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Abstract

Although brain-computer interfaces (BCIs) become more and more sophisticated
these days, low reliability and performance are still issues that have not yet been
completely solved. Recently, researchers tended to apply hybrid BCI technology
to increase the performance of BCIs. In hybrid BCIs (hBCIs), BCI channels are
combined with other channels which can be additional BCI channels or signals
from different sources. In an hBCI, the BCI does no longer have to function as a
stand-alone application but can be supported by other signals.

The aim of this thesis was to develop and evaluate applications that are based on
hBCI technology. A first goal was to develop a monitoring system that can be used
to determine the quality of input signals. If signals are combined in an hBCI system,
it is useful to know how well a given signal is suited to control an application.
Quality ratings of two input signals, one of which BCI, were successfully used
to switch between input signals. These quality ratings were based on individual
characteristics of the input signals, such as instabilities or lack of activity, and were
used to assess the likelihood of each input signal to be suitable as a control signal.

Special interest was focused on the detection of error potentials (ErrPs) during BCI
applications. Detecting errors in a BCI can be one way to increase its performance.
This procedure can also be considered as a type of hBCI. ErrPs have already been
successfully detected in BCIs with discrete feedback. One important aim of this
thesis was to use error detection in continuous BCI applications. These continuous
applications are especially important for functional assistive devices, for example
neuroprostheses or wheelchairs.

The main strategy for successful detection of errors in continuous feedback was to
provide additional discrete feedback of correct or erroneous actions. Moreover, a
combination of multiple events instead of single trials proved to result in signifi-
cantly higher detection rates of erroneous events compared to single trial analysis.
This novel method, termed “multiple events method”, offers new possibilities for
error detection in applications for which this was not feasible up to now.

Another important point was the individualized design of BCIs for end-users. The
thesis provides two examples that were designed specifically around the end-users’
abilities. In one example BCI was used as an optional signal, whereas in another
one BCI was the main control signal but was supported by other signals. hBCI
principles were applied in both examples.
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Kurzfassung

Gehirn-Computer-Schnittstellen (Brain-Computer Interfaces, BCIs) haben sich in
den letzten Jahren ständig weiterentwickelt. Dennoch sind eine nicht hundert-
prozentige Verlässlichkeit und suboptimale Performance noch immer Probleme, die
bisher nicht vollständig gelöst werden konnten. In letzter Zeit haben sich besonders
hybride BCIs (hBCIs) immer mehr etabliert, deren Ziel es ist, die Funktionalität
von BCIs zu verbessern. In einem hBCI werden BCI-Kanäle mit anderen Kanälen
kombiniert. Diese Kanäle können andere BCI-Kanäle sein, aber auch Signale, die
von anderen Quellen stammen. Das Besondere an hBCIs ist, dass das BCI nun
nicht mehr als alleinstehendes System operieren muss, sondern durch die anderen
Kanäle unterstützt werden kann.

Das Ziel dieser Dissertation ist es, funktionelle hBCI-Applikationen zu entwickeln
und zu evaluieren. In einem ersten Schritt ging es darum, einen Weg zu finden, wie
man die Qualität von beteiligten Kanälen in einem hBCI bewerten kann. Werden
zum Beispiel mehrere Kanäle abwechselnd für die Steuerung einer Applikation
verwendet, ist es sehr nützlich, wenn man jederzeit weiß, wie gut das aktuelle
Steuersignal gerade geeignet ist, um die Applikation zu steuern. Es konnte erfol-
greich ein hBCI-System vorgestellt werden, das in der Lage war, zwischen zwei
Steuersignalen hin- und herzuschalten, je nach aktuellen Qualitätsbewertungen.

Besonderes Interesse galt der Verwendung von Fehlerpotentialen (Error Potentials,
ErrPs) in BCI-Applikationen. Auch die Inkludierung dieser Potentiale kann als hBCI
bezeichnet werden, da eine zusätzliche Informationsquelle eingebunden wird, die
die Performance der Applikation erhöhen kann. Genauer gesagt kann man durch
die Erkennung von Fehlern selbige entweder ausbessern oder rückgängig machen.
ErrPs wurden bereits erfolgreich in BCI-Applikationen mit diskretem Feedback
detektiert. Allerdings geht der Trend immer mehr in Richtung kontinuierlicher
Applikationen. Beispiele für solche Applikationen sind Rollstühle oder Neuro-
prothesen, die sehr wichtige Hilfsmittel für Personen, die für die Verwendung
von BCIs in Frage kommen, darstellen können. Daher widmet sich ein großer
Teil dieser Dissertation der Detektion von ErrPs in eben solchen kontinuierlichen
BCI-Applikationen.

Die Hauptstrategie, um Fehler in kontinuierlichen Applikationen detektieren
zu können, war die Verwendung von zusätzlichem diskreten Feedback. Außer-
dem wurde eine neue Methode entwickelt, bei der nicht mehr nur einzelne
Ereignisse klassifiziert wurden, sondern eine Serie von Ereignissen. Damit konnte
die Klassifikationsgenauigkeit von fehlerhaften Vorgängen signifikant erhöht wer-
den. Diese neue Methode, die sogenannte “Multiple Events Method”, bietet neue
Möglichkeiten, in Zukunft Fehler auch in kontinuierlichen BCI-Applikationen zu
detektieren, bei denen dies bisher nicht praktikabel war.
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Kurzfassung

Ein weiterer wichtiger Punkt dieser Dissertation behandelt das individualisierte
Design von BCIs für Endanwender. Es hat sich gezeigt, dass BCIs speziell an die
Bedürfnisse und Fähigkeiten von diesen Anwendern angepasst werden müssen.
Es werden zwei verschiedene Strategien behandelt, die BCI sowohl als Hauptsteu-
erungssignal als auch als Untertützungssignal verwenden. Beide Applikationen
basieren auf der Verwendung von hBCI-Technologie.
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1. Introduction

This thesis summarizes work dedicated to improving continuous motor imagery
(MI)-controlled brain-computer interfaces (BCIs) with hybrid BCI technology. A
main focus lies on automated error detection during functional BCIs. The first chap-
ter gives an overview of BCI in general, the hybrid BCI approach, the integration of
error detection into BCIs, and the neuroprosthesis as an application for spinal cord
injured end-users. Chapter 2 introduces publications written during the course
of the thesis. Chapter 3 discusses how much progress the different publications
achieved in advancing towards the initial goal.

1.1. Brain-Computer Interface (BCI)

For people with severe disabilities caused by the effects of diseases, such as strokes,
or traumatic events, it can be very difficult or even impossible to interact with
their environment due to constrained motor functions. Which motor functions are
restricted in particular can vary considerably and depends on the area affected by
stroke, the height of a lesion caused by a spinal cord injury (SCI), or the progression
of a disease such as amyotrophic lateral sclerosis (ALS). As long as there are some
residual motor functions left, these can be supported by a variety of assistive
devices [29, 119]. However, the more motor functions are lost, the smaller the range
of suitable assistive technology becomes.

In the worst case without any motor functions available, only assistive devices
remain that do not require any muscular activity at all. These devices have to rely
on detecting mental activity and are therefore called brain-computer interfaces
(BCIs). A BCI offers potential end-users with severe disabilities additional means of
non-muscular communication or control channels [47, 73, 74, 90, 101, 155]. Lately,
the field of application for BCIs also includes healthy users as a target group.
Here, BCIs can be used to improve or enhance neuromuscular performances, for
example by increasing attention in difficult tasks. Another category involves the
use of BCIs in games or in other recreational applications [14]. BCIs have first been
mentioned in literature in the seventies [149]. Since then, the number of research
labs working with BCIs has been growing constantly. BCIs generally translate
physiological processes inside the brain that are caused by intentional or reactive
mental activity into control commands. Mental activity can, for example, affect the
firing of neurons and the variations in blood flow. These physiologic changes can
be detected with appropriate sensors.

A BCI is a closed loop system. Cognitive processes, intentional or attention-based
reactions, of the user are acquired, processed, and translated into control commands.

1



1. Introduction

These commands are then used to operate a wide range of different applications.
These applications deliver feedback which, in turn, can influence further behavior
of the user. By closing the loop this way, the user can adapt to the BCI system,
whereas machine learning algorithms allow the system to adapt to the user. The
concept of a BCI is visualized in Figure 1.1.

BCI

Signal Processing

Preprocessing Classification
Feature

Extraction

Signal
Acquisition

Application
Interface

Applications
Computer
Spelling Device
Neuroprosthesis
...

Feedback

Closed
Loop

Figure 1.1.: Basic scheme of a BCI. Brain signals from the user are acquired and processed to
determine the user’s intention. Via an application interface commands are delivered to
the application which provides feedback to the user, thereby closing the loop.

BCIs can be designed in many different forms, depending on the combination of
characteristics that altogether amount to the BCI system of choice. These charac-
teristics include: (1) the type of the brain signal; (2) the way the selected signal is
recorded; (3) the experimental strategy; (4) the mode of operation which can be
synchronous or asynchronous; (5) the type of feedback; and (6) the way the signals
are processed, Figure 1.2. These characteristics are explained in more detail in the
following sections.

1.1.1. Type of Brain Signal and Recording

The decision on which type of brain signal to acquire is usually predetermined
by the available equipment. Brain activity affects processes in the brain on many
different levels: neurons fire differently in particular situations and blood flow and
oxygen saturation changes in active areas. Most common for BCIs is the use of
electrical signals since these facilitate a direct measurement of neuronal activity
and have a high time resolution. Electrical signals are generated by excitatory
postsynaptic potentials (EPSPs) that trigger action potentials of neurons. The
electrical activity can be measured with electrodes. Summed potentials on the scalp

2



1. Introduction

synchronous/asynchronous

continuous/discrete

1D, 2D, 3D...
realistic/abstract

feature extraction,

electrical signals
blood flow/oxygen level. . .

noninvasive/invasive

motor imagery (MI)

classification

event-related potentials (ERP)

Signal
Recording

Experimental
Strategy

Mode of
Operation

Type of
Feedback

Signal
Processing

Type of
Brain Signal

BCI

EEG, fMRI, MEG. . .

Figure 1.2.: Characteristics of a BCI.

of the subjects are measured with an electroencephalogram (EEG) and directly on
the cortex with an electrocorticogram (ECoG), e.g. [78, 125]. Electrical signals of
single neurons or clusters of neurons can be measured deep inside the brain with
multi- or single-unit electrodes [55, 84]. Here, the sensors can measure single action
potentials instead of summed potentials.

EEG is a noninvasive technique, whereas ECoG and electrodes inside the cortex
require invasive procedures. In noninvasive BCIs electrodes can be placed on the
head without any physical harm to the patient. Invasive BCIs require penetration
of the skull and, for multi- or single-unit electrodes, also of the cortex itself. The
benefit of these invasive techniques is, however, a higher signal-to-noise ratio (SNR).
Electrodes can be placed in close proximity to the source of the signal which is
otherwise heavily deteriorated by passing through tissue. However, in spite of
this disadvantage, noninvasive techniques offer the only possibility for potential
end-users to benefit from BCIs without the need to undergo surgical procedures.
EEG-based BCIs can be used at home without professional assistance, e.g. [57, 138],
and EEG recording equipment is affordable for private citizens. In the near future,
home-use might no longer be limited to noninvasive BCIs: an ongoing clinical trial
aims to test an ECoG-based BCI system that can be used by locked-in patients at
home (http://clinicaltrials.gov/show/NCT02224469).

Electrical activity inherently leads to fluctuations of magnetic fields as well. These
can be measured by the magnetoencephalogram (MEG), e.g. [86]. Another way to
measure neuronal activity is based on indirect measures. Active areas require more
oxygen and the resulting hemodynamic response can be measured with methods
such as functional near infrared spectroscopy (fNIRS) [7, 60] or functional magnetic
resonance imaging (fMRI) [140, 154]. The drawback of these methods is a low
temporal resolution and, in case of NIRS, the limited penetration depth of infrared
light as light is already heavily attenuated by passing through the skull before
reaching the cortex regions of interest.

3
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1. Introduction

This thesis focuses exclusively on BCIs based on electrical activity recorded with
EEG.

1.1.2. Experimental Strategy

Pfurtscheller et al. [108] declared that a BCI has to meet the following four criteria:
1) activity must be recorded directly from the brain; 2) at least one brain signal
that can be modulated intentionally must be used as an input to the BCI; 3) the
signal processing must be real time; 4) some type of feedback is mandatory. The
brain signals of a BCI user that can be modulated intentionally can stem from
different brain resources and require different approaches. This section provides a
few examples.

For one, a BCI can be based on oscillations in the brain, for example on oscillations
in the sensorimotor cortex. The band power of these oscillations varies when a
person is performing movement but also when the movement is only imagined
(motor imagery, MI [110, 114]). Areas of the sensorimotor cortex are associated with
specific body parts. Hence, it is known where to measure oscillations related to, e.g.
hand, feet, or tongue movements. More specifically, band power in the µ-frequency
band (8–12 Hz) and partially in the β-band (13–30 Hz) decreases during execution
and imagination of movements in relation to the band power in a reference interval
before the onset of the execution/imagination. This process is termed event-related
desynchronization (ERD) [111, 113]. This decrease of power is followed by an
increase of band power mainly in the β-band after termination of the movement
or imagination. This effect is called event-related synchronization (ERS) or post-
movement β-synchronization (β-rebound) [116]. Band power in the µ-band was
also shown to increase after movement in the same area and during movement in
surrounding areas, e.g. in the area representing hand movement during tongue
or foot MI [109]. ERD and ERS patterns were also successfully measured in MEG
data [65]. Oscillations can not only be manipulated by imagination of movement
but also by other more or less complicated tasks. Tasks that were shown to be
appropriate for manipulating oscillations are, for example, word association, mental
subtraction, mental rotation, auditory imagery, or spatial navigation [43].

Another feasible strategy is to design a BCI based on event-related potentials
(ERPs) [82]. An ERP is the brain’s response to a specific sensory, cognitive, or
motor event. An example is the movement-related cortical potential (MRCP) [100]
which is triggered by the intention of movement. Evoked potentials (EPs) are a
subset of ERPs. As opposed to ERPs, which can be caused by internal and external
events, EPs depend on external stimuli. An EP is time- and phase-locked to the
external trigger stimulus. A well-known application that uses EPs is the P300
speller [35]. P300 refers to the distinct positive component of the EP which can be
found in the EEG 300 ms after the appearance of rare target events, which subjects
had focused their attention on. These rare targets are hidden among a sequence
of more common non-target events. The underlying design is called the oddball
paradigm [143]. The P300 can be observed after visual [161], acoustic [56, 95], or
somatosensoric [105] stimuli. P300 BCIs can achieve high classification rates due

4



1. Introduction

to the relatively stable appearance of the P300 component and the advantage that
time- and phase-locked signals can be averaged for decreasing the SNR [36, 48,
155]. Many research groups aim to increase the functionality of P300 BCIs by trying
to find the best way to present stimuli. Small variations of the appearance of stimuli
can have strong effects on performance. For example, the use of faces instead of
simply highlighting objects of interest in a P300 speller was shown to increase
the performance significantly [61]. However, the drawback of P300 BCIs is the
need for external stimuli and the need for multiple repetitions to determine the
correct intention of the user. Even if a P300 BCI worked on a single trial basis,
each stimulus would have to be presented at least once to identify the oddball
stimulus.

EPs can be utilized in a different manner as well: in steady-state evoked potentials
(SSEPs) analysis. SSEPs can be recorded when a stream of stimuli with a particular
frequency is being focused on by the BCI user. In case of a multitude of different
streams of stimuli, the stream the user has concentrated their attention on can
be detected as the frequency of this particular stream is more pronounced in the
EEG than the frequencies of the other streams. The functionality of SSEPs has been
tested successfully with different sensory organs: visual with the steady-state visual
evoked potential (SSVEP) [24, 87]; auditory with the steady-state auditory evoked
potential (SSAEP) [54]; and somatosensory with the steady-state somatosensory
evoked potential (SSSEP) [97]. A drawback of SSEPs in general is, similar to P300,
the need for external stimuli. These stimuli generate a constant stream of visual
effects, acoustic noise, or vibration that can be irritating over time and can distract
the users from the very application they want to control.

More recently, an alternative definition of BCIs is finding recognition. Wolpaw &
Wolpaw [157] define a BCI as follows:

“A BCI is a system that measures central nervous system (CNS) activity
and converts it into artificial output that replaces, restores, enhances,
supplements, or improves natural CNS output and thereby changes
the ongoing interactions between the CNS and its external or internal
environment.”

The main difference to Pfurtscheller’s definition is the removal of the need for
intentional control. Thereby, a new kind of BCI is legitimized: the passive BCI [160].
Examples of contributions to a passive BCI are: task engagement, alertness, mood,
workload, and error recognition [45].

This thesis focuses exclusively on intentional control with MI as the main BCI
control strategy. MI has the advantage that it is not depending on external cues or
stimuli. The users can decide themselves when to perform BCI commands. This
means that, at least theoretically, the BCI can remain active at all times without
interfering with normal life. On top of that, for controlling neuroprostheses, MI is
less abstract than P300 or SSEP strategies, as it is based on mental tasks similar to
those needed to actually use the functions that are substituted by the prosthesis.

5



1. Introduction

1.1.3. Mode of Operation and Type of Feedback

The next critical step when designing a BCI is to choose the mode of operation
and an appropriate feedback system. There are many different ways to meet the
requirement of a closed loop system. Basically, a BCI can be operated synchronously
or asynchronously. A synchronous, or computer-driven, BCI enables user control
only in a predefined manner. The users have to wait for certain states of the BCI
when they are permitted or requested to perform a certain task. Therefore, brain
activity of interest is contained in predefined periods of time. A between classes
classification is facilitated because background activity before or after these time
periods can be disregarded [10, 102, 114, 122, 156]. Disadvantages are the inherently
limited information rate, as users need to wait for external cues, and an unnaturally
restricted freedom for the users to autonomously execute commands whenever
they would prefer to.

Asynchronous, or user-driven, BCIs can be activated and used on demand. One
difficulty here lies in the detection of the so-called idle state, i.e. correctly detecting
when the user does not wish to use the BCI [11, 89, 118, 131, 133]. This can either
be achieved by a stable design that makes the BCI insusceptible to false positive
activations [94], or by including on/off switches which the users can actuate
whenever they want to switch from BCI to idle state or vice versa [117, 132].

To accommodate the mode of operation, the feedback has to be customized to
fulfill the needs of the according BCI. Feedback systems can be very basic, with
just occasional discrete confirmations, or complex graphically elaborate continuous
systems. Feedback can be abstract or realistic, such as moving a cursor or moving
one’s own hand. It can also be the execution of functional operations, such as
opening or closing of a hand, writing a letter in a P300 speller, controlling a
neuroprosthesis or a BCI-driven wheelchair, or even playing games. The interest in
how important feedback really is for learning how to use a BCI has been gaining
more and more weight recently, e.g. [2, 46]. It has been shown that feedback, which
is close to the very type of action it substitutes, can have beneficial effects on
brain activity (e.g. the comparison of a video feedback of a moving hand versus
actual movement of one’s own hand by functional electrical stimulation (FES) [53]).
An appealing, rewarding feedback can also be of advantage when it comes to
motivation. For example, the P300 amplitude in an ERP-based BCI was shown to
be related to the users’ motivation, which can have a positive or negative impact
on the performance [64].

1.1.4. Signal Processing

The final important characteristic of the BCI is the processing of recorded data from
raw data to the interface commands needed to operate BCI-controlled applications.
The signal processing part is composed of preprocessing, feature extraction, and
classification, as can be seen in Figure 1.1.

Preprocessing is the first step after raw data were acquired from the biosignal am-
plifier, although some preprocessing can already be handled within the amplifiers.
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Preprocessing is used to increase the SNR and to remove unwanted frequency
components and spatial effects. To narrow the frequency band to the range of
interest, high pass and low pass filters are applied. High pass filters remove drifts
and slow fluctuations caused by sweat or breathing. Low pass filters remove fre-
quency components caused by high frequency noise, e.g. muscular activity. Usually,
a country-specific notch filter is applied additionally to filter out 50 or 60 Hz noise
caused by the local power supply. Additionally, spatial filters are applied that can
attenuate or amplify local patterns [85]. Spatial filters can encompass electrode
pairs (bipolar filter), clusters (Laplacian filter), or all electrodes (common average
reference (CAR) or common spatial patterns (CSP) [15, 121]).

The next step is to find features in the EEG that best characterize the selected task.
This process is called feature selection: features that are relevant for controlling
applications remain, while other features are discarded. Selected features can
be band powers of specific frequency bands [12, 99, 115], autoregressive (AR)
parameters [17, 136], synchrony of signals, for example represented with the phase-
locking value (PLV) [18, 72], or parameters in the time domain [150].

After relevant features have been selected, data sets containing these features can
be assigned individual class labels by applying so-called classification algorithms.
These classification algorithms perform linear or non-linear transformations from
features to class labels. The most basic linear procedure is to set a threshold and
assign one class label when the feature of interest is below the threshold and another
class label if the threshold is exceeded. A common linear procedure is the linear
discriminant analysis (LDA) [42] and, more recently, its regularized version, the
shrinkage LDA (sLDA) [8]. Here, two distributions of data are separated by a linear
hyperplane on the basis of maximizing the variance between the two distributions
while minimizing the variance within each distribution. More complex non-linear
algorithms such as artificial neural networks (ANN) [51] including restricted
Boltzmann machines [130], non-linear support vector machines (SVM) [79, 139],
or random forests [1, 144] have also been successfully used in BCI applications.
These classification techniques represent only a small sample of suitable choices
for BCIs; a more comprehensive review can be found in [83]. The result of the
chosen classification procedure is not limited to discrete class labels that identify
the data as one of two or more classes. It can also be expressed as a continuous
state, e.g. a likelihood between 0–100 % of the current activity to belong to one class.
Classification can be permitted only at predefined points in time or constantly,
depending on the feedback application of choice.

The whole process of finding relations between brain activity and intention or state
of the user is called machine learning [92]. However, these relations may not be
constant over time. By operant conditioning users can become better in modulating
the necessary brain activity as they potentially adapt to the BCI via observing
feedback. Alternatively, or in conjunction with operant conditioning, an adaptive
BCI can update its classification rules online [34, 151].

7



1. Introduction

1.2. Automatic Error Detection in BCIs

The characteristics introduced in Sections 1.1.1–1.1.4 define the core of a BCI.
However, BCIs can still be expanded by integrating additional mechanisms that can
increase the functionality, reliability, or performance of the system. One example is
the use of automated error detection (a comprehensive review can be found in [23]
or in [148]). Automatic detection as well as optional correction of errors can be
realized by identifying specific reactions of the brain to committed or observed
errors. These reactions to errors are the so-called error-related potentials or error
potentials (ErrPs).

1.2.1. Error Potentials (ErrPs)

ErrPs in brain activity have first been mentioned in literature in the early 1990s [32,
44]. The first measurement of these potentials was conducted in experiments where
subjects had to enter inputs under time pressure. Occasional wrong inputs due to
the time pressure proved to elicit specific electrical responses that were derived on
the scalp over the anterior cingulate cortex (ACC) [103, 146]. This first type of ErrP
is called response ErrP [9]. Over time, different experiments dealing with error
detection in BCIs have revealed three more types of ErrPs: the feedback ErrP [91],
the observation ErrP [134], and the interaction ErrP [19, 39, 40, 41].

Circumstances in which these different types of ErrPs can be triggered affect the
possible integration into functional BCIs. Response ErrPs are only triggered after
forced choices, which means that the user is dependent on cues from an interface or
from an operator. Feedback ErrPs are recorded after subjects were informed about
having committed an error, which is not an option for a BCI as we assume that
the program is not aware of errors by itself. The observation ErrP can be recorded
when subjects observe behavior that they knew was not correct, which was already
shown to be useful in BCI applications [59]. The fourth type, the interaction ErrP,
is caused by observing the execution of user-generated commands by a control
interface in a way that was not intended by the users. In this case, the users have to
believe that the mistake is not theirs but caused by the interface which can very
well be a BCI.

Several circumstances affect the manifestation of ErrPs. Falkenstein et al. have
summarized main factors that contribute to the triggering of strong, and therefore
measurable, ErrPs [33]. The authors highlight two temporal components visible
in the ErrP waveform which can be recorded over the ACC. The first one is
the error related negativity (ERN, or Ne). The maximum peak of this negative
component can be found at the frontocentral area of the ACC and is assumed to be
triggered by unconscious comparison processes in the brain. This component is also
measured after correct events but is stronger in amplitude after observing errors.
The amplitude is inversely proportional to the frequency of errors; it decreases if
subjects are pressed for time; it increases if errors are unambiguously recognizable
as errors; the amplitude also seems to decrease with age. Hajcak et al. found the
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ERN to be significantly larger in high-value trials, i.e., in trials where subjects are
more motivated not to make errors [49].

The second component is called the error positivity (Pe). The source for this
component is located more posterior than the source of the ERN. Falkenstein et al.
claim that the cause for this component is the subjective/emotional evaluation of
errors [33]. Pe amplitude is also more distinct in case of a lower frequency of errors
and decreases with age [31, 103].

The ErrP in the time domain is usually characterized as the difference of error-
minus-correct reaction. However, although most of the studies dealing with errors
so far have focused mainly on analyzing the ErrP in the time domain, errors can
also cause changes in the frequency domain. For example, Cavanagh et al. found
an increase in power around 4 Hz and a phase synchronization between the ACC
and the frontal cortex [20, 21].

1.2.2. Integrating ErrP Detection into Functional BCIs

Figure 1.3.: Expanded scheme of a BCI with included error detection. The initial execution of any
type of BCI (in this example an MI BCI) is observed by the user via feedback. In case of a
wrong interpretation, an ErrP is recorded. The information that the last action was an
error can be handled in two different ways: 1) The initial command is inhibit or corrected.
Thereby, the negative effect of a wrong command is mitigated and the reliability and
performance of the overall BCI increased. 2) The classification procedure of the BCI is
adapted via machine learning. Thereby, the next command is less likely to cause an error
if the user performs the same mental command. In the long run, this can also increase
the reliability and performance of the BCI. The yellow path indicates the process from
intention to final execution of an action when the ErrP detection is used to inhibit false
commands.

An automatic detection of errors can be useful in all kinds of human-machine
interaction [22, 106, 153, 159, 160]. However, a BCI, which is prone to errors and
low performance, can certainly benefit the most from this error detection. One of
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the first endeavors to use, or at least detect, ErrPs in an online BCI was attempted
by Schalk et al. [129]. In this study, ErrPs were detected after false, discrete cursor
movements. The cursor was controlled via a BCI based on sensorimotor rhythms
(SMR). Thereby generated errors were, from the subject’s point of view, caused by
a mistaken interpretation of commands, which basically describes the occurrence
of an interaction ErrP.

The two possible areas of application for online error detection in BCIs are: 1) the
automatic correction or inhibition of errors and 2) an adaptive machine learning
approach where detected errors update the machine’s interpretation of brain signals.
The basic scheme of a BCI, augmented with error detection of both kinds, can
be seen in Figure 1.3, using the example of a computer-driven MI BCI. In case
of the correction or inhibition approach, the process works as follows: the user
controls a cursor discretely by modulating brain activity by imagining motor tasks.
At predefined times the classifier assigns a class label to the performed mental
task which is shown to the user in form of discrete feedback. In this example,
the cursor moves either one step to the right or to the left. The presentation of
the feedback triggers a reaction which is either positive, when the classification
corresponds to the intentions of the user, or negative in case of an error. The time
period following the discrete reaction is analyzed by classifying predefined features
and the result can either be “ErrP” or “no ErrP”. In case the classification detects
an ErrP, the previously executed cursor movement is revoked, the cursor returns
to its initial position. If preferred, the cursor can also immediately move into the
opposite direction. If the error detection is not used to inhibit or correct commands
online, the information of positive ErrP detections can be applied in an adaptive
BCI. Here, the detection of errors can lead to adaptations of the MI classifier which
can affect future interpretations of control commands.

An example for the first area of application is shown in the work of Ferrez et
al. [39], who pursued the approach of Schalk et al. [129]. Here, the detection of
interaction ErrPs was successfully applied in an online MI BCI, which resulted in
an increased bit rate. Ferrez showed that, in a two-class BCI, the most beneficial use
of the interaction ErrP is to inhibit the command if an error was detected, instead
of selecting the opposite command. This way, negative effects of false positive
detections of errors are reduced to a minimum and the potential increase in bit rate
is maximized.

Other investigators chose to combine P300-based BCIs with ErrP detection [26,
137, 141, 145]. The inevitable discrete nature of a P300 speller feedback serves as
a fitting basis for the implementation of error detection. The selection of a letter
results in a discrete feedback after which the brain’s response is analyzed for a
possible ErrP. In case of a detected error, the letter selection can be revoked or the
second-most likely letter can be selected. The proof of a beneficial effect was, for
example, shown by Spüler et al. [141], who reported that six ALS patients could
increase their bit rate during an online copy spelling task by 0.52 bit/trial when the
error correction system (ECS) was activated.

The second area of application is to exploit detected errors for machine learning
purposes. Artusi et al. [6] conducted simulations with data from a BCI based on
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MRCPs and found a convergence towards the optimal solution when errors were
used for adapting classifiers for future BCI trials. Llera et al. [81] demonstrated a
significant improvement when comparing static and adaptive classification meth-
ods verified by simulations with interaction ErrPs in an MEG-based BCI, which
apparently also works in simulations with EEG data [80].

Although the interaction ErrP seems to work in online BCIs, the setting in which the
error detection so far has proven to be useful is well-orchestrated to optimize the
detection of interaction ErrPs. Examples are the fixation of the error rate for training
of ErrP classifiers to around 20 % or the restriction to use discrete feedback only. An
important question arises as to whether interaction ErrPs can also be of use if the
BCI application is not tailored especially to detect errors, but rather to be functional
for the user. This does not concern all types of BCIs, as P300 BCIs, for instance, are
already a good match for error detection in their original form. Still, advancement
in BCI research relies more and more on continuous and asynchronous control of
software and other applications, including assistive devices like neuroprostheses or
wheelchairs. In these cases continuous and asynchronous control can offer huge
benefits in terms of functionality and autonomy.

The time- and phase-locked nature of ErrPs facilitates detection when the system
knows exactly when to look for an error. With continuous, asynchronous feedback
the exact point in time of the occurred error is not that trivial to determine. To
overcome the need for time- and phase-locked signals, the only way is to rely on
signals detected in the frequency domain (as already mentioned in Section 1.2.1).
Milekovic et al. [88] analyzed ECoG patterns recorded during a continuous game,
although not controlled via BCI, but manually. The investigators detected more
than 50 % of two types of errors: outcome errors caused by collisions and execution
errors caused by artificially manipulated manual control. These errors were detected
within a 6 s long window around the events, indicating that the precise starting
time does not have to be known by the system. The same study was reproduced by
Spüler et al. [142] with the intent of recording errors with EEG instead of ECoG.
Both types of errors (outcome and execution) were detectable. However, locking
the classification to the beginning of the event was still more effective than an
asynchronous analysis. Interestingly, there was no statistically significant difference
in classification accuracies depending on whether temporal and/or spectral features
were used in the time- and phase-locked approach.

To conclude and to the author’s best knowledge, as of yet, there is no successful
implementation of an EEG-based BCI that includes the online detection of errors
which are generated within a continuous, asynchronous feedback application.

1.3. Hybrid Brain-Computer Interface (hBCI)

Automatic error detection is just one of many strategies to increase the usefulness
and reliability of BCI applications. Error detection is basically just one example of
how to make use of additional information in BCIs. The umbrella term for such
techniques is the so-called hybrid BCI (hBCI) [90, 93, 108]. The main principle of
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an hBCI is the combination of a standard BCI with other control or monitoring
channels. The idea behind it is that a stand-alone BCI is often not sufficiently
adaptable to individual and contextual needs, and control signals derived by
mental activity often lack functionality caused by misclassification and generally
low bit rates. By including more sources of control and/or information by means
of an hBCI, the functionality of a BCI can be greatly increased.

Additional channels can either be used to improve the functionality of the BCI
application by supporting BCI control or by influencing BCI choices based on
sensory information of the environment. The additional channels can, however, also
be used to substitute the BCI channel, in case of lack of concentration or mental
fatigue. The other way round is possible as well: BCI can be used to take over once
other control channels become unreliable, for instance due to muscular fatigue or
spasms.

There are various types of combinations that amount to an hBCI. An hBCI can
consist of: (1) different types of BCIs [3, 5], possibly also from different sources,
for example EEG and NIRS [37]; (2) a combination of BCI and control channels
derived from other biosignals, e.g. electromyogram (EMG) [77] or electrocardiogram
(ECG) [132]; (3) BCI and any other control channel powered by remaining muscular
activity; (4) a BCI supported by additional information obtained by sensors or
derived from contextual situations which can be used to manipulate decisions of
the BCI [147]. Error detection is difficult to categorize as it is based on analyzing
brain activity but does not constitute a BCI per se. It can also be seen as an
additional information source, depending on the current context. According to
Pfurtscheller et al., the BCI part in an hBCI has to follow the same rules as any
other kind of BCI [108]:

“(i) the device must rely on signals recorded directly from the brain;
(ii) there must be at least one record-able brain signal that the user can
intentionally modulate to affect goal-directed behavior; (iii) real time
processing; and (iv) the user must obtain feedback.”

Apart from that, the definitions for hBCIs are flexible. For instance, different
channels can be active simultaneously [16] or sequentially [117].

In the large-scale EU project “Tools for Brain-Computer Interaction (TOBI)” (www.
tobi-project.org) the project partners expanded the definition of the hBCI to
include BCI as an ever-present but optional control channel [93]. If the user does
not want to use the BCI, or if the hBCI system detects that the BCI channel is
unreliable, it can be deactivated for the present time until the need for BCI arises
again eventually.

To make use of this expanded definition, two important components that can be
integrated into hBCI systems were defined by the same consortium: the shared
control [76] and the fusion logic [77]. These components can be essential for
operating a functional hBCI.

Fusion is used to assess different inputs and choose how much weight these
inputs can have on decision making. In [77], the weights are continuously adapted
depending on the quality of the input. In this case, an MI BCI was combined with
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an EMG-based control channel. Weights were distributed from ratios of 0:100 % to
100:0 %, including ratios in between. If these weights are limited to binary weights,
i.e. either ‘1’ or ‘0’, the fusion can serve as a switch which activates the most
appropriate control signal at any given time.

The shared control logic can be applied to facilitate target-oriented BCIs. It depends
on contextual information of the immediate environment and aims to simplify com-
plex tasks to easily executable commands. Shared control can also increase safety
and reliability of BCIs by prohibiting unsafe commands or inhibiting unnecessary
actions. The example described in [147] applies the shared control principle on
a mobile robot which can execute complex mobility tasks with a low number of
control inputs required from the user.

Further advancement in hBCI research seems promising, given the limitations of
stand-alone BCIs. By adding supportive channels, sensors for monitoring, and
alternative control channels, the use of a BCI can gain more functionality and
reliability. End-users that previously refrained from using BCIs due to an unsatis-
fying cost-benefit ratio may be convinced to reconsider as long as the BCI part is
embedded in an appealing framework.

When designing hBCIs, or BCIs in general, for end-users, it is also important to
consider which type of application to control. One important type of application
enables end-users to regain control over lost functions of their own body. The
following section gives an overview of how this can be achieved by stimulating
motor points with electrical currents.

