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Abstract

In this thesis, we describe two different approaches to improve the cryptanalysis
of symmetric primitives. In the first part we describe a new approach in crypt-
analysis: numerical cryptanalysis. In this approach the cryptographic algorithm
is represented as a system of equations over the reals and numerical methods
and techniques are applied in order to solve such a system. We give a detailed
analysis of each step of the approach and apply it to the stream cipher Trivium
and to its reduced variants Bivium A and Bivium B. Although, we are not able
to break Trivium or any of its variants, we show how techniques from numer-
ical analysis can be used in cryptanalysis and discuss various future research
directions.

In the second part of this thesis, we investigate two techniques based on
differential cryptanalysis which are used in the cryptanalysis of ARX based hash
functions. We improve and extend them leading to a new generation of tools
which are used in attacks on several hash functions including SHA-2, HAS-160
or SIMD.

An application to SIMD-512 results in a distinguisher for the compression
function. Due to this attack, the designers tweaked SIMD. However, we present
a distinguisher for the full permutation and extend the attack to the full com-
pression function of tweaked SIMD-512. An application to HAS-160, results in
a semi-free-start collision for 65 (out of 80) steps which is so far the best known
attack with practical complexity for HAS-160. The main idea of our attack
is to combine both techniques by constructing two short characteristics which
hold with high probability and connect them by a complex third characteris-
tic using the non-linearity of the state update function. Finally, we apply our
tools to SHA-256. We identify appearing problems and show how to overcome
them. Important for the successful application of our tools to SHA-2, is the
detection of contradictions for more conditions and the application of our ad-
vanced search strategy, which combines the search for differential characteristics
with the search for a conforming message pair. We present a collision for 27
and a semi-free-start collision for 32 steps of SHA-256 with practical complexity.
This significantly improves upon the best previously published (semi-free-start)
collision attacks on SHA-256 for up to 24 steps.
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1
Overview

Cryptanalysis is the study of methods to analyse cryptographic primitives at-
tempting to find weaknesses in these primitives. These weaknesses are then
used to break the cryptographic algorithm. Breaking means bypassing the al-
gorithm and breaking confidentiality, forging data or tampering an authentica-
tion process etc.. Cryptanalysis usually excludes methods that do not target
weaknesses in the cryptographic algorithm such as bribery, physical coercion,
burglary, keystroke logging, and social engineering, although these types of at-
tacks are important. The methods and techniques in cryptanalysis have changed
drastically through the history of cryptography, adapting to the increasing cryp-
tographic complexity and increasing computational power. In the early 1990’s
first Biham and Shamir [BS92], and later Matsui [MY92] published two general
techniques to cryptanalyse symmetric cryptographic algorithms: differential and
linear cryptanalysis. These techniques have been successfully used to break many
existing ciphers. Since the upcoming of these cryptanalytic methods, new design
strategies have been proposed to resist this kind of analysis. However, a new
type of attack could cause a complete breakdown of security.

The trend of developing cryptographic primitives seems to go to more com-
plex designs. Especially, for hash functions a significant increase in the de-
sign complexity can be observed, like the transition from SHA-1 to SHA-2 or
the design of several SHA-3 candidates. Due to this increased complexity, the
cryptanalysis of hash functions has become a more challenging task and the
development of new tools has become necessary.

In this thesis, we investigate two different approaches to improve the crypt-
analysis of symmetric primitives. Although, both topics are part of cryptanaly-
sis, the underlying techniques are quite different. Therefore, we split this thesis
into two parts.

1
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1.1 Numerical Methods in Cryptanalysis

Since the upcoming of linear and differential attacks, new design strategies have
been proposed to resist these attacks. In the first part of this thesis, we investi-
gate a new approach in cryptanalysis: numerical cryptanalysis.

Similar as in algebraic attacks, we represent the cryptographic algorithm as
a system of equations. The system of equations is constructed such that there
is a correspondence between its solutions and some secret information of the
cryptographic primitive (for instance, the secret key of a block cipher). In our
approach we apply methods and techniques from numerical analysis, which is
a large and well-studied field of research. Many efficient algorithms exist to
solve linear and non-linear systems of equations. We discuss how these methods
can be used in the cryptanalysis of symmetric primitives. We give a detailed
description of the technique and provide an analysis of each step of the approach.
Finally, we apply the technique to the stream cipher Trivium and to its reduced
variants Bivium A and Bivium B.

1.2 Tools in Differential Cryptanalysis

Differential cryptanalysis is one of the most important analysis techniques for
symmetric primitives. It turned out to be of particular interest in the cryptanal-
ysis of hash functions. Hash functions are an important cryptographic primitive
and are used for data integrity, message authentication, digital signatures, pass-
word protection, pseudo-random number generation, key derivation, malicious
code detection and in many other applications and cryptographic protocols.

While hash functions did not get a lot of attention by the cryptographic
community, this changed with the breakthrough results of Wang et al. in 2004.
Since then many attacks based on differential cryptanalysis have been presented
for several well-known algorithms such as SHA-0, SHA-1 or MD5. The transition
from SHA-1 to the SHA-2 family was proposed by the National Institute of
Standards and Technology (NIST) as a first solution. As another consequence
of these results NIST has initiated an open competition for a new hash function
standard, called SHA-3.

In many designs the complexity has increased compared to previous hash
functions. Larger states, more non-linear operations, more rounds and more
complicated state updates are the consequence. Due to this increased complex-
ity, the analysis of hash functions has become more difficult. Therefore, finding
differential characteristics and conforming input pairs has become a more chal-
lenging task and the development of new tools has become necessary.

In the second part of this thesis, we analyse the most successful collision
attacks on SHA-1. We describe two distinct techniques in detail. Furthermore,
we improve and extend them leading to a new generation of tools which are used
in attacks on several hash functions including SHA-2, HAS-160 or SIMD.
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1.3 Main Contributions

In this thesis, we describe parts of the work done by the author during his
PhD studies. The main contribution has been made in the development and
improvement of new and existing tools for the cryptanalysis of symmetric prim-
itives. Due to the increased design complexity of cryptographic primitives, the
necessity for new tools has become apparent in the cryptographic community.

First a new technique which connects the research of numerical methods
with the research of cryptanalysis has been investigated and new future research
directions have been opened [LNR09a].

Due to the increased design complexity of many ARX based hash functions,
automatic tools are needed in order to construct attacks. Therefore, the devel-
opment of complex automated tools has been focused. The work has been build
upon techniques in the cryptanalysis of SHA-1 and resulted in a new generation
of tools which implementation has been partially published under the GPL-3.0
license [Nad10]. The new set of tools has been applied to several hash functions.
The first application has resulted in the best attack with practical complexity on
the Korean hash function standard HAS-160 [MNS11a]. Due to the importance
of the hash function family SHA-2, the tools have been also applied to SHA-256
resulting in collision and semi-free-start collision attacks [MNS11b], which have
significantly improved upon the best previously published (semi-free-start) colli-
sion attacks on SHA-256. Furthermore, the tools have been successfully applied
to the ISO standards RIPEMD-128 and RIPEMD-160 [MNS12, MNSS12] and
the SHA-3 candidate SIMD [MN09, MN11].

Additionally, the author has published practical collisions for the hash func-
tion Boole [MNS09] and has contributed to the compact implementation of
lightweight block ciphers [EGG+12].
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Numerical Methods in
Cryptanalysis
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2
Introduction

In the last years many researchers try to find new methods and techniques to
analyse different types of cryptographic algorithms. Recent attacks are repre-
senting the cryptographic algorithm as a system of equations. The system of
equations is constructed such that there is a correspondence between its solu-
tions and some secret information of the cryptographic primitive (for instance,
the secret key of a block cipher). As these systems are usually very sparse,
over-defined, and structured, it is conjectured that they may be solved much
faster than generic non-linear equation systems. One important feature is that
the attacker needs only a low amount of data to set up a system of equations
describing the cipher and determining the key (solutions). This makes such
attacks more threatening than differential or linear cryptanalysis which typi-
cally require a large amount of data (known/chosen plainttext, ciphertexts) . A
slightly different variant is to combine differential cryptanalysis with algebraic
analysis, by solving algebraic relations arising from differential characteristics
more efficiently.

These attacks mainly use algebraic methods (e.g. Gröbner Bases as in [BPW06])
or SAT solvers (cf. [EPV08]). In this thesis we study a different approach. In
our approach we use techniques and methods from numerical analysis to solve
systems of equations originating from a cryptographic algorithm.

2.1 Algebraic Cryptanalysis

Algebraic cryptanalysis received much attention, especially after it was proposed
in [CP02] against the AES and Serpent block ciphers. In the recent years a lot of
work has been done in this field [CM03, CB07, Alb08, CNO08, AC09, ACD+10].

7
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Several algorithms have been proposed to solve system of equations in an al-
gebraic field, e.g. the Buchberger algorithm, XL and variants [CKPS00, CP02,
YCC04], F4 [Fau99] and F5 algorithm [Fau02]. Most of the attacks focus on the
efficient computation of a Gröbner basis for the system considering structured
properties of the targeted cipher. Gröbner bases are a proven tool for solving
polynomial systems. A Gröbner basis for a system of polynomials is an equiv-
alence system that has several desirable geometric and algorithmic properties
that are not visible from the original system. This allows to efficiently compute
the roots of a Gröbner basis and therefore the solutions of the original system of
equations. The computation of a Gröbner basis can be easy for simple problems
but the computational complexity increases exponentially with the complexity
of the underlying problem. Hence, the worst case complexity of any algorithm
that computes Gröbner bases in full generality must be high. The time and
memory required to calculate a Gröbner basis depend very much on the struc-
ture of the original system of equations, like the variable ordering or monomial
ordering. Thus, examples in three or four variables with polynomials of degree
three or four may already fail to terminate in reasonable time or exceed available
memory even on very fast machines. Therefore, it is important to analyse struc-
tural properties of the system and exploit them to decrease the computational
complexity for specific problems as cryptographic algorithms.

2.2 Logical Cryptanalysis

Logical cryptanalysis has been introduced by Massacci and Marraro [MM00] as
a general framework for encoding properties of cryptographic algorithms into
SAT problems. The initial goal was to generate SAT benchmarks that are con-
trollable and that share the properties of real-world problems and randomly
generated problems. Since then several applications of SAT solvers in crypt-
analysis have been described in the literature [FMM03, JJ05, MZ06]. Despite
the initial goal in the last years researchers used SAT solvers to break ciphers
or to improve existing cryptanalysis techniques by solving computationally ex-
pensive parts with SAT solvers [MZ06, BCJ07, MCP07, EPV08, SNC09]. The
general approach is to convert a system of equations describing a cryptographic
algorithm to Boolean expressions in Conjunctive Normal Form (CNF). After-
wards one uses off-the-shelf SAT-solvers to solve the SAT problem and therefore
the original system of equations. SAT solvers have made a lot of progress in
recent years, with both theoretical and practical improvements. SAT solvers are
carefully designed to run on a large range of problems with no tuning required
by users. Both in research and industry many problems are solved by mapping
them to CNF and solving them using highly tuned SAT solvers. Usually, the
mapping to CNF can lose much of the structure of the original problem. How-
ever, the performance of SAT solvers is often able to offset this loss of structural
information. The majority of the state-of-the-art SAT solvers are based on the
branch and backtracking algorithm called DLL algorithm [DLL62]. This algo-
rithm searches for a solution by recursively choosing a variable and assign it to
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one value and then to the other. At each stage of search a propagation step
is performed, which attempts to imply the assignments to as many unassigned
variables as possible based on the assignments made so far. In this stage also
clauses which cannot be satisfied any more are detected and a backtracking pro-
cess starts. The major problems for using SAT solvers in cryptanalysis are that
the computational effort of SAT solvers increases exponentially with the size
and the complexity of the underlying problem and as pointed out in [MM00]
cryptographic algorithms provide hard and complex problems for SAT solvers.

2.3 Numerical Cryptanalysis

In this thesis we investigate a new approach in cryptanalysis. Again a system of
equations representing a cryptographic algorithm is targeted. In our approach
we apply methods and techniques from numerical analysis, which is a large and
well-studied field of research. Many efficient algorithms exist to solve linear and
non-linear systems of equations. Our approach and an application on the stream
cipher Trivium has been published in [LNR09b].

A similar approach was investigated by Borghoff et.al. [BKS09] where a sys-
tem of equations over GF (2) is transformed in an optimization problem over the
reals. Additionally, the authors published an approach using simulated anneal-
ing [BKM10] which is a probabilistic global optimization technique. Another
approach we consider as part of numerical cryptanalysis was investigated by
Tischhauser [Tis11] where the system of equations are modelled as a continuous
optimisation problem where the equations are not continuously differentiable to
avoid high degrees.

In Figure 2.1 our approach is outlined. From the system of equations over
GF (2) we use conversion methods to create an equivalent system over the reals.
At this point one can apply numerical methods. The computed solution can be
converted back to GF (2) (with restrictions) which results in a solution for the
original system.

Figure 2.1: Basic approach of Numerical Cryptanalysis

Numerical solvers are methods to approximate solutions for equations and
systems of equations. We are interested in the special case of solving non-



10 Chapter 2. Introduction

linear polynomial systems of equations. For such system a variety of different
techniques and methods exist. A key advantage is that except for building the
Boolean system of equations every step of our approach works fully automated.

2.4 Application of Numerical Cryptanalysis

In theory numerical cryptanalysis can be applied on any cryptographic primitive.
However, we are targeting ciphers which equation structure offers low algebraic
degree, low number of equations and simplicity. In general stream ciphers pro-
vide such properties compared to more ”heavy” primitives like hash functions. A
stream cipher is a symmetric key cipher, where the plaintext bits are combined
with a pseudorandom bit stream (keystream). The keystream-bits are derived
from a key and an initial value. Stream ciphers are in general fast and have
limited or no error propagation, which makes them very useful for situations
where transmission errors are highly probable or the plaintext is of unknown
length. We apply our approach on Trivium [Rob08], which is recommended by
the eStream project [ECR] and its reduced variants.

2.5 Outline

In Chapter 3 we present different methods to convert a Boolean equation to a
polynomial over the reals. We analyse in detail the different conversion results
and show their advantages and disadvantages according to the structure of the
Boolean equation. We introduce two new conversion techniques in order to re-
duce the complex structure of the conversion results. In Chapter 4 we give a
brief overview on numerical analysis and introduce the terminology and defini-
tions which are necessary for the understanding of the numerical methods used
in this thesis. Furthermore, we show which properties of the converted equations
are coherent with desired properties in numerical analysis. Finally, we apply our
approach on the stream cipher Trivium in Chapter 5. We define systems of equa-
tions for Trivium and two reduced variants, apply different conversion methods
and use the presented numerical methods to search for a solution. In Chapter 6
we present a summary and conclude the first part of this thesis by discussing
open problems and further research directions.



3
Conversion of Boolean Equations to the

Real Domain

In cryptography typically non-linear Boolean equations appear. Sometimes they
can be well enough linearised. Solvers for linear Boolean equations are well
researched and methods are already available. Non-linear equations are rather
difficult to solve, especially if the system consists of a high amount of unknowns
and high degrees. In our approach we want to use numerical methods to solve
such equations. Since these numerical solvers are defined to operate on real
numbers, a conversion of Boolean equations to equations over the reals has to be
done, which is the first step in our approach (see Section 2.3). Therefore, we need
to choose an appropriate representation of Boolean equations as polynomials over
the reals.

Many scientific fields work with the representation of Boolean functions as
polynomials over the reals, e.g. optimization research, circuit complexity or ma-
chine learning. In operations research the problem to formulate logical conditions
is about representation of logical conditions/equations as inequalities over the
reals or integer numbers. In machine learning there are behaviours to learn,
which can be expressed as logical conditions. The conditions have to be learned
with sophisticated algorithms, where the representation of the logical equations
is important. Furthermore, in the field of circuit complexity, the polynomial
representation of Boolean equations is a basic problem.

For different types of applications different representations are used. In sev-
eral publications [Bei93, BB99, NS94] four types occur consistently. These are

� Standard representation,

� Dual representation,

11
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� Sign representation and

� Fourier representation.

Fourier representation is the most frequently used type in the theory of circuit
complexity [Bei93], computational intelligence [Mon94] or theory of Boolean
functions [KKL88]. There is no consensus on names for the different representa-
tions. The names used in this thesis are taken from [Bei93]. In order to represent
Boolean functions (equations) as polynomials over the reals, the values for true
and false have to be mapped to real numbers. From this mapping the resulting
representation for the Boolean operators follows.

In this chapter we analyse different representations and conversion tech-
niques. We provide the mathematical definitions of each representation and
the needed lemmata for the Boolean operators. Each type of representation is
analysed in order to derive properties which classifies the conversion methods.
We show that one has a huge influence on the structure of the resulting equa-
tions over the reals, since each conversion method lead to a different system
of polynomials with different complexity. Furthermore, we show how different
properties can be exploited to decrease this complexity leading to new advanced
conversion methods.

3.1 Conversion and Complexity

In the next sections we convert Boolean functions and equations, respectively.
Therefore, we define Boolean functions in the following way.

Definition 3.1 (Boolean Function). A Boolean function is a function of the
form f : Bk → B, where B = {false, true} is a Boolean domain and where k
is a non-negative integer.

Any Boolean function or equation can be converted into an equation over the
reals, using one of the representation types presented in the following sections.
The structure of the resulting polynomials depends on the Boolean function
and on the chosen representation. Moreover, one can use additional techniques
to reduce the complexity of the structure. We define two such techniques and
name them adapted conversion and splitting conversion. In order to be able to
give a general analysis of the conversion methods, we assume that the Boolean
equations are in a normal form. There exist several different normal forms,
which are used for different types of applications. The two basic normal forms
are Conjunctive Normal Form and Disjunctive Normal Form.

Definition 3.2 (Conjunctive Normal Form). Let f be a Boolean function. We
say that f is in Conjunctive Normal Form if it is a conjunction of clauses, where
a clause is a disjunction of literals.

Definition 3.3 (Disjunctive Normal Form). Let f be a Boolean function. We
say that f is in Disjunctive Normal Form if it is a disjunction of clauses, where
a clause is a conjunction of literals.
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In cryptography the Algebraic Normal Form is widely used since the the
equations are mostly defined over F2(∼= B).

Definition 3.4 (Algebraic Normal Form [OK94]). Let f : Fn2 → F2 be a func-
tion. We call the Algebraic Normal Form of f , the following expression of f as
a polynomial

f(x1, · · · , xn) =
∑
S⊆[n]

aS
∏
i∈S

xi,

where aS ∈ F2 and [n] = {1, · · · , n}.

We choose a different notation to avoid using the same operators in Boolean
and real equations.

Definition 3.5 (Algebraic Normal Form (Boolean notation)). Let f be a Boolean
function. The ANF of f in Boolean notation is the following expression.⊕

I⊆M
aI ∧ (

∧
i∈I

xi),

where M = {1, · · · , n} and aI ∈ {false, true}. In this case aI determines the
existence of the corresponding conjunction.

In the next sections a Boolean system of equations in ANF will be converted
into equations over the reals using the four different types of representation.
Afterwards the resulting equations are analysed to show which type leads to the
most simple equations over the reals.

An arbitrary Boolean system of equations in ANF using Definition 3.5 is
defined as follows 

⊕
I1⊆M

aI1 ∧ (
∧
i∈I1 xi)

...⊕
Im⊆M

aIm ∧ (
∧
i∈Im xi)

 =

 b1
...
bm

 , (3.1)

for bi ∈ {false, true} and i = 1, . . . ,m. Converting a system of Boolean equa-
tions is done by converting each single equation separately.

3.1.1 Conversion Algorithm

The conversion of a Boolean equation using one of the representation types
consists basically of two steps. First of all we have to convert all AND operations
and afterwards each XOR operation. This order is given by the distributive law
in Boolean algebra. The lemmata from the representation types are used to
create an algorithm for the conversion. In order to specify the algorithm two
functions are needed: C∧(a, b) and C⊕(a, b). These two functions, representing
the AND and XOR operations, are different for every type of representation
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Algorithm 1 Conversion Algorithm

Require: Equation in ANF
1: Create a list A of all XOR operands
2: for i = 1 to i =sizeof(A) do
3: Create a list B of all variables in A[i]
4: for i = 2 to i =sizeof(B) do
5: B[1] = C∧(B[1], B[i])
6: end for
7: A[i] = B[1]
8: end for
9: for i = 2 to i =sizeof A do

10: A[1] = C⊕(A[1], A[i])
11: end for
12: Print A[1]

and therefore are defined separately. The straightforward algorithm is given in
Algorithm 1. The algorithm returns in polynomial time an equation over the
reals representing the given Boolean equation. Basically the algorithm works for
every representation despite of the different definitions of C∧ and C⊕.

3.1.2 Complexity of Converted Equations

To analyse each conversion method a measurement for the complexity of the
resulting system of equations is needed, to argue which type leads to “better”
equations. In the context of numerical methods it is hard to define the difficulty
of the system a priori. However, a rough classification can be done using the rep-
resented factors in this chapter. For example we assume that a Boolean equation
converting to a polynomial over the reals resulting in a low monomial degree or
sparsity grade, is less complex and therefore “easier” than a polynomial with
high total and monomial degree. However, it is obvious that the difficulty of the
system depends on more than these factors, like the dependencies between the
equations of the system, but they are nevertheless useful for a rough estimation
of the complexity and as we show in Chapter 5 the performance and accuracy
changes according to these factors.

In the following we define these factors for single equations, since each equa-
tion of a system has to be converted separately. The following definitions are
taken from [CLO07].

Definition 3.6 (Monomial). A monomial in x1, · · · , xn is a product of the form

xα1
1 · xα2

2 · · ·xαn
n ,

where all of the exponents α1, · · · , αn are non-negative integers. The total degree
of this monomial is defined as |α| = α1 + · · ·+ αn.
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Definition 3.7 (Polynomial over the reals). A polynomial over the reals f in
x1, · · · , xn with coefficients in R is a finite linear combination (with coefficients
in R) of monomials. We write a polynomial f in the form

f =
∑
α

aαx
α, aα ∈ R,

where the sum is over a finite number of n-tuples α = (α1, · · · , αn). The set of
all polynomials in x1, · · · , xn with coefficients in R is denoted by R[x1, · · · , xn].

Definition 3.8. Let f =
∑
α aαx

α be a polynomial in R[x1, · · · , xn].

(i) We call aα the coefficient of the monomial xα.

(ii) If aα 6= 0, then we call aαx
α a term of f

(iii) The total degree of f , denoted deg(f), is the maximum |α| such that aα is
nonzero.

Definition 3.9 (Multilinear Polynomials). We call a polynomial multilinear, if
each variable in each monomial has a degree of at most 1.

For the analysis of the conversion methods additional definitions are needed.

Definition 3.10 (Monomial Degree). Let f be a polynomial over the reals. The
monomial degree of f , denoted mdeg(f), is the number of monomials in f .

Definition 3.11 (Sparsity Grade). Let Sr be a system of equations and f an
equation in Sr. The Sparsity Grade of f , denoted sg(f), is defined as

sg(f) =
mdeg(f)

N
,

where N is the number of different variables in Sr.

Boolean equations may have a special structure which influences the con-
version result, e.g. same variables occur in different monomials. This can lead
to a less complex polynomial over the reals. To include this observation in the
analysis the following definition is necessary.

Definition 3.12 (Variable Sharing). Let f be a Boolean equation in ANF. If
there exist I and J where aI and aJ are true and I ∩ J 6= {}, then f is called a
variable sharing Boolean equation.

These definitions include two important properties of an equation over the
reals. Concerning numerical solvers both are important. The higher the total
degree the more difficult a system of equations seems to be. The sparsity grade
is a way to measure the sparsity of a system of equations. We speak of a sparse
system if the sum of the sparsity grade over all equations is low. We assume
the smaller this value the easier a solution can be determined. Obviously, these
values depend mostly on the given equations, but the choice of the representation
type, which is used for the conversion, can influence the results significantly. In
the following sections the defined factors are used to analyse and afterwards to
compare the four types of representation.
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3.2 Conversion using Standard Representation

3.2.1 Standard Representation

Definition 3.13. Let f(x1, · · · , xn) be a Boolean function, xi ∈ {true, false}
for i = 1, · · · , n and t : {false, true} → {0, 1} with

t(false) = 0

t(true) = 1.

s(y1, · · · , yn) is the standard representation of f(x1, · · · , xn), if

∀xi : s(t(x1), · · · , t(xn)) = t(f(x1, · · · , xn)).

Lemma 3.1. Let f(x1, · · · , xn) be a Boolean function and s(y1, · · · , yn) its stan-
dard representation.

a) f(x1, x2) = x1 ∧ x2 =⇒ s(y1, y2) = y1 · y2, yi = t(xi) for i = 1, 2.

b) f(x1, x2) = x1 ∨x2 =⇒ s(y1, y2) = y1 + y2− y1 · y2, yi = t(xi) for i = 1, 2.

c) f(x1) = ¬x1 =⇒ s(y1) = 1− y1, y1 = t(x1)

d) f(x1, x2) = x1⊕x2 =⇒ s(y1, y2) = y1+y2−2·y1 ·y2, yi = t(xi) for i = 1, 2.

Proof. The proof for Lemma 3.1 can be done by a truth table for each Boolean
operator, to show that the standard representation has the same results as the
Boolean function. For the truth tables the representation function s has to be
evaluated, which results in the following tables.

x1 x2 x1 ∧ x2 y1 y2 s(y1, y2)
false false false 0 0 0
false true false 0 1 0
true false false 1 0 0
true true true 1 1 1

x1 x2 x1 ∨ x2 y1 y2 s(y1, y2)
false false false 0 0 0
false true true 0 1 1
true false true 1 0 1
true true true 1 1 1

x1 x2 x1 ⊕ x2 y1 y2 s(y1, y2)
false false false 0 0 0
false true true 0 1 1
true false true 1 0 1
true true false 1 1 0
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x1 ¬x1 y1 s(y1)
false true 0 1
true false 1 0

Due to the truth tables t(s(y1, y2))) and t(s(y1)) respectively have the same
values as the Boolean function for the specific operator.

Any combination of the operators can be represented in standard form, since
Lemma 3.1 can be used recursively in consideration of the distributive law in
Boolean algebra.

Example 3.1. For better understanding, a short example illustrates how a
Boolean function is represented as a polynomial over the reals by using stan-
dard representation. Lets consider the following Boolean function:

f(x0, x1, x2, x3) = x3 ∧ x1 ∧ x0 ⊕ x3 ∧ x1 ⊕ x3 ∧ x0 ⊕ x3 ⊕ x1 ⊕ x0 ⊕ true.

By applying Lemma 3.1 recursively, under the consideration of the distributive
law in Boolean algebra, the resulting polynomial over the reals using standard
representation is

s(y0, y1, y2, y3) = 1− y0 − y1 + 2y0y1 − y3 + y0y3 + y1y3 − y0y1y3.

An evaluation of f(false, true, false, true) and s(0, 1, 0, 1) leads to

f(false, true, false, true) =true ∧ true ∧ false⊕ true ∧ true⊕
true ∧ false⊕ true⊕
true⊕ false⊕ true = false

and

s(0, 1, 0, 1) = 1− 0− 1 + 2 · 0 · 1− 1 + 0 · 1 + 1 · 1− 0 · 1 · 1 = 0.

The results of the evaluation of the Boolean function and the standard represen-
tation are equivalent.

3.2.2 Conversion

Using Algorithm 1, the definition of C∧ and C⊕ follows directly from Lemma 3.1a)
and Lemma 3.1d)

C∧(a, b) = a · b,
C⊕(a, b) = a+ b− 2 · a · b.

To analyse the conversion based on the standard representation it is sufficient
to look only at one equation of system (3.1):⊕

I⊆M
aI ∧ (

∧
i∈I

xi) = b. (3.2)
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According to Algorithm 1 the AND operators have to be converted first by
applying C∧ on

aI ∧
∧
i∈I

xi.

In the standard representation the AND operator is converted into a multipli-
cation and therefore a conversion results in

c(~yI) := aI ·
∏
i∈I

yi for ~yI = (yi1 , · · · , yi|I|). (3.3)

In the next step the XOR operations need to be converted⊕
I⊆M

c(~yI). (3.4)

For a better understanding of this process we express Algorithm 1 as following
recursive formula:

C⊕(c(~yI1), C⊕(c(~yI2), C⊕(· · · , C⊕(c(~yI|P(M)|−1
), c(~yI|P(M)|))))).

As an intermediate result the first two evaluations of C⊕ in the recursion result
in

C⊕(· · · ) = t(aI1)
∏
i∈I1

yi + C⊕(· · · )− 2 · t(aI1)
∏
i∈I1

yi · C⊕(· · · )

= t(aI1)
∏
i∈I1

yi + t(aI2)
∏
i∈I2

yi + C⊕(· · · )

−2 · t(aI2)
∏
i∈I2

yi · C⊕(· · · )

−2 · t(aI1)
∏
i∈I1

yi · t(aI2)
∏
i∈I2

yi

−2t(aI1)
∏
i∈I1

yi · C⊕(· · · )

+4 · t(aI1)
∏
i∈I1

yi · t(aI2)
∏
i∈I2

yi · C⊕(· · · ).

The complete evaluation of the recursion leads to a polynomial over the reals
representing the Boolean Equation (3.2) using standard representation

=
∑
I⊆M

t(aI)
∏
i∈I

yi − 2
∑

I,J⊆M
I 6=J

t(aI)t(aJ)
∏
i∈I

yi
∏
j∈J

yj

+ 4
∑

I,J,K⊆M
I 6=J 6=K

t(aI)t(aJ)t(aK)
∏
i∈I

yi
∏
j∈J

yj
∏
k∈K

yk − · · ·

+ (−2)|P(M)|−1
∏
I⊆M

t(aI)
∏
i∈I

yi = t(b).

(3.5)

We denote Equation (3.5) as the converted polynomial over the reals ps.
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3.2.3 Analysis

Total Degree

The total degree of ps depends on the number of variables in the Boolean equa-
tion. In the worst case we have deg(ps) = n, due to Equation (3.3) where the
maximum number of different variables multiplied can only be n. Higher degrees
could occur during the conversion of the XOR operations, which is prevented
by the multilinearity property (xl = x, ∀l ∈ N) of the standard representation.
Hence, the total degree depends directly on |⋃ I| where aI is equal true. Let
kt be the total degree of ps then

kt := |
⋃
I⊆M

aI=true

I|.

Monomial Degree

Equation (3.2) consists of |P(M)| different monomials. Obviously, the monomial
degree for the converted equation is increased significantly. The monomial degree
of ps is determined by every possible product of two different monomials in (3.2),
every possible product of three monomials etc.. The final maximum amount of
monomials in equation (3.5) is

|P(M)|∑
i=1

(|P(M)|
i

)
,

if for all I ∈ P(M), aI is equal true. Hence, the monomial degree directly
depends on the number of coefficients aI which are equal to true. Let ks be
defined as

ks :=
∑
I⊆M

t(aI),

then the monomial degree of pr is

mdeg(ps) =

ks∑
i=1

(
ks
i

)
.

If the given Boolean equation is variable sharing, the monomial degree can de-
crease, since monomials can occur which just differ in the coefficients. The
following example demonstrates how variable sharing effects the conversion.

Example 3.2. The following Boolean function is converted using the standard
representation.

f = x1 ⊕ x1 ∧ x2

The resulting polynomial over the reals is given by

pr = x1 + x1x2 − 2x1x1x2 = x1 − x1 · x2.
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Due to the variable sharing property of f and the multilinearity property of the
standard representation, the monomial degree in this example is decreased by
one.

Example 3.3. This example demonstrates that the standard conversion does
not benefit from variable sharing, if the shared variable is part of a conjunction.

f = x1 ∧ x2 ⊕ x1 ∧ x3 ⇐⇒ pr = x1x2 + x1x3 − 2 · x1x2x3

Removing the variable sharing property, the resulting polynomial has the same
monomial degree.

f = x1 ∧ x2 ⊕ x4 ∧ x3 ⇐⇒ pr = x1x2 + x4x3 − 2 · x1x2x3x4

The maximum monomial degree of a full Boolean equation in ANF (full
means all aI = true) is not that high as expected, since in such an equation
variable sharing definitely occurs. Our experiments show that in such equations
the monomial degree is decreased significantly.

3.3 Conversion using Dual Representation

3.3.1 Dual Representation

Definition 3.14. Let f(x1, · · · , xn) be a Boolean function, xi ∈ {true, false}
for i = 1, · · · , n and t : {false, true} → {0, 1} with

t(false) = 1

t(true) = 0.

s(y1, · · · , yn) is the dual representation of f(x1, · · · , xn), if

∀xi : s(t(x1), · · · , t(xn)) = t(f(x1, · · · , xn)).

Lemma 3.2. Let f(x1, · · · , xn) be a Boolean function and s(y1, · · · , yn) its dual
representation.

a) f(x1, x2) = x1 ∧x2 =⇒ s(y1, y2) = y1 + y2− y1 · y2, yi = t(xi) for i = 1, 2.

b) f(x1, x2) = x1 ∨ x2 =⇒ s(y1, y2) = y1 · y2, yi = t(xi) for i = 1, 2.

c) f(x1) = ¬x1 =⇒ s(y1) = 1− y1, y1 = t(x1).

d) f(x1, x2) = x1⊕x2 =⇒ s(y1, y2) = 1−y1−y2 +2 ·y1 ·y2, yi = t(xi) for i =
1, 2.

The proof is done in the same way as the the proof of Lemma 3.1.
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Example 3.4. The same Boolean function is used as in Example 3.1.

f(x1, x2, x3, x4) = x3 ∧ x1 ∧ x0 ⊕ x3 ∧ x1 ⊕ x3 ∧ x0 ⊕ x3 ⊕ x1 ⊕ x0 ⊕ true

The resulting polynomial over the reals using dual representation is

s(y1, y2, y3, y4) = y0 + y1 − y0y1 − y0y1y3.

In this example we see already that the resulting polynomial has a less com-
plex structure than using the standard representation, i.e. different representa-
tion types lead to a different structure of the resulting polynomial. Hence, the
different conversion methods have a high influence on the resulting system over
the reals.

3.3.2 Conversion

Using Algorithm 1, the definition of C∧ and C⊕ follows directly from Lemma 3.2a)
and Lemma 3.2d)

C∧(a, b) = a+ b− a · b,
C⊕(a, b) = 1− a− b+ 2 · a · b.

The conversion is done again only for one equation from system (3.1). Since
Algorithm 1 works for all types of representation, the same procedure as in
Section 3.2 has to be done. ⊕

I⊆M
aI ∧ (

∧
i∈I

xi) = b. (3.6)

First the AND operations have to be converted according to C∧.∧
i∈I

aI ∧ xi (3.7)

In contrast to the standard representation the result is more complex. Therefore,
we use the recursive representation of this part of the conversion process.

C∧(aI , C∧(xi1 , C∧(xi2 , C∧(· · · , C∧(xi|I| , xi|I|+1
))))), (3.8)

For a better understanding the following intermediate result is obtained, evalu-
ating two steps of the above recursion.

C∧(· · · ) = t(aI) + C∧(· · · )− t(aI) · C∧(· · · )
= t(aI) + yi1 + C∧(· · · )− yi1 · C∧(· · · )− t(aI)yi1
−t(aI)C∧(· · · ) + t(aI)yi1C∧(· · · )

A complete evaluation of the recursion leads to following equation

c(~yI) =t(aI)[1−
∑
i∈I

yi +
∑
i,j∈I
i<j

yiyj −
∑

i,j,k∈I
i<j<k

yiyjyk − · · ·+ (−1)|I|
∏
i∈I

yi]+

∑
i∈I

yi −
∑
i,j∈I
i<j

yiyj +
∑

i,j,k∈I
i<j<k

yiyjyk − · · ·+ (−1)|I|−1
∏
i∈I

yi = t(b),
(3.9)
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where ~yI = yi1 , · · · , yi|I| . For better readability we write

⊕
I⊆M

c(~yI). (3.10)

The conversion for the XOR operations works in a similar way. According to
Algorithm 1 the following expression is determined

C⊕(c(~yI1), C⊕(c(~yI2), C⊕(· · · , C⊕(c(~yI|P(M)|−1
), c(~yI|P(M)|))))).

After an evaluation of two steps of the above recursion we obtain

C⊕(· · · ) = 1− c(~yI1)− C⊕(· · · ) + 2 · c(~yI1) · C⊕(· · · )
= c(~yI1) + c(~yI2) + C⊕(· · · )
−2 · c(~yI1) · c(~yI2)

−2 · c(~yI1) · C⊕(· · · )
−2 · c(~yI2) · C⊕(· · · )
+4 · c(~yI1) · c(~yI2) · C⊕(· · · ).

Finally, a full evaluation of C⊕ results in a polynomial over the reals representing
the Boolean Equation (3.6) using dual representation

=

|P(M)|−1∑
i=1

(−1)i + (−1)|P(M)|−1
∑
I⊆M

c(~yI)

+ 2 · (−1)|P(M)| ∑
I,J⊆M
I 6=J

c(~yI)c(~yJ)

+ 4 · (−1)|P(M)|−1
∑

I,J,K⊆M
I 6=J 6=K

c(~yI)c(~yJ)c(~yK)

+ · · ·
+ 2|P(M)|−1

∏
I⊆M

c(~yI) = t(b).

(3.11)

We denote Equation (3.11) as the converted polynomial over the reals pd.

3.3.3 Analysis

Total Degree

The total degree of pd depends on the last product in Equation (3.11) which is
the largest one. Therefore, the last summand in Equation (3.9) defines the total
degree of (3.9), which is |I|. Due to the last product in (3.11) the total degree
of pd can increase. However, the total degree is limited by the total number
of variables in the equation because of the multilinearity property of the dual
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representation. Hence, the total degree of pd depends on the same factor as for
the standard representation, which is

kt := |
⋃
I⊆M

aI=true

I|.

Monomial Degree

Equation (3.6) contains |P(M)| different monomials. Similar to the standard rep-
resentation, the converted equations consist of every possible product of Equa-
tion (3.9). Hence, there is a maximum of

|P(M)|∑
i=1

(|P(M)|
i

)

different products, if for all I ∈ P(M), aI is equal true. Let ks be defined as

ks :=
∑
I⊆M

aI=true

1,

then the number of products in Equation (3.11) is

ks∑
i=1

(
ks
i

)
.

Equation (3.9) has a similar structure and has

kI =

|I|∑
i=1

(|I|
i

)

different monomials for each I ⊆ M . Finally, the exact monomial degree of
(3.11) is

mdeg(pd) =
∑
I⊆M

aI=true

kI +
∑

I,J⊆M
I 6=J

aI ,aJ=true

kIkJ +
∑

I,J,K⊆M
I 6=J 6=K

aI,aJ ,aK=true

kIkJkK + · · ·+
∏
I⊆M

aI=true

kI .

Note that the dual conversion leads to much larger polynomials over the re-
als compared to the standard representation. The effect of variable sharing is
similar as for the Fourier or sign conversion, which are discussed in the sub-
sequent sections. However, since the conversion of both the XOR and AND
operation increases the monomial degree, the conversion results are significantly
more complex than using the standard representation.
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3.4 Conversion using Sign Representation

3.4.1 Sign Representation

Definition 3.15. Let f(x1, · · · , xn) be a Boolean function, xi ∈ {true, false}
for i = 1, · · · , n and t : {false, true} → {−1, 1} with

t(false) = −1

t(true) = 1.

s(y1, · · · , yn) is the sign representation of f(x1, · · · , xn), if

∀xi : s(t(x1), · · · , t(xn)) = t(f(x1, · · · , xn)).

Lemma 3.3. Let f(x1, · · · , xn) be a Boolean function and s(y1, · · · , yn) its sign
representation.

a) f(x1, x2) = x1∧x2 =⇒ s(y1, y2) = 1
2 (−1+y1+y2+y1·y2), yi = t(xi) for i =

1, 2.

b) f(x1, x2) = x1∨x2 =⇒ s(y1, y2) = 1
2 (1+y1 +y2−y1 ·y2), yi = t(xi) for i =

1, 2.

c) f(x1) = ¬x1 =⇒ s(y1) = −y1, y1 = t(x1).

d) f(x1, x2) = x1 ⊕ x2 =⇒ s(y1, y2) = −y1 · y2, yi = t(xi) for i = 1, 2.

Example 3.5. The same Boolean function is used as in Example 3.1.

f(x1, x2, x3, x4) = x3 ∧ x1 ∧ x0 ⊕ x3 ∧ x1 ⊕ x3 ∧ x0 ⊕ x3 ⊕ x1 ⊕ x0 ⊕ true

By applying Lemma 3.3 recursively as above, the polynomial over the reals using
sign representation is

s(y1, y2, y3, y4) =
1

4
[1− y0 − y1 − 3y0y1 + y3 − y0y3 − y1y3 + y0y1y3].

The reader may get the impression that this result is more complicated than
in the standard or dual representation, but in the next sections the analysis will
show that this is not always the case.

Remark 3.1. A general property of the four representation types is the multilin-
earity. Concerning standard and dual representation the exponent of a variable
is always equal to one (x2 = x). More interesting is the multilinearity in the
Fourier and sign representation since monomials can disappear (x2 = 1).
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3.4.2 Conversion

Using Algorithm 1, the definition of C∧ and C⊕ follows directly from Lemma 3.3a)
and Lemma 3.3d).

