdivide a non-convex polyhedron into tetrahedra without 
adding new vertices (Ruppert & Seidel 1992). A possible approach to overcome 
this problem is the decomposition of the block into convex subblocks and, 
subsequently, decomposition of the subblocks into tetrahedra. The algorithmic 
treatment of the decomposition into convex polyhedra requires following major 
steps: 

• Definition of cutting planes which have infinite extent 
• Formation of new vertices 

o Intersections of polygon edges with all single cutting planes 
o Intersections of polygon faces with pairs of cutting planes 
o Intersections of cutting plane triples inside the polyhedron 

• Establish new directed edges and links to the faces and cutting planes 
• Application of Lu’s algorithm for identification of directed loops (Lu 

2002) 
Maximum right-handed angle criterion for directed edges 

• Application of Lu’s algorithm for identification of directed convex 
polyhedra (Lu 2002) 
Extended maximum right-handed angle criterion for directed faces 

Figure 55a exemplarily shows a block with 8 faces, 12 vertices and 18 edges. It 
has one reflex edge which defines the cutting planes. Figure 55b shows the new 
vertices and directed edges as the basis for Lu’s loop and polyhedron search. The 
convex subblocks and tetrahedra are shown in Figure 55c and Figure 55d. 
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Although conceptionally easy, the algorithm requires several algebraic 
operations, special treatment for degenerate cases, rearrangements, and search 
operations making it slow. 

 

 

Figure 55:  Decomposition of a non-convex polyhedron into tetrahedra. (a) 
Original block (b) New vertices and directed edges (c) Non-
overlapping convex subblocks (d) Non-overlapping tetrahedral 

 

There are two groups of methods for calculating volume properties of non-
convex polyhedra avoiding the decomposition into non-overlapping standard 
geometric forms: Divergence theorem methods and direct integration methods. 
Divergence theorem methods take advantage of Gauss’s divergence theorem 
which states that a volume integral is equivalent to the surface integral over the 
oriented boundary of the volume. Representatives of this approach are Gonzalez-
Ochoa et al. (1998) and Mirtich (1996). 

Direct integration methods break the volume into overlapping smaller volumes 
which can be efficiently integrated. The central projection algorithm used here is 
based on the methods of Lien & Kajiya (1984), outlined by Ohanian (2005). It is 
suitable for piecewise polygonal surfaces and bodies with constant density. 
Tonon (2007a) describes an efficient derivative of the central projection 
algorithm used for the maximum block around a tunnel with the block’s apex as 
the projection centre.  

The direct integration requires triangulation of the polygonal block faces. 
Triangulation of a polygon without adding new vertices is always possible (de 
Berg et al. 2000). In consequence, there is no need for determining new vertices 
at all, which is the basis for the algorithm’s efficiency. The triangles are 
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connected to an arbitrary point (for instance the origin) to form tetrahedra. For 
these tetrahedra the volume and mass properties are calculated. Those tetrahedra, 
whose outside normal vector of the body triangle points towards the apex, have a 
negative volume and mass contribution. Those with an outside normal vector 
pointing away from the projection centre contribute positively. Figure 56 shows 
the central projection algorithm exemplarily for two tetrahedra, one contributing 
positively and the other negatively, depending on the outside normal vector of 
the surface triangles. 

 

 

Figure 56:  Central projection algorithm (direct integration). Surfaces triangles 
are connected to apex O. Tetrahedron i has a positive and tetrahedron 
j a negative contribution. 

 

Choosing a block vertex as the apex of the tetrahedra avoids triangulation of the 
three faces forming the vertex. Due to the surface triangulation the face areas can 
also be easily calculated. For area calculation the entire surface has to be 
triangulated. The algorithm in detail is as follows: 

• Decomposition of the face polygons into monotone polygons (Garey et al. 
1978) 
 

• Triangulation of the monotone polygons (Lee & Preparata 1977) 
 

• Calculation of the outside normal vector of the triangles 
 

• Calculation of volume, mass and centre of gravity 
o Selection of a block vertex as tetrahedron apex. Favourably, the 

vertex, where the sum of the triangles of the adjacent faces is 
maximum, should be selected. 
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o Formation of tetrahedra using the apex and triangles 
o Calculation of the volume, mass and centre of gravity of the 

tetrahedra (see section 0) 
o Merging of tetrahedra properties (see section 4.5.4) 

 
• Calculation of the inertia matrix 

o Selection of the block’s centre of gravity as the tetrahedra apex  
o Formation of tetrahedra using the apex and triangles 
o Calculation of the moments and products of inertia for the 

tetrahedra (see section 0) 
o Merging of tetrahedra properties (see section 4.5.4) 

 
• Calculation of the face areas 

o Calculation of the areas of the surface triangles (see section 0) 
o Face-wise summation of the triangle sizes (see section 4.5.4) 

 

4.5.4 Merging of simplex properties 

After tetrahedral decomposition (sections 4.5.2 and 4.5.3) and calculating the 
properties of each individual tetrahedron (section 4.4) the individual properties 
are merged in order to get the properties of the original block. Each of the 
properties may require different merging strategies. 

 

4.5.4.1 Volume and mass 

The volume and the mass of the block is the sum of the volumes or masses of all 
individual tetrahedra. Note that tetrahedra of a decomposition may have a 
negative volume and mass using direct integration methods. 
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with n as the number of individual tetrahedra
 (49)  
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4.5.4.2 Centre of gravity 

The vector to the block’s centre of gravity is the sum of the static moments of the 
individual tetrahedra about the origin divided by the mass of the block. Note that 
tetrahedra of a decomposition may have a negative volume and mass using direct 
integration methods. 
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with n as the number of individual tetrahedra
 (50)  

 

4.5.4.3 Inertia matrix 

The inertia matrix of a block one determines with the individual tetrahedra and 
application of Steiner’s theorem. Steiner’s theorem assumes parallel coordinate 
systems. Expression (51) shows the relationships. Ji are the inertia matrices of 
the individual tetrahedra as described by expressions (48a) – (f). rc,i are the 
reference points for each tetrahedron, usually the centres of gravity for the 
tetrahedra. If these reference points coincide with the centre of gravity of the 
block, the second summand vanishes. Note that tetrahedra of a decomposition 
may have a negative volume and mass using direct integration methods. 

 

€ 

JC =  Ji −mi ⋅ rC,i - rC( ) *
⋅  rC,i - rC( ) *{ }

i=1

n

∑    

€ 

with n as the number of individual tetrahedra   

(51)  

 
Rotation of the inertia matrix about the centre of gravity 
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JC
(2) =A (12)T ⋅ JC

(1)⋅ A (12) (52)  

where A(12) is the rotation matrix transforming from coordinate system (2) to (1). 
The rotation matrix is discussed in chapter 5. 

 
Moment of inertia related to an axis u passing through the origin of the reference 
system 
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Ju = uT ⋅ J ⋅ u  (53)  
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Principal moments of inertia and principal axes of inertia 

The principle moments of inertia are the Eigenvalues of the inertia matrix. The 
principal axes of inertia are the corresponding Eigenvectors. The radius of the 
inertia ellipsoid along the principal axes is the reciprocal of the square root of the 
principal moment of inertia.  

 

4.5.4.4 Face areas 

The face areas of the block are the sums of the triangle areas making up each of 
the faces. 
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with n as the number of triangles at the considered face 

(54)  

 

 

4.6 Examples for metric properties for simple blocks 

The following Table 4 shows the metric properties of two blocks determined by 
using the expressions of sections 0 and 4.5. The geometry of the block in the left 
column is described in chapter 5, section 5.4.2. The geometry of the block in the 
right column is described in Table 3 and Table 2 in section 4.2.3. The properties 
include volume, mass, centroid, moments and products of inertia, and face areas. 
These values have been determined based only on the block’s vertices. The 
sketches at the table’s top show the blocks in a perspective view including the 
face triangulation. The sketches at the table’s bottom show the inertia ellipsoid 
and principle axes relative to the block at the centroid. The inertia radius is not to 
scale. 
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Table 4.  Two examples for the determination of block properties 
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4.7 Summary 

This chapter introduced the description of rock blocks as arbitrary simple 
polyhedra. Required data are the position and orientation of the planes, the 
halfspaces forming part of the blocks, and a list connecting planes and vertices 
(connectivity). The method of directed polyhedra and its related sub-elements is 
useful in finding the internal and external relationships of the block. The general 
formulation of the finiteness theorem of block theory was algorithmically applied 
for proving the finiteness of blocks with an arbitrary polyhedral shape. An 
algorithm for the identification of finite blocks in trace maps was presented. 
Finally, formulas for calculation of the geometric and inertia properties of 
tetrahedra and arbitrary polyhedra were presented. The methods of this chapter 
allow both, direct access to the block elements (faces, edges, vertices), and to the 
related properties. This is frequently required for the subsequent analysis of 
kinematics and block dynamics. 
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5 Kinematics and kinematic analysis of 
blocks 

Kinematics basically deals with the position and orientation of systems in space 
and their variation with time. It does not consider the loadings on a system which 
cause changes in the position and orientation. Kinematics is also called the 
geometry of spatial relationships and movements (Magnus & Müller 1990). 
Bodies can only move if they have a kinematical freedom. In other words, a 
block can fail if and only if it is kinematically free. For studying the kinematics 
of rock blocks the principles of rigid body dynamics are applied. 

Several authors already addressed the importance of the kinematic analysis 
within the stability assessment of blocks. Early works are related to John (1968) 
and Markland (1972) who discussed the kinematics of slopes with daylighting 
joint intersections and planes (daylighting envelope). Londe et al. (1969, 1970) 
discussed possible failure modes of a tetrahedral block including rotation and 
proposed graphical analysis methods. Rotation of blocks was also addressed in 
Wittke’s (1965) pioneering work (cited in Wittke 1984). Rotation of blocks is 
also related to the forward rotation (“Toppling”) and backward rotation 
(“Slumping”). Goodman & Bray (1977) described the former and Kieffer (1998) 
the latter. The textbook of Goodman & Shi (1985) about block theory represents 
a milestone in rock mechanics by providing a general solution of the analysis of 
translations of block with arbitrary polyhedral shapes including the theorems on 
finiteness and removability, and clearly distinguishing between kinematics, 
failure modes and stability analysis. At almost the same time Warburton (1981) 
proposed a method for vector stability analysis of polyhedral blocks. Compared 
to Goodman & Shi’s method Warburton does not explicitly analyse block 
kinematics but implicitly takes it into account. First attempts to extend block 
theory were done by Mauldon & Goodman (1990, 1991, 1996) by introducing 
rotational kinematics for three-joint pyramids and tetrahedral blocks. Mauldon 
(1992) addressed also the kinematics of four-joint pyramids. Tonon (1998) 
outlined the relationships of motion of a rigid body in the context with rock 
blocks. Daehnke et al. (2000) used a two-dimensional approach for analysing 
rotational kinematics of keyblocks in the roof of underground mines. 

All the approaches presented are subject to assumptions limiting the applicability 
to engineering problems – assumptions of which practicing engineers are often 
not entirely aware. The kinematic test of daylighting joints or intersections 
inherently assumes a finite block which only can be proved by the finiteness 
theorem. Daylighting of an intersection or plane is not a sufficient condition for 
removability (Only the theorem of removability is a sufficient condition!). 
Goodman & Shi’s and Warburton’s methods are limited to translational block 
motion only. The developments of block rotations are so far addressing 
tetrahedral blocks only. They also address only pure rotational modes and neglect 
the general motion of a rigid body. On the other hand, they allow for a quick 



5 Kinematics and kinematic analysis of blocks 113 
 
analysis whether a joint pyramid related to a block is non-rotatable or may be 
rotatable for pure rotational modes. The method outlined in Daehnke et al. (2000) 
does not account for the three-dimensional properties of rotation and thus is 
limited to the rotation of prismatic blocks about an edge. It shows, however, the 
dependence of rotational displacements on the true shape of the block. 

Goodman (1995) gives an overview on block theory including rotational modes. 
Figure 57 shows several types of block motion which can be related to failure 
modes. Type (a), (b) and (c) are the translational modes lifting, single face 
sliding and double face sliding, respectively. They are covered by block theory. 
Types (d) and (e) are pure rotational modes about a block edge or corner, 
respectively. These modes are covered by Mauldon & Goodman’s theory on 
rotations but limited to tetrahedral blocks. Type (f) is a pure rotation with 
simultaneous sliding on one plane referred to as torsional sliding. Type (g) is a 
block rotation about a remote axis with simultaneous sliding on two faces usually 
referred to as slumping. 

 

 

Figure 57:  Types of block motion related to failure modes: (a) Lifting; (b) Single 
face sliding; (c) Double face sliding; (d) Rotation about an edge; (e) 
Rotation about a corner; (f) Rotational sliding on a plane – Torsional 
slide; (f) Slumping. Redrawn after Goodman & Shi (1985) and 
Goodman (1995). 
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This chapter presents a general solution for the kinematic analysis of single rock 
blocks with arbitrary polyhedral shapes considering any type of block motion. It 
is not limited to special failure modes. As far as the analytical solutions allowed, 
it follows the terms and methods used in block theory (Goodman & Shi 1985), 
and in the works of Mauldon & Goodman (1990, 1991, 1996) and Mauldon 
(1992). The assumptions involved for this analysis are that 

• the block is a rigid body, 
• the block is finite, and 
• it has a polyhedral shape (no curved surfaces). 

The first section of this chapter discusses the basics of rigid body kinematics in 
order to develop the analysis method, to provide physical reasoning and valid 
simplifications. It describes the position and displacements of a rigid body from a 
pure geometric standpoint and shows that the formulation of rigid body motion 
involves systems of nonlinear equations. It introduces the concept of the corner 
joint pyramid for defining feasible block displacements. The first section finally 
leads to the kinematic description of constraint block motion distinguishing 16 
kinematic modes.  

The second section discusses translational analysis of blocks based on the ideas 
of Goodman & Shi’s block theory repeating the theorem of removability and 
showing the basic graphical and vector methods. The aim of the second section is 
not to introduce a new method but to outline the analysis steps of an established 
method and apply these steps in the subsequent section. The third section is 
dedicated to the analysis of block rotations including corner and edge rotation, 
and remote axis rotation as well. While for the former two modes an analytical 
solution is available, for the latter only numerical methods can be applied. 
Finally, the chapter concludes with illustrative examples showing the application 
of the presented methods for a convex and a non-convex block. A last example 
outlines the methods for a block in a tunnel crown and discusses several aspects 
of the methods. 

 

5.1 Basics of kinematics of rigid bodies 

5.1.1 The position and orientation of a rigid body 

Let us consider a Cartesian coordinate system O1 fixed in space and another 
Cartesian coordinate system O2 fixed to the block. The coordinate systems are 
formed by the unit vectors e1,1, e2,1, e3,1 and e1,2, e2,2, e3,2, respectively. In the 
initial position O2 coincides with O1. The block moves from its initial position to 
an arbitrary position as shown in Figure 58.  
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Figure 58:  Position of a point P of a rigid body in a coordinate system O1 fixed 
in space 

 

The current position of point P can be calculated by expression (55). 

 

€ 

rP
(1) = rC

(1) +A (12)⋅ s(2) (55)  

The right hand side of expression (55) comprises a translational and a rotational 
component. The translational component rc describes the displacement of the 
origin of O2 expressed in the coordinate system O1. This vector has three 
components whose coordinates are independent representing three degrees of 
freedom. The vector s points to the position of a point P relative to the origin of 
O2 while A(12) describes the relative orientation between O1 and O2. s and A(12) 
together form the rotational component. rc and A(12) vary with time while s is 
constant assuming a rigid body. 

A(12) is a 3x3 rotation matrix which maps every vector expressed in O2 into O1 by 
a linear transformation provided that both coordinate systems have the same 
origin. It is an orthogonal matrix with all elements smaller than one; thus its 
transpose is equal to its inverse. Since rotation has also three degrees of freedom, 
three elements of A(12) can be independently chosen. 

According to Euler’s rotation theorem two three-dimensional coordinate systems 
with the same origin are related to a finite rotation about an axis through the 
origin. The rotation matrix for a finite rotation about an axis u by an angle ε is 
calculated using expression (56). One may be interested in the derivation which 
can be found in Goldstein et al. (2006). 
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€ 

A (12) = I+ 1− cosε( )⋅ u* ⋅ u* + sinε⋅ u*

A (12) = I+ 2⋅ sin2 ε
2
⋅ u* ⋅ u* + sinε⋅ u*

 (56)  

The rotation axis u is a unit vector characterised by the eigenvector of the 
rotation matrix A(12) with the corresponding unit eigenvalue. If we know the 
orientation of the rotation axis and the rotation angle, we can determine the 
rotation matrix using the Euler parameters (not to be confused with the Euler 
angles) using expression (57). The derivations of Euler parameters for rotations 
can also be found in Goldstein et al. (2006). 

 

€ 

e0 = cos ε
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟  

€ 

e1 e2 e3( )T = u⋅ sin ε
2
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟  

€ 

p = e0 e1 e2 e3( )T  

(57)  

In consequence, expression (58) shows the formulation of the rotation matrix 
constructed by the Euler parameters. 

 

€ 

A (12) =

2⋅ e0
2 + e1

2( ) −1 2⋅ e1e2 − e0e3( ) 2⋅ e1e3 + e0e2( )
2⋅ e1e2 + e0e3( ) 2⋅ e0

2 + e2
2( ) −1 2⋅ e2e3 − e0e1( )

2⋅ e1e3 − e0e2( ) 2⋅ e2e3 + e0e1( ) 2⋅ e0
2 + e3

2( ) −1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
 (58)  

Euler parameters arranged in a column matrix is a unit quaternion (Kuipers 1998) 
satisfying the normalisation condition of expression (59). 

 

€ 

e0
2 + e1

2 + e2
2 + e3

2 =1 (59)  

The formulation of the rotation using Euler parameters has several computational 
advantages. It reduces numerical inaccuracies, is free of singularities, avoids 
multiplying several rotation matrices and provides only two real solutions related 
to right-hand and left-hand rotation, respectively. One should also note that finite 
rotations cannot be described by a vector. 

In the subsequent formulations the transformation from Euler-Newton space to 
Euler parameter space and vice versa is required. This is performed with the 
Euler parameter transformation matrices E and G. 
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€ 

E =

−e1 e0 −e3 e2
−e2 e3 e0 −e1
−e3 −e2 e1 e0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 (60)  

 

€ 

G =

−e1 e0 e3 −e2
−e2 −e3 e0 e1
−e3 e2 −e1 e0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 (61)  

The following relationships apply: 

 

€ 

A = E⋅ GT

E⋅ ET = G⋅ GT = I3x3

ω (2) = 2⋅ G⋅ ˙ p 
ω (1) = 2⋅ E⋅ ˙ p 

 (62)  

 

5.1.2 Unconstrained motion 

Block failure involves the kinematics of block motion. This includes also the 
description of velocities and accelerations. The determination of reaction forces 
under general loading conditions outlined in a subsequent chapter also requires a 
more detailed discussion of the kinematics of unconstrained and constrained rigid 
body motion. Expression (55) describes the position of a point of a rigid body 
varying with time. Time dependent terms are rc and A(12). s(2) remains constant 
during motion. Expression (63) describes the velocity of a point of a rigid body 
obtained by derivation of expression (55) with respect to time. After derivation 
and rearranging one obtains (Roberson & Schwertassek 1988): 

 

€ 

˙ r P
(1) = ˙ r C

(1) + A (12)⋅ ω*(2)⋅ s(2) (63)  

 can be interpreted as a vector and is called the angular velocity. Subsequent 
derivation of expression (55) with respect to time leads to the acceleration of a 
point of a rigid body shown in expression (64).  

 

€ 

˙ ̇ r P
(1) = ˙ ̇ r C

(1) + A (12)⋅ ˙ ω *(2)⋅ s(2) + A (12)⋅ ω*(2)⋅ ω*(2)⋅ s(2) (64)  

 is the angular acceleration which can again be interpreted as a vector. 
Expression (64) shows that the acceleration of a rigid body point does not only 
depend on the translational and angular acceleration but also on the angular 
velocity. Thus, the velocity status of a rigid body influences the rigid body 
acceleration and in consequence the interaction with forces. 
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5.1.3 Constrained motion 

Constraints govern the motion of a rigid body. Physical constraints are 
formulated as a combination of basic constraints. Basic constraints are geometric 
conditions between points or vectors, i.e. the constraints lock the motion between 
two points or vectors.  

 

5.1.3.1 Basic constraints 

Basic constraints are mathematical conditions between points or vectors fixed or 
connected to a rigid body. They are the basis for formulating physical 
constraints. The shown expressions are presented in Dietmair (2007). 

 

5.1.3.1.1 Position constraints 

Consider two rigid bodies i and j with their body-fixed coordinate systems Oi and 
Oj with arbitrary orientations as shown in Figure 59. The position vectors ri and 
rj define their positions in the space-fixed coordinates system O1. Arbitrary 
points Pi and Pj on the rigid bodies are determined by the body-fixed vectors si 
and sj. Vector dij connects two points each of which located on a different body. 
The vectors ai and aj are fixed to each body at an arbitrary position and 
orientation. 