1.4. Functional Electrical Stimulation (FES)

Spinal cord injured individuals have lost the ability to move parts of their body by
their own will. The amount of negatively affected functions depend on the level
of injury [63]. Function loss of the upper limbs begins with lesions at the superior
vertebrae of the thoracic spine (hand muscles) and increases with advanced height
of the lesion along the cervical spine from C7–C1. Patients with an injury at level C4
and superior have lost most of their upper limb functions and shoulder movement.
The severity of impairment depends on the completeness of the injury as well.

FES can be used to elicit muscle contractions by stimulating motor points in the
vicinity of functional, but inaccessible, muscle fibers. Although more dexterous
movements can be induced by invasive application of the stimulation electrodes,
FES is mostly used with surface electrodes that can be attached within seconds and
do not require surgical procedures. Via electrodes, short current pulses (usually
biphasic) are delivered to the motor points of intact motor nerves [126]. Depending
on the area between the electrodes, the amplitude of the current, the pulsewidth,
and the frequency, basic movements can be accomplished. These movements help
to reduce muscle atrophy and can even be of assistance in activities of daily life. For
example, by stimulating grasp patterns of the hand, spinal cord injured individuals
can interact with objects the way they can not without FES.
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As the musculature is still functional but cannot be reached via the interrupted
efferent pathways, FES is already established as an important tool in rehabilitation
to avoid atrophy of unused muscle fibers and to improve remaining functionali-
ties [50]. Assistive FES devices for lower and upper limb rehabilitation are even
commercially available, e.g. www.bioness.com [52]. Recently, FES has been finding
its way into the field of stroke rehabilitation as well [120].

Given the low number of residual muscle functions, control commands from the
brain can be used to trigger FES-induced movements. Hence, FES serves as an
ideal application to be controlled with a BCI. A first successful implementation of
a BCI controlling FES-induced movements is documented in [112]. Here, a spinal
cord injured participant, who could not move his hand at all, was able to cycle
through lateral grasp patterns with MI, thereby successfully grabbing and moving
a cylindrical object voluntarily.

Coupling of BCI and FES has been reported in many subsequent studies, dealing
with different strategies of how to utilize BCI and FES. BCI was coupled with
FES in stroke rehabilitation for foot movement [30]. An hBCI was used to control
opening and closing of the hand by modulating two different types of brain
signals [152]. A hybrid orthosis was designed to support BCI-controlled FES [123].
The versatility of stimulated grasp patterns was increased by placing electrodes
following a new design, thereby facilitating palmar and lateral grasp with just
one electrode layout [127]. Another work deals with the inclusion of temporal
decoding of MI commands to add another layer of command for controlling FES
neuroprostheses [98]. A comprehensive review of the current state of the art of FES
neuroprostheses can be found in [128].

1.5. Aim of this Thesis

One major disadvantage of MI-based BCIs today is still the fact that many people
are not able to control them reliably [13]. This insufficient reliability is already an
issue in BCI applications that are mainly performed in laboratory environments.
However, its consequences are even worse in BCIs that are aimed to be used at
the homes of potential end-users. Many researchers attempt to solve this issue
with a wide range of different approaches. Better data acquisition devices, more
sophisticated signal processing algorithms, and improved BCI paradigms are just
some examples of ongoing research approaches.

Lately, the introduction of hBCIs promises new potential benefits regarding BCI
performance, functionality, and reliability. The main point of hBCIs is that BCI
channels are no longer to be seen as a stand-alone means of control. BCI channels
can be of greater value if they are used in a way that maximizes their potential. This
could mean that a BCI receives input from other sources to become more reliable,
or that the BCI channel itself is used as a source to support other control signals.

The main goal of this thesis is to increase the reliability and functionality of BCIs in
general. This goal is taken on in three different approaches, all of them relying on
the principles of hBCI design [93].
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The first approach deals with the general functionality of an hBCI which combines
two control signals that can both be used to control the same application. For a
BCI end-user it can be very beneficial to be able to control an application with
different strategies. To provide the user with the best suited control signal at any
given time it is crucial to automatically evaluate these signals. In the first study,
an hBCI system is designed that can evaluate signals based on individual quality
measures. Thereby, the hBCI can switch to the alternative control signal in case the
current control signal becomes unreliable over time.

The second approach is aimed to increase the reliability of BCIs by detecting
and inhibiting erroneous states. Moreover, this ErrP detection should be possible
not only in discrete feedback applications but also during asynchronous BCI
applications with continuous feedback. Asynchronous and continuous control is
especially important for end-users that want to control a hand/arm neuroprosthesis
or a BCI-driven wheelchair. A possible solution for detecting errors in continuous
feedback is to provide additional discrete feedback. A problem with ErrP detection
is an expected low single trial classification accuracy. A new method is aimed
to mitigate this issue by combining a series of events instead of single trials for
detecting erroneous states.

The third approach involves the potential end-users of BCIs. These end-users
have individual abilities and needs that can hardly be considered in generic BCI
applications. In fact, it is important to design BCIs specifically for the individual
end-users’ needs. The thesis is aimed to find individual hBCI applications to control
neuroprostheses which incorporate residual muscular functions and BCI tasks,
both in varying levels of complexity. These levels of complexity depend on the
users’ remaining muscular functions and their performance in operating BCIs. The
designed applications have to be tested thoroughly in close collaboration with
spinal cord injured end-users.

1.6. Organization of the Thesis

Chapter 1 introduces all the topics that appear in this thesis. A general overview
of BCIs is given with the main focus on hybrid BCI technology, error detection
in BCIs, and FES as an important application for potential end-users. The aim
of the thesis is explained: the evaluation of hybrid BCI components like fusion,
shared control, specialized applications including automatic error detection and
FES neuroprostheses that are designed for quadriplegic end-users.

Chapter 2 includes short summaries of all the publications relevant for the thesis.

Chapter 3 provides a summary and a conclusion for each publication and their
impact on the thesis, as well as an overall discussion about the scientific significance
of the thesis. The chapter concludes with an outlook to the future of hBCIs.

All publications that have been introduced in Chapter 2 are attached in the ap-
pendix.
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2.1. Primary Publications

2.1.1. Switching Between Manual Control and Brain-Computer
Interface Using Long Term and Short Term Quality Measures

[68] A. Kreilinger, V. Kaiser, C. Breitwieser, J. Williamson, C. Neuper, and G. R.
Müller-Putz. “Switching between manual control and brain-computer interface
using long term and short term quality measures.” In: Frontiers in Neuroscience 5.147
(2012).

When combining multiple control channels in an hBCI, it is important to choose
how these channels can be used together in the most meaningful way. This decision
has to be tailored to the individual needs of the user. It might be the case that the
user is capable of maintaining control of two channels at the same time, or they
could be more inclined to use different channels depending on their mental or
physical state. For example, a user who has remaining muscular functions is able
to use EMG or manual control to operate an application before fatigue makes this
endeavor more and more difficult over time. They then could use a BCI channel
which relieves physical burden but demands a heavier mental workload.

A type of binary fusion was introduced in this work which manages this type
of scenario. Two input channels, manual control (commercial joystick) and MI
BCI, were equally qualified to steer a car in a game and could be used to this
end alternately. The decision when to use BCI or manual control was based on
individual quality measures which rated the quality of each control channel. These
measures were customized for each channel individually and depended on: EMG
noise, instability, invariability, and bias for the BCI channel; shaking, low amplitude,
invariability, and bias for the joystick channel. As soon as a predefined threshold
was exceeded, the system automatically switched from one control channel to the
next. The scheme of the switching technique is demonstrated in Figure 2.1.

Ten healthy subjects took part in the study. The study demonstrated that the quality
measures were feasible to manage switching between input channels. By doing so,
scores in the car game could be increased compared to runs without automatic
switching.

The publication offered an example of a framework how the fusion of multiple
inputs might work by observing characteristics of signals, e.g. variance, bias, noise,
or amplitude.
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Figure 2.1.: Scheme of switching between two control channels by monitoring individual quality
measures. The user can either use BCI or a manual joystick (JS) to control a car game.
Whenever the quality rating of the current control channel exceeds a predefined threshold,
the fusion switches to the alternative control channel. The user is constantly informed via
the feedback about the current control channel and its quality rating.

2.1.2. Error Potential Detection during Continuous Movement of an
Artificial Arm Controlled by Brain-Computer Interface

[70] A. Kreilinger, C. Neuper, and G. R. Müller-Putz. “Error potential detection
during continuous movement of an artificial arm controlled by brain-computer
interface.” In: Medical & Biological Engineering & Computing 50.3 (2012), pp. 223–
230.

The integration of error detection into continuous BCI applications is an important
part of this thesis. A neuroprosthesis user can benefit considerably from continuous
control, as this will guarantee more natural movements of the assisted limb. When
controlling an arm neuroprosthesis, error detection could be useful to indicate
when a desired elbow angle is exceeded while moving the arm up or down.

This publication reports on experiments with healthy users who performed MI to
control an artificial arm. The movement of the artificial arm was time-coded: the
longer MI was detected, the longer the arm would move. Intention and feedback
was time-delayed, that is, users tried to imagine MI over a given target time period
and then observed the interpretation of the BCI by how long the arm actually
moved. Movement was indicated by red and white blinking LEDs in steps of 1 s,
foretelling ongoing movement or a soon-to-come stop.

Because subjects knew how long they wanted to control the arm, deviations from
a certain expected sequence of LED flashes were assumed to trigger ErrPs. The
scheme of the setup is demonstrated in Figure 2.2.

With this discretization of a continuous feedback it was possible to measure differ-
ent reactions to erroneous LED flashes. Even though detection rates were below
expectations, the results of the experiment encouraged further research in the
direction of discretization of continuous feedback.
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Figure 2.2.: Scheme of the ErrP detection during continuous movement of an artificial arm. In a first
part, the subject is required to perform MI as long as the target number indicates, either
1, 2, 3, or 4 s. In the second part, the subject receives delayed continuous and discrete
feedback. The artificial arm moves for exactly as long as the BCI detected the ongoing
MI. On the moving arm, white and red LEDs show the subject if the arm continues to
move for more than 1 s (white) or if it stops within the next second (red). In case of the
shown example of a target of 3 s, the subject aims to perform MI for more than 3 s but no
longer than 4 s. There is only one correct sequence the LEDs can flash in to indicate a
correct performance. If the arm stops too soon, a red flash too early is perceived as an
error, whereas if the movement continues for too long, one white flash too many has the
same effect.

2.1.3. Neuroprosthesis Control via a Noninvasive Hybrid
Brain-Computer Interface

[158] Z. Wu, R. Reddy, G. Pan, N. Zheng, P. F. M. J. Verschure, Q. Zhang, X.
Zheng, J. C. Principe, A. Kreilinger, M. Rohm, V. Kaiser, R. Leeb, R. Rupp, and
G. R. Müller-Putz. “The convergence of machine and biological intelligence.” In:
Intelligent Systems, IEEE 28.5 (2013), pp. 28–43.

This work, which is part of a special issue about “The Convergence of Machine and
Biological Intelligence”, demonstrates an hBCI design that uses the BCI channel
as the main control channel to move a hand and arm neuroprosthesis. The BCI
channel is supported by shared control. The shared control logic constantly eval-
uates information from a hybrid orthosis which includes an angle sensor and a
mechanical lock. Commands from the BCI are interpreted differently, according to
the current state of the neuroprosthesis. The scheme is shown in Figure 2.3.

This example introduces an hBCI application for BCI users who no longer have the
possibility to use control signals other than BCI. In this case, relying on information
from an angle sensor and context, the shared control logic can be applied to increase
the functionality of this only remaining means of control.

2.1.4. Single versus Multiple Events Error Potential Detection in a
BCI-controlled Car Game with Continuous and Discrete Feedback

[66] A. Kreilinger, H. Hiebel, and G. R. Müller-Putz. “Single versus multiple events
error potential detection in a BCI-controlled car game with continuous and discrete
feedback.” In: IEEE Transactions on Biomedical Engineering (2015), in press.
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Figure 2.3.: Scheme of the continuous and discrete FES neuroprosthesis controlled by an MI-based
hBCI. The user can move the arm continuously up and down by performing long MI
commands. Short MI commands are either used to reach the uppermost or lowermost
position or to open/close the hand. The interpretation of these commands depends on
the current state and is regulated by the shared control logic which evaluates information
about the current angle of the hybrid FES orthosis. The orthosis can be locked mechan-
ically to let the users maintain the elbow position without the need for ongoing FES
stimulation.

This article concludes the author’s attempts to show that detection of erroneous
responses is possible and can be used with beneficial effects in an online, continuous,
and asynchronous BCI. Insights from previous studies have indicated that ErrP
detection in complex, continuous BCI applications based on single trials is not
very effective in terms of detection rates. The goal of this study was to mitigate
low ErrP detection rates by using a novel technique for detecting errors. This new
method is no longer based on single trials alone but combines multiple events
for evaluation. Discrete single events are still classified individually, but classifier
outputs are averaged over a series of events.

Ten healthy participants performed MI to steer a car to the left or to the right
in a vertically scrolling car game. Objects (obstacles or coins) always appeared
in clusters of four on opposite sides of the road. Thereby, triggering of multiple
events was enforced by the game. This was utilized by analyzing ErrPs not in the
conventional single trial way, but grouped together.

With this new approach to average multiple reactions it was possible to find out
whenever the collection of such a cluster of objects (MI trial) was more likely to
be erroneous than correct. The online application was tested with four subjects:
after each MI trial, the whole trial was analyzed and discarded if an erroneous
sequence of events was detected. The difference between the new multiple events
method and the common single event method based on single trials is visualized

19



2. Materials and Methods

in Figure 2.4.

To the author’s best knowledge, this was the first implementation of an online
error detection within a continuous, asynchronous BCI. The strategy to perform
analysis with combined multiple events instead of single trials was also not heard
of before.

Figure 2.4.: Difference between the single event method and the new multiple events method. In the
single event method each collision with an event is classified individually. In this case,
the detection rate of erroneous and correct events is equal to the generally low single trial
accuracy. In the new multiple events method the classification results of a series of events
are averaged. Now, no longer each single event is assessed but the whole series of events.
Based on these events, the new method detects whether the activity between the starting
and the finishing line was more likely to be correct or erroneous in general.

2.2. Secondary Publications

2.2.1. BCI and FES Training of a Spinal Cord Injured End-User to
Control a Neuroprosthesis

[69] A. Kreilinger, V. Kaiser, M. Rohm, R. Rupp, and G. R. Müller-Putz. “BCI and
FES training of a spinal cord injured end-user to control a neuroprosthesis.” In:
Proceedings of the BMT2013 Conference. Graz, 2013, pp. 1007–1008.

This publication reflects on the collaboration with one spinal cord injured end-user
over the course of more than one year. Two different control strategies for an arm
and hand neuroprosthesis were evaluated.

The insights that could be gained from close interaction with an actual end-user
revealed the need for individualized BCIs, as there are many requirements for a
BCI to work functionally and to actually yield advantages for potential users.
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2.2.2. Brain-Computer Interfaces als assistierende Technologie und in
der Rehabilitation nach Schlaganfall

[67] A. Kreilinger, H. Hiebel, P. Ofner, M. Rohm, R. Rupp, and G. R. Müller-Putz.
“Brain-Computer Interfaces als assistierende Technologie und in der Rehabilitation
nach Schlaganfall.” In: Orthopädie-Technik 6 (2013), pp. 18–25.

This paper is a review article about BCI for neuroprosthesis control and in rehabili-
tation in general. Several aspects are covered, including the growing importance of
BCI in stroke rehabilitation and an outlook on movement decoding.

2.2.3. Hybrid Brain-Computer Interfaces and Hybrid Neuroprostheses
for Restoration of Upper Limb Functions in Individuals with
High-Level Spinal Cord Injury

[124] M. Rohm, M. Schneiders, C. Müller, A. Kreilinger, V. Kaiser, G. R. Müller-
Putz, and R. Rupp. “Hybrid brain-computer interfaces and hybrid neuroprostheses
for restoration of upper limb functions in individuals with high-level spinal cord
injury.” In: Artificial Intelligence in Medicine 59.2 (2013), pp. 133–142.

This publication documents another single case study with a spinal cord injured
end-user with moderate BCI performance. With a hybrid BCI system that incor-
porated BCI as a switch the end-user was able to accomplish tasks that otherwise
would not have been possible.
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3.1. Overview

The aim of this thesis was to improve the general performance of BCIs by applying
principles of hybrid BCI technology. The studies conducted within the framework
of this thesis address hBCIs on three different levels: (1) finding a way how different
input signals can be evaluated online and processed to be used as a control signal;
(2) focusing on error detection which can improve any stand-alone BCI system
by increasing its reliability and performance; (3) applying hybrid techniques in
BCI-controlled neuroprostheses in close collaboration with spinal cord injured
end-users.

3.2. Quality Measures in a Hybrid BCI

The definition of an hBCI includes the need for a combination of BCI with one or
more other signals, either BCI signals or signals derived from other body functions
or sensors. The definition of how to combine these signals is left open to the
designer [96]. If these signals are used in a sequential way or used to control
separate actions, the quality of these signals does not really matter. However, if
there is only one action to be controlled but more signals are available, the decision
on how to combine these signals has to follow some basic rules. Inputs can be fused
with different weights between 0 and 100 % or the hBCI system can switch between
the available input signals. The former has the advantage that the overall accuracy
of the signal can be increased by obtaining information from both signals [77]. The
advantage of the latter approach is that whenever one signal is active, the other
signal is not needed and the source for this signal, e.g. muscular or brain activity,
has time to recuperate.

If there is no additional information at hand that can give immediate feedback on
the current quality of one input signal, quality measures can only be obtained by
analyzing the signal itself. In the publication “Switching between manual control
and brain-computer interface using long term and short term quality measures” [68]
this exact problem is addressed. With spinal cord injured end-users in mind, four
individual quality measures were defined for both a BCI channel and a manual
control channel. Online, fatigue was simulated by deteriorating the manual control
signal; the BCI channel was not modified. The monitoring of the signals proved to
be useful in deciding when to switch among input channels. Bad BCI performers
triggered switches to manual control more often than good performers. Therefore,
the suggested hBCI system can serve as a functioning basis when users want the
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possibility to use different control channels for controlling the same application.
A possible scenario could be a neuroprosthesis which can be controlled by either
muscular functions or BCI. Here, users may prefer to control the prosthesis with
their residual muscle functions at first but might want to be able to use BCI in case
of severe muscle fatigue which translates into unreliable commands. During active
BCI, the muscles can recuperate until muscle control is needed again when the BCI
performance suffers from an ongoing lack of concentration or noisy EEG.

The main purpose of the study based on quality measures was to provide an
example of how the allocation of control channels can be managed if no external
signals are available. With external signals at hand, the decision rules can be
adapted to fit the individual hBCI design. Control channels can also be chosen
based on other factors, for example based on context, which can be managed by
shared control logic. Information about context can be obtained from sensors, such
as cameras, or simply by monitoring the current state of the application. Another
way to obtain information about context is to assess how the subjects react to
the performance of the application. If the application does not work as intended,
reactions to errors can be detected as ErrPs [23]. Basically, ErrPs can also serve as
an immediate quality measure and are generally a promising addition to hBCIs.

3.3. Error Detection in Continuous and Asynchronous BCIs

Error detection, as a part of hBCI design, was a main topic of this thesis. Hereby,
the aim was not only to show a feasible integration into online BCI applications,
but to deviate from the common approach of designing BCI experiments especially
for triggering ErrPs. Several different points were addressed to achieve this goal.

A first point was to determine how and how well ErrPs could be triggered and
detected during a continuous feedback application. The first published work [70]
approached this point by adding discrete feedback to a continuously moving artifi-
cial arm. Results were promising, as there were detectable reactions to unintended
behavior of the moving artificial arm. However, detection rates were not on par
with studies from literature that used discrete feedback alone and a fixed error rate
(at least for offline analysis) [40, 71]. Main drawbacks of the study were possibly the
detachment of user intention and time-delayed feedback. Additionally, the feedback
was complex and for some participants it was difficult to understand which discrete
feedback indicated a correct interpretation of the respective mental command. As a
result of these two issues, subjects were not as involved and interested in a correct
outcome as they could have been. Furthermore, the pacing of the feedback was still
synchronous, that is, subjects could not voluntarily move the artificial arm at any
desired point in time.

The subsequent publication, “Single versus multiple events error potential detection
in a BCI-controlled car game with continuous and discrete feedback” [66], aimed
to solve these issues by applying some profound refinements. First, intention
and feedback were no longer separated in time. MI commands were constantly
monitored, allowing the participants to continuously move the car from one side to
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the other at all times. Continuous feedback in form of the moving car and discrete
feedback in form of collisions with obstacles and/or coins happened during active
MI. Second, the experiment was embedded in a game-like environment with
easy-to-understand conditions and a scoring mechanism that aimed to increase
motivation and involvement. Third, although not absolutely asynchronous due to
the appearance of objects at predefined points in time, subjects could control the
car even in breaks and they were free to choose when they wanted to start moving
the car towards the coin targets: they had 4 s time from the appearance of a coin
until the coin reached the level of the car.

The evaluation of offline data revealed a positive effect when combining reactions to
multiple events (reactions after colliding with objects on the street). The experiment
was structured in two different layers: the MI layer, including MI trials, and the
event layer, including single collisions with objects. An MI trial, which lasted from
start to finishing line, included multiple events: up to four collisions with coins
and/or barriers. By averaging classification outputs of reactions within each MI trial
and ordering them according to the side of collision, it was possible to determine
the correct intended side of the MI trial. For some subjects this detection yielded
even higher accuracies than their original MI performance. The detection of these
MI trials based on the new multiple events method was also significantly better
than the single trial detection rates for detection of coin collections versus collisions
with barriers. The new multiple events method was also tested online and was
shown to be feasible. All subjects were able to increase their score during the car
game as detected erroneous MI trials were discarded and could be repeated.

Although the obtained results of the two studies dealing with ErrPs look promising,
there are still some drawbacks to overcome before online error detection can be
a common procedure in BCI applications. One of the main problems is still the
low single trial detection rate measured during complex tasks. This can partly be
solved with the new multiple events method. However, it is not possible without
effort to use this method in any generic BCI as the application needs to be designed
to deliver series of discrete events as feedback. Another problem is that classifiers
for ErrPs need to be trained before they can be used online. A solution can be not
to use ErrPs in the beginning, but to provide error detection only if users have
already gained some experience with the BCI application and have generated data
for setting up ErrP classifiers in the process. Another possibility would be to use
adaptive techniques that train ErrP classifiers while subjects are using the BCI. In
any case, up to now, ErrPs do not yet offer convincing arguments which make
them indispensable in BCI applications. Further work is still necessary to make
automatic error detection in BCIs more attractive.

3.4. Hybrid BCI Applications for Spinal Cord Injured
End-Users

The last main part of the thesis deals with individualized BCIs for spinal cord
injured end-users by relying on hybrid BCI design principles. The hBCI design was
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implemented within different setup strategies. Depending on the level of spinal
cord injury, BCI was either used as the main control channel or just as an additional,
optional input.

When BCI is used as the main control channel, additional signals, for example from
sensors, can help to avoid unnecessary and/or potentially dangerous commands.
When BCI is only used as an optional signal, the designers have to keep the
shortcomings of BCI in mind, e.g. low information transfer rate and imperfect
reliability, in order to find a meaningful way to integrate the BCI channel [96].

In the first variant, a time-coded MI BCI was assisted by a shared control logic
which monitored the angle of an equipped hand and arm neuroprosthesis [67,
158]. This was facilitated by an angle sensor located in the joint of the hybrid
FES orthosis [123]. This orthosis was not only utilized for stabilization purposes,
but also to read the angle of the joint which could also be locked mechanically
whenever a desired position was reached. The shared control logic ensured that
commands from the user were interpreted differently, depending on the current
angle of the orthosis and the state of the hand (open or closed). This way, end-users
were supported in reaching desired positions: for example, when they almost
reached the maximum position of the angle, they only had to perform a short and
easier-to-maintain MI command.

In the second variant the main control signal stemmed from a shoulder position
sensor. MI BCI was used as a brain switch to select which muscle functions
the shoulder movements should control. The brain switch was time-coded: with
short MI commands the user could toggle between muscle functions; with long
commands the user could enter or exit a pause state. This scheme was applied
in two different scenarios. In the first scenario end-users had enough residual
elbow functions to perform unassisted reaching tasks but had lost grasp functions
completely. Therefore, the brain switch was used to toggle between two different
FES-induced grasp patterns (lateral and palmar) and enter/exit pause mode to
stop/start stimulation [67, 69]. The intensity of the stimulation depended on the
analog level of the shoulder’s elevation and was directly mapped to the opening
degree of the hand.
The second scenario was aimed to assist end-users without elbow functions but
enough shoulder functions to control the shoulder position sensor [124]. The
scheme was basically the same as before. However, the brain switch was now used
to toggle between FES-induced elbow movement and FES-induced palmar grasp.
Additionally, the end-user’s arm was supported by the hybrid FES orthosis for
stabilization purposes and to avoid fatigue with the lockable joint.
Both scenarios applied shared control principles that monitored activity of the
shoulder position sensor and of the brain and only permitted brain switches when
the shoulder was currently not moving. A refractory period after successful brain
switches was enforced to avoid unnecessary switches.

The collaboration with spinal cord injured end-users affirmed the theory that BCIs
need to be individually designed. For users with sufficient elbow functions, the
BCI channel is almost unnecessary in terms of actually controlling movements.
However, BCI can be useful as an additional switch in case the end-users can no
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longer control their muscles voluntarily due to fatigue. For end-users who are really
dependent on the BCI channel to control the neuroprosthesis, it can be difficult to
find a feasible control strategy. Here, it is often necessary to use whatever works
best. As a result, end-users often have to imagine moving their feet when they
actually want to control their right arm. Possible solutions to these issues might
be to provide more sophisticated shared control systems, based on a multitude of
sensors that alleviate controlling the hBCI for the end-users. Concerning the mental
control strategies, a more natural way would be to directly decode the intentions
of the end-user without reverting to the use of unnatural mental tasks. Promising
steps towards this direction have already been reported in [67, 104].

3.5. Relation to the State of the Art

This thesis is established on several developments related to hBCI in general and
ErrP detection and neuroprosthesis control in particular.

Many researchers have already combined different BCI channels or BCI channels
and other channels, and have used these to control hBCI systems either sequentially
or at the same time. However, discussions about principle components and the
general design of an hBCI have only become a relevant topic recently, mostly within
the EU project TOBI. In [93, 96], the basic components of an hBCI are explained
in detail, including shared control and fusion logic. In the TOBI project, fusion
was defined as a module which distributes weights to input channels, according to
the quality of the respective signals. These weights can be derived by analyzing
supervision signals or by directly monitoring the performance of the input signal.
The study in [68] aimed to provide an example of how the performance of input
channels can be evaluated by taking only characteristics of the signals themselves
into account. In this work, distributed weights were binary, that is, a signal was
either used as the control signal or not used at all. Drawbacks of this approach are
that control signals are applied in a redundant manner, which means they cannot
be used for controlling other tasks. Furthermore, a continuous weight distribution,
as shown in [77], could be beneficial to increase the performance of single control
channels. However, a benefit of the binary approach is that every time a signal is
not active, its source has time to recuperate.

The quality rating of the BCI channel was based on noise, instability, invariability,
and classification bias. Recent studies addressed the characteristics of a good
quality EEG signal in more depth [27]. Although it is difficult to determine with
certainty that a specific data set of EEG is clean of artifacts, there might be room
for improvement by more sophisticated quality measures. The quality rating of
channels can also be of use for other applications that do not switch between signals.
For example, noise or artifacts can also be detected online and automatically be
decreased or removed entirely [28].

Another way to immediately determine the quality in a BCI application is to detect
ErrPs. The next two publications “Error potential detection during continuous
movement of an artificial arm controlled by brain-computer interface” [70] and
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“Single versus multiple events error potential detection in a BCI-controlled car game
with continuous and discrete feedback” [66] focused on this approach. Particu-
lar interest was directed towards how ErrPs can be detected during continuous
feedback applications. Although many researchers have conducted experiments
with ErrPs, most are either limited to offline analysis or to specifically tailored
applications that are best suited to trigger ErrPs. Online ErrP detection is so far
still limited to discrete feedback applications. The main reason behind this is that
temporal features of ErrPs are time- and phase-locked. The two publications aimed
to overcome this constraint by providing discrete feedback on top of continuous
feedback. This combination of two types of feedback was suited to trigger ErrPs,
though with very low detection rates.

A similar approach was shown in [142] who repeated the experiment of Milekovic
et al. [88] with EEG. In the space game, discrete events were also presented in terms
of crashing into objects and in terms of deviation from the intended movement
trajectory. Single trial classification accuracies of outcome and execution errors
were above random in two different types of analyses. One was based on the usual
time- and phase-locked approach; the other one was asynchronous. It was shown
that temporal and spectral features were equally well-suited for classification in the
time- and phase-locked approach. Spectral features were better in the asynchronous
approach. However, asynchronous classification accuracies were generally lower
than the accuracies found in the time- and phase-locked approach. Accuracies
were also generally lower than in other applications with less complex feedback,
concurring with results in this thesis. The reason was stated to be, in part, based
on a negative correlation between ERP amplitudes and workload [4].

Another interesting application that uses ErrP detection without any type of active
control is shown in [59]. A reaching task where a cursor was moving stepwise
towards a goal on a 5×5 matrix was observed by the subjects. Subjects did not
have to perform any task other than observing the movement of the cursor. Based
on their reactions, a shared control logic computed the most probable trajectory
to successfully reach the goal. This approach might also be able to be combined
with continuous applications as discrete events, for example direction changes, can
easily be presented on top of continuous movement.

The most defining accomplishment of this thesis was found after combining mul-
tiple events for ErrP classification in [66]. The low detection rates that were a
problem for single trial analysis could be improved significantly when using this
novel method.

Concerning FES neuroprostheses it has been shown that restoring grasp functional-
ity is a top priority for spinal cord injured people who have lost this ability [25]. For
end-users who can still move their arm due to residual elbow or shoulder functions
a neuroprosthesis that focuses only on restoring grasp functionality is sufficient.
However, for people with a higher level of injury the elbow function needs to be
restored as well in order to let the user reach objects with their hands. All the
examples in this thesis take individual abilities and needs of end-users into account
and are compliant with the user-centered design concept introduced in [58].
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The studies dealing with spinal cord injured end-users are on par and beyond
the current state of the art in several points. A new electrode layout, introduced
in [127], was used to induce two different grasp patterns with just electrodes on
the forearm. Before, these electrodes had to be placed inside the hand which often
leads to premature detachment of the electrodes [38]. Furthermore, a neoprene
sleeve was applied which had two functions: stabilization of the wrist and saving
the locations of the FES electrodes. The first was important, as an instable hand
position can affect the effects of stimulation. A similar approach to mitigate this
problem was also shown in [75] by using a hand orthosis to synchronize finger
movements. The latter was useful to decrease the time needed for preparing the
FES system. Furthermore, users reported that reproducing the correct electrode
layout for stimulation can be cumbersome [62]. There are not many successful
examples for upper arm restoration. Reasons are fatigue, which emerges rapidly if
the users’ own muscles are stimulated, and the need for external power supply if
motor-driven exoskeletons are equipped instead, for example in [135]. However,
recently, first successful outcomes with a similar approach as demonstrated in this
thesis were reported in [107]. Here, a modular setup includes a passive/active
exoskeleton that can be controlled with EMG, buttons, eye-trackers, or BCI. If the
exoskeleton is in passive mode, a spring-loaded gravity compensation supports the
user’s motion. If the user cannot generate enough force, FES can induce shoulder
and elbow movements.

Apart from the already mentioned study in [107], which also relies on hBCI
principles due to signals from sensors that support control of the neuroprosthesis,
and the studies reported in this thesis, hybrid BCI systems for FES control are
relatively unexplored. Moreover, continuous control of an FES neuroprosthesis via
BCI has not yet been reported in literature, to the best knowledge of the author.

3.6. Limitations

Some compromises had to be made to allow for feasible implementations of the
studies. This section specifies associated limitations of each study

Limitations of the study dealing with quality measures in an hBCI [68] were the
arbitrarily defined weights that determined the impact of the quality measures.
Although the purpose of the study was not to find an exact representation of how
different measures contribute to the quality of a signal, a time-intensive analysis
might have found better weights or even other quality measures that were not
used in the study. Another limitation was the need to artificially deteriorate the
joystick signal. The reason for this was that all participants were healthy users
who could have used the joystick for a very long time without being affected by
fatigue. It would be interesting to see how actual spinal cord injured end-users
would perform in this experiment.

A limitation that both ErrP studies [66, 70] had in common concerned the possibility
of a low number of trials. Even though the combined number of correct and
erroneous trials was generally high, the number of erroneous trials was often
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comparably low. This was a problem especially for good BCI performers who
achieved error rates of less than 20 %. Other limitations concerned the relatively
low single trial detection rates of erroneous and correct events. These were lower
than results in comparable literature where paradigms were designed in order to
detect ErrPs in the best way possible. The studies in this thesis were not designed
that way because the main goal was to incorporate error detection in functional
continuous BCI applications and not to find BCI applications that can best be
used to record ErrPs. However, it turned out that some design choices might
lead to better solutions in future experiments. For example, experiments need to
be designed to be more straightforward. The tasks in both studies were rather
complex and subjects had difficulties in understanding and/or performing well in
the experiments.

The new multiple events method [66] provided a solution for how to potentially
mitigate low single trial detection rates. Detection rates of correct and erroneous
series of events were significantly higher than the single trial detection rates in the
common single event method. However, it can be argued that these two results
are not entirely comparable as the two methods detect errors on different layers.
Furthermore, it was unfortunate that not all participants were able to participate in
the online experiment with applied error detection. A cause for this limitation was
a more general problem with ErrPs: users who make more errors tend to have lower
detection rates, although they would benefit most from online error detection.

Limitations concerning the experiments with spinal cord injured end-users [67,
69, 124, 158] were basically that these were all single case studies. More end-users
who could benefit from BCI-controlled assistive devices such as neuroprostheses
definitely would have been an enrichment for this thesis.

3.7. Summary and Conclusion

This thesis demonstrates the feasibility of hybrid BCI principles in a variety of
examples, including basic implementations of hBCI technology, specific designs
focused on error potentials, and hBCI solutions for spinal cord injured end-users.

Underlying principles for a fusion logic were applied online to choose between
different control channels based on their individual quality measures. This imple-
mentation serves as an important example of how to choose the best control signal
when no contextual information is available.

The ErrP was addressed in detail as it is a supervision signal that can give informa-
tion about the performance of control channels. It could be shown that these ErrPs
can be detected during continuous BCI applications. With a new method called
“multiple events method” it was possible to increase detection rates of erroneous
states significantly, despite relatively low single trial detection rates. This new
method combines the classification outputs of a series of events instead of making
a decision after each single trial.
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Various applications based on hBCI principles were also tested with spinal cord
injured end-users. These applications incorporated BCI as the main control channel
and BCI as a supportive, optional channel, depending on the individual impair-
ments and needs of the end-users. In total, three different end-users could suc-
cessfully operate personalized hBCI applications in the laboratory and in daily life
situations.

