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Abstract

Neoclassical transport plays a significant role in toroidal magnetic confinement
systems. In this work a detailed calculation of the moments of the full
linearized Coulomb collision operator (collision matrix elements) in terms of
test functions proportional to the associated Laguerre polynomials has been
presented. These matrix elements have been implemented in the drift kinetic
equation (DKE) solver NEO-2 (which is based on the field line integration
technique) direct at the level of the DKE. Therefore, the NEO-2 code can
calculate the complete (including energy diffusion and momentum recovery)
local solution along the magnetic field line which is in contrast to most
DKE solvers where momentum conservation is completed with momentum
correction techniques.
As an application of the NEO-2 code involving the collision matrix elements
the neoclassical electron transport matrix (assuming stationary ions) for the
standard tokamak with circular cross section has been evaluated. The results
have shown good agreement with results of analytical theory. Moreover,
effects of simplifications of the linearized collision model (e.g., reduction to
a Lorentz model) have been studied in order to provide a comparison with
various momentum correction techniques used for the computation of transport
coefficients in stellarators. Furthermore, the NEO-2 code has been applied
to compute the generalized Spitzer function in the standard tokamak taking
into account finite plasma collisionality. The result has been compared to
the collisionless approximation computed by the SYNCH code. This function
is one of the main elements in computations of electron cyclotron current
drive (ECCD) efficiency and total ECCD current. The resulting generalized
Spitzer function has specific features which are pertinent to the finite plasma
collisionality. They are absent in asymptotic (collisionless or highly collisional)
regimes or in results drawn from interpolation between asymptotic limits.
These features have the potential to improve the overall ECCD efficiency if
one optimizes the microwave beam launch scenarios accordingly.
The code NEO-2 turns out to be a valuable DKE solver for ECCD problems
because of the unique feature that the full linearized collision operator can be
used locally. Thus the full 3D (4D) problem of local current drive efficiency can
be tackled in tokamaks (stellarators). At the moment however, usage is only
possible for tokamak problems due to limited speed of the code. A substantial
speed-up of the code is possible with improvements of the ODE-solver and
code parallelization. Such improvements are in development.





Kurzfassung

In toroidalen magnetischen Einschlusssystemen spielt der neoklassische Trans-
port eine maßgebliche Rolle. Die vorliegende Arbeit präsentiert eine aus-
führliche Berechnung von Momenten des linearisierten Coulomb Stoßoperators
(Stoß-Matrixelemente) mittels, zu verallgemeinerten Laguerre-Polynomen pro-
portionalen, Testfunktionen. Diese Matrixelemente wurden in den DKE (drift
kinetic equation) Solver NEO-2, der auf Integration entlang der Feldlinie
beruht, direkt auf Ebene der DKE implementiert. Daher ist NEO-2 auch
in der Lage, eine vollständige lokale Lösung (inklusive Diffusion der Energie
und Impulserhaltung) entlang der Magnetfeldlinie zu finden. Diese Fähigkeit
unterscheidet NEO-2 erheblich von den meisten DKE-Solvern, die die Im-
pulserhaltung mittels Korrekturmethoden erst im Nachhinein sicherstellen.
Als Anwendung der Matrixelemente wurde mit NEO-2 der Elektronenan-
teil der neoklassischen Transportmatrix (unter der Annahme stationärer
Ionen) für einen Standardtokamak mit kreisförmigem Querschnitt berechnet.
Die Ergebnisse zeigen eine gute Übereinstimmung mit den entsprechenden
Ergebnissen der analytischen Theorie. Überdies wurde die Auswirkung verein-
fachter Stoßoperatoren (z.B. Lorentzoperator) auf die Transportkoeffizienten
untersucht. Dies ermöglicht für Stellaratoren hinsichtlich Impulserhaltung
den Vergleich mit diversen Korrekturmethoden. Außerdem wurde mittels
NEO-2 die verallgemeinerte Spitzerfunktion für einen Standardtokamak unter
Berücksichtigung eines endlichen Stoßparameters (collisionality) des Plasmas
berechnet und mit der stoßfreien Näherung des Codes SYNCH verglichen. Sie
ist besonders wichtig bei der Berechnung der Effizienz der Stromgenerierung
mittels Elektronen (electron cyclotron current drive, ECCD) und des via
ECCD erzeugten Stroms. Die mit NEO-2 berechnete Spitzerfunktion weist
Besonderheiten auf, die auf die endliche collisionality des Plasmas zurück-
zuführen sind und in asymptotischen Regimen (stoßfrei bzw. hochgradig
stoßbe- stimmt), sowie in der durch Interpolation zwischen diesen Limits
gewonnenen Lösung, nicht auftreten. Dieses Charakteristikum könnte dazu
beitragen den Gesamtwirkungsgrad der ECCD zu verbessern, falls man den
Einstrahlwinkel der Mikrowellen dementsprechend optimiert.
Für ECCD Probleme erweist sich NEO-2 als sehr nützlich, da er in der
einzigartigen Lage ist, den linearisierten Stoßoperator lokal zu verwenden.
Dadurch ist es überhaupt erst möglich das 3D (4D) Problem der Bestimmung
der lokalen Stromtriebeffizienz in Tokamaks (Stellaratoren) zu bewältigen.
Die Verwendung von NEO-2 beschränkt sich im Moment aufgrund langer
Rechenzeiten auf Tokamaks. Eine Verbesserung des ODE-Solvers, sowie eine
Parallelisierung des Codes sollte zu einer beträchtlichen Beschleunigung von
NEO-2 führen. Diese Verbesserungen sind gerade in Entwicklung.
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“Das ewig Unbegreifliche an der Natur ist ihre Begreiflichkeit”1

Albert Einstein in Physik und Realität [1]

1“The eternal mystery of the world is its comprehensibility”





Contents

1 Prologue 1

2 Introduction 9
2.1 Publications associated with this thesis . . . . . . . . . . . . . 11

2.1.1 Peer reviewed journal articles . . . . . . . . . . . . . . 12
2.1.2 Conference proceedings . . . . . . . . . . . . . . . . . . 12

2.2 Publications related to neoclassical transport . . . . . . . . . . 13
2.2.1 Peer reviewed journal articles . . . . . . . . . . . . . . 13
2.2.2 Conference proceedings . . . . . . . . . . . . . . . . . . 13

3 Neoclassical transport matrix 17
3.1 Drift kinetic equation . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Transport coefficients . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Thermal transport coefficients . . . . . . . . . . . . . . 24
3.2.2 Monoenergetic transport coefficients . . . . . . . . . . 25
3.2.3 Energy convolution . . . . . . . . . . . . . . . . . . . . 26
3.2.4 Onsager symmetry . . . . . . . . . . . . . . . . . . . . 28

3.3 Fluxes and forces . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Generalized Spitzer function 33

5 Calculation of the matrix elements 37
5.1 Source term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Differential part of the collision operator . . . . . . . . . . . . 40

5.2.1 Lorentz part of Cab[fa1, fb0] . . . . . . . . . . . . . . . . 40
5.2.2 Energy scattering part of Cab[fa1, fb0] . . . . . . . . . . 45

5.3 Integral part of the collision operator . . . . . . . . . . . . . . 47
5.3.1 ϕ-basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2 Burnett basis . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Transformation matrix . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Asymptotic expansions . . . . . . . . . . . . . . . . . . . . . . 60

i



ii CONTENTS

5.5.1 Differential part . . . . . . . . . . . . . . . . . . . . . . 62
5.5.2 Integral part . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Recurrence relations . . . . . . . . . . . . . . . . . . . . . . . 69
5.6.1 Source term elements a

(i)
m . . . . . . . . . . . . . . . . . 70

5.6.2 Pitch-angel scattering part . . . . . . . . . . . . . . . . 70
5.6.3 Matrix elements ν̂a∞mm′ . . . . . . . . . . . . . . . . . . . 75
5.6.4 Energy scattering part . . . . . . . . . . . . . . . . . . 75
5.6.5 Transformation matrix . . . . . . . . . . . . . . . . . . 77
5.6.6 Integral part . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6.7 Numerical implementation . . . . . . . . . . . . . . . . 92

6 Spitzer conductivity 95
6.1 Lorentz conductivity . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Spitzer function . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Comparison to results reported in literature 107
7.1 Balescu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2 Hirshman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3 Hinton-Hazeltine . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4 Sauter-Angioni . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 Computational results for a standard tokamak 131
8.1 NEO-2 code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.2 Neoclassical transport matrix . . . . . . . . . . . . . . . . . . 133
8.3 Generalized Spitzer function . . . . . . . . . . . . . . . . . . . 141

9 Conclusion 153

A Complete set of orthonormal functions 155
A.1 ϕ-basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2 Burnett basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B Coulomb collision operator 163
B.1 Landau form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
B.2 RMJ form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
B.3 Linearized operator . . . . . . . . . . . . . . . . . . . . . . . . 166
B.4 Collision operator in curvilinear coordinates . . . . . . . . . . 167

B.4.1 Spherical velocity-space coordinates . . . . . . . . . . . 168
B.4.2 Test particle part . . . . . . . . . . . . . . . . . . . . . 168
B.4.3 Field particle part . . . . . . . . . . . . . . . . . . . . 173



CONTENTS iii

C Trubnikov potentials for a non-Maxwellian distribution
function fb1 in the Burnett basis 177
C.1 ϕb1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
C.2 ψb1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
C.3 Trubnikov potentials for a Maxwellian distribution function . . 186

D Expansion of |v − v′| in Legendre polynomials 189

E Braginskii matrix elements 193
E.1 Linearized collision operator . . . . . . . . . . . . . . . . . . . 193
E.2 Test particle part . . . . . . . . . . . . . . . . . . . . . . . . . 195
E.3 Field particle part . . . . . . . . . . . . . . . . . . . . . . . . . 202
E.4 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . 205

E.4.1 Particle conservation . . . . . . . . . . . . . . . . . . . 205
E.4.2 Momentum conservation . . . . . . . . . . . . . . . . . 206
E.4.3 Energy conservation . . . . . . . . . . . . . . . . . . . 209

E.5 Comparison to results in literature . . . . . . . . . . . . . . . 212

F Toroidally symmetric test configuration 215
F.1 3D magnetic fields with nested surfaces . . . . . . . . . . . . . 215
F.2 Transformation to Boozer coordinates . . . . . . . . . . . . . . 217
F.3 Tokamak with circular cross section . . . . . . . . . . . . . . . 217

F.3.1 Construction of an “equilibrium” . . . . . . . . . . . . 217
F.3.2 Transformation to Boozer coordinates . . . . . . . . . . 220

F.4 Comparison with the standard model . . . . . . . . . . . . . . 223

List of figures 225

List of tables 227

Bibliography 229





Chapter 1

Prologue

Modern civilization is dependent on (cheap and reliable) energy and the
global demand for energy is continually rising. These days roughly 85% of
the worldwide energy consumption is supplied by fossil fuels [2] leading to
negative effects on the environment (pollution, releasing of greenhouse gases,
global warming). Beyond that, there is hardly doubt that the world is running
out of fossil fuels. Therefore, in order to ensure energy supply for future
generations, there is a great need to find cleaner and more sustainable energy
sources that will replace coal, natural gas and oil.

In addition to nuclear fission and renewable energy means, such as solar, wind
and hydro-power, nuclear fusion could also make an important contribution to
the future world energy mix [2]. In particular nuclear fusion has the potential
to provide (base-load) power supply offering key advantages [2–4] of, e.g.,
practically inexhaustible fuel (the major fuels deuterium and lithium are
abundant and available around the world), no CO2 greenhouse gas emissions
(that is, no contribution to global warming) and, furthermore, future fusion
power stations would be inherently safe (no meltdown possible).

The goal of controlled thermonuclear fusion is to harness on earth the process
powering all stars (including our sun). The nuclear fusion in the stars is
based on the proton-proton interaction, that is, hydrogen nuclei collide and
fuse (through a sequence of reactions, i.e. proton-proton as well as carbon
cycle [5]) into heavier helium nuclei (alpha particles) [6] releasing enormous
amounts of energy in the process1. Due to the fact that the cross section for
this reaction is by far too small it cannot be exploited in a fusion reactor here
on earth.

1The sum of the rest masses of fusion products is lesser than the sum of the reactants
before the reaction (mass defect). Therefore, if two light nuclei fuse to form a heavier
nucleus, energy is liberated (cf. Fig. 1.1) according to Einstein’s relation ∆E = ∆mc2.

1



2 CHAPTER 1. PROLOGUE

Figure 1.1: Deuterium-tritium fusion reaction (left). Energy gain from nuclear
reactions (right).2

Because of its advantageous cross section the fusion reaction of primary
interest for controlled thermonuclear fusion is those involving deuterium (D)
and tritium (T) [7],

2D + 3T→ 4He (3.52 MeV) + 1n (14.06 MeV),

taking place at lowest plasma temperatures (≈ 10 keV) compared to other
fusion reactions (see Figure 1.1). Since tritium is radioactive (with the half-life
of 12.3 years) it does not occur naturally and, therefore, must be bred by
lithium in the blanket surrounding the plasma using reactions such as [5]

6Li + 1n → 4He + 3T + 4.80 MeV
7Li + 1n → 4He + 3T + 1n− 2.47 MeV.

The following reactions might be preferred from an economic and environ-
mental point of view (e.g. no tritium necessary), however, they possess less
favorable reaction rates, require considerably higher temperatures and provide
at the same pressure only 1 % of the D-T fusion power density [5],

2D + 2D → 3He (0.82 MeV) + 1n (2.45 MeV) 50% probability
2D + 2D → 3T (1.01 MeV) + 1H (3.03 MeV) 50% probability

2D + 3He → 4He (3.67 MeV) + 1H (14.67 MeV).

A D-T plasma has to meet the following requirements in order to yield net
fusion energy from a reactor - the product of density ni and energy confinement
time τE of the fuel ions has to be niτE ≥ 1.5× 1020sm−3 (Lawson criterion)

2Source left image: http://www.iter.org/sci/whatisfusion
Source right image: http://www.jet.efda.org/faq/fusion-principles
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Figure 1.2: Scheme of the tokamak principle3

as well as the critical ion temperature Ti is approximately 10 kev (over 100
million degrees) [8].

In principle two different paths are being investigated in order to achieve
controlled thermonuclear fusion on earth, namely, inertial confinement and,
perhaps more promising, magnetic confinement. In inertial confinement fusion
small and frozen pellets of D-T are compressed to very high densities and
heated to fusion conditions by means of intense lasers or high power particle
beams (so-called energy drivers). The heating pulses are typically 1 to 10 ns
long [9].

A concept fundamentally different from that is the magnetic confinement
fusion, where a low density plasma (fully ionized gas) is confined in a strong
magnetic field relying on the fact that the magnetic field can influence the
motion of the charged particles and isolate them from the inner wall of the
containment vessel. The most advanced magnetic confinement systems are
toroidal, namely the tokamak [10,11] and the stellarator [12].

In a tokamak (a schematic diagram is shown in Figure 1.2) a toroidal magnetic
field is produced by currents in external field coils surrounding the vacuum

3Source: http://ec.europa.eu/research/energy/euratom/publications/fusion/
index en.htm/
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Figure 1.3: Plasma and (non-planar and non-circular) magnetic coils of the
advanced modular stellarator W7-X4

vessel and a poloidal magnetic field is generated by a current flowing through
the plasma. The combined total magnetic field lines are helically twisted
around the torus center. Since the toroidal current is induced by transformer
action (the plasma itself acts as the secondary winding) a tokamak is intrin-
sically a pulsed device. Moreover, the large plasma current can drive large
scale plasma instabilities, the so-called disruptions (an abrupt termination of
the discharge where magnetic confinement is destroyed [13]).

Currently, the largest tokamak experiments are the JET (Joint European
Torus) [14], based in Culham (Great Britain) and the JT-60U [15,16] built in
Naka (Japan).

In a stellarator the helical twist of the confining magnetic field is generated
exclusively by currents flowing in external field coils. Consequently, stellarators
are non toroidally symmetric (i.e., fully three dimensional) plasma confinement
devices5. Due to the absence of a net toroidal current, stellarators have the
potential to be operated in steady-state and are believed to be disruption-
free [17]. At present, the largest stellarator is the LHD (Large Helical
Device) [18] in Toki, Gifu (Japan). A schematic diagram of the advanced
stellarator W7-X (Wendelstein 7-X) [19,20], that is currently being built in
Greifswald (Germany), is shown in Figure 1.3.

The next major step in fusion research is the ITER tokamak [5] (Interna-
tional Thermonuclear Experimental Reactor) which is currently being built in

4Source: http://www.ipp.mpg.de/ippcms/eng/pr/forschung/w7x/index.html
5A great advantage of the doughnut-shaped tokamak is the axisymmetry of the configu-

ration.
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Figure 1.4: A cutaway view of the future ITER Tokamak6. c© ITER Organi-
zation

Cadarache (France) with the aim to prove the scientific and technological fea-
sibility producing commercial energy from nuclear fusion [21] (see Figure 1.4).
ITER is projected to generate 500MW fusion power, ten times more than it
consumes as well as to test key technologies required for a future fusion power
plant [5, 21] (the so-called DEMO, an industrial demonstration reactor).

In toroidal magnetic confinement devices substantial external7 heating sys-
tems are required in order to bring the plasma to ignition temperatures,
that is, to temperatures where self-heating due to α-particles maintains the
thermonuclear fusion. The following two main techniques have therefore been
developed: Neutral-beam injection (or NBI) as well as radio-frequency (RF)
heating. In NBI, high-energy neutral atoms (typically hydrogen isotopes)
are injected across the confining magnetic field into the plasma transferring
their energy in repeated collisions to the plasma ions and electrons. In RF
heating, energy is transferred to the charged plasma particles via resonant

6Source: http://fusionforenergy.europa.eu/mediacorner/imagegallery.aspx?id=25
7In tokamaks the heat produced by the induced toroidal plasma current (ohmic heating)

is insufficient to reach self-sustained fusion and in stellarators, actually, all the energy
needed to attain the temperatures required for fusion has to be provided by external
heating.
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Figure 1.5: Conceptual layout of a fusion power plant8

absorption of high-power electromagnetic waves at appropriate frequencies
(viz. the cyclotron frequencies of ions and electrons) [5, 7, 13].

Finally, Figure 1.5 shows the principle scheme of a magnetic fusion power
plant based on the D-T reaction. The hot plasma is surrounded by the first
wall, followed by the so-called blanket and the vacuum vessel protecting the
superconducting magnetic coils from the heat and high-energy neutron fluxes
produced by fusion reactions. Since the neutrons are not confined by the
magnetic field they escape the plasma, pass the first wall and penetrate the
lithium blanket where they are slowed down converting their kinetic energy
to heat. The heat in turn is removed by means of a coolant (helium or liquid
metals) and is used to generate electricity. Moreover, the neutrons which
enter the blanket are absorbed by lithium in order to breed tritium which is
then used as fuel [5, 13,21].
A drawback in using the D-T fusion reaction is the induced radioactivity of the
reactor materials (particularly the blanket and vessel structure) caused by the

8Source: http://www.efda.org/multimedia/animations.htm
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fast neutrons. However, the application of advanced, so-called low-activation,
structural materials (which are currently under development) will largely
reduce the total radioactivity. It is expected that most reactor materials
can be recycled after a decay time of about a hundred years after the end
of the power plant’s life [2, 5, 13]. Another problem in a D-T reactor is the
radioactive tritium which is difficult to contain and which requires careful
handling. The total amount of tritium present in the plant is estimated to
be on the order of a few kilograms (only a few grams in the plasma) and is
generated in a closed fuel cycle. Nonetheless, future nuclear fusion power
plants must preclude accident-caused release of tritium inventory [2, 5, 21].





Chapter 2

Introduction

In toroidal magnetic confinement systems, such as tokamaks and stellarators,
transport of particles and energy plays a significant role. In principle, plasma
transport can be divided into three different kinds of transport mechanisms,
namely the classical, the neoclassical and the anomalous transport. While
classical and neoclassical transport are driven by Coulomb collisions between
charged particles the anomalous transport is caused by turbulent processes
(e.g., fluctuating electromagnetic fields, micro-instabilities).

On the collisional transport the classical flux results from the interaction
of Coulomb scattering with particle gyromotion which is perpendicular to
the magnetic field (perpendicular friction) while neoclassical diffusion is
determined by the interaction of Coulomb scattering with guiding-center drift
motion. This motion is primarily along the magnetic field, thus neoclassical
transport is associated with parallel friction [22,23].

This work concentrates on the investigation of neoclassical transport pro-
cesses in tokamaks and stellarators, more precisely, on the evaluation of the
neoclassical transport matrix and the generalized Spitzer function.

Accurate computations of axisymmetric and non-axisymmetric neoclassical
transport coefficients, bootstrap current and the generalized Spitzer function
is an important problem for stellarator optimization, generation of neoclassical
data bases, and modeling of current drive. Based on the field line integration
technique [24], the generalized drift kinetic equation solver NEO-2 has been
developed for this purpose [25, 26]. This code solves the linearized drift
kinetic equation in regimes where the effect of electric field on transport and
bootstrap coefficients is negligible.

Recently this code has been upgraded for computations of the full transport
matrix, that is, NEO-2 has been generalized for a full linearized collision op-
erator describing all aspects of Coulomb collisions including energy scattering
and momentum conservation. Applying the full linearized collision operator

9



10 CHAPTER 2. INTRODUCTION

represents a considerable improvement to the previous version of the code,
where only the Lorentz (pitch-angle scattering) operator was implemented
and, furthermore, is a prerequisite for a complete description of neoclassical
transport and linear current drive efficiency (e.g., for solving the generalized
Spitzer-Härm problem in arbitrary stellarator geometry). The generalized
Spitzer-Härm function serves as current drive efficiency for ECCD and other
methods with a small distortion of the distribution function. Currently,
two limiting cases of this function are mainly used in ECCD modeling: (i)
high-collisionality limit (homogeneous magnetic field limit) and (ii) low colli-
sionality limit (bounce averaged Spitzer-Härm function). The intermediate
cases are obtained by some heuristic matching formulas. Detailed knowledge
about the collisionality dependence of this function is important for interpre-
tation of present-day experiments and also for reactor modeling in the case
of ECCD with near perpendicular microwave beam injection.
The implementation of the full linearized collision operator in NEO-2 is in
contrast to most DKE solvers where momentum conservation is completed
with so-called momentum correction techniques (based on three monoenergetic
transport coefficients) applied to flux surface averaged quantities [27,28]. Thus,
local information within a flux surface is lost. This makes NEO-2 especially
suited for ECCD computations where power deposition is highly localized.

The motivation for the work presented in this thesis was to provide the
moments of the full linearized Coulomb collision operator (also called collision
matrix elements) which are used in the code NEO-2 to solve the linearized
drift kinetic equation. In the following an elaborated derivation of these
matrix elements is shown.
Finally, it has to be pointed out that the development of the solver itself was
not part of this work.

The thesis is organized as follows.

In Chapter 3 the neoclassical electron transport matrix relating the neoclas-
sical fluxes and the thermodynamical forces is derived. The corresponding
transport coefficients are represented in thermal as well as in monoenergetic
form and it is shown that for the Lorentz operator the thermal transport
coefficients can be obtained from the monoenergetic ones using a convolution
over energy. Furthermore, it is demonstrated that the transport matrix is
Onsager symmetric and that it depends on the choice of fluxes and forces.
In Chapter 4 a brief description of the adjoint approach for ECCD com-
putations is given and it is shown how the generalized Spitzer function is
calculated in the NEO-2 code.
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The main part of this work is presented in Chapter 5, namely the calculation
of the collision matrix elements using the full linearized Coulomb collision
operator. The test particle matrix elements are computed in terms of the
orthonormal test functions ϕm proportional to the associated Laguerre polyno-
mials whereas the field particle matrix elements are evaluated in the Burnett
function basis first followed by a transformation to the ϕm-basis. Additionally,
the asymptotic behavior of the matrix elements is studied for the case when
the ratio of particle masses ma/mb � 1. Moreover, recurrence relations
are provided allowing for fast numerical evaluation of the collision matrix
elements and their numerical implementation is briefly described.

In Chapter 6 a standard problem in plasma physics, namely the calculation
of the classical Spitzer conductivity, is solved which serves as a test case for
the accuracy of the matrix elements.

Chapter 7 compares the results obtained from analytical formulas representing
the neoclassical transport matrix in the low-collisionality limit in an axisym-
metric test configuration with the corresponding numerical findings evaluated
by means of the NEO-2 code.

In Chapter 8 the computational results of the neoclassical transport matrix
and generalized Spitzer function in a standard tokamak with finite collisionality
obtained with the NEO-2 code are presented and discussed. Besides, a brief
description of the code NEO-2 is given.

Chapter 9, finally, contains the conclusions of this thesis.

In the appendices two complete sets of orthonormal functions applied in this
work are introduced (the test functions ϕm as well as the Burnett functions).
In addition, various representations and properties of the Coulomb collision
operator are briefly reviewed. As an important by-product of this work the
Trubnikov potentials as well as the Braginskii matrix elements are calculated
in the Burnett function basis and presented in a compact form. Finally, in the
last part of the appendix the construction of a test configuration with circular
cross section (standard tokamak) is shown which is used for comparison
between numerical results obtained by the NEO-2 code and the analytical
predictions in the axisymmetric limit.

2.1 Publications associated with this thesis

In the following the list of articles as well as contributions to European Physical
Society conferences and International Stellarator Workshops co-authored by
the author of this thesis are presented.
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tions based on field line tracing
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M. Romé, C. D. Beidler, S. V. Kasilov, W. Kernbichler, G. O. Leitold,
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2.2.1 Peer reviewed journal articles

• The ∇B drift velocity of trapped particles in stellarators
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Plasmas 12, 112507 (2005)

• Variance reduction in computations of neoclassical transport in stellara-
tors using a δf method
K. Allmaier, S. V. Kasilov, W. Kernbichler and G. O. Leitold, Phys.
Plasmas 15, 072512 (2008)

• Poloidal motion of trapped particle orbits in real-space coordinates
V. V. Nemov, S. V. Kasilov, W. Kernbichler and G. O. Leitold, Phys.
Plasmas 15, 052501 (2008)

• Benchmarking Results From the International Collaboration on Neo-
classical Transport in Stellarators ICNTS
C. D. Beidler, K. Allmaier, M. Yu. Isaev, S. V. Kasilov, W. Kernbichler,
G. O. Leitold, H. Maaßberg, D. R. Mikkelsen, S. Murakami, M. Schmidt,
D. A. Spong, V. Tribaldos, A. Wakasa, submitted to Nucl. Fusion (2010)

2.2.2 Conference proceedings

• Consistent Recalculation of MHD Equilibria from VMEC, B. Seiwald,
G. O. Leitold, W. Kernbichler and S. V. Kasilov, 28th EPS Conference
on Contr. Fusion and Plasma Phys., Funchal, 18–22 June 2001, ECA
25A, 769 (2001)
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• Self Consistent Recalculation of MHD Equilibria from VMEC, B. Sei-
wald, G. O. Leitold, W. Kernbichler and S. V. Kasilov, 13th Interna-
tional Stellarator Workshop, Canberra, Feb 25– Mar 1, 2002, Paper No.
PIIA.18 (2002)

• Neoclassical Transport Calculations for Optimization Studies
W. Kernbichler, S. V. Kasilov, V. V. Nemov, G. Leitold, M. F. Heyn,
13th International Stellarator Workshop, Canberra, Feb 25– Mar 1,
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ICPP2002, Sydney (Australia), 15-19 July 2002, AIP Conference Pro-
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V. V. Nemov, S. V. Kasilov, W. Kernbichler and G. O. Leitold, 32nd
EPS Conference on Plasma Phys. and Contr. Fusion, Tarragona, 27
June–1 July 2005, ECA 29C, P-1.109 (2005)

• Additional criteria for optimization of trapped particle confinement in
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V. V. Nemov, S. V. Kasilov, W. Kernbichler and G. O. Leitold, 15th
International Stellarator Workshop, Madrid, 3–7 October 2005, P2-14
(2005)

• Assessment of the trapped particle confinement in optimized stellarators
V. V. Nemov, W. Kernbichler, S. V. Kasilov, G. O. Leitold and L. P. Ku,
33rd EPS Conference on Plasma Physics, Rome, 19–23 June 2006, ECA
30I, P-4.164 (2006)

• Computations of neoclassical transport in stellarators using a δf method
with reduced variance
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Chapter 3

Neoclassical transport matrix

In the following chapter a formalism is developed, based on the linearized drift
kinetic equation, which allows for a compact representation of the neoclassical
transport matrix relating the neoclassical fluxes to the thermodynamical
forces which drive them. The corresponding matrix elements are presented in
thermal as well as in monoenergetic form. Furthermore, a proof of Onsager
symmetry of the transport matrix is given and it is shown how the transport
matrix has to be transformed for two different sets of thermodynamical forces.

3.1 Drift kinetic equation

The first-order gyrophase-averaged distribution function (defined as the small
deviation from lowest-order Maxwellian) for particles of species a, fa1, is
determined by the linearized drift kinetic equation (see, e.g., Reference 22)

vλ
∂fa1

∂s
+ V ψ ∂fa0

∂ψ
−
eavλE

(A)
‖

Ta
fa0 = Cla[fa1], (3.1)

where the linearized Coulomb collision operator Cla is defined by

Cla[fa1] =
∑
b

(Cab[fa1, fb0] + Cab[fa0, fb1]) , (3.2)

neglecting terms quadratic in fa1 and fb1. Here, fa0 and fb0 represent Max-
wellian distribution functions satisfying Cab[fa0, fb0] = 0 for equal species
temperatures Ta = Tb. The first and the last term on the RHS of Eq. (3.2)
correspond to the differential and integral part of the collision operator,
respectively. In Eq. (3.1), ψ is a flux surface label, s is the distance counted
along the magnetic field line, λ = v‖/v is the pitch angle variable, ea is the

17



18 CHAPTER 3. NEOCLASSICAL TRANSPORT MATRIX

charge, E
(A)
‖ is the induced parallel electric field and V ψ = V · ∇ψ is the

radial component of the drift velocity [24]

V ψ = − v2

ωc0
λ
∂

∂η

(
λ

B̂
V̂G

)
, (3.3)

where η = (1− λ2)/B̂, B̂ = B/B0 is the magnetic field module normalized to
a reference magnetic field B0, ωc0 = eB0/(mec) and

V̂G =
1

3

(
4

B̂
− η
)
|∇ψ|kg , (3.4)

with kG being the geodesic curvature.
The local Maxwellian distribution function is represented by

fe0(ψ, x) =
ne

π3/2v3
te

e−x
2

, (3.5)

where ne is the density, vte =
√

2Te/me is the thermal speed and x = v/vte is
the normalized particle speed, respectively. Here it has to be noted that the
temperature, the density and the electrostatic potential Φ are assumed to be
constant on magnetic flux surfaces. From Eq. (3.5) one obtains for the radial
derivative (at constant total energy E = mv2/2 + eaΦ) of the Maxwellian,

∂fe0(ψ, x)

∂ψ
= A1(ψ)fe0(ψ, x) + A2(ψ)x2fe0(ψ, x), (3.6)

with A1 and A2 being the thermodynamic forces

A1(ψ) =
1

ne

∂ne
∂ψ
− 3

2Te

∂Te
∂ψ
− e

Te

∂Φ

∂ψ
(3.7)

A2(ψ) =
1

Te

∂Te
∂ψ

. (3.8)

Using the fact that in neoclassical theory the induced parallel electric field
E

(A)
‖ is often replaced by B

〈
E

(A)
‖ B

〉
/
〈
B2
〉

[22] the electron component of

Eq. (3.1) can be rewritten as

vλ
∂fe1
∂s
− Cle[fe1]

= −fe0

[
V ψA1(ψ) + V ψx2A2(ψ) + vλB̂

e

Te

〈
E

(A)
‖ B̂

〉〈
B̂2
〉 ]

(3.9)

= −fe0
[

V ψ

〈|∇ψ|〉
A1(r) +

V ψ

〈|∇ψ|〉
x2A2(r)− vλB̂A3(r)

]
. (3.10)
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In Eq. (3.10) the thermodynamic forces A1 and A2 have been expressed
as functions of the effective radius r by means of the definition ∂/∂ψ ≡
〈|∇ψ|〉−1∂/∂r, and the driving force

A3 = − e

Te

〈
E

(A)
‖ B̂

〉〈
B̂2
〉 (3.11)

has been introduced. Here, the notation 〈·〉 denotes the flux surface average
which can be evaluated using (see, e.g., [24])

〈G〉
〈H〉

= lim
L→∞

∫ L

0

ds

B̂
G

(∫ L

0

ds

B̂
H

)−1

. (3.12)

Upon defining the quantities Qσ
i ,

Qσ
1 = − V ψ

〈|∇ψ|〉
(3.13)

Qσ
2 = x2Qσ

1 (3.14)

Qσ
3 = σv|λ|B̂, (3.15)

with σ being the sign of v‖, the drift kinetic equation becomes

σv|λ|∂f
σ
e1

∂s
− Cle[fσe1] = fe0 [Qσ

1A1(r) +Qσ
2A2(r) +Qσ

3A3(r)] . (3.16)

Equations (3.13)-(3.15) may also be written via the compact notation

Qσ
j = vteβjx

2j−5δ3j |λ|qσj , j = 1, 2, 3 (3.17)

with
β1 = β2 =

ρe0
〈|∇ψ|〉

, β3 = 1 , (3.18)

ρe0 = vte/ωc0 is the electron Larmor radius, and where the abbreviations

qσ1 = qσ2 ≡ ∂

∂η

(
|λ|
B̂
V̂G

)
(3.19)

qσ3 ≡ σB̂ (3.20)

have been introduced.
Because Eq. (3.16) for fσe1 is linear, the solution is linear in the driving forces
and can be formally presented as a superposition of Aj,

fσe1 = fσ1 A1 + fσ2 A2 + fσ3 A3 , (3.21)
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where the functions fσj are defined as the solutions of the single-drive problems

σv|λ|
∂fσj
∂s
− Cle[fσj ] = fe0Q

σ
j , for j = 1, 2, 3. (3.22)

Here it is convenient to introduce the normalized functions f̂σj via

fσj = βj f̂
σ
j . (3.23)

The energy dependence of the perturbation of the normalized distribution
function is now approximated by an expansion over a finite number of or-
thonormal test functions ϕm (see Appendix A), that is

f̂σj (ψ, s, x, λ) ≈ fe0(ψ, x)
M∑
m=0

fσ,(j)m (ψ, s, λ)ϕm(x). (3.24)

These functions are defined as follows,

ϕm(x) ≡ π3/4

√
2Γ(m+ 1)

Γ(m+ 5/2)
L(3/2)
m (x2) , (3.25)

where L
(3/2)
m represents the associated Laguerre polynomials [29] of the order

3/2. Upon multiplication of Eq. (3.22) on the left by the basis function ϕm
followed by an integration over

∫∞
0

dvv3 the linearized drift kinetic equation
for the single-drive problems is transformed to a set of coupled two dimensional
ordinary differential equations for the coefficients f

σ,(j)
m (see Chapter 5),

σ
∂f

σ,(j)
m

∂s
− κ

M∑
m′=0

{
νemm′L̂f

σ,(j)
m′ + K̂emm′f

σ,(j)
m′

+
1

|λ|
De
mm′f

σ,(j)
m′

}
= a(j)

m qσj , (3.26)

with the pitch-angle scattering operator

L̂fσ,(j)m′ =
1

2|λ|
∂

∂λ
(1− λ2)

∂

∂λ
f
σ,(j)
m′ (ψ, s, λ)

= 2
∂

∂η

(
η|λ|
B̂

)
∂

∂η
f
σ,(j)
m′ (ψ, s, η) , (3.27)

and the integral part of the linearized collision operator

K̂emm′f
σ,(j)
m′ =

1

|λ|

L∑
`=0

I
(`)
mm′P`(λ)

∫ 1

−1

dλ′P`(λ
′)f

σ′,(j)
m′ (ψ, s, λ′) . (3.28)
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Here, P` are Legendre polynomials, κ ≡ 1/(vteτee) is the collisionality pa-
rameter (with vteτee ≡ lc being the electron mean free path due to electron
electron collisions alone [30]) and τee is the collision time

τee =
3m2

ev
3
te

16
√
πnee4 ln Λ

, (3.29)

where ln Λ denotes the Coulomb logarithm. The quantities νemm′ , I
(`)
mm′ , D

e
mm′

(which is calculated from the energy scattering part of Ceb[fe1, fb0]) and a
(j)
m

are matrix elements independent of plasma parameters and their calculation
is deferred to Chapter 5. In principle, the total effect on the electrons is given
by a sum over all background species b (including electrons), that is

νemm′ =
∑
b

νebmm′ (3.30)

De
mm′ =

∑
b

Deb
mm′ (3.31)

K̂emm′ =
∑
b

K̂ebmm′ . (3.32)

In this work the transport coefficients are computed only for the electron
component assuming the ions to be immobile, that is Eqs. (3.30)-(3.32) can
be replaced by

νemm′ = νeemm′ + Zeffν
e∞
mm′ (3.33)

De
mm′ = Dee

mm′ (3.34)

K̂emm′ = K̂eemm′ , (3.35)

with the effective charge

Zeff =

∑
s Z

2
sns∑

s Zsns
, (3.36)

and where a quasineutral plasma, ne =
∑

s Zsns, has been assumed.

In the code NEO-2, Eq. (3.26) is solved on a single field line using the
method of Green’s functions computed with the help of an adaptive third
order conservative finite-difference scheme over the normalized perpendicular
adiabatic invariant η. For an advanced description of this method see, e.g.,
References 25,26 and 31 as well as Chapter 8.1.
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3.2 Transport coefficients

The neoclassical transport fluxes of particles, energy and parallel electron
current density are derived from the first order distribution function. Here,
〈Γa · ∇r〉 = 〈Γra〉 and 〈Qa · ∇r〉 = 〈Qr

a〉 are surface averaged radial particle
and energy flux densities defined as total particle and energy fluxes divided
by the flux surface area and j‖ is the total parallel electron current density.
Accordingly, the particle flux is expressed as

〈Γre〉 =

〈∫
d3vV ψfe1

〉
〈|∇ψ|〉

= −
3∑

k=1

1

ωc0〈|∇ψ|〉

〈∫
d3vv2|λ| ∂

∂η

(
|λ|
B̂
V̂G

)
fσk

〉
Ak

= −
3∑

k=1

vteρe0
〈|∇ψ|〉

〈∫
d3vx2|λ|qσ1 fσk

〉
Ak , (3.37)

the energy flux reads

〈Qr
e〉 =

〈∫
d3v(mv2/2)V ψfe1

〉
〈|∇ψ|〉

= −Te
3∑

k=1

vteρe0
〈|∇ψ|〉

〈∫
d3vx4|λ|qσ2 fσk

〉
Ak , (3.38)

and the surface averaged parallel current density is given by

〈j‖B̂〉 = −e
〈
B̂

∫
d3vv‖fe1

〉
= −

3∑
k=1

e

〈∫
d3vσB̂v|λ|fσk

〉
Ak

=
3∑

k=1

evte

〈∫
d3vx|λ|q−σ3 fσk

〉
Ak, (3.39)

respectively. With the following definitions,

I1 ≡ 〈Γre〉 , I2 ≡
〈Qr

e〉
Te

, I3 ≡ −
〈j‖B̂〉
e

, (3.40)

the neoclassical fluxes in Eqs. (3.37)-(3.39) may also be expressed as

Ij = −
〈∫

d3vQ−σj fe1

〉
, (3.41)
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where Eq. (3.17) has been applied. By means of Eq. (3.21) and upon defining
the electron transport coefficients Lejk (electron transport matrix) the relation
between fluxes and thermodynamical forces can be written in the form

Ij = −
3∑

k=1

LejkAk, (3.42)

with

Lejk ≡
〈∫

d3vQ−σj fσk

〉
. (3.43)

Substituting into Eq. (3.43) the volume element in velocity space,

∫
d3v = πv3

teB̂
∑
σ=±1

∞∫
0

dxx2

1/B̂(s)∫
0

dη
1

|λ|
, (3.44)

and using again the normalization fσk = βkf̂
σ
k one gets for the transport

coefficients the equation

Lejk = 4πv4
teβjβk

∞∫
0

dxx2(j+1)−5δ3j

∑
σ=±1

〈
B̂

4

1/B̂∫
0

dηq−σj f̂σk

〉
, (3.45)

with j, k = 1, 2, 3. Formally, the transport coefficients may be obtained by
evaluating these integrals once the distribution function f̂σk for each single
drive problem has been found. These functions are solutions of the linearized
drift kinetic equation (3.22).
Finally, the full set of relations between the flux surface averaged thermody-
namic radial fluxes and forces may be represented as

〈Γre〉
〈Qr

e〉
Te

−
〈j‖B̂〉
e

 = −

 Le11 Le12 Le13

Le21 Le22 Le23

Le31 Le32 Le33

 Ae1
Ae2
Ae3

 , (3.46)

with

Ae1(r) =

(
1

ne

∂ne
∂ψ
− 3

2Te

∂Te
∂ψ
− e

Te

∂Φ

∂ψ

)
〈|∇ψ|〉 (3.47)

Ae2(r) =

(
1

Te

∂Te
∂ψ

)
〈|∇ψ|〉 (3.48)

Ae3(r) = − e

Te

〈
E

(A)
‖ B̂

〉〈
B̂2
〉 . (3.49)
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3.2.1 Thermal transport coefficients

Upon inserting the expansion of the normalized distribution function,

f̂σk (ψ, s, x, λ) = fe0(ψ, x)
∑
m

fσ,(k)
m (ψ, s, λ)ϕm(x)

=
ne

π3/2v3
te

e−x
2
∑
m

fσ,(k)
m (ψ, s, λ)ϕm(x) , (3.50)

into Eq. (3.45), one can perform the integration with respect to normalized
speed. This yields the expression for the thermal transport coefficients,
namely,

Lejk =
ne
τee
lcβjβk

∑
m

∑
σ=±1

b(j)
m

〈
B̂

4

1/B̂∫
0

dηq−σj fσ,(k)
m

〉
, (3.51)

with

b(j)
m ≡ 4π

(
ϕm, x

2(j−1)−5δ3j
)

=
4√
π

∞∫
0

dxe−x
2

x2(j+1)−5δ3jϕm(x) , (3.52)

for j = 1, 2, 3 representing numerical coefficients independent of problem
parameters. These quantities are given by

b(1)
m =

4√
π

∞∫
0

dx e−x
2

x4ϕm(x) =
√

6πδm0, (3.53)

b(2)
m =

4√
π

∞∫
0

dx e−x
2

x6ϕm(x) =
5
√

6π

2
δm0 −

√
15πδm1, (3.54)

b(3)
m =

4√
π

∞∫
0

dx e−x
2

x3ϕm(x) =

[
32√
π

Γ(m+ 1/2)

m!(2m+ 1)(2m+ 3)

]1/2

. (3.55)

Here, Eq. (3.55) may be calculated using the following recurrence relation,

b
(3)
m+1 = b(3)

m

(m+ 1/2)√
(m+ 1)(m+ 5/2)

, (3.56)

with initial value b
(3)
0 = 4

√
2/3.
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It is convenient to define the dimensionless transport coefficients γjk, which
depend only on the device geometry, the mean free path lc and the effective
charge Zeff ,

γjk =
αjαk
lc

∑
m

∑
σ=±1

b(j)
m

〈
B̂

4

1/B̂∫
0

dηq−σj fσ,(k)
m

〉
, (3.57)

with

α1 = α2 =
lc

〈|∇ψ|〉
, α3 = 1 , (3.58)

and
β̂1 = β̂2 = ρe0 , β̂3 = lc , (3.59)

respectively. Hence, the dimensional electron transport matrix, Eq. (3.51),
reads

Lejk =
ne
τee
β̂jβ̂kγjk. (3.60)

It should be noted that the transport matrices Lejk and γjk correspond to the
effective radius r used as a radial variable where dr = dV/S, V is a volume
limited by a flux surface and S is a flux surface area. In order to obtain these
matrices for different definitions of plasma radius, e.g., for the radius defined
via the toroidal flux ψ, rψ = (2ψ/B00)1/2, coefficients α1 and α2 should be
multiplied by drψ/dr. The quantity B00 denotes the amplitude of the (0, 0)
magnetic field harmonic in Boozer coordinates.

3.2.2 Monoenergetic transport coefficients

By neglecting in Eq. (3.22) energy scattering as well as momentum conserva-
tion one may obtain the monoenergetic transport coefficients Le,mono

jk . After

substituting into Eq. (3.45) the normalized functions f̃σk ,

f̂σk = x2k−1−5δ3kfe0f̃
σ
k , for k = 1, 2, 3 (3.61)

and replacing the Maxwellian distribution function by neδ(x− x0)/(4πv3
tex

2
0)

one obtains

Le,mono

jk =
nevteβjβk

x2
0

∞∫
0

dxxζ(j,k)+2δ(x− x0)
∑
σ=±1

〈
B̂

4

1/B̂∫
0

dηq−σj f̃σk

〉

= nevteβjβkx
ζ(j,k)
0

∑
σ=±1

〈
B̂

4

1/B̂∫
0

dηq−σj f̃σk

〉
= neD

mono

jk , (3.62)
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with βj introduced in Eq. (3.18). The monoenergetic transport coefficients
have been defined by

Dmono

jk ≡ vteβjβkx
ζ(j,k)
0

∑
σ=±1

〈
B̂

4

1/B̂∫
0

dηq−σj (η)f̃σk (x0, η)

〉
, (3.63)

where the abbreviation

ζ(j, k) = 2(j + k)− 1− 5(δ3j + δ3k) (3.64)

has been used. Note that the monoenergetic transport coefficients depend on
the deflection frequency νeD, or strictly speaking,

Dmono

jk = Dmono

jk (νeD(v)/v). (3.65)

3.2.3 Energy convolution

For the case when only pitch-angle scattering is assumed the elements of
the thermal transport matrix can be calculated from the convolution of
the Maxwellian distribution function with monoenergetic coefficients [32],
Dmono
jk (v), that have been obtained in Chapter 3.2.2. From Eqs. (3.45) and

(3.61), by using Eq. (3.63), it follows that

Le,Ljk = 4πv4
teβjβk

∞∫
0

dxxζ(j,k)+2fe0(x)
∑
σ=±1

〈
B̂

4

1/B̂∫
0

dηq−σj f̃σk (x, η)

〉

= 4πv3
te

∞∫
0

dxx2fe0(x)Dmono

jk (x)

=
4ne√
π

∞∫
0

dxe−x
2

x2Dmono

jk (x). (3.66)

Recalling Eq. (3.60), the corresponding dimensionless coefficients are given by

γLjk =
4lc√

πβ̂jβ̂kvte

∞∫
0

dxe−x
2

x2Dmono

jk (x). (3.67)

It has to be noted that the collisionality parameter in the monoenergetic case,
κmono = νeD(v)/v, is different from the one of Eq. (3.26), κ = 1/(vteτee), where
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the full linearized collision operator has been applied (see Chapter 3.1). The
connection between these quantities is as follows,

κmono = κ
vteτee
v

νeD(v) (3.68)

= κ
vteτee
v

(
νeeD +

∑
s 6=e

νesD

)
= κα(x, Z). (3.69)

The function α is defined by

α ≡ τee
x

[
νeeD (v) +

∑
s 6=e

νesD (v)

]
, (3.70)

with the deflection frequencies of electron and background ions,

τeeν
ee
D =

3
√
π

4

[φ(x)−G(x)]

x3
, (3.71)

τeeν
es
D =

3
√
π

4

Z2
sns
ne

[φ(y)−G(y)]

x3
. (3.72)

Here, x = v/vte, y = v/vts, φ(y) denotes the error function

φ(y) ≡ 2√
π

∫ y

0

dte−t
2

, (3.73)

and G(y) is the so-called Chandrasekhar function [22]

G(y) ≡ φ(y)− yφ′(y)

2y2
, (3.74)

where the prime indicates a derivative with respect to the argument.