 

d1 constraint (dot-1): Two vectors ai and aj remain perpendicular throughout 
motion:  

Thus, the vectors comply with a d1 constraint if the scalar product remains zero. 
Expression (65) shows the d1 constraint in matrix formulation. It locks one 
degree of freedom. 

 

€ 

Θd1 a i,a j( ) = a i
(i)T ⋅ A (ij)⋅ a j

(j) = 0 (65)  
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Figure 59:  Kinematic conditions between points or vectors of two rigid bodies 

 

d2 constraint (dot-2): Two vectors, ai on body i and dij connecting bodies i and j, 
remain perpendicular throughout the motion:  

The scalar product of the two vectors has to be zero. Since dij connects two 
bodies, expression (66) is a slightly more complex formulation. It also locks one 
degree of freedom. 

 

€ 

Θd 2 a i,dij( ) =

= a i
(i)T ⋅ A (1i)T ⋅ rj

(1) +A (1 j)⋅ s j
(j) − ri

(1)( ) − a i(i)T ⋅ si(i) = 0
 (66)  

 

s constraint (spherical): Two points Pi and Pj on two distinct bodies coincide. 
The sum of the position vectors of both points has to be a zero vector. It locks 
three degrees of freedom. 

 

€ 

Θs Pi,Pj( ) = rj
(1) +A (1 j)⋅ s j

(j) − ri
(1) −A (1i)⋅ si

(i) = 0  (67)  
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5.1.3.1.2 Variation and derivation of the basic constraints 

The variations of the basic constraints with respect to the generalised coordinates 
[ri, pi, rj, pj]T of bodies i and j follow expression (68). 

 

€ 

δΘ() =Θ
ri

(1) ⋅ δri
(1) + 2⋅ Θ

π i
(i) ⋅ G i ⋅ δpi +

         +Θ
rj

(1) ⋅ δrj
(1) + 2⋅ Θ

π j
(j) ⋅ G j⋅ δp j

 (68)  

Table 5 gives the expression for calculating the coefficient matrices 

€ 

Θ( )  for each 
factor of expression (55) discriminated for d1, d2, and s constraint. 

 

Table 5:  Coefficient matrices for calculation of the variation of basic 
constraints 

Constraint     

€ 

Θd1 a i,a j( ) 

€ 

0 

€ 

0 

€ 

−a j
(j)T ⋅ A (1 j)T ⋅ A (1i)⋅ a i

*(i) 

€ 

−a i
(i)T ⋅ A (1i)T ⋅ A (1 j)⋅ a j

*(j) 

€ 

Θd 2 a i,dij( ) 

€ 

−a i
(i)T ⋅ A (1i)T  

€ 

a i
(i)T ⋅ A (1i)T

 

€ 

a i
(i)T ⋅ si

*(i) −dij
(1)T ⋅ A (1i)⋅ a i

*(i)  

€ 

−a i
(i)T ⋅ A (1i)T ⋅ A (1 j)⋅ s j

*(j) 

€ 

Θs Pi,Pj( ) 

€ 

−I 

€ 

I 

€ 

A (1i)⋅ si
*(i) 

€ 

−A (1 j)⋅ s j
*(j) 

 

The first derivation of the kinematic constraints with respect to time in absence 
of kinematic drivers and non-holonomic constraints has to be a zero vector for 
each constraint. Expression (69) shows the relationships for nk bodies. Note that 
this is a system of linear equations. 

 

€ 

Θri
⋅ ˙ r i +Θπ i

(i) ⋅ ω i
(i){ }

i=1

nk

∑ = 0  (69)  

After applying the product rule on expression (69), rearrangement and taking 
advantage of using only the partial derivations (instead of the total) one obtains 
expression (70) showing the relationships of the accelerations of basic 
constraints. Note that this is also a system of linear equations.  
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€ 

Θri
⋅ ˙ ̇ r i +Θπ i

(i) ⋅ ω i
(i){ }

i=1

nk

∑ = γ  (70)  

 is the velocity dependent coefficient vector influencing the acceleration of a 
rigid body. Its components are calculated by using the expressions in Table 6 for 
each basic constraint. 

 

Table 6:  Expressions for calculating the acceleration components γ for basic 
constraints 

 

€ 

a j
(j)T ⋅ A (1 j)T ⋅ A (1i)⋅ ω i

*(i) −ω j
*(j)⋅ A (1 j)T ⋅ A (1i)( )⋅ a i*(i)⋅ ω i

(i) +

a i
(i)T ⋅ A (1i)T ⋅ A (1 j)⋅ ω j

*(j) −ω i
*(i)⋅ A (1i)T ⋅ A (1 j)( )⋅ a j*(j)⋅ ω j

(j)
 

 

€ 

2⋅ ω i
(i)T ⋅ a i

*(i)⋅ A (1i)T ⋅ ˙ r i
(1) − ˙ r j

(1)( ) +

2⋅ s j
(j)T ⋅ ω j

*(j)⋅ A (1 j)T ⋅ A (1i)⋅ ω i
*(i)⋅ a i

(i) − si
(i)T ⋅ ω i

*(i)⋅ ω i
*(i)⋅ a i

(i) −

s j
(j)T ⋅ ω j

*(j)⋅ ω j
*(j)⋅ A (1 j)T ⋅ A (1i)⋅ a i

(i) −dij
(1)T ⋅ A (1i)⋅ ω i

*(i)⋅ ω i
*(i)⋅ a i

(i)

 

€ 

γ s 

€ 

A (1i)⋅ ω i
*(i)⋅ ω i

*(i)⋅ si
(i) −A (1 j)⋅ ω j

*(j)⋅ ω j
*(j)⋅ s j

(j) 

 

5.1.3.2 Physical constraints for blocks 

Three basic constraints are used for block kinematics each of which is known as 
the Θd1, Θd2 and the Θ s constraint in rigid body dynamics. Θd1 preserves a right 
angle between two unconnected vectors. It is used to keep a defined orientation 
between two blocks. Θd2 preserves a right angle between a vector on one block 
and a connecting vector between two blocks. It is used to keep a block in contact 
with a defined plane. Θ s locks the divergence between two points on two blocks 
– they remain coinciding. It is used to define a rotation point. 

Depending on the degrees of freedom of constraint blocks one or several of the 
basic constraints are combined to meet the characteristic displacement behaviour. 
In total 16 kinematic modes describe the different physical constraints of blocks. 
Table 7 shows an overview of these modes including a brief description, the 
degrees of freedom, and the applied basic constraints to describe the modes. With 
increasing mode number, the number of degrees of freedom decreases. Figure 60 
shows the typical displacements of each kinematic mode. It also shows the 
vectors involved with the formulation of the basic and physical constraints. 
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Table 7:  Overview of constrained motion of single polyhedral blocks 
described by basic constraints 

Number Mode 
Degrees 

of 
freedom 

Constraints 

1 Unconstrained motion 6 no constraints 

2 Rotation about a corner 
which slides on a plane 5 

€ 

Θd 2 ni,dij( )  

3 
Rotation of an edge 
about an edge and 

sliding in contact point 
5 

€ 

Θd 2 nij,dij( )
nij = k j

*(j)⋅ A (ij)T ⋅ k i
(i)  

4 Rotation about a corner 
sliding along a line 4 

€ 

Θd 2 ni1,dij( )
Θd 2 ni 2,dij( )

 

5 
Rotational slide of an 

edge with rotation about 
the edge 

4 

€ 

Θd1 ni,fj( )
Θd 2 ni,dij( )

 

6 Rotational slide of a 
plane about an edge 4 

€ 

Θd1 fi,fj( )
Θd 2 fj,dij( )

 

7 
Rotation of an edge 
about a corner and 

sliding in contact point 
4 

€ 

Θd 2 nij1,dij( )       Θd 2 nij2,dij( )
nij1 = k j

*(j)⋅ A (ij)T ⋅ k i1
(i)

nij1 = k j
*(j)⋅ A (ij)T ⋅ k i 2

(i)

 

8 Pure rotation about a 
static corner 3 

€ 

Θs ri,rj,s j( )  

9 Rotational slide of a 
plane 3 

€ 

Θd1 fi,fj( )     Θd1 gi,fj( )
Θd 2 ni,dij( )

 

10 

Rotational slide of an 
edge with translation of 

rotation point and 
rotation about the edge 

3 

€ 

Θd1 ni1,fj( )
Θd 2 ni1,dij1( )    Θd 2 ni 2,dij2( )
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Number Mode 
Degrees 

of 
freedom 

Constraints 

11 
Sliding rotation of a 
plane while rotation 

point slides along line 
2 

€ 

Θd1 ni1,fj( )      Θd1 ni1,g j( )
Θd 2 ni1,dij1( )    Θd 2 ni 2,dij2( )

 

12 
Rotational slide of an 

edge with static rotation 
point 

2 

€ 

Θs ri,rj,s j( )
Θd1 ni1,fj( )

 

13 
Sliding of an edge along 

a line with rotation 
about the edge 

2 

€ 

Θd1 ni1,fj( )   Θd1 ni 2,fj( )   
Θd 2 ni1,dij1( )    Θd 2 ni 2,dij2( )

 

14 Double plane sliding 1 

€ 

Θd1 ni1,fj( )      Θd1 ni1,g j( )
Θd1 ni 2,fj( )

Θd 2 ni1,dij1( )    Θd 2 ni 2,dij2( )
 

15 Edge rotation 1 

€ 

Θs ri,rj,s j( )
Θd1 ni1,fj( )    Θd1 ni 2,fj( )

 

16 
Sliding rotation on a 
plane about a static 

corner 
1 

€ 

Θs ri,rj,s j( )
Θd1 fi,fj( )    Θd1 gi,fj( )

 

After a thorough inspection of the manifold modes one will identify already 
known modes while others may be not well known. The author agrees that some 
of these modes have no relevance in a static analysis, especially in an 
undisturbed rock mass (before any block displacement has taken place). 
Considering a disturbed state of the rock mass, all of these modes could be 
potential starting points for a static analysis. The mechanical system of the 
analysed mode may yield an unstable equilibrium. This may be obvious a priori 
or identified by using the methods introduced in chapter 6. In Figure 60 modes 1 
- 5, 7, 10, 12, and 13 can be related to an unstable equilibrium situation. From a 
kinematic and dynamic perspective, however, the presented modes are 
equivalent.  
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Figure 60:  Constrained motion of single polyhedral blocks based on basic 
constraints between points or vectors 
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Figure 60:  Constrained motion of single polyhedral blocks based on basic 
constraints between points or vectors (continued) 
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The kinematic modes can be compared to those shown in Figure 57. Mode 1 is 
equal to the lifting mode. Mode 8 is equal to the corner rotation. Mode 9 can be 
related to the torsional slide. Mode 14 corresponds to double face sliding. Mode 
15 corresponds to the edge rotation. The combination of the according 
constraints of the modes 2, 4, 5, 10 and 11 at two different corners or edges of a 
block allows defining slumping modes. One will also note that the single face 
sliding in translation cannot be related to a kinematic mode. Single face sliding 
of blocks is frequently observed in a rock mass. Nevertheless, it requires apart of 
the kinematic constraints (mode 9 – two translational and one rotational degree 
of freedom) an additional dynamic criterion on the acting forces. They must not 
generate a moment acting parallel to the sliding plane’s normal vector. 
Otherwise, a torsional sliding motion of the block will take place. 

The presented physical constraints are also rigid and lock motion independent of 
the magnitude and orientation of the reaction force. Blocks are not able to 
transfer tensile forces into the rock mass and they start sliding once the frictional 
resistance of a constraint has been exceeded. In these cases the constraints have 
to adjust according to the currently acting forces. This can only be performed, if 
we have control over the reaction forces. This is in agreement with the block 
theory approach in which the active (Goodman & Shi 1985) and reactive (Tonon 
1998) forces come into play in the mode analysis. 

Reaction forces depend on the kinematic constraints and on Newton’s and 
Euler’s equations of motion. The determination of reaction forces is introduced 
in the subsequent chapter together with the description of the equations of 
motion. For adding new constraints at new contacts contact detection algorithms 
are necessary. This is, however, out of scope of this work. 

Summarising from a purely geometric standpoint the kinematic modes cannot be 
determined. As shown by other authors, it is indeed possible to analyse the 
kinematic movability of blocks from a geometric standpoint according to the 
feasibility of displacements in the incipient motion of a block. The next sections 
define kinematically feasible displacements, review the method for analysing the 
translational movability, and introduce a method for analysing the rotational 
movability of blocks. 
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5.1.4 The general displacement of a rigid body 

The general displacement of a point on a rigid body vP is the vector between two 
positions of the point at two different times (Tonon 2007b). 

 

€ 

vP
(1) = rC,t 2

(1) +A t2
(12)⋅ s(2) − rC,t1

(1) −A t1
(12)⋅ s(2)

vP
(1) = vC

(1) + A t2
(12) −A t1

(12)( )⋅ s(2)

vP
(1) = vC

(1) + A rot − I( )⋅ A t1
(12)⋅ s(2)

 (71)  

Arot is the rotation matrix considering the rotational displacement of the block, 
while At1 is the rotation matrix transforming the vectors in the body fixed 
coordinate system (2) to the space fixed coordinate systems (1) at the beginning 
of displacement. vC is the displacement vector of the block’s centre of gravity. 

The variation of the point displacement can be obtained by forming the 
derivative of expression (71) as shown in expression (72). 

 

€ 

˙ v P
(1) = ˙ v C

(1) + ˙ A rot ⋅ A t1
(12)⋅ s(2) = ˙ v C

(1) +ω*(1)⋅ A rot ⋅ A t1
(12)⋅ s(2)

˙ v P
(1) = ˙ v C

(1) + 2⋅ E⋅ ˙ p ( )*
⋅ A rot ⋅ A t1

(12)⋅ s(2)

˙ v P
(1) = ˙ v C

(1) − 2⋅ A rot ⋅ A t1
(12)⋅ s(2)( )*

⋅ E⋅ ˙ p 

˙ v P
(1) = DP ⋅ ˙ q    with  ˙ q = ˙ v C

(1)T ˙ p T[ ]T

                               DP = I, −2⋅ A rot ⋅ A t1
(12)⋅ s(2)( )*

⋅ E[ ]

 (72)  

Expression (73) provides the rotation of an arbitrary vector attached to the 
block’s coordinate system. 

 

€ 

su
(1) =A rot ⋅ A t1

(12)⋅ s(2)  (73)  

The corresponding variation of the vector rotation can be obtained with a similar 
derivation as shown in expression (72). 

 

€ 

˙ s u
(1) = ˙ A rot ⋅ A t1

(12)⋅ s(2) = −2⋅ A rot ⋅ A t1
(12)⋅ s(2)( )*

⋅ E⋅ ˙ p 

˙ s u
(1) = HP ⋅ ˙ q    with  HP = 0, −2⋅ A rot ⋅ A t1

(12)⋅ s(2)( )*
⋅ E[ ]

 (74)  
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5.1.5 Kinematically feasible displacements 

The rock mass surrounding the block constrains its motion and is called the 
constraint space. Displacements are only kinematically feasible if no 
interpenetration of the block with the constraint space takes place. If the 
constraint space allows for kinematically feasible displacements of the block, 
then the block is movable. Constraints are also rigid. This is only feasible if no 
rupture of the rock takes place and no soft layers form the constraint space (Soft 
layers would allow for indentation). The block is in contact with the constraint 
space. Physically, the contact areas are joints, faults, shears, slickensides, etc., in 
other words, any zone of weakness in the rock mass. For the later analysis the 
contact areas are referred to as joints and geometrically approximated by planes. 
Free (sur)faces are contacts of the block with the free space; they do not 
constrain motion. 

Let us have a glance on an infinitesimal displacement increment in the incipient 
motion of a block. In this case it is not necessary to deal with large displacements 
and contact detection. A joint divides the space into two halfspaces, the rockside 
halfspace and the blockside halfspace. An arbitrary block displacement is 
kinematically feasible if it plots inside the blockside halfspace of a joint. For a 
polyhedron it is sufficient to test the kinematic feasibility at its corners only. If 
the displacements are kinematically feasible at the block corners, then they are 
feasible at any other point of the block surface as well. This can be proved by 
extending the derivations shown in Tonon (1998) to arbitrary simple polyhedra. 

A block corner is an intersection of three nonparallel planes. Corners inside the 
rock mass always comprise three joints while corners at the free face can 
comprise two, one or even no joint. As only joints constrain motion, the analysis 
has merit only for corners comprising joints. The intersection of the blockside 
halfspaces of joints at corner Cj is the corner’s joint pyramid JPCj. A 
displacement at this corner is kinematically feasible if the displacement vector Δx 
plots inside the corner’s joint pyramid. Hence, no interpenetration of the block 
and rock mass takes place. This criterion holds for both, convex and concave 
corners. This becomes obvious from the 2D analogy shown in Figure 61 and 
agrees with Shi’s theorem for non-convex blocks (Goodman & Shi 1985). 

ni,c are the blockside normal vectors of the joint planes forming the corner Cj. 
The displacement vector is kinematically feasible if no component moves 
towards the rock mass. Let mj be the number of joints at Cj, then the sufficient 
condition for kinematic feasibility of infinitesimal displacements at block corners 
in the incipient motion is 

 

€ 

ΔxT ⋅ ni,c ≥ 0 with i =1,...,  m j  (75)  
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Figure 61:  2D analogy for kinematically feasible displacements Δx at convex 
(left) and concave (right) corners Cj plot inside the corner’s joint 
pyramid JPCj 

 

5.2 Analysis of translations 

The analysis of translations of blocks has been a topic since the science of rock 
mechanics emerged in the early nineteen fifties. The most extensive and relevant 
work has been done by Goodman & Shi (1985) with the development of block 
theory. This section outlines the basic concepts of block theory in order to 
prepare for the subsequent sections dealing with the rotational analysis. 

Expression (55) implies that the translational part of a rigid body displacement is 
a vector pointing from the origin of its initial position to the origin of its 
displaced position. Hence, it is independent of the absolute position of the block. 
Note that in Figure 58 the initial position coincides with the coordinate system 
O1. For the analysis of removability we are not interested in the magnitude of the 
displacements. The only required reference parameter is the orientation of the 
displacement vector. 

Kinematically feasible displacements plot inside the corner’s joint pyramid JPCj 
which is the intersection of all blockside halfspaces of corner joints. In the case 
of pure translations this is independent of whether displacements are finite or 
infinitesimal. Since the orientation of the displacement vector is identical at all 
corners, we can virtually shift all corners into a common point together with 
JPCj. It becomes obvious that all kinematically feasible displacement vector 
orientations must plot inside the intersection of all corner joint pyramids 
(Expression (76)). It is the intersection of all blockside halfspaces of joints of the 
block which originally has been defined as the joint pyramid JP by Goodman & 
Shi (1985).  
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€ 

JP = 
j=1

mc

JPC j  with mc as the number of corners (76)  

Removability is the term related to kinematic movability of finite polyhedral 
blocks. A finite block is removable if and only if its joint pyramid is not empty. 
The joint pyramid is the space of kinematically feasible displacement vector 
orientations. If it is empty, no feasible displacement is possible. Removability 
also requires the compliance with the finiteness criterion. The joint pyramid has 
to plot entirely into the free space, i.e. it has to be entirely contained in the space 
pyramid or, in other words, plot entirely outside the excavation pyramid. 

Removability is tested either by graphical or vector methods. The block theory 
textbook outlines the methods in detail. The stereographic projection is a suitable 
graphical method to analyse and visualise the kinematic conditions of the block. 
The use of the entire sphere in the stereographic projection eases block theory 
analyses. The lower focal point projection shows the upper hemisphere inside the 
reference circle and the lower hemisphere outside the reference circle. For the 
upper focal point projection it is converse, respectively. Joints and free faces are 
great circles. The blockside poles indicate the halfspaces of which the block is 
formed. Block theory distinguishes between the upper and lower halfspace 
indicated by the 0 and 1, respectively, for each plane. For each plane pyramid, no 
matter if it was a joint or block pyramid, there is a plane code vector Dp 
indicating the upper or lower halfspace of each plane number with its digits. The 
joint pyramid is bounded by great circles of joints accounting for the appropriate 
halfspaces. Figure 62 shows an example for a tetrahedron comprising three joints 
and one free face, with its data given in Table 8. 

 

Table 8:  Data for the tetrahedron: Orientations, positions and halfspaces 
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Figure 62:  Stereographic projection of joints and free faces of a tetrahedron with 
three joints and one free face. The joint pyramid is shaded in blue. 

 

The joint pyramid also allows the characterisation of displacements. 
Displacement vectors plotting inside the joint pyramid cause a lifting motion, i.e. 
a simultaneous detachment of the block from all joints. Displacements plotting 
on a great circle characterise a sliding motion on the corresponding joint while 
those which coincide with an intersection line characterise a sliding motion along 
an edge of a block. 
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The computation of the emptiness of a general plane pyramid using vector 
methods involves the steps outlined by expressions (77) to (80). The steps are 
modified after Goodman & Shi (1985) for the used matrix formulation. It can be 
applied for joint pyramids, block pyramids and, as we will see later, for the 
determination of the rotation space. Let m be the number of planes and p the 
number of intersections. 