3.8. Outlook

The thesis expanded knowledge of separate principles of hBCI techniques. The next
step should be to fuse thereby gained insights. An appropriate application could
be the continuous, asynchronous control of a neuroprosthesis with BCI and/or
other control signals. This application should include fusion and shared control
logic that can monitor the performance of control signals by evaluating the control
signals’ characteristics by analyzing supervision signals (for example ErrPs) and
sensor signals. Fusion can then use this information to weight inputs and fuse or
switch between them. Shared control can inhibit or promote specific actions based
on contextual information.

Concerning ErrP detection, the next step would be to combine the obtained knowl-
edge from both studies ([70] and [66]) dealing with ErrPs. In the former, the
application was already targeting neuroprostheses control but utilized an artificial
arm as a substitute. Moreover, intention and feedback were temporally separated,
resulting in relatively weak ErrPs. In the latter, these drawbacks were addressed
successfully. However, the feedback was embedded in a game. The next logical step
has to be combining the advantages of both strategies into a continuous control of
a neuroprosthesis.

In the author’s opinion this combination seems promising. The only constraint
would be that accumulating ErrPs for multiple events analysis takes time. However,
since moving a neuroprosthesis is not instantaneous, it can be assumed that there
should be enough time for multiple events to occur. In this direction, it will also be
interesting how the accumulation of these events can be optimized with respect to
a minimum inter-event time and a suitable mode of delivery.

30



List of Publications

Bauernfeind, G., V. Kaiser, T. Kaufmann, A. Kreilinger, A. Kübler, and C. Neuper
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Technologien.” In: Orthopädie-Technik 5, pp. 33–40.

Kaiser, V., G. Bauernfeind, A. Kreilinger, T. Kaufmann, A. Kübler, C. Neuper, and
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[73] A. Kübler, B. Kotchoubey, J. Kaiser, J. R. Wolpaw, and N. Birbaumer. “Brain-
computer communication: unlocking the locked in.” In: Psychological Bulletin
127.3 (2001), pp. 358–375 (cit. on p. 1).

[74] M. A. Lebedev and M. A. L. Nicolelis. “Brain-machine interfaces: past,
present and future.” In: Trends in Neurosciences 29.9 (2006), pp. 536–546
(cit. on p. 1).

[75] R. Leeb, M. Gubler, M. Tavella, H. Miller, and J. del R. Millán. “On the road
to a neuroprosthetic hand: a novel hand grasp orthosis based on functional
electrical stimulation.” In: Conference Proceedings of the IEEE Engineering in
Medicine and Biology Society 2010 (2010), pp. 146–149 (cit. on p. 28).

[76] R. Leeb and J. del R. Millán. “Introduction to devices, applications and users:
Towards practical BCIs based on shared control techniques.” In: Towards
Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-World
Applications. Ed. by B. Allison, S. Dunne, R. Leeb, J. del R. Millán, and A.
Nijholt. Springer, 2012 (cit. on p. 12).

[77] R. Leeb, H. Sagha, R. Chavarriaga, and J. del R. Millán. “A hybrid brain-
computer interface based on the fusion of electroencephalographic and
electromyographic activities.” In: Journal of Neural Engineering 8.2 (2011),
p. 025011 (cit. on pp. 12, 22, 26).

[78] E. C. Leuthardt, C. Gaona, M. Sharma, N. Szrama, J. Roland, Z. Freudenberg,
J. Solis, J. Breshears, and G. Schalk. “Using the electrocorticographic speech
network to control a brain-computer interface in humans.” In: Journal of
Neural Engineering 8.3 (2011), p. 036004 (cit. on p. 3).

[79] X. Li, X. Chen, Y. Yan, W. Wei, and Z. J. Wang. “Classification of EEG signals
using a multiple kernel learning support vector machine.” In: Sensors (Basel)
14.7 (2014), pp. 12784–12802 (cit. on p. 7).

[80] A. Llera, V. Gomez, and H. J. Kappen. “Adaptive classification on brain-
computer interfaces using reinforcement signals.” In: Neural Computation
24.11 (2012), pp. 2900–2923 (cit. on p. 11).

[81] A. Llera, M. A. van Gerven, V. Gomez, O. Jensen, and H. J. Kappen. “On the
use of interaction error potentials for adaptive brain computer interfaces.”
In: Neural Networks 24.10 (2011), pp. 1120–1127 (cit. on p. 11).

40



Bibliography

[82] F. H. Lopes da Silva. “Event-related potentials: methodology and quantifi-
cation.” In: Electroencephalography: Basic principles, clinical applications, and
related fields. Ed. by E. Niedermeyer and F. H. Lopes da Silva. Baltimore, MD:
Williams and Wilkins, 2004, pp. 991–1002 (cit. on p. 4).

[83] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi. “A review
of classification algorithms for EEG-based brain-computer interfaces.” In:
Journal of Neural Engineering 4.2 (2007), R1 (cit. on p. 7).

[84] E. M. Maynard, C. T. Nordhausen, and R. A. Normann. “The Utah intracor-
tical electrode array: a recording structure for potential brain-computer in-
terfaces.” In: Electroencephalography and Clinical Neurophysiology 102.3 (1997),
pp. 228–239 (cit. on p. 3).

[85] D. J. McFarland, L. M. McCane, S. V. David, and J. R. Wolpaw. “Spatial
filter selection for EEG-based communication.” In: Electroencephalography
and Clinical Neurophysiology 103.3 (1997), pp. 386–394 (cit. on p. 7).

[86] J. Mellinger, G. Schalk, C. Braun, H. Preissl, W. Rosenstiel, N. Birbaumer, and
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rameters as a feature for EEG-based brain-computer interfaces.” In: Neural
Networks 22.9 (2009), pp. 1313–1319 (cit. on p. 7).

[151] C. Vidaurre, C. Sannelli, K. R. Müller, and B. Blankertz. “Machine-learning-
based coadaptive calibration for brain-computer interfaces.” In: Neural Com-
putation 23.3 (2011), pp. 791–816 (cit. on p. 7).

46



Bibliography
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Assistive devices for persons with limited motor control translate or amplify remaining
functions to allow otherwise impossible actions. These assistive devices usually rely on
just one type of input signal which can be derived from residual muscle functions or any
other kind of biosignal. When only one signal is used, the functionality of the assistive
device can be reduced as soon as the quality of the provided signal is impaired. The qual-
ity can decrease in case of fatigue, lack of concentration, high noise, spasms, tremors,
depending on the type of signal.To overcome this dependency on one input signal, a com-
bination of more inputs should be feasible. This work presents a hybrid Brain-Computer
Interface (hBCI) approach where two different input signals (joystick and BCI) were moni-
tored and only one of them was chosen as a control signal at a time. Users could move a
car in a game-like feedback application to collect coins and avoid obstacles via either joy-
stick or BCI control. Both control types were constantly monitored with four different long
term quality measures to evaluate the current state of the signals. As soon as the quality
dropped below a certain threshold, a monitoring system would switch to the other control
mode and vice versa. Additionally, short term quality measures were applied to check for
strong artifacts that could render voluntary control impossible.These measures were used
to prohibit actions carried out during times when highly uncertain signals were recorded.
The switching possibility allowed more functionality for the users. Moving the car was still
possible even after one control mode was not working any more. The proposed system
serves as a basis that shows how BCI can be used as an assistive device, especially in
combination with other assistive technology.

Keywords: brain-computer interface, BCI, hybrid BCI, assistive technology, electroencephalography, EEG

1. INTRODUCTION
Brain-computer interfaces (BCIs; Wolpaw et al., 2002) provide a
means of communication for patients who have lost most of their
residual muscle functions and are therefore incapable to interact
with their environment. Examples of these kinds of severe impair-
ments are people suffering from symptoms of amyotrophic lateral
sclerosis (ALS), people in a locked-in state, and people who have
a spinal cord injury close to the brain.

A BCI makes use of brain signals which can be derived from
various sources with different methods. In this study we used a
non-invasive method to record electrical brain signals, the elec-
troencephalogram (EEG; Mason et al., 2007). EEG-based BCIs
can be subdivided into three categories according to the used
signal types: first, dynamics of brain oscillations such as event-
related (de)synchronization (ERD/ERS; Pfurtscheller and Lopes
da Silva, 1999) which establish the basis for motor imagery (MI)
BCI (Pfurtscheller and Neuper, 2001; Neuper et al., 2006); sec-
ond, steady-state evoked potentials (SSEPs; Middendorf et al.,
2000; Müller-Putz et al., 2006); and third, evoked potentials
(Regan, 1989) with the well-known example, the P300 (Farwell
and Donchin, 1988).

The benefit of BCI is the independence from any remaining
muscular functions, which means that muscle fatigue is irrelevant.
However, one major drawback with BCIs is that the performance
for most users is still far from perfect. BCIs are often afflicted
with low bit rates, low accuracy, and bioelectrical signals are gen-
erally prone to be corrupted with artifacts. Because it is difficult
to improve BCI technology itself, applications could be developed
that make better use of BCIs, acknowledging the advantages and
disadvantages and deal with them in the most appropriate way. For
example, a BCI can be used to provide additional communication
channels on top of other assistive devices that are used by people
who still have some residual motor functions (Rupp and Gerner,
2004).

To increase the attractiveness of BCI technology for patients it
is essential to find practical applications that provide maximum
control at all times, depending on the current physical and/or
mental condition of the patient. Thus, providing the best means
of communication at any time would be reasonable. As long as
residual motor functions are still working, they offer a more reli-
able and natural communication channel. However, due to fatigue
and/or additional interferences like tremors or spasms, a signal
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based on motor functions may lose its control capability after a
long time of usage. At this moment, a switch to a control mode
which is not based on muscular activity might become a lot more
attractive and could be used to restore control over the assistive
system. This approach can be realized by using a multimodal inter-
face (Blattner and Glinert, 1996; Jaimes and Sebe, 2007) which is
able to deal with at least two different control signals. A particu-
lar multimodal interface which incorporates BCI is called hybrid
BCI (hBCI; Scherer et al., 2007; Allison et al., 2010; Millán et al.,
2010; Pfurtscheller et al., 2010). Here, a BCI is combined with
any other user-driven signal. This signal can be a biosignal like
electromyogram (EMG), electrocardiogram (ECG), electrooculo-
gram (EOG), or EEG not used for BCI, but also sensor signals and
other control signals generated from assistive devices like shoulder
joysticks, mouses, buttons, and eye trackers (Zander et al., 2011).
Moreover, the use of hybrid BCIs may be an interesting tool for
healthy users in special working environments where common
control mechanisms are unreliable or not enough, e.g., operating
an additional EEG-based command in a spacesuit, or also in the
field of gaming (Zander and Kothe, 2011).

According to (Pfurtscheller et al., 2010), an hBCI must ful-
fill following four conditions: “(i) the device must rely on signals
recorded directly from the brain; (ii) there must be at least one
recordable brain signal that the user can intentionally modulate to
effect goal-directed behavior; (iii) real time processing; and (iv) the
user must obtain feedback.”The hBCI introduced in this paper will
follow these definitions except one small deviation: the BCI pro-
vided is purely optional, just like any other input into the system;
users are not forced to use BCI when there is a better alternative.
This approach concurs with the concept developed and described
in (Millán et al., 2010). A more detailed description of the hBCI
platform can be found in (Müller-Putz et al., 2011).

The combination of multiple inputs can be handled in a few
different ways: (i) each input can be linked to a single application;
(ii) all the inputs are fused and weighted to generate a single output
which controls an application (Leeb et al., 2011); (iii) a monitor-
ing module monitors inputs and decides which is best suited to be
used as a control signal.

The goal of this work was to evaluate a practical combination of
multimodal inputs with the sole purpose of making an application
more usable for patients. This means, on the one hand, that a sys-
tem should be easy to use and functional all the time by providing
different options to communicate with it, but also, on the other
hand, that an application can be controlled for a longer time than
usual. Interaction with the assistive device should still be possible
after the primary control strategy would no longer be possible due
to fatigue and/or a growing lack of concentration. Therefore, the
hBCI system presented in this paper is relying on the approach
(iii): a monitoring module monitors inputs and decides which is
best suited to be used as a control signal. A joystick (JS) signal
to simulate assistive devices and a control signal derived from an
MI-based BCI were constantly monitored and weighted to achieve
a solution with long functionality for the user. The weighting was
based on four individual quality measures per control mode. These
measures were designed to detect signal specific artifacts and mal-
functions, e.g., noisy EEG or a joystick signal made unusable due
to strong tremors.

The proposed combination of inputs was used in a car game.
A constantly moving car could be controlled with either one of
the two inputs to collect coins and avoid obstacles. We investi-
gated how well the selection of quality measures could detect a
low performance, caused by a poor signal quality. To speed up
the simulation an artificial deterioration was used for the joystick
signal to simulate signal impairments that can be expected from
patients. BCI was not deteriorated, as artifacts were expected to
occur all the same.

Additionally, we investigated how the switching capability
increased the maximum score when compared to a simulation
without switching.

After running the experiments and evaluating the data we could
show increased scores and a trend that links good performance
during the car game with the quality rating determined by the
quality measures.

2. MATERIALS AND METHODS
In the feedback application subjects could move a car on a
vertically scrolling street, see Figure 1. On the sides of the
street coins and obstacles (barriers) appeared randomly. Sub-
jects were asked to collect as many coins as possible with the
car while avoiding obstacles. The car was controlled either man-
ually with a joystick, or mentally with BCI. The joystick repre-
sented any kind of assistive device, relying on muscular functions.
This device could stop working permanently, after a long usage
due to fatigue, or temporarily, during periods of tremor and
spasm.

BCI on the other hand is prone to noise, distraction, and fatigue
as well. Considering the drawbacks of both input modalities, the
system offered switching between inputs to increase flexibility and

FIGURE 1 | Online car game. The current trial’s task is to collect coins on
the right side and to avoid the barriers on the left. The active mode is still
JS, but a switch to BCI is imminent due to the low quality of the JS input,
visualized with a quality bar on the left screen side. The current score in
relation to the maximum possible score at the moment is displayed on the
bottom of the screen. The right number indicates the number of the active
trial. The finish line depicts the end of a trial after which the switching is
carried out.
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functionality for the users. The switching was carried out whenever
the quality rating (QR) of one signal was considerably worse than
the other’s. An overview of the proposed system is demonstrated
in Figure 2.

2.1. INPUTS
Both inputs, BCI and joystick, provided control signals from −1
to +1 where −1 would move the car to the left side of the street
and +1 to the right. The joystick was limited mechanically so it
could not generate values out of this range. BCI, which used an
LDA classifier to discriminate between two MI classes, was satu-
rated at −1 and +1. The joystick signal was further processed with
artificial artifacts.

2.2. ARTIFICIAL ARTIFACTS FOR THE JOYSTICK INPUT
To simulate the system on healthy subjects instead of patients the
joystick signal was deteriorated with artificial noise. This deteri-
oration can be expected from patients with a spinal cord injury
at C4/C5 which causes loss of hand control and heavily limited
shoulder function. The artificially induced deterioration included
tremors (Anouti and Koller, 1995), spasms (Kawamura et al.,
1989), and an increasing weakness over time. To speed up the sim-
ulation, unrealistically high values were chosen: maximum fatigue
was reached within minutes and tremors and spasms occurred
frequently as long as fatigue was still low.

2.2.1. Tremors
During periods of a tremor a heavily shaken JS can be expected
which renders control completely unreliable. We simulated this
effect by adding a normally distributed random signal, band-pass
filtered between 2 and 10 Hz, to the recorded JS signal. The tremor
signal’s amplitude and probability of occurrence was inversely

proportional to the current weakness. Every 20 s, with a proba-
bility of p = 100 − weakness level in %, either a tremor or a spasm
was triggered at random. The amplitude of the tremor signal was
affected directly by the current weakness as the whole JS signal was
decreased.

2.2.2. Spasms
These involuntary muscle contractions can also have a strong and
negative effect. We simulated spasms by applying a heavy bias to
either the left or the right. The same rules were applied here as for
the tremor activation. The added bias was also reduced with the
weakness level.

2.2.3. Weakness
The most important factor was the weakness as it was used to sim-
ulate fatigue. The parameters were set to allow a stepwise increase
of weakness after each trial. A weakness level of 0% indicated no
impairment, whereas 100% were reached as soon as subjects were
no longer able to collect coins due to the strong reduction of ampli-
tude. How fast the maximum weakness was reached depended on
the stage of the experiment, either at the 10th or the 30th trial.
Weakness could recover, with the same rate it was increased before,
during times of no active joystick usage.

2.3. QUALITY MEASURES
The currently active control signal was evaluated with four spe-
cific long term quality measures. These measures were customized
to check specifically for indicators of a bad quality. These indi-
cators could be a high noise level or unreliable behavior like an
unstable classifier output. Both signals were measured individu-
ally. On top of these long term measures, both input types had
one short term measure. Basically, short term measures were an
additional effect when the worst indicators, used for long term

FIGURE 2 | Overview of the online setup. All the data is acquired with the
help of the TOBI Signal Server and passed on to Matlab/Simulink. The signals
are weighted by specific quality measures and fed to the switching block

which chooses the input to use as a control signal. This control signal and
information about the current state are passed on to the feedback, the car
game.
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measures, were detected, e.g., noisy EEG and a heavily shaking
joystick. When short term measures were active, control of the car
was no longer possible because the car was fixed to the middle
lane.

2.3.1. Joystick measures
The quality score depended on following factors: shaking caused
by tremors, low range of movement as a result of weakness, invari-
ability (a total lack of movement possibly indicating hardware
defects), and bias induced by an imbalanced preference of one
side which can be caused by spasms.

2.3.2. BCI measures
These measures monitored the noise of the EEG signal caused by
EMG artifacts, instability due to unreliable classification, invari-
ability (indicating hardware or software errors), and also bias for
a one-sided classifier output.

The problem about setting the weights for the measures was to
find the right values in order to rate negative effects correctly.
That is, very strong impairments should cause a fast decrease
of quality and minor impairments only a slow decrease. These
weights were initially set to arbitrary values. However, we tried to
give strong negative effects like strong noise and shaking heavier
weights. In contrast, not so acute effects were weighted lower, e.g.,
effects like fatigue whose influences built up over a longer time. All
weights were adjusted empirically while conducting preliminary
tests before running the final experiments.

The differently strong impacts on the quality for the final mea-
sures were as follows: BCI noise and JS shaking would decrease
the quality by 10(%/s), BCI instability by 5(%/s), low JS ampli-
tude by 2(%/s), BCI and JS invariability by 1(%/s), whereas the
bias was proportional to the bias itself; a strong bias over a long
time would increase the weight steadily. All those measures were
able to recover individually whenever they were not currently
detected. Additionally, all individual quality measures for one con-
trol mode recovered when the other mode was currently active;
i.e., BCI measures recovered with 1(%/s) during joystick mode
and vice versa. The currently inactive signal was never monitored,
i.e., the quality of an inactive signal was only allowed to increase,
not decrease. The described measures are also demonstrated in
Table 1.

QRBCI/JS = 100 +
N∑

i=1

∫
wi (x (t )) dt

withx (t ) =

⎧⎪⎨
⎪⎩

1 current mode, noise active

2 current mode, noise inactive

3 other mode, recovery

e.g., w1,BCI =
⎡
⎣ −10

+3
+1

⎤
⎦ ; w2,JS =

⎡
⎣ −2

+4
+1

⎤
⎦

(1)

Equation 1 shows a simplified formula of how the qualities
for both control modes were calculated during the online experi-
ment. In the equation QR depicts the quality rating of one of the
two control signals which always ranges between 0 and 100%. wi

Table 1 | BCI and JS quality measures.

BCI JS

Measures QR↑↓ (%/s) Measures QR↑↓ (%/s)

↓ ↑ ↓ ↑

EMG noise −10 +3 Shaking −10 +2

Instability −5 +1 Low amplitude −2 +4

Invariability −1 +4 Invariability −1 +4

Bias ∝ bias ∝ bias Bias ∝ bias ∝ bias

Four measures for both control modes, BCI and joystick, are shown. These mea-

sures can either decrease the quality (100% + numbers in the second and fifth

column) when they are currently detected but also recover over time otherwise

(third and sixth column). The bias’ measure, as an exception, is depending on

the magnitude of the bias itself. The decrease rate of the QR is higher than the

recovery rate to allow for a quick response in case of bad input signals. All quality

measures of one mode recover with 1(%/s) when the other mode is active at the

moment.

describes the N = 4 different weight vectors, one for each qual-
ity measure. The indexes of these vectors depend on the current
state of detected criteria and on the actual active control mode.
The weights either increase or decrease the whole quality of one
mode. The equation is simplified inasmuch as it does not include
context-sensitive factors that were considered additionally online.
These factors are represented in the following list which explains
the four long term quality measures per control mode, the rela-
tion with short term measures, and how exactly measures were
combined in the online model:

• BCI EMG noise: all EEG channels were filtered between 20 and
100 Hz, squared, averaged with a moving rectangle window of
1 s, and logarithmized. A threshold was set before online mea-
surements after subjects were instructed to produce EMG noise
and clean EEG. EMG noise was only detected within active tri-
als. When detected, an integrator would start to increase from 0
to 100% with 10% every second. Otherwise the integrator could
recover toward the minimum value of 0% with −3(%/s). These
and following values are given in Table 1, however with inversed
signs. EMG noise, when detected, also triggered the short term
measure of the BCI signal. This effect was shown in the car game
by fixing the car to the middle lane and a swiveling animation
of the car.

• BCI instability: this measure was based on the number of zero
crossings within active trials. As soon as the middle line of the
street was crossed more than three times within one trial, a sec-
ond integrator increased from 0 to 100% until the trial was over.
Anytime else the value could recover.

• BCI invariability: a total lack of LDA variance after 1 s started
a very slow increase of a third integrator, also limited between
0 and 100%, which would decrease four times faster in case of
any movement. This measure was active at all times.

• BCI bias: as soon as the system switched to BCI, the bias was
measured constantly. A one-sided classifier output resulted in
a continuously increasing weight. In detail, when the absolute
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value of the LDA classifier exceeded 0.2, an integrator was grow-
ing either toward +100 or −100%, depending on the sign of the
LDA output. This value was multiplied by 1/20. The absolute
value was then subtracted with 1 and the final weight passed
on to the fourth integrator. This way, the bias weight could lie
between 1 and 5(%/s) and recovered with 1(%/s), due to the
subtraction.

• BCI combination: the four BCI integrators were either increased
or decreased with the specific weights or each decreased with
−1(%/s) when JS was currently active. The outputs of all four
integrators were added but the total sum was limited to 100%.
This total value was finally subtracted from the current BCI QR
which started at 100%.

• JS shaking: the absolute value of the derivation of the JS input
was smoothed with a moving rectangle window of 1 s length. A
predefined threshold was found in foregoing measurements.
If the threshold was exceeded, the integrator increased and
decreased otherwise. This measure was active all the time. JS
shaking was the equivalent to BCI EMG noise in terms of the
short term measure, a detection of shaking also rendered control
of the car impossible.

• JS low amplitude: the absolute value of the JS input was com-
pared to the threshold value 1/3. Between −1

3 − 1
3 no object

collection was possible. Only during active trials, a second JS
integrator started to increase or decrease, depending on whether
the JS input was below the threshold or not.

• JS invariability: to detect hardware errors, this measure was
applied exactly the same way as BCI invariability.

• JS bias: the bias measure was similar to the BCI bias measure.
The only difference being the multiplication of 1/10 and a sub-
traction of 0.5. The resulting weights could therefore range from
0.5 to 10(%/s) with a recovery rate of 0.5(%/s).

• JS combination: JS weights were combined the same way as BCI
measures, however, only when the active control mode was JS.

2.4. EXPERIMENT SETUP
The experiment was designed to allow completion within one ses-
sion, not longer than 3 h. It consisted of three steps: (i) two runs
of offline BCI training to set up a classifier for the MI BCI; (ii)
two runs with a car game controlled only with a joystick to collect
data of runs without the switching system; (iii) six runs with com-
bined BCI and manual control to analyze how well the designed
switching approach worked online.

EEG was recorded with a g.USBamp amplifier (g.tec medical
engineering GmbH, Austria, Graz). Six Ag/AgCl electrodes were
placed anterior and posterior to C3, Cz, and C4 to obtain three
bipolar channels. Data was recorded with a sample rate of 512 Hz
and filtered between 0.5 and 30 Hz and an activated notch filter
at 50 Hz. After the BCI training session, which only needed pure
EEG, a joystick was added that provided an analog signal between
−1 and +1. This analog signal was later used to control the car;
−1 would move the car to the leftmost side of the street; +1 to the
right. Both input types were acquired with the TOBI Signal Server
(http://www.tobi-project.org/download; Breitwieser et al., 2011),
a software that is able to combine multiple inputs and provide
data in a standardized and synchronized way for various clients
via network protocols.

2.4.1. BCI training
In the beginning, two short BCI training runs were carried out,
each with 40 randomized trials of movement imagination, one half
both feet and the other half right hand. Subjects performed the
standard Graz-BCI training paradigm (Pfurtscheller and Neuper,
2001) to allow selection of features and calculation of a classifier
for MI. Trials contaminated with artifacts were removed manually
before searching for relevant features. The features consisted of
frequency bands recorded over the three bipolar channels. They
were selected manually after evaluating ERD/S maps (Graimann
et al., 2002). Here, the frequency bands with the most significant
differences between hand and feet MI were selected by plotting dif-
ference maps of both classes. ERD/S maps showed only significant
changes (α = 0.05) of frequency band-powers after the cue com-
pared to a reference period between 1.5 and 0.5 s before the cue.
The difference maps only showed significant differences between
two classes in the time after the cue with the same significance
level.

The band-powers of the best found frequency bands were used
to generate an LDA classifier. A time window, covering the time
between cue appearance and end of trial (5 s), was processed in
100 ms steps. At each step, the features corresponding to one time
step were used to calculate a temporary classifier with which the
data was analyzed by a 10 × 10 cross-validation. As soon as the
whole time window was tested, the best point in time was used to
set up the final classifier with the whole data set for online mea-
surements. Additionally, the 10 × 10 cross-validation was nested
within a 10 × 5 outer cross-validation that split data into an outer
training set and a validation set. Here, classifiers generated at the
best points in time, which were found via an inner cross-validation,
were applied on unseen data to make sure that these points were
really stable and to evaluate potential overfitting.

An online LDA classifier generates two outputs: the class label
(−1 or +1) and the distance (an analog value). The distance was
used to control the car in the later online runs. Scale and bias of the
classifier were adjusted to achieve a distance between −1 and +1
on average, similar to the joystick range, with an average of zero
for both classes combined. A possible transgression of −1 or +1
resulted in a saturation during later online experiments. A classi-
fication of foot MI would result in a negative distance value and
move the car to the left; a classification of hand MI in a positive
value and a movement to the right.

Additionally, the offline performance of this chosen classifier
was evaluated by testing the classifier’s accuracy on all 100 ms steps
between 1 s after cue appearance and end of trial.

2.4.2. JS only
The second part of the session simulated a system without BCI to
have a comparison of data with only joystick control and data with
joystick and BCI combined. Subjects were asked to perform two
runs controlling the car game, see Figure 1, with just the joystick.
The participants were asked to collect coins and to avoid obstacles
with a moving car on the screen in front of them. The car was con-
stantly driving with a fixed speed toward the top edge of the screen.
One single trial included a sequence of coins and barriers which
appeared at the top of the screen, always six coins in a row with
six barriers on the opposite side of the street. The interval between
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coin/barrier and next coin/barrier was 0.5 s. These objects could
be reached by the car exactly 4 s after they appeared. The joystick
signal was being deteriorated over time in a way that it reached the
maximum weakness at 30 trials, out of 40 trials per run; the sub-
jects were not supposed to be able to collect anything during the
final trials, because switching to BCI mode was not yet possible.

2.4.3. JS + BCI
The final part of the experiment combined manual with BCI con-
trol. Six runs with 40 trials each were carried out. Before starting
to record the online runs, subjects were asked to perform a few
trials in BCI mode to let the supervisors adjust the bias and the
scale of the classifiers, if necessary.

The setup was the same as before with two differences. First,
the participants could control the car with the joystick or with the
BCI by performing the previously trained MI tasks. Second, the JS
weakness reached its maximum already at 10 trials.

An overview of the setup is demonstrated in Figure 2. The
runs always started with active JS control. The JS signal deterio-
rated continuously in order to simulate weakness and to force a
switch to BCI. A switch was only permitted to happen when the
active quality was below 20% and the other one above 50%. Addi-
tionally, switches were never triggered within active trials, instead,
the system waited for a break to switch to the other mode. The
length of this break was automatically increased by 5 s to allow
accommodation to the other control mode.

To facilitate switching back after some time, the inactive signal’s
quality could recover by 1(%/s) per criterion. Subjects were asked
to avoid switching as long as possible, i.e., to avert quality reduc-
ing factors. The measures that affected the quality were called long
term measures.

Additionally, so-called short term measures were used to inhibit
control during times of severe noise impairment by forcing the car
to the middle of the street and giving a visual alert (swiveling of
the car). In BCI mode this could have happened during a detection
of noise; in JS mode the inhibition was caused by a detection of
strong shaking. The long term quality measures were not influ-
enced by this inhibition: the noise/shaking measure and eventual
other measures could still decrease the QR of the current control
mode. Figure 1 shows an excerpt from the ongoing feedback dur-
ing an online run. Here, the subject was currently collecting coins
but the system decided to switch from JS to BCI mode since the JS
quality had fallen below the threshold of 20%.

2.5. EVALUATION
After all the runs were conducted, the recorded data was evaluated
with following methods.

2.5.1. Score, collection rate, performance measure
We analyzed how well the subjects performed in terms of col-
lected points with “JS only” compared to “JS + BCI” control. This
outcome was rated in three different ways:

(i) online scoring was based on adding or subtracting points.
Subjects could increase the score +1 by collecting a coin and
decrease it with −1 in case of a collision with a barrier. To
avoid frustration, the score could never fall below zero. The
maximum score in one run was 240 (6 × 40 coins);

(ii) offline, the rate of positive: negative collection was analyzed.
Only the relation between collected coins and barriers was
of interest, not the percentage of collected objects out of the
maximum possible number. Left out objects on the street
were not taken into account (e.g., a missed coin or barrier);

(iii) also offline, a performance measure was introduced, depend-
ing on collected coins, barriers, and left out objects. This trial-
based performance measure ranged between 0 and 100%.
One hundred percent indicated that all possible coins within
a single trial were picked up, 50% that either no object at
all or the same number of coins and barriers were collected,
and 0% were achieved when only barriers were hit. This spe-
cific performance measure could be directly compared to the
mode-specific QR over time. Later mentioned performance
refers to this kind of performance measure. Equation 2 shows
how the performance measure per trial (PMtrial) was calcu-
lated. The Scoretrial could range between −6 and 6 points, the
max (Scoretrial) was 6 points.

PMtrial = Scoretrial + 50%

max (Scoretrial)
+ 50% (2)

2.5.2. Correlation of time and performance
We evaluated the correlation of BCI performance with time in BCI
mode. Because the quality monitoring was purely based on char-
acteristics of the inputs and not on the online performance itself,
it was not guaranteed that these two values would show a corre-
lation. However, it would be a good sign of a working switching
approach if it was found to be true.

2.6. SUBJECTS
Ten healthy subjects took part in the study, all of them had expe-
rience in BCI to permit a short training session of just two runs.
Based on results from previous experiments we selected BCI per-
formers with two class accuracies above 60%. They were aged
between 21 and 30 years (25.4 ± 3.1 years), half of them were
female, and all of them right handed.

3. RESULTS
3.1. BCI TRAINING
The first two runs of BCI training provided good classifiers for
all the subjects. Table 2 shows the mean accuracies in the time
period 1–5 s after the cue when applying the classifier that was
generated after the best point in time was found by the search
with the 10 × 10 cross-validation. Additionally, the accuracies at
the best points in time are shown for each subject. Furthermore,
the best points in time found via inner cross-validation were used
to create classifiers that were applied on validation data sets within
a 10 × 5 outer cross-validation to check for overfitting. The results,
after averaging the achieved accuracies, are also listed in Table 2.
Therefore, overfitting was shown to not be a large problem. This
was done by comparing accuracies achieved by only using the
best points in time, without a nested cross-validation, to accura-
cies that were found with the best points in time, found via inner
cross-validation, and tested with a validation set in each loop of the
outer cross-validation. The averaged outer cross-validation accu-
racies were only 2.9% lower than the accuracies achieved without
nested cross-validation.
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3.2. ONLINE CAR GAME
Figure 3 shows the point collection rates, averaged over all sub-
jects, and all conducted runs. The collected points for both parts
are compared: “JS only” on the left and “JS + BCI” on the right.
For both types the first increase in points is caused by the JS
control which is beginning to stagnate as soon as the artificially
appended weakness has reached its maximum at trial number 10
in the combined “JS + BCI” runs, and at 30 trials for “JS only.”

The important noticeable difference is that the score starts to
increase after the quality of the joystick signal decreased enough
to trigger the first switch to BCI in the combined paradigm. In “JS
only” mode there was no way to further increase the score. After
the time of the first switch, subjects remained in BCI mode for
different amounts of time but also had the possibility to go back
to JS in case of a bad EEG input. This is also indicated with the
increasing SD in the plot. The maximum number of points per
run was 240 (40 trials, each with six coins).

Figure 4 illustrates how the monitoring system worked online
with the example of the current performance, the signal qualities,

Table 2 | Offline classification rates after applying the classifier for

online use on all time steps between 1 and 5 s after the cue,

accuracies at the best points in time, and test results after using

validation sets in an outer cross-validation (oCV) routine.

Accuracy [%] Accuracy [%]

S 1–5 s tbest oCV S 1–5 s tbest oCV

1 80.1 92.4 90.0 6 74.9 84.7 85.2

2 62.2 79.6 79.3 7 79.4 86.7 81.6

3 79.1 87.8 81.2 8 82.8 95.7 95.5

4 70.9 87.8 87.5 9 74.4 84.2 83.3

5 73.9 91.3 83.3 10 56.1 71.4 66.4

Average 73.4 ± 8 86.2 ± 7 83.3 ± 8

For each subject, one to four features were chosen individually. These were

band-powers in frequency bands recorded on the three bipolar channels.

the actual control modes, and the occurrence of switches from BCI
to JS. Only BCI → JS switches are highlighted to maintain clarity
of the figures. To demonstrate the quality evaluation effects two
subjects were chosen to represent a good (BCI performance of
77 ± 29%, subject number 1) and a bad (subject number 6 with
57 ± 25%) BCI performer. The subjects were picked according to
the values shown in Table 3, taking into account the BCI perfor-
mance and the time in BCI mode. For each of them the left plot
shows the course of actions over the whole time (data from all 6
runs), whereas the right one shows one exemplary run to show
performance and BCI quality in more detail. The figures consist
of five features: (i) the performance, as mentioned in 2.5, visual-
izing the general performance which is relying on collected coins,
barriers, and left out objects; (ii) the QRs of BCI and JS mode, as
obtained online by the four specific long term quality measures.
The JS quality is only shown in the examples with the single run;
(iii) the occurrence of actual system-induced switches from BCI to
JS; (iv–v) indication of the current control mode, either BCI or JS.

