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Lacunary series with random gaps

DISSERTATION

zur Erlangung des akademischen Grades eines

Doktors der technischen Wissenschaften

Doktoratsstudium der Technischen

Wissenschaften im Rahmen der Doktoratsschule

”Mathematik und Wissenschaftliches Rechnen”

Technische Universität Graz

Betreuer:

Univ.-Prof. Dr. István Berkes

Institut für Statistik

Graz, April 2014



Eidesstattliche Erklärung
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Abstract

It is well known that a concept of independence provides a fruitful ground for re-

sults in Probability Theory. These include, but are definitely not restricted to,

various standard and functional laws of the iterated logarithm and strong approxi-

mation of empirical processes. On another note, theory of trigonometric series with

random amplitudes is almost complete but not much is known if the randomness

lies within the frequency itself, especially in the case of integer-valued harmonics.

Lastly, there are numerous extremely difficult and essentially hopeless problems in

deterministic mathematics which become explicitly solvable upon randomization.

Contribution of this thesis is three-fold, namely in each one of the directions stated

above.

Having in mind both applications to Number Theory and Mathematical Analysis

as our main agenda, we introduce an auxiliary probability space on which we de-

fine all the necessary randomness. Our main idea is to think of Number-Theoretic

and Mathematical Analysis objects of interest as phenomena on another space of

actual interest (which is often the interval (0,1) equipped with Lebesgue measure

and Borel sigma-field) and then obtain results with probability one on the auxiliary

space. In other words we solve, with probability one, open problems in other fields

of Mathematics.

First paper establishes the functional Strassen law of the iterated logarithm for

the partial sums of periodic functions of dependent random variables. We discover
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6 Abstract

that the limit set is a scaled Strassen set and that the limit is not constant al-

most everywhere which is very different from the case of independent variables.

We obtain numerous Strassen-style corollaries which allow precise asymptotics of

very complicated objects including upper densities of certain sets which are very

powerful results in the class of laws of the iterated logarithm.

Second paper uses a similar model of an increasing random walk introduced by

Schatte in the early 1980s. Here we study the asymptotics of the empirical distri-

bution function and discover that the limit set in the corresponding functional law

of the iterated logarithm is the unit ball of the corresponding Reproducing Kernel

Hilbert Space. This powerful result has many important corollaries, namely on the

probabilistic front, in one line argument, it recovers the entire i.i.d theory devel-

oped by Finkelstein. Moreover, on the Number Theory and Mathematical Analysis

front, we recognize that the quantity we computed gives us hands-on asymptotics

for star discrepancy and Lp discrepancy of a huge class of increasing sequences

with probability one.

Needless to say, these results for fixed sequence are way beyond the scope of de-

terministic mathematics. Third paper is about trigonometric series with random

frequencies. Here we use a different model of the frequency-domain randomness.

We extend old results of Erdos and discover very surprising limit distributions,

say a sum of independent mixed-normal and Cauchy or some infinitely divisible

distribution, to name just a few. We deduce that it very much matters how close

together are the intervals on which consecutive frequencies are defined, and distin-

guish between cases of small, large and intermediate gaps. Note that in the case

of intermediate gaps that pure normal limit is also possible.



Introduction

This thesis contains three chapters that in spite of the fact that they share author

and ideas, are essentially quite disjoint. We, without any further delay, move

straight into the corresponding descriptions.

Chapter 1:

It is common knowledge that the assumption of independence is the most fertile

ground for results in Probability Theory. These include, among countless others,

Central Limit Theorems and Laws of the Iterated Logarithm, which in turn, can

almost be thought of as “signatures of independence” in the underlying structure.

It is then clear why (especially in the early days of Probability, but today as

well) discoveries of suchlike behaviour in heavily dependent structures were (are)

quite remarkable. We refer the reader to the ice breaking result of Salem and

Zygmund [51]; i.e. to their Central Limit Theorem for the lacunary trigonometric

system

(sin 2πnkx)k∈N; nk+1/nk ≥ q > 1.

The corresponding Law of the Iterated Logarithm was proved by Erdős and Gál

[21].

For completeness, we point out that (sin 2πnkx)k∈N are random variables (in

fact, very dependent ones) on the probability space ((0, 1),B, λ) where the no-

tation is self-explained. Lacunarity was weakened by Erdős [20] and Berkes [3]

showing the existence of (random) sequences (nk)k∈N with nk+1 − nk → ∞ (with

any prescribed velocity) such that the Central Limit Theorem for the trigonometric
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system (cos 2πnkx)k∈N holds with probability one on the nk-space. The question of

existence of nk’s with bounded gaps for which the Central Limit Theorem holds,

posed by Berkes, was answered by Bobkov and Götze, but it took almost 30 years

to get there, see [12]. More results in this direction were obtained by Fukuyama,

see for example [26].

These 3 papers (Berkes [3], Bobkov and Götze [12] and Fukuyama [26]) use

random constructions of different nature for their nk’s. We asked ourselves, can

a Central Limit Theorem with mean 0 and variance 1 be achieved in nk’s were

to be continuous random variables instead of integers? We propose a uniform

independent bounded gap model, basically a hybrid between the constructions of

Berkes [3] and Bobkov and Götze [12]. The answer is no, the corresponding limit

turns out to be an interesting mixed Gaussian, for details see Theorem 9.

The problem of limit classification is still open, more results are given in Fuku-

yama [26]. The conjecture is that any L2 function could be the limit, thought of

embedded in the variance of the Gaussian that is.

Chapter 2:

Laws of the Iterated Logarithm have been discovered by Hartman and Wintner

[31] and in a different form by Kolmogorov [36]; where this last result is still a

fundamental reference. Much more fundamental are the so-called Functional Laws

of the Iterated Logarithm, introduced by Strassen in [56]. This result implies the

classical Law of the Iterated Logarithm via simple one line observation. A version

of the Strassen’s result that is of major interest to us was proved by Major [39].

In this chapter we first encounter the brilliant ideas of P. Schatte, that allow

us to turn dependent structure of partial sums into independent one to which the

result of Major can be applied. We thus obtain a (Strassen-type) of a Functional

Law of the Iterated Logarithm and a Weighted Law of the Iterated Logarithm; with

several powerful à-la-Strassen Corollaries, see Strassen [56] and our corresponding

results. For more details on the classical Weighted Law of the Iterated Logarithm
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see [7], [16] and [24].

Chapter 3:

This chapter is possibly the most important one in this thesis, namely it is the

one to justify its very title.

The fundamental difference from the other two chapters is that this one is

application oriented.

We remind the reader of an open problem in Number Theory; to find the exact

value of

lim sup
N→∞

√
N

2 log logN
D∗

N({nkx}) (∗)

where D∗
N is the star discrepancy of the sequence (nkx).

The solution to this problem is known for a very restricted class of sequences

of integers (nk)k∈N; for some more details see [25], [27], [44], say.

We remind the reader of the fact that the set of all increasing sequences of

integers can be (bijectively) identified with the interval (0, 1). Moreover it turns

out that, almost any increasing sequences of integers must satisfy nk | k → 2 as

k → ∞.

Now, if we are to substitute nk by Sk = X1+ · · ·+Xk; (Xn)n∈N a sequence of in-

dependent and identically distributed and absolutely continuous random variables

the story is different.

On one hand, we admit: yes, Sk’s are then themselves absolutely continuous

random variables and could not possibly be integers. However, they are a very

good way of simulating the linear growth; and if you want, we can easily (by the

Strong Law of Large Numbers) construct the Xk’s in a way that
Sk

k
→ 2 as k → ∞.

This “philosophical shift” is not novel. For example, the result of Carleson [15]

gives necessary and sufficient conditions for the almost everywhere convergence of

the series
∞∑
k=1

ck sin 2πkx. But, solving the same problem for nk instead of k for
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other functions f seems to be a formidable task. Nevertheless, Schatte comes to

the rescue, for details see [6]; where Berkes and Weber extend Carleson’s result to

a much larger class of functions for almost all such sequences, without imposing

any additional constraints other than those of Carleson himself.

The value of the expression (∗) is a function Ax1/2 which we shall speak of

later. Unfortunately, not much is known about it, simulations suggest continuity

but nowhere-differentiability; however formalising these claims is a challenge for

days to come. The actual result is Corollary 1* and all the other results of ours in

this chapter are to be thought of as groundwork for this one.



Chapter 1

Central Limit Theorems for
Trigonometric Systems with
Random Frequencies

1.1 Introduction

For convenience and completeness we shall start by quoting and discussing some

classical and some new results in the field of random trigonometric systems.

Theorem 1 (Salem and Zygmund, 1947). Let (nk)k∈N be a sequence of positive

integers satisfying the Hadamard gap condition

nk+1/nk ≥ q > 1. (1.1)

Then the trigonometric system (sin 2πnkx)k≥1 obeys the central limit theorem; i.e.

lim
N→∞

λ

{
x ∈ (0, 1) :

N∑
k=1

sin 2πnkx ≤ t
√
N/2

}
=

= (2π)−1/2

t∫
−∞

e−u2/2du (1.2)

where λ denotes the Lebesgue measure.
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12

Furthermore, we also have:

Theorem 2 (Erdős and Gál, 1955). Under the Hadamard gap condition (1.1) we

have

lim sup
N→∞

(N log logN)−1/2

N∑
k=1

sin 2πnkx = 1 for almost every x. (1.3)

These two early results are rather remarkable. Namely, thought of as a sequence

of random variables on ((0, 1),B, λ) (here B is simply the Borel σ-algebra of subsets

of (0, 1)); the trigonometric system (sin 2πnkx)k≥1 is anything but a sequence of

independent random variables; basic trigonometry actually reveals the nature of

its heavy dependence!

Nevertheless, Theorems 1 and 2 above reveal the striking nature of the Hada-

mard trigonometric system; (sin 2πnkx)k≥1 behaves like a sequence of independent

random variables, since it satisfies the Law of the Iterated Logarithm and the

Central Limit Theorem in the most classical sense (N(0, 1) limit in the Central

Limit Theorem and 1 as the constant in the Law of the Iterated Logarithm).

Efforts have been made at the time to relax the Hadamard gap condition while

maintaining the illustrated remarkable properties of the corresponding trigonomet-

ric system. The first result of this sort is as follows:

Theorem 3 (Erdős, 1962). The Central Limit Theorem (1.2) remains valid if we

substitute the Hadamard gap condition with

nk+1/nk ≥ 1 + ckk
−1/2; ck → ∞ as k → ∞. (1.4)

Moreover, this result is sharp in the sense that for all C > 0 there exists a

sequence (nk)k∈N satisfying nk+1/nk ≥ 1 + Ck−1/2; k ≥ k0 such that the Central
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Limit Theorem (1.2) is false.

The complementary Law of the Iterated Logarithm was proved by Takahashi,

see [57].

For sequences (nk)k∈N growing slower than the speed defined in (1.4), the asymp-

totic behaviour of the partial sums of sin 2πnkx depends sensitively on the number

theoretic properties of (nk)k∈N and deciding the validity of the Central Limit The-

orem is generally a very difficult problem.

Here are some results in this direction:

Theorem 4 (Salem and Zygmund, 1954). There exists an increasing sequence of

integers (nk)k∈N with

nk+1 − nk = O(log k) (1.5)

such that the Central Limit Theorem (1.2) and the Law of the Iterated Logarithm

(1.3) are both valid.

It took another quarter of a century until the following strong result, which

almost completed the theory. It reads as follows:

Theorem 5 (Berkes, 1979). Let ω(k) be any function satisfying ω(k) → ∞ as

k → ∞. Then there exists a sequence (nk)k∈N of positive integers satisfying the gap

condition

nk+1 − nk = O(ω(k)) (1.6)

such that both Central Limit Theorem and Law of the Iterated Logarithm ((1.2) and

(1.3) respectively) are satisfied.
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Remarkable as it is, this result, as pointed out by Berkes, left the following

question open: Is it possible to have a sequence of integers (nk)k∈N with bounded

gaps; i.e.,

nk+1 − nk = O(1)

such that the Central Limit Theorem (1.2) still holds?

The question remained open for nearly 30 years. The answer is in the negative

and it is provided by the following result:

Theorem 6 (Bobkov and Götze, 2007). Let {Xn}∞n=1 be an orthonormal system

in L2(Ω,F ,P) such that in probability

X1 + · · ·+Xn√
n

→ 0 as n → ∞. (1.7)

Given an increasing sequence of indices τ = {nk}∞k=1, assume that SN ⇒ ξ weakly

in distribution, for some random variable ξ.

Then

Eξ2 ≤ Λ− den(τ). (1.8)

Here, we use the notation

den(τ) = lim sup
N→∞

N/nN

for the upper density of the sequence τ in the row of all natural numbers. In

particular, if

sup
k

[nk+1 − nk] < +∞;

this quantity is positive; so ξ cannot be standard normal.
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However, it has been shown very recently that normal limits are still possible

for sequences (nk)k∈N with bounded gaps, the variance of the limit shall always be

strictly less than 1 but it can be made as close to 1 as desired.

We are now ready to state the result:

Theorem 7 (Fukuyama, 2011). Fukuyama introduces the following notation:∣∣∣∣∣
{
x ∈ [0, 1]

∣∣∣∣ 1√
N

N∑
k=1

cos 2πnkx ≤ t

}∣∣∣∣∣→ n0, 1/4(−∞, t] (1.9)

to denote the convergence in distribution to N(0, 1/4) limit and the following one

(to represent earlier results of Bobkov and Götze, see [12])∣∣∣∣∣
{
x ∈ [0, 1]

∣∣∣∣ 1√
N

N∑
k=1

cos 2πnkx ≤ t

}∣∣∣∣∣→ N0, ϱ2(−∞, t] (1.10)

where ϱ2(x) = 1/2 − 1/2d − 1/d2
d−1∑
n=1

(d − n) cos 2πnx (d = 2, 3, . . . ) while the

corresponding measure is

n0,ϱ2(A) =

1∫
0

n0,ϱ2(x)(A)dx; A ∈ B(R)

to denote the convergence in distribution to the mixed-Gaussian limit.

Now, let {an}n≥1 be a sequence of real numbers satisfying
∞∑
n=1

|an| ≤ 1/12. Then

there exists a sequence (nk)k≥1 of positive integers satisfying 1 ≤ nk+1−nk ≤ 9 and

a Central Limit Theorem (1.10) holds for

ϱ2(x) = 1/4 +
∞∑
n=1

an cos 2πnx.

Also, there exists a sequence satisfying 1 ≤ nk+1 − nk ≤ 5 and a Central Limit

Theorem (1.9).
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Common feature of constructions of sequences (nk)k∈N in proofs of Theorem 4,

Theorem 5 and Theorem 7 is that they are all random. This indicates further that

trigonometric series with random frequencies have remarkable properties. We will

now take a closer look at these three constructions.

1. Construction in Theorem 4

The sequence used will be a sequence of heads within the sequence of heads within

the infinite sequence of heads and tails generated by repeated tossing of a fair coin.

If we denote by nk the sequence of heads, then along this sequence the Central

Limit Theorem holds.

Moreover, by the Erdős–Rényi “pure heads” theorem we have

nk+1 − nk = O(log k).

with probability one.

2. Construction in Theorem 5

Berkes starts off by reducing the problem to the one where the function ω(k)

satisfies the following four properties:

(i) ω(k) is positive,

(ii) ω(k) is non-decreasing,

(iii) ω(k) is integer-valued,

(iv) ω(k + 1) ≤ 2ω(k),
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and proceeds by introducing the following sequence of sets:

U1 = {j : 1 ≤ j ≤ ω(1)},

U2 = {j : ω(1) < j ≤ ω(1) + ω(2)}, . . . ,

Uk = {j : ω(1) + · · ·+ ω(k − 1) < j ≤ ω(1) + · · ·+ ω(r)}, . . . .

Then the (nk)k∈N are chosen to be independent random variables on some proba-

bility space (Ω,A,P) in a way that nj is uniformly distributed on Uj; for all j ∈ N.

Last, but definitely not the least, is the following spectacularly complicated

construction due to Fukuyama.

3. Construction(s) in Theorem 7

There are two results which are proven in Theorem 7, Fukuyama classifies two

different types of limits, pure and mixed Gaussian. The elaborate body of con-

struction eventually (and we shall indicate where exactly) branches into 2 parts;

each being used to obtain its own class of limits. We shall not test the reader’s

patience any further:

Let a0 = 1/4 and εn ∈ {−1, 1} according to an = εn|an|. Define quantities

ℓ(v, ε) and g(v, ε) as follows:

(
ℓ(0,+1), g(0,+1)

)
= (4, 0),

(
ℓ(1,+1), g(1,+1)

)
= (6, 1),

(
ℓ(1,−1), g(1,−1)

)
= (2, 1),

(
ℓ(2,+1), g(2,+1)

)
= (8, 2),

(
ℓ(2,−1), g(2,−1)

)
= (4, 2),
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(
ℓ(v, ε), g(v, ε)

)
=


(6m,m) if (v, ε) = (3m,±1), m ≥ 1,

(6m+ 2,m+ 1) if (v, ε) = (3m+ 1,±1), m ≥ 1,

(6m+ 4,m+ 2) if (v, ε) = (3m+ 2,±1), m ≥ 1.

(1.11)

We must also quote the following result in order to justify and explain the

notation we shall use later.

Theorem 8 (Lemma 1, Fukuyama [26]). Assume

∞∑
n=1

2|an|ℓ(n, εn)
ϱ(n, εn)

≤ 1 (1.12)

and put

µ =
ℓ(0,+1)(

1−
∞∑
n=1

2|an|ℓ(n, εn)
ϱ(n, εn)

+ ℓ(0,+1)
∞∑
n=1

2an
ϱ(n, εn)

) .

Then there exists a sequence {vk} of non-negative integers such that

vk = O(log k), (1.13)

lim
N→∞

1

N

N∑
k=1

ℓ
(
vk, εvk

)
= µ (1.14)

lim
N→∞

1

N

N∑
k=1

εvkϱ(vk, εvk) cos 2πvkx =

= 2µ
(
ϱ2(x)− 1/4

)
for almost every x. (1.15)

Now let {Yj} be a sequence of i.i.d. random variables taking values ±1 with

probability 1/2.

Fukuyama then defines related sequence {Ỹj} as follows:
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If (vk)k∈N is a sequence satisfying all the requirements of Theorem 8, then let

Λ0 = 0, Λn =
n∑

k=1

ℓ(vk, εvk) (n = 1, 2, . . . ) (Ỹj)’s will be defined block-wise as

follows:

ỸΛn−1+1, . . . , ỸΛn−1+ℓ(vn,εvn ) = ỸΛn for n = 1, 2, . . . .

To relax the heavy notation Fukuyama drops some of the indices; namely in what

follows Λn−1, vn and εn shall be replaced by Λ, v and ε respectively.

