
Harald Milchrahm

Agile Usability Processes

————————————–

Dissertation

vorgelegt an der

Technischen Universität Graz

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

(Dr.techn.)

durchgeführt am Institut für Softwaretechnologie

Technische Universität Graz

Vorstand: O.Univ.-Prof. Dipl.-Ing.Dr. techn.Wolfgang Slany

Graz, im Mai 2010

Deutsche Kurzfassung der Dissertation

Diese Dissertation untersucht die Kombination von agilen Softwareentwick-

lungsmethoden mit Usability Engineering. Der Prozess der Integration von Ex-

treme Programming und User-Centered Design wird behandelt. Es wird gezeigt,

dass agile Softwareentwicklungsmethoden Benutzerzentriertheit, iterative User In-

terface Entwicklung und die Einbeziehung eines Usability Engineers fördern. Der

beschriebene Ansatz basiert auf der Adaption des klassischen Extreme Programming

Prozesses und integriert folgende Human-Computer Interaction Instrumente: User

Studies, Extreme Personas, Usability Expert Evaluations, Usability Tests, und Au-

tomated Usability Evaluations. Die in diesem Forschungsprojekt entwickelte Anwen-

dung ermöglicht einem Benutzer die inhaltsbezogene Suche nach Audio und Video

Material, sowie dessen Wiedergabe auf einem Mobiltelefon. Reflexionen über den

verwendeten integrierten Prozess, basierend auf Daten gesammelt durch Codeanal-

ysen, Prozessevaluierungstools und Aufzeichnungen aus Review Sitzungen, werden

diskutiert. Die Resultate von Usability Tests der, mittels des integrierten Ansatzes

entwickelten, Anwendung werden ebenfalls präsentiert.

Von dem agilen, Extreme Programming basierenden, Usability Prozess dieses

wissenschaftlichen Projektes wurden drei Agile Usability Prozess Muster abgeleitet.

Die Muster bilden die Integration von drei der verwendeten Human-Computer Inter-

action Instrumente auf iterative Softwareentwicklungsprozesse ab und heissen: Us-

ability Expert Evaluation, Usability Test, und Automated Usability Evaluation. Um

die Gültigkeit dieser Muster zu überprüfen wurden sie in einem industriellen, Ex-

treme Programming basierenden, Projekt implementiert. Beide Prozesse wurden

mit Hilfe eines Extreme Programming Evaluation Framework evaluiert. Für jeden

Prozess wurden Kontextfaktoren aufgezeichnet und quantitative sowie qualitative

Prozessmetriken zu zwei Zeitpunkten erhoben. Die Musterimplemtierungsergebnisse

zeigen, dass die Usability und die generelle User Experience der entwickelten Systeme

signifikant verbessert werden konnte.

Abstract

This thesis examines the integration of Agile Software Development Methodologies

with Usability Engineering. The process of integrating Extreme Programming and

User-Centered Design is outlined. It is shown that agile development methods facil-

itate user-orientation, iterative user interface development, and the involvement of

usability engineers. The approach described is an adaption to the classical Extreme

Programming process and integrates the following Human-Computer Interaction in-

struments: User Studies, Extreme Personas, Usability Expert Evaluations, Usability

Tests, and Automated Usability Evaluations. The application developed within this

research project enables a user to perform content based search for audio and video

content in large databases and play it on a mobile phone. Reflections on the in-

tegrated development process used, based on data collected through code analysis

and process evaluation tools, as well as notes of process retrospective review meet-

ings, are discussed. Likewise, the results from usability tests of the application being

developed are presented.

From the agile, Extreme Programming based, usability process of this scientific

project three Agile Usability Process Patterns were derived. The patterns depict the

integration of three of the used Human-Computer Interaction instruments with an it-

erative software development approach and are named: Usability Expert Evaluation,

Usability Test, and Automated Usability Evaluation. In order to prove the validity

of these patterns, they were implemented and evaluated in an industrial, Extreme

Programming based, project. Both processes were evaluated using an Extreme Pro-

gramming Evaluation Framework. For each of the processes, context factors were

recorded and adherence metrics data (quantitative and qualitative) was collected at

two points in time. The pattern implementation results showed that the usability

and the overall user experience of the developed systems improved significantly.

Contents

Kurzfassung (abstract in German) 1

Abstract 2

Table of Contents 3

List of Tables 8

List of Figures 9

1 Introduction 10

1.1 Motivation for Agile Software Development 10

1.2 Definition of Agile Software Development 11

1.3 Agile Software Development in Projects 12

1.4 Definition of Usability Engineering . 13

1.5 Usability Engineering Process . 14

1.6 Usability Engineering Methods . 15

1.7 Agile Usability Process Integration Problems 16

1.8 Results of this Thesis . 19

1.9 List of Publications . 20

1.10 Structure of this Thesis . 21

2 User Interface Design for a Mobile Multimedia Application: An

Iterative Approach 23

2.1 Introduction . 23

2.2 Related Work . 25

2.2.1 Applications . 25

2.2.2 Iterative User Interface Design 25

2.3 Usage Scenarios . 26

2.3.1 TV Archive for Subway Riders 26

3

CONTENTS 4

2.3.2 Radio Archive for Car Drivers 26

2.3.3 Media Recommendations for Users 27

2.4 Usability . 27

2.4.1 Iterative User Interface Design 28

2.4.2 An Iterative Design Example 29

2.4.3 User-Centered Application Design 31

2.5 User-Based Recommendations . 31

2.5.1 Interactive Model . 32

2.5.2 Behavior-Based Model . 32

2.5.3 Model Combination . 32

2.5.4 Implications . 32

2.6 Conclusion . 33

3 Optimizing Extreme Programming 34

3.1 Introduction . 34

3.2 Project Environment . 35

3.3 Process . 36

3.3.1 Fully Implemented Practices 37

3.3.2 Partially Implemented/Modified Practices 40

3.4 Reflection . 41

3.5 Conclusion . 43

4 Probing an Agile Usability Process 44

4.1 Introduction . 44

4.2 Problem Statement . 45

4.3 Background . 45

4.3.1 Extreme Programming . 46

4.3.2 Extreme Programming and User-Centered Design 47

4.3.3 Personas . 47

4.3.4 Automated Usability Evaluation 47

4.4 Agile Usability Process . 47

4.4.1 General Approach . 47

4.4.2 Extended Unit Tests . 49

4.4.3 Extreme Personas . 49

4.4.4 User Studies . 49

4.4.5 Usability Expert Evaluations 50

4.4.6 Usability Tests . 50

4.4.7 Interplay of Usability Instruments 50

4.5 Conclusion . 50

CONTENTS 5

5 Agile User-Centered Design Applied to a Mobile Multimedia

Streaming Application 52

5.1 Introduction . 52

5.2 Similarities between XP and UCD . 54

5.2.1 End-User Involvement . 54

5.2.2 Continuous Testing . 54

5.2.3 Iterative Development . 54

5.3 Project and Team Setup . 55

5.4 Application Features . 56

5.5 Agile Usability Process . 57

5.5.1 Approach to User-Centered Design 57

5.5.2 Choosing the Type of Mock-Up 58

5.5.3 Frequency of End-User Tests 59

5.5.4 Integration of HCI Instruments 59

5.5.5 Testing Issues . 59

5.5.6 Communication and Collaboration 60

5.5.7 The Planning Game . 61

5.5.8 Pair Programming . 61

5.5.9 On-Site Customer . 62

5.6 Usability Study . 62

5.6.1 Improvements of Layout and Design 62

5.6.2 Improvements of the Usability of the Prototype 63

5.6.3 A Task Example . 65

5.7 Conclusion . 67

6 Integration of Extreme Programming and User-Centered Design:

Lessons Learned 69

6.1 Introduction . 69

6.2 Related Work . 70

6.3 The Project Context . 71

6.4 Retrospective Workshop . 71

6.4.1 User Studies . 71

6.4.2 Personas . 71

6.4.3 Lightweight Prototypes . 72

6.4.4 Usability Expert Evaluations 72

6.4.5 Usability Tests . 73

6.4.6 Extended Unit Tests . 73

6.5 Conclusion . 73

CONTENTS 6

7 Agile Process Patterns 75

7.1 Introduction . 76

7.2 Related Work . 80

7.2.1 Agile Process Patterns . 80

7.2.2 Individual Agile Practice Patterns 82

7.2.3 Agile Usability Processes . 84

7.2.4 Usability Patterns . 88

7.3 m3 XP-EF . 89

7.3.1 XP Context Factors (XP-CF) 89

7.3.2 XP Adherence Metrics (XP-AM) 94

7.4 AUPPs . 98

7.4.1 Usability Expert Evaluation 98

7.4.2 Usability Test . 100

7.4.3 Automated Usability Evaluation 101

7.5 m3 AUPPs Implementation . 103

7.5.1 Usability Expert Evaluation . 103

7.5.2 Usability Test . 104

7.5.3 Automated Usability Evaluation 105

7.6 Other XP-EF . 106

7.6.1 XP Context Factors (XP-CF) 107

7.6.2 XP Adherence Metrics (XP-AM) 111

7.7 Other Process AUPPs Implementation 115

7.7.1 Usability Expert Evaluation . 115

7.7.2 Usability Test . 116

7.7.3 Automated Usability Evaluation 117

7.8 Conclusion . 118

8 Concept and Design of a Contextual Mobile Multimedia Content

Usability Study 120

8.1 Introduction . 120

8.2 Related Work . 121

8.3 Application . 122

8.3.1 Features . 122

8.4 Selection of Respondents . 124

8.5 Study Setup . 125

8.5.1 Media Content . 125

8.5.2 Diary Study . 126

8.5.3 Contextual Interview . 127

8.6 Expected Results . 129

CONTENTS 7

8.7 Conclusion . 130

9 Epilogue 131

9.1 General Conclusions . 131

9.2 Open Problems and Future Perspectives 132

Bibliography 133

Acknowledgments 148

List of Tables

3.1 Subjective Metric (Shodan 2.0 Input Metric Survey). 42

7.1 m3 Sociological Factors. 90

7.2 m3 Project-Specific Factors. 91

7.3 m3 Ergonomic Factors. 92

7.4 m3 Technological Factors. 93

7.5 m3 Geographic Factors. 93

7.6 m3 Planning Adherence Metrics. 96

7.7 m3 Coding Adherence Metrics. 97

7.8 m3 Testing Adherence Metrics. 98

7.9 Other Process Sociological Factors. 108

7.10 Other Process Project-Specific Factors. 109

7.11 Other Process Ergonomic Factors. 109

7.12 Other Process Technological Factors. 110

7.13 Other Process Geographic Factors. 110

7.14 Other Process Planning Adherence Metrics. 113

7.15 Other Process Coding Adherence Metrics. 114

7.16 Other Process Testing Adherence Metrics. 115

8

List of Figures

2.1 Iterative User Interface Design Workflow. 28

2.2 From Paper Mock-Up to Mobile: The first Search-Results Screen. . . . 29

2.3 An additional HTML Mock-Up: A refactored Search-Results Screen. . 30

3.1 Application, Research and Business Aspects in a Release. 36

3.2 Selected Story Cards on the Release-Board (Release Planning). . . . 38

3.3 Selected Story Cards on the Iteration-Board (Iteration Planning). . . 39

3.4 Executable Code versus Test Code and Test Coverage. 41

4.1 Agile Development Process. 46

4.2 Agile Development Process including HCI Instruments. 48

5.1 Iterative User Interface Design Workflow [70]. 57

5.2 The Integration of HCI Instruments into XP [151]. 60

5.3 The Prototype of the Home Page [72]. 63

5.4 The Prototype of the Channel Page showing the Calender. 64

5.5 The Menu Entries without any visual Separation. 65

5.6 Improvements of Menu Layout and Arrangement. 66

5.7 Use the Space on top of the Clip Detail Page more efficiently. 67

7.1 Agile Development Process including HCI Instruments [151]. 78

7.2 m3 Developmental Factors. 94

7.3 Other Process Old Release Developmental Factors. 111

7.4 Other Process New Release Developmental Factors. 112

8.1 Home Page. 123

8.2 Categories Page. 124

9

Chapter 1

Introduction

This chapter introduces Agile Software Development and Usability Engineering and

provides an overview about Agile Usability Process Integration Problems, being the

problem statement and the motivation for the choice of the subject of this thesis.

Furthermore, it gives a condensed overview about the structure of this thesis.

1.1 Motivation for Agile Software Development

Software development processes are an attempt to structure and standardize de-

velopment to make the outcome of a project plannable and predictable. The first

structured approach was the waterfall model, which gained popularity during the

70s. This traditional approach places its focus on extensive planning and struc-

tured processes in order to make development an efficient and predictable activity.

The waterfall model consists of a time-ordered list of activities, where one activity

can only be executed after the previous one has been completed. The major disad-

vantage of this approach is its rigidity and inflexibility. For this reason, a shift in

software development paradigms has taken place. The newly emerging agile software

development paradigms are iterative and light-weight. They place less emphasis on

the process and its deliverables, but focus on principles and values. Furthermore,

agile approaches are an attempt to address major problems in traditional software

development [21]:

� Changeability: In software engineering a number of external and internal

changes affect development.

� Software’s complex and intangible nature: In software engineering requirements

are pervasive, dynamic and rarely well-defined. Consequently, systems are

difficult to be specified entirely in advance.

10

CHAPTER 1. INTRODUCTION 11

� Heavy processes and lack of feedback: In software engineering changes cause

delays and increasing costs. User feedback on what is being developed is often

far too slow. Processes should be able to handle changes and allow rapid user

feedback.

� Process focus: Software development processes are not truly repeatable. Soft-

ware development has more to do with individual skill and adaptability than

strictly following plans and process descriptions.

1.2 Definition of Agile Software Development

The response to more traditional software processes is the idea of developing software

using a light-weight or agile approach. This trend started in the 90s. An important

step was taken in 2001. A group of leading software methodologists gathered in

Snowbird, Utah, USA, to discuss light-weight development practices. To support

their ideas on light-weight software development, the group agreed to describe the

lowest common denominator in the form of four core values and twelve other prin-

ciples. These four values plus twelve principles, which describe the values in greater

detail, constitute the definition of agile software development and are known as Agile

Manifesto. The four values are [31]:

1. Individuals and interactions over processes and tools.

The first value is attending to the people on the team as opposed to roles in

the process chart. Although a process description is needed to get a group

of people started, people are not plug-replaceable. The second choice being

highlighted there is attending to the interactions between the individuals. New

solutions and flaws in old solutions come to life in discussions between people.

The quality of the interactions matters.

2. Working software over comprehensive documentation.

The working system is the only thing that tells what the team has built. Doc-

uments showing the requirements, analysis, design, screen flows, object inter-

action sequence charts, and the like are handy as hints. The team members

use them as aids in reflecting on their own experience, to guess what the future

will look like. Documents can be very useful but they should be used along

with the words ”just enough” and ”barely sufficient”.

3. Customer collaboration over contracted negotiation.

The third value describes the relationship between the people who want the

software built and those who are building the software. The distinction is that

CHAPTER 1. INTRODUCTION 12

in properly formed agile development, there is no ”us” and ”them”, there is

only ”us”. Instead of depending solely upon contracts, the customers work in

close collaboration with the development team. Saying ”there is only us” refers

to the fact that both are needed to produce good software.

4. Responding to change over following a plan.

Plans are useful in software development, and each of the agile methodologies

contains specific planning activities. The agile approach advocates planning

for and adapting to changes, as opposed to prescribing strict conformity to

a plan in every situation This is necessary because the prerequisites for most

systems will evolve during development. Moreover, the initial requirements will

be influenced by the fact that communication between people is always more

or less incomplete.

Consequently, agile is not a distinct, well-defined process. Instead, it is a generic

term and common ground for several different processes or methods, each sharing a

set of software development core ideas, values and principles.

In essence, agile methods can be characterized as [99]:

� Iterative: A full system is delivered initially, then the functionality of each

subsystem is changed upon each subsequent release.

� Incremental: The system, as specified in the requirements, is partitioned into

smaller subsystems by functionality. New functionality is added upon each new

release.

� Self-Organizing: The team has the autonomy to organize itself in order to best

complete the work items.

� Emergent: Technology and requirements are ”allowed” to emerge through the

product development cycle.

1.3 Agile Software Development in Projects

According to [22] a project needs to comply with different software project charac-

teristics to be placed in the agile home ground, respectively to be carried out using

an agile development methodology.

� Application Characteristics: The primary project goals are delivering rapid

value and responding to change. The project employs smaller teams and the

project environment is turbulent, highly dynamic and project-focused.

CHAPTER 1. INTRODUCTION 13

� Management Characteristics: The customers are dedicated on-site customers

and are focused on prioritized increments. Planning and control consists of

internalized plans and qualitative control. Communication relies on tacit in-

terpersonal knowledge.

� Technical Characteristics: Requirements are prioritized informal stories and

test cases and are undergoing unforeseeable change. Development is based

on simple design and short increments and refactoring is assumed expensive.

Testing comprises executable test cases which define the requirements.

� Personnel Characteristics: Project customers are dedicated, collocated, collab-

orative, representative, authorized, committed, and knowledgeable performers.

The development team of the project consists of at least 30 % full-time Cock-

burn Level 2 and 3 experts [22]. This means that 30 % of the development

team is able to revise a method, breaking its rules to fit an unprecedented new

situation, or is able to tailor a method to fit a precedented new situation. The

rest of the team is able to perform discretionary method steps such as sizing

stories to fit increments, composing patterns, compound refactoring, or com-

plex commercial off-the-shelf product integration with training. The project

culture consists of many degrees of freedom to define and work on problems,

so that the people feel comfortable and empowered.

1.4 Definition of Usability Engineering

According to ISO 9241, Part 11, usability is the extent to which a product can be

used by specified users to achieve specified goals with effectiveness, efficiency, and

satisfaction in a specified context of use [3]. This definition ties the usability of a

system to specific conditions, needs, and users. In addition to that, it requires estab-

lishing certain levels of usability. Usability engineering defines the target usability

level in advance and ensures that the software developed reaches that level. It is a

process through which usability characteristics are specified, quantitatively and early

in the development process, and measured throughout the process [63]. Traditionally,

usability is associated with five usability attributes [118]:

� Learnability: The system should be easy to learn, so that the user can rapidly

start getting some work done with the system. It can be assessed by measuring

the time a user spends working with the system before that user can complete

certain tasks in the time it would take an expert to complete the same tasks.

This attribute is crucial for the user experience of novice users.

CHAPTER 1. INTRODUCTION 14

� Efficiency: The system should be efficient to use, so that once the user has

learned the system, a high level of productivity is possible. It refers to the

number of tasks per unit of time that the user can perform using the system.

� Memorability: The system should be easy to remember, so that the casual user

is able to return to the system after some period of not having used it, without

having to learn everything all over again.

� Error rate: The system should have a low error rate, so that users make few

errors during the use of the system, and so that if they do make errors, they

can easily recover from them. Further, catastrophic errors must not occur.

� Satisfaction: The system should be pleasant to use, so that users are subjec-

tively satisfied when using it.

1.5 Usability Engineering Process

An abstracted generic usability engineering process for building a system with the

desired level of usability is outlined in [45]. This process, which most usability practi-

tioners apply with slight variation, is structured around a design - evaluate - redesign

cycle. Practitioners initiate the process by analyzing the targeted users and the tasks

the users will perform. When applying usability testing late in the development, the

discovered issues are costly or even impossible to fix. Therefore, it is crucial to per-

form usability evaluation during the product development process, which ultimately

leads to an iterative development process. A pure waterfall approach to software

development makes introducing usability engineering techniques fairly impossible.

The suggested process in [45] consists of two different phases.

Usability Analysis Phase. First, the users and their needs, expectations, inter-

ests, behaviors, and responsibilities, all of which characterize their relationship with

the system, need to be known.

1. User Analysis.

There are numerous approaches for gathering information about users, e.g.,

site visits, focus groups, surveys, and derived data. The most important thing

about user analysis is to record, structure, and organize the findings.

2. Task Analysis.

Task analysis describes a set of techniques people use to get things done. Iden-

tified tasks are prioritized and serve as a starting point for development.

CHAPTER 1. INTRODUCTION 15

3. Usability Benchmarks.

Usability benchmarks are set as quantitative usability goals, which are defined

before system design begins. They are based on the five basic usability at-

tributes described in the previous section.

Usability Design Phase. Once the tasks the system will support are analyzed,

a first attempt at the conceptual design of the user interfaces is made, which will be

evaluated and possibly improved in the next iterations.

1. Conceptual design.

During the conceptual design phase, the basic user system interaction and the

objects in the user interface and the contexts in which interaction takes place

are defined. The phase ends with evaluating the results as paper prototypes.

2. Visual design.

In this phase, the user interface appearance is defined. The deliverables are

prototypes that must be tested.

1.6 Usability Engineering Methods

To ensure a software project has the essential usability characteristics, different us-

ability engineering methods are applied during development: usability inspection

methods (without end users) [64], usability test methods (with end users) [64], and

usability enhancement methods [119].

Usability Inspection Methods. This is a set of methods for identifying usability

problems and improving the usability of an interface design by checking it against

established standards. These methods include heuristic evaluation, cognitive walk-

throughs, and action analysis.

Heuristic evaluation is the most common informal method. It involves having

usability specialists judge whether each dialogue or other interactive element follows

established usability principles.

A cognitive walkthrough is a task-oriented method by which the usability analyst

explores the system functionalities. It simulates step-by-step user behavior for a

given task.

The action analysis method is divided into formal and back-of-the-envelope ac-

tion analysis. In both, the emphasis is more on what the practitioners do, than on

what they say they do. The formal method requires close inspection of the action

CHAPTER 1. INTRODUCTION 16

sequences a user performs to complete a task. Back-of-the-envelope analysis is less

detailed and gives less precise results, but it can be performed much faster.

Usability Test Methods. Testing with end users is the most fundamental usabil-

ity method and is in some sense indispensable. It provides direct information about

how people use the systems and their exact problems with a specific interface. There

are several methods for testing usability, the most common being thinking aloud,

field observation, and questionnaires.

Thinking aloud may be the single most valuable usability engineering method. It

involves having an end user continuously thinking out loud while using the system.

By verbalizing their thoughts, the test users enable to understand how they view the

system, which makes it easier to identify the major misconceptions of end users.

Field observation is the simplest of all methods. It involves visiting one or more

users in their workplaces.

Questionnaires are useful for studying how end users use the system and their

preferred features, but need some experience to design. They are an indirect method,

since this technique does not study the actual user interface: it only collects the

opinions of the users about the interface.

Usability Enhancement Methods. One of the most popular usability enhance-

ment methods is the Personas method. It was developed as a tool for raising empa-

thy for the end users in development teams, and as a means for communicating peer

group definitions. When developing Personas, archetypical prototypes of end-users

are designed. This is done by accumulating knowledge about intended peer groups.

One persona represents a typical user group. A persona is an archetypical figure

being able to guide decisions about product features, navigation, interactions, and

even visual design (among other factors) [119].

1.7 Agile Usability Process Integration Problems

When trying to integrate Usability Engineering into Software Engineering one is faced

with several integration problems. This section covers these integration problems,

being the problem statement and the motivation for the choice of the subject of this

thesis.

1. The Meaning of Usability

Usability means different things to different people [133]. The following defini-

tions illustrate how the term usability has been perceived differently in three

distinct standards [134]:

CHAPTER 1. INTRODUCTION 17

� The capability of the software product to be understood, learned, used,

and attractive to the user, when used under specified conditions [2].

� The extent to which a product can be used by specified users to achieve

specified goals with effectiveness, efficiency, and satisfaction in a specified

context of use [3].

� The ease with which a user can learn to operate, prepare inputs for, and

interpret outputs of a system or component [1].

2. The Cultural Gap Between Psychologists and Engineers

Usability Engineering specialists, who are often psychologists, are sometimes

regarded as mere nuisances who get in the way of those who, in the end, will

really deliver the product, the software engineers [133]. These two groups do

not share the same culture and perspective and they do not understand the

respective constraints under which each group has to operate [135]. Having a

solid understanding of the Human-Computer Interaction and Software Engi-

neering culture and practices can help both software developers and usability

experts to update their methodologies, and to learn techniques for improving

and mediating their lines of communication [134].

3. The Modularity Fallacy

Traditional interactive system architectures decompose the system into subsys-

tems that are relatively independent, thereby allowing the design work to be

partitioned between the user interface and underlying functionalities. Such ar-

chitectures extend the independence assumption to usability, approaching the

design of the user interface as a subsystem that can be designed and tested

independently from the underlying functionality. This Cartesian dichotomy

can be dangerous, as functionalities buried in the logic of the application can

sometimes affect the usability of the system [133].

4. The Responsibility Gap

The role of the user interface is often perceived as that of decorating a thin

component sitting on top of the software. Software engineers build the software,

and afterwards the usability people make the interface layer user-friendly. The

usability people, on the other side, view their role as designing the interface

first, which is later on implemented and evaluated. These views of each others

role are of course in direct opposition and often result in frustrations within

one group for not being given sufficient influence on the final product [135].

5. Educational Gap Between Software Professionals and Usability Professionals

CHAPTER 1. INTRODUCTION 18

A barrier to the wider practice of Usability Engineering methods is that their

techniques are still relatively unknown and difficult to master, making them

inaccessible to small and medium-sized software development teams and in-

dividual developers [133]. This explains why Usability Engineering methods

often cannot be fully used [134]. Also, the resulting difficulties of commu-

nication between the software engineering team and usability specialists can

seriously compromise the integration of usability in the software development

lifecycle [135].

6. The Dispensability of Usability Engineering

Some software managers feel that their project cannot afford to spend so much

time on usability. They worry that the Usability Engineering iterations will

never end, due to Human-Computer Interaction people trying to get everything

perfect. There are two answers to this. First of all, there should be measurable

usability objectives set as part of the project plan. And secondly, these man-

agers should consider the longer-term effect of quality work on the productivity

of their developers [133].

7. Organizational Shift

The organizational learning approach asserts that the integration of Usability

Engineering into software engineering lifecycles is not primarily a problem of

a lack of Usability Engineering methods. The natural inertia of the organi-

zation is the obstacle and the solution must be also understood as a problem

of organizational learning and software process improvement [133]. In orga-

nizational terms, Usability Engineering must be understood not merely as a

process improvement to Software Engineering, but as a paradigm shift [135].

8. Empirical Evidence

To empirically evaluate the value of a specific Usability Engineering method

using classical scientific techniques, it would be necessary to compare the same

project repeated under conditions employing Usability Engineering techniques

versus not employing Usability Engineering techniques, while controlling for

skill, motivation, Software Engineering approach and other possible differences

between the two project teams [135]. This challenging experiment would need

to be repeated many times with different project teams, different software

engineering frameworks and on different projects in order for the results to

achieve statistical validity. For this reason, there is a lack of empirical evidence

[133].

9. The Usability of Usability Engineering Methods

CHAPTER 1. INTRODUCTION 19

The Usability Engineering methods which are considered to be reasonable for

application by engineers are often not used by them for the following interre-

lated reasons [135]:

� There is no time allocated for Usability Engineering activities: these ac-

tivities are not integrated in the development process or in the project

schedule.

� Knowledge needed for the performance of Usability Engineering tasks is

not available within the development team.

� The effort for the application of the Usability Engineering tasks is esti-

mated to be too high because the tasks are regarded as time-consuming.

10. The Lack of Process Support Tools

Most often software developers working on user interface design and evalua-

tion lack Usability Engineering tools. Yet, as the need for usability becomes

recognized by software development organizations, they tend to develop their

own in-house tools and sometimes define or reinvent the whole usability engi-

neering toolbox or life cycle [134]. Usability Engineering methods should still

be regarded as knowledge-intensive. Thus, tools to provide engineers with the

knowledge of how to effectively perform Usability Engineering activities are

needed [135].

1.8 Results of this Thesis

� A software development process integrating Extreme Programming and User-

Centered Design:

The integrated approach to application development presented in this the-

sis (Chapter 2, 4, and 5) focuses on the adoption of Extreme Programming

and User-Centered Design, emphasizing iterative user interface development

involving usability engineers and non-technical users. The approach described

integrates Human-Computer Interaction instruments. The implemented instru-

ments are: User Studies, Extreme Personas, Usability Expert Evaluations, Us-

ability Tests, and Automated Usability Evaluations. Furthermore, it is shown

how the integrated process facilitates user-orientation and at the same time

preserves the social values of the development team. In addition, experiences

in using this integrated process for two years in application development are

reported (Chapter 6).

CHAPTER 1. INTRODUCTION 20

� Agile Usability Process Patterns:

This thesis presents three Agile Usability Process Patterns (Chapter 7) ex-

tending an already existing agile process pattern language [40]. The patterns

described are: Usability Expert Evaluation, Usability Test, and Automated

Usability Evaluation. These patterns are derived from the agile usability pro-

cess of this scientific, Extreme Programming based, project. In addition to the

pattern definitions, the pattern implementations in this scientific project are

outlined. In order to prove the validity of the patterns, they were implemented

and evaluated in an industrial, Extreme Programming based, project. Both

processes were evaluated using an Extreme Programming Evaluation Frame-

work. The pattern implementation results showed that the usability and the

overall user experience of the developed systems improved significantly, as eval-

uated by the usability expert. A high number of usability issues found in

Usability Expert Evaluations was fixed by means of test driven development,

namely, writing an automated usability test for each of the discovered usability

issues first. Resulting issues of Usability Tests were incorporated and fixed the

same way. This, as well as the employment of Automated Usability Evaluation

metrics in test driven application development, increased the usability of the

developed systems over time to a very high degree.

� A working, usability tested, application developed by means of the integrated

agile usability process:

The application being developed within this research project is a mobile mul-

timedia application that enables a user to perform content based search for

audio and video content in large databases and play it on a mobile phone. Fea-

tures of the application are described (Chapter 2, 5, and 8). The application

was developed by means of the integrated agile usability process presented in

this thesis, and was usability evaluated on many different levels. Furthermore,

results of a usability study are presented (Chapter 5).