The correlation between BCI performance and time in BCI
mode is addressed in more detail in Table 3 and Figure 5. The
table lists the collection rates and performances in BCI mode and
the according times actually spent in this mode. The figure demon-
strates the relation between these two values. The plot shows two
linear fits, one of them using all subjects and one with subject S8
removed as an outlier. The correlation coefficients were r = 0.34
(p = 0.33) and r = 0.6 (p = 0.09), respectively. Apparently, S8’s BCI
quality was not recognized as a poor one. The measure weighting
the bias was not strong enough to decrease it sufficiently to cause a
switch but the bias was strong enough to cause a bad performance.
Also, the other measures were not triggered very often in order to
have an effect on the QR.

The maximum time in BCI mode (100%) was only reachable if
there was no switch back to joystick mode at all. That said, 100%
means the whole period of all runs minus the first time of joystick
mode which was always initiated at the start of a run.

Another important outcome to evaluate was whether the mon-
itoring system actually made sense for the users. Did switches
occur more frequently during bad performance? How good was

FIGURE 3 | Online scoring during ‘JS only’ and ‘JS + BCI’ mode. (A)

shows the score during ‘JS only’ mode. As soon as the maximum weakness
was reached after 30 trials, indicated with the black vertical line, collecting
coins was only possible with forced overshooting. (B) shows the averaged
collection of points during 6 averaged runs from 10 subjects over all 40 trials.

The first points were always collected with the joystick which was weakened
within the first 10 trials up to a point when no more collection was possible.
After this stagnation, the monitoring system initiated the first switch to BCI
and would continue to monitor both input qualities and decide which control
method was best at the moment.
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FIGURE 4 | Performance and BCI quality during progress of the

whole experiment (A,C) and for one exemplary single run (B,D)

for subject S1 who represents a good BCI performer compared to

subject S6 as a bad example. The bad performer triggers BCI → JS
switches more frequently. Performance depends on currently picked

up coins and barriers, whereas the quality decreases and increases
due to active quality measures and recovery rates, respectively. The
start of a new run is indicated with blue vertical lines. A new run
always started in JS mode, no matter in which mode the foregoing
run concluded.

Table 3 |Time in BCI mode in relation to BCI performance and object

collection rate (pos:neg).

S pos:neg [%] BCI perf. [%] BCI time [%]

1 80:20 77 ± 29 69

2 60:40 59 ± 37 49

3 82:18 78 ± 24 77

4 84:16 81 ± 24 93

5 66:34 65 ± 30 80

6 59:41 57 ± 25 45

7 78:22 74 ± 23 66

8 55:45 54 ± 35 93

9 72:28 69 ± 26 92

10 51:49 50 ± 32 66

Average 69:31 ± 12 66 ± 11 73 ± 17

The performance measures are slightly lower than the collection rates due to the

inclusion of missed objects into the calculation. Subjects with a BCI performance

above 70% are highlighted in bold black, whereas a performance below 60% is

indicated with bold gray.

the performance directly at the time of switching or some time
before? These questions are partly answered with the information
in Table 4. The good BCI performers are highlighted in bold black,

FIGURE 5 | Correlation between time in BCI mode and BCI

performance on the basis of all subjects and all the subjects minus

one outlier (highlighted star).

whereas subjects with a performance below 60% are grayed out.
Apparently, good performance led to a relatively low number of

Frontiers in Neuroscience | Neuroprosthetics January 2012 | Volume 5 | Article 147 | 8

56



Kreilinger et al. Combination of manual control and BCI

Table 4 | Number of BCI → JS switches and performances at

respective points in time.

S Switch # Preceding trials

1 [%] 2 [%] 3 [%] 4 [%] Mean(1–4) [%]

1 5 47 85 68 73 68

2 6 44 67 81 65 64

3 3 64 86 58 94 76

4 4 77 92 77 90 84

5 4 71 75 63 73 70

6 9 52 57 49 66 56

7 4 65 90 81 67 76

8 3 50 67 42 31 47

9 1 83 100 58 83 81

10 6 42 58 69 42 53

Average 59 ± 14 78 ± 14 65 ± 13 68 ± 19 68 ± 12

The table shows how many switches there were for each subject and how good

their performance was at that time.The averaged performances, including one to

four foregoing trials, are shown over all subjects.

switches (from BCI to JS), as opposed to higher numbers for bad
performers with the exception of subject S8. Additionally, the value
of the current BCI performance preceding a BCI → JS switch was
low: 59% on average for immediately preceding trials and 68%,
averaging the performance of the four preceding trials.

The impact of the short term measures on the online car game
can be seen in Table 5. The number of possible collections was
reduced in case of detected short term measures. The resulting
missed objects were considered as left out objects for the evalu-
ation methods. On average, the short term measures were active
0.4 ± 0.5% of the time in BCI mode and 1.7 ± 0.5% of the time in
JS mode. The maximum possible score for BCI mode was reduced
by 4.2 ± 5 points and for JS mode 17.6 ± 8 on average.

4. DISCUSSION AND CONCLUSION
We developed a monitoring system which allowed the combina-
tion of two different control signal. The system is based on quality
measures that monitor signals and generate quality ratings. The
evaluation of the experiment included basically two main points.
First, we analyzed how well subjects were able to control the car
game in general. Second, the functionality of the switching system
was evaluated.

As expected after selecting average and good BCI performer,
the scores during the car game, especially when in BCI mode, had
a large variance. Also, the BCI accuracy during the online car game
was worse due to the fact that subjects had to maintain MI and
a good LDA classifier output for a longer time, as opposed to the
offline runs where we selected classifier based on the best time of
separability. Since we were also interested in how the switching
would work for a mediocre BCI signal, this was not disappointing.
In fact, the outcomes allowed us to better examine the functional-
ity of the switching system. The system was expected to always use
the best control strategy at the moment, in terms of quality rating.
We hypothesized that the signal with the best quality would also
be the one to achieve the best performance.

After evaluating the relationship between time in BCI mode and
BCI performance of the subjects, we found positive correlation
coefficients. However, only the calculation with the one outlier S8
removed showed a statistical trend with r = 0.6 (p = 0.09). How-
ever, with the low number of samples (nine subjects), statistical
significance was not expected. Analyzing all 10 subjects reduced
the correlation coefficient from 0.6 to 0.34 with p = 0.33. The out-
lier can be explained by the relatively low weighting of the classifier
bias and that other measures were not affecting the quality rating
heavily enough to induce earlier switches. The bias could affect
the performance more negatively than it was accounted for in the
beginning. Also, subject 8 had difficulties maintaining the classifier
output for the time needed to collect all the coins. This outcome
points out that measures have to be individually adjusted to each
patient and to the used application before it can be used in real
life situations. However, we only wanted to show a relatively large
number of measures, all combined in one setup. This combination
should serve as a basis for further experiments where we can use
the findings from this switching system and alter the way mea-
sures are used and add or remove individual measures and rules
for combination.

The functionality of the system can be best observed in Figure 4.
The most significant detail is the relation between time in JS and
BCI mode. JS mode was active longer for subjects with a low BCI
performance, because BCI quality dropped faster and switches
from BCI → JS were triggered more frequently. As a result there
were not only more BCI → JS switches but also switches back from
JS → BCI, because the quality of the JS signal did not have enough
time to recover. The reason why switches did not occur exactly
at the alleged 20% was that switching was only allowed between
trials; therefore, the quality often had time to change for the worse
or the better for a few seconds before the switching was actually
carried out.

The positive effect of the switching capability is demonstrated
in Figure 3. Increasing the score was possible, even after JS control
was no longer working. The weakness was deteriorating faster for
the combination of JS and BCI, 10 trials compared to 30 for “JS
only.” The period of score stagnation which ranged approximately
from 100 to 200 s was purely depending on the choice of weight-
ing for the JS quality measures. Weights of the measures which
monitored the small range of motion could be increased to force
a faster quality drop in case of weakness and therefore induce an
earlier switch to BCI mode.

On top of the individual long term quality measures to deter-
mine quality ratings, the short term measures also had a positive
effect. These two measures were strictly speaking a byproduct of
detected quality measures for BCI EMG noise and JS shaking.
When these two measures were detected, the car was forced to the
middle of the street, thereby prohibiting possible false but also
correct collections, which were in any case not reliable. For BCI
there was a higher chance that fewer or no short term measures
at all were triggered. On average, the reduction of the maximum
possible score and the activated time in BCI mode was lower than
in JS mode: 4.2 ± 5 versus 17.6 ± 8 points and 0.4 ± 0.5 versus
1.7 ± 0.5%, respectively. This was based on the fact that subjects
had the chance to produce noise-free EEG but could not avoid
the artificially induced tremor artifacts in JS mode. For possible
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Table 5 | Activation of short term measures and their consequences.

S BCI time [%] JS time [%] BCI max JS max −ΔBCI −ΔJS

1 1.4 2.2 594 → 584 846 → 817 10 29

2 0.0 1.0 420 → 420 1020 → 1013 0 7

3 0.0 1.9 666 → 666 774 → 752 0 22

4 0.0 2.3 810 → 810 630 → 609 0 21

5 0.6 1.9 696 → 690 744 → 726 6 18

6 0.9 1.6 384 → 379 1056 → 1041 5 15

7 0.0 1.7 570 → 570 870 → 850 0 20

8 0.0 0.7 810 → 810 630 → 620 0 10

9 0.7 1.2 798 → 783 642 → 636 15 6

10 0.3 2.0 570 → 564 870 → 842 6 28

Average 0.4 ± 0.5 1.7 ± 0.5 4.2 ± 5 17.6 ± 8

Columns 2 and 3 demonstrate the percentage of time when activated short term measures inhibited the control of the car in both modes. The resulting reduction of

possible collections is shown in columns 4–7.

applications with real patients, these short term measures can work
as a kind of safety mechanism that can be applied for assistive
devices to permit control only with noise-free input signals.

The main concern found in this study was the difficulty to
adjust measures, as many parameters have to be adapted to the
users’ needs in detail. Measures and weights have to be very flexi-
ble. Caregivers should be able to add and/or remove measures and
to change the weights according to different factors which are very
specific. Nevertheless, with some beforehand knowledge, techni-
cians can set up a basic selection of measures and weight ranges to
facilitate adjustment for individual usage.

Another problem of the simulation was, in fact, that it was
just a simulation. We could only assume how the control would
be affected by factors like spasms, tremors, and fatigue. Therefore,
the study should also be tested with actual patients who really have
to deal with assistive devices that might become unusable over the
time of usage as a result of real influences. Here, combining more
than one control signal should be really useful for daily activities.

To sum up, the switching approach proved to be promising for
future use in experiments with real patients. For these professional
users, fatigue and other deteriorating factors concerning assistive

devices are highly anticipated and the possibility to additionally
use BCI can improve the functionality significantly. The setup also
lends itself to be expanded. First, more signals could be combined
instead of just two. For example, sensors could be used to give more
information about the current state; EMG signals could serve as an
additional control mode. A second possible enhancement would
be to combine quality measures with a kind of fusion described in
(Leeb et al., 2011). Here, we could let the quality ratings determine
how much importance each of the used signals gets when they
are fused instead of using a discrete switches. Third, the weighting
rules can be improved to permit more feasible solutions for users.
Finally, the study should also encourage researchers to find mea-
sures based on other factors that can also serve online to detect a
bad performance, e.g., the loss of controllability (LoC; Jatzev et al.,
2008).
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Abstract Patients who benefit from Brain–Computer

Interfaces (BCIs) may have difficulties to generate more than

one distinct brain pattern which can be used to control

applications. Other BCI issues are low performance, accu-

racy, and, depending on the type of BCI, a long preparation

and/or training time. This study aims to show possible solu-

tions. First, we used time-coded motor imagery (MI) with

only one pattern. Second, we reduced the training time by

recording only 20 trials of active MI to set up a BCI classifier.

Third, we investigated a way to record error potentials (ErrPs)

during continuous feedback. Ten subjects controlled an arti-

ficial arm by performing MI over target time periods between

1 and 4 s. The subsequent movement of this arm served as

continuous feedback. Discrete events, which are required to

elicit ErrPs, were added by mounting blinking LEDs on top of

the continuously moving arm to indicate the future move-

ments. Time epochs after these events were used to evaluate

ErrPs offline. The achieved error rate for the arm movement

was on average 26.9%. Obtained ErrPs looked similar to

results from the previous studies dealing with error detection

and the detection rate was above chance level which is a

positive outcome and encourages further investigation.

Keywords Brain–computer interface �
Electroencephalogram � Error potential � Motor imagery

1 Introduction

Severely disabled people, e.g. people affected with amyo-

trophic lateral sclerosis (ALS) or high spinal cord injuries

(SCI) have almost no remaining muscular functions.

Brain–computer interfaces (BCIs) allow these people to

communicate without requiring any movement [32]. One

important application of BCIs is the control of neuropros-

thetic devices by bypassing the severed connection

between brain and limbs. Here, the BCI converts brain

signals into control signals which are transmitted directly

to the neuroprostheses.

Information can be obtained by measuring the brain

activity directly from its source, accomplished by invasive

or non-invasive techniques. Invasive techniques achieve a

better signal-to-noise ratio but require surgical operations.

A convenient way to record the brain activity is the non-

invasive electroencephalogram (EEG) [15]. Here, the brain

activity is measured directly on the skull, however,

amplitudes are smaller, the spatial resolution is poor

compared to invasive techniques and signals can be influ-

enced by artifacts caused by eye movements or muscle

contractions. BCIs can be subdivided into types based on

external stimuli and types that measure self-induced pat-

terns. Evoked potentials (EPs) are caused by external

stimuli and can be modified by switching attention between

different stimulation sources. Well-established representa-

tives are the P300 [5] and steady-state evoked potentials

[17, 20]. Both kinds can be caused by acoustic, visual, or

tactile sense stimulations. BCIs based on these EPs can

work without training [13] and can be prepared quickly,
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depending on the number of electrodes. However, users

always have to focus on the according stimuli. On the other

hand, BCIs based on self-induced brain patterns require the

user’s intent to be activated. A noteworthy example is the

event-related desynchronization/synchronization (ERD/S)

[12, 26] where relative changes in band power within

certain frequency bands are measured during tasks that

involve the motor cortex.

In spite of being very well established and investigated,

these BCIs have in common that they are not perfectly

accurate and experience showed that it can be difficult for

naive BCI users to generate patterns for more than one

class from the start. Through long training, the reliability

can improve by learning of both, the patients and the BCI

classifiers, e.g. in [14] four ALS patients were able to learn

operating a BCI with sensorimotor rhythms over 20 ses-

sions. However, this training can take a lot of time [1, 19,

27, 29]. Another approach is to use a large feature space

and complex machine learning algorithms to avoid training

[2]. However, this requires a long preparation time as up to

128 electrodes have to be attached. To overcome these

hindrances training and preparation time could be reduced

by employing simple tasks that are easy to learn and

applying only a small number of electrodes [23], and the

performance of BCIs may be increased by automatically

detecting and correcting errors.

To reduce the long training time, the mental strategy can

be kept as simple as possible. The instruction to perform

motor imagery (MI) of the right hand is easy to handle and

usually produces reliable and classifiable EEG patterns. A

time-coded MI [22, 24] approach makes the participants

concentrate on this one task, however, for varying amounts

of time.

Error correction can be achieved using error potentials

(ErrPs) [8, 30]. These potentials are time- and phase-locked

and occur after the observation of erroneous events. Until

now, four different kinds have been described in the lit-

erature: the response ErrP [3], the feedback ErrP [18], the

observation ErrP [31], and the interaction ErrP [6]. The

interaction ErrP is promising for the correction of errors

that occur during the online experiments because it is

evoked after the observation of falsely interpreted user

commands by an interface. It can be measured in the area

over the anterior cingulate cortex (ACC) which is, among

other tasks, involved in error processing [16]. ErrPs,

however, need fixed points in time to be triggered and

referenced. This makes it difficult to find ErrPs when

subjects are observing continuous feedbacks. A solution

could be to generate discrete events depending on the

current state and provide users with a combination of dis-

crete and continuous feedback. Reduced training/prepara-

tion time and error detection are investigated with a

twofold experiment: time-coded MI is used to move an

artificial arm [11] over variable distances. An expected low

MI performance resulting from the short training is

appreciated for this study to result in enough errors to

measure, since the error rate is merely depending on the

achieved performance of the subjects. The artificial arm is

equipped with LEDs to deliver discrete feedback on top of

the continuous one which is the movement of the arm

itself. The essential task of this study is to find whether the

additional discrete feedback is enough to elicit significant,

measurable potentials that might be used in the future

experiments for the online error correction.

2 Methods

The experiment consisted of two parts: a first calibration

paradigm followed by an application of the generated

classifier with active MI and concurrent continuous and

discrete feedback. The training part was kept as short as

possible because the focus was clearly on the application

part, during which the participants were asked to move an

artificial arm as precisely as possible.

2.1 Subjects, hardware, and recording

Ten subjects, all healthy and inexperienced in MI, aged

between 22 and 32 years, took part in the experiment.

There were two females and eight males.

The data were recorded with a g.USBamp (Guger

Technologies OEG, Graz, Austria). This biosignal ampli-

fier is capable of recording 16 channels of EEG which were

all used for the measurements. The Ag/AgCl-electrode

layout, following the international 10–20 system, was

designed to cover both of the expected important areas on

the scalp. These areas were the region of the motor cortex

around channel C3 responsible for the control of the right

hand and the area over the ACC at channel FCz. The

electrodes were clustered around these channels and

recorded monopolarly against a reference electrode at the

left mastoid. The ground electrode was mounted on the

right mastoid. Before recording, the impedances of

the electrodes were checked to be below 5 kX. The sample

rate was set to 512 Hz with a high-pass filter at 0.5 Hz, a

low-pass filter at 100 Hz, and a notch filter at 50 Hz.

2.2 Calibration part

The standard Graz-BCI training paradigm [28] was pre-

sented to the participants. However, only one run was

carried out to minimise the preparation time. This one run

consisted of 20 trials of rest versus 20 trials of right hand

MI. The timing of these trials was as follows: at 0 s a cross

appeared to signalise the beginning of a trial; the cue
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appeared at 2 s to either indicate MI or rest, depending on

the direction of an arrow; the arrow vanished at 3.25 s,

however, the cross still remained present until the end of

the trial which was at 7 s; after a random break between

0.5–1.5 s a new trial was started.

Immediately after the first setup run was recorded, the

data were manually checked for artifacts which were

removed before continuing evaluation by calculating

ERD/S maps [10] to find the most promising features.

These time–frequency maps plot the averaged relative band

power changes compared to a reference period before each

trial over time and frequency bands to show differences

between active motor tasks and rest periods. The most

pronounced features, which were band powers of certain

frequency bands at particular channels, were then used to

generate a linear classifier based on LDA [9]. During the

following online measurements this classifier was used to

discriminate between active MI and rest.

2.3 Application part

The application part consisted of eight runs, 20 trials each.

One trial was split into two segments: the MI segment and

the observation segment. In the MI segment a target

appeared on the screen which told the participants how

long they were required to perform MI. The observation

segment provided delayed feedback in terms of a moving

artificial arm. Here, the subjects were asked to passively

observe the movement which should last as long as they

were required to perform MI during the preceding segment.

This segmentation with a delayed feedback after active MI

ensured that the subjects were not distracted from observ-

ing the blinking LEDs.

At the beginning of the MI segment a red digit on the

screen informed the subjects of the time they should per-

form MI. This target was either 1, 2, 3, or 4 s. After a break

of 1 s, the digit turned green and a bargraph started to fill

continuously. A grid indicated the lapse of time in the

second-long steps. The bargraph always took 5 s to fill

completely. However, subjects should only perform MI for

the currently required amount of time, depending on the

previously presented target. Thus, the bargraph’s sole

purpose was to point out how much time already had

passed.

As soon as the bargraph was full, another 1-s break was

initiated after which the observation segment began. Here,

the participants had to slightly shift their vision to the side

where an artificial arm was beginning to move exactly as

long as the MI was detected during the 5-s period in the

preceding MI segment. Figure 1 shows the whole setup and

what the subjects were viewing during the different

segments.

The aim of the observation segment was to evoke ErrPs

whenever the arm would move too long or too short. Since

ErrPs can only be triggered after certain discrete events the

continuous movement alone was not adequate. Hence, a

white and a red LED were mounted on top of the artificial

arm to generate discrete events. These LEDs were set to

4

MI Observing4

4

4

(a) Setup scheme

(b) Picture of the setup, MI (c) Picture of the setup, Observing

Fig. 1 Setup of the application

part of the experiment. A first

active MI segment, where the

movement time of the artificial

arm was determined by the

length of the performed MI

time, is followed by an

observation segment during

which ErrPs were evoked with

LEDs
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blink with a frequency of 1 Hz to indicate the future

events. The white LED indicated that the movement would

last at least 1 s longer, whereas the red LED preceded a

stoppage within the very second. This encoding always

resulted in a certain sequence of flashes where only one

sequence was correct, according to the current target. The

target was the time MI had to be maintained during the

preceding MI segment. Subjects were instructed to perform

MI at least as long as the number indicated but not longer

than the next higher number; i.e. a target of three required

MI to be maintained between 3 and 4 s. When the same

target of 3 s was correctly detected, this was indicated with

a sequence of three white flashes and one red flash. Any

discrepancy from this correct sequence should elicit ErrPs.

Therefore, it was necessary that the users were aware of

which sequence was the correct one before the arm started

to move. This was easily accomplished, given the small

number of different possible outcomes with only four

possible targets.

As soon as the artificial arm stopped, another break of 1

s was started and the next trial could begin by presenting

the next target to the subject.

2.4 Analysis

An offline analysis was conducted to find out how well

reactions to errors could be distinguished from correct

observations. Here, spatial and temporal filters were

applied on the data, namely, large Laplacian derivations

around FCz and a bandpass between 0.5 and 10 Hz.

Afterwards, windows of 1 s following the relevant LED

flashes were cut out and arranged into the two classes

‘error’ and ‘correct’. Averaging the EEG for both obser-

vations of correct and erroneous blinks produced two

waveforms. The difference of these, the error-minus-cor-

rect waveform which is the standard definition of the ErrP,

was calculated to represent the ErrP and compared with

results of the previous studies. Within the 1-s time window

a discriminant power (DP) algorithm [7] was used to find

out the best features which were points in time in this case.

These features were used to generate an LDA classifier

which was tested with a 10 9 10 cross validation.

The performance of the MI task was evaluated by

examining how precisely the target times could be reached

with the time-coded MI by the individual subjects. Different

narrow time windows enclosing the target time ranges were

analysed: target time range ± 0, 0.5, and 1 s. These win-

dows were chosen to show whether subjects could perform

the time-coded MI exactly as long as required or at least

miss the target only by ±0.5 or ±1 s. The most narrow

range for a target time of 2 s ðttarget ¼ 2Þ would therefore be

between 2 and 3 s ðttarget � 0; ttarget þ 1þ 0Þ; this was

exactly as the task demanded: ‘‘perform MI for at least the

target time but not longer than the next higher number’’.

The widest window was between 1 and 4 s ðttarget � 1;

ttarget þ 1þ 1Þ: Afterwards, an offline simulation with the

ErrP detection and correction was conducted that took into

account the measured ErrP detection rates, which were

acquired offline, and a number of selected values. Here, the

point was to determine from which detection rate an online

application of error correction would be feasible to increase

the overall performance. The simulation recognised ErrPs

with the accuracy A and misclassified correct LED flashes

with 1 - A. A detected ErrP after a red LED blink would

increase the length of the movement; without correction the

movement would stop within 1 s after the red blink. An

ErrP after a white LED would abort the movement; without

correction the movement would continue.

3 Results

3.1 Calibration part

Eight out of ten subjects were able to produce a visible MI

pattern, found in the ERD/S maps of the recorded EEG,

after only one run. Two subjects were asked to try another

run which was improving the pattern for one of them. For

the remaining participant with bad results a feature was

chosen anyway, however, not a very well-pronounced one.

The expected low-online MI performance was accepted

because triggering ErrPs should still be possible.

3.2 Application part

Here, two different outcomes are interesting: (1) the per-

formance of the active MI control of the artificial arm, and

(2) the activation and detection of ErrPs.

During the measurements, most of the users had the

impression that they could control the artificial arm.

However, one subject was excluded from all further cal-

culations because he misunderstood the goal of the

experiment. Coincidentally, this subject was the one with

the worst ERD/S patterns. The average performance

describing how well target times were reached, and all the

subject-specific rates for differently long time periods are

shown in Fig. 2 and Table 1. Figure 3 shows the ERD/S

maps for the four different target times for one exemplary

subject S9. According to the actual target, the elicited LED

blinks could either be correct events or errors, depending

on whether the target time was reached, exceeded, or not

even reached. Blinks were assigned to be correct as long as

there was no deviance from the expected flashing

sequence; erroneous blinks resulted from too long or too
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short movements. By comparing the frequency of occur-

rence of these blinks an error rate could be obtained. The

averaged error rate of all the subjects was 26.9%. The

particular error rates are demonstrated in Table 2.

The results of the classification of erroneous versus

correct blink reactions after the cross validation can be seen

in Table 3. The shown accuracies describe the percentage

of correctly classified observations. These classification

accuracies were used for the simulation. Figure 4 demon-

strates the effect of applied error correction. Only the results

for the most narrow time window are shown (time ± 0).

The straight line shows the performance without error

correction, the other line shows the effect of applied error

correction with different error detection rates. The entry at

62.6% stands for the mean value of the calculated accura-

cies for each subject, the other values were increased

stepwise from 50–100% to give an impression of how the

performance changes for different error correction accura-

cies. Each subject’s error detection rates were applied

individually. Not the averaged value of 61.3% was used but

the according values visible in Table 3. The outcome was

again averaged for better comparison in Fig. 4. The error-

minus-correct waveform—the ErrP—which was measured

over FCz with a Laplacian derivation is shown in Fig. 5

for all the subjects, except the one rejected. The thin

lines represent each subject’s averaged reaction differ-

ences, whereas the thick line is the average over all these

ErrPs.

4 Discussion

The concurrent use of continuous and discrete feedback

was a first approach to use error detection in applications

that are not entirely depending on discrete choices. The

experiments were able to demonstrate a possibility of how

to provide a simple control strategy that requires only one

active class and almost no training time. Most of the sub-

jects could move the artificial arm via the time-coded MI.

However, it was difficult for the participants to reach the

requested target times precisely. Still, all but two users

referred to the control as functioning and had the impres-

sion of being in control. The used paradigm consisted of

four different targets and a zero class where no target at all

was reached. According to [21] the chance level for a

5-class BCI with 160 trials is 25.6%. This value was

exceeded by 5 out of 9 participants. Target times 2 and 3 s

were difficult to reach for the participants as the required

times to perform MI here were very similar and it was

harder to estimate how long MI was performed already.

Target time 1 s needed only a short activation and for

reaching 4 s the subjects simply tried to keep up the

imagination over the whole time the bar graph was filling.

Also, it was not a problem when subjects continued to

maintain MI even when the full 5 s had already passed. In

summary, the conclusion emerged that this kind of staged

control is not easy to handle for users. However, the main

goal was not to achieve a perfect score but to give the

subjects the feeling that they really were under control but

still to evoke a reasonable amount of erroneous events.

Also, the low initial accuracy served as a good example to

show how a good error detection rate could improve the

results. The low error ratio was ideal for the experiment in

two ways: (1) it was still high enough to produce enough

erroneous events for later analysis, (2) errors occurred

rarely enough to elicit strong ErrPs, as the ErrP is said to be
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Fig. 2 The results of the MI part, averaged over all the participants.

Each box presents the median (central horizontal lines) and the 25th

and 75th percentiles (edges of the box) of the detected MI times

(reached time) for the four different targets 1, 2, 3, and 4 s

Table 1 Particular MI results for nine subjects

MI results (%)

S1 S2 S3 S4 S5 S6 S7 S8 S9 Average

t ± 0 23.8 13.8 32.5 28.8 21.9 26.3 14.8 31.9 36.9 25.6 ± 8

t ± 0.5 48.1 31.9 49.4 51.3 43.8 43.8 26.9 56.3 60.0 45.7 ± 11

t ± 1 72.5 53.8 71.9 73.8 68.8 65.0 48.1 76.9 80.6 68.0 ± 11

The results are shown for three different narrow time periods. The values show how well all target times from 1 to 4 s were reached on average
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reciprocally proportional to the frequency of errors [4]. The

shape of the resulting waveform of the recorded ErrPs

looks similar to the interaction ErrP [6] which is caused by

falsely interpreted and executed commands by an interface.

The noticeable difference is that the waveform seems to be

Table 2 Particular error rates

for nine subjects

The numbers describe the

percentage of erroneous LED

flashes, calculated on the basis

of the actual context

Subjects Error rate (%)

S1 26.5

S2 35.5

S3 22.4

S4 22.6

S5 29.7

S6 27.2

S7 35.6

S8 20.1

S9 22.2

Average 26.9 ± 6
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Fig. 3 ERD/S maps of subject

S9 who achieved the best results

concerning the reaching of time

targets. Here, the length of the

ERD is clearly increasing with

higher target times. The feature

used to detect this subject’s MI

was the band power of the

frequency band between 8 and

14 Hz

Table 3 Particular accuracies

for nine subjects

The values describe the number

of correctly classified erroneous

and correct blink reactions

Subjects Accuracy (%)

S1 57.3

S2 61.2

S3 64.7

S4 63.7

S5 61.4

S6 56.3

S7 62.0

S8 60.4

S9 65.7

Average 61.4 ± 3.1
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MI Performance with variable ErrP detection rates
MI Performance without ErrP correction

Fig. 4 Different classification accuracies and their effect on the MI

performance for the most narrow time period ðttarget � 0; ttarget þ 1þ
0Þ for all subjects. The achieved ErrP accuracy of the recorded data is

61.3% on average. Simulations showed that from an accuracy of 70%

the performance starts to increase. The initial MI performance without

error correction is visualized by the horizontal line
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delayed for about 200 ms, which could be caused by the

more complex processes involved in the generation of the

feedback. This possible explanation is also backed in [4]:

‘‘... the larger the difference between the representations,

i.e. the easier the error is to be detected, the larger and/or

earlier the Ne (and sometimes the Pe)’’. Here, Ne is

referring to the error-related negativity, also ERN, Pe

represents the positive component after error recognition.

The chance level for detection of correct events and

errors is depending on the number of trials which was not

the same for each subject. The value was on average 54.2%

and could be passed by all of the subjects. Nevertheless, the

results were not good enough to be feasible in an online

application, which has been found with the offline simu-

lation of online error correction. Reasons for the low

detection rates might be the low number of electrodes and

the too highly concentrated placement around the allegedly

important areas. Future experiments will have to deal with

these problems by applying more than 16 electrodes and by

using a uniform distribution over the whole scalp to allow

common average reference (CAR) as a spatial filter and to

include other regions that may have a beneficial effect on

the classification. The CAR should prove useful as it sup-

presses potential noise sources that affect multiple elec-

trodes and on the other hand accentuates signals which can

only be recorded on small areas. Further, it would be

interesting to include more posterior regions of the brain,

as suggested in [25]. Here, later positive components of

ErrPs were found to be generated in regions that allow

measuring over Cz and even Pz. The downside here is that

more electrodes would mean a step back from BCI use in

daily life. Therefore, increasing the number of electrodes

should only be used for fundamental research about ErrPs.

The simulation of the application part with applied error

detection and correction indicated when the usage of ErrP

detection would be feasible for online applications. It was

shown that from an error versus correct classification

accuracy of more than 70% the performance of the MI

could improve theoretically, target time windows could be

reached with a higher percentage. However, the problem

with error correction in this particular case is that espe-

cially longer target times are influenced negatively by

misclassifications. It is more difficult to pass through a

longer row of correct blinks without falsely classifying an

error. Therefore, for a reasonable applicability, even higher

accuracies should be aimed for. Furthermore, the simula-

tion was based on the actual MI performances achieved by

each participant. A better performance level would result in

more positive blinks and a reduced need for error correc-

tion, again, decreasing the positive effect of applied

correction.

This study showed that ErrPs can be recorded during the

presentation of a continuous feedback, as long as occa-

sional discrete events are used to trigger the time- and

phase-locked ErrPs. Although the obtained accuracies for

detection of correct and false events were not enough for

online applications, the fact that ErrPs can be evoked and

measured during continuous feedback might be useful for

the future experiments. Here, it will be necessary to find

solutions that integrate discrete events into applications

that have a practical use for BCI users. Many studies

dealing with ErrPs have adapted paradigms which are

optimal for evoking ErrPs but have no further applicability.

The other way, which was intended to be demonstrated

with this study, would be to use practical applications and

to check how ErrPs can be added in the best way.
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A.3. Neuroprosthesis Control via a Noninvasive Hybrid
Brain-Computer Interface [158]

This publication is part of a special issue called “The Convergence of Machine
and Biological Intelligence” in IEEE Intelligent Systems. Authors listed before
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provided by Alex Kreilinger, Martin Rohm, Vera Kaiser, Robert Leeb, Rüdiger Rupp,
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and carried out the experiments with the one end-user and the healthy subjects. Vera
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control in general. Rüdiger Rupp and Gernot R. Müller-Putz supervised planning,
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two point processes pi and pj, define 
the inner product between their con-
ditional intensity functions as
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where l(t|H) is the conditional inten-
sity function. This inner product defines 
a family of cross-intensity (CI) kernels 
depending on the model imposed on 
the PP history Ht. We can illustrate the 
procedure with a simplifying assump-
tion. If the PP belongs to the Poisson 
family, the conditional becomes the in-
stantaneous intensity function and the 
inner product simplifies to

I p p t t dti j p p
T i j

( , ) ( ) ( )= ∫ λ λ , (2)

which is the simplest of the CI 
kernels, the memoryless kernel (mCI). 
One (among many) nonlinear cross 
intensity kernel (nCI) can be defined as

I p p t t dti j p p
T i jσ σκ λ λ* ( , ) ( ( ), ( )) ,= ∫  (3)

where k is a symmetric positive defi-
nite kernel, which captures nonlinear 
couplings in the time structure of the 
intensity functions (such as in renewal 
processes). Besides providing a bottom- 
up way of defining the reproducing 
kernel Hilbert space (RKHS), the ad-
vantages of the CI family include the 
simplicity of estimating the kernel 
from spike train data, for instance, by 
using an exponential smoothing func-
tion at each spike event location.7 This 
kernel becomes a Laplacian and has a 
free parameter q that controls the in-
ner product. In a sense, the free pa-
rameter is a continuous variable that 
links spike timing and rate methods—
that is, if the kernel is narrow, the 
transformed events don’t overlap a 
lot in time, and we get our spike time 

estimates. If we use a broader kernel, 
there will be overlap between many 
transformed spikes, and the results are 
more in tune with the rate methods. 
More importantly, we obtain a clear 
mathematical view of the two types of 
processing, showing that indeed they 
only differ in the definition of the simi-
larity metric in the RKHS (that is, the 
inner product). We can estimate nCI in 
the same way, using one of the conven-
tional symmetric positive definite func-
tions such as the Gaussian function, 
which will provide nonlinear mixing 
between the intensity functions. 