Now, if v ∈ {0, 1, 2} we put

(
ỸΛ+1, . . . , ỸΛ+ℓ(v,ε)

)
equal to

(
YΛ+1, YΛ+1, YΛ+3,−YΛ+3

)
if (v, ε) = (0,+1),(

YΛ+1, YΛ+1, YΛ+3,−YΛ+3, YΛ+5, YΛ+5

)
if (v, ε) = (1,+1),(

YΛ+1,−YΛ+1

)
if (v, ε) = (1,−1),(

YΛ+1, YΛ+2, YΛ+1, YΛ+2, YΛ+5,−YΛ+5, YΛ+7, YΛ+7

)
if (v, ε) = (2,−1),(

YΛ+1, YΛ+2,−YΛ+1,−YΛ+2

)
if (v, ε) = (2,−1).

If v = 3m (m ∈ N), we define

ỸΛ+3j−1 = εỸΛ+3m+3j+1 = YΛ+3j+1 (j = 0, 1, . . . ,m− 1),

ỸΛ+3j+2 = (−1)jỸΛ+3j+3 = ỸΛ+3j+2 (j = 0, 1, . . . , 2m− 1).

If v = 3m+ 1 (m ∈ N), we define:

ỸΛ+3j+1 = εỸΛ+3m+3j+2 = YΛ+3j+1 (j = 0, 1, . . . ,m),

ỸΛ+3j−2 = (−1)jỸΛ+3j+2 = YΛ+3j+2 (j = 0, 1, . . . ,m− 1),

ỸΛ+3j+3 = (−1)jỸΛ+3j+4 = YΛ+3j+3 (j = m,m+ 1, . . . , 2m− 1).
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If, however, v = 3m+ 2 (m ∈ N) we define

ỸΛ+3j+1 = εỸΛ+3m+3j+3 = YΛ+3j+1 (j = 0, 1, . . . ,m),

ỸΛ+3m+2 = εỸΛ+6m+4 = YΛ+3m+2,

ỸΛ+3j+2 = (−1)jỸΛ+3j+3 = YΛ+3j+2 (j = 0, 1, . . . ,m− 1),

ỸΛ+3j+4 = (−1)jỸΛ+3j+5 = YΛ+3j+4 (j = m,m+ 1, . . . , 2m− 1).

Finally we identify our sequence (nj)j∈N with the set {k ∈ N : Ỹk = 1}. This

defines the corresponding sequence(s).

The “branching point” of the argument is as follows: If we want a pure Gaussian

limit, we put vk ≡ 0 and εvk ≡ +1. Otherwise we get a mixed Gaussian limit

distribution.

1.2 Result

We will now state and prove our result. Instead of integers our random frequencies

are now uniformly distributed continuous random variables on disjoint intervals of

equal length. The limit is a different mixed-Gaussian. Without further delay we

proceed as follows:

Theorem 9 (Berkes and Rašeta). Let S1, S2, . . . be a sequence of independent

random variables on some space (Ω,A,P) with Sk ∼ U [20k − 20, 20k − 10], k ∈ N.

Furthermore, we introduce the probability measure µ on (−∞,+∞) by

µ(A) =
1

π

∫
A

(
sin x

x

)2

dx ∀A in the Borel σ-field. (1.16)
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Then:
N∑
k=1

sinSkx√
N/2

d−→ X P− a.s.

where the characteristic function of X is given by

ϕX(λ) =

+∞∫
−∞

exp

(
−λ2

2

(
1−

(
sin 5x

5x

)2
))

dµ(x). (1.17)

Proof. Define

φk(x) = sinSkx− EP(sinSkx) = sinSkx−
(
sin 5x

5x

)
sin(20k − 15)x

by basic algebra.

We now claim that

N∑
k=1

φk(x)√
N/2

d−→ X =⇒

N∑
k=1

sinSkx√
N/2

d−→ X for almost every ω. (1.18)

Recall the basic trigonometric identity

sinφ+ sin(φ+ α) + sin(φ+ 2α) + · · ·+ sin(φ+ nα) =

=

sin

(
(n+ 1)α

2

)
sin
(
φ+

nα

2

)
sin

α

2

. (1.19)

(1.19) applied to our case clearly yields:

N∑
k=1

sin(20k − 15)x =
N∑
k=1

sin ((−15x) + (20x)k) =

=

sin
(N + 1) · 20x

2
· sin

(
−15x+

N · 20x
2

)
sin

20x

2

=
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=
sin 10(N + 1)x sin(10N − 15)x

sin 10x
, (1.20)

whence it follows that
N∑
k=1

sinSkx√
N/2

=

N∑
k=1

φk(x)√
N/2

+

+

(
sin 5x

5x

)
· 1√

N/2
· sin 10(N + 1)x sin(20N − 15)x

sin 10x
(1.21)

with the second summand on the RHS tends to 0 for almost all x with respect to

measure φ. This is because µ and the Lebesgue measure are equivalent and all

countable sets have Lebesgue measure 0. Hence, trivially, the second summand

therefore tends to 0 φ in probability and whence (1.18) follows from Fubini’s The-

orem and Slutsky’s Lemma applied to (1.21).

We have now reduced the problem to dealing with random variables with P-

expectation 0; the convenience of such an approach shall become clear later on.

Now let us introduce

TN =
1√
N/2

N∑
k=1

φk(x).

The heart of our argument lies in the following two claims:

(i) TN3
d−→ X, P-almost surely where the characteristic function of X is given

by (1.17).

(ii) We claim that (i) is actually sufficient, namely that TN3
d−→ X (P-a.s.) ⇒

TN
g−→ X (P-a.s.).

We focus on (ii) first. Partition N in the following way:

∀M ∈ N ∃N ∈ N with N3 < M ≤ (N + 1)3.
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We then write

TM = TN3(M) +
(
TM − TN3(M)

)
where M and N are as above.

We introduce ΠM = Tm − TN3(M). Our strategy will be to show that

(EPΠ2
M)1/2 → 0 ⇒ ΠM

L2

−→ 0 ⇒ ΠM
P−→ 0

and assuming (i), (ii) shall follow by Slutsky’s lemma and Fubini’s theorem.

To this end we have

TM − TN3(M) =
1√
M/2

M∑
k=1

φk(x)−
1√
N3/2

N3∑
k=1

φk(x) =

=

{
1√
M/2

M∑
k=1

φk(x)−
1√
N3/2

M∑
k=1

φk(x)+

+
1√
N3/2

M∑
k=1

φk(x)−
1√
N3/2

N3∑
k=1

φk(x)

}
=

=

{(
1√
M/2

− 1√
N3/2

)
M∑
k=1

φk(x) +
1√
N3/2

M∑
k=N3+1

φk(x)

}
.

For simplicity introduce

a(x) :=

(
1√
M/2

− 1√
N3/2

)
M∑
k=1

φk(x),

b(x) := 1/
√

N3/2 ·
M∑

k=N3+1

φk(x).

Clearly (a+ b)2 ≤ 2(a2 + b2) ∀a, b ∈ R and hence( +∞∫
−∞

(
a(x) + b(x)

)2 1
π

(
sinx

x

)2

dx

)1/2

≤
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≤

( +∞∫
−∞

2
(
a2(x) + b2(x)

) 1
π

(
sinx

x

)2

dx

)1/2

.

Elementary algebra yields

a2(x) =

(
1√
M/2

− 1√
N3/2

)2{ M∑
k=1

φ2
k(x) + 2

∑
i̸=j

φi(x)φj(x)

}
.

It is known that if |α| > 4, then

+∞∫
−∞

cosαx

(
sin x

x

)2

dx = 0. (1.22)

We now claim that {φk(x)}k∈N are orthogonal, i.e.

+∞∫
−∞

φk(x)φℓ(x)dµ(x)αδkℓ; where δ is the Kronecker’s symbol.

We proceed as follows:

+∞∫
−∞

sinSkx sinSℓxdµ(x) =

=
1

2

+∞∫
−∞

cos(Sk − Sℓ)xdµ(x)−
1

2

+∞∫
−∞

cos(Sk + Sℓ)xdµ(x). (1.23)

Recall that Sn ∼ U [20n− 20, 20n− 10] by construction. This trivially implies that

|Sk − Sℓ| ≥ 10 > 4 for all k ̸= ℓ and

|Sk + Sℓ| = Sk + Sℓ ≥ Sℓ > 10 > 4.

It then follows that both integrals on the RHS of (1.23) vanish and so

+∞∫
−∞

sinSkx sinSℓxdµ(x) = 0 ∀k ̸= ℓ. (1.24)
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The orthogonality of {φk(x)}k≥1 follows from (1.24) by same tedious algebra

and Fubini’s theorem.

But then:

+∞∫
−∞

2a2(x)dy(x) =

= 2

+∞∫
−∞

(
1√
M/2

− 1√
N3/2

)2{ M∑
k=1

φ2
k(x) +

∑
i ̸=j

φi(x)φj(x)

}
dµ(x) =

= 2

(
1√
M/2

− 1√
N3/2

)2


M∑
k=1

+∞∫
−∞

φ2
k(x)dµ(x) +

∑
i̸=j

+∞∫
−∞

φi(x)φj(x)dµ(x)

 =

= (by the orthogonality of {φk(x)}k≥1) =

= 2

(
1√
M/2

− 1√
N3/2

)2 M∑
k=1

+∞∫
−∞

φ2
k(x)dµ(x) ≤

≤ 8M

(
1√
M/2

− 1√
N3/2

)2

(|φk(x)| ≤ 2) .

Recall that N3 ≤ M ≤ (N + 1)3.

Simple algebra shows that the last quantity is at most 96/N. (1.25)

An identical computation shows that

+∞∫
−∞

2b2(x)dµ(x) ≤ 96/N (1.26)

whence it follows that( +∞∫
−∞

2
(
a2(x) + b2(x)

)
dµ(x)

)1/2

≤ 8
√
3/
√
N
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and so

(EµΠ2
M)1/2 ≤ 8

√
3/
√
N ≤ 8

√
3/(M1/3 − 1)1/2 → 0 as M → ∞.

Thus (ii) holds and proving (i) is a task we focus on in order to complete the

proof.

The characteristic function of the corresponding partial sum is

ϕTN
(λ) =

+∞∫
−∞

exp

(
iλ√
N/2

N∑
k=1

φk(x)

)
dµ(x) =

=

+∞∫
−∞

N∏
k=1

exp

(
iλ√
N/2

φk(x)

)
dµ(x). (1.27)

Basic complex analysis gives us

exp(z) = (1 + z) exp
(
z2/2 + o(z2)

)
for z → 0. (1.28)

Since |φk(x)| ≤ 2 for all k ∈ N it follows by (1.28) that

exp

(
iλ√
N/2

φk(x)

)
=

(
1 +

iλ√
N/2

)(
−λ2φ2

k(x)

N
+ o

(
2λ2φ2

k(x)

N

))
.

Observe that
(
φ2
k(x)

)
k≥1

is itself a sequence of independent random variables on

(Ω,A,P), for any fixed x ∈ R.

Trivially,
∣∣φ2

k(x)− EPφ2
k(x)

∣∣ ≤ 8 and so

(
φ2
k(x)− EPφ2

k(x)
)4 ≤ 4096.

Thus, by the Strong Law of Large Numbers and Fubini’s theorem it follows that

1

N

N∑
k=1

(
φ2
k(x)− EPφ2

k(x)
) µ-a.e.−→ 0.
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But:

EPφ2
k(x) = EP((sinSkx− EP sinSkx)

2
)
=

= EP sin2 Skx− (EP sinSkx)
2 =

=
1

2
− 1

2
EP cos2 Skx− 1

2

(
sin 5x

5x

)2

+
1

2

(
sin 5x

5x

)2

· cos(40k − 30)x;

upon some basic algebra. Hence it follows that

1

N

N∑
k=1

φ2
k(x) =

1

2
− 1

2
·
(
sin 5x

5x

)2

−

− 1

2

(
sin 10x

10x

)
· 1

N

N∑
k=1

cos(40k − 30)x+

+
1

2

(
sin 5x

5x

)2

· 1

N

N∑
k=1

cos(40k − 30)x (1.29)

whence arguing exactly as before we finally deduce that

1

N

N∑
k=1

φ2
k(x)

µ-a.s.−→ 1

2

(
1−

(
sin 5x

5x

)2
)
.

Simple algebra shows that

N∏
k=1

exp

(
−λ2φ2

k(x)

N
+ o

(
2λ2φ2

k(x)

N

))
=

= exp

(
λ2

N

N∑
k=1

φ2
k(x)(−1 + o(1))

)
=

= exp

(
−(1 + o(1))

λ2

N

N∑
k=1

φ2
k(x)

)

and thus our characteristic function reads

ϕTN
(λ) =

+∞∫
−∞

N∏
k=1

(
1 +

iλφk(x)√
N/2

)
exp

(
−(1 + o(1))

λ2

N

N∑
k=1

φ2
k(x)

)
dµ(x).
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More simple algebra coupled with Dominated Convergence Theorem shows that

ϕTN
(λ) =

+∞∫
−∞

N∏
k=1

(
1 +

iλφk(x)√
N/2

)
exp
(
−λ2g(x)

)
dµ(x) + o(1)

where, for brevity, we introduced

g(x) =
1

2

(
1−

(
sin 5x

5x

)2
)
. (1.30)

So we will be done provided we can show that

+∞∫
−∞

N3∏
k=1

(
1 +

iλ√
N3/2

φk(x)

)
exp
(
−λ2g(x)

)
dµ(x)

P-a.s.−→
+∞∫

−∞

exp
(
−λ2g(x)

)
dµ(x);

since the limit function is continuous at λ = 0.

Define

ΓN =

+∞∫
−∞

[
N3∏
k=1

(
1 +

iλφk(x)√
N3/2

− 1

)]
exp
(
−λ2g(x)

)
dµ(x).

Thus, it will be sufficient to show that ΓN
P-a.s.−→ 0; and this will trivially follow

provided we can show that |ΓN |
P-a.s.−→ 0; where |z| is the modulus of the complex

number z.

Let Θn := |Γn|. Beppo-Levy’s theorem says:

∑
n∈N

EΘ2
n < ∞ ⇒ Γn → 0; P-almost surely.

We shall therefore focus on showing that

∑
N∈N

E(ΓNΓN) < ∞;

upon which the proof will be complete.
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To this end we have:

EPΓNΓN =

∫
Ω

+∞∫
−∞

+∞∫
−∞

[
N3∏
k=1

(
1 +

iλφk(x)√
N3/2

)
− 1

][
N3∏
k=1

(
1− iλφk(y)√

N3/2

)
− 1

]
·

· exp
(
−λ2g(x)

)
exp
(
−λ2g(y)

)
dµ(x)dµ(y)dP(ω).

For brevity introduce:

AN(x, y, ω) :=

[
N3∏
k=1

(
1− iλφk(x)√

N3/2

)
− 1

][
N3∏
k=1

(
1− iλφk(y)√

N3/2

)
− 1

]
; AN(x, y, ω) ∈ C.

Define

BN(x, y, ω) := Re
(
AN(x, y, ω)

)
and

CN(x, y, ω) := Im
(
AN(x, y, ω)

)
;

so that we can write the above as

EPΓNΓN =

∫
Ω

+∞∫
−∞

+∞∫
−∞

BN(x, y, ω) exp
(
−λ2g(x)

)
exp
(
−λ2g(y)

)
dµ(x)dµ(y)dP(ω)+

+ i ·
∫
Ω

+∞∫
−∞

+∞∫
−∞

CN(x, y, ω) exp
(
−λ2g(x)

)
exp(−λ2g(y)

)
dµ(x)dµ(y)dP(ω).

Clearly

∣∣BN(x, y, ω)
∣∣ ≤ ∣∣AN(x, y, ω)

∣∣ =
=

∣∣∣∣∣
[

N3∏
k=1

(
1 +

iλφk(x)√
N3/2

)
− 1

]
·

[
N3∏
k=1

(
1− iλφk(y)√

N3/2

)
− 1

]∣∣∣∣∣ =
=

∣∣∣∣∣
N3∏
k=1

(
1 +

iλφk(x)√
N3/2

)
− 1

∣∣∣∣∣ ·
∣∣∣∣∣
N3∏
k=1

(
1− iλφk(y)√

N3/2

)
− 1

∣∣∣∣∣ .
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Using a bold bound |z1−z2| ≤ |z1|+|z2| and many times the relation |z1z2| = |z1| |z2|

we get ∣∣∣∣∣
N3∏
k=1

(
1 +

iλφk(x)√
N3/2

)
− 1

∣∣∣∣∣ ≤ 1 +
N3∏
k=1

∣∣∣∣∣1 + iλφk(x)√
N3/2

∣∣∣∣∣ =
= 1 +

N3∏
k=1

((
1 +

iλφk(x)√
N3/2

)(
1− iλφk(x)√

N3/2

))1/2

=

= 1 +
N3∏
k=1

(
1 +

2λ2φ2
k(x)

N3

)1/2

. (1.31)

But we know that 1+x ≤ ex so that the bound in the above is 1+ exp(4λ2); using

again |φk(x)| ≤ 2 for all x ∈ R and all k in N. Similarly,∣∣∣∣∣
N3∏
k=1

(
1− iλφk(y)√

N3/2

)
− 1

∣∣∣∣∣ ≤ 1 + exp(4λ2). (1.32)

Thus |BN(x, y, ω)| ≤
(
1 + exp(4λ2)

)2
and in the identical fashion we get that

∣∣CN(x, y, ω)
∣∣ ≤ (1 + exp(4λ2)

)2
,

too. Since | sinx/x| ≤ 1 for all x ∈ R we also see that g(x) ≥ 0 for all x, which,

coupled with the above, easily yields:

∫
Ω

+∞∫
−∞

+∞∫
−∞

|BN(x, y, ω)| exp
(
−λ2g(x)

)
exp
(
−λ2g(y)

)
dµ(x)dµ(y)dP(ω) ≤

≤
∫
Ω

+∞∫
−∞

+∞∫
−∞

(
1 + exp(4λ2)

)2
dµ(x)dµ(y)dP(ω) =

(
1 + exp(4λ2)

)2
< ∞.

Similarly,

∫
Ω

+∞∫
−∞

+∞∫
−∞

|CN(x, y, ω)| exp
(
−λ2g(x)

)
exp
(
−λ2g(y)

)
dµ(x)dµ(y)dP(ω) ≤
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≤
∫
Ω

+∞∫
−∞

+∞∫
−∞

(
1 + exp(4λ2)

)2
dµ(x)dµ(y)dP(ω) =

(
1 + exp(4λ2)

)2
< ∞.