1.9 List of Publications

Within the context of this thesis, the following publications have been created:

1. (2007) User Interface Design for a Content-aware Mobile Multimedia Applica-

tion: An Iterative Approach [69]

2. (2008) User Interface Design for a Mobile Multimedia Application: An Iterative

Approach [70]

CHAPTER 1. INTRODUCTION 21

3. (2008) Optimizing Extreme Programming [68]

4. (2008) Probing an Agile Usability Process [151]

5. (2008) Integrating Extreme Programming and User-Centered Design [72]

6. (2008) Agile User-Centered Design Applied to a Mobile Multimedia Streaming

Application [71]

7. (2009) Integration of Extreme Programming and User-Centered Design:

Lessons Learned [74]

8. (2009) Concept and Design of a Contextual Mobile Multimedia Content Us-

ability Study [73]

9. (2010) Process Patterns for Agile Usability [116]

10. (2010) Agile Usability Process Patterns [115]

1.10 Structure of this Thesis

This thesis is organized as cumulative thesis and divided into chapters. Each chapter,

except Chapter 1 and Chapter 10, is a refined version of one or more publications.

The following list contains short descriptions of the contents of the chapters of this

thesis.

� This introductory chapter covers Agile Software Development and Usability

Engineering. Furthermore, it provides an overview about Agile Usability In-

tegration Problems, being the problem statement and the motivation for the

choice of the subject of this thesis.

� Chapter 2 examines the context in which this research took place. Namely,

the development of a mobile multimedia application that enables a user to per-

form content-based search for audio and video content in large databases and

play it on a mobile phone. In addition, an approach to application develop-

ment, focusing on the adoption of agile software development methodologies

and user-centered design, is presented. This chapter is a refined version of the

publications [69] and [70].

� In Chapter 3, reflections on the used Extreme Programming process, based on

the data collected through code analysis and process evaluation tools, as well

as notes of process retrospective review meetings, are discussed. This chapter

is a refined version of the publication [68].

CHAPTER 1. INTRODUCTION 22

� Chapter 4 presents adaptations to the classical Extreme Programming process.

The approach described integrates Human-Computer Interaction instruments.

The implemented instruments are: User Studies, Extreme Personas, Usability

Expert Evaluations, Usability Tests, and Automated Usability Evaluations.

This chapter is a refined version of the publication [151].

� Chapter 5 describes an adapted development process: the integration of Ex-

treme Programming with User-Centered Design. It is shown how an agile de-

velopment technique facilitates user-orientation and preserves the social values

of the development team. Furthermore, a summary of the results of a usability

study of the application developed by means of the adapted development pro-

cess is outlined. This chapter is a refined version of the publications [71] and

[72].

� In Chapter 6, the reflections of a retrospective workshop are examined. The

reflections represent the lessons learned after using the integrated process out-

lined in Chapter 2, 4 and 5 for one and a half years. This chapter is a refined

version of the publication [74].

� Chapter 7 discusses three agile usability process patterns: Usability Expert

Evaluation, Usability Test, and Automated Usability Evaluation. The pat-

terns described are derived from the agile usability process of this scientific,

Extreme Programming based, project. Also, a validation implementation of the

patterns in an industrial, Extreme Programming based project, is presented.

This chapter is a refined version of the publications [115] and [116].

� In Chapter 8, the concept and design of a contextual mobile multimedia content

usability study is described. The features of the developed application used in

the study are outlined. This chapter is a refined version of the publication [73].

� Finally, in Chapter 9, general conclusions about the achieved results are drawn

and interesting topics for future research are outlined.

Chapter 2

User Interface Design for a

Mobile Multimedia Application:

An Iterative Approach

Mobile phones have become full-featured mobile computers. Applications providing

good user experience and taking full advantage of the increasing capabilities of mo-

bile phones are still rare. One such application is audio and video on mobile phones,

which is expected to become a killer application in the near future. A lot of valuable

audio and video content is hidden in archives of content providers. We are developing

an application that enables a user to perform content-based search for audio and video

content in large databases and play it on a mobile phone virtually anywhere, at any

time. Our approach to application development focuses on the adoption of agile soft-

ware development methodologies and user-centered design, emphasizing iterative user

interface development involving usability engineers and non-technical users. Thus,

the application evolves according to the needs of the end user, providing maximized

usability and customer satisfaction.

2.1 Introduction

Mobile computing is leading a revolution. Our lives are changing at a pace never

experienced before in human history. A wide variety of applications for mobile phones

is available at the moment. Still, there are not so many full-featured applications

which utilize the available bandwidth and are accepted by the users.

Studies show that multimedia – Audio and Video (AV) – consumption is on the

edge to become one of the next killer applications for mobile devices [38]. User

behavior in consuming AV is changing. Traditional broadcasting is losing more and

23

CHAPTER 2. USER INTERFACE DESIGN ... 24

more audience because online and mobile AV intrudes heavily into this area. A recent

report states that 43 % of Britons, who watch video regularly from the Internet or

on a mobile device, are now watching less TV than before [12]. Clearly, it is in the

interest of broadcasting companies to adapt to these changes in user behavior and

invest in these new technologies. For these companies, one of the major advantages

of mobile phones, compared to other devices, is that they can charge for their services

easily and directly, as the existing infrastructure can be reused. Additionally, the

possibility to place advertisements for specific user groups is a huge benefit. At the

same time, customers are given the flexibility to access rich multimedia content from

anywhere, at any time.

The major problem for an average user is the combination of the overwhelm-

ing amount of multimedia content available and unsatisfactory user interfaces for

accessing it. Usability is the key success factor for such applications.

For this reason, we are developing an application that enables a user to perform

content-based search for AV content and play it on a mobile phone. This content

includes radio and TV archive material, such as documentaries or other recordings

of historical, political and cultural importance, discussion programs, movies, music

videos, audio books, and music. The AV content will be stored in a database contain-

ing transcribed speech from the clips, as well as additional metadata, such as titles

or a summary, where available. The media delivery will be based on standard web

technology. This will enable people to use this service with almost any modern mo-

bile phone. Furthermore, the application addresses not only the emerging functional

and cognitive needs of the users, but also the objectives of the content providers.

The application is designed keeping in mind the social interaction aspects of users.

The system provides different community-building features to encourage interaction

amongst them. The aim is to build a community platform for mobile phone users,

where they can share their views and interests about AV content provided by the sys-

tem. The feedback from the community will reflect the current trend of multimedia

consumption as well.

One of the research goals of this project is to apply usability test procedures for

mass-market applications on mobile phones. At present, usability testing for mobile

phones is cumbersome and too expensive for small and medium sized enterprises.

Another objective of this project is to automate certain parts of the usability testing

procedures and provide a testbed for effective and efficient mobile usability testing.

Special emphasis is placed on the adoption of agile software development method-

ologies, in particular Extreme Programming (XP), for mobile phones and their user

interfaces.

This chapter presents an overview about related work. The following section

presents different usage scenarios. Afterwards, the usability engineering process,

CHAPTER 2. USER INTERFACE DESIGN ... 25

which is applied to the iterative UI development cycle, is described. The next sec-

tion defines various user-based recommendation approaches. Finally, a conclusion is

given.

2.2 Related Work

This section provides an overview of related work. Basically, existing work can be

divided into the categories applications and iterative user interface design. Related

work in each of the categories is examined in the following subsections.

2.2.1 Applications

This section provides an overview of different AV search and streaming applications.

They can be categorized by means of features they offer, particularly speech recog-

nition, which is used to enhance the meta data for advanced search and streaming

on mobiles.

Mobile YouTube [155] and MobiTV [29] allow to search for content and stream it

on mobile phones. Mobile YouTube has the big advantage to have Google as parent

organization, but the content is very limited and consists only of user-contributed

material. In comparison to that, MobiTV offers different realtime worldwide TV

channels streaming without search functionality, but for streaming on a mobile phone,

client-side software is required.

In contrast to this, Blinkx [19], TVEyes [145], and EveryZing [43] perform speech

recognition in order to enhance the search with additional meta data but do not

provide mobile phone streaming. Blinkx provides user-contributed content as well as

content from broadcasting companies. The content offered by TVEyes is restricted

to news material, and the content of EveryZing is restricted to web based content.

Other applications offering online video search and streaming are JumpCut [81]

and Joost [79]. Neither has the feature of speech recognition or streaming on mobiles.

Jumpcut has the big community of Yahoo users but is limited to user contributed

content. Joost provides more content, but is based on peer2peer technology requiring

its own client-side software still in its beta phase.

The comparison shows that there is no application offering both features, speech

recognition and streaming on mobiles, at the same time, which our application does.

2.2.2 Iterative User Interface Design

There already exist approaches of combining agile methodologies and Usability Engi-

neering [65][105][34]. However, to the best of our knowledge none applies this specific

CHAPTER 2. USER INTERFACE DESIGN ... 26

composition of practices: we combine XP [14], user-centered design, and an itera-

tive user interface design approach utilizing different HCI instruments such as user

studies, extreme personas (a variation of the personas approach), usability expert

evaluations, usability tests, and automated usability evaluations.

2.3 Usage Scenarios

In daily life, many people are at work or school at day time. They have no time to

watch TV or listen to radio programs, because of the schedules set by the broad-

casting companies. Time-delayed, played-back, and individually-delivered AV on

mobile phones provides a new platform taking radio and TV into the street, car,

public transport, waiting room, park, and virtually any other location. This type of

application creates additional audiences, eager to access multimedia content during

new prime times set by themselves, that is, in their commuting periods or other

idle times. Also, a market survey shows that consumers are interested in using this

technology and are ready to pay a realistic price for these services [29]. The basic

idea of such a system can be illustrated by the following sample usage scenarios.

2.3.1 TV Archive for Subway Riders

� A commuter in the subway searches for “Fernando Alonso”.

� The system matches each word of the textual search query with the positions

it occurs in each AV clip.

� The system presents a list of clips in which the name “Fernando Alonso” has

been mentioned, sorted by temporal occurrence and relevance based on content,

e.g., how often the name was mentioned.

� The user selects one of the presented entries.

� The system’s media server streams the selected clip to the user’s mobile phone.

2.3.2 Radio Archive for Car Drivers

� A user listens to the last sentences of a radio broadcast about the “European

Constitution”. The user still has to travel with the car for some time and

therefore searches for the keyword “European Constitution”.

� The system lists a number of related news items, interviews, and documen-

taries.

CHAPTER 2. USER INTERFACE DESIGN ... 27

� The user selects the desired topic.

� The handsfree set of the mobile phone plays back the selected material through

the car’s stereo.

2.3.3 Media Recommendations for Users

� A user wants to consume AV content but has nothing particular in mind.

� The user asks the system for recommendations.

� The system generates recommendations based on the user’s stored preferences

and on the recent behavior of other users. A short description of each item is

provided as well.

� The user selects an item and plays it on the mobile phone.

If the user interrupts the media stream, in all scenarios it is possible to resume

at the previous location at any time, even weeks later. This feature is unavailable

with regular broadcasting or streaming systems. The user of this system has more

flexibility for consuming the AV content. This is particularly important because of

the short continuous viewing or listening periods. For example, while commuting,

interruptions and (possibly much) later resumptions will be the regular case.

Such behavior is rather uncommon for AV consumption so far, especially for

viewing video. But it is not so much different from the way a book is read, having

breaks between reading periods. Thus, it seems plausible that users will be willing

to switch to this new way of listening and viewing AV content with interruptions,

as it brings them the convenience of being able to decide what to consume in a

just-in-time way, independent of place and time.

2.4 Usability

User interface design determines the success or failure of almost any application.

Massive AV consumption on mobile phones will be accepted only, if users can easily

find what they are searching for. But search on a mobile phone presents unique

challenges as compared to a PC [106]. The inherent interface limitations of mobile

phones strongly constrain the choices of user interface and interaction design. Special

attention has to be paid to the constraints of small screens [88], possibly unfavorable

lighting conditions, and limited text input capabilities.

We propose an iterative and user-centered approach to user interface design and

system development in order to solve the stated problems.

CHAPTER 2. USER INTERFACE DESIGN ... 28

2.4.1 Iterative User Interface Design

Usability is evaluated in small iterative steps to gain insight into whether the users’

functional and cognitive requirements are met. User interface prototypes of the

system are developed and tested throughout the development process. As a result

the fidelity of the prototypes increases and evolves.

Figure 2.1: Iterative User Interface Design Workflow.

The workflow presented in Figure 2.1 illustrates the iterative design approach.

The process starts with the creation of user stories by the customer or the product

manager who acts as a representative of the customer. Developers create different

paper mock-ups to collect and present ideas. A final mock-up is derived, serving

as the basis for further development. The benefit of using paper mock-ups for the

interaction design is that they can be designed and modified quickly. Because of

that, the feedback given by the usability engineers and the users can be incorporated

easily. An additional advantage is that it is easier for users to criticize simple and

rough mock-ups compared to ones which look neat and perfect from the graphic

design perspective [131]. For simple interaction designs, a paper mock-up suffices as

a basis for further discussions and the implementation. In more complex cases, an

additional HTML mock-up is created based on the final paper mock-up.

The approach combines the quick feedback-and-change cycle of hand-drawn pa-

per mock-ups with the more time-consuming process of computer-based prototypes.

Paper mock-ups are used to get the basic concepts right, while HTML mock-ups are

CHAPTER 2. USER INTERFACE DESIGN ... 29

(a) Paper Mock-Up. (b) Application on Mobile.

Figure 2.2: From Paper Mock-Up to Mobile: The first Search-Results Screen.

used for a more detailed view.

The designs are examined by usability engineers and tested by non-technical

users. The feedback from the usability engineers, as well as from the users, is taken

as input for further refinements of the design. Also, the results are incorporated

into automated tests which are used, by employing test driven development, as an

executable specification for the actual implementation. This feedback-and-change

cycle provides insights into whether the user interface design is meeting different

usability criteria.

For the actual user tests it is important to choose representative test users from

different age groups, bearing in mind the targeted customers for the proposed service.

These tests are conducted only after incorporating the feedback from the usability

engineers on the paper as well as the HMTL mock-up. Therefore, the expensive part

of involving real users can be done more effectively.

2.4.2 An Iterative Design Example

For the paper mock-up in Figure 2.2(a) the usability engineer raised the following

issues:

� Missing strategy for displaying larger result sets (balance between pagination

and scrolling).

� Missing feedback mechanism to highlight the pointed-to item (especially needed

in unfavorable lighting conditions).

� Undefined application behavior after playback of the clip ends (no return option

specified).

CHAPTER 2. USER INTERFACE DESIGN ... 30

(a) Paper Mock-Up.

(b) HTML Mock-

Up.

(c) Final Application.

Figure 2.3: An additional HTML Mock-Up: A refactored Search-Results Screen.

Figure 2.3 shows the mock-ups of an improved version of the same feature. Here,

an HTML mock-up was created after the paper mock-up. The design was derived

from the following user scenario (a so-called user story in XP [14]):

Search results presented to the user should contain clip-related information which

can aid the user in choosing the clip. Also, the context in which the keyword was

found, as well as the number of search results, should be visible. Furthermore, it

should be possible to start a new search immediately.

It can be seen that two issues from the previous feedback, namely pagina-

tion/scrolling and item highlighting, have been addressed in the refactored design.

On the refactored design depicted in Figure 2.3 the usability engineer provided the

following feedback:

� Forms: It is common to leave some white space between text-input-field and

the button. For graphical user interface solutions there are distances fixed in

guidelines for the operating system - for mobiles we recommend to put the

button in a second line (this is preferred to putting the button close to the

CHAPTER 2. USER INTERFACE DESIGN ... 31

input field).

� Background Colors (Table): The alternating rows should vary decently, and

should preferably be coloured in slightly different shades - the selected colors

are ”eye bending”.

2.4.3 User-Centered Application Design

User interface development cannot be separated from the development of the under-

lying application. Intended user interactions strongly influence the internal structure

and functionality of the system [33]. A big issue in mobile user interface practice is

that current approaches are not sufficient for mobile phones [139]. Therefore, another

focus is placed on the combination of iterative user interface design and user-centered

application design.

The design process and user tests provide feedback about the user interface which

will be used for the system’s functional requirements. It reveals the mental model

of the users, how they expect the system to work. The assessment of each feature

from the perspectives of the users influences the whole development process of the

application and addresses the problem that conversation only with the stakeholders

is not enough [77]. As the application development is done in short iterations, the

developers are able to refactor the system continuously according to the feedback

derived from the parallel, iterative, user interface design process. Hence, the system

evolves according to the needs of the end user and the specifications derived from

actual usage.

2.5 User-Based Recommendations

Web-based companies already use recommendation systems with great success. Ama-

zon, for example, has millions of customers. Seeing the benefits of recommendations,

Amazon has developed its own technique called “item-to-item collaborative filter-

ing”. Their customers regularly take advantage of these recommendation facilities

when making their purchases [98].

The personalized approach of our system makes it possible to implement user-

based recommendations. The unique identification of a user is necessary for account-

ing purposes, implying that a user profile has to be managed by the system. This

profile will be augmented with additional data, which is used for recommendations

to the same and to other users. The data is collected by means of two information

acquiring models, the interactive model and the behavior-based model.

CHAPTER 2. USER INTERFACE DESIGN ... 32

2.5.1 Interactive Model

The interactive model is based on user ratings. After users finish consuming an

item, they are able to rate it according to their liking and preferences. Information

about which clips a user consumed is stored in his individual profile. In addition, the

corresponding clip ratings are stored as well. The rating of a specific clip in each user

profile affects the overall rating of the clip in the database. The individual ratings

are still traceable. For more personalized recommendations, ratings of similar user

groups can be combined.

2.5.2 Behavior-Based Model

The behavior-based model is applied by collecting usage data. Information about the

clips consumed, and the duration of the consumption, is stored in the user profiles.

This is used for user-specific recommendations. If many users stop the same clip

after a short time, this clip is most likely not very interesting. Of course, this equally

depends on the overall playing time. Therefore, a ratio measure is used for clip

rating. The system will take into account that users are allowed to stop and resume

clips at any time, which can influence the measurements. Alternatively, it is possible

to consider ratings of a specific user group only, as described in 2.5.1.

2.5.3 Model Combination

W hen generating recommendations the two models already described are combined.

For the system, user ratings are more important than usage data. However, rat-

ings may not be available for every item. In this case, only behavior data is used.

Furthermore, the changing preferences of users are taken into account by adding a

time-descending weighting factor.

There are different scopes for the rating mechanism. On the one hand, all users

are considered, and on the other hand, just a specific user group is considered. This

results in different recommendations. The default recommendation setting can be

overridden by user preferences.

2.5.4 Implications

An attractive feature of the system is the possibility to target advertisements more

precisely. This feature is useful for companies wanting to address specific user groups.

Additionally, users benefit, because they receive only advertisements related to their

interests. For example, Google’s Gmail is using this technique for advertising pur-

poses on its popular mail accounts. The large user base of Gmail is a valuable target

for business. The advertising is tailored to users’ mail contents. Gmail also offers

CHAPTER 2. USER INTERFACE DESIGN ... 33

the possibility to use mobile devices [53]. As Google has purchased YouTube., it is

expected that this trend will continue. The advertising and search capabilities are,

or will be soon, extended to video content as well [106].

The feature of collecting additional user data provides continuous feedback, en-

abling constant improvement of the system. By recording this information, valuable

data about how the user is interacting with the system is obtained. This allows to

react quickly to new usage patterns and needs as they arise.

2.6 Conclusion

The emerging technologies of delivering rich AV content on mobile phones will result

in reducing the number of users for traditional TV and radio broadcasting services.

This might compel traditional TV and radio broadcasting companies to become part-

ners in this technology by opening their huge collections of AV content to the public.

Today’s consumers are willing to pay a reasonable price for this service [29]. Accord-

ing to current trends, the community of mobile phone application users will grow

rapidly. The standards concerning codecs, formats, and technical infrastructure, re-

quired for AV content delivery on mobile phones are already well established. These

general trends are in favor of the development of this type of application.

The critical factor for this kind of applications will be user acceptance, which

heavily depends on the fact that the system suits the user’s needs. To address

this issue, in our software engineering process, usability engineers are accompanying

the system development team during the whole project life cycle. The engineers

provide suggestions that are incorporated continuously into the system. This process

is facilitated by the short development iterations and has proven to provide early

and valuable feedback. The test-driven development approach allows to convert

these findings into a set of automated tests. These tests define the functionality

of the system, serve as specifications for the development, and prevent previously

discovered usability problems from reappearing. Furthermore, the inclusion of test-

users provides additional benefits. This continuous input allows to adjust the system

effectively according to the end-user’s needs.

Chapter 3

Optimizing Extreme

Programming

The vast amount of published literature explaining the “right way” of doing Extreme

Programming shows, that in practice there simply is no single right way. Even though

Extreme Programming is a simple and slim process, it has to be tailored to the nature

of each team and project in order to provide the benefits it promises.

Our team has been working on a project employing the Extreme Programming

methodology, experiencing unique issues arising from the distinct project setup and

team composition, as well as the additional academic interests in the project. Ini-

tially, we aimed at applying “pure Extreme Programming”, but it became more and

more obvious that for our project some of the practices just cannot be applied in their

“pure” form. The concrete interpretation of these practices determines if Extreme

Programming can be applied successfully in the context of a team and a project.

In order to reach an optimized process for our project, we continuously evaluate

different approaches of applying Extreme Programming practices on short release

basis. We have noticed that some practices can be adopted directly, while others need

to be tailored according to the unique environment. In this chapter, we reflect on

our process based on the data collected through code analysis and process evaluation

tools, as well as notes of process retrospective review meetings. The lessons we have

learned can also help other teams to lead them to an optimized Extreme Programming

process for the success of their projects.

3.1 Introduction

The number of software projects constantly increases, but the overall success rate

is still rather low [102]. Many projects fail because of their inability to cope with

34

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 35

the changing user requirements. Heavy up-front design without continuous feedback

from the customer is another factor. To have a greater probability of success, the

developers need a software development process which should be flexible enough to

cope with the constantly changing requirements and which is also people-oriented.

Agile software development methodologies have emerged in response to these needs,

as agile methods give more value to individuals, working software, and change [101].

The intention of large scale research into software engineering techniques has

been a formulation of an ideal methodology that can consistently and predictably

lead to software development success [109]. A recent survey shows that agile software

development has seen far better success rates in comparison to other methodologies

[8]. Being an emerging agile methodology, Extreme Programming (XP) offers a

number of practices, values, and principles, which are advised to be adopted in order

to run a software development project [14]. XP is being experimented in different

ways to make it fit to the specific needs of the projects as well as the development

teams [143].

This is of interest for many academic, research and development organizations, as

there is a room for more explorations in the area of agile development methodologies.

Many experience reports in the field of agile research have been presented, helping

other teams passing through the same process [143]. However, there is still a need

for more experience reports of teams already using XP, giving valuable information

for those, who are planning to adopt the XP methodology. In addition, this data

also serves the purpose of defining the agility level of software development teams.

In this chapter, we present our own experience about the XP methodology which we

have gained by applying it to a software development project.

The next section describes our project environment. In Section 3.3 our XP pro-

cess, focusing on the practices applied in our project, is presented. Section 3.4

describes our reflections. Finally, a conclusion is presented.

3.2 Project Environment

We are developing a multimedia streaming application for mobile devices as a testbed

to analyze the XP methodology. XP is being applied in a progressive manner: each

practice is consciously applied and constantly evaluated in order to yield process

improvement. Hence, each team member is not only taking part in the software

development process, but is also making a critical analysis of the way the process

is being used. The objective of the project is twofold: on the one hand, having a

software product fulfilling the user requirements, and on the other hand, XP process

optimization as profound academic research.

We have been working on the project since summer 2007. The project’s duration

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 36

is three years, which is quite appropriate for the development of the product, as well

as for the team members to carry out the research for their doctoral studies.

We are a team of six regular members: five developers and a product man-

ager. The product manager plays the role of the “On-Site Customer”, enabling the

implementation of this XP core practice. Furthermore, he communicates with the

partners who come from various domains, including telecommunication, content pro-

viding, and hardware infrastructure. Also, developers communicate directly with the

engineers of a partner usability research company regarding usability issues.

This project’s main scientific and academic goal is the analysis of agile software

development methodologies. Another goal is research in the field of mobile appli-

cation usability. Additionally, the business partners are interested in commercial

aspects of the project. Figure 3.1 shows the allocation of the application, research,

and business aspects after the first one-month release.

Figure 3.1: Application, Research and Business Aspects in a Release.

3.3 Process

It was pre-decided that XP will be used as a methodology. Therefore, effort was made

to establish a basis for its implementation. None of the team members had worked in

an agile development environment before, so available literature, especially [13][14],

was used for initial guidance and reference. The team tried to apply all those main

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 37

practices which could be applied at the initial stage of the project. In this way, some

of the basic practices were adopted fully, while others were implemented partially,

or in modified form. The following subsections outline how the practices have been

implemented, as well as the current status.

3.3.1 Fully Implemented Practices

Small Releases

We aim to release a working version of our application to the project partners on

a regular basis. In the early stages of the project, the duration of one release cycle

was set to one month. This enabled us to quickly get feedback on our work from

the partners in order to sharpen our vision of the project goal. As the project took

shape, the release size was gradually increased to two and finally to three months.

For now, we are satisfied with three-month release cycles, which complies with the

quarterly planned business targets of the partners.

For tracking short-term progress, releases are further divided into iterations. Ini-

tially, we used a one-week iteration duration, but later we shifted to two week itera-

tions in order to reduce the administrative overhead added by the iteration planning

meeting.

The Planning Game

The planning meetings are held on iteration and release basis. Release meetings are

attended by all project partners who, as stakeholders of the project, identify and

define user requirements. These requirements are then are formulated as XP user

stories.

In our project, we distinguish three main types of user stories: application, busi-

ness, and science.

� Application stories are “traditional” XP user stories, representing features of

the application.

� Business stories describe diverse business activities, e.g., collaboration with

partners, meetings, presentations, etc.

� Science stories are only relevant for our team, hence they are not specified

during the release planning meeting. They depict the academic and research

activities of the team, e.g., paper-writing, performing process analysis, etc.

The stories generated during the release planning are written down on story

cards and are prioritized by the participating partners. To visually represent the

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 38

different story types, we use a simple color encoding for the different story types:

application story cards are white, business cards are green, and science cards are

yellow. Then, the developers estimate the time required for implementing the stories.

Also, stories created in former release meetings that have not yet been implemented

are re-estimated, if required. The final step of the release planning is to select a

subset of the available stories. This is done by prioritizing the available stories and

selecting as many top-priority stories as “fit in” the available velocity. The amount

of user stories to be scheduled is determined by following calculation: the sum of

their estimates is lower than or equal to the sum of the estimates of the user stories

finished in the previous release.

The iteration meeting is held at the beginning of each iteration and is attended

only by team members including the product manager. The product manager takes

the role of the on-site customer and selects and prioritizes stories for the current

release. The stories are then broken down into detailed tasks, which are again esti-

mated by the developers. The intended results of the tasks are explicitly defined by

writing acceptance criteria.

Figure 3.2 and Figure 3.3 show user story cards of release and iteration plannings

stuck on whiteboards.

Figure 3.2: Selected Story Cards on the Release-Board (Release Planning).

Pair programming

All production code is written by two developers working together on the same

machine with one screen, one mouse and one keyboard [13][14]. This practice has

been implemented from the first day. It helped us in sharing the project-specific

knowledge and improving the technical skills of the developers.

We also applied working in pairs to non-technical stories. For example, the

product manager pairs with a developer when writing customer-acceptance tests

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 39

Figure 3.3: Selected Story Cards on the Iteration-Board (Iteration Planning).

and when creating business assignments requiring technical knowledge. Working in

pairs on research stories was not successful. For this kind of stories everyone works

solo.

In daily stand–up meetings, the developers sign up for tasks according to their

interest. The pair partners are chosen voluntarily [136].

Sit Together

The team members including the product manager sit in one large room at their

private workspaces. There are three separate pairing stations in the same room.

Due to sitting in the same room, the face–to–face communication has resolved many

difficulties which arose within the project, the team, and the process.

Collective Ownership

A Subversion repository is used for managing the code base. The code is shared by

all developers. Whenever a chance for code improvement is identified and there is

enough time at hand, the required actions are performed on the spot. The changes are

communicated in the stand-up meetings, during pair programming, and sometimes

through a short ad-hoc discussion involving all developers. One basis for a successful

application of collective ownership is the strict adherence to coding standards.

40-hour Week

The purpose of the “40-hour week” practice is that developers should not work over-

time, because tired developers make more mistakes during coding [61]. We strictly

follow this practice.

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 40

3.3.2 Partially Implemented/Modified Practices

On-Site Customer

As the target group of the product being developed within in project is manifold,

we cannot directly implement the on-site customer practice. Therefore, initially the

product manager, as well as the developers, played the role of the customer. But

soon, many shortcomings of this approach became apparent. The absence of common

acceptance criteria for the stories resulted in long discussion cycles in the planning

meetings and the implementation. We also felt difficulties in the prioritization of the

stories. To overcome those problems, we decided that the product manager, who

also communicates with our project partners, will play the role of the customer.

Metaphor

As everyone was new to the process and the project, there was no common un-

derstanding of the metaphor – the shared terminology about the project and the

process [13][14]. This resulted in misunderstandings about the features to be imple-

mented, which eventually led to the delaying of their delivery. The release planning

meetings with partners, our internal iteration planning meetings, stand-up meetings,

retrospective meetings, and pair programming have contributed to evolvement our

metaphor.

Simple Design and Refactoring

From the very beginning the team aimed at keeping the design as simple as possible.

The design started with creating paper prototypes to visualize customer require-

ments illustrating the customer how the requirements will be put into reality. An

important factor of being able to keep the design simple is refactoring. For our team,

simple design has been beneficial, because it facilitated the incorporation of changes

demanded by the partners. Refactoring of code is not a routine practice in our team,

but it is done on demand basis, that is, whenever any developer sees the opportu-

nity to improve the code, or when we need to substantially change the application

fundamentals, e.g., the usage of a new framework.