Once the spike trains are  transformed 
into RKHS functions using the mCI (or 
nCI) kernels, we can operate with them 
using our toolset of signal-processing 
algorithms because they now exist on 
a Hilbert space, a linear space with a 
well-defined inner product. Possible ap-
plications include new statistical tests 
for stationarity detection, projection of 
spike trains in  principal  components, 
clustering and classification, and adap-
tive model building for prediction and 
control.6 In  particular, the recently in-
troduced kernel adaptive filtering 
(KAF) methodology for time-series 
analysis9 can be directly  applicable. 
This is an example of the appeal 
of spike kernels: KAF algorithms 
 previously developed for  continuous 
amplitude time-series  modeling can be 
applied without any modification to 
the spike kernels we just defined. 
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 residual muscular activity. Over the 
past decade, noninvasive electroen-
cephalogram (EEG)-based BCIs have 
matured to a stage where they can be 
applied to end users in their homes. 
Portable hardware is commercially 
available, and personal use is now pos-
sible without onsite expert assistance. 

However, noninvasive BCIs inher-
ently have a low signal-to-noise  ratio 
(SNR) and poor spatial resolution, 
 resulting in moderate performance 
and low information transfer rate. 
These disadvantages can be over-
come by a novel approach called hy-
brid BCI (hBCI). An hBCI integrates 
the BCI output with other signals 
originating from biological sources as 
well as technical sensors. A success-
ful example of such an hBCI is the 
control of an upper extremity neuro-
prosthesis. Healthy subjects and one 
end user with a high-level spinal cord 
injury (SCI) were able to control el-
bow and hand movements with BCI 
commands, supported by input from 
an angle sensor and a shared control 
logic. hBCI represents a promising 
technology for enhancement of BCI-
controlled applications.

Background
Brain stem stroke, amyotrophic lat-
eral sclerosis, and SCIs lead to severe 
motor impairments that reduce the 
capability of those affected by them 
to communicate or interact with their 
environment. For example, SCIs with 
a lesion above the fifth cervical ver-
tebrae leads to an impairment of up-
per extremity function in particular. 
 Assistive technology supports these 
individuals by compensating for re-
strictions in motor function; neu-
roprostheses1 based on functional 
 electrical stimulation (FES), for ex-
ample, can partially restore lost upper 
extremity function. Motor points in 
the vicinity of the desired innervated 
muscles are stimulated with  electrical 

currents to elicit contractions. This 
stimulation’s strength and pattern can 
be modulated by any type of analog 
control signal that can originate from 
preserved residual functions. How-
ever, for users with higher injury lev-
els, the number of functions available 
for control purposes decreases with 
an increasing number of functions to 
be restored. Ultimately, only signals 
directly generated in and recorded 
from the brain remain available, in-
troducing the need for BCIs.2 

BCIs transform signals from the 
brain, either through hemodynamic 
or bioelectrical activity, into con-
trol signals for applications such as 
spelling software, neuroprosthesis, 
and environmental control. By the 
willful modulation of brain activ-
ity, a user can control his or her in-
dividualized application. The most 
common BCIs are based on changes 
in electrical activity caused by  firing 
neurons. These BCIs differ in the 
number of collectively measured 
neurons and recording technique— 
specifically, single or multi- neuron  
recordings, electrocorticogram (ECoG), 
and electroencephalogram (EEG). The  
first two invasive techniques require 
electrodes penetrating into the brain’s 
region of interest or placed directly 
on the exposed cortex, respectively. 
Electrical brain activity can be mea-
sured noninvasively by EEG. Its 
downside is a lower spatial resolu-
tion because electrical sources are 
farther away from the sensors, caus-
ing larger conducting effects. More-
over, signals are heavily attenuated 
when recorded through the skull. 
These factors amount to a reduced 
SNR compared to invasive systems. 
Still, EEG offers vital advantages: 
hardware is commercially available, 
it can be applied in the user’s home 
without the need for onsite assis-
tance, and the equipment can be 
portable.3

Even though EEG-based BCIs can 
be used for daily applications in a 
real-life environment, some open is-
sues remain to be solved before 
achieving market maturity. BCIs 
still must be configured, sometimes 
adapted and set up for individual us-
ers by experienced professionals. Elec-
trodes must be applied carefully on 
the head, requiring a kind of cap to 
fix positions. Wet electrodes still need 
to be mounted with electrode gel to 
reduce the SNR. Therefore, the most 
important goals for researchers are, 
first, to increase the signal-processing 
methods’ reliability and adaptability 
and, second, to develop comfortable 
dry electrode systems that acquire 
brain signals as reliable as wet elec-
trodes. In addition, BCI software must 
be designed to allow for easier config-
uration and adaptation, ideally via re-
mote support.

Assuming these issues will be solved, 
the problem of large distances be-
tween sensors and source persists and 
cannot be overcome noninvasively. A 
novel approach is to use BCIs with all 
their restrictions in terms of reliabil-
ity and low information transfer rate 
as one additional component of a user 
interface. BCIs can be especially valu-
able if used together with other sig-
nals or if guided by context-sensitive 
decision making based on the envi-
ronment. hBCI4 describes a situation 
where the BCI is not used merely as a 
stand-alone application but instead is 
combined with other kinds of signals. 
These signals can be additional bio-
signals, signals generated by residual 
muscular functions via assistive de-
vices, signals from technical sensors, 
or even signals from other BCIs. More-
over, fusion mechanisms and shared 
control help define which input sig-
nals are used and how. Fusion, for ex-
ample, can distribute weights to input 
channels. These weights can be binary 
to switch channels on/off as well as 
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analog to combine inputs with varying 
degrees. Shared control analyzes infor-
mation from the environment and the 
current state and allows for a context-
based control. This facilitates safe and 
reasonable operation and prohibits 
dangerous or useless actions.

The involvement of BCI channels 
depends on the number and  quality 
of other available signals and the type  
of application. BCI represents an 
 optional input when other reliable 
 signals for control are available. How-
ever, with a decreasing number of 

 residual muscular functions, the con-
trol may increasingly rely on the BCI. 
BCIs can also be a backup solution 
as soon as other channels deteriorate 
due to fatigue or other performance-
decreasing factors. A general rule for 
setting up any assistive device (in-
cluding hBCIs) is a user-centered de-
sign: the system has to be designed  
according to the very specific user 
needs and abilities.

Hybrid BCI for 
Neuroprosthesis Control
The hBCI concept, with the BCI being 
the main input modality, is exemplar-
ily demonstrated in the control of an 
upper limb neuroprosthesis based on 
FES. The hBCI incorporates an added 
input through a sensor monitoring the 
elbow joint angle and a shared con-
trol logic to interpret BCI commands 
in the context of the actual elbow 
joint angle. Nine healthy subjects and 
a male user with a complete SCI at the 
level of C5 took part in the study.

In the first session, participants 
trained imageries of movements of 
their right hand or feet. EEG electrodes 
placed over the motor  cortex recorded 
the generated time- frequency patterns. 
Later, these patterns were classified 
online and used to control the neuro-
prosthesis by performing short or long 
motor imagery (MI).5 The neuropros-
thesis consisted of FES electrodes to 
stimulate lower and upper arm mus-
cles and an electrically lockable elbow 
orthosis that included the angle sensor. 
Healthy subjects, as opposed to the 
user with SCI, controlled the arm of 
a second person to avoid stimulation-
induced afferent feedback. This sec-
ond person was not visible; instead, a 
video showing the person’s right arm 
from his or her point of view was 
streamed to the feedback monitor in 
front of the subject. Figure 4 shows the 
scheme and a picture of the setup for 
the SCI user.

Figure 4. Working with a neuroprosthesis. (a) The scheme shows the setup for a user 
with a spinal cord injury (SCI). In the hybrid brain-computer interface (hBCI) block, 
EEG-based motor imagery commands and sensory information are fed to a shared 
control that interprets commands according to the neuroprosthesis’s position. 
Appropriate commands are sent to visual feedback. (b) The user with SCI performs 
the experiment. (FES = functional electrical stimulation; MI = motor imagery.)

(a)
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Over the course of 10 sequences, 
participants could trigger discrete 
commands with short MI (approx-
imately one second) or continu-
ous commands that started when 
MI was detected for more than 1.5 
 seconds and lasted as long as MI 
continued. Long commands con-
tinuously moved the arm into the 
 direction furthest away from the 
current position; a short command 
opened or closed the hand when the 
arm was fully flexed or extended, or 
moved the arm to the nearest end 
position. When the elbow was sup-
posed to flex or extend, a control 
loop was initiated within the FES 
device that adapted the stimula-
tion strength until the desired angle 
was reached. As soon as the posi-
tion was reached and the continuous 
 command was ended, the position 
was locked mechanically. 

All participants performed 10 active 
sequences with a time limit of three 
minutes each, separated by one-minute 
break sequences when false-positive 
(FP) commands were counted. Five 
subjects in total, including the user 
with SCI, were able to complete more 
than half of the sequences. The aver-
age true positive rate was 60.1 percent, 
depending on the commands triggered 
based on the actual state and target. Al-
together, 55.5 percent of all sequences 
were successfully completed. On aver-
age, 8.2 commands/minute were trig-
gered during sequences, as opposed to 
4.7 FP/minute during breaks.

Some study participants had diffi-
culties with time-coded MI, resulting 
in moderate performance: some main-
tained MI for longer periods of time but 
found it relatively hard to stop quickly, 
whereas others were hardly able to 
perform MI long enough to start the 
continuous elbow movements. The 
user with SCI  accomplished the sec-
ond best true positive rate,  indicating 
that people with motor impairments 

can achieve a performance at least in 
the range of non-impaired subjects. 
The degrees of freedom of control and 
the performance could be increased by 
introducing additional context-specific 
classes or external signals, but these 
extensions must be carefully defined 
on the basis of the individual physical 
and mental capabilities and the needs 
of potential users. BCIs still have to be-
come more accessible, especially for us-
ers who could see a real benefit from 
customized assistive technology in their 
homes. 

The hBCI concept extends the pos-
sibilities of BCIs being used not just 
as a stand-alone system but as an in-
tegral component of an  individualized 
assistive technology solution. The ap-
plication of BCIs could be broadened 
if combined in a meaningful way with 
other reliable control signals, but it is 
difficult to generalize this approach 
because special needs and abilities can 
strongly vary between each user. A 
user-centered design is therefore cru-
cial to find the most viable application 
of a BCI and to further increase the 
usefulness of BCIs as a control modal-
ity in general. Aside from being used 
for control of assistive devices, hBCIs 
can also be of value in the field of re-
habilitation for restorative therapeutic 
applications.
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Single versus Multiple Events Error Potential
Detection in a BCI-Controlled Car Game with

Continuous and Discrete Feedback
Alex Kreilinger, Hannah Hiebel, and Gernot R Müller-Putz Member, IEEE

Abstract— Objective: This work aimed to find and evaluate a
new method for detecting errors in continuous brain-computer
interface (BCI) applications. Instead of classifying errors on
a single trial basis, the new method was based on multiple
events analysis to increase the accuracy of error detection.
Methods: In a BCI-driven car game, based on motor imagery
(MI), discrete events were triggered whenever subjects collided
with coins and/or barriers. Coins counted as correct events,
whereas barriers were errors. The new multiple events method
combined and averaged the classification results of single events
and determined the correctness of MI trials, which consisted
of event sequences instead of single events. The benefit of this
method was evaluated in an offline simulation. In an online
experiment the new method was used to detect erroneous MI
trials. Such MI trials were discarded and could be repeated
by the users. Results: We found that, even with low single
event ErrP detection rates, feasible accuracies can be achieved
when combining multiple events to distinguish erroneous from
correct MI trials. Online, all subjects reached higher scores
with error detection than without, at the cost of longer times
needed for completing the game. Conclusion: Findings suggest
that ErrP detection may become a reliable tool for monitoring
continuous states in BCI applications when combining multiple
events. Significance: The paper demonstrates a novel technique
for detecting errors in online continuous BCI applications which
yields promising results even with low single trial detection rates.

Index Terms—brain-computer interface (BCI), continuous
feedback, electroencephalogram (EEG), error potential (ErrP)

I. INTRODUCTION

REsearch on Brain-computer interfaces (BCIs) based on
electroencephalography (EEG) is still attracting an ever

increasing number of investigators, although the term was first
coined in 1973 [1]. A main focus of the work today is to
make these BCIs more practical for potential end-users. This
objective requires easy-to-use applications which are stable
over time and can guarantee reliable and accurate performance.
One way to improve the performance of BCIs is to carry out
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long-term training to increase proficiency. Unfortunately, this
is not guaranteed to work for each individual end-user [2],
[3], [4], [5], [6]. The long training time can successfully
be reduced by using a large feature space and machine
learning techniques. However, equipping an increased number
of required electrodes can be time-consuming as well [7].
BCIs can also be designed to adapt to the user with so-called
adaptive BCIs [8].

Another possibility to increase the performance is to auto-
matically detect errors from recorded brain waves after reac-
tions to particular decisions and thereby permit the BCI system
to either correct or inhibit erroneous commands. Distinct errors
committed or observed by a person cause detectable potentials,
so-called error potentials (ErrPs) [9], [10]. Depending on the
way these potentials are generated they are defined as either
observation [11], feedback [12], response [13], or interaction
ErrPs [14]. Interaction ErrPs can be detected at the region
over the anterior cingulate cortex (ACC) [15] and can be
measured after a person witnesses a false execution of an
intended command. From the user’s perspective, an interaction
ErrP occurs whenever a command was misinterpreted by the
control interface used. In contrast to the other types of ErrPs,
which either do not require the involvement of the user or
do not emerge in self-paced scenarios, the interaction ErrP
seems to be the best choice for increasing performance in BCI
applications for end-users.

These interaction ErrPs can be used to increase the perfor-
mance of BCIs by detecting specific reactions to errors that
differ from reactions to correct events. False actions can be
inhibited which leads to increased accuracies of BCI-driven
systems. Several studies have already mentioned the technical
capabilities of error correction for various paradigms [16],
[14]. The paradigms used in these experiments have in com-
mon that they are designed to work well for ErrP processing.
That is, in a discrete feedback, time- and phase-locked ErrPs
can be detected by evaluating time periods after discrete
events. However, modern BCI applications are no longer lim-
ited to discrete applications where only one discrete decision
can be made at one given point in time. Instead, continuously
controlled applications gain importance as they offer a more
natural implementation of BCI for activities of daily living.
Relevant examples are a continuously moving wheelchair
for mobility [17] or a neuroprosthesis for grasp and elbow
functions [18]. Other useful scenarios can be the application
of BCIs in games [19] or in virtual reality [20].

An attempt to detect errors offline in a continuous feedback
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application has already been made in [21] by using a space
game. However, the game was controlled manually and not
using BCI and instead of EEG the authors chose to use elec-
trocorticography (ECoG). Errors could be caused by forced
deviations from the intended movement or by collisions with
obstacles. These errors could be detected above chance level
within a 6 s window around the event. A replication of the
study with EEG was conducted by [22]. Here, errors were
detected by using temporal and spectral features in time- and
phase-locked and asynchronous analyses. The asynchronous
analysis achieved results above random but was still inferior
to the time- and phase-locked approach. Moreover, analysis
was carried out with offline data only.

This study aimed to find and evaluate a feasible method
to use ErrP detection in continuous applications online. The
time- and phase-locked nature of ErrPs needed for analyzing
temporal features was exploited by showing discrete feedback
on top of ongoing continuous feedback. This study serves as a
follow-up to [23] where this approach was already addressed:
A continuous feedback in form of a moving artificial arm
was coupled with additional discrete events as triggers and
ErrPs were successfully found in offline analysis. However,
the accuracy for single trial detection of these ErrPs was not
sufficient to be feasible in online applications.

In this work we demonstrate a new method that can be
used in continuous BCI applications without relying on single
trial error detections. In a continuous, BCI-driven car game
based on motor imagery (MI) [24] subjects observed multiple
discrete events while moving the car continuously. Although
each single event (SE) was classified individually, a decision
was only reached after a series of multiple events (ME) were
witnessed by the users. This new method is termed the ME
method, whereas the old standard method based on single
trials, or in this case events, is referred to as the SE method.

In the course of the experiments we also analyzed the impact
of different types of feedback: visual feedback alone versus
visual and acoustic feedback.

II. METHODS

This work describes a series of experiments and analyses.
These include sessions for training MI, a car game controlled
continuously with MI, analyses to detect ErrPs after observing
discrete events, simulations with the new method based on
multiple events, and a session where the new method is used
to determine false actions in the car game online. The order
in which these experiments and analyses were carried out is
outlined in Fig. 1.

Subjects, Hardware, and Recording

Five female and five male subjects (24.9±2.3 years) par-
ticipated in the study. All subjects had previous BCI ex-
perience and were reported to be able to control MI-based
BCIs. They were selected intentionally to reduce long initial
BCI training time in order to not unnecessarily drain their
concentration level. Data was recorded with two g.USBamps
(Guger Technologies OEG, Graz, Austria). The 32 Ag/AgCl-
electrodes were placed on the scalps of the subjects according

Fig. 1. Order of the experiments and analyses. Experiments with the subjects
were divided into two sessions on different days. Subsequent analyses were
carried out with data collected during these experiments.

to a dense 10-20 system. Thereby, all of the important regions
for MI (C3, Cz, C4) and ErrP detection (the area over the
ACC at channels Fz and Cz) were covered. All channels
were monopolar recorded with a reference electrode at the
left mastoid and ground on the right mastoid. The sample rate
was set to 512 Hz with a high-pass filter at 0.5 Hz, a low-pass
filter at 100 Hz, and a notch filter at 50 Hz.

A. Training of Subjects and Calibration of MI Classifiers
1) Experiment Setup: The first part of the experiments

was conducted to train the subjects in using a BCI and to
subsequently calibrate MI classifiers. Two to four training
runs with the standard Graz-BCI paradigm [24] were carried
out. Subjects were asked to perform MI of the two required
classes (right hand vs. both feet), in total 20 trials per class in
each run. One trial lasted 7 s: appearance of the cross at 0 s,
appearance of the cue at 2 s, disappearance of the cue at 3.25 s,
and end of the trial with the disappearance of the cross at 7 s.
Subjects were asked to maintain active MI between 3.25–7 s.
As a rule, only two runs were carried out. However, subjects
who produced a noticeable amount of noisy trials were asked
to repeat one or two runs.

2) Analysis: All 32 electrodes were used to perform com-
mon average reference (CAR) spatial filtering. The relevant
channels for this filtering were at electrode positions C3, Cz,
and C4. ERD/S maps [25], [26] were used to visualize distinct
patterns. The patterns were based on variations of band power
in certain frequency bands related to active MI. Based on the
maps, the best frequency bands on channels C3, Cz, or C4
were selected. Per subject, 1–3 frequency bands were selected
by this means. These frequency bands were situated mainly
in the alpha (8–12 Hz) and beta (13–30 Hz) range on channel
C3. The best point in time was found with a 10×10 cross-
validation which was repeated in steps of 100 ms within the
active MI period (3.25–7 s). This point in time was used
to generate the final individual linear discriminant analysis
(LDA) classifier for each subject.

B. Online Car Game without ErrP Detection 1
1) Experiment Setup: The generated classifier from training

data (Section II-A) was applied to let subjects control the
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movement of a car in a game. The car was moving at a constant
speed on a vertically scrolling street. Subjects could move
the car to the left by performing feet MI and to the right by
performing right hand MI. Control was active all the time, not
just in predefined periods of time. The car continuously moved
farther away from the center the more distinctly the current
MI task was detected by the classifier which was represented
by the amplitude of the classifier output. However, the car’s
movement was limited by the outermost lanes. Coins appeared
randomly on the left or the right side of the street. For each
coin appearing, a barrier appeared on the opposite side of the
street. Coins were defined as targets and subjects were asked
to collect as many as possible while avoiding barriers in the
process.

The game consisted of six runs with 20 trials left (coins on
the left side) versus 20 trials right (coins on the right side).
One of the subjects, S04, had to stop after four runs caused by
fatigue and lack of concentration; the others performed in all
six runs. During each trial a maximum of four coins could be
collected, but also the same number of barriers on the opposite
side. The side of the coins and barriers remained constant
within a trial. A mixed collection of objects was possible when
the MI performance during the trial was unstable, e.g., two
coins on one side followed by two barriers on the other side.
Coins and their associated barriers appeared at intervals of one
second. In total a trial lasted 8 s beginning with the crossing
of a starting line at second 0, followed by collectible objects
at seconds 3, 4, 5, 6, and ending with the crossing of the
finishing line after 8 s. All these events appeared 4 s earlier
on the top of the screen. That is, the vertical scrolling speed
was set in such a way that the car needed 4 s to reach new
objects on the street. Thereby, subjects were able to prepare
for oncoming events.

The paradigm allowed a maximum collection of 960 coins
within all six runs. Each time a coin was collected, the score
increased by +1 and decreased by −1 when colliding with
a barrier. However, negative scores were not possible. The
minimum score was limited to zero in order to not discourage
the subjects. Every collision with a coin or a barrier was
confirmed by a short feedback event. The impact of the type
of feedback was examined by testing two different modalities.
Half of the runs were recorded with acoustic (short beeps with
differently high frequencies) and visual (temporarily increased
size and change of color of the car) feedback combined
(‘Sound’ modality); the other half used only visual feedback
without any sound (‘NoSound’ modality). The sequence of
these two different run modalities was randomized for each
subject individually in order to avoid possible learning effects.
The discrete feedback events were chosen to be neutral for
coin and barrier collisions: instead of linking the bright green
flashing color and the higher frequency sound to coins, the
sounds and flashes were merely dependent on the side of the
street where the current collision occurred. Pictures of the car
game depicting several random situations can be seen in Fig. 2.

2) Analysis: Reactions to discrete events (collisions with
coins and barriers) were analyzed for possible ErrPs. Channels
Fz, Cz, and Pz were spatially filtered with CAR and temporally
filtered with an 8 Hz low-pass filter. Only data within a one-

(a) Start (b) Barrier right

(c) Coin right (d) Barrier left

Fig. 2. Different situations during the car game. (a) Start of a trial: new
objects appear at the top of the screen and subjects can begin performing the
correct MI task to move towards the coin. In this case the MI target is on
the left side. (b, c) Collisions with barriers and coins on the right. The color
and type of sound is the same for all collisions on the right side, independent
from the type of object. (d) Left side collisions have a different visual and
acoustic feedback. Crossing the finishing line ends the current MI trial.

second window following the discrete events were evaluated.
Data were separated into two different classes, the time
windows containing either reactions to correct events or to
errors. Features were selected with a discriminant power (DP)
algorithm [27]. This algorithm analyzed each point in time
successively and counted the values (EEG amplitudes) of each
class that were outside of the distribution of the respective
other class. Up to 30 of the best points in time were used
as features. The actual number of features was determined
by repeating a 10×10 cross-validation procedure with each
number of features. After cross-validating the results, the
detection rates for the best number of features of correct and
erroneous events for each subject were calculated individually.
The results for both classes were averaged to mitigate potential
bias effects caused by the typically much lower number of
error events. These results are based on detecting single events
and the according method to obtain the SE detection rate
or accuracy is the SE method. The corresponding measure
is termed “SE Acc CV” (SE accuracy calculated via cross-
validation). Data were analyzed separately for the according
feedback modalities ‘Sound’ and ‘NoSound’.

To analyze potential differences in SE Acc CV caused
by the applied feedback modalities, a paired-samples t-test
with the independent variable “feedback modality” (“Sound”,
“NoSound”) was conducted (with a significance level of 0.05).
Average SE Acc CV ([%]) was used as dependent variable.
Since the results of the t-test did not show a statistically sig-
nificant difference between both modalities, the SE Acc CV
evaluation was repeated for a third pseudo modality named
‘Combined’ which comprised all data and therefore a larger
pool of trials.

The MI performance was obtained by calculating the per-
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centage of collected coins out of all collisions with objects on
the street. This part of the study was shown in a preliminary
version in [28].

C. Simulating the Effect of Multiple Events ErrP Detection
Offline

This section aims to show the potential benefits of a new
multiple events (ME) analysis in an offline simulation based
on data collected in Section II-B.

1) The Multiple Events ErrP Detection Method: The new
approach was to combine consecutive single events for the
analysis. The car game was especially designed to force
multiple collisions with objects during one single MI trial. The
reactions caused by these collisions were classified with LDA
classifiers as in the analysis in Section II-B2. The classifier
output was positive for a detected error and negative for
a correct response. The higher the absolute value the more
distinct was the classification. In the new ME approach all
classification results of single events within one MI trial
were combined for evaluating the whole MI trial. There were
four possible outcomes in a single MI trial which had to be
evaluated differently:

1) Events only occurred on one side of the road: In this
case, all SE classification results were averaged. If the
averaged classifier output was positive (erroneous), the
original MI target (the side of the road with the coins)
was determined to be on the opposite side of where the
event collections occurred.

2) Events occurred on both sides of the road with a majority
on one side: Classification results from events on the
minority side were inverted (multiplied by −1) and
then averaged with the other classification results. For
example, three events occurred on the left side, all of
them errors. One event was on the right side which was
correct. With correct classifications the left side events
would all lead to positive classifier outputs, whereas
that on the right side would be negative. Inverting this
classifier output increases the number of averages to four
without giving the single event more weight. Since all
four classifier outputs now are positive, the averaged
result clearly indicates that the MI trial was, in fact,
mostly erroneous.

3) Events occurred on both sides an equal amount of times:
Classifier outputs on both sides were averaged individ-
ually. The side with the lower average was selected as
the original MI target. An example for this outcome is
also shown in Fig. 3.

4) No events occurred at all: In this rare case it was not
possible to determine the target and the MI trial was
removed from the simulation.

2) Simulation and Analysis: The capability of this new
approach to correctly determine the original MI targets was
tested in the offline simulation. As the detection rates of this
novel technique were no longer based on single events, the
basis of how to report the performance of the approach had to
be adapted. Multiple events indicated whether an MI trial as a
whole was correct and thereby the original MI target could be

determined. The measure to define the accuracy of this deter-
mination was the ratio of correctly identified MI trial targets
to the whole number of MI trials, from here on referred to as
“ME Acc”. This ME Acc was compared to the detection rates
obtained by analyzing single events, “SE Acc”. Additionally,
ME Acc was compared to the original MI performance (in
the offline simulation termed “MI Acc”) which was obtained
by analyzing the rate of collected coins to collected objects in
total. The reasoning behind this comparison was to find out
whether the capability of the ME method to determine original
targets of MI trials might even be on par with the original MI
performance. To mitigate any influence from potential over-
fitting, data were separated between runs. Each run was used
as a test set on which an ErrP LDA classifier, calculated with
data from the other runs, was applied. All three measures were
calculated in each test set. For ME Acc all MI trials were
evaluated with the new ME method. For SE Acc all single
event classifications were evaluated again. For MI Acc all coin
collections were compared to the total number of events. The
results were then averaged over all corresponding runs.

Equations (1)–(3) demonstrate how these three measures
were calculated in the offline simulation. In equation (1) true
positive (TP) and false negative (FN) values represent correctly
and incorrectly classified errors (reactions to collisions with
barriers). True negative (TN) and false positive (FP) values
represent correct and incorrect classifications of reactions to
coin collections. The equation basically describes the balanced
accuracy which is the mean of sensitivity and specificity. In
equation (2) CorrLeft and CorrRight represent the numbers of
correctly classified MI targets, whereas AllLeft and AllRight
give the whole number of MI trials. In equation (3) the number
of collected Coins is compared to the sum of Coins and
Barriers. All measures are averaged over the number of test
runs n.

SE Acc =
1

n

n∑

i=1

(
TPi

TPi+FNi
+ TNi

TNi+FPi

)

2
· 100 (1)

ME Acc =
1

n

n∑

i=1

CorrLefti +CorrRighti
AllLefti +AllRighti

· 100 (2)

MI Acc =
1

n

n∑

i=1

Coinsi
Coinsi +Barriersi

· 100 (3)

The simulation was carried out for the two feedback modali-
ties ‘Sound’ and ‘NoSound’. Based on the findings of the t-test
described in Section II-B2, which indicated that the modality
had no effect on ErrP detection rates, the simulation was also
carried out with all data as in the ‘Combined’ pseudo modality.

To investigate potential differences in classification accuracy
depending on method and feedback modality, a 3×2 ANOVA
for repeated measures was performed with the within-subjects
factors “method” (“SE”, “ME”, “MI”) and “feedback modal-
ity” (“Sound”, “NoSound”). The averaged accuracy (SE Acc:
detection rate of single events in %; ME Acc: rate of cor-
rectly identified MI trials that included at least one event
in %; MI Acc: proportion of correct events in %) served as
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dependent variable. A Kolmogorov-Smirnov test was used
to check if data followed a normal distribution. Sphericity
assumption was assessed by using the Mauchley’s sphericity
test. In all statistical analyses the probability of a Type I error
was maintained at 0.05. For post-tests of significant ANOVA
effects, Bonferroni corrections for multiple comparisons were
applied.

Fig. 3. Possible scenario for the offline simulation. The same number of
objects were collected on each side. Each response is classified separately,
resulting in different classifier outputs (CO). Detected ErrPs result in positive
COs and are visualized as red waveforms. Correct events result in negative
COs and are visualized as green waveforms. Both sides’ COs are averaged
and the side with the higher positive value is identified as erroneous. Although
not all individual COs are correct (the second event on the left side is
a misclassification), the correct intended direction can be identified after
averaging. The MI trial in this example can be classified as ‘right side’.

D. Online Car Game without ErrP Detection 2

On a second session, after analyzing data from day 1
and performing the offline simulation, selected participants
performed the car game again. This experiment served as pre-
cursor for the subsequent online application of ErrP detection.

1) Selection of Subjects: Not all subjects participated; in-
clusion criteria were based on data from previous sections.
The MI performance threshold was set to 70 % because of
the minimum correct response rate needed for a feasible BCI
application [29]. The level for the error detection rate to be
potentially beneficial depends on the initial MI performance
and can be calculated with equations (4)–(7) based on Wol-
paw’s definition in [30], [27]. The original bit rate per trial BR
depends only on the MI performance, whereas the new bit rate
BRn with applied error detection to inhibit detected commands
depends on the percentage of transmitted commands pec and
the increased accuracy of the system pn. Remaining variables
in the equations are as follows: p describes the original MI
performance; c the detection rate of correct commands; e
the detection rate of errors; Nc the number of classes. The
minimum error detection rate needed to theoretically increase
the original bit rate can be calculated individually for each
subject. For example, at an MI performance of exactly 70 %
the bit rate already increases at an error detection rate of
58.9 %; for an MI performance of 90 % the error detection
rate has to be at least 73.9 % to have a beneficial effect. Six
of the ten subjects could fulfill the criteria of having an MI
performance >70 % and accordingly high error detection rates,
based on ME Acc and MI Acc values found in the offline

simulation with the modality ‘Sound’. Unfortunately, two of
them were no longer available, leaving four subjects for the
final part.

pec = p · c+ (1− p) · (1− e) (4)

pn =
p · c
pec

(5)

BR = log2(Nc) + p · log2(p) + (1− p) · log2
(1− p)

(Nc − 1)
(6)

BRn = pec ·(log2(Nc)+pn ·log2(pn)+(1−pn)·log2
(1− pn)

(Nc − 1)
)

(7)
2) Experiment Setup: The purpose of this experiment was

to generate new ErrP classifiers for the final online task with
applied ErrP detection. The setup was similar to the setup
explained in Section II-B. The MI classifiers generated in
Section II-A2 were reused to avoid time-intensive MI training.
The subjects merely performed one short setup run consisting
of three left and three right MI trials to adapt the bias of the MI
classifier if necessary. The car game was carried out again, but
now with only half of the trials, since the used modality was
chosen to be ‘Sound’ exclusively for this and the following
experiment. S01 performed only four runs due to a relatively
high amount of barrier collections, thereby generating enough
data for ErrP classification but later subjects were asked to
carry out six runs.

3) Analysis: ErrP classifiers were generated from the newly
recorded data, following the method used in Section II-B2. The
MI performance of the subjects in the car game was measured
in terms of collected coins and barriers.

E. Online Car Game with ErrP Detection

The final experiment was carried out on the same day as
the car game without ErrP detection in Section II-D with the
same four remaining subjects. The aim was to demonstrate
the feasibility of the new ME method in an online experiment
alongside the evaluation in the offline simulation.

1) Experiment Setup: In this experiment, the car game
was enhanced by embedding the new ME method. The ME
method was used to evaluate each single MI trial after the
car had crossed the finishing line. There was one important
difference compared to how the method was used in the offline
simulation. The aim was now no longer the determination of
the original MI target but to determine whether the MI trial on
the whole was erroneous. In case of an erroneous MI trial, the
score of the whole MI trial was discarded and the subject had
the chance to repeat the trial. Another difference was that MI
trials with an equal number of events on both sides were no
longer evaluated. Otherwise, the procedure for the evaluation
of one trial followed the explanation in Section II-C1. An
example for an MI trial with three errors and one correct event
is demonstrated in Fig. 4.

To summarize, an MI trial had a chance to be discarded and
repeated if one of the two following situations occurred:
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1) All events occurred on one side of the road and the
average classifier output for all events was positive.

2) Events occurred on both sides of the road with one
majority side with more events. The average classifier
output of the events on the majority side and the inverted
classifier outputs of the minority side were positive.

The car game with online ErrP detection consisted of six
runs with 20 MI trials each, with ten targets on the left and
ten targets on the right. As opposed to the previous car game
sessions, negative scores were possible in this experiment.

Fig. 4. One possible online scenario. The subject collides with three barriers
and then picks up one coin on the opposite side. Each reaction to a collision is
classified separately and results in a positive or negative number, with positive
numbers indicating the detection of an ErrP. ErrPs are further visualized as
red waveforms and reactions to correct events as green waveforms. In this
example, the first reaction is misclassified as correct, the rest of the collisions
are classified correctly. The left side is the majority side with more collections.
The classifier output of the one collision on the right side is multiplied by −1.
Because the result after averaging all classifier outputs is a positive number,
the whole MI trial has to be discarded and can be repeated.

2) Analysis: The functionality of the online ErrP detection
with the ME method was evaluated by comparing two different
outcomes: the actual outcome after applied ErrP detection ver-
sus the outcome that would have been achieved without ErrP
detection. This was possible because, without activated ErrP
detection, each run would have stopped exactly after the 20th

trial. Therefore, the score after 20 trials, including discarded
MI trials, was saved at this point for later analysis. Active ErrP
detection could prolong a run for as many trials necessary
to have 20 trials that were not discarded as erroneous. The
expected outcome of the experiment was to trade a longer time
needed for completion in order to achieve improved accuracy.

The goal of the ME method in the online experiment was
to detect erroneous MI trials. The corresponding performance
measure had to be calculated differently than in the offline
simulation. This measure, called ME Acc Online, was calcu-
lated based on equation (8). Here, TP and FN indicate the
numbers of detected and missed erroneous MI trials. TN and
FP represent the numbers of detected or misclassified correct
MI trials. MI trials that were not eligible for being discarded
due to an equal number of events on both sides were excluded
from this calculation.

ME Acc Online =

(
TP

TP+FN + TN
TN+FP

)

2
· 100 (8)

III. RESULTS

A. Training of Subjects and Calibration of MI Classifiers

All the subjects performed short MI training to generate data
for setting up LDA classifiers to control the car game in all
later experiments. Individual results are listed in Table I. The
best accuracies and points in time in relation to the start of
the trial at second 0 were determined in a cross-validation
procedure. As one single outlier with a high accuracy at
one single point in time could whitewash the individual
performance, the table also shows the threshold exceeded by
at least 10 % of all classification accuracies and the median
accuracy within the active MI period (3.25–7 s). These results
served as a prediction of how well subjects would be able
to control the car game. Their MI performance was closely
related to the expected error rate when controlling the game.

