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Abstract

It is well known that a concept of independence provides a fruitful ground for re-
sults in Probability Theory. These include, but are definitely not restricted to,
various standard and functional laws of the iterated logarithm and strong approxi-
mation of empirical processes. On another note, theory of trigonometric series with
random amplitudes is almost complete but not much is known if the randomness
lies within the frequency itself, especially in the case of integer-valued harmonics.
Lastly, there are numerous extremely difficult and essentially hopeless problems in

deterministic mathematics which become explicitly solvable upon randomization.

Contribution of this thesis is three-fold, namely in each one of the directions stated

above.

Having in mind both applications to Number Theory and Mathematical Analysis
as our main agenda, we introduce an auxiliary probability space on which we de-
fine all the necessary randomness. Our main idea is to think of Number-Theoretic
and Mathematical Analysis objects of interest as phenomena on another space of
actual interest (which is often the interval (0,1) equipped with Lebesgue measure
and Borel sigma-field) and then obtain results with probability one on the auxiliary
space. In other words we solve, with probability one, open problems in other fields
of Mathematics.

First paper establishes the functional Strassen law of the iterated logarithm for

the partial sums of periodic functions of dependent random variables. We discover



6 Abstract

that the limit set is a scaled Strassen set and that the limit is not constant al-
most everywhere which is very different from the case of independent variables.
We obtain numerous Strassen-style corollaries which allow precise asymptotics of
very complicated objects including upper densities of certain sets which are very

powerful results in the class of laws of the iterated logarithm.

Second paper uses a similar model of an increasing random walk introduced by
Schatte in the early 1980s. Here we study the asymptotics of the empirical distri-
bution function and discover that the limit set in the corresponding functional law
of the iterated logarithm is the unit ball of the corresponding Reproducing Kernel
Hilbert Space. This powerful result has many important corollaries, namely on the
probabilistic front, in one line argument, it recovers the entire i.i.d theory devel-
oped by Finkelstein. Moreover, on the Number Theory and Mathematical Analysis
front, we recognize that the quantity we computed gives us hands-on asymptotics
for star discrepancy and Lp discrepancy of a huge class of increasing sequences

with probability one.

Needless to say, these results for fixed sequence are way beyond the scope of de-
terministic mathematics. Third paper is about trigonometric series with random
frequencies. Here we use a different model of the frequency-domain randomness.
We extend old results of Erdos and discover very surprising limit distributions,
say a sum of independent mixed-normal and Cauchy or some infinitely divisible
distribution, to name just a few. We deduce that it very much matters how close
together are the intervals on which consecutive frequencies are defined, and distin-
guish between cases of small, large and intermediate gaps. Note that in the case

of intermediate gaps that pure normal limit is also possible.



Introduction

This thesis contains three chapters that in spite of the fact that they share author
and ideas, are essentially quite disjoint. We, without any further delay, move

straight into the corresponding descriptions.

Chapter 1:

It is common knowledge that the assumption of independence is the most fertile
ground for results in Probability Theory. These include, among countless others,
Central Limit Theorems and Laws of the Iterated Logarithm, which in turn, can

almost be thought of as “signatures of independence” in the underlying structure.

It is then clear why (especially in the early days of Probability, but today as
well) discoveries of suchlike behaviour in heavily dependent structures were (are)
quite remarkable. We refer the reader to the ice breaking result of Salem and
Zygmund [51]; i.e. to their Central Limit Theorem for the lacunary trigonometric
system

(Sin 2mngx)ken;  Npa1/me > q > 1.

The corresponding Law of the Iterated Logarithm was proved by Erdos and Gal
[21].

For completeness, we point out that (sin27wn;x)ren are random variables (in
fact, very dependent ones) on the probability space ((0,1),8,\) where the no-
tation is self-explained. Lacunarity was weakened by Erdés [20] and Berkes [3]
showing the existence of (random) sequences (ng)reny With ng; —ng — oo (with

any prescribed velocity) such that the Central Limit Theorem for the trigonometric
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system (cos 2mngx)ken holds with probability one on the ng-space. The question of
existence of ny’s with bounded gaps for which the Central Limit Theorem holds,
posed by Berkes, was answered by Bobkov and Gotze, but it took almost 30 years
to get there, see [12]. More results in this direction were obtained by Fukuyama,

see for example [26].

These 3 papers (Berkes [3], Bobkov and Gotze [12] and Fukuyama [26]) use
random constructions of different nature for their ny’s. We asked ourselves, can
a Central Limit Theorem with mean 0 and variance 1 be achieved in n;’s were
to be continuous random variables instead of integers? We propose a uniform
independent bounded gap model, basically a hybrid between the constructions of
Berkes [3] and Bobkov and Gétze [12]. The answer is no, the corresponding limit

turns out to be an interesting mixed Gaussian, for details see Theorem 9.

The problem of limit classification is still open, more results are given in Fuku-
yama [26]. The conjecture is that any L? function could be the limit, thought of

embedded in the variance of the Gaussian that is.

Chapter 2:

Laws of the Iterated Logarithm have been discovered by Hartman and Wintner
[31] and in a different form by Kolmogorov [36]; where this last result is still a
fundamental reference. Much more fundamental are the so-called Functional Laws
of the Iterated Logarithm, introduced by Strassen in [56]. This result implies the
classical Law of the Iterated Logarithm via simple one line observation. A version

of the Strassen’s result that is of major interest to us was proved by Major [39].

In this chapter we first encounter the brilliant ideas of P. Schatte, that allow
us to turn dependent structure of partial sums into independent one to which the
result of Major can be applied. We thus obtain a (Strassen-type) of a Functional
Law of the Iterated Logarithm and a Weighted Law of the Iterated Logarithm; with
several powerful a-la-Strassen Corollaries, see Strassen [56] and our corresponding

results. For more details on the classical Weighted Law of the Iterated Logarithm
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see [7], [16] and [24].

Chapter 3:

This chapter is possibly the most important one in this thesis, namely it is the

one to justify its very title.

The fundamental difference from the other two chapters is that this one is

application oriented.

We remind the reader of an open problem in Number Theory; to find the exact

| N
li D
MSUD A S e Tog N N{nrz}) (*)

where D} is the star discrepancy of the sequence (n;x).

value of

The solution to this problem is known for a very restricted class of sequences

of integers (ny)gen; for some more details see [25], [27], [44], say.

We remind the reader of the fact that the set of all increasing sequences of
integers can be (bijectively) identified with the interval (0, 1). Moreover it turns
out that, almost any increasing sequences of integers must satisfy ny | & — 2 as

k — oo.

Now, if we are to substitute nj by S, = X1+ -+ Xi; (X,)nen a sequence of in-
dependent and identically distributed and absolutely continuous random variables

the story is different.

On one hand, we admit: yes, Si’s are then themselves absolutely continuous
random variables and could not possibly be integers. However, they are a very
good way of simulating the linear growth; and if you want, we can easily (by the

S,
Strong Law of Large Numbers) construct the X}’s in a way that ?k — 2as k — .

This “philosophical shift” is not novel. For example, the result of Carleson [15]

gives necessary and sufficient conditions for the almost everywhere convergence of
[e.e]

the series ch sin 2wkx. But, solving the same problem for n; instead of k for
k=1
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other functions f seems to be a formidable task. Nevertheless, Schatte comes to
the rescue, for details see [6]; where Berkes and Weber extend Carleson’s result to
a much larger class of functions for almost all such sequences, without imposing
any additional constraints other than those of Carleson himself.

1/2 which we shall speak of

The value of the expression (x) is a function Az
later. Unfortunately, not much is known about it, simulations suggest continuity
but nowhere-differentiability; however formalising these claims is a challenge for
days to come. The actual result is Corollary 1* and all the other results of ours in

this chapter are to be thought of as groundwork for this one.



Chapter 1

Central Limit Theorems for
Trigonometric Systems with
Random Frequencies

1.1 Introduction

For convenience and completeness we shall start by quoting and discussing some

classical and some new results in the field of random trigonometric systems.

Theorem 1 (Salem and Zygmund, 1947). Let (ng)ren be a sequence of positive

integers satisfying the Hadamard gap condition
Ngs1/nk > q > 1. (1.1)

Then the trigonometric system (sin 2wngx),>1 obeys the central limit theorem; i.e.

N
lim A {x €(0,1): Zsin%mkx < t\/N/Q} =
k=1

N—oo

t

— 0 [ e (1.2)

— 00

where X denotes the Lebesque measure.

11



12

Furthermore, we also have:

Theorem 2 (Erdés and Gél, 1955). Under the Hadamard gap condition (1.1) we
have
N
lim sup(N loglog N)~1/2 Z sin2rngxr =1 for almost every x. (1.3)
N—oo 1
These two early results are rather remarkable. Namely, thought of as a sequence
of random variables on ((0, 1), B, ) (here B is simply the Borel o-algebra of subsets
of (0, 1)); the trigonometric system (sin 27n,x),>1 is anything but a sequence of

independent random variables; basic trigonometry actually reveals the nature of

its heavy dependence!

Nevertheless, Theorems 1 and 2 above reveal the striking nature of the Hada-
mard trigonometric system; (sin 27n,2);>1 behaves like a sequence of independent
random variables, since it satisfies the Law of the Iterated Logarithm and the
Central Limit Theorem in the most classical sense (N (0, 1) limit in the Central

Limit Theorem and 1 as the constant in the Law of the Iterated Logarithm).

Efforts have been made at the time to relax the Hadamard gap condition while
maintaining the illustrated remarkable properties of the corresponding trigonomet-

ric system. The first result of this sort is as follows:

Theorem 3 (Erdés, 1962). The Central Limit Theorem (1.2) remains valid if we

substitute the Hadamard gap condition with

Ngr1/ng > 1+ k™% o= 00 as k— oo (1.4)

Moreover, this result is sharp in the sense that for all C' > 0 there exists a

sequence (ny)ren satisfying np,q/ng > 1+ Ck™'/?; k > kg such that the Central
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Limit Theorem (1.2) is false.

The complementary Law of the Iterated Logarithm was proved by Takahashi,

see [57].

For sequences (ny)ken growing slower than the speed defined in (1.4), the asymp-
totic behaviour of the partial sums of sin 27n,x depends sensitively on the number
theoretic properties of (ny)keny and deciding the validity of the Central Limit The-

orem is generally a very difficult problem.

Here are some results in this direction:

Theorem 4 (Salem and Zygmund, 1954). There ezists an increasing sequence of
integers (ny)gen with

ngr1 — nk = O(log k) (1.5)

such that the Central Limit Theorem (1.2) and the Law of the Iterated Logarithm

(1.3) are both valid.

It took another quarter of a century until the following strong result, which

almost completed the theory. It reads as follows:

Theorem 5 (Berkes, 1979). Let w(k) be any function satisfying w(k) — oo as
k — oo. Then there exists a sequence (ny)ken of positive integers satisfying the gap

condition

i1 — i = O(w(k)) (1.6)

such that both Central Limit Theorem and Law of the Iterated Logarithm ((1.2) and

(1.3) respectively) are satisfied.
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Remarkable as it is, this result, as pointed out by Berkes, left the following
question open: Is it possible to have a sequence of integers (ng)reny With bounded
gaps; i.e.,

Ng+1 — Nk = O(l)
such that the Central Limit Theorem (1.2) still holds?
The question remained open for nearly 30 years. The answer is in the negative
and it is provided by the following result:
Theorem 6 (Bobkov and Gétze, 2007). Let {X,,}°°, be an orthonormal system
in L*(Q, F,P) such that in probability

X1+ + X,

NG

—0 as n — oo. (1.7)

Given an increasing sequence of indices T = {ng 32, assume that Sy = & weakly
in distribution, for some random variable €.
Then

E&? < A — den(7). (1.8)

Here, we use the notation

den(7) = limsup N/ny

N—o0

for the upper density of the sequence T in the row of all natural numbers. In
particular, if

sup [Pk — k] < +00;

this quantity is positive; so & cannot be standard normal.
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However, it has been shown very recently that normal limits are still possible
for sequences (ng)reny with bounded gaps, the variance of the limit shall always be

strictly less than 1 but it can be made as close to 1 as desired.

We are now ready to state the result:

Theorem 7 (Fukuyama, 2011). Fukuyama introduces the following notation:

|{:r; 0, ‘ \/_ Zcos 2mnpx < t}‘ — g, 1/4(—00, t] (1.9)

to denote the convergence in distribution to N(0, 1/4) limit and the following one

(to represent earlier results of Bobkov and Gétze, see [12])

{x [0, ‘ \/_Zcos2wnkx < t}‘ — Np, p2(—00, 1] (1.10)

d—1
where 0*(r) = 1/2 — 1/2d — l/dZZ(d —n)cos2mnx (d = 2,3,...) while the

n=1
corresponding measure 18

1

7107@2 (A) = /7’L0792(I) (A)dx, A € B(R)
0

to denote the convergence in distribution to the mized-Gaussian limit.

Now, let {a,},>1 be a sequence of real numbers satisfying Z la,| < 1/12. Then
n=1

there exists a sequence (ny)g>1 of positive integers satisfying 1 < ngi1 —mny < 9 and

a Central Limit Theorem (1.10) holds for

o*(z) =1/4+ Z @y, COS 2TNT.

n=1
Also, there exists a sequence satisfying 1 < ngy1 — ni < 5 and a Central Limat

Theorem (1.9).
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Common feature of constructions of sequences (ny)gen in proofs of Theorem 4,
Theorem 5 and Theorem 7 is that they are all random. This indicates further that
trigonometric series with random frequencies have remarkable properties. We will

now take a closer look at these three constructions.

1. Construction in Theorem 4

The sequence used will be a sequence of heads within the sequence of heads within

the infinite sequence of heads and tails generated by repeated tossing of a fair coin.

If we denote by nj the sequence of heads, then along this sequence the Central

Limit Theorem holds.

Moreover, by the Erdés-Rényi “pure heads” theorem we have

N1 — g = O(log k).

with probability one.