C∧(a, b) =
1

2
(−1 + a+ b+ a · b),

C⊕(a, b) = −a · b.

We consider again an arbitrary Boolean equation in ANF⊕
I⊆M

aI ∧ (
∧
i∈I

xi) = b. (3.12)

First the AND operations have to be converted by applying C∧ on∧
i∈I

aI ∧ xi. (3.13)

Therefore, we use the following recursion which is equivalent to Algorithm 1

C∧(aI , C∧(xi1 , C∧(xi2 , C∧(· · · , C∧(xi|I| , xi|I|+1
)))).

For a better understanding, the intermediate result after evaluating two steps of
the above recursion results in

C∧(· · · ) =
1

2
(−1 + t(aI) + C∧(· · · ) + t(aI) · C∧(· · · ))

=
1

2

(
−1 + t(aI) +

1

2
(−1 + y1 + C∧(· · · ) + y1 · C∧(· · · ))

+
1

2
(−t(aI) + t(aI)y1 + t(aI)C∧(· · · ) + t(aI)y1 · C∧(· · · ))

)
=

1

4
(−3 + t(aI) + y1 + C∧(· · · ) + t(aI)y1 + t(aI)C∧(· · · ))

+y1C∧(· · · ) + t(aI)y1C∧(· · · )) .

By evaluating all C∧ we obtain

c(~yI) :=− 1 +

(
1

2

)|I|−1

+

(
1

2

)|I|−1

t(aI)

1 +
∑
i∈I

yi +
∑
i,j∈I
i<j

yiyj +
∑

i,j,k∈I
i<j<k

yiyjyk + · · ·+
∏
i∈I

yi


+

(
1

2

)|I|−1

∑
i∈I

yi +
∑
i,j∈I
i<j

yiyj +
∑

i,j,k∈I
i<j<k

yiyjyk + · · ·+
∏
i∈I

yi

 ,
(3.14)
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where ~yI = yi1 , · · · , yi|I| . For better readability we write

⊕
I⊆M

c(~yI). (3.15)

Again the XOR operations have to be converted next. According to following
recursion

C⊕(c(~yI1), C⊕(c(~yI2), C⊕(· · · , C⊕(c(~yI|P(M)|−1
), c(~yI|P(M)|)))))

we obtain a polynomial over the reals representing the Boolean Equation 3.12
using sign representation

C⊕1(· · · ) =− c(~yI1) · C⊕2(· · · )
=c(~yI1)c(~yI2) · C⊕3(· · · )
= · · ·
=(−1)|P(M)|−1

∏
I⊆M

c(~yI) = t(b)

(3.16)

We denote Equation (3.16) as the converted polynomial over the reals psi.

3.4.3 Analysis

Total Degree

Since equation (3.16) consist only of one single product, we need to analyse
Equation (3.14), where the product

∏
i∈I yi determines the total degree of (3.14),

which is |I|. It follows from the single product in (3.16) that the total degree of
psi is equal to the total degree ps or pd, which is equal to the number of variables
in the converted equation

kt := |
⋃
I⊆M
aI=1

I|.

Monomial Degree

Equation (3.12) consist of |P(M)| different monomials and Equation (3.16) con-
sists of one single product. Hence, the number of monomials is determined by∏

I⊆M
mdeg(c(~yI)).

Since c(~yI) consists of each possible product of yi, for i ∈ I and |I| > 1, plus
one constant, the number of monomials is

|I|∑
i=1

(|I|
i

)
+ 1.
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The condition |I| > 1 follows from the fact that for |I| = 1 there is no conjunction
and therefore no conversion is needed. However, only c(~yI) where aI = true

contribute to the monomial degree. Therefore, the monomial degree of psi is
given by

mdeg(psi) =
∏
I⊆M

aI=true

 |I|∑
i=1

(|I|
i

)
+ 1

 .

This is the exact number of monomials if for all I ⊆ M , aI = true and
⋂
I =

{}. Due to the multilinearity property the monomial degree is decreased if the
Boolean function is variable sharing. In contrast to the standard representation,
the sign representation benefits from a different type of variable sharing. In this
case the shared variable has to be a part of a conjunction. This derives from the
fact, that only the AND conversion creates additional monomials.

Example 3.6. The following Boolean function is converted using the sign rep-
resentation.

f = x1 ∧ x2 ⊕ x1 ∧ x3

The resulting polynomial over the reals is given by

psi =
1

4
(−1 + x1 + x2 + x1x2 + x3 − x1x3

−x2x3 − x1x2x3 + x1 − x1x1 − x2x1

−x1x2x1 + x3x1 − x1x3x1 − x2x3x1 − x1x2x3x1)

=
1

2
(−1 + x1 − x2x3 − x1x2x3)

Due to the variable sharing property of f and the multilinearity property of the
sign representation, the monomial degree in this example is decreased by a factor
of 4. If the above requirement is not given, then the monomial degree is not
decreased.

Example 3.7. This example demonstrates that the sign conversion does not
benefit from variable sharing, if the shared variable is not part of a conjunction.

f = x1 ⊕ x1 ∧ x2 ⇐⇒ psi =
1

2
(−1 + x1 − x2 − x1x2)

Removing the variable sharing property, the resulting polynomial has the same
monomial degree (1 is interpreted as a monomial x0).

f = x1 ⊕ x3 ∧ x2 ⇐⇒ psi =
1

2
(x1 − x1x2 − x1x3 − x1x2x3)

Note that the observations for the variable sharing effect are also made for
the Fourier conversion, which is introduced next.
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3.5 Conversion using Fourier Representation

3.5.1 Fourier Representation

Definition 3.16. Let f(x1, · · · , xn) be a Boolean function, xi ∈ {true, false}
for i = 1, · · · , n and t : {false, true} → {−1, 1} with

t(false) = 1

t(true) = −1.

s(y1, · · · , yn) is the Fourier representation of f(x1, · · · , xn), if

∀xi : s(t(x1), · · · , t(xn)) = t(f(x1, · · · , xn)).

Lemma 3.4. Let f(x1, · · · , xn) be a Boolean function and s(y1, · · · , yn) its
Fourier representation.

a) f(x1, x2) = x1∧x2 =⇒ s(y1, y2) = 1
2 (1+y1 +y2−y1 ·y2), yi = t(xi) for i =

1, 2.

b) f(x1, x2) = x1∨x2 =⇒ s(y1, y2) = 1
2 (−1+y1+y2+y1·y2), yi = t(xi) for i =

1, 2.

c) f(x1) = ¬x1 =⇒ s(y1) = −y1, y1 = t(x1).

d) f(x1, x2) = x1 ⊕ x2 =⇒ s(y1, y2) = y1 · y2, yi = t(xi) for i = 1, 2.

Example 3.8. Again the same Boolean function as in Example 3.1 is used.

f(x1, x2, x3, x4) = x3 ∧ x1 ∧ x0 ⊕ x3 ∧ x1 ⊕ x3 ∧ x0 ⊕ x3 ⊕ x1 ⊕ x0 ⊕ true

s(y1, y2, y3, y4) =
1

4
[1 + y0 + y1 − 3y0y1 − y3 − y0y3 − y1y3 − y0y1y3].

3.5.2 Conversion

Using Algorithm 1, the definition of C∧ and C⊕ follows directly from Lemma 3.4a)
and Lemma 3.4d).

C∧(a, b) =
1

2
(1 + a+ b− a · b)

C⊕(a, b) = a · b

We target again an arbitrary Boolean equation in ANF⊕
I⊆M

aI(
∧
i∈I

xi) = b. (3.17)
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The AND operations have to be converted first by applying C∧ on∧
i∈I

aI ∧ xi (3.18)

Therefore, we use the following recursion

C∧(aI , C∧(xi1 , C∧(xi2 , C∧(· · · , C∧(xi|I| , xi|I|+1
))))). (3.19)

The first two step results in

C∧(· · · ) =
1

2
(1 + t(aI) + C∧(· · · )− t(aI) · C∧(· · · ))

=
1

2

(
1 + t(aI) +

1

2
(1 + y1 + C∧(· · · )− y1 · C∧(· · · ))

+
1

2
(−t(aI)− t(aI)y1 − t(aI)C∧(· · · ) + t(aI)y1 · C∧(· · · ))

)
=

1

4
(3 + t(aI) + y1 + C∧(· · · )− t(aI)y1 − t(aI)C∧(· · · ))
−y1C∧(· · · ) + t(aI)y1C∧(· · · ))

and the full conversion of the AND operations leads to

c(~yI) :=1−
(

1

2

)|I|−1

−
(

1

2

)|I|−1

t(aI)

1 +
∑
i∈I

yi −
∑
i,j∈I
i<j

yiyj +
∑

i,j,k∈I
i<j<k

yiyjyk − · · ·+ (−1)|I|−1
∏
i∈I

yi


+

(
1

2

)|I|−1

∑
i∈I

yi −
∑
i,j∈I
i<j

yiyj +
∑

i,j,k∈I
i<j<k

yiyjyk − · · ·+ (−1)|I|−1
∏
i∈I

yi

 ,
(3.20)

where ~yI = yi1 , · · · , yi|I| . For a better readability we write

⊕
I⊆M

c(~yI). (3.21)

Again the XOR operations have to be converted next according to the following
recursion

C⊕(c(~yI1), C⊕(c(~yI2), C⊕(· · · , C⊕(c(~yI|P(M)|−1
), c(~yI|P(M)|))))),
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we obtain a polynomial over the reals representing the Boolean Equation (3.17)
using Fourier representation

C⊕(· · · ) =c(~yI1) · C⊕(· · · )
=c(~yI1)c(~yI2) · C⊕(· · · )
= · · ·
=
∏
I⊆M

c(~yI) = t(b).

(3.22)

We denote Equation (3.22) as the converted polynomial over the reals pf .

3.5.3 Analysis

Due to the similarities between the Fourier and sign representation all derivations
in Section 3.4.3 are also true for the Fourier representation. Hence, the total
degree and monomial degree is the same if the Boolean equation is not variable
sharing. If the variable sharing property is available, the same observations are
made as for the sign representation.

Total Degree

The total degree is given by

kt := |
⋃
I⊆M

aI=true

I|.

Monomial Degree

The monomial degree is given by

∏
I⊆M

aI=true

 |I|∑
i=1

(|I|
i

)
+ 1

 ,

for |I| > 1.

3.6 Comparison of Conversion Methods

We presented four different ways to convert any Boolean equation to a poly-
nomial over the reals. The resulting polynomials look different but share the
minimum amount of roots derived from the Boolean solutions of the original
Boolean equation. As we have shown, one has a huge influence on the structure
of the conversion results. The analysis of the conversion methods shows that
the complexity of the structure of the resulting polynomials is increased signif-
icantly for all methods. The total degree is the same for all four, and depends
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only on the number of occurring variables. However, the monomial degree is
one factor were different methods deliver different results. If we assume that a
lower monomial degree makes the solving of equations using numerical methods
easier, then we would recommend the standard or Fourier conversion. The dual
representation can be excluded from further consideration, since it delivers the
highest monomial degree. The sign and Fourier representation are very simi-
lar and deliver the same monomial degree after the transformation. We prefer
Fourier conversion, because the conversion for the XOR operations is slightly
simpler (no sign alteration). If we reconsider the monomial degree using the
standard representation

ks∑
i=1

(
ks
i

)
, (3.23)

where ks is the amount of aI = true and for the Fourier representation

∏
I⊆M

aI=true

|I|∑
i=1

(|I|
i

)
, (3.24)

one can see that both depend on the number of aI = true which is equivalent
to the number of XOR operations in the Boolean equation. Additionally, the
monomial degree for the conversion using Fourier representation depends on the
number of AND operations. According to (3.23) and (3.24) an increase of XOR
operations is a disadvantage for the standard representation. The number of
AND operations can be expressed in the following way∑

I⊆M
aI=true

(|I| − 1).

The following inequalities can be used as a rule of thumb for the decision in
practice. If the condition ∑

I⊆M
aI=true

(|I| − 1) < ks

holds then Fourier representation should be preferred. On the other hand if∑
I⊆M

aI=true

(|I| − 1) ≥ ks

holds, then the standard representation results in a lower monomial degree. If
the Boolean equation is variable sharing then the rule of thumb may change. In
that case it depends how a variable is shared in one equation which is analysed
in the next section. However, in practice it is useful to compute the polynomial
over the reals using both conversion types and to compare the monomial degree,
since the computational effort to do this is negligible.
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Remark 3.2. Note that the effect of the monomial degree on the solvability of the
resulting system of equations over the reals is still an open problem. However, the
monomial degree has a significant impact on the efficiency of numerical methods.
Due to the fact that large equations are more difficult to handle. Storing and
evaluating large equations and therefore large systems of equations can be costly.
Especially, iterative numerical methods evaluate the system and the Jacobian
matrix more than once per iteration. Hence, the performance of each iteration
decreases with the size of the equations.

Remark 3.3. One disadvantage of all four conversion methods is that linear
Boolean functions become non-linear function over the reals.As we show in Chap-
ter 5, there are cases were we can prevent this.

3.7 Variable Sharing

The variable sharing property decreases the monomial degree as shown in Sec-
tions 3.2.3 and 3.4.3. In the following section we analyse this property in more
details. Due to the similarities between sign and Fourier conversion and the bad
results for dual conversion, we focus on the standard and Fourier conversion.
We consider again an arbitrary Boolean equation in ANF⊕

I⊆M
aI ∧ (

∧
i∈I

xi) = b.

Without loss of generality let xk be the shared variable (occurs in at least two
monomials). Let be M̃ := {I ∈ P(M) : aI = true}. We separate the monomials
including xk in two parts by splitting M̃ in M̃k = {I ∈ M̃ : k ∈ I} and
M̃k̄ = {I ∈ M̃ : k 6∈ I} which results in

(
⊕
K∈M̃k

aK ∧ (
∧
i∈K

xi))⊕ (
⊕
I∈M̃k̄

aI ∧ (
∧
i∈I

xi)). (3.25)

In the next step we factor out xk:

(xk ∧ (
⊕
K∈M̃k

aK ∧ (
∧

i∈K\{k}
xi))⊕ (

⊕
I∈M̃k̄

aI ∧ (
∧
i∈I

xi)). (3.26)

Under the consideration of the distributive law in Boolean algebra, we first
convert the right part denoted by ck̄(~y), and then the left part denoted by ck(~y)
of Equation (3.26). Finally, the XOR combination of both results is converted

ck(~y)⊕ ck̄(~y).

The affect of variable sharing on the monomial degree depends now on the
chosen representation. Note that for more than one sharing variable the same
technique is applied recursively under consideration of the distributive law in
Boolean algebra.
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3.7.1 Standard Conversion

As mentioned before, variable sharing can decrease the monomial degree of the
resulting equations. The monomial degree of ck̄(~y) using standard representation
(see Section 3.2.3) is given by

|M̃k̄|∑
i=1

(|M̃k̄|
i

)
.

Considering Equation (3.26) the conjunction of xk is converted to a multiplica-
tion and therefore does not increase the monomial degree. Hence, by factoring
out xk the monomial degree can only decrease if there is one constant monomial
in

(
⊕
K∈M̃k

aK ∧ (
∧

i∈K\{k}
xi).

In that case the monomial degree of ck(~y) is reduced and is given by

|M̃k|−1∑
i=1

(|M̃k − 1|
i

)
.

In the last step we convert the XOR combination

ck(~y)⊕ ck̄(~y).

according to the conversion rule given by the standard representation:

C⊕(a, b) = a+ b− 2 · a · b.

Hence, the monomial degree of the Equation (3.25) converted with one shared
variable is given by

|M̃k|−1∑
i=1

(|M̃k − 1|
i

)
·
|M̃k̄|∑
i=1

(|M̃k̄|
i

)
+

|M̃k|−1∑
i=1

(|M̃k − 1|
i

)
+

|M̃k̄|∑
i=1

(|M̃k̄|
i

)

which is less than the monomial degree without variable sharing

|M̃ |∑
i=1

(|M̃ |
i

)
.

In other words, the standard conversion profits from variable sharing only if the
shared variable is the only variable in at least one monomial.
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3.7.2 Fourier Conversion

We use the Fourier representation to convert Equation (3.25) according to Sec-
tion 3.5. The monomial degree of ck̄(~y) using Fourier representation is given
by ∏

I∈M̃k̄

 |I|∑
i=1

(|I|
i

)
+ 1

 ,

for |I| > 1. To determine the monomial degree of ck(~y) we first compute the
monomial degree of the inner conjunctions

aK ∧ (
∧

i∈K\{k}
xi))

which is given by
|K|−1∑
i=1

(|K| − 1

i

)
+ 1,

for each K ∈ M̃k and for |K| − 1 > 1. The XOR operations are converted to
multiplications and hence the monomial degree including the XOR conversion
results in ∏

K∈M̃k
|K|>2

|K|−1∑
i=1

(|K| − 1

i

)
+ 1

 .

Now we have one final conjunction to convert which results from factoring out
the shared variable xk (see Equation (3.26)). The rule for this conversion is
given by

C∧(a, b) =
1

2
(1 + a+ b− a · b)

which determines the monomial degree of ck(~y):

2 ·
∏

K∈M̃k
|K|>2

|K|−1∑
i=1

(|K| − 1

i

)
+ 1

 .

Note that there is a special case if ∃K ∈ M̃k, |K| ≤ 2. In that case the monomial
degree of ck(~y) is increased by two. It follows that the monomial degree of
Equation (3.25) converted with one shared variable is given by2 ·

∏
K∈M̃k
|K|>2

|K|−1∑
i=1

(|K| − 1

i

)
+ 1

 ·
 ∏
I∈M̃k̄

|I|∑
i=1

(|I|
i

) .

If we compare this result to the monomial degree without variable sharing

∏
I⊆M̃

 |I|∑
i=1

(|I|
i

)
+ 1

 ,
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we see that the monomial degree depends on how often a shared variable occur
in a conjunction. The higher the occurrence the lower the monomial degree.
However, there is an exception if the shared variable is part of conjunctions with
only one additional variable. In that case the monomial degree does not change.

3.7.3 Conversion Examples

The examples and conversion results shown in Table 3.1 should give a feeling
about the total degree and monomial degree for different types of equations.

Table 3.1: Results for different examples.

Standard Dual Sign Fourier
f1 x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ∧ x6

Total degree 6 6 6 6
Monomial degree 31 63 4 4

f2 x1 ⊕ x2 ⊕ x3 ⊕ x4 ∧ x5 ⊕ x6 ∧ x7

Total degree 7 7 7 7
Monomial degree 31 127 16 16

f3 x1 ⊕ x2 ⊕ x3 ⊕ x4 ∧ x5 ⊕ x6 ∧ x7 ⊕ x8 ∧ x9

Total degree 9 9 9 9
Monomial degree 63 512 64 64

f4 x1 ⊕ x2 ⊕ x3 ⊕ x1 ∧ x4 ⊕ x6 ∧ x7 ⊕ x8 ∧ x9

Total degree 8 8 8 8
Monomial degree 47 192 64 64

f5 x1 ⊕ x2 ⊕ x3 ⊕ x1 ∧ x4 ⊕ x1 ∧ x7 ⊕ x8 ∧ x9

Total degree 7 7 7 7
Monomial degree 39 128 16 16

f6 x1 ⊕ x2 ⊕ x3 ⊕ x1 ∧ x4 ⊕ x2 ∧ x7 ⊕ x8 ∧ x9

Total degree 7 7 7 7
Monomial degree 35 72 64 64

f1 is not variable sharing and has more XOR than AND operations. f2 has
an additional AND operation. The results show that the monomial degree for
the standard conversion does not change, but for the Fourier transformation it
increases significantly. f3 has a balanced amount of XOR and AND operations,
hence the total degree and monomial degree are close. In f4 we include variable
sharing to the equation. This results in a significant decrease of the monomial
degree for the standard and dual conversion. For f5 a variable is shared such
that the standard and Fourier conversion benefit from it. The Fourier conversion
can compensate an AND operation, which decreases the monomial degree by a
factor of 4. In f6 more variables are shared such that the standard and dual
conversion benefit from it. Therefore, the decrease factor is smaller than for f5

using sign and Fourier transformation.
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Remark 3.4. Due to the fact that the conversion of a system of equations is
done by converting each equation separately, we analysed the conversion methods
only for one single equation. Although, considering the whole system, some ben-
eficial effects may occur. For example a combination of converted equations may
result in a less complex structure. However, this effects would occur independent
of the chosen conversion methods and may already indicate a structural problem
in the original Boolean system. For the targeted systems we can not observe such
effects and therefore it does not influence the choice of the conversion method.

Obviously, the structure of the resulting polynomials depends also on the
actual used Boolean equations, why it is not possible to recommend one repre-
sentation for all cases. However, the rule of thumb given in Section 3.6 should
lead to a first choice of a conversion method. Due to the variable sharing prop-
erty a closer look at the equations is inevitable.

3.8 Advanced Conversion Techniques

So far we influenced the structure of the resulting polynomials over the monomial
degree and the variable sharing property. The total degree on the other hand
is not changed by any type of representation and is considerable high. Since
the total degree is a crucial factor in the solvability of non-linear systems of
equations over the reals (see Chapter 4), it is important to keep this degree as
low as possible. Therefore, we further develop the presented conversion methods
such that we specifically influence the total degree of the resulting polynomials.
We published both conversion methods in [LNR09b].

3.8.1 Adapted Standard Conversion

The main idea behind our Adapted Standard Conversion is to keep the struc-
ture of the equation when converting them to the real domain. This should
result in equations over the reals with low monomial degrees and total degrees.
The adapted standard conversion uses the standard representation, but with a
different conversion algorithm. Instead of converting all operations recursively
in consideration of the distributive law in Boolean algebra, the equation stays
unchanged by introducing new variables and new equations. Note that this
conversion method works for every type representation analogous.

Conversion

We consider again an arbitrary Boolean equation in ANF

f(~x) =
⊕
I⊆M

aI(
∧
i∈I

xi) = b. (3.27)

In the first step we compute the truth table of the Boolean function f and filter
for the solutions of Equation (3.27). Let S := {~x : f(~x) = b} be the set of
solutions.
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Next we keep the structure of the equation in the real domain, i.e. each AND
operation becomes the multiplication and each XOR becomes an addition over
the reals:

fr(~x) =
∑
I⊆M

t(aI)(
∏
i∈I

yi) = t(b), (3.28)

for fr : Bn → R. We determine the set Sr := {f(~y) : ~y = t(~x) for ~x ∈ S} which
contains all possible values of fr at the solutions of (3.27). Since |Sr| > 0 we
need to add equations such that the resulting system over the reals is equivalent
to the Boolean system. Therefore, we introduce for each ci ∈ Sr the following
equation and variable

di(
∑
I⊆M

t(aI)(
∏
i∈I

yi)− ci) = 0, (3.29)

where di ∈ R. Finally, a last equation is added

|Sr|∑
i=1

di = 1,

expressing that only one of the expressions between the brackets in (3.29) can
be valid at the same time or that only one of the new variables should be equal
to 1. The obvious solution is integer valued. Unfortunately, this construction
also makes the existence of real-valued solutions more likely. Note that such a
construction is common practice in operation research when modelling decision
problems. In our case di decides which assignment of the variables corresponds
to which equation.

The final result of converting the Boolean Equation (3.27) is the system
d1(
∑
I⊆M t(aI)(

∏
i∈I yi)− c1)

...
d|Sr|)(

∑
I⊆M t(aI)(

∏
i∈I yi)− c|Sr|)∑|Sr|

i=1 di

 =


0
...
0
1

 . (3.30)

Analysis

The adapted standard conversion is a trade-off approach. We trade for lower
total and monomial degree and pay with more equations and variables. The cost
depends only on |Sr| and if its low we can improve the total and monomial degree
significantly compared to any of the other conversion methods without paying
to much. The total degree using this conversion method is effectively increased
only by one, due to the multiplication of the new variables di. The monomial
degree itself does not change. However, we need to introduce new equations such
that the conversion result is consistent with the Boolean solutions. That leads
to |Sr|+ 1 additional equations and |Sr| new variables. If this pays off depends
on the actual Boolean equations.
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3.8.2 Splitting Conversion

The Splitting Conversion aims also for a low total degree of the conversion
result, but achieves it by a different approach. As we show in the four basic
conversion methods the final total and monomial degree increases exponentially
with the number of variables and monomials of the Boolean equation. As the
name indicates we split the Boolean equation such that smaller equations need
to be converted.

Conversion

We consider again an arbitrary Boolean equation in ANF

⊕
I⊆M

aI(
∧
i∈I

xi) = b. (3.31)

Without loss of generality we set M̃ ⊆ P(M) such that for all J ∈ M̃ , aJ = true.
We split M̃ into l parts. Hence, we split also Equation (3.31) into l equations



⊕
I⊆M̃1

aI ∧ (
∧
i∈I xi) = z1⊕

I⊆M̃2

aI ∧ (
∧
i∈I xi) = z2

...⊕
I⊆M̃l−1

aI ∧ (
∧
i∈I xi) = zl−1⊕

I⊆M̃l

aI ∧ (
∧
j∈I xi) =

⊕l−1
i=1 zi ⊕ b


, (3.32)

and introducing new variables zi ∈ {false, true}, for i = 1, . . . l − 1. Now every
equation in (3.32) is converted using any of the four basic conversion methods.
Left-hand side and right-hand side of each equation are converted separately.
The rule of thumb given in Section 3.6 can be applied on each equation for
choosing an appropriate conversion method. Obviously, we are not allowed to
mix conversion methods in this step.

Analysis

Each of the derivations made for the basic conversion methods holds also for the
splitting conversion. Due to the splitting parameter l > 0 we can directly control
the total degree of the result. Hence, the total degree of converted equation i is

ki := |
⋃
I⊆M̃i

I|.
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The monomial degree of converted equation i using standard representation
results in

|M̃i|∑
j=1

(|M̃i|
j

)
and for using Fourier representation it is

∏
I⊆M̃i

|I|∑
j=1

(|I|
j

)
.

The situation for the last equation on (3.32) is a little bit different, because
the right-hand side consist of a linear combination of the introduced variables.
Hence, for the last equation we obtain a total degree of

max {|
⋃
I⊆M̃l

I|, l − 1}

and a monomial degree of

max {
|M̃l|∑
j=1

(|M̃l|
j

)
,

l−1∑
j=1

(
l − 1

j

)
}

using standard representation. Since the right-hand side of the last equation is
a linear function, the monomial degree is only slightly increased using Fourier
representation ∏

I⊆M̃l

|I|∑
j=1

(|I|
j

)
+ 1.

Overall, we can reduce the total degree and monomial degree significantly by
the cost of l − 1 additional equations and variables.

Even, if the splitting method seems to be more complicated, we show in
Chapter 5 that it is especially useful when we deal with sparse Boolean equations.

3.9 Summary

Every cryptographic algorithm can be described as a system of Boolean equa-
tions. In order to be able to use numerical methods to solve such systems we
have to convert the equations to equations over the real domain. By doing that
we have to ensure that at least the set of Boolean solutions is represented in
the reals, i.e. each solution of the Boolean system has at least one correspond-
ing solution for the system over the reals. In several scientific fields similar
problems occur for what different types are defined to represent a Boolean func-
tion/equation as a polynomial over the reals. Four types of representation occur
consistently in the literature, namely standard, dual, Fourier and sign represen-
tation. Basically, the mapping of {false, true} to real values determines the
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conversion of the Boolean operators. In this chapter we analysed in detail each
type of representation and defined criteria to classify them. Therefore, we fo-
cused on the structure of the resulting equations over the reals and defined the
criteria monomial degree and total degree. We showed that one has a high influ-
ence on the structure of the conversion result, which is exceptional compared to
usual use cases for numerical methods. Furthermore, we defined the property of
variable sharing which has a high influence on the conversion result. We showed
how this property affects the different types of representation. We also provided
a rule of thumb helping to find the appropriate type of representation for specific
equations.

However, all four types result in a relatively high total degree which has
a crucial impact on the difficulty of the system over the reals. Therefore, we
introduce two new conversion methods aiming especially for a low total degree
and monomial degree for the resulting polynomials over the reals. Overall, we
showed that by choosing the right representation and conversion method one
can change significantly the structure of the system of equations over the reals
and therefore its difficulty regarding the solvability.



4
Numerical Analysis

In this chapter we will give an overview on numerical analysis. It is difficult to
give a general overview on numerical analysis since there are a large amount of
different applications, problems, techniques and several sub-fields with numerous
research results. Therefore, we will focus on methods for solving non-linear
systems of polynomials which shrinks the number of usefull numerical methods.
Additionally, we know that for our modelled problems solutions exists and we
generally do not know much about them which further decreases the considerable
techniques. In the following sections we will focus on those aspects of numerical
analysis which are important for our approach. We will give an overview on
numerical analysis, explain the basic concepts and introduce the most important
methods and techniques.

4.1 Overview

Numerical analysis is the area of mathematics and computer science that cre-
ates, analyses, and implements algorithms for solving numerically the problems
of continuous mathematics. Such problems originate generally from real-world
applications of algebra, geometry and calculus, and they involve variables which
vary continuously. These problems occur throughout the natural sciences, social
sciences, engineering, medicine, and many more. In the last half-century the
increasing power and availability of digital computers has raised the usage of
mathematical models in science and engineering. Numerical analysis has been
needed to solve these more detailed mathematical models of the world. The
formal academic area of numerical analysis varies from quite theoretical math-
ematical studies to computer science issues. With the growth in importance of

41
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using computers to carry out numerical methods in solving mathematical mod-
els of the world, an area known as scientific computing or computational science
has taken shape during the 1980s and 1990s. This area looks at the use of
numerical analysis from a computer science perspective. It is concerned with us-
ing the most powerful tools of numerical analysis, computer graphics, symbolic
mathematical computations, and graphical user interfaces to make it easier for
a user to set up, solve, and interpret complicated mathematical models of the
real world.

Numerical analysis is used for a vast variety of problems and is concerned
with all aspects of the numerical solution of a problem, from the theoretical
development and understanding of numerical methods to their practical im-
plementation. Numerical analysis consists of several sub-areas, but they share
some common concerns, perspectives and mathematical methods. A brief over-
view is given in this section. Since numerical analysis is a huge field we do
not claim completeness of this overview. Detailed information can be found in
[Atk89, Spe93, Sch97, PR02, Deu04].

A well-known sub-field is interpolation theory which is the concept of choos-
ing a function from a given class in such way that the graph passes through
the given data points, hence interpolating the given data points by a continuous
function, usually a polynomial. Interpolation is partially connected with ap-
proximation theory which covers the approximation of functions and methods.
For evaluating a function on a computer, it is generally more efficient in space
and time to have an analytic approximation rather than to store a table and use
interpolation. Usually, polynomials as approximations to a given function are
used.

Computations of eigenvalues and eigenvectors is another important field in
numerical analysis. The problem of calculating eigenvalues and eigenvectors of a
matrix occurs in a number of contexts in particularly in physics and engineering
handling oscillation problems.

A major topic is the solving of differential and integral equations. Most
mathematical models used in the natural sciences and engineering are based
on ordinary differential equations, partial differential equations, and integral
equations. The numerical methods for these equations are primarily of two
types. The first type approximates the unknown function in the equation by a
simpler function, often a polynomial or piecewise polynomial function, choosing
it to satisfy the original equation approximately. Most numerical methods for
solving differential and integral equations involve both approximation theory
and the solution of quite large linear and non-linear systems.

Solving linear systems of equations is another large sub-field of numerical
analysis. Such systems occur in a large number of areas, e.g. physics, biology,
social science and many more. Because of the widespread importance of linear
systems a lot of research has been devoted to their numerical solutions. Effi-
cient and robust algorithms have been developed for the most common types of
problems for linear systems.
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The most difficult problems involve systems of non-linear equations. Methods
to compute solutions for such systems have been studied for centuries and a large
part of numerical analysis is devoted to its research. In cryptography the ability
to compute solutions for non-linear systems efficiently is directly connected to
the security of cryptographic algorithms. For solving non-linear equations nu-
merically iterative methods are necessary which compute a solution as a limit
value of a sequence of approximations. In general one can use two approaches.
One operates directly on the system represented as a n-th dimensional function,
the other reformulates the system as a unconstrained or constrained optimization
problem. In this context direct and indirect methods, convergence, existence of
solutions, local and global solutions are important and discussed in the following
sections.

4.2 Newton Method and its Variants

Complex problems often involve the computation of solutions for non-linear
equations or systems of non-linear equations. For this purpose iterative methods
are necessary which compute a solution as the limit of a sequence of solution ap-
proximations [Sch97]. A general overview can be found for example in [QSS02]
and detailed information can be found in [Spe93, Bjö96, Sch97, Deu04]. Finding
a solution for a non-linear system of equations is the generalization of the root
finding problem of a non-linear function extended to n-th dimension.

Let F : Rn → Rn be a system of n equations. Finding a solution for F (x)
means to find

x∗ such that F (x∗) = ~0, (4.1)

Let Ck(D) be the set of all k-time (k ≥ 0 ) continuous differentiable functions
from D to Rn. We assume that F ∈ C1(D). In order to be able to construct
the most basic methods we need the following definitions.

Definition 4.1 (Jacobi Matrix). JF (x) is the Jacobi matrix associated with F
at point x = (x1, . . . , xn)T ∈ Rn and is defined as

(JF (x))ij =

(
∂Fi
∂xj

)
(x),

for i, j = 1, . . . , n.

Definition 4.2 (Lipschitz continuous). Let f be a function f : A → A, A a
closed subset of a R. f is called Lipschitz continuous or is said to satisfy a
Lipschitz condition, if

‖f(x)− f(y)‖ ≤ ω · ‖x− y‖,∀x, y ∈ A.

f is called a contraction if ω < 1. ω is called the Lipschitz constant.

One of the most well-known methods to solve a system of non-linear equations
is the Newton method. The Newton method for the n-th dimensional case is
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a direct extension of the basic Newton method for one dimensional real-valued
functions. Given a system of equations F ∈ C1(D) the Newton method can be
described as follows:

solve JF (xk)∆xk = −F (xk),

set xk+1 = xk + ∆xk.
(4.2)

Starting with an initial guess x0 of the unknown solution x∗, this is repeated
(for k = 0, 1, 2, . . . ) until it converges to x∗. Numerical methods were the initial
guess has to be close to the solution are called local methods. For global methods
this is not necessary. The following theorems provide more details on the reason
for this differentiation. The convergence of the Newton method depends heavily
on the initial guess x0 which is expressed in the following theorem [QSS02]:

Theorem 4.1. Let F : Rn → Rn and F ∈ C1(D) on a convex set D ⊂ Rn
which includes x∗. Assume that JF (x∗) is invertible and that there exist positive
constants R,C and L such that J−1

F (x∗) ≤ C and

‖JF (x)− JF (y)‖ ≤ L‖x− y‖ ∀x, y ∈ B(x∗;R).

Then there exists r > 0 such that for each x0 ∈ B(x∗; r) the sequence (4.2) is
uniquely determined and converges towards x∗, whereby

‖xk+1 − x∗‖‖ ≤ CL‖xk − x∗‖2.
Theorem 4.1 proves quadratic convergence of the Newton method if x0 is

sufficient close to the solution x∗ and the Jacobi matrix is not singular. Fur-
thermore, solving the linear system (4.2) can be computational expensive for
large n and if the Jacobi matrix is ill-conditioned achieving an exact solution
can be very difficult. Therefore, several variants of the Newton method were
constructed to handle ill-conditioned matrices and other problems. For more
information we refer to [Deu04]. More insight in local Newton methods gives us
the refined Newton-Mysovskikh theorem [DP92].

Theorem 4.2. Let F : Rn → Rn and FinC1(D), where D is open and convex.
Suppose that JF (x) is invertible for each x ∈ D. Assume that following affine
covariant Lipschitz condition holds:

‖JF (x)−1(JF (y)− JF (x))(y − x)‖ ≤ L‖y − x‖2,
for x, y ∈ D. Let F (x) = 0 have a solution x∗. For the initial guess x0 assume
that B(x∗, ‖x0 − x∗‖) ⊂ D and that

L‖x0 − x∗‖ < 2.

Then the ordinary Newton iterates defined by (4.2) remain in the open ball
B(x∗, ‖x0 − x∗‖) and converge to x∗ at an estimate rate

‖xk+1 − x∗‖ ≤ 1

2
L‖xk − x∗‖2.

Moreover, the solution x∗ is unique in the open ball B(x∗, 2/L).
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Theorem 4.2 presents an appropriate local convergence condition of the form

‖x0 − x∗‖ < 2/L.

Under this condition Newton methods are guaranteed to converge. The compu-
tational complexity of such problems is priori bounded in terms of the computa-
tional complexity of solving linear problems of the same structure. In contrast
under condition

‖x0 − x∗‖ � 2/L

Newton methods will not provide guaranteed convergence. Therefore, the com-
putational complexity cannot be bounded a priori. Such problems are often
called highly non-linear. For large systems it is hard to prove Lipschitz con-
tinuity and even harder to compute the actual Lipschitz constant L, which is
required to determine a reasonable starting value. For very low dimensions,
e.g. 3, it is possible to find a starting value through geometric interpretation,
but for high dimensional problems (like in the case of cryptography) geometric
interpretation is infeasible.

For a general mapping F , a globalization of the Newton methods must be
constructed. Only globally convergent methods are capable of using an arbitrary
starting point (under restrictions). However, all iterative solvers have in common
that the starting point has a high influence on the convergence. In our case we
know that the solution is in a specific sub domain (see Chapter 3) and therefore
we can restrict the start value to this domain. By guessing the values of variables,
which is a common approach in cryptanalysis, we can shrink this domain even
more. Guessing values means that an exhaustive search on a specific number of
variables is done. First the values for a number of variables are guessed. Then
the attack is applied. If the attack succeeds, the guess was correct, otherwise
the attack with a new guess is applied again. Note that even if we are in the
real domain we consider only two possibilities for each variable, depending on
the conversion method. With the increase of dimension both restrictions to the
search area lose in value. The difficulty of the start value determination with
increasing dimension is often called “curse of dimensionality”. If the available
information is not good enough to provide good starting points the best one can
do is to choose random values normally distributed in the search domain.

As the need for global methods is further accentuated in Chapter 5 we use
different globalization concepts to overcome the problem of finding a good ini-
tial guess. Such concepts are steepest descent methods, damping strategies or
trust-region methods. The concept of trust-region is utilized in several different
numerical methods and is nowadays one of the most used concepts. One method
using trust-region is called Interior Reflective Newton Method by Coleman and
Li [CL96] which has additional properties which are useful for our approach.
Also the Levenberg-Marquardt method can be viewed as using a trust-region
approach. The Gauss-Newton method can be extended by a damping strategy.
These methods are explained in Section 4.4. Most of the advanced numeri-
cal methods which provide global convergence are designed for minimization
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problems. These methods usually merge into a local Newton variant for faster
convergence.

4.3 Minimization Problem

The problem of solving a system of equations can either be directly addressed,
as the Newton method does or indirectly by transforming the problem in an
minimization problem. First problem (4.1) is reformulated to an unconstrained
minimization problem by introducing a objective function f : Rn → R.

Definition 4.3 (Unconstrained Minimization Problem). Let f : Rn → R be the
objective function, The unconstrained minimization problem is defined as the
problem of finding

x∗ = min
x∈Rn

f(x).

A typical example is to determine the optimal distribution of n resources
x1, x2, . . . , xn. In general there will exist restrictions for the solution space such
that the solution is in a subspace D ⊂ Rn. Furthermore, such a problem may
have equality and inequality constraints, turning the initial problem in a con-
strained optimization problem which leads us to the following definition.

Definition 4.4 (Constrained Minimization Problem). Let D ⊆ Rn, f : D → R
be the objective function, g : D → Rm be the inequality constraints and h : D →
Rp be the equality constraints. The constrained minimization problem is defined
as the problem of finding

x∗ = min
x∈Ω

f(x),

where Ω := {x ∈ D : g(x) ≥ 0, h(x) = 0}.
Solving a system of non-linear equations and constrained or unconstrained

minimization are strongly connected. Let Fi be the components of F , then the
point x∗, which is a solution of (4.1), is a minimum of the function

f(x) = ‖F (x)‖22 =

n∑
i=1

F 2
i (x). (4.3)

Conversely, under the assumption of differentiability of f , setting the partial
derivatives of f in a point x∗ to zero leads to a system of non-linear equations.
Therefore, every system of non-linear equations can be connected with a eligible
minimization problem and vice-versa. Basically any algorithm for minimiza-
tion problems can be used for non-linear systems of equations. However, there
exist several special algorithms for solving least-squares problems as given in
Equation (4.3), e.g. the Levenberg-Marquardt and Gauss-Newton method.

In our approach solving a system of non-linear equations via a constrained
minimization problem has some advantages. As shown in Chapter 3 the Boolean
values false and true are mapped to real values. These values span a hyper-
cube over the reals. Hence, the location of the solution can be reduced to this
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hyper-cube, which can be expressed in a constrained minimization problem by
defining upper and lower bounds on the variables. An additional advantage is
that also overdetermined systems can now be handled, which can increase the
accuracy and robustness of numerical methods, if the existence of a solution can
still be guaranteed. Furthermore, any useful foreknowledge can be expressed as
additional linear or non-linear constraints, e.g. if it is known that keys are in a
specific subspace.