TABLE I
MI PERFORMANCE CALCULATED BY GENERATED LDA CLASSIFIERS.

BEST ACCURACY AND BEST TIME DEMONSTRATE THE PEAK
PERFORMANCES AT THE BEST INDIVIDUAL POINTS IN TIME DURING

ACTIVE MI. UPPER TEN PERCENT SHOWS THE LEVEL OF PERFORMANCE
WHICH WAS EXCEEDED FOR TEN PERCENT OF POINTS IN TIME TESTED

WITHIN THE ACTIVE MI PERIOD. THE MEDIAN ACCURACY SERVES AS AN
ADDITIONAL MEASURE OF PERFORMANCE.

Best Best Upper Ten Median
Subject Accuracy [%] Time [s] Percent [%] Accuracy [%]
S01 74.0 6.1 72.7 68.3
S02 98.5 5.5 95.3 88.2
S03 80.6 5.2 80.0 73.4
S04 81.2 4.5 79.8 76.2
S05 97.5 5.4 96.5 94.4
S06 86.2 3.8 84.1 75.1
S07 96.5 4.6 95.3 87.7
S08 88.0 4.9 87.1 83.2
S09 86.6 3.4 85.1 64.2
S10 78.9 3.6 74.3 58.1

B. Online Car Game without ErrP Detection 1

The results of this part consist of the online MI performance
and offline ErrP detection analysis based on the SE method.
The first was determined by the scored points during the
car game. The second was found by cross-validating ErrP
classifications. The online score was increased by +1 for each
collected coin and reduced by −1 for each collision with a
barrier. Subjects could also miss all objects within a trial. In
this case the score was not altered and neither a positive nor
a negative feedback occurred. Furthermore, the score could
never fall below zero points. MI performance influenced the
subsequent offline analysis as the number of correct and
erroneous trials for ErrP detection was equal to the number of
collected coins and barriers. Table II shows the score, number
of collected coins versus barriers, the MI performance and the
error rate (100 %−MI performance) for each participant. The
table shows results from all data combined, that is ‘Sound’ and
‘NoSound’. Fig. 5 visualizes these results sorted from highest
to lowest score.

The performance-depending rate of errors evoked differently
strong ErrPs for the ten subjects. The error-minus-correct
waveforms—the ErrPs—for all the participants are demon-
strated in Fig. 6. Three channels, Fz, Cz, and Pz, are shown
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TABLE II
RESULTS OF THE CAR GAME IN TERMS OF TOTAL SCORE OUT OF 960

MAXIMUM POINTS (640 FOR S04) AND COIN:BARRIER COLLECTION RATE
FOR EACH PARTICIPANT. THE MI PERFORMANCE SHOWS THE

PERCENTAGE OF COLLECTED COINS AND THE ERROR RATE THE
PERCENTAGE OF COLLISIONS WITH BARRIERS.

Total Coins: MI Perfor- Error
Subject Score Barriers mance [ %] Rate [%]
S01 409 599:192 75.7 24.3
S02 718 782:65 92.3 7.7
S03 588 709:127 84.8 15.2
S04 189 367:185 66.5 33.5
S05 722 797:75 91.4 8.6
S06 202 489:310 61.2 38.8
S07 703 774:72 91.5 8.5
S08 751 823:72 92.0 8.0
S09 100 404:349 53.7 46.3
S10 265 541:302 64.2 35.8

S08 S05 S02 S07 S03 S01 S10 S06 S04 S09
0

500

1000
Individual scores and coin/barrier collections

Subject

S
c
o
re

/#
 o

f 
c
o
lle

c
ti
o
n
s

 

 

Score

Coins

Barriers

Fig. 5. Barplot showing scores and individual collection rates of coins and
barriers in sorted order from highest to lowest score.

for the two modalities ‘Sound’ and ‘NoSound’. The most
notable effect is visible over Fz and Cz, the channels directly
over the ACC. On average, there is a measurable negativity
about 400 ms after the moment of a collision with a barrier.
An offline analysis of ‘Sound’ and ‘NoSound’ data yielded
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(a) ‘Sound’
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Fig. 6. Recorded ErrPs for all individual subjects and averaged waveforms,
shown specifically for ‘Sound’ and ‘NoSound’ modalities. Point in time 0 ms
is the time of the collision with an object on the street. The measured ErrPs
are shown for three different channel locations: Fz, Cz, and Pz.

SE Acc CV results for correct and erroneous trials above
chance level for all subjects except S09 and S10 in at least one
modality. The chance level was on average 54.4 % (‘Sound’)
and 54.3 % (‘NoSound’), depending on the number of trials
per class [31]. Feature extraction and cross-validation were
performed individually for each modality. The comparison of
SE Acc CVs for feedback with and without sound brought
forth following results: the average SE Acc CV for detecting
correct and erroneous trials was 62.1±9.3 % for the ‘Sound’

modality and 61.1±8.0 % for ‘NoSound’. The results of the
t-test, which was used to compare SE Acc CV between
‘Sound’ and ‘NoSound’, showed no significant difference
(t(9)=0.51, p=.620). An additional analysis was thus conducted
with all the data combined (‘Combined’). Here, SE Acc CV
was on average 61.2±8.5 %. The new ME method was not yet
applied in this analysis.

C. Simulating the Effect of Multiple Events ErrP Detection
Offline

The results of the offline simulation show the advantages
of the new ME method over the standard SE method. The
simulation analyzed both methods by using the same LDA
classifiers. In the SE method these classifiers were solely used
on single events, whereas in the ME method consecutive single
events within whole MI trials were combined as multiple
events. The simulation analyzed data from Section II-B. The
results are demonstrated in Table III. Data were at first
separated according to the two main modalities ‘Sound’ and
‘NoSound’. Later, the whole data set was also analyzed in the
‘Combined’ modality. This modality, although included in the
simulation, was not analyzed statistically as it included data of
both other modalities. Values in the columns labeled “SE Acc”
demonstrate individual ErrP detection rates obtained with the
standard SE method. “ME Acc” demonstrates the detection
rates for the correct determination of original MI trial targets
that were obtained with the new ME method. “MI Acc”
shows the MI performances achieved by the subjects via
controlling the car. All these values were averaged over all
the runs (three runs for ‘Sound’ and ‘NoSound’, and six
runs for ‘Combined’), which explains the small differences
between MI performance in Table II and MI Acc in Table III.
ME Acc values in Table III indicate how many MI trials can
be correctly identified when only looking at reactions to a
sequence of discrete events.

The bold numbers in Table III highlight the subjects that can
potentially benefit from online ErrP detection, based on the bit
rate calculations from Section II-D1. The number of subjects
is higher in column “ME Acc” than in column “SE Acc” for
all modalities. In the case of the modality ‘Sound’, which was
used in later experiments, six out of ten subjects potentially
benefit from ErrP detection based on the ME method, while
only three would benefit from using the standard SE method.

ANOVA results concerning simulations of ‘Sound’ and
‘NoSound’ data revealed a significant main effect “method”
(F(2,18)=21.61, p<.001). Post-tests showed a significantly
higher accuracy for “ME” (M=74.78, SD=14.70) and “MI”
(M=77.26, SD=15.03) than for “SE” (M=61.98, SD=8.19).
Accuracy did not differ significantly between “ME” and
“MI”. The main effect “feedback modality” did not reach
statistical significance (F(1,9)=0.79, p=.396). The interaction
effect “method×feedback modality” was also not significant
(F(2,18)=1.46, p=.259).

D. Online Car Game without ErrP Detection 2

The reason for repeating the car game without ErrP de-
tection was to generate new ErrP classifiers. The results are
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TABLE III
COMPARISON OF SINGLE EVENT ERROR/CORRECT ACCURACIES

(SE ACC) VERSUS MI TRIAL DETECTION RATES BASED ON MULTIPLE
EVENTS ANALYSIS (ME ACC) AND ORIGINAL MI PERFORMANCES

(MI ACC). THE VALUES SHOW OFFLINE SIMULATION RESULTS AND ARE
AVERAGED OVER ALL RUNS THAT BELONG TO THE CORRESPONDING
MODALITIES. BOLD NUMBERS INDICATE SUBJECTS THAT HAVE AN

MI ACC ABOVE 70 % AND WOULD BENEFIT FROM ERRP DETECTION
BASED ON THE TWO METHODS SE OR ME, AS SUGGESTED BY

INDIVIDUAL BIT RATE CALCULATIONS.

Sound [%] NoSound [%] Combined [%]
SE ME MI SE ME MI SE ME MI

Subject Acc Acc Acc Acc Acc Acc Acc Acc Acc
S01 66.7 81.7 72.9 59.6 71.7 78.3 62.5 76.7 75.6
S02 78.9 93.3 92.3 65.7 88.3 92.3 71.3 84.2 92.3
S03 53.9 68.3 82.0 60.2 79.2 87.5 54.0 68.3 84.8
S04 60.9 70.0 68.6 55.0 58.8 65.2 57.2 65.6 66.9
S05 67.2 86.7 91.2 75.9 91.7 91.5 71.5 87.9 91.4
S06 61.5 69.2 61.1 52.8 52.5 61.1 56.3 59.2 61.1
S07 76.4 93.3 90.7 70.3 85.0 92.3 74.2 89.6 91.5
S08 64.7 89.2 90.5 61.0 92.5 93.4 61.2 85.4 91.9
S09 51.0 55.8 53.1 59.7 60.0 53.1 57.8 62.5 53.1
S10 48.9 56.7 66.7 49.3 51.7 61.3 51.3 54.6 64.0
mean 63.0 76.4 76.9 61.0 73.1 77.6 61.7 73.4 77.3
±std 9.9 14.3 14.3 8.0 16.3 15.9 8.0 12.9 15.0

summarized in Table IV, including the number of collected
coins and barriers and the directly associated MI performance
and error rate. Column “SE Acc CV” describes error detec-
tion rates that were achieved in a 10×10 cross-validation based
on the SE method.

TABLE IV
RESULTS FROM THE REPEATED CAR GAME WITHOUT ONLINE ERRP

DETECTION. THE MAXIMUM SCORE IS 480 POINTS (320 FOR S01). THE
RATIO OF COINS VERSUS BARRIERS DETERMINES THE MI PERFORMANCE

(PERCENTAGE OF COINS) AND THE ERROR RATE (PERCENTAGE OF
BARRIERS). SE ACC CV DEPICTS THE ERRP CLASSIFICATION

ACCURACIES FOUND IN AN OFFLINE ANALYSIS BASED ON THE SE
METHOD WITH A 10×10 CROSS-VALIDATION PROCEDURE.

Coins: MI Perfor- Error SE Acc
Subject Barriers mance [%] Rate [%] CV [%]
S01 188:107 63.7 36.3 62.1
S02 253:101 71.5 28.5 67.7
S05 428:19 95.7 4.3 71.5
S07 420:56 88.2 11.8 75.0

E. Online Car Game with ErrP Detection

After the new ErrP classifiers were generated based on the
SE method, participants were able to control the car game
with online ErrP detection based on the new ME method.
Their performance during this application is demonstrated
in Table V. The results demonstrate the individual increased
numbers of scored points when using error detection compared
to the score reached after exactly 20 trials including the points
from discarded erroneous MI trials. As an inevitable side
effect, the number of MI trials needed for completion was
also increased.

The performance of the ME method in the online experi-
ment was also measured by the detection rate of erroneous
and correct MI trials. The corresponding measure is the
ME Acc Online, calculated from the TP, FN, FP, and TN
numbers that count the true or false detections of correct and
erroneous MI trials.

TABLE V
RESULTS OF THE FINAL ONLINE APPLICATION WITH ACTIVATED ONLINE

ERRP DETECTION. THE TABLE DEMONSTRATES THE INCREASED NUMBER
OF MI TRIALS NEEDED DUE TO DISCARDED TRIALS AFTER ERRP

DETECTION AND THE RELATION OF SCORED POINTS WITH AND WITHOUT
ERRP DETECTION. THE TRUE POSITIVE (TP), FALSE NEGATIVE (FN),

FALSE POSITIVE (FP), AND TRUE NEGATIVE (TN) DETECTION, AS WELL
AS THE PERCENTAGE OF CORRECT CLASSIFICATIONS BASED ON THE ME
METHOD (ME ACC ONLINE) ARE GIVEN FOR ALL TRIALS THAT WERE
ELIGIBLE FOR ERRP DETECTION, NOT INCLUDING MI TRIALS WITH AN

EQUAL NUMBER OF COLLECTED COINS AND BARRIERS.

Subject: S01 S02 S05 S07
Trials without ErrP 120 120 120 120
Trials with ErrP 166 145 126 126
∆Trials [%] +38.3 +20.8 +5.0 +5.0
Score without ErrP 170 164 374 353
Score with ErrP 182 180 388 367
∆Score [%] +7.1 +9.8 +3.7 +4.0
TP 14 15 3 2
FN 15 9 2 0
FP 32 10 3 4
TN 84 85 113 114
ME Acc Online [%] 60.3 76.0 78.7 98.3

IV. DISCUSSION

A. Training of Subjects and Calibration of MI Classifiers

This part was performed to calibrate MI classifiers for all
the following experiments on day 1 and day 2, see Fig. 1.
The results in Table I indicate that all participants were able
to successfully perform MI in this computer-driven paradigm.
All subjects had MI detection rates higher than 70 % which is
said to be needed for feasible BCI control [29]. The MI LDA
classifiers, which were generated for each subject, were used
in all subsequent experiments.

B. Online Car Game without ErrP Detection 1

In the second experiment on day 1 data for ErrP detection
analyses and simulations were collected. MI performance was
measured in terms of the percentage of collected coins. Most
subjects were able to maintain their level of performance
from the previous MI training part. These values can be
compared by looking at “Upper Ten Percent” in Table I and
“MI Performance” in Table II. Only subjects S04, S06, S09,
and S10 performed noticeably worse in the continuous car
game. The main difference in difficulty that might be the cause
for this decreased performance is the need for maintaining MI
for the longer time necessary in order to collect all the coins.

All reactions to positive and negative events (coins and
barriers) were analyzed in terms of shape and detectability.
The used method was based on the analysis of single events,
the SE method. As expected, the most pronounced ErrPs were
generated by subjects with a low error rate, except for S03 who
did not generate distinct ErrPs even though the error rate was
as low as 15.2 %. When considered in total the characteristic
waveforms of the ErrP were not as pronounced as hoped for.
The measured ErrPs were different to the interaction ErrPs
described in [14] (a negative peak followed by a positive and
another negative peak). However, there was an error-related
negativity (ERN) about 400–500 ms after objects were picked
up, as well as a positive peak around 200 ms at channels Fz
and Cz, as shown in Fig. 6. Corresponding SE Acc CVs were
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only slightly above 60 %. There are three causes that might
explain the indistinct manifestation and low classification rate
of recorded ErrPs. First, subjects were able to see where the
car was moving and therefore were not exceptionally surprised
when colliding with barriers. Second, the time between objects
on the street was constant as there was always exactly 1 s
between objects. Therefore, the surprise could have been
further reduced. These two issues might be mitigated by
designing a paradigm in which the discrete feedback events
are not as easily predictable. A possible solution could be to
deliver a discrete feedback which depends on the amplitude
of the classifier output: the time between consecutive discrete
feedback events could be decreased when the amplitude of
the classifier output increases and vice versa. Third, subjects
could have been distracted by maintaining control of the
car with MI and by the multitude of visual and acoustic
stimuli presented during the game. This theory is backed by
a reported negative correlation of workload and amplitude of
event-related potentials (ERPs) [32].

We were interested to see if the added acoustic feedback
could make discrete events more pronounced. Although, on
a descriptive level, ‘Sound’ modality resulted on average in
a slightly higher SE Acc CV than ‘NoSound’, the difference
did not reach statistical significance. As visual feedback is
the most important part of the car game, this outcome is not
surprising. Nevertheless, ‘Sound’ modality was chosen as the
only modality used in experiments performed on day 2.

C. Simulating the Effect of Multiple Events ErrP Detection
Offline

The offline simulation expanded the analysis performed in
Section II-B2 based on data collected during the car game
on day 1. Simulations were carried out for ‘Sound’ and
‘NoSound’ separately and with all the data in the ‘Combined’
modality. The main goal of the simulation was to show the
benefits of the new ME method compared to the SE method.
In the simulation, each single run was classified with the
classifiers calculated from data of the other runs. Classification
was carried out with both methods: SE and ME. SE Acc
describes the detection rates of correct and erroneous single
events, while ME Acc describes the percentage of correctly
determined original targets of MI trials. ME Acc can therefore
be compared to the detection rates of single events, as they
are both determined by ErrP classifiers. ME Acc can also be
compared to the MI performance, MI Acc, as both determine
how well MI targets were able to be identified.

All relevant information is demonstrated in Table III. Here,
the most important outcome is the difference between the
values in columns “SE Acc” and “ME Acc”. Although neces-
sarily describing detection rates on two different layers (single
events versus whole MI trials determined via multiple events),
the comparison strongly suggests that even with low single
event detection rates, ErrP detection can still be useful. With
the new ME method, a series of single events can be combined
to determine whether a sequence of events is correct or
erroneous. The columns “MI Acc” mainly serve as reference
points to compare the MI performances to the detection rates

of original targets of MI trials with the ME method. ANOVA
results showed that these two measures were not different. In
some cases, the determinations based on the ME method were
even higher than the MI performances. This means that these
subjects would have reached a higher score, if, after each MI
trial, the just achieved score had been discarded and replaced
by the determination found by the ME method. By this means
the score would always either increase by +4 or decrease by
−4 for correct or false determinations, respectively.

D. Online Car Game without ErrP Detection 2

The second instance of the car game without ErrP detection
on day 2 with the ‘Sound’ modality yielded slightly different
results compared to the first instance. The “SE Acc CV” val-
ues in Table IV can be compared to the offline simulation re-
sults in Table III, column “Sound/SE Acc”. The SE Acc CV
decreased for subjects S01, S02, and S07 and increased for
S05. Still, these SE detection rates were assumed to be high
enough for the following online application with the ME
method, given the increase from SE Acc to ME Acc which
was found in the simulation. The MI performance remained
on a very high level for subjects S05 and S07 but decreased
noticeably for S01 and S02. S01’s MI performance decreased
below the initial inclusion criterion of 70 %. However, the
subsequent experiment with online ErrP detection was carried
out within the same session on day 2, thereby preventing S01
from being excluded.

E. Online Car Game with ErrP Detection

Finally, the new ME method was used to detect ErrPs
online in the car game. MI classifiers from the MI training
performed on day 1 (Section II-A) were used to control the car.
ErrP classifiers were recalculated directly before starting the
experiment, based on data collected in the repeated car game
without ErrP detection, Section II-D. The reason for choosing
to update only the ErrP classifiers was based on the additional
time needed to recalibrate MI classifiers. Moreover, for the
study design optimized MI control was not of importance and
ERD patterns used for MI classification were shown to be
relatively stable over time [33].

The results in Table V summarize the effects of the ErrP
detection based on the ME method. As expected, a higher
accuracy was bought with more time needed to complete the
20 MI trials of each run. An MI trial was only counted if it was
not determined to be erroneous. Of course, the MI performance
of the individual subject and the performance of the ErrP
detection classifier were both accountable for how much time
was really needed for completion: if a subject committed more
errors, more MI trials had to be discarded and repeated; if the
ErrP detection resulted in many false positive detections, many
MI trials had to be repeated for no reason.

The scores achieved could be improved for all of the four
subjects, the two medium performers gaining the greatest
benefits. Yet, even the two high performers could still increase
their scores by about 4 %, although there was not much
room for improvement. The maximum score was 480 points,
which would have required picking up every single coin on
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the road, and the two high performers already scored about
380 points. A very positive outcome was the low number of
FPs which, when they happened, were especially frustrating
for the subjects because correct MI trials had to be repeated.
For all subjects but S01, the ME Acc Online was similarly
higher than the SE Acc CV as already shown in the offline
simulation with SE Acc and ME Acc. A possible explanation
for why S01’s ME Acc Online was not as good could be the
MI performance which was also lower on day 2 than on day 1.

V. CONCLUSION

We were able to demonstrate a feasible new ErrP detection
method based on multiple events: the multiple events method.
This method was specifically designed to work in continuous
BCI-controlled applications. Detection rates of ongoing states,
in this case MI trials, were compared to the single event
detection rates achieved with the standard single event method.
For all subjects, the combination of multiple events lead to
better results than the detection of single events.

The functionality of the multiple events method was also
tested in an online experiment. Here, all of the subjects were
able to increase their score in a car game with a trade-off of
a longer time needed caused by repeating MI trials.

The experiments showed that the incorporation of error
detection is possible in continuous applications even with low
single event ErrP detection rates. As long as there is a way
to generate discrete events during continuous control, ErrP
detection can basically be included in any kind of feedback.
Possible examples for the future include a BCI-controlled neu-
roprosthesis that gives discrete information about the current
movement in certain short intervals. If the direction is not
intentional for a time, the ErrPs accumulated by the discrete
events could be used as a safety mechanism to stop the
movement or to alter its direction.

With this new technique of combining multiple events for
error detection, otherwise unused applications might regain
interest if their performance can be improved to permit rea-
sonable functionality.
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[22] M. Spüler and C. Niethammer, “Error-related potentials during continu-
ous feedback: using EEG to detect errors of different type and severity,”
Front Hum Neurosci, vol. 9, p. 155, 2015.

[23] A. Kreilinger et al., “Error potential detection during continuous move-
ment of an artificial arm controlled by brain-computer interface,” Med.
Biol. Eng. Comput., vol. 50, pp. 223–230, 2012.

[24] G. Pfurtscheller and C. Neuper, “Motor imagery and direct brain-
computer communication,” Proc. IEEE, vol. 89, pp. 1123–1134, 2001.

[25] B. Graimann et al., “Visualization of significant ERD/ERS patterns in
multichannel EEG and ECoG data,” Clin. Neurophysiol., vol. 113, pp.
43–47, 2002.

[26] G. Pfurtscheller and F. H. Lopes da Silva, “Event-related EEG/MEG
synchronization and desynchronization: basic principles,” Clin. Neuro-
physiol., vol. 110, pp. 1842–1857, 1999.

[27] P. W. Ferrez, “Error-related EEG potentials in brain-computer inter-
faces,” Ph.D. dissertation, Ecole Polytechnique Federale de Lausanne,
2007.

[28] A. Kreilinger et al., “Detection of error potentials during a car-game
with combined continuous and discrete feedback,” in Proceedings of
the 5th International Brain-Computer Interface Conference 2011, 2011,
pp. 204–207.
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• Rüdiger Rupp: 10 %
• Gernot R. Müller-Putz: 10 %

All coauthors contributed equally in planning the demonstrated experiments.
Alex Kreilinger programmed and carried out the experiments with the one end-
user. Vera Kaiser assisted in working with the end-user. Martin Rohm helped
programming the hybrid orthosis needed for parts of the study as well as the
neuroprosthesis control in general. Rüdiger Rupp and Gernot R. Müller-Putz
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Abstract: This article exemplarily summarizes the steps
necessary for application of a brain controlled neuropros-
thesis in one spinal cord injured end-user. After screen-
ing an extensive training has to be performed until the fi-
nal use of a neuroprosthesis based on functional electrical
stimulation (FES) and controlled by a motor imagery (MI)
brain-computer interface (BCI) is possible. The end-user
maintained a very high BCI performance over a period of
more than one year and successfully managed to control
synchronous and asynchronous BCI applications.

Keywords: EEG, BCI, FES, neuroprosthesis

Introduction

A spinal cord injury (SCI) above the neurological level
of C5 leads to a loss of motor and sensory functions in
the lower and upper extremities. Tetraplegic patients are
normally wheelchair bound and no longer able to perform
grasping or even elbow or shoulder movements. To com-
pensate this motor impairment, end-users can be provided
with neuroprostheses based on functional electrical stim-
ulation (FES). These neuroprostheses induce contractions
of innervated muscles by applying short current pulses via
surface electrodes placed near dedicated motor points. The
FES-generated movement patterns can be modulated by any
kind of control signal originating from unaffected parts of
the body. This signal can be obtained e.g. from a shoul-
der position sensor but also from a brain-computer inter-
face (BCI) which translates thoughts—e.g., motor imagery
(MI)—into commands by evaluating brain activity directly
at its origin [1]. Control signals from different sources can
be merged in a hybrid BCI [2]. Here, we introduce two
control techniques tested in one end-user with SCI. First, a
combination of a shoulder position sensor for analog con-
trol of the grasp and a BCI for switching between grasp
patterns. Second, a neuroprosthesis for restoration of hand
and elbow movements with BCI as the sole control signal.
The aim of this article is to present the steps from the first
screening until the final successful control of BCI applica-
tions together with evaluation results.

Methods

End-user: the 31 years old male end-user is diagnosed
with a motor and sensory complete lesion (ASIA Impair-
ment Scale A) at the level of C5 caused by an accident in

2010. He is not able to move his hand/fingers but has resid-
ual muscle control of his shoulder and partly the elbow. His
range of motion of hand and finger joint is not restricted.
All hand and finger muscles are paralyzed but innervated.
Data recording and processing: initially, in June 2011,
EEG was recorded with 15 electrodes placed on the head to
have Laplacian and/or bipolar derivations around the mo-
tor cortex. Signals were acquired with a g.USBamp (Guger
Technologies, Austria) with a sample rate of 512 Hz and fil-
tered between 0.5 and 100 Hz with a notch filter at 50 Hz.
Later, different electrode layouts were used as well, mostly
consisting of nine electrodes at positions C3, Cz, and C4
and anterior and posterior.
Data were analyzed for significant changes in band power
in certain frequency bands, depending on the type of men-
tal strategy. This was realized by plotting event-related
desynchronisation/synchronisation (ERD/ERS) maps [3]
between 5–40 Hz which show relative changes in band
power in different frequency bands during MI for the three
relevant channels C3, Cz, and C4. The most promising fre-
quency bands of the best channels for the mental tasks with
the best distinguishable patterns were selected manually
as features to generate LDA (linear discriminant analysis)
classifiers for later online use. In a 10×10 cross-validation
process the best point in time for classification was found
and used to set up the final classifier.
Data of online sessions were also analyzed with ERD/ERS
maps. Additionally, performance was evaluated via classi-
fication accuracy, speed, or number of false positives/min.
Training: the end-user started training with a BCI based on
motor imagery (MI), i.e., the imagination of movements of
hands or feet. Thereby generated brain patterns, in this case
ERD, were intended to be found in a first screening session
performed with the standard Graz-BCI paradigm [1]. The
goal was to find limbs for which imagination of movements
produced distinct patterns and then to proceed online with
this mental strategy. In addition to BCI training, we also
started with FES-assisted muscle training to achieve a fa-
tigue resistance in both arms sufficient to control a grasp
neuroprosthesis.
Online BCI sessions: training was continued by applying
the LDA classifier online to control a liquid-cursor feed-
back to reach cue-paced tasks in a two-class BCI. In fact,
the end-user performed offline training only once at the
beginning and once after one year after the start of train-
ing. Online training was performed in eight sessions, clas-
sifying left hand versus feet MI. After offline and online
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training, two neuroprosthesis applications were controlled
by the end-user. In the first one he could choose between
a lateral grasp or a palmar grasp pattern with a BCI and
open/close his hand continuously with a shoulder position
sensor. Individual stimulation profiles and electrode posi-
tions were used to realize both grasp patterns [4]. In this
experiment he was asked to move objects with the dedicated
grasp type in a limited time period and switch between the
grasps when necessary.
In the second BCI application he controlled a neuropros-
thesis for hand and elbow functions solely with BCI [5].
In both applications he used time-coded MI, the best ac-
tive class (feet MI) versus a rest condition. Depending
on the length of the performed imagination, either differ-
ent switches were triggered, or commands were executed
as long as the command was active. He had to perform
ten predefined sequences, consisting of short commands to
open/close the hand and long commands to move the arm
upwards or downwards continuously.

Results
Fig. 1 shows ERD/ERS maps after the first screening (S1)
and after the second offline training session (S2) one year
later. The pattern on Cz in the beta frequency range did
not change and was used constantly in all online sessions,
including the two BCI-driven neuroprosthesis applications.
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(d) Left hand MI, S2
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(f) Rest condition, S2

Figure 1: ERD/ERS maps from the first screening session
and an offline training session one year later. For each ses-
sion three images show relative changes in band power for
different frequency bands on the three channels C3, Cz, C4
(from left to right). In S2 Right hand MI was replaced by
a Rest condition to set up a classifier for discriminating an
active versus a rest class.

On average he achieved 82.7±7.9 % classification accuracy
for the eight online BCI training sessions. He could con-
trol the first BCI application and moved 215 objects within
24 min and switched between grasp types in 16.9±12.2 s.
In the hand/elbow neuroprosthesis he performed second
best among nine healthy subjects [5]: the true positive rate
(correct use of short or long commands) was 73.7 % and he
could successfully perform 8 out of 10 sequences. During
active control he managed to trigger 6.9 commands/min, as
opposed to only 2 commands/min during resting periods.

Discussion
This work shows that several prerequisites must be fulfilled
for a successful use of non-invasive BCI-controlled neu-
roprostheses. The end-user needs to be compliant to FES
training, has to be able to generate distinct ERD patterns
and has to be able to voluntarily activate these patterns in
an MI-BCI. Our end-user fulfilled all of them which seems
not always to be the case [6]. He was able to control the
grasp neuroprosthesis for functional tasks and in everyday
life settings. He is not in need of an elbow neuroprosthe-
sis but he successfully showed that such a form of control,
solely based on BCI, is feasible in end-users with impaired
elbow and shoulder functions. Therefore, controlling a neu-
roprosthesis with BCI based on MI seems to be a promising
way for restoration of the upper extremity function in se-
lected end-users.
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a state of the art section about BCIs in stroke rehabilitation. Patrick Ofner wrote
about movement decoding and gave an outlook on future activities in BCI research.
Other coauthors helped in writing and putting together the manuscript.
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BCI

Brain-Computer Interfaces (BCIs) 
finden mittlerweile den Weg aus 

der Forschung in Applikationen 
unter Alltagsbedingungen. Nicht 

nur bei assistierenden Technologien 
finden BCIs Verwendung, auch in 

der funktionellen Schlaganfallreha-
bilitation. Aktuelle Entwicklungs-
arbeiten fokussieren individuali-

sierte BCIs für Anwender sowie das 
Erforschen von Grundlagen über die 
Neuroplastizität des Gehirns. Dieser 

Artikel gibt eine Übersicht über 
aktuelle Entwicklungen anhand 

von Studien und Einzelfallbeobach-
tungen.

Brain-computer interfaces (BCIs) 
have found their way from the 

lab into real-world applications. 
They are used not only in assistive 
technology but also for functional 

stroke rehabilitation. Current re-
search focuses on customising BCIs 

for users and basic research into 
cortical neuroplasticity. This article 

presents current developments 
based on recent studies and single-

case investigations.

Einleitung
Ein Brain-Computer Interface (BCI) 
bietet Menschen wie Schlaganfallpati-
enten oder Hochquerschnittgelähm-
ten Möglichkeiten, mit ihrer Umwelt 
trotz körperlicher Beeinträchtigung zu 
kommunizieren [21]. Dies wird durch 
das Auslesen von Signalen direkt vom 
Gehirn und deren Umsetzung in Sig-
nale zur Steuerung von assistierenden 
Technologien ermöglicht. In dem Ar-
tikel von Kaiser et al. [5] wurden be-
reits einige wichtige Forschungsarbei-
ten zum Einsatz von BCIs und deren 
Verbesserung in der Anwendbarkeit 
demonstriert. Diese Forschungsarbei-
ten befassen sich hauptsächlich mit 
der Steuerung von Neuroprothesen 
auf der Basis der funktionellen Elek-
trostimulation (FES) bei querschnitt-
gelähmten Anwendern durch auf BCIs 
aufbauende Benutzerschnittstellen 
(hybride BCIs [9, 13, 17]). Ein beson-
ders wichtiger Aspekt der Arbeit von 
Kaiser et al. [5] besteht im Aufzeigen 
von Möglichkeiten, wie BCIs in beste-
hende assistierende Systeme sinnvoll 
integriert werden können. 

Dieser Artikel soll an die Übersicht 
von Kaiser et al. anknüpfen und ak-
tuelle Weiterentwicklungen im Be-
reich Neuroprothesensteuerung und 
Schlaganfallrehabilitation dokumen-
tieren und einen Blick in die zukünf-
tigen Möglichkeiten von BCIs wagen.

Insbesondere im Bereich der Neu-
roprothesensteuerung wird während 
der Arbeit mit Anwendern schnell of-
fensichtlich, wie groß der Bedarf für 
ein individualisiertes Hilfsmittel ist, 
welches speziell auf die Bedürfnis-
se und Möglichkeiten für den jewei-
ligen Benutzer zugeschnitten ist. Je 

nach Grad der Einschränkung eines 
Querschnittgelähmten ändern sich 
die Erwartungen an die assistiven 
Technologien. Verfügen die Anwen-
der z. B. über keinerlei motorische 
Restfunktionen in der Hand, ist eine 
Wiedererlangung der Greiffunktion 
das wesentlichste Bedürfnis. Mit zu-
nehmend rostralem neurologischen 
Level der Rückenmarksschädigung 
liegen auch Einschränkungen der El-
lenbogen- und Schulterfunktion vor. 
Ohne eine ausreichende Schulter- und 
Ellenbogenkontrolle kann auch eine 
durch eine Neuroprothese vollstän-
dig wiederhergestellte Greiffunktion 
nicht sinnvoll eingesetzt werden. 

Bei den Betroffenen sinkt gegenläu-
fig zu der Zahl der wiederherzustellen-
den Funktionen die Anzahl der ver-
bliebenen Steuermöglichkeiten. Eine 
gebräuchliche Möglichkeit zur ana-
logen Kontrolle der Griffstärke der 
Hand ist die Verwendung eines Posi-
tionssensors auf der gegenüberliegen-
den Schulter. Dies ist natürlich nur für 
Anwender sinnvoll, die noch eine aus-
reichend stabile Schulterfunktion zur 
Verfügung haben. Bei stärkeren Be-
einträchtigungen können Schulterbe-
wegungen nicht mehr zur Steuerung 
herangezogen werden, sei es durch 
mangelnden Bewegungsumfang oder 
durch eine zu hohe Anstrengung 
während der Verwendung. In diesem 
Fall bietet sich das BCI als alternati-
ve oder unterstützende Technologie 
an [11, 16]. Hierbei kann das BCI als 
ausschließliche Steuerungsquelle ver-
wendet werden, oder nur einen zu-
sätzlichen Freiheitsgrad zur Steuerung 
zur Verfügung stellen, um muskuläre 
Ermüdung zu verlangsamen oder gar 
nicht erst entstehen zu lassen.