Putting all this together one can see that Fubini’s theorem can be applied to yield:

∫
Ω

+∞∫
−∞

+∞∫
−∞

AN(x, y, ω) exp
(
−λ2g(x)

)
exp(−λ2g(y)

)
dµ(x)dµ(y)dP(ω) =

=

∫
Ω

+∞∫
−∞

+∞∫
−∞

BN(x, y, ω) exp
(
−λ2g(x)

)
exp(−λ2g(y)

)
dµ(x)dµ(y)dP(ω)+

+ i

∫
Ω

+∞∫
−∞

+∞∫
−∞

CN(x, y, ω) exp
(
−λ2g(x)

)
exp(−λ2g(y)

)
dµ(x)dµ(y)dP(ω) =

=

+∞∫
−∞

+∞∫
−∞

EP

[
N3∏
k=1

(
1 +

iλφk(x)√
N3/2

)
− 1

][
N3∏
k=1

(
1− iλφk(y)√

N3/2

)
− 1

]
·

· exp
(
−λ2g(x)

)
exp
(
−λ2g(y)

)
dµ(x)dµ(y).

Part of the above integral under the P-expectation is:

EP

[
N3∏
k=1

(
1 +

iλφk(x)√
N3/2

)
− 1

][
N3∏
k=1

(
1− iλφk(y)√

N3/2

)
− 1

]
=

= EP
N3∏
k=1

(
1 +

iλφk(x)√
N3/2

)(
1− iλφk(y)√

N3/2

)
− 1 =

= EP
N3∏
k=1

(
1− iλφk(y)√

N3/2
+

iλφk(x)√
N3/2

+
2λ2

N3
φk(x)φk(y)

)
− 1.

But, via grouping independent quantities, one can see that, for all but fixed x and

y in R2 we have that(
1− iλφk(y)√

N3/2
+

iλφk(x)√
N3/2

+
2λ2

N3
φk(x)φk(y)

)
k≥1
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is itself a sequence of independent random variables as (Ω,A,P), so that the above

expression equals

N3∏
k=1

EP

(
1− λφk(y)√

N3/2
+

iλφk(x)√
N3/2

+
2λ2

N3
φk(x)φk(y)

)
− 1 =

=
N3∏
k=1

(
1− iλEPφk(y)√

N3/2
+

iλEPφk(y)√
N3/2

+
2λ2

N3
EPφk(x)φk(y)

)
− 1 =

=
N3∏
k=1

(
1 +

2λ2

N3
EPφk(x)φk(y)

)
− 1.

Introduce, for brevity, Ψk(x, y) = EPφk(x)φk(y). Then our expression of interest

EPΓNΓN reads

+∞∫
−∞

+∞∫
−∞

N3∏
k=1

(
1 +

2λ2

N3
Ψk(x, y)

)
exp
(
−λ2g(x)

)
exp
(
−λ2g(y)

)
dµ(x)dµ(y)−

−
+∞∫

−∞

+∞∫
−∞

exp
(
−λ2g(x)

)
exp
(
−λ2g(y)

)
dµ(x)dµ(y).

We know that

1 + x = exp
(
x+O(x2)

)
for |x| ≤ 1 i.e.

| log(1 + x)− x| ≤ Cx2 for all |x| ≤ 1 for some C ∈ R+.

Note that |Ψk(x, y)| ≤ 4 ⇒ for all N large enough∣∣∣∣2λ2

N3
Ψk(x, y)

∣∣∣∣ ≤ 1; ∀k ∈ N;

⇒ for all N ∈ N large enough∣∣∣∣log(1 + 2λ2Ψk(x, y)

N

)
− 2λ2Ψk(x, y)

N

∣∣∣∣ ≤ Cλ4/N2 (1.33)

which easily yields that

N∑
k=1

∣∣∣∣log(1 + 2λ2Ψk(x, y)

N

)
− 2λ2Ψk(x, y)

N

∣∣∣∣ ≤ Cλ4

N
.
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However, the above also implies that∣∣∣∣∣log
N∏
k=1

(
1 +

2λ2Ψk(x, y)

N

)
−

N∑
k=1

2λ2Ψk(x, y)

N

∣∣∣∣∣ ≤ Cλ4

N
.

For brevity introduce yet another quantity

GN(x, y) :=
N∑
k=1

2λ2Ψk(x, y)

N
.

Then it is clear that

N∏
k=1

(
1 +

2λ2Ψk(x, y)

N

)
≤ exp

(
GN(x, y) +

Cλ4

N

)
.

For |x| ≤ 1/5 say

exp(x) ≤ 1 +
5

4
x. (1.34)

Similar ideas yield that there exist α, β ∈ R1 such that

N∏
k=1

(
1 +

2λ2Ψk(x, y)

N

)
≤ 1 +

α

N
+ β|GN(x, y)|. (1.35)

Observe that our measure µ is σ-finite so that Tonelli’s theorem applied to G2
N(x, y)

yields:

+∞∫
−∞

+∞∫
−∞

G2
N(x, y)dµ(x)dµ(y) =

∫
(−∞,+∞)2

G2
N(x, y)d(µ

⊗
µ) =

=

∫
(−∞,+∞)2

G2
N(λ)d(µ

⊗
µ)(z).

Trivially, by the very definition of the product measure,
(
(−∞,+∞)2, B(R2), µ

⊗
µ
)

is itself a probability space so that∫
(−∞,+∞)2

G2
N(z)d(µ

⊗
µ)(z) = Eµ

⊗
µ(G2

N) = Eµ
⊗

µ(|GN |2) ≥
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≥
(
Eµ

⊗
µ|GN |

)2
(by Jensen’s inequality)

whence (
Eµ

⊗
µ|GN |

)2 ≤ +∞∫
−∞

+∞∫
−∞

G2
N(x, y)dµ(x)dµ(y). (1.36)

Recall that

GN(x, y) =
N∑
k=1

2λ2

N
Ψk(x, y)

so that

G2
N(x, y) =

N∑
k=1

N∑
ℓ=1

4λ4

N2
Ψk(x, y)Ψℓ(x, y) =

=
4λ4

N2

N∑
i=1

+∞∫
−∞

+∞∫
−∞

Ψ2
i (x, y)dµ(x)dµ(y)+

+
4λ4

N2

∑
k ̸=ℓ

+∞∫
−∞

+∞∫
−∞

Ψk(x, y)Ψℓ(x, y)dµ(x)dµ(y).

Arguing exactly as before one can deduce that

+∞∫
−∞

+∞∫
−∞

Ψk(x, y)Ψℓ(x, y)dµ(x)dµ(y) = 0; whenever k ̸= ℓ.

Using Ψ2
k(x, y) ≤ 16 for all x, y and k we get:

+∞∫
−∞

+∞∫
−∞

G2
N(x, y)dµ(x)dµ(y) ≤ 64λ4/N

and whence it follows that

64λ4

N
≥

+∞∫
−∞

+∞∫
−∞

G2
N(x, y)dµ(x)dµ(y) ≥

≥

( +∞∫
−∞

+∞∫
−∞

|GN(x, y)|dµ(x)dµ(y)

)2

; i.e.
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+∞∫
−∞

+∞∫
−∞

|GN(x, y)|dµ(x)dµ(y) ≤ 8λ2/
√
N. (1.37)

It follows that we can bound our expression of interest in the following way:

EPΓNΓN ≤
+∞∫

−∞

+∞∫
−∞

(
1+

α

N3
+β|G3

N(x, y)|
)
exp
(
−λ2g(x)

)
exp
(
−λ2g(y)

)
dµ(x)dµ(y)−

−
+∞∫

−∞

+∞∫
−∞

exp
(
−λ2g(x)

)
exp
(
−λ2g(y)

)
dµ(x)dµ(y) =

=
α

N3

+∞∫
−∞

+∞∫
−∞

exp
(
−λ2g(x)

)
exp
(
−λ2g(y)

)
dµ(x)dµ(y)+

+ β

+∞∫
−∞

+∞∫
−∞

∣∣GN3(x, y)
∣∣ exp(−λ2g(x)

)
exp
(
−λ2g(y)

)
dµ(x)dµ(y) ≤

≤ α

N3
+ β

+∞∫
−∞

+∞∫
−∞

∣∣GN3(x, y)
∣∣dµ(x)dµ(y) ≤ (since g(t) ≥ 0 for all t ∈ R)

≤ α

N3
+

8βλ2

N3/2
. (1.38)

Thus

EPΓNΓN ≤ γλ/N
3/2 (1.39)

for some constant γλ. Finally we have

∑
N∈N

EPΓNΓN < ∞

and the proof is complete.



Chapter 2

Limit Theorems for the Schatte
Model

2.1 Introduction

In this chapter we shall be dealing with a particular structure of weakly dependent

random variables, namely the remarkable construction of Peter Schatte from the

1980’s. More formally, the underlying sequence of random variables (Xj)j∈N will be

i.i.d. with X1 absolutely continuous. We shall establish the Strassen-type Law of

the Iterated Logarithm together with a Weighted Law of the Iterated Logarithm,

both for functions of Snx = (X1 + · · · + Xn)x, under mild conditions on f . In

particular, we discover that the limits in the above are not constants as in the

classical theory, but remarkable functions of x.

Again, for completeness of the exposition, we shall remind the reader of some

classical results, introduce some newer ones, hence setting up the framework for

those of our own.

36
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2.2 Classical and Strassen-type of Laws of the

Iterated Logarithm

Theorem 10 (Hartman and Wintner, 1941). Let (Xk)k≥1 be a sequence of inde-

pendent and identically distributed random variables, with EX1 = 0, EX2
1 = 1.

Then, with probability one,

lim sup
n→∞

Sn

(2n log log n)1/2
= 1. (2.1)

The following result is definitely an absolute classic:

Theorem 11 (Kolmogorov, 1929). Let (Xj)j∈N be a sequence of independent, zero-

mean but not necessarily identically distributed random variables.

Furthermore, let Sn = X1 + · · · +Xn and assume that EX2
j < ∞ ∀j ∈ N with

VarSn → ∞ as n → ∞. Introduce, for brevity, An = VarSn. Then if there exists

a sequence of constants Mk such that |Xk| ≤ Mk almost surely, and

Mn = o

(
An

(log logA2
n)

1/2

)
,

then

lim sup
n→∞

Sn

(2A2
n log logA

2
n)

1/2
= 1; almost surely. (2.2)

It took some time for another fundamental breakthrough. The following result

is absolutely astonishing:

Theorem 12 (Strassen, 1964). Let (Xn)n≥1 be a sequence of i.i.d. zero-mean and

unit variance random variables. Let Sn = X1+· · ·+Xn and define (ηn)n≥1 to be a se-

quence of continuous functions on [0, 1] via linearly interpolating (2n log log n)−1/2Si

at i/n.



38

Then, with probability 1, the set of limit points of the sequence (ηn)n≥3 with

respect to the uniform topology coincides with the set of absolutely continuous func-

tions x on [0, 1] such that

x(0) = 0 and

1∫
0

ẋ2dt ≤ 1. (2.3)

It became a standard in probability theory to call this set K.

There is no better set of words to comment on this result than “raw power”.

For example, recovering the Hartman–Wintner’s Law of the Iterated Logarithm

from this result is astonishingly easy:

For a ≤ b, a, b ∈ [0, 1]

|x(a)− x(b)| =

∣∣∣∣∣
b∫

a

ẋ2dt

∣∣∣∣∣ ≤
( b∫

a

dt

b∫
a

ẋ2dt

)1/2

≤
√
b− a for any x ∈ K. (2.4)

With a = 0, b = 1 we see that

sup
x∈k

x(1) = 1 and the supremum is attained at x = t.

But this means that

P

{
lim sup
n→∞

(2n log log n)−1/2Sn = 1

}
= 1

and we are done!

Via calculus of variations Strassen obtains several remarkable corollaries of his

result. To give the reader a flavour of it, we state a few of those:

Theorem 13 (Strassen, 1964). Let (Xj)j∈N and Sn be as before. Let a ≥ 1 be a
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real number. Then

P

lim sup
n→∞

n−1−a/2(2 log log n)−a/2

n∑
i=1

|Si|a =
2(a+ 2)

a

2
−1

1∫
0

dt√
1− ta

aa/2

 = 1, (2.5)

and

Theorem 14 (Strassen, 1964). The set-up is as before. Suppose we want to deter-

mine the relative frequency of the events

Sn > (1− ε)(2n log log n)1/2.

Let c ∈ [0, 1] and set

ci =

{
1 if Si > c(2i log log i)1/2,

0 otherwise.

Then

P

{
lim sup
n→∞

1

n

n∑
i=3

ci = 1− exp

{
−4

(
1

c−2
− 1

)}}
= 1. (2.6)

This reveals a surprising result. Namely set c =
1

2
in (2.6) to learn that, with

probability one, for infinitely many n ∈ N the percentage of times i ≤ n when

Si >
1

2
(2i log log i)1/2 exceeds 99.999, but only for finitely many n exceeds 99.9999.

In one of our results, we shall need the following result:

Theorem 15 (Major, 1977). Let (Xn)n≥1 be a sequence of independent random

variables with EXi = 0; Bn = E(S2
n) < ∞ ∀n ≥ 1 and Bn → ∞ where Sn =

n∑
i=1

Xi.

Let (Mn)n≥1 be a sequence of real numbers s.t.

M2
n = o(Bn/ log logBn)
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and Mn is the almost sure bound on Xn. The process S(t), t ≥ 0 is defined by

setting S(Bn) = Sn and it will be linear on [Bn, Bn+1], n ≥ 0. Then, Sn(t) =

S(Bnt)(2Bn log logBn)
−1/2 is relatively compact in C[0, 1] and the set of its limit

points agrees with the formerly introduced Strassen set K.

2.3 Laws of the Iterated Logarithm with Weights

Although the question itself seems natural, it took many years for it to be posted:

“What happens if we introduce weights in the Law of the Iterated Logarithm?”

Theorem 16 (Chow and Teicher, 1973). If {Xn : n ≥ 1} are independent and

identically distributed random variables with

EX1 = 0, EX2
1 = 1

and (An)n≥1 is a sequence of real constants satisfying:

(i)
a2n
n∑

j=1

a2j

≤ C

n
, n ≥ 1,

(ii)
n∑

j=1

a2j → ∞

for some Cin(0,∞), then

P


lim sup
n→∞

n∑
j=1

ajXj(
2

n∑
j=1

a2j log log
n∑

j=1

a2j

)1/2
= 1


= 1. (2.7)
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The next result is more general and is important because of the technique of

Skorohod representation it uses but it is not sharper condition-wise.

Theorem 17 (Fisher, 1992). Let K be the Strassen set. (Xj)j∈N will, again, be a

sequence of i.i.d. zero-mean and unit variance random variables.

Let A2
n =

n∑
j=1

a2j and define the random function S by linearly interpolating Sn

on [A2
n, A

2
n+1]. Moreover, define a sequence of functions (Un)n≥1 by

Un(t) = (2A2
n log logA

2
n)S(A

2
nt).

If A2
n → ∞ and a2n/A

2
n = O(1/n) then, with probability one, {Un : n ≥ 1} is

relatively compact and the set of its limit points coincides with K. This now, as in

Strassen’s case, implies the corresponding law of the Iterated Logarithm.

Using similar ideas to those of Fisher the following result can be obtained:

Theorem 18 (Berkes and Weber, 2007). Let (Xn)n≥1 be a sequence of i.i.d. zero-

mean and finite variance random variables.

If EX2
1 log+ |X1| < ∞ and

A2
n >> n, an = O(Ann

−γ)

for some γ > 0, then

lim sup
n→∞

n∑
k=1

anXn√
2A2

n log logA
2
n

= ∥X1∥2 (2.8)

with probability one.
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2.4 Laws of the Iterated Logarithm with Non-

Constant Limits

So far we have been in the “standard” framework. Patient reader shall (soon

enough) discover that in our results non-constant limits appear. (Un)fortunately,

this is not the first time suchlike behavior was established in the history of math-

ematics, as the following results show:

Theorem 19 (Erdős and Fortet, 1949). Let f(t) = cos 2πt + cos 4πt and define

nk = 2k − 1. Then, for almost every t

lim sup
n→∞

n∑
k=1

f(nkt)

(2n log log n)1/2
= | cos 2πt|1/2, (2.9)

which clearly is not a constant.

Here is another example:

Theorem 20 (Weiss, 1959). Let (ϕn(x))n≥1 be a uniformly bounded orthonormal

system of real-valued functions on the interval [0, 1]. Then there exists a subse-

quence
{
ϕnk

(x)
}
k≥1

and a real-valued function f(x),
1∫
0

f 2(x)dx = 1; 0 ≤ f(x) ≤ B,

where B is the uniform bound as {ϕn(x)}n≥1; such that for any arbitrary sequence

{ak} of real numbers satisfying

AN = (a21 + a22 + · · ·+ a2N)
1/2 → ∞ as N → ∞,

MN = o
(
AN(log logAN)

−1/2
)
, where

MN = max
1≤k≤N

|ak|
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we have

lim sup
n→∞

Sn(x)

(2A2
n log logAn

2)1/2
= f(x) (2.10)

where Sn(x) =
n∑

j=1

ajϕkj(x).

2.5 The Schatte’s Infrastructure

In this subsection we shall introduce various results of P. Schatte from the 1980’s

that will be a base for building our tools in what follows.

Theorem 21 (Schatte, 1984). Let (Xj)j∈N be a sequence of independent and iden-

tically distributed random variables. Let Yn =
n∑

i=1

Xi (mod 1), where moreover we

assume 0 ≤ Xn < 1 for all n ∈ N.

Let pn(x) denote the density of Yn. Then the following assertions are equivalent:

(a) Density pm(x) is bounded for some m.

(b) sup
0≤x<1

|pn(x)− 1| → 0 as n → ∞.

(c) sup
0≤x<1

|pn(x)− 1| ≤ Cωn, where C and ω < 1 are real constants.

Condition (a) is fulfilled in at least 2 situations, namely if the Xi have bounded

density or pm(x) ∈ Lp for some p > 1 and some m. For the later see Ibragimov

and Linnik [32], page 128.

Theorem 22 (Schatte, 1988). Assume the three random vectors X = (X1, . . . , Xr),

U and (W1, . . . ,Ws) are independent and let W = f(X) for some measurable func-

tion f . If U is uniformly distributed, then the two random vectors

X and
(
{W + U +W1}, {W + U +W2}, . . . , {W + U +Ws}

)
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are also independent.

Here, and elsewhere in this section, {x} shall stand for the fractional part of

real number x.

The above remarkable result has an easy, but equally remarkable consequence.

Theorem 23 (Schatte, 1988). Let W and U be independent random variables, with

U uniformly distributed. Then {W + U} is independent of W .

Theorem 24 (Schatte, 1988). Let X be a random variable, with distribution func-

tion F (x), where

sup
0≤x<1

|F (x)− x| ≤ ε.

Furthermore, let U be a uniformly distributed random variable that is indpendent

of X. Then there exists a uniformly distributed random variable V such that

(i) |V −X| ≤ ε,

(ii) V = f(U,X) where f is measurable.

We point out that if X is continuous, U is not necessary in the construction of

V , namely it suffices to take

V = F (X),

i.e. to “put” X into its own distribution function.