In the context of a minimization problem we need to differ between a global
and local minimum.

Definition 4.5 (Minimum of a Function). Let K(x∗, ε) = {x : ‖x−x∗‖ < ε} be
the neighbourhood around x∗ of function f : D ⊆ Rn → R. Then x∗ is called a
local minimum if f(x∗) ≤ f(x) for all x ∈ K(x∗, ε) holds and a global minimum
if f(x∗) ≤ f(x) for all x ∈ D holds.

A solution x∗ for the system (4.1) is a global minimum of (4.3). A method
providing global convergence does not guarantee to converge to the global mini-
mum of a function, and therefore to the exact solution of the system of equations.
Almost all practical numerical algorithms for minimization problems guarantee
only to compute a local minimum of a function. The efficient and guaranteed
computation of the global minimum is a hard problem and part of global opti-
mization research. However, the ability to compute a solution for a system of
non-linear equations via minimization depends strongly on their structure.

4.4 Numerical Methods Used in This Thesis

From the vast pool of available numerical methods we choose three different
methods for the experimental results which provide global convergence. The
classical methods are Levenberg-Marquardt and Gauss-Newton. The Interior
Reflective Newton method is a more advanced method which is more robust
than the classic methods and handles upper and lower bounds to the variables.
This is especially useful in our case as all variables in our system of equations is
lower and upper bounded (see Chapter 3). As shown in the results for Trivium
(see Chapter 5) all methods get stuck in local minima. Therefore, we need
to consider also algorithms for global minimization. We choose the DIRECT
algorithm which as well handles upper and lower bounded variables. All chosen
methods are well understood with detailed analysis and efficient implementations
available.

4.4.1 Gauss-Newton Method

The Gauss-Newton method for the problem (4.3) is based on a sequence of linear
approximations of F (x) by

F̃ (x) = F (xk) + JF (xk)(x− xk). (4.4)
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If xk denotes the current approximation, then the next search direction ∆x is a
solution to the linear least-squares problem

min
∆x
‖F̃ (x)‖22 = ‖F (xk) + JF (xk)∆x‖22 (4.5)

for ∆x ∈ Rn. To compute the minimum of (4.5) one has to compute the gradient
and set it to zero which results in the following linear system of equations

JF (xk)TJF (xk)∆x = −JF (xk)TF (xk).

This system can be solved in different ways resulting in different variants of the
Gauss-Newton method. The new approximation xk+1 is given then by

xk+1 = xk + ∆x,

resulting in the basic Gauss-Newton method. The basic Gauss-Newton method
provides only local convergence. There are different globalization concepts which
can be used to extend this method. One of them introduces a damping factor
λk and changes the computation of the iterates to

xk+1 = xk + λk∆x.

The damping factor λk has to be chosen carefully. A common way is the Armijo-
Goldstein [Bjö96, OR00] step length principle, where λk is set to the largest
number in the sequence of 1, 1

2 ,
1
4 , . . . for which the inequality

‖F (xk)‖22 − ‖F (xk + λk∆x)‖22 ≥ 1
2λk‖JF (xk)∆x‖22

holds. Another way to determine a appropriate damping factor is to set it to
the solution to the one-dimensional minimization problem

min
λ
‖F (xk + λ∆x)‖22.

4.4.2 Levenberg-Marquardt Method

The Levenberg-Marquardt method is another algorithm to solve the least-squares
problem (4.3) and is seen as a trust-region extension for the Gauss-Newton
method, resulting in a more robust algorithm which handles ’bad‘ initial guesses
better. A detailed analysis of the this method can be found in [Mor78, Deu04].

The Levenberg-Marquardt method is again based on a sequence of linear ap-
proximations of F (x) by Equation(4.4). A correction vector (or search direction)
∆xk is determined by the constrained quadratic minimization problem

min
∆x
‖F̃ (x)‖22 = ‖F (xk) + JF (xk)∆x‖22

subject to the constraint
‖∆x‖22 ≤ δ
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in terms of some prescribed parameter δ > 0 which limits the size of ∆x and
ensures that (4.5) is reduced in each step. The set of feasible vectors ∆x where
‖∆x‖2 ≤ δ can be thought of as a region of trust for the linear model (4.4)
which is why this method is seen as a trust-region extension of Gauss-Newton.
The trust region constraint may be treated by the introduction of a Lagrange
multiplier p ≥ 0 subject to

p(‖∆x‖22 − δ2) = 0,

which leads to the equivalent unconstrained quadratic optimization problem

min
∆x
{‖F (xk) + JF (xk)∆x‖22 + p‖∆x‖22}. (4.6)

To compute the minimum of (4.6) the gradient is computed and set equal to
zero which results in the Levenberg-Marquardt method:

(JF (xk)TJF (xk) + pI)∆x = −JF (xk)TF (xk),

xk+1 = xk + ∆x.

Depending on the strategy to choose the parameter p or equivalently the pa-
rameter δ different variants of this method can be defined. However, for any
parameter p > 0 the matrix (JF (xk)TJF (xk) + pI) is non-singular, even when
the the Jacobian matrix itself if singular. Nevertheless, the above iteration may
also converge to ’small’ gradients, since for singular J(xk) the right-hand side
also degenerates.

4.4.3 Interior Reflective Newton Method

The interior reflective Newton method was invented by Coleman and Li [CL96].
It is well studied and efficient implementations are available. Furthermore, a
detailed convergence analysis [Tho94] is available which is very useful for a bet-
ter understanding of the algorithm. The interior reflective Newton method is
designed to handle bound constrained minimization problems

min
x
f(x), l ≤ x ≤ u,

where x, l, u ∈ Rn. A special and important property of this methods is that
all iterates stay between user defined upper and lower bounds. As shown in
Chapter 3 all variables in our equations have such known bounds. This makes
the analysis of the system easier, since we only have to consider the hypercube
formed by the bound and additionally it is ensured that bad properties outside
of this cube do not influence the algorithm’s convergence. The interior reflective
Newton method achieves global convergence using the concept of trust regions.
It increases the robustness of the method if the starting point is far from the
solution and also handles the case when the Jacobi matrix is singular or ill-
conditioned. As for the Levenberg-Marquardt method (4.6) a merit function is
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used to decide if the next iterate xk+1 is better or worse than the current iterate
xk. Therefore, the increment ∆xk = xk+1 − xk is a solution to this standard
quadratic sub-problem with a bound on the step:

min
∆x
{∇f(xk)T∆x+ 1

2∆xT∇2f(xk)∆x}, (4.7)

subject to
‖D(xk)∆x‖2 ≤ dk.

D is a scaling matrix and dk is a positive scalar representing the trust region
size. Solving Problem (4.7) in a reliable and efficient way is a non-trivial task.
Coleman and Li [CL96] proposed a quadratic model and scaling matrix such
that there is no need to handle the upper and lower bound explicitly. They first
introduced the following definition:

Definition 4.6. The vector v(x) ∈ Rn is defined:

1. if ∇f(x)i < 0 and ui <∞ then vi = xi − ui.
2. if ∇f(x)i ≥ 0 and li > −∞ then vi = xi − li.
3. if ∇f(x)i < 0 and ui =∞ then vi = −1.

4. if ∇f(x)i ≥ 0 and ui− =∞ then vi = 1.

The scaling matrix is defined as D(x) = diag(|v(x)|−
1
2 ).

They extend the standard quadratic model (4.7) to

min
∆x
{ψ(∆x) := ∇f(xk)T∆x+ 1

2∆xT (∇2f(xk) + C(xk))∆x}

s.t. ‖D(xk)∆x‖2 ≤ dk,
(4.8)

where C(x) = D(x)diag(∇f(x))∇2|v(x)|D(x). In each iteration a solution ∆xk
to the subproblem (4.8) is computed. To ensure a sufficient decrease of the
objective function the following condition is determined:

pk =
f(xk + ∆xk)− f(xk) + 1

2∆xTkC(xk)∆xk

ψ(∆xk)
> µ

for some constant µ > 0. If this conditions holds set xk+1 = xk+∆xk, otherwise
set xx+1 = xk. At the end of each iteration the trust region size dk is updated
according to the following rules:

1. if pk ≤ µ then set dk+1 ∈ (0, γ1dk].

2. if pk ∈ (µ, η) then set dk+1 ∈ [γ1dk, dk].

3. if pk ≥ η and dk > λ then set dk+1 ∈ [γ1dk, dk] or [dk, γ2dk].

4. if pk ≥ η and dk ≤ λ then set dk+1 ∈ [dk, γ2dk].

0 < µ < η1, γ1 < 1 < γ2 and 0 < λ are given parameters of the algorithm.
For more information on this method and for a detailed convergence analysis

we refer to [CL96].
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4.4.4 DIRECT algorithm

Apart from global convergence we also need global optimization techniques to
find a solution for the system. Therefore, we used the DIRECT (DIviding RECT-
angles) algorithm by Jones et al. [JPS93]. It is a deterministic sampling method
designed for finding the global minima for bound constrained optimization prob-
lems and does not need a starting point. It requires no knowledge of the objective
function gradient. Instead, the algorithm samples points in the domain, and uses
the information it has obtained to decide where to search next. It is guaranteed
to converge to the global optimal function value, if the objective function is con-
tinuous or at least continuous in the neighbourhood of a global optimum. This
guarantee can be given because if the number of iterations goes towards infinity
the set of sampled points form a dense subset of the unit hypercube. Unfortu-
nately, this global property may come at the expense of a large and exhaustive
search over the domain.

The strengths of DIRECT lie in the balanced effort it gives to local and
global searches, and the few parameters it requires to run. It was designed
to overcome some of the problems in the minimization of Lipschitz continuous
functions. As mentioned in Section 4.2 the Lipschitz constant of a Lipschitz
continuous function can not be determined or reasonable estimated for highly
non-linear problems. Many simulations with industrial applications may not
even be Lipschitz continuous throughout their domains. Even if the Lipschitz
constant can be estimated, a poor choice can lead to poor results.

At the beginning DIRECT transforms the domain of the problem into the
unit hypercube

Ω = {x ∈ Rn : 0 ≤ xi ≤ 1}.

The algorithm operates in this space except for calls of the function which should
be optimized. DIRECT proceeds by partitioning this space into rectangles,
where each rectangle has a sampled point in the centre (see Figure 4.1(a) for n =
2). Each iteration begins witch a selection of one or more of current rectangles
for further search (see Figure 4.1(b)). The second step is to evaluate the function
at new points in the selected rectangles and subdivide them such that each new
point becomes the centre of a new sub-rectangle (see Figure 4.1(c)). In the
selection process rectangle r is selected if there exists an f∗ satisfying

(fr − f∗)/δr ≤ (fs − f∗)/δs, ∀s 6= r

f∗ ≤ fmin − ε,

where fr and fs is the function value at the centre of rectangle r and s respec-
tively. δ > 0 is called the accuracy. After the selection process, new points are
sampled in the chosen rectangles and used to create new sub-rectangles. There-
fore, the function is evaluated at the points c ± δ · ei for all i ∈ I where I is
the set of dimensions corresponding to the sides of the rectangle with maximum
side length, δ is one third of this length, c the centre of the rectangle and ei is
the i-th unit vector. The algorithm chooses to leave the best (lowest) function
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(a) Start (b) Select (c) Sample and divide

Figure 4.1: Example iteration of the algorithm.

values in the largest space by computing

wi = min{f(c+ δ · ei), f(c− δ · ei)}

and splitting the rectangle containing c into thirds along the dimension in I
with the smallest wi such that c± δei are the centres of the new sub-rectangles.
This dimension is deleted from I. This process continues until the set I is
empty. The algorithm now begins its loop of identifying potentially optimal
hyper-cubes, dividing these cubes appropriately, and sampling at their centres
until an iteration limit is reached.

4.5 Boolean Conversion and Numerical Meth-
ods

No matter which conversion method we choose, the resulting polynomials over
the reals have desirable properties considering numerical methods:

� Multilinearity

� Small coefficients

� Continuous differentiability

An important fact is that the values for the variables depend on the type of
conversion. If we consider the Fourier representation from Section 3.5.1 then the
conversion of the arbitrary system (3.1) results in

F (y) =


∏
I1⊆M c(~yI1)− t(b1)

...∏
In⊆M c(~yIn)− t(bn)

 =

0
...
0

 , (4.9)

where c(~yIi) is defined in (3.20) and y = (y1, · · · , yn). The Boolean domain
{false, true} is mapped to {1,−1}. This leads to the fact that F (y) is restricted
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to the set D := {1,−1}n. Hence, the resulting function F can be considered as

F : D ⊂ Rn → Rn.

D describes a convex hyper cube, which is an important prerequisite for the
convergence of numerical methods. Since c(~yIi) for i = 1, · · · , n is continuously
differentiable on D, F (y) is also continuously differentiable on D. Furthermore,
the Jacobian of (4.9) can be analytically determined, which increases the ro-
bustness and accuracy of numerical methods.

4.5.1 Starting Point

For local convergent methods a starting point is needed, which is ”sufficiently
close” to the solution y∗. Unfortunately, it is computational infeasible to check
the Lipschitz continuity or to compute the Lipschitz constant for large n, such
that a good starting point can be determined. In practice this property is as-
sumed to be available. Since the Lipschitz constant is not available it can only
be chosen randomly without further knowledge. However, we know that the
solution y∗ is a corner of the hyper cube D. A good starting point would be a
point near the solution corner, which implicates that we already know the solu-
tion. We can choose a different corner, where only few coordinates (variables)
differ from the solution. Another possibility is to test each of 2n corners which
is equal to exhaustive search. An additional method for the choice, beside the
random option, is to set the centre of the hyper cube as starting point. Our
experiments showed that this approach is useful for small systems of equations.
Even for global convergent methods these observations are useful to determine
the starting point.

4.5.2 Existence and Uniqueness of Solutions

An important question is how we interpret the solution of the converted system
as a solution for the Boolean system. From the definitions of the four repre-
sentation types we know that the Boolean domain is mapped to appropriate
numbers. According to Lemma 3.1 and the equivalent lemmata for the other
representations, the converted equations have equivalent solutions. This leads
to the following corollary.

Corollary 4.1. Let Fb(x) be a system of Boolean equations, Fr(y) the resulting
system using one of the conversion methods in Chapter 3 and x∗ a solution of
Fb(x) = false. Then y∗ = t(x∗) is a solution of Fr(y) = 0, where t is the
Boolean domain mapping from the definitions of the representation types.

Now we have an important fact available: If the Boolean system has a solu-
tion, then there exists a solution for the converted system, which is a corner of
the hyper cube D. However, it is possible that additional real-valued solutions
exist which cannot be directly converted back to the Boolean domain. Hence,
we can guarantee existence, but not uniqueness of solutions.
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4.6 Summary

In this chapter, we gave an overview on numerical analysis. Since numerical
analysis is a broad research field we focused on iterative methods for solving
non-linear systems of equations. We introduced the necessary terminology and
definitions. First of all we distinguished between local and global convergent
methods. For local convergent methods a ’good‘ starting point has to be pro-
vided, i.e. a point already close to the solution. As it is shown in Chapter 5, we
cannot provide such a point. This is not necessary for global convergent methods,
which, under specific prerequisites, converge even when started far away from
the solution. Hence, we considered only global convergent methods and pre-
sented three methods in detail, namely Gauss-Newton, Levenberg-Marquardt
and interior reflective Newton method. They use different concepts to achieve
global convergence.

Modern iterative methods, as the interior reflective Newton method, are de-
signed for minimization problems, since solving a system of equations is strongly
related to it. Hence, we introduce the minimization problem and define local
and global minima. A point is a local minimum of a function if it is only min-
imal within a specific area. A point is a global minimum if the function at
this point is minimal overall points in the domain. Although, iterative methods
for minimization problems provide global convergence, they can also converge
to local minima. Usually, a local minimum is not a solution of the system of
equations. Finding a global minimum for non-linear functions is a hard problem
and a whole research field (global optimization) is dedicated to it. Nevertheless,
we used one method for global minimization, called DIRECT. The strengths of
DIRECT lie in the balanced effort it gives to local and global searches, and the
few parameters it requires to run.

Finally, we worked out properties of the converted equations (see Chap-
ter 3) with respect to numerical analysis. No matter which conversion method
we choose, the resulting polynomials over the reals have desirable properties
considering numerical methods. Foremost, all polynomials are continuous dif-
ferentiable. Second, if a solution for the Boolean system of equations exists
(and in the case of cryptographic primitives it does), we can guarantee that
the converted system has at least the same amount of solutions. However, it
is possible that additional real-valued solutions exist which cannot be directly
converted back to the Boolean domain. Hence, we can guarantee existence, but
not uniqueness of solutions.
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Application to Trivium

In this chapter we apply our approach on the stream cipher Trivium and two
reduced variants – called Bivium A and Bivium B. Trivium is recommended by
the eStream project [Rob08] in the hardware category. We first set up a system
of equations describing the internal state of the cipher and convert it into a
system over the reals. We apply four different conversion methods, standard,
Fourier, adapted standard and splitting conversion (see Chapter 3). Hence, we
obtain different systems of equations over the reals for Trivium and its variants.
Finally, we apply numerical methods presented in Chapter 4 and discuss the
results.

5.1 Earlier Work on Trivium

Several papers have been proposed about cryptanalytic results on Trivium.
Khazaei and Hassanzadeh [KH05] showed that Trivium is strong against the
linear sequential circuit approximation attack in spite of the extra simplicity
of its output function and next-state function. Turan and Kara [TK07] define
the initialization step of Trivium as an 8-round function and try to attack the
initialization with a smaller number of rounds. Maximov and Biryukov [MB07]
developed two attacks on Trivium with decreased complexity compared to the
work of Raddum [Rad07]. Raddum developed a new technique to solve systems
of equations and applied these to the equation system representing Trivium and
the reduced variants. He successfully broke Bivium A and B, but with high
complexity for the second variant. The full version of Trivium resists his attack.
McDonald et al. attacked Bivium with MiniSat in [MCP08], by transforming the
equations into a satisfiability problem. They estimate the complexity for the at-
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tack on Bivium B to be about 252 operations. This algebraic attack recovers the
private key after observing only 1770 bits of keystream. Bivium A is completely
broken requiring only 177 bits of the keystream. Eibach et al. [EPV08] attacked
also Bivium B with SAT solvers. Fischer et al. [FKM08] can successfully recover
the initial key by using statistical distinguishers with complexity about 255 if
the number of iterations in the initialization step is reduced down to 672. Dinur
and Shamir [DS09] proposed a new method in cryptanalysis, called the cube
attack. Using this technique, they can successfully recover the initial key with
complexity about 245 if the iterations in the initialization step are reduced down
to 767.

5.2 Trivium

Trivium was designed by Christophe De Cannière in 2005 [Rob08, Can06]. Triv-
ium is a synchronous stream cipher and generates up to 264 bits of keystream
from an 80-bit secret key (K) and an 80-bit initial value (IV ). It consists of
two phases: First the internal state of the cipher is initialized using the key and
the IV, then the state is repeatedly updated and used to generate keystream-
bits. The internal state consist of a 288-bit register with a nonlinear feedback.
Figure 5.1 shows a schematic view of the construction.

5.2.1 Initialization Phase

The internal state is represented by a 288-bit register ~s. In the initialization
step an 80-bit key and an 80-bit initial vector are loaded into the register (see
Equation 5.1). Then, the state is rotated over four full cycles (without generating
any keystream), where one cycle is the execution of the algorithm 288 times.

(s1, s2, · · · , s93)← (K1,K2, · · · ,K80, 0, · · · , 0)

(s94, s95, · · · , s177)← (IV1, IV2, · · · , IV80, 0, · · · , 0)

(s178, s95, · · · , s288)← (0, · · · , 0, 1, 1, 1)

(5.1)

5.2.2 Keystream Generation

After the initialization phase, Trivium starts to generate keystream-bits. As
illustrated in Figure 5.1, Trivium consists only of XOR and AND operations.
The loop in (5.2) represents the keystream generation algorithm, where in each
iteration one keystream-bit zi is generated.
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s1 s66 s69 s92s91 s93

s94 s162 s171 s176s175 s177

s176 s243 s264 s287s286 s288

z

Figure 5.1: Schematics of Trivium.
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For i=1 to N do

t1 ← s66 ⊕ s93

t2 ← s162 ⊕ s177

t3 ← s243 ⊕ s288

zi ← t1 ⊕ t2 ⊕ t3
t1 ← t1 ⊕ s91 ∧ s92 ⊕ s171

t2 ← t2 ⊕ s175 ∧ s176 ⊕ s264

t3 ← t3 ⊕ s286 ∧ s287 ⊕ s69

(s1, s2, · · · , s93)← (t3, s1, s2, · · · , s92)

(s94, s95, · · · , s177)← (t1, s94, s95, · · · , s176)

(s178, s95, · · · , s288)← (t2, s178, s95, · · · , s287)

end for

(5.2)

5.2.3 Bivium A and Bivium B

In addition to Trivium we apply our approach on two reduced variants. In
[Can06] the designers describe the basic construction of the Trivium design which
consists of a 288-bit register separated in three parts. Raddum [Rad07] formal-
ized their description and introduced two reduced variants, called Bivium A and
Bivium B. Bivium A is constructed by removing the third part of the register
and adapting the keystream generator algorithm accordingly. The internal state
has a length of 177 bits. In the initialization phase the third step of (5.1) is
omitted and the keystream generation algorithm is changed to:

For i=1 to N do

t1 ← s66 ⊕ s93

t2 ← s162 ⊕ s177

zi ← t2

t1 ← t1 ⊕ s91 ∧ s92 ⊕ s171

t2 ← t2 ⊕ s175 ∧ s176 ⊕ s69

(s1, s2, · · · , s93)← (t2, s1, s2, · · · , s92)

(s94, s95, · · · , s177)← (t1, s94, s95, · · · , s176)

end for

(5.3)

The specification of Bivium B is equal to Bivium A except the keystream-bit
computation zi ← t2 is changed to zi ← t1 ⊕ t2.
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5.3 Constructing Systems of Equations

For our approach we need a representation of the cipher as a system of equations.
In this section we show how each system is constructed. In order to get a
solvable system we apply a known-plaintext attack to compute the keystream-
bits of the stream cipher. In a known-plaintext scenario, where the plaintext
and corresponding ciphertext is known to the adversary, one can compute the
keystream. Using this information the adversary tries to recover the initial key.
If the initial key is successfully recovered, one can reproduce any sequence of
keystream-bits. This should be difficult for a strong cipher.

5.3.1 System for Trivium

In the same way as in [Rad07] the system can be derived from the keystream gen-
eration algorithm (5.2). We denote the register bits s1, · · · , s288 as the variables
of the system. In each step we get four equations. One for the keystream-bit (5.4)
and three for the register feedback (5.5).

s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288 = zi (5.4)

To keep the system sparse and to avoid long equations, new variables are intro-
duced at each iteration.

s66 ⊕ s93 ⊕ s91 ∧ s92 ⊕ s171 = s289

s162 ⊕ s177 ⊕ s175 ∧ s176 ⊕ s264 = s290

s243 ⊕ s288 ⊕ s286 ∧ s287 ⊕ s69 = s291

(5.5)

To get a fully determined system, we need to clock Trivium 288 times, which
is equivalent to producing 288 keystream-bits. The last 3 · 66 equations can
be dropped since the introduced variables are not used in any keystream-bit
equation [Rad07]. Hence, the resulting system over the Boolean domain has 954
equations and variables. Note that, due to the known-plaintext attack we know
the keystream-bits zi.

Finding a solution of the system is equivalent to reconstruct the internal state.
Once the state is known one can clock the cipher backwards to reconstruct the
secret key. Note, that it is possible to find more than one solution by solving the
system, which does not lead to the correct key. However, in the attack we assume
that for a strong cipher the amount of solutions is rather limited. To overcome
this problem, one can generate more keystream-bits to get an overdetermined
system of equations.

5.3.2 System for Bivium B

In the same way we construct the system of equations for Bivium B. Therefore,
we use the keystream generation algorithm (5.3) with

zi ← t1 ⊕ t2.
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We denote the register bits s1, · · · , s177 as the variables of the system. In each
step we get now three equations. One for the keystream-bit (5.6) and two for
the register feedback (5.7).

s66 ⊕ s93 ⊕ s162 ⊕ s177 = zi. (5.6)

To keep the system sparse and to avoid long equations, new variables are intro-
duced at each iteration.

s66 ⊕ s93 ⊕ s91 ∧ s92 ⊕ s171 = s178

s162 ⊕ s177 ⊕ s175 ∧ s176 ⊕ s69 = s179

(5.7)

To get a fully determined system, we need to clock Bivium B 177 times, which
is equivalent to producing 177 keystream-bits. The last 2 · 66 equations can
be dropped since the introduced variables are not used in any keystream-bit
equation. Hence, the resulting system has 399 equations and variables.

5.3.3 System for Bivium A

Bivium A represents the least complex problem. The equations are derived
from (5.3). We denote the register bits s1, · · · , s177 as the variables of the system.
In each step we get now three equations. One for the keystream-bit (5.8) and
two for the register feedback (5.9).

s162 ⊕ s177 = zi (5.8)

To keep the system sparse and to avoid long equations, new variables are intro-
duced at each iteration.

s66 ⊕ s93 ⊕ s91 ∧ s92 ⊕ s171 = s178

s162 ⊕ s177 ⊕ s175 ∧ s176 ⊕ s69 = s179

(5.9)

To get a fully determined system, we need to clock Bivium A 177 times, which
is equivalent to producing 177 keystream-bits. The last 2 · 66 equations can
be dropped since the introduced variables are not used in any keystream-bit
equation. Additionally, 72 more equations and variables can be dropped since
only t2 is used for the keystream-bit computation. In total we get 327 equations
in 327 variables.



5.4. Conversion to the Real Domain 61

5.4 Conversion to the Real Domain

The second step in our approach consists of the conversion of each equation
of the targeted system to an equation over the real domain. In Chapter 3 we
presented several methods for the conversion. According to our rule of thumb in
Section 3.6, Fourier or sign conversion should be preferred, since the equations
for Trivium and its reduced variants consist of more XOR than AND operations.
Nevertheless, we also use the standard conversion to have a comparison of both
methods. Due to the similarities of sign and Fourier conversion we omit the
use of sign conversion as mentioned in Section 3.6. Since the total degree of
the converted equations is high we apply the advanced conversion techniques:
adapted standard and splitting conversion. Hence, we focus on four different
methods. In the following we give a detailed overview of the conversion results
of the systems constructed in Section 5.3. We denote ri as the variables over the
reals corresponding to the Boolean variables si.

5.4.1 Conversion of Trivium Equations

The conversion of a Boolean equation to an equation over the reals depends only
on its structure. The system constructed in Section 5.3.1 consists of two types of
equations. The linear equations for the keystream-bit computation (5.4) define
Type I and are of the form:

s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288 = zi. (5.10)

The remaining non-linear equations define type II and are of the form:

s66 ⊕ s93 ⊕ s91 ∧ s92 ⊕ s171 ⊕ s289 = false. (5.11)

Without loss of generality we convert these representative equations using the
four conversion methods.

Standard Conversion

In order to emphasize the different results for different conversion methods, we
present the whole converted equations despite the bad readability. Applying the
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conversion method described in Section 3.2 on Equation (5.10) results in

r162 + r177 − 2r162r177 + r243 − 2r162r243 − 2r177r243 + 4r162r177r243

+ r288 − 2r162r288 − 2r177r288 + 4r162r177r288 − 2r243r288 + 4r162r243r288

+ 4r177r243r288 − 8r162r177r243r288 + r66 − 2r162r66 − 2r177r66

+ 4r162r177r66 − 2r243r66 + 4r162r243r66 + 4r177r243r66

− 8r162r177r243r66 − 2r288r66 + 4r162r288r66 + 4r177r288r66

− 8r162r177r288r66 + 4r243r288r66 − 8r162r243r288r66

− 8r177r243r288r66 + 16r162r177r243r288r66 + r93 − 2r162r93

− 2r177r93 + 4r162r177r93 − 2r243r93 + 4r162r243r93 + 4r177r243r93

− 8r162r177r243r93 − 2r288r93 + 4r162r288r93 + 4r177r288r93

− 8r162r177r288r93 + 4r243r288r93 − 8r162r243r288r93

− 8r177r243r288r93 + 16r162r177r243r288r93 − 2r66r93

+ 4r162r66r93 + 4r177r66r93 − 8r162r177r66r93 + 4r243r66r93

− 8r162r243r66r93 − 8r177r243r66r93 + 16r162r177r243r66r93

+ 4r288r66r93 − 8r162r288r66r93 − 8r177r288r66r93

+ 16r162r177r288r66r93 − 8r243r288r66r93 + 16r162r243r288r66r93

+ 16r177r243r288r66r93 − 32r162r177r243r288r66r93 = t(zi).

Applying the conversion method described in Section 3.2 on Equation (5.11)
results in

r171 + r289 − 2r171r289 + r66 − 2r171r66 − 2r289r66 + 4r171r289r66

+ r91r92 − 2r171r91r92 − 2r289r91r92 + 4r171r289r91r92

− 2r66r91r92 + 4r171r66r91r92 + 4r289r66r91r92

− 8r171r289r66r91r92 + r93 − 2r171r93 − 2r289r93

+ 4r171r289r93 − 2r66r93 + 4r171r66r93 + 4r289r66r93

− 8r171r289r66r93 − 2r91r92r93 + 4r171r91r92r93

+ 4r289r91r92r93 − 8r171r289r91r92r93 + 4r66r91r92r93

− 8r171r66r91r92r93 − 8r289r66r91r92r93 + 16r171r289r66r91r92r93 = 0.

Comparing the result of type I and type II equations, we see that the monomial
degree increases exponentially with the number of XOR operations, as shown in
Chapter 3. The monomial degree for type I equations is 63 and 31 for type II
equations. The total degree is for both cases 6. Both factors can be considered
as relatively high.

Fourier Conversion

Using the Fourier conversion results in a less complex structure as shown in the
following. Applying the conversion method described in Section 3.5 on Equa-
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tion (5.10) results in

r66r93r162r177r243r288 = t(zi).

Applying the conversion method described in Section 3.5 on Equation (5.11)
results in

1
2r171r289r66r93 + 1

2r171r289r66r91r93

+ 1
2r171r289r66r92r93 − 1

2r171r289r66r91r92r93 = 1.

Compared to the standard representation the resulting equations are significantly
less complex. Hence, the monomial degree for type I equations is 1 and 4 for
type II equations. However, the total degree is 6 and still considerable high.

Adapted Standard Conversion

In order to use the method described in Section 3.8.1 for type I equations, we
need to determine the truth table of the Boolean function

f(~s) = s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288

and compute the solution set S := {~s : f(~s) = zi}. Next we evaluate the real
function

fr(~r) = r66 + r93 + r162 + r177 + r243 + r288

for ~r ∈ Sr := {f(~r) : ~r = t(~s) for ~s ∈ S}. Let zi = false and therefore t(zi) = 0.
Since Equation (5.10) is linear over B, Sr consist of all possible even numbers of
the sum of six variables and therefore Sr = {0, 2, 4, 6}. Hence, Equation (5.10)
is converted to

d1(r66 + r93 + r162 + r177 + r243 + r288) = 0

d2(r66 + r93 + r162 + r177 + r243 + r288 − 2) = 0

d3(r66 + r93 + r162 + r177 + r243 + r288 − 4) = 0

d4(r66 + r93 + r162 + r177 + r243 + r288 − 6) = 0

d1 + d2 + d3 + d4 = 1

(5.12)

where di ∈ R for i = 1, . . . 4. The case zi = true works analogous except that
Sr = {1, 3, 5} and therefore one equation and one variable less is generated. Let
x denote the number of zi = true.

The conversion of type II equations are done in the same way. We determine
the truth table of the Boolean function

f(~s) = s66 ⊕ s93 ⊕ s91 ∧ s92 ⊕ s171 ⊕ s289

and compute the solution set S := {~s : f(~s) = false}. Then we evaluate the
real function

fr(~r) = r66 + r93 + r91 · r92 + r171 + r289.
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In that case Sr = {0, 2, 4} and the conversion of Equation (5.11) results in

d5(r66 + r93 + r91 · r92 + r171 + r289) = 0

d6(r66 + r93 + r91 · r92 + r171 + r289 − 2) = 0

d7(r66 + r93 + r91 · r92 + r171 + r289 − 4) = 0

d5 + d6 + d7 = 1

(5.13)

where di ∈ R for i = 5, . . . , 7. Using the adapted standard conversion we decrease
both the monomial and total degree by the cost of additional equations and
variables. The Boolean system has 954 equations and variables. The converted
system over the reals has 288 · 5−x equations derived from type I and 222 · 4 · 3
equations derived from type II. We introduce 288 · 4 − x and 222 · 3 · 3 new
variables. Hence, the system consists of 4104−x equations in 4104−x variables.
The total degree of converted type I equations is two and converted type II
equations have total degree of three. The monomial degree is at most 7.

Splitting Conversion

We first convert type I equations using the method from Section 3.8.2. There-
fore, we determine M̃ for Equation (5.10) which is M̃ = {66, 93, 162, 177, 243, 288}.
Our goal is to achieve a total degree of two for each converted equation. Hence,
we partition M̃ in M̃1 = {66, 93}, M̃2 = {162, 177} and M̃3 = {243, 288}. Next
we split Equation (5.10) accordingly:

s66 ⊕ s93 = u1

s162 ⊕ s177 = u2

s243 ⊕ s288 = u3

u1 ⊕ u2 = u3 ⊕ zi

(5.14)

for u1, u2, u3 ∈ B. The right-hand side and left-handside of each equation
in (5.14) is now separately converted using standard or Fourier conversion. Note
both conversion methods result in equations with total degree of two. However,
the structure is less complex using Fourier conversion. Hence, Equation (5.10)
is converted to

r66r93 − v1 = 0

r162r177 − v2 = 0

r243r288 − v3 = 0

v1v2 − v3t(zi) = 0

(5.15)

where v1, v2, v3 ∈ R correspond to u1, u2, u3. Note that t(zi) is a constant and
does not contribute to the total degree.

The conversion of Equation (5.11) is done in the same way. We determine
M̃ = {66, 93, 91, 92, 171, 289} and partition it to M̃1 = {66, 93}, M̃2 = {91, 92}
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and M̃3 = {171, 289}. Hence, we split Equation (5.11) to

s66 ⊕ s93 = u1

s91 ∧ s92 = u3

s171 ⊕ s289 = u1 ⊕ u3.

(5.16)

The conversion result of Equation (5.11) is

r66r93 − v1 = 0
1
2 (1 + r91 + r92 − r91r92)− v3 = 0

r171r289 − v1v3 = 0.

(5.17)

As we see the monomial and total degree are reduced significantly compared
to the previous conversions. The total degree is at most 2. The monomial
degree for most equations 2 expect for the second equation in (5.16) where it
is 5. However, we again increase the size of the system over the reals in terms
of number of equations and variables. The resulting system has 2484 equations
and 2484 variables.

5.4.2 Conversion of Bivium B Equations

The equations representing Bivium B are converted in the same way as done for
Trivium, but the resulting system over the reals has less equations and variables.
We again differ between two types of equations. The equations for the keystream-
bit computation (5.6) define Type I equations and are of the form:

s66 ⊕ s93 ⊕ s162 ⊕ s177 = zi (5.18)

The remaining equations define type II equations and are of the form:

s66 ⊕ s93 ⊕ s91 ∧ s92 ⊕ s171 ⊕ s178 = false. (5.19)

Without loss of generality we convert these representative equations using the
four conversion methods.

Standard Conversion

Applying the conversion method described in Section 3.2 on Equation (5.18)
results in the following equation over the reals:

r162 + r177 − 2r162r177 + r66 − 2r162r66 − 2r177r66 + 4r162r177r66

+ r93 − 2r162r93 − 2r177r93 + 4r162r177r93 − 2r66r93

+ 4r162r66r93 + 4r177r66r93 − 8r162r177r66r93 = t(zi)

(5.20)
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Applying the conversion method described in Section 3.2 on Equation (5.19)
results in the following equation over the reals:

r171 + r178 − 2r171r178 + r66 − 2r171r66 − 2r178r66 + 4r171r178r66

+ r91r92 − 2r171r91r92 − 2r178r91r92 + 4r171r178r91r92

− 2r66r91r92 + 4r171r66r91r92 + 4r178r66r91r92

− 8r171r178r66r91r92 + r93 − 2r171r93 − 2r178r93

+ 4r171r178r93 − 2r66r93 + 4r171r66r93

+ 4r178r66r93 − 8r171r178r66r93 − 2r91r92r93

+ 4r171r91r92r93 + 4r178r91r92r93 − 8r171r178r91r92r93

+ 4r66r91r92r93 − 8r171r66r91r92r93

− 8r178r66r91r92r93 + 16r171r178r66r91r92r93 = 0.

(5.21)

The number of equations and variables does not change. The monomial degree
is 15 for converted type I equations and 31 for converted type II equations.
Due to the simplified keystream generation the total degree is decreased to 4 for
converted type I equations and is still 6 for type II.

Fourier Conversion

Applying the conversion method described in Section 3.5 on Equation (5.18)
results in

r162r177r66r93 = t(zi), (5.22)

and applying the same method on quation (5.19), results in the following equa-
tion over the reals:

1
2r171r178r66r93 + 1

2r171r178r66r91r93

+ 1
2r171r178r66r92r93 − 1

2r171r178r66r91r92r93 = 1.
(5.23)

Due to the amount of XOR operations, the results are more promising. The
monomial degrees are 1 and 4, respectively. The total degrees are not changed.

Adapted Standard Conversion

In order to use the method described in Section 3.8.1 for type I equations, we
need to determine the truth table of the Boolean function

f(~s) = s66 ⊕ s93 ⊕ s162 ⊕ s177

and compute the solution set S := {~s : f(~s) = zi}. Next we evaluate the real
function

fr(~r) = r66 + r93 + r162 + r177

for ~r ∈ Sr := {f(~r) : ~r = t(~s) for ~s ∈ S}. Let zi = false and therefore t(zi) = 0.
Due to the XOR operation, Sr consists of all possible even numbers of the sum of
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four variables and therefore Sr = {0, 2, 4}. Hence, Equation (5.18) is converted
to

d1(r66 + r93 + r162 + r177) = 0

d2(r66 + r93 + r162 + r177 − 2) = 0

d3(r66 + r93 + r162 + r177 − 4) = 0

d1 + d2 + d3 = 1

(5.24)

where di ∈ R for i = 1, . . . 3. The case zi = true works analogous except that
Sr = {1, 3} and therefore one equation and one variable less is generated. Let x
denote the number of zi = true.

The conversion of type II equations are done in the same way. We determine
the truth table of the Boolean function

f(~s) = s66 ⊕ s93 ⊕ s91 ∧ s92 ⊕ s171 ⊕ s178

and compute the solution set S := {~s : f(~s) = false}. Then we evaluate the
real function

fr(~r) = r66 + r93 + r91 · r92 + r171 + r178.

In that case Sr = {0, 2, 4} and the conversion of Equation (5.19) results in

d4(r66 + r93 + r91 · r92 + r171 + r178) = 0

d5(r66 + r93 + r91 · r92 + r171 + r178 − 2) = 0

d6(r66 + r93 + r91 · r92 + r171 + r178 − 4) = 0

d4 + d5 + d6 = 1

(5.25)

where di ∈ R for i = 4, . . . 6. The converted system over the reals has 177 · 4− x
equations derived from type I and 111 · 4 · 2 equations derived from type II. We
introduce 177 · 3 − x and 111 · 3 · 2 new variables. Hence, the system consists
of 1596− x equations in 1596− x variables. The total degree of converted type
I equations is 2 and converted type II equations have total degree of 3. The
monomial degree is at most 6.

Splitting Conversion

We first determine M̃ for Equation (5.18) which is M̃ = {66, 93, 162, 177, }. We
aim for a total degree of two for each converted equation. Hence, we partition
M̃ in M̃1 = {66, 93} and M̃2 = {162, 177}. Since we have only two partitions
we do not need new variables. Instead we split Equation (5.18) in the following
obvious way:

s66 ⊕ s93 = s162 ⊕ s177 ⊕ zi. (5.26)

Note that if we split in the same way as done for Trivium, the resulting system
would be larger. The right-hand side and left-hand side of Equation (5.26) are
now separately converted using any basic conversion method. For the same
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reasons as for Trivium we choose Fourier conversion. Hence, Equation (5.18) is
converted to

r66r93 − r162r177t(zi) = 0 (5.27)

Note that t(zi) is a constant and does not contribute to the total degree.

The conversion of Equation (5.19) is done in the same way and the result is
not different from Trivium. We determine M̃ = {66, 93, 91, 92, 171, 178} and
partition it to M̃1 = {66, 93}, M̃2 = {91, 92} and M̃3 = {171, 178}. Hence, we
split Equation (5.19) to

s66 ⊕ s93 = u1

s91 ∧ s92 = u2

s171 ⊕ s178 = u1 ⊕ u2.

(5.28)

The conversion result of Equation (5.19) is

r66r93 − v1 = 0
1
2 (1 + r91 + r92 − r91r92)− v2 = 0

r171r178 − v1v2 = 0,

(5.29)

for v1, v2 ∈ R. The total degree of the resulting equations is 2. The monomial
degree is except for one equation 2. The resulting system has 843 equations in
843 variables. Compared to Trivium, we deal with a much smaller system of
equations.