2. Construction in Theorem 5

Berkes starts off by reducing the problem to the one where the function w(k)

satisfies the following four properties:

(1) w(k) is positive,
(ii) w(k) is non-decreasing,
(i) w(k) is integer-valued,

(iv) w(k +1) <2w(k),
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and proceeds by introducing the following sequence of sets:

Then the (ng)ken are chosen to be independent random variables on some proba-

bility space (€2, A, P) in a way that n; is uniformly distributed on Uj; for all j € N.

Last, but definitely not the least, is the following spectacularly complicated

construction due to Fukuyama.

3. Construction(s) in Theorem 7

There are two results which are proven in Theorem 7, Fukuyama classifies two
different types of limits, pure and mixed Gaussian. The elaborate body of con-
struction eventually (and we shall indicate where exactly) branches into 2 parts;
each being used to obtain its own class of limits. We shall not test the reader’s
patience any further:

Let ap = 1/4 and ¢, € {—1,1} according to a, = £,|a,|. Define quantities

l(v,e) and g(v,¢€) as follows:
(£(0,41), 9(0,+1)) = (4, 0),
(0(1,41),9(1,+1)) = (6, 1), (£(1,-1),9(1,-1)) = (2, 1),

(0(2,+41),9(2,41)) = (8,2), (€(2,-1),9(2,-1)) = (4, 2),
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(6m,m) if (v,e) = (3m,£1), m > 1,
(U(v,e),g(v,€)) =< (6m+2,m+1) if (v,e) = (3m+1,£1), m>1, (1.11)
(6m+4,m+2) if (v,e) = (3m+ 2,+£1), > 1

We must also quote the following result in order to justify and explain the

notation we shall use later.

Theorem 8 (Lemma 1, Fukuyama [26]). Assume

e o]

; % <1 (1.12)
and put
0(0,+1
. (1 - f: —2|a”|€<”’5”() +£(>0 +1) i 20 ) |
—~ o(n,en) 7 “— o(n, &)

Then there ezists a sequence {vy} of non-negative integers such that

vr = O(log k), (1.13)
| N
Nhinooﬁgz(vk,svk) =5 (1.14)
N
]\}1_1330 N kz:; €0, O(Vk, Euy, ) COS 2TV =
= 2u(0°(z) — 1/4) for almost every x. (1.15)

Now let {Y;} be a sequence of i.i.d. random variables taking values £1 with

probability 1/2.

Fukuyama then defines related sequence {37;} as follows:
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If (vg)ken is a sequence satisfying all the requirements of Theorem 8, then let

Ag =0, A, = Zf(vk,evk) (n =1,2,...) (Y;)’s will be defined block-wise as
k=1
follows:

YAn71+17 . 7YAn—1+€(vn78vn) = YAn for n = 1, 2, e

To relax the heavy notation Fukuyama drops some of the indices; namely in what

follows A,,_1, v, and g,, shall be replaced by A, v and ¢ respectively.

Now, if v € {0,1,2} we put

(?A—i-h B J?A-I-Z(’Uﬁ)) equa‘l to

((Yas1, Yast, Yass, —Yais) if (v,e) = (0,+1),
(YA+1,YA+1,YA+3, —YA+3,YA+5,YA+5) if (v,e) = (1,+1),
(Yas1, —Yay1) if (v,e) = (1,-1),
(YA+17 Yayo, Yart, Yare, Yars, —Yays, Yagr, YA+7) if (v,e) = (2,-1),
L (YA+17YA+2a —Yaq1, _YA+2) if (v,e) = (2,-1).
If v=3m (m € N), we define
Yasgjio1t = Vatamigion = Yargion  (G=0,1,...,m—1),

37A+3j+2 = (_1>j}7A+3j+3 = 17A+3j+2 (j=0,1,...,2m —1).
If v=3m+1 (meN), we define:
Yitsjor = Yasamesjaz = Yarginn (5 =0,1,...,m),

57A+3j—2 = (—1)j5~/A+3j+2 =Yai3i42 (1=0,1,...,m—1),

Yirsjas = (—1)Vagajea = Yagajus (G=mym—+1,...,2m — 1).
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If, however, v = 3m + 2 (m € N) we define

37A+3j+1 = €§~/A+3m+3j+3 =Yz (G=0,1,...,m),
Yatamiz = €¥asemea = Yatamsz,
Yissjre = (—1)Yaysjs = Yaysjire (G=0,1,...,m—1),
Yatajra = (—1)Yiigjus = Yasgjea (G =m,m+1,...,2m —1).
Finally we identify our sequence (n;);eny with the set {k € N : Yp = 1}. This

defines the corresponding sequence(s).

The “branching point” of the argument is as follows: If we want a pure Gaussian
limit, we put vy = 0 and ¢,, = +1. Otherwise we get a mixed Gaussian limit

distribution.

1.2 Result

We will now state and prove our result. Instead of integers our random frequencies
are now uniformly distributed continuous random variables on disjoint intervals of
equal length. The limit is a different mixed-Gaussian. Without further delay we

proceed as follows:

Theorem 9 (Berkes and Raseta). Let Si,S3,... be a sequence of independent

random variables on some space (2, A,P) with Sy ~ U[20k — 20,20k — 10], k € N.

Furthermore, we introduce the probability measure p on (—oo,+00) by

1 : 2
w(A) = —/ (smx) dx YA in the Borel o-field. (1.16)

™ T
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Then:

dx(A) = +/Ooexp <—%2 (1 - (Slg;“)Q» dyu(z). (1.17)

—0o0

Proof. Define

in b
@k(l‘) = sin Skx — ]EP(Sin Sk;x) = sin Ska _ <SII51 x
xz

) sin(20k — 15)x

by basic algebra.

We now claim that
d

N N
Z () Z sin Spx

=L 4y ¥ for almost every w. (1.18)
N/2 N/2

Recall the basic trigonometric identity

sin ¢ + sin(p + a) + sin(¢ + 2a) + - - - + sin(p + na) =

sin (@) sin <<p + %)

= - . (1.19)

sin —

2

(1.19) applied to our case clearly yields:

> sin(20k — 15)z = _sin ((—15z) + (202)k) =

N+1)-20
sin M - sin (—15x +

N - 20x
2
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_ sin10(N + 1)z sin(10N — 15)z

1.20
sin 10z ’ ( )
whence it follows that
Z sin Six Z ox(x
sin bz 1 sin 10(N + 1)z sin(20N — 15)x (121)
5z N/2 sin 10z )

with the second summand on the RHS tends to 0 for almost all x with respect to
measure . This is because p and the Lebesgue measure are equivalent and all
countable sets have Lebesgue measure 0. Hence, trivially, the second summand
therefore tends to 0 ¢ in probability and whence (1.18) follows from Fubini’s The-

orem and Slutsky’s Lemma applied to (1.21).

We have now reduced the problem to dealing with random variables with P-
expectation 0; the convenience of such an approach shall become clear later on.

Now let us introduce

The heart of our argument lies in the following two claims:

(i) Tys —%5 X, P-almost surely where the characteristic function of X is given

by (1.17).

(ii) We claim that (i) is actually sufficient, namely that T NS (P-a.s.) =

Ty -2 X (P-as.).

We focus on (ii) first. Partition N in the following way:

VM € NIN €N with N* < M < (N +1)>
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We then write

T = Troany + (Tnr — Tivaany)

where M and N are as above.

We introduce Il = T5,, — Tvsar). Our strategy will be to show that

(EFI2,)2 = 0= Iy 25 0= Iy —5 0

and assuming (i), (ii) shall follow by Slutsky’s lemma and Fubini’s theorem.

To this end we have

1 M
T — Tnaarn :\/7/22801@( \/NTZS%
k=1

1 M
| AT R Lo

AL )

1
:{<¢M/2 ¢N3/2>Z“”’“ ¢—N3 Z*”

For simplicity introduce

1
x):=1//N3/2- Z or ()

Clearly (a +0)? < 2(a® + V%) Va,b € R and hence

—+00

(/(a(m) +b(x))2% (Siz‘”)de> " <

=00
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< (702(@2(3:) + bz(w))% (si2x>2 dx) 1/2.

=00

Elementary algebra yields

2 = ! - L 2 Y 227 i\L)P;\T
“(@—(w\m \/N3/2> {Zm )+23 el >}.

k=1 i#j

It is known that if |a| > 4, then

“+o00

: 2
/ COS QT (S'l%) dx = 0. (1.22)

We now claim that {¢x(z)}ren are orthogonal, i.e.

+oo

/ or(z)pe(x)dp(x)adye; where ¢ is the Kronecker’s symbol.
We proceed as follows:

“+oo

/sin Sk sin Spxdp(zr) =
17 17
=5 / cos(Sk — Se)xdu(x) — 5 / cos(Sk + Sp)xdu(x). (1.23)

Recall that S, ~ U[20n — 20, 20n — 10] by construction. This trivially implies that
|Sk — S| > 10 >4 for all k£ # ¢ and

‘Sk+Sg’:Sk+S@ZSg>10>4.

It then follows that both integrals on the RHS of (1.23) vanish and so

+oo
/ sin Six sin Spxdp(z) =0 Vi # L. (1.24)

—00
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The orthogonality of {¢(x)}r>1 follows from (1.24) by same tedious algebra
and Fubini’s theorem.

But then:

+oo

/ 202 (2)dy(x) —

—00

—+00

1 gl
:2_4 <\/M_/2 \/NT) {29@ +;%(I)%(I)}du($>=

1 1\ M+°°2
—2<\/M/2—¢N3/2) Z/% Jdpu(x +Z/% ©)p;(w)dp(z) p =

7] oo

= (by the orthogonality of {¢k(z)}i>1) =

1 2 M +oo
:2<\/M/2 N3/2> Z/QO’“ )l

1 1 ’
_8M<\/M/2_\/N3/2> (o) < 2).

Recall that N3 < M < (N +1)3.

Simple algebra shows that the last quantity is at most 96/ V. (1.25)

An identical computation shows that

—+00

/ 202(2)dpu(x) < 96/N (1.26)

—00

whence it follows that

400 1/2
</ 2(a*(x) + b2(x))d,u(x)> <8V3/VN

=00
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and so

(EFTI2,)Y? < 8V3/VN < 8V3/(M'Y? — 1)/2 = 0 as M — co.

Thus (ii) holds and proving (i) is a task we focus on in order to complete the

proof.

The characteristic function of the corresponding partial sum is

" i
o= [ exp( - me))du(x) -

N i
- / [Tes ( 2 /Qsok(w)) du(a). (1.27)

Basic complex analysis gives us
exp(z) = (1 + 2) exp(2*/2 4+ 0(z%)) for z — 0. (1.28)
Since |pg(x)| < 2 for all k € N it follows by (1.28) that

exp (%/2%(1;0 = (1 + 33/2> (—Azﬁi(fﬁ) ‘o (%)) .

Observe that (7 (z))

4>, 1s itself a sequence of independent random variables on

(Q, A, P), for any fixed x € R.

Trivially, |7 (z) — EF¢}(z)| < 8 and so

(¢} (x) — EPpd(x))" < 4096.

Thus, by the Strong Law of Large Numbers and Fubini’s theorem it follows that

N
1 ~a.e.
=0 (4he) — B ) 5 o
k=1
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But:

E*¢;(z) = EF ((sin Sk — EF sin Syx)?) =
= E" sin? Sz — (E¥ sin Sp2)* =

1 1 1 in5 2 1 in5 2
=3 gF et s () +5 (T -eostaok a0y

upon some basic algebra. Hence it follows that

N . 2
1 9 1 1 sin 5x
NZ“W)—Ta( 2 ) -

N

1 /sin10x 1
— = L 40k — 30

2 ( 10z ) N ;COS( Jr+

1 /sin5z\2 1 &

— - — 40k — 30 1.29
+ 5 ( r ) N ;COS( i ( )

whence arguing exactly as before we finally deduce that

1 N 1 sin 57\ 2
9 H-a.s.

— dai gy [N :

N;@k(m) 2( ( G > )

Simple algebra shows that

and thus our characteristic function reads

“+00

b (A / H ( ZNPk ) exp <—(1 + o(l))%2 ngi(m)) du(z).

—0o0
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More simple algebra coupled with Dominated Convergence Theorem shows that

b1y (A / H ( @)\gok ) exp(—Ng(xz))du(z) + o(1)

where, for brevity, we introduced

glz) = % (1 - (Sigjx)2> . (1.30)

So we will be done provided we can show that

—+00

/H( gpk( )) exp(—)ﬁg(m))du(z)% /exp(—)\Qg(:p))d,u(x);

since the limit function is continuous at A = 0.

Define

Vb 1Ak (x 9
1N :_/ [H (1 + Sj\’;g/; - 1)] exp(—Ag(z))du(x).

k=1

Thus, it will be sufficient to show that I'y Tas 0; and this will trivially follow
provided we can show that |I'y| 2% 0; where |z| is the modulus of the complex

number z.

Let ©,, := |I',,|. Beppo-Levy’s theorem says:

Z EO? < co = I, — 0; P-almost surely.

neN

We shall therefore focus on showing that

Z E(FNFN) < 0

upon which the proof will be complete.
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To this end we have:

e [ T[T ( %) - [l (- 2) -1

For brevity introduce:

GG e RS e
e[ 25) i35

k=1

Define

By(z,y,w) :=Re(Ay(z,y,w)) and

Cy(z,y,w) := Im(AN(:U,y,w));

so that we can write the above as

+o00 400

E'TNDy = / / / By(z,y,w) exp(—Ag(z)) exp(=Ng(y))dp(z)dp(y)dP(w)+

—+00 400

+i-g/_£_£ Cy(z,y,w) exp(=A*g(x)) exp(=Ng(y)) dp(x)dp(y)dP(w).