2.6 Results

Before we finally start to talk about our results we need a bit more patience from

our reader to complete the set-up.
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In what follows, (Xn)n≥1 will be as in the Schatte model, thus a sequence of

independent identically distributed random variables on some probability space

(Ω,A,P). Moreover, we demand that X1 is bounded with bounded density.

Furthermore, let f be a periodic function with period 1, Hölder α-continuous

with
1∫

0

f(x)dx = 0,

1∫
0

f 2(x)dx = 1

for some positive α.

Let U be a uniformly distributed random variable independent of the underlying

sequence (Xn)n≥1.

Define a positive real-valued function as follows:

Ax := 1 + 2
∞∑
g=1

EPf(U)f(U + Sgx) (2.11)

where, as before, Sn stands for

X1 + · · ·+Xn.

We are now ready to begin:

Theorem 25 (Rašeta). Let (Xj)j∈N, f and Ax be as described above. For any

x ∈ R define the sequence (Γx
n)n∈N of functions on [0, 1] by

Γx
n(0) = 0, Γx

n(k/n) = (2n log log n)−1/2

k∑
j=1

f(Sjx) (k = 0, . . . , n)
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and Γx
n(t) is linear on [k/n, (k + 1)/n], with k ∈ {0, . . . , n − 1}. Then, P-almost

surely, (Γx
n)n∈N is relatively compact in C[0, 1] for almost all x and the set of its

limit points coincides with the scaled Strassen set

K =

{
y(t) : y is absolutely continuous in [0, 1], y(0) = 0

and

1∫
0

(ẏ(t))2dt ≤ A1/2
x

}
. (2.12)

Proof. We will start with some lemmas.

Lemma 1. Let (Xj)j∈N be a sequence of random variables chosen according to the

Schatte model.

Define a sequence of sets as follows:

I1 := {1, 2, . . . , β}

I2 := {p1, p1 + 1, . . . , p1 + β1} where p1 ≥ β + ℓ+ 2

...

In := {pn−1, pn−1 + 1, . . . , pn−1 + βn−1} where pn−1 ≥ pn−2 + βn−2 + ℓ+ 2

...

for some ℓ ∈ N. Fix x ∈ R\{0}. Then there exists a sequence δx1 , δ
x
2 , . . . of random

variables satisfying:

(i) |δxn| ≤ Cxe
−λxℓ ∀n ∈ N, where λx and Cx are some positive constants that

depend on x only.

(ii) The random variables∑
i∈I1

f(Six),
∑
i∈I2

f(Six− δx1 ), . . . ,
∑
i∈In

f(Six− δxn−1)
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are independent.

Proof. We shall construct inductively a sequence (δxn)n∈N satisfying:

(a) |δxn| ≤ Cxe
−λxℓ for all n ∈ N,

(b)
∑
i∈In

f(Six− δn−1
x) is independent of

∑
i∈I1

f(Six), . . . ,
∑

i∈In−1

f(Six− δn−2
x)


for all n ≥ 2.

This sequence clearly satisfies the conditions (i) and (ii) above, and thus the proof

will be complete.

Define

δx1 :=
{
(Sβ+ℓ − Sβ)x

}
− F{(Sβ+ℓ−Sβ)x}

({
(Sβ+ℓ − Sβ)x

})
(2.13)

where, as before, {x} stands for the fractional part of the real number x and

FX(X) means putting random variableX into its own distribution function, whence

defining a new random variable.

By Theorem of Schatte we know that if X is a continuous random variable

taking values in [0, 1), then

|X − FX(X)| ≤ sup
0≤ξ≤1

|P(X ≤ ξ)− ξ|. (2.14)

By the very definition, Xj are all of bounded density and whence absolutely con-

tinuous, hence continuous. Thus, by Theorem of Schatte we have

|δx1 | ≤ sup
0≤ξ≤1

∣∣P ({(Xβ+1 + · · ·+Xβ+ℓ)x
}
≤ ξ
)
− ξ
∣∣ .



48

Using the fact that

{a+ b} =
{
{a}+ {b}

}
for all a, b ∈ R (2.15)

coupled with the fact that the (Xj)j∈N is a sequence of independent and identically

distributed random variables, we have that

{
(Xβ+1 + · · ·+Xβ+ℓ)x

} d
=
{
(X1 + · · ·+Xℓ)x

}
d
=
{
{X1x}+ · · ·+ {Xℓx}

}
.

It thus trivially follows that

P
({

(Xβ+1 + · · ·+Xβ+ℓ)x
}
≤ ξ
)
=

= P
({

{X1x}+ · · ·+ {Xℓx}
}
≤ ξ
)
,

i.e. that

sup
0≤ξ≤1

∣∣∣P ({(Xβ+1 + · · ·+Xβ+ℓ)x
}
≤ ξ
)
− ξ
∣∣∣ =

= sup
0≤ξ≤1

∣∣∣P ({{X1x}+ · · ·+ {Xℓx}
}
≤ ξ
)
− ξ
∣∣∣,

i.e. finally that

|δx1 | ≤ sup
0≤ξ≤1

∣∣∣P ({{X1x}+ · · ·+ {Xℓx}
}
≤ ξ
)
− ξ
∣∣∣.

Trivially, Xj’s are bounded, whence for each x {Xjx} is itself absolutely continuous

having bounded density.

But then Theorem 21 of Schatte applies directly, with m = 1, to give:

|δx1 | ≤ Cxe
−λxℓ. (2.16)
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Furthermore:

{Sp1x− δx1} =
{
Sp1x− {(Sβ+ℓ − Sβ)x}+ F{(Sβ+ℓ−Sβ)x}

(
{(Sβ+ℓ − Sβ)x}

)}
=

=
{
Sp1x− (Sβ+ℓ − Sβ)x+ F{(Sβ+ℓ−Sβ)x}

({
(Sβ+ℓ − Sβ)x

})}
=

=
{
Sp1x− (Xβ+1 + · · ·+Xβ+ℓ)x+ F{(Sβ+ℓ−Sβ)x}

(
{Sβ+ℓ − Sβ)x)

}
=

=
{
(X1 + · · ·+Xβ)x+ (Xβ+ℓ+1 + · · ·+Xp1)x+

+ F{(Sβ+ℓ−Sβ)x}
(
{(Sβ+ℓ − Sβ)x}

)}
.

Similarly,

{Sp1+1x− δx1} =
{
(X1 + · · ·+Xβ)x+ (Xβ+ℓ+1 + · · ·+Xp1+1)x+

+ F{(Sβ+ℓ−Sβ)x}
(
{(Sβ+ℓ − Sβ)x}

)}
...

{Sp1+β1x− δx1} =
{
(X1 + · · ·+Xβ)x+ (Xβ+ℓ+1 + · · ·+Xβ1+p1)x+

+ F{(Sβ+ℓ−Sβ)x}
(
{(Sβ+ℓ − Sβ)x}

)}
.

Define:

X = (X1x,X2x, . . . , Xβx),

W = f(X) = X1x+ · · ·+Xβx,

U = F{(Sβ+ℓ−Sβ)x}
(
{(Sβ+ℓ − Sβ)x}

)
,

(
W x

1 , . . . ,W
x

p1+β1

)
=
(
(Xβ+ℓ+1 + · · ·+Xp1)x, . . . , (Xβ+ℓ+1 + · · ·+Xp1+β1)x

)
.

Observe the following three simple but crucial facts:
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• Indices that appear in X take values in the set {1, . . . , β}.

• Indices that appear in U take values in the set {β + 1, . . . , β + ℓ}.

• Indices that appear in Wj’s take values in the set {β + ℓ+ 1, . . . , β1 + p1}.

Thus, indices that appear in X, U and Wj’s come from disjoint sets.

Since the underlying random variables (Xj)j∈N are independent it then follows

directly from Theorem of Schatte that the 2 random vectors X and

(
{W + U +W x

1 }, . . . , {W + U +W x
p1+β1

}
)

are independent.

But this means (precisely!) that

(X1x, . . . , Xβx) and
(
{Sp1x− δ1x}, . . . , {Sp1+β1x− δ1x}

)
are independent random vectors. Thus, trivially,

∑
j∈I1

f
(
{Sjx}

)
⊥⊥
∑
j∈I2

f
(
{Sjx− δx1}

)
.

However, f({y}) = f(y) for all y so that we finally have

∑
j∈I1

f(Sjx) ⊥⊥
∑
j∈I2

f(Sjx− δx1 ). (2.17)

Now suppose we have established one result up to index n. Consider the n + 1-

situation:

Define:

δn
x :=

{(
Spn−1+βn−1+ℓ − Spn−1+βn−1

)
x
}
−

− F{(Spn−1+βn−1+ℓ−Spn−1+βn−1
)x}
({

(Spn−1+βn−1+ℓ − Spn−1+βn−1)x
})

.
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Exactly as before:

{
(Spn−1+βn−1+ℓ − Spn−1+βn−1)x

} d
=
{
(X1 + · · ·+Xℓ)x

}
and whence it follows that

|δxn| ≤ Cxe
−λxℓ.

Tedious but identical algebra as for n = 1 yields:

{Spnx− δxn} =

=
{
(X1x+ · · ·+Xpn−1+βn−1x) + (Xpn−1+βn−1+ℓ+1x+ · · ·+Xpnx)+

+ F{(Spn−1+βn−1+ℓ−Spn−1+βn−1
)x}
({

(Spn−1+βn−1+ℓ − Spn−1+βn−1)x
})}

,

{Spn+1x− δxn} =

=
{
(X1x+ · · ·+Xpn−1+βn−1x) + (Xpn−1+βn−1+ℓ+1x+ · · ·+Xpn+1x)+

+ F{(Spn−1+βn−1+ℓ−Spn−1+βn−1
)x}
({

(Spn−1+βn−1+ℓ − Spn−1+βn−1)x
})}

,

...

...

{Spn+βnx− δxn} =

=
{
(X1x+ · · ·+Xpn−1+βn−1x) + (Xpn−1+βn−1+ℓ+1x+ · · ·+Xpn+βnx)+

+ F{(Spn−1+βn−1+ℓ−Spn−1+βn−1
)x}
({

(Spn−1+βn−1+ℓ − Spn−1+βn−1)x
})}

.

Define the following 3 random vectors:

X =
(
X1x,X2x, . . . , Xpn−1+βn−1x, δ

x
1 , . . . , δ

x
n−1

)
,

U = F{(Spn−1+βn−1+ℓ−Spn−1+βn−1
)x}
({

(Spn−1+βn−1+ℓ − Spn−1+βn−1)x
})

,(
W x

1 , . . . ,W
x

pn+βn

)
=
(
Xpn−1+βn−1+ℓ+1x+ · · ·+Xpnx, . . . ,
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. . . , Xpn−1+βn−1+ℓ+1x+ · · ·+Xpn+βnx
)
.

Moreover, let W = X1x+ · · ·+Xpn−1+βn−1x.

As before, we observe three very simple but crucial facts:

• Indices that appear in X take values in the set {1, . . . , pn−1 + βn−1}.

• Indices that appear in U take values in the set {pn−1 + βn−1, . . . , pn−1 +

+ βn−1 + ℓ}.

• Indices that appear in Wj’s take values in the set {pn−1 + βn−1 + ℓ+ 1, . . .

. . . , pn−1 + βn}.

It follows, exactly as before, that X, U and (W x
1 , . . . ,W

x
pn+βn

) are 3 independent

random vectors. But then, exactly as before:

(
X1x, . . . , Xpn−1+βn−1x, δ

x
1 , . . . , δ

x
n−1

)
⊥⊥
(
{Spnx− δxn}, . . . , {Spn+βnx− δxn}

)
,

and whence, using periodicity of f ,∑
i∈In+1

f(Six− δxn) ⊥⊥

(∑
i∈I1

f(Six),
∑
i∈I2

f(Six− δx1 ),
∑
i∈In

f(Six− δ x
n−1)

)
. (2.18)

Thus, by induction, the result holds for all n ∈ N and the proof is complete.

Now, put

m̃k =
k∑

j=1

⌊j1/2⌋, m̂k =
k∑

j=1

⌊j1/4⌋ (2.19)

(⌊x⌋ stands for the integer part of the real number x) and let

mk = m̃k + m̂k . (2.20)

Define 2 sequences T1, T2, . . . and T ∗
1 , T

∗
2 , . . . of random variables by

Tk :=

mk−1+⌊
√
k⌋∑

j=mk−1+1

(
f(Sjx−∆ x

k−1)− Ef(Sjx−∆ x
k−1)

)
, (2.21)
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T ∗
k :=

mk∑
j=mk−1+⌊

√
k⌋+1

(
f(Sjx− Π x

k−1)− Ef(Sjx− Π x
k−1)

)
(2.22)

and choose the variables (∆x
k)k∈N, (Π

x
k)k∈N so that

(i) ∆x
0 = 0; |∆x

k| ≤ Cxe
−λx⌊ 4√

k⌋;

(Tk)k∈N is a sequence of independent random variables.

(ii) Πx
0 = 0; |Πx

k| ≤ Cxe
−λx⌊

√
k⌋;

(T ∗
k )k∈N is a sequence of independent random variables.

Note that this choice is possible by Lemma 1.

We now prove the following:

Lemma 2.

n∑
k=1

Var (Tk) ∼ Axm̃n;

n∑
k=1

Var (T ∗
k ) ∼ Axm̂n.

Proof. Some basic algebra yields:

Var (Tk) =

mk−1+⌊
√
k⌋∑

j=mk−1+1

Ef 2(Sjx−∆ x
k−1)+

+ 2

⌊
√
k⌋−1∑
ρ=1

mk−1+⌊
√
k⌋−ρ∑

ℓ=mk−1+1

Ef(Sℓx−∆ x
k−1)f(Sℓ+ρx−∆ x

k−1)−

−

mk−1+⌊
√
k⌋∑

j=mk−1+1

Ef(Sjx−∆ x
k−1)

2

.
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For simplicity we define

L(k)
x :=

(
mk−1+⌊

√
k⌋∑

j=mk−1+1

Ef(Sjx−∆ x
k−1)

)2

. (2.23)

Observe that

∣∣f(Sjx)− f(Sjx−∆ x
k−1)

∣∣ ≤ 2C
∣∣Sjx−∆ x

k−1 − Sjx
∣∣α =

= 2C|∆ x
k−1|α ≤ 2CCxe

−αλx⌊ 4√k−1⌋;

by the Hölder-α-continuity of f and the very construction of ∆k’s.

Furthermore:

∣∣Ef(Sjx)
∣∣ = ∣∣Ef({Sjx})

∣∣ (since f is periodic with period 1) =

=
∣∣Ef({Sjx})− 0

∣∣ = ∣∣∣∣∣Ef({Sjx})−
1∫

0

f(ξ)dξ

∣∣∣∣∣ =
=
∣∣Ef({Sjx})− Ef

(
F{Sjx}({Sjx})

)∣∣∣∣ ≤
(since FX(x) is always uniformly distributed)

≤ 2CE
∣∣{Sjx} − F{Sjx}({Sjx})

∣∣α ≤

≤ 2CCα
x e

−αλxj;

using the same Schatte-type arguments as in the proof of Lemma 1.

Putting all these things together yields:

L(k)
x ≤ 16C2C2α

x ⌊
√
k⌋2e−2αλx⌊ 4√k−1⌋

using very bold bounds indeed.
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Moreover,

Ef 2(Sjx−∆ x
k−1) = 1 + γx

j + εxj ; where

γx
j = Ef 2(Sjx−∆ x

k−1)− Ef 2(Sjx), (2.24)

εxj = Ef 2({Sjx})− Ef 2
(
F{Sjx}({Sjx})

)
(2.25)

since f is periodic with period 1 and
1∫
0

f 2(ξ)dξ = 1. Since f is continuous and

periodic, it is clearly bounded and call this bound M .

Applying the same reasoning as before, it is easy to see that

|γx
j | ≤ 4MCC α

x e−αλx⌊ 4√k−1⌋ (2.26)

and

|εxj | ≤ 4MCC α
x e−λxαj . (2.27)

Define, for brevity,

Λ(k)
x :=

mk−1+⌊
√
k⌋∑

j=mk−1+1

γx
j (2.28)

and

O(k)
x :=

mk−1+⌊
√
k⌋∑

j=mk−1+1

εxj (2.29)

whence it follows that

mk−1+⌊
√
k⌋∑

j=mk−1+1

Ef 2(Sjx−∆ x
k−1) = ⌊

√
k⌋+ Λ(k)

x +O(k)
x

where

|Λ(k)
x | ≤ 4MCα

xC⌊
√
k⌋e−αλx⌊ 4√k−1⌋ (2.30)

and

|O(k)
x | ≤ 4MCCα

x

1− e−αλx
e−αλx(mk−1+1)

(
1− e−αλx⌊

√
k⌋) (2.31)
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again using, almost embarrassingly, bold bounds which turn out to be more than

sufficient for our purposes.

We now turn to the most interesting part of this argument, namely to the

“cross-term contribution”.

Define:

exℓ := Ef(Sℓx−∆ x
k−1)f(Sℓ+ρx−∆ x

k−1)− Ef(Sℓx)f(Sℓ+ρx−∆ x
k−1),

gxℓ := Ef(Sℓx)f(Sℓ+ρx−∆ x
k−1)− Ef(Sℓx)f(Sℓ+ρx),

hx
ℓ := Ef(Sℓx)f(Sℓ+ρx)− Ef

(
F{Sℓx}({Sℓx})

)
f(Sℓ+ρx),

ixℓ := Ef
(
F{Sℓx}({Sℓx})

)
f(Sℓx+ T ℓ,x

ρ )−

− Ef
(
F{Sℓx}({Sℓx})

)
f
(
F{Sℓx}({Sℓx}) + T ℓ,x

ρ

)
(where T ℓ,x

ρ = (Xℓ+1 + · · ·+Xℓ+ρ)x),

cℓ,xρ := Ef
(
F{Sℓx}({Sℓx})

)
f
(
F{Sρx}({Sρx}) + T ℓ,x

ρ

)
(2.32)

Then, arguing exactly as before one obtains the following inequalities:

|exℓ | ≤ 2MC · Cα
x e

−αλx⌊ 4√k−1⌋,

|gxℓ | ≤ 2MC · Cα
x e

−αλx⌊ 4√k−1⌋,

|hx
ℓ | ≤ 2MC · Cα

x e
−αλxℓ,

|ixℓ | ≤ 2MC · Cα
x e

−αλxℓ.