• Compute all intersections between the planes 

 

€ 

Iij = ni
∗ ⋅ n j

€ 

 with i =1,...,m -1 and j = i +1,...,  m  (77)  

• Compute a signed matrix I with size pxm 

 

€ 

Ik
ij = sign ni

∗ ⋅ n j( )
T
⋅ nk

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

€ 

with i =1,...,m -1, j = i +1,...,  m and k =1,...,  m  
(78)  

• Convert plane code Dp into a signed joint code Ds 

 

€ 

Ds k( ) =
+1 if
−1 if
⎧ 
⎨ 
⎩ 

Dp k( ) = 0
Dp k( ) =1 (79)  

• Compute a testing matrix T with size p x m 

 

€ 

Tk
ij l,k( ) = Ik

ij l,k( )⋅ Ds k( )  with k =1,...,  m and l =1,...,  p  (80)  

If all rows of T have positive and negative entries, then the plane pyramid 
corresponding to plane code Dj is empty. If any row of T has, apart from zeros, 
only negative or only positive entries, the plane pyramid corresponding to plane 
code Dj is non-empty. The edges of the plane pyramid are the intersections 
corresponding to the rows of T which lack positive or lack negative entries. If 
such a row lacks positive terms, then the edge of the plane pyramid is -Iij. If the 
row lacks negative terms, then the edge of the plane pyramid is +Iij. For this 
chapter’s example one obtains: 

 

€ 

Ds = 1 1 1( )           Iij =

-0.3407 0.9077 0.1112
0.9848 0 -0.1632
0.0872 0 -0.9361

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

Ik
ij =

0 0 −1
0 1 0
−1 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
      Tk

ij =

0 0 −1
0 1 0
−1 0 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

  

Since all rows of T have only positive or negative terms (except zero), the joint 
pyramid is nonempty with its edges corresponding to each row of Iij. The real 
edges are the vector formed by the second row of Iij and the opposite direction of 
the vectors in the first and third row of Iij. This agrees with the joint pyramid in 
Figure 62. 
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5.3 Analysis of rotations 

Displacements are kinematically feasible if the displacement vectors at all 
corners plot inside the corresponding corner’s joint pyramid. In contrast to 
translational motion the displacement vector for rotations is different at each 
corner. Rotational displacements are related to a rotation axis as stated in section 
5.1.1. Rotation axes can be fixed or variable during the block motion, i.e. they 
can change their position and/or orientation (Magnus & Müller 1990). At this 
stage, however, we do not have any information about the block motion but only 
information about block geometry. For determining the kinematic movability of a 
block we are only interested in the incipient motion of the block. This involves 
the following simplifications: 

• The rotation axis is fixed in the instant of analysis. 
• The block is initially considered to be at rest. 
• Displacements are infinitesimal. 

These assumptions also hold for virtual displacements. Thus, kinematically 
feasible displacements are determined at any instant and position. The knowledge 
of feasible displacements is of limited engineering value once the block has 
started moving. 

Mauldon (1992) described four possible locations of the rotation axis. 
• The rotation axis penetrates the block as a minimum at one joint. In this 

case block rotation is not possible unless the block is formed by only one 
joint (Wittke 1984). The rotation axis is perpendicular to the joint. This is 
referred to as torsional rotation. 

• The rotation axis coincides with a block edge at the transition between 
joints and free faces. The rotation is referred to as edge rotation. 

• The rotation axis passes through a block corner at the transition between 
joints and free faces. This rotation is referred to as corner rotation. 

• The rotation axis is at a remote location to the block. This rotation is 
referred to as remote axis rotation. 

The first case is not uncommon in rock masses but its discussion is routine and 
therefore omitted here. The second and third case have a rotation axis with its 
position fixed to the block. For edge rotation we also know its orientation while 
for corner rotation the orientation of the rotation axis is unknown. The analysis of 
edge and corner rotation is possible in one step. In the last case we neither know 
the position nor the orientation of the feasible rotation axes. Remote axis rotation 
is the most general case of rigid block motion. Only translation and rotation 
together describe this kind of motion in a coordinate system fixed to the block. 
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Displacement vectors in rotation are no longer parallel; therefore, in contrast to 
translations, rotating vectors of motion are not a suitable parameter for 
characterising a rotation. The rotation axis and its spin unequivocally define the 
motion. For describing a rotation, it is simpler and more favourable to discuss the 
orientation of the rotation axis than trying to manage the different orientations 
and magnitudes of displacement vectors. In the following discussion, right hand 
rotation is assumed. 

 

5.3.1 Constrained rotational displacement 

Every general displacement of a rigid body can be described by a rotation as 
shown above. Since a finite rotation is not a vector, the stereographic projection 
and vector methods cannot be applied for now. If we look at the incipient motion 
however, an infinitesimal small time frame, displacements near the axis (inside 
the block) are also infinitesimal. Expression (81) shows the variation of the rigid 
body displacement. δrP is the virtual rotational displacement of a block point. δπ  
is the virtual rotation. It is obvious that in this case the virtual rotation is a vector 
which is interpreted as the instantaneous rotation axis (Dietmair 2007). Note that 
all factors are in the same coordinate system. 

 

€ 

δrP
(1) = δπ*(1)⋅ s(1) (81)  

Since displacements remain infinitesimal and only incipient motion is 
considered, all relationships can be expressed in one coordinate system. 
Subsequently, the coordinate indications in the expressions are skipped. 
Expression (82) defines finally, without loss of generality, the infinitesimal 
displacement at a corner in the block nomenclature.  

 

€ 

Δx = u∗ ⋅ −CjR( ) (82)  

u is the vector of the (instantaneous) rotation axis, CjR is a vector pointing from 
the block corner to an arbitrary point on the rotation axis, Δx is the initial 
displacement vector of a corner. Figure 63 shows the geometric relationships 
together with the blockside normal vectors ni,c of the joints.  
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Figure 63:  Kinematically feasible displacement Δx at a corner Cj related to the 
rotation axis u 

 

Again, one also observes that feasible displacements point in the same direction 
as the blockside normal vectors, i.e. inside JPCj. The displacements have to 
comply with the conditions in expression (83). 

 

€ 

ΔxT ⋅ ni,c = u∗ ⋅ −CjR( )( )
T
⋅ ni,c ≥ 0  

€ 

with i =1,...,mj and j = the set of constraint corners 
(83)  

This expression can be mathematically rearranged and leads to the following 
necessary and sufficient condition on rotatability of blocks for fixed rotation 
axes: 

 

€ 

ni,c
∗ ⋅ CjR( )

T
⋅ u ≥ 0  

€ 

 with i =1,...,m j  and j = the set of constraint corners 
(84)  

Cj is a vector pointing to a block corner whose intersection planes contain at least 
one joint. R is a vector pointing to an arbitrary point on the rotation axis; we 
assume that it points to the static rotation point on the block. CjR is the vector 
pointing from a block corner to the static point at the block containing the 
rotation axis. ni,c is a blockside normal vector of a joint plane of corner Cj . u is 
the vector of the rotation axis. With respect to a particular rotation axis, 
expression (84) has to comply simultaneously for all constrained corners and 
their corresponding blockside normal vectors. 

 



136 5 Kinematics and kinematic analysis of blocks 

5.3.2 Corner and edge rotation 

The objective of this analysis is finding the solution space of expression (84) 
which is the envelope of all possible positions and orientations of rotation axes. 
The solution space is referred to as the rotation space. For corner and edge 
rotations we consider only a finite number of discrete points in space. The 
rotation space is therefore the union of enveloping pyramids at feasible rotation 
corners. A block is called corner rotatable if the rotation space is non-empty. If 
there is a possible rotation axis whose vector complies with the rotation spaces of 
two adjacent corners and the intersection of both corners corresponds to a block 
edge, then rotation about this edge is possible. In this case the block is called 
edge rotatable. In consequence, edge rotation is a corner rotation about two 
corners simultaneously (Mauldon & Goodman 1990). 

A closer examination of expression (84) reveals that the matrix product n*
i,c·CjR 

is a vector with at least one component pointing in the same direction as the 
rotation axis. Conversely, the directions of possible vectors complying with 
expression (84) can be represented by a plane and a corresponding halfspace. 
This plane is subsequently referred to as the limit plane. As a consequence the 
rotation space of a corner is the intersection of all halfspaces of limit planes 
containing feasible rotation axes. For the determination of block rotatability the 
emptiness of the rotation space in terms of intersections of limit planes has to be 
computed.  

 

5.3.2.1 Determination of the rotation space using 
graphical methods 

This section discusses the determination of limit planes and rotation space using 
stereographic projections of planes and edges. In the stereographic projection 
limit planes are great circles through the blockside pole of a corner’s joint plane 
ni,c and pole of vector CjR pointing from the block corner to the static rotation 
corner. The static rotation corner is the block vertex where the rotation axis 
intersects the block. No relative motion takes place at this point. The blockside 
poles are determined by orientation and halfspace data of joint planes. Blockside 
poles pointing in the upper halfspace (joint code 0) plot in the upper hemisphere 
and those pointing in the lower halfspace (joint code 1) plot in the lower 
hemisphere. For an arbitrary polyhedron the vector CjR depends on the block 
geometry as shown in expression (85). It cannot be determined in the 
stereographic projection unless the corner Cj is adjacent to the static rotation 
point. For a tetrahedron all corners are adjacent to the investigated static rotation 
corner; thus, the orientations of joints and free faces completely define the 
tetrahedron’s rotatability. 
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€ 

CjR =
R −Cj

R −Cj
 (85)  

Favourable working with the stereographic projection requires the trend and 
plunge of CjR which can be calculated with expression (86). 

€ 

trendCjR = arctan
CjR1

CjR2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  + ε      plungeCjR = −arcsin CjR3( )

ε = 0° for CjR1, CjR2 ≥ 0                 
ε =180°  for CjR1 ≥ 0,  CjR2 < 0 or CjR1 < 0,  CjR2 < 0 
ε = 360°   for CjR1 < 0,  CjR2 ≥ 0

 (86)  

 

 

Figure 64:  Perspective view of the tetrahedron consisting of three joint planes, 
one free face and four corners 

 

Table 9:  Data on corner coordinates for the tetrahedron 
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The exemplary construction of a rotation space using limit planes for the static 
rotation point C1 of tetrahedron in Figure 64 is shown in Figure 65. Table 8 (on 
page 130) gives the orientations and halfspaces of the block and Table 9 the 
corner coordinates. Each vertex has joint constraints; vertices on the free face 
have two joints and the vertex inside the rock mass three. Table 10 gives the data 
and overview on CjR including trend and plunge. For this example all CjR are 
intersections of block planes which can be observed also in Figure 65, and thus 
can be graphically determined. For a more complex block these values have to be 
computed using expression (85). Table 11 shows an overview of required limit 
planes and the corresponding CjR and joint constraints ni,c. 

 

Table 10:  CjR vectors for corner C1 

 

 

Table 11:  Limit planes derived from CjR and joint constraints for corner C1 

 

Great circles through the poles of CjR and the blockside poles of ni,c according to 
Table 11 define the limit planes L1 to L7. The appropriate halfspaces are 
determined by turning the blockside pole ni,c by the smaller angle along the limit 
planes’ great circle towards the vector CjR. According to the right-hand rule, the 
resulting normal vector n*

i,c·CjR indicates the halfspace. An annulus shaded in 
red and adjacent to the great circles shows the kinematically feasible halfspaces 
of the limit planes. Data on the limit planes are also given in Table 12. 
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Figure 65:  Construction of a rotation space using limit planes 

 

The rotation space is the intersection of the limit plane halfspaces corresponding 
to each static rotation point. It is the region in which the rotation axis leads to 
kinematically feasible block displacements. The rotation space for vertex C1 
under the constraint of these limit planes is shown in Figure 65 as a pyramid bold 
shaded in red. The construction has to be repeated for any other potential rotation 
point. In this example further suspicious points are C2 and C3.  
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Figure 66 depicts the rotations space for all corners of the investigated 
tetrahedron. Together with the joint pyramid it summarises the kinematic 
condition of the block imposed by the joint planes: 

• The block is removable since the joint pyramid plots entirely outside the 
excavation pyramid 

• The block is corner rotatable about the vertices C1, C2 and C3 since all 
corresponding rotation space pyramids are non-empty. 

• The block is edge rotatable about the edge E13 since the rotation spaces for 
C1 and C3 contain this edge. 

In general, if a rotation axis plots inside the rotation space, the block detaches 
from all joints simultaneously except at the static rotation point. If it plots on a 
limit plane, the corresponding corner slides on one plane in the incipient motion 
increment. If it coincides with an edge of the rotation space pyramid, the 
corresponding corner slides along the intersection of two adjacent planes in the 
incipient motion increment. 

The number of relevant limit planes varies according to the complexity of the 
block geometry. Corners formed by three joint planes lie inside the rock mass. 
Thus, three limit planes correspond to each rotation point. Corners with one or 
two joint planes lie on the free face. One or two additional limit planes, 
respectively, correspond to each rotation point. Note that there are no limit planes 
for the current (static) rotation point. A tetrahedron with three joint planes and 
one free face requires, for instance, intersecting 21 limit planes. 

 

Table 12:  Data of limit planes for corner C1 
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Figure 66:  Joint pyramid and rotation space for all corners C1, C2 and C3 of the 
tetrahedron 
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Figure 67 helps in interpreting the rotation space. On the top left the figure shows 
a perspective view of the block together with the rotation space pyramids for 
each corner on the free face. The block is corner rotatable about every corner. 
The other patches show the intersection of the rotation space pyramid with the 
unit sphere (red) and the corresponding stereographic projection using the upper 
focal point (orange). Each rotation space pyramid in the stereographic projection 
is related to a block corner which has to be clearly indicated. 

 

  
 

 

Figure 67:  Perspective view of the block and rotation spaces for each corner (top 
left); Stereographic projection of the rotation space for corner C1 (top 
right), C2 (bottom left), and C3 (bottom right). Upper focal point. 

 

 

 

 

 

 



5 Kinematics and kinematic analysis of blocks 143 
 
5.3.2.2 Determination of the rotation space using 

vector methods 

The determination of the rotation space using vector methods involves several 
operations, each of which already is described in previous sections. The 
operations aim at computing the emptiness of the rotation space pyramids and 
finding its real edges. The required steps include: 

• Computation of the orientations of the vectors CjR for each static rotation 
corner using expression (85). 

• Computation of the orientations of the limit planes ni,l, separately for each 
static rotation corner, each derived from the blockside normal vector of a 
constrained corner’s joint planes and the corresponding CjR vector. 

 

€ 

ni,l =
ni,c
∗ ⋅ CjR
ni,c
∗ ⋅ CjR

 

€ 

 with i =1,...,m j  and j = the set of constrained corners 

(87)  

• Computation of the emptiness of the rotation space pyramid following the 
steps described in chapter 5.2 and expressions (77) to (80) taking into 
account to replacing expression (79) by expression (88). Note that ni,c is 
the blockside normal vector instead of the upward, and the recurring 
matrix multiplication ensures proper orientation of ni,l. 

 

€ 

Ds k( ) =1    ∀ k  (88)  

• Determination of the edges of the rotation space 

Table 13 to Table 15 show the intermediate and final steps of the computation of 
the rotation space for the tetrahedron described in the previous chapter. 
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Table 13:  Orientations of CjR vectors and limit planes for each static rotation 
point 
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Table 14:  Testing matrices  for the emptiness of the rotation space for each 

static rotation point 
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Table 15:  Edges of the rotation space pyramid at each static rotation point 

   

Table 14 indicates rows with only non-positive or non-negative entries 
corresponding to real edges of the rotation space pyramid with a grey shading. 
Table 15 shows the orientations of the real edges. Each row is an edge orientation 
vector. The rotation spaces for corners C1 and C2 have four edges while for 
corner C3 it has five edges. The thorough reader realises that Table 14 indicates 
seven real edges instead of only five in Table 15. Several edges are redundant if 
they intersect along a joint normal vector which also corresponds to an edge of 
the rotation space. In this case it is the blockside normal vector of joint plane 2. 
This can be also confirmed in Figure 66. The five edges of C3 are hardly 
observed in Figure 66. The indication of block edge 13 contains two real edges of 
the rotation space which are very close to each other (within 1°). They could not 
be individually resolved in the figure. 

 

5.3.3 Rotation about a remote axis 

Corner and edge rotation relies on the assumption that at least one point of the 
rotation axis is fixed to the block. In the case of corner rotation the fixed point is 
a vertex at the intersection polygon between free faces and joints, while for edge 
rotation it is an edge of the same polygon. The physical meaning of this 
assumption is that the block remains in contact at the considered corner or edge. 
The described method also holds for any rotation axis with a fixed point no 
matter if the rotation axis is in contact with the block or not. Since the fixed point 
can be anywhere in space, the determination of the rotation space is cumbersome. 
The rotation space has a complex envelope formed by the union of shifted 
pyramids and is barley interpretable. Thus, it has low engineering value. From an 
engineering perspective the objectives of the analysis of remote axis rotation are 
to answer whether there is any remote rotation axis leading to kinematically 
feasible displacements, and to test suspicious axes if they relate to kinematically 
feasible motion.  

The additional positional freedom of the rotation axes makes the problem 
significantly more complex requiring the solution of systems of non-linear 
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equations under constrained conditions. This section outlines two approaches to 
the problem. The first one is a direct geometric approach highlighting the 
interdependencies of the problem. The formulation is complex and ill-posed; 
numerical methods barely find a solution. The second one rejects the complex 
relationships and uses penalty values instead in order to numerically solve the 
problem. 

 

5.3.3.1 Geometric approach 

A plane perpendicular to a displacement vector also contains the rotation axis. 
This plane has been originally introduced by Mauldon & Goodman (1990) as the 
pivot plane. Intersections between two different pivot planes define an 
intersection representing the axis causing the displacement vectors. (For 
rotations, pivot planes are non-parallel unless they are coincident, or 
displacements are pure translations). Any two pairs of pivot planes of arbitrary 
displacement vectors determine a potential rotation axis. The first objective is 
finding a set of rotation axes which coincide in position and orientation by 
varying the orientations of the pivot planes. Per definition, the displacement 
vector Δxj is the normal vector nπ,j of the pivot plane. The pivot planes have a 
fixed position at the considered block corners. Figure 68 shows the situation for 
three block corners. 

 

 

Figure 68:  Kinematic relationships for remote axis rotation: Block corners Cj, 
pivot planes πi, displacement vectors Δx, intersection lines u 
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Displacement vectors of the block must have a right-hand or left-hand rotation 
relative to the rotation axis, i.e. they must have the same spin. This is the second 
condition which has to be fulfilled. The joints at the block corners constrain the 
orientation of the displacement vector (Corner joint pyramid) and thus the 
orientation of the pivot planes as well. The normal vector of the pivot plane 
considering the appropriate spin must plot inside the corner joint pyramid. 
Finally, the normal vectors of the pivot planes must remain unit vectors during 
the variation.  

The properties of the geometric problem lead to a constrained non-linear multi-
objective optimisation problem. The goal attainment method as implemented in 
MatLab’s optimisation command fgoalattain (Gembicki 1974, Brayton et al. 
1979, Han 1977, Powell 1978, all cited at http://www.mathworks.com/ 
help/toolbox/optim/ug/fgoalattain.html) solves the problem by defining the 
following objective and constraint functions: 

• Define the intersections u of one pivot plane with any other. 
• Determine the direction cosine between the direction vectors u of the 

intersections 
• Determine the distance a between two points of the intersections in a 

common plane. 

• Calculate the displacement vector relative to the intersection uk. k is the 
number of intersections. 

€ 

Δx j = uk
∗ ⋅ −CjR( )   

• Objectives: The product must attain the value 1 while the distance the 
value 0. 

€ 

ul
T ⋅ um =1   with l =1,...,k -1 and m = l +1,...,k  

€ 

a = 0    ∀a  

• Objective: All normal vectors of pivot planes have to be parallel to the 
displacement vectors (Spin). 

€ 

Δx j
T ⋅ nπ , j =1 

• Constraint: All normal vectors have to plot inside the corners joint 
pyramid. (Inequality constraint). mj is the number of corners. 

€ 

Δx j
T ⋅ ni,c ≥ 0 with j =1,...,  m j    and i is the number of joints at the corner  

• Constraint: The normal vectors have to remain unit vectors (Equality 
constraint). 

€ 

Δx j,i
2

i=1

3

∑ −1 = 0 

Although geometrically clearly defined, the solution of this problem is hard to 
find. Especially the objective functions are ill-posed and behave unsteadily.  
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5.3.3.2 Penalty values 

Improvements of the former approach are the reduction of the number of 
objectives and constraints. It makes the problem geometrically simpler. In order 
to attain the same objectives and constraints a numerical method related to the 
penalty method (Courant 1943) is used. It turns the constrained optimization 
problem into an unconstrained one by adding the penalty function to the 
objective function. Penalty functions give a measure for the severeness of a 
constraint violation. 

Let us assume an arbitrary axis serving us as a rotation axis. The corresponding 
displacement vectors are calculated using expression (82). This inherently 
preserves the spin and eliminates the problem of multiple rotation axes. In 
general, the calculated displacements will violate the constraints at the block 
corners. Now we have to guide an optimisation to a position and orientation of 
the rotation axis without any constraint violation. This is done by penalty 
functions related to each constraint. If there is no constraint violation, the penalty 
value is zero while a constraint violation causes a penalty.  