Clearly

| By (z,y,w)| < |An(z,y,w)| =

N iAox(T) N iApr(y)
11 (“ N3/2> ‘1] | [H <1‘ N?’/z) ‘1]

B N iXpr(x) B
= g<1+ N3/2> 1
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Using a bold bound |z — 22| < |21]4|22| and many times the relation |21 22| = |21] |22]
we get
N3 Ao () A\
LAPE\T ¢ 90k
IT(1+ 1+ H 1+
k=1 ( N3/2) ‘ VN

5

1T (1 20 L3y

k=1
But we know that 1+ 2 < e” so that the bound in the above is 1+ exp(4A?); using
again |@g(z)| < 2 for all z € R and all k£ in N. Similarly,

Al iApr(y)
11 (1 - Tp) -1

k=1

< 1+ exp(4)?). (1.32)

Thus |By(z,y,w)| < (1+ exp(4)\2))2 and in the identical fashion we get that
[Cx(w.y,@)] < (1+exp(X))’,

too. Since |sinz/z| < 1 for all € R we also see that g(z) > 0 for all x, which,

coupled with the above, easily yields:

—+00 +00

[ [ [ 1B plexp(-xg(@) exp(~ (o)) du(o)dn(u)iP(e) <

“+o00 +o00

< 9/_4 4 (14 exp(4X?) du(x)du(y)dP(w) =(1+ exp(4)\2))2 < 0.

Similarly,

—+00 400

/ / / O (,y,w)| exp(=Ng(x)) exp(=Ng(y)) dpu(w) dp(y)dP(w) <

—00 —00
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+o00 400

< Q/ / /(1 + exp(4)\2))2du($)du(y)d]}”(w) =(1+ exp(4)\2))2 < 0.

Putting all this together one can see that Fubini’s theorem can be applied to yield:

—+00 400

/ / / An(z,y,w) exp(—=Ng(z)) exp(=Ng(y)) dp(x)dp(y)dP(w) =

:// /BN(w,y,w)eXp(—Vg(fE))eXp(—Azg(y))du(w)du(y)dﬂ”(w)Jr

H/_/ /ON(x’y’w)eXp(_AQQ(x))eXP(—Vg(y))du(x)du(y)dIP(w):

Q —oo—00

_ T P ke iApr(T) ixor(y
S () (- ) ]
exp(—N’g(x)) exp(—Ng(y)) dp(z)dpu(y).

Part of the above integral under the P-expectation is:
N3 . N3 .
i)l
k=1 /2 k=1 N2 /2

N3 . .
—E [ <1 n M@k@)) (1 _ ZA@k(Q)) 1

Pt N3/2 N3/2

P iIMoe(y) | idgp(z) | 2)°
=B H ( SN2 ), N2 + W@k@)@k(@)) -1

E]P’

But, via grouping independent quantities, one can see that, for all but fixed x and

y in R? we have that

(1 _Denly) | iAgnle) | 2)\59%( )%(@ﬂ)
k>1

VIN3/2  \/N3/2
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is itself a sequence of independent random variables as (€2, A, P), so that the above

expression equals

HEIP ( Aok (y) + iAo () + %@k(l’)@k(y>> 1=

VN3/2 - \/N3/2
g( M\%f\ﬁ—ku Mﬁ]\i—k()jLwE iz )cpk(y)>—1:

N3

-1I (1 + 2 o)) - 1

Introduce, for brevity, ¥y (z,y) = Efor(2)@r(y). Then our expression of interest

EFT 5Ty reads

+oo+ooN5 9
//H (1“’&\1% )) exp(—Ag(x)) exp(—=Ng(y)) dp(z)dp(y)—
— / / exp(—Ag(z)) exp(—Ng(y)) dp(z)dp(y).

We know that
1+z=-exp(z+0(z*) for |z|<1 ie.

|log(1+ x) — 2| < C2® forall |z| <1 for some C' € R,

Note that |V (z,y)| < 4 = for all N large enough

= for all N € N large enough

2\2U N2
log (1 + %@y)) — %M‘ < ON/N? (1.33)

which easily yields that
N 2 2 4
log (1 N 2\ ‘Ilk(m,y)> 22 \Ifk(x,y)‘ < CA

N N N’

k=1
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However, the above also implies that

N N
2020 (2 y)) 20N20 (2, y)
logH (1 4+ — - E ’
P N N

k=1

4
<C)\.
- N

For brevity introduce yet another quantity
_ i 2N (7, y)
= ~ .

k=1

Then it is clear that

ﬂ( M) < exp (GN(a: y)+CTA4>.

k=1

For |z| < 1/5 say

3
exp(z) <1+ e (1.34)

Similar ideas yield that there exist a, 8 € R! such that

N

11 <1+w> < 1+%+6|GN(x,y)|. (1.35)

k=1

Observe that our measure i is o-finite so that Tonelli’s theorem applied to G%(x,y)

yields:
7070G?v(x,y)du(x)du( ): / () Q) =
/ GO
—00,+00)2

Trivially, by the very definition of the product measure, ((—oo, +00)?, B(R?), u @ 1)

is itself a probability space so that

/ G(2)d(n R ) () = B ®H(GE) = (G [?) >

(70074’00)2
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> (IE’“XW|GN|)2 (by Jensen’s inequality)

whence
400 +o0

®@®Gy) < [ [ Gy du()dnty) (1.36)

—00 —00

Recall that

so that

4/\4 +o00 400

+WZ/ /\I!k(a:,y)‘Ife(x>y)dﬂ(33)dM(y)-

kAL o0 oo

Arguing exactly as before one can deduce that

“+00 400

/ / Ui(z,y)Vo(z, y)du(z)du(y) = 0; whenever k # (.

Using U (x,y) < 16 for all z,y and k we get:

—+00 400

/ / Gy (x, y)dp(x)du(y) < 64A"/N

—00 —0O0

and whence it follows that

4 +00 00
vz [ [ Glednteiuty) =

—00 —00

> (7070%(93, y)|du(fv)du(y>> 2; ie.

=00 —00
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“+o00 400

/ / G(, )l dpl)duly) < 8N /VN. (1.37)

—00 —00

It follows that we can bound our expression of interest in the following way:

+00 00
EFTNTy < / / 1 BG (e, y)l) exp(—Ag(z)) exp(—=Ng(y)) du(z)dp(y)—
/ / exp(—A?g(2)) exp(=Ng(y))du(z)du(y) =
= %_/_/ exp(—Ag(w)) exp(=Ng(y)) dpu(a)dp(y)+
400 +00
+B/ /IGNr»(w,y)leXp(—Vg(x))exp(—AZg(y))du(fE)dﬂ(y) <
< N3 + / /|GN3 x,y |d,u Ydp(y (since g(t) > 0 for all t € R)
« 8B\?
<%t (1.38)
Thus
EFTNT Ny < 9 /N?/2 (1.39)

for some constant v,. Finally we have

Z ]EPFNFN < 0
NeN

and the proof is complete. O]



Chapter 2

Limit Theorems for the Schatte
Model

2.1 Introduction

In this chapter we shall be dealing with a particular structure of weakly dependent
random variables, namely the remarkable construction of Peter Schatte from the
1980’s. More formally, the underlying sequence of random variables (X;) ey will be
ii.d. with X; absolutely continuous. We shall establish the Strassen-type Law of
the Iterated Logarithm together with a Weighted Law of the Iterated Logarithm,
both for functions of S,z = (X; + --- + X,,)z, under mild conditions on f. In
particular, we discover that the limits in the above are not constants as in the

classical theory, but remarkable functions of .

Again, for completeness of the exposition, we shall remind the reader of some
classical results, introduce some newer ones, hence setting up the framework for

those of our own.

36
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2.2 Classical and Strassen-type of Laws of the
Iterated Logarithm

Theorem 10 (Hartman and Wintner, 1941). Let (Xy)r>1 be a sequence of inde-

pendent and identically distributed random variables, with EX; = 0, EX? = 1.

Then, with probability one,

S,
li i = 1. 2.1
S (2nloglogn)l/2 (2.1)

The following result is definitely an absolute classic:

Theorem 11 (Kolmogorov, 1929). Let (X;),en be a sequence of independent, zero-

mean but not necessarily identically distributed random variables.

Furthermore, let S, = X; + --- + X,, and assume that IEJX]2 < oo Vj € N with
Var S, — oo as n — oo. Introduce, for brevity, A, = VarS,. Then if there exists

a sequence of constants My, such that | Xy| < My, almost surely, and

A,
M. — _ 4m
ne ((log logA%)l/z) ’

then

S,
li =
TP (2A2 log log A2)1/2

=1; almost surely. (2.2)

It took some time for another fundamental breakthrough. The following result

is absolutely astonishing:

Theorem 12 (Strassen, 1964). Let (X,,),>1 be a sequence of i.i.d. zero-mean and
unit variance random variables. Let S, = X1+ --+X,, and define (1n,)n>1 to be a se-
quence of continuous functions on [0, 1] via linearly interpolating (2nloglogn)~1/2S;

at i/n.
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Then, with probability 1, the set of limit points of the sequence (N,)n>3 with
respect to the uniform topology coincides with the set of absolutely continuous func-

tions x on [0, 1] such that

1
2(0) =0 and /x’th <1 (2.3)

0
It became a standard in probability theory to call this set K.
There is no better set of words to comment on this result than “raw power”.

For example, recovering the Hartman-Wintner’s Law of the Iterated Logarithm

from this result is astonishingly easy:

For a < b, a,b € [0, 1]

b

/ 22dt

a

b

b 1/2
|z(a) — z(b)| = < (/ dt/m’%lt) <vb—aforany z € K. (24)

With a = 0, b = 1 we see that

supz(1l) =1 and the supremum is attained at x = t.
€k

But this means that

n—oo

]P’{lim sup(2n loglogn)~1/2S, = 1} =1

and we are done!

Via calculus of variations Strassen obtains several remarkable corollaries of his

result. To give the reader a flavour of it, we state a few of those:

Theorem 13 (Strassen, 1964). Let (X;)jen and S, be as before. Let a > 1 be a
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real number. Then

a
——1
- 2(a+2)2
P limsupn_l_“/2(2loglogn)_“/2Z |1Si|* =+ (a+2) =1, (2.5)
S VIt

and

Theorem 14 (Strassen, 1964). The set-up is as before. Suppose we want to deter-

mine the relative frequency of the events
S, > (1 —¢)(2nloglogn)'/2.

Let c € [0,1] and set

0 otherwise.

{1 if S; > c(2iloglogi)'/?,
C; =

Then

e SR T ) ) ST

1=3

1
This reveals a surprising result. Namely set ¢ = 5 in (2.6) to learn that, with
probability one, for infinitely many n € N the percentage of times ¢ < n when

1
S; > 5(22 log log i)'/? exceeds 99.999, but only for finitely many n exceeds 99.9999.
In one of our results, we shall need the following result:

Theorem 15 (Major, 1977). Let (X, )n,>1 be a sequence of independent random

variables with EX; = 0; B,, = E(S?) < oo Vn > 1 and B,, — oo where S,, = ZXZ"
i=1
Let (M,,)n>1 be a sequence of real numbers s.t.

M? = o(B,/loglog B,)
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and M, is the almost sure bound on X,. The process S(t), t > 0 is defined by
setting S(B,) = S, and it will be linear on By, Bny1], n > 0. Then, S,(t) =
S(B,t)(2B, loglog B,) Y% is relatively compact in C[0,1] and the set of its limit

points agrees with the formerly introduced Strassen set K.

2.3 Laws of the Iterated Logarithm with Weights

Although the question itself seems natural, it took many years for it to be posted:

“What happens if we introduce weights in the Law of the Iterated Logarithm?”

Theorem 16 (Chow and Teicher, 1973). If {X, : n > 1} are independent and

wdentically distributed random variables with
EX, =0, EX;=1

and (An)n>1 1S a sequence of real constants satisfying:

2 C
(i) <2 ax
9 n
Z a;
j=1
n
(ii) Z a? — 0o
j=1

for some Cin(0,00), then

( )
n

> aX;

J=1

<2 i a? log log i a?)
3=1 j=1

P < lim sup

n—o0
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The next result is more general and is important because of the technique of

Skorohod representation it uses but it is not sharper condition-wise.

Theorem 17 (Fisher, 1992). Let K be the Strassen set. (X;);en will, again, be a

sequence of i.i.d. zero-mean and unit variance random variables.

n
Let A2 = Za? and define the random function S by linearly interpolating S,
j=1
on [AZ, A2 ,|]. Moreover, define a sequence of functions (Uy,)p>1 by

U, (t) = (242 log log A2)S(A21).

If A2 — oo and a?/A% = O(1/n) then, with probability one, {U, : n > 1} is
relatively compact and the set of its limit points coincides with K. This now, as in

Strassen’s case, implies the corresponding law of the Iterated Logarithm.

Using similar ideas to those of Fisher the following result can be obtained:

Theorem 18 (Berkes and Weber, 2007). Let (X,,)n,>1 be a sequence of i.i.d. zero-

mean and finite variance random variables.

If EX?log, | X1] < 0o and
A2 >>n, a,=0(A,n7")

for some v > 0, then

n
S,
. 1
lim sup

k=
n—o00 4/ QA% log log A%

= [[ Xl (2.8)

with probability one.
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2.4 Laws of the Iterated Logarithm with Non-
Constant Limits

So far we have been in the “standard” framework. Patient reader shall (soon
enough) discover that in our results non-constant limits appear. (Un)fortunately,
this is not the first time suchlike behavior was established in the history of math-

ematics, as the following results show:

Theorem 19 (Erdds and Fortet, 1949). Let f(t) = cos2nt + cos4dnt and define

ny = 28 — 1. Then, for almost every t

Z f(ngt)

, k=1
i (2nloglogn)/?

= | cos 27rt|1/2, (2.9)

which clearly is not a constant.

Here is another example:

Theorem 20 (Weiss, 1959). Let (¢n(2))n>1 be a uniformly bounded orthonormal
system of real-valued functions on the interval [0,1]. Then there exists a subse-
quence { ¢y, (JU)}k21 and a real-valued function f(x), flfg(x)dx =1;0< f(z) < B,
where B is the uniform bound as {¢n(x)}n>1; such t;)zat for any arbitrary sequence

{ax} of real numbers satisfying

Ay =(a?+ai+---+d%)"* = 00 as N — o0,

My = O(AN(loglog AN)_I/Q), where

My = max |ag|
1<k<N
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we have

. Su()
1 = 2.1
WP (A2 Tog log A2 — 4 (Y 210)

where Sy(x) = Zajd)kj (x).
=1

2.5 The Schatte’s Infrastructure

In this subsection we shall introduce various results of P. Schatte from the 1980’s

that will be a base for building our tools in what follows.