Assuming infinitely heavy background ions one obtains for Eq. (3.72)

τeeν
e∞
D =

3
√
π

4

Z2
sns
nex3

. (3.75)

Thus, the relation between the collisionality parameters κmono and κ can be
expressed as

κmono = κα(x, Zeff) , (3.76)

with function

α(x, Zeff) =
3
√
π

4x4
[φ(x)−G(x) + Zeff ] , (3.77)

and

Zeff =

∑
s Z

2
sns

ne
, (3.78)

respectively. The sum in the last equation is taken over all ion species s.
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3.2.4 Onsager symmetry

The proof of the Onsager symmetry [33] (which is a consequence of the self-
adjointness property of the collision operator [23]) of the transport coefficients
follows References 34 and 35, respectively. From Eq. (3.22) one gets the
following equations

v|λ|
∂f+

j

∂s
− Cle[f+

j ] = fe0Q
+
j (3.79)

−v|λ|
∂f−j
∂s
− Cle[f−j ] = fe0Q

−
j . (3.80)

Introducing for any function F (v) its even and odd part with respect to σ,
that is

F even ≡ 1

2

∑
σ′=±1

F σ′ =
1

2

(
F+ + F−

)
(3.81)

F odd ≡ 1

2

∑
σ′=±1

σ′F σ′ =
1

2

(
F+ − F−

)
, (3.82)

one obtains from Eqs. (3.79) and (3.80),

v|λ|
∂f odd

j

∂s
− Cle[f even

j ] = fe0Q
even

j (3.83)

v|λ|∂f
even
k

∂s
− Cle[f odd

k ] = fe0Q
odd

k , (3.84)

whereupon in the last equation the index j has been changed to k. Now,
multiplying Eq. (3.83) by f even

k /fe0 and Eq. (3.84) by f odd
j /fe0, integrating

both equations over velocity space and averaging over a magnetic surface one
arrives at the relations〈∫

d3vv|λ|f
even
k

fe0

∂f odd
j

∂s

〉
−
〈∫

d3v
f even
k

fe0
Cle[f even

j ]

〉
=

〈∫
d3vQeven

j f even

k

〉
(3.85)〈∫

d3vv|λ|
f odd
j

fe0

∂f even
k

∂s

〉
−
〈∫

d3v
f odd
j

fe0
Cle[f odd

k ]

〉
=

〈∫
d3vQodd

k f odd

j

〉
. (3.86)

Taking into account that

Qodd

1 = Qodd

2 = 0 (3.87)

Qeven

3 = 0, (3.88)
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it can be shown that the RHS of Eqs. (3.85) and (3.86) are equal to the
transport coefficients, that is〈∫

d3vQeven

j f even

k

〉
= (δ1j + δ2j)L

e
jk , (3.89)

and 〈∫
d3vQodd

k f odd

j

〉
= −δ3kL

e
kj , (3.90)

respectively. Due to the self-adjoint property of the linearized collision
operator (see, e.g., [36]),∫

d3v
g

fe0
Cle[h] =

∫
d3v

h

fe0
Cle[g] (3.91)

and upon using the antisymmetry relation〈∫
d3vgv‖

∂h

∂s

〉
= −

〈∫
d3vhv‖

∂g

∂s

〉
, (3.92)

for the first term on the LHS of Eqs. (3.85) and (3.86), respectively, one
obtains the Onsager symmetry for the electron transport matrix Lejk in the
form

(δ1j + δ2j + δ3j)L
e
jk = (δ1k + δ2k + δ3k)L

e
kj, (3.93)

and

Le12 = Le21 (3.94)

Le13 = Le31 (3.95)

Le23 = Le32, (3.96)

accordingly.

3.3 Fluxes and forces

Here, it is worth noting that the choice of neoclassical fluxes and thermody-
namical forces is not unique [23,37] and, consequently, giving rise to differing
transport matrices. In this work the fluxes have been chosen to be the surface
averaged total radial fluxes of particles, 〈Γra〉, and energy, 〈Qr

a〉, as well as
the surface averaged total parallel current density 〈j‖B̂〉 [cf. definitions in
Eqs. (3.37)-(3.39), respectively]. In the literature, however, the second flux
is often defined by means of the flux surface averaged radial heat flux 〈qra〉
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(see, e.g., References 28 and 38), which is connected to the energy flux by the
relation

〈Qr
a〉 =

5

2
Ta〈Γra〉+ 〈qra〉, (3.97)

where the first part on the RHS of Eq. (3.97) represents the convective energy
flux. From this it follows, that the set of fluxes can be written as

I
′

1 = I1 (3.98)

I
′

2 = I2 −
5

2
I1 (3.99)

I
′

3 = I3, (3.100)

which may also be expressed in terms of a transformation matrix, that is

I
′
= M · I, Mjk =

 1 0 0
α 1 0
0 0 1

 , (3.101)

with α = −5/2 and where matrix notation has been used. This new set of
fluxes requires the modification of the driving forces as well. If the matrix
L, defined via the fluxes I and forces A [cf. Eq. (3.42)], is symmetric and
the new matrix L

′
is defined by means of the new fluxes and forces, I

′
and

A
′
, respectively, such that I

′
1 = I1, I

′
2 = αI1 + I2 and I

′
3 = I3, freedom in

definition of the new forces A
′
as linear combinations of old forces A is limited

to a scaling constant C, namely,

A
′

1 = C(A1 − αA2) (3.102)

A
′

2 = CA2 (3.103)

A
′

3 = CA3. (3.104)

This transformation is obtained from the conditions that L
′

is symmetric and
transformation coefficients from A to A

′
are independent of L. Here, the

arbitrary constant C is fixed to 1, which leads to

A
′

1 =

(
1

naTa

∂naTa
∂ψ

+
ea
Ta

∂Φ

∂ψ

)
〈|∇ψ|〉. (3.105)

Furthermore, by using Eqs. (3.42) and (3.101) one obtains

I
′

= M · I
= −M · (L ·A)

= −(M · L) · (MT ·A′
)

= −(M · L ·MT ) ·A′
, (3.106)
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where A = MT ·A′
has been calculated from Eqs. (3.102)-(3.104). Therefore,

the new neoclassical transport matrix is given by

L
′
= M · L ·MT , (3.107)

from which it follows that

L
′

11 = L11 (3.108)

L
′

12 = L12 −
5

2
L11 = L

′

21 (3.109)

L
′

13 = L13 = L
′

31 (3.110)

L
′

22 = L22 − 5L12 +
25

4
L11 (3.111)

L
′

23 = L23 −
5

2
L13 = L

′

32 (3.112)

L
′

33 = L33, (3.113)

where Onsager symmetry has been applied [cf. Eqs. (3.94)-(3.96)].





Chapter 4

Generalized Spitzer function

The standard method for calculation of electron cyclotron current drive
(ECCD) generated current in tokamaks and stellarators is the adjoint ap-
proach where the flux surface averaged current is given by a convolution of a
quasilinear source term with the adjoint generalized Spitzer function (local
current drive efficiency). This function is well studied for high collisionality
regimes where it is equivalent to the classical Spitzer function [39], and in the
long mean free path (LMFP) regime where a bounce averaging procedure can
be used to reduce the dimensionality of the problem to 2D. For a detailed
discussion of various approaches to the LMFP regime see Reference 40. For
benchmarking results of various codes and pertinent models especially for
ITER see References 41,42 and citations within these papers.
In the general case of finite plasma collisionality, the kinetic problem to
compute the local efficiency remains essentially 3D for tokamaks and 4D for
stellarators. For this reason, this general case is not studied as well as cases
in the asymptotic limits [43].
In the linear approximation, generation of steady state plasma current by
ECCD is described by the linearized kinetic equation

v‖h · ∇f̃ − Cl[f̃ ] = QRF , (4.1)

where f̃ is the perturbation of the electron distribution function, h is a unit
vector along the magnetic field, v‖ is the parallel velocity, Cl represents the
full linearized collision integral and QRF is a quasilinear particle source in the
phase space.
By means of the adjoint approach (which allows one to compute the current
density without having to find f̃ , see, e.g., Reference 44) the flux surface

A large part of this chapter has already been published in: W. Kernbichler, S. V. Kasilov,
G. O. Leitold, V. V. Nemov and N. B. Marushchenko, Generalized Spitzer Function with
Finite Collisionality in Toroidal Plasmas, Contrib. Plasma Phys. 50, 761 (2010).

33
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averaged parallel current density may be calculated via the adjoint generalized
Spitzer function ḡ (current drive efficiency), which is expressed through the
generalized Spitzer function g as follows, ḡ(v‖) = g(−v‖), where g(v‖) is the
solution to the conductivity problem,

v‖h · ∇fMg − Cl[fMg] =
1

lSp

v‖fM , (4.2)

and fM is a Maxwellian. Here, Eq. (4.2) represents a generalization of the
collisional Spitzer problem [39,45]. This equation may be recast to give

v‖h · ∇fM ḡ + Cl[fM ḡ] =
1

lSp

v‖fM . (4.3)

Upon substitution of the RHS of Eq. (4.3) into the definition for the flux
surface averaged current density

〈j‖〉 = e

〈∫
d3p v‖f̃

〉
, (4.4)

it follows that

〈j‖〉 = e lSp

〈∫
d3p

f̃

fM

v‖fM
lSp

〉

= e lSp

〈∫
d3p

f̃

fM

(
v‖h · ∇fM ḡ + Cl[fM ḡ]

)〉

= e lSp

〈∫
d3p ḡ

(
−v‖h · ∇f̃ + Cl[f̃ ]

)〉
, (4.5)

where the antisymmetry relation〈∫
d3p Fv‖

∂G

∂s

〉
= −

〈∫
d3p Gv‖

∂F

∂s

〉
, (4.6)

as well as the self-adjoint property of the collision operator,∫
d3p FCl[fMG] =

∫
d3p GCl[fMF ], (4.7)

has been utilized. Finally, from Eqs. (4.5) and (4.1) one obtains for the flux
surface averaged parallel current density

〈j‖〉 = −e lSp

〈∫
d3p ḡ QRF

〉
, (4.8)
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where p is the momentum, 〈. . .〉 denotes the flux surface average [average over
the volume between neighboring flux surfaces, see Eq. (3.12)], e is electron
charge, lSp is the free path length given by lSp = T 2

e /(πnee
4 ln Λ) where

ne, Te and ln Λ are electron density, temperature and Coulomb logarithm,
respectively.
Using a more explicit form for the quasilinear source term,

QRF = − ∂

∂p
· ΓRF , (4.9)

the parallel current density is expressed via derivatives of the adjoint Spitzer
function

〈j‖〉 = −e lSp

〈∫
d3p

∂ḡ

∂p
· ΓRF

〉
. (4.10)

Here, ΓRF is the momentum space flux density due to the wave-induced
quasilinear diffusion.
Within geometrical optics used for calculation of ECRH/ECCD, quasilinear
flux density can be described in local approximation. In this approximation
ΓRF differs from zero in the velocity space only at the resonance line where
the (multiple) cyclotron resonance condition taking into account Doppler
shift is fulfilled, ω = nωc + k‖v‖, where ω, ωc, n and k‖ are wave frequency,
relativistic (energy dependent) cyclotron frequency, cyclotron harmonic index
and parallel wave vector, respectively. For weakly relativistic electrons these
resonance lines are close to circles on the (p⊥, p‖) plane whose centers are
located at p⊥ = 0 axis. In this weakly relativistic case, the largest component
of the quasilinear flux density is over perpendicular momentum. Therefore, as
follows from Eq. (4.10), the behavior of the derivative of ḡ over perpendicular
momentum at the resonance curve is of main importance for ECCD.

In the code NEO-2, the dependence of the generalized Spitzer function on
kinetic energy is presented in the form of expansion over the associated
Laguerre polynomials of the order 3/2 (Sonine polynomials),

g(r,p) =
M∑
m=0

gm(r, η)L(3/2)
m

(
p2

2meTe

)
. (4.11)

The expansion coefficients gm are discretized on the adaptive grid over η which
reduces the kinetic equation (4.2) to a set of coupled ordinary differential
equations with the independent variable being the distance counted along the
field line (cf. Chapter 3.1). This set of equations is solved by numerical ODE
integration (see Reference 46 for details).





Chapter 5

Calculation of the matrix
elements

In Chapter 3 the derivation of the transformed drift kinetic equation [see
Eq. (3.26)] to be numerically solved by means of the NEO-2 code (see, e.g.,
References 25 and 46) has been presented without going into mathematical
details. In the following, this equation will be derived explicitly and the
matrix elements (moments of the Coulomb collision operator) arising will be
evaluated.

A solution to the drift kinetic equation for a single-drive problem [see Eq.
(3.22) in Chapter 3.1]

σv|λ|∂f̂
σ
k

∂s
− Cla

[
f̂σk
]

= fa0vtax
2k−5δ3k |λ|qσk , for k = 1, 2, 3 (5.1)

is obtained upon the substitution of the truncated series approximation for
the distribution function,

f̂σk (ψ, s, x, λ) ≈ fa0(ψ, x)
M∑

m′=0

f
σ,(k)
m′ (ψ, s, λ)ϕm′(x) (5.2)

into Eq. (5.1), where the test functions ϕm are defined as

ϕm(x) ≡ π3/4

√
hm

L(3/2)
m (x2), for m = 0, 1, 2, . . . ,M, (5.3)

and hm = Γ(m + 5/2)/(2m!) denotes the normalization factor (see Ap-
pendix A.1). This leads to the following equation,

M∑
m′=0

(
σvfa0ϕm′|λ|

∂f
σ,(k)
m′

∂s
− Cla

[
fa0f

σ,(k)
m′ ϕm′

])
= fa0vtax

2k−5δ3k |λ|qσk , (5.4)

37
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where Cla is the linearized Coulomb collision operator

Cla
[
fm
]

=
∑
b

(
Cab
[
fm, fb0

]
+ Cab

[
fa0, fm

])
(5.5)

comprising a differential and an integral part, respectively (for details see

Appendix B) and where the expansion coefficients f
σ,(k)
m are to be determined.

The matrix elements are calculated from Eq. (5.4) upon multiplication on the
left by the basis function ϕm followed by an integration over (nav

2
ta)
−1
∫∞

0
dvv3.

One obtains for the first term on the LHS of Eq. (5.4)

1

nav2
ta

∞∫
0

dvv3ϕm

M∑
m′=0

σvfa0ϕm′|λ|
∂f

σ,(k)
m′

∂s

=
M∑

m′=0

σ|λ|∂f
σ,(k)
m′

∂s

1

nav2
ta

∞∫
0

dvv4fa0ϕmϕm′

=
M∑

m′=0

σ|λ|∂f
σ,(k)
m′

∂s
(ϕm, ϕm′)

= σ|λ|∂f
σ,(k)
m

∂s
, (5.6)

where the orthonormalization relation for the basis functions ϕm,

(ϕm, ϕm′) = δmm′ , (5.7)

has been used (see Appendix A). The evaluation of the other parts of Eq. (5.4)
is somewhat more involved and will be carried out in the following chapters.

5.1 Source term

Performing the same steps as described above the RHS of Eq. (5.1) can be
transformed to

1

nav2
ta

∞∫
0

dvv3ϕmfa0vtax
2k−5δ3k |λ|qσk

= |λ|qσk
1

nav2
ta

∞∫
0

dvv4 1

x
ϕmfa0x

2k−5δ3k

= |λ|qσka(k)
m , (5.8)
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where the abbreviation

a(k)
m ≡

(
ϕm, x

2k−1−5δ3k
)

(5.9)

has been introduced. The scalar product between a test function ϕm and an
arbitrary integer power of normalized speed x can be carried out, yielding

(ϕm, x
j) =

1

nav2
ta

∞∫
0

dvv4fa0(x)ϕm(x)xj

=
1

π3/4
√
hm

∞∫
0

dxe−x
2

xj+4L(3/2)
m (x2)

=
1

π3/4

[
2m!

Γ(m+ 5/2)

]1/2
Γ[(j + 5)/2]Γ(m− j/2)

2m!Γ(−j/2)
, (5.10)

where
∞∫

0

dte−ttγ−1L(µ)
m (t) =

Γ(γ)Γ(m+ µ− γ + 1)

m!Γ(µ− γ + 1)
, Re γ > 0 (5.11)

has been used [29]. The quantities a
(k)
m for k = 1, 2, 3 can now be evaluated

by means of Eq. (5.10) giving the results

a(1)
m ≡ (ϕm, x) =

1

π3/4

[
2m!

Γ(m+ 5/2)

]1/2
Γ(3)Γ(m− 1/2)

2m!Γ(−1/2)

= − Γ(m− 1/2)

π5/4 [2m!Γ(m+ 5/2)]1/2
, (5.12)

a(2)
m ≡ (ϕm, x

3) =
1

π3/4

[
2m!

Γ(m+ 5/2)

]1/2
Γ(4)Γ(m− 3/2)

2m!Γ(−3/2)

=
9Γ(m− 3/2)

2π5/4 [2m!Γ(m+ 5/2)]1/2
(5.13)

= − 9

(2m− 3)
a(1)
m , (5.14)

a(3)
m ≡ (ϕm, 1) =

1

2

√
3

2π
(ϕm, ϕ0)

=
1

2

√
3

2π
δm0, (5.15)

whereas in the last equation the orthonormalization relation for the functions
ϕm has been utilized [cf. Eq. (5.7)].
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5.2 Differential part of the collision operator

The test particle part of the Coulomb collision operator has the representation
(see, e.g., Reference 22 or Appendix B.4.2)

Cab
[
fm, fb0

]
= νabD (v)L

[
fm
]

+ CD,vab

[
fm
]
, (5.16)

with L denoting the pitch-angle scattering operator [see Eq. (B.87)] and where
CD,vab accounts for energy scattering. The latter term is given by

CD,vab

[
fm
]

=
1

v2

∂

∂v

[
v3

(
ma

ma +mb

νabs (v)fm +
1

2
νab‖ (v)v

∂fm
∂v

)]
. (5.17)

The collision frequencies appearing in Eqs. (5.16) and (5.17) are defined
by [22]

νabD (v) = ν̂ab
φ(y)−G(y)

x3
, (5.18)

where ν̂ab = 3
√
π/(4τab), x = v/vta, y = v/vtb = γabx, and γab = vta/vtb, and

by

νabs (v) = ν̂ab
2Ta
Tb

(
1 +

mb

ma

)
G(y)

x
(5.19)

νab‖ (v) = 2ν̂ab
G(y)

x3
, (5.20)

respectively, designating the deflection frequency, the slowing down frequency
and the parallel velocity diffusion frequency. The quantity

G(y) =
φ(y)− yφ′(y)

2y2
(5.21)

is the so-called Chandrasekhar function [22].

5.2.1 Lorentz part of Cab[fa1, fb0]

Applying the same operations as those used for obtaining Eqs. (5.4) and (5.6),
respectively, to the Lorentz part of the test particle operator [cf. Eq. (5.16)]
one gets

1

nav2
ta

∞∫
0

dvv3ϕm

M∑
m′=0

∑
b

νabD (v)L
[
fa0f

σ,(k)
m′ ϕm′

]
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=
M∑

m′=0

∑
b

 1

nav2
ta

∞∫
0

dvv3fa0ϕmν
ab
D ϕm′

L [fσ,(k)
m′

]

= κ

M∑
m′=0

∑
b

νabmm′L
[
f
σ,(k)
m′

]
, (5.22)

where the collisionality parameter κ ≡ 1/(vtaτaa) and νabmm′ denotes the matrix
elements of the Lorentz operator defined as

νabmm′ ≡ vtaτaa
(
ϕm
∣∣v−1νabD

∣∣ϕm′) . (5.23)

Employing the definitions of the test functions ϕm, Eq. (5.3), as well as the
relation for the deflection frequency νabD , Eq. (5.18), it follows from Eq. (5.23)
that

νabmm′ =
vtaτaa
nav2

ta

∞∫
0

dvv3fa0(x)ϕm(x)νabD (v)ϕm′(x)

=
τaa
navta

∞∫
0

dvv3 na
π3/2v3

ta

e−x
2

ϕm(x)
3
√
π

4τab

[φ(y)−G(y)]

x3
ϕm′(x)

=
3

4π

τaa
τab

∞∫
0

dxe−x
2

ϕm(x)ϕm′(x)[φ(y)−G(y)]

=
3
√
π

4
√
hmhm′γ

τaa
τab

∞∫
0

dye−(y2/γ2)L(3/2)
m (y2/γ2)

×L(3/2)
m′ (y2/γ2) [φ(y)−G(y)] . (5.24)

The integral in the last equation may be evaluated upon substituting the
definition for the associated Laguerre polynomials [29],

L(α)
n (x) =

n∑
k=0

(−1)k

k!

(
n+ α

n− k

)
xk, (5.25)

where the binomial coefficients are calculated from(
p

q

)
=

p!

q!(p− q)!
=

Γ(p+ 1)

Γ(q + 1)Γ(p− q + 1)
. (5.26)

This leads to the following expression,

νabmm′ =
√
π
τaa
τab

m∑
k=0

m′∑
k′=0

S
(k,k′)
mm′

γ2(k+k′)+1

∞∫
0

dye−(y2/γ2)y2(k+k′)[φ(y)−G(y)], (5.27)
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with

S
(k,k′)
mm′ =

3

2

[
Γ(m+ 1)Γ(m′ + 1)

Γ(m+ 5/2)Γ(m′ + 5/2)

]1/2

×(−1)k+k′

k! k′!

(
m+ 3/2

m− k

)(
m′ + 3/2

m′ − k′

)
. (5.28)

Using the relation

φ(y) =
2y√
π
e−y

2

M(1, 3/2, y2), (5.29)

with M(a, b, z) being the confluent hypergeometric (or Kummer’s) function
(see, e.g., References 29 and 47), and the integral

∞∫
0

dte−sttb−1M(a, c, kt) =
Γ(b)

sb
F (a, b; c; k

s
), |s| > |k|, (5.30)

where F (a, b; c; z) denotes the Gauss hypergeometric function [29, 47], one
obtains for the integral involving the error function φ in Eq. (5.24)

√
π

∞∫
0

dye−(y2/γ2)y2(k+k′)φ(y)

=

∞∫
0

dye−(y2/γ2)y2(k+k′)2ye−y
2

M(1, 3/2, y2)

=

∞∫
0

dte−t(1+γ2)/γ2

tk+k′M(1, 3/2, t)

=
Γ(k+k′+1)γ2(k+k′+1)

(1 + γ2)k+k′+1
F (1, k+k′+1; 3

2
; γ2

1+γ2 ). (5.31)

Applying an integration by parts the integral involving the Chandrasekhar
function G can be reduced to Eq. (5.31). It follows that

√
π

∞∫
0

dye−(y2/γ2)y2(k+k′)G(y)

=
√
π

∞∫
0

dye−(y2/γ2)y2(k+k′)

[
(k + k′)

y2
− 1

γ2

]
φ(y)
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=

∞∫
0

dye−(y2/γ2)y2(k+k′)

[
(k + k′)

y2
− 1

γ2

]
2ye−y

2

M(1, 3/2, y2)

=

∞∫
0

dte−t(1+γ2)/γ2

[
(k+k′)tk+k′−1 − tk+k′

γ2

]
M(1, 3/2, t)

=
Γ(k+k′+1)γ2(k+k′)

(1 + γ2)k+k′

×
[
F (1, k+k′; 3

2
; γ2

1+γ2 )− 1

(1 + γ2)
F (1, k+k′+1; 3

2
; γ2

1+γ2 )

]
, (5.32)

where ∫
dyG(y) = −φ(y)

2y
(5.33)

has been used. Now, from Eq. (5.27) together with Eqs. (5.31) and (5.32),
one obtains the individual species version of the matrix elements with respect
to the Lorentz operator,

νabmm′(γab) =
τaa
τab

ν̂abmm′(γab), (5.34)

where ν̂abmm′ is given by

ν̂abmm′(γab) =
m∑
k=0

m′∑
k′=0

S
(k,k′)
mm′ P

(k,k′)
ν (γab), (5.35)

and with

P (k,k′)
ν (γ) ≡ Γ(k+k′+1)

γ(1 + γ2)k+k′

×
[
F (1, k+k′+1; 3

2
; γ2

1+γ2 )− F (1, k+k′; 3
2
; γ2

1+γ2 )
]
. (5.36)

The quantity S
(k,k′)
mm′ is given by Eq. (5.28) and the ratio of collision times is

expressed as [22]
τaa
τab

=
ν̂ab
ν̂aa

=
nbe

2
b

nae2
a

. (5.37)

One can easily show that the double sum in Eq. (5.35) can be converted to a
single sum giving the result

ν̂abmm′(γab) =
m+m′∑
j=0

X
(j)
mm′ p

(j)
ν (γab), (5.38)
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where

X
(j)
mm′ =

j∑
k=0

S
(k,j−k)
mm′ , (5.39)

and

p(j)
ν (γ) ≡ j!

γ(1 + γ2)j

[
F (1, j + 1; 3

2
; γ2

1+γ2 )− F (1, j; 3
2
; γ2

1+γ2 )
]
. (5.40)

Note that S
(k,k′)
mm′ = 0 for k > m or k′ > m′. Due to the fact that X

(j)
mm′ = X

(j)
m′m

it immediately follows from Eq. (5.38) that the matrix elements are symmetric,
that is νabmm′ = νabm′m [this could have also been seen directly from Eq. (5.24)].

Finally, the matrix elements of the ‘full’ Lorentz part of the collision operator
are given by

νamm′ =
∑
b

νabmm′

= νaamm′ +
∑
b 6=a

νabmm′ . (5.41)

In a plasma where several different ion species are present the treatment of
electron-ion collisions is simplified if one assumes the ions to be immobile [22].
That is to say, when infinitely heavy background ions are assumed, Eq. (5.40)
is given by

p(j)
ν (z) =

√
π

2
Γ(j + 1/2)−O(zj+1/2), (5.42)

where z ≡ 1/(1 + γ2
ab) tends to zero (for equal species temperatures the

parameter z approximately corresponds to the ratio of particle masses ma/mb).

A detailed derivation of the corresponding asymptotic expansion of p
(j)
ν will

be given in Chapter 5.5. Using, e.g. MAPLE [48], the summation in Eq. (5.38)
can now be performed to give the following ‘closed’ form of the matrix elements

νabmm′ =
τaa
τab

ν̂a∞mm′ −O(z1/2) , (5.43)

with

ν̂a∞mm′ =

√
π

5

[
m!Γ(m′ + 5/2)

m′!Γ(m+ 5/2)

]1/2

[5(m+ 1)−m′] , m ≥ m′ − 1. (5.44)

From Eq. (5.41) one obtains for the electron version of the matrix elements
regarding the pitch-angle scattering operator L̂ ≡ L/|λ|, [see Eq. (3.26) in
Chapter 3]

νemm′ = ν̂eemm′ + Zeff ν̂
e∞
mm′ (5.45)
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with the effective charge

Zeff ≡
1

ne

∑
s

nsZ
2
s , (5.46)

where the sum is taken over all ion species.

5.2.2 Energy scattering part of Cab[fa1, fb0]

By carrying out the same operations as for the calculation of the Lorentz
operator matrix elements one arrives at the expression

1

nav2
ta

∞∫
0

dvv3ϕm

M∑
m′=0

∑
b

CD,vab

[
fa0f

σ,(k)
m′ ϕm′

]

=
M∑

m′=0

∑
b

 1

nav2
ta

∞∫
0

dvv3ϕmCD,vab [fa0ϕm′ ]

 f
σ,(k)
m′

= κ
M∑

m′=0

∑
b

Dab
mm′f

σ,(k)
m′ (λ), (5.47)

where the quantities Dab
mm′ are the matrix elements of the energy scattering

part of the collision operator defined by

Dab
mm′ ≡ vtaτaa

(
ϕm

∣∣∣v−1CD,vab

∣∣∣ϕm′) . (5.48)

Recalling the definition of CD,vab , Eq. (5.17), the expression for the associated
matrix elements reads

Dab
mm′ =

vtaτaa
nav2

ta

∞∫
0

dvv3ϕmCD,vab [fa0ϕm′ ]

=
τaa
navta

∞∫
0

dvvϕm
∂

∂v

[
v3

(
ma

ma+mb

νabs +
1

2
νab‖ v

∂

∂v

)]
fa0ϕm′ .(5.49)

Substituting the definitions of the slowing down and parallel velocity diffusion
frequency, respectively, into Eq. (5.49) and after performing the derivative
with respect to normalized velocity in the second part of the equation one
gets

Dab
mm′ =

3

4π

τaa
τab

∞∫
0

dxxϕm
∂

∂x

[
G(y)e−x

2

x
∂ϕm′

∂x
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− 2

(
1− Ta

Tb

)
G(y)x2e−x

2

ϕm′

]
, (5.50)

where ∂fa0/∂x = −2xfa0 has been used. Provided that Ta = Tb = T and by
means of Eq. (5.3) the last formula yields

Dab
mm′ =

3
√
πτaa

4
√
hmhm′τab

∞∫
0

dxxL(3/2)
m (x2)

∂

∂x

[
G(y)xe−x

2 ∂

∂x
L

(3/2)
m′ (x2)

]
, (5.51)

from which, by using Eq. (5.25), one obtains,

Dab
mm′ =

3
√
πτaa

4
√
hmhm′τab

m∑
k=0

(−1)k

k!

(
m+3/2

m−k

)

×
∞∫

0

dxx2k+1 ∂

∂x

[
G(y)xe−x

2 ∂

∂x
L

(3/2)
m′ (x2)

]
. (5.52)

Here, Eq. (5.52) is readily evaluated applying again Eq. (5.25) as well as
Eq. (5.32) along with an integration by parts. Thus, the individual species
version of the matrix elements pertaining to the energy scattering part of
Cab[fa1, fb0] is given as follows

Dab
mm′(γab) = −

√
π
τaa
τab

m∑
k=0

m′∑
k′=0

S
(k,k′)
mm′ (2k+1)2k′

∞∫
0

dxe−x
2

x2(k+k′)G(y)

≡ τaa
τab

D̂ab
mm′(γab), (5.53)

with

D̂ab
mm′(γab) =

m∑
k=0

m′∑
k′=0

S
(k,k′)
mm′ P

(k,k′)
D (γab), (5.54)

and where the ratio of collision times has been defined in Eq. (5.37). The

quantity P
(k,k′)
D reads

P
(k,k′)
D (γ) =

2k′(2k + 1)(k + k′)!

γ(1 + γ2)k+k′

×
[

1

(1+γ2)
F (1, k+k′+1; 3

2
; γ2

1+γ2 )− F (1, k+k′; 3
2
; γ2

1+γ2 )

]
. (5.55)

Note that the the matrix elements D̂ab
m0 ≡ 0 following immediately from

Eq. (5.51). Represented in terms of a single sum Eq. (5.54) can be rewritten
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as

D̂ab
mm′(γab) =

m+m′∑
j=0

Y
(j)
mm′ p

(j)
D (γab), (5.56)

where

Y
(j)
mm′ = 2

j∑
k=0

S
(k,j−k)
mm′ (2k + 1)(j − k), (5.57)

with S
(k,k′)
mm′ introduced in Eq. (5.28) as well as

p
(j)
D (γ) =

j!

γ(1 + γ2)j

[
1

(1 + γ2)
F (1, j+1; 3

2
; γ2

1+γ2 )− F (1, j; 3
2
; γ2

1+γ2 )

]
. (5.58)

Similar to the pitch-angle scattering case the full version of the matrix elements
is given through the sum of all contributions from collisions with particles of
species b, that is

Da
mm′ = Daa

mm′ +
∑
b 6=a

Dab
mm′ . (5.59)

Due to the fact that Dab
mm′ is of O(z) (for details see again Chapter 5.5), where

z tends to zero for the case when immobile background ions are assumed, it is
feasible to neglect the contributions from background particles. Thus, because
of D̂ee

mm′ � D̂ei
mm′ , one obtains from Eq. (5.59) for the electron version of the

matrix elements,

De
mm′ ≈ D̂ee

mm′ . (5.60)

5.3 Integral part of the collision operator

In this section the evaluation of collision matrix elements of the field particle
part of the Coulomb operator (see, e.g., Reference 22 or Appendix B.4.2) is
shown. This operator is responsible for momentum conservation and can be
expressed as

CIab
[
fb1
]
≡ Cab

[
fa0, fb1

]
= Labfa0

[
ma

mb

fb1 +
2

v2
ta

ϕb1 +

(
1− ma

mb

)
2v

v2
ta

∂ϕb1
∂v
− 4v2

v4
ta

∂2ψb1
∂v2

]
=

3nae
−x2

τabnb

[
ma

mb

fb1+
2

v2
ta

ϕb1+
2y

v2
ta

(
1−ma

mb

)
∂ϕb1
∂y
− 4y2

v4
ta

∂2ψb1
∂y2

]
,(5.61)
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with fb1 being the unknown field particle distribution function approximated
by the expansion

fb1(λ, y) ≈ fb0(y)
M∑

m′=0

f
σ,(k)
m′ (λ)ϕm′(y)

≡ fb0(y)
M∑

m′=0

f̂b,m′(λ, y), (5.62)

and where the test functions ϕm′ have been defined in Eq. (5.3). Here,
fb0(y) = nbe

−y2
/(π3/2v3

tb) is the background Maxwellian and y = v/vtb is
the normalized speed. The functionals ϕb1 and ψb1, respectively, denote the
Trubnikov potentials (see Appendix C).

5.3.1 ϕ-basis

The matrix elements of the field particle operator in terms of ϕm-basis are
obtained from Eq. (5.61) acting on Eq. (5.62) followed by a multiplication
on the left by ϕm(x) along with an integration over 1/(nav

2
ta)
∫∞

0
dvv3. This

leads to

1

nav2
ta

∞∫
0

dvv3ϕm

M∑
m′=0

∑
b

CIab
[
fb0f

σ,(k)
m′ ϕm′

]

= κ
M∑

m′=0

∑
b

vtaτaa
nav2

ta

∞∫
0

dvv3ϕmCIab
[
fb0f

σ,(k)
m′ ϕm′

]

= κ

M∑
m′=0

∑
b

Kabmm′
[
f
σ,(k)
m′

]
, (5.63)

with Kabmm′ representing an integral operator formally defined by

Kabmm′ ≡ vtaτaa
(
ϕm
∣∣v−1CIab

∣∣ϕm′) . (5.64)

From Eq. (5.61) it follows that the unknown distribution function fb1, or more

precisely the corresponding angular part f
σ,(k)
m′ , appears under an integral (via

the Trubnikov potentials, ϕb1 and ψb1, respectively). Since these functionals
are only known in terms of the so-called Burnett functions (see Chapter A
and also Appendix C) it is convenient first to evaluate the desired matrix
elements using these basis functions followed by a transformation to the
ϕm-test functions.
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In Chapter A the representation of an arbitrary function in terms of Bur-
nett functions, B

(`)
n (λ, z) = P`(λ)p

(`)
n (z), has been derived. Applying the

corresponding results to ϕm and f̂b,m′ one obtains

ϕm(x) = 2
∑
n

B
(0)
n (x)

h
(0)
n

〈ϕm|p(0)
n 〉v (5.65)

and

f̂b,m′(λ, y) ≡ f
σ,(k)
m′ (λ)ϕm′(y)

=
∑
`,n′

B
(`)
n′ (λ, y)

h
(`)
n′

〈fσ,(k)
m′ |P`〉λ′〈ϕm′|p

(`)
n′ 〉v′ , (5.66)

respectively. The radial scalar product between the test function ϕm and the
function p

(`)
n in Eqs. (5.65) as well as (5.66) corresponds to a transformation

matrix which will be abbreviated by

φ(`)
mn = φ(`)

nm ≡ 〈ϕm|p(`)
n 〉, (5.67)

where the quantity p
(`)
n (x) ≡ x`L

(`+1/2)
n (x2). After substitution of Eqs. (5.65)

and (5.66) into the relation for the integral operator Kabmm′ it follows that

Kabmm′
[
f
σ,(k)
m′

]
=

τaa
navta

∞∫
0

dvv32
∑
n

B
(0)
n (x)

h
(0)
n

φ(0)
mn

×CIab

[
fb0(y)

∑
`,n′

B
(`)
n′ (λ, y)

h
(`)
n′

〈fσ,(k)
m′ |P`〉λ′φ

(`)
m′n′

]

=
τaa
τab

τab
navta

∑
n

∑
`,n′

2φ
(0)
mn

h
(0)
n h

(`)
n′

∞∫
0

dvv3B(0)
n (x)

×CIab
[
fb0(y)B

(`)
n′ (λ, y)

]
φ

(`)
n′m′〈f

σ,(k)
m′ |P`〉λ′

≡ τaa
τab
K̂abmm′

[
f
σ,(k)
m′

]
, (5.68)

with

K̂abmm′
[
f
σ,(k)
m′

]
=
∑
`

P`(λ)
∑
n,n′

2φ
(0)
mn

h
(0)
n h

(`)
n′

Î
(`)
nn′φ

(`)
n′m′〈f

σ,(k)
m′ |P`〉λ′ , (5.69)
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and where the quantity

Î
(`)
nn′(γab) =

τab
vta
〈p(0)
n |vCIab|p

(`)
n′ 〉v

=
τab
navta

∞∫
0

dvv3p(0)
n (x)CIab

[
fb0(y)p

(`)
n′ (y)

]
(5.70)

denotes the radial part of the matrix elements of the field particle operator
in terms of Burnett functions. From Eq. (5.69) one can infer that the matrix
elements in the ϕm-basis are given through

I
(`)
mm′(γab) =

N∑
n=0

N ′∑
n′=0

2

h
(0)
n h

(`)
n′

φ(0)
mnÎ

(`)
nn′φ

(`)
n′m′ , (5.71)

where h
(`)
n = Γ(n + ` + 3/2)/[2π3/2n!(` + 1/2)]. The values for N and N ′

have to be chosen as large as possible in order to achieve accurate numerical
results for I

(`)
mm′ . In Chapter 5.4 it will be shown that the sum over n can be

truncated at n = m which, of course, is a considerable numerical advantage
gained by the fact that M ≪ N (roughly speaking, the order of magnitude
of M and N is 10 and 106, respectively).
Upon defining the quantity

Kab
mm′(λ, λ

′) =
L∑
`=0

P`(λ)P`(λ
′)I

(`)
mm′ , (5.72)

the individual species version of the integral operator K̂abmm′ can be represented

as an angular scalar product between Kab
mm′ and the unknown function f

σ,(k)
m′ ,

that is,

K̂abmm′
[
f
σ,(k)
m′

]
= 〈Kab

mm′(λ, λ
′)|fσ,(k)

m′ (λ′)〉λ′

=

1∫
−1

dλ′Kab
mm′(λ, λ

′)f
σ,(k)
m′ (λ′), (5.73)

whereas the full version follows from

Kamm′ = Kaamm′ +
∑
b 6=a

Kabmm′ . (5.74)

In Chapter 5.5.2 it will be shown in detail that the second part on the RHS
of Eq. (5.74) is at least of O(z1/2), where z tends to zero for infinitely heavy
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background ions. Consequently, for the electron version of the matrix elements
it is sufficient, due to K̂eemm′ � K̂eimm′ , to include only the term accounting for
momentum conservation in electron electron collisions,

Kemm′ ≈ K̂eemm′ . (5.75)

Putting together the above results, that is to say Eqs. (5.6), (5.8), (5.22),
(5.47) and (5.63), the drift kinetic equation, Eq. (5.1), is transformed to a

set of coupled two dimensional differential equations for the coefficients f
σ,(k)
m

yielding

σ|λ|∂f
σ,(k)
m

∂s
− κ

M∑
m′=0

{
νemm′L

[
f
σ,(k)
m′

]
+De

mm′f
σ,(k)
m′ +Kemm′

[
f
σ,(k)
m′

]}
= |λ|qσka(k)

m , (5.76)

from which one obtains the desired Eq. (3.26) after dividing Eq. (5.76) by
pitch-angle parameter |λ|. As mentioned above, the resulting equation is to
be solved numerically in the code NEO-2 [31,46].

5.3.2 Burnett basis

The next quantity to be calculated is Î
(`)
nn′(γ) [cf. Eq. (5.70)] representing the

radial part of the matrix elements of the integral part of the collision operator
in the Burnett function basis. The field particle operator can be written as

CIab

[
fb0p

(`)
n′

]
=

3nae
−x2

τabnb

[
ma

mb

fb0p
(`)
n′ +

2

v2
ta

ϕb1,y

+
2y

v2
ta

(
1− ma

mb

)
∂ϕb1,y
∂y

− 4y2

v4
ta

∂2ψb1,y
∂y2

]
, (5.77)

where

fb0p
(`)
n′ =

nb
π3/2v3

tb

e−y
2

y`L
(`+1/2)
n′ (y2), (5.78)

and the radial part of the Trubnikov potentials is given as

ϕb1,y = − nb
2π3/2vtb

ϕ̂
(`)
n′ (y) (5.79)

ψb1,y = − nbvtb
4π3/2

ψ̂
(`)
n′ (y). (5.80)
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The evaluation of these functionals will be shown explicitly in Appendices C.1
and C.2. The corresponding results for ϕ̂

(`)
n′ and ψ̂

(`)
n′ are

ϕ̂
(`)
0 =

γ(`+ 1/2, y2)

2y`+1
(5.81)

ϕ̂
(`)
n′ =

1

2n′
e−y

2

y`L
(`+1/2)
n′−1 (y2), for n′ ≥ 1 (5.82)

ψ̂
(`)
0 =

1

2

[
ϕ̂

(`)
0 − yϕ̂

(`−1)
0

]
(5.83)

ψ̂
(`)
n′ = − 1

2n′
ϕ̂

(`)
n′−1, for n′ ≥ 1. (5.84)

By means of Eq. (5.82), Eq. (5.78) may be expressed in terms of the function

ϕ̂
(`)
n′ . It follows that

fb0p
(`)
n′ =

nb
π3/2v3

tb

2(n′ + 1)ϕ̂
(`)
n′+1(y), for n′ ≥ 0. (5.85)

The first derivative of ϕ̂
(`)
n′ as well as the second derivative of ψ̂

(`)
n′ , respectively,

with respect to normalized speed become (see again Appendices C.1 and C.2)

y
∂ϕ̂

(`)
n′

∂y
= 2(n′ + 1)ϕ̂

(`)
n′+1 − (2n′ + `+ 1)ϕ̂

(`)
n′ (5.86)

y2∂
2ψ̂

(`)
0

∂y2
=

(`+ 1)(`+ 2)

2
ϕ̂

(`)
0 −

`(`− 1)

2
yϕ̂

(`−1)
0 − 2ϕ̂

(`)
1 (5.87)

y2∂
2ϕ̂

(`)
n′−1

∂y2
= 4n′(n′ + 1)ϕ̂

(`)
n′+1 − 2n′(4n′ + 2`+ 1)ϕ̂

(`)
n′

+(2n′ + `)(2n′ + `− 1)ϕ̂
(`)
n′−1. (5.88)

Summing up the above results Eq. (5.77) can be expressed in terms of the

function ϕ̂
(`)
n′ . For n′ ≥ 2 one obtains

CIab
[
fb0p

(`)
n′

]
= − 3nae

−x2

π3/2τabv3
tbγ

4

{
(2n′ + `)

(2n′ + `− 1)

2n′
ϕ̂

(`)
n′−1

−
[
(2n′ + `+ 1)

(
1− Ta

Tb

)
+ (2n′ + `)(1 + γ2)

]
ϕ̂

(`)
n′

+2(n′ + 1)(1 + γ2)

(
1− Ta

Tb

)
ϕ̂

(`)
n′+1

}
. (5.89)
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Assuming equal species temperatures, Ta = Tb = T , it follows from the last
equation that

CIab
[
fb0p

(`)
n′

]
=

3nae
−x2

π3/2τabv3
tb

(2n′ + `)

γ4

×
[
(1 + γ2)ϕ̂

(`)
n′ −

(2n′ + `− 1)

2n′
ϕ̂

(`)
n′−1

]
. (5.90)

The matrix elements of the field particle part of the collision operator in the
Burnett basis are calculated from

Î
(`)
nn′(γ) =

τab
navta

∞∫
0

dvv3p(0)
n (x)CIab

[
fb0(y)p

(`)
n′ (y)

]

=
3(2n′ + `)

π3/2γ5

∞∫
0

dyy3L(1/2)
n (y2/γ2)e−y

2/γ2

×
[
(1 + γ2)ϕ̂

(`)
n′ (y)− (2n′ + `− 1)

2n′
ϕ̂

(`)
n′−1(y)

]
=

3(2n′ + `)

π3/2γ5

[
(1 + γ2)U

(`)
nn′ −

(2n′ + `− 1)

2n′
U

(`)
nn′−1

]
, (5.91)

for n′ ≥ 2. Here, p
(0)
n (x) = L

(1/2)
n (x2), y = γx and Eq. (5.90) has been applied

and the auxiliary quantity

U(`)
nη(γ) ≡

∞∫
0

dyy3L(1/2)
n (y2/γ2)e−y

2/γ2

ϕ̂(`)
η (y) (5.92)

has been introduced. After substituting into this equation the definition of
the associated Laguerre polynomials [29]

L(1/2)
n (y2/γ2) =

n∑
k=0

(−1)k

k!γ2k

(
n+ 1/2

n− k

)
y2k, (5.93)

as well as

ϕ̂(`)
η =

1

2η
e−y

2

y`L
(`+1/2)
η−1 (y2), (5.94)

it follows that Eq. (5.92) may be rewritten in the form

U(`)
nη =

1

2η

n∑
k=0

(−1)k

k!γ2k

(
n+ 1/2

n− k

)
V(`)
η (k, γ), (5.95)
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with

V(`)
η (k, γ) ≡

∞∫
0

dye−y
2(1+γ−2)y`+2k+3L

(`+1/2)
η−1 (y2). (5.96)

The solution of this integral can be obtained with the help of Reference 29
where one finds

∞∫
0

dte−st
2

t2β+1Lαn(t2) =
Γ(β + 1)Γ(α + n+ 1)

2Γ(n+ 1)Γ(α + 1)sβ+1
F (−n, β+1;α+1; 1

s
), (5.97)

valid for Re β > −1 and Re s > 0, and where F (a, b; c; z) again denotes the
Gauss hypergeometric function. Thus, Eq. (5.96) has the result

V(`)
η (k, γ) =

Γ(`/2 + k + 2)Γ(η + `+ 1/2)γ`+2k+4

2Γ(η)Γ(`+ 3/2)(1 + γ2)`/2+k+2

×F (1− η, `
2

+ k + 2; `+ 3
2
; γ2

1+γ2 ), (5.98)

which can be utilized in Eq. (5.95) yielding

U(`)
nη =

Γ(η + `+ 1/2)γ`+4

4Γ(η + 1)Γ(`+ 3/2)(1 + γ2)`/2+2

n∑
k=0

(−1)k

k!