Test-first Programming

As all the team members were new to XP, it was difficult to follow the XP style of

writing the failing automated test before any code [13][14].

Figure 4 shows a graph comparing lines of executable code, lines of test code and

test coverage. For this, the data was collected using Emma, a Java code coverage tool

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 41

[42], and LinesOfCodeWichtel [100], and is based on the work performed during the

second release of the project. The low amount of test code and test coverage shows

that the practice of testing is not well exercised by the team. For the subsequent

releases, the implementation of this practice has improved. If not being impossible

due to framework restrictions, tests are being written beforehand.

Figure 3.4: Executable Code versus Test Code and Test Coverage.

3.4 Reflection

In order to measure the performance of the team and to resolve human issues, a

retrospective review meeting on the process is held after every iteration and release.

This retrospective meeting is called “reflection meeting”. It has helped us a lot to

find out the reasons for difficulties faced during the process and their remedies. The

common decisions that we take after these meetings are noted down and followed

by all team members. Almost all XP values – communication, simplicity, feedback,

courage, and respect – and XP practices adhere to human aspects [13][14]. The

benefits of sitting together, face-to-face communication, feedback, stand-up meetings,

the planning meetings, pair programming, and reflection meetings have contributed

to improve not only our process, but also increased the overall morale of the team.

To review the development process, we collect empirical data from various sources

describing our performance of each applied XP practice.

For a qualitative analysis, we perform the Shodan 2.0 survey [89] on a regular basis

(e.g., at the end of each release). Additionally, we use quantitative data generated

by the XP tracker tool “XPlanner” [152], and different code analysis tools [42][100].

The data gathered using Shodan 2.0 Input Metric Survey shown in Table 1 gives

an overview about the methodology and the extent to which a given XP practice

is applied. As there was an explicit effort to apply these practices, low percentages

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 42

Table 3.1: Subjective Metric (Shodan 2.0 Input Metric Survey).

Testing metrics %

Test First Design 44

Automated Unit Tests 68

Customer Acceptance Tests 22

Planning metrics %

Stand-up meetings 92

Short Releases 86

Customer Access / On-Site Customer 48

Planning Game 96

Coding metrics %

Pair Programming 98

Refactoring 66

Simple Design 76

Collective Ownership 86

Continuous Integration 100

Coding Standards 84

Sustainable Pace 82

Metaphor 46

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 43

indicate that either the team was not fully content with the practice, or the practice

needs to be tailored for our project. For example, the team members perceived that

pair programming was practiced for almost every development task, while metaphor

was given the lowest rating because of the unfamiliarity of the team members with the

project. These conclusions are also supported through iteration and release reflection

notes and from key discussion points raised in stand-up meetings.

3.5 Conclusion

After working with XP practices for almost one year, our experience shows that most

of the practices are helpful for a project with multiple objectives (in our case, re-

search, application development and business). Pair programming helps in spreading

knowledge. The benefits of co-location, face-to-face communication, stand-up and

planning meetings, and retrospective review meetings have contributed to improve

not only our process, but also to increase the overall morale of the team. The low

ratings of some practices indicate that our team still needs more experience to apply

them in a proper way.

We continuously try to optimize our approach to XP. Future results will help

software development teams working under similar environments to improve their

development process for the success of their projects.

Chapter 4

Probing an Agile Usability

Process

In this chapter, we describe adaptations to the classical Extreme Programming pro-

cess. The approach described integrates Human-Computer Interaction instruments.

The implemented instruments are: User Studies, Extreme Personas (a variation

of the Personas approach), Usability Expert Evaluations, Usability Tests, and Au-

tomated Usability Evaluations. By combining Extreme Programming and User-

Centered Design processes we take advantages of both approaches.

4.1 Introduction

This case study sums up the setup of an adapted Extreme Programming (XP) pro-

cess. The goal of the adaptation was to examine the applicability of a usability-aware

agile software development process. The process was designed to allow applying

Human-Computer Interaction (HCI) instruments in XP teams. This should com-

bine the advantages of the XP methodology (on-time delivering, optimized resource

investments, short release cycles, working high quality software, tight customer in-

tegration) with the advantages of a User-Centered Design (UCD) process (usable,

accessible, and accepted products, end-user integration).

The context, where these instruments are utilized, is a project where we develop

a mobile multimedia application. The application enables users to create customized

mobile multimedia channels based on keywords. The keywords are matched against

metadata and transcriptions. Here an example: it is possible to create a news channel

with all news-broadcasts mentioning ”formula one”.

44

CHAPTER 4. PROBING AN AGILE USABILITY PROCESS 45

4.2 Problem Statement

Experts doubt that the XP process leads to true user-centered design [67]. Following

issues can prevent the integration of HCI instruments into XP processes:

� Ad-hoc Input. Because of the short release cycles software engineers would need

ad-hoc usability input during the software development. In practice usability

input is not given adhoc, but after longer periods (on average between one to

two weeks average). XP practitioners cannot accept such time-spans.

� Patchwork Experience. Our work-experience suggests that users often experi-

ence software as patchwork when developed from bottom up like done in XP.

We attribute this to the missing holistic view at the beginnings of XP projects.

The programming activities are not based on a design concept.

� Cultures. Another problem is the difference between cultures: software en-

gineers, on the one hand, and HCI experts, on the other hand, come from

different domains with different attitudes, approaches, backgrounds, and even

different ways to express themselves. The XP process requires tight coopera-

tion in teams, which reveals differences between engineers and HCI experts very

quickly: engineers have a technical approach to software development whereas

HCI experts mainly have a psychological background, hence taking a cognitive

view on the software development. These differences can lead to problems.

Methods to prevent this have to be integrated into the collaboration process.

� Technical Focus. Unit tests in XP environments are designed for technical

testing. Hence, the focus is on technical functionality ignoring usability issues.

This means that the technical view of testing has to be expanded by HCI

approaches and means.

� On-Site Customer Representative. From an HCI point of view the inclusion

of customers is a step into the right direction. Nevertheless, the Manifesto for

Agile Software Development does not clearly demand end-users as customers

[101]. We expect deficits in usability if it is not clearly stated that end-users

have to be part of the process. Developers need to have a clear picture of the

end-users.

4.3 Background

Creating usable high quality software is not trivial, especially when it comes to mobile

applications. Different processes and tools are already in place to create high quality

CHAPTER 4. PROBING AN AGILE USABILITY PROCESS 46

and usable software. They come from different domains (engineering, design, HCI).

The processes and tools we chose from are:

� Extreme Programming. The agile software development process.

� Extreme Programming and the User-Centered Design process. The combina-

tion of software engineering and HCI skills.

� Personas. A tool to define end-user groups by archetypes to raise empathy for

end-users in software development teams. We extend the persona approach

to ”Extreme Personas” to fit the changing requirements appearing during the

project duration.

� Automated Usability Evaluation. A tool and the technical ”glue” between

HCI knowledge and the XP unit tests. We want to extend known code based

usability evaluation by semantics to create (semi-) automated test-scripts which

can be included into the set of technical unit tests. These extended unit tests

allow HCI experts to directly apply HCI knowledge in the process

4.3.1 Extreme Programming

XP is an agile software development process. The goal of this process is to de-

liver high-quality software in time. This is done by different means: test-driven

development (by using unit tests), short iteration cycles, on-site customers, pair-

programming, refactoring (restructuring an existing body of code, altering its in-

ternal structure without changing its external behavior), and user stories (where

requirements are captured in short narrative stories) are the most important of them

[13][14]. Figure 4.1 shows the basic XP process where we will build our adapted

approach on (release cycles are 3 months and iteration cycles are 1 week).

Figure 4.1: Agile Development Process.

CHAPTER 4. PROBING AN AGILE USABILITY PROCESS 47

4.3.2 Extreme Programming and User-Centered Design

Practitioners already combined UCD and XP by varying approaches [65][120][34].

McInerney, P. and Maurer [105] showed already that a marriage of these two ap-

proaches is possible. In our study, we investigated the prerequisites and the process

of such an integration.

4.3.3 Personas

The Personas method was developed as a tool for raising empathy for the end users in

development teams, and as a means for communicating peer group definitions. When

developing Personas, we design archetypical prototypes of end-users. This is done

by accumulating knowledge about intended peer groups. One persona represents

a typical user group. A persona is an archetypical figure which can guide decisions

about product features, navigation, interactions, and even visual design (among other

factors) [119].

4.3.4 Automated Usability Evaluation

The idea of Automated Usability Evaluation (AUE) is not new. Basic research goes

back to the early nineties [59][10]. In the year 2000 the state of AUE is still described

as quite unexplored [76]. Current approaches tend to focus on multimodality [123]

and mobile devices [148]. Besides their limited scope (because most tools evaluate

on a code basis) for our project the existing tools have a big disadvantage: most of

them are isolated solutions for HCI experts. Hence, they hardly integrate seamlessly

into the existing development processes.

4.4 Agile Usability Process

The following subsections outline the general approach of our integrated process, the

HCI instruments used, as well as their interplay.

4.4.1 General Approach

The novelty of our approach is that we do not rely on one or two selected instruments

but took five of them and integrated them into the XP process. Figure 4.2 shows

the interplay of the HCI instruments related to the XP process. Applied correctly

in different phases of the project, the instruments are designed to reach the goal

of maximized software quality (in terms of technical quality but also in terms of

usability).

CHAPTER 4. PROBING AN AGILE USABILITY PROCESS 48

As depicted in Figure 4.2, the modified agile development process includes the fol-

lowing usability instruments: User Studies, Personas, extended unit tests, Usability

Tests, and Usability Expert Evaluations. It can be seen that end-users are integrated

in two different ways. On the one hand, User Studies inform the development and

extension of the Personas, which gives indirect end-user input to the developers. On

the other hand, usability tests (as part of the usability evaluations) directly inform

development.

Figure 4.2: Agile Development Process including HCI Instruments.

The idea was to integrate these five instruments into the classical XP process.

This multi-instrument approach was developed to solve the problems described in

the problem statement above.

The five HCI instruments we rely on are:

� Extended Unit Tests for Automated Usability Evaluation.

� Extreme Personas (a variation of the classical personas method) extend the

typical XP user stories.

CHAPTER 4. PROBING AN AGILE USABILITY PROCESS 49

� User Studies (focus groups, diaries, laddering interviews) are not inherently

foreseen in the XP process and are integrated to extend the XP concept of the

on-site customer.

� Usability Expert Evaluations to solve the ad-hoc input problem.

� Usability Tests to solve the problem of the on-site customer representative.

4.4.2 Extended Unit Tests

In XP unit testing is mandatory. Our approach extends the technical unit tests by

adding usability-specific test cases. Code based tests are enhanced with semantics

to achieve this goal, e.g., code based tests can check against guidelines like the

usage of capital letters on buttons. When adding semantics (the correct label of a

button) we can include the test into the set of unit tests already used in XP. Test-

driven development in XP means to write tests first. The written tests then define

the behavior of the application. Adding usability related unit tests with semantics

allows us to define the usability of the application. Unit tests by definition test

small definable units of the software. The problem of patchwork application suggests

using a holistic approach for testing. Therefore, the unit tests are extended by tests

which go beyond single units, and test complete interaction flows.

4.4.3 Extreme Personas

This approach starts with the same activities like the classical persona method: pre-

liminary user groups are defined and Personas are modeled for them afterwards.

During User Studies new knowledge leads to two distinct actions: when the new

knowledge suggests slight changes for a persona the persona will be refactored, if

the found knowledge reveals that current Personas do not cover the new insights

new Personas will be developed. These actions make the classical Personas extreme

by applying the XP paradigm of small iterative steps and refactoring, which is ex-

tending the Personas in this case. During the coding phases, the developers pin the

Personas beside the user stories. Their first application is in the planning game (the

phase where user stories are created), where the Extreme Personas yield as reference

representation of the on-site customer.

4.4.4 User Studies

User Studies are the instrument for getting knowledge about the end-users. The

outcome of the User Studies informs the design in two ways: on the one hand,

CHAPTER 4. PROBING AN AGILE USABILITY PROCESS 50

knowledge for creating and extending the Personas is created, and on the other

hand, direct input for the user stories can be derived.

4.4.5 Usability Expert Evaluations

Usability Expert Evaluations solve the problem of adhoc input. This is done by

instant messaging, email, and video-conferencing. Mock-ups (in early phases) and

screens (in later phases) are sent to the HCI experts who then give ad-hoc input by

using the channels mentioned above.

4.4.6 Usability Tests

Usability laboratory tests will include end-users as demanded by the UCD process

but not demanded by the XP process (where it is not mandatory that end-users are

part of the on-site customer representative).

4.4.7 Interplay of Usability Instruments

How do the single instruments work in practice? Based on the XP process HCI,

experts can intervene in three ways:

� Assist in the creation of user stories (this was done by providing HCI knowledge

derived from studies, literature, and tests).

� Contribute by writing automated usability tests.

� Extend XP methods (we brought Extreme Personas to the development team).

The knowledge derived from the used HCI instruments informed all of these

activities.

4.5 Conclusion

We use the described process since summer 2007. The project will end in 2010. Then,

the final usability tests will prove, if the process has been able to enhance usability

of the applications. Until now, we did not experience any cultural problems. The

HCI experts in the project are well integrated into the development team.

The tight coupling of different expertise has led to a high motivation among

project members. Developers gained insight into the subtleties of UCD, HCI experts

learned to understand the origins of some of the usability problems.

Furthermore, we saw that the diverse technical testing frameworks demand tech-

nically aware HCI experts. Depending on the used frameworks, the programming

CHAPTER 4. PROBING AN AGILE USABILITY PROCESS 51

expertise required varies. In practice, this could get a problem when the chosen

framework is complex and little time for learning is available.

Chapter 5

Agile User-Centered Design

Applied to a Mobile Multimedia

Streaming Application

Mobile computing is leading a revolution. Multimedia consumption on mobile de-

vices is increasing day by day. The most important factor for the success of such

applications is user acceptance. Additionally, the success of a software development

project is associated not only with tools and technologies, but also depends on how

much the development process is user-centered and developer-oriented. We are work-

ing on a project to develop a multimedia streaming application for mobile phones.

This chapter describes our adopted development process: the integration of Extreme

Programming – one of the popular agile methods – with User-Centered Design. Fur-

thermore, it is shown how the integrated process facilitates user-orientation and at

the same time preserves the social values of the development team. This chapter also

presents a summary of a recently carried out usability study.

5.1 Introduction

The most important factor for the success of a software application is user acceptance.

An inherently usable and technically elegant application cannot be considered a

success if it does not satisfy the end-users’ needs. End-users are often left out of

the development process [107]. Agile development processes involve a customer as

a business representative who is responsible to specify the business value of user

requirements, but this customer needs not necessarily to be a real end-user.

Agile methods are becoming popular nowadays. Being a lightweight agile method,

Extreme Programming (XP) has the advantages of: on-time delivery, co-located

52

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 53

team, relying on the team members’ knowledge rather than documentation, opti-

mized resource investments, short release cycles, working high quality software, tight

customer integration, incremental design, constant communication and coordination,

rapid feedback, continuous refactoring, pair programming, and test driven develop-

ment [13][14][5]. XP is a collection of well-known software engineering practices. XP

aims at enabling successful software development despite vague or constantly chang-

ing software requirements. The novelty of XP is based on the way the individual

practices are collected and lined up to function with each other [5]. It is also a

people-oriented process with many social core practices.

Usability measures the quality of a user’s experience when interacting with a

product or system. User-Centered Design (UCD) is an approach for employing

usability [146]. UCD, also called human-centered design, is an approach to user

interface design which is based on information about the people who will use the

product. UCD processes focus on users throughout planning, design, and devel-

opment of a product [147]. Holzinger emphasizes that every software practitioner

should be aware of different usability methods and apply them according to specific

situation of a project [64].

There already exist approaches of integrating agile methodologies and Usability

Engineering (UE) / UCD [65][48][105][34][108]. Memmel et al. point out that when

UE becomes part of agile software engineering, it helps to reduce the risk of running

into wrong design decisions by asking real end users about their needs and activities

[108].

The focus of both methodologies, XP and UCD, on users makes it possible to inte-

grate them [54]. The integrated process allows to combine benefits of both method-

ologies and makes it possible to reduce the shortcomings of each. XP needs to

know its true end-users and UCD benefits from a flexible and adaptive development

methodology which runs throughout the project life-cycle [144]. We integrate XP

and UCD in our project, where we are developing an application that enables a user

to perform content-based search for audio and video content and play the streamed

content on a mobile phone [72]. The end-users are indirectly involved in the pro-

cess by our use of different Human-Computer Interaction (HCI) instruments such as

user studies, personas, usability expert evaluations, usability tests, and automated

usability evaluations [151]. Usability of a mobile application is an important ongoing

research issue. Numerous studies address UE / UCD issues for mobile applications

[16][66][87]. We conduct various usability studies and in this chapter a summary of

one of the studies is presented.

Section 5.2 outlines the similarities between XP and UCD. Section 5.3 examines

the project environment. Section 5.5 describes the adopted process. Section 5.6

provides the details of a usability study. Section 5.7 concludes the chapter.

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 54

5.2 Similarities between XP and UCD

The core values of XP [14] and UCD [56] are applied to solve different issues. In

XP, a simple implementation fulfilling the minimum requirements of the application

is created and iteratively extended, while UCD tries to continuously improve the

usability of the user interface. However, when comparing some of the core values

it seems obvious that the two development processes can benefit from each other’s

practices.

5.2.1 End-User Involvement

One of the core practices of XP is to have a Customer on Site who is co-located with

the programmers in order to answer domain-specific questions and give feedback on

the system. This practice can be matched well with the testing of prototypes with

actual users as proposed by UCD. Especially, if the customer is also the real end-user

or if developers have direct access to end-users.

5.2.2 Continuous Testing

Continuous and extensive testing is at the heart of XP. It is mainly embodied by

two practices: Continuous Integration runs all existing automated tests whenever

the code base is changed or extended in order to check if the changes caused any

undesired side effects. Most of these tests emerge from Test-Driven Development.

First, automated tests checking the desired behavior are created. Then, the actual

behavior is implemented and can be evaluated right away with the tests. This is

usually done only for pure behavioral code, but can be extended to user interfaces.

Tests can check the expected behavior of an interface, and these tests can be run

whenever the code is changed.

The end-user tests of UCD are a valuable source for test targets. An unexpected

user action that caused a problem in the application can be replicated as an auto-

mated test. By executing this test in the Continuous Integration process it is ensured

that the problem, after solving it once, does not reappear.

5.2.3 Iterative Development

Both, XP and UCD, propagate an iterative procedure of design and development

[56][13][147]. An XP project yields Small Releases (another core XP practice) on

a regular and frequent basis (usually a few months). Each release version is based

on the previous one, incorporating new features and fixing bugs of the predecessor.

Inside a release time frame, work is organized in “iterations” (usually taking one

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 55

to four weeks). On an even smaller scope, many feedback-and-change cycles take

place, especially in conjunction with Test-Driven Development and Refactoring (the

practice of changing source code in order to improve its quality without changing its

functionality).

UCD also proposes a design–test–modify circle for developing user interfaces.

The scope of iterative development in XP and UCD differs. Releases and iterations

in XP are mainly organizational units and Refactoring is considered to be a devel-

opment tool. Inc contrast to this, UCD’s iterative user interface refinement is a

more explicit process as its involvement of external persons (the test users) makes

it more complex. Nonetheless, iterative interface development of UCD fits well into

the iteration principle of XP, because both approaches are aware of the value (and

necessity) of evolutionary development.

5.3 Project and Team Setup

We are working in a project where we develop an application that enables a user to

perform content-based search for audio and video content and play it on a mobile

phone. The project started in summer 2007 and will end in 2010. The application

enables a user to search not only in the metadata but also in the spoken words of the

AV clips. This content includes radio and TV archive material, such as documen-

taries or other recordings of historical, political and cultural importance, discussion

programs, movies, music videos, audio books, etc. The application is being designed

keeping in mind the social interaction of users and provides some Web 2.0 features

[70].

In addition, one goal of the project is the analysis of agile software development

methods, particularly XP, and to devise a usability test procedure for mass applica-

tions on mobile devices with emphasis on UCD and iterative user-interface design.

The team consists of six full-time regular members having different social and

cultural backgrounds, five developers and a product manager who plays the role of

the On-Site Customer of XP.

The customer communicates with the project partners who come from various

domains, including user interface design, usability research, telecommunication, con-

tent providing, and software-hardware infrastructure. Also, developers communicate

directly with the engineers of a partner usability research center regarding usabil-

ity issues. The usability engineers working for our project are also active in UCD

research with the team.

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 56

5.4 Application Features

The user interface of the current prototype comprises the following main features.

The application’s main screen provides the features: “Search”, “Top rated”, and

“Most recent” clips. It provides links to the “Channel” and “Media Feeds” pages,

as well as a link to the “Clip Detail” page when one clicks on the title of a clip. The

application also implements a few other Web 2.0 features like “Recommended” and

“Most viewed” clips.

Search:

“Search” allows to search the whole AV content by entering keywords. It displays

the search results ordered by broadcast date (if any). For each result item, the clip’s

title, link, description, duration, originating channel (if any), and a representative

thumbnail image are shown. The user can play a clip by clicking on the respective

link.

Channel:

“Channel ” allows to browse the schedule of TV and radio channels. A channel lists

the original program schedule of the current day, but users can browse the schedule

of previous days or can search within the channels. Users can select the date and

the time (either Morning, Afternoon, Prime time, or Night), where the system then

displays the list of clips in the selected time period, ordered by broadcast time. The

resulting items are shown in a similar format as in the “Simple Search” result list

with rating stars and a channel icon for each clip in the schedule. The top of the

page also provides a dropdown list for selecting channels.

Media Feeds:

The “Media Feeds” feature is intended to provide the users a facility to create and

consume a constantly updated stream of clips based on the users’ search criteria.

This media feed can be sent to a friend by SMS or email.

Clip Detail:

The system shows the “Clip Detail” page when users click on the title of the clip.

Users can rate a clip, add a comment, or view all comments. With the “Tell a friend”

feature, users can send a clip to their friend by SMS or by email.

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 57

5.5 Agile Usability Process

The following subsections describe the process which is followed in application de-

velopment.

5.5.1 Approach to User-Centered Design

User interface design plays an important role in the acceptance of a web based

application. The overall process of our approach to UCD is based on evaluating the

usability of the application in small iterative steps. This helps us to gain insights

into the functional and cognitive requirements of real users. We design prototypes of

the user interface of the system and test them throughout the development process.

As a result the fidelity of the prototypes increases and evolves.

Figure 5.1: Iterative User Interface Design Workflow [70].

The work flow presented in Figure 5.1 illustrates the iterative design approach

incorporating UCD into our XP process. From a broad perspective, the application

development cycle starts with defining user stories, then comes to mock-up designing,

and at the end to the actual implementation. The process is executed as follows:

� Different feature-related user stories of the application are created by the cus-

tomer along with partners.

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 58

� Developers create different paper mock-ups for each of the required features to

collect ideas and to present them to the customer.

� The customer decides which of the mock-ups best suits his needs or suggests

modifications to the mock-ups.

� A final mock-up is derived according to customer’s wishes, which then serves

as the basis for the actual implementation.

� Once the implementation mock-up of a feature or a group of related features

is finished, the usability engineers are asked to give feedback on it.

� After incorporating the feedback given by the usability engineers into the ap-

plication, end-user tests are conducted by the usability engineering team.

� The feedback on the application from the usability engineers, as well as from

the test-users, is taken as input for further refinements of the user interface

design of the application.

� The results are then incorporated into automated tests which serve as an exe-

cutable specification for the actual implementation.

This feedback-and-change cycle provides insights into whether the user-interface

design is meeting different usability criteria. As the application development is done

in short iterations, the developers are able to refactor the system continuously ac-

cording to the feedback derived from the parallel, as well as iterative, UI design

process. Hence, the system evolves according to the needs of the end user and the

specifications derived from actual usage.

5.5.2 Choosing the Type of Mock-Up

We make use of two different types of mock-ups; low fidelity paper mock-ups and

high fidelity implementation mock-ups. The benefit of using paper mock-ups for

the interaction design is that they can be designed and modified quickly. For sim-

ple interaction designs, a low fidelity paper mock-up suffices as a basis for further

discussions and the implementation. An additional advantage is that it is easier to

criticize simple and rough mock-ups compared to ones, which look neat and perfect

from the graphic design perspective [131]. But for some features a high fidelity mock-

up is required to clearly visualize the interface. As we have the benefit of an on-site

customer co-located with the development team all the time, for those tasks a quick

implementation mock-up is designed and immediately presented to the customer.

This implementation mock-up is then modified based on the immediate feedback of

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 59

the customer. If our customer would not have been co-located with us all the time,

it would have been difficult to have the benefit of this quick feedback-and-change

cycle.

5.5.3 Frequency of End-User Tests

The end-user tests are made on an on-demand basis. That is, when the customer says

that now is the appropriate time, from the business point of view, to run a usability

test with test-users. Also, when there is enough amount of new functionality added to

the application, it becomes effective to perform usability tests and then proceed with

development. It would have been good if user tests could have been made on regular

basis, e.g., at the end of each release, but considering the expenses and resources

required for, it we have kept it only on an on-demand basis. So, the expensive part

of involving real users is done more effectively.

5.5.4 Integration of HCI Instruments

Figure 5.2 describes our model of integrating HCI instruments (user studies, per-

sonas, extended unit tests, usability tests, and usability expert evaluations) into the

XP process [151]. It shows the interplay of the HCI instruments with the XP pro-

cess. When applied correctly in various phases of the project, the instruments are

designed to reach the goal of improved software quality not only in terms of technical

quality, but also in terms of usability. End-users are integrated in two different ways.

On the one hand, user studies are taken into account to develop personas [82]. The

personas specify the direction of development by guiding the customer in identifying

user stories and are extended at the end of the iteration when the vision about the

user has broadened. This serves as an indirect end-user input for the development

process. On the other hand, feedback from usability tests performed by test-users

as part of the usability evaluations serves as a direct input for further enhancement

and development of the application [151].

5.5.5 Testing Issues

A big issue in mobile user-interface design practice is that current approaches are not

sufficient for mobile phones [139]. For designing any software, use of UCD practices

ensures that the product is accepted by the users [84]. This further supports the use

of the UCD approach for user interface design. To enhance it further, we provide

high fidelity implementation prototypes to our usability engineers for user testing.

Paper prototypes are good and sufficient for verifying non mobile-based product

requirements. But in case of applications for mobile phones, they are not sufficient for

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 60

Figure 5.2: The Integration of HCI Instruments into XP [151].

finding and solving usability issues related to detailed interaction on the small device

with its limited user input capabilities [84]. Therefore, in our case the application is

tested on mobile phones and not on any web based simulator in order to understand

issues concerning the use of mobile phone interface [84].

5.5.6 Communication and Collaboration

Communication between stakeholders is an important characteristic of software de-

velopment. Communication and collaboration between customers, business part-

ners, developers, and other stakeholders enhance the overall team efficiency [107].

The value of communication is expressed by the XP practices of pair programming,

metaphor, informative workspace, simple design, on-site customer, the planning

game, and coding standards [61]. Other factors in communication are the use of

whiteboards, positioning and sharing of desk facilities to ease pair programming,

stand–up meetings, developers buying-in to the concepts of the rules and practices

of XP, and collective code ownership [52]. We sit side by side in a spacious room

having enough space for private workplaces, as well as for three separate pairing

stations. This seating arrangement has promoted effective interaction in the team

and has helped in resolving technical issues on the spot [92]. The teams’ XP room

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 61

is equipped with six whiteboards which are used to record the XP stories agreed

at release and iteration planning meetings. Story cards are physically stuck to the

whiteboards in prioritized order with adjacent notes written on the board. Various

graphs showing architecture and velocity of the project are also drawn on the white-

boards. By looking at the whiteboards, anyone can see the current status of the

project.

Email, phone calls, and video conferencing are the tools used in routine commu-

nication with the usability engineers and other partners. Personal visits to and by

project partners are also made by the product manager and by other team members

whenever necessary.

5.5.7 The Planning Game

We hold two types of planning meetings: release based meetings and iteration based

meetings. A release lasts for three months, where within a release, an iteration lasts

for two weeks. Project partners attend release meetings where through discussions

user requirements are identified and defined in the form of so-called XP user stories

[68]. The parallel with the UCD approach is visible in the understanding and appre-

ciation of the users and their requirements [107]. The user stories are written down

on story cards and are prioritized by the project partners. Developers then estimate

the time required for implementing the stories.

At the beginning of each iteration, an iteration meeting is held which is attended

only by the team members including the product manager. The product manager

selects and prioritizes stories which fit in the current iteration depending on the

available velocity. Then, developers break down the stories into detailed tasks and

estimate them. Finally, the product manager defines the acceptance criteria for each

story and task.

Before and after implementing the user stories, continuous feedback is obtained

from the usability engineers. Then, these stories are modified according to the feed-

back of end-users and the usability engineers. Once again, this is a common step

with UCD approaches; an understanding of the user goal and the tasks to achieve

that goal. Addressing a requirement in terms of the user and their goals focuses

development upon what is needed [107].

5.5.8 Pair Programming

This practice has helped us in spreading and sharing the project-specific knowledge

and improving the technical skills of the developers. We also applied the practice of

working in pairs with the product manager [68]. The product manager pairs with

a developer when writing customer-acceptance tests, thus exposing the customer to

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 62

the process and the internal status of the application, which helps in better un-

derstanding and implementing the end-users’ requirements. This also has enhanced

the enthusiasm of the team members to work in a collective and collaborative team

environment.