Theorem 21 (Schatte, 1984). Let (X;);jen be a sequence of independent and iden-

n

tically distributed random variables. Let Y, = ZXi (mod 1), where moreover we
i=1
assume 0 < X,, <1 for alln € N.

Let p,(z) denote the density of Y,. Then the following assertions are equivalent:
(a) Density pm(z) is bounded for some m.

(b) sup |pn(z) —1] =0 as n — oo.
0<z<1

(¢) sup |pn(z) — 1] < Cw™, where C' and w < 1 are real constants.
0<z<1

Condition (a) is fulfilled in at least 2 situations, namely if the X; have bounded
density or p,,(x) € LP for some p > 1 and some m. For the later see Ibragimov

and Linnik [32], page 128.

Theorem 22 (Schatte, 1988). Assume the three random vectors X = (Xq,...,X,),
U and (W, ..., Wy) are independent and let W = f(X) for some measurable func-

tion f. If U is uniformly distributed, then the two random vectors

X and ({(WH+U+W}L AW +U+Waol, ... {W+U+W})
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are also independent.

Here, and elsewhere in this section, {z} shall stand for the fractional part of

real number z.

The above remarkable result has an easy, but equally remarkable consequence.

Theorem 23 (Schatte, 1988). Let W and U be independent random variables, with

U uniformly distributed. Then {W + U} is independent of W.

Theorem 24 (Schatte, 1988). Let X be a random variable, with distribution func-
tion F(x), where

sup |F(z) —z| <e.
0<z<1

Furthermore, let U be a uniformly distributed random variable that is indpendent

of X. Then there exists a uniformly distributed random variable V' such that
(i) [V -X[<e,
(ii) V = f(U, X) where f is measurable.

We point out that if X is continuous, U is not necessary in the construction of

V', namely it suffices to take

Vr::FK)(%

i.e. to “put” X into its own distribution function.

2.6 Results

Before we finally start to talk about our results we need a bit more patience from

our reader to complete the set-up.
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In what follows, (X,),>1 will be as in the Schatte model, thus a sequence of
independent identically distributed random variables on some probability space

(Q, A, P). Moreover, we demand that X; is bounded with bounded density.

Furthermore, let f be a periodic function with period 1, Holder a-continuous

with

/lf(ﬂf)dfv =0,
0

/f2(x)dq: =1

for some positive a.

Let U be a uniformly distributed random variable independent of the underlying

sequence (X, )n>1.

Define a positive real-valued function as follows:

A, =1 +2i]EPf(U)f(U+ng) (2.11)

g=1

where, as before, S, stands for

We are now ready to begin:

Theorem 25 (Raseta). Let (X;)jen, [ and A, be as described above. For any

x € R define the sequence (I'f )nen of functions on [0,1] by

2(0) =0, Ti(k/n)=(2nloglogn)™"/*> " f(S;x) (k=0,....,n)

j=1
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and T'%(t) is linear on [k/n,(k + 1)/n], with k € {0,...,n — 1}. Then, P-almost
surely, (I'F)nen is relatively compact in C[0,1] for almost all x and the set of its

limat points coincides with the scaled Strassen set

K = {y(t) .y is absolutely continuous in [0,1], y(0) =0

and / (9(8))2dt < A;ﬂ}. (2.12)

Proof. We will start with some lemmas.

Lemma 1. Let (X;);en be a sequence of random variables chosen according to the

Schatte model.

Define a sequence of sets as follows:

Il = {1,2,,5}

[2 = {p17p1+17-"7p1+61} where p125+£+2
In = {pn—hpn—l +1;..-,pn—1+ﬁn—l} where Pn— an—2+6n—2+€+2

for some £ € N. Fiz x € R\{0}. Then there ezists a sequence 67,03, ... of random

variables satisfying:

(i) 62| < Cpe* ¥n € N, where \, and C, are some positive constants that

depend on x only.

(ii) The random variables

D f(Siw), D f(Sw—=6),. . ) f(Siw—6i_y)

i€l i€ls i€ly,
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are independent.

Proof. We shall construct inductively a sequence (%), cn satisfying:
(a) 6% < Cpe Pt for all n € N,

(b) Z f(Six — 6,-1") is independent of

1€ln

> (S, Y f(Siw = 0,")

S i€lp_1

for all n > 2.

This sequence clearly satisfies the conditions (i) and (ii) above, and thus the proof

will be complete.

Define

0f = {(Sse = Sp)a} = Fyspur—siey ({ (Sare — Sp)z}) (2.13)

where, as before, {x} stands for the fractional part of the real number = and
Fx(X) means putting random variable X into its own distribution function, whence

defining a new random variable.

By Theorem of Schatte we know that if X is a continuous random variable

taking values in [0, 1), then

| X = Fx(X)| < sup [P(X <) —¢] (2.14)

0<£<1
By the very definition, X are all of bounded density and whence absolutely con-

tinuous, hence continuous. Thus, by Theorem of Schatte we have

07 < sup |P({(Xps1+ -+ Xgpo)z} <€) —¢].

0<e<1
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Using the fact that
{a+b} ={{a} +{b}} foralla,beR (2.15)

coupled with the fact that the (X;);ey is a sequence of independent and identically

distributed random variables, we have that

{(Xppa+ -+ Xgpo)a} = {(Xo+ -+ Xz}

4 {{Xiz} + - + {Xez}}.
It thus trivially follows that

P ({(Xp1 + -+ Xpgpp)r} <€) =
:P({{Xlx}—l—-"—i-{Xm}} §£)7

i.e. that

P ({(Xps1+ -+ Xppo)z} <€) —f‘ =

sup
0<£<1

i.e. finally that

P({{Xu} 4+ {Xer}} <€) — ¢

|07 < sup
0<g<1

Trivially, X;’s are bounded, whence for each x { Xz} is itself absolutely continuous

having bounded density.

But then Theorem 21 of Schatte applies directly, with m = 1, to give:

67 < Cpe ", (2.16)
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Furthermore:
{Spx =67} = {Spx = {(Spse — Sp)a} + Fiisy,—s,00y ({(Spee — Sp)a}) } =
= {Sp& = (Spre — Sp)a + Fi(s,, -5 ({ (Spre — Sp)z}) } =
= {Spt — (Xpgy1 + - + Xy o + Fiisy,-s50)0) ({Spee — Sp)a) } =
= {(X1 4+ Xp)z 4+ (Xpgep1 + - + Xp) )zt
+ F(sai-520} ({(Sp4e — Sp)a}) }-
Similarly,
{Sppz =67} = {(X1 ++ -+ Xp)z + (Xpyepr + -+ Xpya) o+

+ F{(SB-M Sg)w} ({(SBH - Sﬂ)x})}

{Spirma — 07} = {(Xl + 4+ Xp)r + (Xpgepr + -+ Xp4p )2+

+ F{(SﬁH Sg)z} ({(SﬁH - Sﬂ>x})}

Define:
X = (Xyz, Xox, ..., Xsx),
W=fX)=Xx+ -+ Xpz,
U = Fispr-s5a) ({(Spe — 9p)}),
(WE, o W 5) = (Ko + -+ Xp)z oo (Xppen + - + X)) ).

Observe the following three simple but crucial facts:
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e Indices that appear in X take values in the set {1,...,5}.
e Indices that appear in U take values in the set {5+ 1,...,8 + (}.
e Indices that appear in W;’s take values in the set {5+ ¢+ 1,..., 5 + p1}.

Thus, indices that appear in X, U and W;’s come from disjoint sets.

Since the underlying random variables (X;);en are independent it then follows
directly from Theorem of Schatte that the 2 random vectors X and

((W+U+We.. {(W+U+W, %, 1)

are independent.

But this means (precisely!) that
(Xiz,...,Xgz) and ({Spz — &z}, ..., {Spspa — d1z})

are independent random vectors. Thus, trivially,

Y f{Sad) ALY f({Sr — 1))

jel JEl2

However, f({y}) = f(y) for all y so that we finally have

> F(Six) ALY f(Sx —67). (2.17)

jeh jels
Now suppose we have established one result up to index n. Consider the n + 1-

situation:

Define:

On” 1= {(Spn—1+ﬁn71+f - Spn71+5n71)x}_

- F{(Spn_1+5n_1+f7Spn_1+6n_1)x}<{(Spn—1+ﬁn—1+£ - Spn—1+5n—1)x})'
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Exactly as before:

d
{(Spn71+6n71+e - Spn71+18n71)x} = {(Xl + e _'_ X@)x}
and whence it follows that
lor] < C’xe_’\zg.

Tedious but identical algebra as for n = 1 yields:

{Sp.x—0,} =
= {(Xlx + T + Xpn71+18n71x) + (Xpn71+6n71+£+1x _'_ T + Xpnx)+

+ F{(Spn,1+5n,1+e—5pn,1+ﬂn,1)w} ({(Spnfﬁﬁnfﬁf - Spnfl“!‘ﬂnfl)'r})}?
{Sppr170 =05} =
={(Xi+- 4+ Xy, 7)) + (Xp, 48, e+ -+ X 12)+

+ F{(Spn,1+ﬁn,1+4—5pn,1+6n,1)w} ({(Spn—ﬁﬁnfﬁf - Spn71+6n71)$})}7

{Sp.+p. 0 — 03} =
= {(Xlx +-oet Xpnfl"!‘ﬂnfl‘r) + (Xpnfl‘f'ﬁnfl“!‘f‘f‘lx + e Xpn+ﬁnx)+

+ F{(Spnfl+l3n71+575pn71+5n71)x} ({ (Spn,1+ﬁn,1+€ - Spnfl""ﬁ"*l ).ZC}) }

Define the following 3 random vectors:

X = (Xy2, X, .., Xp i 160,01 6,5),

» “n—1
U= F{(Spn71+ﬂn71+€_Spn71+,5n71)x}({(Spnfl"rﬂnfl‘i‘e - Spn71+ﬂn71)x})’

(chc’ ey Pnf‘ﬁn) = (Xpn_1+6n_1+[+1$ + -4 Xpnl‘, ey
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e 7Xpn—l+ﬁn—1+e+1x + T + Xpn+6nx)'

Moreover, let W = Xz +---+ X, 45,2
As before, we observe three very simple but crucial facts:
e Indices that appear in X take values in the set {1,...,p,_1 + Bn_1}
e Indices that appear in U take values in the set {p,_1 + Bn_1,- ., Dn_1 +

+ Bt + L}
e Indices that appear in W;’s take values in the set {p,—1 + 1+ +1,...

oy Pn1 + Bu}

It follows, exactly as before, that X, U and (WY, ..., W, %, ) are 3 independent

random vectors. But then, exactly as before:

(X1, X i 08,1 6,%) AL ({Spo — 6%}, {Sp sz — 67}),

and whence, using periodicity of f,

> f(Siw—dy) AL (Z (Siw), Yy f(Six = 67), Y (S~ 5n_ﬁ>). (2.18)

ie[n+1 el 1€y i€l
Thus, by induction, the result holds for all n € N and the proof is complete.

Now, put
k k

my =y L5, =) 5] (2.19)

j=1 j=1

(|z] stands for the integer part of the real number x) and let

my = ﬁ”bk + fl\lk . (2.20)
Define 2 sequences T4, T5,... and 717,75, ... of random variables by
my 1+ Vk]
To= ), (f(Sm =A%) —Ef(Sim = AY)), (2.21)

Jj=mp_1+1
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my
=S (S n) -EfSp-TL5)  (222)

j=mi_1+|VE]+1

and choose the variables (A7 )ken, (IIF)ren so that
(i) AZ = 0; |AZ| < ChePel VR,

(Tk)ren is a sequence of independent random variables.
(i) 12 = 0; [II7] < Che VA,

(T{)ken is a sequence of independent random variables.
Note that this choice is possible by Lemma 1.
We now prove the following:

Lemma 2.

Proof. Some basic algebra yields:

mk—1+|_\/Ej
Var (Tp) = > Ef(Siz— A0+
j=mg_1+1

[VE]=1mg_1+[Vk]—p

+92 Z Z f(SgSC — Akfl)f(5£+px - Akle>_

=1 = Mg — 1+1
my 1+ Vk]

- Z Ef(Sjz — &%)

Jj=mp_1+1

2
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For simplicity we define

my 1+ Vk] 2
L;k) = ( Z Ef(Sjx — Ak—x1)) :

Jj=mp_1+1

Observe that

‘f(Sj.Z') — f(SjiL' — Ak_xl>‘ S 2C‘SJQJ — Ak_ml — ij}a =

= 20]A,5[* < 20C e~ ML VE=T,

by the Holder-a-continuity of f and the very construction of Ay’s.

Furthermore:

|Ef(S;z)| = |Ef({S;x})| (since f is periodic with period 1) =

= [Ef({Sjz}) - 0] =

Ef({S;z}) - / £(6)de

~ [E((50)) ~ EF (Fis({50)| <
(since Fx(z) is always uniformly distributed)

< 2CE|{S;z} — Fis,0y({S;2})]" <

< 20C%e Ny

using the same Schatte-type arguments as in the proof of Lemma 1.

Putting all these things together yields:
L;k) < 16020304 L\/EJQB—QanL(‘/k—lj

using very bold bounds indeed.

(2.23)
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Moreover,
Ef*(Sjz — A,5) =1+47 +€%; where
=Ef*(S;z — A7) — Ef*(S;z), (2.24)
ej = Ef*({S;a}) — Ef*(Fis,oy({Sj2})) (2.25)
since f is periodic with period 1 and [ f2(£)d¢ = 1. Since f is continuous and
periodic, it is clearly bounded and call this bound M.

Applying the same reasoning as before, it is easy to see that

il <4MCC” o0 [ VE-T] (2.26)
and
€] <AMCC, e . (2.27)
Define, for brevity,
mi—1+|VE]
AP = Y (2.28)
J=mp—1+1
and
mi—1+|VE]
oF = Y & (2.29)
Jj=my_1+1
whence it follows that
my—1+|VE]
> EfA(Sr—A0) = [VE + AP + 0P
J=mg—1+1
where
IAD| < AMCoC|VE e XL VET] (2.30)
and
AMCCY =0 (m a
0®)] < — Aalmiatl) (1 — ¢ AMEJ) (2.31)
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again using, almost embarrassingly, bold bounds which turn out to be more than

sufficient for our purposes.