(
n+ 1/2

n− k

)
×Γ(`/2 + k + 2)

(1 + γ2)k
F (1− η, `

2
+ k + 2; `+ 3

2
; γ2

1+γ2 ). (5.99)

In case that ` = 0 one can find a simpler relation instead of cumbersome
Eq. (5.99), that is to say

U(0)
nη =

π

8
γ3δ0n+η −

γ4

6(1 + γ2)2

(
η−5/2

η

)
×
(
n+1/2

n

)
F (1−n−η, 2; 5

2
− η; 1

1+γ2 ), (5.100)

which has been computed by means of MAPLE [48].

Recalling Eq. (5.91) and taking into account Eq. (5.99) one finally arrives at
the following expression for the matrix elements of the field particle operator
in terms of Burnett functions,

Î
(`)
nn′(γab) =

3

4π3/2

(2n′ + `)Γ(n′ + `+ 1/2)

Γ(n′ + 1)Γ(`+ 3/2)

γ`−1
ab

(1 + γ2
ab)

`/2+1
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×
n∑
k=0

(−1)k

k!

(
n+1/2

n− k

)
Γ(`/2 + k + 2)

(1 + γ2
ab)

k
P

(`)
n′ (k, γab) (5.101)

=
h

(0)
n h

(`)
n′

2

6π3/2(2n′ + `)n!

(2n′ + 2`+ 1)Γ(`+ 1/2)

γ`−1
ab

(1 + γ2
ab)

`/2+1

×
n∑
k=0

(−1)k

k!

Γ(`/2 + k + 2)

(n− k)!Γ(k + 3/2)

P
(`)
n′ (k, γab)

(1 + γ2
ab)

k
, (5.102)

valid for n′ ≥ 0, and where

P
(`)
n′ (k, γ) = F (1− n′, `

2
+ k + 2; `+ 3

2
; γ2

1+γ2 )

− (2n′ + `− 1)

(2n′ + 2`− 1)(1 + γ2)
F (2− n′, `

2
+ k + 2; `+ 3

2
; γ2

1+γ2 ). (5.103)

The proof that Eq. (5.101) essentially includes n′ = 0 and n′ = 1 is not
difficult but somewhat tedious [by using Eqs.(5.81)-(5.88), applying some
properties of hypergeometric functions and again by means of MAPLE] and

has been omitted here. Here it has to be mentioned that Î
(0)
n0 ≡ 0, following

directly from Eq. (5.101).

It turns out that for the case when the parameter ` is equal to one one
can derive a much simpler expression for the matrix elements than that in
Eq. (5.101). In virtue of Eq. (5.91) it follows that

Î
(1)
nn′(γ) =

3(2n′ + 1)

π3/2γ5

[
(1 + γ2)U

(1)
nn′(γ)− U

(1)
nn′−1(γ)

]
, (5.104)

where

U(1)
nη =

∞∫
0

dyy3L(1/2)
n (y2/γ2)e−y

2/γ2

ϕ̂(1)
η (y)

=
1

2η

∞∫
0

dye−y
2(1+γ−2)y4L(1/2)

n (y2/γ2)L
(3/2)
η−1 (y2)

=
1

4η

∞∫
0

dte−t(1+γ−2)t3/2L(1/2)
n (t/γ2)L

(3/2)
η−1 (t). (5.105)

By using the following recurrence relation for the associated Laguerre polyno-
mials [29] with respect to `

L(1/2)
n (x) = L(3/2)

n (x)− L(3/2)
n−1 (x), (5.106)
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as well as the integral
∞∫

0

dte−t(1+γ−2)tαL
(α)
N (t/γ2)L

(α)
M (t)

=
Γ(M+N+α+1)

M !N !

γ2(N+α+1)

(1 + γ2)M+N+α+1
, (5.107)

valid for Re α > −1 and Re (1 + γ−2) > 0 (which has been found in
Reference 29) it follows from Eq. (5.105) that

U(1)
nη (γ) =

Γ(n+ η + 3/2)

4n!η!

γ2n+5

(1 + γ2)n+η+3/2

−nΓ(n+ η + 1/2)

4n!η!

γ2n+3

(1 + γ2)n+η+1/2
. (5.108)

Upon substituting this result into Eq. (5.104) and after rearranging terms
one finds

Î
(1)
nn′(γ) =

3(2n′ + 1)

16π3/2

Γ(n+ n′ − 1/2)

n!n′!

γ2n−2

(1 + γ2)n+n′+1/2

×
[
γ2(4nn′ + 2n+ 2n′ − 1)− 2n(2n− 1)

]
. (5.109)

This special case can be used as a first check for the numerical routine that
computes Eq. (5.101).

5.4 Transformation matrix

The radial scalar product of the test functions ϕm and the radial part of the
Burnett functions p

(`)
n defines the transformation matrix between these two

sets of orthonormal functions (see Appendix A.2),

φ(`)
mn = φ(`)

nm ≡ 〈ϕm|p(`)
n 〉v. (5.110)

Upon employing Eq. (A.22) it follows that

φ(`)
mn =

1

nb

∞∫
0

dvv2 nbe
−y2

π3/2v3
tb

π3/4

√
hm

L(3/2)
m (y2)y`L(`+1/2)

n (y2)

=
1

π3/4
√
hm

∞∫
0

dye−y
2

y`+2L(3/2)
m (y2)L(`+1/2)

n (y2)

=
T

(`)
mn

π3/4
√
hm

, (5.111)
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where the integral in this equation has been given the abbreviated notation

T(`)
mn ≡

∞∫
0

dye−y
2

y`+2L(3/2)
m (y2)L(`+1/2)

n (y2)

=
1

2

∞∫
0

dte−tt(`+1)/2L(3/2)
m (t)L(`+1/2)

n (t). (5.112)

With the help of the orthogonality relation for the associated Laguerre
polynomials

∞∫
0

dte−ttλL(λ)
m (t)L(λ)

n (t) =
Γ(n+ λ+ 1)

n!
δnm, for Re λ > −1, (5.113)

and by using the following property with respect to finite summation [29],

L(λ+1)
m =

m∑
k=0

L
(λ)
k , (5.114)

it is straightforward to calculate the transformation matrix for ` is equal to
zero. One has

T(0)
mn =

1

2

∞∫
0

dte−tt1/2L(3/2)
m (t)L(1/2)

n (t)

=
m∑
k=0

1

2

∞∫
0

dte−tt1/2L
(1/2)
k (t)L(1/2)

n (t)

=
m∑
k=0

Γ(n+ 3/2)

2n!
δnk, (5.115)

from which one can infer that

T(0)
mn =


Γ(n+ 3/2)

2n!
for n ≤ m

0 for n > m.

(5.116)

An important detail concerning the numerical implementation of computation
of the matrix elements I

(`)
mm′ is the fact that the transformation matrix T

(0)
mn is

equal to zero for n bigger than m. In that case, the sum over n in Eq. (5.71)



58 CHAPTER 5. CALCULATION OF THE MATRIX ELEMENTS

can be truncated at n = m, where the parameter m takes at most the value
M which, in turn, is several orders of magnitude smaller than N . Thus, the
computing time necessary for calculating the matrix elements is considerably
reduced.

The evaluation of Eq. (5.112) for arbitrary ` can be performed by means of
the relation (see Reference 29)

∞∫
0

dte−ttγ−1L(µ)
n (t) =

Γ(γ)Γ(n+ µ− γ + 1)

n!Γ(µ− γ + 1)
, for Re γ > 0. (5.117)

By applying the definition [see Eq. (5.25)] of the associated Laguerre polyno-

mials as well as Eq. (5.117) one obtains two solutions for T
(`)
mn depending on

which of the Laguerre polynomial is being replaced by Eq. (5.25), that is

T(`)
mn =

1

2

∞∫
0

dte−tt(`+1)/2L(3/2)
m (t)L(`+1/2)

n (t)

=
n∑
k=0

(−1)k

2k!

(
n+`+1/2

n− k

) ∞∫
0

dte−tt(`+1)/2+kL(3/2)
m (t)

=
n∑
k=0

(−1)k

k!

(
n+`+1/2

n− k

)
Γ(k+`/2+3/2)Γ(m+1−`/2−k)

2m!Γ(1−`/2−k)
, (5.118)

and

T(`)
mn =

1

2

∞∫
0

dte−tt(`+1)/2L(3/2)
m (t)L(`+1/2)

n (t)

=
m∑
k=0

(−1)k

2k!

(
m+3/2

m− k

) ∞∫
0

dte−tt(`+1)/2+kL(`+1/2)
n (t)

=
m∑
k=0

(−1)k

k!

(
m+3/2

m− k

)
Γ(k+`/2+3/2)Γ(n+`/2−k)

2n!Γ(`/2−k)
, (5.119)

respectively, from which one obtains the transformation matrix φ
(`)
mn upon

dividing the last two equations by the factor π3/4
√
hm. Carrying out the sum

appearing in Eqs. (5.118) and (5.119) with MAPLE [48] yields the results

T(`)
mn =

Γ(`/2 + 3/2)Γ(m+ 1− `/2)

2m!Γ(1− `/2)

×
(
n+ `+ 1/2

n

)
3F2(−n, `

2
, `+3

2
; `+ 3

2
, `

2
−m; 1), (5.120)
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and

T(`)
mn =

Γ(`/2 + 3/2)Γ(n+ `/2)

2n!Γ(`/2)

×
(
m+ 3/2

m

)
3F2(−m, 1− `

2
, `+3

2
; 5

2
, 1−n− `

2
; 1), (5.121)

where 3F2 indicates a generalized hypergeometric function [29]. These equa-
tions are unrestricted valid for odd values of `, whereas for even ` > 0 the
elements of the transformation matrix are zero if m > n+ `/2− 1. Here, it
has to be noted that in Eq. (5.120) the generalized hypergeometric function

3F2(a1, a2, a3; b1, b2; 1) does not exist when an appropriate negative integer
[like in Eq. (5.121)] is missing in the first list of parameters to compensate
the negative integers (or zero) occurring in the second list for the case when
`/2−m ≤ 0. This case is covered by the equation

T(`)
mn =

n∑
k=m+1−`/2

(−1)k

k!

(
n+`+1/2

n− k

)
Γ(k+`/2+3/2)Γ(m+1−`/2−k)

2m!Γ(1−`/2−k)

=
(−1)`/2+1Γ(m+ 5/2)Γ(n+ `+ 3/2)

2Γ(m+ 2− `/2)Γ(n−m+ `/2)Γ(m+ `/2 + 5/2)

× 3F2(m+1,m+ 5
2
,m+1−n− `

2
;m+2− `

2
,m+ `

2
+ 5

2
; 1), (5.122)

which has again been computed using MAPLE. Because of the fact that
there exist various recurrence identities (see, e.g., Reference 49), for the
generalized hypergeometric functions 3F2(a1, a2, a3; b1, b2; 1) one might easily
derive corresponding recurrence relations for the matrix elements presented
in Eqs. (5.120)-(5.122), respectively (cf. Chapter 5.6).

In the following several elementary cases of the matrix T
(`)
mn are given, namely,

T(2)
mn =

1

2

∞∫
0

dte−tt3/2L(3/2)
m (t)L(5/2)

n (t)

=
n∑
k=0

1

2

∞∫
0

dte−tt3/2L(3/2)
m (t)L

(3/2)
k (t)

=
n∑
k=0

Γ(m+ 5/2)

2m!
δmk, (5.123)
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which yields

T(2)
mn =


0 for m > n

Γ(m+ 5/2)

2m!
for m ≤ n

(5.124)

as well as

T(4)
mn =

(−1)m

2m!

n∑
k=0

(−1)k
(
n+9/2

n− k

)
(k + 1)Γ(k + 7/2)

Γ(k + 2−m)
, (5.125)

producing for m ≤ n+ 1 the result [48]

T(4)
mn =

(−1)m

2m!

n∑
k=m−1

(−1)k
(
n+9/2

n− k

)
(k + 1)Γ(k + 7/2)

Γ(k + 2−m)

=
[5(n+ 1)− 7m]Γ(m+ 5/2)

4m!
, (5.126)

whereas T
(4)
mn = 0 for m > n + 1. In deriving Eq. (5.125) the relation1

(−k)n = (−1)nk!/(k − n)!, k, n ∈ N with (z)n being the Pochhammer
symbol [47] has been used. It is worth noting that Eqs. (5.120) and (5.121) are
especially simple if one of the parameters ai in the generalized hypergeometric
function 3F2 is equal to zero since then, for example, 3F2(0, a2, a3; b1, b2; 1) = 1.

5.5 Asymptotic expansions

The goal of this section is to study the asymptotic behavior of the matrix
elements derived in the preceding sections for a small mass-ratio approx-
imation. That is to say, the case when the mass ratio of test and field
particles ma/mb � 1 will be considered which corresponds to electron-ion or
ion-impurity collisions, respectively (the opposite limit, i.e. ma/mb � 1, is
not examined but could be easily obtained by applying the same method to
be described below).

The quantity γab = vta/vtb representing the ratio of the thermal speeds reduces
to γab =

√
mb/ma for equal species temperatures from which, in turn, it

follows that γab tends to infinity if ma/mb � 1.

All formulas listed below concerning the hypergeometric functions have been
taken from Reference 47 where one can find further details and useful proper-
ties of these functions (see also Reference 49).

1http://functions.wolfram.com/06.10.27.0004.01 [49]
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The Gauss hypergeometric function is defined for |z| < 1 by the series

F (a, b; c; z) = F (b, a; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (5.127)

where (z)n denotes Pochhammer’s symbol,

(z)0 = 1 (5.128)

(z)n = z(z + 1)(z + 2) · · · (z + n− 1) =
Γ(z + n)

Γ(z)
. (5.129)

For z → 0 the hypergeometric function can be expressed as

F (a, b; c; z) = 1 +
ab

c
z +

a(a+ 1)b(b+ 1)

2c(c+ 1)
z2 +O(z3). (5.130)

In Sections 5.2.1, 5.2.2 and 5.3.2 it has been shown that the matrix elements
are proportional to hypergeometric functions of the form F (a, b; c; γ2

1+γ2 ). Since

γ2/(1 + γ2) → 1 for γ → ∞ such functions are not appropriate to analyze
the asymptotic behavior of the matrix elements [cf. Eq. (5.130)]. First of
all, one has to apply the following linear transformation formula relating the
hypergeometric functions F (a, b; c; z) and F (a, b; c; 1− z), respectively.

F (a, b; c; z) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

F (a, b; a+b−c+1; 1−z)

+ (1− z)c−a−b
Γ(c)Γ(a+b−c)

Γ(a)Γ(b)

×F (c−a, c−b; c−a−b+1; 1−z), (5.131)

for |arg (1− z)| < π. Each term of Eq. (5.131) has a pole when c = a+ b±m,
with m = 0, 1, 2, .... For m = 0 this case is covered by the relation

F (a, b; a+b; z) =
Γ(a+ b)

Γ(a)Γ(b)

∞∑
n=0

(a)n(b)n
(n!)2

[
2ψ(n+ 1)− ψ(a+ n)

− ψ(b+ n)− ln(1− z)
]
(1− z)n, (5.132)

provided that |arg (1−z)| < π and |1−z| < 1, whereas for m = 1, 2, 3, ... one
has

F (a, b; a+b+m; z) =
Γ(m)Γ(a+b+m)

Γ(a+m)Γ(b+m)

m−1∑
n=0

(a)n(b)n
n!(1−m)n

(1−z)n

− Γ(a+b+m)

Γ(a)Γ(b)
(z − 1)m

∞∑
n=0

(a+m)n(b+m)n
n!(n+m)!

(1−z)n
[

ln(1−z)

− ψ(n+1)− ψ(n+m+1) + ψ(a+n+m) + ψ(b+n+m)
]
, (5.133)
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as well as

F (a, b; a+b−m; z) =
Γ(m)Γ(a+b−m)

Γ(a)Γ(b)

m−1∑
n=0

(a−m)n(b−m)n
n!(1−m)n

(1−z)n−m

− (−1)mΓ(a+b−m)

Γ(a−m)Γ(b−m)

∞∑
n=0

(a)n(b)n
n!(n+m)!

(1−z)n
[

ln(1−z)

− ψ(n+1)− ψ(n+m+1) + ψ(a+n) + ψ(b+n)
]
, (5.134)

if |arg (1−z)| < π and |1−z| < 1. Here, ψ(z) is the psi (or digamma)
function [47] defined as

ψ(z) =
d

dz
ln Γ(z), (5.135)

with

ψ(1) = −γ (5.136)

ψ(1/2) = −γ − 2 ln 2, (5.137)

where γ designates Euler’s constant, and which obeys the recurrence formula

ψ(z + 1) = ψ(z) +
1

z
. (5.138)

5.5.1 Differential part

In Sections (5.2.1) and (5.2.2) the matrix elements with respect to the test
particle operator have been derived in the form

ν̂abmm′(γab) =
m+m′∑
j=0

X
(j)
mm′ p

(j)
ν (γab) (5.139)

D̂ab
mm′(γab) =

m+m′∑
j=0

Y
(j)
mm′ p

(j)
D (γab), (5.140)

where

p(j)
ν (γ) =

j!

γ(1 + γ2)j

[
F (1, j + 1; 3

2
; γ2

1+γ2 )− F (1, j; 3
2
; γ2

1+γ2 )
]

(5.141)

p
(j)
D (γ) =

j!

γ(1 + γ2)j

[
F (1, j+1; 3

2
; γ2

1+γ2 )

(1 + γ2)
− F (1, j; 3

2
; γ2

1+γ2 )

]
. (5.142)
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Upon introducing the expansion parameter z

z ≡ 1

1 + γ2
ab

, γab =
(1− z)1/2

z1/2
(5.143)

and in accordance with Eq. (5.131) the hypergeometric functions appearing
in Eqs. (5.141) and (5.142) can be transformed to

F (1, b; 3
2
; 1− z) =

F (1, b; b+ 1
2
; z)

(1− 2b)
+

Γ(3/2)Γ(b− 1/2)

Γ(b)

z1/2−b

(1− z)1/2
, (5.144)

where the elementary case

F (a, b; b; z) = (1− z)−a (5.145)

has been utilized [47].
By means of

F (1, j; j + 1
2
; z) = 1 +

j

(j + 1/2)
z +O(z2), (5.146)

which has been obtained from Eq. (5.130), and after using

1

γ(1 + γ2)j
=

zj+1/2

(1− z)1/2
(5.147)

= zj+1/2 +
1

2
zj+3/2 +O(zj+5/2), (5.148)

as well as Eq. (5.144) it follows that the function p
(j)
ν may be rewritten in

terms of expansion parameter z as

p(j)
ν (z) = j!zj

{
z1/2

(1− z)1/2

[
F (1, j + 1; j + 3

2
; z)

1− 2(j + 1)

−
F (1, j; j + 1

2
; z)

1− 2j

]}
+

√
π

2
Γ(j − 1/2)

(j − 1/2− jz)

(1− z)
. (5.149)

Here, Eq. (5.149) may be expanded with the help of MAPLE yielding the
result

p(j)
ν (z) =

√
π

2
Γ(j + 1/2)− 2Γ(j + 1)

(1 + 2j)(1− 2j)
zj+1/2

−
√
π

4
Γ(j − 1/2)z −O(zj+3/2), (5.150)
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from which one obtains the pitch-angle scattering matrix elements as

ν̂abmm′ = ν̂a∞mm′ −
16

3π

[
Γ(m+5/2)Γ(m′+5/2)

m!m′!

]1/2

z1/2 +O(z), (5.151)

keeping only the first two expansion terms. The leading order term, ν̂a∞mm′ , is
related to the case when infinitely heavy background ions are assumed and
can be expressed as

ν̂a∞mm′ =

√
π

5

[
m!Γ(m′ + 5/2)

m′!Γ(m+ 5/2)

]1/2

[5(m+ 1)−m′] , (5.152)

valid for m ≥ m′ − 1 (note that ν̂a∞mm′ = ν̂a∞m′m).

For the energy scattering part one arrives at the expression

p
(j)
D (z) = j!zj

{
z1/2

(1− z)1/2

[
z
F (1, j + 1; j + 3

2
; z)

1− 2(j + 1)

−
F (1, j; j + 1

2
; z)

1− 2j

]}
−
√
π

4
Γ(j − 1/2)

z

(1− z)
, (5.153)

resulting, again by using MAPLE, in the expansion formula

p
(j)
D (z) ≈ −

√
π

4
Γ(j − 1/2)z +O(zj+1/2). (5.154)

The corresponding matrix elements become

D̂ab
mm′ =

3
√
π

2

[
m!m′!

Γ(m+5/2)Γ(m′+5/2)

]1/2

cmm′z +O(z3/2), (5.155)

provided that m′ > 0 (recalling that D̂ab
m0 is identically zero), with the

coefficients

cmm′ =


8

105

m′Γ(m′+7/2)

m′!
for m′ ≤ m+1

Γ(m+5/2)

m!

[
m′(m′+1)

3
− 2mm′

5
+
m(m−1)

7

]
for m ≤ m′+1

(5.156)
Therefore, it will be justified neglecting the contributions from background
particles to D̂ab

mm′ assuming ma/mb � 1 (for example, the electron-proton
mass ratio is approximately 1/1836).



5.5. ASYMPTOTIC EXPANSIONS 65

5.5.2 Integral part

According to Eq. (5.101) the matrix elements of the field particle operator in
the Burnett function basis are given as

Î
(`)
nn′(γab) =

3

4π3/2

(2n′ + `)Γ(n′ + `+ 1/2)

Γ(n′ + 1)Γ(`+ 3/2)

γ`−1
ab

(1 + γ2
ab)

`/2+1

×
n∑
k=0

(−1)k

k!

(
n+1/2

n− k

)
Γ(`/2 + k + 2)

(1 + γ2
ab)

k
P

(`)
n′ (k, γab), (5.157)

valid for n′ ≥ 0, and where

P
(`)
n′ (k, γ) = F (1− n′, `

2
+ k + 2; `+ 3

2
; γ2

1+γ2 )

− (2n′ + `− 1)

(2n′ + 2`− 1)(1 + γ2)
F (2− n′, `

2
+ k + 2; `+ 3

2
; γ2

1+γ2 ). (5.158)

The quantity to be expanded in z is

γ`−1
ab

(1 + γ2
ab)

`/2+1+k
P

(`)
n′ (k, γab) = zk+3/2(1− z)`/2−1/2P

(`)
n′ (k, z), (5.159)

where the function P
(`)
n′ (k, z) implies the transformed hypergeometric series

[cf. Eq. (5.131)]

F (a, `
2
+k+2; `+ 3

2
; 1− z) =

Γ(`+ 3/2)Γ(`/2− 1/2− k − a)

Γ(`+ 3/2− a)Γ(`/2− 1/2− k)

× F (a, `
2

+ k + 2; a+ k − `−3
2

; z)

+ z`/2−1/2−k−aΓ(`+ 3/2)Γ(a+ k + 1/2− `/2)

Γ(a)Γ(`/2 + k + 2)

× F (`+ 3
2
− a, `−1

2
− k; `+1

2
− k − a; z), (5.160)

for a = 1− n′ and a = 2− n′, respectively.
The poles appearing in Eq. (5.160) for n′ = 0 and n′ = 1, assuming odd values
for `, are calculated from Eqs. (5.132)-(5.134). One arrives at the following
logarithmic cases retaining only low order terms with regard to expansion
parameter z.

F (1, b; b+1; 1−z) = b [ψ(1)− ψ(b)− ln z]

+ b2 [ψ(2)− ψ(b+1)− ln z] z +O(z2), (5.161)
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F (2, b; b+2; 1−z) = b(b+1) [ψ(1)− 1− ψ(b)− ln z]

+ b2(b+1) [2ψ(2)− 1− 2ψ(b+1)− 2 ln z] z +O(z2), (5.162)

F (1, b; b+1+m; 1−z) =
(b+m)

m

m−1∑
n=0

(b)n
(1−m)n

zn

− (−1)mΓ(b+1+m)

Γ(b)m!
zm
{

ln z − ψ(1) + ψ(b+m)

+ (b+m) [ln z − ψ(2) + ψ(b+m+1)] z +O(z2)
}
, (5.163)

F (2, b; b+ 2 +m; 1− z) =
(b+m)(b+m+ 1)

m(m+ 1)

m−1∑
n=0

(n+ 1)(b)n
(1−m)n

zn

− (−1)mΓ(b+ 2 +m)

Γ(b)m!
zm
{

ln z − ψ(1) + ψ(b+m)

+
1

(m+ 1)
+

(m+ 2)(b+m)

(m+ 1)

[
ln z − ψ(2)

+ ψ(b+m+ 1) +
1

(m+ 2)

]
z +O(z2)

}
, (5.164)

F (1, b; b+1−m; 1−z) =
Γ(m)Γ(b+1−m)

Γ(b)

m−1∑
n=0

(b−m)n
n!

zn−m

− (−1)m(b−m)

Γ(1−m)m!

{
ln z − ψ(m+1) + ψ(b)

+
b

(m+1)
[ln z − ψ(m+2) + ψ(b+1)] z +O(z2)

}
, (5.165)

and

F (2, b; b+2−m; 1−z) =
Γ(m)Γ(b+2−m)

Γ(b)

m−1∑
n=0

(2−m)n(b−m)n
(1−m)nn!

zn−m

− (−1)m(b−m)(b−m+1)

Γ(2−m)m!

{
ln z − ψ(m+1) + ψ(b) + 1

+
b

(m+1)
[2 ln z − 2ψ(m+2) + 2ψ(b+1)+1] z +O(z2)

}
.(5.166)
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Keeping only leading order terms, it follows from Eqs. (5.163)-(5.166) that,

zF (1, b; b+1+m; 1−z) =
(b+m)

m
z +

 O(z2 ln z) for m = 1

O(z2) for m ≥ 2,
(5.167)

zF (2, b; b+2+m; 1−z)

=
(b+m)(b+m+1)

m(m+1)
z +

 O(z2 ln z) for m = 1

O(z2) for m ≥ 2,
(5.168)

zF (1, b; b+ 1−m; 1− z)

=
Γ(m)Γ(b+ 1−m)

Γ(b)
z1−m +

 0 for m = 1

O(z2−m) for m ≥ 2,
(5.169)

as well as

zF (2, b; b+ 2−m; 1− z)

=
Γ(m)Γ(b+ 2−m)

Γ(b)
z1−m +


O(z ln z) for m = 1

0 for m = 2

O(z2−m) for m ≥ 3.

(5.170)

An elaborated derivation of the expansion of the matrix elements is not
given here as it is straightforward though rather tedious. Hence, simply the
results are listed below which have essentially been obtained by means of
MAPLE [48].

n′ ≤ 1 , even `

Recalling Eq. (5.157) one immediately obtains for n′ = 0 and ` = 0 the result

Î
(0)
n0 (z) ≡ 0. (5.171)

n′ = 0, ` = 2:

Î
(2)
n0 (z) =


15

16π1/2
z +O(z3/2) for n = 0

9

8π1/2
z +O(z3/2) for n ≥ 1

(5.172)
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n′ = 0, ` ≥ 4:

Î
(`)
n0 (z) =

3

2π3/2

`Γ(`/2 + 2)

(`− 3)

(
n+1/2

n

)
z3/2 +


O(z2) for ` = 4

O(z5/2) for ` ≥ 6
(5.173)

n′ = 1, ` = 0:

Î
(0)
n1 (z) =


− 3

8π1/2
z +O(z3/2) for n = 0

3

2π3/2

(
n+1/2

n

)
z3/2 +O(z5/2) for n ≥ 1

(5.174)

n′ = 1, ` ≥ 2:

Î
(`)
n1 (z) =

3(`+2)

4π3/2
Γ(`/2 + 2)

(
n+1/2

n

)
z3/2 +


O(z2) for ` = 2

O(z5/2) for ` ≥ 4
(5.175)

n′ ≤ 1 , odd `

n′ = 0, ` = 3:

Î
(3)
n0 (z) =

135

32π

(
n+1/2

n

)[
24n

5(2n+1)
− 52

15

−ψ(n+1/2)− γ − ln z

]
z3/2 +O(z5/2 ln z) (5.176)

n′ = 0, ` ≥ 5:

Î
(`)
n0 (z) =

3

2π3/2

(
n+1/2

n

)
`Γ(`/2+2)

(`−3)
z3/2

+

 O(z5/2 ln z) for ` = 5

O(z5/2) for ` ≥ 7

(5.177)

n′ = 1, ` ≥ 3:

Î
(`)
n1 (z) =

3

4π3/2
(`+2)Γ(`/2 + 2)

(
n+1/2

n

)
z3/2

+

O(z5/2 ln z) for ` = 3

O(z5/2) for ` ≥ 5.

(5.178)
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n′ ≥ 2 , ` ≥ 0

For the case when the parameter n′ ≥ 2 the hypergeometric functions
reduce to a polynomial of degree n′ in the argument z. Thus, by using
Eqs. (5.157), (5.160) and (5.130) the behavior of the matrix elements for small
values of z is characterized by the expression

Î
(`)
nn′(z) =

3

4π3/2

(
n+1/2

n

)
Γ(`/2+2)

Γ(`/2−1/2)

× (2n′+`)Γ(`/2+n′−3/2)

n′!
z3/2 +O(z5/2). (5.179)

n′ ≥ 0 , ` =1

If the parameter ` is equal to one the expansion of the corresponding matrix
elements may be obtained by means of Eq. (5.109). It follows that

Î
(1)
nn′(z) =

3

16π3/2
(2n′ + 1)(4nn′ + 2n+ 2n′ − 1)

×Γ(n+ n′ − 1/2)

n!n′!
zn
′+1/2 +O(zn

′+3/2). (5.180)

Consequently, from the above analysis of asymptotic behavior of the field
particle collision matrix elements, it is justified neglecting the contributions
from background ions to Î

(`)
nn′ , and Î

(`)
mm′ , respectively, as well provided that

ma/mb � 1 is assumed.

5.6 Recurrence relations

The matrix elements derived in preceding sections have been mainly pre-
sented as sum of functions involving Gauss’ hypergeometric series [see, e.g.,
Eqs. (5.38), (5.56), (5.71), and (5.101)]. These relations are not in a form
well suitable for numerical evaluation. Thus, it would be highly desirable to
have recurrence relations which makes them easy to calculate and, first of
all, allow for much faster numerical evaluation of the matrix elements than
a direct computation of the analytical equations. In the following sections
corresponding recurrence relations for the collision matrix elements as well
as the transformation matrix are derived based on standard properties of
associated Laguerre polynomials and recurrence identities of hypergeometric
functions, respectively, which can be found in References 29, 47, and 49.
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5.6.1 Source term elements a
(i)
m

The source term matrix elements (see Chapter 5.1)

a(i)
m ≡ (ϕm, x

2i−1−5δ3i), i = 1, 2, 3 (5.181)

are defined recursively by the recurrence relation

a
(i)
m+1 =

[m− i+ (1 + 5δ3i)/2]√
(m+ 1)(m+ 5/2)

a(i)
m , (5.182)

and the initial values

a
(1)
0 =

2

π

√
2

3
, a

(2)
0 =

2

π

√
6, a

(3)
0 =

1

2

√
3

2π
. (5.183)

5.6.2 Pitch-angel scattering part

Recalling Eq. (5.24), where the matrix elements ν̂abmm′ have been defined by
the integral

ν̂abmm′ =
3
√
π

4
√
hmhm′γ

∞∫
0

dye−(y2/γ2)L(3/2)
m (y2/γ2)

×L(3/2)
m′ (y2/γ2)[φ(y)−G(y)], (5.184)

it immediately follows that

ν̂abmm′ = ν̂abm′m. (5.185)

Multiplying Eq. (5.184) (for m → m + 1) by m + 1 and with the help of
various properties of associated Laguerre polynomials [29],

(m+ 1)L
(3/2)
m+1 (x) = (2m+ 5/2− x)L(3/2)

m (x)

− (m+ 3/2)L
(3/2)
m−1 (x) (5.186)

xL
(3/2)
m′ (x) = (2m′ + 5/2)L

(3/2)
m′ (x)− (m′ + 1)L

(3/2)
m′+1(x)

− (m′ + 3/2)L
(3/2)
m′−1(x), (5.187)

one arrives at the recurrence relation√
(m+1)(m+5/2)ν̂m+1m′ =

−
√
m(m+ 3/2)ν̂m−1m′

+2(m−m′)ν̂mm′ +
√
m′(m′ + 3/2)ν̂mm′−1

+
√

(m′ + 1)(m′+5/2)ν̂mm′+1, (5.188)
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where

hm =
Γ(m+ 5/2)

2m!
(5.189)

hm+1 =
(m+ 5/2)

(m+ 1)
hm, (5.190)

with the initial value h0 = 3
√
π/8, has been used. Here, Eq. (5.188) yields,

with m = 0,
√

5ν̂1m′ =
√
m′(2m′ + 3)ν̂0m′−1 − 2

√
2m′ν̂0m′

+
√

(m′ + 1)(2m′ + 5)ν̂0m′+1, (5.191)

valid for m′ ≥ 1, whereas the recurrence relation for ν̂0m′ remains to be
calculated. Having started from Eq. (5.184) with m = 0, that is,

ν̂0m′ =
3
√
π

4
√
h0hm′γ

∞∫
0

dye−(y2/γ2)L
(3/2)
m′ (y2/γ2)[φ(y)−G(y)], (5.192)

one may define the auxiliary quantities

pm′ ≡
∞∫

0

dye−(y2/γ2)L
(3/2)
m′ (y2/γ2)φ(y) (5.193)

gm′ ≡
∞∫

0

dye−(y2/γ2)L
(3/2)
m′ (y2/γ2)G(y), (5.194)

in which the error and the Chandrasekhar function, respectively, satisfy the
following equations, ∫

dyφ(y) = yφ(y) +
e−y

2

√
π

(5.195)∫
dyG(y) = −φ(y)

2y
. (5.196)

Integrating Eq. (5.193) by parts, remembering Eq. (5.195), gives

pm′ =

[
e−(y2/γ2)L

(3/2)
m′ (y2/γ2)

(
yφ(y) +

e−y
2

√
π

)] ∣∣∣∣∞
0

+

∞∫
0

dy

[
yφ(y) +

e−y
2

√
π

]
e−(y2/γ2) 2y

γ2
L

(5/2)
m′ (y2/γ2), (5.197)
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where in the second term on the RHS of last equation the following identi-
ties [29] of associated Laguerre polynomials have been utilized,[

L
(α)
m′ (x)

]′
≡ d

dx
L

(α)
m′ (x) = −L(α+1)

m′−1 (x) (5.198)

L
(α−1)
m′ (x) = L

(α)
m′ (x)− L(α)

m′−1(x) (5.199)

xL
(α+1)
m′ (x) = (m′ + α + 1)L

(α)
m′ (x)− (m′ + 1)L

(α)
m′+1(x), (5.200)

and the first term on the RHS of Eq. (5.197), using

L
(α)
m′ (0) =

(
m′ + α

m′

)
, (5.201)

adds up to[
e−(y2/γ2)L

(3/2)
m′ (y2/γ2)

(
yφ(y) +

e−y
2

√
π

)] ∣∣∣∣∞
0

= − 1√
π

(
m′ + 3/2

m′

)
. (5.202)

Thus, Eq.(5.193) can be recast to the relation

2(m′ + 1)pm′+1 = − 1√
π

(
m′ + 3/2

m′

)
+ 2(m′ + 2)pm′

+
1√
π

∞∫
0

dze−z(1+γ2)L
(5/2)
m′ (z), (5.203)

with z = y2/γ2 and where again Eq. (5.200) has been used.
Similarly, one obtains for the function gm′ ,

gm′ =

[
−e−(y2/γ2)L

(3/2)
m′ (y2/γ2)

φ(y)

2y

] ∣∣∣∣∞
0

− 1

γ2

∞∫
0

dye−(y2/γ2)φ(y)L
(5/2)
m′ (y2/γ2), (5.204)

with [
−e−(y2/γ2)L

(3/2)
m′ (y2/γ2)

φ(y)

2y

] ∣∣∣∣∞
0

=
1√
π

(
m′ + 3/2

m′

)
. (5.205)

From the definition of the Chandrasekhar function G [see Eq. 5.21] the error
function can be expressed by

φ(y) = 2y2G(y) +
2y√
π
e−y

2

, (5.206)
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which in turn may be substituted in Eq. (5.204) yielding, together with
Eq. (5.200), the result

2(m′ + 1)gm′+1 = − 1√
π

(
m′ + 3/2

m′

)
+ 2(m′ + 3)gm′

+
1√
π

∞∫
0

dze−z(1+γ2)L
(5/2)
m′ (z). (5.207)

Next, subtracting Eqs. (5.203) and (5.207), one easily sees that the terms
involving the binomial coefficients as well as the integrals with respect to z
cancel out yielding

(m′ + 1)(pm′+1 − gm′+1) = (m′ + 2)(pm′ − gm′)− gm′ , (5.208)

from which, by means of Eqs. (5.192)-(5.194), one can infer that

4γ

3
√
π

√
h0hm′+1(m′ + 1)ν̂0m′+1 =

4γ

3
√
π

√
h0hm′(m

′ + 2)ν̂0m′ − gm′ . (5.209)

This means that having found a recurrence relation for gm′ results in a
corresponding recurrence relation for ν̂0m′ .
The integral appearing in Eq. (5.207) may be evaluated applying [29]

∞∫
0

dze−szzβL(α)
n (z) =

Γ(β + 1)Γ(n+ α + 1)

n!Γ(α + 1)sβ+1
F (−n, β + 1;α + 1; 1

s
), (5.210)

valid for Re β > −1 and Re s > 0, which leads to

∞∫
0

dze−z(1+γ2)L
(5/2)
m′ (z)

=
1

(1 + γ2)

(
m′ + 5/2

m′

)
F (−m′, 1; 7

2
; 1

1+γ2 )

=

(
m′ + 3/2

m′

)[
1− γ2

(1 + γ2)
F (−m′, 1; 5

2
; 1

1+γ2 )

]
, (5.211)

where in the last equation a Gauss’ relation for contiguous hypergeometric
functions [47],

(c− a)zF (a, b; c+ 1; z) = cF (a, b− 1; c; z)− c(1− z)F (a, b; c; z), (5.212)
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has been employed [noting that F (a, 0; c; z) = 1]. Substituting Eq. (5.211)
into Eq. (5.207) gives rise to

2(m′ + 1)gm′+1 = 2(m′ + 3)gm′

− 1√
π

(
m′ + 3/2

m′

)
γ2

(1 + γ2)
F (−m′, 1; 5

2
; 1

1+γ2 ). (5.213)

After using another Gauss’ relation for F , namely

(c−a−b)F (a, b; c; z) = (c−a)F (a−1, b; c; z)−b(1−z)F (a, b+1; c; z), (5.214)

one obtains from Eq. (5.213) the desired recurrence relation for the quantity
gm′ ,

(m′ + 1)gm′+1 =

[
m′ + 3 +

m′γ2

(1+γ2)

]
gm′

− γ2

(1+γ2)

[
(m′ + 2)gm′−1 +

1

2
√
π

(
m′ + 1/2

m′

)]
. (5.215)

Finally, by using Eqs. (5.209) and (5.215), one finds the following recurrence
relation for the matrix elements ν̂0m′ satisfying√

(m′+1)(m′+2)(m′+5/2)(m′+7/2)ν̂0m′+2 =

γ2

(1+γ2)

[
3√

πγ(2m′ + 3)

√
hm′

h0

+ (m′ + 1)(m′ + 2)

√
m′

(m′+3/2)
ν̂0m′−1

]

− (m′ + 2)

[
m′ + 3 +

2m′γ2

(1 + γ2)

]
ν̂0m′ +

√
(m′+1)(m′+5/2)

×
[
2(m′ + 3) +

m′γ2

(1 + γ2)

]
ν̂0m′+1, (5.216)

with the initial values

ν̂00(γ) =
2√
πγ

[
(1 + γ2)

γ
arctan γ − 1

]
(5.217)

ν̂01(γ) =
2
√

2√
5πγ

[
(3 + 2γ2)

γ
arctan γ − 3

]
(5.218)

ν̂02(γ) =

√
2

35

[
γ√

π(1 + γ2)
− 6ν̂00(γ) + 3

√
10ν̂01(γ)

]
, (5.219)

where the last equation has been found from Eq. (5.216) with m′ = 0.
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5.6.3 Matrix elements ν̂a∞mm′

In Section 5.2.1 the matrix elements attached to pitch-angle scattering opera-
tor L assuming infinitely heavy background ions have been found to be

ν̂a∞mm′ =

√
π

5

[
m!Γ(m′ + 5/2)

m′!Γ(m+ 5/2)

]1/2

[5(m+ 1)−m′] , m ≥ m′ − 1, (5.220)

remembering that ν̂a∞mm′ = ν̂a∞m′m. Here, Eq. (5.220) gives

ν̂a∞mm =

√
π

5
(4m+ 5), (5.221)

as well as the recurrence relation

ν̂a∞m+1m′ =

(
m+ 1

m+ 5/2

)1/2
[5(m+ 2)−m′]
[5(m+ 1)−m′]

ν̂a∞mm′ , (5.222)

with

ν̂a∞m+1 0 =
(m+ 2)√

(m+ 1)(m+ 5/2)
ν̂a∞m0 , (5.223)

and initial value ν̂a∞00 =
√
π.

5.6.4 Energy scattering part

In accordance with Eq. (5.51) the matrix elements with respect to the energy
scattering part of the test particle operator CD,vab are evaluated by

D̂mm′ =
3
√
π

4
√
hmhm′γ

∞∫
0

dyyL(3/2)
m (y2/γ2)

× ∂

∂y

{
G(y)e−y

2/γ2

2
y2

γ2

[
L

(3/2)
m′ (y2/γ2)

]′}
, (5.224)

from which one can directly see [since L
(3/2)
0 (y2/γ2) = 1] that

D̂m0 ≡ 0. (5.225)

A recurrence relation for the matrix elements D̂mm′ may be derived with the
help of the quantity dmm′ defined as

dmm′ =

∞∫
0

dye−y
2/γ2

L(3/2)
m (y2/γ2)G(y)2

y2

γ2

[
L

(3/2)
m′ (y2/γ2)

]′
, (5.226)
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which obeys the recurrence relation

(m+ 1)dm+1m′ = (m′ + 3/2)dmm′−1 − (2m′ − 2m− 1)dmm′

+ m′dmm′+1 − (m+ 3/2)dm−1m′ , (5.227)

where Eqs. (5.198)-(5.200) have been used. By means of MAPLE [48] one
can show that dmm′ can be expressed as a sum of matrix elements presented
in Eq. (5.224) as follows

3
√
π

4γ
dmm′ = −(2m+ 3)

m∑
k=0

√
hkhm′

(2k + 1)(2k + 3)
D̂km′ . (5.228)

Substituting this relationship into Eq. (5.227) yields, together with Eqs. (5.189)
and (5.190),√

(m+ 1)(m+ 5/2)

(2m+ 3)
D̂m+1m′ =

1

2
D̂mm′ + (2m+ 3)

{ m∑
k=0

√
hk
hm

1

(2k + 1)(2k + 3)

×
[
m′

√
(m′ + 5/2)

(m′ + 1)
D̂km′+1 +

√
m′(m′ + 3/2)D̂km′−1

−
(

2m′ +
6m+ 7

2(2m+ 3)

)
D̂km′

]}
, (5.229)

from which one obtains, after some tedious but straightforward algebraic
manipulation (by carrying out D̂m+1m′ − D̂mm′ and rearranging terms), a
recurrence relation for D̂mm′ in the form√

(m+ 1)(m+ 5/2)
(2m+ 1)

(2m+ 3)
D̂m+1m′ =

√
m′(m′ + 3/2)D̂mm′−1

+ m′

√
(m′ + 5/2)

(m′ + 1)
D̂mm′+1 −

√
m(m+ 3/2)D̂m−1m′

+

[
2(m+ 1)(4m2 + 4m− 1)

(2m+ 1)(2m+ 3)
− 2m′

]
D̂mm′

− 2
m−1∑
k=0

√
hk
hm

D̂km′

(2k + 1)(2k + 3)
, (5.230)

if m ≥ 1 and m′ ≥ 1, respectively. Here, Eq. (5.229) gives
√

5

3
√

2
D̂1m′ =

√
m′(m′ + 3/2)D̂0m′−1 −

(
2m′ +

2

3

)
D̂0m′
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+ m′

√
(m′ + 5/2)

(m′ + 1)
D̂0m′+1. (5.231)

By virtue of Eq. (5.224) and after an integration by parts one gets for m′ > 0,
by using properties of the associated Laguerre polynomials [cf. Eqs. (5.198)
and (5.200)],

4γ

3
√
π

√
h0hm′D̂0m′ = (2m′ + 3)

∞∫
0

dye(−y2/γ2)G(y)L
(3/2)
m′−1(y2/γ2)

−2m′
∞∫

0

dye(−y2/γ2)G(y)L
(3/2)
m′ (y2/γ2)

= (2m′ + 3)gm′−1 − 2m′gm′ , (5.232)

where Eq. (5.194) has been employed. This result may be expressed in terms
of the matrix elements ν̂0m′ [see Eq. (5.209) as well as Eqs. (5.189)-(5.190)]
yielding for m′ ≥ 1,

D̂0m′ = 2(m′ + 1)
√
m′(m′ + 3/2)ν̂0m′−1 − 2m′(2m′ + 7/2)ν̂0m′

+2m′
√

(m′ + 1)(m′ + 5/2)ν̂0m′+1. (5.233)

5.6.5 Transformation matrix

In the following a recurrence relation for the quantity

T(`)
mn ≡

1

2

∞∫
0

dte−tt(`+1)/2L(3/2)
m (t)L(`+1/2)

n (t), (5.234)

as well as for the transformation matrix φ
(`)
mn ≡ T

(`)
mn/(π3/4

√
hm) between the

two sets of basis functions ϕm and B
(`)
n , respectively, will be derived.