5.4.3 Conversion of Bivium A Equations

We again differ between two types of equations. The equations for the keystream-
bit computation (5.8) define Type I and are of the form:

s162 ⊕ s177 = zi. (5.30)

Type II equations are the same as for Bivium B:

s66 ⊕ s93 ⊕ s91 ∧ s92 ⊕ s171 ⊕ s178 = false. (5.31)

Due to the simplified keystream-bit computation we get a third type of equations:

s175 ∧ s176 ⊕ s69 ⊕ s179 = zi (5.32)

Without loss of generality we convert these representative equations using the
four conversion methods.

Standard Conversion

Applying the conversion method described in Section 3.2 on Equation (5.30)
results in the following equation over the reals:

r162 + r177 − 2r162r177 = 0. (5.33)
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Applying the conversion method described in Section 3.2 on Equation (5.31)
results in the following equation over the reals:

r171 + r178 − 2r171r178 + r66 − 2r171r66 − 2r178r66 + 4r171r178r66

+ r91r92 − 2r171r91r92 − 2r178r91r92 + 4r171r178r91r92

− 2r66r91r92 + 4r171r66r91r92 + 4r178r66r91r92

− 8r171r178r66r91r92 + r93 − 2r171r93 − 2r178r93

+ 4r171r178r93 − 2r66r93 + 4r171r66r93

+ 4r178r66r93 − 8r171r178r66r93 − 2r91r92r93

+ 4r171r91r92r93 + 4r178r91r92r93 − 8r171r178r91r92r93

+ 4r66r91r92r93 − 8r171r66r91r92r93

− 8r178r66r91r92r93 + 16r171r178r66r91r92r93 = 0.

(5.34)

The conversion of type III equations results in

r175r176 + r179 − 2r175r176r179 + r69

− 2r175r176r69 − 2r179r69 + 4r175r176r179r69 = t(zi).
(5.35)

The monomial degree of Equation (5.33) is only 3 and the total degree 2. For
Equation (5.34) we obtain the same results as for Bivium B. For Equation (5.35)
the monomial degree is 7 and the total degree 4.

Fourier Conversion

Applying the conversion method described in Section 3.5 on Equation (5.30)
results in

r162r177 = t(zi), (5.36)

and applying the same method on Equation (5.31), results in the following equa-
tion over the reals:

1
2r171r178r66r93 + 1

2r171r178r66r91r93

+ 1
2r171r178r66r92r93 − 1

2r171r178r66r91r92r93 = 1.
(5.37)

Fourier conversion of Equation (5.32) results in the following equation over the
reals:

1
2r179r69 + 1

2r175r179r69 + 1
2r176r179r69 − 1

2r175r176r179r69 = 1. (5.38)

The result for type II equation does not change compared to Bivium B. However,
converted type I equations consists only of one monomial with a degree of two
and the converted type III equations have a monomial degree and total degree
of 4.
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Adapted Standard Conversion

Contrary to Trivium and Bivium B we can preserve the linearity of type I
equations. Hence, Equation (5.30) is converted to

s162 ⊕ s177 = zi →
{
r162 − r177 = 0 if zi = false

r162 + r177 − 1 = 0 if zi = true.

We refer to Section 5.4.2 for the conversion of type II equations. The conversion
of type III equation is done in a similar way as for type II equations. We
determine the truth table of the Boolean function

f(~s) = s175 ∧ s176 ⊕ s69 ⊕ s179

and compute the solution set S := {~s : f(~s) = zi}. Then we evaluate the real
function

fr(~r) = r175 · r176 + r69 + r179.

For zi = false, Sr = {0, 2} and the conversion of Equation (5.32) results in

d1(r175 · r176 + r69 + r179) = 0

d2(r175 · r176 + r69 + r179 − 2) = 0

d1 + d2 = 1

(5.39)

where d1, d2 ∈ R. The case zi = false is done analogous.
Finally, the converted system over the reals has 177 equations derived from

type I, 432 equations derived from type II and 126 equations derived from
type III. We introduce 408 new variables. Hence, the system consists of 735
equations in 735 variables. The total degree of converted type I equations is one,
converted type II and III equations have total degree of three. The monomial
degree is at most 6.

Splitting Conversion

Due to the simplicity of type I equations for Bivium A, we keep the linearity
after the conversion. We choose again the Fourier representation and want to
preserve the linearity. Hence, we convert type I equations in the following way

s162 ⊕ s177 = zi →
{
r162 − r177 = 0 if zi = false

r162 + r177 = 0 if zi = true.

The conversion of type II equations and the result are exactly the same as for
Bivium B (see Section 5.4.2). The conversion of type III equations is slightly
less complex. We split Equation (5.32) in the following way:

s175 ∧ s176 = s69 ⊕ s179 ⊕ zi. (5.40)
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The right-hand side and left-hand side of Equation (5.40) are separately con-
verted. Hence, Equation (5.32) is converted to

1
2 (1 + r175 + r176 − r175r176)− r69r179t(zi) = 0. (5.41)

The total degree of all equations is at most 2. Converted type I equations have
a monomial degree of 2. Converted type II equations have a monomial degree
of 2 and 5, respectively. The result for type III equations is 5. The resulting
system has 543 equations in 543 variables. Hence, this conversion leads to a far
less complex system over the reals where the equations have at most degree 2
and 32% of the equations are even linear.

5.4.4 Comparison of the Results

In Table 5.1 we summarize the conversion results. Since the monomial degree
and total degree is different for each type of equations, we present the maximum
values in the table. We constructed 12 different systems of equations which differ
in size and complexity. The systems for Trivium are the largest ones. Bivium
A and Bivium B differ in the keystream-bit computation, which is slightly sim-
plified for Bivium A. Therefore, the number of equations and variables using
adapted standard conversion and splitting conversion is significantly reduced.
The system for Bivium A using splitting conversion seems to be the easiest
one in terms of size, monomial degree and total degree. Due to the simplified
keystream-bit computation the trade-off between number of equations/variables
and total degree, made in the splitting conversion, turns out to be better for
Bivium A. Although, the systems resulting from standard and Fourier conver-
sion are smaller in size, the total degree is considerable high and present therefore
a more difficult problem for numerical methods as shown in Section 5.5.

Table 5.1: Comparison of conversion results. mdeg and tdeg are the maximum values
of the monomial and total degree for the converted equations. # stands
for the number of variables and equations.

Trivium Bivium B Bivium A
mdeg tdeg # mdeg tdeg # mdeg tdeg #

Standard 63 6 954 31 6 399 31 6 327
Fourier 4 6 954 4 6 399 4 6 327

ASC 7 3 4104 6 3 1596 6 3 735
Splitting 5 2 2484 5 2 843 5 2 543

5.5 Numerical Results

In Chapter 4 we give an overview on numerical analysis and describe four dif-
ferent iterative methods in detail. In Section 5.4 we constructed four systems
of equations for each variant of Trivium. Therefore, we define an experimental
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setting where each of the iterative methods is applied on each system of equa-
tions using three different types of initial points. Furthermore, we precompute
a solution using a random key, to evaluate the quality of the solutions over the
reals. As described in Section 4.3 the numerical methods converge either to a
local or global minimum or do not converge at all. Therefore, we evaluate the
obtained results by computing the objective function value (see Section 4.3) at
the found local or global minimum. If this value is equal to zero we have found
a solution for the system of equations. Unfortunately, not all of the systems
can be solved using the chosen methods, instead only local solutions are com-
puted. For the solvable systems real-valued solutions are found which cannot be
directly converted back to the Boolean domain. To determine the quality of the
found local or global solutions we compute the Hamming distance between the
precomputed solution and the found local or global solutions. In this case the
Hamming distance is the amount of elements which are different between two
vectors. For real-valued solutions we apply two different rounding strategies.
Finally, we run each experiment 100 times and present the average values in this
thesis.

5.5.1 Initial Points and Rounding Strategies

As mentioned in Chapter 4, the initial point for iterative methods has a high
influence on their behaviour. Therefore, we used different strategies for the
initial guess.

� Random in {0, 1}n, {−1, 1}n

� Random in [0, 1]n, [−1, 1]n

� Part of the precomputed solution used in the starting point

We have two types of randomness. First points in {0, 1}n (or {−1, 1}n for Fourier
representation) are chosen. Secondly, we set the starting point to a random point
in [0, 1]n (or [−1, 1]n). Additionally, we use part of the precomputed solution in
the initial guess, to see how “close” the guess has to be for convergence to the
solution. If the number of values used from the precomputed solution is low, one
can use a guess and determine attack to determine the correct values without
knowing the solution.

Guessing Bits

Guess and determine attacks are commonly used in cryptanalysis. By guessing
a few bits, which for our experiments means that we replace some variables
with their correct values, we simplify the system before the conversion. By this
reduction of the dimension, we also simplify the problem in the real domain. To
get a good reduction with as few as possible guessed values, we have to choose
the bits wisely. To achieve this goal we compute for each variable its distribution
in the system, i.e. in how many equations a specific variable occurs. We see for
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example that variables from s94 up to s162 occur in 7 equations. If we guess such
a variable we can simplify 7 equations in one step.

The second usage of guessing bits is to determine a good starting point as
mentioned above. In that case the system is not simplified but better starting
information for a numerical method is provided. Since during the system creation
new variables are introduced, more variables can be guessed than the number of
internal state bits.

Rounding Strategies

In order to determine how close a found minimum is to the wanted solution,
we use the Hamming distance between the precomputed solution and the found
local or global minimum. If the local or global minima contain real-valued values
we round them using two different rounding strategies. The first strategy is
commonly known as round to nearest integer. The second strategy is called
round to nearest bound. Let x ∈ R and l, u ∈ R then round to nearest bound is
defined as

round(x) =

{
l if |x− l| < |x− u|
u otherwise.

With the second strategy a found local or global minimum can directly be
mapped back to the Boolean domain. The lower bound l and upper bound
u are given by the type of representation.

5.5.2 Results for Trivium

The system of equations for Trivium represent the largest problems. This is
especially noticed in the running time of the iterative methods where one it-
eration can take up to several minutes on a standard PC. In Table 5.2 we
present the results for the various systems of Trivium. We do not obtain any
results using the DIRECT method, since it is not feasible to apply it on such
large systems. Moreover, as mentioned in Chapter 4 iterative methods can run
into difficulties if the Jacobian matrix is singular or ill-conditioned. Levenberg-
Marquardt and the interior reflective Newton method can handle such cases.
However, the Gauss-Newton method does not converge in such a case. In our
experiments we encounter ill-conditioned Jacobian matrices regularly using the
Gauss-Newton method. Therefore, the Gauss-Newton method does not converge
in many runs. If it converges then the reached objective function value is only
slightly improved. This emphasises the necessity of more robust methods like
the Levenberg-Marquardt and interior reflective Newton method. Both meth-
ods find in most cases only a local minimum. The system using the adapted
standard conversion can be solved by the Levenberg-Marquardt method and the
system derived from the splitting conversion can be solved by both methods.
Unfortunately, all found solutions are real-valued and cannot be mapped back
to the Boolean domain.
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Table 5.2: Results for Trivium using Gauss-Newton (GN), Levenberg-Marquardt
(LM) and interior reflective Newton method (IRN) for each conversion
type. The DIRECT method cannot handle such a large system. The
columns contain the average objective function value f(x∗) at the con-
verged point x∗.

Conversion GN LM IRN DIRECT

Fourier 893.05 164.74 242.15 –
Standard 222.72 44.28 65.71 –

ASC 519.25 0 8.36 –
Splitting 1131.34 0 0 –

In Table 5.3 we show the Hamming distance between the local/global min-
ima and the precomputed solution using the first rounding strategy. Using the
Fourier conversion and Gauss-Newton method results in local minima where
many variables are over the bounds which results in a high Hamming distance.
Similar are the results for the Levenberg-Marquardt method where in average
one third of the variables is in (−0.5, 0.5). Better results are obtained by the
interior reflective Newton method. In this case the Hamming distance is approx-
imately one half of the total amount of variables in the system. However, this is
also the expected Hamming distance of a random point in the Boolean domain
converted to the reals. Hence, we cannot extract any useful information of these
local minima. Similar observations are made for the standard conversion.

Different results are obtained for the system based on the adapted standard
conversion. There the Hamming distance for all numerical methods is less than
one half of the total amount of variables. In the case of interior reflective Newton
method it is even less than one third. It is interesting to note that the results
for all decision variables (see Section 3.8.1) are integer-valued (0 or 1) (except
for Gauss-Newton method). In the precomputed solution the ratio between ones
and zeros for the decision variables is 1:3 which is almost matched by the found
minima, explaining the lower Hamming distance. However, the other variables
are not between the bounds defined by the type of representation, with the
obvious exception of the interior reflective Newton method. The results of this
method are in between the bound but all variables are real-valued.

The high Hamming distance for the splitting conversion is explained by the
fact that many variables of the found solutions are close to 0 using interior
reflective Newton method or not in between bounds in the case of Levenberg-
Marquardt method. In that case the first rounding strategy may be not the best
choice.

In Table 5.4 we present the Hamming distance using the second rounding
strategy. This rounding strategy basically moves the found minimum to the
nearest corner of the hyper-cube defined by the type of representation. We see
that almost all distances are close to one half of the total amount of variables
except for the adapted standard conversion due to the decision variables.
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Table 5.3: Average Hamming distance between the precomputed solution and the
found minima using the first rounding strategy.

Conversion GN LM IRN

Fourier 715 848 487
Standard 483 636 469

ASC 1634 1627 1207
Splitting 1862 2113 2342

Table 5.4: Average Hamming distance between the precomputed solution and the
found minima using the second rounding strategy.

Conversion GN LM IRN

Fourier 487 482 470
Standard 488 461 453

ASC 1347 1355 1840
Splitting 1222 1073 1034

In the final experiment we determine how close the initial point has to be
such that the numerical method converges to the wanted solution. Therefore, we
set x% of the variables to the precomputed solution. In Table 5.5 the results are
presented. Due to the structural problems in the system of equations, leading to
ill-conditioned Jacobian matrices, the results of the Gauss-Newton method are
not useful. For the simplified systems, where we replaced the guessed variables
with their correct values before the conversion, we get similar results.

Table 5.5: Amount of correct variables in the initial point such that the numerical
method converges to the wanted solution.

Conversion GN LM IRN

Fourier – 80% 55%
Standard – 80% 55%

ASC – 45% 70%
Splitting – 90% 85%

Overall, a solution for the Boolean system could not be found. We see that
we get closer to 0 for the systems with low degrees, even if they have more
equations and variables. It seems that using the advanced conversion techniques
results in systems which have more solutions beside the wanted one and these
solutions are real-valued. So far we could not find any relations between a real-
valued solution and the Boolean solution. Using one of the rounding strategies
reveals that the found local and global minima are not better than a random
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point in the Boolean domain. Finally, both random initial guess strategies lead
to the same results.

5.5.3 Results for Bivium B

In Table 5.6 we present the results for the various systems of Bivium B. Due to
the reduced size of the systems the reached minimum function values are lower
compared to Trivium. The found local minima of the systems derived by Fourier
and standard conversion are real-valued and not in between the given bounds,
except for the minima computed by the interior reflective Newton method. Its
local minima are also mostly integer-valued which shows that this method tends
towards a corner of the hyper-cube.

Again two systems can be solved but only the solutions computed by the
interior reflective Newton method are in between the given bounds. The solu-
tions for the system derived by the adapted standard conversion are real-valued,
except the decision variables which are all integer-valued. It seems that the ad-
ditional equations and variables in this conversion method can be handled well.
The solutions for the system using splitting conversion are real-valued. The
solutions of the Levenberg-Marquardt method contain a lot of zeros resulting
in a high Hamming distance using the first rounding strategy (see Table 5.7).
Contrary, the interior reflective Newton method computes solutions containing
a lot of values equal to 0 and 0.5.

Regarding the DIRECT method and Gauss-Newton method we encounter
the same issues as for Trivium.

Table 5.6: Results for Bivium B using Gauss-Newton (GN), Levenberg-Marquardt
(LM) and interior reflective Newton method (IRN) for each conversion
type. The DIRECT method cannot handle such a large system. The
columns contain the average objective function value f(x∗) at the con-
verged point x∗.

Conversion GN LM IRN DIRECT

Fourier 393.42 64.71 103.94 –
Standard 97.78 16.24 24.90 –

ASC 125.90 0 6.03 –
Splitting 266.82 0 0 –

In Table 5.7 we see that the first rounding strategy results in a high Hamming
distance, due to the mentioned values of the local and global minima.

The results for the second rounding strategy are shown in Table 5.8. They
reveal that the local and global minima are as good as a random guess in the
Boolean domain converted to the reals since the Hamming distance is approx-
imately half the total amount of variables. The exception is again the system
derived from the adapted standard conversion, due to the different ratio between
the appearance of ones and zeros for the solution of the decision variables.



5.5. Numerical Results 77

Table 5.7: Average Hamming distance between the precomputed solution and the
found minima using the first rounding strategy.

Conversion GN LM IRN

Fourier 308 358 209
Standard 202 275 197

ASC 766 703 1580
Splitting 673 737 733

Table 5.8: Average Hamming distance between the precomputed solution and the
found minima using the second rounding strategy.

Conversion GN LM IRN

Fourier 201 204 195
Standard 2022 201 200

ASC 557 525 500
Splitting 404 373 371

Table 5.9: Amount of correct variables in the initial point such that the numerical
method converges to the wanted solution.

Conversion GN LM IRN

Fourier – 75% 60%
Standard – 70% 60%

ASC – 40% 55%
Splitting – 90% 90%

In Table 5.9 we show how much of the precomputed solution is needed such
that the wanted solution is found by the numerical methods. All results are
considerably high.

In the end the Boolean system could not be solved by any of the numerical
methods. The obtained results are very similar to Trivium. Furthermore, the
real-valued solutions for the solved systems cannot be mapped to the Boolean
domain nor any significant relation between these solutions and the Boolean
solution can be found. Once again both random initial guess strategies lead to
the same result.

5.5.4 Results for Bivium A

Bivium A represents the easiest of all three problems and is already broken
[Rad07] with practical complexity. Hence, its results are of special interest.
In Table 5.10 we present the results for the various systems of Bivium A. The
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systems for Bivium A have the same structural problem which cannot be handled
well by the Gauss-Newton method. We again analyse the results using Fourier
and standard conversion first. As for Bivium B the interior reflective Newton
method converges almost to a corner of the hyper-cube. Only few variables
are left real-valued. In contrast the local minima computed by the Levenberg-
Marquardt method are significantly far away from the bounds.

Looking at the results for the adapted standard converted system we see again
that the decision variables are integer-valued, for both numerical methods. For
the variables which are also existing in the Boolean system we obtain different
results. The solutions computed by Levenberg-Marquardt method are again not
in between the bounds, but using the interior reflective Newton method they
are. Furthermore, some of the variables are even integer-valued.

Finally, the results for the system derived by the splitting conversion are
similar to Trivium and Bivium B. Levenberg-Marquardt computes real-valued
solutions which are not in between the bounds. The interior reflective Newton
method seems to converge to an area around the centre of the hyper cube. Hence,
the Hamming distance presented in Table 5.11 using the first rounding strategy
is very high. The second rounding strategy reveals more information as shown
in Table 5.12. If we move the local and global minima to the nearest corner, the
result is again as good as a random guess in the Boolean domain. However, it
is worth to notice that the rounded points are different from the initial guess.

Table 5.10: Results for Bivium A using Gauss-Newton (GN), Levenberg-Marquardt
(LM) and interior reflective Newton method (IRN) for each conversion
type. The DIRECT method cannot handle such a large system. The
columns contain the average objective function value f(x∗) at the con-
verged point x∗.

Conversion GN LM IRN DIRECT

Fourier 338.27 41.70 66.84 –
Standard 77.95 10.62 17.05 –

ASC 440.36 0 1.44 –
Splitting 63.72 0 0 –

Table 5.11: Average Hamming distance between the precomputed solution and the
found minima using the first rounding strategy.

Conversion GN LM IRN

Fourier 252 282 170
Standard 167 217 197

ASC 370 305 254
Splitting 465 476 465
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Table 5.12: Average Hamming distance between the precomputed solution and the
found minima using the second rounding strategy

Conversion GN LM IRN

Fourier 167 160 160
Standard 161 164 163

ASC 370 275 252
Splitting 274 284 288

In Table 5.13 we see again that the part of the precomputed solution needs
to be large such that the numerical methods converge to this solution. Even if
we assign the correct values for all variables representing the internal state bits,
the algorithms find only local minima. That means the objective function has
a lot of stationary points beside the one we are looking for. For the simplified
systems, where we replaced the guessed variables with their correct values before
the conversion, we get similar results.

Table 5.13: Amount of correct variables in the initial point such that the numerical
method converges to the wanted solution.

Conversion GN LM IRN

Fourier – 80% 55%
Standard – 80% 55%

ASC – 45% 70%
Splitting – 85% 85%

The DIRECT algorithm does not need an initial guess since it is an deter-
ministic algorithm. In our experiments the algorithm did not converge to any
point, so we stopped the algorithm after three days. Other methods with global
optimization techniques may be more successful.

For Bivium A we draw the same conclusions as for Bivium B. Although
Bivium A is the easiest of the three problems and already broken by other tech-
niques, the chosen numerical algorithms cannot find a solution which corresponds
to the Boolean one. However, in this thesis we covered only a fraction of all nu-
merical methods and we do not exclude the possibility that an other numerical
algorithm maybe better suited for these problems, especially considering that
new methods for different kind of problems are showing up constantly.

5.6 Summary

In this chapter we applied our approach on the stream cipher Trivium and on
its reduced variants Bivium A and Bivium B. Trivium is recommended by the
eStream project [Rob08]. We first constructed the Boolean system of equations
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describing the internal state of the cipher for each of the variants. Afterwards,
each of these Boolean systems are converted to the real domain using four conver-
sion methods discussed in Chapter 3. These methods are standard conversion,
Fourier conversion, adapted standard conversion and splitting conversion. Each
of the resulting systems over the reals differ in size, monomial degree and total
degree. Therefore, they represent different difficulties for the numerical methods.
In the next step we used four different iterative numerical algorithms to search
for a solution of each of the systems. The algorithms are discussed in Chapter 4
and have different properties. The first three algorithms provide global conver-
gence. This is necessary since we are not able to provide an initial guess which
is already close to the solution. In our experimental setting we defined three
different strategies for the initial point. In the first two we have chosen either
a random point in the hyper-cube or a random corner of the hyper-cube. The
hyper-cube is defined by the chosen type of representation. The outcome for
both strategies is the same. In order to find out how close the starting point has
to be to the solution, we used part of the precomputed solution for the starting
point and assigned the other variables to random values. We showed that the
size of this part is considerable high for all systems and numerical algorithms.

The results of the numerical algorithms differ for each system. The Levenberg-
Marquardt and interior reflective Newton method can handle the constructed
systems best. The Gauss-Newton method is not robust enough since it can-
not handle ill-conditioned Jacobian matrices well. Due to the structure of the
systems the Jacobian matrix is often ill-conditioned and therefore the Gauss-
Newton method does not converge most of the time. Contrary, the other two
methods converge for every initial point. Unfortunately, for most of the systems
they converge to a local minimum which is not a solution. Only the systems
derived by our advanced conversion techniques can be solved (for any variant of
Trivium). We analysed the found local and global minima. The solutions for
the solved systems are real-valued. Since real-valued minima cannot be directly
converted back to the Boolean domain we defined two rounding strategies. The
first one rounds real values to the nearest integer which tells us how far a point
from a corner of the hyper-cube is. The results of the Levenberg-Marquardt
method are often not located in the hyper-cube, in contrast to the interior re-
flective Newton method where per design all points are within the hyper-cube.
The second rounding strategy moves the point to the nearest corner of the hyper-
cube. In that way we see that the global minima as well as the local minima
are as good as a random guess in the Boolean domain. We were not able to
find any other relations between these minima and the wanted Boolean solution.
However, we cannot exclude the possibility that there is one and that another
numerical algorithm may reveal some information about the Boolean solution.

The approach of using numerical methods in cryptanalysis including an ap-
plication on Bivium A has been published in [LNR09b]. Note, that the results
in [LNR09b] has been improved in this thesis.
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Conclusions

Since the upcoming of linear and differential attacks, new design strategies have
been proposed to resist these attacks. A disadvantage of such designs is, that a
new type of attack could cause a complete breakdown of security. In the first
part of this thesis we investigated a new approach in cryptanalysis. In this ap-
proach the cryptographic algorithm is represented as a system of equations. The
system of equations is constructed such that there is a correspondence between
its solutions and some secret information of the cryptographic primitive (for in-
stance, the secret key of a block cipher). We apply methods and techniques from
numerical analysis, which is a large and well-studied field of research, to solve
this system. We use conversion methods to create an equivalent system over
the real domain from the system of equations over the Boolean domain. At this
point one can apply numerical solvers. The computed solution can be converted
back to the Boolean domain (with restrictions) which results in a solution for
the original system. Numerical solvers are methods to approximate solutions
for equations and systems of equations. We are interested in the special case of
solving non-linear polynomial systems of equations. For such system a variety
of different techniques and methods exist. A key advantage is that except for
building the Boolean system of equations every step of our approach works fully
automated.

In order to be able to use numerical methods to solve such systems we have
to convert the equations to equations over the real domain. By doing that we
have to ensure that at least the set of Boolean solutions is represented in the
reals, i.e. each solution of the Boolean system has at least one corresponding
solution for the system over the reals. In Chapter 3 we presented four basic
conversion methods which convert a Boolean equation to a polynomial over the
reals depending on the representation of the values false and true. The main
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problem using these techniques is the high degree of the resulting polynomial. A
system consisting of polynomials with hight degrees is usually more difficult to
solve than polynomials with low degrees. Therefore, we developed two advanced
conversion techniques naming them adapted standard conversion and splitting
conversion. Both methods were published in [LNR09b]. Furthermore, we gave
a detailed analysis of each conversion method and define criteria to classify
them. We focused on the structure of the resulting equations over the reals
and defined the criteria monomial degree and total degree. We showed that
one has a high influence on the structure of the conversion result, which is
exceptional compared to usual use cases for numerical methods. Furthermore,
we defined the property of variable sharing which has a high influence on the
conversion result. We showed how this property affects the different types of
representation. We also provided a rule of thumb helping to find the appropriate
type of representation for specific equations. Overall, we showed that by choosing
the right representation and conversion method one can change significantly the
structure of the system of equations over the reals and therefore its difficulty
regarding the solvability.

In Chapter 4 we gave an overview on numerical analysis. Since numerical
analysis is a broad research field we focused on iterative methods for solving
non-linear systems of equations. We described three global convergent methods
in detail, namely Gauss-Newton, Levenberg-Marquardt and interior reflective
Newton method. Global convergent methods are necessary as we cannot provide
a starting point for the iterative methods which is already close to the solution.
Modern iterative methods, as the interior reflective Newton method, are designed
for minimization problems, since solving a system of equations is strongly related
to it. In this context the notion of global and local minima are important. A
solution for a system of equations is a global minimum. In general finding a
global minimum for non-linear functions is a hard problem and a whole research
field (global optimization) is dedicated to it. Nevertheless, we described and used
one method for global minimization, called DIRECT. Furthermore, we worked
out properties of the converted equations with respect to numerical analysis.
No matter which conversion method we choose, the resulting polynomials over
the reals have desirable properties considering numerical methods. Foremost, all
polynomials are continuous differentiable. Second, if a solution for the Boolean
system of equations exists (and in the case of cryptographic primitives it does),
we can guarantee that the converted system has at least the same amount of
solutions. However, it is possible that additional real-valued solutions exist.
Hence, we cannot guarantee uniqueness but existence of solutions.

In Chapter 5 we applied our approach to the stream cipher Trivium and on
its reduced variants Bivium A and Bivium B. We first constructed the Boolean
system of equations describing the internal state of the cipher for each of the
variants. Afterwards, each of these Boolean systems are converted to the real
domain using four conversion methods from Chapter 3. With the help of these
examples, we showed that the structure of the system over the reals can sig-
nificantly change using different conversion methods. In the next step we set
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up an experimental setting to apply all four numerical algorithms and evaluate
their results. We showed that the results of the different numerical methods
differ significantly from each other. Furthermore, we showed that the interior
reflective Newton and Levenberg-Marquardt converge to local minima for most
systems. However, the systems derived by our advanced conversion techniques
were solved (for any variant of Trivium). Unfortunately, the solutions for these
systems are real-valued which cannot be directly converted back to the Boolean
domain. We defined two rounding strategies to extract more information from
these solutions. We demonstrated that moving the solutions to the nearest cor-
ner of the given hyper-cube reveals that the global minima as well as the local
minima are as good as a random guess in the Boolean domain. We were not able
to find any other relations between these minima and the wanted Boolean solu-
tion. However, in this thesis we covered only a fraction of all numerical methods
and we do not exclude the possibility that an other numerical algorithm maybe
better suited for these problems, especially considering that new methods for
different types of problems are showing up constantly. The approach of using
numerical methods in cryptanalysis including an application on Bivium A has
been published in [LNR09b].

Although, we were not able to break Trivium or any of its variants we showed
how techniques from numerical analysis can be used in cryptanalysis. Further-
more, various future research directions are possible. One direction should in-
vestigate different ways of modelling the numerical problem. A possibility is to
change the objective function to something different (e.g. Hamming weight of
the state) and use the given equations as constraints. Furthermore, any obtained
side-channel information can be added as equality or inequality constraints which
can lead the numerical methods to the wanted solution. The meaning of local
minima over the reals in the Boolean domain is another open problem as well
as the meaning of real-valued solutions. Overall, the field of numerical analysis
and optimization research offers great tools and possibilities which can be of use
in the cryptanalysis of symmetric primitives.
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7
Introduction

In the early 1990’s Biham and Shamir [BS92], published a general technique
for the cryptanalysis of symmetric primitives, called differential cryptanalysis.
The basic idea is to study how differences in an input affect the differences at
the output. Biham and Shamir applied this technique on the block cipher DES.
Differential cryptanalysis is a statistical attack which studies the propagation
of differences through all transformations of the cipher. Since then differential
cryptanalysis turned out to be one of the most powerful techniques to analyse
block ciphers, hash functions and stream ciphers. Attacks based on differential
cryptanalysis are dedicated attacks, usually exploiting the internal structure of
a design. The propagation of differences through the cipher transformations is
usually predicted over multiple rounds. The differences in the input, interme-
diate values and output is called a differential characteristic. The probability
of a characteristic is the fraction of conforming input pairs, which result in the
differences of a characteristic. In a differential attack an adversary tries to find
characteristics with high probability. For a high probability characteristic many
conforming pairs exist which makes it easier to find such pairs.

In the last years the concept of differential cryptanalysis has been devel-
oped further. Foremost, different types of differences have been defined to
cope with different operations in the targeted algorithms, e.g. XOR differences
[BS92], modular differences [Dob98], signed-bit differences [WY05, WYY05b] or
truncated differences [Knu94]. Furthermore, new type of attacks based on dif-
ferential cryptanalysis have been proposed, like impossible differential attacks
[BKR97, BBS99], linear-differential attacks [CJ98] or the boomerang attack
[Wag99].

Differential cryptanalysis turned out to be of particular interest in the crypt-
analysis of hash functions where it become one of the most important tech-
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niques. Cryptographic hash functions are a security-critical building block for
e-commerce and e-government systems. For example, when a document is signed
by means of a digital signature (electronic signature), firstly hash functions are
used to compress the document to a “fingerprint”. For performance reasons,
the ‘raw’ signature using asymmetric techniques like RSA, DSA or ECDSA, is
made on the fingerprint of the document only. For security reasons, it is of ut-
most importance that no two documents can be created which result in the same
fingerprint. When this happens, this is called a collision. While the existence
of collisions cannot be avoided, due to the nature of the compression functions
used, the design goal of a cryptographic hash function is to make it infeasible
to construct such collisions. While hash functions did not get a lot of attention
by the cryptographic community, this changed with the breakthrough results
of Wang et al. in 2004. Since then many attacks based on differential crypt-
analysis have been presented for several well-known algorithms such as SHA-0,
SHA-1 or MD5. The transition from SHA-1 to the SHA-2 family was proposed
by the National Institute of Standards and Technology (NIST) as a first solution
[Nat08]. Since then more and more companies and organization are migrating
to the SHA-2 family. As another consequence of these results NIST has initiated
an open competition for a new hash function standard, called SHA-3 [Nat07]. In
November 2008, round one has started and in total 51 out of 64 submissions have
been accepted. In December 2009 the 14 round 2 candidates and in December
2010 the final five were announced. NIST will select a winner in 2012.

Since the upcoming of differential cryptanalysis and other cryptanalytic meth-
ods, new design strategies have been proposed to resist this kind of analysis. Fur-
thermore, in many designs the complexity has increased compared to previous
ones. Larger states, more non-linear operations, more rounds and more com-
plicated state updates are the consequence. This can be especially observed for
hash functions, like the transition from SHA-1 to SHA-2. Due to this increased
complexity, the analysis of hash functions has become more difficult. Therefore,
finding differential characteristics and conforming input pairs has become a more
challenging task and the development of new tools has become necessary.

In this thesis we investigate how recent attacks on SHA-1 can be applied on
its successor SHA-256 and other similar hash functions. Therefore, we improve
and extend existing techniques leading to a new generation of tools which are
used in attacks on several hash functions including SHA-2, HAS-160 or SIMD.

7.1 Cryptanalysis of SHA-1

The work on hash functions by Dobbertin [Dob98, Dob97], Chabaud and Joux
[CJ98] and Biham et al. [BCJ+05] and the further advances in the security
analysis of the MD4 [WY05] hash function were a wake-up call. The break-
through results of Wang et al. [WY05, WYY05b] on MD5 and SHA-1 have
shocked the cryptographic community and were the starting point for an un-
precedented activity in the research on the security of hash functions in both
academia and industry. Since then the results by Wang et al. were improved by
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others. The cryptanalysis of SHA-1 includes different techniques from coding
theory or techniques used in the cryptanalysis of block ciphers. New techniques
were developed like message modification or automated search for differentials.
Even if SHA-1 is considered as broken, it is still used in a variety of applications.
Therefore, researchers are still interested in SHA-1 and try to provide practi-
cal collisions for more steps. The currently best results on SHA-1 are by De
Cannière et al. [DMR07] who presented a collision for 70 steps and Grechnikov
and Adinetz [GA11], who used the same techniques with minor improvements
and more computational power to present collision for 75 steps out of 80 steps
of SHA-1.

Overall two distinct methods where most successful. Using techniques from
coding theory to find differential characteristics in a linearised model of the hash
function such that they hold with high probability for the original hash func-
tion is the first one. The second technique automatically searches for complex
characteristics based on the concept of generalized conditions.

7.2 Outline

In Chapter 8 we give a definition of cryptographic hash functions and their secu-
rity requirements. Next we introduce the notation and definitions for differential
cryptanalysis. In Chapter 9 we explain in detail the two most successful attacks
on SHA-1 and describe the concept of the two distinct techniques. The first
technique linearises a hash function and applies algorithms from coding theory
to find differential characteristics which hold with high probability for the orig-
inal hash function. The second technique is based on the concept of generalized
conditions. Around this concept an automatic search algorithm is constructed
which searches for complex differential characteristics. We extend and develop
tools for both techniques and use them to construct attacks on different hash
functions in the subsequent chapters.

In Chapter 10 we present two attacks on SIMD using the coding theory
approach. SIMD is one of the round 2 candidates of the SHA-3 competition. Due
to our first attack, the designers modified the specification of SIMD. However, we
present another attack on the modified version, using the same basic technique
under a different attack setting.

In Chapter 11 we attack the Korean hash function standard HAS-160 com-
bining both tools. We first construct two differential characteristics using the
first approach and connect them through a characteristics using the automatic
search algorithm. We present a conforming message pair resulting in the cur-
rently best attack in terms number of steps with practical complexity.

In Chapter 12 we describe the extensions and modification needed such that
we can successfully apply the search algorithm on the hash function standard
SHA-256 leading to the best attacks on SHA-256 with practical complexity.

In Chapter 13 we present a summary and conclude the second part of the
thesis by discussing open problems and further research directions.





8
Notation and Definitions

In this chapter, we introduce cryptographic hash functions and their basic se-
curity requirements. We describe the Merkle-Damg̊ard design principle and
describe different types of collisions for hash functions and their building blocks.
Furthermore, we give the notation and definitions necessary for differential crypt-
analysis and introduce the concept of generalized conditions used in the most
recent attacks on SHA-1.

8.1 Cryptographic Hash Functions

Cryptographic hash functions are an important symmetric primitive in cryptog-
raphy. They are used in numerous applications, like digital signatures, password
protection, random number generation, key derivation, integrity protection, ma-
licious code detection, message authentication, and many more. A cryptographic
hash function H is an algorithm that maps a message string m of arbitrary length
to a fixed-length hash value h = H(m) of n bits. The hash value h can be seen
as a digital fingerprint of the message m. In general it should be difficult to
find two distinct messages resulting in the same hash value. A cryptographic
hash function should be efficiently computable and each hash value should be a
unique representation of the message. Due to the fact that the input message
can be of arbitrary length, the existence of two different messages resulting in
the same hash value cannot be prevented. Hence, the purpose of a hash function
is not to prevent the existence of such colliding messages, but to ensure that it
is computationally infeasible to find them.
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8.1.1 Security Requirements

Since cryptographic hash functions are used in many applications with different
requirements, many different properties are needed. The three basic security
requirements are the following:

� Collision resistance: it should be computationally infeasible to find two
messages m and m∗ with m 6= m∗, such that they have the same hash
value H(m) = H(m∗).

� Second preimage resistance: for a given message m, it should be compu-
tationally infeasible to find a second message m∗ with m 6= m∗, such that
they have the same hash value H(m) = H(m∗).

� Preimage resistance: for a given hash value h, it should be computationally
infeasible to find any message m, such that it has the given hash value
H(m) = h.

A detailed treatment of these requirements can be found in [RS04]. The basic
three requirements are usually set in relation to the bit length n of the hash
value. For any hash function, we can always find preimages or second preimages
by testing approximately 2n random input messages. Due to the birthday para-
dox finding collisions requires only 2n/2 calls to the hash function. Therefore,
the hash size n is usually chosen large enough to make such generic attacks com-
putationally infeasible. Since these generic attacks work for any hash function, a
cryptographic hash function is said to be ideal if the generic bounds hold. There
are other important properties. In the recent years non-random properties of
hash functions were targeted. In such attacks an adversary utilizes specific prop-
erties of a hash function to define a distinguishing property such that one can
distinguish the output of a hash function from a random function. To formalize
this and other properties the random oracle models has been introduced [BR93].
A random oracle is a function which outputs a random hash value for any given
input message. If the same message is used again, it outputs the previously used
corresponding hash value. Therefore, we introduce another security requirement
for hash functions:

� randomness: it should be computationally infeasible to create statistical
irregularities for the distribution of the output.

Due to the limited internal state of a practical hash function it can never be a
random oracle. However, it should be infeasible to distinguish a hash function
from such a random oracle up to the generic bound for any attack.

8.1.2 The Merkle-Damg̊ard Design Principle

The hash functions analysed in this thesis are iterated hash functions following
the Merkle-Damg̊ard design principle [Dam89, Mer89]. In order to compute
the hash value h the message m is first split into t message blocks of b bits
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each. To ensure that the message length is a multiple of b bits, an unambiguous
padding method is applied. Then each message block is processed by iterating
the compression function f t times resulting in the final hash value h. To be
more precise, let h : (0, 1)∗ → (0, 1)n be an iterated hash function based on a
compression function f : (0, 1)n × (0, 1)b → (0, 1)n and m = M1‖M2‖ · · · ‖Mt

be a t-block message (after padding). Then the hash value h is computed as
follows (see Figure 8.1):

H0 = IV,

Hj = f(Hj−1,Mj) for 0 < j ≤ t,
Ht+1 = g(Ht).

(8.1)

The n-bit variable Hj is called the (intermediate) chaining value and is initialized
with a predefined n-bit initial value IV . The variable h = Ht+1 is called the hash
value. The function g is called the output transformation. However, in most hash
function designs, like SHA-2, the output transformation is the identity mapping
and we get h = Ht+1 = Ht.

IV
f

M1

f

M2

f

Mt

g
h = Ht+1

Figure 8.1: Outline of the Merkle-Damg̊ard design principle.

Merkle-Damg̊ard provide a proof showing that if the compression function f
is collision resistant then the hash function H is also collision resistant, which is
a major advantage of this construction. In order to achieve this, messages are
preprocessed using a technique called Merkle-Damg̊ard strengthening. It speci-
fies an unambiguous padding method which includes the binary representation of
the message length. The existence of proofs which reduce properties of the hash
function to properties of the compression function has directed the cryptanalytic
attention to the compression function as well. Although, a collision attack on
the compression function rarely leads to a collision attack on the hash function,
such proofs are not applicable any more.