We now turn to the most interesting part of this argument, namely to the

“cross-term contribution”.

Define:

ep = Bf(Sew — A5 f(Serpr — Ay %) — Bf(Sex) f(Serpr — A 5),
g = Bf(Sex) f(Serpr — A %y) — B (Sew) f(Serp),
hi = Ef(Spx) f(Serpr) — Ef (Fisay ({Sea})) f(Sesp),
if = Ef (Fsay({Sex})) f(Sex + To*)—
— Ef (Fis,01({Sea})) f (Frspey ({Sex}) + To*)
(where T;f’z = (Xppr + -+ Xppp)x),
¢, = Ef (Fisey({Sex})) f (Fis,ay({Sp}) + T,7) (2.32)
Then, arguing exactly as before one obtains the following inequalities:
lef] < 2MC - Ce ML VE-L]
971 < 2MC- Cgem VT,
(2.33)
|hf| < 2MC - Coe At

lif| < 2MC - C%e Nt

For brevity define
V] =1 mp_1+[VE]—

E® =2 Y > e;f (2.34)

p=1 l=my_1+1
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we have the following chain of inequalities:

[VE]=1my_1+|VE

EM <2 ) Z Ieflé

p=1 l=myp_1+1

[VE|—-1mg_1+|VE]—p .
<23 Y eMecge VR <

p=1 l=mj_1+1

RS
= AMC - Coem MV N (1VE] — p) =
p=1

= AMC - C2e VI ((WVE] = 1) + (VR = 2) + ([VE] = (VE] - 1) =
= AMC - Coem MV L2 (VE] - 1) =

—2MC - Co|VE|(|[VE]| — 1)e~®LVET] ) (2.35)

Along the same lines, define

|VE] =1 mp_1+[VE]—p

GF =2 Y >oog (2.36)

P=1 t=my_1+|VE|

Exactly as above one obtains
IGW| < 2MC - Co[VE|(|[VE]| — 1)e @« LVET], (2.37)

Somewhat heavier algebra is needed to obtain the bounds for the absolute values

of the following two quantities:

1mg_1+[VEk|—p

S O Wl

=1 szk_l—i-l
and (2.38)
—1my_1+|Vk|—p

QW .= 2 Z >

p=1 l=mp_1+1
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It turns out that

max(|PM], [QP]) <

JAMCCE oy,
— 1 —e 9N

adg

. ((L\/EJ 1) eaig—_l(eimz . eaAzLx/EJ)> _ (2.39)

The term ¢,* needs some special attention.

Z?
P
Recall that
& = Bf (Fisun) ({Se)) F (Frsny ({Sia}) + T27)
o {Sez}\ 14 {Sex} 14 p /)
Let us make several easy but far reaching observations:

® Fig,03({Sex}) is uniformly distributed for all £ € N.

® Fis,03({Sex}) is independent of T/* since they are made of disjoint indices
associated to independent random variables.

. T/f’aC 4 S,x; by the very definition of the Schatte structure.

It follows that cf;x is actually an f-independent quantity. We can thus rewrite

it as follows:

for U uniform and

Ul o(X,:n>1).

Using the standard machinery of stationarity we see that the cumulative contribu-

tion of ¢;’s shall take the following form:

|VE] =1 my_1+[VE]—p

DI S

p=1 l=my_1+1
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[VE]—1my_1+[VE]—p

[VE]-1 [VE]-1 [VE]-1

=2 3 (V=g =2 30 VG -2 3w

|VE]—1 |VE]—1
Y G- Y i

IVE|-1
(Zc — Z )—2 Z pe,
p=|Vk]
[Vk]-1
= [Vk] - ZZC —2|Vk] Zc—2ch
p=|Vk]

Thus we have:

:Var(T1+T2+---+Tn):

= Z Var (Ty) (by independence)

= ZVar (Ty) + ZVar (Ty) =

=D7+ ) ([VE]+ AP + 0¥ + EM 4+ G¥ + PH 4 Q)+

k=4

[Vk]-1

220—22\/120—221)0—[/ =

p=|Vk]

n

. ZA
= ﬁ+~ (1+2Z )
=i | =t

+
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+ +2E— 4 +
my my My
SteB 22 VR Y
4 k=t ke p=lVE
M, M,
n \_\/EJ_l n
S e
9. k=4 j=1 k=4
My My
Observe, for example, the following:
‘Zk:‘ Al o Lsmam) <
mn mn
k=4
< LS umc. Co |V |e VR <
i
1 o0
< —AMC - C2 Y |VE]em oM VETL
" k=1

But, for all k£ large enough

and whence Z |Vk| e LVE=T] converges so that
k=1

1 n
— E A converges to 0. (2.40)
" k=4
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Similarly after(at times) tedious algebra one can deduce that

Sor YR
k=4

e — 0, —— — 0;
m’n m’n
(2.41)
S S
o L 0 AL — 0.
M Mo

The analysis of c-related quantities needs more care. We proceed as follows:
¢y =EfU) (U + Spz) =Ef(U)f({U + Spz}) =
=Ef(U)f({U +{Spz}}) =Ef(U)f(U + {Spz}) =
(using {z +y} = {z+{y}}) =
=Ef(U)f(U +{Spa}) —Ef(U)f(U + Fis,01({Spz})) +
+EF(U)f(U + Frs,ay({Syr})).
Since U 1L (X : j € N) we have trivially that
U L Fg,01({Sgz}) = {U + Fis,o1({Spa})} LU

as a direct consequence of Theorem of Schatte because Fyg .1 ({S,2}) is itself uni-

formly distributed!

Whence it immediately follows that
¢ = Ef(U)f(U + Sye) = Ef(U)F(U + {S,a}) -
—Ef(U)f (U + Fis,ey ({Sp})).
Thus:

e = [EF(U)F(U +{Spa}) — Ef(U)F(U + Fis,oy({Spa}))] <
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<E[f(U)f(U +{Spx}) = f(U + Fis,ny({S,2}))| <
< ME|U +{S,a} = U — Fis,.3({S,2})|" - C <
< MC CgeXr;

using the exact same Schatte-type arguments as before.

It is then a routine to see that

= MC Coe==lVE]
> G

= (2.42)
p=|Vk]
and that
DWVE] Y gl <
k=4 p=|Vk]
MCC? > —ady L\/EJ .
< D Ve |

k=1

and this sum clearly converges.

We now turn our attention to the term

n \_\/EJ—l
Y
k=4 p=1
As before, it is easy to see that the absolute value of the above cannot exceed

n |[Vk]-1

2MCCE Y > pe s,

k=4 p=1
Define

h(p) = pe=*9 = 1 (p) = e= (1 — pa,).

Thus if p < 1/a\, h will be increasing and it shall be decreasing otherwise.
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We can now split the sum as follows:

n L\/Ej—l

2MCCE Y >~ per <

k=4 p=1

n |Vk|-1

<2MCCEY Y per =

k=4 p=1

(2+[1/aX:])? [VE] -1
=2MCCy Y Y pe iy
p=1

k=1

[VE]-1

+2MCCe > > peee,

=14+ [1/an )2 p=1

Now:
|[VE|-1 [1/aXz -1
p=1 p=1

|VE]-1
+ Ll/a)\rJ e—oc)\z [1/aXz] + Z pe—a)\zp _
p=1+[1/ar]

= (upon introducing dummy but friendlier index j) =

[1/aXz |1 [VEk|-1
Z jefoz)\zj + Ll/a)\xJ efoz)\z [1/ars] + Z jefa)\zj'
Jj=1 j=1+|1/a)s ]

For j < |1/aX.;] —1 h(j) will be increasing.

Let us now observe the following:
j+1 j+1
/ge—ahfdg > min e e8¢ =
/ J €elig+]
j J

(since the function is increasing)

—ag]

:]6
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Similarly, if 7 > [1/a).] +1
J
/ Lem Nt dE > jem 0N
j=1
Putting all this together we can see that
|\VE|—1 [1/ar,|—1 JH1

Z pe —adep L Z /5 ’O"\zgdﬁ—i-

J
+ Ll/a/\xJ e—an Ll/a/\xj_’_

Wkl-1  J
+ > fem e g =

j=1+ /a0y

[1/aXz]
— / é—efa)\zﬁdé- + Ll/OC)\:EJ efa)\z Ll/a)\zj_i_

[VE]-1

b [ i

[1/aNz |
lVE]-1
— / gefa)\zédg + Ll/a)\zJ 6704)\1 [1/aXz]

whence, upon some tedious algebra we see that
[VE|-1

1 1
—alzp < —oXg [ T .
2 s (axﬁ <an>2)

_ e—a(lVEI-1) (L\/_JA; L ((;\)2) +

+ | 1/a),; ] e~ all/ada]

For brevity, define
(2+]1/aXz])? [VE]—1
al = 2MCC Z Z pe =P, (2.43)
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We then have:

n |Vk|-1
2MCCE Y Y per =
k=4 p=1
[VE]-1
=a; +2MCCY Z Z pe AP <

k=1t [1/on )2 p=L

- 1 1
saavee | 2 {A (o5 + )
) X X

k=1+(2+[1/aXz])?

. (L\/EJ)\I_ 1 + (ogi\m) > + U/&)\xJe_O‘AIU/a)\IJ}.

Yet again, for brevity, we define

af = e L + LY +
3 ad, a\,

+ [1/a), Je™ [1/eda]

Then the above complex expression takes a slightly friendlier form:

i k| —1 1\?
al + 2MCC%nat + Ze_A”(L‘/EJ_l) (L\/_J + ( ) ) .

al
k=1 x

3 .
It is now clear, since 37 ~ n?/? that

nL\[Jl

122;)@ —0 as n — oo, (2.44)

m
" k=4 p=1

Moreover, the series Zcﬁ converges absolutely. Putting all this together and

p=1
recalling the very definition of A, we deduce that

ar (Z T]) ~ A,my, . (2.45)
j=1
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In an identical fashion one can deduce that

Var (Z T]) ~ Ay, (2.46)

j=1

and the proof is complete. O]

We are now ready to prove our theorem. We shall apply the result of Major

both for T} (long blocks) and 7} (short blocks).

Put
B,=By=> Var(Ty), M, =2Mn.
k=1

It then follows directly from Lemma 2 that

M? = o(B,/loglog By,). (2.47)

Define the sequence (V%),cn of random functions on [0, 1] such that
v (0) = 0;

k (2.48)
Ul (By/By) = (2Biloglog BY) ™ Ty fork=0,1,...,n,

j=1
and demand UZ is linear on [Bf/BZ, B,,/Bz]; k = 0,1,...,n — 1. Then by
Major’s result it follows that (U%),cn is, P-almost surely, relatively compact in

C'[0,1], and the set of its limit points agrees with the Strassen set.

Similarly, let
Di = Var(Ty)
k=1
and define another sequence of random functions ((?¥),en by

¢:(0)=0

k (2.49)
(H(Dy/DE) = (2D2loglog D)™/ " T7: for k=0,1,....n,

=1
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and demand (? linear on [Df/Dz, D, " /D] for k € {0,...,n—1}.
Again, by Major’s result it follows that, P-almost surely, (¢¥)nen is relatively

compact in C[0, 1] and the set of its limit points agrees with the Strassen set.

Define the following quantities:

ko mj—1+V7]
ai =Y (f(Sew) = f(Sex = A, 5)),
j=1 f=m;_1+1
ko mj—1+1V7] k
bi = Z (f(ng —A;5) —Ef (S — Aj—ml)) = ZTJ’
jil Z:mj,l—&-l ]:1
k. mj—1+ V7]
= Ef(Sex — A, %),
Jj=1 f=mj;_1+1

k m; k
=Y Y (f(Ser—IL%) —Ef(Sw —I1,%)) = > 17,
7=1 t=mj 1+ (Vil+1 =t

g =) Z Ef(Sex — 11, %)), (2.50)

=1 ¢t=m;_1+|V7]+1

.

where A,’s and II,’s are exactly as before.

Observe that
my
ap+bi+ e Hdi+pE+ai = f(S;w).
j=1

by:

Define another sequence of random functions (fol(t))n>1

Pr(0) =0 Vn eN;

o (Bi/B;) = if(ij)/(QBi log log B)!/? (2.51)

i=1
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for k € {0,...,n} and ®Z is linear on [Bf/BZ, B, /Bz] for k € {0,...,n —1}.

Let || - || be the sup-norm on C10, 1]. Observe that

e — @3]

= sup | W5 (t) — ®(1)] =

0<t<1

= max |WI(t) — ®%(t)| =

0<t<1

(since [0, 1] is a compact set and difference of 2 continuous functions is itself

continuous)

B.7 B, 7
\Ija: k+1 o (bx k+1 —
()= (%

B B,*
(since both U7 and ®; are linear on { k k+1:|)

B’ B
_ « [ Bk + (Be\| _
= o () -1 () -

R S ke ki bi
© 0<k<n (2B% log log Bx)1/2 (2B loglog Bg)'/2|

— max ap + ¢ +di +pi +a;
0<k<n | (2B2loglog Bz)1/?

1
< X X
= @B loglog )1 (H o] + gmges Jeil+

X xT T
T s il + max [Pl +of£,?§|qk|>- (2.52)
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Using the same Schatte-type ideas to which the reader was heavily exposed to

in the proof of Lemma 2 one obtains the following bounds:

jaf| <2C CaZLf el My

il <20 - Ce Y |Wjlem VT
j=1
+20-C Y |Vjler Vit = g,

Jj=1

df| <2 C2 Y| W/jlem VI = g,

Dac

“(5:)]-

< M? - (2D%loglog D2)'/* for some MY because relative

Diﬂ
Pkl = ‘(2D‘” loglog D;) "¢y (—)' _

— (2D2 log log D¥)'/?

compactness of (¥),en implies its uniform boundedness. (2.53)

Finally, as before

lgr| < MZ; for some MY .

However, Lemma 2 tells us that

4
DE ~ Ay, ~ 5A1n5/4, while

) (2.54)
By~ Ayt ~ S Aen™?