From Eq. (5.234), by replacing m with m+ 1 and upon multiplication with
m+ 1, one gets the expression

(m+ 1)T
(`)
m+1n = (2m− 2n− `+ 1)T(`)

mn − (m+ 3/2)T
(`)
m−1n

+(n+ 1)T
(`)
mn+1 + (n+ `+ 1/2)T

(`)
mn−1, (5.235)

if m ≥ 1 and n ≥ 1, where the following identities of associated Laguerre
polynomials [29] have been used,

(m+ 1)L
(3/2)
m+1 = (2m+ 5/2)L(3/2)

m − (m+ 3/2)L
(3/2)
m−1 − tL(3/2)

m (5.236)

tL(`+1/2)
n = (2n+ `+ 3/2)L(`+1/2)

n − (n+ 1)L
(`+1/2)
n+1

−(n+ `+ 1/2)L
(`+1/2)
n−1 . (5.237)
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With the help of

tL(`+5/2)
n = (n+ `+ 5/2)L(`+3/2)

n − (n+ 1)L
(`+3/2)
n+1 (5.238)

and

L(α+1)
n =

n∑
k=0

L
(α)
k , (5.239)

it follows from Eq. (5.234), with `→ `+ 2, that

T(`+2)
mn =

1

2

∞∫
0

dte−tt(`+3)/2L(3/2)
m (t)L(`+5/2)

n (t)

= (n+ `+ 5/2)
n∑
k=0

T
(`)
mk − (n+ 1)

n+1∑
k=0

T
(`)
mk

= (`+ 3/2)
n∑
k=0

T
(`)
mk − (n+ 1)T

(`)
mn+1, (5.240)

which, in turn, leads with n→ n+ 1 to

T
(`+2)
mn+1 = (`+ 3/2)

n+1∑
k=0

T
(`)
mk − (n+ 2)T

(`)
mn+2

= T(`+2)
mn + (n+ `+ 5/2)T

(`)
mn+1 − (n+ 2)T

(`)
mn+2. (5.241)

By using Eq. (5.119) it immediately follows that

T
(`)
0n =

Γ(`/2 + 3/2)

2n!
(`/2)n , (5.242)

with (z)n = Γ(z + n)/Γ(z) indicating the Pochhammer symbol [47] and,
accordingly,

T
(`)
0n+1 =

(n+ `/2)

(n+ 1)
T

(`)
0n . (5.243)

Likewise, from Eq. (5.119) one obtains

T
(`)
1n =

[
5/2− (`+ 3)(`− 2)

2(2n− 2 + `)

]
T

(`)
0n , (5.244)

leading to

T
(`)
1n+1 =

5(2n+ `)− (`+ 3)(`− 2)

4(n+ 1)
T

(`)
0n , (5.245)
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where Eq. (5.243) has been utilized.
From similar considerations regarding the parameter m one obtains the
formulas [see Eq. (5.118)]

T
(`)
m0 =

Γ(`/2 + 3/2)

2m!
(1− `/2)m (5.246)

T
(`)
m+10 =

(m− `/2 + 1)

(m+ 1)
T

(`)
m0, (5.247)

as well as

T
(`)
m1 =

[
`+ 3/2 +

`(`+ 3)

2(2m− `)

]
T

(`)
m0, (5.248)

and, by using Eq. (5.247),

T
(`)
m+11 =

(2`+ 3)(2m+ 2− `) + `(`+ 3)

4(m+ 1)
T

(`)
m0. (5.249)

The initial values follow directly from Eqs. (5.242) or (5.246), respectively,

T
(`)
00 =

1

2
Γ(`/2 + 3/2) (5.250)

T
(0)
00 =

√
π

4
, T

(1)
00 =

1

2
. (5.251)

Upon using Eqs. (5.235) and (5.111) along with Eqs. (5.189) and (5.190) one
gets√

(m+ 1)(m+ 5/2)φ
(`)
m+1n = (2m− 2n− `+ 1)φ(`)

mn

−
√
m(m+ 3/2)φ

(`)
m−1n + (n+ 1)φ

(`)
mn+1

+ (n+ `+ 1/2)φ
(`)
mn−1, (5.252)

for m ≥ 0 and n ≥ 1. A recursion formula with respect to parameter ` follows
directly from Eqs. (5.240) and (5.241), that is

φ(`+2)
mn = (`+ 3/2)

n∑
k=0

φ
(`)
mk − (n+ 1)φ

(`)
mn+1, (5.253)

as well as

φ
(`+2)
mn+1 = φ(`+2)

mn + (n+ `+ 5/2)φ
(`)
mn+1 − (n+ 2)φ

(`)
mn+2. (5.254)
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In order to be able to use Eq. (5.252) one must provide corresponding relations

for the elements φ
(`)
0n and φ

(`)
m0, as well as φ

(`)
1n and φ

(`)
m1, respectively, which can

be calculated from Eqs. (5.243) and (5.247),

φ
(`)
0n+1 =

(n+ `/2)

(n+ 1)
φ

(`)
0n (5.255)

φ
(`)
m+10 =

(m− `/2 + 1)√
(m+ 1)(m+ 5/2)

φ
(`)
m0, (5.256)

and accordingly [see Eqs. (5.245) and (5.249)]

φ
(`)
1n+1 =

[5(2n+ `)− (`+ 3)(`− 2)]
√

2

4(n+ 1)
√

5
φ

(`)
0n (5.257)

φ
(`)
m+11 =

(2`+ 3)(2m+ 2− `) + `(`+ 3)

4
√

(m+ 1)(m+ 5/2)
φ

(`)
m0, (5.258)

with the initial values

φ
(0)
00 =

1√
6π
, φ

(1)
00 =

√
2√

3π
, (5.259)

obtained from

φ
(`)
00 =

√
2

3

Γ(`/2 + 3/2)

π
. (5.260)

An additional recurrence relation for T
(`)
mn may be derived starting from

Eq. (5.120),

T(`)
mn =

Γ(`/2+3/2)Γ(m+1−`/2)

2m!Γ(1−`/2)

×
(
n+`+1/2

n

)
3F2(−n, `

2
, `+3

2
; `+ 3

2
, `

2
−m; 1), (5.261)

and utilizing the following recurrence identity for consecutive neighbors,

3F2(a, a2, a3; b1, b2; z) = (B1 + C1z) 3F2(a+ 1, a2, a3; b1, b2; z)

+ (B2 + C2z) 3F2(a+ 2, a2, a3; b1, b2; z)

+ (B3 + C3z) 3F2(a+ 3, a2, a3; b1, b2; z) , (5.262)
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which has been found in Reference 492 with

B1 =
b1b2 + (a+ 1)(3a− 2b1 − 2b2 + 4)

(a− b1 + 1)(a− b2 + 1)
(5.263)

C1 =
(−a+ a2 − 1)(a− a3 + 1)

(a− b1 + 1)(a− b2 + 1)
(5.264)

B2 =
(a+ 1)(−3a+ b1 + b2 − 5)

(a− b1 + 1)(a− b2 + 1)
(5.265)

C2 =
(a+ 1)(2a− a2 − a3 + 3)

(a− b1 + 1)(a− b2 + 1)
(5.266)

B3 =
(a+ 1)(a+ 2)

(a− b1 + 1)(a− b2 + 1)
(5.267)

C3 = −B3. (5.268)

Using Eqs. (5.261) and (5.262) one arrives at the three-term recurrence relation

(n+ 2)(n+ `/2−m+ 1)T
(`)
mn+2 =

[
(`+ 3/2)(`/2−m) + (n+ 1)

×(3n+ 3`− 2m+ 5)− (n+ `/2 + 1)(n+ `/2 + 5/2)
]
T

(`)
mn+1

−(n+ `/2−m)(n+ `+ 3/2)T(`)
mn, (5.269)

valid for n ≥ 0 and provided that m 6= n + `/2 + 1, which represents

also a recurrence relation for φ
(`)
mn [with quantities φ

(`)
m0 and φ

(`)
m1 shown in

Eqs. (5.256) and (5.258)] since the proportionality factor does not depend on
m [see Eq. (5.111)].
Similarly, Eq. (5.262) can be applied accordingly to Eq. (5.121) yielding, for
m ≥ 2 and m 6= n+ `/2, the formula

2m(n+ `/2−m)T(`)
mn =

(n+ 1− 4m2 + 4mn+ 2m`+m− `2/2)T
(`)
m−1n

−(2m+ 1)(n+ `/2 + 1−m)T
(`)
m−2n, (5.270)

and, furthermore,

2m(n+ `/2−m)φ(`)
mn =

(n+ 1− 4m2 + 4mn+ 2m`+m− `2/2)
√
m√

m+ 3/2
φ

(`)
m−1n

−
(2m+ 1)(n+ `/2 + 1−m)

√
m(m− 1)√

(m+ 1/2)(m+ 3/2)
φ

(`)
m−2n, (5.271)

2http://functions.wolfram.com/07.27.17.0001.01
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with φ
(`)
0n and φ

(`)
1n given by Eqs. (5.255) and (5.257), respectively.

5.6.6 Integral part

Next, one must calculate a recurrence relation for the quantity U
(`)
nη defined

in Eq. (5.92),

U(`)
nη =

∞∫
0

dyy3L(1/2)
n (y2/γ2)e−y

2/γ2 1

2η
e−y

2

y`L
(`+1/2)
η−1 (y2), (5.272)

from which one arrives at the formula

(n+ 1) U
(`)
n+1η =

[
2n+ 3/2− 1

γ2
(2η + `− 1/2)

]
U(`)
nη

−(n+ 1/2) U
(`)
n−1η +

1

γ2

[
(η + 1) U

(`)
nη+1

+(η + `− 1/2)
(η − 1)

η
U

(`)
nη−1

]
, (5.273)

valid for n ≥ 1 and η ≥ 1, and where again several identities of associated
Laguerre polynomials have been utilized [47], namely

(n+ 1)L
(α)
n+1(t) = (2n+ α + 1− t)L(α)

n (t)− (n+ α)L
(α)
n−1(t) (5.274)

tL(α+1)
n (t) = (n+ α + 1)L(α)

n (t)− (n+ 1)L
(α)
n+1(t) (5.275)

L(α−1)
n (t) = L(α)

n (t)− L(α)
n−1(t). (5.276)

Here, Eq. (5.99) gives

U
(`)
0η =

Γ(`/2 + 2)Γ(η+`+1/2)

4η!Γ(`+ 3/2)

γ`+4

(1 + γ2)`/2+2

×F (1− η, `
2

+ 2; `+ 3
2
; γ2

1+γ2 ), (5.277)

from which one obtains the equation

(η + 2)U
(`)
0η+2 = − η(η + `+ 1/2)

(η + 1)(1 + γ2)
U

(`)
0η

+

[
2η + `+ 3/2− (η + `/2 + 2)γ2

(1 + γ2)

]
U

(`)
0η+1, (5.278)
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where the Gauss’ relation for contiguous hypergeometric functions (cf. Refer-
ence 47)

(c− a)F (a− 1, b; c; z) = a(1− z)F (a+ 1, b; c; z)

+[c− 2a+ (a− b)z]F (a, b; c; z), (5.279)

has been utilized. Due to L
1/2
1 (t) = 3/2− t, Eq. (5.272) can be rewritten as

U
(`)
1η =

1

2η

∞∫
0

dye−y
2(1+γ−2)y`+3

(
3

2
− y2

γ2

)
L

(`+1/2)
η−1 (y2), (5.280)

which, upon using Eqs. (5.275) and (5.276), yields for η ≥ 1

U
(`)
1η =

[
3

2
− 1

γ2
(2η + `− 1/2)

]
U

(`)
0η +

1

γ2

[
(η + 1)U

(`)
0η+1

+
(η − 1)

η
(η + `− 1/2) U

(`)
0η−1

]
. (5.281)

The elements U
(`)
n0 may be evaluated by using Eq. (5.99),

U
(`)
n0 =

γ`+4

2(2`+ 1)(1 + γ2)`/2+2

n∑
k=0

(−1)k

k!

(
n+ 1/2

n− k

)
×Γ(`/2 + k + 2)

(1 + γ2)k
F (1, `

2
+ k + 2; `+ 3

2
; γ2

1+γ2 ), (5.282)

together with several Gauss’ relations for contiguous hypergeometric func-
tions [47], namely

b(1− z)F (1, b+ 1; c; z) = c− 1− (c− b− 1)F (1, b; c; z), (5.283)

and

F (1, b+ 1; c+ 2; z) =
(c+ 1)

(c− b)z

{
1− c(1− z)

bz
[F (1, b; c; z)− 1]

}
, (5.284)

provided that c 6= b. The initial values with respect to F are given by

F (1, 2; 3
2
; γ2

1+γ2 ) =
(1 + γ2)

2

[
1 +

(1 + γ2)

γ
arctan γ

]
, (5.285)

as well as

F (1, 7
2
; 9

2
; γ2

1+γ2 ) =
7(1 + γ2)7/2

γ7
ln
(
γ +

√
1 + γ2

)
−7(1 + γ2)2(3 + 4γ2)

3γ6
− 7(1 + γ2)

5γ2
. (5.286)
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Recalling Eq. (5.272),

U(`+2)
nη =

1

2η

∞∫
0

dye−y
2(1+γ−2)L(1/2)

n (y2/γ2)y`+3y2L
(`+5/2)
η−1 (y2), (5.287)

a recurrence identity regarding the parameter ` may be obtained, yielding for
η ≥ 1

U(`+2)
nη =

(`+ 3/2)

η

η−1∑
j=0

(j + 1)U
(`)
nj+1 − (η + 1)U

(`)
nη+1, (5.288)

where Eq. (5.275) and the relationship [29]

L(α+1)
n (x) =

n∑
j=0

L
(α)
j (x) (5.289)

have been used. From Eq. (5.288), by shifting η → η + 1, one gets for η ≥ 0
the result

U
(`+2)
nη+1 =

η

(η + 1)
U(`+2)
nη + (η + `+ 3/2)U

(`)
nη+1 − (η + 2)U

(`)
nη+2. (5.290)

In virtue of Eq. (5.277) with η = 0 and after applying Eq. (5.284) it follows
that

U
(`+2)
00 =

Γ(`/2 + 2)

4(`− 1)

γ`+2

(1 + γ2)`/2+2

[
(`+ 4)γ2 + 2`+ 3

]
−(2`+ 1)(2`+ 3)

2(`− 1)γ2
U

(`)
00 , (5.291)

valid for ` 6= 1. Since F (0, b; c; z) = 1, one obtains from Eq. (5.99) the
expression

U
(`)
n1 =

(
n+ 1/2

n

)
Γ(`/2 + 2)

4

γ`+4

(1 + γ2)`/2+2
F (−n, `

2
+ 2; 3

2
; 1

1+γ2 ), (5.292)

which has been calculated by means of MAPLE [48]. From this relationship
it immediately follows that

U
(`)
01 =

Γ(`/2 + 2)

4

γ`+4

(1 + γ2)`/2+2
, (5.293)
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and, furthermore,

U
(`+2)
01 =

(`+ 4)

2

γ2

(1 + γ2)
U

(`)
01 . (5.294)

The initial value for ` = 0 reads

U
(0)
00 =

γ4

2(1 + γ2)2
F (1, 2; 3

2
; γ2

1+γ2 )

=
γ3

4

[
γ

(1 + γ2)
+ arctan γ

]
, (5.295)

where Eqs. (5.277) and (5.285) have been employed whereas Eqs. (5.277)
and (5.286) add up to the initial value for ` = 3

U
(3)
00 =

15
√
π

16

[
ln
(
γ +

√
1 + γ2

)
− γ(3 + 4γ2)

3(1 + γ2)3/2
− γ5

5(1 + γ2)5/2

]
. (5.296)

One may derive corresponding recurrence relations for the special cases
` = 0 and ` = 1, respectively, by revisiting Eqs. (5.100) and (5.108). Here,
Eq. (5.100) yields the identity

(n+ 2) U
(0)
n+2η = −(n+ η)(n+ 3/2)

(n+ 1)

γ2

(1 + γ2)
U(0)
nη

+

[
2n+ η + 5/2− (n+ η + 2)

(1 + γ2)

]
U

(0)
n+1η, (5.297)

where again Eq. (5.279) has been applied and where U
(0)
0η and U

(0)
1η follow from

Eqs. (5.278) and (5.281). The initial value U
(0)
10 has to be calculated by using

Eq. (5.100) yielding

U
(0)
10 = − γ4

4(1 + γ2)2
. (5.298)

The simplest way to derive a recursion for U
(1)
nη is to employ first Eq. (5.108)

yielding

U(1)
nη =

Γ(n+ η + 1/2)γ2n+3

4n!η!(1 + γ2)n+η+1/2

[
η + 1/2− (n+ η + 1/2)

(1 + γ2)

]
(5.299)

=
(η+1/2)Γ(n+ η + 1/2)γ2n+3

4n!η!(1 + γ2)n+η+1/2
F (−1, n+η+ 1

2
; η+ 1

2
; 1

1+γ2 ), (5.300)

where F (−1, b; c; z) = 1 − bz/c has been applied [47], and then to use the
equation

b(1−z)F (−1, b+ 1; c; z) = (c− b)F (−1, b− 1; c; z)

+ [2b− c− (b+ 1)z]F (−1, b; c; z), (5.301)
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producing the following the three-term recurrence relation

(n+ 2) U
(1)
n+2η = −(n+ η + 1/2)

γ2

(1 + γ2)
U(1)
nη

+

[
2n+ η + 5/2− (n+ η + 5/2)

(1 + γ2)

]
U

(1)
n+1η. (5.302)

The recursions for U
(1)
0η and U

(1)
1η follow immediately from Eqs. (5.299) and

(5.300), respectively,

U
(1)
0η+1 =

(η + 3/2)

(η + 1)(1 + γ2)
U

(1)
0η (5.303)

U
(1)
1η =

[
(η + 3/2)

γ2

(1 + γ2)
− 1

]
U

(1)
0η , (5.304)

where the initial value is given by

U
(1)
00 =

√
π

8

γ5

(1 + γ2)3/2
. (5.305)

In Section 5.3.1 [see Eq. (5.71)] the matrix elements of the field particle
operator in terms of ϕm test function basis were found to be

I
(`)
mm′ =

m∑
n=0

N ′∑
n′=0

2

h
(0)
n h

(`)
n′

φ(0)
mn Î

(`)
nn′ φ

(`)
n′m′ , (5.306)

which, for numerical reasons, is rewritten in the form

I
(`)
mm′ =

m∑
n=0

N ′∑
n′=0

(
2φ

(0)
mn

h
(0)
n

)  Î
(`)
nn′√
h

(`)
n′

  φ
(`)
n′m′√
h

(`)
n′


≡

m∑
n=0

N ′∑
n′=0

g(0)
mn Ĝ

(`)
nn′ ĝ

(`)
n′m′ . (5.307)

With this definition values of the normalized matrices in the last equation
are approximately O(1) or less minimizing difficulties appearing during the
numerical evaluation of matrix elements, e.g., loss of significance due to
subtractive cancellation.

The normalizing factor h
(`)
n has been defined by

h(`)
n =

1

(2`+ 1)

Γ(n+ `+ 3/2)

π3/2 n!
, (5.308)
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from which one easily finds the relations

h
(`)
n+1 =

(n+ `+ 3/2)

(n+ 1)
h(`)
n , (5.309)

and

h(`+1)
n =

(2`+ 1)

(2`+ 3)
(n+ `+ 3/2)h(`)

n . (5.310)

Recalling the definition of transformation matrix, φ
(`)
mn ≡ T

(`)
mn/(π3/4

√
hm), it

follows from Eqs. (5.116) and (5.308) that

g(0)
mn =


π3/4

√
2m!

Γ(m+ 5/2)
for n ≤ m

0 for n > m,

(5.311)

where hm = Γ(m + 5/2)/(2m!) has been used. This leads immediately to the
recursion

g
(0)
m+10 =

√
(m+ 1)

(m+ 5/2)
g

(0)
m0, (5.312)

with the initial value

g
(0)
00 = 2

√
2π

3
. (5.313)

The respective recurrence relation for the quantity ĝ
(`)
mn is obtained from

Eq. (5.252),√
(m+ 1)(m+ 5/2)ĝ

(`)
m+1n = −

√
m(m+ 3/2)ĝ

(`)
m−1n

+(2m− 2n− `+ 1)ĝ(`)
mn +

√
n(n+ `+ 1/2)ĝ

(`)
mn−1

+
√

(n+ 1)(n+ `+ 3/2)ĝ
(`)
mn+1, (5.314)

where again Eq. (5.309) has been used (note that ĝ
(`)
mn = ĝ

(`)
nm).

The recursions derived from a recurrence identity for the generalized hyper-
geometric function 3F2(a, b, c; d, e; z) become [see Eqs. (5.269) and (5.271) in
Section 5.6.5]

(n+ `/2−m)
√

(n+ 1)(n+ `+ 3/2)ĝ
(`)
mn+1 =[

(`+ 3/2)(`/2−m) + n(3n+ 3`− 2m+ 2)

−(n+ `/2)(n+ `/2 + 3/2)
]
ĝ(`)
mn

−(n+ `/2−m− 1)
√
n(n+ `+ 1/2)ĝ

(`)
mn−1, (5.315)
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and

2m(n+ `/2−m)ĝ(`)
mn =

(n+ 1− 4m2 + 4mn+ 2m`+m− `2/2)
√
m√

m+ 3/2
ĝ

(`)
m−1n

−
(2m+ 1)(n+ `/2 + 1−m)

√
m(m− 1)√

(m+ 1/2)(m+ 3/2)
ĝ

(`)
m−2n, (5.316)

respectively. By means of Eqs. (5.254)-(5.260) along with Eqs. (5.309)
and (5.310) one arrives at the following identities,

ĝ
(`)
0n+1 =

(n+ `/2)√
(n+ 1)(n+ `+ 3/2)

ĝ
(`)
0n (5.317)

ĝ
(`)
m+10 =

(m− `/2 + 1)√
(m+ 1)(m+ 5/2)

ĝ
(`)
m0, (5.318)

and

ĝ
(`)
1n+1 =

[5(2n+ `)− (`+ 3)(`− 2)]

2
√

5(n+ 1)(2n+ 2`+ 3)
ĝ

(`)
0n (5.319)

ĝ
(`)
m+11 =

(2`+ 3)(2m+ 2− `) + `(`+ 3)

4
√

(m+ 1)(m+ 5/2)(`+ 3/2)
ĝ

(`)
m0, (5.320)

as well as√
n+ `+ 7/2ĝ

(`+2)
mn+1 =

√
n+ 1ĝ(`+2)

mn +

√
2`+ 5

2`+ 1

×
(√

n+ `+ 5/2ĝ
(`)
mn+1 −

√
n+ 2ĝ

(`)
mn+2

)
. (5.321)

The initial values

ĝ
(0)
00 =

1√
3
, ĝ

(1)
00 = 2

√
2

3π
, (5.322)

have been computed using the relation

ĝ
(`)
00 =

Γ(`/2 + 3/2)

π1/4

√
2(2`+ 1)

3Γ(`+ 3/2)
, (5.323)

from which one infers that

ĝ
(`+2)
00 =

(`+ 3)√
(2`+ 1)(2`+ 3)

ĝ
(`)
00 . (5.324)



5.6. RECURRENCE RELATIONS 89

The normalized matrix elements in the Burnett function basis, Ĝ
(`)
nn′ , can now

be calculated by means of the above presented recurrence identities regarding
the quantity U

(`)
nη . Therefore, details of the calculations of the necessary

recursions are not given here, only the final forms of results are presented.

Upon introducing the quantity Û
(`)
nη ≡ U

(`)
nη/[h

(`)
η ]1/2 the representation of

matrix elements in terms of Burnett functions [see Eq. (5.91)] may be rewritten
in the form

Ĝ
(`)
nn′ =

3(2n′ + `)

π3/2γ5

[
(1 + γ2) Û

(`)
nn′ −

(2n′ + `− 1)√
2n′(2n′ + 2`+ 1)

Û
(`)
nn′−1

]
, (5.325)

valid for n′ ≥ 1, where Eqs. (5.307) and (5.309) have been used. The matrix

elements Ĝ
(`)
n0 may be evaluated according to Eq. (5.101),

Ĝ
(`)
n0 ≡

Î
(`)
n0√
h

(`)
0

=

[
2π3/2

Γ(`+ 1/2)

]1/2

Î
(`)
n0 , (5.326)

yielding

Ĝ
(`)
n0(γab) =

3`

π3/4(2`+ 1)
√

2Γ(`+ 1/2)

γ`−1
ab

(1 + γ2
ab)

`/2+1

×
n∑
k=0

(−1)k

k!

(
n+1/2

n− k

)
Γ(`/2 + k + 2)

(1 + γ2
ab)

k
P

(`)
0 (k, γab), (5.327)

with

P
(`)
0 (k, γ) = F (1, `

2
+ k + 2; `+ 3

2
; γ2

1+γ2 )

− (`− 1)

(2`− 1)(1 + γ2)
F (2, `

2
+ k + 2; `+ 3

2
; γ2

1+γ2 ), (5.328)

noticing that Ĝ
(0)
n0 = 0. The computation of the Gauss series is carried

out with the help of Eqs. (5.283)-(5.286) and, additionally, by applying the
relation (cf. Reference 47)

(1− z)F (2, b; c; z) = c− 1 + [2− c+ (b− 1)z]F (1, b; c; z). (5.329)

Due to the fact that the normalizing factor, h
(`)
n′ , does not depend on index

n the above obtained recurrence relations with respect to n for the quantity
U

(`)
nη can be used unchanged. All other relations must be adjusted in virtue
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of Eqs. (5.309) and (5.310) noting that one needs to adapt the initial values
accordingly. The corresponding modified recurrence identities become

(n+ 1) Û
(`)
n+1η =

[
2n+ 3/2− 1

γ2
(2η + `− 1/2)

]
Û(`)
nη

− (n+ 1/2) Û
(`)
n−1η +

1

γ2

[
(η + `− 1/2)(η − 1)√

η(η + `+ 1/2)
Û

(`)
nη−1

+
√

(η + 1)(η + `+ 3/2) Û
(`)
nη+1

]
, (5.330)

Û
(`)
0η+2 = − η(η + `+ 1/2)√

(η+1)(η+2)(η+`+3/2)(η+`+5/2)

Û
(`)
0η

(1 + γ2)

+

[
2η+`+3/2− (η+`/2+2)γ2

(1 + γ2)

]
Û

(`)
0η+1√

(η+2)(η+`+5/2)
, (5.331)

Û
(`)
1η =

1

γ2

[√
(η + 1)(η + `+ 3/2) Û

(`)
0η+1 +

(η − 1)(η + `− 1/2)√
η(η + `+ 1/2)

Û
(`)
0η−1

]

+

[
3

2
− 1

γ2
(2η + `− 1/2)

]
Û

(`)
0η . (5.332)

The recursions involving the parameter ` have the form

√
η + `+ 7/2 Û

(`+2)
nη+1 =

η√
η + 1

Û(`+2)
nη +

√
2`+ 5

2`+ 1

×

[
(η + `+ 3/2)√
η + `+ 5/2

Û
(`)
nη+1 −

√
η + 2 Û

(`)
nη+2

]
, (5.333)

(`− 1) Û
(`+2)
00 =

π3/4Γ(`/2 + 3)√
2Γ(`+ 5/2)

γ`+2

(1 + γ2)`/2+2

[
γ2 +

(2`+ 3)

(`+ 4)

]
− 2

γ2

√
(`+ 1/2)(`+ 3/2) Û

(`)
00 , (5.334)

and √
(`+ 1/2)(`+ 7/2) Û

(`+2)
01 = (`/2 + 2)

γ2

(1 + γ2)
Û

(`)
01 . (5.335)
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If the index ` = 0 and ` = 1 the respective relations read

(n+ 2)Û
(0)
n+2η = −(n+ η)(n+ 3/2)

(n+ 1)

γ2

(1 + γ2)
Û(0)
nη

+

[
2n+ η + 5/2− (n+ η + 2)

(1 + γ2)

]
Û

(0)
n+1η (5.336)

(n+ 2)Û
(1)
n+2η = −(n+ η + 1/2)

γ2

(1 + γ2)
Û(1)
nη

+

[
2n+ η + 5/2− (n+ η + 5/2)

(1 + γ2)

]
Û

(1)
n+1η, (5.337)

with

Û
(1)
0η+1 =

(η + 3/2)√
(η + 1)(η + 5/2) (1 + γ2)

Û
(1)
0η (5.338)

Û
(1)
1η =

[
(η + 3/2)

γ2

(1 + γ2)
− 1

]
Û

(1)
0η . (5.339)

Finally, the normalized initial values are given by

Û
(0)
00 =

√
2π
γ3

4

[
γ

(1 + γ2)
+ arctan γ

]
(5.340)

Û
(1)
00 =

π

4

γ5

(1 + γ2)3/2
(5.341)

Û
(3)
00 =

√
15π

4

[
ln(γ +

√
1 + γ2)− γ(3 + 4γ2)

3(1 + γ2)3/2
− γ5

5(1 + γ2)5/2

]
,(5.342)

as well as

Û
(0)
01 =

π1/2

2
√

3

γ4

(1 + γ2)2
(5.343)

Û
(1)
01 =

3π

4
√

10

γ5

(1 + γ2)5/2
, (5.344)

and

Û
(0)
10 = −

√
2π

4

γ4

(1 + γ2)2
. (5.345)

Furthermore, the elements Û
(`)
n0 are evaluated by means of Eqs. (5.282)-(5.286)

and Eq. (5.308), respectively.
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According to Eq. (5.307) the recurrence relation for the matrix elements of
the field particle operator in terms of ϕm test functions is found to be

I
(`)
m+1m′ =

m+1∑
n=0

N ′∑
n′=0

g
(0)
m+1n Ĝ

(`)
nn′ ĝ

(`)
n′m′

=

√
m+ 1

m+ 5/2
I

(`)
mm′ + g

(0)
m+10

N ′∑
n′=0

Ĝ
(`)
m+1n′ ĝ

(`)
n′m′ , (5.346)

where Eqs. (5.311) and (5.312) have been utilized.

5.6.7 Numerical implementation

In a concluding section the numerical implementation of the calculation of
collision matrix elements is briefly considered. First of all, it should be
mentioned that most of the analytical results obtained in Chapter 5 were
checked and partially derived, respectively, by means of the symbolic algebra
system MAPLE [48]. Due to the fact that the computing time required to
evaluate the matrix elements regarding the field particle operator became too
large using MAPLE the actual calculation of them, however, was performed
using FORTRAN90.
Since in neoclassical transport theory the expansion of the distribution func-
tion in terms of associated Laguerre polynomials [cf. test functions ϕm in
Eq. (5.2)] tends to converge quickly [22, 37] only a small number of terms
(indicated by the radial index m) have to be retained in the expansion. For
the numerical computation mmax and m′max were chosen to be 10.
Therefore, computing of the matrix elements of the test particle opera-
tor, ν̂abmm′ and D̂ab

mm′ , respectively, by using their recurrence relations [see
Eqs. (5.188), (5.220) and (5.230)] is possible without any difficulty with
respect to numerical accuracy.
Unfortunately, this is not valid for the matrix elements describing the field
particle operator, I

(`)
mm′ [see Eq. (5.346)]. Because these elements have been

obtained via transformation from the Burnett function basis an additional
summation (over index n′, with N ′ as large as possible) must be performed
producing a large numerical error for the case when conventional double
precision FORTRAN90 is used. Thus, in order to decrease round-off errors
a FORTRAN90 based multiple precision computation package, MPFUN90,
developed by D. H. Bailey [50–53] has been utilized. By means of these routines
the value of the parameter N ′ (which is the only parameter determining the

accuracy of the matrix elements I
(`)
mm′) could be chosen to be 6× 106, which

allowed to obtain highly accurate results for the matrix elements I
(`)
mm′ . They



5.6. RECURRENCE RELATIONS 93

are correct to at least five (for larger values of `,m and m′) to eight (for smaller
values of `,m andm′) significant digits. In order to ensure that the calculations
provided numerically converged values (no round-off computational errors)
the code was run twice, namely using precision levels of 200 and 300 digits,
respectively.
Altogether the computing time for the matrices ν̂eemm′ , ν̂

e∞
mm′ and D̂ee

mm′ was
less than one second (for mmax = m′max = 10), whereas for an individual
element with respect to the electron-electron version of the field particle part
I

(`)
mm′ (polar index `max = 20) average time of calculation was typically of the

order of 100 seconds (for N ′ = 6× 106). All computations were performed
on an Intel Core2Duo CPU (E8500) 3.16GHz and 3GB RAM running Linux
(2.6.32-trunk-686).





Chapter 6

Spitzer conductivity

Below, the formulas derived in Chapter 3 together with the collision matrix
elements evaluated in Chapter 5 are used to compute the collisional Spitzer
(or classical) conductivity for a completely ionized gas. Since the correct
result is only obtained when the full linearized Coulomb collision operator is
applied, this problem serves as a benchmark for the matrix elements.

Cohen et al. [45] as well as Spitzer and Härm [39] calculated in their classical
papers the parallel electrical (DC-) conductivity for a uniform plasma when
no magnetic field is present and where a sufficiently small electric field is
assumed (see also References 54–57). In Reference 39 the following expression
for the conductivity was obtained

σ =
2mC3

e2Z ln(qC2)

(
2

3π

)3/2

γE , (6.1)

where γE is the ratio of conductivity to that in a Lorentz gas. Here, C is the
root mean square electron velocity C =

√
3Te/me = vte

√
3/2, vte =

√
2Te/me

and ln(qC2) designates the Coulomb logarithm. In terms of the notation used
in previous chapters Eq. (6.1) can be rewritten as

σ =
2mev

3
te

π3/2e2Zeff ln Λ
γE. (6.2)

In order to obtain the Spitzer conductivity within the NEO-2 model one has
to assume a homogeneous magnetic field (that is, the magnetic field module
B̂ does not depend on s being the distance counted along the magnetic field
line).
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From Eqs. (3.40) and (3.42) one gets for the electric current density in response
to the induced parallel electric field,〈

j‖
〉

= eLe33A3

= −eLe33

e

Te

〈
E

(A)
‖
〉
, (6.3)

in which the forces A1 and A2 have been put to zero. The parallel electric
conductivity is then defined as

σNEO

‖ ≡
〈
j‖
〉〈

E
(A)
‖
〉 . (6.4)

Upon substituting the transport coefficient Le33 = nel
2
cγ33/τee into Eq. (6.3)

one obtains from Eq. (6.4)

σNEO

‖ = − ne
τee
l2cγ33

e2

Te
(6.5)

= −2nee
2τee

me

γ33 (6.6)

= − 3mev
3
te

8
√
πe2 ln Λ

γ33. (6.7)

From Eqs. (6.2) and (6.7) the relation between the normalized Spitzer conduc-
tivity and the dimensionless NEO-2 transport coefficient γ33 can be expressed
as

γE = −3πZeff

16
γ33. (6.8)

6.1 Lorentz conductivity

The electrical conductivity can be calculated analytically for the case when
the limit Zeff →∞ is assumed (the so called “Lorentz gas approximation”).
In such a fully ionized plasma the electrons do not interact with each other
and all the positive ions are at rest [54].
The single-drive problem [see Chapter 3, Eq. (3.22)] for the evaluation of the
parallel conductivity can be written as

Cle[fσ3 ] = fe0Q
−σ
3 , (6.9)
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where the collision term is approximated by a Lorentz operator

Cle ≡ L =
νeD
2

∂

∂λ

(
1− λ2

) ∂

∂λ
. (6.10)

Equations of the form (6.9) are called Spitzer problems [23]. Assuming
stationary ions the deflection frequency here means [cf. Eqs. (3.75) and (3.78)],

νeD = Zeff
3
√
π

4τee

(vte
v

)3

, (6.11)

keeping in mind that electron-electron collisions have been ignored and where
Qσ

3 = v|λ|qσ3 and qσ3 = σB̂, respectively. With the help of the normalization

fσ3 = fe0f
L
sp, (6.12)

where the subscript L refers to the Lorentz approximation one gets

νeD
2

∂

∂λ

(
1− λ2

) ∂

∂λ
fLsp = −vλB̂. (6.13)

where B̂ = 1 has been used. One can solve Eq. (6.13) for the Spitzer function
by applying the Legendre polynomial, P`, expansion, that is

fLsp =
∑
`

c`(v)P`(λ). (6.14)

Since these polynomials are eigenfunctions of the Lorentz collision opera-
tor [58],

∂

∂λ

(
1− λ2

) ∂

∂λ
P`(λ) = −`(`+ 1)P`(λ), (6.15)

it follows from Eqs. (6.13)-(6.15) that

νeD
2

∂

∂λ

(
1− λ2

) ∂

∂λ

[∑
`

c`(v)P`(λ)

]
= −vP1(λ)B̂

−ν
e
D

2

∑
`

c`(v)`(`+ 1)P`(λ) = −vP1(λ)B̂. (6.16)

Upon multiplication of Eq. (6.16) by P`′ , integrating the result with respect to
λ from −1 to 1 and exploiting the orthogonality of Legendre polynomials [29],

1∫
−1

dλP`(λ)P`′(λ) =
2

2`+ 1
δ``′ , (6.17)
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one easily recognizes the only nonvanishing coefficient

c1 =
B̂

κmono
. (6.18)

Here, the abbreviation κmono(v) ≡ νD(v)/v has been introduced. Therefore,
the normalized Spitzer function becomes

fLsp =
λB̂

κmono
. (6.19)

Using Eq. (3.63) one finds in the Lorentz limit for the monoenergetic transport
coefficient describing electric conductivity of a plasma along the magnetic
field, D33,

DL
33 = vteβ

2
3x
∑
σ=±1

〈
B̂

4

1/B̂∫
0

dηq−σ3 fLsp

〉
. (6.20)

Since ∑
σ=±1

〈
B̂

4

1/B̂∫
0

dη
1

|λ|
Aσ(η)

〉
=

〈
1

2

1∫
−1

dλA(λ)

〉
, (6.21)

Eq. (6.20) becomes

DL
33 = −v

∑
σ=±1

〈
B̂

4

1/B̂∫
0

dηqσ3 f
L
sp

〉

= −v
∑
σ=±1

〈
B̂

4

1/B̂∫
0

dη
1

|λ|
|λ|σB̂fLsp

〉

= −v

〈
1

2

1∫
−1

dλλB̂fLsp

〉

= −v 〈B̂
2〉

κmono

1

2

1∫
−1

dλλ2

= −v〈B̂
2〉

3κmono
, (6.22)

where Eq. (6.19) has been utilized (note that here 〈B̂2〉 = B̂2). Furthermore,
using Eq. (3.67), the energy convoluted dimensionless transport coefficient
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can be written as

γL33 =
4√
πlcvte

∞∫
0

dxe−x
2

x2DL
33(x). (6.23)

According to Eq. (6.11) the collisionality parameter κmono may be replaced by

κmono = κ
3
√
π

4x4
Zeff , (6.24)

where x = v/vte, lc = vteτee and κ = 1/lc, respectively. Hence, the dimension-
less Lorentz conductivity reads

γL33 = − 4√
πlc

∞∫
0

dxe−x
2

x2x〈B̂2〉
3κ

4x4

3
√
πZeff

= −16〈B̂2〉
9πZeff

∞∫
0

dxe−x
2

x7. (6.25)

If one recalls that

∞∫
0

dxxne−x
2

=
1

2
Γ

(
n+ 1

2

)
, for n > −1 , (6.26)

the velocity integral appearing in Eq. (6.25) yields Γ(4)/2 = 3, and the
dimensionless Lorentz conductivity within the NEO-2 model is thus found to
be

γL33 = −16〈B̂2〉
3πZeff

. (6.27)

Finally, the dimensional conductivity follows from Eq. (6.6),

σLNEO = −2nee
2τee

me

〈
B̂2
〉γL33

=
2nee

2τee

me

〈
B̂2
〉 16〈B̂2〉

3πZeff

=
32

3π

nee
2

me

τee
Zeff

, (6.28)

which is in agreement with the well-known result for the Spitzer conductivity
in the Lorentz limit that can be found in any textbook on plasma physics
(see, e.g., References 22 and 57).
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6.2 Spitzer function

As a first benchmark for the results derived in Chapter 5 the collision matrix
elements are used to calculate the collisional Spitzer function. For these
purposes the linearized drift kinetic equation with respect to the first order
electron distribution function is to be solved using the full linearized Coulomb
collision operator taking into account electron-ion as well as electron-electron
collisions. The corresponding solution may then be compared with that by
Spitzer and Härm.

In References 45 and 39 the following ansatz for the distribution function was
used,

fsp(λ, x) = fe0(x)λA
D(x)

A
, (6.29)

with

A ≡ − meEv
2
te

2πe3ne ln(qC2)
. (6.30)

The numerical results for the quantity D/A can be found tabulated in [39].

As mentioned above, for purposes of comparison with the Spitzer-Härm
results one has to take the limit of a constant magnetic field B̂ giving rise to
fsp 6= f(s). Thus, within the NEO-2 model the drift kinetic equation has the
form [see Eq. (3.26) along with Eq. (3.21) and A1 = A2 = 0],

−κ
M∑

m′=0

{
νemm′L̂ [fσm′ ] + K̂emm′ [fσm′ ] +

1

|λ|
De
mm′f

σ
m′

}
= A3a

(3)
m qσ3 , (6.31)

where A3 = −(e/Te)〈E‖B̂〉/〈B̂2〉, qσ3 = σB̂, κ = 1/lc, lc = vteτee, vte =√
2Te/me, and τee = 3m2

ev
3
te/(16

√
πnee

4 ln Λ). The pitch-angle operator and
the operator representing the integral part of the Coulomb collision term are
given by

L̂ [fσm′ ] =
1

2|λ|
∂

∂λ

(
1− λ2

) ∂

∂λ
fσm′ (6.32)

and

K̂emm′ [fσm′ ] =
1

|λ|

L∑
`=0

I
(`)
mm′P`(λ)

1∫
−1

dλ′P`(λ
′)fσm′(λ

′), (6.33)

respectively. It is convenient to introduce a normalized distribution function
as follows,

fσm =
A3

κ
f̂m. (6.34)
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Bearing in mind Eq. (6.29) one can infer that

f̂m(λ) = λcm = P1(λ)cm. (6.35)

Substituting Eq. (6.35) into Eqs. (6.32) and (6.33) yields

|λ|L̂
[
f̂m′
]

=
1

2

∂

∂λ

(
1− λ2

) ∂

∂λ
λcm′

= −λcm′ (6.36)

and

|λ|K̂emm′
[
f̂m′
]

=
L∑
`=0

I
(`)
mm′P`(λ)

1∫
−1

dλ′P`(λ
′)P1(λ′)cm′

=
L∑
`=0

I
(`)
mm′P`(λ)cm′

2

2`+ 1
δ`1

=
2

3
I

(1)
mm′cm′λ , (6.37)

respectively, where the orthogonality relation for Legendre polynomials [see
Eq. (6.17)] has been employed. Using Eqs. (6.35)-(6.37) the drift kinetic
equation (6.31) reduces to an algebraic system of equations for the coefficients
cm,

M∑
m′=0

{
νemm′ −

2

3
I

(1)
mm′ −D

e
mm′

}
cm′ = a(3)

m , (6.38)

where νemm′ = νeemm′ + Zeffν
e∞
mm′ . Upon solving Eq. (6.38) for cm and recalling

that the distribution function is expanded in terms of test functions ϕm,

fsp(x, λ) = fe0(x)
M∑
m=0

fσm(λ)ϕm(x), (6.39)

the Spitzer function is determined by the relation

fsp = fe0λ
A3

κ

M∑
m=0

cmϕm(x). (6.40)

The quantity A3/κ is related to Eq. (6.30) in the following way,

A3

κ
= − e

Te
〈E‖〉vteτee
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= − e

Te
〈E‖〉

3

4
√
π

T 2
e

nee4 ln Λ

me

me

2

2

= −
〈E‖〉v2

teme

2πnee3 ln Λ

3

8
√
π

2π

≡ A
3
√
π

4
. (6.41)

Therefore, one finally obtains

D

A
=

3
√
π

4

M∑
m=0

cmϕm(x) , (6.42)

with the basis functions

ϕm(x) = π3/4

√
2m!

Γ(m+ 5/2)
L(3/2)
m (x2). (6.43)

The quantity D/A is to be compared with the “exact” numerical result
calculated by Spitzer and Härm (see Reference 39). Their result was obtained
by integrating numerically the drift kinetic equation (where no expansion of
the distribution function was used) which is equivalent to using all the basis
functions ϕm, that is M is equal to infinity.
Figure 6.1 shows, in principle, good agreement between the Spitzer-Härm
result and the Spitzer function evaluated by means of Eq. (6.42) using four
test functions (M = 3). However, when zooming in on the x-axis one observes
that D/A is negative in the range 0 < x . 0.21. This unphysical behavior is
still present, although considerably reduced, even when 51 terms have been
retained in the expansion of the distribution function (see Figure 6.2). From
this one can conclude, that the approximation of the Spitzer function in terms
of a few low order associated Laguerre polynomials is only meaningful in the
range x & 0.21.

According to Eq. (3.57) the dimensionless transport coefficient describing the
parallel electric conductivity is given by

γ33 =
1

lc

M∑
m=0

∑
σ=±1

b(3)
m

〈
B̂

4

1/B̂∫
0

dηq−σ3 fσ,(3)
m

〉
(6.44)

= − 1

lc

M∑
m=0

b(3)
m

〈
1

2

1∫
−1

dλλB̂f (3)
m

〉
, (6.45)
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Figure 6.1: Spitzer function, D/A, vs. normalized particle speed, x, for
Zeff = 1. Blue: Spitzer-Härm result, red: result obtained from Eq. (6.42)
using M = 3.
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Figure 6.2: A zoomed-in view of Fig. 6.1. In addition: Green curve shows
function D/A calculated with 51 test functions.
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Table 6.1: Spitzer-Härm result vs. Eq. (6.47)

Zeff γSH
E γM=1

E γM=2
E γM=10

E

1 0.5816 0.5985 0.5824 0.5820
2 0.6833 0.6999 0.6871 0.6857
4 0.7849 0.7740 0.7847 0.7853
16 0.9225 0.8465 0.9221 0.9234
∞ 1 1 1 1

where again Eq. (6.21) has been applied. The quantity b
(3)
m can be calculated

with the help of Eq. (3.56). Substituting into Eq. (6.45) the assumption

B̂ = 1, and recalling the ansatz f
(3)
m = lcλcm the transport coefficient γ33 can

be written as

γ33 = −
M∑
m=0

b(3)
m

〈
1

2

1∫
−1

dλλ2cm

〉

= −
M∑
m=0

b(3)
m cm

1

2

1∫
−1

dλλ2

= −1

3

M∑
m=0

b(3)
m cm. (6.46)

In virtue of Eq. (6.8) the Spitzer-Härm coefficient γE including electron-
electron effects can thus be computed by means of

γE = −3πZeff

16
γ33

=
π

16
Zeff

M∑
m=0

b(3)
m cm. (6.47)

Table 6.1 presents the “exact” Spitzer-Härm result for the normalized conduc-
tivity γE for several values of Zeff as well as the corresponding semi-analytical
result calculated from Eq. (6.47) depending on the number M of terms in-
cluded in the polynomial expansion of the distribution function [see Eq. (6.39)].
One can see that sufficient accuracy is already obtained by taking M = 2
[the results of Eq. (6.47) for M = 1 match the Spitzer-Härm results to within
3-8% and for M = 2 to within 0.03-0.56%].
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These results confirm the correctness of the collision matrix elements for the
full linearized Coulomb operator numerically evaluated from Eqs. (5.188),
(5.220), (5.230) and (5.346), respectively.





Chapter 7

Comparison to results reported
in literature

In this chapter the neoclassical transport coefficients for an axisymmetric
toroidal system are computed in the limit of low collisionality using analytical
results which are most widely used in the plasma physics literature. These
results are compared to the corresponding numerical results evaluated by
means of the NEO-2 code. The expressions representing the neoclassical
transport matrix within the NEO-2 model have already been derived in
Chapter 3 and are included here again for completeness.