 

 

Figure 69:  Constraint criterion and determination of penalty values 

 

The penalty is assigned according to the severeness of violation. The angle 
between the joint plane and the displacement vector serves as a penalty measure 
(Figure 69). Note that penalties are only required if the displacement vector plots 
inside the rock mass (constraint space). If the angle is 90°, the penalty is one 
while if it is zero, the penalty is zero as well. Between those limits the penalties 
are assigned according to a continuous function with decreasing gradient 
considering a zero gradient at the zero position. This eases the use of gradient 
methods for the optimisation. The penalty functions may be polynomials of the 
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order two or higher. In this case a phase-shifted cosine function as shown in 
expression (89) has been used. Figure 70 highlights the shape of the used penalty 
function. 

 

€ 

pVi =1− cos αi − π2( )  with αi = arccos
ΔxT ⋅ ni,c

Δx
⋅ Ds i( )
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⎟  (89)  

 

 

Figure 70:  Penalty function depending on the magnitude of constraint violation 

 

Penalties are calculated for each constraint and updated in every iteration. The 
objective function is the sum of all penalties which has to be minimised. The 
described approach requires also an equality constraint: The orientation vector of 
the rotation axis has to be a unit vector in order to preserve pure rotation (without 
any shearing and stretching) in the optimisation. The used optimisation algorithm 
is a medium scale finite difference gradient method included in Matlab’s fmincon 
function. 

In case of a solution space the encountered solution depends on the start values. 
Using gradient methods the solution is a minimum of the objective function 
which is also prone to find local minima not representing a solution of the 
physical problem. The selection of the appropriate numerical method requires a 
discussion and description of the objective function’s properties. Stochastic 
methods should be used to increase the probability of finding the global 
minimum of the objective function. They include a variation of the start values 
within a defined volume and an iterative optimisation with a guided selection of 
start values according to the minimum penalty values obtained in the previous 
iteration. The author recommends an extensive mathematical discussion of the 
objective function and the solution strategy as well. 
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The penalty function approach is also able to find a slumping mode. Slumping is 
a remote axis rotation in which the block keeps in simultaneous contact (sliding) 
with the constraint space at two different planes. Identifying this case requires an 
extension of the validity of expression (89) for displacements towards the 
blockside halfspace for the sliding planes. For all other planes of the constraint 
space expression (89) still remains valid for the rockside halfspace only; the 
penalty value for the blockside halfspace is zero. 
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5.4 Illustrative examples 

The following sections illustrate the methods outlined and developed in the 
previous sections. The first example describes a convex block and the second a 
non-convex block similar to the first one. It shows that the method is similarly 
applied but significantly different results are obtained. The last example 
discusses the kinematics of a block in a tunnel crown and highlights specific 
topics. 

 

5.4.1 Convex block 

The convex block has four joint planes and two free faces each forming convex 
edges. Figure 71 shows its geometry with annotations and Table 16 gives the 
data on plane orientations, positions and halfspaces. Table 17 shows the resulting 
coordinates of the vertices. The block’s block pyramid code is 000111 and the 
joint pyramid code is thus 0001. 

 

Table 16:  Data on block geometry for the block shown in Figure 71: 
Orientations, locations and halfspaces of planes 
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Figure 71:  Perspective view of the convex block 000111 consisting of four joint 
planes, two free faces and eight corners 

 

Table 17:  Data on corner coordinates for the block shown in Figure 71 
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Figure 72 gives an overview of the spatial situation. It plots the four joint planes 
as blue great circles and the two free face planes as green great circles in an 
upper focal point projection. Note that the upper halfspace of a plane plots 
outside the great circle and the lower halfspace inside. Since all edges are 
convex, the excavation pyramid (shaded in green) as well as the joint pyramid 
(shaded in blue) are the intersections of the halfspaces of free faces and joints, 
respectively. It can clearly be observed that the joint pyramid entirely plots 
outside the excavation pyramid. Thus, the block is removable. Possible modes of 
failure are falling or lifting, sliding on joints 1, 2, 3, and 4, and sliding along the 
intersections between joints 1-3, 1-4, 2-3, and 2-4. 

Figure 72 provides also information on the rotatability of the block. It plots the 
rotation space pyramids for all corners about which feasible rotational 
displacements can take place. Hence, the block is corner rotatable about all 
vertices lying on the free faces which are C1, C2, C3, C4, C5, and C6. An 
appropriate annotation indicates the rotation space pyramid. The rotation space 
pyramid for C1 is isolated while the others are seemingly connected, i.e. it 
indicates a coincident orientation of a rotation axis but going through different 
corners. Rotation axes of different but connected rotation spaces become only 
physically coincident if they include an edge of the block. This special case 
describes the rotatability of a block about an edge. This block is edge rotatable 
about edges E25, E26, E35, and E46. 

A static rotation corner can have either one or two joints (as it lies on the free 
face). If the rotation space pyramid of a certain corner includes one of the normal 
vectors of the corresponding joints, then the block may rotate in a sliding rotation 
mode about this corner keeping in contact with a joint plane. For this block a 
sliding rotation mode is possible for joint plane 1 about C4 and joint plane 4 
about C6. If any other joint normal vector plots inside a rotation space pyramid, 
the block also keeps in sliding contact with the joint while rotating about the 
corner. In this case the static rotation point is not included in the sliding plane. 
Thus, this mode is more complex and not included in the basic kinematic modes 
described in section 5.1.3.2. These modes are possible for joint plane 4 about 
corners C1 and C2, and joint plane 2 about corner C3. 
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Figure 72:  Stereographic projection of the rotation space and joint pyramid of 
the convex polyhedron shown in Figure 71 
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5.4.2 Non-convex block 

In this example a non-convex block has six joint planes and two free faces which 
altogether form 12 corners. A perspective view of the block is shown in Figure 
73. All edges are convex except the edge between corners C11 and C12. Data on 
the block faces and halfspaces are found in Table 18. The coordinates of the 
block corners can be found in Table 19. Due to its non-convex nature it is not 
possible to describe the block with only one halfspace code. It is a union of 
several sub-blocks each of which convex. A possible block pyramid code is 
00010211 20021012. The joint pyramid is the intersection of joint halfspaces; 
thus it is 000100. 

 

Table 18:  Data on block geometry for the block shown in Figure 73: 
Orientations, locations and halfspaces of planes 
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Figure 73:  Perspective view of the non-convex block 00010211 20021012 
consisting of six joint planes, two free faces and twelve corners 

 

Table 19:  Data on corner coordinates for the block shown in Figure 73 
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Figure 74 gives an overview of the spatial situation. It plots the six joint planes as 
blue great circles and the two free face planes as green great circles in an upper 
focal point projection. Since the edges of the excavation pyramid are all convex, 
the excavation pyramid (shaded in green) is the intersections of the halfspaces of 
free faces. The joint pyramid as the intersection of all joint halfspaces is shaded 
in blue. It can clearly be observed that the joint pyramid entirely plots outside the 
excavation pyramid. Thus, the block is removable. Possible modes of failure are 
falling or lifting, sliding on joints 2, 4, 5, and 6, and sliding along the 
intersections between joints 2-4, 2-5, 4-6, and 5-6. Note that the intersections 2-5 
and 4-6 do physically not exist. 

Corner rotation is possible about C1, C4, C5, and C10. C4 has a very narrow 
rotation space pyramid almost horizontal parallel to the excavation pyramid’s 
edge. Each rotation space pyramid is isolated (even C5 and C10) and in 
consequence edge rotation is not feasible. Sliding rotation is not possible for any 
of the static rotation corners. Nevertheless, the block may remain in sliding 
contact with joint plane 4 when rotating about C1 and joint plane 6 when rotating 
about C5. 
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Figure 74:  Stereographic projection of the rotation space and joint pyramid of 
the non-convex polyhedron shown in Figure 73 
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5.4.3 Block in a tunnel crown 

This example examines a convex block in the crown of a tunnel. The block is 
bounded by five joint planes and one free face. Figure 75 gives a spatial 
overview of the situation. The free face is horizontal and forms the lower bound 
of the block. Four steeply dipping joints form the convex hull of the block. 
Additionally, the block is cut by a regularly spaced and flatly dipping joint set 
which changes the geometry of the individual blocks. The data on the joint 
orientations and halfspaces is found in Table 20. 

 

 

Figure 75:  Block in a tunnel crown intersected by a regularly spaced joint set. 

 

In the following it is considered that the free face remains constant and the lower 
bound of the block. The height of the block is decreased slice-wise according to 
the intersections caused by joint set 5. The corners belonging to different 
individual blocks are indicated by a number suffix. For block suffices smaller 
than 5 joints of joint set 5 do not daylight within the polygonal at the free face.  

Figure 76 gives an overview of the spatial situation. It plots the five joint planes 
as blue great circles and one free face plane as a green great circle in a lower 
focal point projection. Note that in this projection the upper halfspace plots inside 
the great circle and the lower halfspace outside. Thus, the green shaded area 
represents the blocks excavation pyramid.  
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Figure 76:  Stereographic projection of the rotation space and excavation pyramid 
of the polyhedral blocks shown in Figure 75. 

 

The blocks are removable as the joint pyramid is not empty and plots entirely 
outside the excavation pyramid. Note that the joint pyramid plots outside the 
shown area in Figure 76. 
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Possible modes of failure are falling, sliding on joints 1, 2, 3, and 4, and sliding 
along the intersections between joints 1-4, 1-2, 2-3, and 3-4. For block level 7 the 
possible failure modes change to falling, sliding on joints 2, 3, 4, and 5, and 
sliding along the intersections between joints 2-3, 2-5, 3-4, and 4-5. Joint plane 1 
becomes completely undercut by joint 5. 

The block is non-rotatable for block level equal or smaller than 3. The rotation 
space is empty for all potential rotation corners. For block level 4 it becomes 
corner rotatable about C44 with increasing aperture of the rotation space pyramid 
to block level 7. At block level 5 it also becomes corner rotatable about C25 with 
increasing aperture of the rotation space pyramid to block level 7. The corner C27 
does not coincide with the other corners C25-6 and causes a significant increase of 
the rotation space aperture. None of the investigated blocks has a connected 
rotation space; they are not edge rotatable. Sliding rotation is not possible for 
these configurations neither. Nevertheless, the block may remain in sliding 
contact with joint plane 2 when rotating about C44-7 and joint plane 3 when 
rotating about C25-7. This example highlights the influence of the block geometry 
on the kinematic movability of a polyhedral block. Although the blocks have the 
same joint pyramid (except for block level 7), their rotatability is significantly 
different ranging from non-rotatable to rotatable at several corners. Especially 
non-daylighting joints have an influence on the rotatability though do not affect 
the joint pyramid. This has also been addressed in Pötsch & Schubert (2006). 
 

Table 20:  Data on block geometry for the blocks shown in Figure 75: 
Orientations, locations and halfspaces of planes 

 

 

Another aspect usually disregarded in kinematic analyses is related to remote 
axis rotation. Let us consider the block formed by block level seven as shown in 
Figure 75. We already proved its removability and rotatability. Let us now 
examine the influence of a stiff lining applied to the tunnel crown. Figure 77 
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shows a situation with application of the lining in positive X direction. The lining 
meets the block at first at corner C27. In this case the block is still unaffected by 
the lining. With any further application the analytical analyses of translations and 
rotations immediately would give a non-removable and non-rotatable block. In 
the former case the joint pyramid is empty indicating a tapered block (If we 
consider the contact between block and lining as a joint, the block is tapered by 
the lining). If we consider the constraints outlined in section 5.3.3.2 and perform 
a constrained optimisation using penalty values, we find a remote rotation axis 
allowing feasible block displacements.  

 

 

Figure 77:  Remote axis rotation of the block at level 7 (see Figure 75) when a 
stiff lining is applied. Lining is applied in positive X direction. 

 

The dot and dashed arrows in Figure 77 indicate valid remote rotation axes 
corresponding to a lining chainage (from C27) of 0.06 m and 0.16 m. The dotted 
arrow is the solution at a chainage of 0.66 m but already causes strong constraint 
violations; thus it has no physical meaning. The corresponding lining chainages 
are drawn as dashed and dotted lines, respectively. The exaggerated incipient 
displacement vectors are drawn as red arrows together with the displaced block 
position corresponding to the lining chainage 0.16 m. The block position and 
displacement vectors adjacent to corner C27 are shown in the detail on the right 
hand side. Figure 78 shows the same block with the lining application in 
direction of the negative X axis. The lining meets the block at first at corner C47. 
The dot and dashed arrows indicate valid remote rotation axes corresponding to a 
lining chainage (from C47) of 0.16 m and 0.36 m. The dotted arrow is the 
solution at a chainage of 0.56 m but already causes strong constraint violations; 
thus it has no physical meaning. The corresponding lining chainages are drawn as 
dashed and dotted lines, respectively. The exaggerated incipient displacement 
vectors are drawn as red arrows together with the displaced block position 
corresponding to the lining chainage 0.36 m. 
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Figure 78:  Remote axis rotation of the block at level 7 (see Figure 75) when a 
stiff lining is applied. Lining is applied in negative X direction. 

 

The last example showed that blocks still may be kinematically movable even if 
the analytical methods indicate non-movability (non-removable and non-
rotatable). Anyhow, only a small stretch of lining was necessary to prevent the 
block from movement at all. The basis for this statement is that the block 
perfectly matches the rock mass and the lining and that each of them is rigid. 
Open joints, soft infillings or weak linings increase the kinematic movability 
again. This flexibility can be quantified by an angle between the displacement 
vector and the joint plane similar to Figure 69. The penalty function expression 
(89) could be used to control the flexibility by meeting the zero penalty at a 
larger angle (describing the flexibility limit). 

 

5.5 Summary 

This chapter described extensively the kinematics of a rigid polyhedral block 
constrained by joint planes. It also introduced methods for the kinematic analysis 
for both, translational and rotational modes of motion. First of all, the kinematic 
relationships in terms of displacements, velocities, and accelerations were 
discussed with special attention on large displacements. These relationships 
resulted in the formulation of 16 basic kinematic modes for blocks. The 
determination of the current kinematic mode, however, required control over the 
reactive forces which would only be obtained together with the equations of 
motion. In consequence, a simplified approach considering infinitesimal 
displacements was introduced in order to provide a basis for the subsequent 
analysis methods of kinematic movability.  
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The translational analysis following Goodman & Shi’s block theory was 
reviewed, presenting the basic ideas in kinematically feasible displacement, the 
theorem of removability and the graphical and vector methods for the analysis. 
Following the same ideas a method for the rotational analysis of arbitrary 
polyhedral blocks based on Mauldon’s theory of rotations of tetrahedra was 
developed. The developed method allowed analysing the corner and edge 
rotatability of an arbitrary finite polyhedral block. The principles of the analysis 
were outlined and graphical and vector methods for performing the analysis 
presented. Another section examined the relationships of remote axis rotation. It 
became obvious that this kinematics would lead to nonlinear systems of 
equations which could only be solved using numerical methods. A formulation 
was developed which could be solved with an algorithm for constrained 
minimisation of the objective function. 

The chapter closed with three illustrative examples including a convex and a 
non-convex block, as well as a block assembly in the crown of a tunnel. The 
examples showed the application of the kinematic analysis and the interpretation 
of the obtained results. 

The importance of block kinematics is manifold. Any mechanically sound 
dynamic or equilibrium analysis of a block can only be properly performed if the 
kinematic relationships are correctly considered. The presented kinematic modes 
are used in a mechanical model for constraining the block motion and calculating 
the reaction forces. For the hierarchical block analysis the engineer is interested 
in the kinematic movability of a block prior to mechanically analysing the block 
stability. The presented analytical and numerical methods are powerful tools to 
efficiently determine the movability of a finite polyhedral block. In the following 
the key findings of this chapter are summarised: 

• Determining the kinematic mode of a block requires, apart from the 
consideration of the constraints control on the reaction forces 
 

• Simple analytical and numerical methods for the kinematic analysis 
consider only infinitesimal displacements 
 

• Joint orientations only determine the kinematic movability for translations 
(removability) 
 

• Joint orientations and positions influence the kinematic movability for 
rotations (rotatability). Especially non-daylighting joints have a noticeable 
impact, even turning non-rotatable blocks into rotatable blocks (although 
the joint pyramid is the same). 
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• If no information on the block geometry is available, conclusions on the 
rotatability still can be drawn, yet Mauldon’s law on rotatability of 
tetrahedral blocks still holds for arbitrary polyhedral blocks: 

o A block is non-rotatable (for corner and edge rotation) if the corner 
joint pyramid of a corner adjacent to the static rotation point is non-
rotatable 

o A block may be corner or edge rotatable if the corner joint pyramid 
of a corner adjacent to the static rotation point is rotatable. 
 

• Remote axis rotation is an optimisation problem. Finding a kinematically 
feasible rotation axis depends on the block geometry, the constraints and, 
significantly, on the selection of start values. The conclusion whether a 
block is movable about a remote axis, can only be drawn with a certain 
degree of probability. 
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6 Dynamic Behaviour and Stability 
Analysis 

6.1 Introduction 

The previous chapters addressed properties of blocks and their determination, the 
kinematics of rigid blocks and the properties and mechanical behaviour of rock 
joints. This chapter will address the mechanical behaviour of a rigid block under 
different load situations. The methods outlined below will use the findings of the 
previous chapters. The mechanical behaviour of a rigid body is fully described by 
Newton’s and Euler’s equations of motion enhanced by kinematic constraint 
equations. The required input parameters involve the inertia properties such as 
mass and inertia matrix, the (non-linear) shear and normal behaviour of joints, 
the algebraic equations of kinematic constraints based on block geometry, and 
also the different loads such as gravity, water pressure, etc. 

The equations of motion are a set of differential equations that require integration 
over a time interval in order to describe the response of the block system. The 
first section shows the derivation of the set of differential and algebraic equations 
of a constrained rigid body using matrix and Euler parameter formalism. 
Subsequently, the numerical time integration of these equations is addressed in 
order to obtain the solution of the system. These methods form the basis for any 
dynamic analysis of a rigid block.  

Equilibrium is a special case of the dynamic behaviour, which needs separate 
treatment. Finding the equilibrium position of a rigid body is a highly non-linear 
problem. One section presents the application of the continuation method for 
finding a block’s equilibrium position under the exposed loads. The basic 
solution is the equilibrium path showing the block positions while continuously 
increasing the external loads until equilibrium. The block stability analysis takes 
advantage of the properties of the equilibrium path. The results of the block 
stability analysis are the static and dynamic mode of failure, the factor of safety, 
as well as the stability of the equilibrium path for a non-conservative mechanical 
system. An example of a block in the roof of a cavern illustrates the application 
of the method. 

 

6.2 Literature review 

Simple attempts to assess the stability of a block use the model of a block on an 
inclined plane using Mohr-Coulomb shear resistance – this is already taught in 
undergraduate physics classes. More specific methods of block stability in rock 



168 6 Dynamic Behaviour and Stability Analysis 

mechanics are related to Londe et al. (1969, 1970) and John (1968). These 
authors examine the stability of tetrahedral blocks against translational and 
rotational failure modes taking into account the tetrahedral geometry and Mohr-
Coulomb shear resistance. The early work of Wittke (1965) (cited in Wittke 
1984) already addressed rotation of a block about an edge. Today, block stability 
analysis is often performed based on block models designed for specific 
problems such as the sliding block, the wedge, the wedge with tensile fracture, 
etc. Models for slopes and underground excavations are described in Hoek & 
Bray (1981) and Hoek & Brown (1990). The analysis of toppling failure has been 
introduced by Goodman & Bray (1977). 

Warburton (1981) and Goodman & Shi (1985) published a method for the 
stability analysis of arbitrary blocks. Especially, Goodman & Shi’s method is 
widely applied and known as “Block Theory”. These methods provide the factor 
of safety of a block under static loads. They integrated Talobre’s friction cone 
concept (Talobre 1957 cited in John 1968) into block theory. Block theory is a 
comprehensive method providing an analytical solution but it is limited to 
translations, static forces acting through the block’s centre of gravity, and a 
Mohr-Coulomb sliding law. Mauldon & Goodman (1990 and 1996), Mauldon 
(1992) and Tonon (1998) attempted to extend block theory to rotational failure 
modes. The enhancements included rotational stability analysis for corner and 
edge rotation (Mauldon & Goodman’s theory) and general loading conditions 
(Tonon 1998). The methods are applicable to tetrahedral blocks and pure rotation 
modes only. Rotational slides are not included although Tonon (1998) addressed 
conditions when rotational sliding takes place. Chan & Einstein (1981) presented 
a limit equilibrium method for block rotations based on artificial supports. 

Further attempts to extend block theory are the works of Yow & Goodman 
(1987) and Karzulovic (1988) using the block reaction curve. The block reaction 
curve relates the block displacement to the acting forces. Basically, it is a 
displacement controlled equilibrium path. The approach allowed considering 
more sophisticated (non-linear) joint constitutive models, initial rock mass 
stresses and arbitrary block geometries. Pötsch (2002) showed the application of 
the block reaction curve method to pyramidal blocks in the crown of a tunnel 
subjected to self weight and an initial stress field. The joint response followed the 
Barton-Bandis (Barton 1977, Bandis et al. 1985) joint model in a Saeb-Amadei 
(1992) implementation. The major drawback of the block reaction curve is that 
the block displacement, i.e. the failure mode, has to be predefined. Interaction 
between forces and displacements takes place only in one direction (from 
displacement to force) and not vice versa. Results from block reaction curves are 
only feasible if they comply with the real failure mode of the block.  