5.5.9 On-Site Customer

In UCD, all activities are focused on providing business value through ensuring a

useful, usable and engaging product. The customer is not only defined as the project

stakeholder, but the end user as well [107]. The Manifesto for Agile Software Devel-

opment [101] does not clearly demand end-users as customers. In our process, the

product manager plays the role of an “on-site customer” and communicates with the

various stakeholders. The end-users are indirectly involved by the usability engineers.

5.6 Usability Study

Usability tests are carried out to evaluate the running prototype. One of the usability

studies was executed in January 2008 with 10 respondents using a mobile phone. The

classical task-based usability test method was used [128]. Each respondent was asked

to execute 5 different tasks. Tasks were carried out on a Nokia N95 mobile phone.

To gather general feedback and general opinions, two interviews were carried out:

One before and one after the task session (pre- and post-interview). Each task was

accompanied by task specific post-questionnaires. Interview sessions lasted about 1

hour. For the tests the device’s standard browser, as well as opera-mini 3.0, were

used (the first is incorporating a web-like mouse pointer, the latter a link marker to

navigate through the interface).

After the test, respondents had to judge three different visual design paper-

prototypes. We used the AttrakDiff questionnaire [60] to capture the attitudes of the

users towards the application in terms of graphical design, enjoyment, and aesthetics.

The AttrakDiff questionnaire was filled-out after the task.

The following two subsections outline the results of the test in the form of im-

provement suggestions.

5.6.1 Improvements of Layout and Design

Main improvements should be made concerning the visual appearance of the site:

� The actual site, menu, and navigation layout is not ideal. Through the use of

the color blue as text color and background color at the same time, equal text

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 63

sizes throughout the interface and different alignments, the site’s hierarchy is

not visible for users.

� The current layout does not incorporate visually attractive design elements

and is rated as pragmatic and monotone with a lack of stimulating elements

(Attrakdiff questionnaire).

Figure 5.3 shows the prototype of the home page presented in the usability study.

Figure 5.3: The Prototype of the Home Page [72].

5.6.2 Improvements of the Usability of the Prototype

On the “Channel” web page, a web-like calendar function to select dates should be

integrated (the current function will not be usable for greater amounts of data). All

navigation menu elements should be separated from content menu elements (“Home”

vs. “Watch”). Furthermore, interactive elements (“Rate”, “Comment” etc.) should

be placed on a separate page and not on the bottom of a description page. Figure

5.4 shows the recommended prototype of the “Channel” page showing the calender.

Figure 5.5 shows the menu entries without any visual separation.

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 64

Figure 5.4: The Prototype of the Channel Page showing the Calender.

For the further development of the prototype the sub-site “Media Feeds” should

be separated into two categories introducing the sites “create Media Feed” and

“watch Media Feed”. Special attention should be given to feedback mechanisms,

which at the moment do not support the user (feedback of search queries, display of

media feed search results).

From the mock-ups of three different designs, the AttrakDiff results suggest that

a yellow design was most liked by the respondents. It was also suggested that the

blue design may be used in the future, but the following improvements should be

made:

� Accentuate contrast on whole site.

� Avoid light blue text on darker blue backgrounds.

� Introduce visually attractive design elements that increase the attractiveness

of the site.

� Eliminate monotony by introducing more colors.

Two of the developers also observed the usability study session which gave them

a chance to realize the impressions of actual end-users and their feelings. This helped

in guiding the development according to the wishes of end-users.

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 65

Figure 5.5: The Menu Entries without any visual Separation.

5.6.3 A Task Example

In this subsection, a task example is presented. The task is: “Find the detailed

description of a given movie, write a comment and rate it”.

Facts on Task:

The task was completed without any greater difficulties by all respondents. On the

“Home” page and on the “Channel” page respondents used the heading to find the

detailed description and the video’s thumbnail to watch the video. Respondents did

not encounter much problems on the “Clip Detail” page. The prominent position of

the links “Comments”, “Rate” and “Tell a friend” – Figure 5.5 – on top of the de-

scription page helped respondents to understand which possibilities are offered. On

the “Clip Detail” page there are two interaction paradigms that were both under-

stood: Clicking on the link “Tell a fried” opens a new page. This did not cause any

problems for users. The functions “Rate” and “Comment” are placed at the bottom

of a “Clip Detail” page and users had to scroll down or use a link to jump down.

In reference to both described paradigms, user comments indicate that the longer

the list of comments is, the more uncomfortable the site is to browse. Further, the

task uncovered that on the mobile interface respondents did not recognize that they

were scrolling down the page when using the anchor-links “Comment” and “Rate”.

To get back to the top of the site they pushed the “back” button. This did confuse

some of the respondents as they jumped back to “Home” although their intention

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 66

was to get to the top of the “Clip Detail” page. Of course, this depends on how the

browser implements the “back” functionality.

A solution that incorporates interactive functions (“Rate”, “Comments”, “Tell a

Friend”) on a separate page is recommended.

Suggested improvements resulting fro this concrete tasks:

� Back Button: A dedicated back button should be integrated on top of the page.

This is the place, where basic navigation elements are expected.

� Watch Button: A watch button should be designed and integrated consistently.

An additional watch button – if necessary – should be placed on a particular

spot on the site and not be integrated in the navigation menu. The watch

button should be visually highlighted.

� Tell a friend, Rate and Comments: These elements describe interactive func-

tions on the site and therefore should be kept together and aligned to the left

side of the page.

Figure 5.6 shows the recommended menu layout and arrangement.

Figure 5.6: Improvements of Menu Layout and Arrangement.

Respondents’ Feedback/Comments:

� All respondents indicated that in their opinion the “Clip Detail” page provides

a good overview.

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 67

� The design of the “Comments” and “Rating” section is good and intuitive. Too

many comments on one page should be avoided as the page would get too long

(1 respondent).

� Comments should be ordered in chronological sequence, beginning with the

most recent entry (1 respondent).

� It should be possible to select which information is sent to another person

via the “Tell a friend” function (the video’s description, the video itself, etc.).

Radio buttons should be used to specify one out of different possibilities (1

respondent).

� The space on top of the “Clip Detail” page (heading) should be used in a better

way. This would provide more space for description texts (1 respondent).

Figure 5.7 shows the space on top of the “Clip Detail” page which should be used

more efficiently.

Figure 5.7: Use the Space on top of the Clip Detail Page more efficiently.

5.7 Conclusion

Agility is an invitation to adapt, to mold, and to reshape the software development

methodology according to the requirements of a project. Being a lightweight agile

process, it is easy to extend the XP process with additional practices. Our XP

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 68

process fits well into the UCD approach, because of the many overlapping principles

(iterative development, end-user incorporation, testing) of both methodologies. The

usability engineers in the project are well integrated into the development team.

It would have been even better if one of the usability engineers had been present

physically with the team all the time, as face-to-face communication is more helpful

in quickly resolving design issues. We could not conduct usability tests frequently

with end-users due to time and budget constraints, but mitigated it with usability

expert evaluations. The whole development process is influenced when each feature

of the application is assessed from users’ perspective. This addresses the problems

which arise when the system requirements are gathered only by discussions with

stakeholders [77]. The involvement of all stakeholders, particularly end-users, in the

process, can increase the chance of the success of a project.

We continuously try to optimize our process as long as the project lasts and will

provide further insights whether the process has been able to enhance the usability

of the application. In October 2008, we will conduct a contextual mobile multimedia

content usability study which will give insights into mobile HCI concerning the co-

herence of content types, consumption times, and consumption contexts. Integrating

of end-users indirectly in the form of HCI instruments, co-location, communication,

and planning meetings has not only contributed to improving our process, but also

has led to increasing the overall morale of the team.

Chapter 6

Integration of Extreme

Programming and

User-Centered Design: Lessons

Learned

One of the most important factors for the success of a software application is user

acceptance by having a usable user interface. Since summer 2007 in our project

regarding mobile phone application, we have combined Extreme Programming and

User-Centered Design methodologies aiming to deliver usable and useful software.

The Human-Computer Interaction instruments we have integrated are: user studies,

personas, usability expert evaluations, usability tests, automated usability evaluations

in the form of extended unit tests, as well as lightweight prototypes. After one and

half years we conducted a retrospective workshop with our off-site usability engineer

to reflect on the adopted process regarding the Human-Computer Interaction instru-

ments. This chapter presents those reflections - the lessons that we learned.

6.1 Introduction

One of the most important factors for the success of a software application is user

acceptance by having a usable user interface. Extreme Programming (XP) - one of

the mostly adopted processes of agile methods in the industry - aims to continuously

deliver quality software by satisfying the customer. The Agile Manifesto does not

clearly mention that the customer should be an end-user and rarely end-user take

the customer role [30]. There is also the evidence that coordination only with the

customer does not ensure good usability, which can result in lowering the user accep-

69

CHAPTER 6. INTEGRATION OF EXTREME ... 70

tance rate [77]. User-Centered Design (UCD) is an approach to user interface design

focusing on end-users throughout the planning, design, and development stages of a

product [147].

Recently, there has been an increasing interest in integrating agile and user expe-

rience/UCD methodologies, both, in the agile community and the Human-Computer

Interaction (HCI) community. Being integrated into agile methods, UCD/usability

engineering helps to reduce the risk of running into wrong design decisions by involv-

ing real users, and results in increasing the acceptance of software applications [108].

We have integrated XP and UCD in our project regarding a multimedia streaming ap-

plication for mobile phones since summer 2007. The end-users are indirectly involved

in the process by our use of different HCI instruments like user studies, personas,

usability expert evaluations, usability tests, extended unit-tests, and lightweight pro-

totypes [151][71]. Recently, a retrospective workshop was conducted. It was attended

by all the team members and the usability engineer to reflect on the integrated pro-

cess, as well as on the HCI instruments after introducing them at the start of our

project. This chapter mainly describes those lessons learned. The next section de-

scribes the related work of combining Agile/XP with UCD methodologies. Section

6.3 describes the project context. Section 6.4 gives details about the retrospective

reflection workshop regarding the HCI instruments used and the adopted process.

Section 6.5 concludes the chapter by presenting future work.

6.2 Related Work

The integration of agile methods with HCI practices was discussed by Kent Beck

and Alan Cooper in 2002, concluding that both interaction design and XP have

strengths to be combined [117]. There are several studies examining various aspects

of the integration of both methodologies. Patton [124] has described the way of

incorporating interaction design in an agile process. Chamberlain et al. [30] have

conducted an ethnographic field study to explore a framework for integrating agile

methods with UCD. In their case study, McInerney and Maurer [105] interviewed

three UCD specialists for integrating UCD within agile methods and reported posi-

tive feedback. Ferreira et al. [48] investigated several projects for the relation of user

interface design and agile methods. Fox et al. [51] also conducted a qualitative study

that describes how the agile methods and UCD are integrated in industry. Obendorf

and Finck [121] report their experience of combining XP and scenario-based usability

engineering.

CHAPTER 6. INTEGRATION OF EXTREME ... 71

6.3 The Project Context

Since summer 2007, we are working on a project to develop a multimedia streaming

application for mobile phones. The project is based in Austria and will end in 2010.

The team consists of six full-time regular members, five developers and a product

manager who plays the role of the “on-site customer”. One dedicated off-site usability

engineer of a partner usability research center is also included in the team regarding

usability guidance. The application enables a user to perform content-based search

for audio and video content in large digital archives and play it on a mobile phone

[71].

6.4 Retrospective Workshop

The following subsections describe the HCI instruments we have used in our process

and the reflections about them, discussed in the retrospective workshop.

6.4.1 User Studies

User studies are the instrument for getting knowledge about end-users. The purpose

of user studies is to uncover user needs, desires and contexts of use. In an agile UCD

process they can be used for developing new or refactoring existing personas, as well

as for the user-story creation process. In our process we employed user studies in

the form of laddering interviews and field studies. The laddering interviews were

conducted in autumn 2007 and the results were published in [96]. Currently, a

large field trial study is being conducted with 150 real end-users spread throughout

Austria. The trial study includes field trials with diary studies, contextual interviews,

laboratory usability tests, questionnaires, and focus group.

6.4.2 Personas

Personas are archetypical figures - fictitious characters created as a tool to represent

a typical user group. In our process, initial personas were created based on initial

user studies and were iteratively refactored when new user studies suggested some

changes. The personas helped to gear the project towards the on-site customer

and end-users. However, the initially developed personas were not satisfactorily

distributed by the usability engineer to the the development team and the customer-

on-site. In addition to that, the development team and the on-site customer did not

give much credit to the two personas which were provided. Nevertheless, they got

in touch with them instead of neglecting them fully. It was concluded that personas

should be properly introduced to the team, so that they will be present consciously

CHAPTER 6. INTEGRATION OF EXTREME ... 72

or unconsciously in the minds of the team members during planning, developing or

undertaking any decision process.

6.4.3 Lightweight Prototypes

We make use of two different types of mock-ups; low fidelity paper mock-ups and high

fidelity mock-ups. Both are getting evaluated by the customer. As the developers and

the customer have been increasingly gaining knowledge about usability engineering,

evaluating paper prototypes with the customer is good on the one hand, but on the

other hand, the customer has now become an expert user instead of a casual or novice

user. So there is always a chance to ignore the actual needs of real casual end-users.

We have mitigated this risk by having more ad hoc input from the usability engineer

and suggested to conduct a formal usability test with at least 10 end-users after

every release, e.g., quarterly. For special “ad hoc” questions instant messaging is

used to gather HCI feedback within a short time frame from the usability engineer

regarding stories or mock-ups. It would have been more beneficial if the usability

engineer would have been present on-site to quickly give his feedback. In addition,

he, instead of the developers, should do the prototyping not only with the customer,

but also with at least a few end-users.

6.4.4 Usability Expert Evaluations

Expert usability evaluations are reviews conducted by experts. In our project, us-

ability expert evaluations by the off-site usability engineer are given by instant mes-

saging, email, and video-conferencing, usually in the form of ad hoc input. In our

project, usability input is needed at different points in time: when writing user in-

terface related stories and before or during implementation of the stories, as well as

after implementation. As the customer writes stories with the help of a developer, it

is decided that when a user interface related story is written, it should be sent along

with the refined paper prototype to the usability engineer at least three days before

the iteration planning. The advantage is that during the iteration planning the user

interface stories are already usability tested story. When technical questions arise

during the implementation - for instance that a certain demand from the usability

side would cost too much - it is advised to call the usability engineer or have a short

video-conference. As a result, one should get far less usability fixes to make. For

us, two hours to one day duration is perfect for this quick feedback of the usabil-

ity engineer. After the implementation (when the application is deployed), usability

feedback can be delayed for days. It was suggested that the usability engineer should

give his feedback in the form of stories along with wireframes when he thinks they

CHAPTER 6. INTEGRATION OF EXTREME ... 73

are needed. Consequently, he should be trained in writing user stories with the help

of one of the developers.

6.4.5 Usability Tests

Usability tests involve real users testing an application. We conducted a formal us-

ability test with 10 users in January 2008, which was also attended by two developers

as observers [71]. It was noticed that the mindset of the developers changed dramat-

ically when seeing real users handling the application. The developers who observed

the users during the test got more biased towards user-centered thinking than the

others. When it comes to the results of the test, there was an agreement that the

test was too early in the project to tell us a lot about the usability problems of the

application. At that point in time the system was very fast moving and because of

new demands from the stakeholders, changes in features were high. Furthermore, the

reporting period was too long. Until the report arrived, the application had changed

so much that the recommendations were partially obsolete. Therefore, smaller tests

after every 3 iterations were recommended. Since the system is a very fast mov-

ing target, not always the entire system should be tested. Big formal tests were

recommended after every release, when major changes are expected.

6.4.6 Extended Unit Tests

Extended unit tests root in automated usability evaluation. Our intended approach

extends the XP unit tests by adding usability-specific test cases. Code based tests

are enhanced with semantics to achieve this goal. For example, code based tests

can check against guidelines such as the usage of capital letters on buttons or the

correct label of a button. So far we have not focused on extended unit tests because

of priorities in areas, but we intend to work in this direction from the second quarter

of this year.

6.5 Conclusion

Since summer 2007, the mentioned HCI instruments have been used in our project

for enhancing the usability of the product. Until now, we have learned lessons that

are summarized here. In our project the XP process fits well into the UCD approach

because of the many overlapping principles (focus on delivering value, iterative devel-

opment, end-user incorporation, continuous testing) of both methodologies [71]. The

usability engineer is well integrated into the development team. We found no cultural

difference until now. Developers have gained insights into the UCD practices, while

the usability engineer learned the origin of usability problems [151].

CHAPTER 6. INTEGRATION OF EXTREME ... 74

Furthermore it was found out that especially ad hoc input can be given sufficiently

via mail, since most of the time no synchronous communication between the project

members is needed. It is also fitting for various response times since, e.g., for usability

input in the story-writing process it is sufficient to get results within 3 - 4 days. When

quick fixes are needed or other input during an urgent re-planning, the usability

engineer should be easy to contact for a quick advice via cell-phone or chat. The

interaction with the usability engineer early in the story creation-process results in

saving time, increasing motivation, and gaining better realization of needed usability

input early in the development. Furthermore, instead of a big report of a formal

usability test, the usability engineer should give the report in the form of checkpoints,

which then will be converted into stories quickly. The usability engineer should be

trained in XP-story writing to be able to deliver the user-stories in a technical-

aware manner. Proper customer and usability engineer coordination is necessary for

enabling a good usability process in the development.

The field trial study is underway these days. We have implemented user-tracking

and feedback mechanisms already in the basic architecture. The results of the inter-

views, diary studies, usability tests, focus groups, and log file analysis will provide

feedback on not only how the end-users perceive the product. In addition, statistical

data will be collected from the actual usage behavior of the users. In this way, we

will be able to provide more insights into the integration of HCI instruments into our

adopted process. We will also gain insights into the context of mobile multimedia

usage. We aim to continuously optimize our process till the project ends and will

share the knowledge gained to the agile as well as the HCI communities.

Chapter 7

Agile Process Patterns

Today, the state of the art in web application development is the usage of agile web de-

velopment processes. The main benefit of agile process definitions is to be lightweight

and flexible. Nevertheless, often the opposite is true and they can be exhaustive and

verbose, particularly when integrated with usability. One way to alleviate this problem

is to capture processes in the form of patterns.

This chapter presents three Agile Usability Process patterns extending an already

existing agile process pattern collection. The patterns described are: Usability Expert

Evaluation, Usability Test, and Automated Usability Evaluation. In pattern litera-

ture, it is stated that patterns are not invented but found. The patterns described

in this chapter are derived from the agile usability process of a scientific, Extreme

Programming based, project. In addition to the pattern definitions, the pattern imple-

mentations in this scientific project are outlined. In order to prove the validity of the

patterns, they were implemented and evaluated in an industrial, Extreme Program-

ming based project. For the purpose of comparing the two process pattern implemen-

tations, both processes were evaluated using an Extreme Programming Evaluation

Framework. For each of the processes, context factors were recorded and adherence

metrics data (quantitative and qualitative) was collected at two points in time.

The pattern implementation results showed that the usability and the overall user

experience of the developed systems improved significantly. A high number of usabil-

ity issues found in Usability Expert Evaluations was fixed by means of test driven

development, namely, writing an automated usability test for each of the discovered

usability issues first. Resulting issues of Usability Tests were incorporated and fixed

the same way. This, as well as the employment of Automated Usability Evaluation

metrics in test driven application development, increased the usability of the devel-

oped systems over time to a very high degree.

75

CHAPTER 7. AGILE PROCESS PATTERNS 76

7.1 Introduction

Agile software development techniques are applied by many software development

organizations with great success [75]. However, none of the major agile development

methods explicitly incorporates usability engineering practices [83]. Nonetheless, us-

ability is a critical quality factor for the successful adoption of a software product.

In [91] it is stated that there is probably no other technique with greater dispropor-

tion between its importance for the success of software development and the lack of

attention and formal education as usability engineering and the design of the user

interface.

The first activity in a Usability Process deals with specifying how user-centered

activities fit into the whole system life cycle process, and to select usability methods

and techniques [47]. Often, these techniques, aiming at increasing the usability level

of the software product, are applied following development processes particular to

the Human-Computer Interaction (HCI) field, and these processes are not formalized

from the point of view of software engineering. Therefore, they are not easy to

transfer to the formalized software engineering processes [46]. Nevertheless, much

work already has been done in the field of integrating HCI techniques into software

development processes [64][65]. All these proposals have the same disadvantage.

The descriptions of such integrated processes are always exhaustive and verbose and

lack fast and easy applicability in the sense of flexible and lightweight agile process

definitions. One way to alleviate this problem is to capture processes in the form

of patterns. This chapter presents three Agile Usability Process Patterns (AUPPs),

which are intended to be an extension to an already existing agile process pattern

language named Agile Adoption Patterns [40].

It is common knowledge in the scientific community that patterns are not in-

vented, but found. The AUPPs presented in this chapter are derived from an agile

usability process of a scientific project started in summer 2007. The basis for this

agile usability process is the Extreme Programming (XP) methodology. The ap-

plication being developed within this research project enables a user to perform a

content-based search for audio and video content and to play it via streaming on a

mobile phone. The basic research goal is the analysis of agile software development

methodologies, in particular XP, with special emphasis on usability. This is obtained

by two means. On the one hand a development process was established, where the

quality focus is not only placed on technical excellence, but also on delivering a

usability-tested high-quality end-product. On the other hand, a testbed for effective

and efficient mobile usability testing automating certain parts of the usability testing

procedures was created.

Within this research project, a lot of topics already have been covered. An

CHAPTER 7. AGILE PROCESS PATTERNS 77

iterative and user-centered approach to user-interface design is published in [69][70].

Measures for optimizing XP processes are examined in [68]. The integration of

XP with User-Centered Design is outlined in [72]. The results of a usability study

are made public in [71]. Lessons learned from the integration of XP and User-

Centered Design are presented in [74]. The concept and design of a contextual mobile

multimedia content usability study is treated in [73]. An agile usability process is

described in [151].

The AUPPs, Usability Expert Evaluation, Usability Test, and Automated Evalu-

ation, presented in this chapter are derived from our agile usability process published

in [151]. The approach integrates HCI instruments into the classical XP process. The

goal of the adaption was the examination of the applicability of a usability-aware ag-

ile software development process. The process was designed to allow applying HCI

instruments in XP teams. The novelty of the approach lies in the fact that not only

one or two HCI instruments were used for integration, but in fact five instruments

were selected to enhance the existing XP process. Applied correctly in different

phases of the project, these instruments are designed to reach the goal of maximized

software quality in technical terms as well as increased usability quality. The five

HCI instruments are: Usability Expert Evaluations, Usability Tests, Automated Us-

ability Evaluation, Extreme Personas, and User Studies. The integration of these

HCI instruments into the XP process is shown in Figure 7.1.

The basic concept of using patterns and pattern languages in the field of software

development is derived from work done in building architecture to describe qualities

for good architectural designs. The architect Christopher Alexander started in the

seventies to use pattern languages to describe the events and forms that appeared

in cities, towns, and buildings in the world at large. The main purpose of a pattern

is to describe a solution to a problem in a certain context. Most importantly, such

a solution can be applied as often as one wishes without ever applying it in exactly

the same way twice.

The three AUPPs presented in this chapter are intended to be an extension to

an already existing agile process pattern collection named Agile Adoption Patterns

(described in [40]). The patterns in this clear and concise pattern collection are gen-

erated by distilling the knowledge of the state of the art agile development methods

and transferring it into pattern form. All available agile practices are broken down

into a pattern of adoption resulting in a very clean and simple agile process definition.

The pattern catalog comprises feedback practices, technical practices and support-

ing practices. Moreover, special emphasis is placed on business values like Reduce

Time to Market, Increase Product Utility (Value to Market), Increase Quality to

CHAPTER 7. AGILE PROCESS PATTERNS 78

Figure 7.1: Agile Development Process including HCI Instruments [151].

Market, Increase Flexibility, Increase Visibility, Reduce Costs, and Increase Product

Lifetime. All patterns of this collection address one or more of these business values.

Despite the fact that this pattern catalog is very comprehensive in terms of incorpo-

rating all currently available agile knowledge, it still lacks the usability aspect. The

three AUPPs presented are the first attempt to close this gap. Naturally, each of

the AUPPs directly adheres to one or more of the mentioned business values. What

is more, the AUPPs have been written according to the pattern language of pattern

writing [113].

The AUPPs are derived out of an agile usability XP based process [151] of a scien-

tific project and validated in an industrial XP project. For the purpose of being able

to compare the results of these two process pattern implementations, both processes

were evaluated by means of using an Extreme Programming Evaluation Framework

(XP-EF) [150]. The XP-EF provides a benchmark measurement framework for re-

searchers and practitioners to assess concretely the extent to which an organization

has adopted XP practices and the result of this adoption [150]. The framework

provides informative feedback utilizing streamlined process and project metrics ap-

propriate for a lightweight software process [149]. The XP-EF is a compilation of

validated and proposed metrics and was designed for use throughout development

by agile teams. Small software development teams require a smaller, more manage-

CHAPTER 7. AGILE PROCESS PATTERNS 79

able metrics set that provides constructive feedback about their development process

[149]. For this reason the XP-EF metrics are focused, concise, and can be collected

by a small team without a dedicated metrics specialist [150].

The framework enables the necessary meta-analysis for combining families of

case studies. Two published case studies, one at IBM [149] and one at Sabre Airline

Solutions [93], have already been completed with XP-EF. The primary focus of the

XP-EF is to assess the extent to which an organization has adopted XP practices

and the result of this adoption. What is more, the framework is an excellent tool to

describe a given agile process. Within the context of this work the XP-EF was used

exclusively to compare two different agile software development processes.

The framework consists of three parts:

1. XP Context Factors (XP-CF)

2. XP Adherence Metrics (XP-AM)

3. XP Outcome Metrics (XP-OM)

In the XP-EF, researchers and practitioners record essential context information

about a project via the XP Context Factors (XP-CF). Drawing general conclusions

from empirical studies in software engineering is difficult because the results of any

process largely depend upon the specifics of the study and relevant context factors.

Therefore, recording an experiment’s context factors is essential for comparison pur-

poses and for fully understanding the similarities and differences between different

environments [150].

The second part of the XP-EF is the XP Adherence Metrics (XP-AM). Many

software development teams do not exercise all the XP practices to their full extent,

some employ only a few practices. The XP-AM contains subjective and objective

measures as well as qualitative analysis about the team’s use of XP practices to

triangulate the extent to which a team uses each of the XP practices [150].

Part three of the XP-EF is the XP Outcome Measures (XP-OM), which are

business-oriented metrics. It provides researchers and practitioners a means to assess

and report a team’s project outcome from using a full or partial set of XP practices.

The XP-OM consists of traditional external software development measures, such

as productivity and quality [149]. As stated before, within this work the XP-EF

is used exclusively to compare two different agile software development processes.

Therefore, this third part of the framework was omitted.

This chapter is organized as follows. Section 7.2 presents related work. The

process description of the scientific process according to the XP-EF can be found in

Section 7.3. Section 7.4 contains the AUPPs. The scientific process implementation

CHAPTER 7. AGILE PROCESS PATTERNS 80

of the AUPPs is outlined in Section 7.5. Section 7.6 comprises the industrial process

XP-EF process description. How the AUPPs were implemented in the industrial XP

process is outlined in Section 7.7. A conclusion is drawn in Section 7.8.

7.2 Related Work

This section provides an overview of related work. All publications treated in this

section are collected by means of a systematic literature review [86]. In total, eight

different online libraries were searched using a query with different connections of

the following keywords: agile pattern, process pattern, agile process pattern, extreme

programming pattern, usability process pattern, agile usability process pattern, ag-

ile usability, and agile usability process. The outcome of the systematic literature

research was that no work on agile usability process patterns exists. Basically, exist-

ing work can be divided into the categories agile process patterns, individual agile

practice patterns, agile usability processes, and usability patterns. The publications

on usability patterns are not reported in full, but exemplary, because they are not

process-oriented. Related work in each of the categories is examined in the following

subsections.

7.2.1 Agile Process Patterns

The work in [35] introduces forty-three software development process patterns in the

form of a generative pattern language. The basic assumption is that most highly

productive organizations exhibit the same patterns of organization, process, and

introspection. For this reason, data on a wide spectrum of software development or-

ganizations has been gathered over two years, and patterns capturing organizational

structures and practices were extracted.

An agile process pattern language named Agile Adoption Patterns is described

in [40]. The patterns in this clear and concise pattern collection are generated by

distilling the knowledge of the state of the art agile development methods and trans-

ferring it into pattern form. All available agile practices are broken down into a

pattern of adoption resulting in a very clean and simple agile process definition.

Patterns describing the SCRUM development method are presented as an exten-

sion pattern language to already existing organizational pattern languages in [15].

The SCRUM development method has been proven to be an effective tool for pro-

ductive software development. In this work, SCRUM is decomposed into patterns

which are combined with other existing organizational patterns. The intention is to

lead to highly adaptive, well-structured software development organizations.

In [17], an agile development pattern collection is presented. In particular, XP

CHAPTER 7. AGILE PROCESS PATTERNS 81

is considered to be a pattern language in which the practices are the basis for the

patterns. It is claimed that the practices have the characteristics of a true pattern

language in that they are synergistic and generative. Based on this assumption, the

practices are transformed to patterns and additional patterns are generated.

Organizational patterns for agile software development are presented in [36]. The

patterns are divided into four interrelated pattern languages: Project Management

(the organizational aspects of managing projects), Piecemeal Growth of the Orga-

nization (how an organization grows and develops over time), Organizational Style

(the general approach to the way the organization works), and People and Code

(how different people produce different code). The four pattern languages provide

different views on the complex multiple structures of organizations.

In [110], the concept of patterns is introduced into software processes, and expe-

riences proven to be effective in agile methods are organized as a group of patterns.

Based on this group of process patterns, a process pattern language for agile meth-

ods is proposed. Any agile method can be mapped to this generic process pattern

language. Process patterns from different agile practices can be combined and ap-

propriate agile process models for different projects in different organizations can be

generated.

The agile patterns described in [26] are based on the principles and practices

of the state of the art agile methodologies. While individual practices included in

any of these methods vary, they all have particular objectives and related activities.