Putting these facts together yields that

|We — 7| — 0; P-almost surely. (2.55)
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Thus it clearly follows that (®F),ey is relatively compact in C10, 1] with probability

1 and the set of its limit points agrees with the Strassen set.

Let us now introduce the following sequence of random functions:

©7(0) =0 for all n € N,

(B - 12, (2.56)
o, (B_Z) = ;f(ij)/@Axmn loglogm,,)"/<; ke{0,...,n}
and O is linear on [Bf /B, B, /Bl k € {0,...n— 1}

Then we have:

ch;i — @fL” = (arguing exactly as before) =

> f(S) > f(S)
= max = =

0<k<n | (2B2 log log B¥)'/2 a (24,my, log log m,,)1/2

IN

(2B% log log B)1/2
(2A,m,, loglogm,,)1/?

< sup |<1>x<t>|-‘1—

. (2.57)

However, (®7),>1 is, P-almost surely, uniformly bounded. Moreover, from

Lemma 2 we know that
B loglog By, ~ A,m,, loglog m,, (2.58)

It follows that, P-almost surely, (©%),>; is relatively compact in C[0, 1] and the set

of its limit points agrees with the Strassen set.

We shall now define another sequence of random functions:

£0)=0 forall neN,
S 2.59
& (%) =Y f(Sjx)/(2A,my loglogm,)'*; &k €10,...,n} (2:59)

n =1
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andfﬁislnwaron[fﬁe W%+1];A7E{D,”.,n——1}

my my

We claim, surprise-surprise, that (£%),en is itself, P-almost surely, relatively

compact in C[0, 1] and the set of its limit points agrees with the Strassen set.

In order to prove the above claim, let us define the following map:

n:mu%mw,nmwspim“}
m, My,

to {B,f kal

— in a linear way, with
%’%} v

m B
| —)=—. 2.60
(77l ) By (260

n

It is easily seen that £*(t) = OZ(T,(t)). Thus:

|67 — & = max|©7(t) — ©5(T(1)]-

0<t<1

However, P-almost surely, (©7),cy is equicontinuous and hence it will be sufficient

to show that

max |T,(t) — t| = 0 as n — oc.
0<t<1

Using the same ideas as before one can see that:

B,f my,

T, (1) — t| = .
max |1,,(t) — t| = max Br m,

0<t<l1 0<k<n

(2.61)

Recall that B ~ A,m,. Standard e — N argument shows that the quantity on the

RHS tends to 0 as n — oo.

Thus, (£7)nen is itself, P-almost surely, relatively compact in C[0, 1] and the

set of its limit points agrees with the Strassen set.
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In order to complete our proof we shall have to introduce one last sequence of

random functions:
6:(0) =0 forall neN,
(2.62)

V4
b2 () = () A oglog )

mp(") j=1

¢ (41

Mp(n) Mp(n)

€ {0,...,mpyw} and 67 is linear on [ ];EG {0,...,n—1}.

Here (p(n))nen is a sequence of integers defined implicitly via inequalities:

Mp(n) < 1< Mip(n)+1-

We proceed by showing that
HFZ”L — 9;”:;“ — 0; P-almost surely.

As before,

IT% = 6zll = max %IQZX%\FZ@) —0;(1)].

It is essential we establish the connection between the interpolation points of ran-

dom functions 67 and I'}.

For this purpose define

k:zmax{%:gg : } (2.63)

Mp(n)
Then one of the following has to hold (we include pictures to illustrate our reasoning

and make our point clearer):
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() | x |
k 14 {41 k+1
n Mp(n) Mp(n) n
(ii) | % ! % |
k 14 k+1 +1 k+2
n Mop(n) n p(n) n
(i) | | | | | |
k 14 k+1 k+ 2 {+1 k+3
n mp(n) n n mp(n) n
(iv) | | | | | | |
k { k+1 k+2 k+3 {+1 k—+s
n mp(n) n n n mp(n) n

where s > 4.
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We start by showing that cases (i) and (iv) are impossible

Suppose (i) were true. Then

E+1 k _(+1 14
__> J—

n o Mpn)  Mp(n)

= Mpn) > N # (2.64)

since

Myp(n) S 1< Mp(p)+1-

Now suppose (iv) were possible. Then

E+3 k+1 {41 1
— < — =2<
n n Mpn)  Mp(n) Mp(n)

# (2.65)

since my,(,) ~ n and so the above would fail for all n large enough.
Thus, if we take n large enough, only (i) and (iii) are possible.

We shall deal with these two cases separately. Firstly, let us suppose (i) holds;

then arguing exactly as before we would have:

p H<lta<X 41 |Fn(t) - en(t)| <
Mp(n) T T Mp(n)

<15 (3) =2 (7 )L (57) -5 G
n Mp(n) n Mp(n)
Fi(kﬂ)_gz(eﬂ) Fi<k+2>_0£<€+1>‘ )
n Mp(n) n Mp(n)

For convenience we choose to examine the second quantity in the above in detail,

b

Y

others are dealt with in an identical fashion.

Notice that

14 kE+1 E+1
< + :>£§L-mp(n)§k+1-ﬁzk+1,
n n

Mp(n) n
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so, ¢ < k+1.

Whence:

n () - () -
n Mp(n)

k+1 V4
> f(S) Z f(S;x)

= = — — <
(2A,nloglogn)t/?2  (2A,nloglogn)t/2| —

k+1
1

: (24,nloglogn)!/2 D (Sl <

j=0+1

M(k—10+41)
~ (24,nloglogn)l/2”

However, we also know that

Thus:

() o ()| <
n Mp(n)

: . ‘ (n = mpey) +1
~ (2A,nloglogn)t? \ mym) p(n) .

Similarly, we obtain the following inequalities:

-] -0* < B 5
" (”) " <mp(n)>‘ ~ (2A,nloglogn)!/? <mp(n) (n mp(ﬂ)) + ) ;




76

k+1 1
n n
M 4
= - 2 2,
- (2Amnloglogn)1/2 (mp(n) (n mp(n)) + > (2.67)
and finally,
re (k+2) g (€+1)‘ <
n n
M 4
= — Myp(n)) + 3 2.68
~ (24,nloglogn)l/? (mp(n) (n = mpm) + > (2.68)

whence, under the assumption (i), we have:

x x
P IE?<X 41 ‘Fn<t) - en(t)| <
Mp(n) = T Mp(n)

Now suppose (iii) holds.

As before, one has the following:

Mp(n) — T Mp(n)

< max( ry (

e (k+2> g <£+1)
n Mp(n)

Exactly as before one can deduce that

—
38
VRS

o
S|+
w
N——
|
D>
38
/N
)
s|+
—
N——
N——
o
-3
=

, ax T (1) = 6:(1)] <
Mp(n) — T Mp(n)
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< M ¢ (n —m ) +4
~ (24;nloglogn)/2 \ mypm p(r) ‘

Finally we have, putting everything together:

115 = 0| <

< - ‘ ( )+4) <
max = Mpyn >
T 0<t<my (-1 (245nloglog n) /2 \ myey p(n)

< M
~ (24,nloglogn

)1/2 (n — Mp(n) + 4) =

M
<
~ (2A;nloglogn

)72 (M1 = Mp(ny +4) <

3M(p(n)+1)1/2
~ (24,nloglogn)!/?

for all n large enough. (2.71)

However, recall that
Mp(n) ~ 1

(2.72)

2
Mp(n) ~ —p(n)3/2.

3
Hence it immediately follows that

12 1/3
Piny Cn'’? =

3M(p(n)+1)1/2
(2A,nloglogn)/?

—0 as n — oo. (2.73)

Whence in order to show, P-almost surely, that (I'?),cn is relatively compact in
C'[0, 1] and the set of its limit points agrees with the Strassen set, it will be sufficient

to show that (0%),cn satisfies the required properties.

To this end we shall focus our attention on showing that

||§p(f{) - 92“ — 0 P-almost surely.
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Clearly, due to the very nature of (p(n)),en (f‘p(ﬁ))neN inherits all the necessary

properties from (£%),en with P-probability one.

As before,
167 = &l =
- nglgz%)fl %IE?SXM |§P(£) (t) — Qﬁ(t)‘ .

Mp(n) T T Mp(n)

Again it comes as no surprise that

max \gp(g) (t) — Hﬁ(t)| <

My <y Thtl
Mp(n) = T Mp(n)
14 mi
% ()~ (i)

My )" \ ()
4 ME+1
() o0 ()
My )P \ ()
Clearly the following holds:

14 mi
NEREENTD
Myp(n) 70\ M)

Zf(sjl“)

(2A,myp(n) log log myy () ) 1/2

< max
m<f<mp 1

max
mp<0<mp41

(24, mp(n) Log log My ) />
(2A,nloglogn)t/?

IN

.'1_ N

M(@—mk_l —f— 1)

. 2.74
(2A,nloglogn)/? (2.74)

T

However, (fp(n)) is uniformly bounded =

14 mi.
() -o (2]
Mip(n) 70\ M)

= max
mp<l<mp 1
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< e g o Ay loglog mym) 2

- (2A,nloglogn)/2

+

. M
(2A,nloglogn)l/?

(L(k+1)Y2] + [(k + 1))

for some M?.

Using identical methods we deduce that

1€ = all <

(2A,myp(n) log log mp(n))1/2

< M*.
(2A,nloglogn)/?

1—

_|_

" 1/2 1/4
oo T oettt (L 12+ [+ 1)) <

(2A,my(m) log log mp(n))l/2

1—
(2A,nloglogn)/?

<M. +

. M
(2A,nloglogn)l/?

2p(n)'/2. (2.75)
Using the p(n)-asymptotics we discussed before we deduce that
pr(ﬁ) — 0% = 0 as n — oo; P-almost surely. (2.76)

Thus (67),en is, P-almost surely, relatively compact in C0, 1] and the set of its

limit points agrees with the Strassen set.

The proof is now complete. O

As in Stassen’s work, see Theorems 13 and 14 in the Introduction of this very

chapter, we have several immediate consequences:

Corollary 1. Assume the Schatte model set-up. Then:
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(a) P-almost surely,

lim sup(2n log log n) /2 Z f(Spx) = AL/? (2.77)
for almost every x.
k
(b) Let Ty = Z f(S;x) and a > 1 be some real number.
j=1
Then, P-almost surely,
lim sup n~1%2(2log log n)~*/> Z |T|* =
/ d
t
" La)2
[ =
0 2
— _ A/ 2.78
2(a+2)271 ¥ ( )

for almost every x.

(¢) Let T} be as in (b) and let #{—} stand for the number of elements of the set

{=}. Then, P-almost surely

1
limsup —# {k <n: (2kloglog k)~V2T, > CA;/Q} =
n

n—o0

1
=1—exp (—4 (—2 — 1)) for almost every x;
c

where ¢ is any number in [0, 1]. (2.79)

Let us now state and prove our next result. It is a version of the Weighted Law

of the Iterated Logarithm.
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Theorem 26 (Raseta). Let us inherit the entire set-up and notation from our

previous result, namely Theorem 25.

Let (an)nen be a sequence of reals satisfying the following conditions:

2

(ii) 1213§n|ak1 :0<(iai)7>; v € (0,1/2).

k=1

1
(i) |an| > n® where ¢ satisfies: (1 + 2¢) (— — 'y) > %

Define EY = Var (Z akf(Skx)) and assume there exists a positive function
k=1
of x, called 0(x); with
E? > 0(x) Zai for all x and all n € N.
k=1

Then,

P-almost surely

Z ai.f (Sk)
lim sup ———
nooo  (2E% loglog E*)1/2

=1 (2.80)

for almost every .

Proof. Our philosophy of proof has not changed much; namely the idea is as follows:

(a) introduce long and short blocks;

(b) use the long blocks to get the asymptotics on n;

(c) force this asymptotics in the original problem by (pardon my French) per-
forming brutal murder of the short block contribution, whence the Weighted

Law of the Iterated Logarithm shall follow from its long block counterpart.
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Let a, 8 be two positive real numbers with o > f3.
Let the k' long block have length [k®| and the k' short block length |£”].

Analogously to our previous proof we define

n

ma =Y _([k*] + [£7]). (2.81)
k=1
We will establish several conditions which, if met simultaneously, would be

enough to complete the proof.

In order to repeat essentially identical computations we shall group these in one
place and demonstrate that the assumptions (i) and (ii) from the very statement

of our result provide a reasonable umbrella for our sufficient conditions.

This may sound a bit orthodox; but I believe it is more honest than working
backwards trying to impress the reader with observations that seem to miraculously

come out of “thin air”.

Our first idea is to establish the result along a subsequence (m,,),en and to find

a condition that shall ensure this will complete the proof.

As before, define implicitly the sequence (p(n)),en of integers using the following

inequalities:
Mp(n) <n< Mpmn)+1; N € N. (2.82)
Suppose now that our result has been established along the subsequence (m,),en.

Nature of the sequence (p(n))nen is clearly such that then the result would have

been established along (m(n))nen too.



2. Limit Theorems for the Schatte Model 83

But then we have:

Z akf(skx)
lim — =1 =
n—oo (2% log log E¥)!/?

Mp(n) n
> af(Skx)+ > anf(S)
_ T =y (n) 41 B
T oo (2E,x loglog E,x)/? B
( Mp(n)

. s A\ 1/2 > anf(Skx)
<2Emp<n) loglog £, " ) . 1
(

T
s 2E%loglog E* 2E,,7 loglog 7 )/ i
\
n )
> anf(S)
k=mp(ny+1
2.83
(2Ezloglog Ex)1/2 (7 (283)
J
whence it shall be sufficient to establish the following two relations:
Mp(n)
— =1 —
Er as n — 0o
and (2.84)
1 > af(Sia) -0
(2EZ loglog E2)1/? e\t '

k=mp(n) 1

We look at the second condition first due to its simplicity:

n

Y anf(Skw)| <

k=mmp(n)+1

1
(2E7 log log Ez)1/2
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M - max |ag|(n — 1))

(2Ez loglog EZ)1/?