A comprehensive method for analysing the mechanical behaviour of blocks has 
to be based on the equations of motion of a rigid body. In general, their solution 
requires a numerical method. Three general approaches are available (Dietmair 
2007): 
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• Minimising the potential energy of the system:  
The system approaches the equilibrium position if its potential energy is 
minimised. This approach is limited to systems which possess a potential 
of forces. 

• Dynamic relaxation:  
The motion towards equilibrium or failure is calculated using a damped 
integration of the equations of motion. The system finds the equilibrium 
position (if there is any) after a sufficiently large time interval. 

• Continuation method:  
The loads and/or displacements are continuously increased until 
equilibrium or failure takes place. During calculation the block complies 
always with force and momentum equations, and kinematics. 

Various computer codes are available which provide a numerical solution of the 
equations of motion: the 3D discrete element code (3DEC), the 3D discontinuous 
deformation analysis (3D-DDA), and the block-spring-method 3D (BSM3D). 
They are designed for the analysis of block systems with many blocks. Tonon 
(2007b) identifies the following drawbacks when analysing single blocks using 
one of these codes: 

• An approximate scalar moment of inertia is used by 3DEC. This may lead 
to a wrong dynamic mode of failure. 3DEC is based on the dynamic 
relaxation method where the inertia matrix plays a major role. 

• The application of constraint forces is based on geometrical but not 
mechanical principles in 3DEC. 

• 3D-DDA assumes a potential for all forces. The system must therefore be 
conservative and all forces positional.  

• Path dependency of joints can only be modelled with increased effort in 
describing the internal block geometry in 3DEC since contact points 
change in each iteration. 

• All three methods require the shear strength reduction method in order to 
determine the factor of safety of the block system. This is computationally 
extensive. 

Tonon (2007b) presents a method for the analysis of single blocks for general 
failure modes under conservative and non-conservative forces. It is based on the 
continuation method by Felippa (1987) for non-linear finite element methods. 
The method includes the determination of static and dynamic failure modes, 
factor of safety, treatment of bifurcation and stability of the equilibrium path.  
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6.3 The equations of motion 

6.3.1 General 

The equations of motion originally formulated by Newton for translations and 
Euler for rotations relate accelerations of bodies to the forces and moments 
acting on the body. Solving the equations of motion allows determining the 
position, velocity and acceleration of bodies together with the interacting forces 
and moments.  

 

 

Figure 79: Internal and external force acting on a rigid body 

 

The following discussion is based on these equations of motion for which three 
basic assumptions for internal forces are included (Figure 79): 

 
1. For each internal force acting from point P to point R there is a 

corresponding reaction force acting from point R to point P (actio est 
reactio after Newton) 

 

€ 

FP,R = −FR,P = f mP ,mR , rP − rR( )  (90)  
 

2. The considered body is rigid, i.e. the distance between two arbitrary points 
P and R of the body remains constant throughout the motion 
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€ 

rP − rR( )⋅ rP − rR( ) = C....const.  ⇒   δrP − δrR( )⋅ rP − rR( ) = 0
 

(91)  

 
3. Action and reaction of internal forces act along the same line (after Euler) 

 

€ 

FP,R = K ⋅ rP − rR( )        K ....const. (92)  

Based on these assumptions the equations of motion can be formulated as the 
vanishing sum of virtual works of the rigid body. The basic coordinate system O1 
must be an inertial system. The index (1) indicates this basic coordinate system. 
Equation (93) shows the equations of motion for a body-fixed coordinate system 
O2 centred in the centre of mass of the body. 

€ 

δrC
(1)T ⋅ m⋅ ˙ ̇ r C

(1) −F a(1)[ ] + δπ (2)T ⋅ J(2)⋅ ˙ ω (2) +ω*(2)⋅ J(2)⋅ ω (2) −Ma(2)[ ] = 0  (93)  

Equation (93) describes the motion for an unconstrained body. Kinematic 
constraints are not considered in the formulation yet. In constrained conditions 
the virtual translations and rotations depend on each other and must not be 
arbitrarily chosen. The terms in parenthesis in equation (93) thus cannot be 
treated separately. Equation (94) shows the dependence between the virtual 
displacements using the Jacobian matrices of the kinematic constraint equations. 
This is a boundary condition to the equations of motion. 

 

€ 

δr(1)T ⋅ Θr
T + δπ (2)T ⋅ Θπ

(2)T = 0  (94)  

The Lagrange multiplier theorem allows introducing the boundary condition of 
equation (94) into the equations of motion which is shown in equation (95). The 
virtual displacements now can be chosen arbitrarily and consequently the terms 
in parenthesis must vanish. Equation (95) delivers six single differential 
equations with unknowns of six plus the number of constraints.  

€ 

δrC
(1)T ⋅ m⋅ ˙ ̇ r C

(1) −F a(1) +Θr
T ⋅ λ[ ] + δπ (2)T ⋅

J(2)⋅ ˙ ω (2) +ω*(2)⋅ J(2)⋅ ω (2)

      −Ma(2) +Θπ
(2)T ⋅ λ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 0  (95)  

The lacking equations for completely defining the constrained body problem can 
be obtained from the relationships for the kinematic acceleration analysis as 
outlined in the previous chapter. 

 

€ 

Θr ⋅ ˙ ̇ r (1) +Θπ
(2)⋅ ˙ ω (2) = γ  (96)  

With equations (95) and (96) the first order differential-algebraic system of the 
equations is obtained. Expression (97) shows the equations of motion of a 
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constrained body in Newton-Euler formalism. It is a first order system since the 
angular accelerations  can only be integrated to angular velocities ω. 

 

€ 

m 0 Θr
T

0 J(2) Θπ
(2)T

Θr Θπ
(2) 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⋅

˙ ̇ r (1)

˙ ω (2)

λ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

F a(1)

Ma(2) −ω*(2)⋅ J(2)⋅ ω (2)

γ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 (97)  

The first order system of equations (97) can be transformed into a second order 
differential-algebraic system of equations which can be integrated over 
accelerations and velocities. It is formulated in Euler parameter space applying 
the following relationships and constraints: 

 

€ 

ω (2) = 2⋅ G⋅ ˙ p   and  G⋅ ˙ p ( )*
= G⋅ ˙ G T  (98)  

 

€ 

˙ ω (2) = 2⋅ G⋅ ˙ ̇ p    considering that  ˙ G ⋅ ˙ p = 0  (99)  

Equations (98) and (99) represent the relationships between derivatives of Euler 
parameters and angular velocities and accelerations.  

 

€ 

Θr ⋅ ˙ ̇ r (1) +Θp ⋅ ˙ ̇ p = γ  (100)  

 

€ 

ΘP
P ⋅ ˙ ̇ p = λP  (101)  

Equations (100) and (101) represent the second derivatives of the kinematic 
constraint equations and Euler parameter normalisation condition. The result of 
the transformation is shown in equation (102) which is a second order 
differential-algebraic system of equations. It can be integrated over velocities and 
accelerations.  

 

€ 

m 0 Θr
T 0

0 4⋅ GT ⋅ J(2)⋅ G Θp
T Θp

PT

Θr Θp 0 0
0 Θp

P 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

⋅

˙ ̇ r (1)

˙ ̇ p 
λ

λP

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

=

F(1)

2⋅ GT ⋅ M(2) + 8⋅ GT ⋅ G⋅ ˙ G T ⋅ J(2)⋅ ˙ G ⋅ p
γ

γ P

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 (102)  

The solution of the equations of motion complies with the constraints at the 
velocity (103) and positional (104) integration level. 
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€ 

Θr ⋅ ˙ r (1) +Θp ⋅ ˙ p = 0  and  ΘP
P ⋅ ˙ p = 0  (103)  

 

€ 

Θ r(1),p,t( ) = 0           and  ΘP = 0  (104)  

The integration over time is an initial value problem. Initial values are required to 
determine the values for p, γ , γP, G, ΘP, and  Θ r. Initial values must also comply 
with the kinematic constraints (105) and constrained velocities (106): 

 

€ 

Θ ini r(1),p,tini( ) = 0  (105)  

 

€ 

Br
ini ⋅ ˙ r (1) + 2⋅ Bπ

ini ⋅ G⋅ ˙ p = vini  (106)  

 

6.3.2 Time integration of the equations of motion 

In order to obtain information about the mechanical response of a constrained 
block under external loads the integration of the system of equations (102) over 
time is necessary. There could be analytical solutions for a number of special 
cases but the great majority of the problems can only be solved by applying 
numerical methods. Methods for numerical integration of ordinary differential 
equations have been thoroughly investigated with respect to robustness, 
efficiency, convergence, and accuracy (e.g. García de Jalón & Bayo 1994, 
Heuser 2009, Aulbach 2004). This is not completely true for differential-
algebraic equations where the theory is still incomplete (e.g. García de Jalón & 
Bayo 1994, Brenan et al. 1989, Kunkel & Mehrmann 2006). Solutions are 
difficult to establish and may not be unique. Existing algorithms are 
computationally extensive. 

This section describes the numerical integration of the equations of motion using 
well-established methods for ODEs. The steps towards the solution include the 
elimination of the algebraic equations in order to obtain ODEs, transformation of 
the system of second order ODEs into a system of first order ODEs in order to 
use off-the-shelf algorithms, and the numerical integration of the ODEs in 
subsequent time steps. For some problems it is necessary to monitor the 
constraint forces which will be calculated by an inverse dynamic routine.  

 

6.3.2.1 Elimination of the algebraic equations 

ODE solvers, in the simplest case explicit forward Euler methods, can be used to 
integrate the ODE system (102). With a sufficiently small time step the algebraic 
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equations in equations (102) and also equations (103) and (104) are satisfied. 
Unfortunately, the kinematic acceleration equations used in (102) show less 
information compared to the original constraint equations due to differentiation. 
With proceeding time or increasing time steps the algebraic equations are 
permanently violated, consequently leading to large drifting errors in the 
geometry. Finally, the integration fails. This method called direct integration is 
unstable. Methods for considering the constraint equations during integration, 
such as mixed integration (Steigerwald 1990) or stabilisation of constraints 
(Baumgarte 1972), are also prone to stability problems.  

The penalty method proposed by Bayo et al. (1988) eliminates the constraint 
equations from (102) and results in a system of sole ordinary differential 
equations. An augmented Lagrangian formulation of the penalty method ensures 
numerically conditioned integration. This formulation overcomes also problems 
related to kinematic singular configurations and redundant constraints. 

Let 

€ 

˜ m =
m 0
0 4⋅ GT ⋅ J(2)⋅ G
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , 

€ 

˜ Q =
F a(1)

2⋅ GT ⋅ Ma(2) + 8⋅ GT ⋅ G⋅ ˙ G T ⋅ J(2)⋅ ˙ G ⋅ p
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , 

€ 

˜ Θ q
T =

Θr
T 0

ΘP
T ΘP

PT

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , 

€ 

˜ λ =
λ

λP

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , and 

€ 

˜ ˙ ̇ q =
˙ ̇ r (1)

˙ ̇ p 
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ .  

The equations of motion can then be written without the kinematic acceleration 
equations as: 

 

€ 

˜ m ⋅ ˜ ˙ ̇ q + ˜ Θ q
T ⋅ ˜ λ = ˜ Q  (107)  

The penalty method introduces fictitious terms such as the fictitious potential V* 
and fictitious kinetic energy T*, and dissipative forces Gk in order to iteratively 
replace the Lagrange multipliers λ  while determining 

€ 

˜ Q . 

 

€ 

V * =
1
2
⋅ ΘT ⋅ α⋅ Ω2 ⋅ Θ

T* =
1
2
⋅ ˙ Θ T ⋅ α⋅ ˙ Θ 

Gk = −2⋅ α⋅ Ω⋅ µ⋅ ˙ Θ 

 
(108)  

 

By determining the Lagrangian L*=T*-V*, the work done by the dissipative 
forces, and application of the Euler-Langrage equations and proper substitutions4 
one obtains the convergent recursive rule: 

                                            
  4 The whole derivation is shown in García de Jalón & Bayo, J. 1994, 164ff. 
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€ 

˜ m + ˜ Θ q
T ⋅ α⋅ ˜ Θ q( )⋅ ˜ ˙ ̇ q i+1 = ˜ m ⋅ ˜ ˙ ̇ q i − ˜ Θ q

T ⋅ α⋅ −˜ γ + 2⋅ Ω⋅ µ⋅ ˜ ˙ Θ +Ω2 ⋅ ˜ Θ ( )
with  ˜ m ⋅ ˜ ˙ ̇ q 0 = ˜ Q 

 (109)  

Expression (109) uses (110) to approximate the Lagrange multipliers λ  in 
expression (107) and iteratively eliminates them. The penalty system determined 
by α , Ω  and µ  only introduces values in (109) if the motion violates the 
kinematic constraints. García de Jalón & Bayo (1994) describe the physical 
interpretation of the penalty system.  

 

€ 

λi+1 − λi = α⋅ ˜ ˙ ̇ Θ + 2⋅ Ω⋅ µ⋅ ˜ ˙ Θ +Ω2 ⋅ ˜ Θ ( ) (110)  

The same set of penalty values for each constraint equations has been 
successfully applied by the author, i.e. α  = αΙ , Ω  = Ω Ι ,  and µ = µ Ι .  Values of 
α=10E4, Ω=10, µ=1 have been used. 

 

6.3.2.2 Transformation into a first order system of 
ODE 

ODE solvers typically integrate only first order ODE systems. As the current 
ODE system of the equations of motion is a second order system, it is necessary 
to transform the equations into a first order system. It is trivial by defining 
equation (111) and replacing it into (109). 

 

€ 

ˆ q = ˜ ˙ q   and  ˆ ˙ q = ˜ ˙ ̇ q  (111)  

Expression (112) shows the first order system of ODEs. The number of equations 
doubles compared to (109). For a single block 14 ordinary differential equations 
are necessary. The first row represents the ODE at the velocity level, while the 
second row are the ODEs at the acceleration level. Starting values have to be 
provided for each of the equations for the initial value problem. 

€ 

˜ ˙ q = ˆ q 

˜ m + ˜ Θ q
T ⋅ α⋅ ˜ Θ q( )⋅ ˆ ˙ q i+1 = ˜ m ⋅ ˆ ˙ q i − ˜ Θ q

T ⋅ α⋅ −˜ γ + 2⋅ Ω⋅ µ⋅ ˜ ˙ Θ +Ω2 ⋅ ˜ Θ ( )  (112)  
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6.3.2.3 Numerical integration 

A number of methods for the numerical integration of the equations of motion as 
an initial value problem are available. The selection of a numerical integration 
method is a trade-off between different competing properties, for instance 
efficiency and accuracy. The following non-exhaustive list summarises the 
principal properties which should be considered (Dahlquist 1956, García de Jalón 
& Bayo 1994, Butcher 2008): 

• Stability is a method’s property of keeping errors of the numerical 
integration bounded in subsequent integration steps. Using an unstable 
method the errors increase exponentially after some time steps. Stability 
depends on the selected method and the type of problem. Stable 
algorithms may be  

o conditionally stable: stable for a restricted range of time spans 
o stiffly stable: stable for stiff problems except oscillatory motion 
o A-stable (unconditionally stable): stable for any range of time 

spans 
 

• Consistency describes whether the algorithm basically solves the problem. 
Methods with an order greater than zero are consistent. 
 

• Convergence is the property that the numerical solution approaches the 
exact solution with decreasing time steps. Consistency and stability are 
necessary and sufficient for convergence. 
 

• Accuracy is the difference between the numerical and the exact solution. 
Since the latter is unknown, the difference is estimated using the local 
truncation error. The step size and the order of the method control the 
accuracy of the solution. 

The stiffness of a problem is an important factor. Stiffness in this context is not 
universally defined but depends on the context of the problem. Stiff problems 
show a behaviour which can numerically only be solved by dramatically 
changing the step sizes even a couple of orders of magnitude. Stiff behaviour 
may arise from huge mass, stiffness or damping differences, the discretisation, or 
constraint violations. Stiff problems call for A-stable algorithms especially if 
oscillatory motion takes place (García de Jalón et al. 1994). 

A few more properties describe the architecture of the numerical methods 
affecting efficiency, accuracy, and memory requirements: 

• Explicit methods use only already determined function values to calculate 
future function values while implicit methods also use future function 
values. Implicit methods need therefore a recursive calculation. 
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• Single step methods use only the current function value to determine the 
future function value while multi-step methods use also past function 
values. Single step methods require more function evaluations and thus 
are less efficient than multistep methods but they need less memory and 
are self-starting. 
 

• Methods may use fixed step sizes or adaptive step sizes. Methods using 
the latter increase or decrease the step sizes based on the estimated local 
error. They are more efficient but harder to implement. Multi step 
methods with adaptive step sizes shall be implemented as multi value 
methods (Press et al. 2007).  

The Adams-Bashforth-Moulton (ABM) predictor-corrector method is suitable for 
integrating the equations of motion (112). It is a multistep method, i.e. previous 
function values are used to calculate the function value at the next time step. The 
method uses an explicit predictor and an implicit corrector term to numerically 
approximate the solution. Let the nth step be at a time tn the solution at a time tn+1 
is predicted by expression (113). s determines the order of the method. The 
coefficients  are the Adams-Bashforth terms. They depend on the order of the 
method and can be taken from textbooks on numerical mathematics (e.g. Butt 
2007). The left column of  

Table 21 shows the terms for the fourth order method. 

 

€ 

˜ q n +1

ˆ q n +1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

P

=
˜ q n
ˆ q n

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ + Δt⋅ βj

P ⋅
˜ ˙ q (tn− j, ˜ q n -j)
ˆ ˙ q (tn− j, ˆ q n -j)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

j=0

s

∑  (113)  

The predicted solution is used in the implicit correction (114) as the additional 
required input. 

€ 

βj+1
C  are the Adams-Moulton terms which also depend on the order 

of the method. The right column of  

Table 21 shows the terms for the fourth order method. 

 

€ 

˜ q n +1

ˆ q n +1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

C

=
˜ q n
ˆ q n

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ + Δt⋅ βj+1

C ⋅
˜ ˙ q (tn− j, ˜ q n -j)
ˆ ˙ q (tn− j, ˆ q n -j)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

j= -1

s−1

∑  (114)  
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Table 21:  ABM terms for fourth order method 

 

 

Figure 80 outlines the numerical integration scheme using the ABM predictor-
corrector method. The derivatives of past time steps are used to predict the 
function values from the current time step 

€ 

˜ q n  to the future time step 

€ 

˜ q n+1
P  with 

expression (113). The evaluation of expression (112) leads to derivatives for the 
future time step 

€ 

˜ ˙ q n+1. This is indicated by the grey slopes in Figure 80. It is used 
in expression (114) to improve the function values . For non-stiff problems a 
recursive iteration between function evaluation and corrector steps is sufficient. 
For stiff problems a Newton-Raphson iteration is mandatory (Press et al. 2007). 
Iteration is repeated until subsequent function values stay with in a predefined 
accuracy threshold. 

 

 

Figure 80:  Numerical integration scheme of an Adams-Bashforth-Moulton 
predictor corrector method. Sketch modified after Hairer & Wanner 
(2009)  
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6.3.2.4 Determination of constraint forces 

The forces transmitted through the kinematic constraints have not been addressed 
so far. They do not appear in the presented formulation since only virtual 
displacements and rotations of the block are considered. In any case, the sum of 
the virtual works must remain zero for the same mechanical system independent 
of the formulation. If the constraints are released, it is necessary to apply reaction 
forces in order to keep the mechanical system consistent. Since the motion 
should stay the same, the virtual work stays the same as well. Hence, the term 
describing the virtual work of the reaction forces has to be null as well.  

€ 

δrPi
(2)T ⋅ Fi,kin

(2) +A (12)T ⋅ Θr,i,kin
T ⋅ λkin( ) +

δπ i
(2)T ⋅ M i,kin

(2) +Θπ ,i,kin
T ⋅ λkin + si

*(2)T ⋅ A (12)T ⋅ Θr,i,kin
T ⋅ λkin( )

= 0  (115)  

Virtual displacements and rotations are arbitrary, thus follow expressions (116) 
and (117). The index i refers to the constraint i and the index kin indicates 
parameters related to kinematic constraints. These expressions include the 
Lagrange multipliers for the kinematic constraints. They comply with expression 
(102) and could be determined from it.  

 

€ 

Fi,kin
(2) = −A (12)T ⋅ Θr,i,kin

T ⋅ λkin  (116)  

 

€ 

M i,kin
(2) = −Θπ ,i,kin

T ⋅ λkin − si
*(2)T ⋅ A (12)T ⋅ Θr,i,kin

T ⋅ λkin  (117)  

In the proposed numerical integration scheme they have been eliminated. It is, 
thus, necessary to append a so-called inverse dynamics routine. It is the equations 
of motion with the parameters on the motion given and solving them for the 
Lagrange multipliers (118). It is a linear system in λ . 