8.1.3 Compression Function Constructions

The most used hash functions today are block cipher based hash functions, where
the compression function consists of a block cipher in a special mode of operation.
There are several advantages using such constructions. Block ciphers are well
studied, good implementations exists and if a certain block cipher is already
available in an application, the effort to add a hash function based on this cipher
is low. In [PGV93], Preneel et al. studied constructions for compression functions
based on a block ciphers. Later, Black et al. [BRS02] provided security proofs in
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the ideal cipher model. The three most popular modes are Davies-Meyer (DM),
Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel (MP) [MvOV97]. For a
block cipher E : {0, 1}k×{0, 1}n → {0, 1}n with a key of size k bits and a block
size of n bits, the three modes are defined as follows:

Hj = E(Mj , Hj−1)⊕Hj−1

Hj = E(Hj−1,Mj)⊕Hj−1 ⊕Mj

Hj = E(Hj−1,Mj)⊕Mj

Davies-Meyer (DM)

Miyaguchi-Preneel (MP)

Matyas-Meyer-Oseas (MMO)

In Figure 8.2 the three modes are illustrated.

EMj

Hj−1

Hj

(a) Davies-Meyer

EHj−1

Mj

Hj

(b) Miyaguchi-Preneel

EHj−1

Mj

Hj

(c) Matyas-Meyer-Oseas

Figure 8.2: The three most common constructions for block cipher based hash func-
tions.

One disadvantage of constructing hash functions from block ciphers is that
usually, the block size of the cipher needs to be quite large to prevent generic
attacks. Furthermore, depending on the construction mode an adversary may
have full control over the key. Results considering this for the security analysis
have been presented in [KR07, RP94]. Therefore, dedicated hash functions have
been designed with the explicit purpose of hashing. The most important ones
are MD5 [Riv92], SHA-1 [Nat95] and SHA-2 [Nat02]. Also the round 2 SHA-
3 candidate SIMD [LBF09a] and the Korean hash function standard HAS-160
[Tel08] are in this category. Although, these hash functions are called dedicated
hash functions their construction is also based on block ciphers specially designed
for hashing. They operate in in Davies-Meyer mode, except SIMD which is using
a different mode (see Chapter 10).

8.1.4 ARX Hash Functions

The most commonly used hash functions today are also ARX hash functions,
e.g. MD5, SHA-1 or SHA-256. Furthermore, in the SHA-3 competition sev-
eral hash functions of these category have been proposed, e.g. Skein [FLS+11],
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Blake [AHMP11], SIMD [LBF09a] or CubeHash [Ber09]. The operations in such
a hash functions consist of modular additions, rotations and XORs. ARX hash
functions following the design principles of MD4 [Riv90] include also one or more
Boolean functions. An additional property shared among these hash functions
is the usage of a message expansion. Such a function takes as input a message
block and extends it to a larger size.

The ARX design has several advantages, like fast performance on various
platforms or compact implementations. However, it is difficult to show any
bounds regarding linear and differential cryptanalysis. Furthermore, finding dif-
ferential characteristics in such a construction can be hard. Hence, the necessity
of advanced and automatic tools is increased. Note that, all hash function anal-
ysed in this thesis are ARX hash functions.

8.2 Types of Collisions

In the last decade new types of collisions have been in the focus of research.
For each type the definition of a collision is weakened, giving the cryptanalyst
more freedom in the analysis of hash functions and its underlying compression
function. In the following, we define various forms of collision resistance which
are first mentioned in[LM92]. They are important since every property of a
practical hash function which deviates from the ideal model of a hash function
can be seen as a weakness.

Inputs m and m∗ with m 6= m∗ collide for a given hash function H if H(m) =
H(m∗). Thus we define the notion of collision resistance:

Definition 8.1 (Collision Resistance). A hash function H is collision resistant
if it is computationally infeasible to find any two distinct inputs m, m∗ which
hash to the same output, i.e., H(m) = H(m∗).

The best generic algorithm to find collisions for H is to generate t messages and
to search for colliding outputs in all H(mi) for 1 ≤ i ≤ t. For a hash function
with a digest size of n bits, the expected value for t to find a collision is

E(t) ≈ 2n/2. (8.2)

Definition 8.2 (k-near Collision). Given a hash function H and two distinct
messages m and m∗. If the Hamming weight of the XOR-difference between
H(m) and H(m∗) is k, we have a k-near collision.

The expected value of the number of messages tk needed to find a k-near collision
for hash functions of n bit output size is (cf. [BC04])

E(tk) ≈ 2n/2√
(nk )

, (8.3)

If the IVs are not specified in advance, one has more freedom. Hence, colliding
hash values might be easier to find if we can freely choose the IV. We denote by
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H(IV,m) an iterated hash function as in (8.1) where the initial value is set to a
value of our choice.

Definition 8.3 (Semi-free-start Collision of a Hash Function). For every given
4-tuple (m,m∗, IV, IV ∗) with IV = IV ∗ and m 6= m∗ which satisfies the equality

H(IV,m) = H(IV ∗,m∗) (8.4)

is a semi-free-start collision for the hash function H.

Colliding hash values might be easier to find if we allow differences both in the
messages and in the IVs.

Definition 8.4 (Free-start Collision of a Hash Function). For every given 4-
tuple (m,m∗, IV, IV ∗) with IV 6= IV ∗ which satisfies the equality

H(IV,m) = H(IV ∗,m∗) (8.5)

is a free-start collision for the hash function H.

The definition of a collision for a compression function is slightly different, since
an adversary has always the possibility to modifiy both inputs, the message and
the chaining input.

Definition 8.5 (Collision of a Compression Function). For every given 4-tuple
(m,m∗, IV, IV ∗) with IV 6= IV ∗ or m 6= m∗ which satisfies the equality

f(IV,m) = f(IV ∗,m∗) (8.6)

is a collision for the compression function f .

8.3 Differences, Characteristics and Probabili-
ties

In the following sections we introduce the notion and definitions used in differ-
ential cryptanalysis. We define various types of differences, define the notion
of differentials and characteristics, and show how the probabilities for both are
determined.

8.3.1 Types of Differences

Definition 8.6 (XOR Difference). To denote differences between X ∈ {0, 1}n
and X∗ ∈ {0, 1}n with respect to the XOR operation we use

∆X = X ⊕X∗ ∈ {0, 1}n.
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Definition 8.7 (Modular Difference). For differences between X ∈ {0, 1}n and
X∗ ∈ {0, 1}n with respect to modular addition, we use the bijection

i : {0, 1}n −→ Z2n = {0, 1, . . . , 2n − 1}
X = (xn−1, . . . , x0) 7−→ xn−12n−1 + · · ·+ 2x1 + x0.

Then, we denote by

δX = X −X∗

the modular difference i−1(i(X)− i(X∗)) ∈ {0, 1}n.

One of the contributions of [WLF+05] was the introduction of signed-bit differ-
ences.

Definition 8.8 (Signed-bit Difference). For differences between X ∈ {0, 1}n
and X∗ ∈ {0, 1}n, we denote by

∆sX = X −X∗ = (yn−1, . . . , y0)

the signed-bit difference where yj = Xj −X∗j ∈ {−1, 0, 1} for 0 ≤ j < n.

These signed-bit differences reflect the fact that in a dedicated attack, not only
differences play a role but also the actual values of the bits. In other words,
a given signed-bit difference defines a subset of all message pairs (X,X∗) ∈
{0, 1}n × {0, 1}n, that satisfy the specified difference conditions.

Inspired by these signed-bit differences, [DR06] came up with the so called
generalized conditions for differences, where all 16 possible conditions on a pair
of bits are taken into account. Table 8.1 lists all these possible conditions and
introduces notations for the various cases.

Definition 8.9 (Generalized Conditions for Differences). Let X ∈ {0, 1}n and
X∗ ∈ {0, 1}n, then the notation

∇X = [cn−1, . . . , c0],

where ci denotes one of the conditions of Table 8.1 for the i-th bit, defines a subset
of pairs (X,X∗) ∈ {0, 1}n × {0, 1}n that conforms to the specified conditions.

For example in [DR06], all pairs of 8-bit words X and X∗ that satisfy

{(X,X∗) ∈ {0, 1}n×{0, 1}n |X7·X∗7 = 0, Xi = X∗i for 2 ≤ i ≤ 5, X1 6= X∗1 , X0 = X∗0},

are written in the form

∇X = [7?----x0]

and the generalized condition of bit i is denoted by ∇Xi. For the remainder of
this thesis if we mention differences we usually mean bitwise XOR differences.
It is explicitly mentioned if other differences are used.



98 Chapter 8. Notation and Definitions

Table 8.1: Notation for possible generalized conditions on a pair of bits.

(Xi, Xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? X X X X
- X - - X
x - X X -
0 X - - -
u - X - -
n - - X -
1 - - - X
# - - - -
3 X X - -
5 X - X -
7 X X X -
A - X - X
B X X - X
C - - X X
D X - X X
E - X X X

8.3.2 Differential Characteristics and Probabilities

Definition 8.10. A differential [LM92] of a function B : {0, 1}n → {0, 1}n is a
pair (∆X,∆Y ) ∈ {0, 1}n×{0, 1}n. We call ∆X the input difference and ∆Y the
output difference. The differential probability DPB(∆X,∆Y ) of a differential
(∆X,∆Y ) with respect to B is defined as

DPB(∆X,∆Y ) = 2−n# {X ∈ {0, 1}n|B(X ⊕∆X) = B(X)⊕∆Y } .

Analogously, we can define differential and differential probability if the function
B[k](x) is parametrized by a key k.

Definition 8.11. Let B[k](x) denote a function composed of r steps Bi[ki](x)
parametrized by r subkeys k0, k1, . . . kr−1 ∈ {0, 1}l:

B[k](x) =
(
Br−1[kr−1] ◦ · · · ◦B0[k0]

)
(x).

A characteristic through B[k](x) is a vector Q = (∆X0,∆X1, . . . ,∆Xr) with
∆Xi ∈ {0, 1}n for i = 0, . . . , r. A characteristic Q = (∆X0,∆X1, . . . ,∆Xr) is
in a differential (∆X,∆Y ) if ∆X0 = ∆X and ∆Xr = ∆Y . If we now consider
the following set of equations

B0[k0](X ⊕∆X0) = B0[k0](X)⊕∆X1

...(
Br−1[kr−1] ◦ · · · ◦B0[k0]

)
(X ⊕∆X0) =

(
Br−1[kr−1] ◦ · · · ◦B0[k0]

)
(X)

⊕∆Xr,
(8.7)
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then the parameterized differential probability DPB [k](Q) of a characteristic Q
with respect to B[k](x) is defined as

DP [k](Q) = 2−n# {X ∈ {0, 1}n |X satisfies (8.7)} .

To bring the definitions in context with hash fucntion we adapt Defini-
tion 8.11. The subkeys in Definition 8.11 correspond to expanded message
blocks, and therefore, differences in the messages will lead to differences in the
keys. From a block-cipher point of view this corresponds to the related-key
setting. So let us assume we have a vector

∆K = (∆k0, . . . ,∆kr−1) ∈ ({0, 1}l)r (8.8)

of (round-key) differences. Let M ∈ {0, 1}b be a message block and let the
injective function ME : {0, 1}b → ({0, 1}l)r be the message expansion of the
underlying hash or compression function. We introduce the set

S(∆K,∆M) = {M ∈ {0, 1}b |ME(M)⊕ME(M ⊕∆M) = ∆K}. (8.9)

Definition 8.12. Let f(x,m) be a Davies-Meyer compression function based on
B[k](x) as in Definition 8.11. A characteristic through f(x,m) is a vector

Q = (∆M ; ∆K; ∆X0,∆X1, . . . ,∆Xr,∆Xr+1)

with ∆Xi ∈ {0, 1}n for i = 0, . . . , r+ 1 and ∆K as in (8.8). A characteristic Q
is in a differential (∆M ; ∆K; ∆X,∆Y ) if ∆X0 = ∆X and ∆Xr+1 = ∆Y and
ME(M)⊕ME(M ⊕∆M) = ∆K. With the notation

B[k ⊕∆K](x) =
(
Br−1[kr−1 ⊕∆kr−1] ◦ · · · ◦B0[k0 ⊕∆k0]

)
(x)

we are now considering the equations

B0[k0](X ⊕∆X0) = B0[k0 ⊕∆k0](X)⊕∆X1

...
B[k](X ⊕∆X0) = B[k ⊕∆K](X)⊕∆Xr

B[k](X ⊕∆X0)� (X ⊕∆X0) = (B[k ⊕∆K](X)�X)⊕∆Xr+1.
(8.10)

Here, � : {0, 1}n → {0, 1}n defines the feed-forward in the Davies-Meyer con-
struction. Then, for a characteristic as above we can define DP (Q) as

DP (Q) = 2−(n+b)·
#
{
M ∈ {0, 1}b, X ∈ {0, 1}n |X satisfies (8.10) and M ∈ S(∆K,∆M)

}
.

(8.11)

A right pair for such a characteristic defines a free-start collision.

Note that the differential analysis of block ciphers and hash functions differ
in the aspect that in the block cipher case, we are interested in the output of the
most probable characteristic whereas in the hash function case, we are mostly
interested in a collision producing characteristic.
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L- and NL-Characteristics

In this thesis, we use two different techniques to construct differential char-
acteristics. In order to distinguish between them, we introduce the notion of
L-characteristics and NL-characteristics.

Definition 8.13 (L-Characteristics). Let H be a hash function consisting of
non-linear operations and LH be a linearised model of the hash function H, that
is all non-linear operations are approximated by linear operations. Then we call
a differential characteristic for LH an L-characteristic.

Definition 8.14 (NL-Characteristics). Let H be a non-linear hash function. A
characteristic for H is called NL-characteristic.

The advantage of L-characteristics is that they can be found easily, by solving
a set of linear equations. However, the quality of such an L-characteristic highly
depends on the number of (bit)-conditions that have to be fulfilled in order to
guarantee that the it holds also in the original function.

Correlation between Collision Types and Characteristics

In order to put Definition 8.12 of a differential characteristic in context to the
different types of collisions, we briefly discuss the attack scenarios in the follow-
ing.

� Collision
In the case of a collision attack on a hash function, the difference in the
chaining input and in the output is zero. Hence, ∆X0 = 0 and ∆Xr+1 = 0
have to hold. Furthermore, in a collision attack the chaining input is fixed
to a predefined IV . By this additional condition the differential probability
of a characteristic is affected, since the amount of possible inputs (available
freedom) is reduced.

� Near-Collision
For a near-collision ∆X0 = 0 and ∆Xr+1 6= 0 holds (where ∆Xr+1 is of
low Hamming weight). In this scenario the chaining input is also fixed.
The effects are the same as mentioned above.

� Free-Start Collision
In contrast to a collision attack the chaining inputs contain differences.
Therefore, ∆X0 6= 0 and ∆Xr+1 = 0 have to hold. In this case the
chaining inputs can be freely chosen and do not change the differential
probability given in Definition 8.12.

� Free-Start Near-Collision
A free-start near-collision does not restrict the location of differences, i.e.
differences in the chaining inputs and in the outputs are allowed. Hence,
∆X0 6= 0 and ∆Xr+1 6= 0 holds for a characteristic of a such a collision.
Again the chaining input can be freely chosen.
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8.4 Summary

In this chapter, we introduced on cryptographic hash functions and their basic
security requirements. We described the Merkle-Damg̊ard design principle which
is used by all hash functions analysed in this thesis. Furthermore, we explain
the most common modes to construct a hash function out of a block cipher.

The most common tool in the cryptanalysis of hash functions is differential
cryptanalysis. This technique, originally invented in the analysis of block ci-
phers, can be used for attacks on hash functions. Most collision attacks on hash
functions are differential attacks.

We introduced different types of collisions and the important terms used in
differential cryptanalysis, like differential characteristic and differential proba-
bility. In this context, we distinguished between two types of differential char-
acteristics, depending on which technique is used to construct them. This dif-
ferentiation is important for the subsequent chapters. Finally, we set different
types of collision in context with differential cryptanalysis.





9
Cryptanalysis of ARX Based Hash

Functions

In this chapter, we review two analysis methods for cryptographic hash func-
tions that have led, when combined, to the most successful collision attacks on
SHA-1 [WYY05b, DR06, DMR07, GA11]. Both methods are based on differen-
tial cryptanalysis and aim to find differential characteristics with high probabil-
ity. However, both methods utilize different techniques to achieve this goal, and
can be successfully combined as shown for SHA-1 [WYY05b, DR06]. Further-
more, these techniques are especially applicable to ARX based hash functions.
We adapt and extend the ideas which results in two distinct tools which search
completely automatic for differential characteristics.

9.1 Attacks on SHA-1

In this section, we give an overview of the basic attack strategy of the recent
collision attacks on SHA-1. In the subsequent sections, we will in detail describe
the underlying techniques and our contributions.

9.1.1 First attack on full SHA-1

The major breakthrough in the cryptanalysis of SHA-1 was achieved by Wang
et al. First announced at Crypto 2004 in the rump session and then presented
at Crypto 2005, Wang et al. [WYY05b] broke the full SHA-1 hash function.
Using signed bit differences and message modification techniques, they mount
an attack with total complexity of 269. At the same conference they announced
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that the complexity can be improved to 263. Furthermore, they provided an
actual collision for 58 out of 80 steps. Mendel et al. [MPRR06b] computed the
success probability of the attack which is 2−64.57. For the collision attack on
SHA-1, Wang et al. use basically the following strategy (see Figure 9.1):

IV

P1 P2

∆ = 0 collision ∆ = 0

∆ 6= 0 free-start collision ∆ = 0

∆ 6= 0 free-start near-collision ∆ 6= 0

output

7920 L-characteristic

Figure 9.1: General strategy of Wang et al.’s attack on SHA-1.

� Split the 80 steps into two parts denoted by P1 and P2.

– P1 consists of the steps at the start of the hash function, for which
it is possible to efficiently solve the equations imposed by the char-
acteristic, by using methods like for instance so-called basic message
modification and advanced message modification also introduced by
Wang et al. [WYY05b].

– P2 consists of the remaining steps. Since, the conditions imposed
by the characteristic through P1 have no impact, due to message
modification, the attack complexity is determined by P1.

� Determine a low-weight L-characteristic, that leads to a free-start collision
in P2.

� Find an NL-characteristic in P1, such that the zero difference in the state
variables at the start of P1 is transformed into the desired difference in the
state variables at the beginning of P2. Hence, it becomes possible to turn
the free-start collision for P2 into a collision for SHA-1.

Furthermore, in the attack on SHA-1 Wang et al. used multi-block messages.
First, a pair of message blocks is determined, which leads to a free-start near-
collision in P2. As before, the NL-characteristic is used to turn the free-start
near-collision collision for P2 into a near-collision for SHA-1. Second, a pair
of message blocks is determined, which results in a collision for SHA-1, when
concatenated with the first pair of message blocks. The second pair of message
blocks uses the same L-characteristic as the first one. The NL-characteristic is
slightly changed because it no longer starts from a zero input difference in the
state variables. The fact that it is easier to find a near-collision than a colli-
sion was observed already by Biham and Chen in [BC04]. The technique can of
course be extended to messages consisting of 3 or more blocks, but this does not
improve the complexity of the attack.
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In summary, the attack constructs an L-characteristic which holds with high
probability and a complex NL-characteristic which connects the L-characteristic
with the zero difference in the chaining input. To construct L-characteristics
Wang et al. extended their approach for SHA-0 [WYY05c]. However, at the
same time Rijmen and Oswald [RO05] applied and optimized the attack of
Chabaud and Joux [CJ98] to SHA-1 which offers a more convenient method
to find L-characteristics with high probability. The work was further improved
by Pramstaller et al. [PRR05]. This approach is discussed in detail in Section 9.2.

To construct a NL-characteristic, Wang et al. exploit the non-linearity of
the state update. Unfortunately, Wang et al. do not describe in detail how to
construct this NL-characteristic. But they show by an example collision for
58 steps that the non-linearity can be exploited. However, De Cannière and
Rechberger [DR06] presented later an automatic search algorithm to find such
NL-characteristics.

9.1.2 Automatic Search

The collision attack on SHA-1 by Wang et al. used complex characteristics which
were manually constructed. De Cannière and Rechberger [DR06] were the first
who presented a method to find for NL-characteristics in an automatic way. As
a proof of concept they showed a two-block collision for 64-step SHA-1 based
on a new characteristic. At that time this was the highest number of steps for
which a SHA-1 collision was published.

In order to reflect that both the differences and the actual values of bits are
important for the attack, they introduced generalized conditions for differential
characteristics (see Section 8.3). In this concept they allowed characteristics
to impose arbitrary conditions on the pairs of bits. Using these generalized
conditions they built an algorithm to search for NL-characteristics for SHA-1.

The idea behind the heuristic algorithm is rather simple, but works very well
on SHA-1. The basic strategy of the attack is the same as Wang et al.’s attack
on SHA-1 (see Section 9.1.1) and is illustrated in Figure 9.2. The N steps of

IV

P1 P2

∆0 = 0 collision ∆n = 0

∆l 6= 0 free-start collision ∆n = 0 output

nl L-characteristic

Figure 9.2: General attack strategy. Note that in all cases the message difference is
non-zero.

the hash function are split into two groups, which are denoted by P1 and P2.
P1 consists of the steps at the start of the hash function. P2 consists of the
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remaining steps. Finding a good characteristic is then divided into two phases.
First, a sparse L-characteristic, which can start with any difference in the state
variables, but ends in a zero-difference in the last step, i.e. leads to a free-start
collision in P2, is determined. Such characteristics can easily be found with the
techniques described in Section 9.2. In the case of SHA-1, L-characteristics for
the linearised state update (omitting the message expansion) were searched. Ac-
tually, it is sufficient to search only in the state word A, since A is the only state
word updated in one iteration. Once such a suitable differential characteristic
is found, the corresponding message difference needs to be determined. Since
these characteristics are using XOR differences, they need to be converted to
the representation based on generalized conditions. Table 9.1 is an example of
a characteristic using generalized conditions, which is used as input for the non-
linear search algorithm. ∇Ai and ∇Wi represent the state words and expanded
message words, respectively. The state words for step −4 to 0 represent the IV
of SHA-1 and are therefore already fixed at the beginning. The state words from
step 1 to 11 are free of conditions, which is imposed by ‘?’. Hence, step −4 to
11 define P1. For the notation of generalized conditions see Section 8.3.1.

In the second phase the search algorithm proposed by De Cannière and Rech-
berger is used to find conditions for the words of P1 such that the zero difference
in the state variables at the start of P1 is transformed into the desired difference
in the state variables at the start of P2. Hence, it becomes possible to turn the
free-start collision for P2 into a collision. The basic idea of the search algorithm
is to randomly pick an unrestricted bit position denoted by ‘?’ and impose a
zero-difference denoted by ‘-’. Afterwards, it is calculated how this condition
propagates. Table 9.2 illustrates the propagation after the imposition of a zero
difference on a unrestricted bit. If an inconsistency occurs the algorithm back-
tracks to an earlier state of the search. This is repeated until all unrestricted
bits are eliminated. This algorithm is the largest part of the work factor in this
approach. Using this techniques and further optimizations the authors were able
to find NL-characteristics for SHA-1 efficiently. In a further improvement they
do not restrict the output of the L-characteristic to be zero. In a two block
approach the search for two different NL-characteristics connecting the same L-
characteristic in each block. The output differences are then cancelled out by
the feed-forward after the second block.

Later they improved their attack and presented a collision for 70 steps [DMR07].
Recently, Grechnikov and Adinetz [GA11] published on the ePrint archive a fur-
ther improvement of the automatic collision search. They managed to construct
collisions for 75 steps of SHA-1. This is so far the highest number of steps for a
practical SHA-1 collision.

9.2 Finding L-Characteristics

In this section, we give a general decription of how L-characteristics can be
constructed for any hash functions using techniques from coding theory. Due to
the increasing complexity in the design of hash functions, especially noticeable
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Table 9.1: Characteristic for SHA-1 using generalized conditions [DR06]. Starting
point of the non-linear search algorithm.

i ∇Ai ∇Wi

-4: 00001111010010111000011111000011

-3: 01000000110010010101000111011000

-2: 01100010111010110111001111111010

-1: 11101111110011011010101110001001

0: 01100111010001010010001100000001 -xx-----------------------------

1: ???????????????????????????????? xxx-----------------------x-x-x-

2: ???????????????????????????????? --x----------------------x----xx

3: ???????????????????????????????? x-xx---------------------x------

4: ???????????????????????????????? xx-x---------------------x-x--xx

5: ???????????????????????????????? xx-x----------------------x---x-

6: ???????????????????????????????? --x-----------------------------

7: ???????????????????????????????? -xx-----------------------xx--x-

8: ???????????????????????????????? -xx----------------------x----xx

9: ???????????????????????????????? --x----------------------x------

10: ???????????????????????????????? xxx----------------------x----x-

11: ???????????????????????????????? -xx---------------------------x-

12: x------------------------------- x------------------------------x

13: x------------------------------- --------------------------x-----

14: -------------------------------- ------------------------------xx

15: x-----------------------------xx -x-----------------------x-x--x-

16: ------------------------------x- -x-----------------------x------

17: x-----------------------------x- xxx----------------------x-x--x-

18: -------------------------------- x-x-----------------------------

19: ------------------------------x- x------------------------x------

· · · · · ·
49: ------------------------------x- -------------------------x------

50: -------------------------------- x-----------------------------x-

51: -------------------------------- --------------------------------

52: -------------------------------- x-------------------------------

53: -------------------------------- x-------------------------------

54: -------------------------------- --------------------------------

· · · · · ·
60: -------------------------------- --------------------------------

61: -------------------------------- --------------------------------

62: -------------------------------- --------------------------------

63: -------------------------------- --------------------------------

64: --------------------------------

Table 9.2: Example for the propagation of the nonlinear search algorithm [DR06].

i ∇Ai ∇Wi

-4: 00001111010010111000011111000011

-3: 01000000110010010101000111011000

-2: 01100010111010110111001111111010

-1: 11101111110011011010101110001001

0: 01100111010001010010001100000001 -xx-----------------------------

1: ??x----------------------------- xxx-----------------------x-x-x-

2: ??????????????????????????????x- --x----------------------x----xx

3: ???????????????????????????????? x-xx---------------------x------

· · · · · ·
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in the SHA-3 competition, the necessity of automated tools is apparent. Hence,
we present the first publicly available toolbox which is used to search automated
for L-characteristics that hold with high probability. Although, the techniques
presented in this section are known, even for recently designed hash functions as
SIMD, weaknesses can be shown using the techniques presented in this section.

Various problems arising in cryptanalysis of hash functions can be linked to
problems in (linear) coding theory [PRR05, RO05, MN09, MN11]. As observed
by Rijmen and Oswald [RO05], all differential characteristics for a linearised hash
function can be seen as the codewords of a linear code. The probability that
the characteristic holds in the original hash function is related to the Hamming
weight of the characteristic. In general, a differential characteristic with low
Hamming weight has a higher probability than one with a high Hamming weight
(see Section 9.2.1). Finding a characteristic with high probability (low Hamming
weight) is related to finding a low-weight codeword in linear codes. Therefore,
we can use algorithms from coding theory to search for codewords with low
Hamming weight, which can be used to construct high probability characteristics
for (parts of) the hash function. This is an essential part of our attacks on
SIMD (see Chapter 10) and HAS-160 (see Chapter 11). The main strategy in
this approach can be summarized as follows:

1. Construct a linear approximation of the target hash function.

2. Construct a generator matrix for the corresponding linear code.

3. Search for characteristics for the linearised hash function.

4. Identify conditions such that the differential holds for the real hash func-
tion.

A linear approximation of a hash function is constructed by replacing all non-
linear operations by linear ones. Depending on the non-linear operations, differ-
ent approximations may be useful. Therefore, the chosen approximation depends
on the hash function. However, ARX based hash functions have one non-linear
operation in common, which is the modular addition.

9.2.1 Approximation of Modular Additions

As mentioned before it is assumed that a differential characteristic with low
Hamming weight has a higher probability than one with a high Hamming weight.
The probability that a differential characteristic is followed, is determined by the
differences that are input to each of the non-linear functions that were approxi-
mated using a linear operation. It is well known that the differential behaviour
of modular addition can be approximated quite well, by that of XOR when the
Hamming weight of the input difference, ignoring the most significant bit, is
small [CJ98, LM01, PRR05, RO05, IP09, MN09, MN11]. Based on the analysis
for the differential probability of modular addition by Lipmaa and Moriai [LM01]
it follows that the Hamming weight of the input differences for each modular
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addition can be used to approximate the success probability of the differential
characteristic.

9.2.2 Construction of a Generator Matrix

In coding theory, a linear code of length m and rank k is a linear subspace
C ≤ Fmq with dimension k of the vector space Fmq . Fq is a finite field with q
elements. A linearised model of a hash function describes a linear binary code
C ≤ Fm2 . A codeword of this code represents a differential characteristic for the
hash function. A bit with value 1 denotes a difference between the corresponding
pair. The Hamming weight of a codeword is used to approximate the differential
probability. Hence, we want to find codewords with a low Hamming weight.

A generator matrix Gk×m is a basis of a linear code. Such a basis generates all
possible codewords. In order to construct a generator matrix for a linearised hash
function, we first need to determine which values used in the hash computation
should be included in the linear code. First of all each input which introduces
differences need to be included, i.e. message input and in the case of free-start
collisions also the chaining input. Next all intermediate values which are input
to a non-linear operation in the original hash function need to be included, since
the amount differences in these inputs should be as low as possible. As we show
in Chapter 10 and Chapter 11 sometimes not all inputs need to be stored. Let H
be an iterative hash function model. In the following we show how a generator
matrix for the linear code described by LH is constructed. Without loss of
generality we consider one block of the hash computation.

Let ∆W ∈ {0, 1}k be the differences in all inputs bit-wise concatenated,
∆Z ∈ {0, 1}l the differences in all intermediated values bit-wise concatenated
and ∆O ∈ {0, 1}n the output difference of HL(∆W ). A codeword cw of the
linear code is defined as

cw := (∆W,∆Z,∆O).

In order to construct a generator matrix we compute cwi for ∆W = ei where ei
is the i-th unit vector, for i = 1, . . . , k. The generator matrix is then given by

Gk×(k+l+n) :=

 cw1

...
cwk

 . (9.1)

Note that, the resulting generator matrix is systematic. A systematic generator
matrix has the form

Gk×m = [Ik|B],

where Ik is the identity matrix of dimension k. In the following we also need
the definition of a check matrix. The check matrix is derived from the generator
matrix as follows:

H = [BT |Im−k].

A check matrix is used to test if a codeword c belongs to the corresponding linear
code, since H · c = 0 holds for any codeword of the corresponding linear code.
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In coding theory there are different applications where it is important to
construct codewords with a low Hamming weight. Although determining the
minimum weights of linear binary code is an NP-complete problem [BMvT78],
the general problem of finding a codeword of a weight bounded to a given value
is not proved to be NP-hard. Therefore, different probabilistic algorithms has
been developed to search for such codewords. These algorithms are using the
generator matrix or the check matrix for the search. By applying such a search
algorithm to linear code described by the linear model of a hash function, we
search for differential characteristics with high probabilities.

Collision Producing Characteristics

In order to search for differential characteristics which produce a collision, i.e.
∆O = ~0, we need to shorten the linear code. A shortened code of a linear code
C is the set of all codewords of C which are zero at a fixed coordinate with
that coordinate deleted. Those codewords in C with 1 at that coordinate are
removed from C. The generator matrix of the shortened code is derived from
the generator matrix (10.6). First Gaussian elimination is used to remove all
elements equal to 1 from the columns corresponding to ∆O. Next the row and
the column with the remaining 1 are removed from the matrix. Hence, the length
and dimension of the code is reduced by one for each output bit resulting in a
generator matrix with dimension k − n and length k + l.

9.2.3 Algorithms for Low Hamming Weight Search

In the following, we briefly discuss three algorithms which can be used to search
for a low Hamming weight codeword in a linear code.

Canteaut’s and Chabaud’s Algorithm

Leon published [Leo88] a probabilistic algorithm which was later improved by
Chabaud [Cha94] and led finally to the efficient algorithm proposed by Can-
teaut and Chabaud [CC98]. This iterative algorithm basically looks for small
Hamming weight codewords in a smaller code. Such a codeword is considered
as a good candidate for a low Hamming weight codeword for the whole code.
Given a systematic generator matrix, the algorithm randomly selects σ columns
of it and splits the selection in two sub matrices of equal size. By computing
all linear combination of p rows (usually 2 or 3) for each sub matrix and storing
their weight, the algorithm searches for a collision of both weights which allow
to search for codewords of 2p. Then two randomly selected columns are inter-
changed, followed by one Gaussian elimination step. This procedure is repeated
until a sufficiently small Hamming weight is found.

One should note that the parameter σ has an upper bound regarding the
implementation aspect. By using a preallocated table for all possible p linear
combinations of the first submatrix, the search for a collision of weights is signif-
icantly improved. Therefore, the parameter is limited by the amount of available
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memory. However, Canteaut’s and Chabaud do recommend a value of 20 for the
codes used in [CC98], which is small enough, but it is unclear if it is the best
choice for codes considered here.

Stern’s Algorithm

Stern’s algorithm [Ste88] uses the check matrix of a linear code, rather than the
generator matrix as Canteaut and Chabaud do. Nevertheless it is easy to convert
a generator matrix to a check matrix and vice versa. Let be H the (n− k)× n
check matrix for a [n, k] code over F2. The algorithm selects (n− k) columns of
H. A subset Z of l columns out of the (n − k) columns is randomly selected.
The remaining k columns of H are partitioned into two sets where each column
is chosen independently and uniformly to join one of the two sets. The algorithm
then searches for codewords that have p nonzero bits in both sets, zero nonzero
bits in Z and w − 2p nonzero bits in the remaining columns, where w ≥ 0 is an
input chosen by the user. If there are no such codewords, the algorithm starts
again at this beginning.

Ball-Collision Algorithm

Bernstein et al. [BLP10] proposed recently a new algorithm. Their algorithm
operates on a given check matrix. The algorithm selects a random information
set in the check matrix and then searches for vectors having a particular and
complicated pattern. Due to the more complex process we refer to [BLP10] for
a detailed description of the algorithm.

9.2.4 The CodingTool Library

In the subsequent chapters we show for two hash functions that the coding the-
oretic approach can be successfully used to find efficiently L-characteristics with
high probability. This L-characteristics are used in the construction of distin-
guishers, near-collisions or collisions. We developed a toolbox which purpose is
to search efficiently and automated for L-characteristics of a linearised model of
any hash function [Nad10]. Due to the increasing complexity in the design of
hash functions, especially noticeable in the SHA-3 competition, the necessity of
an automated tool was apparent.

The CodingTool library is a new collection of tools for using techniques from
coding theory in cryptanalysis. It is the first tool of this kind publicly available
and published under the GPL 3.0 license. The core part is an implementation
of the probabilistic algorithm from Canteaut and Chabaud [CC98] to search
for code words with low Hamming weight. Additional functionalities like code
shortening, code puncturing or adding a weight to each bit of a codeword are
implemented. Furthermore, the library provides data structures to assist the
user in creating a linear code for a specific problem. An easy to use interface to
the provided algorithms, powerful data structures and a command line parser
reduces the implementation work of a cryptanalyst to a minimum. Beside the
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existing functionality, the library can be extended very easily. A possible im-
provement is the implementation of faster search algorithms or the improvement
of the existing one.

9.3 Finding NL-characteristics

In Section 9.1.2 we describe the technique used by De Cannière and Rechberger
to construct NL-characteristics for SHA-1. Unfortunately, in [DR06] there are
not many details on how the propagation of conditions is done although this is
a crucial part of the algorithm.

In this section, we generalize the approach, investigate the search algorithm
and show our improvements leading to the best attacks with practical com-
plexities for HAS-160 and SHA-256 (see Chapter 11 and Chapter 12). Most of
our improvements to this technique have been developed during the analysis of
SHA-2. Unfortunately, the approach of Cannière and Rechberger on SHA-1 can-
not directly be applied to SHA-2. We have observed several problems in finding
valid differential characteristics for SHA-2. We have identified these problems
and solved them efficiently. Our extensions and improvements for this approach
are published in [MNS11b] and [MNS11a].

For a more detailed description, we divide the technique into four parts. In
the first part a starting point for the search algorithm is constructed. Next
a search strategy is defined. We show a more general view on the strategy
and present a new and more efficient strategy. The third part consists of the
consistency checks performed during the search. Finally, the last part deals with
the efficient propagation of conditions.

9.3.1 Determining a Starting Point

In the first part of the thesis, we show that a good starting point is important for
the convergence of an iterative numerical method. This is also the case for the
non-linear search algorithm described in this chapter. As shown in Section 9.1.2,
for SHA-1 the starting point is defined by a certain L-characteristic. As we show
in Chapter 11 a starting point can also consist of two different L-characteristics
which are connected through the NL-characteristics. Furthermore, in Chap-
ter 12 we need to extend the general strategy in order to successfully apply the
technique on SHA-256. There we do not use L-characteristics as starting point.
Hence, determining a good starting point depends on the targeted hash function
why we refer to the corresponding chapters for more details.

9.3.2 Search Strategy

In general, our search technique can be divided into three parts: decision, de-
duction and backtracking. Note that the same separation is done in many other
fields, like SAT solvers [GPFW96]. The first aspect of our search strategy is the
decision, where we decide which bit is chosen and which condition is imposed
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at its position. In the deduction part we compute the propagation of the im-
posed condition and check for contradictions. If a contradiction occurs we need
to backtrack and undo decisions, which is the third part of the search strategy.
A basic search strategy to find differential characteristics has been described in
[DR06] and works as follows.

Let U be the set of all ‘?’ and ‘x’, then repeat the following until U is empty.

Decision

1. Pick randomly a bit in U .

2. Impose a ‘-’ for a ‘?’ or randomly a sign (‘u’ or ‘n’) for ‘x’.

Deduction

3. Compute the propagation.

4. If a contradiction is detected start backtracking, else go to step 1.

Backtracking

5. Jump back to the point where the last sign was imposed and make a
different decision and go to step 1.

Unfortunately, this strategy does not lead to any valid characteristics for
SHA-256. In all cases at least one of the checks described in Section 9.3.3 failed.
The reason for this is that conditions which are not covered by generalized
conditions appear much more often than in SHA-1. Since more advanced checks
are too expensive, we have developed a more sophisticated search strategy to
find valid differential characteristics.

Two-Bit Conditions

Apart from generalized conditions, additional conditions on more than a single
bit are present in a differential characteristic. Especially, conditions on two bits
are needed such that a differential path is valid. These two-bit conditions have
already been used by Wang et al. in their attacks on the members of the MD4
family [WLF+05]. Such two-bit conditions occur mostly in the propagation of
differences through Boolean functions, like used in HAS-160 or SHA-2. The
following example illustrates such conditions.

Example 9.1. Let f be the majority function defined as follows:

f(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z).

If an input difference in x should result in a zero output difference of f(x, y, z),
the remaining values y and z should be equal. Hence, we get a condition on two
bits: y = z.
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Similar conditions occur in various Boolean functions. Two-bit conditions
are not covered by generalized conditions and thus, not shown in the charac-
teristics given in [DR06]. However, two-bit conditions may lead to additional
inconsistencies. The structure of such inconsistencies depends on the actual used
Boolean functions. Therefore, we refer to Chapter 12.4.3 for more details.

Even if we include two-bit conditions to the approach, the above search
strategy does not lead to valid characteristics for SHA-256, since more complex
conditions occur. Since it is not feasible to track all possible conditions during
a search, we developed a new search strategy.

Advanced Search Strategy

In our approach we already determine some message bits during the search for a
differential characteristic. Generally speaking, we are combining the search for
a conforming message pair with the search for a differential characteristic. In
doing so we consider those bits much earlier, which are involved in many relations
with other bits. This way, we can detect invalid characteristics at an early stage
of the search. However, this should not be done too early to not restrict the
message freedom too much. In addition, we are remembering critical bits during
the search to improve the backtracking and speed-up the search process. In the
following, we describe the used search strategy in more detail.

In general we have two phases in our search strategy where different bits are
chosen (guessed) and we switch between these two dynamically. Phase 1 can be
described as follows:

Let U be the set of all ‘?’ and ‘x’.

Repeat the following until U is empty:

Decision

1. Pick randomly a bit in U .

2. Impose a ‘-’ for a ‘?’ or randomly a sign (‘u’ or ‘n’) for ‘x’.

Deduction

3. Compute the propagation as described in Section 9.3.4.

4. If a contradiction is detected start backtracking, else apply the addi-
tional checks of Section 9.3.3.

5. Continue with step 1 if all checks passed, if not start backtracking.

Backtracking

6. If the decision bit is ‘x’ try the second choice for the sign or if the
decision bit is ‘?’ impose a ‘x’.

7. If still a contradiction occurs mark bit as critical by including it in
set C.
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8. Jump back until all critical bits in C can be resolved.

9. Continue with step 1.

Note that, the additional checks in step 4 are optional and a trade-off between
number of checks and speed has to be done. The additional steps in the back-
tracking process improve the search speed significantly and prevent that critical
bits result in a contradiction again.

Once phase 1 is finished (U is empty) we continue with phase 2 which can
be summarized as follows.

Let U ′ be the set of all ‘-’ with many two-bit conditions.