Therefore, every pattern is described so as to show the core solution to a particular

problem. The patterns are organized in a framework of agile patterns.

An approach to acquiring and defining knowledge about agile software develop-

ment in terms of patterns is presented in [27]. The agile patterns discussed are derived

from six different agile methodologies. The definition of agile patterns, deriving and

recovering best practices from agile methods, is examined and the topic of how the

usage of the agile patterns contributes to organizing and delivering organizational

knowledge is discussed.

In [62], it is outlined how a pattern language can be derived from existing agile

development processes, and how the result can be used for process adaptation. The

principle behind it lies in rewriting software processes as pattern languages and

integrating them into a single comprehensive pattern language. Software processes

can be constructed from this single pattern language by using concrete, project

specific constraints as input.

A set of agile-specific process patterns that can be used for method engineering

purposes is proposed in [142]. Pattern extraction is based on a detailed inspection

of seven prominent agile methodologies, whereby a generic agile software process is

identified which is used as the starting point for the extraction process. Each of the

CHAPTER 7. AGILE PROCESS PATTERNS 82

studied agile methodologies can be realized using the proposed process patterns.

A process pattern description language which provides concepts for the semifor-

mal description of process patterns and relationships between process patterns is

presented in [57]. By using this pattern language, single process patterns can be

modeled and, by definition of relationships, be composed to more complex processes.

The pattern language is applied to the Rational Unified Process illustrating how a

process pattern catalog and the contained process patterns are modeled.

7.2.2 Individual Agile Practice Patterns

In [127], a set of twelve customer interaction patterns is introduced. The patterns are

designed to cope with the increasing emphasis on business awareness and are intended

to improve the effectiveness in customer interaction. The patterns target developers

and service providers having direct interaction with customers. Different levels of

customer interaction such as building relationships, doing negotiations, allocation of

responsibilities, and contact culture, are addressed.

The roles and practices that will increase the effectiveness of the customer on

an XP project are outlined in [103]. Since customers have one of the most complex

and difficult roles on a project and XP includes very few practices that support the

customer in their role this paper presents patterns serving the purpose of outlining

the customer role comprehensively.

The problem if a customer is actually a provider for another customer is treated

in [125]. The work describes a situation involving a complex customer relationship

with competing goals and a lack of centralized ownership for the product and the

consequences of failing to identify the correct customer. Out of this a behavioral

pattern that is relatively common in the software world is derived.

Patterns of stand up meetings, intended to help new practitioners as well as

remind experienced practitioners of what they might already know, are presented

in [153]. Despite the simplicity of daily stand ups, when the whole team meets

every day for a quick status update, stand ups often do not work. The patterns

outlined are written as an attempt to communicate tacit knowledge on the benefits

and consequences of common practices for daily stand ups.

In [41] functional testing in pattern format, aggregating experiences with func-

tional testing over several agile development projects, is presented. Functional tests

are automated, business process tests co-owned by customers and developers. They

help elucidate requirements, make project progress visible, and improve code qual-

ity. However, functional testing can become more costly than its benefits, therefore,

symptoms of potentially costly problems are outlined and solutions to those problems

are proposed.

CHAPTER 7. AGILE PROCESS PATTERNS 83

The results of an observational study identifying patterns in the use of the FIT

acceptance testing framework are presented in [126]. Executable acceptance testing

allows both the specification of customer expectations in the form of tests and to

compare those to actual results that the software produces. The usage patterns out-

lined are intended to lead to a better understanding of the strengths and weaknesses

of acceptance testing.

Concrete examples of applying test automation patterns to user acceptance test-

ing are provided in [9]. Furthermore, a description of various extensions to the

WebTest acceptance testing framework that facilitate developing automated accep-

tance tests according to these established best practices is given. The customizations

made to the Canoo WebTest acceptance-testing framework were implemented during

the course of an agile project to develop automated acceptance tests.

An xUnit test pattern language containing test automation patterns specifically

for the xUnit test framework is presented in [111]. The language comprises patterns

of different abstraction levels and scopes as well as a set of test smells, which indicate

potential test failures, not only restricted to the code level. Ten different types of

patterns on the abstraction levels test strategy, test design, and test coding idioms

are treated.

A pattern specific to the agile release planning practice is published in [154]. The

basic concept of the pattern is to use poker chips when estimating and scheduling

user stories. The motivation behind this is the fact that physical models emotion-

ally convey the limits of resources and time much better than words or numbers,

respectively a boring release planning process will tend to receive less engagement

and commitment from stakeholders.

In [85], an approach to applying patterns that combine the top-down utility of de-

sign patterns with the bottom-up discovery of iterative development and continuous

refactoring is examined. Based on the assumption that design patterns are targets

for refactorings, the work introduces the theory and practice of pattern-directed

refactorings: sequences of low-level refactorings that allow designers to safely move

designs to, towards, or away from pattern implementations.

Simple, elegant and proven solutions to the specific problems of writing use cases

on real projects described by means of three-dozen patterns can be found in [6].

These patterns are based on observable signs of quality that successful projects tend

to exhibit. The goals are providing a vocabulary for discussing, advice for writing

and organizing use cases effectively, and diagnostics for evaluating use cases.

An agile, lightweight and sufficient, approach to documentation is outlined in

[129]. The work presents a collection of patterns guidelines that offer solutions to

the recurring yet multi-faced problems of documentation. The patterns are governed

by the principles of producing lightweight documentation, having a high-quality doc-

CHAPTER 7. AGILE PROCESS PATTERNS 84

umentation standard, using tools and techniques facilitating documentation genera-

tion, and an efficient and straightforward documentation process.

7.2.3 Agile Usability Processes

The work in [47] offers developers who have the objective of integrating usability

practices into their software process a framework that characterizes 35 selected HCI

techniques in relation to six relevant criteria from a software engineering viewpoint,

and organizes them according to the kind of activities in the development process

where they may be applied, and to the best moment of application in an iterative

life cycle.

An approach for bridging the gap between software engineering and HCI, by

offering orientation to software practitioners on the application of HCI techniques

and activities is described in [46]. For this purpose, a survey of the HCI literature has

been carried out to define the activities in a user-centered development process, and

to select the HCI techniques that are more appropriate for integration into software

engineering practice.

An experience-based, human-centered design life cycle, an interdisciplinary effort

of experts in the fields of software engineering, HCI, and process improvement is pre-

sented in [114]. The approach aims at supporting the introduction, establishment and

continuous improvement of Human Centered Design (HCD) processes and comprises

a process model, tools, and organizational measures that promote the utilization of

HCD methods and facilitate organizational learning in HCD.

In [49], a report on a qualitative grounded theory study of agile projects involv-

ing user interface design can be found. Within the study, semi-structured interviews

with software team members from different companies in different countries were con-

ducted. Key results are that agile iterations facilitate usability testing, incorporation

of results of usability tests into subsequent iterations, and improve the relationship

between user interface designers and software developers.

A development process and toolset that draws on XP and Scenario-Based Design

is examined in [94]. The approach makes the contribution of allowing developers

who use agile software development processes to efficiently address usability issues,

supporting collaboration between software engineers and usability specialists by facil-

itating communication of design intent and rationale, and supporting efficient design

representation-based development by leveraging techniques from agile software de-

velopment.

The work in [50] addresses how interaction design and agile development work

together, with a focus on the issue of interaction design being done up-front. The

study method used interviews with interaction designers and software developers on

CHAPTER 7. AGILE PROCESS PATTERNS 85

several agile teams. The interpretation includes benefits seen for a certain amount of

up-front interaction design, and benefits seen for continuing interaction design with

the iterations of software development.

An experience report which proposes U-SCRUM as a variant of the SCRUM

methodology can be found in [137]. Unlike typical SCRUM, where at best a team

member is responsible for usability, U-SCRUM is based on the experience that the

role of product owner is assigned to two peers. One is focused largely on traditional

functions and the other is focused on usability and user experience.

In [112], usability testing based on paper prototypes and early versions of the

software was added in the second release to an agile development process. Compared

to the first release, in the second release a significant reduction of usability related

rework was noted. The paper prototype became a tangible representation of the

project vision that was used in many ways that contributed to the resounding success

of the project.

A customer-centered systems definition method named Contextual Design is in-

troduced in [18]. The approach is adapted to XP teams developing quick-turnaround,

short-development-lifecycle projects. It is shown how integrating the two methods

fills the gaps in agile methods for both fast-turnaround iterative projects as well as

large scale, high-impact, enterprise projects. The resulting process incorporates the

customer voice and provides room for user interaction design.

The publication [121] reports on experiences made in both academia and industry

in putting an agile development process pattern to the test. The pattern combines

XP and Scenario-Based Usability Engineering, based on a blend of perspectives on

equal terms. The central aspect is the use of scenarios as a focal point to connect a

design vision with the more technical tasks of the programmer.

The work in [83] tries to connect discount usability engineering with agile de-

velopment. The expression discount usability engineering describes a collection of

simple, low-cost techniques for designing and testing systems for improved usabil-

ity. There are a number of similarities between discount usability engineering and

agile development found and the overall strategy presented is to fashion a discount

usability engineering approach for use with Scrum.

The usage of Interaction Design in an agile development process is examined

in [124]. Interaction Design as a day-to-day practice throughout an iterative de-

velopment process helps in delivering high quality software. Recommendations are

provided on how to practice an agile form of Usage-Centered Design and how to in-

corporate bits of Interaction Design thinking into everyday development and product

planning decisions.

The paper [30] reports a field study designed to investigate the use of agile meth-

ods alongside Usage-Centered Design in one particular organization. The aim of

CHAPTER 7. AGILE PROCESS PATTERNS 86

the study was to develop a framework for use by project teams wishing to integrate

User-Centered Design practices with agile development. The study, its findings and

five principles for integrating User-Centered Design and agile development arising

from this work are discussed.

A study of a particular XP based interaction design process which is extended

with the personas approach is presented in [58]. A model is constructed by analyzing

the principles of personas and agile software development. Empirical evaluation of

the model is performed in a case project. The results provide viewpoints on the

applications of interaction design activities in different stages of agile processes.

The aim of [51] is to show that agile methodologies and User-Centered Design can

co-exist effectively by conducting a study with participants that have previously com-

bined these two methodologies. The findings connected with existing work outline

that the existing model used for integration of Agility and User-Centered Design can

be broadened into a more common model. Three different approaches for achieving

this goal are presented.

The results of a case study on UCD in real life environments are examined in

[105]. Three UCD specialists were interviewed, and their experiences are presented.

These specialists, all having degrees with a UCD/HCI specialization and prior UCD

experience, were working on their first agile project. The reported experiences are

structured according to the categories: basic user understanding, user interface de-

sign processes, and usability evaluation.

In [134] five major obstacles of usability and software engineering and their related

myths are discussed from the perspective of both the usability and software engineer-

ing communities. Tools and techniques for avoiding usability pitfalls in managing the

software development life cycle are presented. Furthermore, traditional practices in

software development and best practices in human-centered development are aligned

to synchronize usability and software engineering.

A streamlined and simplified variant of the usage-centered process that is readily

integrated with lightweight methods is outlined in [32]. The process is based on the

typical agile characteristics of successive release cycles and iterations. In essence, the

process consists of ten consecutive activities intended to be executed in an iterative

way. The activities are based on card-based modeling and decision-making.

In the publication [140], a usability study on how a User Experience Team

adapted their user-centered design practices in an agile environment is reported. In

essence, ways to conduct usability tests, interviews, and contextual inquiries, both

in the lab and the field, within an agile framework are described. In particular, ad-

justments of the timing and granularity of these investigations, and the way usability

findings are reported, are outlined.

The role of the interaction designer in an agile software development process

CHAPTER 7. AGILE PROCESS PATTERNS 87

is examined in [97]. Observations of a contrast in thinking styles between a user-

interface design team and a software engineering team developing a new software

product are described. Based on a case study, key roles for the interaction designer

working in a SCRUM environment are identified and elaborated with a temporal

view on the development process.

The work in [95] presents a development approach that draws from XP and

Scenario-Based Design. Tensions between agile software development and usability

engineering resulting in difficulties to integrate both methods are outlined. Three key

questions that need to be addressed for agile software development methods and us-

ability engineering practices to work together effectively are described. Furthermore,

interface architectures and design representations that can address these questions

are introduced.

A coherent strategy for bringing usability practices into agile projects is presented

in [7]. The publication examines both user experience (UEX) and agile software de-

velopment (ASD) approaches, comparing and contrasting the underlying philosophies

and practices of each. Then, using agile model-driven development as the founda-

tion, strategies for tailoring UEX into agile methods are described. It is stated that

the key factor is flexibility of both UEX and ASD practitioners.

In [65] ideas on how to combine XP and Usability Engineering in a software

development method called Extreme Usability are reported. Extreme Usability is

based on the fact that the two combined development approaches have different

goals but, at the same time, employ similar methods to achieve them. Additionally,

the authors have embedded their ideas into Software Engineering education.

The definition of a software development process that integrates practices from

Software Engineering and HCI is outlined in [138]. The process aims at helping

professionals in the development of interactive systems with usability, making HCI

an essential part of software engineering, and describing the basis for developing

user interfaces by integrating HCI concepts rather than on depending only on the

experience of user interface designers.

In the book [33], the models and methods of an approach to software engineering

to deliver more usable software are elaborated. Recognizing usability as the key

to successful software, concrete tools and techniques that programmers can employ

are provided. The systematic software development process outlined is called usage-

centered design. In this process two major threads in software development methods,

use cases and essential modeling, are weaved together.

The most relevant frameworks for integrating HCI and usability techniques into

the software development life cycle are reviewed in [132]. Their strengths and weak-

nesses as well as how far the objective of the integration been reached are assessed. In

addition, conclusions about research directions towards the development of a generic

CHAPTER 7. AGILE PROCESS PATTERNS 88

framework for the integration of usability engineering methods in software develop-

ment practices are drawn.

The paper [44] presents a framework for the integration of usability techniques

and activities. The framework characterizes selected usability techniques and activi-

ties using software engineering terminology and concepts, according to what kind of

activity they belong to and at what development stage their application contributes

most to the usability of the final software product. The proposed framework targets

at enhancing iterative development processes with usability aspects.

The major challenges in integrating usability and user-centered design techniques

in the software engineering life cycle are discussed in [133]. Issues covered are: user

and user interface design specialist involvement, practical experiences of using us-

ability engineering techniques and artefacts in the analysis, design and evaluation

processes, organizational obstacles to user-centered design, role usability profession-

als in the development processes, and communication problems of usability experts

with computer scientists.

The publication [21] describes the core principles of agile development and in-

vestigates to what extent usability-enhancing activities can be supported within the

agile approaches. Although agile approaches and user-centered design come from

different fields, they share common targets. Therefore, user-centered design quali-

ties in the agile software development approach are analyzed. Further, a model for

integrating agile development and user-centered design is outlined.

7.2.4 Usability Patterns

The work in [37] presents the results of an empirical study on browsing strategies

and user goals when using a web system that designed using a web design patterns

catalogue. Also, the relation between the user goal and the browsing strategy as

well as the impact on the quality of the use of the patterns is analyzed. The over-

all intention is to design patterns catalogues that take into account the goals and

expectations of their end-users.

A comprehensive web usability pattern language comprising 79 individual web

usability patterns is described in [55]. The patterns address the four aspects of

website design that can affect the success of a site: usability, content, navigation,

and aesthetics. Furthermore, the pattern language is organized in a way that reflects

the structure of a typical web design project and provides knowledge ranging from

requirements understanding to detailed design guidelines.

The publication [25] examines a pattern approach to interaction design. A com-

prehensive pattern language for the interface design of interactive exhibits is pre-

sented. The patterns of the language capture and structure user interface design

CHAPTER 7. AGILE PROCESS PATTERNS 89

knowledge. Also, a number of evaluations of different aspects of the pattern lan-

guage and an evaluation of the systems that have resulted from using this approach

are outlined.

7.3 m3 XP-EF

In this section, the results of the evaluation by means of the XP-EF of a scientific

project are presented. The product being developed is an application that enables

a user to perform a content based search for audio and video content and play it

via streaming on a mobile phone. From this point on, the scientific project will be

referred to as the m3 project (mobile multimedia). One of the basic research goals of

the m3 project is to examine different aspects of XP, especially XP in combination

with usability. Since the m3 project is an XP research project, employment of the

XP-EF was self-evident. The characteristics of the m3 project placed it in the agile

home ground [22] and XP was implemented nearly in pure form.

The XP-EF data collected is the outcome of the evaluation and comparison of two

releases of the product being developed. More precisely, the third and fourth release,

from this point forth referred to as the old release and the new release respectively,

were evaluated and compared. The m3 project was initiated at the beginning of 2007.

Development for the old release began in July 2007 and lasted for 3 months. Work on

the new release commenced in October 2007 and lasted for 3 months as well. At the

beginning of the old release, the development team was already familiar with XP and

the team exercised the practices to its full extent. For each of the releases, detailed

data was collected and the result in the form of XP-CF and XP-AM is outlined in

the following two subsections.

7.3.1 XP Context Factors (XP-CF)

The XP-CF utilize six categories of context factors outlined by Jones [78]: software

classification, sociological, geographical, project-specific, technological, er-

gonomic, and an additional category, developmental factors, based upon work by

[22].

Software Classification. In the XP-EF, projects are classified as one of six soft-

ware types: systems (used to control physical devices); commercial (leased or mar-

keted to external clients); information systems (for business information); outsourced

(developed under contract); military ; or end user (private, for personal use). The

m3 project is a scientific research project which is funded by the government. Addi-

tionally, there are several academic and industry partners. Nevertheless, the product

CHAPTER 7. AGILE PROCESS PATTERNS 90

being developed is intended for the mass market, and commercialisation efforts ex-

ist. For this reason, the customer role is taken by a product manager. Since the

product is built and marketed to appeal to many customers, this project is classified

as commercial software.

Sociological Factors. Team conditions for both releases are shown in Table 7.1.

For both releases, some factors were the same and for this reason no comparison

was made. Personnel is often considered one of the most prominent risk factors in

software development [24]. Therefore it is important to capture relevant information

about team makeup. Sociological factors capture the development experience of the

team members as well as their knowledge of the problem domain [149].

As shown in Table 7.1, in the old release the turnover rate was 20 %. The turnover

rate was calculated by adding the number of people who joined or left the team and

dividing by the team size at the end of the release. The reason why this is not

reflected in the team size is that the new team member was not a developer, but a

business person taking the role of a product manager. The team size parameter only

counts full-time developers and full-time testers. Furthermore, the morale factors

indicate that in the old release the team was experiencing delays caused by external

partners. A public trial of the software was planned but the external partners did not

make the deadlines. Therefore work needed to be replanned and rescheduled. In the

new release, the morale factors indicate reduced process. This happened for scientific

reasons in order to experiment with XP and its practices. Some of the XP practices

were dropped in the process implementation, because the initial introduction of all

XP practices at the same time did not prove to be an efficient adoption strategy.

Table 7.1: m3 Sociological Factors.

Context Factor Old New

Team Size 5

Team Education Level Masters: 5

Experience Level of Team > 5 years: 3

< 5 years: 2

Domain Expertise Low

Language Expertise Moderate

Experience of Project Manager Low

Specialist Available Usability Engineer

Personnel Turnover 20 % 0 %

Morale Factors Delays Reduced process

CHAPTER 7. AGILE PROCESS PATTERNS 91

Project-Specific Factors. Projects of varying size and scope are subject to dif-

fering risk factors that may substantially affect development quality and schedule,

making it necessary to record this context information [149]. Table 7.2 compares

the project-specific factors for the two releases. The numbers of new and changed

classes, new and changed methods, new and changed lines of code, and system and

component kilo lines of executable code (KLOEC) are quite low for a development

team of that size. The reason for this is that on the one hand the development team

was not developing full-time but was also doing a lot of research tasks. And on the

other hand, all coding specific XP practices such as simple design, test-driven devel-

opment, refactoring, pair programming, collective code ownership, coding standards,

and spiking were applied in an exaggerated way for scientific purposes.

Table 7.2: m3 Project-Specific Factors.

Context Factor Old New

Delivered User Stories 66 103

Domain Mobile multimedia

Person Months 12 18

Elapsed Months 2 3

Nature of Project Enhancement

Relative Feature Complexity Low

Product Age 5 Months 8 Months

Constraints Date constrained

Scope constrained

Science constrained

New and Changed Classes

Total Classes

13

13

14

18

New and Changed Methods

Total Methods

79

79

45

104

New and Changed Lines of Code

Delta Set

x

x

x

x

Component KLOEC 0.930 1.428

System KLOEC 0.930 1.428

CHAPTER 7. AGILE PROCESS PATTERNS 92

Ergonomic Factors. The physical working environment can have a direct impact

on the communication flow and overhead. This is particularly important to the XP

core values of communication and feedback [149]. Table 7.3 documents the ergonomic

factors of the m3 project. Because both the old and new releases had the same con-

ditions, no comparison was made. Ideally, an XP team has an open space office

environment. Since the m3 project is an XP research project, the physical working

environment was set up exactly according to the methodology. Each of the five devel-

opers, as well as the product manager, had their own individual desk. Additionally,

three pair programming stations were available. Everything was located in an open

space office environment. Additionally, six whiteboards were available where release

planning, iteration planning, backlog, and process metrics were recorded.

Table 7.3: m3 Ergonomic Factors.

Context Factor Old New

Physical Layout Open space office environment

Distraction level of office space Low

Customer Communication On-site, constant interaction

Technological Factors. General software development tools and practices, such

as code inspections or project management, can have a dramatic effect on a project.

Therefore, it is important to document these technological influences on a project as

well [149]. The technological factors of the m3 project are summarized in Table 7.4.

For both releases the same factors were recorded and for this reason no comparison

was made. The planning game was used to establish release and iteration plans. User

stories and task estimates were used to forecast release points and iterations based

on the velocity of the project team. Concerning defect prevention and removal prac-

tices, the XP practices of pair programming, unit tests (test-driven development),

continuous integration, and collective code ownership were employed. Testing by

developers served as the primary means to identify potential problems in the code

during development of both releases.

Geographic Factors. Team location and customer location may greatly impact

the feedback cycle length during software development [149]. Table 7.5 documents

CHAPTER 7. AGILE PROCESS PATTERNS 93

Table 7.4: m3 Technological Factors.

Context Factor Old New

Software Development Methodology XP

Project Management Planning Game

Defect Prevention and Removal Practices Pair Programming

Unit Tests

Continuous Integration

Collective Code Ownership

External/System Test Done by developers

Language Java

Reusable Materials Demodata and democlips

the geographical factors. Because both the old and new releases had the same con-

ditions, no comparison was made. The team worked collocated with one product

manager always on site.

Table 7.5: m3 Geographic Factors.

Context Factor Old New

Team Location Collocated

Customer cardinality and location 1, on-site

Supplier cardinality and location

Developmental Factors. [23, 22] acknowledge that agile and plan-driven method-

ologies each have a role in software development and suggest a risk-based method

for selecting the appropriate methodology. In the context of their work, plan-driven

methodologies are defined as classical waterfall development methodologies. Their

five project factors (team size, criticality, personnel understanding, dynamism, and

culture) aid in selecting an agile, plan-driven, or hybrid process. Criticality indi-

cates the magnitude of loss due to a defect, ranging from loss of comfort to loss of

lives. Personnel understanding indicates the team’s ability, ranging from the abil-

ity to perform procedural methods (Level 1B) to the ability to revise a method in

an unprecedented situation (Level 2 & 3). Dynamism is a measure of requirements

volatility, the average amount of changed requirements per month, and culture indi-

cates the attitude of the team towards change [149].

CHAPTER 7. AGILE PROCESS PATTERNS 94

1
5

10
30

50

90
3

10

Many
lives

Single
life

Essential
funds

Discretionary
funds

Comfort
Agile

Plan-driven

30

100

300

70

50

30

10

35

3010

0

2520

2030

1540

Size
(# of personnel)

Culture
(% thriving on

chaos vs. order)

Criticality
(Loss due to

impact of defects)

Dynamism
(% Requirements
change/months)

Personnel
(% Level 1B) (% Level 2&3)

Figure 7.2: m3 Developmental Factors.

The developmental factors of the m3 development team are graphed on a polar

chart’s five axes, as shown in Figure 7.2. When a project’s data points for each

factor are joined, shapes distinctly toward the center of the graph suggest using an

agile method. Shapes distinctly toward the periphery suggest using a plan-driven

methodology. More varied shapes suggest a hybrid method of both agile and plan-

driven practices [150]. The shape indicates that an agile method is appropriate.

The evaluation of the developmental factors for both releases resulted in the same

parameter values and therefore no comparison was made.

7.3.2 XP Adherence Metrics (XP-AM)

Most companies that use XP adopt the practices selectively and develop customized

approaches to operate within their particular contexts [39]. For comparison purposes

it is therefore essential to determine and record the subset of practices employed by

a team. The XP-AM enables one to express concretely and comparatively the degree

to which a team applies XP practices.

The adherence metrics contain subjective and objective measures as well as a

qualitative analysis about the team’s use of XP practices to triangulate the extent

to which a team uses each of the XP practices [150]. The Shodan Adherence Survey

CHAPTER 7. AGILE PROCESS PATTERNS 95

is an in-process, subjective means of gathering XP adherence information from team

members [90]. Survey respondents report the extent to which they use each practice

on a scale from 0% (never) to 100% (always). For the old as well as for the new

release, five team members took the survey at the reflection meeting at the end

of the release. The objective measures describe the quantifiable adherence to XP

practices, e.g., test coverage.

The combined results of the adherence metrics of the m3 project presented in

this subsection are based upon three categories: Planning Adherence Metrics (Table

7.6), Coding Adherence Metrics (Table 7.7), and Testing Adherence Metrics (Table

7.8). For each category, first the results from objective measures followed by results

from subjective measures are outlined.

Planning Adherence Metrics. The planning adherence metrics of the m3

project are summarized in Table 7.6. The release length as well as the iteration

length of the new release increased in comparison to the old one. This resulted from

experimenting with different release and iteration lengths. One outcome was that a

2 week iteration reduces the administrative overhead in terms of iteration planning

and reflection meetings. But the progress of 1 week iterations is more stable due to

the shorter development cycle permitting the feasibility of more accurate estimates

for smaller stories. Requirements dynamism, representing the average amount of

changed requirements per month, stayed approximately the same.

In the old release, the team held a mandatory stand up meeting every morning.

The stand up meeting adherence dropped in the new release because constant knowl-

edge distribution by means of pair programming was considered the main knowledge

management tool. The software being developed was tested and deployed to a test

system at the end of every iteration in both releases. Customer availability was quite

low in the old release (roughly half the time) but accordingly, a business person play-

ing the role of the product manager joined the team full-time for the new release.

The subjective measures of the planning game reflect the fact that in the old release

the team implemented this practice in a too structured and heavy-weight fashion

and therefore, to a certain degree, it was neglected in the new release.

Coding Adherence Metrics. Table 7.7 depicts the coding adherence metrics

of the m3 project. The pairing frequency for the old release was 100 %. This

unusually high number resulted from the scientific background of the project, namely

to examine XP in all its aspects. All production code as well as all spiking was done

in pairs. Process data such as user stories, tasks, acceptance criteria, implementation

CHAPTER 7. AGILE PROCESS PATTERNS 96

Table 7.6: m3 Planning Adherence Metrics.

Planning Metric Old New

Objective Metrics

Release Length 2 months 3 months

Iteration Length 1 week 1-2 weeks

Requirements Dynamism 30 % 30 %

Subjective Metrics (Shodan) Mean

Stand up meetings 92 % 56 %

Short Releases 86 % 74 %

Customer Access / On-site Customer 48 % 72 %

Planning Game 96 % 68 %

time, and names of developers who paired, was recorded on whiteboards, and pictures

were taken at the beginning and the end of each iteration. In the new release,

pair programming frequency dropped because only production code was written in

pairs and spikes were done by individual developers. Classical code inspection [150]

frequency for both releases was 0 % since the XP methodology, interpreted in a strict

sense, does not contain this activity. Continuous code inspection was done by means

of constant pairing.

The subjective metric for pair programming for both releases reflects exactly the

objective metric. Due to the fact that pair programming is a very controversial

practice, there were a lot of discussions among the team members and a lot of

experimenting took place. Some developers noted their dislikes for pairing because

of differences in expertise. What is more, the team structure was heterogeneous in

the sense of different nationalities. Naturally, cultural differences were an issue when

it came to pairing. Another point often discussed was the value of this practice

when implementing trivial tasks. Miscellaneous concepts for switching of pairs were

examined. A natural and effective concept found was to create user stories with

an estimated effort of approximately one day, so switching pairs was possible on

a user story basis. The data for the old and the new release for refactoring are

approximately the same and are strongly connected to the “Do the simplest thing

that could possibly work” principle. Simple design was a source for discussion as

well, and here different levels of expertise and differing knowledge about frameworks

were obstructive. The strong interdependency between collective ownership and

the concept of switching pairs was noted as well. For the old as well as the new

release a dedicated continuous integration machine was available. Coding standards

were adhered to a certain degree, but a checkstyle implementation in the continuous

integration process was missing. The value of the sustainable pace metric decreased

CHAPTER 7. AGILE PROCESS PATTERNS 97

in the new release because the development process per se was changed and redefined

a few times. The value for the metaphor in the old release was quite low because the

basic requirements of the system were still not fixed at that point in time. In the

new release, also because of the new team member acting as permanent customer on

site, the overall system concept was refined resulting in a much clearer metaphor.

Table 7.7: m3 Coding Adherence Metrics.