 

€ 

Θr
T

Θπ
T(2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅ λ =

F a(1) −m⋅ ˙ ̇ r (1)

Ma(2) −ω*(2)⋅ J(2)⋅ ω (2) − J(2)⋅ ˙ ω (2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (118)  

 

6.3.3 Equilibrium 

Finding the equilibrium position is a core task in the block stability analysis. A 
consistent analysis does not require assumptions on force magnitudes at limit 
equilibrium, or force orientations but delivers these parameters. The equilibrium 
position is a special configuration complying with the equations of motion where 
velocities and accelerations vanish. Expression (119) shows the equations of 
equilibrium of a constrained block in Newton-Euler formalism. The left hand 
side represents the kinematic constraints, more specifically the constraint forces. 
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They must equilibrate with the external forces on the right hand side. It is a 
system of nonlinear equations since the entire left hand side is unknown.  

 

€ 

Θr
T

Θπ
(2)T

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅ λ =

F a(1)

Ma(2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (119)  

The results have to additionally comply with the kinematic equations (García de 
Jalón & Bayo 1994). Solution strategies include minimisation of potential energy 
for systems having a potential, dynamic relaxation, and continuation methods. 
The former is not applicable for the current purpose since non-conservative 
forces such as friction and follower loads such as water pressure are present in a 
rock environment. The latter two provide the framework for solving the 
equilibrium problem – both of them still pose shortcomings. Dynamic relaxation 
uses the entire set of dynamic equations including dampers. The body approaches 
the equilibrium position during a time integration procedure. The method can 
cope with all kinds of forces and constraints but the result requires interpretation. 
The equilibrium position is not uniquely defined and requires artificial 
termination criteria. Continuation methods solve the equilibrium problem by 
determining the equilibrium path. The body approaches the equilibrium position 
by incrementally increasing the external loads. It either finds the final position or, 
alternatively, a failure point. One drawback of the method is that at current rigid 
kinematic constraints cannot be considered in the approach. As an approximation 
they have to be introduced as stiff constraints. 

The following section describes the concept of a continuation method as 
implemented in this work. The framework for dynamic relaxation has already 
been introduced in the previous section. 

 

6.3.3.1 Continuation method 

Continuation methods are used to find the approximate solution of non-linear 
systems of the form F(u)=0 where u is a so-called state vector. If u is the 
displacement vector of the block and F are the equations of equilibrium 
continuation methods provide as a result the equilibrium position (or 
displacement) and the reactive forces.  

Let Q = [Fa(1) Ma(2)]T then the equilibrium equations without kinematic 
constraints render the well-known expression (120). 

 

€ 

Q(q) = 0 (120)  

q is the state vector representing displacements and rotations. Algebraic 
equations related to kinematic constraints are not considered in this approach. 
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Finding the solution of the non-linear system is directly not possible different 
sources of loads interact with complex reactions. Like with the equations of 
motion a numerical solution in general is necessary. The idea of the solution 
scheme is a step-by-step application of loads while determining the intermediate 
equilibrium position. The result is the equilibrium path consisting of the discrete 
equilibrium points showing the path to the final equilibrium position. The 
properties of the equilibrium path allow also for insights into the behaviour of the 
block while approaching equilibrium or failure.  

One widely used procedure of continuation methods, for instance in chemical 
engineering, dynamic analysis, physics, etc., is the predictor-corrector approach. 
The complex non-linear problems are formulated in a staged incremental-
iterative procedure. Loads are applied to the system in subsequent stages where 
only one category of load is considered on one stage, for instance, self weight, 
dead loads, initial stresses, water forces, etc. The sequence of load shall reflect 
the sequence in real world and also numerical reasoning. Within one stage the 
load is incrementally applied from the initial value to the final value. The load 
increment is proportional to a stage control parameter. Within each increment the 
intermediate equilibrium positions are determined by using a non-linear 
optimisation scheme which aims at complying expression (120). 

Staging is necessary since direct superposition is not applicable in non-linear 
analysis, especially with path-dependent problems such as friction. Staging 
allows also for a single scalar stage control parameter. The end result of one 
stage serves as the input for the subsequent stage. Incrementation is necessary to 
provide initial values close enough to the equilibrium point to support 
convergence of the non-linear optimisation, allows treatment of critical points 
encountered along the equilibrium path, provides a means for decreasing the 
path-dependence of non-linear material behaviour, and also provides insights into 
the behaviour of the system while approaching equilibrium or failure.  

 

 

Figure 81:  Concept of the applied continuation method using a predictor-
corrector approach 

 

The iteration comprises a predictive phase in which the initial values for the 
subsequent corrective phase are provided. The corrective phase basically is a 
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non-linear optimisation. Figure 81 shows the concept of the applied continuation 
method. Subsequent stages comprise several load increments. Each increment 
starts with a predictive phase which provides initial values for the corrective 
phase. Each increment results in a new equilibrium point of the equilibrium path. 

The basis for determining the equilibrium path is the residual force equation 
shown in expression (121). res is the residual force vector determined from the 
external force and moment vector Q and vanishes for equilibrium. The active 
force vector Qa and constrained force vector Qc determine the residual force 
vector. Constrained forces are those which do not exhibit active force but only 
react on block displacement. Both, the active forces and the constrained forces, 
depend on the state vector q which contains displacements and rotations. 

 

€ 

res =Q(q) =Qc(q) +Qa (q) = 0  (121)  

The active force vector Qa is incrementally increased from the initial (usually 
zero) to the final value of the stage. The increments are related to the stage 
control parameter λstage. The stage control parameter and the constrained force 
vector are iteratively accommodated for the current increment in order to comply 
with the residual force equation (122).  

 

€ 

res(q,λstage ) =Qc(q) + λstage ⋅ Q
a (q) = 0  (122)  

The recursive computation starts from the last known equilibrium point of the 
previous increment. Expression (123) shows the incremental form of the residual 
force equation. 

 

€ 

∂res
∂q

˙ q + ∂res
∂λstage

˙ λ stage = 0  (123)  

Let us introduce the tangential stiffness matrix of the equilibrium path K. The 
active force vector Qa can also be interpreted as a tangential load vector. 

 

€ 

K = −
∂res
∂q

  and   Qa =
∂res
∂λstage

 (124)  

Inserting (124) into (123) and rearranging renders the relationship between load 
vector variation and displacement vector variation (125). 

 

€ 

K⋅ ˙ q = Qa ⋅ ˙ λ stage   or linearised  K⋅ Δq = Qa ⋅ Δλstage  (125)  

Expression (122) and (125) comprise n equations but n+1 unknowns due to the 
introduction of the stage control parameter. In order to uniquely solve these 
systems of equation an additional equation is necessary. It is provided by the 
increment control strategy. The increment control strategy constrains the stage 
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control parameter to an external condition. The constraint is, geometrically, a 
hypersurface5 which aims to intersect the equilibrium path. The intersection 
between the hypersurface and the equilibrium path is the new equilibrium point.  

The simplest increment control is load control where Δλstage is a constant value 
Lstep. The corresponding constraint surface is a horizontal hyperplane. The 
predictor finds an intersection of the tangential hyperplane with the horizontal 
hyperplane. During the corrective phase iterations take place along the surface of 
the constraint surface requiring only a variation of displacements. The condition 
is: 

 

€ 

Δλstage −Lstep = 0  (126)  

Load control is easy to implement but has significant drawbacks when analysing 
failure or stability problems. Load controlled increments do not take the shape of 
the equilibrium path into account (Figure 82 left). When approaching failure the 
equilibrium path becomes more and more parallel to the constraint surface. A 
further increment may exceed the bearing capacity of the system inhibiting the 
intersection between equilibrium path and constraint surface. The approximate 
determination of failure can only be achieved with small increments resulting in 
excessive computational effort. 

A more comprehensive increment control strategy is the arclength control. There 
are several arclength controls available referring to the shape of the constraint 
surface. They can be summarised as hyperplanar (Riks 1972, Wempner 1971), 
hyperspherical (Crisfield 1981), and hyperellipsoidal (e.g. Ritto-Corrêa & 
Camotim 2008) methods. The size of the increment (now considering load 
increase and displacement) is related to the arclength of the equilibrium path6. In 
this basic method the hypersphere is centred at the last known equilibrium point 
(Figure 82 right). The predictor finds an intersection of the tangential hyperplane 
with the constraint surface. During the corrective phase iterations take place 
along the surface of the constraint surface requiring a variation of displacements 
and load. The condition for the used hyperspherical arclength control is shown in 
expression (127). 

 

€ 

Δλstage
2 + ΔqT ⋅ S2 ⋅ Δq −Lstep

2 = 0 (127)  

 

                                            
5 It is a hypersurface because it is formulated in n+1 dimensional space. 
6 Actually, it is the pseudo-arclength since the measure is not taken at the curved equilibrium path but at 
the tangential hyperplane. 
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Figure 82:  Load control vs arclength control 

 

Expression (127) is dimensionally not consistent. Δλstage is dimensionless while 
Δq carries displacements, Euler parameters for rotations, and possibly Lagrange 
multipliers (see section 6.3.3.4). The scaling matrix S is introduced to render 
expression (127) dimensionally consistent (128).  

 

€ 

S =

ω r ⋅ I3x3 0 0
0 ω p ⋅ I4x4 0
0 0 ωλ ⋅ Imxm

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 (128)  

ωr, ωp, and ωλ are scaling factors for each category of the state vector. They can 
be kept constant throughout the procedure at values representing the system scale 
unless abrupt scale changes occur. In order to overcome problems with scale 
changes scaling factors can be adjusted at each increment. Cardona & Huespe 
(1998) suggest to use values to render for displacements as shown in expression 
(129). The index 0 indicates values taken at the first increment or, in case of 
adjusting algorithm, at the increment preceding the current one.  

 

€ 

ω r =1          ω p =
r0

p0
          ωλ =

r0

λ0
 (129)  

Felippa (1987) proposes to use the stiffness matrix K for scaling the state vector. 
This has been applied, for instance, by Tonon (2007b). 
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6.3.3.2 Incrementation – the predictor phase 

Incrementation starts at the last known equilibrium point. The predictor points 
along the tangential hyperplane (130) and its length constrained by (127). 

 

€ 

Δq =K −1⋅ Qa ⋅ Δλstage  (130)  

Feeding (130) into (127) one can calculate the arclength controlled load 
increment as shown in expression (131). It has obviously two roots referring to 
the two intersections of the equilibrium path with the (closed) constraint surface. 

 

€ 

Δλstage
P = ±

Lstep

qQT ⋅ S2 ⋅ qQ +1
  where  qQ =K -1⋅ Qa  (131)  

The sign in expression (131) shall always be positive at the first load step. In 
subsequent increments the sign is based on the previous increment such that 
current predictor points outward the previous constraint surface (Figure 83). One 
should keep in mind that the orientation of qQ always points towards the upward 
direction of the tangential hyperplane. 

 

€ 

sign Δλstage,i
P( ) = sign Δqi−1

CT ⋅ S2 ⋅ qi
Q + Δλstage,i-1

C( )  (132)  

 

 

Figure 83:  Selection of the sign of the predictor increment based on the previous 
increment 
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With a sufficiently small increment size the predictive phase only can be used to 
determine the equilibrium path. The predicted values approach the true 
equilibrium path with decreasing increment size. One should be aware of the 
inherent drift error involved with this kind of incrementation (forward Euler) 
(Figure 84). Minimising the drift error while maintaining a reasonable increment 
size can only be achieved with a subsequent iterative corrective phase. 

 

 

Figure 84:  Drift error related to pure incrementation with forward Euler method 

 

6.3.3.3 Iteration – the corrective phase 

The iterative corrective phase eliminates (or at least reduces) the drift error while 
satisfying both, the equilibrium and the increment control. During iteration the 
corrected solutions march along the constraint surface towards the equilibrium 
point (Felippa 1987). As mentioned above, load control comes with a horizontal 
hyperplane as constraint surface. As a consequence intersection points with the 
equilibrium path, in particular when approaching failure, is not ensured. A closed 
constraint surface such as a hypersphere ensures intersection with the equilibrium 
path if it is centred at the last known equilibrium point. 

Figure 85 shows the relationships between the predictive and the corrective phase 
approaching a new equilibrium point using a hyperspherical constraint surface. 
The last known equilibrium point is 0 and the predicted point is A. Prediction has 
been outlined in the previous section. The equilibrium point is A’ for the same 
block displacement ΔqP. The residual forces between A and A’ are defined by 
expression (122) – the residual force equation. The correction is a full Newton-
Raphson method and thus requires the calculation of the tangent stiffness matrix 
at ΔqP. The vectors qR and qQ are determined (133). 
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€ 

qR =KA'
−1⋅ resA   and   qQ =KA'

−1⋅ Qa  (133)  

The vector equation for the new corrected point B is thus: 

 

€ 

ΔqC

Δλstage
C

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

ΔqP

Δλstage
P

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +

qR

0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ + δλstage

 C ⋅
qQ

1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (134)  

Note that the prefix Δ refers to incremental change while the prefix δ refers to 
iterative change.  

 

 

Figure 85:  Predictive and corrective phase using a hyperspherical constraint 
surface centred in the last known equilibrium point 

 

Since B has to lie on the constraint surface, it also has to comply with expression 
(127). This leads to the quadratic equation in δλstage (135) 

€ 

δλstage
 C2 ⋅ qQT ⋅ S2 ⋅ qQ +1[ ] + δλstage

 C ⋅ 2⋅ qQT ⋅ S2 ⋅ qR + ΔqP( ) + Δλstage
P[ ] + ...

...+ ΔqP +qR( )T
⋅ S2 ⋅ ΔqP +qR( ) + Δλstage

P2 − Lstep
2[ ] = 0

 (135)  

 



188 6 Dynamic Behaviour and Stability Analysis 

Expression (136) represents the solution of (135). Once again, it has two roots 
corresponding to the intersection of the linearised equilibrium line with the 
constraint surface. 

 

€ 

δλstage
 C =

−b ± b2 − 4⋅ a⋅ c
2⋅ a

       (136)  

 

€ 

where  a = qQT ⋅ S2 ⋅ qQ +1

            b = 2⋅ qQT ⋅ S2 ⋅ qR + ΔqP( ) + Δλstage
P[ ]

            c =  ΔqP +qR( )T
⋅ S2 ⋅ ΔqP +qR( ) + Δλstage

P2 − Lstep
2   

 

Several different criteria for selecting the proper corrector root have been 
reported. If double-backing (strong directional changes) of the equilibrium path 
is not expected and shall be prevented, the root closest to the prediction or 
previous correction shall be selected. This is accomplished by maximising the 
product between the predictor (or previous corrector) and the current corrector. It 
is only necessary to consider terms which depend on Δλstage. 

 

€ 

δλstage
C =

δλstage,1
C   

δλstage,2
C

if   t⋅ δλstage,1
C >  t⋅ δλstage,2

C

otherwise
  

⎧ 
⎨ 
⎩ 

 (137)  

 

€ 

where   t = ΔqP ⋅ S2 ⋅ qQ + Δλstage
P   

The iteration is repeated until it complies with defined convergence criteria, i.e. 
the residual force vector approximately vanishes. Relative criteria are preferred 
over absolute ones (138). resA is the residual force vector after the predictor step. 

 

€ 

res
resA

<10−4   and  
Δqi

C - Δqi−1
C

ΔqP <10−2 (138)  

Although this approach is not susceptible to divergence, divergence criteria (139) 
shall be monitored and, at compliance, cause interruption or countermeasures. 
The number of iterations is limited to 20 to avoid periodic bouncing about a 
solution. 

 

€ 

res
resA

>103   or  
Δqi

C - Δqi−1
C

ΔqP >103  (139)  

The proposed procedure only converges if the square root in expression (136) has 
real roots. Complex roots happen when the linearised equilibrium line does not 
intersect the constraint surface. In this case the iteration shall be interrupted and a 
new prediction with a decreased increment size (e.g. 50%) executed (Ritto-
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Corrêa & Camotim 2008). Decrease of the increment size has to take place until 
the square root in expression (136) becomes real. Another way to overcome 
complex roots is a line search algorithm. Another convergence issue may occur 
in case of sudden snap-back of the equilibrium path together with the proposed 
corrector root selection. 

 

6.3.3.4 Consideration of kinematic constraints 

Kinematic constraints have not yet been considered in the formulation. Again, 
the Lagrange multiplier method helps to set up a concept for solving the 
equilibrium problem of a kinematically constraint block. The equilibrium 
problem in other words is to find the minimum of expression (122), the residual 
force equation. In this expression displacements can be arbitrary. With the 
presence of kinematic constraints, displacements have to be feasible with the 
constraint equations. The constraint equations according to section 0 are 
introduced in expression (122) using Lagrange multipliers (Houlsby et al. 2000). 
In case of the incremental formulation the Jacobian matrices of the constraint 
equations have to be used. This approach ensures kinematically feasible 
displacements while marching along the equilibrium path using an 
incremental/iterative procedure. The conceptual formulation is shown in 
expression (140). Since artificial displacements are not imposed at the kinematic 
constraints, the right hand side for the corresponding constraint equations 
remains zero. If displacements are imposed, one can use the formulation of Dutta 
& White (1997). 

 

€ 

K
Θr

T

Θπ
(2)T

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Θr Θπ
(2)[ ] 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⋅

˙ q 
λ

⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = ˙ λ stage ⋅

Qa

0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (140)  

At this stage it shall be noted that kinematic constraints can cause indeterminacy 
if the constraints have a higher degree than the degrees of freedom of the block 
(Tonon 2007b). Redundant constraints have to be treated specifically, for 
instance, by introducing additional criteria. One criterion is for instance that the 
norm of the Lagrange multiplier vector shall be minimal (García de Jalón & 
Bayo 1994). 
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6.4 Stability analysis 

The section about block stability analysis shows the application of the methods 
developed in the previous sections for determining stability or the failure mode 
of a block. The approach is based on the continuation method. At first, a 
conceptual block model is introduced describing the principal elements of the 
mechanical block system. The subsequent section describes the application of 
loads (forces and moments) irrespective of whether they are active or responsive. 
The section includes also the determination of the stiffness matrix contributions. 
Finally, the status of the block while marching along the equilibrium path is 
monitored. Critical conditions can be encountered and allow conclusion about the 
stability condition of the block. 

 

6.4.1 Block model 

The block model is a three-dimensional mechanical system including a rigid 
body, loads (forces, moments) acting on the rigid body, springs with linear or 
nonlinear characteristic constraining the rigid body, and rigid kinematic 
constraints (Figure 86).  

 

 

Figure 86:  Conceptual mechanical model of a block comprising the rigid body, a 
triangulated discontinuity surface, kinematic constraints, active and 
constraint forces. 
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Unlike free faces discontinuities possess a triangulation. The centre of gravity of 
each triangle locates a point at which contact between block and rock mass is 
checked, and at which forces resulting from stresses are applied. Points in contact 
pose a constraint normal and shear force corresponding to the characteristic of 
the applied spring. The characteristic can be linear or non-linear. Kinematic 
constraints are applied following the descriptions of chapter 5. If present, insitu 
rock mass stresses can be considered at the discrete discontinuity points in 
contact.  

Since discontinuities can only sustain compressive stresses, the block may detach 
from the adjacent rock mass. In order to correctly apply constraint forces it is 
necessary to check the contact status. Tonon (2007b) describes a contact logic for 
determining whether discrete points lie inside or outside the constraint space. The 
constraint space is a closed volume adjacent to the investigated block. If a 
block’s discontinuity is inside the constraint space, it is in contact. Otherwise, if 
the block lies outside the constraint space, the point has detached. The constraint 
space is a subset of the rock mass. A point may lie inside or outside the constraint 
space. It changes its status if the iterative displacement of the point has an odd 
number of intersections with the surface of the constraint space. When entering 
the constraint space, one can also determine the displacement performed inside 
the constraint space within one iteration. 

 

6.4.2 Forces and moments 

6.4.2.1 Forces and moments fixed in space 

 

Figure 87:  Force and moment acting on a block 
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Forces and moments which are fixed in space keep their orientation throughout 
block motion. If their magnitude depends on the block displacement, they 
contribute to the stiffness matrix (see section 6.3.3.1). Expression (141) shows 
the formulation in the space fixed coordinate system. Forces usually induce 
moments on the block. This is represented by the first term of the right hand side 
of the moment’s equation in expression (141).  

 

€ 

F(1) = F ⋅ ef
(1)

M(1) = F ⋅ A 0
(12)⋅ sf,2

(2)( )* ⋅ ef(1) + M ⋅ em
(1) (141)  

Inertia forces are proportional to the body’s mass and act in its centre of mass. In 
consequence, all moments are zero as shown in expression (142). Typical inertia 
forces are gravity or loads resulting from seismic acceleration. 

 

€ 

F(1) = m⋅ a ⋅ ef
(1)

M(1) = 0
 (142)  

 

6.4.2.2 Forces and moments fixed to the block 

Forces and moments that are fixed to the block change their orientation 
according to the motion of the block. These kinds of loads are called follower 
forces and contribute to the stiffness matrix in any case. Expression (143) shows 
the general formulation of follower forces in the space-fixed coordinate system. 