Repeat the following until U ′ is empty:

Decision

1. Pick randomly a bit in U ′.

2. Impose randomly a ‘0’ or ‘1’.

Deduction

3. Compute the propagation as described in Section 9.3.4.

4. If a contradiction is detected start backtracking, else apply additional
checks from Section 9.3.3.

5. Continue with step 1 if all checks passed, if not start backtracking.

Backtracking

6. Try the second choice of the decision bit.

7. If still a contradiction occurs mark bit as critical.

8. Jump back until all critical bits can be resolved.

9. If necessary jump back to phase 1, otherwise continue with step 1.

Choosing a decision bit with many two-bit conditions ensures that bits which
influence a lot of other bits are chosen first. Therefore, many other bits propagate
by defining the value of a single bit. We want to note that due to step 9, we
actually switch quite often between both phases in our search.

Additionally, we restart the search from scratch after a certain amount of
contradictions or iterations to terminate branches which appear to be stuck
because of exploring a search space far from a solution.

Note that, depending on the set U ′ the algorithm can run until a complete
conforming message pair is found.
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Table 9.3: Search parameters for the algorithm.

Parameters
size limit for |C|

number of two-bit conditions for a bit in U ′

number of contradictions before a restart from scratch

Search Parameters

Our search strategy has several configurable parameters. In Table 9.3 these
parameters are listed.

The number of critical bits which need to be resolved simultaneously is the first
parameter. In our experiments the number of iterations until a solution is found
changes with the parameter changing. If it is too small the convergence to a
solution is slow. On the other hand if the parameter is too large the search is
more likely to be directed to invalid characteristics. Hence, this parameter has
to be chosen carefully. The second parameter controls which bits are included
in U ′ in phase two. One bit can be involved in several two-bit conditions. The
parameter specifies the minimum number of two-bit conditions of one bit such
that it is included in C ′. The value vary for different hash functions, but at least
those bits with the maximum number of two-bit conditions are included. The
last parameter defines the number of iterations after the search is restarted from
scratch.

Note that the appropriate values for the parameters depend on the hash
function and on the starting point as well. Hence, the values are determined
empirically for each application.

9.3.3 Consistency Checks

To avoid inconsistent differential characteristics, we have evaluated a number of
checks to detect contradictions as early and efficiently as possible. Note that
a test which is able to detect many contradictions is usually also less efficient.
However, also a simple test may detect a contradiction at a later point in the
search. Depending on the target hash function the number of complex conditions
can be high and hence they can be difficult to detect. Therefore, a trade-off has
to be made.

Two-Bit Condition Check

Two-bit conditions are linear conditions in F2 since such conditions can only be
either equal (y = z) or non-equal (y 6= z). Contradictions in two-bit conditions
are efficiently detected by determining all two-bit conditions, setting up a linear
system of equations and checking if the system is solvable by computing the
rank.
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Single-Bit Condition Check

A quite expensive test is to check for every bit restricted to ‘-’ or ‘x’ whether
both possible cases (‘0’ and ‘1’, or ‘n’ and ‘u’) are indeed still valid. If
both choices for a single bit are invalid we know that the whole characteristic
is impossible. Note that a similar check has been done by De Cannière and
Rechberger in their attack on SHA-1. Of course these tests can be extended to
other generalized conditions as well. However, it turned out to be more efficient
to apply this check only rarely and only to specific conditions during the search.
Furthermore, we have improved the speed of this complete test by applying it
only to bits which are restricted by two-bit conditions.

Complete Condition Check on a Set of Bits

Since even the complete condition check is not able to detect many contradic-
tions, we have analysed different variants of setting all possibilities for all or
selected combinations of 2, 3 or 4 bits. Such tests indeed detect more impossible
characteristics but are very inefficient to compute and thus, cannot be effectively
used during the search for differential characteristics.

9.3.4 Efficient Condition Propagation

The efficient propagation of new conditions is crucial for the performance of the
algorithm, since it is the most often needed operation in the search algorithm.
Due to the nature of the search algorithm where changes to the characteristic
(using generalized conditions) are done on bit-level, we perform the propagation
of conditions also on bit-level. At the beginning of the search every bit has at
least one of the 16 generalized conditions (see Table 8.1). During the search we
impose conditions on specific bits. These bits are inputs or outputs of functions.
If a bit in the output is changed then all bits which are used to determine this
output bit are updated. We call such a set of bits a bit-slice. If the changed
bit is an input of a function then all other bits of the corresponding bit-slice are
updated. The following example illustrates this process.

Example 9.2 (Condition Propagation). Let f : F3
32 → F32 be the Boolean IF

function operating on 32-bit words and defined as follows:

f(x, y, z) = (x ∧ y)⊕ (¬x ∧ z) = o.

Then the output bit oi depends on {xi, yi, zi} and the set {xi, yi, zi, oi} forms a
bit-slice. If the generalized condition ∇xi changes then the conditions of the set
{∇xi,∇yi,∇zi,∇oi} are updated.

In our approach the update process is done exhaustively by computing all
possible conditions of a bit-slice. This seems at first to be inefficient but we are
using three techniques to significantly speed up the process. However, the update
process for a modular addition is done in a slightly different way. The bit-slices
of a modular addition contain also input carry and output carry. Hence, the
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bit-slices are connected through the carry bits. If the condition for a carry bit
changes then the connected bit-slice is updated as well. Furthermore, the whole
update process is iterative and updates bits until conditions do not change any
more.

Split-Up

The first technique is to split the step update of a hash function into smaller
functions such that the number of inputs of one function is low. How this is done
best depends on the actual hash function. The following example illustrates this
step.

Example 9.3 (Split Up a Function). Let f : F3
32 → F32 be defined as follows:

f(x, y, z, u, v, w) = ((x⊕ y ⊕ z) + u+ v + w).

Then we split f into following sub-functions:

f0(x, y, z) = x⊕ y ⊕ z = t

f1(u, v, w, t) = u+ v + w + t

In Example 9.3 a function performing a XOR of three inputs added to the
result of an addition of three other inputs is split up in one sub-function perform-
ing the XOR operation and introducing a new state word, and a second function
for the addition of four inputs. In that way we reduce the computational com-
plexity of one propagation step. The drawback of this method is that we lose
the relation between the sub-functions compared to a combined propagation.

Caching

The second technique is caching. By using a cache in the update process, a
significant speed-up is achieved. A cache is a component that transparently
stores data so that future requests for that data can be delivered faster. The
data that is stored within a cache are generalized conditions for a group of bits
before the update process and the result after the update process. Now before an
update of a group of bits is done exhaustively, the update result is requested from
the cache. If the cache contains the data (cache hit), no further computation
has to be done. Otherwise (cache miss) the update is done as explained above
and the result is added to the cache.

Note that, for functions with a low amount of inputs we can precompute a
table with all possibilities and therefore omitting the exhaustive computation
completely for this function.

Generalized Conditions and Linear Functions

The third speed-up is achieved from a special treatment of generalized conditions
and linear functions. The generalized conditions in Table 8.1 are linear except
for four conditions (‘7’,‘B’,‘D’ and ‘E’). In Table 9.4 we extend the previous
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Table 9.4: Linear generalized conditions.

(x∗i ,xi) (0,0) (1,0) (0,1) (1,1) linear
? X X X X
- X - - X xi + x∗i = 0
x - X X - xi + x∗i = 1
0 X - - - xi = 0, x∗i = 0
u - X - - xi = 0, x∗i = 1
n - - X - xi = 1, x∗i = 0
1 - - - X xi = 1, x∗i = 1
# - - - -
3 X X - - xi = 0
5 X - X - x∗i = 0
7 X X X -
A - X - X x∗i = 1
B X X - X
C - - X X xi = 1
D X - X X
E - X X X

table by the corresponding linear equation. Let f : Fn2 → Fm2 be a linear function

with n > m. Such a linear function can be described by a matrix L ∈ Fn×(n+m)
2

with the property

y = f(x)⇔ L

[
x
y

]
= 0. (9.2)

Since we are considering pair of bits, we also get

y∗ = f(x∗)⇔ L

[
x∗

y∗

]
= 0. (9.3)

Now we merge (9.2) and (9.3) into one matrix L′:

[
L 0
0 L

]
x
y
x∗

y∗

 = L′


x
y
x∗

y∗

 =


0
0
0
0

 . (9.4)

L′ is precomputed and modified during the update process. If the generalized
conditions of one or more bits are changed which correspond to a linear function,
the update is done as follows:

1. Back-substitute each linear generalized condition of the changed bits into
L′.

2. Use Gauss-Jordan elimination to turn L′ again in reduced row-echelon
form.
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3. Check each row if it represents a linear generalized condition.

4. Check each linear combination of corresponding two rows if it represents
a linear generalized condition.

5. Set the linear generalized condition for the corresponding bit.

6. For non-linear generalized conditions use the bit-wise update approach.

Using this update process many bits are updated at once which results in a
performance improvement. Furthermore, there are linear functions where the
bit-slice update approach does not reveal all new propagated conditions. The
problem is solved using this method. We refer to Section 12.5.4 for more details.

9.4 Summary

In this chapter, we reviewed the recent collision attacks on the hash function
SHA-1. First Wang et al. [WYY05b] presented a collision for 53 out of 80 steps.
They used a long L-characteristic and a complex NL-characteristic to connect
it to the chaining input. De Cannière and Rechberger [DR06] proposed a new
algorithm to search automatically for such NL-characteristics and were able to
present a collision for 64 steps. They later improved their result up to 70 steps.

In Section 9.2, we showed how L-characteristics with high probability can
be found. The technique is based on coding theory, since finding differential
characteristics for a linearised model of hash function is related to the problem
of finding codewords with low Hamming weight in a linear code. We showed
how a linear code is constructed from a linearised model and presented three
probabilistic algorithms searching for low Hamming weight codewords. We pub-
lished an open-source toolbox [Nad10] which searches for L-characteristics for
any linearised model of hash function automatically. The toolbox implements
a search algorithm, interfaces, data structures and several other useful meth-
ods. The abstraction level is high, so that a cryptanalyst does not have to care
about complicated implementation details. Furthermore, the library was used
in attacks on different hash functions, presented in the subsequent chapters.

In Section 9.3, we investigated the approach by De Cannière and Rechberger
[DR06]. We presented a more general description of their algorithm and gave
details which are missing in [DR06]. Furthermore, we extended their technique
in several ways. First of all, we generalized their search strategy and presented
a more efficient strategy. Secondly, we included two-bit conditions in the search
process which is essential for SHA-2 and showed different ways to perform con-
sistency checks. Finally, we show how the propagation of new conditions can be
done efficiently.
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Application to SIMD

SIMD is a round 2 candidate of the SHA-3 competition [Nat09] designed by
Leurent et al. [LBF09a]. It is an iterative hash function based on the Merkle-
Damg̊ard design principle (see Section 8.1). It is a wide-pipe design producing a
hash value up to 512 bits, denoted by SIMD-n, where n is the output length. For
the remainder of this chapter wherever we mention SIMD we refer to SIMD-512.
The design of the compression function is similar to the MD4 family. Fur-
thermore, the mode of operation used in SIMD has been proven to be secure
[CN08, MT07]. The designers additionally provide bounds for a large class of
differential attacks. Most of the security is based on the message expansion.

Although, SIMD is a new hash function, with significantly increased com-
plexity compared to the MD4 family, we show in two attacks that well-known
techniques as described in Section 9.2 are applicable. However, due to the in-
creased complexity automated tools are necessary. In our first attack we con-
struct an L-characteristic that holds with high probability for the compression
function of SIMD-512. The L-characteristic is used to build a differential q-
multicollision which serves as a distinguisher for the compression function. The
attack has a complexity of 2427.60 compression function calls. Including the out-
put transformation we can distinguish the output of SIMD-512 from random
with a complexity of about 2429.74 compression function calls.

Due to our first attack, the designers tweaked SIMD [LBF09b] to prevent it.
However, we present a distinguisher for the tweaked version as well. We show
how one can use the boomerang attack on a hash function to construct a dis-
tinguisher with high probability. For the boomerang attack we again construct
L-characteristics that hold with high probability. The first result is a distin-
guishing attack for the full permutation of SIMD-512 with complexity ≈ 2226.52.
Next we show how this distinguisher can be extended to the full compression

121
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function of SIMD-512. with complexity ≈ 2200.6. The strategy to construct
such second order differentials is based on the recently proposed cryptanalysis
of reduced SHA-2 [LM11] and Blake [BNR11].

Although, we do not attack the whole hash function, we show non-random
properties of the SIMD-512 compression function. Our attacks do not invalidate
the security claims of the designers, since most of the security comes from the
message expansion. However, we want to point out that the non-randomness of
the compression function of SIMD effects the applicability of the proofs for the
mode of operation build upon it. The results of this chapter have been published
in [MN09, MN11].

10.1 Related Work

The amount of available cryptanalysis of SIMD is low compared to other SHA-3
candidates. A round reduced version of tweaked SIMD was attacked by Nikolić
et al. [NPSS10]. They presented distinguishers for the compression function
of SIMD-512 reduced to 24 round with a linearised message expansion and re-
duced to 12 rounds with unmodified message expansion. Both attacks work for
the tweaked version and are based on rotational properties of the compression
function. The success probabilities for the distinguishers are 2−497 and 2−236,
respectively.

Later Yu and Wang [YW11] presented a free-start near-collision attack for
SIMD-256 reduced to 20 rounds and for SIMD-512 reduced to 24 rounds. The
attack complexities are 2107 and 2208, respectively. Furthermore, they showed a
distinguisher for the full compression function with complexity 2398. All attacks
are for the tweaked version.

Finally, the designers [BFL10] published a free-start distinguisher for the
compression function exploiting the existence of symmetric states. Furthermore,
they showed that distinguishers without differences in the message have only a
minimal impact on the security of the hash function.

Higher-order differentials have been introduced by Lai in [Lai92] and first
applied to block ciphers by Knudsen in [Knu94]. The application to stream ci-
phers was proposed by Dinur and Shamir in [DS09] and Vielhaber in [Vie07].
Recently, Lamberger and Mendel [LM11] showed how higher-order differentials
can be used to attack SHA-256 and presented a distinguisher for 46 steps. This
result was improved to 47 steps in [BLMN11]. The attack is similar to the
boomerang attack and the inside-out attack by Wagner [Wag99] or the rectangle
attack by Biham et al. [BDK01], all three used in the cryptanalysis of block
ciphers. A previous application of the boomerang attack to hash functions is
due to Joux and Peyrin [JP07], who used the boomerang attack as a neutral bits
tool to speed-up existing collision attacks. Furthermore, Biryukov et al. [BNR11]
presented a boomerang attack on the SHA-3 finalist Blake resulting in a distin-
guisher for 7 rounds of the Blake-32 compression function with a complexity of
2232.
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10.2 Description of SIMD

SIMD is an iterative hash function that follows the Merkle-Damg̊ard design prin-
ciple (see Section 8.1). The main component of a Merkle-Damg̊ard hash function
is the compression function. In the case of SIMD-512 to compute the hash of a
message M , it is first divided into k chunks of 1024 bits. By the use of a message
expansion one block is expanded to 8192 bits. Then the compression function is
used to compress the message chunks and the internal state. The padding rule
to fill the last blocks is known as the Merkle-Damg̊ard strengthening. The initial
value of the internal state is called IV and is fixed in the specification of the hash
function. The output transformation is a truncation in SIMD. The internal state
of SIMD contains 32 32-bit words and is therefore twice as large as the output.
SIMD consist of 4 rounds where each round consist of 8 steps. The feed-forward
consists of four additional steps with the IV as message input. Since we apply a
compression function attack independent from the message expansion, we omit
the description of the message expansion. For a detailed description of the hash
function we refer to [LBF09a].

Due to our first attack on SIMD [MN09], the designers changed the permuta-
tions and rotation constants in the step function to prevent the attack [LBF09b].
In the following, SIMD 1.0 refers to the unchanged specification and SIMD 1.1
to the new version. We first describe SIMD 1.0 and afterwards the changes made
for SIMD 1.1.

Notation. For the specification of SIMD we use the notation presented in
Table 10.1.

Table 10.1: Notation

Notation Description
¬X inversion of X

X ⊕ Y bit-wise XOR of X and Y
X � Y addition of X and Y modulo 232

X≪ n bit-rotation of X by n positions to the left
X≫ n bit-rotation of X by n positions to the right
X � n bit-shift of X by n positions to the left
X � n bit-shift of X by n positions to the right

10.2.1 SIMD step function

The core part of SIMD is the step function of the state update. Figure 10.1
illustrates the step function at step t. The state update consists of eight step
functions in parallel. To make the step function dependent from each other,
(At−1

pt(i) ≪ rt) is included in a modular addition, where pt(i) is a permutation,

which is different for each step. Equation (10.1) is the formal definition of the
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i Dt−1
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Figure 10.1: Update function of SIMD at step t. i = 0, · · · , 7.

step function.

Ati = (Dt−1
i � wti � Φ(At−1

i .Bt−1
i , Ct−1

i ))≪ st � (At−1
pt(i) ≪ rt)

Bti = At−1
i ≪ rt

Cti = Bt−1
i

Dt
i = Ct−1

i

(10.1)

The permutation p is separated in 4 different permutations:

p0(x) =

{
x+ 1 (mod 8), if x = 0 (mod 2)

x− 1 (mod 8), otherwise

p1(x) =

{
x+ 2 (mod 8), if x = 0 (mod 4) or x = 1 (mod 4)

x− 2 (mod 8), otherwise

p2(x) = 7− x (mod 8)

p3(x) = x+ 4 (mod 8)

The permutation used at step t is pt mod 4. As mentioned before, the 32 steps of
SIMD are divided into 4 rounds, each consisting of 8 steps. The boolean function
Φ and the rotation constants (s and r) for a round are given in Table 10.2. The
Boolean functions IF and MAJ are defined as follows:

fIF (x, y, z) = (x ∧ y)|(¬x ∧ z)
fMAJ(x, y, z) = (x ∧ y)|(x ∧ z)|(y ∧ z).

In Table 10.3 the rotation constants for each round are given. The feed-forward
consist of four steps using the same step function. Table 10.4 lists the used
Boolean function and the rotation constants for the feed-forward.
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Table 10.2: Φ and rotation constants for a round.

Step Φ r s

0 IF π0 π1

1 IF π1 π2

2 IF π2 π3

3 IF π3 π0

4 MAJ π0 π1

5 MAJ π1 π2

6 MAJ π2 π3

7 MAJ π3 π0

Table 10.3: Rotation constants for SIMD 1.0.

Round π0 π1 π2 π3

0 3 20 14 27
1 26 4 23 11
2 19 28 7 22
3 15 5 29 9

Permutations and Constants for SIMD 1.1.

Due to our first attack on SIMD [MN09], the designers changed the permutations
and constants to prevent the finding of L-characteristics that hold with high

Table 10.4: Φ and rotation constants for the feed-forward of SIMD 1.0.

Step Φ r s

0 IF 15 5
1 IF 5 29
2 IF 29 9
3 IF 9 15
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probability. The permutation p is given by:

p0(x) = x⊕ 1

p1(x) = x⊕ 6

p2(x) = x⊕ 2

p3(x) = x⊕ 3

p4(x) = x⊕ 5

p5(x) = x⊕ 7

p6(x) = x⊕ 4

The permutation used at step t is pt mod 7. In Table 10.5 the rotation constants
for tweaked SIMD are given. Table 10.6 lists the used Boolean function and the

Table 10.5: Rotation constants for SIMD 1.1.

Round π0 π1 π2 π3

0 3 23 17 27
1 28 19 22 7
2 29 9 15 5
3 4 13 10 25

rotation constants for the feed-forward.

Table 10.6: Φ and rotation constants for the feed-forward of SIMD 1.1

Step Φ r s

0 IF 4 13
1 IF 13 10
2 IF 10 25
3 IF 25 4

10.3 Finding L-Characteristics for SIMD

In both attacks we construct L-characteristics for the compression function us-
ing the approach described in Section 9.2. Therefore, we describe how the com-
pression function is linearised in order to be able to construct a linear code.
Afterwards, we construct a generator matrix for this code and reduce the code
length significantly. Note that this step is equal for both versions of SIMD.
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10.3.1 Linearising the SIMD Compression Function

The step function (10.1) is the only part of SIMD which has to be linearised.
The non-linear parts of this function are the modular additions and the Boolean
function Φ. In the attack, we replace all modular addition by XORs. The
function Φ depends on the current step and is either the IF function or the MAJ
function. To choose a good approximation for those, we have to take a closer
look on the differential behaviour of them.

Differential behaviour of IF and MAJ

The differential behaviour of IF and MAJ is already discussed in [Dau05]. IF
and MAJ have three inputs. Table 10.7 shows the differential propagation of the
Boolean functions regarding XOR-differences.

Table 10.7: Differential propagation of IF and MAJ.

∆x ∆y ∆z ∆IF ∆MAJ

0 0 0 0 0
0 0 1 x⊕ 1 x⊕ y
0 1 0 x x⊕ z
0 1 1 1 y ⊕ z ⊕ 1
1 0 0 y ⊕ z y ⊕ z
1 0 1 x⊕ y ⊕ z x⊕ z ⊕ 1
1 1 0 x⊕ y ⊕ z ⊕ 1 x⊕ y ⊕ 1
1 1 1 y ⊕ z ⊕ 1 1

Since we aim for low weight characteristics, we replace the Boolean function
Φ with the 0-function, with respect to its differential behaviour, i.e. an input
difference in Φ results in no output difference, no matter if IF or MAJ is used.
This has probability 1/2 in most cases. One can see that there is exactly one
input difference for IF and one for MAJ where the output difference is always
one. We discard characteristics with such properties. Finally, the linearised step
function looks as follows:

Ati = (Dt−1
i ⊕ wti ⊕ 0)≪ st ⊕ (At−1

pt(i) ≪ rt)

Bti = At−1
i ≪ rt

Cti = Bt−1
i

Dt
i = Ct−1

i

(10.2)

Note that for the feed-forward wti is equal to one word of the IV .
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10.3.2 Construction of a Generator Matrix

To construct the generator matrix for the linearised compression function of
SIMD, we proceed as explained in Section 9.2.2. We first need to add the input of
the linearised model to the codeword. Since we target the compression function
and introduce only differences in the IV , the chaining input is the only input.
Furthermore, we have to include each part where differences could decrease the
success probability. Let the vector

∆cvt := (∆Ati|∆Bti |∆Cti |∆Dt
i), (10.3)

for i = 0, · · · , 7 and cvt ∈ {0, 1}1024 be the bit-wise concatenation of all differ-
ences in the chaining values at step t. Then the vector

∆dc := (∆IV,∆cv1, · · · ,∆cv36),

where ∆dc ∈ {0, 1}N ·1024, represents the differences in the IV, chaining values
after each step and the output of the SIMD compression function for N steps
including the feed-forward. ∆dc is one codeword of the linear code and therefore
a differential characteristic. To construct the generator matrix for the linear
code, we proceed as follows:

1. Compute ∆dcj with the input difference ∆IVj = ej , where ej ∈ {0, 1}1024

is the j-th unit vector.

2. Repeat the computation for j = 1, . . . , 1024.

The resulting systematic generator matrix of the linear code for the linearised
SIMD compression function is defined in the following way:

G1024×N ·1024 := [I1024×1024|CV ], (10.4)

where CV is defined by  ∆dc1
...

∆dc1024

 .

10.3.3 Reducing the Code Length

The linear code for all steps is large and therefore the search space. Hence,
it is important to keep the code as small as possible. If we take a closer look
on the dependencies of each chaining value, one can see that only the Ai’s are
updated at each step and the other values only depend on them. Therefore, we
can reduce the code size by only considering the Ai’s at each step function. The
definition of ∆cvt in Equation (10.3) changes to

∆cvt := (∆Ati), (10.5)
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Following the same procedure above, the resulting generator matrix is much
smaller, namely

G1024×(1024+N ·256) := [I1024×1024|CV ]. (10.6)

Therefore, the performance of the search for low Hamming weight codewords is
increased.

10.3.4 Finding Codewords with Low Hamming Weight

We used the probabilistic algorithm by Canteaut and Chabaud implemented
in the CodingTool Library (see Section 9.2.3). Additionally, we check for each
codeword if differences at the input of the Boolean function result in a guaranteed
output difference. If this is the case we discard the codeword.

10.3.5 Estimating the Probability for a L-Characteristic

To compute the probability of the found differential characteristic, we have to
consider the differences entering the Boolean function Φ and the modular addi-
tions.

The Boolean Function Φ

The probability for blocking a difference in one bit at the input of Φ is 1/2 or
0 for some cases, but then the characteristic is discarded (see Section 10.3.1).
Hence, the total probability is determined by the sum of all differences at the
input. Note, that differences at the same bit positions are counted only once.
The overall probability for step t is defined by 2−x, where x is given by

7∑
i=0

hw(∆At−1
i ∨∆Bt−1

i ∨∆Ct−1
i )

and hw(·) is the bit-wise Hamming weight of a 32-bit word.

The Modular Additions

Consider the additions (10.7) from the step function (10.1).

(∆Dt−1
i �∆wti)≪ st � (∆At−1

pt(i) ≪ rt) (10.7)

We could consider each modular addition separately and prevent a carry for
each bit difference, but this would result in a rather conservative estimation.
By allowing carries in the first addition, we can compensate them at the second
addition. However, this is not that easy, because of the rotation after the first
modular addition.

First we take a look at the following addition:

∆Dt−1
i �∆wti .
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If we have a difference at the same bit position, we can cancel them out with
probability 1/2. The overall probability to cancel out such differences for step t
is 2−y, where y is defined by

y :=

7∑
i=0

hw(∆Dt−1
i ∧∆wti).

Note that ∆wti 6= 0 only for the feed-forward. If there is only a difference in one
input of the modular addition (bit-wise), we allow carries. However, we do not
want that the carry expansion is destroyed, due to the rotation to left by st bits,
since we cannot compensate this in the second addition. To take care of this
problem we have to consider two cases.

Let be lj the bit position of the j-th difference in ∆Dt−1
i before the rotation,

l′j after the rotation and dMSB(lj) (dMSB(l
′
j)) the distance of lj (l′j) to the most

significant bit (MSB). The first case is dMSB(lj) < st, i. e. the difference is rotated
over the MSB. Therefore, we have to ensure that the carry expands at most to
the MSB from the position of the difference before the rotation. The probability
for that is

1− 2−dMSB(lj).

The second case considers dMSB(lj) ≥ st, i. e. the difference is not rotated over
the MSB. In this case we have to ensure that the carry expands at most to the
MSB from the position of the difference after the rotation. The probability for
that is

1− 2−dMSB(l
′
j).

This differentiation has to be done for each difference in ∆Dt−1
i . The overall

probability is given by the product of all single probabilities.
In the last modular addition

(∆Dt−1
i ≪ st)� (∆At−1

pt(i) ≪ rt),

we first cancel out differences at the same bit positions of both variables with
probability 1/2 for each such difference. In the last step we compensate the
carries from the first addition with the same probability. Finally, the overall
success probability for the second modular addition is 2−z, where z is defined as
follows:

z :=

7∑
i=0

hw(∆Dt−1
i ≪ st ∨∆At−1

pt(i) ≪ rt).

Note, that we ignore differences in the MSB for these calculations, which results
in a small improvement.

10.4 Distinguishers

In this section, we describe two types of distinguisher which are used in our
subsequent attacks (see Section 10.5 and Section 10.6).
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10.4.1 Differential q-multicollision

In our first attack, we use an L-characteristic to construct a q-multicollision
as distinguisher (see Section 10.5). The notion of differential q-multicollision
was introduced by Biryukov et al. [BKN09] in the cryptanalysis of AES-256.
They show that differential q-multicollisions can be found for AES-256 with a
complexity of q · 267, while for an ideal cipher an adversary needs at least

O(q · 2
q−2
q+2 ·n) (10.8)

time. Note that in [BKN09] the attack is described for a block cipher. However,
it can be easily adapted for a random function. Below we repeat the basic
definition and lemma, we need for the distinguishing attack for the compression
function of SIMD 1.0.

Definition 10.1. A set of two differences and q pairs

{∆IV,∆M ; (IV1,M1), (IV2,M2), · · · , (IVq,Mq)}
is called a differential q-multicollision for fIV (·) if

fIV1
(M1)⊕ fIV1⊕∆IV (M1 ⊕∆M) = fIV2

(M2)⊕ fIV2⊕∆IV (M2 ⊕∆M)

= · · · = fIVq
(Mq)⊕ fIVq⊕∆IV (Mq ⊕∆M).

In the case of SIMD, f is the compression function and ∆M is equal 0.

Lemma 10.1. To construct a differential q-multicollision for an ideal function

with an n-bit output an adversary needs at least O(q · 2
q−2
q+2 ·n) queries on the

average.

The proof for Lemma 10.1 works similar as in [BKN09] for an ideal cipher.
In Section 10.5.2, we show how to find a differential q-multicollision for the
SIMD 1.0 compression function with a complexity of about q · 2425.28 instead of
the expected

q · 2
q−2
q+2 ·1024

.

10.4.2 Higher-Order Differentials and Hash Functions

In Section 10.6 our attack is based on the boomerang attack. In order to find a
distinguishing property we construct a second order differential collision for the
compression function. In this section we recall the basic definitions and give a
high level description of the attack strategy.

While a standard differential attack exploits the propagation of the difference
between a pair of inputs to the corresponding outputs, a higher-order differen-
tial attack exploits the propagation of the difference between differences. Higher-
order differential cryptanalysis was introduced by Lai in [Lai94] and subsequently
applied to block ciphers by Knudsen in [Knu94]. We recall the basic definitions
that we will need in Section 10.6.
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Definition 10.2. Let (S,+) and (T,+) be Abelian groups. For a function F :
S → T , the derivative at a point a ∈ S is defined as

∆aF (x) = F (x+ a)− F (x) . (10.9)

The i-th derivative of F at (a1, a2, . . . , ai) is then recursively defined as

∆(i)
a1,...,aiF (x) = ∆ai(∆

(i−1)
a1,...,ai−1

F (x)) . (10.10)

When applying differential cryptanalysis to a hash function, a collision for
the hash function corresponds to a pair of inputs with output difference zero.
Similarly, when using higher-order differentials we define a higher-order differ-
ential collision for a function F as follows.

Definition 10.3. An i-th order differential collision for a function F is an
i-tuple (a1, a2, . . . , ai) together with a value x0 such that

∆(i)
a1,...,aiF (x0) = 0 . (10.11)

Note that the common definition of a collision for hash functions corresponds
to a higher-order differential collision of order i = 1.

From (10.11) we see that we can freely choose i+ 1 of the input parameters,
i.e. x0 and a1, . . . , ai, which then fix the remaining input. Hence, the expected
number of solutions to (10.11) is one after choosing 2n/(i+1) values for the inputs
and the query complexity is:

≈ 2n/(i+1) (10.12)

In the following, we will only consider the case i = 2 for which the query com-
plexity of the attack is 2n/3.

In order to construct a second-order differential collision for the function F ,
we use a strategy recently proposed in cryptanalysis of reduced SHA-2 in [LM11]
and [BLMN11]. The idea of the attack is quite simple. Assume we are given
two differentials for F0 and F1 with F = F1 ◦F0, where one holds in the forward
direction and one in the backward direction. To be more precise, we have

F−1
0 (y + β)− F−1

0 (y) = α

and
F1(y + γ)− F1(y) = δ

where the differential in F−1
0 holds with probability p0 and in F1 holds with

probability p1. Using these two differentials, we can now construct a second
order differential collision for F . This can be summarized as follows (see also
Figure 10.2).

1. Choose a random value for X and compute X∗ = X + β, Y = X + γ, and
Y ∗ = X∗ + γ.

2. Compute backward from X,X∗, Y, Y ∗ using F−1
0 to obtain P, P ∗, Q,Q∗.
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3. Compute forward from X,X∗, Y, Y ∗ using F1 to obtain R,R∗, S, S∗.

4. Check if P ∗ − P = Q∗ −Q and S −R = S∗ −R∗ is fulfilled.

Since
P ∗ − P = Q∗ −Q = α, resp. S −R = S∗ −R∗ = δ, (10.13)

will hold with probability at least p2
0 in the backward direction, resp. p2

1 in the
forward direction and assuming that the differentials are independent the attack
succeeds with a probability of p2

0 · p2
1. Hence, the expected number of solutions

to (10.13) is 1, if we repeat the attack about 1/(p2
0 · p2

1) times.

F1

F−1
0

F1

F−1
0

P P ∗

R R∗

X X∗

S S∗

Y Y ∗

δ δ

F1

F−1
0

F1

F−1
0

Q Q∗

γ

α

β
γ

α

β

Figure 10.2: Schematic view of the attack.

10.5 Application to SIMD 1.0

In this section, we present a distinguisher attack on the compression function
of SIMD 1.0 with a complexity of 2427.60 compression function calls. Including
the output transformation we can distinguish the output of SIMD from random
with a complexity of about 2429.74 compression function calls. The distinguisher
is based on a L-characteristic with differences only in the IV . A characteristic
with high success probability is found as described in Section 10.3.

We define a linear code for the whole compression function of SIMD 1.0,
i.e. 36 steps including the feed-forward. Hence, the generator matrix is

G1024×10240 := [I1024×1024|CV ].

As described in Section 10.3.1, we block each input difference in the Boolean
function Φ, no matter if IF or MAJ is used. This has probability 1/2 in most
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cases. There is exactly one input difference for IF and one for MAJ where the
output difference is always one. We discard characteristics with such proper-
ties, except in the feed-forward. There we manually correct the characteristic,
resulting in a slightly higher Hamming weight. Furthermore, we use the non-
linearity of the IF function in the feed-forward to decrease the Hamming weight
significantly (see Section 10.5.1).

10.5.1 The Differential Characteristic

We have found several characteristics with low Hamming weight. The best ones
have a weight of 504. We can further reduce the weight by using the non-
linearity of the IF function in the feed-forward. If we do not block all input
differences in the Boolean function, we can cancel out additional differences,
which results in a lower Hamming weight for the subsequent steps. Thus, the
overall success probability of the characteristic is increased. In that way we
can improve the characteristics to a weight of 486. By a detailed analysis (see
Section 10.3.5) we determine the success probability of the characteristics which
is ≈ 2−507.34 without message modification. If we use additionally message
modification, we increase the probability to ≈ 2−425.28. Table 10.8 presents one
of the differential characteristics with weight 486. Due to space restriction we
do not show the complete characteristic but the differences in the IV , which is
enough to reconstruct the whole differential characteristic.

Table 10.8: Differences in the IV.

i A0
i B0

i C0
i D0

i

0 00000000 00000000 00000000 00000000

1 00000000 00000000 00000000 00000000

2 00000000 00000000 00000000 00000000

3 00000000 104804a0 00000000 00000000

4 00000000 00000000 050e0010 00000000

5 00000000 00000000 00000000 00000000

6 00000000 00000000 00000000 68801201

7 04004400 00000000 00000000 00000000

In Table 10.9 the characteristic in the steps of the feed-forward, including the
above modifications, is given. The characteristic leads to a guaranteed difference
in one bit at the output of Φ in the third step of the feed-forward. By correcting
this manually, the success probability is slightly decreased.

Table 10.10 splits the probability estimation into rounds and steps (the prob-
abilities are given in log2).

Message Modification

To improve the success probability of the differential characteristic we use mes-
sage modification. We have the freedom choosing the actual values of the IV
and the message words. Regarding the message words, we assume that we can
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Table 10.9: Differences in the chaining values in the feed-forward.

(t, i) Ati Bti Cti Dt
i

(33, 0) 00000000 00000000 00000000 00000000

(33, 1) 00000000 00000000 00000000 00000000

(33, 2) 00000000 00000000 00000000 00000000

(33, 3) 00000000 00000000 83801001 00000000

(33, 4) 00000000 00000000 00000000 0000c008

(33, 5) 00000000 00000000 00000000 00000000

(33, 6) 84d0c901 00000000 00000000 00000000

(33, 7) 80088000 8410c1c0 00000000 00000000

(34, 0) 00000000 00000000 00000000 00000000

(34, 1) 00000000 00000000 00000000 00000000

(34, 2) 00000000 00000000 00000000 00000000

(34, 3) 02090094 00000000 00000000 83801001

(34, 4) 9a193831 00000000 00000000 00000000

(34, 5) 01100010 00000000 00000000 00000000

(34, 6) 00000000 9a192030 00000000 00000000

(34, 7) 00000000 01100010 8410c1c0 00000000

(35, 0) 00000000 00000000 00000000 00000000

(35, 1) 00000000 00000000 00000000 00000000

(35, 2) 00220002 00000000 00000000 00000000

(35, 3) 21620401 80412012 00000000 00000000

(35, 4) 8c010008 33432706 00000000 00000000

(35, 5) 00000000 00220002 00000000 00000000

(35, 6) 00000000 00000000 9a192030 00000000

(35, 7) 20000000 00000000 01100010 8410c1c0

(36, 0) 02001118 00000000 00000000 00000000

(36, 1) 00000000 00000000 00000000 00000000

(36, 2) 00000000 44000400 00000000 00000000

(36, 3) 00000040 c4080242 80412012 00000000

(36, 4) 00000000 02001118 33432706 00000000

(36, 5) 00000000 00000000 00220002 00000000

(36, 6) 4d00b040 00000000 00000000 9a192030

(36, 7) a4e04042 00000040 00000000 01100010

Table 10.10: Probabilities in log2 for each round and step.

XXXXXXXXXXRound
Step

0 1 2 3 4 5 6 7

0 −23.85 −23.03 −19.09 −16.19 −15.12 −12.09 −9 −8.03
1 −7.09 −5 −4 −4 −3 −2 −2 −2
2 −1 −1 −1 −2 −3 −4 −4 −3
3 −4.19 −6 −9 −12 −16 −19.42 −19 −23.30

feed-forward −31.05 −46.09 −69.46 −77.34

increase the success probability in the first 4 steps to 1. Since one message block
in SIMD has 1024 bit and is expanded to 8192, we can at least choose the first
32 expanded message words w, but not completely arbitrary. The message mod-
ification for the first 4 steps results in a significant improvement of the overall
success probability, since this probability is low in these steps. However, the
message expansion needs to be studied in more detail to get a good view on
the security of SIMD. It might be possible to improve the attack by using more
sophisticated message modification techniques.
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10.5.2 The Distinguisher

In this section, we present a distinguisher for the full (32 steps and feed-forward)
compression function of SIMD 1.0. It is based on the differential multicollision
distinguisher described in Section 10.4.1 and the high probability differential
characteristic given in Section 10.5.1 for the compression function of SIMD 1.0.

The differential characteristic described in the Section 10.5.1 can be used to
construct a distinguisher for the compression function of SIMD. It is easy to see
that by using the differential characteristic q times one can find a differential
q-multicollision with a complexity of about q · 2507.34 compression function eval-
uations. Furthermore, by using message modification (see Section 10.5.1) in the
first 4 steps the complexity of the attack can be significantly reduced, resulting
in a complexity of about q ·2425.28. Note that the generic attack has a complexity
of about

q · 2
q−2
q+2 ·1024

compression function evaluations. Hence, one can distinguish the compression
function of SIMD from a random function with a complexity of about q · 2507.34

and q · 2425.28 for q = 6 and q = 5, respectively.

In a similar way as we can distinguish the compression function of SIMD
from random, we can also distinguish the output transformation (last iteration
of SIMD) from random. While the complexity for constructing a differential q-
multicollision for the output transformation using the differential characteristic
described in the previous section is the same as before, the complexity of the
generic attack has changed, since the output is only 512 instead of 1024 bits in
the last iteration due to the truncation at the end. Hence, the complexity of the
generic attack is

q · 2
q−2
q+2 ·512

.

However, by setting q = 438 and q = 22 for the case with message modification in
the first 4 rounds, we can distinguish the output transformation of SIMD from
random with a complexity of about 438 · 2507.34 and 22 · 2425.28, respectively.
Table 10.11 provides a summary of the complexities for our distinguisher and
the generic complexities.

Table 10.11: Summary of the attack complexities.

Compression function Output transformation
Message modification Generic Our attack Generic Our attack

no 6 · 2
4
8 ·1024 6 · 2507.34 438 · 2

436
440 ·512 438 · 2507.34

yes 5 · 2
3
7 ·1024 5 · 2425.28 22 · 2

20
24 ·512 22 · 2425.28
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10.6 Application to SIMD 1.1

In this section, we will show how to construct a second order differential colli-
sion which is used as a distinguishing property for the full permutation (com-
pression function without feed-forward) of SIMD 1.1. For the permutation,
the attack strategy described in Section 10.4.2 can be directly applied using
an L-characteristic that holds with high probability for the forward and back-
ward direction. In contrast to the attack on SHA-256 [BLMN11], where the
second-order collision for the internal block cipher immediately transfers to the
compression function, we need to overcome the feed-forward which performs 4
additional steps with the chaining value as message input. In Section 10.6.2 we
show how the attack can be extended to the compression function using a weaker
attack scenario.

The characteristics for both directions are found as described in Section 10.3.
We define for each direction a separate linear code. In order to find the best
place to split the steps, we used linear code with different lengths. The generator
matrix for the backward direction is given by

Gbw1024×(1024+k·256) := [I1024×1024|CV ]

and the generator matrix for the forward direction is given by

Gfw1024×(1024+(32−k)·256) := [I1024×1024|CV ]

k denote the number of steps in the backward direction. Note that, the permu-
tation has 32 steps.