Coding Metric Old New

Objective Metrics

Pairing Frequency 100 % 84 %

Inspection Frequency 0 % 0 %

Subjective Metrics (Shodan) Mean

Pair Programming 98 % 68 %

Refactoring 66 % 62 %

Simple Design 76 % 74 %

Collective Ownership 86 % 86 %

Continuous Integration 100 % 98 %

Coding Standards 84 % 76 %

Sustainable Pace 82 % 70 %

Metaphor 46 % 68 %

Testing Adherence Metrics. The testing adherence metrics of the m3 project

are illustrated in Table 7.8. The team’s test coverage for both releases denotes that

special emphasis was placed on testing. The team wrote automated unit tests before

adding or changing functionality and before refactoring code. Test Run Frequency

measures how often the automated tests are run. Ideally, the measure should be

automated, and the value should be at least 1.0, indicating that each team member

runs the test suite at least once per day [93]. The data shown was manually calculated

and partially estimated and indicates that on average each member of the team ran

the test suite three times a day. As can be read out of the ratio between Test

LOC and Source LOC for the new release, a lot more test code was written. The

percentage for changed classes with test class and new classes with test class for both

releases stayed approximately the same.

CHAPTER 7. AGILE PROCESS PATTERNS 98

Table 7.8: m3 Testing Adherence Metrics.

Testing Metric Old New

Objective Metrics

Test Coverage 84,8 % 89,6 %

Test Run Frequency 3.0 3.0

Test LOC / Source LOC 0,355913978 0,816793893

New and Changed Classes w/ Test Class 38 % 37 %

New Classes w/ Test Class 27 % 25 %

Subjective Metrics (Shodan) Mean

Test First Design 44 % 38 %

Automated Unit Tests 68 % 48 %

Customer Acceptance Test 22 % 32 %

The numbers for the subjective metric for Test First Design are relative low for

both releases because the evaluation was done in a strict way. Although, when imple-

menting user stories, test-driven development was exercised, architectural decisions

were made upfront and not while coding. All team members agreed that it was diffi-

cult to write automated unit tests for the user interface because of limitations of the

used web component library. The number for the new release for Automated Unit

Tests suggests that less unit tests were written. But essentially this resulted from

different approaches of how to learn test-driven development in a proper way, namely

with this practice a lot of experiments were done. For both releases the numbers

of the Customer Acceptance Test metric are very low due to the unavailability of

an appropriate testing framework adequate for a technically unskilled person, the

customer on site, to write tests easily.

7.4 AUPPs

In this section, the three AUPPs are presented. The patterns are intended to be an

extension of the already existing pattern collection Agile Adoption Patterns [40] and

therefore adhere to the same pattern format with a few modifications. The pattern

sections dependency diagram, sketch, and references have been left out for the sake

of brevity.

7.4.1 Usability Expert Evaluation

Description. The Usability Expert Evaluation practice aims at having a usability

engineer as part of the development team and frequently evaluating the system being

CHAPTER 7. AGILE PROCESS PATTERNS 99

developed. The evaluations are carried out at different development stages yielding

continuous usability input and ensuring maximized usability for the software being

created.

Business Value. The Usability Expert Evaluation practice helps to increase prod-

uct utility, value to market, and quality to market in delivering usability expert eval-

uated software with maximized usability quality and a minimum of usability defects.

Furthermore, costs are reduced and product lifetime is increased by lowering the

maintenance effort of fixing usability defects after the software has been deployed.

Context. You are on a project creating a system having a graphical user interface.

A usability engineer is part of the development team and the usability quality should

be assured through all stages of development.

Forces. Usability is one of the most critical success factors in the adoption of

a software system. Often the usability of a developed system is evaluated after

completion and a usability engineer has not participated from inception. Continuous

and iterative evaluation of the usability of a developed system by a usability engineer

and incorporating the issues found assures high usability quality.

Therefore. Usability expert evaluations of a feature are performed in the planning

process, the implementation process, and after the feature has been completed. User

interface stories as well as corresponding low-fidelity paper prototypes are prepared

before the actual planning game. The usability engineer evaluates and refines the

prototypes used for the planning game of the next iteration. If technical obstacles

arise during the implementation, such as usability demands that could be too expen-

sive to implement, a solution in cooperation with the usability engineer is developed.

At the end of the iteration, all new features are deployed and the usability is evalu-

ated. The found usability issues of the usability engineer are reported in the form of

user stories. This stories are used for the planning game of the next iteration.

But. Usability expert evaluations should be an integral part of the development

process and evaluations should not be shifted to “when there is time”. Furthermore,

short release cycles require quick usability input during the development process.

Therefore, for an agile project the usual way usability expert evaluations are done

is not ideal. Instead of big, long lasting, application wide evaluations, smaller and

faster evaluations on story level are necessary. Concerning cultural problems, it

should be stated that developers have a technical approach and usability engineers

CHAPTER 7. AGILE PROCESS PATTERNS 100

have a mainly psychological focus. These differences can lead to problems and for this

reason methods to prevent this have to be integrated in the collaboration process.

Variations. In agile projects, usability expert evaluations solve the problem of ad-

hoc usability input. A special situation occurs when the usability engineer is not

on site. Namely, different communication issues arise. To overcome these problems,

communication channels such as instant messaging, email, and video-conferencing

should be used. Since most of the time no synchronous communication is needed,

exchanging of low-fidelity paper prototypes and deploying completed features for

evaluation on a public server is sufficient. For quick feedback on usability issues

during development the usability engineer should be available via phone or instant

messaging.

7.4.2 Usability Test

Description. The Usability Test practice is used to capture usability issues expe-

rienced by real end users. After completing a significant set of features the system is

put under test employing real end users in a real setting. This gives direct feedback

of the usability quality of the software being created.

Business Value. The Usability Test practice helps to increase product utility,

value to market, and quality to market in delivering usability tested software with

maximized usability quality and a minimum of usability defects. The project visi-

bility is improved by having end user tested features sets. Furthermore, costs are

reduced and product lifetime is increased by lowering the maintenance effort of fixing

usability defects after the software has been deployed.

Context. You are on a project creating a system having a graphical user interface.

Real end users of the system are available and the usability quality should be assured

through all stages of development.

Forces. Usability is one of the most critical success factors in the adoption of

a software system. Often the usability of a developed system is evaluated after

completion and real end user tests do not accompany the development from inception.

Continuous and iterative evaluation of the usability of a developed system by real

end users and incorporating the issues found assures high usability quality.

Therefore. Usability tests are conducted after a few iterations and after a signifi-

cant set of features has been completed. A representative subset of real end users in

CHAPTER 7. AGILE PROCESS PATTERNS 101

a usability laboratory is introduced to the application together with a list of tasks in-

tended to be accomplished. These empirical studies, the most fundamental usability

evaluation method, are conducted to measure accuracy, user performance, recall-

value, and the emotional response of the user. During the usability tests the users

are observed using the application by a usability engineer and are asked to think

aloud and verbalize their thoughts to get better insights into their mental model.

Additionally, other methods such as interviews can be combined with usability tests.

The encountered usability issues are reported by the usability engineer in the form

of user stories intended to be fixed in the next iterations.

But. Usability tests require preparation of the system, appropriate test data, hard-

ware, and organization of usability laboratory rooms and participants. Therefore,

usability tests should be planned in advance and cannot be executed spontaneously.

The usability issues arising from usability tests should quickly be inserted back into

the development process in the form of user stories, because otherwise priorities could

have changed and fixing of the usability issues found is delayed or even dropped. Fur-

thermore, usability tests should be conducted only after a significant set of features

has been completed.

Variations. In agile projects, usability tests are intended to give feedback on the

usability of the developed system by real end users. If there is no usability laboratory

and or representative subset of real end users available, usability tests should be

conducted in a different setup. The physical execution of the usability test should be

done at a different place, e.g., a meeting room, and the representative subset of real

end users should be replaced by either the real customer on site, the real customer

not on site who should be invited for testing, or the customer proxy on site. One

shortcoming of this variation is that the real end user replacement may be already

familiar with the system and therefore is not unbiased. Nevertheless, the resulting

data in terms of discovered usability issues is valuable.

7.4.3 Automated Usability Evaluation

Description. The Automated Usability Evaluation practice targets having a set

of automated tests testing the usability of the system being developed. Usability

tests are written before writing production code and when fixing discovered usability

issues. These automated usability tests are included in the continuous integration and

the nightly build process. This ensures constant usability quality by automatically

testing the usability of the software being created.

CHAPTER 7. AGILE PROCESS PATTERNS 102

Business Value. The Automated Usability Evaluation practice helps to increase

product utility, value to market, and quality to market in delivering automatically

usability tested software with maximized usability quality and a minimum of us-

ability defects. The project visibility is improved by having a set of usability tests

reflecting progress. Furthermore, costs are reduced and product lifetime is increased

by lowering the maintenance effort of fixing usability defects after the software has

been deployed.

Context. You are on a project creating a system having a graphical user interface

and the usability quality should be assured through all stages of development. A

continuous integration environment is in place and an appropriate usability testing

environment has been set up.

Forces. Usability is one of the most critical success factors in the adoption of a

software system. Often the usability of a developed system is evaluated after com-

pletion and automated usability evaluation is not considered an integral part of the

development. When implementing automated usability evaluation, knowledge about

usability issues, both found in the project as well as from best industry practice, is

effectively remembered and applied. Implementing automated usability tests assures

high usability quality.

Therefore. Automated Usability Evaluation aims at having a set of automated

usability tests which are executed in the continuous integration process, the nightly

build process, and during development by each developer. As test-driven develop-

ment allows to define the behavior of the application by writing automated tests first,

automated usability evaluation allows one to define the usability of the application by

writing automated usability tests first. When developing any user interface feature,

automated usability tests for the user interface are written before any functionality is

implemented. When fixing any discovered usability issue, automated usability tests

for that usability issue are written before fixing it. The metrics according to which

the automated usability tests are written are three different kind of user interface de-

sign metrics. Structural metrics, which are based on surface properties, e.g., number

of visual components on the screen. Semantic metrics, which are content sensitive,

e.g., all links to the same page have the same label. Procedural metrics, which are

task sensitive, e.g., how to create a user account.

But. The quality and frequency of automated usability tests written depends es-

sentially on the available infrastructure. Substantial factors are the usage of an

CHAPTER 7. AGILE PROCESS PATTERNS 103

appropriate testing framework and the existence of a continuous integration envi-

ronment. In addition to this, the system should be based on automated (unit and

usability) tests. Necessary test data should be in place and the execution time of the

automated tests, or subparts of it, should be low in order to enable each developer

to execute the automated tests, or subparts of it, locally.

Variations. In this context, automated usability tests are written to evaluate di-

rectly the user interface according to structural, semantic, and procedural user in-

terface design metrics. Nevertheless, other types of automated usability tests are

available as a variation to applying user interface design metrics. Automated log-file

analysis in order to identify paths and execution time of user interactions, automated

graph based navigation structure analysis for measuring complexity and consistency

of navigation trees, and automated code based analysis according to design guidelines

can be considered as a variation.

7.5 m3 AUPPs Implementation

The following three subsections present the AUPPs implementation of the scientific

process.

7.5.1 Usability Expert Evaluation

The usability expert evaluation practice was implemented in the scientific process

in the form of a variation of the pattern described in Section 7.4.1. Since there was

no on-site usability engineer available, the cooperation between the development

team and the off-site usability engineer was based on communication channels such

as instant messaging, email, phone, and video-conferencing, as well as low-fidelity

paper prototypes and a publicly accessible, at the end of each iteration deployed,

application comprising completed features. Usability input by the usability engineer

was given at different points in time: When writing user interface related stories,

before and during the implementation, as well as after the implementation.

Before the planning game of the next iteration, a technician of the team paired

with the customer in order to create simple and exact stories for discussion and

estimation in the upcoming planning game. Together, they ensured that the story

was written in a way that was unambiguous and understood by both sides. When

writing user interface related stories, a low-fidelity paper prototype was created and

sent to the usability engineer. The feedback from the usability engineer was then

incorporated in the paper prototype. This resulted in the fact that when the user

interface story was introduced in the actual planning game, the user interface story

CHAPTER 7. AGILE PROCESS PATTERNS 104

was already usability tested. During the implementation it was often the case that

user interface questions arose which had to be clarified. For example, switching to a

different web framework required clarification of user interface parts in terms of used

components having a different look and feel. In these cases, ad hoc usability input

was ensured through the usage of communication channels such as instant messag-

ing, email, phone, and video-conferencing. After an iteration was completed, the

application, including the implemented features, was deployed to a publicly accessi-

ble server. The usability engineer evaluated the completed features and any usability

issues discovered were dealt with in the form of user stories for the next iteration

[74].

The experience made was that sufficient ad hoc usability input can be given by

the channels mentioned above, because most of the time synchronous communication

between the project members and the usability engineer is not needed. Therefore,

the geographical distance between the developers and the usability engineer was

not a major obstacle in the cooperation process. Furthermore, used communication

artifacts were not only low-fidelity paper prototypes, but occasionally hi-fidelity html

prototypes for clarifying task based questions. The usability engineer was trained

in story writing and the discovered usability issues were reported directly as user

stories. This proved to be a very efficient cooperation process. In summary, the

continuous evaluation of the user interface by the usability engineer and immediate

incorporation of the usability issues found yielded a system with a very high usability

quality [74].

7.5.2 Usability Test

The usability test practice was implemented in the scientific process following the

pattern as well as the variations described in Section 7.4.2. A formal usability test

with a representative subset of real end users, which was also attended by two devel-

opers, was conducted in a usability laboratory. The application being developed was

usability tested in the open office environment on iteration basis by the customer on

site, and frequently usability tested in the open office environment by the customer

not on site. The discovered usability issues of the usability tests were transformed

into user stories and scheduled for discussion for the next planning game.

One of the usability tests was carried out with 10 respondents using a mobile

phone utilizing a classical task-based usability test method. Each respondent was

asked to execute 5 different tasks. To gather general feedback and general opinions

two interviews were carried out, one before and one after the task session (pre and

post interviews). In addition to that, each task was accompanied by task specific

post-questionnaires. After the test, the respondents had to judge three different

CHAPTER 7. AGILE PROCESS PATTERNS 105

visual design prototypes to capture the attitudes of the users towards the application

in terms of graphical design, enjoyment, and aesthetics. The results of the tests

suggested two main areas for improvement (example issues) [71]:

1. Usability: For choosing a date, a web-like calendar function should be in-

tegrated instead of a text based input field. All navigation menu elements

should be separated from content menu elements. Interactive elements should

be placed on a separate page and not on the bottom of a description page.

Special attention should be given to feedback mechanisms.

2. Layout and Design: The contrast on the whole site should be more accentuated.

Light text color on dark backgrounds should be avoided. Visually attractive

design elements should be introduced in order to increase the attractiveness of

the whole site. More colors should be used to eliminate monotony.

In contrast to the usability tests conducted with a representative subset of real

end users, the usability issues resulting from the usability tests with the customer

on site as well as the customer not site were fixed almost immediately. Since the

usability tests with the customer on site and the customer not on site were conducted

in the open office environment, the feedback cycle was much faster and more verbal

than user story based. Small usability issues were fixed right away and usability

issues which required more implementation effort were scheduled as user stories.

The experience made was that the amount of resulting user stories of the usability

tests was quite high in relation to the overall amount of user stories. The outcome

was that in almost every iteration at least a few user stories dealing with usability

issues had to be implemented. Furthermore, it was noticed that the mindset of

the developers who attended the usability test changed dramatically when seeing

real users handling the application: They got more biased towards user-centered

thinking. In summary, the amount of usability issues discovered and fixed resulted

in a system with a very high usability quality [74].

7.5.3 Automated Usability Evaluation

The automated usability evaluation practice was implemented in the scientific process

following the pattern described in Section 7.4.3. Automated usability tests have been

written prior to the implementation of any user interface related functionality. Also,

automated usability tests have been written prior to fixing any user interface related

usability issue. The metrics applied comply with the metrics described in the pattern,

namely structural, semantic, and procedural metrics. In addition to that, the set of

automated usability test cases has been included in the continuous integration and

the nightly build process.

CHAPTER 7. AGILE PROCESS PATTERNS 106

For the purpose of being able to write automated usability tests, different frame-

works have been used. All of the frameworks had their advantages and disadvantages

in terms of how fast they can be learned, how easy they are to use, and how easy

they are to integrate. The employment of the metrics yielded different kind of tests

to be implemented (example tests):

1. Structural Metrics: Tests concerning the existence of buttons, input fields,

headlines, labels, descriptions, FAQs, etc.

2. Semantic Metrics: Tests concerning the usage of capital letters on buttons,

consistence of label names of links to the same page, existence of three dots on

a button opening a popup window, etc.

3. Procedural Metrics: Tests concerning the execution of user initiated search

queries, playback of videos, navigation on the whole site, browsing through

sub pages, submission of forms, etc.

The experience made was that the integration of the automated usability tests

into the continuous integration and the nightly build process led to a high trans-

parency concerning the usability quality of the application. In the beginning, the

usability engineer participated in writing usability tests, but at the point in time

when the development team switched to a different testing framework, the com-

plexity for a non-programmer was too high and the usability engineer quit to write

usability tests. Also, a potential problem in executing automated usability tests is

the necessity (of almost all frameworks) to have a running web server locally. Deploy-

ment and execution of the tests may take too long and obstructs the development.

Another issue is the imperative of a different development style. Test-driven devel-

opment by itself is already a challenge, but developing a user interface by means of

test-driven development requires an even more radical approach to programming. In

summary, automated usability tests and their integration into the automated build

processes created a very high transparency concerning the usability quality of the

system.

7.6 Other XP-EF

In this section, the results of the evaluation by means of the XP-EF of an indus-

trial project at a company located in Vienna are presented. The component being

customized is part of a speech-to-text system. More precisely, the component is

the media mining server of the system, enabling users to access extracted speech

in textual representation and their corresponding audio or video source. From this

CHAPTER 7. AGILE PROCESS PATTERNS 107

point on, the industrial project will be referred to as the other project. The software

development process of the other project is based on agile principles and tailored to

the needs and the environment of the company. Since the XP-EF allows the cap-

ture of any given agile software development process, the agile custom process of the

other project was analyzed according to the metrics contained in the XP-EF. The

characteristics of the other project placed it in the agile home ground [22] and XP

was implemented in a modified form.

The XP-EF data collected is the outcome of the evaluation of a customization

project. The project started in May 2009 and lasted for 5 months. Process evaluation

points were project initiation and project termination. Therefore, captured data at

project initiation is referred to as the old release and contains data based on the last

customization project of the same system. Data captured at project termination is

referred to as the new release and comprises a 5 month period of development. In

the beginning of the project, several workshops on XP were held and it was agreed

that within this project special emphasis should be placed on a few selected XP

practices. The detailed data collected for each of the releases and the result in the

form of XP-CF and XP-AM is outlined in the following two subsections.

7.6.1 XP Context Factors (XP-CF)

As already described in Section 7.3.1 the XP-EF utilizes six different categories

of context factors. The context factors for the other project are presented in this

subsection.

Software Classification. In the XP-EF, projects are classified as one of six soft-

ware types: systems (used to control physical devices); commercial (leased or mar-

keted to external clients); information systems (for business information); outsourced

(developed under contract); military ; or end user (private, for personal use). The

software built within this customization project is sold to one single customer, and

therefore the other project is classified as commercial software.

Sociological Factors. Table 7.9 illustrates the team conditions for both releases.

The overall experience level of the team is quite high and almost all developers

were already familiar with the code base. In contrast to this, the experience of the

project manager was low. The fact that in the beginning of the project almost no

requirements were existing, is reflected in the morale factors of the old release. This

resulted in the fact that in the first month not much coding but a lot of requirements

engineering took place. The morale factors in the new release refer to holidays. Since

the project started in May and was planned to end in October, in the summer every

CHAPTER 7. AGILE PROCESS PATTERNS 108

member of the development team went on vacation. The consequence was increased

communication overhead.

Table 7.9: Other Process Sociological Factors.

Context Factor Old New

Team Size 5

Team Education Level Masters: 5

Experience Level of Team > 5 years: 2

> 10 years: 3

Domain Expertise Moderate

Language Expertise High

Experience of Project Manager Low

Specialist Available Usability Engineer

Personnel Turnover 0 %

Morale Factors No requirements Holidays

Project-Specific Factors. The project-specific factors for the two releases are

compared in Table 7.10. The product being customized was already 7 years old at

project initiation and the complexity of the already existing software was quite high.

This, as well as the relative feature complexity, which was also high, resulting in

relatively few new and changed classes. In addition to that, the requirements had

to be elaborated with a customer not on site, in a different country. The number of

delivered user stories for the new release also reflects these circumstances.

Ergonomic Factors. The ergonomic factors of the other project are documented

in Table 7.11. For both releases the ergonomic factors were the same and therefore

no comparison was made. In contrast to the recommendation of agile methodolo-

gies that a development team should share an open space office environment, the

physical layout of the other project was private offices with doors. To ensure a good

information flow, regular meetings were held. The unavailability of a customer on

site complicated requirements engineering a lot. Based on prototypes which had to

be built, negotiations on the scope and size of each feature were made via mail and

a few face-to-face meetings with the real customer.

CHAPTER 7. AGILE PROCESS PATTERNS 109

Table 7.10: Other Process Project-Specific Factors.

Context Factor Old New

Delivered User Stories N/A 15

Domain Web

Database development

Person Months 0 25

Elapsed Months 0 5

Nature of Project Enhancement

Relative Feature Complexity High

Product Age 7 Years

Constraints Date constrained

Scope constrained

Resource constrained

New and Changed Classes

Total Classes

N/A

3085

54

3098

New and Changed Methods

Total Methods

N/A

19960

93

20022

New and Changed Lines of Code

Delta Set

N/A

N/A

794

3087

Component KLOEC 176.5 177.1

System KLOEC 176.5 177.1

Table 7.11: Other Process Ergonomic Factors.

Context Factor Old New

Physical Layout Private office with door

Distraction level of office space Low

Customer Communication Customer proxy available

Real customer not on site

Technological Factors. Table 7.12 summarizes the technological factors of the

other project. For both releases, the same factors were recorded and for this reason

no comparison was made. The software development methodology used was not pure

XP but agile with XP practices. Concerning project management, the planning game

and an XP based project management tool called XPlanner were used. For defect

prevention, one dedicated tester was allocated, respectively automated testing in a

nightly build environment was executed after the implementation.

CHAPTER 7. AGILE PROCESS PATTERNS 110

Table 7.12: Other Process Technological Factors.

Context Factor Old New

Software Development Methodology Agile with XP practices

Project Management Planning Game, XPlanner

Defect Prevention and Removal Practices 1 dedicated tester

External/System Test Test after implementation

Language Java

Reusable Materials Code libs, 3rd party libs

Geographic Factors. Table 7.13 documents the geographical factors. Because

both the old and new releases had the same conditions, no comparison was made.

What made things a little bit complicated was that the project had a customer who

was located in a different country, in a different timezone, having a different culture

and language. Also a supplier located in a different country in a different timezone

but with the same language and same culture was involved. This hindered quick

feedback cycles to a considerable degree.

Table 7.13: Other Process Geographic Factors.

Context Factor Old New

Team Location Collocated

Customer cardinality and location 1

Other country

Other timezone

Different culture

Different language

Supplier cardinality and location 1

Other country

Other timezone

Developmental Factors. A description of the parameters of the developmental

factors of the XP-EF has already been given and can be found in Section 7.3.1.

Figure 7.3 depicts the developmental factors of the other project for the old release

respectively Figure 7.4 illustrates the developmental factors for the new release. The

difference between the old and the new release is that the project’s dynamism was

reduced from 75 % to 25 % due to the fact that at project initiation the requirements

CHAPTER 7. AGILE PROCESS PATTERNS 111

were not completely defined. Nevertheless, both shapes indicate that an agile method

is appropriate.

1
5

10
30

50

90
3

10

Many
lives

Single
life

Essential
funds

Discretionary
funds

Comfort
Agile

Plan-driven

30

100

300

70

50

30

10

35

3010

0

2520

2030

1540

Size
(# of personnel)

Culture
(% thriving on

chaos vs. order)

Criticality
(Loss due to

impact of defects)

Dynamism
(% Requirements
change/months)

Personnel
(% Level 1B) (% Level 2&3)

Figure 7.3: Other Process Old Release Developmental Factors.

7.6.2 XP Adherence Metrics (XP-AM)

Most companies that use XP adopt the practices selectively and develop customized

approaches to operate within their particular contexts [39]. The software develop-

ment process of the other project is exactly such a customized approach. The XP-AM

enables one to express, concretely and comparatively, the degree to which a team

applies XP practices. A description of the individual metrics, as well as the data

collection process, can be found in Section 7.3.2.

The combined results of the adherence metrics of the other project presented in

this subsection are based upon three categories: Planning Adherence Metrics (Table

7.14), Coding Adherence Metrics (Table 7.15), and Testing Adherence Metrics (Table

7.16). For each category, first the results from objective measures followed by results

from subjective measures are described.

CHAPTER 7. AGILE PROCESS PATTERNS 112

1
5

10
30

50

90
3

10

Many
lives

Single
life

Essential
funds

Discretionary
funds

Comfort
Agile

Plan-driven

30

100

300

70

50

30

10

35

3010

0

2520

2030

1540

Size
(# of personnel)

Culture
(% thriving on

chaos vs. order)

Criticality
(Loss due to

impact of defects)

Dynamism
(% Requirements
change/months)

Personnel
(% Level 1B) (% Level 2&3)

Figure 7.4: Other Process New Release Developmental Factors.

Planning Adherence Metrics. Table 7.14 illustrates the planning adherence

metrics of the other project. The release length of the new release, respectively

the length of the project itself, was 5 months with an iteration length of 1 week. The

significant value of the objective planning metrics is contained in the requirements

dynamism, representing the average amount of changed requirements per month.

For the old release, capturing the point in time of project initiation, the require-

ments dynamism was 75 %. The reason for this high number was that at project

initiation the requirements were very high level and had to be elaborated in detail

during development. For the new release, after the requirements were defined, the

requirements dynamism decreased to 25 %.

In the old release, the number of stand up meetings resulted from the fact that

the team did not implement this XP practice at all. However, in the new release this

practice was enforced. Although there were no official releases of the software, after

completion of a feature the system was presented to the customer as a demo version.

Customer access was one of the major challenges of this project because the customer

was located in a different country, in a different timezone, having a different culture

and language. Within the project there were efforts to establish the planning game

practice. In the beginning, a couple of guided planning game sessions were held with

the whole development team. But after a few months, the team tacitly dropped this

CHAPTER 7. AGILE PROCESS PATTERNS 113

practice and switched back to their old planning method being more a coordination

meeting in contrast to the very interactive nature of an XP planning game.

Table 7.14: Other Process Planning Adherence Metrics.

Planning Metric Old New

Objective Metrics

Release Length N/A 5 Months

Iteration Length N/A 1 Week

Requirements Dynamism 75 % 25 %

Subjective Metrics (Shodan) Mean

Stand up meetings 4 % 20 %

Short Releases 31 % 24 %

Customer Access / On-site Customer 30 % 36 %

Planning Game 34 % 20 %

Coding Adherence Metrics. The coding adherence metrics of the other project

are summarized in Table 7.15. The pairing frequency was approximately the same

in both releases. Even though the pair programming practice was not explicitly

implemented in the software development process, the frequency for both releases

was quite high due to the fact that pair programming happened in a natural way.

Namely, the developers paired when doing complex tasks like building architecture

or fixing bugs. Code inspection frequency for both releases was 0 %, since there was

no classical designated review activity included in the process definition of the other

project.

The subjective metric for pair programming for both releases reflects exactly the

objective metric. For the old as well as for the new release the number for the

refactoring practice is the same because during the customization of the system,

necessary adjustments of the already existing infrastructure were made. The simple

design adherence slightly increased in the new release as, in contrast to the last

customization project, different developers were customizing the system. The number

for collective ownership for both releases is quite low. For historical reasons, parts

of the system were maintained by individual developers. Continuous integration was

implemented in both releases. It needs to be noted that one nightly system test

had a duration of a few hours. This, and used frameworks in the system hindered

executing unit tests at individual work stations. Coding standard adherence dropped

slightly in the new release towards the end of the project. In correlation to the coding

CHAPTER 7. AGILE PROCESS PATTERNS 114

standard adherence, the sustainable pace also dropped in the new release towards the

end of the project. Due to the customization nature of the project and the relatively

small amount of code written, in comparison to the whole system, the metaphor did

not change much in the new release.

Table 7.15: Other Process Coding Adherence Metrics.

Coding Metric Old New

Objective Metrics

Pairing Frequency 38 % 40 %

Inspection Frequency 0 % 0 %

Subjective Metrics (Shodan) Mean

Pair Programming 38 % 40 %

Refactoring 57 % 50 %

Simple Design 51 % 68 %

Collective Ownership 30 % 28 %

Continuous Integration 83 % 84 %

Coding Standards 68 % 52 %

Sustainable Pace 53 % 30 %

Metaphor 57 % 56 %

Testing Adherence Metrics. Table 7.16 depicts the testing adherence metrics

of the other project. The test coverage for both releases is quite low because 7 years

prior to project initiation, when the first version of the system was written, no special

emphasis was placed on testing and appropriate test frameworks. Although efforts

were undertaken to remedy this drawback, there never was enough time to do this.

Test Run Frequency measures how often each team member runs the test suite once

a day. A value of 1.0 would indicate that one developer executes the test suite once

a day. Because of the unavailability of an appropriate test framework to execute the

test suite locally, the value is 0 for both releases. The ratio between Test LOC and

Source LOC, the percentage of changed classes with test class, and new classes with

test class reflect this as well.

The numbers for the subjective metric for Test First Design are relative low for

both releases for the same reason. Even though functional tests were implemented

CHAPTER 7. AGILE PROCESS PATTERNS 115

Table 7.16: Other Process Testing Adherence Metrics.

Testing Metric Old New

Objective Metrics

Test Coverage 5 % 5 %

Test Run Frequency 0 0

Test LOC / Source LOC 0,016974504 0,016915659

New and Changed Classes w/ Test Class N/A 0 %

New Classes w/ Test Class N/A 0 %

Subjective Metrics (Shodan) Mean

Test First Design 8 % 12 %

Automated Unit Tests 43 % 46 %

Customer Acceptance Test 26 % 48 %

as automated unit tests and executed in the nightly build process, there was no op-

portunity to run these tests locally since they required a setup of the whole system.