(2.33)

For brevity define

E(k)
x := 2

⌊
√
k⌋−1∑
ρ=1

mk−1+⌊
√
k⌋−ρ∑

ℓ=mk−1+1

exℓ (2.34)
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we have the following chain of inequalities:

|E(k)
x | ≤ 2

⌊
√
k⌋−1∑
ρ=1

mk−1+⌊
√
k⌋−ρ∑

ℓ=mk−1+1

|exℓ | ≤

≤ 2

⌊
√
k⌋−1∑
ρ=1

mk−1+⌊
√
k⌋−ρ∑

ℓ=mk−1+1

2MCCα
x e

−αλx⌊ 4√k−1⌋ =

= 4MC · Cα
x e

−αλx⌊ 4√k−1⌋
⌊
√
k⌋−1∑
ρ=1

(⌊
√
k⌋ − ρ) =

= 4MC · Cα
x e

−αλx⌊ 4√k−1⌋((⌊√k⌋ − 1) + (⌊
√
k⌋ − 2) + (⌊

√
k⌋ − (⌊

√
k⌋ − 1)

)
=

= 4MC · Cα
x e

−αλx⌊ 4√k−1⌋(1 + 2 + · · ·+ (⌊
√
k⌋ − 1)) =

= 2MC · Cα
x ⌊

√
k⌋(⌊

√
k⌋ − 1)e−αλx⌊ 4√k−1⌋.) (2.35)

Along the same lines, define

G(k)
x := 2

⌊
√
k⌋−1∑
ρ=1

mk−1+⌊
√
k⌋−ρ∑

ℓ=mk−1+⌊
√
k⌋

gxℓ . (2.36)

Exactly as above one obtains

|G(k)
x | ≤ 2MC · Cα

x ⌊
√
k⌋(⌊

√
k⌋ − 1)e−αλx⌊ 4√k−1⌋. (2.37)

Somewhat heavier algebra is needed to obtain the bounds for the absolute values

of the following two quantities:

P (k)
x := 2

⌊
√
k⌋−1∑
ρ=1

mk−1+⌊
√
k⌋−ρ∑

ℓ=mk−1+1

hx
ℓ

and

Q(k)
x := 2

⌊
√
k⌋−1∑
ρ=1

mk−1+⌊
√
k⌋−ρ∑

ℓ=mk−1+1

ixℓ .

(2.38)
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It turns out that

max
(
|P (k)

x |, |Q(k)
x |
)
≤

≤ 4MC · Cα
x

1− e−αλx
e−αλx(mk−1+1)·

·
(
(⌊
√
k⌋ − 1)− eαλx

eαλx − 1

(
e−αλx − e−αλx⌊

√
k⌋)) . (2.39)

The term cℓ,xρ needs some special attention.

Recall that

cℓ,xρ = Ef
(
F{Sℓx}({Sℓx})

)
f
(
F{Sℓx}({Sℓx}) + T ℓ,x

ρ

)
.

Let us make several easy but far reaching observations:

• F{Sℓx}({Sℓx}) is uniformly distributed for all ℓ ∈ N.

• F{Sℓx}({Sℓx}) is independent of T ℓ,x
ρ since they are made of disjoint indices

associated to independent random variables.

• T ℓ,x
ρ

d
= Sρx; by the very definition of the Schatte structure.

It follows that cℓ,xρ is actually an ℓ-independent quantity. We can thus rewrite

it as follows:

cℓ,xρ = cxρ = Ef(U)f(U + Sρx)

for U uniform and

U ⊥⊥ σ(Xn : n ≥ 1).

Using the standard machinery of stationarity we see that the cumulative contribu-

tion of cxg ’s shall take the following form:

2

⌊
√
k⌋−1∑
ρ=1

mk−1+⌊
√
k⌋−ρ∑

ℓ=mk−1+1

cℓ,xρ =
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= 2

⌊
√
k⌋−1∑
ρ=1

mk−1+⌊
√
k⌋−ρ∑

ℓ=mk−1+1

cxρ =

= 2

⌊
√
k⌋−1∑
ρ=1

(⌊
√
k⌋ − ρ)cxρ = 2

⌊
√
k⌋−1∑
ρ=1

⌊
√
k⌋cxρ − 2

⌊
√
k⌋−1∑
ρ=1

ρcxρ =

= 2⌊
√
k⌋

⌊
√
k⌋−1∑
ρ=1

cxρ − 2

⌊
√
k⌋−1∑
ρ=1

ρcxρ =

= 2⌊
√
k⌋
( ∞∑

ρ=1

cxρ −
∞∑

ρ=⌊
√
k⌋

cxρ

)
− 2

⌊
√
k⌋−1∑
ρ=1

ρcxρ =

= ⌊
√
k⌋ · 2

∞∑
ρ=1

cxρ − 2⌊
√
k⌋

∞∑
ρ=⌊

√
k⌋

cxρ − 2

⌊
√
k⌋−1∑
ρ=1

ρcxρ.

Thus we have:

Bx
n = Var (T1 + T2 + · · ·+ Tn) =

=
n∑

k=1

Var (Tk) (by independence)

=
3∑

k=1

Var (Tk) +
n∑

k=4

Var (Tk) =

= Dx
1 +

n∑
k=4

(
⌊
√
k⌋+ Λ(k)

x +O(k)
x + E(x)

x +G(k)
x + P (k)

x +Q(k)
x

)
+

+ ⌊
√
k⌋ · 2

∞∑
g=1

cxρ − 2
∑

⌊
√
k⌋

∞∑
ρ=⌊

√
k⌋

cxρ − 2

⌊
√
k⌋−1∑
ρ=1

ρcxρ − L(k)
x =

= m̃n

Dx
1

m̃n

+
m̃n − m̃3

m̃n

(
1 + 2

∞∑
ρ=1

cxρ

)
+

n∑
k=4

Λ(k)
x

m̃n

+
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+

n∑
k=4

O(k)
x

m̃n

+

n∑
k=4

E(k)
x

m̃n

+

n∑
k=4

P (k)
x

m̃n

+

+

n∑
k=4

Q(k)
x

m̃n

−

2
n∑

k=4

⌊
√
k⌋

∞∑
ρ=⌊

√
k⌋

cxρ

m̃n

−

−2 ·

n∑
k=4

⌊
√
k⌋−1∑
j=1

ρcxρ

m̃n

−

n∑
k=4

L(k)
x

m̃n

 .

Observe, for example, the following:

∣∣∣∣∣
∑n

k=4 Λ
(k)
x

m̃n

∣∣∣∣∣ ≤ 1

m̃n

n∑
k=4

|Λ(k)
x | ≤

≤ 1

m̃n

n∑
k=4

4MC · Cα
x ⌊

√
k⌋e−αλx⌊ 4√k−1⌋ ≤

≤ 1

m̃n

4MC · Cα
x

∞∑
k=1

⌊
√
k⌋e−αλx⌊ 4√k−1⌋.

But, for all k large enough

⌊
√
k⌋e−αλx⌊ 4√k−1⌋ ≤ ax1

k2
,

and whence
∞∑
k=1

⌊
√
k⌋e−αλx⌊ 4√k−1⌋ converges so that

1

m̃n

n∑
k=4

Λ(k)
x converges to 0. (2.40)
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Similarly after(at times) tedious algebra one can deduce that

•

n∑
k=4

O(k)
x

m̃n

→ 0;

n∑
k=4

P (k)
x

m̃n

→ 0;

•

n∑
k=4

E(k)
x

m̃n

→ 0;

n∑
k=4

Q(k)
x

m̃n

→ 0.

(2.41)

The analysis of cxρ-related quantities needs more care. We proceed as follows:

cxρ = Ef(U)f(U + Sρx) = Ef(U)f({U + Sρx}) =

= Ef(U)f
(
{U + {Sρx}}

)
= Ef(U)f(U + {Sρx}) =

(using {x+ y} = {x+ {y}}) =

= Ef(U)f(U + {Sρx})− Ef(U)f
(
U + F{Sρx}({Sρx})

)
+

+ Ef(U)f
(
U + F{Sρx}({Sρx})

)
.

Since U ⊥⊥ σ(Xj : j ∈ N) we have trivially that

U ⊥⊥ F{Sρx}({Sgx}) ⇒
{
U + F{Sρx}({Sρx})

}
⊥⊥ U

as a direct consequence of Theorem of Schatte because F{Sρx}({Sρx}) is itself uni-

formly distributed!

Whence it immediately follows that

cxρ = Ef(U)f(U + Sρx) = Ef(U)f(U + {Sρx})−

− Ef(U)f
(
U + F{Sρx}({Sρx})

)
.

Thus:

|cxρ| =
∣∣Ef(U)f(U + {Sρx})− Ef(U)f(U + F{Sρx}({Sρx}))

∣∣ ≤
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≤ E
∣∣f(U)(f(U + {Sρx})− f(U + F{Sρx}({Sρx}))

∣∣ ≤
≤ ME

∣∣U + {Sρx} − U − F{Sρx}({Sρx})
∣∣α · C ≤

≤ MC Cα
x e

−αλxρ;

using the exact same Schatte-type arguments as before.

It is then a routine to see that

∞∑
ρ=⌊

√
k⌋

cxρ ≤ MC Cα
x e

−αλx⌊
√
k⌋

1− e−αλx
(2.42)

and that

n∑
k=4

⌊
√
k⌋

∞∑
ρ=⌊

√
k⌋

|cxρ| ≤

≤ MCCα
x

1− e−αλx

∞∑
k=1

⌊
√
k⌋e−αλx⌊

√
k⌋;

and this sum clearly converges.

We now turn our attention to the term

2
n∑

k=4

⌊
√
k⌋−1∑
ρ=1

ρcxρ.

As before, it is easy to see that the absolute value of the above cannot exceed

2MCCα
x

n∑
k=4

⌊
√
k⌋−1∑
ρ=1

ρe−αλxρ.

Define

h(ρ) = ρe−αλxg ⇒ h′(ρ) = e−αλxρ(1− ραλx).

Thus if ρ ≤ 1/αλx h will be increasing and it shall be decreasing otherwise.
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We can now split the sum as follows:

2MCCα
x

n∑
k=4

⌊
√
k⌋−1∑
ρ=1

ρe−αλxρ ≤

≤ 2MCCα
x

n∑
k=4

⌊
√
k⌋−1∑
ρ=1

ρe−αλxρ =

= 2MCCα
x

(2+⌊1/αλx⌋)2∑
k=1

⌊
√
k⌋−1∑
ρ=1

ρe−αλxρ+

+ 2MCCα
x

∑
k=1+(2+⌊1/αλx⌋)2

⌊
√
k⌋−1∑
ρ=1

ρe−αλxρ.

Now:

⌊
√
k⌋−1∑
ρ=1

ρe−αλxρ =

⌊1/αλx⌋−1∑
ρ=1

ρe−αλxρ+

+ ⌊1/αλx⌋e−αλx⌊1/αλx⌋ +

⌊
√
k⌋−1∑

ρ=1+⌊1/αλx⌋

ρe−αλxρ =

= (upon introducing dummy but friendlier index j) =

⌊1/αλx⌋−1∑
j=1

je−αλxj + ⌊1/αλx⌋e−αλx⌊1/αλx⌋ +

⌊
√
k⌋−1∑

j=1+⌊1/αλx⌋

je−αλxj.

For j ≤ ⌊1/αλx⌋ − 1 h(j) will be increasing.

Let us now observe the following:

j+1∫
j

ξe−αλxξdξ ≥
j+1∫
j

min
ξ∈[j,j+1]

ξe−αλxξdξ =

(since the function is increasing)

= je−αλxj.
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Similarly, if j ≥ ⌊1/αλx⌋+ 1

j∫
j=1

ξe−αλxξdξ ≥ je−αλxj.

Putting all this together we can see that

⌊
√
k⌋−1∑
ρ=1

ρe−αλxρ ≤
⌊1/αλx⌋−1∑

j=1

j+1∫
j

ξe−αλxξdξ+

+ ⌊1/αλx⌋e−αλx⌊1/αλx⌋+

+

⌊
√
k⌋−1∑

j=1+⌊1/αλx⌋

j∫
j−1

ξe−αλxξdξ =

=

⌊1/αλx⌋∫
1

ξe−αλxξdξ + ⌊1/αλx⌋e−αλx⌊1/αλx⌋+

+

⌊
√
k⌋−1∫

⌊1/αλx⌋

ξe−αλxξdξ =

=

⌊
√
k⌋−1∫
1

ξe−αλxξdξ + ⌊1/αλx⌋e−αλx⌊1/αλx⌋

whence, upon some tedious algebra we see that

⌊
√
k⌋−1∑
ρ=1

ρe−αλxρ ≤ e−αλx

(
1

αλx

+
1

(αλx)2

)
−

− e−αλx(⌊
√
k⌋−1)

(
⌊
√
k⌋ − 1

αλx

+

(
1

αλx

)2
)
+

+ ⌊1/αλx⌋e−αλx⌊1/αλx⌋.

For brevity, define

ax2 := 2MCCα
x

(2+⌊1/αλx⌋)2∑
k=1

⌊
√
k⌋−1∑
ρ=1

ρe−αλxρ. (2.43)
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We then have:

2MCCα
x

n∑
k=4

⌊
√
k⌋−1∑
ρ=1

ρe−αλxρ =

= ax2 + 2MCCα
x

n∑
k=1+(2+⌊1/αλx⌋)2

⌊
√
k⌋−1∑
ρ=1

ρe−αλxρ ≤

≤ ax2 + 2MCCα
x

n∑
k=1+(2+⌊1/αλx⌋)2

{
e−αλx

(
1

αλx

+
1

(αλx)2

)
− e−αλx(⌊

√
k⌋−1)·

·

(
⌊
√
k⌋ − 1

αλx

+

(
1

αλx

)2
)

+ ⌊1/αλx⌋e−αλx⌊1/αλx⌋

}
.

Yet again, for brevity, we define

ax3 := e−αλx

(
1

αλx

+

(
1

αλx

)2
)
+

+ ⌊1/αλx⌋e−αλx⌊1/αλx⌋.

Then the above complex expression takes a slightly friendlier form:

ax2 + 2MCCα
xna

x
3 +

n∑
k=1

e−λx(⌊
√
k⌋−1)

(
⌊
√
k⌋ − 1

αλx

+

(
1

αλx

)2
)
.

It is now clear, since
3

2
m̃n ∼ n3/2 that

1

m̃n

n∑
k=4

⌊
√
k⌋−1∑
ρ=1

ρcxρ → 0 as n → ∞. (2.44)

Moreover, the series
∞∑
ρ=1

cxρ converges absolutely. Putting all this together and

recalling the very definition of Ax we deduce that

Var
( n∑

j=1

Tj

)
∼ Axm̃n . (2.45)
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In an identical fashion one can deduce that

Var
( n∑

j=1

T ∗
j

)
∼ Axm̂n (2.46)

and the proof is complete.

We are now ready to prove our theorem. We shall apply the result of Major

both for Tk (long blocks) and T ∗
k (short blocks).

Put

Bn = Bx
n =

n∑
k=1

Var (Tk), Mn = 2M
√
n.

It then follows directly from Lemma 2 that

M2
n = o(Bn/ log logBn). (2.47)

Define the sequence (Ψx
n)n∈N of random functions on [0, 1] such that

Ψx
n(0) = 0;

Ψx
n(B

x
k/B

x
n) = (2Bx

n log logB
x
n)

−1/2

k∑
j=1

Tj; for k = 0, 1, . . . , n,
(2.48)

and demand Ψx
n is linear on

[
Bx

k/B
x
n, B

x
k+1/B

x
n

]
; k = 0, 1, . . . , n − 1. Then by

Major’s result it follows that (Ψx
n)n∈N is, P-almost surely, relatively compact in

C[0, 1], and the set of its limit points agrees with the Strassen set.

Similarly, let

Dx
n =

n∑
k=1

Var (T ∗
k )

and define another sequence of random functions (ζxn)n∈N by

ζxn(0) = 0;

ζxn(D
x
k/D

x
n) = (2Dx

n log logD
x
n)

−1/2

k∑
j=1

T ∗
j ; for k = 0, 1, . . . , n,

(2.49)
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and demand ζxn linear on
[
Dx

k/D
x
n, D

x
k+1/D

x
n

]
for k ∈ {0, . . . , n− 1}.

Again, by Major’s result it follows that, P-almost surely, (ζxn)n∈N is relatively

compact in C[0, 1] and the set of its limit points agrees with the Strassen set.

Define the following quantities:

axk :=
k∑

j=1

mj−1+⌊
√
j⌋∑

ℓ=mj−1+1

(
f(Sℓx)− f(Sℓx−∆ x

j−1)
)
,

bxk :=
k∑

j=1

mj−1+⌊
√
j⌋∑

ℓ=mj−1+1

(
f(Sℓx−∆ x

j−1)− Ef(Sℓx−∆ x
j−1)

)
=

k∑
j=1

Tj,

cxk :=
k∑

j=1

mj−1+⌊
√
j⌋∑

ℓ=mj−1+1

Ef(Sℓx−∆ x
j−1),

dxk :=
k∑

j=1

mj∑
ℓ=mj−1+⌊

√
j⌋+1

(
f(Sℓx)− f(Sℓx− Π x

j−1)
)
,

pxk :=
k∑

j=1

mj∑
ℓ=mj−1+⌊

√
j⌋+1

(
f(Sℓx− Π x

j−1)− Ef(Sℓx− Π x
j−1)

)
=

k∑
j=1

T ∗
j ,

qxk :=
k∑

j=1

mj∑
ℓ=mj−1+⌊

√
j⌋+1

Ef(Sℓx− Π x
j−1)

)
, (2.50)

where ∆k’s and Πk’s are exactly as before.

Observe that

axk + bxk + cxk + dxk + pxk + qxk =

mk∑
j=1

f(Sjx).

Define another sequence of random functions
(
Φx

n(t)
)
n≥1

by:

Φx
n(0) = 0 ∀n ∈ N;

Φx
n

(
Bx

k/B
x
n

)
=

mk∑
j=1

f(Sjx)/(2B
x
n log logB

x
n)

1/2
(2.51)
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for k ∈ {0, . . . , n} and Φx
n is linear on

[
Bx

k/B
x
n, B x

k+1/B
x
n

]
for k ∈ {0, . . . , n− 1}.