10.6.1 The Differential Characteristics

We have found several characteristics with low Hamming weight. The best ones
are for 18 steps in the backward direction with Hamming weight 72 and 14 step
in the forward direction with Hamming weight 52. The complete L-characteristic
for the backward direction is given in Table 10.12 and for the forward direction
in Table 10.13. To describe the differential characteristics we used signed-bit
differences introduced by Wang et al. [WY05] in the cryptanalysis of MD5. The
advantage of using signed-bit differences is that there exists a unique mapping
to both XOR and modular differences.
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To estimate the success probability we proceed as described in Section 10.3.5.
Table 10.14 summarizes the overall probability of each characteristic.

Table 10.14: Summary of the success probabilities.

Characteristic Hamming weight Probability

backward 72 2−72.04

forward 52 2−51.4

Independency of the Characteristics

The assumption of independent characteristics is quite strong (cf. [Mur11]).
Nevertheless, one can check this property easily for few steps in both directions,
which was done for the presented characteristics. Furthermore, the used char-
acteristics have a low Hamming weight, which makes it very unlikely that they
interfere with each other.

10.6.2 Extending the Attack to the Compression Function

In contrast to SHA-2 it is not easy to extend the second-order differential colli-
sion to the compression function since the feed-forward of SIMD is non-linear.
However, the first step of the feed-forward is almost linear and therefore we
can show non-random properties in the output of the state variables Di for
i = 0, . . . , 7.

In the feed-forward 4 additional steps with the initial value as message input
are performed. This destroys the distinguishing property at the output of the
permutation. However, the values of D36

i for i = 0, . . . , 7 (output of the feed-
forward) are determined already in the first step of the feed-forward and not
modified in the other three steps. By considering only D36

i for i = 0, . . . , 7 and
accordingly only A0

i for i = 0, . . . , 7 of the initial value the attack complexity
is only slightly increased. Consequently, the dimension of the input and output
space for the distinguisher is reduced to 256 bits (8 · 32). However, by fixing
the differences in the rectangle in the middle of the second-order differential
characteristic one can construct a distinguisher for the compression function.

Distinguisher for the Compression Function

For the feed-forward of SIMD we extend the scheme shown in Figure 10.2 to the
one shown in Figure 10.3. The function F2 takes two inputs, namely the state
of the last step and the chaining value. As mentioned before we consider only
A0
i in the initial value and D36

i at the output which is denoted by the quartets
{PAi

, P ∗Ai
, QAi

, Q∗Ai
} and {R̃Di

, R̃∗Di
, S̃Di

, S̃∗Di
}, respectively.
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Figure 10.3: Extending the attack to the compression function.

So far the inputs X, β and γ were unrelated. Due to the way we build
the second-order collisions, we can see that they are the inputs to a rectangle,
hence they are related in the middle of the rectangle (gray layer in Figure 10.3).
Therefore, we can extend the attacks by fixing β and γ, since the complexity
of the generic case for this type of attacks is 2n (or 2t) [BNR11]. Since we
show non-randomness only in part of the output, namely Di for i = 0, . . . , 7,
the generic complexity of the attack becomes 2t = 28·32 = 2256. Hence, by
using the second-order differential characteristic from Section 10.6.1 one can
construct a distinguisher for the compression function of SIMD 1.1. Note that
the distinguisher becomes even more powerful if the attacker can find several of
the above quartets with the same difference.

To summarize, the algorithm works as follows:

1. Use the differential from Section 10.6.1

2. Choose a random value for X and compute X∗ = X + β, Y = X + γ, and
Y ∗ = X∗ + γ.

3. Compute backward fromX,X∗, Y, Y ∗ using F−1
0 to obtain PAi

, P ∗Ai
, QAi

, Q∗Ai
.

4. Compute forward from X,X∗, Y, Y ∗ using F1 and F2 to obtain
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R̃Di
, R̃∗Di

, S̃Di
, S̃∗Di

.

5. Check if P ∗Ai
− PAi

= Q∗Ai
− QAi

and S̃Di
− R̃Di

= S̃∗Di
− R̃∗Di

and

therefore P ∗Ai
− PAi − Q∗Ai

+ QAi + S̃Di − R̃Di − S̃∗Di + R̃∗Di = 0 is
fulfilled.

10.6.3 Complexity of the Attacks

Distinguisher for the Permuation

As described in Section 10.4.2 the generic complexity for the attack is 2n/3. For
the SIMD 1.1 compression function n is 1024 bits. Hence, the generic complexity
is ≈ 2342. The total complexity of the attack based on the presented characteris-
tic is (272.04 ·251.4)2 ≈ 2247 which can be improved by ignoring conditions at the
end. As was already observed by Wang et al. [WYY05b] in the cryptanalysis
of SHA-1 conditions resulting from the modular addition in the last steps of
the differential characteristic can be ignored, due to the fact that carries can be
ignored since the modular difference at the output stays the same. This reduces
the complexity by a factor 28.24 in the backward direction and 22 in the forward
direction which improves the overall complexity by a factor of 22·10.24 resulting
in 2226.52.

Hence, one can distinguish the permutation of SIMD 1.1 from a random
function with a complexity of about 2226.52 compared to the generic complexity
of 2342.

Distinguisher for the Compression Function

As mentioned before the attack complexity is increased slightly by the feed-
forward. In fact using the backward and forward characteristics from Table 10.12
and Table 10.13 the additional costs are negligible. In backward direction we
have at the end only a difference in ∆A−1

6 which needs to be considered. This
difference is rotated to the left by s bits. In the forward direction we have differ-
ences in ∆B31

0 and ∆A31
3 . Both are input to the Boolean IF function. Blocking

each difference at the input of the IF function costs 22 for both differences.
Additionally, ∆A31

3 is used to compute ∆A32
6 in the following way:

∆A32
6 =(∆D31

6 + ∆A−1
6 + IF (∆A31

6 ,∆B
31
6 ,∆C31

6 ))≪ s32

+ (∆A31
3 ≪ r32)

(10.14)

In Equation (10.14) only ∆A−1
6 and ∆A31

3 have differences. Only the rotation
to the left by s32 bits adds a complexity about 21. Finally, we can ignore the
costs of the last three steps in the backward (28.24+7+5) and forward (21+1.4+2)
direction since we only consider the state variables Ai and Di for i = 0, . . . , 7
respectively. The differences in these variables do not change in the last three
steps. Therefore, the total complexity is (272.04−20.24 ·251.4−4.4)2 ·21 ·22 ≈ 2200.6.



10.7. Summary 143

Hence, one can distinguish the compression function of SIMD 1.1 from a ran-
dom function with a complexity of about 2200.6. Note that the generic complexity
for this attack is 2256.

10.7 Summary

We presented two distinguishers for the compression function of SIMD-512. In
our first attack (see Section 10.5), we constructed a L-characteristic that hold
with high probability for the compression function of SIMD 1.0. We have found
several such L-characteristics with weight 486. Our attack strategy for the dis-
tinguisher is similar to the multicollision distinguisher introduced by Biryukov et
al.. By using the characteristic with the highest success probability, we showed
how to construct a distinguisher, which complexity is below the generic bound.
Even with a still conservative probability estimation, we are able to distinguish
the compression function from random with a complexity of 2427.60 compression
function calls. Including the output transformation the complexities are still
below the generic bound, i.e. we can distinguish the output transformation of
SIMD from random with a complexity of about 2429.74 compression function
calls.

Due to this attack, the designers tweaked SIMD. However, in Section 10.6 we
presented a distinguisher for the full permutation of SIMD 1.1 by an application
of the boomerang attack on hash functions. Starting from the middle of the
compression function we used the technique from Section 9.2 to find two dif-
ferential characteristics, one for the backward direction and one for the forward
direction, which hold with high probability. Then we constructed a second-order
differential and define a distinguishing property such that we can distinguish the
permutation from a random permutation with a complexity of 2226.52. Further-
more, we extended the attack to the full compression function of SIMD 1.1.
By fixing the differences in the rectangle we can distinguish the output of the
compression function from a random function with a complexity of 2200.6 com-
pression function evaluations. This is a significant improvement to the current
best known distinguisher with complexity 2398 [YW11].

Even if we do not attack the whole hash function, we showed unexpected
properties for the SIMD-512 compression function. However, our attacks do not
invalidate the security claims of the designers, since most of the security comes
from the message expansion. In [BFL10] the designers presented a more detailed
analysis of SIMD regarding differential characteristics without differences in the
message and are claiming that such characteristics do not affect the security
of the SIMD hash function. Nevertheless, non-randomness of the compression
function of SIMD affects the applicability of the proofs for the mode of operation
build upon it.

Beside the results on SIMD, we showed how boomerang attacks can be effec-
tively used on compression functions, even with a more complex feed-forward.
Furthermore, with the successful application of the technique described in Sec-
tion 9.2 on SIMD, we showed that even new designs can be vulnerable to such
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well-known techniques. Though, the increased complexity in the design makes
the need for automated tools apparent.



11
Application to HAS-160

In this chapter, we focus on the hash function HAS-160. It is standardized by
the Korean government (TTAS.KO-12.0011/R1) [Tel08] and hence widely used
in Korea. It is an iterated cryptographic hash function that produces a 160-bit
hash value. The design of HAS-160 is similar to SHA-1 and MD5. We combine
the techniques presented in Section 9.2 and Section 9.3 to construct a semi-free
start collision for 65 (out of 80) steps of HAS-160 with practical complexity. The
basic idea of our attack is similar to the attack on a DES based hash function
by Rijmen and Preneel [RP94] and to the recent attack on the SHA-3 candidate
Skein by Yu et al. [YCKW11]. The idea is to construct a long differential char-
acteristic by connecting two short ones with a complex third characteristic. In
our attack, we construct two L-characteristics using the coding theory approach
from Section 9.2 and connect them by a NL-characteristics using the technique
and algorithm from Section 9.3. The construction of these characteristics is done
automated using our set of tools. Furthermore, we present an actual colliding
message pair and IV fulfilling all conditions of the differential characteristics.
This is so far the best attack in terms of number of steps on HAS-160 with prac-
tical complexity. The results of this chapter have been published in [MNS11a].

11.1 Related Work

In [YSP+05], Yun et al. applied the techniques invented by Wang et al. in the
cryptanalysis of MD5 and SHA-1 to the HAS-160 hash function. They show that
a collision can be found for HAS-160 reduced to 45 steps with a complexity of
about 212. This attack was later extended by Cho et al. [CPSY06] to HAS-160
reduced to 53 steps. The attack has a complexity of about 255 53-step HAS-160
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computations. Mendel and Rijmen [MR07] improved the attack and reduced the
complexity to 235 and presented an actual colliding message pair for HAS-160
reduced to 53 steps. Furthermore, they presented a theoretical attack on 59
steps. Finally, preimage attacks on 52 steps by Sasaki and Aoki [SA08] and on
68 steps by Hong et al. [HKS09] have been presented. Both attacks have only
theoretical complexity and are only slightly faster than the generic attack which
has complexity 2160.

11.2 Description of HAS-160

HAS-160 is an iterative hash function that processes 512-bit input message
blocks, operates on 32-bit words and produces a 160-bit hash value. The de-
sign of HAS-160 is similar to the design principles of MD5 and SHA-1. In the
following, we briefly describe the hash function. It basically consists of two parts:
message expansion and state update transformation. A detailed description of
the HAS-160 hash function is given in [Tel08].

Message Expansion

The message expansion of HAS-160 is a permutation of 20 expanded message
words Wi in each round. The 20 expanded message words Wi used in each round
are constructed from the 16 input message words mi as shown in Table 11.1.

Table 11.1: Message expansion of HAS-160.

Round 1 Round 2 Round 3 Round 4

W0 m0 m0 m0 m0

...
...

...
...

...
W15 m15 m15 m15 m15

W16 W0 ⊕W1 ⊕W2 ⊕W3 W3 ⊕W6 ⊕W9 ⊕W12 W12 ⊕W5 ⊕W14 ⊕W7 W7 ⊕W2 ⊕W13 ⊕W8

W17 W4 ⊕W5 ⊕W6 ⊕W7 W15 ⊕W2 ⊕W5 ⊕W8 W0 ⊕W9 ⊕W2 ⊕W11 W3 ⊕W14 ⊕W9 ⊕W4

W18 W8 ⊕W9 ⊕W10 ⊕W11 W11 ⊕W14 ⊕W1 ⊕W4 W4 ⊕W13 ⊕W6 ⊕W15 W15 ⊕W10 ⊕W5 ⊕W0

W19 W12 ⊕W13 ⊕W14 ⊕W15 W7 ⊕W10 ⊕W13 ⊕W0 W8 ⊕W1 ⊕W10 ⊕W3 W11 ⊕W6 ⊕W1 ⊕W12

For the ordering of the expanded message words Wi the permutation in Ta-
ble 11.2 is used.

Table 11.2: Permutation of the message words.

step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Round 1 18 0 1 2 3 19 4 5 6 7 16 8 9 10 11 17 12 13 14 15
Round 2 18 3 6 9 12 19 15 2 5 8 16 11 14 1 4 17 7 10 13 0
Round 3 18 12 5 14 7 19 0 9 2 11 16 4 13 6 15 17 8 1 10 3
Round 4 18 7 2 13 8 19 3 14 9 4 16 15 10 5 0 17 11 6 1 12

State Update Transformation

The state update transformation of HAS-160 starts from a (fixed) initial value IV
of five 32-bit registers and updates them in 4 rounds of 20 steps each. Figure 11.1
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shows one step of the state update transformation of the hash function.

Ai+1

Ai

Bi+1

Bi

Ci+1

Ci

Di+1

Di

Ei+1

Ei

Kj

Wi

f

≪ S2

≪ S1

Figure 11.1: The step function of HAS-160.

Note that the function f is different in each round: f0 is used in the first round,
f1 is used in round 2 and round 4, and f2 is used in round 3.

f0(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)
f1(x, y, z) = x⊕ y ⊕ z
f2(x, y, z) = (x ∨ ¬z)⊕ y

A step constant Kj ∈ {0, 5a827999, 6ed9eba1, 8f1bbcdc} is added in every step
and is different for each round. While rotation value s2 ∈ {10, 17, 25, 30} is
different in each round of the hash function, the rotation value s1 is different in
each step of a round. The rotation value s1 for each step of a round is given in
Table 11.3.

Table 11.3: Permutation of the message words.

step i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

s1 5 11 7 15 6 13 8 14 7 12 9 11 8 15 6 12 9 14 5 13

After the last step of the state update transformation, the initial value and
the output values of the last step are combined, resulting in the final value of
one iteration known as Davies-Meyer hash construction (feed-forward). The
feed-forward is a word-wise modular addition of the IV and the output of the
state update transformation. The result is the final hash value or the initial
value for the next message block.

11.2.1 Alternative Description of HAS-160

As one can see in the description of the step update transformation (see Fig-
ure 11.1) only the state variable Ai is updated in each step. The values of the
other state variables are defined by Ai. Therefore, we can redefine the state
update such that only one state variable is used.
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Ai+1 =Ai−4 ≫ s2 +Ai≪ s1+

f(Ai−1, Ai−2 ≫ s2, Ai−3 ≫ s2)+

Kj +Wi

(11.1)

Note that s2 need to be adapted accordingly if the update uses A’s between two
rounds. The chaining values are represented by A0, A−1, A−2, A−3, A−4. The
reduction of the state size has an significant impact on both search algorithms
(for finding L- and NL-characteristics), since it reduces the search space.

11.3 Basic Attack Strategy

In this section, we briefly describe the attack strategy to construct a semi-free-
start collision for 65 steps of HAS-160. A similar attack was done on a DES
based hash function by Rijmen and Preneel [RP94] and recently on Skein by Yu
et al. [YCKW11]. The main idea is to construct a long differential characteristic
by connecting two short ones. First, proper differences in the expanded message
words need to be chosen, such that they result in two short L-characteristics
with low Hamming weight and hence hold with high probability. Second, we
connect the two short differential characteristics by a NL-characteristic. This
one can have low probability, since we can use message modification to fulfil the
conditions. Figure 11.2 illustrates the strategy.

MEconnection

linear

linear

Figure 11.2: Basic attack strategy. Differences occur only in the parts with grey
background.
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The attack can be summarized as follows:

1. Choose an optimal position for the connection and find two L-characteristics,
which hold with high probability.

2. Find a connecting NL-characteristic.

3. Find inputs fulfilling the conditions and use message modification to im-
prove the attack complexity.

To find two good L-characteristics and to determine an optimal position, we
use the technique from Section 9.2. Therefore, we define a linearised model of
the hash function defining a linear code, construct a generator matrix and use a
probabilistic algorithm to find codewords with low Hamming weight.

We are constructing different linear codes for different positions and lengths
of the connecting part to determine the optimal choice. Afterwards, we use the
search technique from Section 9.3 to find a connecting differential characteristic.
Finally, we use message modification, introduced by Wang et al. in [WY05], to
find inputs fulfilling all conditions.

11.4 Finding Two Short L-Characteristics

In this section, we show how HAS-160 is linearised in order to be able to construct
a linear code. Afterwards, we construct a generator matrix for this code.

11.4.1 Linearisation of HAS-160

Since the message expansion is already linear, only the step update transforma-
tion has to be linearised. The non-linear parts of this function are the modular
additions and the Boolean functions f0 and f2 (f1 is linear). In the attack, we re-
place all modular addition by XORs. For the Boolean functions we tried several
different approximations. However, the following variant turned out to be the
best and is similar as in the attacks on SIMD (see Section 10.3.1). The function
f0 (IF) is replaced by the 0-function, i.e. we block each input difference in f0. As
already shown in Section 10.3.1, this has probability 1/2 in most cases. One can
see that there is exactly one input difference for f0 where the output difference
is always one. In that case we discard the characteristic. f2 is approximated by
its second input which holds with probability higher than 1/2. In summary we
get the following approximation for the Boolean functions:

f ′0(x, y, z) = 0

f ′2(x, y, z) = y

11.4.2 Construction of a Generator Matrix

To construct a generator matrix for the linearised model, we proceed as de-
scribed in Section 9.2.2. Usually, we first need to add the input of the linearised
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model to the codeword. In this case we introduce only differences in the mes-
sage. Hence, the message input is the only input. However, since the message
expansion is linear in HAS-160, the characteristic for the message expansion will
always hold with probability one. Therefore, we do not need to include the mes-
sage in the codeword, reducing the code length even more. Our goal is to find
codewords with low Hamming weight, i.e. characteristics with high probability.
Therefore, we have to include all intermediate chaining values where differences
could decrease the success probability in the linear code. Based on the alterna-
tive description of HAS-160 (see Section 11.2.1) we include only Ai in the linear
code, since the other state variables do not add any additional information to
the code. This decreases the length of the code significantly and therefore also
the running time of the search algorithm.

Let ∆Ai ∈ {0, 1}32 be the difference vector of the chaining value Ai in bit
representation at step i. Then the vector

cw := (∆A1, · · · ,∆An), (11.2)

where cw ∈ {0, 1}n·32, represents the differences in the chaining value Ai after
each step of n steps of HAS-160. cw is one codeword of the linear code and
therefore a differential characteristic. To construct the generator matrix for the
linear code, we proceed as follows:

1. Compute cwj with the input difference ∆M = ej , where ej ∈ {0, 1}512 is
the j-th unit vector and ∆M the difference of the message block in bit
representation.

2. Repeat the computation for j = 1, . . . , 512.

The resulting generator matrix of the linear code representing linearised HAS-160
is defined in the following way:

G512×n·32 :=

 cw1

...
cw512

 . (11.3)

Since we are aiming for a collision in the last step, we need to apply code short-
ening on the last 160 bits, i.e. ensuring that all code words are zero in the last
160 bits (see Section 9.2.2). This reduces the dimension and length of the code
to 352 and (n · 32− 160), respectively.

Using this matrix one can search for low Hamming weight codewords over all
n steps. As explained in Section 11.3 we are looking for two short characteristics,
which will be connected later. Therefore, we need to modify the linear code to
include this requirement.

Modification

The easiest way to define a linear code for both characteristics simultaneously
and ensuring that both use the same expanded message, is the following. Firstly,
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ignore t steps in the middle. Hence, we change the vector (11.2) to:

cw := (∆A1, · · · ,∆Al,∆Al+t+1, · · · ,∆An). (11.4)

At the beginning of the second characteristic (after step l+t), the state variables
can have any difference, since the differences in the steps before are yet undefined.
Therefore, we need to add the information to the code that after step l + t all
differences are possible. Hence, we add the chaining variables at step l + t + 1
to the linear code. The construction of the generator matrix changes to:

1. Compute cwj with the input difference ∆M = ej , where ej ∈ {0, 1}512 is
the j-th unit vector and ∆M the difference of the message block in bit
representation.

2. Repeat the computation for j = 1, . . . , 512.

3. Compute cw512+k as follows:

(a) Set ∆M = 0 and cws = ek, where ek ∈ {0, 1}160 is the k-th unit
vector and

cws = (∆Al+t−3,∆Al+t−2,∆Al+t−1,∆Al+t,∆Al+t+1).

(b) Compute ∆Ai for (l + t + 1) < i ≤ n with cws and ∆M as input.
Hence, we get following codeword:

cw512+k := (∆A1 = 0, · · · ,∆Al = 0, cws,∆Al+t+2, · · · ,∆An).

4. Repeat the computation for k = 1, . . . , 160.

Note that ∆Bl+t+1 = ∆Al+t,∆Cl+t+1 = ∆Al+t−1,∆Dl+t+1 = ∆Al+t−2 and
∆El+t+1 = ∆Al+t−3 and therefore all possible chaining values after step l + t
are included in the code. The resulting generator matrix is

G672×(n−t+4)·32 :=

 cw1

...
cw672

 . (11.5)

Again code shorting is applied to ensure that all codewords result in a collision
after n steps.

Determining l, t and n.

There exist several possible choices for the parameters l, t and n of the linear
code. First of all we limit t ≤ 21. The reason for this is simple. We have 21
words (16 message words and 5 IV words) which can be chosen freely and hence
can be used for message modification to fulfil all conditions in the connecting
part which is usually the most expensive part of the attack. However, we aimed
for a smaller t to reduce the search space for the connecting part as well.

For the search we constructed generator matrices for 21 ≤ l ≤ (n− 21) and
t = 21. If we have found two characteristics with high probability we reduce t.
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11.4.3 Searching for Low Hamming Weight Codewords

We used the CodingTool Library (see Section 9.2.4) which contains all tools
needed to search for codewords with low Hamming weight. In Table 11.4 we
present the best (lowest Hamming weight) characteristics we have found for
different parameters. As one can see after 65 steps the Hamming weight is
getting too high such that we cannot find a characteristic and conforming inputs
with practical complexity.

Table 11.4: Results for the low weight search.

n l t Hamming weight
53 18 21 3
60 18 21 3
65 18 21 3
66 19 21 25
67 18 21 25
68 18 21 72
69 18 21 72
70 18 21 119
75 19 21 123
80 19 21 247

Note that decreasing t always increases the Hamming weight, since more
state variables with differences are included in the linear code. Furthermore,
the Hamming weights in Table 11.4 include only differences in A. To estimate
the probability one has to take the differences in all state variables into account.
Therefore, the probability for the linear characteristic can be roughly estimated
by four times the Hamming weight of A.

Using this general approach we can cover the whole (linear) search space and
allow arbitrary differences in the message words. However, it turned out that the
best characteristics we have found are indeed the trivial ones which have only few
differences in the message words and only a one bit difference per message word.
To describe the differential characteristics we use generalized conditions which
are explained in Section 8.3.2. We have found several different characteristics,
depending on the choice of l and t. In Table A.1 in Appendix A we present two
short characteristics, where t is kept small. To improve readability, we used the
alternative description of HAS-160 (see Section 11.2.1)

11.5 Finding Connecting NL-Characteristics

In this section, we apply the technique from Section 9.3 to find a connecting
differential characteristic. Note that, this is the most expensive part in our
attack.
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11.5.1 Determining a Starting Point

In this approach, we first need to determine a starting point for the search algo-
rithm. Therefore, we use the two L-characteristics constructed in the previous
section. Table 11.5 shows the starting point of the search algorithm using the
notation of generalized conditions leaving only five words unrestricted.

Table 11.5: Steps free of conditions at the beginning of the search algorithm.

step ∇A ∇W
...

...
...

20 x------------------x--x--------- --------------------------------

21 ???????????????????????????????? --------------------------------

22 ???????????????????????????????? --------------------------------

23 ???????????????????????????????? --------------------------------

24 ???????????????????????????????? --------------------------------

25 ???????????????????????????????? x-------------------------------

26 -x-x------x---x-xxx--x-------x-- --------------------------------
...

...
...

Using a small number of unrestricted words reduces the search space and
running time of the algorithm significantly. Therefore, we reduced this number
by extending the two short L-characteristics linearly. Since there are only few
differences at the end of the first L-characteristic and at the beginning of the
second L-characteristic, we can extend them forward and backward respectively,
without increasing the Hamming weight too much. In fact for the characteristic
in Table A.1 in Appendix A, we extended the L-characteristics linearly forward
by two and backwards by ten steps.

11.5.2 Search Strategy

Due to the similarities of HAS-160 to SHA-1 using the first search strategy from
Section 9.3.2 is already sufficient. However, using our extensions and advanced
search strategy, the running time of the algorithm is significantly improved.
Using the presented starting point, the algorithm converges already after an
hour (on a standard PC) to a complete characteristic for 65 steps, compared to
several days using the original search strategy. The chosen parameters are given
in Table 11.6.

Table 11.6: Search parameters for HAS-160.

Parameter Value
size limit for |C| 10

number of two-bit conditions for a bit in U ′ 3
number of contradictions before a restart from scratch 20.000

Determining the complexity of the probabilistic algorithm in general is still an
open problem. Among others it depends on the hash function, search strategy,
start characteristic and implementation. The complete characteristic is given
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in Table A.1 in Appendix A. Note that with this approach we can find several
different characteristics.

Efficient Condition Propagation

For an efficient propagation of new conditions, we use the alternative description
of HAS-160 (see Section 11.2.1) and split up one HAS-160 step (including the
message expansion) into 3 less complex sub-steps. This way, the propagation of
differences can be implemented much more efficiently while losing only a small
amount of information. One HAS-160 step is split up in the following way:

Wi =ME(M),

Ti+1 =f(Ai−1, Ai−2 ≫ s2, Ai−3 ≫ s2),

Ai+1 =Ai−4 ≫ s2 +Ai≪ s1 + Ti+1 +Kj +Wi.

Note that, for the propagation of differences in Ti+1 and f(Ai−1, Ai−2 ≫
s2, Ai−3 ≫ s2), a table of all possibilities can be pre-computed (see Section 9.3.4).

11.5.3 Finding a Message Pair

Almost all of the differences in the characteristic of Table A.1 in Appendix A
are within 21 steps. Since we can choose up to 21 words (16 message and 5
IV) freely we can use message modification to find efficiently inputs which fulfil
all the conditions of the characteristic. The conditions for the characteristic are
listed in Table A.2 in Appendix A. The resulting colliding message pair and IV
is given in Table 11.7.

Table 11.7: A colliding message pair and IV for HAS-160.

IV ed3c8ca6 38127dc3 bcf7b374 264eeb2b 73be1247

M
467d7948 3c433177 981f570c 6bf43c12 3dc04b7c cb85a46d 3356206e bff3ea04
9603f6ca 252c37eb 3a1d6197 479ca8d1 badbe3d9 4e23c48c c52a6189 53f1ea06

M ′
467d7948 3c433177 981f570c 6bf43c12 3dc04b7c cb85a46d 3356206e bff3ea04
9603f6ca 252c37eb 3a1d6197 479ca8d1 3adbe3d9 4e23c48c 452a6189 53f1ea06

∆M
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 80000000 00000000 80000000 00000000

h 4b0a28ae bc82dbb1 a4805bfd cd226435 7cb7eb52
h′ 4b0a28ae bc82dbb1 a4805bfd cd226435 7cb7eb52

11.6 Summary

The progress in the cryptanalysis of hash functions in the last years shows
that the security of existing standards needs to be re-evaluated. Therefore,
we analysed in this chapter the Korean hash function standard (TTAS.KO-
12.0011/R1) HAS-160. The main idea of our attack is to construct two short
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L-characteristics which hold with high probability and connect them by a com-
plex NL-characteristic by using the non-linearity of the state update function.
We used techniques from coding theory described in Section 9.2 to search ef-
ficiently for the short characteristics and simultaneously determine an optimal
position and length of the connecting characteristic. In a second step we used
an automatic search algorithm presented in Section 9.3 to find a connecting
characteristic taking the non-linearity of the state update into account.

We presented a semi-free-start collision for 65 (out of 80) steps HAS-160 with
practical complexity. Extending the attack to more rounds seems to be difficult.
One can always extend the size of the connecting part, but this also increases
the complexity of finding the connecting characteristic, which running time is
hard to estimate. If we limit the length of the connecting part to 21 steps, then
the best short characteristics we can find with probability below the generic
complexity of a collision attack, are for up to 65 steps.

Although, we only presented a semi-free-start collision, it is a step forward
in the analysis of HAS-160. This is so far the best known attack with practical
complexity in terms of attacked steps for HAS-160.





12
Application to SHA-256

Since the breakthrough results of Wang et al. [WYY05b, WY05], hash func-
tions have been the target in many cryptanalytic attacks. These attacks have
especially shown that several well-known and commonly used algorithms such
as MD5 and SHA-1 can no longer be considered to be secure. In fact, practical
collisions have been shown for MD5 and collisions for SHA-1 can be constructed
with a complexity of about 263 [WYY05a]. For this reason, NIST has proposed
the transition from SHA-1 to the SHA-2 family as a first solution. As a conse-
quence, more and more companies and organizations are migrating to SHA-2.
Hence, a detailed analysis of this hash function family is needed to get a good
view on its security.

Although, the design principles of SHA-2 are very similar to SHA-1, it is still
unknown whether or how the attacks on MD5 and SHA-1 can be extended to
SHA-2. Since 2008, no collision attacks have been published on SHA-2. One
reason might be that the SHA-3 competition [Nat07] initiated by NIST has
attracted more attention by the cryptographic community. However, a more
likely reason is the increased difficulty of extending previous collision attacks
to more steps of SHA-2. In this chapter, we show that apart from a good
attack strategy, advanced automated tools are essential to construct differential
characteristics and to find conforming message pairs.

Currently, all collision attacks on SHA-2 are of practical complexity and
based on the same basic idea: extending a local collision over 9 steps to more
steps. As already mentioned in [IMPR08], this kind of attack is unlikely to be
extended beyond 24 steps. In this work, we investigate new ideas to progress in
the cryptanalysis of SHA-2. First, we extend the idea of finding local collisions
to more than 9 steps by exploiting the non-linearity of both the state update
and message expansion.

157
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To find such local collisions an automated tool to search for complex dif-
ferential characteristics is needed. Therefore, we apply the technique described
in Section 9.3 to SHA-256. Unfortunately, the approach of De Cannière and
Rechberger on SHA-1 cannot directly be applied to SHA-2. We have observed
several problems in finding valid differential characteristics for SHA-2. We have
identified these problems and show how to solve them efficiently. Most impor-
tantly, a very high number of contradicting conditions occurs which render most
differential characteristics impossible.

Applying our tool to SHA-256 results in practical examples of semi-free-start
collisions for 32 and collisions for 27 out of 64 steps of SHA-256. The best semi-
free-start collision and collision attack so far was on 24 steps of SHA-256. The
results of this chapter have been published in [MNS11b].

12.1 Related Work

In the past, several attempts have been made to apply the techniques known
from the analysis of SHA-1 to SHA-2. The first known cryptanalysis of the
SHA-2 family was published by Gilbert and Handschuh [GH03]. They have
shown 9-step local collisions which hold with a probability of 2−66. Hawkes et
al. [HPR04] have improved these results to get local collisions with a probability
of 2−39 by considering modular differences.

In [MPRR06a], Mendel et al. have analysed how collision attacks can be
applied to step reduced SHA-256. They have shown that the properties of the
message expansion of SHA-256 prevent an efficient extension of the techniques
of Chabaud and Joux [CJ98] and Wang et al. [WYY05b]. Nevertheless, they
presented a collision for 18 steps of SHA-256. In [SS07], Sanadhya and Sarkar
have revisited the problem of obtaining a local collision for the SHA-2 family, and
in [SS08a] they have shown how to use one of these local collisions to construct
another 18-step collision for SHA-256.

Finally, Nikolić and Biryukov [NB08] found a 9-step differential using mod-
ular differences which can be used to construct a practical collision for 21 steps
and a semi-free-start collision for 23 steps of SHA-256. This was later ex-
tended to 22, 23 and 24 steps by Sanadhya and Sarkar in a series of papers
[SS08d, SS08b, SS08c]. The best known collision attack on SHA-256 so far was
for 24 steps and has been found by Indesteege et al. [IMPR08], and Sanadhya
and Sarkar [SS08c].

12.2 Description of SHA-256

SHA-256 is one of four hash functions defined in the Federal Information Pro-
cessing Standard (FIPS-180-3) [Nat08]. All four hash functions were designed
by the National Security Agency (NSA) and issued by NIST in 2002. SHA-256
is an iterated cryptographic hash function with a hash output size of 256 bits, a
message block size of 512 bits and using a word size of 32 bits. In the compres-
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sion function of SHA-2, a state of eight chaining variables A,. . . ,H is updated
using 16 message words M0,. . . ,M15.

T0 T1

Ai

Ai−1

Bi

Bi−1

Ci

Ci−1

Di

Di−1

Ei

Ei−1

Fi

Fi−1

Gi

Gi−1

Hi

Hi−1

Σ1

f1

Ki

Wi

Σ0

f0

Figure 12.1: The SHA-2 step update function.

The compression function of SHA-256 consists of 64 identical step update func-
tions which are illustrated in Figure 12.1 and given as follows:

T0 = Σ0(Ai−1) + f0(Ai−1, Bi−1, Ci−1)
T1 = Σ1(Ei−1) + f1(Ei−1, Fi−1, Gi−1) +Hi−1 +Ki +Wi

Ai = T0 + T1 , Bi = Ai−1 , Ci = Bi−1 , Di = Ci−1

Ei = Di−1 + T1 Fi = Ei−1 , Gi = Fi−1 , Hi = Gi−1

(12.1)

The Boolean functions f0 (MAJ) and f1 (IF) are given by

f0(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) ,
f1(x, y, z) = (x ∧ y)⊕ (¬x ∧ z) .

The two GF (2)-linear functions Σ0 and Σ1 are defined as follows:

Σ0(x) = x≫ 2⊕ x≫ 13⊕ x≫ 22 ,

Σ1(x) = x≫ 6⊕ x≫ 11⊕ x≫ 25 .

In the i-th step of the update function, a fixed constant Ki and the i-th word
Wi of the expanded message are added to the state. The message expansion takes
the 16 message words Mi as input and outputs 64 expanded message words Wi

as follows:

Wi =

{
Mi for 0 ≤ i < 16

σ1(Wi−2) +Wi−7 + σ0(Wi−15) +Wi−16 for 16 ≤ i < 64

where the functions σ0(x) and σ1(x) are defined as follows:

σ0(x) = x≫ 7⊕ x≫ 18⊕ x� 3 ,

σ1(x) = x≫ 17⊕ x≫ 19⊕ x� 10 .
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12.3 Basic Attack Strategy

In this section, we give a brief overview of our attack strategy. We first generalize
the approach of Nikolić and Biryukov [NB08] to find semi-free-start collisions on
a higher number of steps. Due to this extension, differential characteristics
cannot be constructed manually or semi-automatic anymore. Hence, we use our
fully automated tool to construct complex differential characteristics in SHA-2.
Finding valid differential characteristics for SHA-2 is extremely difficult. In fact,
we were not able to find a valid differential characteristic without including the
search for a confirming message pair in the process. Therefore, the approach
of first finding a valid differential characteristic and then, independently search
for a conforming message pair does not apply very well to SHA-2. Hence, our
attack strategy can be summarized as follows:

1. Determine a starting point for the search which results in an attack on a
large number of steps. The resulting start characteristic should span over
few steps and only some message words should contain differences.

2. Use the automated search tool described in Section 9.3 with the advanced
search strategy to find a differential characteristic and a conforming mes-
sage pair.

Basically, the advanced search strategy (see Section 9.3.2) searches first for a
differential characteristic. After one is found, it continues the search to find
a conforming message pair. If no message pair can be found, the differential
characteristic is adjusted accordingly.

12.4 Finding NL-Characteristics

We used our automated search tool described in Section 9.3 to construct NL-
characteristics and to find conforming message pairs for SHA-256.

12.4.1 Determining a Starting Point

By exploiting the non-linearity of the step update function, Nikolić and Biryukov
[NB08] found a 9-step differential characteristic for which it is not necessary to
apply corrections (differences in the message words) in each step of the differ-
ential characteristic. The fact that not all (only 5 out of 9) message words
contain differences helped to overcome several steps of the message expansion
resulting in a collision and semi-free-start collision attack for 21 and 23 steps,
respectively. Later this approach was extended to a collision attack on 24 steps
[IMPR08, SS08c]. However, as pointed out in [IMPR08] it is unlikely that this
approach can be extended beyond 24 steps.

In our attack, we construct differential characteristics which span over more
than 9 steps. This allows us to attack more steps of SHA-256. As in the attack
of Nikolić and Biryukov we are interested in differential characteristics with
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differences in only a few message words. Then, large parts of the expanded
message have no difference which in turn, results in an attack on more than 24
steps. Already by using a differential characteristic spanning over 10 steps (with
differences in only 3 message words) we can construct a semi-free-start collision
for 27 steps of SHA-256. This can be extended to 32 steps using a differential
characteristic spanning over 16 steps with differences in 8 message words.

To construct these starting points, we first fix the number of steps with differ-
ences and consider only differential characteristics which may result in collisions
on more than 24 steps. Then, we identify those message words which need to
have differences such that the differential characteristic holds for the whole mes-
sage expansion. Table A.3 and Table A.6 in Appendix A show the used starting
points for the attack on 27 and 32 steps. Note that, we have further optimized
the message difference slightly to keep it sparse, which reduces the search space
for the automated tool.

12.4.2 Search Strategy

We applied the first strategy described in Section 9.3.2 but could not find a valid
differential characteristics. In any case at least one of the checks described in
Section 9.3.3 failed. The reason for this is that conditions which are not covered
by generalized or two-bit conditions appear much more often in SHA-2 than in
SHA-1. Since more advanced checks are too expensive, we have developed a
more sophisticated search strategy to find valid differential characteristics for
SHA-2 which is described in Section 9.3.2. The chosen parameters are given in
Table 12.1.

Table 12.1: Search parameters for SHA-256.

Parameter Value
size limit for |C| 10

number of two-bit conditions for a bit in U ′ 3 for bits of Ai
5 for bits of Ei

number of contradictions before a restart from scratch 15.000

This way complex hidden conditions are resolved at an earlier stage in the
search. Furthermore, we correct impossible characteristics once they are detected
by jumping back to the first phase.

12.4.3 Two-Bit Conditions for SHA-256

The main problem in SHA-2 is that it is difficult to determine whether a dif-
ferential characteristic is valid, i.e. whether a conforming message pair exists.
As mentioned in Section 9.3.2, apart from generalized conditions, additional
conditions on more than a single bit are present in a differential characteristic.
Especially, conditions on two bits are needed such that a differential characteris-
tic is valid since they may lead to additional inconsistencies. Note that, two-bit
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conditions occur in SHA-2 much more often than in SHA-1, mostly caused by the
Boolean functions fi, σi and Σi but also by the modular additions. Since such
contradicting conditions occur only rarely in SHA-1, simple additional checks
are sufficient to verify whether a given differential characteristic is valid at the
end of the search.

∇A0 = [------------------n----------n--]

∇A1 = [---------n----------------------]

∇A2 = [---------n-n----------n--------n]

∇A3 = [---n-----n-n-n----n--nn--------n]

=

=

6= =

Figure 12.2: Example of four cyclic and contradicting two-bit conditions.

This is not the case in SHA-2 where combinations of the Boolean functions f0

and f1 with Σ0 and Σ1 can cause even more complex cyclic two-bit conditions.
A simple example is given in Figure 12.2. In this case, 4 bits form a cyclic
contradicting condition due to Σ0 and f0. For the two Σ0 functions (XOR) we
have twice Σ0(n, -, -) = n which results in the two equalities A1,2 = A1,13 and
A2,2 = A2,13. For the f0 function (MAJ) at bit position 2 we get f0(-, -, n) = n

if and only if A2,2 = A1,2, while for bit position 13 we get f0(-, -, n) = - if and
only if A2,13 6= A1,13. Note that in this example, more two-bit conditions occur
which are not shown. We observed that for a given differential characteristic
even more complex relations with cycle lengths larger than 10 commonly occur.

Additionally, more complex conditions on more bits occur. One reason for
these additional conditions is that two state variables (Ai, Ei) are updated using
a single message word (Wi). Unfortunately, it is not possible to determine all
these conditions in general. However, we used different tests to efficiently check
for many contradictions (see Section 9.3.3).