Essentially, the numbers for the Automated Unit Test metric result from this cir-

cumstance. In the course of the project, communication with the customer not on

site was established and several visits took place. Therefore, the adherence to the

Customer Acceptance Test practice increased in the new release.

7.7 Other Process AUPPs Implementation

The following three subsections present the AUPPs implementation of the industrial

process.

7.7.1 Usability Expert Evaluation

The usability expert evaluation practice was implemented in the industrial process

in the form of a variation of the pattern described in Section 7.4.1. Since there

was no on-site usability engineer available, the cooperation between the develop-

ment team and the off-site usability engineer was based on communication channels

such as email and phone. In addition, several usability expert evaluation meetings

were held. Usability input by the usability engineer was given on different parts of

the system being in different development stages. The whole system was usability

expert evaluated and new features were developed in cooperation. Usability expert

evaluations were executed iteratively for the existing as well as the newly developed

features.

In the first usability expert evaluation meeting, which was attended by the us-

CHAPTER 7. AGILE PROCESS PATTERNS 116

ability engineer and the developers, the first activity was an evaluation of the already

existing part of the system. The outcome of this first activity was a comprehensive

list of usability issues, and as a side effect, an introduction to usability concepts and

basics was given to the developers. The usability issues discovered were transferred

into user stories and scheduled for subsequent iterations. Additionally, guidelines

for further development were defined and already used user interface concepts were

discussed and revised. The second activity was a presentation of the planned fea-

tures and a joint development of the corresponding user interface parts by means of

paper and screen prototyping. This resulted in already usability tested user inter-

face stories. In the following usability expert evaluation meeting, attended by the

usability engineer and the developers, all usability issues fixed in the previously ex-

isting part of the system were usability expert evaluated. Due to framework related

issues, some usability bugs could not be implemented in the suggested way. For

this, new solutions were developed and recorded in the form of user interface stories.

Moreover, the user interface parts of the new implemented features were evaluated as

well. Completed functionality and corresponding user interface parts were evaluated.

User interface parts for not completed functionality were revised, and additional user

interface stories were generated.

The experience made was that the initial usability expert evaluation of the sys-

tem together with the developers consequently raised the usability awareness among

them. Furthermore, a lot of knowledge transfer in terms of usability concepts took

place, e.g., the usage of consistent navigation structures or the usage of common user

interface metaphors. Obstacles appeared through the unavailability of a customer

on site. Proposed and usability evaluated user interface parts were implemented

and afterwards thrown away because they did not meet the expectations of the real

customer in the sense of the underlying functionality. Nevertheless, common user

interface development of the usability engineer and the developers for new features

was considered very important, because of the sometimes high visualization com-

plexity of the user interface parts. In summary, all fixed usability issues found in

the initial evaluation of the already existing parts of the system and iterative evalua-

tions of newly developed features increased the overall usability quality of the system

according to the usability expert’s evaluation to a very high degree.

7.7.2 Usability Test

The usability test practice was implemented in the industrial process in the form of a

variation of the pattern described in Section 7.4.2. The software under development

was usability tested in the office on an iteration basis by the customer proxy on site,

respectively the product manager and other developers not working on this project.

CHAPTER 7. AGILE PROCESS PATTERNS 117

In addition to that, the real customer not on site usability tested the application in

several coordination meetings which were held on a regular basis in the office. The

usability issues discovered by the usability tests were transformed into user stories

and scheduled for the next iterations.

All usability tests were executed utilizing a classical task-based usability test

method meaning that each tester was asked to accomplish several tasks. Usabil-

ity tests with the customer proxy on site and other developers not working on the

project were carried out each iteration. At the end of an iteration, each completed

feature was usability tested ensuring continuous usability feedback accompanying

the development. This fine-grained usability test cycle resulted in the fact that the

usability of the developed features evolved in parallel to the developed functionality.

Usability tests with the real customer not on site were executed in regular intervals

in coordination meetings. Logically, the amount of features tested in these meetings

was much higher. This coarse-grained usability test cycle also served the purpose of

usability acceptance testing of completed feature sets. In contrast to the usability

tests conducted with the real customer not on site, the usability issues resulting from

the usability tests with the customer proxy on site as well as the other developers

not working on the project were fixed and again usability tested almost immediately.

Naturally, the availability of the customer proxy on site and the other developers not

working on the project shortened the feedback cycle substantially. Small usability

issues were fixed right away and usability issues which required more implementation

effort were scheduled as user stories.

The experience made was that the employment of two different usability test

cycles, fine- and coarse-grained, proved to be a very efficient process. On the one

hand, the confidence of the customer proxy on site and the developers in building a

system which has a high usability quality according to the usability issues found and

fixed was raised. On the other hand, the customer not on site was presented feature

sets which were already usability tested. In summary, the usage of usability test

cycles of different granularity and the resulting and fixed usability issues ensured a

high usability quality of the developed features.

7.7.3 Automated Usability Evaluation

The automated usability evaluation practice was implemented in the industrial pro-

cess following the pattern described in Section 7.4.3 in conceptual form. At project

initiation no usability test framework was existent in the system to be customized.

For this reason, several frameworks were evaluated. In the course of the project it

became clear that there is too little time available to accomplish the integration of a

usability test framework in the system, the continuous integration, and the nightly

CHAPTER 7. AGILE PROCESS PATTERNS 118

build process. Therefore, the user stories corresponding to the usability issues found

in the usability expert evaluations and the usability tests as well as the user stories

for the new features were collected, intended to be transferred into a set of automated

usability tests. It was planned that after project completion a framework would be

integrated and the set of tests would be implemented.

The metrics applied comply with the metrics described in the pattern, namely

structural, semantic, and procedural metrics. Schematically, the resulting tests cor-

respond to the tests already described in Section 7.5.3 with a few modifications.

The experience made was that the integration of an appropriate usability test

framework should happen as early as possible in product development. The effort

of integrating such a framework in a later stage is increases proportionally. Also,

the initial choice of the web framework used in the application should depend on

the availability of corresponding usability test frameworks. In summary, the proper

setup of an environment enabling the execution of automated usability tests is es-

sential. This was not the case in the other project, and therefore the integration of a

framework and the implementation of the tests was shifted to a later point in time.

7.8 Conclusion

This chapter presented three AUPPs, extending an already existing agile process

pattern collection. The patterns described are: Usability Expert Evaluation, Usabil-

ity Test, and Automated Usability Evaluation. The AUPPs are derived from the

agile usability process of a scientific XP based project and are validated in an indus-

trial agile based project. Both pattern implementations have been outlined. For the

purpose of comparing the two process pattern implementations, both processes were

evaluated using the XP-EF. For each of the processes, context factors were recorded

and adherence metrics data (quantitative and qualitative) was collected at two points

in time. The AUPP implementation results showed that the usability and the overall

user experience of the developed systems improved significantly, as evaluated by the

usability expert.

1. Scientific AUPPs Implementation: In the scientific project a high number of

usability issues was found in Usability Expert Evaluations. The issues were

fixed by means of test driven development, namely writing a test first for each

of the discovered usability issues. Results of User Tests were incorporated and

fixed in the same way. Also, new features were developed employing test driven

development. The application of Automated Usability Evaluation metrics as

well as the integration of automated tests for usability issues increased the

usability of the developed application over time to a very high degree.

CHAPTER 7. AGILE PROCESS PATTERNS 119

2. Industrial AUPPs Implementation: In the industrial project a high number

of usability issues was found in Usability Expert Evaluations as well. In con-

trast to the scientific project, in the industrial project, development did not

start from scratch. Therefore, the already existing part of the system was

already usability expert evaluated. Resulting usability issues were fixed and

corresponding usability tests have been recorded. Results of User Tests were

incorporated and usability tests were recorded likewise. Concerning the em-

ployment of automated usability evaluation, framework and temporal limita-

tions prevented immediate implementation of the tests. For this reason, the

integration of a usability test framework and the implementation of the au-

tomated usability tests was scheduled for a later point in time. All usability

issues found and fixed in the already existing part of the system as well as the

continuous and iterative evaluation of the new features improved the overall

usability substantially, as evaluated by the usability expert.

Within the context of this chapter, a systematic literature review on agile process

patterns was presented. Results from this study showed that relatively little work

exists in this area. For future work, the next logical step will be the transformation

and adaption of different HCI instruments into a coherent AUPP language similar

to the agile process pattern collection described in [40]. Of course, emerging AUPP

needs to be implemented and validated in different agile processes in order to gain

detailed knowledge on best practices in application.

Chapter 8

Concept and Design of a

Contextual Mobile Multimedia

Content Usability Study

The popularity of consuming multimedia content on mobile phones is increasing more

and more, not only because of the availability of the technical infrastructure, but also

because of the mobility in modern society. We are developing a mobile multimedia

streaming application. The crucial factor for such applications in order to be adopted

and successful is user acceptance. This chapter presents the preliminary concept and

design of a contextual mobile multimedia content usability study. The study is con-

ducted within a research project on agile software development methodologies with

special emphasis on Extreme Programming and continuous usability evaluation. Past

work included satisfaction of the needs of end users by means of focusing on user-

experience in all steps of the development process. To gain scientific relevant data,

the careful design of a study is considered most important. The study which will be

conducted in October 2008 will give insights into mobile Human-Computer Interac-

tion concerning the coherence of content types, consumption times, and consumption

contexts.

8.1 Introduction

We are working on a research project where we are developing an application that

enables a user to perform content-based search for audio and video content and

play it via streaming on a mobile phone. The basic research goal is to examine

agile software development methodologies, in particular Extreme Programming, with

special emphasis on User-Centered Design. This is obtained by two means. On the

120

CHAPTER 8. CONCEPT AND DESIGN ... 121

one hand, we have established a development process where the quality focus is not

only placed on technical excellence, but also on delivering a usability-tested high-

quality end-product. On the other hand, we have created a testbed for effective and

efficient mobile usability testing automating certain parts of the usability testing

procedures.

Within this research project, a lot of topics already have been covered. Our

adopted development process, the integration of Extreme Programming with User-

Centered Design, examined in [72], facilitates user-orientation and at the same time

preserves the social values of the development team. The techniques of enhancing

Extreme Programming by integrating Human-Computer Interaction (HCI) instru-

ments (user studies, personas, extended unit tests, usability tests, and usability

expert evaluations) are treated in [151]. An iterative and user-centered approach

to user interface design, where usability is evaluated in small iterative steps to gain

insight into whether the users’ functional and cognitive requirements are met, is pub-

lished in [70]. Also, the results of a usability study applying a classical task-based

usability test method [128], executed in January 2008, was made public in [71]. The

outcome of a study on the relation of basic human values to behavior patterns of

the usage and production of mobile multimedia content, conducted with a technique

referring to the means-end theory, can be found in [96].

For us, the next logical step in the realm of mobile HCI is the evaluation of

the coherence of consumption behavior of different content type categories and the

consumption behavior in different contexts. This chapter presents the preliminary

study setup of a usability evaluation study to be conducted in October 2008. The goal

of the study is to examine mass-market capability of a mobile multimedia streaming

application. More precisely, the aim is to analyze adoption and consumption behavior

of such applications by means of a field trial, where diary studies and contextual

interviews will be used. The resulting data is intended to give insights into what

needs to be in place from the content type setup perspective in order to make such

applications successful.

This chapter presents an overview about related work. The following section

briefly outlines the application being developed. Then, the selection of the respon-

dents is described. The next section examines the study setup concerning the media

content, the diary study, and the contextual interview. Finally, a conclusion is given.

8.2 Related Work

This section provides an overview of related work in the field of usability evaluation

of contextual mobile multimedia content. Basically, existing work in this area can be

divided into the categories contextual studies, studies on mobile video consumption,

CHAPTER 8. CONCEPT AND DESIGN ... 122

and studies on technical issues in mobile multimedia consumption.

In [4] the importance of context in interactive mobile applications is stated, and

definitions and categories of context, in order to create a framework for the devel-

opment of context-aware applications, are presented. The work in [141] aims at

understanding different mobile contexts and provides design implications for mobile

and context-aware human-computer interaction. The necessity of considering the

mobile user’s context in conjunction with the user’s cultural context is shown in [20].

In the realm of mobile video consumption [122] presents a study identifying the

social motivations and values of people when using mobile video technologies. Also,

[130] focuses on human behavior, human needs, and interaction design concerning

the creation, management, and consumption of moving images using mobile devices.

In [80] the effects of codecs and combinations of audio and video streams with

low bitrates and different contents on the perceived video quality of mobile devices

are described. A methodology to evaluate the perceived quality of mobile video

with variable physical quality is introduced in [104]. Interestingly, the outcome of

the studies conducted with this methodology was that when watching high motion

videos users prefer high-resolution images to high frame rate.

However, to the best of our knowledge, none of the existing work examines a

contextual mobile multimedia study aiming at relating user context, consumption

behavior, and content type categories.

8.3 Application

The application being developed enables a user to perform content-based search for

audio and video content and play it on a mobile phone via streaming. The user

is able to search not only in the meta-data, but also in the spoken words of the

audio and video clips. The content includes radio and TV archive material, such as

documentaries or other recordings of historical, political and cultural importance,

discussion programs, movies, music videos, audio books, etc. The content setup

for the study is especially tailored and described in Section 8.5.1. Moreover, the

application is being designed keeping in mind the social interaction of users and

provides several Web 2.0 features [70].

8.3.1 Features

The user interface of the application comprises several main features. The main

screen (see Figure 8.1) provides the features “Search”, “Top rated”, and “Most re-

cent” clips. Links to the “Channels” and “Categories” pages are presented. When

one clicks on the title of a clip the “Clip Detail ” page is shown. The application also

CHAPTER 8. CONCEPT AND DESIGN ... 123

implements other Web 2.0 features like “Rate” and “Comment” clips respectively

“Others also watched” and “Tell a Friend” the link to a clip [71].

Figure 8.1: Home Page.

Search

“Search” allows to search the whole content by entering keywords (see Figure 8.1).

The returned search results are ordered by broadcast date (if any). For each result

item, the clip’s title, link, rating, duration, originating channel (if any), content type,

and a representative thumbnail image is shown. The user can play a clip by clicking

on the image respectively go the “Clip Detail” page when clicking on the title.

Channels

“Channels” allows to browse the schedule of TV and radio channels. One channel

lists the program schedule of a particular day. Different channels can be selected by

using a drop-down box, listing all available channels, at the top of the page. The

user can browse to previous or future days and is able to search within a channel.

The search result items are presented in the same format as the search result items

from the “Search” feature of the main screen.

CHAPTER 8. CONCEPT AND DESIGN ... 124

Categories

The “Categories” page (see Figure 8.2) displays the whole content filtered by content

type. By means of a drop-down box, containing all content type categories, the user

can select to have only clips of a specific content type presented.

Figure 8.2: Categories Page.

Clip Detail

The system responds with the “Clip Detail” page when a user clicks on the title of a

clip. On this page the user is given the possibility to “Rate” a clip, add a “Comment”,

or view comments. In addition to that, the “Others also watched” feature displays

clips which have been watched by users with similar interests. The “Tell a friend”

functionality enables a user to send the link to a clip to a friend by SMS or by email.

8.4 Selection of Respondents

For the study 16 respondents in the age group between 18 and 35 are chosen. From

the chosen respondents the percentage of men and woman is balanced. Ideally, the

respondents are interested in the following topics:

CHAPTER 8. CONCEPT AND DESIGN ... 125

� They are interested in politics, economics, and other classical news themes.

Respondents have to indicate to watch news on television on a regular basis

(at least three times a week).

� The respondents are interested in technical content, especially in the field of

computer science and information technologies. They are interested in products

and news from Internet and telecommunication branches.

� They are interested in television series from the entertainment sector. Respon-

dents have to indicate to watch pre-evening series on television on a regular

basis (at least three times a week).

� The respondents are interested in music and music television. They are inter-

ested in particular bands in the pop and rock scene.

All respondents need to have at least some experience in using mobile multimedia,

no matter if it is listening to music on an mp3-player or using the photo-gallery of

their mobile.

8.5 Study Setup

The following section describes the study setup. First, the choice of the media content

is examined. Then, the setup and execution of the individual methods of the study

is outlined.

Fundamentally, the study is composed of two methods which are not depending

on each other and therefore may be executed independently:

� Diary Study.

� Contextual Interview.

Both methods will be executed with the same respondents. Although there are

no dependencies between the two, ideally the diary study is executed shortly before

the contextual interview. This allows to examine user-experience issues when they

are still in the minds of the respondents. As a prerequisite, each respondent fills

out a questionnaire covering basic and demographic data as well as data concerning

current mobile multimedia consumption.

8.5.1 Media Content

In order to be able to gather relevant data, the basic parameter for the study is the

choice of specific content type categories. Four types of video content, each repre-

senting different information and entertainment levels, are chosen. Moreover, in the

CHAPTER 8. CONCEPT AND DESIGN ... 126

four media content types, the importance of the audio component (spoken text, au-

dio) and the video component (visual information, graphics and pictures) is different.

On the one hand, the video sequences for the diary study have a length between 15

and 20 minutes. On the other hand, the video sequences for the contextual interview

have a shorter duration of approximately 10 minutes for the purpose of minimizing

the overall interview time.

1. Music Video Content: When watching a music video, the audio as well as

the video information is important. In practice, the audio content can exist

without the additional video content. Consequently, the user does not have to

pay primarily attention to the screen.

2. News Content: News content is a mixture of audio and video material. In addi-

tion to that, text is an important factor of news content as well. Nevertheless,

video material strongly supports the given information. Often, news content is

separated in different themes and topics.

3. Documentaries/Scientific and Technical Content: This type of content is com-

parable to news content, hence both, visual and auditive, information is impor-

tant. In contrast to news content, scientific content forces the viewer to keep

up with the video, since all information in the video sequence is important.

4. Television Series/Entertainment Content: Series have a continuous plot over

the whole video sequence. In comparison to scientific and news content, the

visual and auditive information is equally important to keep up with the story.

But, even if missing seconds of both information, one is still able to follow the

story.

8.5.2 Diary Study

In the diary study, each respondent is given a mobile device with which she or he is

told to use the application for one week. The web interface, as well as the content

presented to the respondents, is especially tailored to the diary study. The setup

fulfills the following characteristics:

� The web interface for the diary study has limited possibilities in comparison to

the actual application developed.

� The content type categories are limited to four different types (see Section

8.5.1).

� In each content type category approximately 40 to 50 clips are presented (except

the news category, where there are less but only current clips).

CHAPTER 8. CONCEPT AND DESIGN ... 127

For the sake of gathering relevant data for the diary study, two different groups

of respondents are created:

� One group is told that they should watch at least X videos per day.

� The other group is told that they should watch less than X videos per day.

This group is created in order to provide more realistic data during the one

week study.

All respondents are told to choose time and place of consumption, as well as

content types, on their own. After each video session, the respondents fill out a

questionnaire and take a photo of the current context with the mobile device.

For the purpose of recording activities of the respondents, different log files (web

server logs and streaming server logs) of the application are used. The user tracking

of the application, respectively the activities recorded in the log files, give information

about:

� When are videos watched.

� How long is each video watched.

� How many and which videos are watched during one video session.

With the overall setup of the diary study it is possible to get the following results:

� The average length of video sessions.

� Information on the content selection according to the day time and context.

� Overall information on the content selection (mix up of content types during

sessions).

� Information on the context (when and where videos are watched and correla-

tions to content types).

8.5.3 Contextual Interview

For the contextual interview, each respondent is given a mobile device. She or he is

supposed to use the application in four controlled video sessions, each in a different

context. The web interface presented is tailored as described in Section 8.5.2. In

each video session, the respondent watches four different videos from four different

content type categories. The content setup for the contextual interview is described in

CHAPTER 8. CONCEPT AND DESIGN ... 128

Section 8.5.1. In the contextual interview, sixteen clips are shown to each respondent

on the whole.

During one contextual interview (one video session in a specific context) the

respondent is accompanied but not interrupted. The procedure is as follows:

� The interview starts with a pre-questionnaire covering basic and demographic

data as well as data concerning mobile multimedia consumption.

� The respondent is explained the device.

� The respondent watches four videos from different content type categories.

� After each video, the respondent gives qualitative feedback to the interviewer

and fills out post-video questionnaires (see Section 8.5.3).

After each contextual interview the respondent gives qualitative feedback to the

interviewer and fills out post-session questionnaires (see Section 8.5.3).

For the purpose of getting significant results from the individual contextual inter-

views, different locations are necessary. The interviews are conducted in two indoor

locations and two outdoor locations. The locations themselves, as well the order of

the locations the interviews are conducted in, are as follows:

1. Indoor Location: Usability Lab.

2. Indoor Location: Cafe.

3. Outdoor Location: Tube and Bus: Respondents watch a video traveling a

predefined distance in the public transport network. Respondents will have

to change three times the means of transport having to cross train and bus

stations and moving between people.

4. Outdoor Location: Public Spaces: Respondents watch a video while standing

on and walking across a public space.

After all four sessions the respondent fills out an overall questionnaire.

Post-Video Questionnaires

The post-video questionnaires the respondent fills out after each video cover three

different types of feedback:

� Emotion after Watching the Video: To capture the post-video-watching emo-

tion the “SAM - Self Assessment Manikin” will be used [28].

CHAPTER 8. CONCEPT AND DESIGN ... 129

� User Experience and Sensation of Usability: Similar to relevant concepts out

of the Appeal Measurement questionnaire by Hoonhout [11].

� Qualitative Feedback concerning the Video.

Post-Session Questionnaires

The post-session questionnaires the respondent fills out after each contextual inter-

view cover three different types of feedback:

� Context specific Feedback.

� User Experience and Sensation of Usability: Similar to relevant concepts out

of the Appeal Measurement questionnaire by Hoonhout [11].

� Qualitative Feedback concerning the Session.

8.6 Expected Results

The basic concept of the study is that we use a method-mix of diary studies and

contextual interviews. Therefore, from each individual method different results are

expected. We also expect that the use of these two methods will give insight into

the two approaches, hence backing up and assisting each other.

The expected findings from the diary study are:

� Coherence between daytime of consumption and content type.

� Coherence between context of consumption and content type.

� Average number of watched clips per session.

� Average time how long a clip is watched.

From the contextual interview, the following results are expected:

� Availability of different contexts: Ability to define “Contextas” like “Personas”

[82] for mobile multimedia consumption.

� Availability of qualitative user feedback on content types in different contexts.

� Availability of Manikin [28] ratings according to content type and context.

� Availability of user experience data concerning context variables like light,

noise, people, and others.

All findings, from the diary study, as well as from the contextual interview, are

correlated to sex and age of the respondents.

CHAPTER 8. CONCEPT AND DESIGN ... 130

8.7 Conclusion

The current trend in mobile multimedia consumption is more than obvious: it is

becoming more and more popular. For this reason, we are developing a mobile

multimedia streaming application with special focus on agile software development

methodologies and usability. The most critical factor for this kind of application

will be user acceptance. While developing this application we took all efforts to

satisfy the needs of the end user. We combined Extreme Programming with User-

Centered Design, integrated HCI instruments in our development process, developed

an iterative UI development process, conducted usability studies and did studies on

the relation of basic human values to behavior patterns of the usage and production

of mobile multimedia content.

With the study whose setup is described in this chapter and which will be con-

ducted in October 2008, we expect new insights in the field of mobile user-experience.

In order to gain scientific relevant data, we consider the careful design of the study

as being crucial. The data to be gathered promises the ability to draw conclusions

on coherence of content types, consumption times, and consumption contexts. Fur-

thermore, deriving different contexts, as well as the availability of qualitative and

experience data, is an important goal. Future work includes publishing the results

of this study.

Chapter 9

Epilogue

In this chapter general conclusions about the achieved results are drawn and inter-

esting topics and open problems for future research are presented.

9.1 General Conclusions

In Chapter 2, the context in which this research took place was examined. The

mobile multimedia application being developed was presented and an approach to

application development, focusing on the adoption of agile software development

methodologies and user-centered design, was outlined.

The reflections on the used Extreme Programming process with respect to fully

implemented and partly implemented or modified Extreme Programming practices

were discussed in Chapter 3.

In Chapter 4, an enhanced and fleshed out integrated agile usability process

utilizing Human-Computer Interaction instruments was examined. Furthermore, a

description of the experiences made in applying this integrated agile usability process

was outlined.

An approach to integrating Extreme Programming and User-Centered Design is

treated in Chapter 5. In addition, the results of a usability test conducted on the

application being developed by means of this integrated approach are presented.

In Chapter 6, the lessons learned after utilizing an agile usability process for one

and a half years were discussed. Each of the used Human-Computer Interaction

instruments and their integration was reviewed. Especially the problem of having a

usability engineer not on-site was identified as not severe, because most of the time

no synchronous communication is needed.

Three Agile Usability Process Patterns, derived from the agile usability process

of this scientific, Extreme Programming based, project, were examined in Chapter

131

CHAPTER 9. EPILOGUE 132

7. The patterns have been validated in an industrial, Extreme Programming based,

project. Both processes were evaluated with an Extreme Programming Evaluation

Framework. The Agile Usability Process Pattern implementation results showed

that the usability and the overall user experience of the developed systems improved

significantly, as evaluated by the usability expert.

In Chapter 8, the setup of a contextual mobile multimedia study was presented.

Also, the features of the developed application for the study were outlined.

9.2 Open Problems and Future Perspectives

One important observation is that although there has been a lot of effort on the

Software Engineering side, as well as on the Usability Engineering side, to create

integrated Agile Usability Processes, The Agile Usability Process, such as Extreme

Programming or Scrum for agile software development, is still not available.

This has different reasons. On the one hand, industrial software development is

still lacking in the awareness of the importance of usability and for this reason the

need for integrated processes is not pushed by the industry. On the other hand,

integrated agile usability process definitions are often very verbose because of their

inherent complexity and are therefore not adopted. One way to alleviate this problem

is to capture agile usability processes in the compressed form of Agile Usability

Process Patterns clearly identifying the business value of applying such a pattern.

Therefore, an open issue for future research is the transformation and adaption of

different Human-Computer Interaction instruments into a coherent Agile Usability

Process Pattern language following the format and extending the agile process pat-

tern language described in [40]. Of course, emerging Agile Usability Process Patterns

need to be implemented and validated in different agile processes in order to gain

detailed knowledge on best practices in application.

Bibliography

[1] IEEE Std. 1061. Software quality metrics methodology. IEEE Std. 1061, 1998.

[2] ISO 9126. Software product evaluation: Quality characteristics and guidelines

for their use. ISO 9126, 1991.

[3] ISO 9241-11. Ergonomic requirements for office work with visual display ter-

minals. ISO 9241-11, ISO, Geneva, 1998.

[4] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith,

and Pete Steggles. Towards a better understanding of context and context-

awareness. In HUC ’99: Proceedings of the 1st international Symposium

on Handheld and Ubiquitous Computing, pages 304–307, London, UK, 1999.

Springer-Verlag.

[5] Pekka Abrahamsson, Juhani Warsta, Mikko T. Siponen, and Jussi Ronkainen.

New directions on agile methods: A comparative analysis. In ICSE ’03: Pro-

ceedings of the 25th International Conference on Software Engineering, pages

244–254, Washington, DC, USA, 2003. IEEE Computer Society.

[6] Steve Adolph, Paul Bramble, Alistair Cockburn, and Andy Pols. Patterns for

Effective Use Cases (Agile Software Development). Addison Wesley, September

2002.

[7] Scott Ambler. Tailoring usability into agile software development projects. In

Maturing Usability, volume 1 of Human-Computer Interaction Series, pages

75–95. Springer London, 2008.

[8] Ambysoft. It project success rates survey results.

http://www.ambysoft.com/surveys/success2007.html. Last Visit: 2008.01.15.

[9] Jennitta Andrea. Putting a motor on the canoo webtest acceptance testing

framework. In XP, pages 20–28, 2004.

133

BIBLIOGRAPHY 134

[10] Sandrine Balbo, Joelle Coutaz, and Daniel Salber. Towards automatic evalu-

ation of multimodal user interfaces. In IUI ’93: Proceedings of the 1st Inter-

national Conference on Intelligent User Interfaces, pages 201–208, New York,

NY, USA, 1993. ACM Press.

[11] Christoph Bartneck. Interacting with an embodied emotional character. In

DPPI ’03: Proceedings of the 2003 International Conference on Designing

Pleasurable Products and Interfaces, pages 55–60, New York, NY, USA, 2003.

ACM.

[12] BBC. Online video eroding tv viewing. http://news.bbc.co.uk/2/hi/entertain-

ment/6168950.stm. Last Visit: 2007.05.31.

[13] Kent Beck. Extreme Programming Explained: Embrace Change (1st Edition).

Addison-Wesley Professional, 1999.

[14] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace

Change (2nd Edition). Addison-Wesley Professional, November 2004.

[15] Mike Beedle, Martine Devos, Yonat Sharon, Ken Schwaber, and Jeff Suther-

land. Scrum: A pattern language for hyperproductive software development.

In Neil Harrison, Brian Foote, and Hans Rohnert, editors, Pattern Languages

of Program Design 4, pages 637–652. Addison Wesley, 2000.

[16] Raquel Benbunan-Fich and Alberto Benbunan. Understanding user behav-

ior with new mobile applications. Journal of Strategic Information Systems,

16(4):393–412, 2007.

[17] Joseph Bergin. Patterns for agile development practice part 3 (version 4).

In PLoP ’06: Proceedings of the 2006 Conference on Pattern Languages of

Programs, pages 1–14, New York, NY, USA, 2006. ACM.

[18] Hugh Beyer, Karen Holtzblatt, and Lisa Baker. An agile customer-centered

method: Rapid contextual design. In Extreme Programming and Agile

Methods - XP/Agile Universe 2004, volume 3134, pages 50–59. Springer

Berlin/Heidelberg, 2004.