The electron transport coefficients Lejk have been defined through

Ij = −
3∑

k=1

LejkAk, (7.1)

relating the fluxes

I1 ≡ Γe , I2 ≡
Qe

Te
, I3 ≡ −

〈j‖B̂〉
e

, (7.2)

to the thermodynamical forces

A1(r) =

(
1

ne

dne
dψ
− 3

2Te

dTe
dψ
− e

Te

dΦ

dψ

)〈∣∣∇ψ|〉 (7.3)

A2(r) =
1

Te

dTe
dψ

〈∣∣∇ψ|〉 (7.4)

A3(r) = − e

Te

〈
E

(A)
‖ B̂

〉〈
B̂2
〉 , (7.5)

107



108 CHAPTER 7. COMPARISON TO RESULTS IN LITERATURE

where B̂ = B/B0 and B0 denotes some reference magnetic field. The dimen-
sionless transport matrix, γjk, has been defined in the form

Lejk =
ne
τee
β̂jβ̂kγjk, (7.6)

where
β̂1 = β̂2 = ρ, β̂3 = lc, (7.7)

ρ =
vte
ωc0

, ωc0 =
eB0

mec
, lc = vteτee, (7.8)

and

τee =
3m2

ev
3
te

16
√
πnee4 ln Λ

(7.9)

is the collision time, respectively (for details see Chapters 3.1 and 3.2).

In the following the neoclassical electron transport matrix γjk for the standard
tokamak test configuration (see Appendix F) evaluated using the NEO-2
code is benchmarked with the corresponding analytical results obtained by
Balescu [37,56], and Hirshman [59] in the low-collisionality (banana) regime (cf.
Chapter 7.5) as well as with the results reported by Hinton and Hazeltine [60]
and Sauter, Angioni and Lin-Liu [38, 61–63] which are valid for arbitrary
collisionality regime (see also Chapter 8.2).

7.1 Balescu

The results for the neoclassical transport matrix in the low collisionality
limit were derived in the so-called twenty-one moment (21M) approximation
(applying an approximate collision operator). This corresponds to the fact
that the expansion of the distribution function in Laguerre polynomials is
truncated at the level M = 2 (that is to say, three polynomials are retained).
For details see References 37 and 56. Furthermore, the results are valid for
arbitrary aspect ratio.

In [37] the dimensional electron banana transport equations representing the
averaged radial particle flux,

〈
Γer
〉
b
, the averaged radial heat flux,

〈
qer
〉
b

and

the averaged parallel electric current density,
〈
j‖B

〉
b
, have been written as

follows, 〈
Γer
〉
b

= Lee11X
e
1 + Lee13X

e
3 + Lei13X

i
3 + Le1EXE (7.10)

1

Te

〈
qer
〉
b

= Lee31X
e
1 + Lee33X

e
3 + Lei33X

i
3 + Le3EXE (7.11)

1

BBal
0

〈
j‖B

〉
b

= LeE1X
e
1 + LeE3X

e
3 + LiE3X

i
3 + LEEXE, (7.12)



7.1. BALESCU 109

with the thermodynamic forces defined by

Xe
1 ≡ X1 = − 1

neTe
∇rP (7.13)

Xe
3 ≡ X2 = − 1

Te
∇rTe (7.14)

X i
3 ≡ X3 = − 1

Ti
∇rTi (7.15)

XE ≡ X4 =
1

BBal
0

〈
E

(A)
‖ B

〉
. (7.16)

To leading order in the tokamak standard model used by Balescu one can re-
place ∇r by ∂/∂r [37]. In the present work the electron part of the neoclassical
transport matrix, γjk, has been determined assuming immobile background
ions. Thus, Ti ≡ 0 and the coefficients Lei13, Lei33 and LiE3 do not contribute.
The dimensional electron transport coefficients are given by (see Table 3.4 in
Reference 37)

Lee11 =
neρ

2
e0

τe
J 2 1

2
ϕlee11(ϕ) (7.17)

Lee33 =
neρ

2
e0

τe
J 2 5

4
ϕlee33(ϕ) (7.18)

Lee13 = Lee31 =
neρ

2
e0

τe
J 2

√
5

2
√

2
ϕlee13(ϕ) (7.19)

and

Le1E = −LeE1 = −neTec
BBal

0

Jϕle1E(ϕ) (7.20)

Le3E = −LeE3 = −neTec
BBal

0

J

√
5

2
ϕle3E(ϕ) (7.21)

LEE =
nee

2

me

τeϕlEE(ϕ), (7.22)

where Eqs. (7.17)-(7.19) are the pure diffusive coefficients and Eqs. (7.20)-
(7.22) represent the electrical coefficients. Here, τe is the electron relaxation
time

τe =
3

16
√
π

v3
tem

2
e

niZ2e4 ln Λ
, (7.23)

the neoclassical factor ϕ = ft/fc, where ft is the trapped particle fraction

and fc = 1− ft, the surface averaged reference magnetic field BBal
0 =

〈
B2
〉1/2

,
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the reference Larmor radius ρ2
e0 = v2

te/Ω
2
e0 where v2

te = 2Te/me and Ω2
e0 =

(eBBal
0 /mec)

2, the scale factor lr =
√
grr = 1, the effective poloidal field is

BP = (1/R0)dχ(r)/dr and J = J lr/(R0BP ). The quantity J can also
be calculated using the contravariant angular magnetic field components,
respectively, that is J = B̂ϕ/B̂θ and χ is the poloidal flux.

In the case of the standard tokamak (see Appendix F), where the magnetic
field is expressed as

B(r, θ) =
B0

1 + ε(r) cos θ

[
ι-(r)ε(r) êθ +

√
1− ε(r)2 êϕ

]
, (7.24)

one gets for these geometrical factors dψ/dr = B0r where ψ is the toroidal
flux, χ′/ψ′ = ι- denotes the rotational transform, BP = (ι-/R0)B0r = ι-εB0,
ε = r/R0 is the inverse aspect ratio,

J ≡ B̂ϕ

B̂θ
=

√
1− ε2
ι- ε

, (7.25)

and the trapped particle fraction is evaluated by means of a very accurate
approximation proposed in Reference 64 yielding

ft ∼= 1.4624
√
ε− 0.2424ε3/2 +O(ε2). (7.26)

The reference magnetic field is chosen to be the m = 0 Fourier mode of
magnetic field module B in Boozer coordinates (see Appendix F.3.2)

B(θB) =
∑
m

bm cos θB. (7.27)

Recalling Eqs. (7.6)-(7.8) the transport coefficient in Eq. (7.17) can be ex-
pressed as

Lee11 =
neρ

2

τee

τee
τe

ρ2
e0

ρ2
J 2 1

2
ϕlee11(ϕ)︸ ︷︷ ︸

γ
′Bal
11

. (7.28)

Upon replacing the ratio of electron collision times τee/τe by Zeff as well as
the ratio of Larmor radii by

ρ2
e0

ρ2
=

b2
0〈
B2
〉 =

1〈
B̂2
〉 =

1

(1− ε2)3/2
, (7.29)
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the dimensionless banana transport coefficient γ
′Bal
11 becomes

γ
′Bal
11 =

Zeff〈
B̂2
〉J 2ϕ

2
lee11(ϕ) (7.30)

=
Zeff

2ι-2ε2
√

1− ε2
ft
fc
lee11(ft/fc) (7.31)

where in the last equation the geometrical factors for the standard tokamak
have been substituted. Similarly, Eqs. (7.18) and (7.19) lead to

γ
′Bal
12 = γ

′Bal
21 =

Zeff〈
B̂2
〉J 2

√
5

2

ϕ

2
lee13(ϕ) (7.32)

=

√
5

8

Zeff

ι-2ε2
√

1− ε2
ft
fc
lee13(ft/fc), (7.33)

and

γ
′Bal
22 =

Zeff〈
B̂2
〉J 2 5

2

ϕ

2
lee33(ϕ) (7.34)

=
5

4

Zeff

ι-2ε2
√

1− ε2
ft
fc
lee33(ft/fc), (7.35)

respectively. Using XE = −B0Te
〈
B̂2
〉
A3/(BBal

0 e) = −BBal
0 TeA3/(B0e) the

last term on the RHS of Eq. (7.10) yields

Le1EXE = −Le1E
BBal

0

B0

Te
e
A3(r), (7.36)

from which it follows that the dimensionless transport coefficient characterizing
the Ware-Galeev pinch effect can be written as

γ
′Bal
13 = − τee

neρlc

nec

BBal
0

Jϕle1E(ϕ)
BBal

0 Te
B0e

= −ϕ
2
J le1E(ϕ) (7.37)

= −
√

1− ε2
2ι-ε

ft
fc
le1E(ft/fc). (7.38)

Likewise, from Eq. (7.11) one gets

γ
′Bal
23 = −

√
5

2
J

ϕ

2
le3E(ϕ) (7.39)

= −
√

5

8

√
1− ε2
ι-ε

ft
fc
le3E(ft/fc). (7.40)
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The transport coefficient representing the bootstrap current may be derived,
upon recalling the definition of I3 ≡ −〈j‖B̂〉/e, by means of the first term on
the RHS of Eq.(7.12),

−BBal
0

B0e
LeE1X

e
1 =

BBal
0

B0e
LeE1

1

neTe

(
∂P

∂r

)
, (7.41)

leading to

γ
′Bal
31 = − τee

neρlc

BBal
0

B0e

neTec

BBal
0

Jϕle1E(ϕ)

= −ϕ
2
J le1E(ϕ) (7.42)

= −
√

1− ε2
2ι-ε

ft
fc
le1E(ft/fc). (7.43)

Similarly, the coefficient γ
′Bal
32 can be expressed as

γ
′Bal
32 = −

√
5

2
J

ϕ

2
le3E(ϕ) (7.44)

= −
√

5

8

√
1− ε2
ι-ε

ft
fc
le3E(ft/fc), (7.45)

and the electrical conductivity coefficient is obtained from the last term on
the RHS of Eq. (7.12),

−BBal
0

B0e
LEEXE = LEE

Te
〈
B̂2
〉

e2
A3 (7.46)

yielding

γ
′Bal
33 = − τee

nel2c

nee
2

me

τeϕlEE(ϕ)
Te
〈
B̂2
〉

e2

= − τe
τee

〈
B̂2
〉

2
ϕlEE(ϕ) (7.47)

= −
〈
B̂2
〉

2Zeff

ϕlEE(ϕ). (7.48)

To compare with NEO-2 results one has to add the classical electrical con-
ductivity σ (which is given in Table 3.2 of Reference 56),

γ
′Bal
33 = −

〈
B̂2
〉

2Zeff

[
σ(Zeff) + ϕlEE(ϕ)

]
. (7.49)
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In contrast to Chapter 3.2 where the second flux has been defined as the
surface averaged total radial flux of energy, I2 ≡ Qe/Te, Balescu defined I2

via the flux surface averaged radial heat flux qe, that is I2 ≡ qe/Te. Therefore,
the transport matrix γ

′Bal
jk has to be transformed using the following equations

(see also Chapter 3.3)

γBal
11 = γ

′Bal
11 (7.50)

γBal
12 = γ

′Bal
12 +

5

2
γ
′Bal
11 (7.51)

γBal
22 = γ

′Bal
22 + 5γ

′Bal
12 +

25

4
γ
′Bal
11 (7.52)

γBal
13 = γ

′Bal
13 (7.53)

γBal
23 = γ

′Bal
23 +

5

2
γ
′Bal
13 (7.54)

γBal
33 = γ

′Bal
33 . (7.55)

These coefficients are to be compared to the results of the NEO-2 code.

7.2 Hirshman

In Reference 59, Hirshman computed the bootstrap current in tokamaks, valid
for arbitrary values of aspect ratio (and flux surface geometry) and effective
ion charge in the collisionless limit (see also [22]) using an approximate
collision operator [30]. The results are equivalent to the thirteen moment
(13M) approximation [37] (retaining only two Laguerre polynomials in the
expansion of the distribution function).
The expression for the parallel current density has been given as [22]

〈
j‖B

〉
= −Ipe

D

[
d1

1

pe

dpe
dχ

+ d2
1

Te

dTe
dχ

+ d1
Ti
ZTe

(
1

pi

dpi
dχ

+ αi
1

Ti

dTi
dχ

)]
+
d3

D

nee
2τee
me

〈
E‖B

〉
, (7.56)

where χ is the poloidal flux and the quantities d1, d2 and D are as follows

d1(x, Z) = x
[
0.754 + 2.21Z + Z2 + x

(
0.348 + 1.243Z + Z2

)]
(7.57)

d2(x, Z) = −x (0.884 + 2.074Z) (7.58)

d3(x, Z) = 1.414 + 3.25Z + x (1.387 + 3.25Z) (7.59)

D(x, Z) = 1.414Z + Z2 + x
(
0.754 + 2.657Z + 2Z2

)
+x2

(
0.348 + 1.243Z + Z2

)
, (7.60)
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with Z being the effective ion charge and x = ft/fc represents the ratio
between the trapped and circulating particles and αi = −1.173/(1 + 0.462x)
is the poloidal rotation coefficient [22]. Using ι- = χ′/ψ′ = dχ/dψ, d/dχ =
(1/ι-)d/dψ, B̂ = B/b0 and −

〈
j‖B̂

〉
/e ≡ I3, respectively, Eq. (7.56) can be

recast to the form

I3(ψ) =
Ipe
eb0Dι-

[
d1

1

pe

dpe
dψ

+ d2
1

Te

dTe
dψ

+ d1
Ti
ZTe

(
1

pi

dpi
dψ

+ αi
1

Ti

dTi
dψ

)]
−d3

D

neeτeeTe
meTe

〈
E‖B̂

〉
. (7.61)

Upon applying
pi
pe

=
niTi
neTe

=
Ti
ZTe

, (7.62)

where the quasi-neutrality condition ne = Zni has been used and

d ln pe
dψ

+
Ti
ZTe

d ln pi
dψ

=
p

pe

d ln p

dψ
, (7.63)

one obtains

I3(r) =
Ipe

eb0Dι-
〈
|∇ψ|

〉 (d1A
′e
1 + d2A

′e
2 + d1

Ti
ZTe

αiA
′i
2

)
+
d3

D

neτeeTe
me

〈B̂2〉A′e3 , (7.64)

with the driving forces

A
′e
1 (r) =

1

pe

dp

dψ

〈
|∇ψ|

〉
(7.65)

A
′e
2 (r) =

1

Te

dTe
dψ

〈
|∇ψ|

〉
(7.66)

A
′i
2 (r) =

1

Ti

dTi
dψ

〈
|∇ψ|

〉
(7.67)

A
′e
3 (r) = − e

Te

〈
E‖B̂

〉
〈B̂2〉

. (7.68)

In order to compare with the NEO-2 model the ion temperature is assumed
to be zero, that is Ti = 0. In accordance with Eq. (7.1) it follows that

L
′ee
3k = − Ipe

eb0ι-
〈
|∇ψ|

〉 dk
D
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= − IneTe

eb0ι-
〈
|∇ψ|

〉 dk
D

2me

2me

=
nev

2
te

ωc0

(
− I

2ι-
〈
|∇ψ|

〉 dk
D

)
︸ ︷︷ ︸

γ
′ee
3k

, for k = 1, 2, (7.69)

and the transport coefficient representing the electrical conductivity is ex-
pressed as

L
′ee
33 = −neτeeTe

me

〈
B̂2
〉d3

D

= nev
2
teτee

(
−
〈
B̂2
〉

2

d3

D

)
︸ ︷︷ ︸

γ
′ee
33

. (7.70)

Therefore, the dimensionless transport coefficients become

γ
′ee
3k = − J

2ι-
〈
|∇ψ|

〉 dk
D

(7.71)

= −
√

1− ε2
2ει-

dk
D
, for k = 1, 2, (7.72)

where, for the standard tokamak case, I has been replaced by J = B0R0√
1− ε2 as well as

〈
|∇ψ|

〉
= εB0R0 (see Appendix F) and

γ
′ee
33 = −

〈
B̂2
〉

2

d3

D
(7.73)

= −(1− ε2)3/2

2

d3

D
, (7.74)

respectively, where Eq. (7.29) has been substituted. Finally, the electron
transport coefficients with respect to the radial density and temperature
gradients and the parallel electric field are

γee31 = γ
′ee
31 (7.75)

γee32 = γ
′ee
32 +

5

2
γ
′ee
31 (7.76)

γee33 = γ
′ee
33 . (7.77)

In Reference 65 Hirshman, Sigmar and Clarke calculated the neoclassical
transport matrix of a multispecies plasma in the low collision frequency



116 CHAPTER 7. COMPARISON TO RESULTS IN LITERATURE

regime for arbitrary aspect ratios where the averaged total cross-field fluxes
of particles and energy in terms of the thermodynamic forces have been
presented in the form

Γa(χ) =
∑

b;n=1,2

Lab1nAnb(χ) (7.78)

Qa

Ta
(χ) =

∑
b;n=1,2

Lab2nAnb(χ), (7.79)

with A1a = ∂ lnna/∂χ− (3/2)∂ lnTa/∂χ and A2a = ∂ lnTa/∂χ, respectively.
Here, a plasma composed of electrons and a single ion species, with charge
Zi, is considered.
The diffusive transport coefficients have been obtained using the ansatz

Labmn = (Ft)
2Labmn(fc → 0) + FcL

ab
mn(ft → 0), for m,n = 1, 2, (7.80)

where Fc = fc/(〈B2〉〈B−2〉), Ft = 1 − Fc and the coefficients for the small
aspect ratio limit, that is fc → 0, read

Laa11 = −
∑

k 6=a{νaks }
{νas }

L∗a (7.81)

Laa12 = Laa21 = −
∑

k 6=a{x2νaks }
{νas }

L∗a (7.82)

Laa22 =

[
{x2νaas }2

{νaas }{νas }
− {x

4νas }
{νas }

+
{x4νaah }+ {x4νak}

{νas }

]
L∗a. (7.83)

The velocity space averages (indicated by curly brackets) of the slowing down
frequency, νas =

∑
b ν

ab
s , are given in Eqs. (45a)-(45e) of Reference 65 and

the quantity L∗a ≡ naJ
2v2
taB

2
0〈B−2〉{νas }/(2ω2

c0). The coefficients for the large
aspect ratio case, ft → 0, are defined as follows

Laa11 = −
∑

k 6=amknk{νkD}∑
kmknk{νkD}

La (7.84)

Laa12 = Laa21 =
{x2νaD}
{νaD}

Laa11 (7.85)

Laa22 =
{x2νaD}
{νaD}

Laa12 −
{x2νaD}
{νaD}

La

(
{x4νaD}
{x2νaD}

− {x
2νaD}
{νaD}

)
, (7.86)

with the velocity space averages of the deflection frequency, νaD =
∑

b ν
ab
D ,

presented in Eqs. (33a)-(33c) of [65] and La ≡ ftnaJ
2v2
taB

2
0{νaD}/(2ω2

c0〈B2〉).
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Upon comparing Eqs. (7.78)-(7.86) with the corresponding quantities used
within the NEO-2 model [see Eqs. (7.1)-(7.8)] one arrives at the following
expressions for the modified dimensionless diffusive transport coefficients

γee,mod

mn = (Ft)
2γee,cmn + Fcγ

ee,t
mn , (7.87)

where γee,cmn ≡ −τeeLeemn(fc → 0)/(neρ
2ι-2〈|∇ψ|〉2) and, accordingly, γee,tmn ≡

−τeeLeemn(ft → 0)/(neρ
2ι-2〈|∇ψ|〉2), with

γee,c11 =
J2〈B̂−2〉

2ι-2〈|∇ψ|〉2
τee
τei
{νeis τei} (7.88)

γee,c12 = γee,c21 =
J2〈B̂−2〉

2ι-2〈|∇ψ|〉2
τee
τei
{x2νeis τei} (7.89)

γee,c22 = − J2〈B̂−2〉
2ι-2〈|∇ψ|〉2

[
{x2νees τee}2

{νees τee}
− {x4νees τee} −

τee
τei
{x4νeis τei}

+{x4νeeh τee}+ {x4νeek τee}+
τee
τei
{x4νeik τei}

]
, (7.90)

and

γee,t11 =
ftJ

2

2〈B̂2〉ι-2〈|∇ψ|〉2
{νeeD τee}+ τee

τei
{νeiDτei}

1 +Rei
D

(7.91)

γee,t12 = γee,t21 =
ftJ

2

2〈B̂2〉ι-2〈|∇ψ|〉2
{x2νeeD τee}+ τee

τei
{x2νeiDτei}

1 +Rei
D

(7.92)

γee,t22 =
ftJ

2

2〈B̂2〉ι-2〈|∇ψ|〉2

[
{x4νeeD τee}+

τee
τei
{x4νeiDτei}

−

(
{x2νeeD τee}+ τee

τei
{x2νeiDτei}

)2

{νeeD τee}+ τee

τei
{νeiDτei}

Rei
D

(1 +Rei
D)

]
, (7.93)

respectively, and where the abbreviation

Rei
D ≡ mene

mini

{νeD}
{νiD}

=
1

Zi

√
me

mi

[{νeeD τee}+ τee

τei
{νeiDτei}

{νieDτie}+ τie
τii
{νiiDτii}

]
(7.94)

has been used. Assuming quasi-neutrality, that is ne = Zini, the ratios
of the collision times, τee/τei as well as τie/τii, can be substituted by Zi.
In the case of the standard tokamak J2/〈|∇ψ|〉2 = (1 − ε2)/ε2, B0 ≡ b0,
〈B̂−2〉 = (2 + 3ε2)/[2(1 − ε2)2], 〈B̂2〉 = (1 − ε2)3/2 and the trapped particle
fraction ft has been given in Eq. (7.26).
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7.3 Hinton-Hazeltine

The next neoclassical transport model to be addressed is the one obtained
by Hinton and Hazeltine. In Reference 60 the transport coefficients were
calculated (in the 13M-approximation) for large aspect ratio tokamaks in the
limit of low collision frequency employing the small mass-ratio approximation
for the unlike-species collision term Cab [60].
The averaged radial electron flux, the averaged radial electron heat flux as
well as the average of the parallel current density were written as

Γe =
4∑

n=1

(α1, gne)Ane (7.95)

qe
Te

=
4∑

n=1

(α2, gne)Ane (7.96)

1

Te

〈
J‖ − J‖s

h

〉
=

4∑
n=1

(α3, gne)Ane, (7.97)

where

J‖s ≡ σ‖B
〈E‖B〉
〈B2〉

(7.98)

defines the Spitzer current density and h = BHH
0 /B. The thermodynamic

forces were defined as follows

A1e =
∂

∂%
ln pe +

Ti
ZiTe

∂

∂%
ln pi (7.99)

A2e =
∂

∂%
lnTe (7.100)

A3e = BHH
0

〈E‖B〉
〈B2〉

, (7.101)

with % being the effective minor radius coordinate which reduces to the usual
minor radius r in the large aspect ratio, circular cross section case [60].
The inner products

(αm, gne) =

〈∫
d3vαmgne

〉
, for m,n = 1, 2, 3 (7.102)

are the electron transport coefficients,

(αm, gne) = Kb
mnε

1/2neρ
2
eθ

τe
, for m,n = 1, 2 (7.103)
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(αm, g3e) = (α3, gme) = Kb
m3ε

1/2 nec

Bp0

, for m = 1, 2 (7.104)

(α3, g3e) = Kb
33ε

1/2σ‖
Te
, (7.105)

satisfying the Onsager symmetry (αm, gne) = (αn, gme) and where the set of
dimensionless banana regime (that is the collisionality parameter ν∗ → 0)
transport coefficients are functions of ion charge,

Kb
11 = −0.73

(
1 +

0.53

Zi

)
(7.106)

Kb
12 = 1.10

(
1 +

0.41

Zi

)
(7.107)

Kb
22 = −2.37

(
1 +

0.43

Zi

)
(7.108)

Kb
13 = −1.46

(
1 +

0.67

Zi

)
(7.109)

Kb
23 =

1.75

Zi
(7.110)

Kb
33 = −1.46

(
1 +

0.34

Zi

)
. (7.111)

The Zi dependence is an approximate fit based on the Zi = 1 and Zi →∞
results [60]. An approximate analytical expression for the Zi dependence of
the parallel conductivity is

σ‖ =
nee

2τe
me

(
0.29 +

0.46

1.08 + Zi

)−1

. (7.112)

Here,

τe =
3

16
√
π

v3
tem

2
e

niZ2
i e

4 ln Λ
, (7.113)

is the electron collision time, Bp0 ≡ BHH
0 /(R0BT0)∂χ/∂r is the effective

poloidal field magnitude and ρ2
eθ ≡ v2

te/Ω
2
ep = 2mec

2Te/(e
2B2

p0), where χ is
the poloidal flux, BT0 is a representative value of the toroidal magnetic field
and BHH

0 is an arbitrarily chosen function normalizing the magnetic field. In
the case of the standard tokamak test configuration (cf. Appendix F) BT0

has been chosen to be B0 from which it follows that Bp0 = ι-εBHH
0 , where

ι- = dχ/dψ, ∂ψ/∂r = B0r and ε = r/R0 has been used.
Recalling Eq. (7.6) the dimensionless diffusion coefficients may be expressed
as

γ
′HH
mn = −τee

ne

(αm, gne)

ρ2
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= −τee
τe

ρ2
eθ

ρ2
ε1/2Kb

mn(Zeff)

= − Zeff

ι-2ε3/2
Kb
mn(Zeff), (7.114)

valid for m,n = 1, 2. Here, τee/τe has been replaced by Zeff and

ρ2
eθ

ρ2
=

b2
0

B2
p0

=
1

ι-2ε2
, (7.115)

where BHH
0 = B0 = b0 has been utilized. Making use of the fact that

A3e = −BHH
0 Te/(B0e)A3 leads to

γ
′HH
m3 = γ

′HH
3m =

τee
neρlc

BHH
0

B0

Te
e

(αm, g3e)

=

√
ε

2

BHH
0

Bp0

Kb
m3(Zeff)

=
Kb
m3(Zeff)

2ι-
√
ε

, for m = 1, 2. (7.116)

A comparison between Eqs. (7.97) and (7.101) as well as Eqs. (7.2) and (7.5)
yields the dimensionless conductivity coefficient

γ
′HH
33 = − τee

nel2c

[
T 2
e

e2

(
BHH

0

B0

)2

(α3, g3e) +
Te
e2
σ‖
〈
B̂2
〉]

= −
Teσ‖
e2

[(
BHH

0

B0

)2√
εKb

33(Zeff) +
〈
B̂2
〉]

= − 1

2ZeffK‖(Zeff)

[√
εKb

33(Zeff) +
〈
B̂2
〉]
, (7.117)

where K‖ corresponds to the bracketed denominator in Eq. (7.112).
Finally, to obtain the desired banana regime transport coefficients γHH

mn , the
γ
′HH
mn matrix has to be transformed as described at the end of Chapter 7.1

[see Eqs. (7.50)-(7.55)].

Hinton and Hazeltine also presented an approximate analytical representation
for the transport coefficients expressing them as continuous functions of
collisionality [60]. The results were obtained by least-squares fits to the
following functions

Kmn = K(0)
mn

[
1

1 + amn
√
ν∗e + bmnν∗e

+
ε3/2c2

mnν∗eε
3/2

bmn(1 + cmnν∗eε3/2)

]
, (7.118)
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valid for m or n = 1 or 2 and

Km3 = K
(0)
m3

[
1

(1 + am3
√
ν∗e + bm3ν∗e)(1 + cm3ν∗eε3/2)

]
, (7.119)

for n = 3, respectively, and where ν∗e represents the electron collisionality
parameter

ν∗e ≡
√

2rBHH
0

Bp0vteτeε3/2
=

√
2R0Zeff

ι-vteτeeε3/2
. (7.120)

The values for the numerical coefficients K
(0)
mn(Zi), amn(Zi), bmn(Zi) and

cmn(Zi) are listed in Table III of Reference 60 for Zi = 1, 2 and 4. It has

to be noted that the coefficients K
(0)
mn do not exactly agree with the banana

regime (where ν∗e tends to zero) values Kb
mn since they were calculated from

least-squares fits [60].
The electron transport coefficients have been defined as follows

−(α1, g1e) = K11ε
1/2neρ

2
eθ

τe
(7.121)

−(α1, g2e)−
5

2
(α1, g1e) = K12ε

1/2neρ
2
eθ

τe
(7.122)

−(α2, g1e)− 5(α1, g2e)−
25

4
− (α1, g1e) = K22ε

1/2neρ
2
eθ

τe
(7.123)

−(α1, g3e) = K13ε
1/2 nec

Bp0

(7.124)

−(α2, g3e)−
5

2
(α1, g3e) = K23ε

1/2 nec

Bp0

(7.125)

−(α3, g3e) = K33ε
1/2σ‖
Te

(7.126)

from which one may derive that

γHH
mn =

Zeff

ι-2ε3/2
Kmn(ε, Zeff , ν∗e), for m,n = 1, 2, (7.127)

and

γHH
m3 = −Km3(ε, Zeff , ν∗e)

2ι-
√
ε

, for m = 1, 2, (7.128)

respectively. The transport coefficient representing the electrical conductivity
reads

γHH
33 =

1

2ZeffK‖(Zeff)

[√
εK33(ε, Zeff , ν∗e)−

〈
B̂2
〉]
. (7.129)

Equations (7.127)-(7.129) have to be compared with the NEO-2 results.
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In Reference 66 finite aspect ratio modifications to the neoclassical transport
coefficients Lmn (for Zi = 1) in the limit of small collision frequency were
obtained by a combination of large and small aspect ratio limit results. The
coefficients are not in general exact and are restricted to the case of nearly
concentric circular flux surfaces. The elements of the transport matrix are

LHHm

11 =
ne
τe
ρ2
eθ

(
1.12
√
ε− 0.62ε

)
(7.130)

LHHm

12 =
ne
τe
ρ2
eθ

(
1.27
√
ε− 0.77ε

)
(7.131)

LHHm

22 =
ne
τe
ρ2
eθ

(
2.64
√
ε− 0.933ε

)
(7.132)

LHHm

13 =
cne
Bp0

(
2.44
√
ε− 1.44ε

)
(7.133)

LHHm

23 =
cne
Bp0

(
4.35
√
ε− 1.85ε

)
(7.134)

LHHm

33 =
σ‖
Te

(
1.95
√
ε− 0.950ε

)
, (7.135)

where the O(
√
ε)-terms correspond to the ν∗e → 0 limit presented above.

Thus, the dimensionless modified transport coefficients become

γHHm

11 = γHH

11 (Zeff = 1)− 0.62

ι-2ε
(7.136)

γHHm

12 = γHH

12 (Zeff = 1)− 0.77

ι-2ε
(7.137)

γHHm

22 = γHH

22 (Zeff = 1)− 0.933

ι-2ε
(7.138)

γHHm

13 = γHH

13 (Zeff = 1) +
1.44

2ι-
(7.139)

γHHm

23 = γHH

23 (Zeff = 1) +
1.85

2ι-
(7.140)

γHHm

33 = γHH

33 (Zeff = 1)− 0.95ε

2K‖(1)
. (7.141)

7.4 Sauter-Angioni

In References 38,61 (see also [62,63]) the neoclassical transport coefficients
have been calculated for general axisymmetric equilibria and arbitrary collision-
ality regime applying the full linearized collision operator. Their expressions
have been obtained by solving numerically the Fokker-Planck equation (using
an adjoint function formalism [67,68]) varying the trapped particle fraction,
the collisionality parameter and the effective ion charge. Finally, a set of
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formulas representing the transport coefficients has been proposed fitting
these code results.

The expressions which relate the thermodynamic fluxes to forces have been
written as

Im =
3∑

n=1

LemnAen, for m = 1, 2, 3, (7.142)

where

I1 ≡ Γe
dχ

d%
, I2 ≡

qe
Te

dχ

d%
, (7.143)

and

I3 ≡
〈
j‖B

Te

〉
−
〈
j‖sB

Te

〉
, (7.144)

respectively. Here, Γe and qe are the perpendicular electron particle and heat
fluxes, j‖ is the total parallel electric current, j‖s is the Spitzer current and
Aen are the driving forces,

Ae1(χ) =
1

pe

dpe
dχ

+
1

pe

dpi
dχ

(7.145)

Ae2(χ) =
1

Te

dTe
dχ

(7.146)

Ae3(χ) =
〈E‖B〉
〈B2〉

. (7.147)

The driving force Ae3 can be expressed in terms of A3 [cf. Eq. (7.5)] yielding
Ae3 = −A3Te/(eB0). The elements of the transport matrix satisfy the Onsager
symmetry, that is Lemn = Lenm.
The diffusive transport coefficients in the low collisionality limit (νe∗ → 0)
have been defined as follows [38]

Lemn =
neρ

2
ep

τe

(
dχ

d%

)2

(BAS
0 )2〈B−2〉Kemn(fdt ), (7.148)

for m,n = 1, 2, where

τe =
3

16
√
π

v3
tem

2
e

niZ2
i e

4 ln Λ
, (7.149)

ρ2
ep = v2

te/Ω
2
ep = 2Temec

2/(e2B2
p0) is the square of the poloidal gyroradius,

Bp0 = [BAS
0 (χ)/I(χ)](dχ/d%) is the poloidal magnetic field, BAS

0 is an arbi-
trarily chosen function normalizing the magnetic field, χ is the poloidal flux
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and Kemn represents the dimensionless electron transport coefficients in the
banana regime,

Ke11(fdt ) = −0.5F11(fdt ) (7.150)

Ke12(fdt ) = 0.75F12(fdt ) (7.151)

Ke22(fdt ) = −

(
13

8
+

√
2

2Z

)
F22(fdt ), (7.152)

with

F11(X) ≡
(

1 +
0.9

Z + 0.5

)
X − 1.9X2

Z + 0.5
+

1.6X3

Z + 0.5
− 0.6X4

Z + 0.5
(7.153)

F12(X) ≡
(

1 +
0.6

Z + 0.5

)
X − 0.95X2

Z + 0.5
+

0.3X3

Z + 0.5
+

0.05X4

Z + 0.5
(7.154)

F22(X) ≡
(

1− 0.11

Z + 0.5

)
X +

0.08X2

Z + 0.5
+

0.03X3

Z + 0.5
(7.155)

and

fdt = 1− 1− ft
〈B2〉〈B−2〉

, (7.156)

with ft being the trapped particle fraction. For the standard tokamak test
configuration defined in Appendix F.3.2 the function ft is approximated
using Eq. (7.26). Here, BAS

0 ≡ B0 = b0 is assumed producing the averaged
quantities 〈B̂2〉 = (1− ε2)3/2 and 〈B̂−2〉 = (2 + 3ε2)/[2(1− ε2)2], respectively.
Thus,

fdt = 1− 2
√

1− ε2
2 + 3ε2

(1− ft) . (7.157)

The function I corresponds to the quantity J in Appendix F [see Eq. (F.45)].
After applying d/dχ = (1/ι-)d/dψ, 〈|∇ψ|〉d/dψ ≡ d/dr, % ≡ r, using Eqs.
(7.1)-(7.5) and by means of

Im(r) =
Lem1

ι-2〈|∇ψ|〉2
Ae1(r) +

Lem2

ι-2〈|∇ψ|〉2
Ae2(r) +

Lem3

ι-〈|∇ψ|〉
Ae3(r), (7.158)

for m = 1, 2 one may infer that

γ
′e,AS
mn = − τee

neρ2

Lemn
ι-2〈|∇ψ|〉2

, (7.159)

from which it follows that, by substituting Eq. (7.148),

γ
′e,AS
mn = −τee

τe

(
ρep
ρ

)2

〈B̂−2〉Ke
mn(fdt ). (7.160)
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The ratio of the collision times has to be replaced by Zeff , and the ratio of
the Larmor radii reads (

ρep
ρ

)2

=
b2

0

B2
p0

=
1− ε2

ι-2ε2
, (7.161)

where, for the standard tokamak case,

Bp0 = ι-
dψ

dr

b0

J
=

ι-ε√
1− ε2

b0, (7.162)

has been substituted (noting that J = B0R0

√
1− ε2). Therefore, the diffusion

coefficients in the collisionless limit become

γ
′e,AS
mn = −Zeff

ι-2

(2 + 3ε2)

2ε2(1− ε2)
Kemn(fdt ), for m,n = 1, 2. (7.163)

For arbitrary collisionality regimes Angioni and Sauter proposed for the
dimensionless transport coefficients the following expressions [38]

Ke11(fdt , νe∗) = He
11 (7.164)

Ke12(fdt , νe∗) = He
12 −

5

2
He

11 (7.165)

Ke22(fdt , νe∗) = He
22 − 5He

12 +
25

4
He

11, (7.166)

with

He
mn(fdt , νe∗) =

He(0)
mn (fdt , νe∗ = 0)

1 + amn(Z)
√
νef∗ + bmn(Z)νef∗

− dmn(Z)(fdt )3[1 + (fdt )6]νef∗
1 + cmn(Z)(fdt )3[1 + (fdt )6]νef∗

FPS, (7.167)

where FPS = 1− 1/(〈B2〉〈B−2〉), the collisionality parameter

νe∗ = 6.921 · 10−18 qRneZeff ln Λe

T 2
e ε

3/2
, (7.168)

where q is the safety factor, the density is given in m−3 and the temperature in
eV, respectively and νef∗ = νe∗/(1 + 7f 2

t ) is a rescaled collisionality parameter.
Here, Eq. (7.168) may be converted to

νe∗ =

√
2R0Zeff

ι-vteτeeε3/2
. (7.169)
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The coefficients He(0)
mn for m,n = 1, 2 are given by

He(0)
11 = Ke11(fdt ) (7.170)

He(0)
12 = Ke12(fdt ) +

5

2
Ke11(fdt ) (7.171)

He(0)
22 = Ke22(fdt ) + 5Ke12(fdt ) +

25

4
Ke11(fdt ), (7.172)

where the functions amn(Z), bmn(Z), cmn(Z) and dmn(Z) can be found in
Appendix B of Reference 38.

The calculation of the neoclassical conductivity and the bootstrap current has
been presented in Reference 61 where the flux surface averaged total parallel
current has been given by the relation

〈j‖B〉 = σneo〈E‖B〉 − I(χ)pe [Le31Ae1(χ) + Le32Ae2(χ)] , (7.173)

which can be rewritten as

−1

e
〈j‖B̂〉 =

σneoTe
e2
〈B̂2〉A3(r)

+
IneTe

eB0ι-〈|∇ψ|〉
[Le31Ae1(r) + Le32Ae2(r)] , (7.174)

yielding the dimensionless electron transport coefficients

γ
′AS
3n = − τee

nelcρ

IneTe
eB0ι-〈|∇ψ|〉

Le3n

= − J

2ι-〈|∇ψ|〉
Le3n

= −
√

1− ε2
2ι-ε

Le3n, for n = 1, 2, (7.175)

as well as

γ
′AS
33 = − τee

nel2c

σneoTe
e2
〈B̂2〉

= −σSp〈B̂2〉Teme

nee2τee2Te

σneo

σSp

= −1.96

2

〈B̂2〉
ZeffN(Zeff))

σneo

σSp

, (7.176)
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where

σSp = 1.9012 · 104 Te[eV]3/2

ZeffN(Zeff) ln Λe

[m−1Ω−1] (7.177)

= 1.96
nee

2τee
ZeffN(Zeff)me

, (7.178)

and N(Z) = 0.58 + 0.74/(0.76 + Z) has been applied, respectively. The
functions Le3n and the ratio σneo/σSp represent analytical fits to code results
(for details see Reference 61) and have the following form

Le31 = F31(X = f 31
teff) ≡

(
1 +

1.4

Z + 1

)
X − 1.9

Z + 1
X2

+
0.3

Z + 1
X3 +

0.2

Z + 1
X4, (7.179)

Le32 = F32 ee(X = f 32 ee
teff ) + F32 ei(Y = f 32 ei

teff ), (7.180)

with

F32 ee(X) =
0.05 + 0.62Z

Z(1 + 0.44Z)
(X −X4) +

X2 −X4 − 1.2(X3 −X4)

1 + 0.22Z

+
1.2

1 + 0.5Z
X4 (7.181)

F32 ei(Y ) = − 0.56 + 1.93Z

Z(1 + 0.44Z)
(Y − Y 4) +

4.95 [Y 2 − Y 4 − 0.55(Y 3 − Y 4)]

1 + 2.48Z

− 1.2

1 + 0.5Z
Y 4, (7.182)

and

σneo

σSp

= F33(X = f 33
teff) ≡ 1−

(
1 +

0.36

Z

)
X +

0.59

Z
X2 − 0.23

Z
X3, (7.183)

as well as

f 33
teff(νe∗) =

ft

1 + (0.55− 0.1ft)
√
νe∗ + 0.45(1− ft)νe∗/Z3/2

eff

(7.184)

f 31
teff(νe∗) =

ft
1 + (1− 0.1ft)

√
νe∗ + 0.5(1− ft)νe∗/Zeff

(7.185)

f 32 ee
teff (νe∗) =

ft

1 + 0.26(1− ft)
√
νe∗ + 0.18(1− 0.37ft)νe∗/

√
Zeff

(7.186)

f 32 ei
teff (νe∗) =

ft
1 + (1 + 0.6ft)

√
νe∗ + 0.85(1− 0.37ft)νe∗(1 + Zeff)

. (7.187)
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In the collisionless limit (νe∗ → 0), these functions reduce to the trapped
particle fraction ft [61], that is f 31

teff = f 32 ee
teff = f 32 ei

teff = f 33
teff = ft.

Finally, the transport matrix to be compared with NEO-2 results is obtained
upon a transformation according to Eqs. (7.50)-(7.55).

7.5 Numerical results

In this section, the dimensionless electron transport coefficients γjk are calcu-
lated for a large aspect ratio tokamak (ε = 0.05 and ι- = 0.52) with concentric
circular flux surfaces (see Appendix F).

The numerical values of the transport coefficients obtained from the analytical
models presented in the previous sections are valid in the collisionless limit
(νe∗ → 0) and for Zeff = 1 and are collected in Table 7.1 together with the NEO-
2 results. The NEO-2 results have been evaluated at the collisionality Lc/lc ≡
2πR0/(vteτee) = 10−8 using five Laguerre and four Legendre polynomials,
respectively. The computation accuracy of the transport coefficients improves
with both, grid resolution and (mainly) number of Laguerre polynomials in
modeling energy dependence.

Table 7.1: Transport matrix γejk in the collisionless limit: NEO-2 results vs.
analytical results presented in the literature (for Zeff = 1)

NEO-2 Bal Hir HH HHmod SA
γ11 366.56 311.74 310.48 370.06 324.20 312.15
γ12 304.12 337.17 337.17 413.59 356.64 337.85
γ21 340.31 337.17 337.17 413.59 356.64 337.85
γ22 839.48 805.78 829.66 879.18 810.17 809.04
−γ13 8.56 8.54 10.50 9.12 8.75
−γ31 8.56 8.54 8.52 10.50 9.12 8.75
−γ23 17.13 16.55 18.73 16.95 17.56
−γ32 16.97 16.55 16.46 18.73 16.95 17.56
−γ33 0.613 0.615 0.614 0.547 0.593 0.600

The NEO-2 results for the transport matrix are in very reasonable agreement
with results calculated by the formulas given in previous sections. The main
differences arise from the collision operator (Balescu, Hirshman) as well
as from using large aspect ratio expressions (Hinton and Hazeltine) and,
respectively, from the fact that the results have been fitted with respect to
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trapped particle fraction (that is to the aspect ratio), collisionality parameter
and effective charge (Sauter et al.).

The results for the transport coefficients as a function of the collisionality
parameter Lc/lc and for the effective charge number Zeff = 1, 2 and 4 are
shown in Chapter 8 (see Figures 8.1-8.6) noting that the relation between the
collisionality parameters is given by

νe∗ =

√
2R0Zeff

ι-vteτeeε3/2
=

Zeff√
2πι-ε3/2

Lc
lc
. (7.188)





Chapter 8

Computational results for a
standard tokamak

In this chapter the computational results for a standard tokamak with circular
cross section (see Appendix F) obtained by the NEO-2 code are presented.
It has to be noted that these results have meanwhile been published in the
following refereed journal articles:

• Recent progress in NEO-2 - A code for neoclassical transport computa-
tions based on field line tracing
W. Kernbichler, S. V. Kasilov, G. O. Leitold, V. V. Nemov and K. All-
maier, Plasma and Fusion Research 3, S1061 (2008)

• Generalized Spitzer Function with Finite Collisionality in Toroidal Plas-
mas
W. Kernbichler, S. V. Kasilov, G. O. Leitold, V. V. Nemov and N. B.
Marushchenko, Contrib. Plasma Phys. 50, 761 (2010)

The neoclassical electron transport coefficients are compared to the analytical
results in the axisymmetric limit obtained by Hinton and Hazeltine and by
Angioni and Sauter, respectively. The Hinton-Hazeltine results have been
calculated using a small mass-ratio approximation for the unlike-species colli-
sion operator and are valid for large aspect ratio and all collisionalities [60]
whereas the Angioni-Sauter results have been computed for all aspect ratios
and collisionalities applying a full linearized collision operator [38,61]. Fur-
thermore, the generalized Spitzer function taking into account finite plasma
collisionality is computed by NEO-2 and is compared to the collisionless
approximation computed by the SYNCH code [69].
At the beginning the drift kinetic equation (DKE) solver NEO-2 is briefly
described.

131
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8.1 NEO-2 code

The code NEO-2 is a solver for the DKE in the case of negligible small
E × B drift which is based on the method of field line tracing. Originally,
it was developed to compute monoenergetic transport coefficients (that is,
only the Lorentz collision operator was implemented) with the special aim of
good convergence in low collisionality regimes. This is accomplished through
adaptive level placement over the normalized magnetic moment η. With
this adaptive placement NEO-2 effectively resolves steep behavior of the
distribution function f at the trapped passing boundary. In this context
NEO-2 has been extensively benchmarked with DKES [70, 71] and various
Monte Carlo codes [26,72,73].

In addition, NEO-2 can also use the full linearized collision operator including
energy diffusion and momentum conserving integral response of the back-
ground particles. This has been managed by a transformation of DKE to a
set of coupled ordinary differential equations (see Chapter 3.1) with respect
to the parallel variable (distance counted along the field line) presenting
energy dependence of the distribution function in the form of an expansion
over associated Laguerre polynomials and discretizing dependence of the
expansion coefficients on the normalized magnetic moment on the adaptive
non-equidistant grid.

In NEO-2 the perpendicular (cross field) rotation of the plasma within the flux
surface (which is mainly in the poloidal direction), in particular the rotation
due to the radial electric field is ignored in the DKE. This limits its usage in
the computation of neoclassical transport data base entries for monoenergetic
transport coefficients. For ECCD computations, however, radial electric fields
play practically no role and therefore NEO-2 is not limited to certain regimes.
At the moment, a non-relativistic collision operator is used, but this is not an
intrinsic limitation and can be improved during further development.

Presently, the main limitation is the speed of the code which restricts practical
usage to tokamak problems. This limitation is caused by the stiffness of
the ODE set resulting from the discretization of the DKE over normalized
magnetic moment η and momentum module. Namely, the usual Runge-Kutta
ODE solver used up to now in NEO-2 needs an extremely small integration
step along the field line which is orders of magnitude smaller than the scale
of the solution. Partly such stiffness is present already in mono-energetic
computations due to the η-grid refinement in the trapped-passing boundary
layer (and transition layers between different classes of trapped particles in
the case of stellarators). This stiffness significantly increases in computations
with the full linearized collision operator because there one formally has to
solve simultaneously the problem for different energies (and, respectively,
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different collisionalities) using the same grid over η which results in excessive
grid density for low energies. This technical problem should be resolved
in future with implementation of an exponential integrator instead of the
usual ODE solver. An additional independent possibility to speed up the
computations is parallelization of the code. A parallel version of the code is
possible since the DKE is actually solved in NEO-2 on portions of the field
line (propagators) which are treated independently from each other and can
be distributed between the processors. Such independent solutions are then
linked together at the very end of the computation giving the final solution.
These improvements should make the code suitable also for computations of
the generalized Spitzer function in stellarators.