 

€ 

F(1) = F ⋅ A (12)⋅ ef
(2)

M(1) = F ⋅ A (12)⋅ sf,2
*(2)⋅ ef

(2) + M ⋅ A (12)⋅ em
(2) (143)  

 

6.4.2.3 Hydrostatic water forces 

Water forces act perpendicularly onto a surface i in direction of the blockside 
normal vector ni. Their magnitude depends on the local pressure head. Block 
surfaces subjected to water forces are discretised into a number m of local planar 
triangles. The vertices’s position vectors rP,i,j,k outline the triangles. For each 
vertex there is a corresponding pressure head given by the vectors rw,i,j,k. The 
situation is shown in Figure 88. 
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Figure 88:  Water pressure acting on block surface 

 

Expression (144) gives the force and moment vectors for each surface i based on 
a triangulated discretisation. The pressure head may vary with time. 

 

€ 

zw,i, j = rw,i, j − rP0,i, j      and    

e1,1
T ⋅ rw,i, j − rP,i, j( ) = 0    and    e1,2

T ⋅ rw,i, j − rP,i, j( ) = 0

Fw,i
(1) = γw ⋅ ai, j⋅ zw,i, j − e1,3

(1)T ⋅ vP( )
j=1

m

∑ ⋅ ni
(1)

Mw,i
(1) = γw ⋅ ai, j⋅ A

(12)⋅ sf,w
(2)( )*

j=1

m

∑ ⋅ zw,i, j − e1,3
(1)T ⋅ vP( )⋅ ni

(1)

zw,i, j = f vP,e1,1,e1,2( )

 
(144)  
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6.4.2.4 Discontinuity normal response 

Discontinuity normal forces act perpendicularly to the contact area. They are 
always directed towards the rock mass, since per definition joints do not sustain 
tensile stress.  

 

€ 

Fjn, i
(1) = ai, j⋅ σn⋅ n i

(1)

M jn, i
(1) = ai, j⋅ σn⋅ A

(12)⋅ s i
(2)( )*⋅ n i(1)

 (145)  

Displacement components comprise those originating from block motion, joint 
dilation, the normal displacement caused by shear displacement of a rough joint, 
and the deformability of the block and rock mass.  

A required constitutive model is necessary to define the magnitude of the normal 
stress σn at a discrete displaced position of the block. The exemplary 
establishment of a discontinuity constitutive model has been shown in chapter 3. 
Likewise, the determination of the discontinuity normal stiffness is also shown in 
chapter 3. Expression (146) shows a simple linear constitutive model for the 
discontinuity normal stress. 

 

€ 

σn = −kn ⋅ vP
T(1)⋅ ni

(1) (146)  

Expression (146) applies only if the observed point is in contact with the rock 
mass. In case of missing contact, it vanishes. In case the point gets into contact 
within an iteration, only the displacement travelled after contact detection shall 
be considered. 

 

6.4.2.5 Discontinuity shear response 

Discontinuity shear forces act in the contact area and are directed against the 
shear displacement increment. The shear displacement can easily be calculated 
from the difference between total and normal displacement of a point. 

 

€ 

Δvs = ΔvP − Δvn = ΔvP −ni ⋅ ni
T ⋅ ΔvP = I −ni ⋅ ni

T( )⋅ ΔvP (147)  
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Two cases must be distinguished. In the first one the shear stress depends on the 
shear displacement, for instance when mobilising the shear resistance.  

 

€ 

τ(l ) = τ( l−1) + ks⋅ Δvs      (l) refers to the current increment  (148)  

The corresponding forces and moment applied to the block result in expression 
(149). Note that the force direction is related to the total shear displacement. 

 

€ 

Fjs,i
(1) = −

ai, j ⋅ τ
vs
(1) ⋅ vs

(1) = −
ai, j ⋅ τ
vs
(1) ⋅ I −ni ⋅ ni

T( )⋅ vP

M js,i
(1) = −

ai, j ⋅ τ
vs
(1) ⋅ A

(12)⋅ si
(2)( )* ⋅ vs(1)

 (149)  

In the second case, the shear resistance has been reached – the shear stress is 
independent of the shear displacement. Expression (150) shows a simple Mohr-
Coulomb shear strength criterion. One should note that ϕ in this formulation 
comprises all frictional components such as basic friction, roughness, dilation, 
etc. Other constitutive relationships can be derived similarly such as those shown 
in chapter 3 or in Tonon (2007b). 

 

€ 

τ =σn ⋅ tan ϕ( )  (150)  

The corresponding forces and moment applied to the block result in expression 
(151). Note that the force direction is related to the shear displacement 
increment. 

 

€ 

Fjs,i
(1) = −

ai, j ⋅ τ
Δvs

(1) ⋅ Δvs
(1)

M js,i
(1) = −

ai, j ⋅ τ
Δvs

(1) ⋅ A
(12)⋅ si

(2)( )* ⋅ Δvs(1)
 (151)  

Shear forces only apply if the observed point is in contact with the rock mass. In 
case of missing contact, it vanishes. In case the point gets into contact within an 
iteration, only the displacement travelled after contact detection shall be 
considered.  
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6.4.2.6 Insitu rock mass stresses 

Insitu rock mass stresses act initially on discontinuities in contact with the rock 
mass. Stresses are given with the stress tensor (152) at a discrete discontinuity 
point. 

 

€ 

σ =

σ11 τ12 τ13
τ12 σ22 τ 23
τ13 τ 23 σ33

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 (152)  

The corresponding shear and normal stress at the discrete discontinuity point are: 

 

€ 

a)   σn,i,ini = ni
T ⋅ σ  ⋅ ni

b)   τ i,ini = σ −σn,i ⋅ I( )⋅ ni
 (153)  

The discontinuity displacements have to be adjusted in order to comply with the 
initial normal and shear stress. If dilation is not considered, the normal and shear 
stress is not coupled. Hence, the normal and shear displacement can be 
individually determined. 

 

€ 

a)   vn = −
σn,i,ini

kn (vn )
⋅ ni

b)   vs =
τ i,ini
ks(vs)

⋅ t i   where t i =
1
τ i,ini

⋅ σ −σn,i ⋅ I( )⋅ ni

 (154)  

If the joint shows a dilational behaviour, the normal and shear stress is coupled. 
A displacement solution complying simultaneously for normal and shear stress 
must be found. The joint tangent stiffness matrix after Saeb & Amadei (1992) 
constitutes the relationship between joint normal and shear stress and 
displacement, respectively. They also show the derivation of the components of 
the joint tangent stiffness matrix for a simple dilation model. Pötsch (2002) 
shows the derivation for the Barton-Bandis joint model.  
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vn,i
vs,i

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
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knn,i kns,i
ksn ,i kss,i

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−1 σn,i,ini

τ i,ini

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (155)  

In both cases the shear stress τi,ini must remain smaller than the maximum shear 
stress allowable by the constitutive model. In the latter case dilation may cause a 
significant increase of the allowable shear stress. If the sear stress τi,ini exceeds 
the maximum shear stress, τi,ini has to be set equal to the maximum shear stress. 
The corresponding initial shear displacement is unknown. 
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The joint displacements caused by initial stresses must be accounted in the 
contact detection routines. The constraint planes shall be displaced by the initial 
joint displacements.  

 

6.4.3 Stiffness matrix 

6.4.3.1 General 

According to expression (124) the tangent stiffness matrix K is the partial 
derivative of displacement dependent loads. In general, elements causing reactive 
forces such as constraint forces contribute to the tangent stiffness matrix. 
Another group of forces which cause a contribution to the tangent stiffness 
matrix are follower forces. Follower forces are active forces which depend on the 
current configuration of the mechanical system. For instance, water pressure 
always acts perpendicular to the block face. Since the block face may change its 
orientation throughout displacement, the active water force also changes. This is 
especially prominent when considering large displacements. The contribution to 
the tangent stiffness matrix originating from follower forces is called load 
stiffness. 

The load vectors comprise usually six entries; the upper three correspond to 
forces while the lower three correspond to moments. The stiffness matrix K is a 
7x7 matrix since the formulation takes place in Euler parameter space. The first 
three rows of the stiffness matrix are determined by expression (156) through 
derivating the force terms and considering expression (72). 

 

€ 

K 3x7 =
∂F(vP)
∂q

=
∂F(vP)
∂vP

⋅
∂vP
∂q

=
∂F(vP)
∂vP

⋅ DP(p) (156)  

Likewise, the lower four rows of the stiffness matrix are determined by 
derivating the moment terms and transforming them into Euler parameter space 
while considering expressions (72) and (74) as shown in expression (157). 
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€ 

K 4x7 = 2⋅ ET ⋅ ∂M(vP)
∂q

= 2⋅ ET ⋅
∂ A (12)⋅ s(2)( )* ⋅ F(vP)[ ]

∂q

K 4x7 = −2⋅ ET ⋅ F(vP)
* ⋅
∂ A (12)⋅ s(2)( )

∂q
+ 2⋅ ET ⋅ A (12)⋅ s(2)( )* ⋅ ∂F(vP)

∂q

 

€ 

K 4x7 = −2⋅ ET ⋅ F(vP)* ⋅ HP(A (12)⋅ s(2),p) +

        ...+ 2⋅ ET ⋅ A (12)⋅ s(2)( )*
⋅
∂F(vP)
∂vP

⋅ DP(p)  

(157)  

Subsequently, the two parts, the upper and the lower part, have to be assembled 
to the complete stiffness matrix (158). 
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K =
K 3x7

K 4 x7

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (158)  

Both, expressions (156) and (157) require the force components F and partial 
derivatives 

€ 

∂F/

€ 

∂vP of the force components.  

 

6.4.3.2 Normal stiffness matrix 

Expression (159) shows the normal force components and corresponding partial 
derivative. These matrices have to be used in expression (156) and (157) for the 
contribution of the discontinuity normal stiffness to the global block stiffness 
matrix. 

 

€ 

Fn = ai, j⋅ σn ⋅ ni
(1)        ∂Fn

∂vP
= −ai, j⋅ Ktot, j ⋅ ni

(1)⋅ ni
(1)T  (159)  

 

6.4.3.3 Shear stiffness matrix 

Expression (160) shows the shear force components and corresponding partial 
derivative. These matrices have to be used in expression (156) and (157) for the 
contribution of the discontinuity shear stiffness to the global block stiffness 
matrix. 
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€ 

Fs = −
ai, j ⋅ τ
vs

(1) ⋅ I −ni ⋅ ni
T( )⋅ vP      

 ∂Fs
∂vP

= ai, j⋅ ks⋅ I −ni
(1)⋅ ni

(1)T( )T
⋅ I −ni

(1)⋅ ni
(1)T( )⋅ Δvs

T

Δvs
⋅
vP

vP

 (160)  

 

6.4.3.4 Load stiffness matrix from hydrostatic water 
forces 

Expression (161) shows the normal forces components and corresponding partial 
derivative directly after 

€ 

∂q. This partial derivative replaces expression (156) and 
can be directly input into the second row of expression (157).  

 

€ 

Fw,i
(1) = γ w ⋅ ai, j⋅ zw,i, j − e1,3

(1)T ⋅ vP( )
j=1

m

∑ ⋅ ni
(1)     

 
∂Fw,i

∂q
= γ w ⋅ ai, j⋅

∂zw,i, j

∂q
⋅ ni

(1) + zw,i, j ⋅
∂ni

(1)

∂q
− ...

...−ni
(1)⋅ e1,3

(1)T ⋅
∂vP

∂q
− e1,3

(1)T ⋅ vP ⋅
∂ni

(1)

∂q

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

j=1

m

∑   

∂Fw,i

∂q
= γ w ⋅ ai, j⋅

∂zw,i, j

∂q
⋅ ni

(1) + zw,i, j − e1,3
(1)T ⋅ vP( )⋅ HP −ni

(1)⋅ e1,3
(1)T ⋅ DP

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

j=1

m

∑

 (161)  

 

6.4.3.5 Consideration of dilation 

Dilation is the normal displacement of a rough joint induced by a shear 
displacement. As a point on a block’s joint face displaces, an additional 
displacement component takes place perpendicularly to the discontinuity face. 
The term for 

€ 

∂vP ∂q  in expressions (152) and (153) has to be modified to 
according to the following relationships (Tonon 2007b): 

€ 

vP,tot = vP + vdil
∂vP,tot
∂q

=
∂vP
∂q

+
∂vdil
∂q

=DP(p) +
∂vdil
∂vP

⋅
∂vP
∂q

= I+
∂vdil
∂vP

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ DP(p)

 (162)  
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For a simple dilation model with a constant dilation angle over a limited shear 
displacement vdil can be calculated as: 

 

€ 

vdil = tani⋅ I −ni ⋅ ni
T( )⋅ vP (163)  

The derivative 

€ 

∂vdil ∂vP of (163) after vP is consequently the well-know 
expression (164). 

 

€ 

∂vdil
∂vP

= tani⋅ I −ni ⋅ ni
T( )  (164)  

Expression (164) remains valid for a shear displacement smaller than vs,max. After 
exceeding vs,max  the dilation component vanishes again. For a more sophisticated 
dilation model as presented in chapter 3.3 (including mobilisation of dilation, 
joint roughness and its degradation, normal stress dependence, etc.) the 
derivative 

€ 

∂vdil ∂vP  becomes significantly more complex. Feasible consideration 
of a dilation model also requires the consideration of dilation and contraction in 
case of shear sense reversal. This has been discussed by Tonon (2007b). 

 

6.4.3.6 Assembly of the total tangent stiffness matrix 

Recalling the residual force equation (165) one realises that some of the force 
components depend on q (especially normal and shear forces of discontinuities), 
some depend on q and λstage (for instance, hydrostatic water forces), and finally 
some do not depend on displacements but on the stage control parameter (for 
instance, inertia forces). 

 

€ 

res(q,λstage ) =Qn (q) +Qs(q) + λstage ⋅ Qw,i (q) +Qex( ) = 0 (165)  

The block’s tangent stiffness matrix has to be assembled in an analogue way. 
Derivatives of forces which do not depend on q, do not contribute to the stiffness 
matrix K. Derivatives of forces which do only depend on q, contribute with their 
full magnitude to the stiffness matrix K. Derivatives of forces which depend on 
both, q and λstage, contribute with a stiffness magnitude proportional to the stage 
control parameter λstage. This is shown in expression (166). 

 

€ 

K =K n +K s + λstage ⋅ Kw,i  (166)  
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6.4.4 Equilibrium path 

6.4.4.1 Properties of the equilibrium path 

The equilibrium path undergoes typical stages while increasing the stage control 
parameter. At the very beginning the response of the block is linear. With 
increasing load, material and/or geometric non-linearities become more 
prominent. The path starts deviating from the linear stretch. Typically, the 
stiffness of the block system decreases.  

A critical point is encountered when the tangent stiffness vanishes and the 
tangent becomes horizontal. This point is called a limit point at which no further 
load increase is possible. Limit points are related to the peak strength of the block 
system. Load controlled procedures fail in determining limit points and cannot 
calculate beyond it. Arclength controlled procedures can traverse limit points and 
enter the post failure region. Limit points are relevant for determining the 
stability and factor of safety of a block system. 

A second type of critical points is the bifurcation point. At bifurcation points the 
equilibrium path branches out in two or more branches. At a bifurcation point the 
tangent stiffness is not uniquely defined and an abrupt transition from one 
deformation mode to another takes place. Bifurcation points cannot be traversed 
either with load controlled or arclength controlled procedures and thus require 
special attention and treatment. Figure 89 shows the equilibrium path of a 
mechanical system with the initial linear response, and a limit and a bifurcation 
point. 

 

 

Figure 89:  Equilibrium path and critical points 
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Critical points involve a differential movability of the block (beyond the 
compliance of the constraints). Kinematically feasible motions are a set of 
vectors defined by the null space z of the stiffness matrix K (Strang 1976), i.e. all 
possible differential displacements and rotations belong to the null space. z is 
determined by singular value decomposition (SVD) of K. Any mxn matrix can be 
decomposed into a product of three matrices USVT such that U is an mxm square 
matrix whose rows are orthonormal, S is a matrix containing the singular values 
in its diagonal and zeros in other cells, and V is the nxn adjunct matrix to U. The 
null space z are the rows of V corresponding to zero singular values. 

A critical point is encountered once the nullspace of the stiffness matrix is non-
empty, i.e. when the stiffness matrix has a rank deficiency. Critical points must 
be differentiated into limit and bifurcation points. For conservative systems, i.e. 
the stiffness matrix is symmetric, Spence & Jepson (1985) proposed the 
following relationships (167) for distinguishing critical points. Dutta & White 
(1997) and formerly Bažant (1989) showed that the criteria for non-conservative 
systems (asymmetric stiffness matrix) reduce to the criteria for conservative 
systems. 

 

€ 

a.     K⋅ z = 0↔ zT ⋅ K = 0
b.     zT ⋅ K⋅ du = zT ⋅ Q failure

a ⋅ dλ = 0  (167)  

€ 

Q failure
a  refers to the active external load at the instant of encountering a critical 

point. Two different cases can be distinguished: 

 

€ 

a.      zT ⋅ Q failure
a ≠ 0

b.      zT ⋅ Q failure
a = 0

 (168)  

In case (168a) the load increment must be zero, i.e. the active load cannot be 
increased further. This is a limit point. Case (168b) detects a bifurcation point 
characterised by abrupt transmission of one deformation mode to another. 
Practically, the critical points will not be encountered exactly. Limit and 
bifurcation points are distinguished by the incremental work. In case of a limit 
point, the incremental work always changes its sign while it does not for 
bifurcation points (Dutta & White 1997). 

 

6.4.4.2 Static failure modes and factor of safety 

Static failure modes are associated with differential movability of the block under 
its constraints. They relate to a slow change of boundary conditions such that 
dynamic effects do not play a role. The differential movability is determined by 
the null space of the stiffness matrix at a limit point. The rank of the null space 
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defines the number of static failure modes. The motion will be forced in direction 
of the active resultant. Expression (169) shows the determination of the static 
failure modes related to each of the rows of the null space. 

 

€ 

q f ,static = z⋅ sign zT ⋅ Qa( ) (169)  

Tonon (2007b) found that the factor of safety of the block is equal to the stage 
control parameter λstage at the last converged increment. Traditionally, the factor 
of safety is the ratio between resisting forces (constrained forces) and driving 
forces (active forces) in direction of motion at limit equilibrium (170).  

 

€ 

FoS =
q f ,static
T ⋅ Qc

q f ,static
T ⋅ Qa  (170)  

From expression (122) we can defer for an equilibrium point that Qc = -λstage
.Qa. 

Thus, expression (170) can be rearranged to (171). The factor of safety is 
implicitly given by the stage control parameter corresponding to the first limit 
point encountered along the equilibrium path. It always corresponds to the failure 
mode defined by expression (169). No shear strength reduction method has to be 
applied for determining the block’s factor of safety. Shear strength reduction 
method will result in a different failure mode than the one which is actual critical, 
e.g. sliding instead of rotation, as intensively discussed by Tonon (2007b). 

 

€ 

FoS =
q f ,static
T ⋅ λstage ⋅ Q

a

q f ,static
T ⋅ Qa

= λstage  (171)  

 

6.4.4.3 Dynamic failure modes 

Dynamic failure modes are associated with the incipient motion of the block 
under its constraints considering a sudden removal of constraints or change of 
boundary conditions (Tonon 2007b). They account for dynamic effects involved 
with inertia assuming the constraints to be rigid regardless of the constitutive 
model applied when determining the equilibrium path. The determination of the 
dynamic failure mode includes the following steps: 

• Determination of the contact points 
• Determination of kinematic constraints 
• Determination of the incipient motion 
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6.4.4.3.1 Determination of points in contact 

Forces are only transferred to the block if it is in contact with the rock mass. This 
is checked at the contact points. The dynamic motion at failure is governed by 
the active contact points at the last converged increment. The unconstrained 
motion of the block is used to determine those contact points from the active 
ones at which a kinematic constraint has to be applied. Expression (172) 
determines the acceleration of the block from rest (incipient unconstrained 
motion), i.e. velocities are also zero. The vector of accelerations must therefore 
be the same as vector of the incipient displacements. 

 

€ 

˙ ̇ r (1)

˙ ω (2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

m 0
0 J(2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−1

⋅
Ffailure

a(1)

Mfailure
a(2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (172)  

Active contact points have to be kinematically constrained if the unconstrained 
motion at the contact point is directed into the constraint space (173). 

 

€ 

ni
T ⋅ ˙ ̇ r (1) + A (12)⋅ ˙ ω (2)* ⋅ s(2)[ ] < 0  (173)  

 

6.4.4.3.2 Determination of kinematic constraints 

Points in contact with the constraint space can have two different statuses defined 
by joint properties and stress condition. They can be on the yield surface of the 
joint constitutive model. The contact point is considered to be sheared. A sheared 
contact point is able to move only parallel to the joint surface. The kinematic 
constrained can be introduced by the algebraic equations developed in the 
previous chapter. Since it has to maintain contact throughout the incipient 
motion, it constrains motion only in one direction. One algebraic equation (174) 
is sufficient. 

 

€ 

Θd2 ni,di( ) = 0 (174)  

ni is the normal vector of joint plane containing the ith contact point. di is the 
displacement vector of the ith contact point defined by expression (175). The 
index 1 refers to the position at failure before the start of dynamic motion; the 
index disp refers to a position an infinitesimal small time increment later. 