(M is as before a bound on f)

2M max lak|(p(n) + 1)*

2.
—  (2E%loglog Ex)1/2 (2:85)
We shall summarize and enumerate this condition by:
p(n)* max |ay|
1<k<n
2 — 0. 2.
) (2E*loglog E%)1/? (2.86)
Let us now return to the first one.
Observe that
Z a;Ef?(Spr) Z agaBf(Spx)—
k£
ke{l,...n}
n 2
- (Z akEﬂskx)) ,
k=1
and so trivially
Mp(n)
o= 3 RS
p(n) 2
+ Z agaBf(Skx) f(Sex) — (Z aipEf Skzc)> )
kA0 k=1
k @G{l ..... mp(n)}
Our job is identical to showing that
Eﬁ - mm
' 50 as n— oo, ie. (2.87)
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Ew
k=1(n) 11 ke
k,ZG{mp(n)+1 ,,,,, n}

_ (gi;akEf(sgx))2-+ (éii)aﬁEf(Skx)>2}.

Firstly:

Z akEf (Skx) < M? max ak( mp(n))

1<k<n
k=mp(n)41

< 2M? max a;(p(n) +1)*.

1<k<n

Bounding cross terms is somewhat more delicate:

Z arpagEf(Spx) f(Sex) =

P,
k,fe{mp(n>+1 ..... n}

N=Mp(n)

=2 Z Z arap i B f (Sk) f (Skypr) =

p=L k=mpn) 1

Mp(n)

=2 Z Z arap4,Ef (Skx) f(Skx + T{x),

p=1 k=mp(n) 41

(Tf = Xipr + -+ Xiey) =

Mp(n)

=2 Z Z At p [Ef Skx) f(Spx + T x)—

p=1 k=) 41

—Ef(Sx) f (S + Fireay ({Tlfx}))} +

Mp(n)

+ 2 Z Z ]Ef SkI SkZE + F{T,fx}({T]fx}» . akak+p.

=1 k=m p(n)+1
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However, by Schatte-type arguments we deduce easily that the last sum van-

ishes. Whence the upper bound on the cross terms is ~ mka<x a: - p(n)®. Thus our

first condition becomes

max aj - p(n)°

Fr —0 as n— oo. (2.88)

We now focus on establishing sufficient conditions for the Weighted Law of the

Iterated Logarithm along the subsequence (m,,),en.

Observe that

Mn n Mmrp_1+[kY]
Doaf(Swr) = > af(Siw— A+
k=1 k=1 j=mp_1+1

n mg_1+[k*]

X D wlf(Sm) — f(Se - A)+

k=1 j=mp_1+1

+) > a; f (S — 10, %)+

k=1 j=my,_ 1+ |k ]+1

+ Z Z a; (f(S]x) — f(Sjx — Hk—xl))7

k=1 jmmy 1+ ke 41

where the two sequences of random variables (A7) ien and (1IF) xen have an identical

meaning and purpose as before.

As pointed out before, the idea is that the only contribution should come from

the long blocks, i.e. that the asymptotics is to be directly inherited from long blocks.

The fundamental difference (and the unfortunate truth) here is that the long
block asymptotics is much more vague than m,A,; where A, is our previously
encountered function. Simply, agaxi, is now a quantity that does not depend on

¢ only and whence the beautiful stationarity-type argument breaks down. This in
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turn forced us to put super-bold bounds on the short blocks (versus obtaining the

result along short blocks too, and disposing of it by using m,,/m,, — 0 as n — o).

Lifting this ban shall be a part of our future work; for the time being we must

demand the following three conditions:

n mr_1+[k*]

a;(f(Sjz) — f(Sjz — ALY)) =0,
Trirre SV SINIULEENCEAREY

/2 Z Z a;(f(S;x) — f(Sjz — 11, %)) — 0,

(E,z loglog E, ¢ k=1 j=my_1+| k] +1

)72 Z Z a; f(Sjx — 11, %) = 0. (2.89)

(E,: loglog B, k=1 j=my_1+|k]|+1

Again arguing as what can be called “usual” by now one can obtain the following

conditions that ensure the validity of the relations listed above:

| Dnax Jay|

(Qwan log log Enfn) Y

5 =0 as n — oo; (2.90)

Tl
- —0 as n — o0. (2.91)

(En,fn log log Eﬁn) 1/2

For brevity, we now define:

n mg_1+[k%]

v (Y3 wise-a)

k=1 j=mj_1+1

3

and (2.92)

D? := Var (Z Z a; f(S;x — Hk_””l)).

k=1 j=my_1+|k>|+1

3
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Now, we want to get the Weighted Law of the Iterated Logarithm for long blocks.

Using the famous result of Kolmogorov (see Theorem 11) we find the following

two conditions:
BY - 00 as n — oo,

Jpax lail -n® =o ((loglongi) )

Finally we want the block asymptotics to be the right asymptotics; whence we

must demand:

T
n

T
E7

—1 as n— o0. (2.94)

This last condition turns out to be best dealt with upon a further split into the

following two conditions:

By+Dy-Eyp o . Di
Enfn — all Enfn — as n — oQ.

Reader has been overexposed to the Schatte-machinery already, and must trust
us that, upon some heavy algebra, one can obtain a more compact list of conditions

that is easier to put under an umbrella:

(0 (14 22) (% _ 7> > af(a+1),
() (1+a)(1+20) (% - 7> > 148, (2.95)

1
(ili) (1 +a)(1+2) (5 e 5> >
for some 0 > 0; as small as you may please. But then it is immediately clear that

it shall suffice to have

(14 2¢) (% - 7) >1/2 // (2.96)
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The interplay between e and ~ is a rather interesting one; values of 7 close to
1/2 correspond on strong assumptions on ¢ while small values of 7 yield mild e-

assumption. Making this condition more Kolmogorovian remains a challenge. [J



Chapter 3

The Schatte Model as a Tool in
Analysis and Number Theory

3.1 Introduction

Up to now we have been locked within the fortress of Probability; one could think
of previous results in the context of limit theorems for dependent random variables,

a certain form of “I’art pour I'art”, which is a 19" slogan for “art for art’s sake”.

However, it is now time for us to use the Schatte model to get insight into other
fields of mathematics, where deterministic methods either fail altogether or yield,

however complicated, not very general results to say the least.

We shall now illustrate our point with several examples. The following is a very

famous result with a proof that takes almost superhumane efforts to comprehend.

3.2 Schatte’s Structure in Analysis

Theorem 27 (Carleson, 1966). Let (cx)ren be a sequence of reals. Then the series

Z ¢ sin 2wkx converges almost everywhere if and only if Z ci < 00.
k=1 keN

90



3. The Schatte Model as a Tool in Analysis and Number Theory 91

Now, under mild conditions on f, suppose we are to ask a similar question,

namely:
o o
Suppose Z c2 < oo; does it follow that ch f(ngz) converges almost every-
k=1 k=1

where, where (ny)ren is some subsequence of N7

For non-random (ny ) ey this is generally false (for more details see Nikishin [41]).

o
Finding the precise almost everywhere convergence criteria for Z e f(ngx) and

k=1
N

1

for the existence of lim — Z f(ngx) seems to be mission impossible in analysis
N—oo N 1

for almost 100 years since the problem was first raised by Khinchin. For details see

[34]. To illustrate how deep in the dark analysis is concerning this problem let us

simply mention that the problem is unsolved even for n; = k!

Now let us forget about ny’s and let us return to the Schatte’s Si’s. The methods
of ours, unfortunately, restrict us to the domain of those random frequencies that
are not accumulating point-asses; i.e. we are restricted to the domain of absolute
continuity. Nevertheless, think of Si’s as a “simulation” of the integral n;’s. As
we know, almost all increasing sequences of integers are of linear growth, moreover

almost all of them satisfy % — 2 as k — oo.

This essential feature can easily be realised within our framework, since the
Sk’s can trivially be chosen in a way to have suchlike asymptotics. Thus, although
strictly formally speaking, we do not really solve the problem in hand, the method
shall surely provide us with a pretty good idea of what is going on. These proba-
bilistic arguments shall therefore provide us with our very own “quantum of solace”,

due to failure of deterministic methods.
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To illustrate the power of randomness let us state the following result:

Theorem 28 (Berkes and Weber, 2009). Assume that the underlying random vari-
ables (Xp)nen are those of Schatte, defined on some probability space (2, A,P).

Moreover, let f satisfy all the conditions imposed in the previous chapter.

Then, P-almost surely
Z cef(Sgx) converges for almost every x
k=1

provided that Zci < 00.
keN

It is clear now that dropping determinism on the frequency puts Carleson’s

result on steroids, mild randomisation extends his theory to a vast class of functions!

Before we are ready to finish off our story we must remind the reader of some

of the underlying concepts.

3.3 Classical Results on Discrepancies

Definition 1. A bounded sequence (s, )nen of real numbers is said to be equidis-

tributed on an interval [a, b] if for any subinterval [c, d] of [a, b] we have

fim ’{31,...,sn}ﬂ[c,dH . d—c

3.1
N—oco n b—a ( )

(here the notation |{s,...,s,} N[c,d]| denotes the number of elements out of first

n elements of the sequence that are between ¢ and d).

Definition 2. We define discrepancy D(N) of a sequence {51, Sa, ... } with respect

to the interval [a, b] as

D(N) = sup |{Sl,...,SN}ﬂ[c,dH_d—c (3.2)

a<c<d<b N b—a
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It is clear that the sequence is equidistributed if the discrepancy D(N) — 0 as

N — oo.

Definition 3. Sequence (a,)nen is said to be equidistributed mod 1 or uniformly

equidistributed mod 1 if ({a,})nen is equidistributed w.r.t. the interval [0, 1].

(Here and elsewhere {x} shall still stand for the fractional part of a real num-
ber z.)

N-1

n—o 1n the s-dimensional unit cube

Definition 4. Given a point set p = (z,)

I =10,1)%; the star discrepancy is defined as

DN*(P) = sup D(J, P)

JEY

where the local discrepancy is defined by

number of z,, € J

D(J,P) = i

— Vol(J)|,

where Vol(J) is the content of J, and Y is the class of s-dimensional subintervals

J of I of the form

JEH[O,UZ-) 0<wu; <1 forl1<i<s. (3.3)

i=1
Definition 5. Let d,n € N. For 0 < p < oo and the point set {t,...,t,} C [0, 1)

we define the L,-star discrepancy by the L,-norm of the discrepancy function;

namely:

discy (t1, ... tn) =

/

0,14

n

N([0,2]) = 3 T (8)
k=1

P 1/p
dm)
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where ([0, z]) is the d-dimensional Lebesgue measure of the box:

0,2]={ye0,1]": 0<y; <z;: i=1,...,d}. (3.4)

We will now explore some classical and some more recent results in this field:

Theorem 29 (Weyl, 1916). Let « be an irrational number. Then the sequence
({na})nen is uniformly distributed mod 1, where {x} stands for the fractional part
of a real number x. Moreover; if p is a polynomial with at least 1 irrational co-
efficient (other than the constant term), then the sequence (p(n))nen s uniformly

distributed mod 1.

This is another result of Weyl’s; for details see [37].

Furthermore, (logn),ecn is not uniformly distributed mod 1. For details, see,

yet again, [37].
The following is a famous result of Analytic Number Theory.

Theorem 30 (Vinogradov, 1935). Let a be an irrational number. Then (pa)pep

(P = set of primes) is equidistributed mod 1.

We now move to so-called “metric theorems”, namely the results that describe
the behaviour of some parametrized sequence for almost all values of suchlike pa-

rameter.

We start with the following result:

Theorem 31 (Bernstein, 1911). For any sequence of distinct integers (b, )nen; the

sequence (b,a)nen 1s equidistributed mod 1 for almost all .
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More parametrisations have been studied, for example let us mention the fol-

lowing result:

Theorem 32 (Koksma, 1937). The sequence (a™)nen 15 equidistributed mod 1 for

almost all values of a > 1.

It is interesting to point out that whether (e”),cn or (7"),en are equidistributed

mod 1 is still unknown!

However, it is known that the sequence (a™),cy is not equidistributed mod 1
if o is a so-called PV number. A PV (Pisot—Vijayaraghavan) number is a real
algebraic number, strictly larger than 1 that has its all Galois conjugates bounded

(again strictly) by 1 in absolute value.

We shall now move on to some more contemporary results for which our results
will turn out to be either a logical continuation of, or they are somewhat similar

n nature.

We start with the following result:

Theorem 33 (Philipp, 1975). Let (ng)ken be a lacunary sequence of integers, that
1s dqg > 1 with

Ngr1/nk > q  for all k €N.

Let Dy denote the discrepancy of the sequence (ngx)ken. Then, for almost

every x,
ND
32712 < lim sup A < (3.5)
Nooo VNloglog N
where

C < 166 + 664(¢*? — 1)~ (3.6)
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Philipp conjectured that

1
2
C? < 2suplimsup N ! (Z 1; ({npa}) — \I|) dx, (3.7)

I N—oo k<N

where the supremum is taken over all intervals of the form I = [, 3); 0 < a <

B < 1; 1; will stand for the indicator of I, while || will stand for the length of I.

The bound on C? suggested by the RHS of (3.7) did not come out of thin air,
it is an educated guess Philipp made based on his previous work. Namely in his
paper [43] Philipp computed the value of the corresponding limsup for 7, = 2.
The value turns out to be constant almost everywhere that equals the RHS of (3.7);

where one should put 2* for 1. However, many years later, the question of value

of the limsup is still open; except for some special classes of sequences 7.

The following result was the first one in this direction:

Theorem 34 (Fukuyama, 2008). Let Xy be the limsup in the case n, = 0%. Then

(1/2 if 0° is irrational for all ¢ € N,

4272 if0 =2,

Yo =< (0 +1)0(0 —2)
2,/(0— 1)

VO +1

(2v0 —1

if 0 >4 1s an even integer,

if 8>3 is an odd integer.

Although rather complicated, the lim sup in the above is still a constant.

The following result is the first one with a non-constant almost everywhere

limsup in this theory:
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Theorem 35 (Aistleitner, 2010). Define a lacunary sequence (ng)ren as follows:

(k> if k=1 (mod 4),
9(k=1)*+1 _ q if k=2 (mod 4),

m={ (3.9)
ok +k if k=3 (mod 4),
ok=1*+(h=1+1 _ 9 if k=0 (mod 4).