The code SYNCH [69] computes the generalized Spitzer function and its
derivatives in the long mean free path regime in general toroidal geometry
and all types of flux coordinates. Therefore it is suitable for tokamaks as
well as stellarators, only the magnetic field module B and the Jacobian

√
g

must be provided by the user. It is a fully relativistic code [it does not use
the “weakly relativistic” expansion over T/(mec

2)] that has been originally
developed for studies of passive cyclotron current drive in tokamaks [69] and
has recently been upgraded to general geometry. In the context of this work
SYNCH is used to compute the reference cases for the collisionless limit.

8.2 Neoclassical transport matrix

For a large aspect ratio tokamak with circular flux surfaces the coefficients γik
computed by NEO-2 are compared to the analytical results of References 38,60,
61. In particular, the dimensionless transport coefficients for the Hinton and
Hazeltine model [60], γHH

ij , are given by γHH
ij = Kijq

2ε
−3/2
t Zeff for i, j = 1, 2,

γHH
ij = Kijqε

−1/2
t /2 for i = 1, 2 and j = 3 or i = 3 and j = 1, 2,

γHH
33 =

K33ε
1/2
t − 〈B̂2〉

2Zeff

[
0.29 + 0.46 (1.08 + Zeff)−1] (8.1)

and the matrix Kij is defined by Eqs. (6.125) and (6.126) of Reference 60. Here
q is the safety factor and εt = r/R is the inverse aspect ratio. The results of the
comparison are presented in Figs. 8.1 to 8.6 for ι- = 1/q = 0.362 and εt = 0.075.
The results of NEO-2 are computed with associated Laguerre polynomials up
to fourth order and Legendre polynomials up to third order. For all coefficients
the dependence on collisionality as well as Zeff is well reproduced. The main
differences come from the finite toroidicity. Whereas NEO-2 does not assume
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smallness of the magnetic field modulation, theoretical approximations are
based on the expansion over εt. It should be noted that in NEO-2 all nine
transport coefficients are computed independently and Onsager symmetry
of these coefficients is used for the control of the computation accuracy
which improves with both, grid resolution and (mainly) number of Laguerre
polynomials in modeling energy dependence (see Figs. 8.10 to 8.12). For
the present computation violation of symmetries γ13 = γ31 and γ23 = γ32 is
around 1% and violation of symmetry γ12 = γ21 is around 10%.

Beside the full linearized collision operator, two different model operators
are used in Figs. 8.7 to 8.9 , namely, the mono-energetic collision model and
mono-energetic collision model with momentum recovery. Last two models
are obtained by putting in Eq. (3.26) Dmm′ = I

(`)
mm′ = 0 or only Dmm′ = 0,

respectively. In particular, the mono-energetic model here corresponds to the
most common mono-energetic approach where transport coefficients are given
by the convolution over energy of the results for the Lorentz model. It can be
seen that mono-energetic model overestimates particle diffusion coefficient γ11

while mono-energetic model with momentum recovery underestimates this
coefficient as compared to the full linearized collision model. The bootstrap
coefficient γ31, in turn, is underestimated by the mono-energetic model while
the mono-energetic model with momentum recovery overestimates it. Finally,
conductivity coefficient is well reproduced by the mono-energetic model while
the mono-energetic model with momentum recovery significantly overestimates
it. Differences between all three models are naturally reduced with higher Zeff .
Currently NEO-2 has been and is being used for the benchmarking of various
methods for the computation of mono-energetic transport coefficients and
bootstrap coefficient [72,74] as well as momentum correction techniques [73,
75].
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Figure 8.1: Results of NEO-2 with full linearized collision operator (F)
and analytical models of Ref. 60 (HH) and Refs. 38 and 61 (AS) for the
dimensionless diffusion coefficient γ11 at three values of the effective charge
Zeff .

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
0

10
1

10
2

10
3

10
4

L
c
/l

c

γ 12

 

 

F: Z
eff

=1

HH
AS
F: Z

eff
=2

HH
AS
F: Z

eff
=4

HH
AS

Figure 8.2: The same as in Fig.8.1 for γ12.
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Figure 8.3: The same as in Fig.8.1 for γ22.
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Figure 8.4: The same as in Fig.8.1 for −γ31.
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Figure 8.5: The same as in Fig.8.1 for −γ32.
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Figure 8.6: The same as in Fig.8.1 for −γ33.
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Figure 8.7: Dimensionless particle diffusion coefficient γ11 for the full linearized
collision operator (F), mono-energetic approach (L) and mono-energetic
approach with momentum recovery (M).
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Figure 8.8: The same as in Fig. 8.7 for the bootstrap coefficient −γ31
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Figure 8.9: The same as in Fig. 8.7 for the conductivity coefficient −γ33
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Figure 8.10: Onsager symmetry for the coefficients γ12 and γ21, respectively.
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Figure 8.11: Onsager symmetry for the coefficients −γ13 and −γ31, respec-
tively.
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Figure 8.12: Onsager symmetry for the coefficients −γ23 and −γ32, respec-
tively.
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8.3 Generalized Spitzer function

The resulting generalized Spitzer function has specific features which are
pertinent to the finite plasma collisionality [43, 76]. They are absent in
asymptotic (collisionless or highly collisional) regimes or in results drawn from
interpolation between asymptotic limits. These features have the potential to
improve the overall ECCD efficiency if one optimizes the microwave beam
launch scenarios accordingly.

To illustrate the difference between collisional and collisionless cases, the
generalized Spitzer function g and its derivatives ∂g/∂v⊥, ∂g/∂v‖ are presented
as functions of the pitch-angle parameter λ = v‖/v. All computations were
done for a circular tokamak (see Appendix F) with major radius R0 =
100 cm, minor radius r = 25 cm (A = 4), rotational transform ι- = 0.52,
electron density ne = 6.65 · 1013 cm−3, electron temperature Te = 1 keV.
These parameters result in collisionality 2πqR/(lSpε

3/2
t ) = 0.257. For NEO-2

computations the number of Laguerre polynomials was 6.
To highlight the different aspects of the influence of collisions on g, results
are presented for four different positions on the flux surface, namely Bmin

(outer side), Bmax (inner side), top and bottom. Velocities correspond ap-
proximately to the following important transport regimes: (i) Pfirsch-Schlüter
regime, v = 0.5vt (sub-thermal); (ii) plateau regime, v = vt (thermal); banana
regime, v = 2vt (intermediate); and deep banana regime, v = 3vt (fast). Here,
vt =

√
2Te/me is the thermal velocity. Overall one sees good convergence

to asymptotic limits and various collisional results which are mainly caused
by a combination of the magnetic mirroring force and collisional detrapping
processes. Since the adjoint generalized Spitzer function has a simple physical
meaning - this is the amount of parallel current produced by a point particle
source at given location in the momentum space - further on the function g
is discussed in terms of particle motion in the phase space.

Minimum B point: Figure 8.13 presents the transition from sub-thermal
to fast particles at the Bmin point. One can clearly observe how collisional
detrapping of particles results in current generation even from particles origi-
nally situated in the trapped region. These phenomenon gradually disappears
with increasing velocity and results finally converge to the collisionless limit.
Since the derivative of g with respect to the perpendicular velocity v⊥ is
most important for ECCD, examples for ∂g/∂v⊥ are given in the thermal
and intermediate velocity ranges, respectively, in Figure 8.14.

Maximum B point: Figure 8.15 shows a fundamental difference between
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Figure 8.13: Generalized Spitzer function, g, vs. pitch parameter, λ, at
the Bmin point for v = 0.5vt (top), v = vt (middle) and v = 3vt (bottom),
respectively. Results from NEO-2 (red) are compared to the collisionless limit
computed by SYNCH (blue).
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Figure 8.14: Perpendicular derivative of the generalized Spitzer function,
∂g/∂v⊥, vs. pitch parameter, λ, at the Bmin point for v = vt (top) and
v = 2vt (bottom), respectively. Results from NEO-2 (red) are compared to
the collisionless limit computed by SYNCH (blue).
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Figure 8.15: Generalized Spitzer function, g, vs. pitch parameter, λ, at
the Bmax point for v = 0.5vt (top), v = vt (middle) and v = 3vt (bottom),
respectively. Results from NEO-2 (red) are compared to the collisionless limit
computed by SYNCH (blue).
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collisional and collisionless cases in the range of small values of the pitch
parameter λ. In results from NEO-2 the functional dependence of g at small
pitch values is similar to a cubic root. This is in contrast to results in the col-
lisionless case where this dependence is closer to a cubic parabola. This rapid
increase of g from NEO-2 at small pitch values is connected with acceleration
of electrons by the magnetic mirror force. Very slow electrons starting from
the top of the hill at Bmax are accelerated by the magnetic mirroring force
towards Bmin. The velocity at Bmin is almost independent on differences
in small starting velocities, but is mainly determined by the change of the
magnetic potential energy thus resulting in roughly the same final values.
During this process of acceleration, collisions move half of those electrons
deeper into the passing region so that they are not decelerated back to the
starting velocity when approaching the field maximum for the next time, thus
producing a finite time averaged net current before their distribution becomes
a Maxwellian. Of course, this behavior is more pronounced in sub-thermal
and thermal regimes but it is still present in LMFP regimes in a small vicinity
of v‖ = 0. Further away from v‖ = 0, NEO-2 curves tend to a cubic parabola
similar to the collisionless approach (SYNCH). Because of the importance for
ECCD computations, again examples for ∂g/∂v⊥ are given in the thermal
and intermediate velocity ranges, respectively, in Figure 8.16.

Top and bottom points: It can be seen from Figure 8.17 that antisym-
metry of the generalized Spitzer function g pertinent to asymptotic regimes
and to magnetic field extrema is not existing anymore since particles starting
from the trapped region tend to produce the current flow in the direction of
the magnetic field minimum. The sign of this current depends on the position
of the source (the sign of such a current produced by a source at the top of
the flux surface is opposite to the sign of the current from a source at the
bottom). As pointed out in Reference 77, this feature allows to generate cur-
rents by waves with a symmetric spectrum introducing up-down asymmetry
of the microwave radiation. This behavior is again the result of the magnetic
mirroring force. Particles starting within the loss cone are accelerated (or
decelerated) by this force so that, independent on their initial velocity, all
of them finally have the same velocity sign at the magnetic field minimum
point. They, however, might not reach the next maximum as trapped ones
because they can be detrapped by collisions and will continue as passing ones,
thus producing a net time averaged current until their distribution becomes
a Maxwellian due to collisions. At higher velocities where electrons are in the
banana regime, such a behavior is preserved only for trapped electrons close to
the trapped passing boundary. Actually, the above feature is responsible also
for the bootstrap effect [77] where the source term (gradient drive) possesses
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Figure 8.16: Perpendicular derivative of the generalized Spitzer function,
∂g/∂v⊥, vs. pitch parameter, λ, at the Bmax point for v = vt (top) and
v = 2vt (bottom), respectively. Results from NEO-2 (red) are compared to
the collisionless limit computed by SYNCH (blue).
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Figure 8.17: Generalized Spitzer function, g, vs. pitch parameter, λ, at the
top (dashed) and bottom points (dotted) for v = 0.5vt (top), v = vt (middle)
and v = 2vt (bottom), respectively. Results from NEO-2 (red) are compared
to the collisionless limit computed by SYNCH (blue).
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Figure 8.18: Perpendicular derivative of the generalized Spitzer function,
∂g/∂v⊥, vs. pitch parameter, λ, at the top (dashed) and bottom points
(dotted) for v = vt (top) and v = 2vt (bottom), respectively. Results from
NEO-2 (red) are compared to the collisionless limit computed by SYNCH
(blue).
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Figure 8.19: Parallel derivative of the generalized Spitzer function, ∂g/∂v‖,
vs. pitch parameter, λ, at the top (dashed) and bottom points (dotted) for
v = vt (top) and v = 2vt (bottom), respectively. Results from NEO-2 (red)
are compared to the collisionless limit computed by SYNCH (blue).
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a natural up-down antisymmetry.

Formally, the loss of asymmetry of the Spitzer function in regimes with finite
plasma collisionality can be seen from Eq. (4.2) where the first term on the
left hand side (dynamic operator) and the second term (collision operator)
have different parity properties with respect to the parallel velocity. While
the collision operator conserves parity of the solution, the dynamic operator
changes parity to the opposite. The sum of these operators has no definite
parity which results in solutions without a definite parity. However, for either
very high or very low collisionality the dynamic operator is either small or
plays no role for the largest, bounce averaged part of the solution. As a result,
in these limiting cases the solution has the same parity as the right hand side
of Eq. (4.2), i.e. it is antisymmetric. At the same time, in a tokamak with
up-down symmetry the left hand side of Eq. (4.2) preserves exactly a more
general parity - parity with respect to simultaneous change of the sign of
parallel velocity and of the poloidal angle. This can be seen from Figure 8.17.
Such a behavior of the generalized Spitzer function g suggests a “naive”
recommendation for the choice between the upper and the lower deposition
points: One should choose the position of the source at the flux surface in
such a way that the desired direction of the electron flow velocity (which
determines the sign of parallel phase velocity of the microwaves in the case of
ECCD) at the position of the source is towards the magnetic field minimum.
In such a case the mirror force would serve to increase the current. However,
this recommendation would be correct for a beam-like source in velocity space
which does not change the sign. In the case of a ECCD source where there
is a change in sign (its velocity space integral is actually zero), mainly the
perpendicular derivative of g determines the effect, and, as it can be seen from
Figure 8.18, there is no general trend for this derivative. For slow particles
this trend is the same as for g but for fast particles the trend changes to the
opposite. Since the resonant line in velocity space goes through regions with
different values of the velocity module, the conclusion about the role of the
mirror force in such cases can be drawn only from direct calculations of the
ECCD current with a quasilinear source computed by a ray-tracing code.
(In Reference 77 where the basic idea of driving the current by waves with a
symmetric spectrum has been presented, a model expression for this source
has been used where the velocity dependence of the quasilinear diffusion
coefficient has been only due to the finite Larmor radius effect, while the
resonance condition has been omitted.)
These calculations must naturally include also the parallel derivative of g (see
Figure 8.19) which usually makes a smaller contribution than the perpen-
dicular one, but its role increases if the Ohkawa effect becomes significant.
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(There, the orientation of RF-diffusion lines with respect to this boundary
is of importance, and these lines cannot be truncated to v‖ = const lines.)
Such calculations with the help of a combination of the code NEO-2 and the
ray-tracing code TRAVIS have been started recently [40].





Chapter 9

Conclusion

In this work a detailed calculation of the moments of the full linearized
collision operator (collision matrix elements) has been presented. These
matrix elements are employed in the drift kinetic equation solver NEO-2
for the computation of the full neoclassical transport matrix and of the
generalized Spitzer function with finite collisionality in toroidal plasmas.

In order to check the accuracy the collision matrix elements have been applied
to calculate the collisional Spitzer conductivity. The results show good
agreement with the “exact” numerical results of Spitzer and Härm.

As an application of the matrix elements the NEO-2 code has been used
to evaluate the full electron transport matrix (nine coefficients) assuming
stationary ions for the standard tokamak with circular cross section. The
results are in good agreement with results of analytical theory widely used in
the literature. Furthermore, effects of simplifications of the linearized collision
model (e.g., reduction to a Lorentz model) have been studied in order to
provide a comparison with various momentum correction techniques used for
the computation of transport coefficients in stellarators. Contrary to DKE
solvers which use momentum correction techniques, the implementation of
the full collision operator in NEO-2 has been done directly at the level of
the drift kinetic equation. Thus, the NEO-2 code can calculate the complete
local solution along the magnetic field line.

Moreover, the NEO-2 code has been applied to compute the generalized
Spitzer function in the standard tokamak. This work has concentrated on
the basic features of the generalized Spitzer function which is one of the
main elements in computations of ECCD efficiency and total ECCD current
in confinement regimes with finite plasma collisionality. It has been found
that in regimes where the collisional detrapping time is comparable to the
bounce time, particle acceleration due to the magnetic mirroring force plays an
important role in the generation of plasma current from ECCD. In particular,
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due to this mirroring force, there is a significant difference between upper
and lower electron cyclotron resonance zones on a given flux surface in the
efficiency of current drive in given toroidal direction. In tokamaks, effects
of finite collisionality are important only in the plateau regime and at the
beginning of the LMFP regime. For stellarators however, these effects extend
further into the LMFP regime because the length of a trapped orbit becomes
rather large (many toroidal turns) when approaching the trapped-passing
boundary. The reflection points of such an orbit in a stellarator are close to
the position of the global magnetic field maximum which is located in one
point on the flux surface. In contrast, in a tokamak only one poloidal turn is
needed to connect field maxima resulting in much shorter trapped orbits.
The code NEO-2 turns out to be a valuable DKE-solver for ECCD problems
because of the unique feature that the full linearized collision operator can be
used locally. Thus the full 3D (4D) problem of local current drive efficiency
can be tackled in tokamaks (stellarators). At the moment however, usage
is only possible for tokamak problems due to limited speed of the code. A
substantial speed-up of the code is possible with improvements of the ODE-
solver and code parallelization. Such improvements are in development. Any
usage for stellarators is only possible after such a speed-up. At the moment,
such a first principle solver can be used to check approximate models and
identify improvement possibilities for ECCD efficiency. Thorough studies
including ray tracing simulations have to follow this study to provide a better
insight into the topic. For this purpose, the coupling of the kinetic equation
solver NEO-2 and ray-tracing code TRAVIS has been performed. Preliminary
results on this topic have been presented in Reference 40.



Appendix A

Complete set of orthonormal
functions

In transport theory polynomial expansions of the distribution function have
been widely used for the kinetic equation. The distribution function could be
expanded in any complete set of orthogonal functions, however, it turned out
that associated Laguerre polynomials [29] (also called Sonine polynomials) are
especially suited for transport theory problems (see, e.g., [22,78–80]). Below,
two sets of orthonormal functions used in this work, namely the test functions
ϕm as well as the Burnett functions, are briefly described. In the test function
basis only the radial (velocity dependent) part of the perturbation of the
distribution function is expanded, wheres in the Burnett basis the angular
(pitch-angle dependent) part is expanded as well.

A.1 ϕ-basis

The scalar product of arbitrary functions α(v) and β(v) is defined by the
equation

(α, β) ≡ 1

nsv2
ts

∞∫
0

dvv4fs0(v)α(v)β(v), (A.1)

which, upon introducing the normalized speed x = v/vts and substituting the
Maxwellian fs0(ψ, x) = ns/(π

3/2v3
ts)e

−x2
, can thus be rewritten as

(α, β) =
1

π3/2

∞∫
0

dxe−x
2

x4α(x)β(x). (A.2)
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The countable set of test functions {ϕm(x)} employed in this work to calculate
the collision matrix elements is defined by

ϕm(x) ≡ π3/4

√
hm

L(3/2)
m (x2), (A.3)

with radial index m = 0, 1, 2, . . ., and where L
(3/2)
m is an associated Laguerre

polynomial of order 3/2. The normalization factor hm = Γ(m+ 5/2)/(2m!)
has been chosen such that the scalar product of ϕm by ϕm′ is orthonormal,
that is

(ϕm, ϕm′) =
1

nsv2
ts

∞∫
0

dvv4fs0(x)ϕm(x)ϕm′(x)

=
1

nsv2
ts

∞∫
0

dvv4 ns
π3/2v3

ts

e−x
2 π3/2

√
hmhm′

L(3/2)
m (x2)L

(3/2)
m′ (x2)

=
1√

hmhm′

∞∫
0

dxe−x
2

x4L(3/2)
m (x2)L

(3/2)
m′ (x2)

= δmm′ , (A.4)

where the orthogonality of the associated Laguerre polynomials,

∞∫
0

dxe−x
2

x2`+2L(`+1/2)
m (x2)L

(`+1/2)
m′ (x2) =

Γ(`+m+ 3/2)

2m!
δmm′ , (A.5)

has been applied [47].
This set of test functions constitutes a complete set of functions (or basis) if
an arbitrary function G(λ, x) can be expressed in one and only one way in
terms of ϕm. Hence,

G(λ, x) =
∑
m

gm(λ)ϕm(x). (A.6)

From Eqs. (A.1) and (A.4) it follows that

(ϕm, G) =
1

nsv2
ts

∞∫
0

dvv4fs0ϕmG

=
1

nsv2
ts

∞∫
0

dvv4fs0ϕm
∑
m′

gm′ϕm′
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=
∑
m′

gm′
1

nsv2
ts

∞∫
0

dvv4fs0ϕmϕm′

=
∑
m′

gm′(ϕm, ϕm′)

=
∑
m′

gm′δmm′

= gm(λ) , (A.7)

that is, the expansion coefficient gm of G on ϕm is therefore equal to the
scalar product of G by ϕm.
The closure relation is obtained by replacing the components gm in Eq. (A.6)
by (ϕm, G),

G(x) =
∑
m

gmϕm(x)

=
∑
m

(ϕm, G)ϕm(x)

=
∑
m

1

nsv2
ts

∞∫
0

dv′v′4fs0(x′)ϕm(x′)G(x′)ϕm(x)

=
∑
m

v3
ts

ns

∞∫
0

dx′x′4fs0(x′)ϕm(x′)G(x′)ϕm(x)

=

∞∫
0

dx′x′4G(x′)
v3
ts

ns
fs0(x′)

∑
m

ϕm(x′)ϕm(x), (A.8)

where the λ dependence has been suppressed for clarity. From Eq. (A.8) the
closure relation can be deduced to be

v3
ts

ns
x′4fs0(x′)

∑
m

ϕm(x′)ϕm(x) ≡ δ(x− x′), (A.9)

where δ(x− x′) is Dirac’s delta function. This relation expresses the fact that
the set {ϕm(x)} constitutes a basis.

The collision matrix elements of the Coulomb operator Cab (see Appendix B)
are defined as follows,

(ϕm|Cab|ϕm′) ≡
1

nav2
ta

∞∫
0

dvv4ϕmCab[fa0(v)ϕm′(x)]. (A.10)
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A.2 Burnett basis

In kinetic theory an extensively used complete set of orthonormal functions is
the so-called Burnett basis (see, e.g., References 37,78,81–84). Generally, the

Burnett functions, B
(`)
n , are products of associated Laguerre polynomials and

spherical harmonics but for problems with azimuthal symmetry (which has
been assumed throughout this work) the spherical harmonics can be replaced
by Legendre polynomials. Thus, the Burnett functions are represented by

B(`)
n (λ, x) = x`L(`+1/2)

n (x2)P`(λ) , (A.11)

where the radial index n = 0, 1, 2, . . ., and the polar index ` = 0, 1, 2, . . .,
respectively. The Legendre polynomials P` form a set of orthogonal functions,
that is

1∫
−1

dλP`(λ)P`′(λ) =
2

2`+ 1
δ``′ . (A.12)

Upon introducing the factor

h(`)
n =

2

2`+ 1

Γ(`+ n+ 3/2)

2π3/2n!
, (A.13)

the normalized Burnett functions

b(`)
n =

B
(`)
n√
h

(`)
n

, (A.14)

allows the orthonormality relation to be expressed as

1

2πns

∫
d3v b(`)

n b
(`′)
n′ fs0 = δ``′δnn′ . (A.15)

Here, the scalar product is defined by

〈α|β〉 ≡ 1

2πns

∫
d3vfs0(v)α(v, λ)β(v, λ)

=
1

ns

1∫
−1

dλ

∞∫
0

dvv2fs0(v)α(v, λ)β(v, λ)

=
1

π3/2

1∫
−1

dλ

∞∫
0

dxe−x
2

x2α(x, λ)β(x, λ), (A.16)
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where the differential velocity space volume element d3v = v2dvdλdϕ has been
used. Combining the last two equations allows the orthonormality relation to
be rewritten as

〈b(`)
n |b

(`′)
n′ 〉 = δ``′δnn′ . (A.17)

For the case when integrations with respect to pitch-angle λ and to normalized
speed x can be performed independently it might be useful to factor the scalar
product 〈α|β〉 into a pitch-angle part and a component regarding normalized
speed. That is to say, providing that

α(x, λ) ≡ a(λ)A(x) (A.18)

β(x, λ) ≡ b(λ)B(x), (A.19)

the scalar product is thus given as

〈α|β〉 = 〈a|b〉λ〈A|B〉v, (A.20)

where the relations

〈a|b〉λ ≡
1

2π

∫
dΩab

=

1∫
−1

dλa(λ)b(λ), (A.21)

and

〈A|B〉v ≡
1

ns

∞∫
0

dvv2fs0(v)A(v)B(v) (A.22)

=
1

π3/2

∞∫
0

dxe−x
2

x2A(x)B(x), (A.23)

indicate the angular and radial scalar products, respectively. The expansion
of an arbitrary function Q(λ, x) on the Burnett basis is written as

Q(λ, x) =
∑
`,n

q(`)
n b(`)

n (λ, x), (A.24)

from which it follows, by inspecting Eq. (A.16) and making use of Eq. (A.17),
that

〈b(`)
n |Q〉 =

1

2πns

∫
d3 vb(`)

n (λ, x)Q(λ, x)fs0(x)
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=
1

2πns

∫
d3vb(`)

n fs0
∑
`′,n′

q
(`′)
n′ b

(`′)
n′ (λ, x)

=
∑
`′,n′

q
(`′)
n′

1

2πns

∫
d3vb(`)

n b
(`′)
n′ fs0

=
∑
`′,n′

q
(`′)
n′ 〈b

(`)
n |b

(`′)
n′ 〉

=
∑
`′,n′

q
(`′)
n′ δ``′δnn′

= q(`)
n , (A.25)

where the expansion coefficients q
(`)
n sometimes are called Burnett moments

[37]. Substituting the coefficients q
(`)
n = 〈b(`)

n |Q〉 into the expansion of function
Q,

Q(λ, x) =
∑
`,n

q(`)
n b(`)

n (λ, x)

=
∑
`,n

〈b(`)
n |Q〉b(`)

n (λ, x)

=
∑
`,n

1

ns

1∫
−1

dλ′
∞∫

0

dv′v′2fs0(x′)

×b(`)
n (λ′, x′)Q(λ′, x′)b(`)

n (λ, x)

=

1∫
−1

dλ′
∞∫

0

dx′x′2Q(λ′, x′)

×v
3
tsfs0(x′)

ns

∑
`,n

b(`)
n (λ′, x′)b(`)

n (λ, x), (A.26)

yields the closure relation for the Burnett function basis, namely

v3
tsfs0(x′)

ns

∑
`,n

b(`)
n (λ′, x′)b(`)

n (λ, x) =
1

x′2
δ(x− x′)δ(λ− λ′). (A.27)

The test functions ϕm can be expressed in terms of the Burnett functions
basis as

ϕm(x) =

1∫
−1

dλ
′

∞∫
0

dx′x′2ϕm(x′)
1

x′2
δ(x− x′)δ(λ− λ′)
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=

1∫
−1

dλ
′

∞∫
0

dx′x′2ϕm(x′)
v3
tsfs0(x′)

ns

∑
`,n

b(`)
n (λ′, x′)b(`)

n (λ, x)

=
∑
`,n

b(`)
n (λ, x)〈ϕm|b(`)

n 〉

=
∑
`,n

b
(`)
n√
h

(`)
n

〈P0|P`〉λ′〈ϕm|p(`)
n 〉v′

= 2
∑
n

B
(0)
n (x)

h
(0)
n

〈ϕm|p(0)
n 〉v′ , (A.28)

where Eqs. (A.21) and (A.22) along with Eq. (A.12) have been applied and

the abbreviation p
(`)
n ≡ x`L

(`+1/2)
n (x2) has been introduced. In Chap. 5.3.1 the

normalized distribution function appeared in terms of test functions ϕm(y)
in the form f̂(y, λ) ≡ fm(λ)ϕm(y), which can be transformed to the Burnett
basis via

f̂(y, λ) =

1∫
−1

dλ
′

∞∫
0

dy′y′2f̂(y′, λ′)
1

y′2
δ(y − y′)δ(λ− λ′)

=

1∫
−1

dλ
′

∞∫
0

dy′y′2f̂(y′, λ′)
v3
tbfb0(y′)

nb

∑
`′,n′

b
(`′)
n′ (y′, λ′)b

(`′)
n′ (y, λ)

=
∑
`′,n′

b
(`′)
n′ (y, λ)

1

nb

1∫
−1

dλ
′

∞∫
0

dv′v′2ϕm′(y
′)fm′(λ

′)fb0(y′)b
(`′)
n′ (y′, λ′)

=
∑
`′,n′

B
(`′)
n′ (y, λ)

h
(`′)
n′

〈fm′|P`′〉λ′〈ϕm′|p(`′)
n′ 〉v′ . (A.29)

Finally, the matrix elements of the Coulomb collision operator Cab (see Ap-
pendix B) in terms of Burnett functions are defined as follows,

〈b(`)
n |Cab|b

(`′)
n′ 〉 ≡

1

2πna

∫
d3vb(`)

n Cab
[
fa0(v)b

(`′)
n′

]
=

1

na

1∫
−1

dλ

∞∫
0

dvv2b(`)
n Cab

[
fa0(v)b

(`′)
n′

]
. (A.30)





Appendix B

Coulomb collision operator

In this Appendix some useful properties of the Coulomb collision operator
are reviewed. A more detailed description can be found in, e.g., References 30
and 57,58,85.

The Coulomb collision operator acting on particles of species a,

Ca =
∑
b

Cab, (B.1)

is a sum of contributions from collisions of the scattered particles (‘test
particles’) with the background particles (‘field particles’).

B.1 Landau form

The Landau form [86] of the Coulomb collision operator Cab describing the
effect of collisions of test particles a off field particles b can be represented as

Cab[fa, fb] =
Γab

ma

∂

∂v
·
∫

d3v′U(u) ·
[
fb(v

′)

ma

∂fa(v)

∂v
− fa(v)

mb

∂fb(v
′)

∂v′

]
, (B.2)

with Γab ≡ 2πe2
ae

2
b ln Λ, and where fa and fb denote the distribution functions

for the scattered and background species respectively [23, 58]. Here, U is the
so-called Landau (or scattering) tensor defined as

U(u) =
1

u

(
I− uu

u2

)
, (B.3)

with I being the unit dyadic and u = v− v′. The collision operator conserves
number of particles, momentum and energy [22,23,58], i.e.,∫

d3vCab = 0 (B.4)

163



164 APPENDIX B. COULOMB COLLISION OPERATOR

∫
d3vmavCab = −

∫
d3vmbvCba (B.5)∫

d3v
mav

2

2
Cab = −

∫
d3v

mbv
2

2
Cba. (B.6)

From Eq. (B.2) one can see that the operator has the form of a divergence
of a vector representing the flux in velocity space due to collisions between
particles [58,87,88],

Cab = −∇ · jab, (B.7)

with ∇ ≡ ∂/∂v being the divergence in velocity space and

jab =
Γab

ma

∫
d3v′U(u) ·

[
fa(v)

mb

∂fb(v
′)

∂v′
− fb(v

′)

ma

∂fa(v)

∂v

]
. (B.8)

The collision term is often expressed in a standard Fokker-Planck form

Cab =
∂

∂v
·
[

D · ∂f
∂v
− 1

m
Ff

]
, (B.9)

where D is the velocity space diffusion tensor and F is the force of dynamical
friction [23]. By comparing Eqs. (B.7) and (B.8) with Eq. (B.9) one can
identify the Fokker-Planck coefficients

Dab(fb) ≡
Γab

m2
a

∫
d3v′U(u)fb(v

′) (B.10)

and

Fab(fb) ≡
Γab

mb

∫
d3v′U(u) · ∂fb(v

′)

∂v′
, (B.11)

respectively. The particle flux density in velocity space can thus be rewritten
in the form

jab =
1

ma

Fabfa −Dab · ∇fa. (B.12)

B.2 RMJ form

The Landau form of the collision term is convenient only for analytical calcu-
lations. However, for numerical evaluation this operator is hardly manageable
[because of the Landau tensor, the derivatives with respect to velocity and in-
tegration over velocity of the background particles, see Eq. (B.8)]. A tractable
form is due to Rosenbluth, MacDonald and Judd (see Reference 89) who
recognized analogies with electrostatics and defined two scalar quantities
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(‘Rosenbluth potentials’) expressing the contributions of the background
species b to the diffusion tensor and friction force [23]. These potentials are
defined as

ha(v) ≡
∑
b

(
1 +

ma

mb

)∫
d3v′

fb(v
′)

u
(B.13)

g(v) ≡
∑
b

∫
d3v′ufb(v

′), (B.14)

and may be calculated by decomposing the background distribution function
fb in terms of, e.g., spherical harmonics [57] (see also Appendix C).
In the present work the more convenient notation of Trubnikov is used [58].
The so-called ‘Trubnikov potentials’ are defined as

ϕb(v) ≡ − 1

4π

∫
d3v′

fb(v
′)

u
(B.15)

ψb(v) ≡ − 1

8π

∫
d3v′ufb(v

′), (B.16)

and they are related to the Rosenbluth potentials by means of the equations

ha(v) = −4π
∑
b

(
1 +

ma

mb

)
ϕb(v) (B.17)

g(v) = −8π
∑
b

ψb(v). (B.18)

By virtue of the following properties of the Landau tensor,

U = ∇∇u (B.19)

∇ ·U = ∇2

u
, (B.20)

the diffusion tensor as well as the force of dynamical friction can be expressed
as

Dab = −Lab∇∇ψb (B.21)

and

Fab = −m
2
a

mb

Lab∇ϕb, (B.22)

respectively. Here, Lab is defined by

Lab ≡ 8π

m2
a

Γab =

(
4πeaeb
ma

)2

ln Λ. (B.23)
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To obtain Eq. (B.22), Eq. (B.11) has been integrated by parts and (∂/∂v′)·U =
−(∂/∂v) ·U has been used. Calculating the divergence of the diffusion tensor
and with the help of the vector identity ∇2a = ∇(∇ · a) −∇×∇× a one
can show that Fab and Dab are related to each other,

Fab =
m2
a

mb

∇ ·Dab. (B.24)

After substituting Eqs. (B.21) and (B.22) into Eq. (B.9) the collision operator
in terms of Trubnikov potentials reads

Cab[fa, fb] = Lab∇ ·
[
ma

mb

(∇ϕb) fa − (∇∇ψb) · ∇fa
]
. (B.25)

Hence, by employing these potentials the integro-differential operator in
Eq. (B.2) is converted into a differential operator when the Trubnikov poten-
tials are explicitly provided [90].
It follows from the identities

∇2u =
2

u
(B.26)

∇2 1

u
= −4πδ(u), (B.27)

that the Trubnikov potentials satisfy the following differential equations [58]

∇2ψb = ϕb (B.28)

∇2ϕb = fb, (B.29)

which reflects the similarity between these functionals to the electrostatic
potential (Poisson’s equation).

B.3 Linearized operator

When a plasma is not far from thermodynamic equilibrium the distribution
function of a particles species s is nearly Maxwellian and may be expanded as

fs(v) = fs0(v) + fs1(v) , (B.30)

where the perturbation fs1 is assumed to be relatively small, that is fs1/fs0 ∼
ε� 1. Hence the collision operator can be expressed as

Cab[fa, fb] = Cab[fa0, fb0] + Clab[fa1, fb1] + Cab[fa1, fb1], (B.31)
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with Clab representing the linearized operator

Clab[fa1, fb1] ≡ Cab[fa1, fb0] + Cab[fa0, fb1]. (B.32)

The first term on the RHS of Eq. (B.31) vanishes for the case when both
distribution functions are Maxwellians at the same temperature Ta = Tb = T ,
whereas the third term, Cab[fa1, fb1], indicates the nonlinear part of the collision
operator which is of order ε2 and thus will be neglected.
The first term on the RHS of Eq. (B.32) is a differential operator acting upon
fa1 (‘test particle part’) while the second term is an integral operator acting
upon fb1 (‘field particle part’). The linearized collision operator obeys the
same conservation laws as the full operator (see, e.g., Reference 85).

B.4 Collision operator in curvilinear coordi-

nates

In the following chapter the expression for the Coulomb collision operator will
be represented in covariant form valid for arbitrary curvilinear velocity-space
coordinates (ξ1, ξ2, ξ3) (see, e.g., References 23 and 89).
From Eq. (B.7) and after recalling the expression for the divergence of a vector
field in arbitrary curvilinear coordinates [91] the covariant representation of
the Coulomb collision operator can be written as

Cab = − 1
√
g

∂

∂ξi
(√

ggikjabk
)
, (B.33)

with the following components for collision flux [see Eq. (B.12)],

jabk =
fa
ma

F ab
k −

(
Dab · ∇fa

)
k
. (B.34)

By means of Eqs. (B.21) and (B.22) the covariant components on the RHS of
Eq. (B.34) are

F ab
k = −m

2
a

mb

Lab
∂ϕb
∂ξk

(B.35)(
Dab · ∇fa

)
k

= Dab
klg

lm ∂fa
∂ξm

, (B.36)

with

Dab
kl = Dab

lk = −Lab
(
∂2ψb
∂ξk∂ξl

− Γnkl
∂ψb
∂ξn

)
. (B.37)



168 APPENDIX B. COULOMB COLLISION OPERATOR

Here, Γ is the Christoffel symbol of the second kind [91] defined by

Γjik ≡
1

2
gjn
[
∂gni
∂ξk

+
∂gnk
∂ξi
− ∂gik
∂ξn

]
. (B.38)

The Christoffel symbols are symmetric in the lower two indices, Γjik = Γjki. As
usual, a sum over repeated indices is implied unless otherwise stated.

B.4.1 Spherical velocity-space coordinates

As an application of the results provided in the previous section the linearized
collision operator will be derived in spherical velocity-space coordinates.
The metric tensor gij of this orthogonal coordinate system (ξ1, ξ2, ξ3) =
(v, λ, ϕ) is diagonal, with

g11 = 1, g22 =
v2

(1− λ2)
, g33 = v2(1− λ2), (B.39)

where λ = v‖/v = cos θ is the cosine of the pitch-angle and ϕ is the gyrophase
angle, respectively, and with

gik =
1

gik
. (B.40)

From Eq. (B.39) one immediately obtains the Jacobian of this coordinate
system, that is to say

√
g = v2. According to Eqs. (B.38)-(B.40) the only

nonvanishing Christoffel symbols are

Γ1
22 = − v

(1− λ2)
, Γ1

33 = −v(1− λ2), (B.41)

Γ2
12 = Γ2

21 =
1

v
, Γ2

22 =
λ

(1− λ2)
, Γ2

33 = λ(1− λ2), (B.42)

Γ3
13 = Γ3

31 =
1

v
, Γ3

23 = Γ3
32 = − λ

(1− λ2)
. (B.43)

B.4.2 Test particle part

The test particle operator (differential part), Cab[fa1, fb0], describing the
collisions of an arbitrary species a with a Maxwellian background species b
is now calculated in spherical velocity-space coordinates. The distribution
function for the background particles is given by the Maxwellian

fb(v) ≡ fb0(v) =
nb

π3/2v3
tb

e−(v/vtb)2

. (B.44)
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As a consequence of Eq. (B.44) the Trubnikov potentials only depend on the
magnitude of v, that is

ϕb(v) = ϕb(v) ≡ ϕb0 (B.45)

ψb(v) = ψb(v) ≡ ψb0. (B.46)

From Eqs. (B.34) one obtains the collisional particle flux

jabk =
fa1

ma

F ab
k −

(
Dab · ∇fa1

)
k
, (B.47)

wherein the covariant components of the diffusion tensor (in terms of ψb0) in
(v, λ, ϕ) coordinates [see Eq. (B.37)] can be written as

Dab
kl = Dab

lk = −Lab
(
∂2ψb0
∂ξk∂ξl

− Γnkl
∂ψb0
∂ξn

)
. (B.48)

Applying the results of Section B.4.1 the particular components become

Dab
vv = −Lab

(
∂2ψb0
∂v2

− Γn11

∂ψb0
∂ξn

)
(B.49)

= −Lab∂
2ψb0
∂v2

=
v2

2
νab‖ (v), (B.50)

Dab
vλ = Dab

λv = −Lab
(
∂2ψb0
∂v∂λ

− Γn12

∂ψb0
∂ξn

)
= 0, (B.51)

Dab
vϕ = Dab

ϕv = −Lab
(
∂2ψb0
∂v∂ϕ

− Γn13

∂ψb0
∂ξn

)
= 0, (B.52)

Dab
λλ = −Lab

(
∂2ψb0
∂λ2

− Γn22

∂ψb0
∂ξn

)
(B.53)

= −Lab
(
−Γ1

22

∂ψb0
∂v

)
(B.54)

= −Lab v

(1− λ2)

∂ψb0
∂v

=
v4

2(1− λ2)
νabD (v), (B.55)

Dab
λϕ = Dab

ϕλ = −Lab
(
∂2ψb0
∂λ∂ϕ

− Γn23

∂ψb0
∂ξn

)
= 0, (B.56)

as well as

Dab
ϕϕ = −Lab

(
∂2ψb0
∂ϕ2

− Γn33

∂ψb0
∂ξn

)
(B.57)

= −Lab
(
−Γ1

33

∂ψb0
∂v

)
(B.58)

= −Labv(1− λ2)
∂ψb0
∂v

=
v4

2
(1− λ2)νabD (v) , (B.59)



170 APPENDIX B. COULOMB COLLISION OPERATOR

where the parallel velocity diffusion frequency

νab‖ (v) ≡ −2Lab

v2

∂2ψb0
∂v2

, (B.60)

and the deflection frequency

νabD (v) ≡ −2Lab

v3

∂ψb0
∂v

(B.61)

have been introduced [22], respectively. Using the expression for the physical
components of a second-order tensor,

D̂ik =
√
giigkkDik , no summation (B.62)

as well as Eqs. (B.39)-(B.40) the diffusion tensor for collisions of arbitrary
particles with a Maxwellian background is given by

D̂ab
ik =

v2

2

 νab‖ 0 0

0 νabD 0
0 0 νabD

 . (B.63)

The covariant components of the force of dynamical friction (in terms of ϕb0),

F ab
k = −m

2
a

mb

Lab
∂ϕb0
∂ξk

, (B.64)

in spherical velocity-space coordinates are

F ab
v = −m

2
a

mb

Lab
∂ϕb0
∂v

(B.65)

= − m2
a

(ma +mb)
vνabs (v) (B.66)

F ab
λ = −m

2
a

mb

Lab
∂ϕb0
∂λ

= 0 (B.67)

F ab
ϕ = −m

2
a

mb

Lab
∂ϕb0
∂ϕ

= 0 , (B.68)

with

νabs (v) ≡ Lab
(

1 +
ma

mb

)
1

v

∂ϕb0
∂v

(B.69)

being the slowing down frequency [22]. The physical components can be

calculated using F̂k =
√
gkkFk (no summation) from which it follows that

F̂k = − m2
a

(ma +mb)
v
(
νabs , 0, 0

)
. (B.70)
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The Trubnikov potentials for a Maxwellian distribution function will be
evaluated in Appendix C.3. Here only the results are given,

∂ϕb0
∂v

=
nb

2πv2
tb

G(v/vtb) (B.71)

∂ψb0
∂v

=
nb
8π

[G(v/vtb)− φ(v/vtb)] (B.72)

∂2ψb0
∂v2

= − nb
4π

G(v/vtb)

v
, (B.73)

where φ denotes the error function and G is the Chandrasekhar function (for
details see Appendix C.3), which allows one to express the three collision
frequencies, Eqs. (B.60), (B.61) and (B.69), in conventional form

νab‖ (v) = 2ν̂ab
G(v/vtb)

(v/vta)3
(B.74)

νabD (v) = ν̂ab
φ(v/vtb)−G(v/vtb)

(v/vta)3
(B.75)

νabs (v) = ν̂ab
2Ta
Tb

(
1 +

mb

ma

)
G(v/vtb)

(v/vta)
, (B.76)

with

ν̂ab =
4πnbe

2
ae

2
b

m2
av

3
ta

ln Λ (B.77)

being the basic collision frequency [22].