Let ∥ · ∥ be the sup-norm on C[0, 1]. Observe that

∥∥Ψx
n − Φx

n

∥∥ = sup
0≤t≤1

∣∣Ψx
n(t)− Φx

n(t)
∣∣ =

= max
0≤t≤1

∣∣Ψx
n(t)− Φx

n(t)
∣∣ =

(since [0, 1] is a compact set and difference of 2 continuous functions is itself

continuous)

= max
0≤k≤n−1

max
Bx
k

Bx
n
≤t≤

B x
k+1
Bx
n

∣∣Ψx
n(t)− Φx

n(t)
∣∣ =

= max
0≤k≤n−1

max

(∣∣∣∣Ψx
n

(
Bx

k

Bx
n

)
− Φx

n

(
Bx

k

Bx
n

)∣∣∣∣ ,
∣∣∣∣Ψx

n

(
B x

k+1

Bx
n

)
− Φx

n

(
B x

k+1

Bx
n

)∣∣∣∣
)

=

(
since both Ψx

n and Φx
n are linear on

[
Bx

k

Bx
n

,
B x

k+1

Bx
n

])
= max

0≤k≤n

∣∣∣∣Φx
n

(
Bx

k

Bx
n

)
− Φx

n

(
Bx

k

Bx
n

)∣∣∣∣ =
= max

0≤k≤n

∣∣∣∣axk + bxk + cxk + dxk + pxk + qxk
(2Bx

n log logB
x
n)

1/2
− bxk

(2Bx
n log logB

x
n)

1/2

∣∣∣∣ =
= max

0≤k≤n

∣∣∣∣axk + cxk + dxk + pxk + qxk
(2Bx

n log logB
x
n)

1/2

∣∣∣∣ ≤
≤ 1

(2Bx
n log logB

x
n)

1/2

(
max
0≤k≤n

|axk|+ max
0≤k≤n

|cxk|+

+ max
0≤k≤n

|dxk|+ max
0≤k≤n

|pxk|+ max
0≤k≤n

|qxk |
)
. (2.52)
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Using the same Schatte-type ideas to which the reader was heavily exposed to

in the proof of Lemma 2 one obtains the following bounds:

|axk| ≤ 2C · Cα
x

∞∑
j=1

⌊
√
j⌋e−αλx⌊ 4√j−1⌋ := Mx

1 ,

|cxk| ≤ 2C · Cα
x

∞∑
j=1

⌊
√
j⌋e−αλx⌊ 4√j−1⌋+

+ 2C · Cα
x

∞∑
j=1

⌊
√
j⌋e−αλx⌊

√
j−1⌋ := Mx

2 ,

|dxk| ≤ 2C · Cα
x

∞∑
j=1

⌊ 4
√
j⌋e−αλx⌊

√
j−1⌋ := Mx

3 ,

|pxk| =
∣∣∣∣(2Dx

n log logD
x
n)

1/2ζxn

(
Dx

k

Dx
n

)∣∣∣∣ =
= (2Dx

n log logD
x
n)

1/2

∣∣∣∣ζxn (Dx
k

Dx
n

)∣∣∣∣ ≤
≤ Mx

4 · (2Dx
n log logD

x
n)

1/2 for some Mx
4 because relative

compactness of (ζxn)n∈N implies its uniform boundedness. (2.53)

Finally, as before

|qxk | ≤ Mx
5 ; for some Mx

5 .

However, Lemma 2 tells us that

Dx
n ∼ Axm̂n ∼ 4

5
Axn

5/4 , while

Bx
n ∼ Axm̃n ∼ 2

3
Axn

3/2.

(2.54)

Putting these facts together yields that

∥Ψx
n − Φx

n∥ → 0; P-almost surely. (2.55)
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Thus it clearly follows that (Φx
n)n∈N is relatively compact in C[0, 1] with probability

1 and the set of its limit points agrees with the Strassen set.

Let us now introduce the following sequence of random functions:

Θx
n(0) = 0 for all n ∈ N,

Θx
n

(
Bx

k

Bx
n

)
=

mk∑
j=1

f(Sjx)/(2Axmn log logmn)
1/2; k ∈ {0, . . . , n}

(2.56)

and Θx
n is linear on [Bx

k/B
x
n, B

x
k+1/B

x
n], k ∈ {0, . . . , n− 1}.

Then we have:

∥∥Φx
n −Θx

n

∥∥ = (arguing exactly as before) =

= max
0≤k≤n

∣∣∣∣∣∣∣∣∣∣

mk∑
j=1

f(Sjx)

(2Bx
n log logB

x
n)

1/2
−

mk∑
j=1

f(Sjx)

(2Axmn log logmn)1/2

∣∣∣∣∣∣∣∣∣∣
≤

≤ sup
t∈[0,1]

|Φx
n(t)| ·

∣∣∣∣1− (2Bx
n log logB

x
n)

1/2

(2Axmn log logmn)1/2

∣∣∣∣ . (2.57)

However, (Φx
n)n≥1 is, P-almost surely, uniformly bounded. Moreover, from

Lemma 2 we know that

Bx
n log logB

x
n ∼ Axmn log logmn (2.58)

It follows that, P-almost surely, (Θx
n)n≥1 is relatively compact in C[0, 1] and the set

of its limit points agrees with the Strassen set.

We shall now define another sequence of random functions:

ξxn(0) = 0 for all n ∈ N,

ξxn

(
mk

mn

)
=

mk∑
j=1

f(Sjx)/(2Axmn log logmn)
1/2; k ∈ {0, . . . , n}

(2.59)
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and ξxn is linear on

[
mk

mn

,
mk+1

mn

]
; k ∈ {0, . . . , n− 1}.

We claim, surprise-surprise, that (ξxn)n∈N is itself, P-almost surely, relatively

compact in C[0, 1] and the set of its limit points agrees with the Strassen set.

In order to prove the above claim, let us define the following map:

Tn : [0, 1] → [0, 1], Tn maps

[
mk

mn

,
mk+1

mn

]
to

[
Bx

k

Bx
n

,
B x

k+1

Bx
n

]
in a linear way, with

Tn

(
mk

mn

)
=

Bx
k

Bx
n

. (2.60)

It is easily seen that ξxn(t) = Θx
n(Tn(t)). Thus:

∥∥Θx
n − ξxn

∥∥ = max
0≤t≤1

∣∣Θx
n(t)−Θx

n(Tn(t))
∣∣.

However, P-almost surely, (Θx
n)n∈N is equicontinuous and hence it will be sufficient

to show that

max
0≤t≤1

∣∣Tn(t)− t
∣∣→ 0 as n → ∞.

Using the same ideas as before one can see that:

max
0≤t≤1

|Tn(t)− t| = max
0≤k≤n

∣∣∣∣Bx
k

Bx
n

− mk

mn

∣∣∣∣ . (2.61)

Recall that Bx
n ∼ Axmn. Standard ε−N argument shows that the quantity on the

RHS tends to 0 as n → ∞.

Thus, (ξxn)n∈N is itself, P-almost surely, relatively compact in C[0, 1] and the

set of its limit points agrees with the Strassen set.



72

In order to complete our proof we shall have to introduce one last sequence of

random functions:

θxn(0) = 0 for all n ∈ N,

θxn

(
ℓ

mp(n)

)
=

ℓ∑
j=1

f(Sjx)/(2Axn log log n)1/2
(2.62)

ℓ ∈ {0, . . . ,mp(n)} and θxn is linear on

[
ℓ

mp(n)

,
ℓ+ 1

mp(n)

]
; ℓ ∈ {0, . . . , n− 1}.

Here (p(n))n∈N is a sequence of integers defined implicitly via inequalities:

mp(n) ≤ n < mp(n)+1.

We proceed by showing that

∥∥Γx
n − θxn

∥∥→ 0; P-almost surely.

As before, ∥∥Γx
n − θxn

∥∥ = max
0≤ℓ≤mp(n)−1

max
ℓ

mp(n)
≤t≤ ℓ+1

mp(n)

∣∣Γx
n(t)− θxn(t)

∣∣.
It is essential we establish the connection between the interpolation points of ran-

dom functions θxn and Γx
n.

For this purpose define

k := max

{
k :

k

n
≤ ℓ

mp(n)

}
. (2.63)

Then one of the following has to hold (we include pictures to illustrate our reasoning

and make our point clearer):
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(i) |
k

n

|
ℓ

mp(n)

|
ℓ+ 1

mp(n)

|
k + 1

n

(ii) |
k

n

|
ℓ

mp(n)

|
k + 1

n

|
ℓ+ 1

mp(n)

|
k + 2

n

(iii) |
k

n

|
ℓ

mp(n)

|
k + 1

n

|
k + 2

n

|
ℓ+ 1

mp(n)

|
k + 3

n

(iv) |
k

n

|
ℓ

mp(n)

|
k + 1

n

|
k + 2

n

|
k + 3

n
. . .

|
ℓ+ 1

mp(n)

|
k + s

n

where s ≥ 4.
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We start by showing that cases (i) and (iv) are impossible

Suppose (i) were true. Then

k + 1

n
− k

n
>

ℓ+ 1

mp(n)

− ℓ

mp(n)

⇒ mp(n) > n # (2.64)

since

mp(n) ≤ n < mp(n)+1.

Now suppose (iv) were possible. Then

k + 3

n
− k + 1

n
<

ℓ+ 1

mp(n)

− ℓ

mp(n)

⇒ 2 <
n

mp(n)

# (2.65)

since mp(n) ∼ n and so the above would fail for all n large enough.

Thus, if we take n large enough, only (i) and (iii) are possible.

We shall deal with these two cases separately. Firstly, let us suppose (i) holds;

then arguing exactly as before we would have:

max
ℓ

mp(n)
≤t≤ ℓ+1

mp(n)

∣∣Γx
n(t)− θxn(t)

∣∣ ≤
≤ max

(∣∣∣∣Γx
n

(
k

n

)
− θxn

(
ℓ

mp(n)

)∣∣∣∣, ∣∣∣∣Γx
n

(
k + 1

n

)
− θxn

(
ℓ

mp(n)

)∣∣∣∣,
∣∣∣∣Γx

n

(
k + 1

n

)
− θxn

(
ℓ+ 1

mp(n)

)∣∣∣∣, ∣∣∣∣Γx
n

(
k + 2

n

)
− θxn

(
ℓ+ 1

mp(n)

)∣∣∣∣
)
. (2.66)

For convenience we choose to examine the second quantity in the above in detail,

others are dealt with in an identical fashion.

Notice that

ℓ

mp(n)

≤ k + 1

n
⇒ ℓ ≤ k + 1

n
·mp(n) ≤ k + 1 · n

n
= k + 1,
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so, ℓ ≤ k + 1.

Whence: ∣∣∣∣Γx
n

(
k + 1

n

)
− θxn

(
ℓ

mp(n)

)∣∣∣∣ =

=

∣∣∣∣∣∣∣∣∣∣∣

k+1∑
j=1

f(Sjx)

(2Axn log log n)1/2
−

ℓ∑
j=1

f(Sjx)

(2Axn log log n)1/2

∣∣∣∣∣∣∣∣∣∣∣
≤

≤ 1

(2Axn log log n)1/2

k+1∑
j=ℓ+1

|f(Sjx)| ≤

≤ M(k − ℓ+ 1)

(2Axn log log n)1/2
.

However, we also know that

k

n
≤ ℓ

mp(n)

⇒ k ≤ ℓ · n
mp(n)

⇒

⇒ k − ℓ+ 1 ≤ ℓ

mp(n)

(
n−mp(n)) + 1.

Thus: ∣∣∣∣Γx
n

(
k + 1

n

)
− θn

(
ℓ

mp(n)

)∣∣∣∣ ≤
≤ M

(2Axn log log n)1/2

(
ℓ

mp(n)

(
n−mp(n)

)
+ 1

)
.

Similarly, we obtain the following inequalities:∣∣∣∣Γx
n

(
k

n

)
− θxn

(
ℓ

mp(n)

)∣∣∣∣ ≤ M

(2Axn log log n)1/2

(
ℓ

mp(n)

(
n−mp(n)

)
+ 2

)
,
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∣∣∣∣Γx
n

(
k + 1

n

)
− θxn

(
ℓ+ 1

n

)∣∣∣∣ ≤
≤ M

(2Axn log log n)1/2

(
ℓ

mp(n)

(
n−mp(n)

)
+ 2

)
(2.67)

and finally, ∣∣∣∣Γx
n

(
k + 2

n

)
− θxn

(
ℓ+ 1

n

)∣∣∣∣ ≤
≤ M

(2Axn log log n)1/2

(
ℓ

mp(n)

(
n−mp(n)

)
+ 3

)
(2.68)

whence, under the assumption (i), we have:

max
ℓ

mp(n)
≤t≤ ℓ+1

mp(n)

∣∣Γx
n(t)− θxn(t)

∣∣ ≤
≤ M

(2Axn log log n)1/2

(
ℓ

mp(n)

(
n−mp(n)

)
+ 3

)
. (2.69)

Now suppose (iii) holds.

As before, one has the following:

max
ℓ

mp(n)
≤t≤ ℓ+1

mp(n)

∣∣Γx
n(t)− θxn(t)

∣∣ ≤
≤ max

(∣∣∣∣Γx
n

(
k

n

)
− θxn

(
ℓ

mp(n)

)∣∣∣∣ , ∣∣∣∣Γx
n

(
k + 1

n

)
− θxn

(
ℓ

mp(n)

)∣∣∣∣ ,
∣∣∣∣Γx

n

(
k + 1

n

)
− θxn

(
ℓ+ 1

mp(n)

)∣∣∣∣ , ∣∣∣∣Γx
n

(
k + 2

n

)
− θxn

(
ℓ

mp(n)

)∣∣∣∣ ,
∣∣∣∣Γx

n

(
k + 2

n

)
− θxn

(
ℓ+ 1

mp(n)

)∣∣∣∣ , ∣∣∣∣Γx
n

(
k + 3

n

)
− θxn

(
ℓ+ 1

n

)∣∣∣∣
)
. (2.70)

Exactly as before one can deduce that

max
ℓ

mp(n)
≤t≤ ℓ+1

mp(n)

∣∣Γx
n(t)− θxn(t)

∣∣ ≤
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≤ M

(2Axn log log n)1/2

(
ℓ

mp(n)

(
n−mp(n)

)
+ 4

)
.

Finally we have, putting everything together:

∥∥Γx
n − θxn

∥∥ ≤

≤ max
0≤ℓ≤mp(n)−1

M

(2Axn log log n)1/2

(
ℓ

mp(n)

(
n−mp(n)

)
+ 4

)
≤

≤ M

(2Axn log log n)1/2
(
n−mp(n) + 4

)
≤

≤ M

(2Axn log log n)1/2
(
mp(n)+1 −mp(n) + 4

)
≤

≤
3M(p(n)+1)

1/2

(2Axn log log n)1/2
for all n large enough. (2.71)

However, recall that
mp(n) ∼ n,

mp(n) ∼
2

3
p(n)3/2.

(2.72)

Hence it immediately follows that

p
1/2

(n) ∼ Cn1/3 =⇒

=⇒
3M(p(n)+1)

1/2

(2Axn log log n)1/2
→ 0 as n → ∞. (2.73)

Whence in order to show, P-almost surely, that (Γx
n)n∈N is relatively compact in

C[0, 1] and the set of its limit points agrees with the Strassen set, it will be sufficient

to show that (θxn)n∈N satisfies the required properties.

To this end we shall focus our attention on showing that∥∥ξ x
p(n) − θxn

∥∥→ 0 P-almost surely.
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Clearly, due to the very nature of (p(n))n∈N
(
ξ x
p(n)

)
n∈N inherits all the necessary

properties from (ξxn)n∈N with P-probability one.

As before, ∥∥θxn − ξ x
p(n)

∥∥ =

= max
0≤k≤p(n)−1

max
mk

mp(n)
≤t≤

mk+1
mp(n)

∣∣ξ x
p(n)(t)− θxn(t)

∣∣ .
Again it comes as no surprise that

max
mk

mp(n)
≤t≤

mk+1
mp(n)

∣∣ξ x
p(n)(t)− θxn(t)

∣∣ ≤
≤

(
max

mk≤ℓ≤mk+1

∣∣∣∣θxn( ℓ

mp(n)

)
− ξ x

p(n)

(
mk

mp(n)

)∣∣∣∣ ,
max

mk≤0≤mk+1

∣∣∣∣θxn( ℓ

mp(n)

)
− ξ x

p(n)

(
mk+1

mp(n)

)∣∣∣∣
)
.

Clearly the following holds:∣∣∣∣θxn( ℓ

mp(n)

)
− ξ x

p(n)

(
mk

mp(n)

)∣∣∣∣ ≤

≤

∣∣∣∣∣∣∣∣∣∣

mk∑
j=1

f(Sjx)

(2Axmp(n) log logmp(n))1/2

∣∣∣∣∣∣∣∣∣∣
·
∣∣∣∣1− (2Axmp(n) log logmp(n))

1/2

(2Axn log log n)1/2

∣∣∣∣+

+
M(ℓ−mk−1 + 1)

(2Axn log log n)1/2
. (2.74)

However,
(
ξ x
p(n)

)
is uniformly bounded ⇒

⇒ max
mk≤ℓ≤mk+1

∣∣∣∣θxn( ℓ

mp(n)

)
− ξ x

p(n)

(
mk

mp(n)

)∣∣∣∣ ≤
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≤ Mx ·
∣∣∣∣1− (2Axmp(n) log logmp(n))

1/2

(2Axn log log n)1/2

∣∣∣∣+
+

M

(2Axn log log n)1/2
(
⌊(k + 1)1/2⌋+ ⌊(k + 1)1/4⌋

)
for some Mx.

Using identical methods we deduce that

∥∥ξ x
p(n) − θxn

∥∥ ≤

≤ Mx ·
∣∣∣∣1− (2Axmp(n) log logmp(n))

1/2

(2Axn log log n)1/2

∣∣∣∣+
+

M

(2Axn log log n)1/2
max

0≤k≤p(n)−1

(
⌊(k + 1)1/2⌋+ ⌊(k + 1)1/4⌋

)
≤

≤ Mx ·
∣∣∣∣1− (2Axmp(n) log logmp(n))

1/2

(2Axn log log n)1/2

∣∣∣∣+
+

M

(2Axn log log n)1/2
2p(n)1/2. (2.75)

Using the p(n)-asymptotics we discussed before we deduce that

∥∥ξ x
p(n) − θxn

∥∥→ 0 as n → ∞; P-almost surely. (2.76)

Thus (θxn)n∈N is, P-almost surely, relatively compact in C[0, 1] and the set of its

limit points agrees with the Strassen set.

The proof is now complete.

As in Stassen’s work, see Theorems 13 and 14 in the Introduction of this very

chapter, we have several immediate consequences:

Corollary 1. Assume the Schatte model set-up. Then:
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(a) P-almost surely,

lim sup
n→∞

(2n log log n)−1/2

n∑
k=1

f(Skx) = A1/2
x (2.77)

for almost every x.

(b) Let Tk =
k∑

j=1

f(Sjx) and a ≥ 1 be some real number.

Then, P-almost surely,

lim sup
n→∞

n−1−a/2(2 log log n)−a/2

n∑
k=1

|Tk|a =

=

1∫
0

dt

(1− ta)1/2
· aa/2

2(a+ 2)
a
2
−1

Aa/2
x (2.78)

for almost every x.

(c) Let Tk be as in (b) and let #{−} stand for the number of elements of the set

{−}. Then, P-almost surely

lim sup
n→∞

1

n
#
{
k ≤ n : (2k log log k)−1/2Tk ≥ cA1/2

x

}
=

= 1− exp

(
−4

(
1

c2
− 1

))
for almost every x;

where c is any number in [0, 1]. (2.79)

Let us now state and prove our next result. It is a version of the Weighted Law

of the Iterated Logarithm.
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Theorem 26 (Rašeta). Let us inherit the entire set-up and notation from our

previous result, namely Theorem 25.