A. Kreilinger, H. Hiebel, P. Ofner, M. Rohm, R. Rupp,  
G. R. Müller-Putz

Brain-Computer Interfaces 
als assistierende Techno logie 
und in der Rehabilitation 
nach Schlaganfall
Brain-Computer Interfaces as Assistive Technology and  
in Stroke Rehabilitation 
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back informiert. Als BCI-Kanal wurde 
ein zeitkodierendes BCI verwendet, 
das auf der Bewegungsvorstellung 
(motor imagery, MI) basiert [7, 12]. 
Mittels kurzer Bewegungsvorstellun-
gen der Füße konnte zwischen Griff-
mustern hin- und hergeschaltet wer-
den, mit Langen wurde der Pausemo-
dus aktiviert. Um diese Vorstellungen 
mit ausreichender Genauigkeit de-
tektieren zu können, wurde ein BCI-
Training durchgeführt, um einerseits 
die Anwender mit der Bewegungsvor-
stellung vertraut zu machen und an-
dererseits genug Daten für die Erstel-
lung von Klassifikatoren zu sammeln. 
Das Schema der Applikation wird in 
Abbildung 2 dargestellt. Bilder, die die 
graphische Oberfläche zeigen und Fo-
tos, die während der Ausführung ge-
macht wurden, werden in Abbildung 
3 und 4 gezeigt.

Die Applikation wurde bei der 
Durchführung von zwei verschiede-
nen Aufgaben getestet. In Aufgabe A 
sollten die Probanden das System star-
ten, indem sie die Pause mit einer Be-
wegungsvorstellung beendeten, um 
dann im ersten aktiven Griff Objekte 
zu bewegen. Nach drei Minuten wur-
den sie dazu aufgefordert, den Griff zu 
wechseln und Objekte, die für diesen 
Griff besser greifbar waren, zu bewe-
gen. Nach drei Minuten sollte noch 
einmal der Griff gewechselt werden, 
um ein letztes Mal drei Minuten lang 
Objekte zu bewegen. Zuletzt sollten 
die Anwender in den Pausemodus zu-
rückkehren. In Aufgabe B hatten die 
Probanden drei Minuten Zeit, alter-
nierend den Griff zu wechseln und ein 
dazu passendes Objekt zu bewegen. Es 
wurden auch Prinzipien des hybriden 
BCIs verwendet, indem aktuelle Bewe-
gungen des Schulterjoystick bei even-

Im Stimulationsgerät (MotionS-
tim, Medel, Hamburg) gespeicherte 
Stimulationsparameter sorgten da-
für, dass ein analoger Wert den Öff-
nungsgrad der Hand steuerte. Diesen 
analogen Wert konnten die Anwender 
durch Heben und Senken der Schul-
ter selbst beeinflussen. Die Möglich-
keit zur Griffumschaltung wurde über 
ein asynchrones BCI umgesetzt. Hier 
konnten die Anwender entweder den 
Griffmodus wechseln oder in einen 
Pausemodus schalten. Die Anwender 
wurden durch ein diskretes (aktueller 
Modus) und kontinuierliches (aktu-
elle BCI-Aktivität) graphisches Feed-

Anwendungsszenarien 
für BCI-kontrollierte 
Neuroprothesen 
Im Folgenden sollen anhand ver-
schiedener Einzelbeispiele die Mög-
lichkeiten zur Integration eines BCIs 
in das Steuerungskonzept einer Neu-
roprothese bei Querschnittgelähm-
ten mit unterschiedlich ausgeprägten 
Funktionseinschränkungen der obe-
ren Extremität aufgezeigt werden. 

Schulterbewegungsbasierte  
Neuroprothesensteuerung mit 
Griffumschaltung durch das BCI
Als erstes Beispiel wird die Umschal-
tung des Griffs einer Handneuropro-
these erläutert. Das BCI wird in dieser 
Art der Steuerung als binärer „Brain-
Switch“ eingesetzt und der Grad der 
Handöffnung/-schließung über einen 
Schulterpositionssensor vorgegeben. 
Die BCI-basierte Griffumschaltung 
wurde zusammen mit der Neuro-
prothese an zwei männlichen quer-
schnittgelähmten Anwendern (ES und 
TS, 31 und 37 Jahre alt) getestet, beide 
mit einer kompletten Querschnittläh-
mung auf Höhe von C5 ohne Finger- 
und Handfunktion.

Durch Anbringen von vier Elektro-
denpaaren am Unterarm der Anwen-
der ist es möglich, zwei verschiedene 
Greifmuster mittels FES zu generieren: 
den Palmargriff (auch Zylindergriff) 
und den Lateralgriff (auch Schlüssel-
griff) [19]. Durch die Verwendung ei-
ner gemeinsamen Elektrode für zwei 
Elektrodenpaare konnte die Anzahl 
der platzierten FES-Elektroden re-
duziert werden, was aufgrund der li-
mitierten Oberfläche am Unterarm 
notwendig wurde. Diese Anordnung 
wird in Abbildung 1 demonstriert.

Abb. 1 Platzierung der Elektroden für Handextension (1) und Handflexion (2) sowie von Elektrodenpaaren (3) und (4), die sich eine  
gemeinsame Elektrode teilen und die spezifischen Griffmuster des Daumens erzeugen.

Abb. 2 Schema des Griffumschaltungsex-
periments. Die Stärke des Griffs wird mit 
dem Schulterpositionssensor analog ein-
gestellt, während die Art des Griffmusters 
mit einem zeitkodierenden BCI eingestellt 
werden kann. Der Anwender sieht anhand 
eines diskreten und kontinuierlichen Feed-
backs jederzeit, welcher Modus gerade ak-
tiviert ist und erhält sofort Rückmeldung 
über eventuell detektierte Gehirnaktivität.
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wegt den Unterarm in Richtung des 
Endwinkels, welcher am weitesten 
von der aktuellen Position entfernt ist. 

Für diese Art der Steuerung wur-
den zusätzlich zu den Elektroden am 
Unterarm noch Elektroden am Ober-
arm platziert. Zusätzlich wurde eine 
elektrisch blockierbare Ellenbogenor-
these zu Stabilisierungszwecken und 
zur Messung des Ellenbogenwinkels 
montiert [18]. Über die Messung des 
Ellenbogenwinkels und Anpassung 
der Stimulationspulsweite der Ober-
armelektroden wird der gewünschte 
Sollwinkel eingeregelt. Bei Erreichen 
des Zielwinkels wird das Gelenk mit 
einem magnetischen Mechanismus 
verriegelt, um eine Dauerstimulation 
und die damit verbundene vorzeitige 
Muskelermüdung abzuwenden.

Der Versuchsablauf war für die ge-
sunden und den querschnittgelähm-
ten Probanden unterschiedlich: Wäh-
rend gesunde Probanden zur Minimie-
rung von stimulationsbedingten Ein-
flüssen die Aufgabe hatten, die Neu-
roprothese an einer zweiten Person 
zu bewegen, führte der querschnitt-
gelähmte Anwender den Versuch ein-
mal ohne Neuroprothese und einmal 
mit der Neuroprothese am eigenen 
Arm durch (Abb. 5). Ziel war die zehn-
malige Durchführung einer vorgege-
benen Bewegungsabfolge. Es sollten je 
nach aktueller Hand- und Armpositi-
on kurze und lange Kommandos rich-
tig abgerufen werden, um ein Objekt 
in maximaler Extension zu greifen, es 
in maximaler Flexion loszulassen und 
abschließend in die Anfangsposition 
zurückzukehren. Für die Durchfüh-
rung der gesamten Sequenz standen 
allen Probanden jeweils drei Minuten 
Zeit zur Verfügung. Diese war unter-
brochen von einer einminütigen Pau-
se, in welcher unbeabsichtigte Kom-
mandos (false positives, FPs) gezählt 

dert. Beide Anwender hätten die Ge-
genstände ohne Neuroprothese nicht 
mit einer Hand zielgerichtet transfe-
rieren können.

BCI-Steuerung einer Hybrid- 
Neuroprothese für kontinuierliche 
und diskrete Ellenbogen-/ 
Handbewegungen
In einer zweiten Konfiguration wird 
das BCI als einzige Steuermodalität 
verwendet, um eine Arm- und Hand-
neuroprothese sowohl kontinuier-
lich als auch diskret zu kontrollieren 
[8]. Diese Konfiguration wurde mit 
neun gesunden Probanden und dem 
querschnittgelähmten Anwender ES 
evaluiert. In Anlehnung an die zu-
vor beschriebene Konfiguration wur-
de ebenfalls ein zeitkodierendes BCI 
verwendet, allerdings wird hier nicht 
nur zwischen kurzen und langen 
Kommandos unterschieden. Kurze 
Kommandos (Bewegungsvorstellung 
zwischen 0,75 und 1,5 s) werden als 
diskrete Kommandos behandelt: In 
Abhängigkeit der Position des Arms 
und der Hand kann die Hand geöff-
net oder geschlossen werden oder das 
Ellbogengelenk in maximale Flexion 
oder Extension bewegt werden. Ein 
langes Kommando wird als solches 
nach 1,5 Sekunden erkannt und be-

tuellen BCI-Schaltvorgängen berück-
sichtigt wurden. Es kann z. B. davon 
ausgegangen werden, dass bei beweg-
ter Schulter zum Öffnen und Schlie-
ßen der Hand nicht auf einen anderen 
Griff umgeschaltet werden soll. Daher 
wurde eine Fehlererkennungsrouti-
ne in den Stimulator implementiert, 
die alle BCI-Schaltvorgänge während 
Schulterbewegungen verwarf. Mit 
dieser Maßnahme konnte die Zahl 
unbeabsichtiger Griffwechsel in er-
heblichem Maß reduziert werden. 
Beide Anwender führten den Versuch 
zum Nachweis der Wiederholbarkeit 
zweimal aus.

Anwender ES benötigte im Schnitt 
16,9 ± 12,2 s, um zu einem Griff oder 
zwischen den Griffen hin- und herzu-
schalten, 51,3 ± 59,1 s, um in den Pau-
semodus zu schalten. Er schaffte es, 
215 Objekte während der 24 Minuten 
in Aufgabe A zu bewegen und 31 Ob-
jekte während der 12 Minuten in Auf-
gabe B. Es wurden dank der Fehlerer-
kennungsroutine 53 ungewollte Akti-
vierungen unterdrückt. Anwender TS 
benötigte 25,5 ± 27,9 s für Griffum-
schaltungen und 22,3 ± 15,6 s, um in 
die Pause zu wechseln. 253 Objekte 
wurden von ihm während Aufgabe 
A, 28 Objekte während Aufgabe B be-
wegt. 29 Schaltungen wurden verhin-

Abb. 3 Diskretes und kontinuierliches Feedback. (A) zeigt den Anfangszustand des  
Systems bzw. den später auswählbaren Pausemodus. In (C) und (D) werden die beiden 
Griffmuster gerade verwendet. Der in (D) sichtbare Balken informiert den Anwender über 
die Dauer einer detektierten Bewegungsvorstellung (counted MI time). Je nach Länge  
werden entweder die Griffmuster gewechselt oder in Pause geschaltet. (B) ist ein ständig 
aktives kontinuierliches Feedback, welches Informationen über die Stärke der detektierten 
Vorstellung gibt und in einem zweiten Fenster dargestellt wird.
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besserungen oder Verschlechterungen 
in Verbindung gebracht werden kön-
nen und demnach positiv verstärkt 
oder aber abgeschwächt werden sollen. 

Ein zunehmend verfolgter Ansatz 
im Kontext der Schlaganfallrehabili-
tation ist die Nutzung einer BCI getrig-
gerten FES. Die Basis für diese Thera-
pieform besteht in der Annahme, dass 
die direkte Kopplung der Bewegungs-
intention mit einer tatsächlich auf-
tretenden Bewegung und die damit 
verbundene sensible, propriozeptive 
Rückmeldung in besonderem Maße 
geeignet sein könnte, um entspre-
chende Aktivierungsmuster zu ver-
stärken und neuroplastische Verän-
derungen in der geschädigten Hemi-
sphäre zu stimulieren. Bei einer FES-
induzierten Bewegung wird nämlich 
der motorische Kortex in ähnlicher 
Weise aktiviert wie bei aktiv ausge-
führten Bewegungen [10]. Bei der ge-
triggerten FES geht man einerseits da-
von aus, dass durch den sensorischen 
Input die Plastizität des ZNS gefördert 
wird. Andererseits weiß man, dass ein 
motorisches Training nur bei aktiver 
Partizipation der Betroffenen erfolg-
reich sein kann [3]. Hier leistet das BCI 
einen wichtigen Beitrag, weil es spe-
ziell bei Schwerbetroffenen kortika-
le Aktivitätsmuster erkennen und in 
eine FES getriggerte motorische Reak-
tion mit einhergehender sensorischer 
Rückmeldung im Sinne eines geschlos-
senen Regelkreises überführen kann. 
Erste Anwendungen der Kopplung 
eines BCI mit einer FES stellen eine 
vielversprechende Ergänzung zu üb-
lichen Trainingsprogrammen dar [4].

besserungen einher [2]. Mithilfe des 
BCIs können diese Aktivierungsmus-
ter detektiert und durch gezielte Rück-
meldung (Feedback) positiv verstärkt 
werden. In dem Beitrag von Kaiser et 
al. [6] wurde anhand einer Stichprobe 
von 29 Schlaganfallpatienten gezeigt, 
dass die Stärke und Lokalisation spe-
zifischer Komponenten des EEG-Sig-
nals bei Bewegungsvorstellung und 
-ausführung mit dem Ausprägungs-
grad der motorischen Beeinträchti-
gung in Zusammenhang stehen. Diese 
Erkenntnisse stellen eine wesentliche 
Grundlage für die erfolgreiche An-
wendung der BCI-Technologie in der 
Schlaganfallrehabilitation dar. Bislang 
ist nämlich noch unzulänglich geklärt, 
welche messbaren neurophysiologi-
schen Korrelate mit funktionalen Ver-

wurden. Eine Übersicht von konzept-
bezogenen Befehlskonstellationen 
von langen und kurzen Kommandos 
in Abhängigkeit von verschiedenen 
Hand- und Armpositionen sind in Ab-
bildung 6 erläutert.

Im Mittel konnten die gesunden 
Probanden 60,2 ± 11,4 % richtige 
Kommandos erzeugen, je nach aktuel-
ler Hand- und Armposition. Die Zahl 
der ausgeführten Kommandos pro Mi-
nute während aktiver Sequenzen war 
mit 8,2 ± 1,3 bedeutend größer als die 
Zahl der falsch positiven Kommandos 
pro Minute während der Ruhephasen 
mit 4,7 ± 2,6. Im Durchschnitt wur-
den nur 22,6 ±  6,5 min von den 30 
Minuten benötigt, um alle 10 Sequen-
zen zu beenden (positive oder negati-
ve). Es konnten 55,5 ± 36,2 % dieser 
10 Sequenzen erfolgreich absolviert 
werden. Hervorzuheben ist, dass der 
Anwender ES mit einer Rate von rich-
tigen Kommandos (TP) von 73,7 % 
und mit 80 % erfolgreicher Sequen-
zen in unter 20 Minuten das System 
besser als der Durchschnitt der nicht 
behinderten Probanden bedienen 
konnte. Damit war er der zweitbeste 
Teilnehmer bei diesem Experiment.

BCIs zur Unterstützung 
der Handfunktion nach 
Schlaganfall
Auch im Bereich der Schlaganfallre-
habilitation konnten weitere Fort-
schritte erzielt werden. Bisherigen 
Erkenntnissen zufolge geht nach uni-
lateralem Schlaganfall insbesondere 
eine Aktivierung noch intakter mo-
torischer Areale in der geschädigten 
Hemisphäre mit funktionalen Ver-

Abb. 5 Schema der kontinuierlichen und diskreten Hand-/Ellenbogensteuerung. Bei den 
Versuchen mit gesunden Probanden steuerte ein Proband mit dem EEG die FES des Arms 
eines zweiten Probanden. Bei dem Versuch mit einem Menschen mit Querschnittlähmung 
steuerte dieser die FES des eigenen Arms. Ein abstraktes Feedback gibt zu jeder Zeit  
Auskunft über den aktuellen Winkel des Arms und den Zustand der Hand. Ein konti-
nuierliches Feedback zeigt außerdem detektierte Bewegungsvorstellungen an und ein sich 
aufladender Balken die Länge der gerade vorgestellten Bewegung.

Abb. 4 Die beiden Anwender ES und TS während der Ausführung des Experiments.  
Die obere Reihe zeigt die zeitliche Abfolge einer Objektbewegung mittels Zylindergriff 
(palmar grasp). In der unteren Reihe wird ein Holzstab mit dem Schlüsselgriff (lateral 
grasp) bewegt.
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des FES-Feedbacks deutlich zu, hin-
gegen zeigte sich kein Anstieg wäh-
rend der Beobachtung des Video-Feed-
backs. Im Gegensatz zur Video-Bedin-
gung waren die Aktivierungsmuster in 
der FES-Bedingung denen aktiv aus-
geführter Bewegungen sehr ähnlich. 
Zudem wurde im Mittel eine höhere 
Online-Klassifikationsgenauigkeit in 
der FES-Bedingung (82,6 %) als in der 
Video-Bedingung (75,3 %) erzielt.

Dekodierung von  
Bewegungen mittels BCI

Ein Nachteil der aktuellen BCI-Tech-
nologie ist die unzulängliche Natür-
lichkeit der mentalen Strategien. So 
werden z. B. Fußbewegungsvorstel-
lungen verwendet, um eine Neuro-
prothese der Hand zu steuern, falls die 
messbaren Effekte einer solchen Fuß-
bewegungsvorstellung denen einer 
Handbewegungsvorstellung überle-
gen sind. Es wäre zweifellos intuitiver, 
wenn die Funktion einer Extremi-
tät über Bewegungsvorstellungen der 
gleichen Extremität gesteuert wer-
den könnte. Darüber hinaus ist die 
Art der vorgestellten Bewegung meis-
tens nicht mit der tatsächlich ausge-
führten Aktion identisch, was eine zu-
sätzliche Abstrahierung zur Folge hat. 
Die nächste Evolutionsstufe in BCI-
gesteuerten Neuroprothesen wird es 
demnach sein, Bewegungsvorstellun-
gen direkt in exakt entsprechende 
tatsächliche Bewegungen umzuset-
zen. Diese Möglichkeit einer einfach 
zu erlernenden, intuitiven Kontrol-
le würde als positiven Nebeneffekt 
das Erlernen von mentalen Strategien 
überflüssig machen und die Trainings-
zeit erheblich verkürzen. Zur Umset-
zung eines solchen Kontrollschemas 

riozeptive Rückmeldung) gezielt mit 
dem Einfluss des Video-Feedbacks (vi-
suelle Beobachtung derselben Bewe-
gung) verglichen werden. Die aufge-
zeichneten EEG-Aktivierungsmuster 
wurden zwischen beiden Feedback-
Bedingungen verglichen, wobei der 
Schwerpunkt auf der Analyse „korrek-
ter Bewegungssequenzen“, in denen 
das entsprechende Feedback tatsäch-
lich ausgelöst worden war, lag.

Die Ergebnisse zeigen eine deut-
lich stärkere Aktivierung des senso-
motorischen Kortex während des zu-
sätzlichen FES-Feedbacks, welche am 
stärksten über den sensomotorischen 
Repräsentationsarealen der Hände 
ausgeprägt war. Die schon bei voran-
gehender Bewegungsvorstellung vor-
handene Aktivierung nahm während 

Vergleich von FES- und  
Video-Feedback während einer 
BCI-Kontrolle
In der Arbeit von Hiebel [4] wurde der 
Einfluss zweier Arten von Feedback 
auf sensomotorische Aktivierungs-
muster im EEG während einer BCI-
gesteuerten Anwendung untersucht. 
15 gesunde, rechtshändige Personen 
sollten sich entweder Bewegungen 
ihrer rechten Hand vorstellen (motor 
imagery) oder sich entspannen und 
keine aktive Aufgabe ausführen (Ru-
hebedingung). Wurden die mit der 
Bewegungsvorstellung assoziierten 
Aktivierungsmuster richtig detektiert, 
löste dies entweder eine FES-induzier-
te Bewegung der rechten Hand aus 
oder initiierte ein Video, welches die-
selbe zuvor individuell gefilmte Hand-
bewegung auf einem Computermo-
nitor zeigte. Während des Feedbacks 
sollten die Personen die entsprechen-
de Bewegung beobachten sowie sich 
weiterhin mental vorstellen, die Be-
wegung selbst auszuführen.

Der experimentelle Aufbau wurde 
derart gewählt, dass in der FES-Bedin-
gung die eigene rechte Hand sichtbar 
auf einem Tisch vor den Personen ne-
ben dem horizontal platzierten Moni-
tor lag. In der Video-Bedingung wurde 
der Monitor so positioniert, dass sich 
die im Video gezeigte Hand an der-
selben Position befand wie die eigene 
Hand in der FES-Bedingung. Auf die-
sem Weg sollte der Einfluss des multi-
sensorischen FES-Feedbacks (visuelle 
Bewegungsbeobachtung und prop-

Abb. 6 Zusammenhang von ausgeführten Kommandos in Abhängigkeit von Arm-  
und Handposition. Kurze Bewegungsvorstellungen erzeugen eine diskrete Aktion, lange 
Vorstellungen steuern direkt eine Flexions-/Extensionsbewegung des Ellenbogens.
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Benutzung des üblicherweise nicht 
fehlerfreien BCIs Prinzipien des hy-
briden BCIs. Bei der Griffumschal-
tung werden durch Überwachung der 
Schulterbewegung viele falsch positi-
ve BCI-Schaltvorgänge verhindert. 
Bei der kombinierten Hand- und El-
lenbogensteuerung wird die Ellenbo-
genbewegung gemessen und je nach 
Höhe werden nur spezielle BCI-Kom-
mandos zugelassen.

Die Ergebnisse unserer Forschung 
zeigen, dass sensorisches Feedback 
in Form einer FES-induzierten Bewe-
gung entsprechende sensomotorische 
Gehirnregionen deutlich stärker akti-
viert als Feedback in Form von aus-
schließlich visueller Beobachtung 
derselben Bewegung. Die mithilfe des 
BCIs durch Bewegungsvorstellung in-
itiierten FES-vermittelten Bewegun-
gen waren mit kortikalen Aktivie-
rungsmustern assoziiert, wie sie auch 
bei aktiv ausgeführten Bewegungen 
auftreten. Bei visuellem Feedback 
über ein Video der eigenen Hand tra-
ten diese Aktivierungsmuster in deut-
lich geringerem Ausmaß auf.

Basierend auf diesen Erkenntnissen 
scheint eine Nutzbarkeit einer BCI-
gesteuerten FES-Neuroprothese im 
Kontext der Schlaganfallrehabilitati-
on aussichtsreich. Die intensive Akti-
vierung sensomotorischer Regionen 
durch propriozeptive Afferenzen in 
Verbindung mit der Triggerung über 
eine willkürliche Aktivierung des 
entsprechenden Motorareals könnte 
zu einer erhöhten kortikalen Reorga-
nisation und damit Wiederherstel-
lung motorischer Funktion führen. 
Die Klassifikationsergebnisse deuten 
darauf hin, dass die wiederholte so-
matosensorische Wahrnehmung der 
FES-induzierten Bewegung Personen 
in stärkerem Maße als das pure Be-
obachten die Vorstellung der entspre-
chenden Bewegung erleichtert. 

Zuverlässige Aussagen über die Ef-
fizienz dieses Feedbacktrainings kön-
nen jedoch erst nach weiteren BCI-
Trainingsstudien getroffen werden. 
Im Rahmen zukünftiger Forschungs-
arbeiten wird die prinzipielle Frage 
geklärt werden, inwieweit überhaupt 
bei Schlaganfallpatienten noch ver-
bliebene Aktivität in der geschädig-
ten Hemisphäre detektiert und zur 
Steuerung einer FES-Neuroprothese 
genutzt werden kann. Darauf aufbau-
end müssen klinische Studien zeigen, 
welche kortikalen Veränderungen 
mittels FES-BCI-Training im Vergleich 
zu konventionellen Rehabilitations-
maßnahmen erzielt werden können 

bereitgestellten assistierenden Tech-
nologien nicht in der Lage gewesen 
wären. Die unterschiedliche Verwen-
dung des BCIs in diesen Beispielen ver-
deutlicht, dass bei der Konfiguration 
von BCI-basierenden assistierenden 
Technologien die individuellen An-
forderungen der Anwender im Sinne 
eines „User Centered Design (UCD)“ 
beachtet werden müssen.

Im ersten Szenario der Griffum-
schaltung wird das BCI als zusätzli-
cher Eingabekanal verwendet. Diese 
moderate Einbindung dient dazu, ei-
ner vorzeitigen Muskelermüdung vor-
zubeugen, da die auf muskulären Rest-
funktionen basierende Schultersteue-
rung nur bei Bedarf verwendet wird. 
Durch die BCI-gesteuerten Modi kann 
der Anwender die Stimulation ohne 
jeglichen muskulären Aufwand akti-
vieren und deaktivieren bzw. das ak-
tuelle Griffmuster verändern.

Das zweite Beispiel zeigt die Ver-
wendung von BCI bei sehr stark mo-
torisch beeinträchtigten Menschen 
und verzichtet gänzlich auf muskulä-
re Restfunktionen zur Steuerung. Die 
Ergebnisse von nicht motorisch beein-
trächtigen Probanden zeigen, dass ein 
auf Bewegungsvorstellungen basier-
tes BCI schwierig zu bedienen ist. Der 
Grund dafür ist die Schwierigkeit, die 
Bewegungsvorstellung über verschie-
den lange Zeiträume gezielt aufrecht-
zuerhalten und bei Bedarf wieder zu 
beenden. Manche Probanden konn-
ten sich vorwiegend kurze Bewegun-
gen besser vorstellen, manche fanden 
es einfacher, längere Vorstellungen 
durchzuführen. Die jeweils anderen 
Bewegungsvorstellungsarten waren 
dafür schwieriger zu bewerkstelligen. 

Der an dem Experiment teilneh-
mende tetraplegisch Querschnittge-
lähmte konnte das BCI sowohl mit 
kurzen als auch mit langen Bewe-
gungsvorstellungen sehr gut bedie-
nen. Er hatte mit montierter Neuro-
prothese mit 73,7 % die zweitbeste 
TP-Rate aller Teilnehmer und konn-
te 8 von 10 Sequenzen innerhalb des 
gesetzten Zeitlimits erfolgreich absol-
vieren. Ob diese Einzelfallergebnisse 
auf ein größeres Patientenkollektiv 
generalisierbar sind, müssen weite-
re Untersuchungen mit Hoch-Quer-
schnittgelähmten zeigen. Allerdings 
zeigen die Ergebnisse, dass Ergebnis-
se aus Untersuchungen mit Nichtge-
lähmten weder in positiver noch in 
negativer Richtung auf Querschnitt-
gelähmte übertragbar sind.

Beide Neuroprothesensteuerungen 
verwendeten für eine zuverlässigere 

befassen sich verschiedene Forscher-
gruppen vermehrt mit Gehirnsigna-
len im niederfrequenten Zeitbereich 
(< 5 Hz), welche ein hohes Potenzial 
zur nichtinvasiven Dekodierung von 
Bewegungsvorstellungen bieten. In 
einer Studie von Waldert et al. [20] 
wurden Handbewegungsrichtungen 
aus der 3 Hz tiefpassgefilterten MEG-
Aktivität über bilateralen Motorare-
alen dekodiert. Erste Schritte in die-
se Richtung unter Verwendung des 
EEGs wurden von Bradberry et al. [1] 
unternommen. Hier wurde gezeigt, 
dass Frequenzen unter 1 Hz mit der 
Geschwindigkeit der Hand während 
tatsächlich ausgeführten Armbewe-
gungen in allen drei Raumrichtun-
gen korrelieren. In der Studie von Of-
ner und Müller-Putz [14] wurde unter 
Verwendung von niederfrequenten 
EEG-Anteilen auch die Hand-Positi-
on während einer selbstständig aus-
geführten Bewegung (keine externe 
Zielvorgabe) dekodiert. 

Unter Verwendung der Dekodie-
rungsprinzipien der Studien von Brad-
berry et al. und Ofner/Müller-Putz [1, 
14] wurde in einer weiteren Unter-
suchung von Ofner und Müller-Putz 
[15] gezeigt, dass Armbewegungsvor-
stellungen in der Sagittal- und Trans-
versalebene voneinander unterschie-
den werden können. In dieser Studie 
stellten sich neun gesunde Testperso-
nen eine rhythmische Armbewegung 
in diesen zwei Ebenen vor, während 
die Bewegungsvorstellung mithil-
fe eines Metronoms getaktet wurde. 
Unter Annahme einer sinusförmigen 
Bewegung wurden die Positionen der 
Hand in beiden Ebenen dekodiert. 
Hierzu wurden die EEG-Signale der 
letzten 180 ms in vier Zeitschritten 
bandpassgefiltert (0,2 – 0,8 Hz), an-
schließend wurden die Positionen in 
beiden Ebenen mit multiplen linea-
ren Regressionen berechnet und mit 
einer Sinusschwingung korreliert. Die 
Bewegungen wurden nun der Ebene 
zugeordnet, die eine höhere Korrela-
tion aufwies. Im Mittel über alle neun 
Testpersonen wurde eine Klassifikati-
onsgenauigkeit von 70 % erreicht. 

Diskussion
Die beiden Experimente mit unter-
schiedlich starker BCI-Integration 
konnten erfolgreich durchgeführt 
werden und zeigen, dass die hoch-
querschnittgelähmten Endanwender 
Funktionen der Hand oder des Ellen-
bogens kontrollieren können, zu de-
nen sie ohne Unterstützung durch die 
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erreicht werden können. Ein wesent-
licher Schritt hierzu sind Studien mit 
motorisch eingeschränkten Endan-
wendern (Personen im locked-in state, 
nach Schlaganfall oder Querschnitt-
lähmung), da an Nichtgelähmten ge-
wonnene Erkenntnisse nicht zwangs-
läufig auf die Zielgruppe übertragbar 
sind. Die Grundlagenforschung wird 
in Zukunft für Alltagsaufgaben ge-
eignetere und natürlichere, intuitiver 
kontrollierbare Systeme hervorbrin-
gen, welche den potentiellen Anwen-
derkreis für BCI-kontrollierte Neuro-
prothesen erweitern werden.

Für die Autoren:
Dipl.-Ing. Alex Kreilinger
Institut für Semantische Datenanalyse, 
BCI-Labor
Technische Universität Graz
Inffeldgasse 13/IV
A – 8010 Graz
alex.kreilinger@tugraz.at

Koordinatensystem zur Repräsentati-
on der Armposition am besten geeig-
net ist (Gelenkswinkel, kartesisches 
Koordinaten-System in zwei oder drei 
Dimensionen, lineare oder nicht-line-
aren Achsen) oder inwiefern fehler-
behaftetes Feedback die Dekodierung 
beeinflusst. Bei einem idealen Deko-
der würde die Steuerung der Neuro-
prothese mit natürlichen Bewegungs-
vorstellungen erfolgen. Dies hätte den 
weiteren Vorteil, dass keine neuen 
mentalen Strategien erlernt werden 
müssten, was die Trainingszeit für den 
Umgang mit der Neuroprothesensteu-
erung erheblich verkürzen könnte.

Anhand der vorgestellten Studien 
wird im besonderen Maß deutlich, 
dass nur durch eine interdisziplinäre 
Zusammenarbeit von Forschungsin-
stitutionen wie der TU Graz und des 
Universitätsklinikums Heidelberg re-
levante Fortschritte auf dem Gebiet 
der BCI-gesteuerten Neuroprothesen 

und inwieweit diese mit erhöhten mo-
torischen Funktionsverbesserungen 
einhergehen.

In weiteren Versuchen mit Nichtge-
lähmten konnten wir zeigen, dass die 
Vorstellung von rhythmischen Arm-
bewegungen in einer Ebene nachträg-
lich aus dem EEG dekodiert werden 
kann. Die nächsten Schritte werden 
sich mit der Entwicklung von Algo-
rithmen beschäftigen, welche die vor-
gestellte Armposition in Echtzeit de-
kodieren können. Diese könnte dann 
mittels inverser Kinematik auf die 
Neuroprothese übertragen und somit 
eine intuitive Kontrolle ermöglichen. 

Auf dem Weg dorthin sind aber 
noch viele Fragen offen, z. B. ist zu 
klären, ob nicht rhythmische, tran-
siente Bewegungsvorstellungen deko-
diert werden können, ob die dekodier-
te Position auch von anderen Parame-
tern beeinflusst wird (Blickpunkt, Po-
sition von externen Zielen), welches 
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a  b  s  t  r  a  c  t

Background:  The  bilateral  loss  of  the  grasp  function  associated  with  a lesion  of  the  cervical  spinal  cord
severely  limits  the  affected  individuals’  ability  to  live  independently  and  return  to  gainful  employment
after  sustaining  a spinal  cord  injury  (SCI).  Any  improvement  in  lost  or limited  grasp  function  is highly
desirable.  With current  neuroprostheses,  relevant  improvements  can  be  achieved  in  end  users with
preserved  shoulder  and  elbow,  but missing  hand  function.
Objective:  The  aim  of  this  single  case  study  is  to show  that (1) with  the  support  of  hybrid  neuroprostheses
combining  functional  electrical  stimulation  (FES)  with  orthoses,  restoration  of hand,  finger  and  elbow
function  is  possible  in  users  with  high-level  SCI  and  (2) shared  control  principles  can  be  effectively  used
to  allow  for  a brain–computer  interface  (BCI)  control,  even  if only  moderate  BCI  performance  is  achieved
after  extensive  training.
Patient  and  methods:  The  individual  in this  study  is  a  right-handed  41-year-old  man  who  sustained  a
traumatic  SCI in 2009  and has  a complete  motor  and  sensory  lesion  at the level  of C4.  He is unable  to
generate  functionally  relevant  movements  of the elbow,  hand  and  fingers  on  either  side.  He  underwent
extensive  FES  training  (30–45  min,  2–3  times  per  week  for 6 months)  and motor  imagery  (MI) BCI  training
(415  runs  in  43  sessions  over 12 months).  To meet  individual  needs,  the  system  was  designed  in  a  modular
fashion  including  an intelligent  control  approach  encompassing  two  input  modalities,  namely  an  MI-BCI
and shoulder  movements.
Results: After  one  year  of training,  the  end user’s  MI-BCI  performance  ranged  from  50%  to  93% (average:
70.5%).  The  performance  of  the  hybrid  system  was  evaluated  with  different  functional  assessments.  The
user  was  able  to transfer  objects  of the  grasp-and-release-test  and  he  succeeded  in eating  a  pretzel  stick,
signing  a document  and  eating  an  ice  cream  cone,  which  he  was  unable  to  do without  the  system.
Conclusion:  This  proof-of-concept  study  has  demonstrated  that  with  the  support  of hybrid  FES  systems
consisting  of FES  and  a semiactive  orthosis,  restoring  hand,  finger  and  elbow  function  is possible  in  a
tetraplegic  end-user.  Remarkably,  even  after  one  year  of training  and  415  MI-BCI  runs,  the  end user’s
average  BCI  performance  remained  at about  70%. This  supports  the  view  that  in  high-level  tetraplegic
subjects,  an  initially  moderate  BCI  performance  cannot  be  improved  by  extensive  training.  However,  this
aspect  has  to be validated  in  future  studies  with  a larger  population.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The bilateral loss of the grasp function associated with a motor
complete or nearly complete lesion of the cervical spinal cord
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severely limits the affected individuals’ ability to live indepen-
dently and return to gainful employment post injury, which
severely compromises their quality of life. Any improvement
in lost or limited grasp function is highly desirable not only
from the patients’ point of view [1,2], but also for economic
reasons [3]. Together with the fact that individuals with tetraple-
gia are often young people who  have been injured in sporting
and diving accidents, rehabilitation specialists have always
focused on finding ways to improve an impaired or lost upper
extremity function. Since to date none of the neuroprotective or
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neuroregenerative treatments has led to relevant improvements in
humans, specialists’ endeavors have primarily resulted in methods
for compensating for individual functional deficits. Among those
are surgical procedures, in which tendons of strong muscles are
rerouted from their original attachment to a new one to restore
the action that has been lost [4].