By means of Eq. (B.36) the covariant components of the dot product between
the diffusion tensor Dab and the gradient of the distribution function fa1 are
given as(

Dab · ∇fa1

)
k

= Dab
klg

lm∂fa1

∂ξm

= Dab
k1g

1m∂fa1

∂ξm
+ Dab

k2g
2m∂fa1

∂ξm
+ Dab

k3g
3m∂fa1

∂ξm

= Dab
k1g

11∂fa1

∂ξ1
+ Dab

k2g
22∂fa1

∂ξ2
+ Dab

k3g
33∂fa1

∂ξ3
, (B.78)

where in the last equation an orthogonal coordinate system has been assumed.
Therefore, from this equation and with the results obtained above it follows
that (

Dab · ∇fa1

)
v

= Dvv
∂fa1

∂v
(B.79)
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(
Dab · ∇fa1

)
λ

= Dλλ
(1− λ2)

v2

∂fa1

∂λ
(B.80)(

Dab · ∇fa1

)
ϕ

=
Dϕϕ

v2(1− λ2)

∂fa1

∂ϕ
. (B.81)

Recalling Eq. (B.47),

jabk =
fa1

ma

F ab
k −

(
Dab · ∇fa1

)
k
, (B.82)

and upon inserting Eqs. (B.66) and (B.79) the covariant v-component of
collision flux jab can be written down as

jabv =
fa1

ma

F ab
v −

(
Dab · ∇fa1

)
v

= −fa1

ma

m2
a

(ma +mb)
vνabs − Dvv

∂fa1

∂v

= − ma

(ma +mb)
v νabs fa1 −

v2

2
νab‖

∂fa1

∂v
. (B.83)

Similarly, the covariant λ- and ϕ-components can now be evaluated yielding

jabλ =
fa1

ma

F ab
λ −

(
Dab · ∇fa1

)
λ

= −Dλλ
(1− λ2)

v2

∂fa1

∂λ

= −v
2

2
νabD

∂fa1

∂λ
, (B.84)

and

jabϕ =
fa1

ma

F ab
ϕ −

(
Dab · ∇fa1

)
ϕ

= − Dϕϕ

v2(1− λ2)

∂fa1

∂ϕ

= −v
2

2
νabD

∂fa1

∂ϕ
, (B.85)

respectively. Substituting the expressions for jabk in spherical velocity-space
coordinates into Eq. (B.33) one finds

Cab[fa1, fb0] = − 1
√
g

∂

∂ξi
(√

ggikjabk
)
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= − 1
√
g

[
∂

∂ξ1

(√
gg1kjabk

)
+

∂

∂ξ2

(√
gg2kjabk

)
+

∂

∂ξ3

(√
gg3kjabk

)]
= − 1

√
g

[
∂

∂ξ1

(√
gg11jab1

)
+

∂

∂ξ2

(√
gg22jab2

)
+

∂

∂ξ3

(√
gg33jab3

)]

= − 1

v2

[
∂

∂v

(
v2jabv

)
+

∂

∂λ

(
(1− λ2)jabλ

)
+

∂

∂ϕ

(
jabϕ

1− λ2

)]

=
1

v2

∂

∂v

[
v3

(
ma

ma +mb

νabs fa1 +
v

2
νab‖

∂fa1

∂v

)]
+
νabD
2

∂

∂λ

(
(1− λ2)

∂fa1

∂λ

)
+

νabD
2(1− λ2)

∂2fa1

∂ϕ2
. (B.86)

Upon introducing the pitch-angle scattering (or Lorentz) operator

L ≡ 1

2

[
∂

∂λ
(1− λ2)

∂

∂λ
+

1

(1− λ2)

∂2

∂ϕ2

]
, (B.87)

the resulting expression for the test particle part of the linearized Coulomb
collision operator finally reads

Cab[fa1, fb0] = νabDL[fa1]+
1

v2

∂

∂v

[
v3

(
ma

ma+mb

νabs fa1 +
v

2
νab‖

∂fa1

∂v

)]
. (B.88)

B.4.3 Field particle part

The field particle operator (integral part) Cab[fa0, fb1] includes the fact that the
test particles also change the state of the background species (field particles)
and thus involves the Trubnikov potentials of the non-Maxwellian part of the
distribution function [22, 37]. Here, the test particle species a is described by
a Maxwellian distribution

fa(v) ≡ fa0(v) =
na

π3/2v3
ta

e−(v/vta)2

, (B.89)

which, according to Eq. (B.36), leads to the following expressions

(D · ∇fa0)k = Dklg
lm∂fa0

∂ξm

= Dkl

(
gl1
∂fa0

∂ξ1
+ gl2

∂fa0

∂ξ2
+ gl3

∂fa0

∂ξ3

)
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= Dk1g
11∂fa0

∂ξ1

= Dkv
∂fa0

∂v
= −Dkv

2v

v2
ta

fa0, (B.90)

wherein the covariant components of the diffusion tensor in terms of ψb1 [see
Eq. (B.37)] are given as

Dab
kv = −Lab

(
∂2ψb1
∂ξk∂v

− Γnk1

∂ψb1
∂ξn

)
. (B.91)

Thus, in spherical velocity-space coordinates the particular covariant compo-
nents of Eq. (B.91) become

Dab
vv = −Lab

(
∂2ψb1
∂v2

− Γn11

∂ψb1
∂ξn

)
= −Lab∂

2ψb1
∂v2

(B.92)

Dab
λv = −Lab

(
∂2ψb1
∂λ∂v

− Γn21

∂ψb1
∂ξn

)
= −Lab

(
∂2ψb1
∂λ∂v

− 1

v

∂ψb1
∂λ

)
(B.93)

Dab
ϕv = −Lab

(
∂2ψb1
∂ϕ∂v

− Γn31

∂ψb1
∂ξn

)
= −Lab

(
∂2ψb1
∂ϕ∂v

− 1

v

∂ψb1
∂ϕ

)
, (B.94)

where again the results of Chapter B.4.1 have been applied. Using Eq. (B.90)
as well as Eqs. (B.92)-(B.94) one obtains

(D · ∇fa0)v = Lab
∂2ψb1
∂v2

2v

v2
ta

fa0 (B.95)

(D · ∇fa0)λ = Lab
(
∂2ψb1
∂λ∂v

− 1

v

∂ψb1
∂λ

)
2v

v2
ta

fa0 (B.96)

(D · ∇fa0)ϕ = Lab
(
∂2ψb1
∂ϕ∂v

− 1

v

∂ψb1
∂ϕ

)
2v

v2
ta

fa0. (B.97)

The covariant components of the force of dynamical friction in terms of the
non-Maxwellian part of the first Trubnikov potential ϕb is evaluated from
Eq. (B.35),

F ab
k = −m

2
a

mb

Lab
∂ϕb1
∂ξk

, (B.98)
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from which it follows that

F ab
v = −m

2
a

mb

Lab
∂ϕb1
∂v

(B.99)

F ab
λ = −m

2
a

mb

Lab
∂ϕb1
∂λ

(B.100)

F ab
ϕ = −m

2
a

mb

Lab
∂ϕb1
∂ϕ

. (B.101)

Using Eqs. (B.95)-(B.97) and (B.99)-(B.101) and bearing Eq. (B.34) in mind
the covariant components of collision flux in (v, λ, ϕ) coordinates become

jabv =
fa0

ma

F ab
v − (D · ∇fa0)v

= −Labfa0

(
ma

mb

∂ϕb1
∂v

+
2v

v2
ta

∂2ψb1
∂v2

)
(B.102)

jabλ =
fa0

ma

F ab
λ − (D · ∇fa0)λ

= −Labfa0

[
ma

mb

∂ϕb1
∂λ

+
2v

v2
ta

(
∂2ψb1
∂λ∂v

− 1

v

∂ψb1
∂λ

)]
(B.103)

jabϕ =
fa0

ma

F ab
ϕ − (D · ∇fa0)ϕ

= −Labfa0

[
ma

mb

∂ϕb1
∂ϕ

+
2v

v2
ta

(
∂2ψb1
∂ϕ∂v

− 1

v

∂ψb1
∂ϕ

)]
. (B.104)

These components can now be substituted into Eq. (B.33) yielding

Cab[fa0, fb1] = − 1
√
g

∂

∂ξi
(√

ggikjabk
)

= − 1
√
g

[
∂

∂ξ1

(√
gg1kjabk

)
+

∂

∂ξ2

(√
gg2kjabk

)
+

∂

∂ξ3

(√
gg3kjabk

)]
= − 1

√
g

[
∂

∂ξ1

(√
gg11jab1

)
+

∂

∂ξ2

(√
gg22jab2

)
+

∂

∂ξ3

(√
gg33jab3

)]
= − 1

v2

[
∂

∂v

(
v2jabv

)
+

∂

∂λ

(
(1− λ2)jabλ

)
+

∂

∂ϕ

(
jabϕ

1− λ2

)]

= Labfa0

[
−ma

mb

2v

v2
ta

∂ϕb1
∂v

+
ma

mbv2

∂

∂v

(
v2∂ϕb1

∂v

)
− 4v2

v4
ta

∂2ψb1
∂v2

+
1

v2

∂

∂v

(
2v3

v2
ta

∂2ψb1
∂v2

)
+

ma

mbv2

∂

∂λ

(
1−λ2

) ∂ϕb1
∂λ
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+
2v

v2
tav

2

∂

∂v

∂

∂λ

(
1−λ2

) ∂ψb1
∂λ
− 2

v2
tav

2

∂

∂λ

(
1−λ2

) ∂ψb1
∂λ

+
ma

mbv2(1−λ2)

∂2ϕb1
∂ϕ2

+
2v

v2
tav

2(1−λ2)

∂

∂v

∂2ψb1
∂ϕ2

− 2

v2
tav

2(1−λ2)

∂2ψb1
∂ϕ2

]
. (B.105)

Remembering the fact that the Trubnikov potentials satisfy Poisson’s equation
[see Eqs. (B.28) and (B.29)] and applying the Laplacian in spherical velocity-
space coordinates to these equations one gets

fb1 = ∇2ϕb1

=
1

v2

[
∂

∂v

(
v2∂ϕb1

∂v

)
+

∂

∂λ
(1−λ2)

∂ϕb1
∂λ

+
1

(1−λ2)

∂2ϕb1
∂ϕ2

]
(B.106)

ϕb1 = ∇2ψb1

=
1

v2

[
∂

∂v

(
v2∂ψb1

∂v

)
+

∂

∂λ
(1−λ2)

∂ψb1
∂λ

+
1

(1−λ2)

∂2ψb1
∂ϕ2

]
. (B.107)

Utilizing Eqs. (B.106) and (B.107) and after elementary manipulation of
Eq. (B.105) the field particle part of the linearized Coulomb collision operator
eventually becomes

Cab[fa0, fb1] = Labfa0

[
ma

mb

fb1 +
2

v2
ta

ϕb1

+

(
1− ma

mb

)
2v

v2
ta

∂ϕb1
∂v
− 4v2

v4
ta

∂2ψb1
∂v2

]
. (B.108)



Appendix C

Trubnikov potentials for a
non-Maxwellian distribution
function fb1 in the Burnett
basis

This appendix considers the evaluation of the Trubnikov potentials of the
non-Maxwellian distribution function of the background particles in the
Burnett function basis [81]. Due to Trubnikov [58] (see Appendix B.2 and
also Reference 89) these functionals are represented as follows

ϕb1(v) = − 1

4π

∫
d3v′

fb1(v′)

u(v,v′)
(C.1)

ψb1(v) = − 1

8π

∫
d3v′u(v,v′)fb1(v′), (C.2)

where the vector u = v − v′ has been defined [22].

The expansion of the perturbation of the background distribution function
fb1 in terms of Burnett functions B

(`)
n = y`L

(`+1/2)
n (y2)P`(λ) can be written as

fb1(y) = fb0(y)
∞∑
n=0

∞∑
`=0

β(`)
n B(`)

n (y), (C.3)

with the Maxwellian

fb0(y) =
nb

π3/2v3
tb

e−y
2

, (C.4)

177
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and where the normalized velocity y = v/vtb has been used. When the
Eq. (C.3) is substituted into Eqs. (C.1) and (C.2) one gets

ϕb1(y) =
∞∑
n=0

∞∑
`=0

β(`)
n Φ(`)

n (y) (C.5)

ψb1(y) =
∞∑
n=0

∞∑
`=0

β(`)
n Ψ(`)

n (y), (C.6)

where the definitions

Φ(`)
n ≡ − 1

4πvtb

∫
d3v′

fb0(y′)

u(y,y′)
B(`)
n (y′) (C.7)

Ψ(`)
n ≡ −vtb

8π

∫
d3v′u(y,y′)fb0(y′)B(`)

n (y′) (C.8)

have been introduced.
As in conventional potential theory the functions |y− y′|−1 and |y− y′| may
be expanded as a superposition of spherical harmonics which can be replaced
by Legendre polynomials if azimuthal symmetry is assumed. Therefore, one
has (see, e.g., Reference 92)

u−1 =
∞∑
k=0

yk<
yk+1

>

Pk(λ)Pk(λ
′), (C.9)

where y< (y>) is the smaller (larger) of |y| and |y′|. In Appendix D the
calculation of |y − y′| is shown in detail yielding the result

u =
∞∑
k=0

κ(k) (y<, y>)Pk(λ)Pk(λ
′), (C.10)

where

κ(k) (y<, y>) =
1

(2k + 3)

yk+2
<

yk+1
>

− 1

(2k − 1)

yk<
yk−1

>

. (C.11)

C.1 ϕb1

Taking into account the volume element in spherical velocity-space coordinates,
d3v = v2dvdλdϕ, Eq. (C.7) can be rewritten as

Φ(`)
n (y) = − 1

4πvtb

∫ 2π

0

dϕ′
∫ 1

−1

dλ′
∫ ∞

0

dv′v′2
1

u(y,y′)
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× y′`L(`+1/2)
n (y′2)P`(λ

′)
nb

π3/2v3
tb

e−y
′2

= − nb
2π3/2vtb

∫ 1

−1

dλ′P`(λ
′)

∫ ∞
0

dy′e−y
′2
y′`+2

× L(`+1/2)
n (y′2)u−1. (C.12)

Substituting Eq. (C.9) into Eq. (C.12) one obtains

Φ(`)
n (y) = − nb

2π3/2vtb

∫ ∞
0

dy′e−y
′2
y′`+2L(`+1/2)

n (y′2)

×
∞∑
k=0

yk<
yk+1

>

Pk(λ)

∫ 1

−1

dλ′ Pk(λ
′)P`(λ

′) (C.13)

= −nbP`(λ)

2π3/2vtb

2

2`+ 1

∫ ∞
0

dy′e−y
′2
y′`+2L(`+1/2)

n (y′2)
y`<
y`+1

>

, (C.14)

where the orthogonality of the Legendre polynomials [29]

1∫
−1

dλP`(λ)P`′(λ) =
2

2`+ 1
δ``′ (C.15)

has been used. Therefore, Eq. (C.14) can be written as

Φ(`)
n (y) = −nbP`(λ)

2π3/2vtb
ϕ̂(`)
n (y), (C.16)

where the dimensionless quantity

ϕ̂(`)
n =

1

(`+ 1/2)

[
1

y`+1

∫ y

0

dy′e−y
′2
y′2`+2L(`+1/2)

n (y′2)

+ y`
∫ ∞
y

dy′e−y
′2
y′L(`+1/2)

n (y′2)

]
(C.17)

remains to be calculated. In carrying out this last equation one may utilize
the results of Reference 49. The following integrals have been obtained1,∫

dte−ttαL(α)
n (t) =


γ(α + 1, t) for n = 0

1

n
e−ttα+1L

(α+1)
n−1 (t) for n ≥ 1

(C.18)

1with the help of the formulas
http://functions.wolfram.com/07.03.21.0008.01
http://functions.wolfram.com/07.21.16.0001.01
http://functions.wolfram.com/07.21.27.0001.01
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and ∫
dte−tL(α)

n (t) = −e−tL(α−1)
n (t), (C.19)

where γ is the incomplete gamma function. Applying these integrals to
Eq. (C.17) yields for n = 0

ϕ̂
(`)
0 =

γ(`+ 1/2, y2)

2y`+1
(C.20)

∂ϕ̂
(`)
0

∂y
= e−y

2

y`−1 − (`+ 1)

2

γ(`+ 1/2, y2)

y`+2
, (C.21)

and for n ≥ 1

ϕ̂(`)
n =

1

2n
e−y

2

y`L
(`+1/2)
n−1 (y2) (C.22)

∂ϕ̂
(`)
n

∂y
= e−y

2

y`−1

[
L(`−1/2)
n (y2)− (`+ 1)

2n
L

(`+1/2)
n−1 (y2)

]
= 2nϕ̂(`−1)

n − (`+ 1)

y
ϕ̂(`)
n , (C.23)

respectively. Using Eqs. (C.20) and (C.22), Eq. (C.21) can be rewritten to
give

∂ϕ̂
(`)
0

∂y
=

2

y
ϕ̂

(`)
1 −

(`+ 1)

y
ϕ̂

(`)
0 , (C.24)

where ϕ̂
(`−1)
1 = ϕ̂

(`)
1 /y has been applied.

Due to the fact that the incomplete gamma function as well as the asso-
ciated Laguerre polynomials might be expressed in terms of the confluent
hypergeometric function M(a, b, z) [47] (also called Kummer’s function), that
is

γ(α, z) =
zα

α
e−zM(1, α + 1, z) (C.25)

and

L(α)
n (z) =

(
n+ α

n

)
M(−n, α + 1, z), (C.26)

with the binomial coefficient(
n+ α

n

)
=

Γ(n+ α + 1)

n!Γ(α + 1)
, (C.27)

the dimensionless part of the first Trubnikov potential can also be presented
as

ϕ̂(`)
n =

Γ(n+ `+ 1/2)

2n!Γ(`+ 3/2)
y`e−y

2

M(1− n, `+ 3/2, y2) for n ≥ 0. (C.28)
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Hence, one finally obtains for the general solution of the first Trubnikov
potential in terms of Burnett functions the following result

Φ(`)
n = − nbP`

4π3/2vtb

Γ(n+ `+ 1/2)

n!Γ(`+ 3/2)
y`e−y

2

M(1− n, `+ 3/2, y2). (C.29)

For n ≥ 1, this equation may also be expressed as Φ
(`)
n = −v2

tbfb0B
(`)
n−1/(4n).

From the recurrence relations and differential properties for the confluent
hypergeometric function one can derive corresponding expressions for the
quantity ϕ̂

(`)
n . After introducing the abbreviation

c(`)
n ≡

Γ(n+ `+ 1/2)

2n!Γ(`+ 3/2)
, (C.30)

one may express Eq. (C.28) as

ϕ̂(`)
n = c(`)

n y
`e−y

2

M(1− n, `+ 3/2, y2), (C.31)

from which one can calculate the first derivative of ϕ̂
(`)
n with respect to y

yielding

y
∂ϕ̂

(`)
n

∂y
= yc(`)

n

[
∂

∂y

(
y`e−y

2
)
M(1− n, `+ 3/2, y2)

+ y`e−y
2 ∂

∂y
M(1− n, `+ 3/2, y2)

]
= c(`)

n y
`e−y

2 {(
`− 2y2

)
M(1− n, `+ 3/2, y2)

−2(n− 1)[M(2− n, `+ 3/2, y2)−M(1− n, `+ 3/2, y2)]
}

=
(
`− 2y2

)
ϕ̂(`)
n −

(n+`−1/2)

n
2(n− 1)ϕ̂

(`)
n−1 + 2(n− 1)ϕ̂(`)

n

= (2n+ `− 2− 2y2)ϕ̂(`)
n −

(n− 1)

n
(2n+ 2`− 1)ϕ̂

(`)
n−1, (C.32)

where the relations

y
d

dy
M(a, b, y2) = 2y2 d

dy2
M(a, b, y2)

= 2aM(a+ 1, b, y2)− 2aM(a, b, y2) (C.33)

(see, e.g., Reference 47) and, obtained from Eq. (C.30),

c(`)
n =

(n+ `− 1/2)

n
c

(`)
n−1 (C.34)
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have been applied. The recurrence relation [47]

aM(a+ 1, b, z) = (b− a)M(a− 1, b, z) + (2a− b+ z)M(a, b, z) (C.35)

yields

(n+`+1/2)M(−n, `+ 3/2, y2) = (2n+`−1/2−y2)M(1− n, `+ 3/2, y2)

−(n− 1)M(2− n, `+ 3/2, y2) (C.36)

from which one obtains upon multiplication of Eq. (C.36) by c
(`)
n y`e−y

2
(for

n ≥ 1)

(n+ 1)ϕ̂
(`)
n+1 =(2n+`−1/2−y2)ϕ̂(`)

n −
(n−1)

n
(n+`−1/2)ϕ̂

(`)
n−1. (C.37)

Substitution of Eq. (C.37) into Eq. (C.32) gives the result

y
∂ϕ̂

(`)
n

∂y
= −(2n+ `+ 1)ϕ̂(`)

n + 2(n+ 1)ϕ̂
(`)
n+1 for n ≥ 0. (C.38)

A relation with respect to the angular parameter ` can be calculated from
Eq. (C.31) together with

c(`−1)
n =

(`+ 1/2)

(n+ `− 1/2)
c(`)
n (C.39)

and Eq. (C.34), as well as the following recurrence formula for the Kummer
function [47],

(b− 1)M(a, b− 1, z) = aM(a+ 1, b, z)− (a+ 1− b)M(a, b, z). (C.40)

One arrives at the expression

yϕ̂(`−1)
n = ϕ̂(`)

n −
(n− 1)

n
ϕ̂

(`)
n−1 for n ≥ 1. (C.41)

Moreover, additional recurrence relations for the dimensionless first Trubnikov
potential can be derived from the recurrence relations (see Eqs. 13.4.1-13.4.7
in Reference 47) for the confluent hypergeometric function M(a, b, z). These
relations are as follows:
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yϕ̂(`)
n = (n+ `− 1/2)ϕ̂(`−1)

n − (n+ 1)ϕ̂
(`−1)
n+1 (C.42)

yϕ̂(`+1)
n = −(n+ `− 1/2)yϕ̂(`−1)

n + (`+ 1/2 + y2)ϕ̂(`)
n (C.43)

(n+ 1)ϕ̂
(`)
n+1 = (n+ `− 1/2)yϕ̂(`−1)

n + (n− y2)ϕ̂(`)
n (C.44)

(n+ 1)yϕ̂
(`−1)
n+1 = (`+ 1/2− y2)ϕ̂(`)

n −
(n− 1)

n
yϕ̂

(`+1)
n−1 (C.45)

yϕ̂(`+1)
n = (1− n+ y2)ϕ̂(`)

n +
(n− 1)

n
(n+ `− 1/2)ϕ̂

(`)
n−1 (C.46)

yϕ̂(`+1)
n = (`+ 1/2)ϕ̂(`)

n − (n+ 1)yϕ̂
(`−1)
n+1 . (C.47)

C.2 ψb1

According to Eq. (C.8) one obtains for the second Trubnikov potential

Ψ(`)
n (y) = −vtb

8π

∫ 2π

0

dϕ′
∫ 1

−1

dλ′
∫ ∞

0

dv′v′2u(y,y′)

× y′`L(`+1/2)
n (y′2)P`(λ

′)
nb

π3/2v3
tb

e−y
′2

= − nbvtb
4π3/2

∫ 1

−1

dλ′ P`(λ
′)

∫ ∞
0

dy′e−y
′2
y′`+2

×L(`+1/2)
n (y′2)u. (C.48)

After substituting Eq. (C.10) into Eq. (C.48) it follows that

Ψ(`)
n = − nbvtb

4π3/2

∫ ∞
0

dy′e−y
′2
y′`+2L(`+1/2)

n (y′2)

×
∞∑
k=0

κ(k)Pk(λ)

∫ 1

−1

dλ′ P`(λ
′)Pk(λ

′)

= − nbvtb
4π3/2

P`(λ)
2

2`+ 1

∫ ∞
0

dy′e−y
′2
y′`+2L(`+1/2)

n (y′2)κ(`), (C.49)

where Eq. (C.15) has been used. Hence, one may write

Ψ(`)
n (y) = −nbvtbP`(λ)

4π3/2
ψ̂(`)
n (y), (C.50)
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where the dimensionless quantity

ψ̂(`)
n =

1

2(`+ 1/2)(`+ 3/2)

[
1

y`+1

∫ y

0

dy′e−y
′2
y′2`+4L(`+1/2)

n (y′2)

+ y`+2

∫ ∞
y

dy′e−y
′2
y′L(`+1/2)

n (y′2)

]
− 1

2(`− 1/2)(`+ 1/2)

[
1

y`−1

∫ y

0

dy′e−y
′2
y′2`+2L(`+1/2)

n (y′2)

+ y`
∫ ∞
y

dy′e−y
′2
y′3L(`+1/2)

n (y′2)

]
, (C.51)

has been defined. This expression can be evaluated by recalling Eqs. (C.18)
and (C.19), using [29]

L(α)
n (t) = L(α+1)

n (t)− L(α+1)
n−1 (t), (C.52)

performing an integration by parts and upon applying the recurrence relation
for the incomplete gamma function [47]

γ(a+ 1, z) = aγ(a, z)− zae−z (C.53)

and further functional relations for the Laguerre polynomials [29]. One finally
obtains for n = 0,

ψ̂
(`)
0 =

1

4

[
γ(`+ 1/2, y2)

y`+1
− γ(`− 1/2, y2)

y`−1

]
(C.54)

∂2ψ̂
(`)
0

∂y2
=

(`+ 1)(`+ 2)

4

γ(`+ 1/2, y2)

y`+3

−`(`− 1)

4

γ(`− 1/2, y2)

y`+1
− e−y2

y`−2, (C.55)

for n = 1,

ψ̂
(`)
1 = −γ(`+ 1/2, y2)

4y`+1
(C.56)

∂2ψ̂
(`)
1

∂y2
= −(`+1)(`+2)

4

γ(`+1/2, y2)

y`+3
+ e−y

2 (
y`−2 + y`

)
, (C.57)

and, finally, for n ≥ 2

ψ̂(`)
n = − 1

4n(n− 1)
e−y

2

y`L
(`+1/2)
n−2 (y2) (C.58)

∂2ψ̂
(`)
n

∂y2
= e−y

2

y`−2

[
−(`+ 1)(`+ 2)

4n(n− 1)
L

(`+1/2)
n−2 (y2)

+
(2`+ 1)

2n
L

(`−1/2)
n−1 (y2)− L(`−3/2)

n (y2)

]
. (C.59)
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Similar to the calculation of the function ϕ̂
(`)
n the quantity ψ̂

(`)
n can also be

cast to a form which is valid for arbitrary n. Utilizing the equations [47]

M(1, b, z) = (b− 1)
ez

zb−1
γ(b− 1, z) (C.60)

M(2, b, z) = M(1, b, z) + z
∂

∂z
M(1, b, z)

= (b− 1)M(1, b− 1, z)− (b− 2)M(1, b, z), (C.61)

where the relation

z
d

dz
M(a, b, z) = (b− 1)M(a, b− 1, z)− (b− 1)M(a, b, z) (C.62)

has been applied [47, Eq. 13.4.13], the dimensionless part of the second
Trubnikov potential can be presented as

ψ̂(`)
n = −Γ(n+ `− 1/2)

4n!Γ(`+ 3/2)
y`e−y

2

M(2− n, `+ 3/2, y2) for n ≥ 0, (C.63)

from which one can infer that

ψ̂(`)
n = − 1

2n
ϕ̂

(`)
n−1 for n ≥ 1, (C.64)

where Eq. (C.28) has been used. With the help of Eq. (C.41) one can find an

additional representation for ψ̂
(`)
n ,

2(n− 1)ψ̂(`)
n = yϕ̂(`−1)

n − ϕ̂(`)
n for n 6= 1, (C.65)

from which one easily obtains the case for n = 0,

ψ̂
(`)
0 =

1

2

[
ϕ̂

(`)
0 − y ϕ̂

(`−1)
0

]
. (C.66)

Of course, the last equation could have also been derived from Eq. (C.54)

and, furthermore, the mode ϕ̂
(`−1)
0 might be evaluated from Eq. (C.44) by

setting the lower index n equal to zero.

Using Eqs. (C.50) and (C.63) it follows that the general solution for the
second Trubnikov potential in terms of Burnett functions may be written as

Ψ(`)
n (y) =

nbvtbP`(λ)

16π3/2

Γ(n+ `− 1/2)

n!Γ(`+ 3/2)
y`e−y

2

M(2− n, `+ 3/2, y2). (C.67)

For n ≥ 2, Eq. (C.67) can also be presented in the compact form Ψ
(`)
n =

v4
tbfb0B

(`)
n−2/[16n(n− 1)].
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The derivatives of ψ̂
(`)
n with respect to the normalized speed y expressed

in terms of the function ϕ̂
(`)
n readily follow from Eqs. (C.64) and (C.38),

respectively, giving rise to

−2n
∂ψ̂

(`)
n

∂y
=

∂ϕ̂
(`)
n−1

∂y

=
1

y

[
2nϕ̂(`)

n − (2n+ `− 1)ϕ̂
(`)
n−1

]
, (C.68)

and

−2n
∂2ψ̂

(`)
n

∂y2
= − 1

y2

[
2nϕ̂(`)

n − (2n+ `− 1)ϕ̂
(`)
n−1

]
+

1

y2

[
2ny

∂ϕ̂
(`)
n

∂y
− (2n+ `− 1)y

∂ϕ̂
(`)
n−1

∂y

]
., (C.69)

and upon inserting of Eq. (C.68) into Eq. (C.69) it follows that

y2∂
2ψ̂

(`)
n

∂y2
= ϕ̂(`)

n −
(2n+ `− 1)

2n
ϕ̂

(`)
n−1 −

[
y
∂ϕ̂

(`)
n

∂y
− (2n+ `− 1)

2n
y
∂ϕ̂

(`)
n−1

∂y

]

= ϕ̂(`)
n −

(2n+ `− 1)

2n
ϕ̂

(`)
n−1 −

[
2(n+ 1)ϕ̂

(`)
n+1 − (2n+ `+ 1)ϕ̂(`)

n

]
+

(2n+ `− 1)

2n

[
2nϕ̂(`)

n − (2n+ `− 1)ϕ̂
(`)
n−1

]
. (C.70)

Hence, Eq. (C.70) can be simplified to give

y2∂
2ψ̂

(`)
n

∂y2
= −2(n+ 1)ϕ̂

(`)
n+1 + (4n+ 2`+ 1)ϕ̂(`)

n

−(2n+ `− 1)

2n
(2n+ `)ϕ̂

(`)
n−1 for n ≥ 1. (C.71)

The case n = 0 may be computed with the help of Eq. (C.55) yielding

y2∂
2ψ̂

(`)
0

∂y2
=

(`+ 1)(`+ 2)

2
ϕ̂

(`)
0 −

`(`− 1)

2
yϕ̂

(`−1)
0 − 2ϕ̂

(`)
1 . (C.72)

C.3 Trubnikov potentials for a Maxwellian

distribution function

For the case when the field particles are in thermodynamic equilibrium
(Maxwellian background) the corresponding Trubnikov potentials may be
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calculated from Eqs. (C.29) and (C.67), respectively, by setting the parameters

n and ` equal to zero (and β0
0=1). Thus, for the functional ϕb0 ≡ Φ

(0)
0 one

obtains
ϕb0(y) = − nb

2π3/2vtb
ϕ̂

(0)
0 (y), (C.73)

with

ϕ̂
(0)
0 =

Γ(1/2)

2Γ(3/2)
e−y

2

M(1, 3/2, y2)

=
1

2y
γ(1/2, y2), (C.74)

where Eq. (C.25) has been used and where γ(α, z) is the incomplete gamma
function. Utilizing γ(1/2, y2) =

√
πφ(y), where φ denotes the error func-

tion [47] one arrives at the expression

ϕb0(y) = − nb
4πvtb

φ(y)

y
. (C.75)

The first derivative of the quantity ϕb0 with respect to y follows immediately
from the last equation, that is

∂ϕb0
∂y

= − nb
4πvtb

∂

∂y

[
φ(y)

y

]
= − nb

4πvtb

∂

∂y

(
yφ′ − φ
y2

)
. (C.76)

Recalling the definition of the Chandrasekhar function, G ≡ (φ− yφ′)/(2y2),
Eq. (C.76) finally yields

∂ϕb0
∂y

=
nb

2πvtb
G(y). (C.77)

The second Trubnikov potential, ψb0 ≡ Ψ
(0)
0 , can be calculated in a similar

way by using Eq. (C.63). It follows that

ψb0(y) = − nbvtb
4π3/2

ψ̂
(0)
0 (y), (C.78)

with

ψ̂
(0)
0 = −Γ(−1/2)

4Γ(3/2)
e−y

2

M(2, 3/2, y2)

= − 1

4y

[
y2γ(−1/2, y2)− γ(1/2, y2)

]
=

1

2

[√
πyφ(y) + e−y

2

+

√
π

2

φ(y)

y

]
. (C.79)
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Applying Eqs. (C.60), (C.61) and (C.53) and again γ(1/2, y2) =
√
πφ(y) gives

ψb0(v) = − nbvtb
8π3/2

[
e−y

2

+

√
π

2

φ(y)

y
+
√
πyφ(y)

]
= −nbvtb

8π

[
φ′(y)

2
+
φ(y)

2y
+ yφ(y)

]
, (C.80)

where φ′ ≡ dφ/dy = 2e−y
2
/
√
π has been used.

The first derivative of ψb0 with respect to normalized speed is readily obtained
from Eq. (C.80),

∂ψb0
∂y

= −nbvtb
8π

∂

∂y

[
φ′

2
+

φ

2y
+ yφ

]
= −nbvtb

8π

[
φ′′

2
+

(yφ′ − φ)

2y2
+ φ+ yφ′

]
=

nbvtb
8π

[G(y)− φ(y)] , (C.81)

where φ′′ = −2yφ′ has been substituted. From Eq. (C.81) and the following
relation for the derivative of the Chandrasekhar function G with respect to y,

G′(y) ≡ dG(y)

dy
= φ′(y)− 2G(y)

y
, (C.82)

one gets
∂2ψb0
∂y2

=
nbvtb
8π

∂

∂y
[G(y)− φ(y)] = −nbvtb

4π

G(y)

y
. (C.83)

The functions ∂ϕb0/∂y, ∂ψb0/∂y and ∂2ψb0/∂y
2 appear during the derivation

of the test particle collision operator Cab(fa1, fb0) and are closely related to the
three basic collision frequencies, namely the slowing down, the deflection and
the parallel velocity diffusion frequency, respectively. A detailed description
of the corresponding relationships has been given in Appendix (B.4.2).



Appendix D

Expansion of |v − v′| in
Legendre polynomials

In this Appendix the expansion of the absolute value of the relative velocity,
|v − v′|, of colliding particles in Legendre polynomials is shown. The cal-
culation utilizes the result for the corresponding expansion of the quantity
|v− v′|−1, which may be found in any textbook on electrodynamics (see, e.g.,
Reference 92).

The function u ≡ |v−v′| is expanded in terms of Legendre polynomials Pk as

u(α) =
∞∑
k=0

akPk(α), (D.1)

where α ≡ cos γ, and γ is the angle between the vectors v and v′. The
expansion coefficients are given by

ak =
2k + 1

2

∫ 1

−1

dαu(α)Pk(α) =
2k + 1

2

∫ 1

−1

dα
u2

u
Pk(α), (D.2)

wherein the function u2 can be calculated to give

u2 = v2 + v′2 − 2vv′ cos γ. (D.3)

In Eq. (D.2) the representation of the quantity 1/u in terms of Legendre
polynomials is expressed as [92]

1

u
=
∞∑
k=0

vk<
vk+1

>

Pk(α) , (D.4)
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where v< (v>) is the smaller (larger) of |v| and |v′|. Substituting Eqs. (D.3)
and (D.4) into Eq. (D.2) yields

ak =
2k + 1

2

∞∑
k′=0

vk
′

<

vk′+1
>

∫ 1

−1

dαPk′(α)
(
v2

< + v2
> − 2v<v>α

)
Pk(α). (D.5)

By virtue of the orthogonality of the Legendre polynomials [29],∫ 1

−1

dαPk′(α)Pk(α) =
2

2k + 1
δk′k (D.6)

as well as the fact that the following integral vanishes unless k′ = k ± 1 [92],

∫ 1

−1

dααPk′(α)Pk(α) =


2 (k + 1)

(2k + 1) (2k + 3)
for k′ = k + 1

2k

(2k − 1) (2k + 1)
for k′ = k − 1

(D.7)

one arrives at the following result for the expansion coefficients,

ak =
vk<
vk+1

>

(
v2

< + v2
>

)
− vk+1

<

vk+2
>

2v<v>

k + 1

2k + 3
− vk−1

<

vk>
2v<v>

k

2k − 1

=
vk+2

<

vk+1
>

(
1− 2k + 2

2k + 3

)
+

vk<
vk−1

>

(
1− 2k

2k − 1

)
=

vk+2
<

vk+1
>

1

(2k + 3)
− vk<
vk−1

>

1

(2k − 1)
. (D.8)

The angle γ can be expressed in terms of the spherical coordinates (θ, ϕ) and
(θ′, ϕ′), respectively, by the formula (the geometry is shown in Figure D.1)

cos γ =
v · v′

|v||v′|
= cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′). (D.9)

The addition theorem for spherical harmonics [92] is a generalization of the
last equation and states that

Pk(cos γ) = Pk(cos θ)Pk(cos θ′)

+ 2
k∑

m=1

(k −m)!

(k +m)!
Pm
k (cos θ)Pm

k (cos θ′) cos [m (ϕ− ϕ′)] ,(D.10)

where Pm
k are called the associated Legendre functions [29].
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Figure D.1: Coordinates for the addition theorem for spherical harmonics.

In evaluating the Trubnikov potentials (see Appendix C) the functions u−1

and u might be replaced with u−1 and u, respectively, where the overbar
denotes the average over (ϕ − ϕ′) in spherical coordinates [82]. Thus, the
desired expansions become

u−1 =
∞∑
k=0

vk<
vk+1

>

Pk(cos θ)Pk(cos θ′) , (D.11)

and

u =
∞∑
k=0

[
1

(2k + 3)

vk+2
<

vk+1
>

− 1

(2k − 1)

vk<
vk−1

>

]
Pk(cos θ)Pk(cos θ′). (D.12)





Appendix E

Braginskii matrix elements

In this appendix the Braginskii matrix elements [79] of the linearized Cou-
lomb collision operator in terms of the so-called Burnett functions [81] are
evaluated.
In contrast to earlier works [79, 80, 82] where the calculations were based
upon the use of a generating function technique the method which is adopted
here calculates directly the moments of the collision operator. Moreover, the
obtained matrix elements are valid for arbitrary mass and temperature ratios.
The results are compared to results given in References 79, 80, and 82 as well
as to the results presented in Reference 90, which have also been obtained
without using a generating function technique.

According to Braginskii [79] integrals of the form∫
d3vB(`)

m Cab
[
fa0B

(`)
m′ , fb0

]
(E.1)∫

d3vB(`)
m Cab

[
fa0, B

(`)
m′fb0

]
(E.2)

are called matrix elements, where the quantities

B(`)
m (x, λ) ≡ x`L(`+1/2)

m (x2)P`(λ) (E.3)

denote the Burnett functions. Here, x = v/vta, y = v/vtb = γabx, γab = vta/vtb,
and λ = v‖/v.

E.1 Linearized collision operator

When the gyrophase averaged guiding-center distribution functions of the
test and field particles are assumed to be close to Maxwellian one can write

fa = fa0 + fa1 (E.4)
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fb = fb0 + fb1, (E.5)

with fa0, and fb0 being Maxwellians and fa1, and fb1 representing small
perturbations (that is f1 � f0) it is convenient to approximate the full
Coulomb collision operator by its linearized form

Cab[fa1, fb1] ≈ Cab[fa0, fb0] + Cab[fa1, fb0] + Cab[fa0, fb1], (E.6)

in which the first term on the right-hand side of the last equation vanishes
in the equal temperature case. The second term defines the test particle (or
differential) part of the collision operator

Cab[fa1, fb0] = νabDL[fa1] +
1

v2

∂

∂v

[
v3

(
ma

ma +mb

νabs fa1 +
v

2
νab‖

∂fa1

∂v

)]
, (E.7)

in which L represents the pitch-angle scattering operator (for the case when
the gyroangle ϕ can be ignored)

L ≡ 1

2

∂

∂λ
(1− λ2)

∂

∂λ
, (E.8)

and the third term in Eq. (E.6) denotes the field particle (or integral) operator

Cab[fa0, fb1] =
3nae

−x2

τabnb

[
ma

mb

fb1 +
2

v2
ta

ϕb1

+
2y

v2
ta

(
1− ma

mb

)
∂ϕb1
∂y
− 4y2

v4
ta

∂2ψb1
∂y2

]
, (E.9)

with the Trubnikov potentials ϕb1 and ψb1 being functionals of the field particle
distribution fb1 (see Appendix C).

The following conservation laws [85, 93] of the collision operator will be used
to derive corresponding properties for the matrix elements.

The particle conservation is written as∫
d3vCab [fa1, fb0] =

∫
d3vCab [fa0, fb1] = 0, (E.10)

the momentum conservation reads∫
d3vmavCab [fa1, fb0] = −

∫
d3vmbvCba [fb0, fa1] , (E.11)
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and, finally, the energy conservation is expressed as∫
d3v

mav
2

2
Cab [fa1, fb0] = −

∫
d3v

mbv
2

2
Cba [fb0, fa1] . (E.12)

Furthermore, for equal species temperatures the differential and integral parts
of the collision operator are self-adjoint [85,93], that is∫

d3v
ga1

fa0

Cab [fa1, fb0] =

∫
d3v

fa1

fa0

Cab [ga1, fb0] , (E.13)∫
d3v

ga1

fa0

Cab [fa0, fb1] =

∫
d3v

fb1
fb0
Cba [fb0, ga1] . (E.14)

E.2 Test particle part

The matrix elements of the differential part of the linearized collision operator
are defined by

M
ab,(`)
mm′ ≡

τab
na

∫
d3vB(`)

m (x, λ)Cab
[
fa0(x)B

(`)
m′ (x, λ), fb0(y)

]
. (E.15)

From Eq. (E.13) it follows that

M
ab,(`)
mm′ = M

ab,(`)
m′m , for Ta = Tb. (E.16)

Introducing the volume element in spherical velocity-space coordinates, d3v =
v2dvdλdϕ (see Appendix B.4.1), it follows that

∫
d3v = 2πv3

ta

1∫
−1

dλ

∞∫
0

dxx2 (E.17)

and one obtains from Eq. (E.15)

M
ab,(`)
mm′ =

τab
na

2πv3
ta

1∫
−1

dλ

∞∫
0

dxx`+2L(`+1/2)
m P`Cab[fa0x

`L
(`+1/2)
m′ P`, fb0]

≡ ν
ab,(`)
mm′ +D

ab,(`)
mm′ . (E.18)

The first part in Eq. (E.18) is related to the pitch-angle scattering operator
whereas the second part corresponds to the energy scattering term of the
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differential part of Cab [see, Eq. (E.7)]. Taking into account that the Lorentz
operator satisfies

L[P`(λ)] = −1

2
`(`+ 1)P`(λ), (E.19)

it follows that

ν
ab,(`)
mm′ =

τab
na

2πv3
ta

1∫
−1

dλ

∞∫
0

dxx`+2L(`+1/2)
m P`ν

ab
DL[fa0x

`L
(`+1/2)
m′ P`]

=
τab
na

2πv3
ta

1∫
−1

dλP`

∞∫
0

dxx`+2L(`+1/2)
m

3
√
π

4τab

[φ(y)−G(y)]

x3

×nae
−x2

π3/2v3
ta

x`L
(`+1/2)
m′ L[P`]

= −3`(`+1)

2(2`+1)

∞∫
0

dxe−x
2

x2`−1L(`+1/2)
m L

(`+1/2)
m′ [φ(y)−G(y)], (E.20)

where the deflection frequency [22]

νabD (v) =
3
√
π

4τab

[φ(y)−G(y)]

x3
(E.21)

has been inserted and where the orthogonality relation of Legendre polynomi-
als [29]

1∫
−1

dλP`(λ)P`′(λ) =
2

2`+ 1
δ``′ (E.22)

has been applied. After replacing the Laguerre polynomials by its series
representation (see, e.g., [29])

L(α)
n (z) =

n∑
j=0

(−1)j

j!

(
n+ α

n− j

)
zj, (E.23)

one obtains

ν
ab,(`)
mm′ = −3`(`+ 1)

2(2`+ 1)

m∑
j=0

m′∑
k=0

S
(`),jk
mm′

∞∫
0

dxe−x
2

x2(j+k+`)−1[φ(y)−G(y)], (E.24)

wherein

S
(`),jk
mm′ =

(−1)j+k

j!k!