Let (an)n∈N be a sequence of reals satisfying the following conditions:

(i) |an| ≥ nε where ε satisfies: (1 + 2ε)

(
1

2
− γ

)
≥ 1

2
.

(ii) max
1≤k≤n

|ak| = o

(( n∑
k=1

a2k

)γ
)
; γ ∈ (0, 1/2).

Define Ex
n = Var

( n∑
k=1

akf(Skx)

)
and assume there exists a positive function

of x, called θ(x); with

Ex
n ≥ θ(x)

n∑
k=1

a2k for all x and all n ∈ N.

Then,

P-almost surely

lim sup
n→∞

n∑
k=1

akf(Skx)

(2Ex
n log logE

x
n)

1/2
= 1 (2.80)

for almost every x.

Proof. Our philosophy of proof has not changed much; namely the idea is as follows:

(a) introduce long and short blocks;

(b) use the long blocks to get the asymptotics on n;

(c) force this asymptotics in the original problem by (pardon my French) per-

forming brutal murder of the short block contribution, whence the Weighted

Law of the Iterated Logarithm shall follow from its long block counterpart.
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Let α, β be two positive real numbers with α > β.

Let the kth long block have length ⌊kα⌋ and the kth short block length ⌊kβ⌋.

Analogously to our previous proof we define

mn =
n∑

k=1

(
⌊kα⌋+ ⌊kβ⌋

)
. (2.81)

We will establish several conditions which, if met simultaneously, would be

enough to complete the proof.

In order to repeat essentially identical computations we shall group these in one

place and demonstrate that the assumptions (i) and (ii) from the very statement

of our result provide a reasonable umbrella for our sufficient conditions.

This may sound a bit orthodox; but I believe it is more honest than working

backwards trying to impress the reader with observations that seem to miraculously

come out of “thin air”.

Our first idea is to establish the result along a subsequence (mn)n∈N and to find

a condition that shall ensure this will complete the proof.

As before, define implicitly the sequence (p(n))n∈N of integers using the following

inequalities:

mp(n) ≤ n < mp(n)+1; n ∈ N. (2.82)

Suppose now that our result has been established along the subsequence (mn)n∈N.

Nature of the sequence (p(n))n∈N is clearly such that then the result would have

been established along (mp(n))n∈N too.
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But then we have:

lim
n→∞

n∑
k=1

akf(Skx)

(2Ex
n log logE

x
n)

1/2
=

= lim
n→∞

mp(n)∑
k=1

akf(Skx) +
n∑

k=mp(n)+1

akf(Skx)

(2Enx log logEnx)1/2
=

= lim
n→∞


(
2E x

mp(n)
log logE x

mp(n)

2Ex
n log logE

x
n

)1/2

·

mp(n)∑
k=1

akf(Skx)

(2E x
mp(n)

log logE x
mp(n)

)1/2
+

+

n∑
k=mp(n)+1

akf(Skx)

(2Ex
n log logE

x
n)

1/2


, (2.83)

whence it shall be sufficient to establish the following two relations:

E x
mp(n)

Ex
n

→ 1 as n → ∞

and

1

(2Ex
n log logE

x
n)

1/2

n∑
k=mp(n)+1

akf(Skx) → 0.

(2.84)

We look at the second condition first due to its simplicity:

∣∣∣∣∣∣ 1

(2Ex
n log logE

x
n)

1/2

n∑
k=mp(n)+1

akf(Skx)

∣∣∣∣∣∣ ≤
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≤
M · max

1≤k≤n
|ak|(n−mp(n))

(2Ex
n log logE

x
n)

1/2
≤

(M is as before a bound on f)

≤
2M max

1≤k≤n
|ak|(p(n) + 1)α

(2Ex
n log logE

x
n)

1/2
. (2.85)

We shall summarize and enumerate this condition by:

(2)
p(n)α max

1≤k≤n
|ak|

(2Ex
n log logE

x
n)

1/2
→ 0. (2.86)

Let us now return to the first one.

Observe that

Ex
n =

n∑
k=1

a2kEf 2(Skx) +
∑
k ̸=ℓ

k,ℓ∈{1,...,n}

akaℓEf(Sℓx)−

−
( n∑

k=1

akEf(Skx)

)2

,

and so trivially

E x
mp(n)

=

mp(n)∑
k=1

a2kEf 2(Skx)+

+
∑
k ̸=ℓ

k,ℓ∈{1,...,mp(n)}

akaℓEf(Skx)f(Sℓx)−

(mp(n)∑
k=1

akEf(Skx)

)2

.

Our job is identical to showing that

Ex
n − E x

mp(n)

Ex
n

→ 0 as n → ∞, i.e. (2.87)
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1

Ex
n

{
n∑

k=mp(n)+1

a2kEf 2(Skx) +
∑
k ̸=ℓ

k,ℓ∈{mp(n)+1,...,n}

akaℓEf(Skx)f(Sℓx)−

−
( n∑

k=1

akEf(Skx)

)2

+

(mp(n)∑
k=1

akEf(Skx)

)2
}
.

Firstly:

n∑
k=mp(n)+1

a2kEf 2(Skx) ≤ M2 max
1≤k≤n

a2k(n−mp(n))

≤ 2M2 max
1≤k≤n

a2k(p(n) + 1)α.

Bounding cross terms is somewhat more delicate:∑
k ̸=ℓ

k,ℓ∈{mp(n)+1,...,n}

akaℓEf(Skx)f(Sℓx) =

= 2

n−mp(n)∑
ρ=1

n−ρ∑
k=mp(n)+1

akak+ρEf(Skx)f(Sk+ρx) =

= 2

n−mp(n)∑
ρ=1

n−ρ∑
k=mp(n)+1

akak+ρEf(Skx)f(Skx+ T ρ
k x),

(
T ρ
k = Xk+1 + · · ·+Xk+ρ

)
=

= 2

n−mp(n)∑
ρ=1

n−g∑
k=mp(n)+1

akak+ρ

[
Ef(Skx)f(Skx+ T ρ

k x)−

− Ef(Skx)f
(
Skx+ F{T ρ

k x}
(
{T ρ

k x}
))]

+

+ 2

n−mp(n)∑
ρ=1

n−ρ∑
k=mp(n)+1

Ef(Skx)f
(
Skx+ F{T ρ

k x}({T
ρ
k x})

)
· akak+ρ.
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However, by Schatte-type arguments we deduce easily that the last sum van-

ishes. Whence the upper bound on the cross terms is ∼ max
1≤k≤n

a2k · p(n)α. Thus our

first condition becomes

max
1≤k≤n

a2k · p(n)α

Ex
n

→ 0 as n → ∞. (2.88)

We now focus on establishing sufficient conditions for the Weighted Law of the

Iterated Logarithm along the subsequence (mn)n∈N.

Observe that

mn∑
k=1

akf(Skx) =
n∑

k=1

mk−1+⌊kα⌋∑
j=mk−1+1

ajf(Sjx−∆ x
k−1)+

+
n∑

k=1

mk−1+⌊kα⌋∑
j=mk−1+1

aj(f(Sjx)− f
(
Sjx−∆ x

k−1

)
+

+
n∑

k=1

mk∑
j=mk−1+⌊kα⌋+1

ajf
(
Sjx− Π x

k−1

)
+

+
n∑

k=1

mk∑
j=mk−1+⌊kα⌋+1

aj
(
f(Sjx)− f(Sjx− Π x

k−1)
)
,

where the two sequences of random variables (∆x
k)k∈N and (Πx

k)k∈N have an identical

meaning and purpose as before.

As pointed out before, the idea is that the only contribution should come from

the long blocks, i.e. that the asymptotics is to be directly inherited from long blocks.

The fundamental difference (and the unfortunate truth) here is that the long

block asymptotics is much more vague than mnAx; where Ax is our previously

encountered function. Simply, akak+ℓ is now a quantity that does not depend on

ℓ only and whence the beautiful stationarity-type argument breaks down. This in
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turn forced us to put super-bold bounds on the short blocks (versus obtaining the

result along short blocks too, and disposing of it by using m̂n/mn → 0 as n → ∞).

Lifting this ban shall be a part of our future work; for the time being we must

demand the following three conditions:

1(
E x

mn
log logE x

mn

)1/2 n∑
k=1

mk−1+⌊kα⌋∑
j=mk−1+1

aj
(
f(Sjx)− f(Sjx−∆ x

k−1)
)
→ 0,

1(
E x

mn
log logE x

mn

)1/2 n∑
k=1

mk∑
j=mk−1+⌊kα⌋+1

aj
(
f(Sjx)− f(Sjx− Π x

k−1)
)
→ 0,

1(
E x

mn
log logE x

mn

)1/2 n∑
k=1

mk∑
j=mk−1+⌊kα⌋+1

ajf(Sjx− Π x
k−1) → 0. (2.89)

Again arguing as what can be called “usual” by now one can obtain the following

conditions that ensure the validity of the relations listed above:

max
1≤k≤mn

|ak|(
2E x

mn
log logE x

mn

)1/2 → 0 as n → ∞; (2.90)

n1+β max
1≤k≤mn

|ak|(
E x

mn
log logE x

mn

)1/2 → 0 as n → ∞. (2.91)

For brevity, we now define:

Bx
n := Var

( n∑
k=1

mk−1+⌊kα⌋∑
j=mk−1+1

ajf(Sjx−∆ x
k−1)

)

and

Dx
n := Var

( n∑
k=1

mk∑
j=mk−1+⌊kα⌋+1

ajf(Sjx− Π x
k−1)

)
.

(2.92)
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Now, we want to get the Weighted Law of the Iterated Logarithm for long blocks.

Using the famous result of Kolmogorov (see Theorem 11) we find the following

two conditions:
Bx

n → ∞ as n → ∞,

max
1≤k≤mn

|ak| · nα = o

((
Bx

n

log logBx
n

)1/2
)
.

(2.93)

Finally we want the block asymptotics to be the right asymptotics; whence we

must demand:

Bx
n

E x
mn

→ 1 as n → ∞. (2.94)

This last condition turns out to be best dealt with upon a further split into the

following two conditions:

Bx
n +Dx

n − E x
mn

E x
mn

→ 0 and
Dx

n

E x
mn

→ 0 as n → ∞.

Reader has been overexposed to the Schatte-machinery already, and must trust

us that, upon some heavy algebra, one can obtain a more compact list of conditions

that is easier to put under an umbrella:

(i) (1 + 2ε)

(
1

2
− γ

)
> α/(α + 1),

(ii) (1 + α)(1 + 2ε)

(
1

2
− γ

)
≥ 1 + β,

(iii) (1 + α)(1 + 2ε)

(
1

2
− γ − δ

)
> α

(2.95)

for some δ > 0; as small as you may please. But then it is immediately clear that

it shall suffice to have

(1 + 2ε)

(
1

2
− γ

)
≥ 1/2 // (2.96)
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The interplay between ε and γ is a rather interesting one; values of γ close to

1/2 correspond on strong assumptions on ε while small values of γ yield mild ε-

assumption. Making this condition more Kolmogorovian remains a challenge.



Chapter 3

The Schatte Model as a Tool in
Analysis and Number Theory

3.1 Introduction

Up to now we have been locked within the fortress of Probability; one could think

of previous results in the context of limit theorems for dependent random variables,

a certain form of “l’art pour l’art”, which is a 19th slogan for “art for art’s sake”.

However, it is now time for us to use the Schatte model to get insight into other

fields of mathematics, where deterministic methods either fail altogether or yield,

however complicated, not very general results to say the least.

We shall now illustrate our point with several examples. The following is a very

famous result with a proof that takes almost superhumane efforts to comprehend.

3.2 Schatte’s Structure in Analysis

Theorem 27 (Carleson, 1966). Let (ck)k∈N be a sequence of reals. Then the series
∞∑
k=1

ck sin 2πkx converges almost everywhere if and only if
∑
k∈N

c2k < ∞.

90
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Now, under mild conditions on f , suppose we are to ask a similar question,

namely:

Suppose
∞∑
k=1

c2k < ∞; does it follow that
∞∑
k=1

ckf(nkx) converges almost every-

where, where (nk)k∈N is some subsequence of N?

For non-random (nk)k∈N this is generally false (for more details see Nikishin [41]).

Finding the precise almost everywhere convergence criteria for
∞∑
k=1

ckf(nkx) and

for the existence of lim
N→∞

1

N

N∑
k=1

f(nkx) seems to be mission impossible in analysis

for almost 100 years since the problem was first raised by Khinchin. For details see

[34]. To illustrate how deep in the dark analysis is concerning this problem let us

simply mention that the problem is unsolved even for nk = k!

Now let us forget about nk’s and let us return to the Schatte’s Sk’s. The methods

of ours, unfortunately, restrict us to the domain of those random frequencies that

are not accumulating point-asses; i.e. we are restricted to the domain of absolute

continuity. Nevertheless, think of Sk’s as a “simulation” of the integral nk’s. As

we know, almost all increasing sequences of integers are of linear growth, moreover

almost all of them satisfy
nk

k
→ 2 as k → ∞.

This essential feature can easily be realised within our framework, since the

Sk’s can trivially be chosen in a way to have suchlike asymptotics. Thus, although

strictly formally speaking, we do not really solve the problem in hand, the method

shall surely provide us with a pretty good idea of what is going on. These proba-

bilistic arguments shall therefore provide us with our very own “quantum of solace”,

due to failure of deterministic methods.
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To illustrate the power of randomness let us state the following result:

Theorem 28 (Berkes and Weber, 2009). Assume that the underlying random vari-

ables (Xn)n∈N are those of Schatte, defined on some probability space (Ω,A,P).

Moreover, let f satisfy all the conditions imposed in the previous chapter.

Then, P-almost surely

∞∑
k=1

ckf(Skx) converges for almost every x

provided that
∑
k∈N

c2k < ∞.

It is clear now that dropping determinism on the frequency puts Carleson’s

result on steroids, mild randomisation extends his theory to a vast class of functions!

Before we are ready to finish off our story we must remind the reader of some

of the underlying concepts.

3.3 Classical Results on Discrepancies

Definition 1. A bounded sequence (sn)n∈N of real numbers is said to be equidis-

tributed on an interval [a, b] if for any subinterval [c, d] of [a, b] we have

lim
N→∞

∣∣{s1, . . . , sn} ∩ [c, d]
∣∣

n
→ d− c

b− a
(3.1)

(here the notation
∣∣{s1, . . . , sn}∩ [c, d]

∣∣ denotes the number of elements out of first

n elements of the sequence that are between c and d).

Definition 2. We define discrepancy D(N) of a sequence {S1, S2, . . . } with respect

to the interval [a, b] as

D(N) = sup
a≤c≤d≤b

∣∣∣∣∣
∣∣{S1, . . . , SN} ∩ [c, d]

∣∣
N

− d− c

b− a

∣∣∣∣∣ (3.2)
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It is clear that the sequence is equidistributed if the discrepancy D(N) → 0 as

N → ∞.

Definition 3. Sequence (an)n∈N is said to be equidistributed mod 1 or uniformly

equidistributed mod 1 if ({an})n∈N is equidistributed w.r.t. the interval [0, 1].

(Here and elsewhere {x} shall still stand for the fractional part of a real num-

ber x.)

Definition 4. Given a point set p = (xn)
N−1
n=0 in the s-dimensional unit cube

I = [0, 1)s; the star discrepancy is defined as

DN
∗(P ) ≡ sup

J∈Y ∗
D(J, P )

where the local discrepancy is defined by

D(J, P ) =

∣∣∣∣number of xn ∈ J

N
− Vol(J)

∣∣∣∣ ,
where Vol(J) is the content of J , and Y ∗ is the class of s-dimensional subintervals

J of I of the form

J ≡
s∏

i=1

[0, ui) 0 ≤ ui ≤ 1 for 1 ≤ i ≤ s. (3.3)

Definition 5. Let d, n ∈ N. For 0 < p < ∞ and the point set {t1, . . . , tn} ⊆ [0, 1)d

we define the Lp-star discrepancy by the Lp-norm of the discrepancy function;

namely:

disc∗p(t1, . . . , tn) =( ∫
[0,1]d

∣∣∣∣∣λd([0, x])− 1

n

n∑
k=1

1[0,x](ti)

∣∣∣∣∣
p

dx

)1/p
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where λd([0, x]) is the d-dimensional Lebesgue measure of the box:

[0, x] ≡
{
y ∈ [0, 1]d : 0 ≤ yi ≤ xi : i = 1, . . . , d

}
. (3.4)

We will now explore some classical and some more recent results in this field:

Theorem 29 (Weyl, 1916). Let α be an irrational number. Then the sequence

({nα})n∈N is uniformly distributed mod 1, where {x} stands for the fractional part

of a real number x. Moreover; if p is a polynomial with at least 1 irrational co-

efficient (other than the constant term), then the sequence (p(n))n∈N is uniformly

distributed mod 1.

This is another result of Weyl’s; for details see [37].

Furthermore, (log n)n∈N is not uniformly distributed mod 1. For details, see,

yet again, [37].

The following is a famous result of Analytic Number Theory.

Theorem 30 (Vinogradov, 1935). Let α be an irrational number. Then (pα)p∈P

(P ≡ set of primes) is equidistributed mod 1.

We now move to so-called “metric theorems”, namely the results that describe

the behaviour of some parametrized sequence for almost all values of suchlike pa-

rameter.

We start with the following result:

Theorem 31 (Bernstein, 1911). For any sequence of distinct integers (bn)n∈N; the

sequence (bnα)n∈N is equidistributed mod 1 for almost all α.
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More parametrisations have been studied, for example let us mention the fol-

lowing result:

Theorem 32 (Koksma, 1937). The sequence (αn)n∈N is equidistributed mod 1 for

almost all values of α > 1.

It is interesting to point out that whether (en)n∈N or (πn)n∈N are equidistributed

mod 1 is still unknown!

However, it is known that the sequence (αn)n∈N is not equidistributed mod 1

if α is a so-called PV number. A PV (Pisot–Vijayaraghavan) number is a real

algebraic number, strictly larger than 1 that has its all Galois conjugates bounded

(again strictly) by 1 in absolute value.

We shall now move on to some more contemporary results for which our results

will turn out to be either a logical continuation of, or they are somewhat similar

in nature.

We start with the following result:

Theorem 33 (Philipp, 1975). Let (nk)k∈N be a lacunary sequence of integers, that

is ∃q > 1 with

nk+1/nk > q for all k ∈ N.

Let DN denote the discrepancy of the sequence (nkx)k∈N. Then, for almost

every x,

32−1/2 ≤ lim sup
N→∞

NDN(x)√
N log logN

≤ C (3.5)

where

C ≤ 166 + 664(q1/2 − 1)−1. (3.6)
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Philipp conjectured that

C2 ≤ 2 sup
I

lim sup
N→∞

N−1

1∫
0

(∑
k≤N

1I
(
{nkx}

)
− |I|

)2

dx, (3.7)

where the supremum is taken over all intervals of the form I = [α, β); 0 ≤ α <

β ≤ 1; 1I will stand for the indicator of I, while |I| will stand for the length of I.