 

€ 

di = rdisp
(1) +A (1,disp)⋅ si

(disp) − r1
(1) − si

(1) (175)  

Note that this criterion maintains contact of a contact point. Rotation about the 
contact point is admitted.  
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If the contact point lies within the yield surface of the joint constitutive law, it is 
fixed in space with rotation allowed. It requires three algebraic equations  

 

€ 

Θs rdisp,r1,si( ) = 0  (176)  

 

6.4.4.3.3 Determination of incipient motion 

The equations of motion of a constrained body in Newton-Euler formalism (177) 
are used to determine the incipient motion of the block. Newton-Euler formalism 
is possible since time integration is not necessary. The dynamic failure mode is 
related to the block accelerations  and . Reaction forces in the contact points 
are obtained from the Lagrange multipliers λ  following expressions (116) and 
(117). The system (177) is linear in the generalised coordinates , , and λ . 

 

€ 

m 0 Θr
T

0 J(2) Θπ
(2)T

Θr Θπ
(2) 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⋅

˙ ̇ r (1)

˙ ω (2)

λ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

Ffailure
a(1)

Mfailure
a(2)

γ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 (177)  

 

6.4.4.4 Bifurcation 

At bifurcation points two or more equilibrium paths cross. The rank of the null 
space defines the number of equilibrium path branches. These branches are 
related to motion orthogonal to the original path towards the infinitesimal 
movability of the null space. Bifurcation points cannot be traversed with the 
methods described above but require further measures. A simple method for 
avoiding motion towards the bifurcation paths is the application of perturbation 
springs oriented in the null space. The stiffness of these springs shall be added to 
the original stiffness matrix. This stabilises the block in these directions and 
allows following the original equilibrium path (Felippa 1987). Bifurcation of 
mechanical systems is a complex topic and still a field of active research (e.g. 
Mühlhaus et al. 2001, Ikeda & Murota 2010, Sulem 2010). No further details are 
discussed in this work. 

In structural analysis bifurcation points are related to buckling of structural 
elements. Tonon (2007b) observes bifurcation points when analysing the 
equilibrium path of blocks subjected to corner rotation and slumping. 
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6.4.4.5 Stability of the equilibrium path 

The equilibrium path consists of a set of discrete equilibrium points. Critical 
points along the equilibrium path have already been discussed. Nothing has been 
said about the stability of equilibrium determined while marching along the 
equilibrium path. Equilibrium can be stable, indifferent, or unstable. In 
conservative systems the equilibrium path is always stable (principle of the 
minimum potential energy).  

Stability can be characterised by analysing the dynamic behaviour of a block 
subjected to a small perturbation of its equilibrium position. The equations of 
motion of an unforced block are used to describe the problem. Damping is 
neglected. The analysis refers to the local surrounding of the equilibrium point 
but does not consider global stability. Expression (178) shows the equations of 
motion of the undamped and unforced block. 

 

€ 

M⋅ ˙ ̇ q + K⋅ q = 0  with M =
m 0
0 J(2)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (178)  

Using the eigenmode expansion of the state vector 

€ 

q = z i ⋅ e
pi ⋅t

i
∑  one can defer 

the generalised asymmetric eigenproblem: 

 

€ 

K + pi
2 ⋅M( )⋅ z i = 0 (179)  

i refers to the dimension of the state vector (degrees of freedom). pi are the 
characteristic exponents and also the square roots of the negative eigenvalues. zi 
are the corresponding eigenvectors or characteristic modes.  

The eigenvalues pi
2 can take two different cases due to the properties of the 

involved stiffness and mass matrices – K is asymmetric and M is symmetric and 
positive definite. They can be either real or complex (Felippa 1987). 

Case 1: pi
2 real negative 

If all eigenvalues are real negative and distinct, the corresponding characteristic 
values are imaginary numbers and allow transforming the solution to a harmonic 
oscillation (180). The motion is bounded and oscillates about the equilibrium 
point (Figure 90 left). In case of damping and especially with conservative 
systems, the motion converges to the static equilibrium point. The equilibrium 
can be considered as dynamically stable. 
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€ 

q = z i ⋅ C1,i ⋅ cos ω i ⋅ t( ) +C2,i ⋅ sin ω i ⋅ t( ) [ ]
i
∑      

with ω i = imag pi( )
 (180)  

Case 2: pi
2 real positive 

If one eigenvalue is real positive, the corresponding characteristic values are real 
numbers. The negative characteristic value gives rise to an exponentially 
vanishing motion while the positive one is related to an aperiodic exponentially 
growing motion. The latter one overwhelms the former one for a sufficiently 
large time t. The equilibrium is dynamically unstable and the block has to be 
considered as failed by divergence (Figure 90 middle). 

 

€ 

q = z i ⋅ e
i
∑

pi ⋅t  (181)  

Case 3: pi
2 complex 

The stiffness and mass matrix are both real matrices. Complex eigenvalues thus 
appear only in conjugate pairs. The square root of a complex number in general 
is also a complex number. Expression (182) shows the square of a complex 
number. 

 

€ 

a + b⋅ i( )2 = a2 − b2( ) + 2⋅ a⋅ b⋅ i  (182)  

The characteristic values thus take positive and negative values for both the real 
part and the imaginary part of the complex number. The imaginary part is related 
to harmonic oscillation no matter of its sign. The real part is related to 
exponential growth which at final dominates the other motion components. The 
motion in this case is a periodic exponentially growing motion. The equilibrium 
is dynamically unstable and the block has to be considered as failed by flutter 
(Figure 90 right).  

 

€ 

q = z i ⋅ e
ai ⋅t +C1,i ⋅ cos bi ⋅ t( ) +C2,i ⋅ sin bi ⋅ t( ) [ ]

i
∑   (183)  

Since the characteristic values appear in conjugate pairs and these pairs define 
the motion, the block moves from one corresponding mode to the other. In 
consequence, it is necessary to have a coalescence of at least two natural 
frequencies for flutter instability.  

Tonon (2007b) reports flutter instability of a block subjected to hydrostatic and 
hydrodynamic water pressures considered as follower forces. This can typically 
appear in case of a scour event.  
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Figure 90:  Schematic behaviour of the local dynamic behaviour of an 
equilibrium point (after Felippa 1987). Left: Harmonic oscillation 
(stable). Middle: Divergence (unstable). Right: Flutter (unstable). 

 

6.5 Illustrative example 

This example investigates the behaviour of a rock block in the crown of a cavern. 
Previous investigations with this example included block theory analyses and 
numerical analyses with the three-dimensional distinct element code. These 
analyses have been carried out by Hein-Stumpp (2009) and presented by Preh et 
al. (2009). The following analysis is based on the block theory analysis and 
highlights the application of the presented continuation method to identify the 
correct mode of failure and factor of safety.  

 

6.5.1 Description of the situation 

The cavern has length of 100 m and a width of 30 m. Only blocks in the crown 
are considered, thus the cavern’s height is not relevant. Possible blocks in the 
sidewalls and intersections are not taken into account in this example. Figure 91 
shows a plan view of the cavern.  

The cavern is located in a jointed rock mass with four joint sets with different 
orientations. The joints are regularly spaced at 5 m and 6 m, respectively. The 
joints obey a Mohr-Coulomb sliding criterion. Table 22 outlines the discontinuity 
parameters. 

The rock density is 2700 kg/m3. The normal and shear stiffness for joints in 
contact is constant at 1000 MPa/m each. Joint dilation and initial rock mass 
stresses are not considered.  
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Figure 91: Plan view of the cavern (from Preh et al. 2009) 

 

Table 22: Overview of the discontinuity parameters 

 

 

6.5.2 Removable blocks, kinematics and stability 
according to block theory 

Figure 92 shows the great circles of joints 1 to 4 and the free face f1. It shows the 
entire sphere in an equal angle stereographic projection with upper focal point. 
The great circle of f1 coincides with the equator of the sphere; the excavation 
pyramid is the upper hemisphere. The space pyramid is the lower hemisphere. 

Three four-joint joint pyramids which plot entirely in the space pyramid have 
been encountered. The joint pyramids correspond to the codes JP 1111, JP 1101, 
and JP 1011. The blocks corresponding to these joint pyramids are kinematically 
removable. Two more removable blocks which are not drawn, are present. They 
correspond to the three-joint blocks JP 1121 and JP 1211.  
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Figure 92: Stereographic projection of joints and the free face. Three removable 
blocks corresponding to JP 1111, JP 1101, and JP 1011 have been 
encountered. Their modes of failure under self weight F comprise 
falling (M0), sliding on intersection 23 (M23), and sliding on joints 2 
(M2), respectively. 
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Figure 93: Plan view of the removable four-joint blocks (from Preh et al. 2009) 

 

The only active force is self weight F. It plots in the centre of the stereographic 
projection. Under this load JP 1111 exhibits a falling mode (M0), JP 1101 slides 
along the intersection between joint 2 and 3 (M23), and JP 1011 slides on plane 2 
(M2). Both three-joint blocks exhibit also a falling mode.  

Figure 93 shows the three encountered four-joint blocks in a plan view. The 
blocks are maximised in accordance to the joint set spacings and the geometry of 
the cavern. Table 23 shows the factors of safety for the three four-joint blocks for 
each mode of failure. According to its falling mode JP 1111 has a factor of safety 
of zero. This is only true when joint dilation and initial rock mass stresses are 
neglected. JP 1011 exhibits a sliding mode on joint 2. Sliding equilibrium can 
almost be achieved – the factor of safety is 0.97. JP 1101 exhibits a sliding mode 
on intersection 23. It is stable with a factor of safety of 5.38. 

 

Table 23:  Failure modes and factor of safety for the four-joint blocks (Preh et 
al. 2009) 
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6.5.3 Single block analysis 

According to block theory JP 1011 exhibits a sliding mode on plane 2. It 
inherently assumes that only translations take place. When examining the block 
geometry this assumption is questionable for this block. Figure 94 shows that 
only a minor part of the joints, joint plane 2, stays in contact. Due to its distance 
from the block’s centre rotational displacements are suspected.  

 

6.5.3.1 Block description 

 

Figure 94: Perspective view of block JP 1011. 

 

Figure 94 shows block 1011 in a perspective view with annotations of planes and 
corners. It is bounded by five planes and has six vertices, four of them at the free 
face. Table 24 summarises the data of the planes while Table 25 shows the vertex 
coordinates of the block. Table 26 summarises the geometric and inertia 
properties of the block. 
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Table 24: Plane orientations and locations of block 1011 

 

 

Table 25: Vertex coordinates of block 1011 

 

 

Table 26: Geometric and inertia properties of block 1011 
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6.5.3.2 Kinematic analysis 

The kinematic analysis includes the translational and rotational analysis. The 
translational analysis has already been done in the previous section 6.5.2. The 
block is removable. This section completes the kinematic analysis with the 
rotational aspect. 

Figure 95 shows the stereographic projection of the great circles of limit planes 
for rotation about vertex C2. A thorough inspection of the figure, or more easily, 
the vector computation of section 5.3.2.2 reveals that the intersection of limit 
plane halfspaces is empty. Thus, the rotation space for corner C2 is empty. It can 
be proved that the rotation space is empty for all block corners at the free face 
such as C2, C4, C5, and C6. As a consequence, the block is not corner rotatable 
and not edge rotatable. 

In contrast to pure rotation the analysis for remote axis rotation reveals kinematic 
movability. This is obvious since the block is removable. Four remote axes 
leading to kinematically feasible displacements have been encountered with the 
method introduced in section 5.3.3.2. Table 27 shows the data of the obtained 
axes. Figure 96 highlights the axes in context with the block in a perspective 
view. The block is also shown in the according displaced position.  

 

Table 27: Position and orientation for four encountered remote axes leading to 
kinematically feasible block displacements (1011). 

 

 

Block 1011 is removable and can displace about remote axes. The sliding mode 
obtained by block theory may not be the critical mode of failure, since block 
theory cannot treat this kind of rotational mode.  
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Figure 95: Stereographic projection of the joint pyramid, limit planes and 
rotations space of block 1011 for rotation about vertex C2. 
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Figure 96: Perspective views of the original and displaced block position due to 
remote axis rotation about the four encountered axes. Data from 
Table 27. Displacements are exceeded. 

 

6.5.3.3 Stability analysis 

A stability analysis has been performed using the continuation method. The 
surface of the block has been discretised with 374 discrete discontinuity points at 
which contact and joint laws are calculated. The analysis has been structured into 
two stages.  

• First stage: Calculation for initial condition. 
The parameters have been selected as described above. The free face has 
also been constrained in order to prevent from large motion into the free 
space. Self weight has been successively applied proportionally to the 
stage control parameter λstage. 
 

• Second stage: Calculation for failure. 
The constraints at the free face have been removed. Equivalent reaction 
forces have been decreased proportionally to the stage control parameter 
λstage. Due to block detachment the control parameter increments have 
been small (0.001). 

In the following paragraphs only the second stage is considered. 

Figure 97 shows the equilibrium paths for block 1011 subjected to self weight in 
stage 2. On the upper left the equilibrium path is plotted against the block 
stiffness in percent, i.e. how much stiffness the block looses during the 
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displacement. The right diagram shows the equilibrium path against the vertical 
displacement of the centre of gravity, the lower left diagram against the rotation 
about the x-axis. The displacement and rotation values are small, though one can 
derive the behaviour. The equilibrium path follows a nearly linear response up to 
a stage control parameter of 0.6 (stiffness) or almost 0.7 (displacements). 
Rotations already start at a value of about 0.3. After the linear behaviour the 
equilibrium paths show a sudden change of behaviour. This indicates a rapid 
increase of motion and a sudden failure. At a stage control parameter of 0.7 the 
stiffness matrix becomes singular indicating failure of the system. 

 

 

Figure 97:  Equilibrium paths of block 1011 in stage 2. Stage control parameter 
vs block stiffness (upper left), vertical displacement (right), and 
rotation about the x-axis (lower left) 

 

Figure 98 show perspective sketches of the block 1011 at discrete values of the 
stage control parameter when approaching failure. Green areas indicate contact 
with an elastic shear response while red areas indicate the contact at the yield 
surface (Mohr-Coulomb joint law). White areas indicate block detachment.  
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At the left top there is the configuration at the beginning of the stage 2 with the 
entire joints in contact. It follows an almost linear response up to λstage of about 
0.6. From this point detaching and shearing of the contacts take place rapidly. 
The block rotates towards corners C3 and C4 and at the same time it supports at 
joint 4. It moves away from C2 and the adjacent joint 4. Close to failure the 
support at joint 1 moves back from C3 to C2 and also keeps contact at joint 2. 
Failure takes place at λstage of 0.7 at which the stiffness matrix becomes singular. 
Only few sheared contacts are left which provides infinitesimal movability. 

The factor of safety of the block is equal to λstage at failure of 0.7. The identified 
static failure mode is sliding along intersection of joints 1 and 2 [-0.4967, 
-0.4244,-0.7571,0,0,0]T. This factor of safety and failure mode is different from 
the one indentified with block theory (sliding on plane 2, FoS 0.97). The static 
failure mode refers to a behaviour when constraints are removed very slowly. 
The static failure mode of the block is indicated at the right bottom sketch in 
Figure 98. 

For a sudden removal of the constraints the dynamic failure mode is relevant. It 
considers dynamic effects in the instant of failure when removing the horizontal 
constraint plane after stage 1. The dynamic failure mode is a simultaneous 
translation and rotation. The vertical downward displacement dominates.  
[-0.3014,-0.1536,-2.6689,0.0478,-0.0184,-0.0022]T (m/s, rad/s). 

Figure 99 shows two different perspectives of the motion of the block after 
failure. It includes a time interval of two seconds and shows the block positions 
every 0.2 seconds. After failure sliding on edge 2-5 takes place with 
simultaneous rotation about this edge. A simultaneous x-rotation is also 
connected to the motion. 
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Figure 98:  Perspective view of the block and contact status when approaching 
failure. The sketches are related to a discrete stage control parameter. 
Green areas indicate contact with elastic shear response, red areas 
indicate contact at the yield surface, and white areas indicate no 
contact. 
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Figure 99:  Two perspective views of the sequence of block positions two 
seconds after failure in 0.2 sec increments.  
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7 Conclusion 
This dissertation deals with the analysis of rock blocks and their associated 
failure mechanisms. It follows a hierarchical procedure including the acquisition 
of required field data, the determination of the mechanical behaviour of joints, 
the determination of block geometries and related properties, the analysis of 
block kinematics, and the analysis of the dynamic behaviour and the stability of 
rock blocks.  

Image based remote sensing technologies recently emerged in the field of 
engineering geology and rock mechanics. The three-dimensional image based 
measurement system ShapeMetriX3D was applied for gathering geometric 
information on rock joints in the field (either at slopes or underground 
excavations). Based on practically feasible field procedures this technology was 
integrated in the procedure for rock block analysis. The obtained data among 
others included the geometry of the rock structure and the geometry of the joint 
system including the position, orientation, and the size of joints at the surface. 
The synthesis of the data led to a network of joint traces on the excavation 
surface. 

The trace network was the basis for an algorithmic search for defined volumes of 
rock, so called finite blocks. Finite blocks were found by analysing the trace 
network for closed polygons and testing the joint system bounding the polygon 
for finiteness relative to the polygon surface. Existing algorithms from 
computational geometry and rock mechanics were applied and, where necessary, 
extended to enable the intended application. Once finite blocks had been 
identified, their geometric and inertia properties were calculated. 

The identified finite blocks were subsequently analysed with respect to their 
movability from the rock mass towards the free space. The theory of kinematics 
of a rigid body was discussed and applied for rock blocks. Methods for the 
kinematic analysis of a finite block were reviewed. The concept of the kinematic 
analysis after block theory for translations was outlined while a new method 
based on the same concept was introduced for pure block rotations. A numerical 
method for analysing the movability of a block about a remote axis was also 
introduced. Several examples outlined the application of the newly introduced 
methods. 

The contact between the rock block and the adjacent rock mass is the rock joint. 
One chapter is dedicated to the mechanical behaviour of rock joints in order to 
quantify the interaction between block and rock mass. Approaches to quantify 
the behaviour of rock joints were reviewed. Focussing on rough unfilled rock 
joints the typical stages and related behaviours during joint displacement were 
discussed. The drawn conclusions formed the basis for establishing a constitutive 
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model for rock joints under shear and normal loading with confined boundary 
conditions and degrading rock joint roughness. Typical responses of the 
constitutive model to varying input parameters were addressed in a parametric 
study. 

Judging the stability of a rock block is the prime interest of a rock mechanics 
analysis. Traditional approaches had predominantly focussed on limit 
equilibrium methods. Within this work a framework for the mechanical analysis 
of a rock block based on the equations of motion of a constrained rigid body was 
developed. Suitable numerical methods for solving the dynamic and static 
equations were discussed and peculiarities of their application outlined. The 
proposed stability analysis followed the concept of the single block analysis, a 
recently introduced numerical method for analysing critical states of rock blocks. 
The concept of the single block analysis was adjusted to fit into the framework of 
the previously established dynamic environment. Several typical load cases were 
also described. The steps of the method were highlighted in an illustrative 
example of a rock block in the crown of a cavern. 

The work required the synthesis of methods from different disciplines including 
engineering geology, digital photogrammetry, computer vision, digital image 
processing (all three were basically used in the imaging system ShapeMetriX3D), 
computational geometry, numerical analysis, laboratory testing, general 
mechanics, and finally rock mechanics. The aim was to inform solutions with 
analytic approaches. It became obvious that for many of the mechanical 
problems only numerical methods would provide consistent solutions. 

The proposed method for rock block analysis integrates 3D imaging as a new 
technology into a method for rock mechanics taking advantage of advances in 
other non-geoscience related disciplines, and increased computational power and 
imaging capabilities. The primary result, the 3D image, represents a new quality 
standard in data acquisition, documentation, and presentation allowing for an 
enhanced number of measurements. This improvement in data acquisition called 
also for new methods in the subsequent processing and analysis of the data. The 
enhanced general solutions for traditional but limited approaches, for instance for 
treatment of arbitrary block geometries, arbitrary block motion, etc, eased the 
algorithmic analysis of arbitrary joint systems.  

The methods for the kinematic analysis provide information on the movability of 
rock blocks only with geometric data. They are computationally efficient, thus 
results are obtained quickly. Movable blocks are distinguished from constrained 
or tapered blocks for all possible displacements. The presented static and 
dynamic methods are capable of describing any feasible motion and related 
failure mode. There are no feasible limits with respect to block geometry and 
load cases. With modern computer equipment results are also available within a 
short time. The consistent approach provides insights into the behaviour of a 
block on its way to equilibrium or failure. Post-failure analysis is also possible. 
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Since the identified failure mode is not limited to strict assumptions or 
simplifications, the methods help to avoid unconservative or wrong design of 
excavation and support. 

The author recommends further research in identifying unstable united blocks 
(blocks composed of several single blocks) from trace networks, implementing 
robustly a sophisticated joint constitutive model together with modelling dilation 
and initial rock stresses, implementing support elements such as pre-tensioned 
cable anchors, grouted rock bolts, and shotcrete, and implementing additionally 
time-dependent loads (seismicity, blasts, vibrations) in the dynamic analysis. For 
calculating initial stress fields the integration of the boundary element method 
seems to be reasonable. 
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