[19] Blinkx. Video search engine. http://www.blinkx.com. Last Visit: 2007.11.01.

[20] Jan Blom, Jan Chipchase, and Jaakko Lehikoinen. Contextual and cultural

challenges for user mobility research. Communications of the ACM, 48(7):37–

41, 2005.

BIBLIOGRAPHY 135

[21] Stefan Blomkvist. Towards a model for bridging agile development and user-

centered design. In Human-Centered Software Engineering Integrating Us-

ability in the Software Development Lifecycle, pages 219–244. Springer Nether-

lands, 2005.

[22] Barry Boehm and Richard Turner. Balancing Agility and Discipline: A Guide

for the Perplexed. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2003.

[23] Barry Boehm and Richard Turner. Using risk to balance agile and plan-driven

methods. IEEE Computer, 36(6):57–66, 2003.

[24] Barry W. Boehm. Software risk management: Principles and practices. IEEE

Software, 8(1):32–41, 1991.

[25] Jan Borchers. A Pattern Approach to Interaction Design. John Wiley & Sons,

May 2001.

[26] Teodora Bozheva and Maria Elisa Gallo. Framework of agile patterns. In

Ita Richardson, Pekka Abrahamsson, and Richard Messnarz, editors, EuroSPI,

volume 3792 of Lecture Notes in Computer Science, pages 4–15. Springer, 2005.

[27] Teodora Bozheva and Maria Elisa Gallo. Defining agile patterns. In Ratio-

nale Management in Software Engineering, volume 4, pages 373–390. Springer,

2006.

[28] M.M. Bradley and P.J. Lang. Measuring emotion: the self-assessment manikin

and the semantic differential. Journal of Behavioral Therapy and Experimental

Psychiatry, 25(1):49–59, March 1994.

[29] Christer Carlsson and Pirkko Walden. Mobile tv - to live or die by content. In

HICSS ’07: Proceedings of the 40th Annual Hawaii International Conference

on System Sciences, page 51, Washington, DC, USA, 2007. IEEE Computer

Society.

[30] Stephanie Chamberlain, Helen Sharp, and Neil A. M. Maiden. Towards a

framework for integrating agile development and user-centred design. In 7th In-

ternational Conference on Extreme Programming and Agile Processes in Soft-

ware Engineering, volume 4044 of LNCS, pages 143–153, Heidelberg, Germany,

2006. Springer Verlag.

[31] Alistair Cockburn. Agile Software Development: The Cooperative Game (2nd

Edition) (Agile Software Development Series). Addison-Wesley Professional,

2006.

BIBLIOGRAPHY 136

[32] Larry L. Constantine. Process agility and software usability: Toward

lightweight usage-centered design. Technical Report 110, Constantine & Lock-

wood, Ltd., 2001.

[33] Larry L. Constantine and Lucy A. D. Lockwood. Software for Use: A Prac-

tical Guide to the Models and Methods of Usage-Centered Design. ACM

Press/Addison-Wesley Publishing Co., New York, NY, USA, 1999.

[34] Larry L. Constantine and Lucy A. D. Lockwood. Usage-centered software

engineering: An agile approach to integrating users, user interfaces, and us-

ability into software engineering practice. In ICSE ’03, pages 746–747. IEEE

Computer Society, 2003.

[35] James O. Coplien. A generative development-process pattern language.

In Pattern Languages of Program Design, volume 1, pages 183–237. ACM

Press/Addison-Wesley Publishing Co., New York, NY, USA, 1995.

[36] James O. Coplien and Neil B. Harrison. Organizational Patterns of Agile Soft-

ware Development. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2004.

[37] Paloma Dı́az, Mary Beth Rosson, Ignacio Aedo, and John M. Carroll. Web

design patterns: Investigating user goals and browsing strategies. In IS-EUD

’09: Proceedings of the 2nd International Symposium on End-User Develop-

ment, pages 186–204, Berlin, Heidelberg, 2009. Springer-Verlag.

[38] Jen-Wen Ding, Chin-Tsai Lin, and Kai-Hsiang Huang. Ars: An adaptive recep-

tion scheme for handheld devices supporting mobile video streaming services.

In International Conference on Consumer Electronics. ICCE ’06, volume 1,

pages 141– 142, 2006.

[39] Khaled El-Emam. Finding success in small software projects. Agile Project

Management, 4, 2003.

[40] Amr Elssamadisy. Agile Adoption Patterns: A Roadmap to Organizational

Success. Addison-Wesley Professional, 2008.

[41] Amr Elssamadisy and Jean Whitmore. Functional testing: A pattern to follow

and the smells to avoid. In PLoP ’06: Proceedings of the 2006 Conference on

Pattern Languages of Programs, pages 1–13, New York, NY, USA, 2006. ACM.

[42] EMMA. Emma: Java code coverage tool. http://emma.sourceforge.net/. Last

Visit: 2008.03.26.

[43] Everyzing. Everyzing. http://www.everyzing.com. Last Visit: 2007.11.01.

BIBLIOGRAPHY 137

[44] Xavier Ferré, Natalia Juristo, and Ana Moreno. Which, when and how usability

techniques and activities should be integrated. In Human-Centered Software

Engineering Integrating Usability in the Software Development Lifecycle, pages

173–200. Springer Netherlands, 2005.

[45] Xavier Ferré, Natalia Juristo, Helmut Windl, and Larry Constantine. Usability

basics for software developers. IEEE Software, 18(1):22–29, 2001.

[46] Xavier Ferré, Natalia Juristo Juzgado, and Ana Maria Moreno. Improving

software engineering practice with hci aspects. In SERA, pages 349–363, 2003.

[47] Xavier Ferré, Natalia Juristo Juzgado, and Ana Maŕıa Moreno. Framework for

integrating usability practices into the software process. In PROFES, pages

202–215, 2005.

[48] Jennifer Ferreira, James Noble, and Robert Biddle. Agile development iter-

ations and ui design. In Agile 2007, pages 50–58. IEEE Computer Society,

2007.

[49] Jennifer Ferreira, James Noble, and Robert Biddle. Agile development iter-

ations and ui design. In AGILE ’07: Proceedings of the AGILE 2007, pages

50–58, Washington, DC, USA, 2007. IEEE Computer Society.

[50] Jennifer Ferreira, James Noble, and Robert Biddle. Up-front interaction design

in agile development. In Agile Processes in Software Engineering and Extreme

Programming, pages 9–16. Springer Berlin, 2007.

[51] David Fox, Jonathan Sillito, and Frank Maurer. Agile methods and user-

centered design: How these two methodologies are being successfully integrated

in industry. In AGILE ’08: Proceedings of the Agile 2008, pages 63–72, Wash-

ington, DC, USA, 2008. IEEE Computer Society.

[52] Robert Gittins and Sian Hope. A study of human solutions in extreme pro-

gramming. In PPIG 2001, The 13th Annual Psychology of Programming Inter-

est Group Conference, Bournemouth, UK. 10th - 12th September 2008, pages

41–51, 2001.

[53] Google. About gmail. http://mail.google.com/mail/help/intl/en/about.html.

Last Visit: 2007.05.25.

[54] Bengt Göransson, Jan Gulliksen, and Inger Boivie. The usability design process

- integrating user-centered systems design in the software development process.

Software Process: Improvement and Practice, 8(2):111–131, 2003.

BIBLIOGRAPHY 138

[55] Ian Graham. A Pattern Language for Web Usability. Pearson Education,

January 2003.

[56] Jan Gulliksen, Bengt Göransson, Inger Boivie, Stefan Blomkvist, Jenny Pers-

son, and Äsa Cajander. Key principles for user-centred systems design. Be-

haviour & Information Technology, Special Section on Designing IT for Healthy

Work, Vol. 22 No. 6:397–409, 2003.

[57] Mariele Hagen and Volker Gruhn. Towards flexible software processes by us-

ing process patterns. In IASTED Conference on Software Engineering and

Applications, pages 436–441, 2004.

[58] Jukka Haikara. Usability in agile software development: Extending the inter-

action design process with personas approach. In XP, pages 153–156, 2007.

[59] Monty L. Hammontree, Jeffrey J. Hendrickson, and Billy W. Hensley. Inte-

grated data capture and analysis tools for research and testing on graphical

user interfaces. In CHI ’92: Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pages 431–432, New York, NY, USA, 1992.

ACM.

[60] Marc Hassenzahl, Michael Burmester, and Franz Koller. Attrakdiff: Ein frage-

bogen zur messung wahrgenommener hedonischer und pragmatischer qualität.

In G. Szwillus and J. Ziegler, editors, Mensch and Computer 2003: Interaktion

in Bewegung, pages 187–196, Stuttgart, 2003. B. G. Teubner.

[61] Orit Hazzan and James E. Tomayko. Human aspects of software engineering:

The case of extreme programming. In XP, pages 303–311, 2004.

[62] Hasko Heinecke, Christian Noack, and Daniel Schweizer. Constructing agile

software processes. In Third International Conference on eXtreme Program-

ming and Agile Processes in Software Engineering (XP2002), 2002, 2002.

[63] Deborah Hix and H. Rex Hartson. Developing User Interfaces: Ensuring Us-

ability through Product & Process. John Wiley & Sons, Inc., New York, NY,

USA, 1993.

[64] Andreas Holzinger. Usability engineering for software developers. Communi-

cations of the ACM, 48:71–74, 2005.

[65] Andreas Holzinger, Maximilian Errath, Gig Searle, Bettina Thurnher, and

Wolfgang Slany. From extreme programming and usability engineering to ex-

treme usability in software engineering education (xp+ue→xu). In COMPSAC

BIBLIOGRAPHY 139

’05: Proceedings of the 29th Annual International Computer Software and Ap-

plications Conference (COMPSAC’05) Volume 2, pages 169–172, Washington,

DC, USA, 2005. IEEE Computer Society.

[66] Andreas Holzinger, Gig Searle, and Alexander K. Nischelwitzer. On some as-

pects of improving mobile applications for the elderly. In Constantine Stephani-

dis, editor, Universal Access in HCI, volume 4554 of Lecture Notes in Computer

Science, pages 923–932. Springer, 2007.

[67] Williams Hudson. A tale of two tutorials: A cognitive approach to interactive

system design and interaction design meets agility. Interactions, 12(1):49–51,

2005.

[68] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang

Slany, Martin Umgeher, and Thomas Vlk. Optimizing extreme programming.

In ICCCE 2008: Proceedings of the International Conference on Computer

and Communication Engineering, Kuala Lumpur, Malaysia, pages 1052–1056.

IEEE, 2008.

[69] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang

Slany, Martin Umgeher, Thomas Vlk, and Peter Wolkerstorfer. User inter-

face design for a content-aware mobile multimedia application: An itera-

tive approach. In Frontiers in Mobile and Web Computing: Proceedings of

MoMM2007 & iiWAS2007 Workshops, volume 231, pages 115–120, Jakarta,

Indonesia, 2007.

[70] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang

Slany, Martin Umgeher, Thomas Vlk, and Peter Wolkerstorfer. User interface

design for a mobile multimedia application: An iterative approach. In ACHI

’08: Proceedings of the International Conference on Advances in Computer-

Human Interaction 2008, pages 189–194, 2008. Published 1st International

Conference on Advances in Computer-Human Interaction (ACHI 2008) Febru-

ary 10-15, 2008 - Sainte Luce, Martinique.

[71] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang

Slany, Martin Umgeher, and Peter Wolkerstorfer. Agile user-centered design

applied to a mobile multimedia streaming application. In USAB 2008, vol-

ume 5298/2008 of Lecture Notes in Computer Science, pages 313–330. Springer

Berlin / Heidelberg, November 2008.

[72] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang

Slany, Martin Umgeher, and Peter Wolkerstorfer. Integrating extreme pro-

BIBLIOGRAPHY 140

gramming and user-centered design. In PPIG 2008, The 20th Annual Psychol-

ogy of Programming Interest Group Conference, Lancaster University, UK.

10th - 12th September 2008, 2008.

[73] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang

Slany, Martin Umgeher, and Peter Wolkerstorfer. Concept and design of a

contextual mobile multimedia content usability study. In ACHI, pages 277–

282. IEEE, 2009.

[74] Zahid Hussain, Harald Milchrahm, Sara Shahzad, Wolfgang Slany, Manfred

Tscheligi, and Peter Wolkerstorfer. Integration of extreme programming and

user-centered design: Lessons learned. In XP, volume 31 of LNBIP, pages

174–179. Springer, 2009.

[75] Zahid Hussain, Wolfgang Slany, and Andreas Holzinger. Investigating ag-

ile user-centered design in practice: A grounded theory perspective. In

A. Holzinger and K. Miesenberger, editors, HCI and Usability for e-Inclusion.

5th Symposium of theWorkgroup Human-Computer Interaction and Usability

Engineering of the Austrian Computer Society, volume 5889 of Lecture Notes

in Computer Science, pages 279–289, Berlin, Heidelberg, New York, 2009.

Springer.

[76] Melody Y. Ivory and Marti A. Hearst. The state of the art in automating

usability evaluation of user interfaces. ACM Computing Surveys, 33(4):470–

516, 2001.

[77] Timo Jokela and Pekka Abrahamsson. Usability assessment of an extreme

programming project: Close co-operation with the customer does not equal to

good usability. In 5th International Conference, PROFES ’04, pages 393–407,

2004.

[78] Capers Jones. Software Assessments, Benchmarks, and Best Practices.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[79] Joost. Free online tv. http://www.joost.com. Last Visit: 2007.11.01.

[80] Satu Jumisko-Pyykkö and Jukka Häkkinen. Evaluation of subjective video

quality of mobile devices. In MULTIMEDIA ’05: Proceedings of the 13th

Annual ACM International Conference on Multimedia, pages 535–538, New

York, NY, USA, 2005. ACM.

[81] Jumpcut. Be good to your video. http://www.jumpcut.com. Last Visit:

2007.11.01.

BIBLIOGRAPHY 141

[82] Plinio Thomaz Aquino Junior and Lucia Vilela Leite Filgueiras. User mod-

eling with personas. In CLIHC ’05: Proceedings of the 2005 Latin American

Conference on Human-Computer Interaction, pages 277–282, New York, NY,

USA, 2005. ACM.

[83] David Kane. Finding a place for discount usability engineering in agile de-

velopment: Throwing down the gauntlet. In ADC ’03: Proceedings of the

Conference on Agile Development, pages 40–46, Washington, DC, USA, 2003.

IEEE Computer Society.

[84] Eeva Kangas and Timo Kinnunen. Applying user-centered design to mobile

application development. Communications of the ACM, 48(7):55–59, 2005.

[85] Joshua Kerievsky. Refactoring to Patterns (Addison-Wesley Signature Series).

Addison-Wesley Professional, August 2004.

[86] Barbara Kitchenham and Stuart Charters. Guidelines for performing system-

atic literature reviews in software engineering. Technical Report EBSE 2007-

001, Keele University and Durham University Joint Report, 2007.

[87] Jesper Kjeldskov and Jan Stage. New techniques for usability evaluation of mo-

bile systems. International Journal of Human-Computer Studies, 60(5-6):599–

620, May 2004.

[88] Hendrik Knoche, John D. McCarthy, and M. Angela Sasse. Can small be

beautiful?: Assessing image resolution requirements for mobile tv. In MULTI-

MEDIA ’05: Proceedings of the 13th Annual ACM International Conference

on Multimedia, pages 829–838, New York, NY, USA, 2005. ACM Press.

[89] Bill Krebs. Shodan 2.0 input metric survey.

http://agile.csc.ncsu.edu/survey/shodan survey.html. Last Visit: 2008.01.04.

[90] William Krebs. Turning the knobs: A coaching pattern for xp through agile

metrics. In Proceedings of the Second XP Universe and First Agile Universe

Conference on Extreme Programming and Agile Methods - XP/Agile Universe

2002, pages 60–69, London, UK, 2002. Springer-Verlag.

[91] Craig Larman. Applying UML and Patterns: An Introduction to Object-

Oriented Analysis and Design and the Unified Process. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 2001.

[92] Amy Law and Raylene Charron. Effects of agile practices on social factors. In

HSSE ’05: Proceedings of the 2005 Workshop on Human and Social Factors of

BIBLIOGRAPHY 142

Software Engineering, volume 30, pages 1–5, New York, NY, USA, July 2005.

ACM Press.

[93] Lucas Layman, Laurie Williams, and Lynn Cunningham. Exploring extreme

programming in context: An industrial case study. In ADC ’04: Proceedings of

the Agile Development Conference, pages 32–41, Washington, DC, USA, 2004.

IEEE Computer Society.

[94] Jason Chong Lee. Embracing agile development of usable software systems.

In CHI ’06: CHI ’06 Extended Abstracts on Human Factors in Computing

Systems, pages 1767–1770, New York, NY, USA, 2006. ACM.

[95] J.C. Lee and D.S. McCrickard. Towards extreme(ly) usable software: Exploring

tensions between usability and agile software development. In AGILE 2007,

pages 59–71, August 2007.

[96] Michael Leitner, Peter Wolkerstorfer, Reinhard Sefelin, and Manfred Tsche-

ligi. Mobile multimedia: Identifying user values using the means-end theory.

In Proceedings of the 10th International Conference on Human Computer In-

teraction with Mobile Devices and Services, pages 167–175, Amsterdam, The

Netherlands, 2008. ACM.

[97] Matthew A. Lievesley and Joyce S. R. Yee. The role of the interaction designer

in an agile software development process. In CHI ’06: Extended Abstracts on

Human Factors in Computing Systems, pages 1025–1030, New York, NY, USA,

2006. ACM.

[98] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:

Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80,

January 2003.

[99] Mikael Lindvall, Victor R. Basili, Barry W. Boehm, Patricia Costaand Kath-

leen Dangle, Forrest Shull, Roseanne Tesoriero, Lauri A. Williams, and Mar-

vin V. Zelkowitz. Empirical findings in agile methods. In Proceedings of the

Second XP Universe and First Agile Universe Conference on Extreme Program-

ming and Agile Methods - XP/Agile Universe 2002, pages 197–207, London,

UK, 2002. Springer-Verlag.

[100] LinesOfCodeWichtel. Linesofcodewichtel. http://www.andreas-berl.de/lines-

ofcodewichtel/en/index.html. Last Visit: 2008.03.25.

[101] Manifesto. Manifesto for agile software development.

http://www.agilemanifesto.org/, 2001. Last Visit: 2008.03.26.

BIBLIOGRAPHY 143

[102] Joe Marasco. Software development productivity and

project success rates: Are we attacking the right problem?

http://www.ibm.com/developerworks/rational/library/feb06/marasco/

index.html, Feb 2006. Last Visit: 2008.01.15.

[103] Angela Martin, James Noble, and Robert Biddle. Programmers are from mars,

customers are from venus: A practical guide for customers on xp projects.

In PLoP ’06: Proceedings of the 2006 Conference on Pattern Languages of

Programs, pages 1–9, New York, NY, USA, 2006. ACM.

[104] John D. McCarthy, M. Angela Sasse, and Dimitrios Miras. Sharp or smooth?:

Comparing the effects of quantization vs. frame rate for streamed video. In CHI

’04: Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pages 535–542, New York, NY, USA, 2004. ACM.

[105] Paul McInerney and Frank Maurer. Ucd in agile projects: Dream team or odd

couple? Interactions, 12(6):19–23, 2005.

[106] Laurianne McLaughlin. Next-generation entertainment: Video goes mobile.

IEEE Pervasive Computing, 06(1):7–10, 2007.

[107] Marc McNeill. User centred design in agile application development.

http://www.thoughtworks.com/pdfs/agile and UCD MM.pdf. Last Visit:

2008.03.30.

[108] Thomas Memmel, Harald Reiterer, and Andreas Holzinger. Agile methods

and visual specification in software development: A chance to ensure universal

access. In Constantine Stephanidis, editor, Universal Access in HCI, volume

4554 of LNCS, pages 453–462. Springer, 2007.

[109] John Mendonca and Jeff Brewer. Lean, Light, Adaptive, Agile and Appropriate

Software Development: The Case for a less methodical Methodology, pages 42–

52. IGI Publishing, Hershey, PA, USA, 2003.

[110] Xiang-xi Meng, Ya-sha Wang, Lei Shi, and Feng-jian Wang. A process pattern

language for agile methods. In Software Engineering Conference, 2007. APSEC

2007. 14th Asia-Pacific, pages 374–381, Dec. 2007.

[111] Gerard Meszaros. XUnit Test Patterns: Refactoring Test Code. Addison-

Wesley, 2007.

[112] Gerard Meszaros and Janice Aston. Adding usability testing to an agile project.

In AGILE ’06: Proceedings of the Conference on AGILE 2006, pages 289–294,

Washington, DC, USA, 2006. IEEE Computer Society.

BIBLIOGRAPHY 144

[113] Gerard Meszaros and Jim Doble. Metapatterns: A pattern language for pattern

writing. In 3rd Pattern Languages of Programming Conference, 1996.

[114] Eduard Metzker and Michael Offergeld. An interdisciplinary approach for suc-

cessfully integrating human-centered design methods into development pro-

cesses practiced by industrial software development organizations. In EHCI

’01: Proceedings of the 8th IFIP International Conference on Engineering

for Human-Computer Interaction, pages 19–34, London, UK, 2001. Springer-

Verlag.

[115] Harald Milchrahm, Wolfgang Slany, and Andreas Holzinger. Agile usability

process patterns. Journal of Systems and Software. Under review.

[116] Harald Milchrahm, Wolfgang Slany, and Andreas Holzinger. Process patterns

for agile usability. In ACHI. IEEE, 2010. Accepted.

[117] Elden Nelson. Extreme programming vs. interaction design, 2002. FTP Online.

[118] Jakob Nielsen. Usability Engineering (Interactive Technologies). Academic

Press, 1993.

[119] James E. Nieters, Subbarao Ivaturi, and Iftikhar Ahmed. Making personas

memorable. In CHI ’07: CHI ’07 Extended Abstracts on Human Factors in

Computing Systems, pages 1817–1824, New York, NY, USA, 2007. ACM.

[120] Donald A. Norman. Logic versus usage: The case for activity-centered design.

Interactions, 13(6):45–ff, 2006.

[121] Hartmut Obendorf and Matthias Finck. Scenario-based usability engineering

techniques in agile development processes. In CHI ’08: CHI ’08 Extended

Abstracts on Human Factors in Computing Systems, pages 2159–2166, New

York, NY, USA, 2008. ACM.

[122] Kenton O’Hara, April Slayden Mitchell, and Alex Vorbau. Consuming video

on mobile devices. In CHI ’07: Proceedings of the SIGCHI conference on

Human factors in computing systems, pages 857–866, New York, NY, USA,

2007. ACM.

[123] Fabio Patern, Angela Piruzza, and Carmen Santoro. Remote web usability

evaluation exploiting multimodal information on user behaviour. In Proceedings

of 6th International Conference on Computer-Aided Design of User Interfaces

CADUI’2006. Springer Verlag, 2006.

BIBLIOGRAPHY 145

[124] Jeff Patton. Hitting the target: Adding interaction design to agile software

development. In OOPSLA ’02: OOPSLA 2002 Practitioners Reports, pages

1–ff, New York, NY, USA, 2002. ACM.

[125] Tom Perry. The intermediate customer anti-pattern. In AGILE ’08: Pro-

ceedings of the Agile 2008, pages 280–283, Washington, DC, USA, 2008. IEEE

Computer Society.

[126] Kris Read, Grigori Melnik, and Frank Maurer. Examining usage patterns of

the fit acceptance testing framework. In XP, pages 127–136, 2005.

[127] Linda Rising. Customer interaction patterns. In Pattern Languages of Program

Design 4, pages 585–609. Addison-Wesley, 1999.

[128] Jeffrey Rubin and Theresa Hudson. Handbook of Usability Testing: How to

Plan, Design, and Conduct Effective Tests. John Wiley & Sons, Inc., New

York, NY, USA, 1994.

[129] Andreas Ruping. Agile Documentation: A Pattern Guide to Producing

Lightweight Documents for Software Projects. John Wiley & Sons, Inc., New

York, NY, USA, 2003.

[130] Barbara Schmidt-Belz and Matt Jones. Mobile usage of video and tv. In

MobileHCI ’06: Proceedings of the 8th Conference on Human-Computer Inter-

action with Mobile Devices and Services, pages 291–292, New York, NY, USA,

2006. ACM.

[131] Reinhard Sefelin, Manfred Tscheligi, and Verena Giller. Paper prototyping -

what is it good for?: A comparison of paper- and computer-based low-fidelity

prototyping. In CHI ’03: CHI ’03 extended abstracts on Human factors in

computing systems, pages 778–779, New York, NY, USA, 2003. ACM Press.

[132] Ahmed Seffah, Michel Desmarais, and Eduard Metzker. Hci, usability and soft-

ware engineering integration: Present and future. In Human-Centered Software

Engineering Integrating Usability in the Software Development Lifecycle, pages

37–57. Springer Netherlands, 2005.

[133] Ahmed Seffah, Jan Gulliksen, and Michel Desmarais. An introduction to

human-centered software engineering: Integrating usability in the development

process. In Human-Centered Software Engineering Integrating Usability in the

Software Development Lifecycle, pages 3–14. Springer Netherlands, 2005.

[134] Ahmed Seffah and Eduard Metzker. The obstacles and myths of usability and

software engineering. Communications of the ACM, 47(12):71–76, 2004.

BIBLIOGRAPHY 146

[135] Ahmed Seffah and Eduard Metzker. Adoption-centric Usability Engineering:

Systematic Deployment, Assessment and Improvement of Usability Methods in

Software Engineering. Springer Publishing Company, Incorporated, 2008.

[136] Helen Sharp and Hugh Robinson. An ethnographic study of xp practice. Em-

pirical Software Engineering, 9(4):353–375, 2004.

[137] Mona Singh. U-scrum: An agile methodology for promoting usability. In Agile,

2008. AGILE ’08. Conference, pages 555–560, Aug. 2008.

[138] Kenia Sousa, Elizabeth Furtado, and Hildeberto Mendonça. Upi: A soft-

ware development process aiming at usability, productivity and integration. In

CLIHC ’05: Proceedings of the 2005 Latin American Conference on Human-

computer Interaction, pages 76–87, New York, NY, USA, 2005. ACM.

[139] S.R. Subramanya and Byung K. Yi. User interfaces for mobile content. IEEE

Computer, 39(4):85–87, April 2006.

[140] Desiree Sy. Adapting usability investigations for agile user-centered design.

Journal of Usability Studies, 2(3):112–132, May 2007.

[141] Sakari Tamminen, Antti Oulasvirta, Kalle Toiskallio, and Anu Kankainen. Un-

derstanding mobile contexts. Personal Ubiquitous Computing, 8(2):135–143,

2004.

[142] Samira Tasharofi and Raman Ramsin. Process patterns for agile methodolo-

gies. In Jolita Ralyt, Sjaak Brinkkemper, and Brian Henderson-Sellers, editors,

Situational Method Engineering, volume 244 of IFIP, pages 222–237. Springer,

2007.

[143] Bjornar Tessem. Experiences in learning xp practices: A qualitative study. In

XP, pages 131–137, 2003.

[144] Anders Toxboe. Introducing user-centered design to extreme program-

ming. http://blog.anderstoxboe.com/uploads/16082005 XP and UCD.pdf,

May 2005. Last Visit: 2008.03.30.

[145] TVEyes. Tveyes. http://www.tveyes.com. Last Visit: 2007.11.01.

[146] Usability.gov. Step-by-step usability guide. http://www.usability.gov/. Last

Visited: 2008.08.18.

[147] W3C. Notes on user centred design process (ucd).

http://www.w3.org/WAI/EO/2003/ucd, April 2004. Last Visit: 2009.01.19.

BIBLIOGRAPHY 147

[148] Sarah J. Waterson, Jason I. Hong, Tim Sohn, James A. Landay, Jeffrey Heer,

and Tara Matthews. What did they do? understanding clickstreams with

the webquilt visualization system. In AVI ’02: Proceedings of the Working

Conference on Advanced Visual Interfaces, pages 94–102, New York, NY, USA,

2002. ACM.

[149] Laurie Williams, William Krebs, Lucas Layman, Annie Anton, and Pekka

Abrahamsson. Toward a framework for evaluating extreme programming. In

8th International Conference on Empirical Assessment in Software Engineer-

ing (EASE 04), pages 11–20, May 2004.

[150] Laurie Williams, Lucas Layman, and William Krebs. Extreme programming

evaluation framework for object-oriented languages version 1.4. Technical re-

port, North Carolina State University, Department of Computer Science, June

2004.

[151] Peter Wolkerstorfer, Manfred Tscheligi, Reinhard Sefelin, Harald Milchrahm,

Zahid Hussain, Martin Lechner, and Sara Shahzad. Probing an agile usabil-

ity process. In CHI ’08: CHI ’08 Extended Abstracts on Human Factors in

Computing Systems, pages 2151–2158, New York, NY, USA, 2008. ACM.

[152] XPlanner. Xplanner: (xp) project planning and tracking tool.

http://www.xplanner.org/. Last Visit: 2008.01.04.

[153] Jason Yip. It is not just standing up: Patterns for daily stand-up meetings.

In PLoP ’06: Proceedings of the 2006 Conference on Pattern Languages of

Programs, 2006.

[154] Jason Yip. Hands-on release planning with poker chips. In PLoP ’07: Proceed-

ings of the 2007 Conference on Pattern Languages of Programs, 2007.

[155] Mobile YouTube. Mobile youtube. http://m.youtube.com. Last Visit:

2007.11.01.

Acknowledgments

I would like to thank my parents for their support over the last years.

I owe gratitude to my supervisor Professor Dr. Wolfgang Slany for his constant

encouragement, help, and invaluable supervision of my research.

Lots of thanks to my external supervisor Professor Dr. Andreas Holzinger for his

guidance, support, and encouragement.

Many thanks to my colleagues at the Institute for Software Technology whose

inspiration and help has contributed to the success of my research.

Harald Milchrahm

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