The bound on C2 suggested by the RHS of (3.7) did not come out of thin air,

it is an educated guess Philipp made based on his previous work. Namely in his

paper [43] Philipp computed the value of the corresponding lim sup for ηk = 2k.

The value turns out to be constant almost everywhere that equals the RHS of (3.7);

where one should put 2k for ηk. However, many years later, the question of value

of the lim sup is still open; except for some special classes of sequences ηk.

The following result was the first one in this direction:

Theorem 34 (Fukuyama, 2008). Let Σθ be the lim sup in the case ηk = θk. Then

Σθ =



1/2 if θc is irrational for all c ∈ N,√
42/2 if θ = 2,√
(θ + 1)θ(θ − 2)

2
√
(θ − 1)3

if θ ≥ 4 is an even integer,

√
θ + 1

2
√
θ − 1

if θ ≥ 3 is an odd integer.

(3.8)

Although rather complicated, the lim sup in the above is still a constant.

The following result is the first one with a non-constant almost everywhere

lim sup in this theory:
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Theorem 35 (Aistleitner, 2010). Define a lacunary sequence (ηk)k∈N as follows:

ηk =



2k
2

if k ≡ 1 (mod 4),

2(k−1)2+1 − 1 if k ≡ 2 (mod 4),

2k
2+k if k ≡ 3 (mod 4),

2(k−1)2+(k−1)+1 − 2 if k ≡ 0 (mod 4).

(3.9)

Then

lim sup
N→∞

NDN(nkx)√
2N log logN

= Ψ(x)

(
DN is the discrepancy of (ηkx)k∈N

)
; where

Ψ(x) =



3/4
√
2 for 0 ≤ x ≤ 3/8,√

2(1− x)x− x/2 for 3/8 ≤ x ≤ 7/16,√
49/128− x/4 for 7/16 ≤ x ≤ 1/2,

Ψ(1− x) for 1/2 < x ≤ 1.

(3.10)

For the picture of Ψ(x) see Figure 3.1

Last but not the least result we shall mention here is as follows:

Theorem 36 (Fukuyama and Miyamoto, 2011). Let (ηk)k∈N be a sequence of in-

tegers.

We first introduce the following quantities:

∑
{ηkx} = lim sup

N→∞

NDN{ηkx}√
2N log logN

(3.11)

and ∑∗
{ηkx} = lim sup

N→∞

NDN
∗{ηkx}√

2N log logN
(3.12)
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Figure 3.1: graph of Ψ(x)

where DN{ηkx} and D ∗
N {ηkx} stand for discrepancy and star discrepancy, respec-

tively, of the sequence {ηkx}.

Split R into two parts; namely:

Those θ ∈ R with θr /∈ Q for any r ∈ N (3.13)

and those θ ∈ R such that there exist p, q and r ∈ N with

r = min
{
n ∈ N : θn ∈ Q

}
; grd(p, q) = 1;

θ = r
√

p/q.
(3.14)
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If (3.13) holds, define Σθ = 1/2. If (3.14) holds, define Σθ as follows:

Σθ =



√
(pq + 1)(pq − 1) /2 p, q odd,√
(p+ 1)p(p− 2)/(p− 1)3 /2 p ≥ 4, peven, q = 1,√
42/9 p = 2, q = 1,√
22/9 p = 5, q = 2.

(3.15)

Then, for almost every x one has the following:

Σ
{
(θk − 1)x

}
= Σθ, (3.16)

Σ∗{(θk − 1)x
}
= Σ∗

θ(x), (3.17)

where Σ∗
θ(x) is a continuous function on the torus.

Moreover, if (3.13) holds, then

Σ∗
θ(x) = Σθ(x) = 1/2. (3.18)

Furthermore, if (3.18) holds and either one of these three conditions holds:

(i) p and q are both odd,

(ii) q = 1,

(iii) p = 5, q = 2,

then Σ∗
θ(x) is not constant and

Σ∗
θ(x) < Σθ except for finitely many x. (3.19)
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Figure 3.2: lim sup function for nk = 2k − 1.

For the graph of Σ∗
2(x) see 3.2.

This indicates irregular behaviour of Σ∗
2(x) when θ is a power root of integers.

Before we move on to our results we have some more set-up to do and one more

directly relevant result to mention.

3.4 Reproducing Kernel Hilbert Spaces and the

Result of Finkelstein

Definition 6. Let X be an arbitrary set and H a Hilbert space of complex valued

functions on X. We say that H is a Reproducing Kernel Hilbert Space if the linear

map Lx : f → f(x) from H to the complex numbers is continuous for all x.

Now, by the Riesz representation theorem this implies that for all x in X there
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exists a unique element Kx of H with the property that

f(x) = Lx(f) = ⟨f, kx⟩ for all f ∈ H. (3.20)

The function kx is called the point-evaluation function at the point x. Since H

is a space of functions, kx is itself a function that has X as its domain, and whence

can be written by kx(y). The family of functions kx(y) may be embedded into a

single function K : X × X → C be defining

K(x, y) := Kx(y). (3.21)

This function is known as the reproducing kernel of the Hilbert space H and its

uniqueness is ensured via Riesz representation theorem.

For many further details on the reproducing kernel Hilbert spaces see Nachman

[40], Berliner and Thomas [8] and Oodaira [42].

We shall now state the following result which will turn out to be a special case

of that of our own:

Theorem 37 (Finkelstein, 1971). Let X1, X2, . . . be a sequence of independent

identically distributed random variables on some probability space (Ω,A,P). More-

over, let X1 be uniformly distributed on [0, 1]. For fixed ω ∈ Ω and x ∈ [0, 1] define

Fn(x, ω) to be the empirical distribution of the Xi at stage n; that is nFn(x, ω) is

the number of X1(ω), X2(ω), . . . , Xn(ω) which are smaller than x.

Define

Gn(x, ω) :=
nFn(x, ω)− nF (x)

(2n log log n)1/2
(3.22)

where F (x) stands for the distribution function of X1.
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Now define K to be the set of all elements f of C[0, 1] fulfilling the following

three conditions:

(i) f(0) = f(1) = 0,

(ii) f is absolutely continuous with respect to Lebesgue measure,

(iii)

1∫
0

(ḟ(x))2dx ≤ 1,

where ḟ stands for the derivative of f with respect to Lebesgue measure. Then,

there exists Ω0 ∈ A; P(Ω0) = 1 such that for all ω ∈ Ω0, the sequence

(
Gn(ω, ·)

)
n≥3

is relatively compact in C[0, 1] and the set of its limit points is K.

3.5 Results

We now, without further delay, state our first result.

Theorem 38 (Berkes and Rašeta). Let (Xn)n∈N be a sequence of independent

and identically distributed random variables on some probability space (Ω,A,P).

Furthermore, let X1 be bounded with bounded density. Then there exists a set G ⊆ R

with Lebesgue measure 0 such that, P-almost surely, the sequence of functions

αN(t, x) =

√
N

2 log log n

(
FN(t, x)− t

)
0 ≤ t ≤ 1, N = 1, 2, . . . (3.23)

is relatively compact in the Skorohod space D[0, 1] for all fixed x /∈ G and its class

of limit functions is identical with the unit ball BΓ of the reproducing kernel Hilbert
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space determined by the covariance function

Γ(s, s′) = Egs(U)gs′(U) +
∞∑
ϱ=1

Egs(U)gs′(U + Sϱx)+

+
∞∑
ϱ=1

Egs′(U)gs(U + Sϱx). (3.24)

Here, U is the uniformly distributed random variable independent of the sequence

(Xn)n∈N; gs = 1(0,s) − s is the centered indicator function of the interval (0, s) and

FN(t, x) =
1

N

N∑
k=1

1(−∞,x)(Skx) (3.25)

will stand for the empirical distribution of the sample

{S1x}, {S2x}, . . . , {SNx} (Sn = X1 + · · ·+Xn)

and 1(a,b) will be the indicator function of the interval (a, b), extended with period 1.

Proof. Without loss of generality we can assume x = 1. We follow the classical

argument of Finkelstein [23], proving first a finite-dimensional Law of the Iterated

Logarithm for the values of the function αN(t, 1) in (3.23) restricted to a finite

subset {t1, . . . , tr} of [0, 1] and then to show the relative compactness of αN in the

Skorohod topology.

Let 0 = t0 < t1 < · · · < tr = 1 and put

Yk

(
f(0,t1)(Sk), f(t1,t2)(Sk), . . . , f(tr−1,tr)(Sk)

)
where f(a, b) = 1(a,b) − (b− a).

We will start with the following lemma.
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Lemma 1*. With probability 1 (w.r.t. P), the class of limit points of the sequence{
(2N log logN)−1/2

N∑
k=1

Yk, N = 1, 2, . . .

}
in Rr+1 is the ellipsoid{

(x1, . . . , xr+1) ·
r+1∑
i,j=1

Γ(ti, tj)xixj ≤ 1

}
.

This lemma can be proved by a blocking argument very similar to that of the

proof of Theorem 25, except that instead of the result of Major [39] we use the

coupling inequality of Berthet and Mason, see [10], page 155.

Put Ψ(n) = sup
0≤t≤1

∣∣P(Sn ≤ t) − t
∣∣ and note that by Theorem 1 of Schatte [54]

we have

Ψ(n) ≤ Ce−λn, n ≥ 1, (3.26)

for some constants C, λ > 0.

Lemma 2*. Let f = 1(a,b) − (b− a) for some 0 ≤ a < b ≤ 1. Then

E
( M+N∑

k=M+1

f(Sk)

)2

≤ C∥f∥N (3.27)

for any M ≥ 0, N ≥ 1 where ∥f∥ =

( 1∫
0

f 2(x)dx

)1/2

and C is an absolute

constant. The conclusion remains valid if f is a Lipschitz function with

1∫
0

f(x)dx = 0.

Proof. In what follows, C denotes positive constants, possibly different at different

places. We first show that

∣∣Ef(Sk)f(Sℓ)
∣∣ ≤ CΨ(ℓ− k)∥f∥ (k < ℓ). (3.28)



3. The Schatte Model as a Tool in Analysis and Number Theory 105

Indeed, by Schatte [53] there exists a random variable ∆ with |∆| ≤ Ψ(ℓ− k) such

that Sℓ −∆ is a uniform random variable independent of Sk. Hence

Ef(Sℓ −∆) =

1∫
0

f(x)dx = 0

and thus

Ef(Sk)f(Sℓ −∆) = Ef(Sk)Ef(Sℓ −∆) = 0. (3.29)

On the other hand,

∣∣Ef(Sk)f(Sℓ)− Ef(Sk)f(Sℓ −∆)
∣∣ ≤

≤ E
(
|f(Sk)| |f(Sℓ)− f(Sℓ −∆)|

)
≤

≤
(
Ef 2(Sk)

)1/2(E|f(Sℓ)− f(Sℓ −∆)|2
)1/2

. (3.30)

Since X1 has a bounded density, by Theorem 1 of Schatte [54] the density φn of

Sn exists for all n ≥ 1 and satisfies φn → 1 uniformly on [0, 1]. Thus

P{Sn ∈ I} ≤ C|I| (n ≥ 1) (3.31)

for some constant C > 0; and whence we get

Ef 2(Sk) ≤ C∥f∥2. (3.32)

On the other hand,

E
∣∣f(Sℓ)− f(Sℓ −∆)

∣∣2 =
= E

∣∣1(a,b)(Sℓ)− 1(a,b)(Sℓ −∆)
∣∣2. (3.33)
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The expression on the right-hand side differs from 0 only if one of Sℓ or Sℓ −∆

is inside (a, b) and the other is outside the interval. In this case Sℓ is closer to the

boundary of (a, b) than |∆|, and since |∆| ≤ Ψ(ℓ− k); the probability of this event

is at most CΨ(ℓ− k) by (3.31). Thus (3.33) yields

E
∣∣f(Sℓ)− f(Sℓ −∆)

∣∣2 ≤ CΨ(ℓ− k) (3.34)

which, together with (3.30) to (3.33), gives

∣∣E(f(Sk)f(Sℓ))− Ef(Sk)f(Sℓ −∆)
∣∣ ≤ CΨ(ℓ− k).

Thus using (3.29) we get (3.28).

Now by (3.28) ∣∣∣∣ ∑
M+1≤k<ℓ≤M+N

Ef(Sk)f(Sℓ)

∣∣∣∣ ≤
≤ CN∥f∥

∑
ℓ≥1

ℓ−1 ≤ CN∥f∥

which, together with (3.32) completes the proof of Lemma 2*.

For Lipschitz functions f the argument is similar.

Lemma 3*. Let f = 1(a,b)− (b− a) for some 0 ≤ a < b ≤ 1. Then for any M ≥ 0,

N ≥ 1, real t ≥ 1 and ∥f∥ ≥ N−1/4 we have

P

{∣∣∣∣ M+N∑
k=M+1

f(Sk)

∣∣∣∣ ≥ t∥f∥1/4(N log logN)1/2

}
≤

≤ exp
(
−Ct∥f∥−1/2 log log n

)
+ t−2N−1. (3.35)

Proof. We divide the interval [M + 1,M + N ] into subintervals I1, . . . , IL; with

L ∼ N19/20; where each interval Iu contains ∼ N1/20 terms.
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We set
M+N∑

K=M+1

f(Sk) = η1 + · · ·+ ηL

where

ηp =
∑
k∈Ip

f(Sk).

We deal with the sums
∑

η2j and
∑

η2j+1 separately. Since there is a separation

∼ N1/20 between the even block sums η2j, we can apply Lemma 4.3 of [6] to get

η2j = η∗2j + η∗∗2j

where
η∗2j =

∑
k∈I2j

f(Sk −∆j),

η∗∗2j =
∑
k∈I2j

(
f(Sk)− f(Sk −∆j)

) (3.36)

where the ∆j are the random variables with

|∆j| ≤ Ψ(N1/20) ≤ N−10

and the random variables η∗2j, j = 1, 2, . . . are independent. Relation (3.34) in the

proof of Lemma 2* shows that the L2 norm of each summand in η∗∗2j is at most

CΨ(N1/20) ≤ CN−10 and thus for ∥f∥ ≥ N−1/4 we have

∥η∗∗2j∥ ≤ CN−9 ≤ C∥f∥N−8. (3.37)

Thus ∥∥∥∑ η∗∗2j

∥∥∥ ≤ C∥f∥N−7

and therefore by Markov inequality

P
(∣∣∣∑ η∗∗2j

∣∣∣ ≥ t∥f∥1/4(N log logN)1/2
)

≤
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≤ Ct−2∥f∥−1/2(N log logN)−1∥f∥2N−1/14 ≤

≤ t2N−1. (3.38)

Now let |λ| = O(N−1/16); then

|λη∗2j| ≤ C|λ|N1/20 ≤ 1/2 for N ≥ N0

and thus using ex ≤ 2 + x+ x2 for ∥x∥ ≤ 1/2 we get, using Eη∗2j = 0;

E

(
exp

(
λ
∑
j

η∗2j

))
=
∏
j

E
(
eλη

∗
ij
)
≤

≤
∏
j

E
(
1 + λη∗2j + λ2η∗2j

2
)
=

=
∏
j

(
1 + λ2Eη∗2j

2
)
≤ exp

(
λ2
∑
j

Eη∗2j
2

)
. (3.39)

By Lemma 2*

∥η2j∥ ≤ C∥f∥1/2N1/40

which, together with (3.37) and the Minkowski’s inequality, implies

∥∥η∗2j∥∥ ≤ C∥f∥1/2N1/40

and thus the last expression in (3.39) cannot exceed

exp

(
λ2C∥f∥

∑
j

N1/20

)
≤ exp

(
λ2C∥f∥N

)
.

Thus choosing

λ = (log logN/N)1/2∥f∥−3/4
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(note that by ∥f∥ ≥ N−1/4 we have |λ| = O(N−1/6)) and thus using Markov’s

inequality we get

P

{∣∣∣∣∑
j

η∗2j

∣∣∣∣ ≥ t∥f∥1/4(N log logN)1/2

}
≤

≤ exp
{
−λt∥f∥1/4(N log logN)1/2 + λ2C∥f∥N

}
=

= exp
(
−∥f∥−1/2t log logN + C∥f∥−1/2 log logN

)
≤

≤ exp
(
−C ′∥f∥−1/2t log logN

)
(3.40)

completing the proof of Lemma 3*.

Now, with Lemma 3* in hand, the relative compactness of the sequence αn in

the D[0, 1] topology can be proved by a dyadic chaining argument, similar to the

proof of Proposition 3.3.2 in Philipp [45].

Now observe that if X1 is uniformly distributed on (0, 1), the {Skx} are inde-

pendent uniformly distributed random variables (Schatte-type arguments).

Moreover, Γ(s, s′) reduces to the covariance function s(1 − s′)(s < s′) of the

Brownian bridge. In this case the limit set in Theorem 38 reduces to the set

K =

{
y(t) : y is absolutely continuous on [0, 1],

y(0) = y(1) = 0;

1∫
0

ẏ2(t)dt ≤ 1

}

which is the result of Finkelstein, see Theorem 37 and [23].

Furthermore, we point out that

sup
0≤t≤1

∣∣FN(t, x)− t
∣∣
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is the star discrepancy D∗
N({ηkx}) of the sequence {S, x}, . . . , {SNx}, while

1∫
0

∣∣FN(t, x)− t
∣∣pdt

is the Lp discrepancy D
(p)
N

(
{ηkx}

)
of the same sequence.

From these two observations and our Theorem 38 we get the following two

results:

Corollary 1*. Assume all the notation used previously. Then:

lim sup
N→∞

√
N

2 log logN
D∗

N

(
{ηkx}

)
= sup

y∈BΓ

∥y∥∞ (3.41)

P-almost surely for almost every x.

Corollary 2*. Assume all the notation used previously. Then:

lim sup
N→∞

√
N

2 log logN
D

(p)
N

(
{ηkx}

)
= sup

y∈BΓ

∥y∥p, p ≥ 1, (3.42)

P-almost surely for almost every x.

We observe that, although we are not dealing with integers, our results are

essentially the “next best thing” when it comes to shedding some light on a difficult

conjecture of Philipp; see page 96 of this dissertation. The result on the star

discrepancy is of different philosophy to those of Fukuyama and Aistleitner; it can

be thought of as a “simulation of a general case”; certainly not dealing with only

specific/restricted class of functions; whence being some kind of complement of

their work.

The value of the star discrepancy is A
1/2
x . This function turns out to have

remarkable properties. Simulation suggests it is continuous but nowhere differen-

tiable and, likely, unbounded at zero, too.
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Formalizing these statements shall be a part of our future work, so far we came

essentially empty-handed.

For the picture of this important function see below:



Bibliography

[1] C. Aistleitner, Irregular discrepancy behaviour of lacunary series. II. Monatsh.
Math. 161 (2010), 255–270.
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