\

Then
ND
lim sup N (1) = U(x)
Nooo V2N loglog N
(DN is the discrepancy of (nkx)keN); where
(3/4/2 for0 <z <3/8,

V21 —x)x —x/2 for3/8 <z <T/16,
U(x) = (3.10)
49/128 — x/4 for7/16 <z <1/2,

(V(1—2) for1/2 <z <1.
For the picture of ¥(z) see Figure 3.1

Last but not the least result we shall mention here is as follows:

Theorem 36 (Fukuyama and Miyamoto, 2011). Let (nx)ren be a sequence of in-

tegers.

We first introduce the following quantities:

ND
> {ma} = limsup v i} (3.11)
Nooo V2N loglog N
and
* : NDn"{nz}
=1 3.12
> {me} S T T (3.12)
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045

Figure 3.1: graph of ¥(z)

where Dy{nxx} and Dy{nxx} stand for discrepancy and star discrepancy, respec-

tively, of the sequence {npx}.

Split R into two parts; namely:

Those § € R with 0" ¢ Q for any r € N (3.13)

and those 8 € R such that there exist p,q and r € N with

r= min{n eN: 9" e @}, grd(p,q) = 1;

0= 1/p/q.

(3.14)
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If (3.13) holds, define X9 = 1/2. If (3.14) holds, define Xy as follows:

Vg +1)(pg — 1) /2 p,q odd,
V+1plp—2)/(p—1)3/2 p>4, peven, ¢ =1,
Yy = (3.15)
42/9 p=2 q=1,
[ V/22/9 p=>5, q¢=2.

Then, for almost every x one has the following:
S{(0" — 1)x} =3, (3.16)
S (0" — 1)a} = Zj(x), (3.17)

where 3%5(x) is a continuous function on the torus.

Moreover, if (3.13) holds, then
Yp(x) =3g(z) = 1/2. (3.18)

Furthermore, if (3.18) holds and either one of these three conditions holds:

(i) p and q are both odd,
(i) ¢ =1,
(i) p=>5, ¢ =2,
then ¥5(x) is not constant and

Y,(x) < Xy except for finitely many . (3.19)
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Figure 3.2: limsup function for nj, = 2% — 1.

For the graph of ¥3(z) see 3.2.

This indicates irregular behaviour of ¥3(x) when 6 is a power root of integers.

Before we move on to our results we have some more set-up to do and one more

directly relevant result to mention.

3.4 Reproducing Kernel Hilbert Spaces and the
Result of Finkelstein

Definition 6. Let X be an arbitrary set and H a Hilbert space of complex valued

functions on X. We say that H is a Reproducing Kernel Hilbert Space if the linear

map L, : f— f(z) from H to the complex numbers is continuous for all z.

Now, by the Riesz representation theorem this implies that for all z in X there
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exists a unique element K, of H with the property that

flx)=L.(f)=(f,ky) forall feH. (3.20)

The function k, is called the point-evaluation function at the point x. Since H
is a space of functions, k, is itself a function that has X as its domain, and whence
can be written by k,(y). The family of functions k,(y) may be embedded into a

single function K : X x X — C be defining

K(x,y) := K.(y). (3.21)

This function is known as the reproducing kernel of the Hilbert space H and its

uniqueness is ensured via Riesz representation theorem.

For many further details on the reproducing kernel Hilbert spaces see Nachman

[40], Berliner and Thomas [8] and Oodaira [42].

We shall now state the following result which will turn out to be a special case

of that of our own:

Theorem 37 (Finkelstein, 1971). Let Xi, Xs,... be a sequence of independent
identically distributed random variables on some probability space (2, A,P). More-
over, let X be uniformly distributed on [0, 1]. For fized w € 2 and x € [0, 1] define
F,(x,w) to be the empirical distribution of the X; at stage n; that is nF,(z,w) is

the number of Xi(w), Xa(w),. .., X, (w) which are smaller than z.

Define

Gl w) = nk,(z,w) — nF(z)

3.22
(2nloglogn)l/2 (322)

where F'(x) stands for the distribution function of Xj.
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Now define K to be the set of all elements f of C|0, 1] fulfilling the following

three conditions:

(ii) f is absolutely continuous with respect to Lebesgue measure,
1
(i) [ (flo)Pde <1,
0

where f stands for the derivative of f with respect to Lebesgue measure. Then,

there exists 0y € A; P(Q) = 1 such that for all w € g, the sequence

(G"(w’ '))nzz’)

is relatively compact in C[0, 1] and the set of its limit points is K.

3.5 Results

We now, without further delay, state our first result.

Theorem 38 (Berkes and Raseta). Let (X,)nen be a sequence of independent
and identically distributed random variables on some probability space (£, A, P).
Furthermore, let X1 be bounded with bounded density. Then there exists a set G C R

with Lebesque measure 0 such that, P-almost surely, the sequence of functions

/| N
t,x) =4 ———(Fn(t,x)—1t) 0<¢t<1, N=12... 3.23
aN( 7I) 210g10gn( N( 7‘%') ) =Y =" ) <y ( )

is relatively compact in the Skorohod space D[0,1] for all fivred v ¢ G and its class

of limit functions is identical with the unit ball Br of the reproducing kernel Hilbert
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space determined by the covariance function

I'(s,s") = Egs(U)gs ZEgs )95 (U + Spr)+

+ ZEgS )gs(U + S,x). (3.24)

Here, U is the uniformly distributed random variable independent of the sequence

(Xn)nens gs = Lo,y — s is the centered indicator function of the interval (0,s) and

N
1
Fi(t,x) = + D oo (Skr) (3.25)
k=1

will stand for the empirical distribution of the sample
{Siz}, {Sex}, ..., {Snz} (Sp=X,+--+X,)

and lqp) will be the indicator function of the interval (a,b), extended with period 1.

Proof. Without loss of generality we can assume x = 1. We follow the classical
argument of Finkelstein [23], proving first a finite-dimensional Law of the Iterated
Logarithm for the values of the function ax(t,1) in (3.23) restricted to a finite
subset {t1,...,t.} of [0, 1] and then to show the relative compactness of ay in the

Skorohod topology.

Let 0 =ty <t; <---<t,=1and put

Y5 (f(0.0)(Sk)s Ftr ) (Sk)s -+ ftor.) ()

where f(a,b) = Jap — (b — a).

We will start with the following lemma.
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Lemma 1*. With probability 1 (w.r.t. P), the class of limit points of the sequence
N
{(2NloglogN)1/ZZ Y, N=1,2,... }
k=

1

in R™1 s the ellipsoid

r+1
{(Z‘l, e ,(L’T_H) . Z F(tz, tj)xixj S 1}

ij=1
This lemma can be proved by a blocking argument very similar to that of the
proof of Theorem 25, except that instead of the result of Major [39] we use the

coupling inequality of Berthet and Mason, see [10], page 155.

Put ¥(n) = sup |P(S, < t) — ¢| and note that by Theorem 1 of Schatte [54]
0<t<1

we have

U(n) < Ce™ n>1, (3.26)
for some constants C', A > 0.

Lemma 2*. Let f = 1op) — (b—a) for some 0 < a<b<1. Then

E( 3 f<sk>) < O fIN (3.27)

k=M+1

1 1/2
for any M > 0, N > 1 where ||f]| = (/fz(x)dx> and C is an absolute
0

constant. The conclusion remains valid if f is a Lipschitz function with

/1 f(x)dz = 0.

Proof. In what follows, C denotes positive constants, possibly different at different

places. We first show that

[Ef(S)f(Se)| < CTU—=R)If] (k<. (3.28)
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Indeed, by Schatte [53] there exists a random variable A with |A| < (¢ — k) such

that Sy — A is a uniform random variable independent of Si. Hence

1

Ef(Si— &) = [ fa)ds =0

0

and thus

Ef(Sk)f(Se—A) =Ef(Sp)Ef (S, —A) =0. (3.29)
On the other hand,
IEf(Sk)f(Se) = Ef(Sk) f(Se— A)| <
SE(If(SK)| [f(Se) = f(Se = A)]) <

1/2

< (E£2(S0) * (BIF(S0) — £(Se— D)) (3.30)

Since X has a bounded density, by Theorem 1 of Schatte [54] the density ¢, of

Sy, exists for all n > 1 and satisfies ¢,, — 1 uniformly on [0, 1]. Thus
P{S, €I} <C|I| (n>1) (3.31)
for some constant C' > 0; and whence we get

Ef*(Sk) < C|fI1*. (3.32)

On the other hand,
E|f(Se) = f(Se—A)|" =

= E|Lup)(Se) — Yap)(Se — A)|™. (3.33)
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The expression on the right-hand side differs from 0 only if one of S, or Sy — A
is inside (a,b) and the other is outside the interval. In this case Sy is closer to the
boundary of (a,b) than |A|, and since |A| < WU(¢ — k); the probability of this event

is at most C'W(¢ — k) by (3.31). Thus (3.33) yields
E|f(Se) — f(Se — AP < CW(l - k) (3.34)
which, together with (3.30) to (3.33), gives
[E(f(Sk)f(Se)) —Ef(Sk) f(Se — A)] < CU(L k).

Thus using (3.29) we get (3.28).

Now by (3.28)

<

> Ef(SK)f(S)

M+1<k<t<M+N

<ON|fIY_ ¢ <ON|f|

>1
which, together with (3.32) completes the proof of Lemma 2*. ]

For Lipschitz functions f the argument is similar.

Lemma 3*. Let f = lop — (b—a) for some 0 < a <b< 1. Then for any M > 0,

N >1, realt > 1 and || f|| > N~* we have

M+N
P{ S S thwa(moglogN)ln} <
k=M+1
< exp(—Ct| f|| "/ loglogn) +t 2N~ (3.35)

Proof. We divide the interval [M + 1, M + N]| into subintervals Iy, ..., Iy; with

L ~ N19/20; where each interval [,, contains ~ N1/20 terms.
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We set
M+N
Sy =mA A+
K=M+1
where

Np = Z f(Sk).

kel

We deal with the sums ) 7; and ) 941 separately. Since there is a separation

~ N1/20 hetween the even block sums 725, we can apply Lemma 4.3 of [6] to get
Noj = 775} + 77;;

where

M= > f(Sk—4y),

kela;

(3.36)
M= (f(Sk) = f(Sk—4y))

kelz;

where the A; are the random variables with
|A]| S \IJ(N1/20> S N—lO

and the random variables 7;,, j = 1,2,... are independent. Relation (3.34) in the
proof of Lemma 2* shows that the L, norm of each summand in 757 is at most

CU(NY20) < ON~' and thus for || f| > N~/* we have
351l < CN~* < O fIINT®. (3.37)

Thus

<C|fINT

HZUS?

and therefore by Markov inequality

P(\Zﬂ%‘}‘

> t||f||1/4(NloglogN)”2) <
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< Ct72|f||"Y*(N loglog N) 71| fIIPN Y1 <
< 2N7L.
Now let |A| = O(N~Y/16); then

| An;| < CIA\NY2 < 1/2 for N > N

and thus using e® < 2 + x + 22 for ||z]| < 1/2 we get, using Ens; = 0;

E(exp (Azj:n;])) = E[E(M) <

< HE(l + g+ Ay =

J

= H(l + )\QEn;jZ) < exp (/\2 Z En;‘jQ).

J J

By Lemma 2*

lnos ) < CILFI2NY

which, together with (3.37) and the Minkowski’s inequality, implies

I, < ClIN
and thus the last expression in (3.39) cannot exceed
exp (XCIf SN2 < exp(RCI ).
J

Thus choosing

A = (loglog N/N)'2| £|| /4

(3.38)

(3.39)
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(note that by [|f]| > N~Y* we have |\| = O(N~/°)) and thus using Markov’s

inequality we get

d

< exp{ =] £/ (N loglog N)/2 + X2 f|N } =

Z o
j

> t||f||1/4(N10glogN)1/2} <

— exp (|| "2 10glog N + C1| f| */*loglog ) <

< exp(=C'|| f||7"/*tloglog N) (3.40)

completing the proof of Lemma 3*. O

Now, with Lemma 3* in hand, the relative compactness of the sequence «,, in
the D[0, 1] topology can be proved by a dyadic chaining argument, similar to the

proof of Proposition 3.3.2 in Philipp [45].

Now observe that if X; is uniformly distributed on (0, 1), the {Six} are inde-

pendent uniformly distributed random variables (Schatte-type arguments).

Moreover, I'(s, s") reduces to the covariance function s(1 — s')(s < &) of the

Brownian bridge. In this case the limit set in Theorem 38 reduces to the set

K = {y(t) .y is absolutely continuous on [0, 1],

1
y(0) = y(1) = 0; /gf(t)dt < 1}
0
which is the result of Finkelstein, see Theorem 37 and [23].

Furthermore, we point out that

sup |Fy(t,z) —t|
0<t<1
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is the star discrepancy Dy ({mx}) of the sequence {S,x},...,{Syz}, while

1

/|FN(t,x) — t|"dt

0
is the L, discrepancy D ({nkx}) of the same sequence.
From these two observations and our Theorem 38 we get the following two

results:

Corollary 1*. Assume all the notation used previously. Then:

[N
li v - . 341
Sup e N Dy ({mz}) = sup ]| (3.41)

P-almost surely for almost every x.

Corollary 2*. Assume all the notation used previously. Then.:

[N
msup g |2 DY ({ma}) = Sup lyllp, p> (3.42)

P-almost surely for almost every x.

We observe that, although we are not dealing with integers, our results are
essentially the “next best thing” when it comes to shedding some light on a difficult
conjecture of Philipp; see page 96 of this dissertation. The result on the star
discrepancy is of different philosophy to those of Fukuyama and Aistleitner; it can
be thought of as a “simulation of a general case”; certainly not dealing with only
specific/restricted class of functions; whence being some kind of complement of

their work.

The value of the star discrepancy is AY%. This function turns out to have
remarkable properties. Simulation suggests it is continuous but nowhere differen-

tiable and, likely, unbounded at zero, too.
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Formalizing these statements shall be a part of our future work, so far we came

essentially empty-handed.

For the picture of this important function see below:
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