However, surgical functional rehabilitation is only possible if
a sufficient number of muscles are still under voluntary control.
This is not the case in patients with lesions above C5, who con-
stitute about 20% of the entire European spinal cord injury (SCI)
population. In this subgroup of SCI individuals, a handful of tech-
nological solutions for restoration of the upper extremity function
are available. Among them are motor-driven orthoses, which due
to their costs, complexity and size are intended to be used as
training devices rather than as personalized support systems [5,6].
Thus, today the only clinically applicable possibility for restoring a
permanently lost upper extremity function – at least to a certain
extent – is the application of neuroprostheses based on functional
electrical stimulation (FES). Over the last 20 years, several FES sys-
tems with different levels of complexity have been developed and
introduced to end users. These FES systems deliver short current
impulses to efferent nerves that cause paralyzed muscles to con-
tract [7]. On this basis, FES artificially compensates for the loss
of voluntary muscle control. When using FES for motor substitu-
tion, the easiest and least expensive way of improving a very weak
or lost function is the application of non-invasive neuroprosthe-
ses that use multiple surface electrodes [8–10]. Before meaningful
movements are possible, individuals with a chronic SCI need to
undergo extensive muscle training. This low-frequency FES training
can reverse the profound disuse atrophy of the paralyzed muscles
even many years after the SCI. The time required to achieve suffi-
cient fatigue resistance and force depends on the individual status
of the muscles and ranges from weeks to months [11].

Most of the current neuroprostheses for the upper extremity can
be used for grasp restoration only in SCI individuals with preserved
voluntary shoulder function and active elbow flexion. Even with
the most sophisticated device, namely the implantable Freehand®

grasp neuroprosthesis, only a restoration of finger, thumb and wrist
movements was possible [12]. Only a few experimental studies
with implantable devices demonstrated the feasibility of suppor-
ting the elbow function in very selected subjects with high-level
SCI [13]. One of the main challenges in restoring elbow flexion is
the rapid muscle fatigue that occurs due to the substantial weight
of the forearm and the non-physiological synchronous activation
of the paralyzed muscles through external electrical pulses. Addi-
tionally, the main elbow flexor (biceps) muscle is often denervated,
since its associated motor neurons are destroyed due to the spinal
trauma [14].

The fact that in individuals with high-level SCI only a few resid-
ual functions are preserved also has an impact on the selection and
setup of an appropriate user interface for autonomous control of a
grasp neuroprosthesis. User interfaces that rely on either the move-
ment or the underlying muscle activation from a non-paralyzed
body part can hardly be applied in this patient group [15,16]. A
general problem in the selection of the appropriate user interface
is the interference of an assistive device (AD) with the natural body
functions. For example, people with tetraplegia often wish to eat
without extensive support from caregivers. If a neuroprosthesis is
to be used for eating and drinking, control movements involving
the mouth cannot be applied. The same holds true if gaze or head
movements are intended to be used for neuroprosthesis control
[17].

Brain–computer interfaces (BCIs) are technical systems that
provide a direct connection between the human brain and a com-
puter [18]. Such systems are able to detect thought-modulated
changes in electrophysiological brain activity and transform such

changes into control signals. Most of the BCI systems rely on brain
signals that are recorded non-invasively through placement of
electrodes on the scalp. At present, these electroencephalogram
(EEG)-based BCI systems can function in most environments with
relatively inexpensive equipment and therefore offer the possibil-
ity for practical BCIs to gain relevance in the rehabilitation field.
One type of EEG-based BCI exploits the modulation of sensorimotor
rhythms (SMRs). These rhythms are oscillations in the EEG occur-
ring in the alpha (8–12 Hz) and beta (18–26 Hz) bands and can be
recorded over the sensorimotor areas. Their amplitude typically
decreases during actual movement and similarly during mental
rehearsal of movements (motor imagery (MI)) [19,20]. Several
studies have shown that people can learn to modulate their SMR
amplitude by practicing MI  of simple movements e.g., hand/foot
movements [21]. This process occurs in a closed loop where the
system recognizes the SMR  amplitude changes evoked by MI and
these changes are instantaneously fed back to the users. This neu-
rofeedback procedure based on operant conditioning enables BCI
users to control their SMR  activity and thus that of an AD.

These observations suggest that a BCI may  be a valuable com-
ponent in a neuroprosthetic user interface. A major advantage over
other user interfaces is that it can be operated independently from
residual motor functions. Furthermore, MI-based BCIs have enor-
mous implications for providing natural control of grasping and
reaching neuroprostheses in particular in individuals with high-
level SCI since they rely on volitional signals recorded from the
brain directly involved in upper extremity movements.

The feasibility of MI-based BCI systems for control of neuropros-
theses using surface [22] as well as implantable [23] electrodes
was shown in tetraplegic SCI users with a loss of hand and fin-
ger function. One of the major limitations of studies involving
humans in this field is that the results were obtained in selected
users with high BCI performances [24]. This raises the question
as to what extent the published results can be generalized to a
user population of non-selected persons. The results of a recent
study involving a small group of individuals with paraplegia and
tetraplegia show that motor imagery-induced EEG patterns can be
discriminated in the first training session in only half of the partic-
ipants. However, it is unclear whether extensive training sessions
will lead to a sufficient BCI performance in at least some of the
individuals with SCI with initially low or moderate performance
[25]. Subjects with SCI also show a diffuse and broadly distributed
event-related desynchronization (ERD)/synchronization (ERS) pat-
tern during attempted foot movements in contrast to the focal beta
ERD/ERS pattern during foot movement attempted by healthy sub-
jects [26]. This shows that tetraplegic BCI users in general may  not
achieve the high performance of paraplegic or healthy individuals,
although they have the greatest need for this type of system.

Therefore, the aim of this work is to show that (1) with the
support of hybrid FES systems consisting of an FES system and
semiactive orthosis, restoration of not only hand and finger, but
also elbow function is possible in users with tetraplegia and (2)
shared control principles can be effectively used to allow for ade-
quate BCI control of this hybrid FES system in end users in whom
only a moderate BCI performance is achieved even after extensive
training.

2. Patients and methods

2.1. Characteristics of the end user

The individual in this single case study is a right-handed
41-year-old man  with a traumatic SCI sustained in August 2009.
He is affected by a complete motor and sensory lesion (American
Spinal Injury Association (ASIA) Impairment Scale A [27]) with a
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Fig. 1. Electrode positions for the muscle training together with the assigned channel numbers of the Motionstim. Stimulation electrodes for extensor muscles are shown in
A  and for flexors in B. Picture C shows the finger extension and D the finger flexion. Picture E depicts the electrode setup for thumb abductor stimulation for generation of a
palmar  grasp pattern.

neurological level of injury of C4. He does not suffer from pain and
has a minor overall spasticity. His active and passive joint mobility
are at the level of the

- shoulder: active abduction, extension and flexion up to 30◦; all
grade 3/5; full passive range of motion (ROM).

- elbow: no active flexion (biceps grade 0/5 and brachioradial mus-
cle grade 0/5); no active extension (triceps grade 0/5); full passive
ROM.

- forearm: no active supination (grade 0/5) possible; no active
pronation (grade 0/5); full passive ROM.

- wrist, thumb and fingers: no active movements possible (grade
0/5); almost full passive ROM in finger joints; full wrist and thumb
ROM.

All arm muscles could be electrically stimulated sufficiently
except the biceps, which exhibited severe signs of denervation.

Since he was unable to perform any manipulation tasks, the
patient was referred to our institution for screening for study par-
ticipation. He had never participated in any clinical trial previously
and was naive to BCI or FES applications.

2.2. FES and BCI training

Before the end user can use a BCI-controlled neuroprosthe-
sis successfully, he first had to undergo FES and BCI training. At
the start of the FES training program, the stimulation frequency
was set to low frequencies (2–6 Hz = single twitches) in order to
carefully activate the passive structures of the muscles such as
ligaments and tendons. Since the spasticity did not increase dur-
ing or after the training, the stimulation frequency was increased
until tetanic muscle contractions were elicited (16 Hz). FES

training was  performed with the Motionstim stimulator (Medel
GmbH, Hamburg, Germany) with its original firmware. The
Motionstim provides eight independent stimulation channels and
generates biphasic, constant current impulses for stimulation of
innervated muscles. The advantage of this device is that it can
be used as a stand-alone device for training as well as for ded-
icated applications by simply switching between standard and
proprietary firmware. The programming of one’s own  application
is supported by a simple system developer kit, which includes func-
tions for basic graphical user interfaces and for control.

FES training was performed on a regular basis (approx. 3
times/week, 45 min  per session) starting in August 2011. Stimu-
lated muscles included the deltoids on both sides and the right
triceps. Since the right denervated biceps does not contribute to
a functional movement, it was  not trained. The aim of training the
forearm muscles was  to strengthen the muscles required for a two-
grasp pattern, namely a lateral pinch for grasping small items and
a palmar grasp for manipulating larger objects. For this purpose,
the finger extensors (extensor digitorum communis; electrode pair
(EP) 1 in Fig. 1A), the finger flexors (flexor digitorum superficialis,
flexor digitorum profundus; EP 2 in Fig. 1B) and the thumb extensor
(extensor pollicis longus; EP 3 in Fig. 1A) and flexor (flexor pollicis
longus; EP 4 in Fig. 1B) of the right hand were stimulated via four
separate pairs of surface electrodes.

After two months of regularly performed FES training, the fin-
ger muscles showed no signs of fatigue at the end of the 45 min
training session. Therefore, a level of fatigue resistance was reached
that was sufficient for successful restoration of the hand function
by FES. After approx. 20 min  of stimulation, the triceps showed
signs of fatigue, which were counteracted by a slight increase in
stimulation currents. The hand posture in extension direction was
nearly physiological (Fig. 1C); the hand posture in flexion direction
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Fig. 2. Light gray: performance of 351 MI-BCI runs (around 200 s each). The abscissa contains the number of runs, the ordinate the performance in %. Each vertical line (dark
gray)  indicates the calculation of a new classifier; classifiers represented in dotted lines were used twice because their respective predecessor did not lead to a change in
classifier setup. The nine diagonal lines indicate regression lines of the performance values of the respective classifier (at the beginning of the line).

was not optimal, but still sufficient for both a lateral and palmar
grasp (Fig. 1D). In order to achieve a palmar grasp pattern, the
thumb abductor was additionally stimulated (Fig. 1E) starting in
May  2012.

For both the training and the testing sessions, an individualized
neoprene sleeve (see Section 2.4) for quick fixation of FES electrodes
was used. The measured force of the thumb flexion during lateral
grasp was 2.5 N during the majority of the trials.

Starting in August 2011, BCI training was also performed. For
this training, 13 EEG electrodes on positions C3, Cz and C4 of the
10–20 system (Laplacian montage) were used at the beginning.
After the first three offline sessions, the number of electrodes was
reduced to nine (Laplacian derivation of C3 and Cz). All channels
were referenced to the left mastoid and grounded to the right
mastoid. Electrode gel was used to keep the impedances below
10 k�. The EEG was amplified with a g.tec USB amplifier (g.tec,
Graz, Austria), bandpass (8th order butterworth) filtered between
0.5 and 100 Hz and sampled at 512 Hz.

The subject performed the standard Graz-BCI training paradigm
[28] to obtain subject-specific bandpower features, which were
selected after manual evaluation of ERD/ERS maps [29]. The most
reactive bandpower features were weighted by a linear discrimi-
nant analysis (LDA) [30]. The frequency bands and weights were
saved as a classifier and were further used for training sessions.
New ERD/ERS maps were calculated regularly and a new classifier
was built and tested (for details, see Fig. 2).

Performance was calculated by dividing the number of correct
trials by all trials of a run. A trial was classified as correct when
its average classifier output was above a predefined threshold for
one class, e.g., motor imagery of the left hand, and below the same
threshold for the other class, e.g., motor imagery of the right hand.
The threshold was chosen such that there was no bias toward one
or the other class.

415 MI-BCI runs were recorded and 351 of these runs were eval-
uated. Due to a different electrode setup, the residual 64 runs were
not taken into consideration.

To assess the online performance independently of cued trials,
where only true or false positives exist, 14 trials of an inten-
tional non-control (INC) test were conducted at irregular intervals
between November 2011 and July 2012. In this INC test, the user
was requested to not elicit a BCI switch for one minute and subse-
quently elicit a switch as quickly as possible.

2.3. Elbow and hand orthosis

In order to achieve a stable elbow position without causing
fatigue in the upper arm muscles, an elbow orthosis was developed
as an adjunct to the Motionstim device for FES [31]. Its main com-
ponents (Fig. 3) are a self-locking, electrically lockable/delockable
elbow joint with a configurable weight support system to support
elbow movements. The orthosis is available for the left and the right
side and can be extended via a rotational wrist module, a module
for ulnar–radial abduction and a thenar wrist-stabilizing orthosis
module. Possible control devices include a 2-axis shoulder position
sensor and electromyographic recording hardware for measuring
residual muscle activity in the presence of electrical stimulation
pulses.

The device’s modularity allows it to be personalized to accom-
modate users’ different neurological statuses and functional needs.
In the case of the end user in our study, whose denervated biceps
could not be used for functional restoration, the orthosis was
equipped with a strong (7.5 Nm torque) anti-gravity module for
supporting the elbow flexion. The extension was generated by stim-
ulation of the triceps. Additionally, a wrist-stabilizing module was
used to keep the wrist in neutral position enabling proper finger
flexion.

During all experiments, care was  taken to ensure that the techni-
cal joint axis of the orthosis was  correctly aligned to the anatomical
elbow joint axis of the user sitting in a wheelchair.

2.4. Neoprene sleeve to facilitate FES training

Easy and reliable mounting of electrodes is a prerequisite for
enhancing the usability and, in turn, the acceptance of FES in end
users and caregivers. To this end, a neoprene sleeve was  manufac-
tured based on the individual size and length of the user’s right
forearm. After determining the individual position of the stimula-
tion electrodes on the forearm (Fig. 1A and B) self-adhesive Velcro
strips are placed on top of the electrodes (Fig. 1E). Then the sleeve is
fitted to the forearm starting with the opening of thumb and align-
ing the ends on the ulnar side (Fig. 3D). If the sleeve is removed
from the arm, the Velcro strips hold the electrodes in place on top of
the neoprene. With this procedure, all electrode positions are ulti-
mately defined, facilitating reproducible and accurate placement of
the FES electrodes and efficiently reducing the setup time for the
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Fig. 3. A fully equipped hybrid FES orthosis (top) together with its main components: A self-locking elbow joint (J) with a configurable weight support system (E and F) and
an  FES device and its software tools (A and C) together with self-adhesive surface electrodes (B and D). The orthosis can be extended via a rotational wrist module (J), a module
for  ulnar–radial abduction (H) and a thenar wrist-stabilizing orthosis module (G). Control devices include a 2-axis shoulder position sensor (K) and an electromyographic
recording hardware (L).

FES training [32]. The flexion movement is improved by binding
the strong middle and ring finger together with the weaker index
finger.

2.5. Hybrid BCI control concept

The control concept of the neuroprosthesis is based on the
hybrid BCI [33], which in this case consists of the combination of
an MI-BCI and an analog shoulder position sensor (Fig. 3K). After
donning, the sensor has to be calibrated according to the residual
shoulder ROM of the user.

To define meaningful stimulation patterns, e.g., for coordinated
opening and closing of the hand, a stimulation profile generator
(Fig. 3C) was programmed. The basis of a profile is the assignment
of 64 command nodes (horizontal axis) to stimulation pulsewidths
(vertical axis) separately for each stimulation channel (for details,
see Ref. [32]).

The proprietary software of the Motionstim device maps the
analog command value provided by the shoulder position sensor
to the corresponding command node and selects the predefined
pulsewidths for each stimulation channel. Therefore, through
protraction and retraction or elevation and depression (user-
dependent) of the shoulder, the user can control the degree of
elbow flexion and extension or of hand opening and closing by stim-
ulating the corresponding muscles (biceps and triceps for elbow
movements and finger extensors/-flexors for finger movements,
respectively).

The routing of the analog signal from the shoulder position sen-
sor to the control of the elbow or the hand and the access to a
pause state is determined by the digital brain switch provided by
the time-coded MI-BCI. Prior to using this kind of MI-BCI, users
have to perform standard BCI training to set up an individual LDA
classifier to distinguish between an active MI  versus a rest class.
The online BCI system provides the users with real-time feedback
that indicates current detection of the active class and the state of
the system. This feedback helps the users realize when and how
long the detection occurs and allows them to influence the length
of the detection. A short detection of MI  switches from hand to
elbow control or vice versa. A longer detection leads to a pause

state with muscle stimulation turned off and elbow joint of the
orthosis locked. The pause state can be exited by another short MI
detection, which reactivates the previous control mode (Fig. 4B).
The wiring of all components can be seen in Fig. 4A and the setup
of the complete BCI-controlled upper extremity neuroprosthesis in
the end user is depicted in Fig. 4C.

To minimize artifacts originating in FES pulses in the EEG sig-
nal, a ring electrode was connected to the upper arm and to the
equipotential bonding conductor connection of the EEG amplifier
[34].

2.6. User-centered design

For functional evaluation of the FES-generated grasp, a dedi-
cated hand function test (grasp-and-release-test (GRT) [35]) was
performed together with three activities of daily living (ADLs). Dur-
ing the GRT, the number of items successfully transferred in two
minutes was  recorded.

The ADL task of the initial testing sessions was to pick up and eat
a pretzel stick (Fig. 5). The intended sequence was for the subject
to (1) leave the pause mode and enter the arm state, (2) switch
to hand state and grasp the pretzel stick, (3) switch back to arm
mode, lift the stick to his mouth and bite it and (4) lower his arm
after biting and switch to hand mode in order to release it. For
successful completion of this experiment, four BCI switches have
to be elicited at certain time points.

This first experiment revealed several weaknesses of the setup.
First, the subject was  not able to grasp objects securely due to low
finger and thumb flexion forces. He initiated several attempts to
take another bite of the pretzel stick but failed. Secondly, the stim-
ulated triceps was  too weak to fully extend the elbow against the
strong anti-gravity support. A rotational, spring-based anti-gravity
support system was applied to flex the elbow and, in so doing, com-
pensate for the missing support of the denervated biceps. Third,
the ends of the rod of the shoulder position sensor were placed on
the acromion and the sternum. Due to the subject’s limited trunk
stability, he shifted to one side while using the orthosis, which neg-
atively affected the performance of the shoulder control. Fourth,
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Fig. 4. Schematic overview of the setup (A, top), example flowchart of the hybrid control scheme integrating the shoulder joystick and the MI-BCI (B, right) and the setup of
the  complete neuroprosthetic system in the end user (C, bottom).

with increasing time during the tests, the orthosis tended to shift
proximally due to slipping.

Based on the experiences of the first testing sessions, several
improvements were introduced with respect to the user-centered
approach. First, the positions of the forearm and triceps electrodes
were optimized, resulting in increased finger force and a larger
range of elbow motion (0◦ fully extended, ∼140◦ fully flexed). To
reduce the influence of the upper body posture on the output of the
shoulder joystick, a flexible belt was used to comfortably secure the
subject’s trunk to the backrest of the wheelchair. To reduce the slid-
ing of the orthosis, its clamps were coated with an adherent layer
made of neoprene.

With this improved second version of the hybrid FES orthosis,
a second task was  performed, namely a writing task. For this task,
the end user grasped a pen with a lateral grasp from a lower
surface, lifted it upwards, transferred it over a sheet of paper and
signed his name on the paper. Afterwards, he returned the pen to
its initial position. After several writing trials it became obvious
that the stimulated triceps fatigued too early and was  not able
to fully extend the elbow. Therefore, the system was  extended
with a small electrical drive that lifts the end user’s forearm until
maximum flexion of the elbow. The drive was attached at the
proximal end of the orthosis including a magnet and a reed switch

to detect the maximum flexion of the elbow joint. The rest of the
setup remained the same as for the pretzel task.

To enhance the usability of the system and to reduce the user’s
overall workload, several shared control principles for making the
system more robust were introduced. A BCI switch gating mech-
anism was implemented, which allows for eliciting a BCI switch
only when the shoulder joystick has not been moved in the previ-
ous seconds. The rationale for this approach is the observation that
a user who  moves the shoulder wants to move the hand or elbow
but does not want to switch between the control of these two. Fur-
thermore, after a BCI switch has been elicited, further switches are
rejected for several seconds. When calibrating the shoulder joy-
stick, a smaller range is used than actually measured. This has the
advantage that if the user cannot reach the calibrated value, he is
still able to control the system without the need for re-calibration.
When using the orthosis equipped with the electrical drive for
elbow flexion, no BCI switch can be elicited during motor move-
ment or if the elbow reaches the maximum flexion position, in
which the hand is near the mouth.

For overall evaluation of the hybrid BCI-controlled upper
extremity neuroprosthesis, a visual analog scale (VAS) was used to
assess the users’ mood, motivation and general device satisfaction
and the National Aeronautics and Space Administration task load
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Fig. 5. Sequence of pictures showing the eating of a pretzel stick. The user starts in the hand control mode, lifts his left shoulder to open the right hand to grasp the pretzel
stick  (A). After successfully grasping the pretzel stick (B), the user emits a short ERD pattern by performing a movement imagery of his right hand to switch from hand control
to  elbow control (C). The user concentrates on not emitting another BCI command but instead on lifting his shoulder to flex the elbow. Now, the user can take a bite of the
pretzel  stick (D). Finally, the user lowers his left shoulder to extend the elbow (E) and move to a resting position (F).

index (NASA-TLX) questionnaire was used to measure the subjec-
tive workload [36]. VAS questionnaires were assessed after every
experiment and workload was measured a total of four times.

3. Results

3.1. Results from MI-BCI online training sessions

For MI-BCI training, starting in August 2011, 415 MI-BCI runs were recorded on
43  days at the end user’s home. The end user achieved an average performance of 70%
with a standard error of 11.91% (Fig. 2). After three screening sessions, during which
30  offline runs were recorded, it became obvious that foot imagery vs. right hand
imagery delivered the strongest pattern and therefore this paradigm was used for
training. In the subject, the most reactive frequency band was  identified as between
23  Hz and 26 Hz. Small adaptations in the weights and frequency bands were under-
taken and, at the beginning, the classifier was retrained at every online session. After
seven sessions with no significant training effects, the classifier was kept unaltered.
The  calculation of the signed r2 after 30 online training sessions showed the valid-
ity  of this frequency band. Unfortunately, on 46% of all training days there were no
reactive frequency bands at all, whereas on other days strong features were present
(Fig. 6). The end user succeeded in 5 out of 14 trials of the INC test.

Fig. 6. Signed r2 for C3 Laplacian channel. Darker colors (red or blue) indicate a
higher reactivity and therefore more information content. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
the  article.)

3.2. Evaluation of FES-induced grasp patterns

Without any AD, the participant was unable to perform any GRT task. However,
with the hybrid FES orthosis system, the user was able to successfully perform GRT
tasks. The GRT tasks were selected on the basis of the higher force of the restored
grasp pattern in this end user i.e., the lateral grasp. Within trials of one minute
duration, the user succeeded in transferring pegs and blocks over the frame of a box
(Table 1) 17 out of 26 times. Single blocks were more difficult for him to handle than
double blocks.

For performing the GRT, the user did not need to elicit a brain switch. He locked
the orthosis such that his hand was slightly below the edge of the box and he per-
formed small lifting movements with residual elevation movements of the right
shoulder.

3.3. Evaluation of activities of daily living

The first experiment involved picking up and eating a pretzel stick (Fig. 5) and
was  performed a total of 11 times on three training days. During the only success-
ful  session, one BCI command was falsely classified as positive and was manually
corrected by the experiment supervisors. However, the subject had the possibility
of  switching from an undesired grasp to a desired one by eliciting another switch
(see  Section 2.5 for details). After the experiment, an INC task was performed during
which the user did not deliver a command for 50 s and was subsequently able to vol-
untarily deliver a command within 9 s (Table 2). The analysis of the VAS data showed
that while the end user was generally highly motivated (7.25/10) and was  generally
satisfied with the system (6.8/10), he reported high workload when simultaneously
using shoulder movements and BCI for control.

The writing task was  repeated ten times in total on six different training days
(one day without BCI). The individual succeeded with this task four times, despite
the fact that he has no wrist function and moves his hand only by using his residual
shoulder function. The result was highly dependent on how well the user was able
to  grasp the pen. The average trial time was 3.19 min. In total, two falsely classi-
fied switches occurred that were corrected by the subject himself. The user’s mean
motivation was  6.8/10, the mean mood was 7/10 and the mean device satisfaction
was 7.4/10 (Table 3).

The third task involved eating an ice cream cone. This experiment was repeated
four times in total on three different training days (once without BCI) and the subject
succeeded every time. He securely grasped the cone from a special holder, lifted it

Table 1
Results of selected GRT tasks.

Item Trials Attempts Completions

Single blocks 1 1 0
Double blocks 1 7 7
Pegs 3 18 10
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Table  2
Evaluation of the intentional non-control test. Success means that the subject was  able to intentionally not deliver a switch for one minute and elicit a switch afterwards
(required time is given in column 3). Column 4 shows the time until a switch occurred during the first minute in which a switch should not be elicited. If something is entered
in  this column, it means that the trial was not successful.

Trial Success Time to elicit an intentional
switch after 1 min  [s]

Time until a non-intentional
switch occurred [s]

Comments

1 Yes 9
2 No 50
3  Yes 9
4 No 25
5  No 12
6  No 25 While looking at the experimenter
7  Yes 15
8 No 28
9  Yes 10

10 No 40
11  No 25 While talking
12  Yes 4
13 No 5
14  No 5

Table 3
The mean values of end user’s motivation, mood and device satisfaction together with some remarks during the signature task.

Trial Motivation Mood General device
satisfaction

User remarks

1 9 9 6 Some part of the system was always weak today
2  9 9 7 Grasp was nice, it takes long to perform the task
3  6 7 10 Everything was perfect
4  1 1 6 It was  nice from my side. Interesting to see that my  mood does not affect the overall performance
5  9 9 8 The BCI worked nicely from my side, but there were some difficulties with the software

to his mouth and ate it at a leisurely pace (Fig. 7). The average trial time was 2 min.
No  falsely classified switches occurred during the trials. The user’s mean motivation
was  8/10, the mean mood was 9/10 and the mean device satisfaction was 10/10.

The end user reported a high subjective workload during the trials, reflected
by  an average of NASA TLX of 68/100 after four testing sessions. Mental and phys-
ical strain contributed the most to this result. The subjective workload during the
ice  cream-eating task was  remarkably lower (55.6/100) than for the other tasks
(72/100).

4. Discussion

In this single case study, a non-invasive hybrid FES orthosis for
restoration of hand and elbow function was developed, tailored to

the individual needs of a person with high-level cervical SCI and
successfully used for and evaluated in different functional tasks,
i.e., the GRT and three ADL tasks.

In the course of the trials, the hybrid FES orthosis was itera-
tively improved to reflect a user-centered approach incorporating
the user’s feedback [36]. More importantly, an intelligent control
concept was  employed to make the BCI-controlled neuroprosthe-
sis more reliable. This encompasses a BCI switch gating mechanism
depending on the shoulder joystick movements and a refractory
period after a switch, a robust calibration procedure and a rejec-
tion of BCI switches during motor-driven elbow movements and in
maximum elbow flexion position. These shared control principles

Fig. 7. Sequence of pictures showing the subject eating an ice cream cone. The user starts in the hand control mode, lifts his left shoulder to open the right hand to grasp the
ice  cream cone (A). After successfully grasping the ice cream cone (B), the user emits a BCI command to switch from hand control to elbow control and lifts his shoulder to
flex  his elbow (C). Now, the user licks the ice cream (D). Finally, the user lowers his left shoulder to extend the elbow (E) puts the cone back in its original place and switches
back  to hand mode to release the cone (F).
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helped to compensate for the moderate level and day-to-day vari-
ances of the end user’s BCI performance, in particular during the
task of eating an ice cream cone. Although each of these measures
target different flaws in the complex setup, when taken together,
they contribute equally to the enhancement of the usability of the
neuroprosthesis.

In Ref. [37], a similar hybrid FES orthosis for the restoration of
reaching and grasping movements is presented. It features a lower
and upper arm orthosis including an angle sensor, an electrical drive
for elbow movements, voice control, a force feedback glove and
FES for generation of finger movements. The authors successfully
demonstrated its feasibility in five individuals with high-level SCI.
However, in contrast to our study they provide no data on the per-
formance of the neuroprosthesis with real ADL tasks and on the
evaluation of the FES components alone.

Data on the course and performance of MI-BCI training in indi-
viduals with chronic high-level SCI is sparse. In one study, two C4,
three C6 and four C7 end users were trained to operate an MI-BCI
with the goal of controlling a robotic arm [38]. It is remarkable that
the average performance of all subjects was determined as 70.5%,
which is the same value that our end user achieved. In this study,
the frequency bands between 5 and 35 Hz were analyzed to find dis-
tinguishable features, similar to our study. In three of the subjects
in Ref. [38], the online performance was up to 20% worse (in a two-
class task) than the offline performance. In contrast, our end user
performed similarly in offline and online tasks. Additionally, the
authors did not explicitly state how many offline runs were used for
classifier training, so it is possible that their classifiers were trained
too intensively on the same dataset. This may  result in overfitting
and therefore suggesting a far higher offline performance than actu-
ally achieved during online trials. Furthermore, online experiments
are more demanding, which may  also affect the performance.

Interestingly, some individuals subjectively rated their online
performance as good even though in objective terms, it was
only slightly above chance level. Similar behavior also sometimes
occurred in our end user during the use of the BCI-controlled
neuroprosthesis. A possible explanation could be that due to the
implemented shared control principles, commands from the BCI
control channel are only accepted if they fit into the context of the
situation. For example, BCI switches are only accepted if the user
does not move his shoulder to open or close his fingers. With this
control scheme, false-positive BCI switches are effectively rejected,
which may  lead to the user’s impression of at least not producing
wrong commands.

One of the subjects in the aforementioned study fell asleep dur-
ing the training, which was sometimes the case in our end user
as well. After the trials, he often mentioned mental and physical
fatigue, which can be attributed to the demanding tasks, the com-
plex system with two input modalities and the time-consuming
donning, which took at least one hour.

Even after 415 MI-BCI runs, it is remarkable to see that the
end user’s average performance did not show any trend toward
improvement, but remained at about 70%. The results of the INC
test are moderate and underline the varying BCI performance. In
our end user, no training effect can be seen besides large day-to-
day variances in the BCI performance. A possible explanation for
this moderate average performance can be found in Ref. [26], where
it is stated that movement-related ß-band modulations are signif-
icantly different in subjects with SCI as compared to non-injured
individuals. In detail, a correlation was found between decreased
ERS amplitude and the severity of the impairment of the limb in
which the movement was attempted. This result is in line with our
findings.

In another study, authors compared the BCI performance of 15
end users with complete SCI, eight of them paraplegic and seven
tetraplegic [25]. It was found that five of the paraplegic individuals

had an accuracy above 70% but only one tetraplegic person achieved
this performance level. The reason for this is still unclear. It can
be speculated that the missing sensory loop restricts the vividness
of the imagined movements and therefore the performance. This
statement is supported by [39], who  showed the positive correla-
tion of cortical activation and vividness of the imagined movement.
The cited success rate is in line with our results. However, the
authors claim that training is expected to improve the performance,
which we cannot support on the basis of our single case study, in
which almost one year of training did not improve the BCI perfor-
mance.

Other BCI paradigms based on detection of P300 or steady state
visual evoked potentials (SSVEPs) were not taken into consider-
ation as alternatives for neuroprosthesis control since they rely
mainly on a visual cue. However, visual attention on the grasp and
the position of the hand in space is extremely important in the
group of neuroprosthesis users with high-level SCI, since these indi-
viduals have neither a touch sensation nor a proprioceptive afferent
feedback. Additionally, neither P300 nor SSVEPs support a natural,
movement-based control scheme for the neuroprosthesis and the
user has to concomitantly concentrate on visual signals on a screen
or flickering lights, which may  increase the workload and lead to
mental fatigue after a while [40].

Several end-user studies include only carefully selected SCI indi-
viduals showing a high BCI performance [22,24,41]. However, BCI
systems that claim to be meaningful in the sense of improving
ADLs should also target non-selected end users who have only a
moderate performance. This means that more sophisticated con-
trol concepts are needed to compensate for the potentially lower
performance. The results from the writing task clearly show that the
end user was  highly motivated to take part in the prototype testing,
since he hoped to improve his quality of life, namely gaining more
independence from the support of caregivers and family mem-
bers. However, the system is complex and its overall performance
depends on the reliability of every single component. The ortho-
sis, shoulder joystick and the electrode sleeve have to be aligned
correctly, the user must not be physically tired and have a stable
posture and has to reliably achieve at least a moderate BCI perfor-
mance. Furthermore, the end user stated a high subjective work-
load during the trials. Interestingly, the subjective workload during
the ice-cream-eating task was  remarkably lower than for the other
tasks. This workload may  decrease even more with practice [36].

5. Conclusion

In this proof-of-concept single case study, it was shown that
with the application of hybrid FES upper extremity neuroprosthe-
sis consisting of FES and a semiactive orthosis, restoration of not
only hand and finger, but also elbow function is possible in a non-
selected tetraplegic SCI user. He succeeded in performing different
functional tasks (GRT and three tasks of daily living).

Shared control principles have been effectively used to allow for
an adequate control of this hybrid FES system, despite the fact that
even after extensive training, only moderate BCI performance was
achieved. This is in particular important in users with a potentially
low and/or varying BCI performance.

Even after 415 MI-BCI runs, it is remarkable to see that the aver-
age performance of the end user in the study did not improve over
one year of regular BCI training but remained at about 70%. This
supports the view that in high-level tetraplegic subjects, an exten-
sive BCI training period does not necessarily lead to superior results.
However, this statement has to be validated in future studies with
a larger population.

Although some predictors for BCI inefficiency in healthy sub-
jects are described in literatures [42–45], currently no predictors
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exist in individuals with SCI as surrogate markers for the final BCI
performance after training. During screening of study participants,
this issue must be made very clear and, especially in the case of
tetraplegic end users, it is entirely possible that only low to moder-
ate performance will be achieved [25]. Even if there is some increase
in performance with training, it may  not be sufficient for control-
ling the neuroprosthesis to perform ADL tasks. Furthermore, it has
to be continuously emphasized that after the study it is not guar-
anteed (not even likely) that the end users will be able to continue
to use the BCI-controlled neuroprosthesis, because of the lack of
its commercial availability and support. In order not to raise false
hopes, potential study participants need to be carefully informed
about the general flaws of MI-BCI systems, namely their difficult
handling and varying performance.

The ultimate goal of our work based on the combination of a
hybrid BCI-controlled hybrid FES orthosis would be to establish a
technical bypass around the lesion of the spinal cord and to provide
neuroprosthetic users with an intuitive control that would enable
them to accomplish movement in a fluid and transparent manner.
The first steps in this direction involving individuals with SCI have
already been taken [46].
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