(
m+ `+ 1/2

m− j

)(
m′ + `+ 1/2

m′−k

)
. (E.25)
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In evaluating Eq. (E.24) one must perform integrals of the form

∞∫
0

dxe−x
2

xα−1φ(y) =
1

γα

∞∫
0

dye−y
2/γ2

yα−1 2y√
π
e−y

2

M(1, 3/2, y2)

=
2√
πγα

∞∫
0

dye−y
2(1+1/γ2)yαM(1, 3/2, y2)

=
1√
πγα

∞∫
0

dte−t(1+1/γ2)t(α−1)/2M(1, 3/2, t)

=
Γ(α+1

2
)

√
π

γ

(1 + γ2)(α+1)/2
F (1, α+1

2
; 3

2
; γ2

1+γ2 ), (E.26)

where
∞∫

0

dte−sttb−1M(a, c, kt) =
Γ(b)

sb
F (a, b; c; k

s
), for |s| > |k| (E.27)

has been used [29]. From the above results it follows that

∞∫
0

dxe−x
2

x2(j+k+`)−1φ(y)

=
Γ(j+k+`+1/2)γ√
π(1 + γ2)j+k+`+1/2

F (1, j+k+`+ 1
2
; 3

2
; γ2

1+γ2 ). (E.28)

After performing an integration by parts applying∫
dyG(y) = −φ(y)

2y
, (E.29)

the integral corresponding to the term involving the Chandrasekhar function
G in Eq. (E.24) can be reduced to integrals of the form Eq. (E.26), that is

∞∫
0

dxe−x
2

xα−1G(y) =
1

γα

∞∫
0

dye−y
2/γ2

yα−1G(y)

= − 1

γα
e−y

2/γ2

yα−1φ(y)

2y

∣∣∣∣∞
0

+
1

γα

∞∫
0

dy
d

dy

(
e−y

2/γ2

yα−1
) φ(y)

2y
. (E.30)
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The first term in the last equation vanishes for the case when α ≥ 2. Substi-
tuting

d

dy

(
e−y

2/γ2

yα−1
)

= − 2

γ2
yαe−y

2/γ2

+ (α− 1)yα−2e−y
2/γ2

(E.31)

into Eq. (E.30) the integral becomes (for α ≥ 2)

∞∫
0

dxe−x
2

xα−1G(y) =

− 1

γα+2

∞∫
0

dye−y
2/γ2

yα−1φ(y) +
(α−1)

2γα

∞∫
0

dye−y
2/γ2

yα−3φ(y)

=
Γ(α+1

2
)

√
πγ(1 + γ2)(α−1)/2

[
F (1, α−1

2
; 3

2
; γ2

1+γ2 )

− 1

(1 + γ2)
F (1, α+1

2
; 3

2
; γ2

1+γ2 )

]
, (E.32)

where the result of Eq. (E.26) has been used. Thus, for (j + k + `) ≥ 1 one
obtains

∞∫
0

dxe−x
2

x2(j+k+`)−1G(y) =
Γ(j+k+`+1/2)√
πγ(1 + γ2)j+k+`+1/2

×
[
(1+γ2)F (1, j+k+`− 1

2
; 3

2
; γ2

1+γ2 )− F (1, j+k+`+ 1
2
; 3

2
; γ2

1+γ2 )
]
. (E.33)

Combining Eqs. (E.28) and (E.33) one gets

∞∫
0

dxe−x
2

x2(j+k+`)−1 [φ(y)−G(y)] =
Γ(j+k+`+1/2)√
πγ(1 + γ2)j+k+`−1/2

×
[
F (1, j+k+`+ 1

2
; 3

2
; γ2

1+γ2 )− F (1, j+k+`− 1
2
; 3

2
; γ2

1+γ2 )
]

(E.34)

and one finally obtains for the matrix elements of the pitch-angle scattering
part of the collision operator

ν
ab,(`)
mm′ (γ) =

3`(`+ 1)

2(2`+ 1)

m∑
j=0

m′∑
k=0

S
(`),jk
mm′ P

(`),jk
ν (γ), (E.35)
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with S
(`),jk
mm′ given in Eq. (E.25) and

P (`),jk
ν =

Γ(j+k+`+1/2)√
πγ(1 + γ2)j+k+`−1/2

×
[
F (1, j+k+`− 1

2
; 3

2
; γ2

1+γ2 )− F (1, j+k+`+ 1
2
; 3

2
; γ2

1+γ2 )
]
. (E.36)

Recalling Eq. (E.18) the matrix elements corresponding to the energy scatter-
ing part of Cab[fa1, fb0] become

D
ab,(`)
mm′ =

τab
na

2πv3
ta

1∫
−1

dλ

∞∫
0

dxx`+2L(`+1/2)
m P`CDab[fa0x

`L
(`+1/2)
m′ P`]

=
τab
na

2π

1∫
−1

dλP`P`

∞∫
0

dxx`+2L(`+1/2)
m

1

x2

∂

∂x

{
·
}
, (E.37)

where{
·
}

= v3

[
νabs

(1+mb/ma)
fa0x

`L
(`+1/2)
m′ +

νab‖
2
v
∂

∂v

(
fa0x

`L
(`+1/2)
m′

)]
. (E.38)

The terms involving the slowing down frequency νabs , and the parallel velocity
diffusion frequency νab‖ , respectively, can be replaced by [22]

νabs
(1+mb/ma)

=
3
√
π

4τab

2Ta
Tb

G(y)

x
(E.39)

νab‖
2

=
3
√
π

4τab

G(y)

x3
, (E.40)

and ∂fa0/∂x = −2xfa0. From this and Eq. (E.22) it follows that

D
ab,(`)
mm′ =

π3/2

na

3

(2`+1)

∞∫
0

dxx`L(`+1/2)
m

∂

∂x

[
v3 2Ta

Tb
G(y)x`−1nae

−x2

π3/2v3
ta

L
(`+1/2)
m′

−v3G(y)

x2

nae
−x2

π3/2v3
ta

(
2x`+1L

(`+1/2)
m′ − `x`−1L

(`+1/2)
m′ − x` ∂

∂x
L

(`+1/2)
m′

)]
=

3

(2`+1)

∞∫
0

dxx`L(`+1/2)
m

∂

∂x

[(
Ta
Tb
− 1

)
2x`+2e−x

2

L
(`+1/2)
m′ G(y)

+`x`e−x
2

L
(`+1/2)
m′ G(y) + x`+1e−x

2

(
∂

∂x
L

(`+1/2)
m′

)
G(y)

]
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=
3

(2`+1)

m∑
j=0

m′∑
k=0

S
(`),jk
mm′

∞∫
0

dxx2j+` ∂

∂x

[
(2k + `)x2k+`e−x

2

G(y)

−
(

1− Ta
Tb

)
2x2k+`+2e−x

2

G(y)

]
. (E.41)

Performing an integration by parts one gets for the integral in Eq. (E.41)
∞∫

0

dxx2j+` ∂

∂x

[
·
]

=

{
x2j+`

[
(2k+`)x2k+`e−x

2

G(y)−
(

1−Ta
Tb

)
2x2k+`+2e−x

2

G(y)

]}∣∣∣∣∞
0

−(2j + `)

∞∫
0

dxx2j+`−1

[
(2k+`)x2k+`e−x

2

G(y)

−
(

1− Ta
Tb

)
2x2k+`+2e−x

2

G(y)

]
= −(2j+`)(2k+`)

∞∫
0

dxe−x
2

x2(j+k+`)−1G(y)

+(2j+`)

(
1−Ta

Tb

)
2

∞∫
0

dxe−x
2

x2(j+k+`)+1G(y), (E.42)

where the integrals in the last equation can be carried out by using Eq. (E.32).
Thus, one obtains for the energy scattering part of the test particle operator

D
ab,(`)
mm′ (γ) =

3

(2`+1)

m∑
j=0

m′∑
k=0

S
(`),jk
mm′

×
[
P

(`),jk
D1 (γ) +

(
1− Ta

Tb

)
P

(`),jk
D2 (γ)

]
, (E.43)

with

P
(`),jk
D1 (γ) = −(2j+`)(2k+`)

Γ(j+k+`+1/2)√
πγ(1 + γ2)j+k+`+1/2

×
[
(1 + γ2)F (1, j+k+`− 1

2
; 3

2
; γ2

1+γ2 )− F (1, j+k+`+ 1
2
; 3

2
; γ2

1+γ2 )
]

(E.44)

P
(`),jk
D2 (γ) = 2(2j+`)

Γ(j+k+`+3/2)√
πγ(1 + γ2)j+k+`+3/2

×
[
(1 + γ2)F (1, j+k+`+ 1

2
; 3

2
; γ2

1+γ2 )− F (1, j+k+`+ 3
2
; 3

2
; γ2

1+γ2 )
]
. (E.45)
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Putting Eqs. (E.35)-(E.36) and Eqs. (E.43)-(E.45) together one obtains for
the matrix elements of the test particle operator in the Burnett basis

M
ab,(`)
mm′ (γab) =

3

2
√
πγab(2`+ 1)

m+m′∑
i=0

[
X

(`),i
mm′ p

(`),i
ν (γab)− Y (`),i

mm′ p
(`),i
D (γab)

+

(
1− Ta

Tb

)
Z

(`),i
mm′ p

(`),i+1
D (γab)

]
, (E.46)

where

X
(`),i
mm′ = `(`+ 1)

i∑
j=0

S
(`),ji−j
mm′ (E.47)

Y
(`),i
mm′ = 2

i∑
j=0

S
(`),ji−j
mm′ (2j + `)(2i− 2j + `) (E.48)

Z
(`),i
mm′ = 4

i∑
j=0

S
(`),ji−j
mm′ (2j + `), (E.49)

and

p(`),i
ν (γ) =

Γ(i+`+1/2)

(1 + γ2)i+`−1/2

×
[
F (1, i+`− 1

2
; 3

2
; γ2

1+γ2 )− F (1, i+`+ 1
2
; 3

2
; γ2

1+γ2 )
]

(E.50)

p
(`),i
D (γ) =

Γ(i+`+1/2)

(1 + γ2)i+`+1/2

×
[
(1+γ2)F (1, i+`− 1

2
; 3

2
; γ2

1+γ2 )− F (1, i+`+ 1
2
; 3

2
; γ2

1+γ2 )
]
.(E.51)

Noting that S
(`),jj
mm′ = S

(`),jj
m′m , S

(`),jk
mm′ = S

(`),kj
m′m and using the fact that S

(`),jk
mm′ = 0

for the case when j > m or k > m′, one can show that X
(`),i
mm′ = X

(`),i
m′m and

Y
(`),i
mm′ = Y

(`),i
m′m, respectively. From this it follows that for Ta = Tb the matrix

elements M
ab,(`)
mm′ satisfy the symmetry property Eq. (E.16), that is

M
ab,(`)
mm′ (γab) = M

ab,(`)
m′m (γab). (E.52)
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E.3 Field particle part

The matrix elements of the integral (momentum conserving) part of the
linearized collision operator are defined by

N
ab,(`)
mm′ ≡

τab
na

∫
d3vB(`)

m (x, λ)Cab
[
fa0(x), B

(`)
m′ (y, λ)fb0(y)

]
. (E.53)

From the self-adjoint property of the collision operator, Eq. (E.14), it follows
that

N
ab,(`)
mm′ =

τab
na

∫
d3vB

(`)
m′ (y, λ)Cba

[
fb0(y), B(`)

m (x, λ)fa0(x)
]

=
τab
na

nb
τba

N
ba,(`)
m′m . (E.54)

Taking into account that
τab
na

nb
τba

=
T 2
a

T 2
b

γba (E.55)

one obtains
N
ab,(`)
mm′ = γbaN

ba,(`)
m′m , for Ta = Tb. (E.56)

Using Eqs. (E.17) and (E.22), Eq. (E.53) becomes

N
ab,(`)
mm′ =

τab
na

2πv3
ta

1∫
−1

dλ

∞∫
0

dxx2P`(λ)x`L(`+1/2)
m (x2)

×Cab
[
fa0(x), fb0(y)P`(λ)y`L

(`+1/2)
m′ (y2)

]
=

τab
na

4πv3
ta

(2`+1)

∞∫
0

dxx`+2L(`+1/2)
m (x2)

3nae
−x2

π3/2τabv3
tbγ

4

{
·
}
. (E.57)

Provided m′ ≥ 2 the expression in the curly brackets reads{
·
}

= −(2m′+`)
(2m′+`−1)

2m′
ϕ̂

(`)
m′−1 +

[
(2m′+`+1)

(
1−Ta

Tb

)
+ (2m′+`)

(
1+γ2

) ]
ϕ̂

(`)
m′ − 2(m′+1)

(
1+γ2

)(
1−Ta

Tb

)
ϕ̂

(`)
m′+1, (E.58)

where the main results of Appendix C have been substituted into Eq. (E.9).
Thus, Eq. (E.57) can be expressed as

N
ab,(`)
mm′ =

2√
π

2

(2`+ 1)

3

γ

{
−(2m′+`)

(2m′+`−1)

2m′
I

(`)
mm′−1
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+

[
(2m′+`+1)

(
1−Ta

Tb

)
+ (2m′+`)

(
1+γ2

) ]
I

(`)
mm′

− 2(m′+1)
(
1+γ2

)(
1−Ta

Tb

)
I

(`)
mm′+1

}
, (E.59)

where the quantities I
(`)
mn denote

I(`)
mn ≡

∞∫
0

dxe−x
2

x`+2L(`+1/2)
m (x2)ϕ̂(`)

n (y), (E.60)

and wherein the quantity ϕ̂
(`)
n is related to the first Trubnikov potential (see

Appendix C.1),

ϕ̂(`)
n (y) =

1

2n
e−y

2

y`L
(`+1/2)
n−1 (y2), for n ≥ 1. (E.61)

Using y = γx one obtains

I(`)
mn =

1

γ`+3

∞∫
0

dye−y
2/γ2

y`+2L(`+1/2)
m (y2/γ2)

1

2n
e−y

2

y`L
(`+1/2)
n−1 (y2)

=
1

2nγ`+3

∞∫
0

dye−y
2(1+γ−2)y2`+2L(`+1/2)

m (y2/γ2)L
(`+1/2)
n−1 (y2)

=
1

4nγ`+3

∞∫
0

dte−t(1+γ−2)t`+1/2L(`+1/2)
m (t/γ2)L

(`+1/2)
n−1 (t). (E.62)

In the evaluation of Eq. (E.62) one may use the following formula (see,
Reference 29),

∞∫
0

dxe−x(λ+µ)xαL
(α)
M (λx)L

(α)
N (µx) =

Γ(M +N + α + 1)µMλN

M !N ! (λ+ µ)M+N+α+1
, (E.63)

provided that Re α > −1, Re λ+ µ > 0, yielding

∞∫
0

dte−t(1+γ−2)t`+1/2L(`+1/2)
m (t/γ2)L

(`+1/2)
n−1 (t) =

Γ(m+n+`+1/2)γ2m+2`+3

m!(n−1)!(1+γ2)m+n+`+1/2
.

(E.64)
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Thus, the integral (E.60) has the result

I(`)
mn =

Γ(m+ n+ `+ 1/2)

4m!n!

γ2m+`

(1 + γ2)m+n+`+1/2
. (E.65)

Applying Eq. (E.65) to the corresponding terms in the curly brackets of
Eq. (E.59) gives

(
1+γ2

)
I

(`)
mm′ −

(2m′+`−1)

2m′
I

(`)
mm′−1 =

Γ(m+m′+`+1/2)γ2m+`

4m!m′!(1+γ2)m+m′+`−1/2

−(2m′+`−1)

2m′
Γ(m+m′+`−1/2)γ2m+`

4m!(m′−1)!(1+γ2)m+m′+`−1/2

=
Γ(m+m′+`−1/2)γ2m+`

4m!m′!(1+γ2)m+m′+`−1/2
(m+ `/2), (E.66)

and

(2m′+`+1)I
(`)
mm′ − 2(m′+1)

(
1+γ2

)
I

(`)
mm′+1 =

(2m′+`+1)
Γ(m+m′+`+1/2)γ2m+`

4m!m′!(1+γ2)m+m′+`+1/2

−2(m′+1)
Γ(m+m′+`+3/2)γ2m+`

4m!(m′ + 1)!(1+γ2)m+m′+`+1/2

= − Γ(m+m′+`+1/2)γ2m+`

4m!m′!(1+γ2)m+m′+`+1/2
(2m+ `), (E.67)

respectively.
Substituting from Eqs. (E.66) and (E.67) into Eq. (E.59), one obtains for the
matrix elements of the field particle operator in the Burnett basis

N
ab,(`)
mm′ (γab) =

3

2
√
π

(2m+`)

(2`+ 1)

Γ(m+m′+`−1/2)

m! m′!

γ2m+`−1
ab

(1 + γ2
ab)

m+m′+`+1/2

×
[
(2m′+`)(1 + γ2

ab)− 2(m+m′+`−1/2)

(
1−Ta

Tb

)]
. (E.68)

After simple but somewhat tedious calculations [involving Eq. (E.57) as well
as Eqs. (C.20)-(C.23) and (C.55)-(C.57)] one can show that this result is also
valid for m′ = 0 and 1, respectively. Here it is worth noting that, in contrast to
the results for the test particle operator where the matrix elements have been
expressed as finite sum of Gauss’ hypergeometric functions [cf. Eqs. (E.46)-
(E.51)], the matrix elements of the field particle operator, Eq. (E.68), have
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been presented for the first time, to the author’s knowledge, in a compact
analytical form.

Assuming equal species temperatures, Ta = Tb, Eq. (E.68) yields

N
ab,(`)
mm′ =

3

2
√
π

(2m+`)(2m′+`)

(2`+ 1)

Γ(m+m′+`−1/2)

m! m′!

γ2m+`−1
ab

(1 + γ2
ab)

m+m′+`−1/2
,

(E.69)
from which it follows that

N
ab,(`)
m′m (γab) = γ

2(m′−m)
ab N

ab,(`)
mm′ (γab) (E.70)

N
ba,(`)
mm′ (γba) = γabN

ab,(`)
m′m (γab). (E.71)

Here, Eq. (E.71) demonstrates the self-adjointness of the field particle part of
the collision operator [see Eq. (E.56)].

The matrix elements for the case when the test and field particle distribution
functions are Maxwellians at different temperatures can easily be calculated
from Eqs. (E.46) or (E.68), respectively, using m′ = 0 and ` = 0. One finds
that

M
ab,(0)
m0 = N

ab,(0)
m0 = − 6√

π

mΓ(m+ 1/2)

m!

γ2m−1
ab

(1 + γ2
ab)

m+1/2

(
1− Ta

Tb

)
. (E.72)

E.4 Conservation laws

In this section it is shown that the matrix elements of the linearized collision
operator calculated above satisfy the properties that can be derived from the
conservation laws of the collision operator.

E.4.1 Particle conservation

In view of Eqs. (E.10), (E.15) and (E.53), and with 1 = B
(0)
0 one has

M
ab,(0)
0m′ (γab) = N

ab,(0)
0m′ (γab) = 0 (E.73)

which follows directly from Eqs. (E.46)-(E.49) and Eq. (E.68), respectively.
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E.4.2 Momentum conservation

By making use of Eq. (E.11) one can derive

Ta
vta

∫
d3vxλCab [fa1, fb0] = − Tb

vtb

∫
d3vyλCba [fb0, fa1] (E.74)

and with the help of Eqs. (E.15) and (E.53) one obtains

Ta
vta

na
τab

M
ab,(1)
0m′ (γab) = − Tb

vtb

nb
τba

N
ba,(1)
0m′ (γba) (E.75)

which finally yields

M
ab,(1)
0m′ (γab) = −Ta

Tb
N
ba,(1)
0m′ (γba), (E.76)

where Eq. (E.55) has been used. The matrix elements on the right-hand side
of the last equation reads [cf. Eq. (E.68)],

N
ba,(1)
0m′ (γba) =

Γ(m′ + 3/2)√
πm′!(1 + γ2

ba)
m′+3/2

[
(1 + γ2

ba)−
(

1− Tb
Ta

)]
. (E.77)

Recalling Eqs. (E.46)-(E.51) one obtains for m = 0 and ` = 1,

M
ab,(1)
0m′ (γab) =

1

2
√
πγab

m′∑
i=0

[
X

(1),i
0m′ p

(1),i
ν (γab)− Y (1),i

0m′ p
(1),i
D (γab)

+

(
1− Ta

Tb

)
Z

(1),i
0m′ p

(1),i+1
D (γab)

]
, (E.78)

with

X
(1),i
0m′ = 2

i∑
j=0

S
(1),ji−j
0m′ = 2

(−1)i

i!

(
m′ + 3/2

m′ − i

)
(E.79)

Y
(1),i

0m′ = 2
i∑

j=0

S
(1),ji−j
0m′ (2j + 1)(2i− 2j + 1)

= 2
(−1)i

i!

(
m′ + 3/2

m′ − i

)
(2i+ 1) (E.80)

Z
(1),i
0m′ = 4

i∑
j=0

S
(1),ji−j
0m′ (2j + 1) = 4

(−1)i

i!

(
m′ + 3/2

m′ − i

)
, (E.81)
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and

p(1),i
ν (γ) =

Γ(i+3/2)

(1 + γ2)i+1/2

[
F (1, i+ 1

2
; 3

2
; γ2

1+γ2 )− F (1, i+ 3
2
; 3

2
; γ2

1+γ2 )
]

(E.82)

p
(1),i
D (γ) =

Γ(i+3/2)

(1 + γ2)i+1/2

[
F (1, i+ 1

2
; 3

2
; γ2

1+γ2 )−
F (1, i+ 3

2
; 3

2
; γ2

1+γ2 )

(1+γ2)

]

=
Γ(i+1/2)

2(1 + γ2)i+1/2

[
F (1, i+ 1

2
; 3

2
; γ2

1+γ2 )− 1
]
. (E.83)

In Reference 47 one can find the following relation for the hypergeometric
function F ,

b(1− z)F (1, b+ 1; c; z) = (c− 1)− (c− 1− b)F (1, b; c; z), (E.84)

from which it follows that

(2i+2`−1)

(1 + γ2)
F (1, i+`+1

2
; 3

2
; γ2

1+γ2 ) = 1+2(i+`−1)F (1, i+`−1
2
; 3

2
; γ2

1+γ2 ). (E.85)

Substituting Eqs. (E.79)- (E.83) and Eq. (E.85) into Eq. (E.78) one can show
that

M
ab,(1)
0m′ (γ) =

1√
πγ

m′∑
i=0

(−1)i

i!

(
m′+3/2

m′ − i

)
Γ(i+ 3/2)

(1 + γ2)i+1/2

×

[
1− F (1, i+ 3

2
; 3

2
; γ2

1+γ2 ) +

(
1−Ta

Tb

)
F (1, i+ 3

2
; 3

2
; γ2

1+γ2 )− 1

(1 + γ2)

]
. (E.86)

The following relations have been obtained by means of Maple [48],

m′∑
i=0

(−1)i

i!

(
m′+3/2

m′−i

)
Γ(i+ 3/2)

(1 + γ2)i

=

√
π

2

(
m′+3/2

m′

)
F (−m′, 3

2
; 5

2
; 1

1+γ2 ), (E.87)

m′∑
i=0

(−1)i

i!

(
m′+3/2

m′−i

)
Γ(i+ 3/2)

(1 + γ2)i
F (1, i+ 3

2
; 3

2
; γ2

1+γ2 )

=

√
π

2
(1 + γ2)

(
m′+1/2

m′

)
F (−m′, 1

2
; 3

2
; 1

1+γ2 ). (E.88)
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Therefore, one has

M
ab,(1)
0m′ (γ) =

(1 + γ2)1/2

2γ

[(
m′+3/2

m′

)
F (−m′, 3

2
; 5

2
; 1

1+γ2 )

(1 + γ2)

−
(
m′+1/2

m′

)
F (−m′, 1

2
; 3

2
; 1

1+γ2 )

]
+

(
1−Ta

Tb

)
1

2γ(1 + γ2)1/2

×
[(
m′+1/2

m′

)
F (−m′, 1

2
; 3

2
; 1

1+γ2 )−
(
m′+3/2

m′

)
F (−m′, 3

2
; 5

2
; 1

1+γ2 )

(1 + γ2)

]
.(E.89)

With the help of the following formula [47],

c(1− z)F (a, b; c; z) = cF (a, b− 1; c; z)− (c− a)zF (a, b; c+ 1; z), (E.90)

one arrives at the relation

3

2

γ2

(1+γ2)
F (−m′, 3

2
; 3

2
; 1

1+γ2 ) =
3

2
F (−m′, 1

2
; 3

2
; 1

1+γ2 )

−(m′+3/2)

(1+γ2)
F (−m′, 3

2
; 5

2
; 1

1+γ2 ). (E.91)

The hypergeometric function on the left-hand side of the last equation can
be simplified to give

F (−m′, 3
2
; 3

2
; 1

1+γ2 ) =
γ2m′

(1 + γ2)m′
, (E.92)

where F (a, b; b; z) = (1−z)−a has been applied [47]. Thus, the matrix elements
related to the first collisional moment of the differential operator read

M
ab,(1)
0m′ (γab) = −Γ(m′ + 3/2)√

πm′!

γ2m′+1
ab

(1 + γ2
ab)

m′+1/2

+

(
1− Ta

Tb

)
Γ(m′ + 3/2)√

πm′!

γ2m′+1
ab

(1 + γ2
ab)

m′+3/2

= − Γ(m′ + 3/2)γ2m′+1
ab√

πm′!(1 + γ2
ab)

m′+3/2

[
(1 + γ2

ab)−
(

1− Ta
Tb

)]
. (E.93)

The momentum conservation of particles can now be verified by replacing
γab = 1/γba in Eq. (E.93), that is

−Tb
Ta

M
ab,(1)
0m′ (γba) =

Γ(m′ + 3/2)√
πm′!(1+γ2

ba)
m′+3/2

[
Tb
Ta

(1+γ2
ba)−

(
Tb
Ta
−1

)
γ2
ba

]
=

Γ(m′ + 3/2)√
πm′!(1+γ2

ba)
m′+3/2

[
1+γ2

ba −
(

1− Tb
Ta

)]
, (E.94)

which is in agreement with Eq. (E.77).
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E.4.3 Energy conservation

From Eq. (E.12) one finds

Ta

∫
d3vx2Cab [fa1, fb0] = −Tb

∫
d3vy2Cba [fb0, fa1] (E.95)

After replacing x2 and y2 with (3/2)B
(0)
0 −B

(0)
1 and using the particle conser-

vation property one obtains from Eqs. (E.15) and (E.53)

na
τab
TaM

ab,(0)
1m′ (γab) = − nb

τba
TbN

ba,(0)
1m′ (γba). (E.96)

Combining Eq. (E.96) with Eq. (E.55) one arrives at the formula

M
ab,(0)
1m′ (γab) = −Ta

Tb
γbaN

ba,(0)
1m′ (γba), (E.97)

where the matrix elements on the right-hand side of the last equation reads
[cf. Eq. (E.68)],

N
ba,(0)
1m′ (γba) =

3√
π

Γ(m′+1/2)

m′!

γba
(1 + γ2

ba)
m′+3/2

×
[
2m′(1 + γ2

ba)− (2m′+1)

(
1− Tb

Ta

)]
. (E.98)

Replacing in Eqs. (E.46)-(E.51) for m′ = 1 and for ` = 0, respectively, one
obtains

M
ab,(0)
1m′ (γab) =

3

2
√
πγab

m′+1∑
i=0

[
X

(0),i
1m′ p

(0),i
ν (γab)− Y (0),i

1m′ p
(0),i
D (γab)

+

(
1− Ta

Tb

)
Z

(0),i
1m′ p

(0),i+1
D (γab)

]
, (E.99)

with

X
(0),i
1m′ = 0, (E.100)

Y
(0),i

1m′ = 2
i∑

j=0

S
(0),ji−j
1m′ 2j(2i− 2j) =

8(−1)i

(i− 2)!

(
m′ + 1/2

m′ + 1− i

)
, (E.101)

Z
(0),i
1m′ = 4

i∑
j=0

S
(0),ji−j
1m′ 2j =

8(−1)i

(i− 1)!

(
m′ + 1/2

m′ + 1− i

)
, (E.102)
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and

p
(0),i
D (γ) =

Γ(i+1/2)

(1 + γ2)i−1/2

[
F (1, i− 1

2
; 3

2
; γ2

1+γ2 )−
F (1, i+ 1

2
; 3

2
; γ2

1+γ2 )

(1+γ2)

]

=
Γ(i−1/2)

2(1 + γ2)i−1/2

[
F (1, i− 1

2
; 3

2
; γ2

1+γ2 )− 1
]
. (E.103)

Inserting Eq. (E.100)-(E.103) into Eq. (E.99) yields

M
ab,(0)
1m′ (γ) = − 6√

πγ

m′+1∑
i=0

(
m′+1/2

m′+1−i

){
·
}
, (E.104)

where the brackets represent{
·
}

=
(−1)i

(i− 2)!

Γ(i−1/2)

(1 + γ)i−1/2

[
F (1, i− 1

2
; 3

2
; γ2

1+γ2 )− 1
]

−
(

1− Ta
Tb

)
(−1)i

(i−1)!

Γ(i+1/2)

(1+γ)i+1/2

[
F (1, i+ 1

2
; 3

2
; γ2

1+γ2 )− 1
]
. (E.105)

The following relations have been obtained by means of Maple [48]

m′+1∑
i=0

(−1)i

(i− 2)!

(
m′+1/2

m′+1−i

)
Γ(i− 1/2)

(1 + γ2)i

=

√
π

2

(
m′+1/2

m′−1

)
F (1−m′, 3

2
; 5

2
; 1

1+γ2 )

(1 + γ2)2 (E.106)

m′+1∑
i=0

(−1)i

(i− 2)!

(
m′+1/2

m′+1−i

)
Γ(i− 1/2)

(1 + γ2)i
F (1, i− 1

2
; 3

2
; γ2

1+γ2 )

=

√
π

2

(
m′−1/2

m′−1

)
F (1−m′, 1

2
; 3

2
; 1

1+γ2 )

(1 + γ2)
(E.107)

m′+1∑
i=0

(−1)i

(i− 1)!

(
m′+1/2

m′+1−i

)
Γ(i+ 1/2)

(1 + γ2)i

= −
√
π

2

(
m′+1/2

m′

)
F (−m′, 3

2
; 3

2
; 1

1+γ2 )

(1 + γ2)

= −
√
π

2

(
m′+1/2

m′

)
γ2m′

(1 + γ2)m′+1
(E.108)
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m′+1∑
i=0

(−1)i

(i− 1)!

(
m′+1/2

m′+1−i

)
Γ(i+ 1/2)

(1 + γ2)i
F (1, i+ 1

2
; 3

2
; γ2

1+γ2 )

= −
√
π

2

(
m′−1/2

m′

)
F (−m′, 1

2
; 1

2
; 1

1+γ2 )

= −
√
π

2

(
m′−1/2

m′

)
γ2m′

(1 + γ2)m′
. (E.109)

These equations can be combined to yield

M
ab,(0)
1m′ (γ) = − 3

γ(1 + γ2)1/2

{(
m′−1/2

m′−1

)
F (1−m′, 1

2
; 3

2
; 1

1+γ2 )

−
(
m′+1/2

m′−1

)
F (1−m′, 3

2
; 5

2
; 1

1+γ2 )

(1 + γ2)
+

(
1− Ta

Tb

)
×
[(
m′−1/2

m′

)
γ2m′

(1+γ2)m′
−
(
m′+1/2

m′

)
γ2m′

(1+γ2)m′+1

]}
. (E.110)

Applying again Eq. (E.90) one obtains

3

2

γ2

(1+γ2)
F (1−m′, 3

2
; 3

2
; 1

1+γ2 ) =
3

2
F (1−m′, 1

2
; 3

2
; 1

1+γ2 )

− (m′+1/2)

(1+γ2)
F (1−m′, 3

2
; 5

2
; 1

1+γ2 ). (E.111)

When this equation is substituted into Eq. (E.110) one finally gets the matrix
elements related to the second collisional moment of the differential operator,
that is,

M
ab,(0)
1m′ (γab) = − 3γab

(1 + γ2
ab)

3/2

m′Γ(m′ + 1/2)

m′!Γ(3/2)
F (1−m′, 3

2
; 3

2
; 1

1+γ2
ab

)

+

(
1− Ta

Tb

)
3γ2m′−1

ab

(1 + γ2
ab)

m′+3/2

Γ(m′ + 1/2)

m′!Γ(3/2)

(
m′ − γ2

ab

2

)
= − 3√

π

Γ(m′ + 1/2)

m′!

γ2m′−1
ab

(1 + γ2
ab)

m′+3/2

×
[
2m′(1 + γ2

ab)−
(

1− Ta
Tb

)(
2m′ − γ2

ab

)]
. (E.112)
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The energy conservation of particles can now be verified by replacing γab =
1/γba in Eq. (E.112), that is

− Tb
Taγba

M
ba,(0)
1m′ (γba) =

3√
π

Γ(m′ + 1/2)

m′!

γ−1
ba γ

1−2m′

ba γ2m′+3
ba

(1 + γ2
ba)

m′+3/2

×
[

2m′Tb(1 + γ2
ba)

Taγ2
ba

−
(
Tb
Ta
− 1

)(
2m′ − 1

γ2
ba

)]
=

3√
π

Γ(m′ + 1/2)

m′!

γba
(1 + γ2

ba)
m′+3/2

×
[
2m′(1 + γ2

ba)
Tb
Ta

+

(
1− Tb

Ta

)(
2m′γ2

ba − 1
) ]

=
3√
π

Γ(m′ + 1/2)

m′!

γba
(1 + γ2

ba)
m′+3/2

×
[
2m′(1 + γ2

ba)− (2m′ + 1)

(
1− Tb

Ta

)]
, (E.113)

which agrees with Eq. (E.98).

E.5 Comparison to results in literature

In this section it is briefly shown how the Braginskii matrix elements presented
in this appendix are related to the corresponding results obtained by various
authors during the last decades.

A comparison of Braginskii’s definition of matrix elements [cf. Eq. (A.1) of
Reference 79] with Eqs. (E.15) and (E.53), respectively, yields

Mab
mm′ = v2

ta

na
τab

M
ab,(1)
mm′ (E.114)

Nab
mm′ = vtavtb

na
τab

N
ab,(1)
mm′ . (E.115)

The moments of the collision operator were evaluated by introducing the
generating function for the Laguerre polynomials which leads to the equations

na
τab
v2
taM =

∞∑
m=0

∞∑
m′=0

ξmηm
′
Mab

mm′ (E.116)

na
τab
vtavtbN =

∞∑
m=0

∞∑
m′=0

ξmηm
′
Nab
mm′ . (E.117)
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The generating formulas from which the matrix elements were calculated
of by Taylor expanding the functions M and N around ξ = 0 and η = 0,
respectively, read [cf. Eq. (A.4) of Reference 79]

M(ξ, η, γab, Ta, Tb) = − γab
2(1− ξη)3/2(1− ξ)(1− η)

×

√
1 + x+ y

1 + x+ y + γ2
ab

{
·
}
, (E.118)

with {
·
}

= 1− x+ y

1+x+y+γ2
ab

+
5xy

(1+x+y+γ2
ab)

2

+
2xyγ2

ab

(1+x+y)(1+x+y+γ2
ab)

2
−
(

1−Ta
Tb

)[
1

1+x+y+γ2
ab

− 5x

(1+x+y+γ2
ab)

2
− 2xγ2

ab

(1+x+y)(1+x+y+γ2
ab)

2

]
, (E.119)

as well as

N (ξ, η, γab, Ta, Tb) =
Ta

2Tb(1− ξ)(1− η)

√
(1 + x)(1 + y)

1 + x+ γ2
ab(1 + y)

{
·
}
, (E.120)

with {
·
}

= 1− x+ γ2
aby

1+x+γ2
ab(1+y)

+
3xyγ2

ab

[1+x+γ2
ab(1+y)]2

+

(
Tb
Ta
−1

)[
γ2
ab

1+x+γ2
ab(1+y)

− 3xγ2
ab

[1+x+γ2
ab(1+y)]2

]
, (E.121)

where x = ξ/(1− ξ) and y = η/(1− η). The matrix elements computed from
these expressions are valid for ` = 1 and for arbitrary species temperatures.

In Reference 80 Hirshman defined the matrix elements by

Mab
mm′ ≡

τab
na

∫
d3v

v‖
vta
L(3/2)
m (x2)Cab

[
2v‖
vta

L
(3/2)
m′ (x2)fa0, fb0

]
(E.122)

Nab
mm′ ≡

τab
na

∫
d3v

v‖
vta
L(3/2)
m (x2)Cab

[
fa0,

2v‖
vtb

L
(3/2)
m′ (y2)fb0

]
, (E.123)

and used more or less the same method as Braginskii in evaluating these
integrals. The corresponding matrix elements are valid for ` = 1 and for
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Ta = Tb. From Eqs. (E.122) and (E.123) as well as Eqs. (E.15) and (E.53)
one can conclude that

Mab
mm′ = 2M

ab,(1)
mm′ (E.124)

Nab
mm′ = 2N

ab,(1)
mm′ . (E.125)

In the paper by Wong [82] the collision matrix elements were defined the
same way [see Eqs. (6) and (7) therein] as in this appendix, therefore the
following equations hold

M
(`)
mm′ = M

ab,(`)
mm′ (E.126)

N
(`)
mm′ = N

ab,(`)
mm′ . (E.127)

The evaluation of these matrix elements was also based on a generating
function technique valid for arbitrary ` and for equal species temperatures
Ta = Tb.

Finally, in the work by Ji and Held [90] the collision matrix elements cor-
responding to the test and field particle operators [Eqs. (56a) and (56b)
in Reference 90] have been obtained by a direct evaluation of moments of
the Coulomb operator (that is the product of velocity polynomials and the
collision operator has been integrated). The results are valid for arbitrary `
as well as for arbitrary species temperatures and are related to the matrix
elements calculated in the previous sections via the equations

Almm
′

ab = (2`+ 1)M
ab,(`)
mm′ (E.128)

Blmm′

ab = (2`+ 1)N
ab,(`)
mm′ . (E.129)



Appendix F

Toroidally symmetric test
configuration

In the axisymmetric limit analytic solutions of the standard neoclassical
transport theory are available. In this appendix a simple toroidally symmetric
test configuration (‘standard tokamak’) is constructed which can be used
to compare the numerical results obtained by the NEO-2 code with known
analytical results [22,37,38,56,59–61,94] and, therefore, serves as a benchmark
configuration.
The first two sections in this appendix present a compilation of the relevant
formulas which are needed in constructing the standard tokamak and are
mainly taken from References 91 and 95, respectively.

F.1 3D magnetic fields with nested surfaces

In 3D equilibrium configurations with nested magnetic surfaces the magnetic
field can be written in the contravariant (or Clebsch) representation [91,95]

B = ∇ψ ×∇ν , (F.1)

where
ν(ψ, θ, ϕ) = θ − ι-(ψ) ϕ+ λ(ψ, θ, ϕ). (F.2)

One can show that this is a consequence of ∇ · B = 0 and B · ∇ψ = 0.
Combining the equations j · ∇ψ = 0 and j = (c/4π)∇×B, the magnetic field
in the covariant representation can be expressed as [91,95]

B = ∇η + β ∇ψ , (F.3)

where
η(ψ, θ, ϕ) = I(ψ) θ + J(ψ) ϕ+ ω(ψ, θ, ϕ), (F.4)
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and β = β(ψ, θ, ϕ). The three functions λ, ω and β are periodic with respect
to the poloidal and toroidal angles. Using

∇λ = λ,ψ∇ψ + λ,θ∇θ + λ,ϕ∇ϕ (F.5)

and
∇ω = ω,ψ∇ψ + ω,θ∇θ + ω,ϕ∇ϕ , (F.6)

where, e.g., λ,ψ ≡ ∂λ/∂ψ, one finds for the contravariant and covariant
representation of B, respectively,

B = (1 + λ,θ)∇ψ ×∇θ + (ι-− λ,ϕ)∇ϕ×∇ψ (F.7)

=
(1 + λ,θ)√

g
eϕ +

(ι-− λ,ϕ)
√
g

eθ (F.8)

≡ Bϕ eϕ +Bθ eθ, (F.9)

and

B = (I + ω,θ)∇θ + (J + ω,ϕ)∇ϕ+ (β + θI,ψ + ϕJ,ψ + ω,ψ)∇ψ (F.10)

≡ Bθ ∇θ +Bϕ ∇ϕ+Bψ ∇ψ. (F.11)

The Jacobian of the (ψ, θ, ϕ) coordinate system can be found by dotting
together the contravariant and covariant representation of B yielding

√
g ≡ 1

∇ψ · ∇θ ×∇ϕ

=
1

B2
[(ι-− λ,ϕ) (I + ω,θ) + (1 + λ,θ) (J + ω,ϕ)] . (F.12)

The single-valued function λ(ψ, θ, ϕ) can be determined from the condition
that the current density j lies in the flux surface,

j · ∇ψ = 0 , (F.13)

which is equivalent to
∂Bϕ

∂θ
− ∂Bθ

∂ϕ
= 0. (F.14)

From Ampère’s law, j = (c/4π)∇×B, it can be shown that the quantities I
and J are proportional to the total toroidal and poloidal current. The total
toroidal current inside a flux surface is cI/2 and the total poloidal current
outside a flux surface is cJ/2, where I and J are calculated from

I(ψ) =
1

2π

2π∫
0

dθBθ (F.15)

J(ψ) =
1

2π

2π∫
0

dϕBϕ. (F.16)
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F.2 Transformation to Boozer coordinates

Magnetic coordinates with the property that the covariant components of the
magnetic field, Bθ and Bϕ, respectively, represent flux functions are called
Boozer coordinates [22,96]. The stream functions ν and η have the form

ν(ψ, θB, ϕB) = θB − ι-(ψ)ϕB (F.17)

η(ψ, θB, ϕB) = I(ψ)θB + J(ψ)ϕB. (F.18)

The transformation from general flux coordinates (ψ, θ, ϕ) to Boozer coordi-
nates (ψ, θB, ϕB) is defined by [95]

θB = θ + θ̃(θ, ϕ) (F.19)

ϕB = ϕ+ ϕ̃(θ, ϕ) , (F.20)

where the periodic functions θ̃ and ϕ̃ are computed from the solution of the
relations

θB − ι- ϕB = θ − ι- ϕ+ λ(θ, ϕ) (F.21)

I θB + J ϕB = I θ + J ϕ+ ω(θ, ϕ). (F.22)

Upon substituting Eqs. (F.19) and (F.20) into Eqs. (F.21) and (F.22), one
finds

θ̃(θ, ϕ) =
ι- ω + J λ

J + ι- I
(F.23)

ϕ̃(θ, ϕ) =
ω − I λ
J + ι- I

. (F.24)

F.3 Tokamak with circular cross section

F.3.1 Construction of an “equilibrium”

By definition, in the toroidally symmetric test configuration the magnetic
surfaces are nested concentric circular tori with constant major radius R0. The
best adapted coordinate system in this geometry is the toroidal coordinate
system (r, θ, ϕ) defined by

R(r, θ) = R0 + r cos θ (F.25)

Z(r, θ) = r sin θ (F.26)

φ = ϕ , (F.27)
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where r is the minor radius and θ and ϕ are the geometrical poloidal and
toroidal angles, respectively1. Further prescribed quantities are the rotational
transform ι- and the toroidal flux at the last closed magnetic surface, ψ′.
If one replaces the geometrical radius r by a

√
s, where a is the radius of

the outermost flux surface and s = ψ(s)/ψ(1) is the normalized toroidal
flux, one obtains the quasi-toroidal coordinates (ψ, θ, ϕ). The quantity ψ
(or s, respectively) can be interpreted as a topological radius. Since the
quasi-toroidal coordinate system is an orthogonal one the off-diagonal metric
coefficients are all zero. The Jacobian of these coordinates and the covariant
metric coefficients are

√
g ≡ ∂(x, y, z)

∂(ψ, θ, ϕ)
=
a2R

2ψ′
=
R0

B0

R̂ , (F.28)

as well as

gψψ =
a2

4sψ′2
=

1

ε2B2
0R

2
0

(F.29)

gθθ = a2s = ε2R2
0 (F.30)

gϕϕ = R2
0R̂

2, (F.31)

where the abbreviations B0 ≡ 2ψ′/a2, ε ≡ r/R0 and R̂ ≡ R/R0 = 1 + ε cos θ
have been introduced.
Using the expressions from the previous sections and taking into account
the axisymmetry, ∂/∂ϕ = 0, the contravariant components of B become [see
Eqs. (F.8) and (F.9)]

Bϕ =
(1 + λ,θ)√

g
, Bθ =

ι-
√
g
. (F.32)

One can change the contravariant components into covariant components
with Bi = gij B

j, leading to

Bθ = gθθ B
θ = ε2ι-B0R0R̂

−1 (F.33)

Bϕ = gϕϕ B
ϕ = B0R0R̂ (1 + λ,θ) . (F.34)

In axisymmetric systems, Eq. (F.14) reduces to the fact that Bϕ is a flux

surface quantity which, in turn, requires R̂(1 + λ,θ) being independent of θ.
Hence,

f(ψ) = R̂(1 + λ,θ) (F.35)

1Of course, full vacuum equation, ∇×B = 0, cannot be satisfied if Eqs. (F.25)-(F.27)
are assumed. Some additional currents on the flux surfaces are needed. However, if the
configuration is such that the inverse aspect ratio ε̄ ≡ a/R0 � 1 the proposed magnetic
field model should be a useful approximation to a realistic MHD equilibrium [97].
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and

λ,θ =
f(ψ)

R̂
− 1. (F.36)

The integral with respect to θ of the function λ,θ vanishes because λ is periodic
in θ, that is

2π∫
0

dθλ,θ = λ(ψ, 2π)− λ(ψ, 0) = 0 = f(ψ)

2π∫
0

dθ

R̂
− 2π , (F.37)

from which it follows that

f(ψ) =

 1

2π

2π∫
0

dθ

R̂(ψ, θ)

−1

≡ 〈R̂−1〉−1 , (F.38)

and the stream function λ is finally given by

λ(ψ, θ) =
1

〈R̂−1〉

θ∫
0

dθ′

R̂(ψ, θ′)
− θ . (F.39)

Here, Eq. (F.36) can be rewritten as

1 + λ,θ =
1

〈R̂−1〉 R̂
, (F.40)

and the co- and contravariant components of the magnetic field then have
the form

Bϕ =
B0

〈R̂−1〉R0R̂2
=

J

R2
0R̂

2
(F.41)

Bθ =
ι-B0

R0R̂
=

ι-J〈R̂−1〉
R2

0R̂
(F.42)

Bϕ =
B0R0

〈R̂−1〉
= J (F.43)

Bθ = ε2ι-B0R0R̂
−1 =

I

〈R̂−1〉R̂
, (F.44)

where the poloidal and toroidal currents in quasi-toroidal coordinates have
been calculated by means of Eqs. (F.15) and (F.16), respectively,

J(ψ) =
1

2π

2π∫
0

dϕBϕ = Bϕ =
B0R0

〈R̂−1〉
(F.45)
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I(ψ) =
1

2π

2π∫
0

dθBθ = ε2ι-B0R0〈R̂−1〉 = ε2ι-J〈R̂−1〉2. (F.46)

Hence, it follows that the square of the magnetic field strength can be
represented by

B2 = BθBθ +BϕBϕ =
ι-J〈R̂−1〉
R2

0R̂

I

〈R̂−1〉R̂
+

J

R2
0R̂

2
J, (F.47)

where Eqs. (F.41)-(F.46) have been applied. Finally, one obtains for the
magnetic field strength in quasi-toroidal coordinates the relation

B(ψ, θ) =

√
J(J + ι-I)

R0R̂
. (F.48)

F.3.2 Transformation to Boozer coordinates

From Eqs. (F.10), (F.11) and (F.44) one obtains

ω,θ = Bθ − I =
I

〈R̂−1〉R̂
− I. (F.49)

Integration with respect to θ yields

ω(ψ, θ) = I

 1

〈R̂−1〉

θ∫
0

dθ′

R̂(ψ, θ′)
− θ

 = I(ψ)λ(ψ, θ) , (F.50)

from which it follows that Eqs. (F.23) and (F.24) reduce to

ϕ̃ =
ω − I λ
J + ι- I

=
I λ− I λ
J + ι- I

= 0 (F.51)

θ̃ =
ι- ω + J λ

J + ι- I
=

ι- I λ+ J λ

J + ι- I
= λ. (F.52)

Therefore, on surfaces of constant toroidal flux ψ the quasi-toroidal coordinate
system is related to the Boozer coordinate system through

θB(θ) = θ + λ(θ) (F.53)

ϕB = ϕ , (F.54)

or, more explicitly,

θB =
1

〈R̂−1〉

θ∫
0

dθ′

R̂(θ′)
, (F.55)
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where Eq. (F.39) has been used. The integral appearing in Eq. (F.55) can be
evaluated to obtain

θ∫
0

dθ′

R̂(θ′)
=

2√
1− ε2

arctan

{
(1− ε) tan(θ/2)√

1− ε2

}
, (F.56)

and the quantity 〈R̂−1〉 is

〈R̂−1〉 =
1

2π

2π∫
0

dθ

1 + ε cos θ
=

1√
1− ε2

, for ε2 < 1. (F.57)

The final step consists in calculating the Boozer spectra of R, Z and B. This
could be achieved by inverting Eq. (F.55) to get

θ(θB) = 2 arctan

{√
1− ε2 tan(θB/2)

(1− ε)

}
, (F.58)

and, upon using the relation

tan
α

2
=

√
1− cosα

1 + cosα
, (F.59)

one obtains the following expressions,

cos θ =
cos θB − ε

1− ε cos θB
(F.60)

sin θ =

√
1− ε2 sin θB

1− ε cos θB
. (F.61)

Therefore, the representation for R, Z and B [see Eqs. (F.25), (F.26) and
(F.48)] in Boozer coordinates is given by

R̂(θB) ≡ R

R0

=
1− ε2

1− ε cos θB
(F.62)

Ẑ(θB) ≡ Z

R0

=
ε
√

1− ε2 sin θB
1− ε cos θB

(F.63)

B(θB) =

√
J(J + ι-I)

R0

(1− ε cos θB)

(1− ε2)
. (F.64)

The Fourier expansion for R, Z and B has the following form

R(θB) =
∑
m

rm cos θB (F.65)

Z(θB) =
∑
m

zm sin θB (F.66)

B(θB) =
∑
m

bm cos θB, (F.67)
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with the Fourier coefficients

r0 =
R0

π

∫ π

0

dθBR̂(θB) (F.68)

rm =
2R0

π

∫ π

0

dθBR̂(θB) cos(mθB), for m ≥ 1 (F.69)

z0 = 0 (F.70)

zm =
2R0

π

∫ π

0

dθBẐ(θB) sin(mθB), for m ≥ 1. (F.71)

These coefficients may be calculated by using [29]∫ π

0

dx
cos(nx)

1 + a cosx
=

π√
1− a2

(√
1− a2 − 1

a

)n
, for a2 < 1, (F.72)

as well as∫ π

0

dx
sinx sin(nx)

(1− 2a cosx+ a2)
=
π

2
an−1 , for a2 < 1, n ≥ 1. (F.73)

Hence, it follows that

r0 =
R0(1− ε2)

π

π√
1− ε2

= R0

√
1− ε2 (F.74)

rm =
2R0(1− ε2)

π

π√
1− ε2

(
1−
√

1− ε2
ε

)m

= 2R0

√
1− ε2

(
1−
√

1− ε2
ε

)m
, for m ≥ 1 (F.75)

zm =
2R0

π
ε
√

1− ε2π
2

2

ε

(
1−
√

1− ε2
ε

)m

= 2R0

√
1− ε2

(
1−
√

1− ε2
ε

)m
= rm , for m ≥ 1. (F.76)

The Fourier coefficients for B can be immediately obtained from Eq. (F.64)
leading to

b0 =

√
J(J + ι-I)

R0(1− ε2)
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= B0

√
1− ε2 + ε2ι-2

1− ε2
(F.77)

b1 = −εb0. (F.78)

F.4 Comparison with the standard model

A widely used magnetic field model in the literature is the so-called standard
model defined in the toroidal coordinate system (r, θ, ϕ) by (for details see
Reference 56)

B(r, θ) = B0 ε(r) ι-(r) êθ +
B0

1 + ε(r) cos θ
êϕ , (F.79)

where B0 is a constant having the dimension of a magnetic field and êi are
the physical basis vectors. It has to be noted that this model field is not
divergence-free2. Using the relation ψ = B0r

2/2 between the toroidal flux ψ
and the minor radius r the magnetic field model calculated in Section (F.3.1)
can be expressed as

B(r, θ) =
B0

1 + ε(r) cos θ

[
ι-(r)ε(r) êθ +

√
1− ε(r)2 êϕ

]
. (F.80)

Using B0 ≡ B0 the standard model is obtained from Eq. (F.80) by neglecting
terms of O(ε2).

2more precisely, (r/B0)∇ ·B ∼ O(ε2)
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