12.5 Efficient Condition Propagation in SHA-2

As described in Section 9.3.4, we propagate conditions on bit-level. The larger
state size, the combined update of two state variables, and the higher diffusion
due to the Σi functions increases the complexity of the propagation significantly.
To limit the increase in complexity, we take several measures.

12.5.1 Alternative Description of SHA-2

In the case of the SHA-2, one bit of A and E is updated using 15 input bits.
Hence, to simplify the update of conditions during the search, we use an alter-
native description of SHA-2. In the state update transformation of SHA-2, only
two state variables are updated in each step, namely Ai and Ei. Therefore, we
can redefine the state update such that only these two variables are involved.
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In this case, we get the following mapping between the original and new state
variables:

Ai Bi Ci Di Ei Fi Gi Hi

Ai Ai−1 Ai−2 Ai−3 Ei Ei−1 Ei−2 Ei−3

Note that, Ai is updated using an intermediate result of the step update of
Ei (see Equation 12.1). Since this complicates the efficient bit representation
of the SHA-2 step update transformation we propose the following alternative
description:

Ei = Ei−4 + Σ1(Ei−1) + f1(Ei−1, Ei−2, Ei−3) +Ai−4 +Ki +Wi

Ai = −Ai−4 + Σ0(Ai−1) + f0(Ai−1, Ai−2, Ai−3) + Ei
(12.2)

In this case we get two SHA-1 like state update transformations, one for the left
(Ai) and one for the right (Ei) side of the SHA-2 state update transformation.
Note that in this description, the state variables A−4, . . . , A−1 and E−4, . . . , E−1

represent the chaining input or initial value of the compression function. The
alternative description is also illustrated in Figure 12.3.
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Ai−2

Ai−3

Ai−3

Ai−4
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Ei−1
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Ei−2

Ei−3

Ei−3
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Σ1

f1
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Wi

−
+

Σ0

f0

Figure 12.3: Alternative description of the SHA-2 state update transformation.

12.5.2 Split-Up

The complexity of propagating generalized conditions increases exponentially
with the number of input bits and additions. While there are only 6 input bits
in the case of SHA-1 (excluding the carry), we have 9 input bits in the update
of Ei and 8 input bits in the update of each of Ai and Wi in SHA-2.

As already mentioned in Section 9.3.4 to reduce the computational com-
plexity of the propagation, we further split the update of Wi, Ei and Ai into
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sub-steps. The split is done in the following way:

si = σ0(Wi−15),

s′i = σ1(Wi−2),

Wi = s′i +Wi−7 + si +Wi−16,

Fi = f1(Ei−1, Ei−2, Ei−3),

Si = Σ1(Ei−1),

Ei = Ei−4 + Si + Fi +Ai−4 +Ki +Wi,

F ′i = f0(Ai−1, Ai−2, Ai−3),

S′i = Σ0(Ai−1),

Ai = −Ai−4 + S′i + F ′i + Ei.

We independently compute each output bit of the Boolean functions and after-
wards we compute the modular additions. This way, the number of input bits is
reduced to 3 for the Boolean functions and we get at most 5 input bits for the
modular additions. This split of functions reduces the computation complexity
by a factor of about 100.

12.5.3 Using the Cache

For the sub-steps without modular addition we have precomputed the propa-
gation of all generalized input conditions. For the modular additions we use
the regular cache (see Section 9.3.4). Our experiments have shown a speed-up
of another factor 100 by caching already computed results. Note that, due to
memory restrictions we are not able to precompute or keep all possibilities for
the modular additions.

12.5.4 Propagation of Conditions for Linear Functions

As described in Section 9.3.4 the propagation of conditions through linear func-
tions is treated differently in our approach. In the following we show why this is
important for SHA-256. Let us consider the linear function σ0 which is defined
as follows:

σ0(x) = x≫ 7⊕ x≫ 18⊕ x� 3 = y.

Updating the conditions for each bit in ∇x and ∇y is done by updating each bit-
slice {∇xi+7,∇xi+18,∇xi+3,∇yi} for i = 0, . . . , 28 and {∇xi+7,∇xi+18,∇yi} for
i = 29, . . . , 31 (see Section 9.3.4). Note that, the additions in the indices are
modulo 32.

Now consider the following two cases for σ0.

Case 1: Forward Propagation

∇x =[--------------------------------],

∇y =[????????????????????????????????].



12.6. Results 165

All bit-slices are equal to {-,-,-,?} and {-,-,?} respectively. Accord-
ing to the definition of σ0 the update results in {-,-,-,-} and {-,-,-}
respectively. Hence, after updating all conditions, we receive

∇x =[--------------------------------],

∇y =[--------------------------------].

Case 2: Backward Propagation

∇x =[????????????????????????????????],

∇y =[--------------------------------].

All bit-slices are equal to {?,?,?,-} and {?,?,-} respectively. Accord-
ing to the definition of σ0 the update results in {?,?,?,-} and {?,?,-}
respectively. In that case there are no new conditions and we receive

∇x =[????????????????????????????????],

∇y =[--------------------------------].

The result of the first case is perfectly fine. In the second case no new conditions
are detected. Although, we know from the first case that every generalized con-
dition of ∇x should be -. Hence, no information propagates using the bit-slice
update approach described in Section 9.3.4. Therefore, we update the condi-
tions for every linear function of SHA-256 (σ0, σ1, Σ0 and Σ1) according to the
method described in Section 9.3.4. Using this method the efficient propagation
of linear generalized conditions works in both direction. However, the efficient
propagation of non-linear generalized conditions is still an open problem.

12.6 Results

Semi-Free-Start Collision for 32 Steps

Using the start characteristic given in Table A.3 in Appendix A and the advanced
search strategy, we can find a valid characteristic and conforming inputs which
result in semi-free-start collisions for 32 out of 64 steps of SHA-256. An example
of a semi-free-start collision for 32 steps is shown in Table 12.2.
The corresponding differential characteristic and the set of conditions is given in
Table A.4 and Table A.5 in Appendix A. To find such an example for 32 steps,
our tool needs few days on a cluster with 32 nodes.

Collision for 27 Steps

So far we have only considered semi-free-start collision attacks in which an at-
tacker is allowed to choose the chaining value. However, in a collision attack on
the hash function the chaining value is fixed, which makes an attack much more
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Table 12.2: Semi-free-start collision for 32 steps of SHA-256.

h0 764d264f 268a3366 285fecb1 4c389b22 75cd568d f5c8f99b 6e7a3cc3 1b4ea134

h∗0 764d264f 268a3366 285fecb1 4c389b22 75cd568d f5c8f99b 6e7a3cc3 1b4ea134

∆h0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

m
52a600a8 2c3b8434 ea92dfcf d4eaf9ad b77fe08d 7c50e542 69c783a6 86a14e10

baf88b0b 12665efb ce7c3a31 3030f09d 9bd52eb8 7549997e fa976e0d 86ebacbc

m∗
52a600a8 2c3b8434 ea92dfcb 0cdba38b f514e39d 7a5bb4cb ee6bcba6 c58f6a0f

b2f78b0b 12665efb ce7c3a31 3030f09d 9bd52eb8 7549997e fa976e0d 86ebacbc

∆m
00000000 00000000 00000004 d8315a26 426b0310 060b5189 87ac4800 432e241f

080f0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

h1 d0b41ffa e1f519a2 e3cad2ed a19d5795 906ac05f c995f6c8 cf309f95 9fb9ca57

h∗1 d0b41ffa e1f519a2 e3cad2ed a19d5795 906ac05f c995f6c8 cf309f95 9fb9ca57

∆h1 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

difficult. In order to construct a collision for step-reduced SHA-256, we are in-
terested in differential characteristics with no differences in the first few message
words. Then, the additional freedom in the first message words can be used to
transform a semi-free-start collision into a real collision. Similar characteristics
have also been used in the collision attacks on 24 steps of SHA-256 in [IMPR08].

In order to find a characteristics under these requirements, we used a starting
point where the characteristic is spanning over 11 steps with differences in only
5 expanded message words and with no differences in the first 7 message words.
Such a starting point is presented in Table A.6 in Appendix A. Using this starting
point and our tool we are able to construct collisions for 27 steps of SHA-256.
A colliding message pair is shown in Table 12.3. The differential characteristic

Table 12.3: Collision for 27 steps of SHA-256.

h0 6a09e667 bb67ae85 3c6ef372 a54ff53a 510e527f 9b05688c 1f83d9ab 5be0cd19

m
725a0370 0daa9f1b 071d92df ec8282c1 7913134a bc2eb291 02d33a84 278dfd29

0c40f8ea d8bd68a0 0ce670c5 5ec7155d 9f6407a8 729fbfe8 aa7c7c08 607ae76d

m∗
725a0370 0daa9f1b 071d92df ec8282c1 7913134a bc2eb291 02d33a84 27460e6d

08c8fbea d8bd68a0 0ce670c5 5ec7155d 9f4425fb 729fbfe8 aa7c7c08 2d32d129

∆m
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00cbf344

04880300 00000000 00000000 00000000 00202253 00000000 00000000 4d483644

h1 5864015f 133494fa fa42bb35 94bc44f9 29eabb36 9e461e33 2eab27f8 106467c9

and the set of conditions is given in Table A.7 and Table A.8 in Appendix A.

12.7 Summary

In this chapter, we applied the technique described in Section 9.3 to SHA-256.
Compared to SHA-1 or HAS-160, SHA-256 has a far more complex structure.
A direct application of the original technique by De Cannière and Rechberger,
is not possible, since several problems occur. Most importantly, found NL-
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characteristics are not valid, due to many contradicting conditions in SHA-2. We
identified these problems and showed how to overcome them. Important for the
successful application of our tool to SHA-2, is the detection of two-bit conditions
and the check for contradictions in these conditions. Furthermore, only with
our advanced search strategy, we were able to find valid NL-characteristics for
SHA-256. This strategy combines the search for differential characteristics with
the computation of conforming message pairs.

Finally, we presented a collision for 27 and a semi-free-start collision for 32
steps of SHA-256 with practical complexity. This significantly improves upon
the best previously published (semi-free-start) collision attacks on SHA-256 for
up to 24 steps.





13
Conclusions

In the second part of this thesis, we focused on different tools used in the crypt-
analysis of ARX based hash functions. We reviewed two distinct techniques
which are based on differential cryptanalysis, the most common tool in the crypt-
analysis of hash functions.

The first technique is based on coding theory, since finding differential char-
acteristics for a linearised model of a hash function is related to the problem of
finding codewords with low Hamming weight in a linear code. We showed how
a linear code is constructed from a linearised model and presented three proba-
bilistic algorithms searching for low Hamming weight codewords. Furthermore,
we presented an open-source toolbox which implements a search algorithm, in-
terfaces, data structures and several other useful methods. Using this library,
one can find differential characteristics fully automated.

The second technique is based on the recent attacks on SHA-1. It consists
of a search algorithm and the concept of generalized conditions. Generalized
conditions reflect that both the differences and the actual values of bits are
important for an attack. The search algorithm searches automated for complex
differential characteristics. We extended this technique in several aspects. Most
importantly, we presented a more efficient search strategy and included two-bit
conditions in the search process, hence combining the search for a differential
characteristic with the search for conforming message pairs. Furthermore, we
showed how the propagation of generalized conditions can be done efficiently.
The resulting tools were used to attack the hash functions SIMD-512, HAS-160
and SHA-256.

For the compression function of SIMD-512 we presented two distinguishers.
In the first attack, we constructed differential characteristics that hold with high
probability for the full compression function of SIMD-512 using the first tech-
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nique. We have found several such characteristics with a low weight. Our attack
strategy for the distinguisher is similar to the multicollision distinguisher intro-
duced by Biryukov et al.. By using the characteristic with the highest success
probability, we showed how to construct a distinguisher, which complexity is
below the generic bound. Even with a conservative probability estimation, we
are able to distinguish the compression function from random with a complexity
of 2427.60 compression function calls. Furthermore, we can distinguish the com-
pression function with the output transformation of SIMD from random with a
complexity of about 2429.74 compression function calls.

Due to this attack, the designers tweaked SIMD. However, we presented a
distinguisher for the full permutation of tweaked SIMD-512 by an application
of the boomerang attack on hash functions. Starting from the middle of the
compression function we used the same technique to find two differential char-
acteristics which are used in the boomerang attack. Then we constructed a
second-order differential and defined a distinguishing property such that we can
distinguish the permutation from a random permutation with a complexity of
2226.52. Furthermore, we extended the attack to the full compression function
of tweaked SIMD-512 such that we can distinguish the output of the compres-
sion function from a random function with a complexity of 2200.6 compression
function evaluations.

Our attacks do not invalidate the security claims of the designers, since
most of the security comes from the message expansion. Nevertheless, non-
randomness of the compression function of SIMD effect the applicability of the
proofs for the mode of operation build upon it. Beside the results on SIMD, we
showed how boomerang like attacks can be effectively used on compression func-
tions, even with a more complex feed-forward. Furthermore, with the successful
application of the coding theoretic technique on SIMD, we showed that even new
designs can be vulnerable to such well-known techniques. Though, the increased
complexity in the design makes the need for automated tools apparent.

For HAS-160, we presented a semi-free-start collision for 65 (out of 80) steps
with practical complexity. The main idea of our attack is to combine both of the
above techniques by constructing two short characteristics which hold with high
probability and connect them by a complex characteristic using the non-linearity
of the state update function. Extending the attack to more rounds seems to be
difficult. One can always extend the size of the connecting part, but this also
increases the complexity of finding the connecting characteristic, which running
time is hard to estimate. If we limit the length of the connecting part to 21
steps, then the best short characteristics we can find with probability below the
generic complexity of a collision attack, are for up to 65 steps. Although, we
only presented a semi-free-start collision, it is a step forward in the analysis of
HAS-160 and shows how powerful our automated tools can be. This is so far
the best known attack with practical complexity in terms of attacked steps for
HAS-160.

In the last chapter, we applied the search algorithm for complex character-
istics to SHA-256. Compared to SHA-1 or HAS-160, SHA-256 has a far more
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complex structure. A direct application of the original technique is not possible,
since several problems occur. We identified these problems and showed how to
overcome them. Important for the successful application of our tool to SHA-2,
is the detection of two-bit conditions and the check for contradictions in these
conditions. Furthermore, only with our advanced search strategy, we were able
to find valid complex differential characteristics for SHA-256. Finally, we pre-
sented a collision for 27 and a semi-free-start collision for 32 steps of SHA-256
with practical complexity. This significantly improves upon the best previously
published (semi-free-start) collision attacks on SHA-256 for up to 24 steps. To
summarize, the search for valid differential characteristics and conforming mes-
sage pairs in SHA-2 is increasingly difficult and unpredictable, compared to more
simple ARX-based designs like HAS-160 and SHA-1. Nevertheless, we were able
to construct a powerful tool to find practical examples for (semi-free-start) colli-
sions in SHA-256 which can also be applied to other ARX based hash functions.





A
Differential Characteristics and
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Table A.1: Characteristic for 65 steps HAS-160 using generalized conditions. The
rows with darkgray background represent the connecting part. The rows
with lightgray background represent the two L-characteristics.

i ∇A ∇W
-4 --------------------------------

-3 --------------------------------

-2 --------------------------------

-1 --------------------------------

0 --------------------------------
...

...
...

16 -------------------------------- --------------------------------

17 u------------------------------- x-------------------------------

18 ------------------u------------- --------------------------------

19 n------------u------------------ x-------------------------------

20 u------------------u--u--------- --------------------------------

21 -------n-uuuuuu--u----n----u---- --------------------------------

22 u--n---uu-nu---uu---nn--------uu --------------------------------

23 --n-n-nnnu-n-u--nu------nu------ --------------------------------

24 uuun-nu--u-u----n-n-unnuuuuuuu-n --------------------------------

25 --n----uu---uu-un-u-----nu-n-n-- x-------------------------------

26 -n-n------n---n-uun--u-------n-- --------------------------------

27 -unu------u-n---uu---u-n-u-u---n --------------------------------

28 --n---u---u---u--u-n---u-----u-n --------------------------------

29 --------n---u--------n-------u-n --------------------------------

30 --u-----n-u----------u---------- --------------------------------

31 --n-------n----------------n-n-- --------------------------------

32 --------------n--------------n-- --------------------------------

33 ----------n--------------------- x-------------------------------

34 ----------n------------------u-- --------------------------------

35 -----------------------------u-- --------------------------------

36 -------------------------------- --------------------------------

37 -------------------------------- --------------------------------

38 -------------------------------- --------------------------------

39 -------------------------n------ --------------------------------

40 -------------------------------- --------------------------------

41 -------------------------------- --------------------------------

42 -------------------------------- x-------------------------------

43 -------------------------------- --------------------------------

44 -------------------------------- x-------------------------------

45 -------------------------------- --------------------------------
...

...
...

65 -------------------------------- --------------------------------
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Table A.2: Set of conditions for the semi-free-start collision for 65 steps of HAS-160.

Step Set of conditions #

16 A16,3 = 0, A16,21 = A15,21 2
17 A17,3 = 1, A17,31 = 1 2
18 A18,9 = 1, A18,13 = 1, A18,8 6= A17,8 3
19 A19,18 = 1, A19,31 = 0, A19,23 6= A17,13, A19,27 6= A18,2, A19,9 6= A18,31, A19,24 = A18,31 6
20 A20,9 = 1, A20,12 = 1, A20,31 = 1, A20,16 6= A18,6, A20,3 = A18,25, A20,0 6= A19,0, A20,1 = A19,1,

A20,2 = A19,2, A20,3 = A19,3, A20,4 = A19,4, A20,5 = A19,5, A20,23 6= A19,6, A20,7 = A19,7,
A20,19 = A19,19, A20,24 = A19,24, A20,29 6= A19,29

16

21 A21,4 = 1, A21,9 = 0, A21,14 = 1, A21,17 = 1, A21,18 = 1, A21,19 = 1, A21,20 = 1, A21,21 =
1, A21,22 = 1, A21,24 = 0, A21,26 6= A19,9, A21,29 = A19,12, A21,3 6= A20,3, A21,6 6= A20,6,
A21,7 6= A20,7, A21,11 6= A20,11, A21,15 6= A20,15, A21,16 6= A20,16, A21,3 6= A20,18, A21,25 6= A20,25,
A21,26 = A20,26, A21,30 = A20,30

22

22 A22,0 = 1, A22,1 = 1, A22,10 = 0, A22,11 = 0, A22,15 = 1, A22,16 = 1, A22,20 = 1, A22,21 = 0,
A22,23 = 1, A22,24 = 1, A22,28 = 0, A22,31 = 1, A22,2 = A20,17, A22,3 = A20,18, A22,4 6= A20,19,
A22,5 6= A20,20, A22,6 = A20,21, A22,7 6= A20,22, A22,9 = A20,24, A22,3 6= A21,3, A22,5 = A21,5,
A22,6 6= A21,6, A22,7 = A21,7, A22,8 = A21,8, A22,12 6= A21,12, A22,29 6= A21,12, A22,29 = A21,29,
A22,30 = A21,30

28

23 A23,6 = 1, A23,7 = 0, A23,14 = 1, A23,15 = 0, A23,18 = 1, A23,20 = 0, A23,22 = 1, A23,23 = 0,
A23,24 = 0, A23,25 = 0, A23,27 = 0, A23,29 = 0, A23,17 = A21,0, A23,28 6= A21,11, A23,0 6= A21,15,
A23,1 6= A21,16, A23,8 = A21,23, A23,13 = A21,28, A23,16 = A21,31, A23,3 = A22,3, A23,21 6= A22,4,
A23,5 = A22,5, A23,8 = A22,8, A23,9 6= A22,9, A23,26 = A22,9, A23,12 6= A22,12, A23,13 6= A22,13,
A23,2 = A22,17, A23,17 6= A22,17, A23,3 = A22,18, A23,4 6= A22,19, A23,19 6= A22,19, A23,26 6= A22,26,
A23,30 6= A22,30

34

24 A24,0 = 0, A24,2 = 1, A24,3 = 1, A24,4 = 1, A24,5 = 1, A24,6 = 1, A24,7 = 1, A24,8 = 1, A24,9 = 0,
A24,10 = 0, A24,11 = 1, A24,13 = 0, A24,15 = 0, A24,20 = 1, A24,22 = 1, A24,25 = 1, A24,26 = 0,
A24,28 = 0, A24,29 = 1, A24,30 = 1, A24,31 = 1, A24,23 = A22,6, A24,24 6= A22,7, A24,12 = A22,27,
A24,14 = A22,29, A24,17 6= A23,0, A24,1 6= A23,1, A24,18 6= A23,1, A24,27 = A23,10, A24,12 6= A23,12,
A24,1 = A23,16, A24,17 6= A23,17, A24,19 = A23,19, A24,21 = A23,21, A24,16 6= A23,31

35

25 A25,2 = 0, A25,4 = 0, A25,6 = 1, A25,7 = 0, A25,13 = 1, A25,15 = 0, A25,16 = 1, A25,18 = 1,
A25,19 = 1, A25,23 = 1, A25,24 = 1, A25,29 = 0, A25,17 6= A23,0, A25,20 = A23,3, A25,21 = A23,4,
A25,22 6= A23,5, A25,25 6= A23,8, A25,26 6= A23,9, A25,27 = A23,10, A25,28 = A23,11, A25,30 = A23,13,
A25,11 = A23,26, A25,17 = A24,17, A25,3 = A24,18, A25,8 = A24,23, A25,9 = A24,24, A25,12 = A24,27

27

26 A26,2 = 0, A26,10 = 1, A26,13 = 0, A26,14 = 1, A26,15 = 1, A26,17 = 0, A26,21 = 0, A26,28 = 0,
A26,30 = 0, A26,1 = A24,16, A26,3 = A24,18, A26,4 6= A24,19, A26,8 = A24,23, A26,9 = A24,24,
A26,20 6= A25,3, A26,22 6= A25,5, A26,25 6= A25,8, A26,26 = A25,9, A26,27 = A25,10, A26,11 = A25,11,
A26,12 = A25,12, A26,5 = A25,20, A26,7 = A25,22, A26,25 6= A25,25, A26,11 = A25,26, A26,16 6= A25,31

26

27 A27,0 = 0, A27,4 = 1, A27,6 = 1, A27,8 = 0, A27,10 = 1, A27,14 = 1, A27,15 = 1, A27,19 = 0,
A27,21 = 1, A27,28 = 1, A27,29 = 0, A27,30 = 1, A27,27 6= A25,10, A27,2 = A25,17, A27,13 = A25,28,
A27,23 6= A26,6, A27,24 = A26,7, A27,12 6= A26,12, A27,1 6= A26,16, A27,3 6= A26,18, A27,23 = A26,23,
A27,9 = A26,24, A27,27 6= A26,27

23

28 A28,0 = 0, A28,2 = 1, A28,8 = 1, A28,12 = 0, A28,14 = 1, A28,17 = 1, A28,21 = 1, A28,25 = 1,
A28,29 = 0, A28,23 = A26,6, A28,4 = A26,19, A28,19 6= A27,2, A28,30 6= A27,13

13

29 A29,0 = 0, A29,2 = 1, A29,10 = 0, A29,19 = 1, A29,23 = 0, A29,29 = A27,12, A29,4 6= A28,4,
A29,21 6= A28,4, A29,6 = A28,6, A29,27 6= A28,10, A29,4 = A28,19, A29,13 = A28,28, A29,15 = A28,30

13

30 A30,10 = 1, A30,21 = 1, A30,23 = 0, A30,29 = 1, A30,27 = A28,10, A30,4 = A28,19, A30,8 6= A28,23,
A30,4 = A29,4, A30,25 = A29,8, A30,12 6= A29,12, A30,2 6= A29,17, A30,17 = A29,17, A30,6 6= A29,21,
A30,14 6= A29,29

14

31 A31,2 = 0, A31,4 = 0, A31,21 = 0, A31,29 = 0, A31,6 6= A29,21, A31,14 = A29,29, A31,0 6= A30,0,
A31,17 6= A30,0, A31,19 6= A30,2, A31,17 6= A30,17

10

32 A32,2 = 0, A32,17 = 0, A32,19 = A30,2, A32,21 = A30,4, A32,27 = A31,10, A32,8 6= A31,23 6
33 A33,21 = 0, A33,2 6= A31,17, A33,4 6= A32,4, A33,6 = A32,21, A33,14 = A32,29 5
34 A34,2 = 1, A34,21 = 0, A34,6 6= A32,21, A34,19 6= A33,2, A34,17 = A33,17 5
35 A35,2 = 1, A35,19 = A33,2 2
36 A36,6 6= A35,21 1
37 A37,21 = 0, A37,19 6= A36,2 2
39 A39,6 = 0 1
41 A41,31 = 1 1
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Table A.3: Starting point for a semi-free-start collision for 32 steps. Using the alter-
native description of SHA-2 (Section 12.5.1) and the notion of generalized
conditions (Section 8.3.2).

i ∇Ai ∇Ei ∇Wi

-4 -------------------------------- --------------------------------

-3 -------------------------------- --------------------------------

-2 -------------------------------- --------------------------------

-1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -----------------------------x-- -----------------------------x-- -----------------------------x--

3 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

4 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

5 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

6 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

7 ????????????????---------------- ???????????????????????????????? ????????????????????????????????

8 ????????????????---------------- ???????????????????????????????? ???????????????x----------------

9 ???????????????x---------------- ???????????????????????????????? --------------------------------

10 -------------------------------- ???????????????????????????????? --------------------------------

11 -------------------------------- ????????????????---------------- --------------------------------

12 -------------------------------- ????????????????---------------- --------------------------------

13 -------------------------------- ???????????????x---------------- --------------------------------

14 -------------------------------- -------------------------------- --------------------------------

15 -------------------------------- -------------------------------- --------------------------------

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- ----x----------x----------------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

... ... ...

30 -------------------------------- -------------------------------- --------------------------------

31 -------------------------------- -------------------------------- --------------------------------
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Table A.4: Characteristic for a semi-free-start collision for 32 steps of SHA-256.

i ∇Ai ∇Ei ∇Wi

-4 -------------------------------- --------------------------------

-3 -------------------------------- --------------------------------

-2 -------------------------------- --------------------------------

-1 -------------------------------- --------------------------------

0 -------------------------------- -----------------------------0-- --------------------------------

1 --------------------------1----- --0-0---1--1----1-0-0-------011- --------------------------------

2 --------------------------0--u-- --1-1-1000-1--11101101---1--1u0- -----------------------------u--

3 10n10nnn1n0n-11n1u01u11000uu0n0n -1n1n10un0un101-n1n1n0110un0u0n0 uu-un-----un---n-u-uu-n---u--un-

4 -----n----------0---------0-1--- -0n0n1nuuun0-1u1unnnuu011n000nn1 1n---1u--uu1u-uu------nn--0n----

5 ----------------n---------1----- 0u1nn1n-1010-00001u0101-11101110 01-1-un0-1-1n-nn1u1n0-0un-0-n--n

6 -------------n--u--------u---n-- 00u01un0000000n111u00100101uu11u n----nnuu-n-nu---n--n-----------

7 -------------------------------- -n10u000u1un0101nn10n00001n000u1 1n0001un10u0nnn-01n01u10000unnnn

8 -------------------------------- -10-1n0-0--1-01-0-1-0----n011-10 ----u-------unnn----------0-----

9 ----u----------u---------------- -0--u00-1-01-1--1---1----n1---0- --------------------------------

10 -------------------------------- ---nunn------n--n--------u-u-u-- --------------------------------

11 -------------------------------- ---0-10----100--0--------1-0-0-- --------------------------------

12 -------------------------------- ---0011----011--1--------0-1-1-- --------------------------------

13 -------------------------------- ---un------unnnn---------------- --------------------------------

14 -------------------------------- ---00------00000---------------- --------------------------------

15 -------------------------------- ---11------11111---------------- --------------------------------

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- ----n----------n----------------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 -------------------------------- -------------------------------- --------------------------------

25 -------------------------------- -------------------------------- --------------------------------

26 -------------------------------- -------------------------------- --------------------------------

27 -------------------------------- -------------------------------- --------------------------------

28 -------------------------------- -------------------------------- --------------------------------

29 -------------------------------- -------------------------------- --------------------------------

30 -------------------------------- -------------------------------- --------------------------------

31 -------------------------------- -------------------------------- --------------------------------
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Table A.5: Set of conditions for the semi-free-start collision for 32 steps of SHA-256.

Step Set of conditions #

0 E0,2 = 0 1
1 A1,5 = 1, A1,2 6= A0,2, A1,0 = E1,0, E1,1 = 1, E1,2 = 1, E1,3 = 0, E1,11 = 0, E1,13 = 0, E1,15 = 1, E1,20 = 1,

E1,23 = 1, E1,27 = 0, E1,29 = 0
13

2 A2,2 = 1, A2,5 = 0, A2,0 = A1,0, A2,4 6= A1,4, A2,11 = A1,11, A2,14 6= A1,14, A2,16 = A1,16, A2,20 = A1,20,
A2,22 = A1,22, A2,24 6= A1,24, A2,25 6= A1,25, A2,26 6= A1,26, A2,29 6= A1,29, A2,23 = A2,11, A2,22 = A2,13,
A2,25 6= A2,14, E2,1 = 0, E2,2 = 1, E2,3 = 1, E2,6 = 1, E2,10 = 1, E2,11 = 0, E2,12 = 1, E2,13 = 1, E2,14 = 0,
E2,15 = 1, E2,16 = 1, E2,17 = 1, E2,20 = 1, E2,22 = 0, E2,23 = 0, E2,24 = 0, E2,25 = 1, E2,27 = 1, E2,29 = 1,
E2,5 6= E1,5, E2,21 = E2,7

40

W2,2 = 1, W2,30 6= W2,13, W2,23 6= W2,19

3 A3,0 = 0, A3,1 = 0, A3,2 = 0, A3,3 = 0, A3,4 = 1, A3,5 = 1, A3,6 = 0, A3,7 = 0, A3,8 = 0, A3,9 = 1, A3,10 = 1,
A3,11 = 1, A3,12 = 1, A3,13 = 0, A3,14 = 1, A3,15 = 1, A3,16 = 0, A3,17 = 1, A3,18 = 1, A3,20 = 0, A3,21 = 0,
A3,22 = 0, A3,23 = 1, A3,24 = 0, A3,25 = 0, A3,26 = 0, A3,27 = 0, A3,28 = 1, A3,29 = 0, A3,30 = 0, A3,31 = 1,
E3,0 = 0, E3,1 = 0, E3,2 = 0, E3,3 = 1, E3,4 = 0, E3,5 = 0, E3,6 = 1, E3,7 = 0, E3,8 = 1, E3,9 = 1, E3,10 = 0,
E3,11 = 0, E3,12 = 1, E3,13 = 0, E3,14 = 1, E3,15 = 0, E3,17 = 1, E3,18 = 0, E3,19 = 1, E3,20 = 0, E3,21 = 1,
E3,22 = 0, E3,23 = 0, E3,24 = 1, E3,25 = 0, E3,26 = 1, E3,27 = 0, E3,28 = 1, E3,29 = 0, E3,30 = 1

92

W3,1 = 0, W3,2 = 1, W3,5 = 1, W3,9 = 0, W3,11 = 1, W3,12 = 1, W3,14 = 1, W3,16 = 0, W3,20 = 0, W3,21 = 1,
W3,27 = 0, W3,28 = 1, W3,30 = 1, W3,31 = 1, W3,17 = W3,0, W3,24 6= W3,3, W3,25 = W3,4, W3,10 = W3,6,
W3,23 6= W3,6, W3,22 = W3,7, W3,24 6= W3,7, W3,23 = W3,8, W3,25 = W3,10, W3,17 = W3,13, W3,24 6= W3,13,
W3,19 = W3,15, W3,26 = W3,15, W3,22 6= W3,18, W3,29 = W3,18, W3,23 = W3,19, W3,26 = W3,22

4 A4,3 = 1, A4,5 = 0, A4,15 = 0, A4,26 = 0, A4,0 = A2,0, A4,4 6= A2,4, A4,11 = A2,11, A4,14 6= A2,14,
A4,16 6= A2,16, A4,20 = A2,20, A4,22 = A2,22, A4,24 6= A2,24, A4,29 6= A2,29, A4,17 = A4,6, E4,0 = 1, E4,1 = 0,
E4,2 = 0, E4,3 = 0, E4,4 = 0, E4,5 = 0, E4,6 = 0, E4,7 = 1, E4,8 = 1, E4,9 = 0, E4,10 = 1, E4,11 = 1,
E4,12 = 0, E4,13 = 0, E4,14 = 0, E4,15 = 1, E4,16 = 1, E4,17 = 1, E4,18 = 1, E4,20 = 0, E4,21 = 0, E4,22 = 1,
E4,23 = 1, E4,24 = 1, E4,25 = 0, E4,26 = 1, E4,27 = 0, E4,28 = 0, E4,29 = 0, E4,30 = 0, E4,19 6= A3,19

67

W4,4 = 0, W4,5 = 0, W4,8 = 0, W4,9 = 0, W4,16 = 1, W4,17 = 1, W4,19 = 1, W4,20 = 1, W4,21 = 1, W4,22 = 1,
W4,25 = 1, W4,26 = 1, W4,30 = 0, W4,31 = 1, W4,18 6= W4,1, W4,13 = W4,2, W4,23 6= W4,2, W4,10 = W4,6,
W4,11 6= W4,7, W4,23 = W4,12, W4,27 = W4,12, W4,28 = W4,13

5 A5,5 = 1, A5,15 = 0, A5,0 6= A4,0, A5,2 6= A4,2, A5,4 6= A4,4, A5,6 6= A4,6, A5,11 = A4,11, A5,14 = A4,14,
A5,16 6= A4,16, A5,18 = A4,18, A5,20 = A4,20, A5,22 = A4,22, A5,24 = A4,24, A5,25 = A4,25, A5,29 6= A4,29,
A5,26 = A5,3, A5,24 = A5,4, A5,27 6= A5,6, E5,0 = 0, E5,1 = 1, E5,2 = 1, E5,3 = 1, E5,4 = 0, E5,5 = 1,
E5,6 = 1, E5,7 = 1, E5,9 = 1, E5,10 = 0, E5,11 = 1, E5,12 = 0, E5,13 = 1, E5,14 = 1, E5,15 = 0, E5,16 = 0,
E5,17 = 0, E5,18 = 0, E5,20 = 0, E5,21 = 1, E5,22 = 0, E5,23 = 1, E5,25 = 0, E5,26 = 1, E5,27 = 0, E5,28 = 0,
E5,29 = 1, E5,30 = 1, E5,31 = 0, E1,0 = A1,0

74

W5,0 = 0, W5,3 = 0, W5,5 = 0, W5,7 = 0, W5,8 = 1, W5,9 = 0, W5,11 = 0, W5,12 = 0, W5,13 = 1, W5,14 = 1,
W5,15 = 1, W5,16 = 0, W5,17 = 0, W5,19 = 0, W5,20 = 1, W5,22 = 1, W5,24 = 0, W5,25 = 0, W5,26 = 1,
W5,28 = 1, W5,30 = 1, W5,31 = 0, W5,29 = W5,1, W5,23 = W5,2, W5,21 = W5,4, W5,29 6= W5,18

6 A6,2 = 0, A6,6 = 1, A6,15 = 1, A6,18 = 0, A6,26 = A5,26, A6,26 = A6,3, A6,24 6= A6,4, A6,27 6= A6,7,
A6,30 6= A6,9, A6,23 6= A6,11, A6,22 6= A6,13, A6,25 = A6,14, A6,26 6= A6,17, E6,0 = 1, E6,1 = 1, E6,2 = 1,
E6,3 = 1, E6,4 = 1, E6,5 = 1, E6,6 = 0, E6,7 = 1, E6,8 = 0, E6,9 = 0, E6,10 = 1, E6,11 = 0, E6,12 = 0,
E6,13 = 1, E6,14 = 1, E6,15 = 1, E6,16 = 1, E6,17 = 0, E6,18 = 0, E6,19 = 0, E6,20 = 0, E6,21 = 0, E6,22 = 0,
E6,23 = 0, E6,24 = 0, E6,25 = 0, E6,26 = 1, E6,27 = 1, E6,28 = 0, E6,29 = 1, E6,30 = 0, E6,31 = 0,

73

W6,11 = 0, W6,14 = 0, W6,18 = 1, W6,19 = 0, W6,21 = 0, W6,23 = 1, W6,24 = 1, W6,25 = 0, W6,26 = 0,
W6,31 = 0, W6,17 6= W6,0, W6,28 = W6,0, W6,22 = W6,1, W6,7 6= W6,3, W6,20 = W6,3, W6,8 6= W6,4,
W6,22 = W6,5, W6,10 = W6,6, W6,27 6= W6,6, W6,22 = W6,7, W6,28 6= W6,7, W6,12 6= W6,8, W6,29 = W6,8,
W6,13 6= W6,9, W6,30 = W6,9, W6,27 6= W6,10, W6,30 = W6,15, W6,20 6= W6,16

7 A7,2 = A5,2, A7,6 6= A5,6, A7,18 = A5,18, E7,0 = 1, E7,1 = 1, E7,2 = 0, E7,3 = 0, E7,4 = 0, E7,5 = 0, E7,6 = 1,
E7,7 = 0, E7,8 = 0, E7,9 = 0, E7,10 = 0, E7,11 = 0, E7,12 = 0, E7,13 = 1, E7,14 = 0, E7,15 = 0, E7,16 = 1,
E7,17 = 0, E7,18 = 1, E7,19 = 0, E7,20 = 0, E7,21 = 1, E7,22 = 1, E7,23 = 1, E7,24 = 0, E7,25 = 0, E7,26 = 0,
E7,27 = 1, E7,28 = 0, E7,29 = 1, E7,30 = 0

66

W7,0 = 0, W7,1 = 0, W7,2 = 0, W7,3 = 0, W7,4 = 1, W7,5 = 0, W7,6 = 0, W7,7 = 0, W7,8 = 0, W7,9 = 1,
W7,10 = 1, W7,11 = 1, W7,12 = 0, W7,13 = 0, W7,14 = 1, W7,15 = 0, W7,17 = 0, W7,18 = 0, W7,19 = 0,
W7,20 = 0, W7,21 = 1, W7,22 = 0, W7,23 = 1, W7,24 = 0, W7,25 = 1, W7,26 = 1, W7,27 = 0, W7,28 = 0,
W7,29 = 0, W7,30 = 0, W7,31 = 1, W7,16 6= E3,16

8 A8,2 = A7,2, A8,6 6= A7,6, A8,15 6= A7,15, A8,16 6= A7,16, A8,18 = A7,18, A8,27 6= A7,27, E8,0 = 0, E8,1 = 1,
E8,3 = 1, E8,4 = 1, E8,5 = 0, E8,6 = 0, E8,11 = 0, E8,13 = 1, E8,15 = 0, E8,17 = 1, E8,18 = 0, E8,20 = 1,
E8,23 = 0, E8,25 = 0, E8,26 = 0, E8,27 = 1, E8,29 = 0, E8,30 = 1, E8,12 = E8,7, E8,21 6= E8,8,

46

W8,5 = 0, W8,16 = 0, W8,17 = 0, W8,18 = 0, W8,19 = 1, W8,27 = 1, W8,0 6= A4,0, W8,1 = A4,1, W8,4 6= A4,4,
W8,21 = W8,0, W8,22 = W8,1, W8,23 6= W8,2, W8,7 6= W8,3, W8,8 6= W8,4, W8,23 6= W8,6, W8,31 6= W8,10,
W8,28 6= W8,13, W8,29 6= W8,14, W8,30 6= W8,15, W8,31 = W8,20

9 A9,16 = 1, A9,27 = 1, A9,25 = A9,5, A9,15 = A9,6, A9,18 6= A9,7, A9,28 = A9,7, E9,1 = 0, E9,5 = 1, E9,6 = 0,
E9,11 = 1, E9,15 = 1, E9,18 = 1, E9,20 = 1, E9,21 = 0, E9,23 = 1, E9,25 = 0, E9,26 = 0, E9,27 = 1, E9,30 = 0,
E9,14 6= E9,0, E9,13 6= E9,8, E9,22 = E9,9

22

10 A10,16 = A8,16, A10,27 = A8,27, E10,2 = 1, E10,4 = 1, E10,6 = 1, E10,15 = 0, E10,18 = 0, E10,25 = 0,
E10,26 = 0, E10,27 = 1, E10,28 = 0, E10,13 6= E10,0, E10,14 6= E10,0, E10,23 = E10,5, E10,20 = E10,7, E10,21 6=
E10,8, E10,22 6= E10,9, E10,23 = E10,9, E10,23 = E10,10, E10,29 = E10,10, E10,30 6= E10,12, E10,31 6= E10,13,
E10,29 6= E10,16, E10,22 6= E10,17, E10,24 = E10,19

25

11 A11,16 = A10,16, A11,27 = A10,27, E11,2 = 0, E11,4 = 0, E11,6 = 1, E11,15 = 0, E11,18 = 0, E11,19 = 0,
E11,20 = 1, E11,25 = 0, E11,26 = 1, E11,28 = 0

12

12 E12,2 = 1, E12,4 = 1, E12,6 = 0, E12,15 = 1, E12,18 = 1, E12,19 = 1, E12,20 = 0, E12,25 = 1, E12,26 = 1,
E12,27 = 0, E12,28 = 0, E12,16 6= E11,16

12

13 E13,16 = 0, E13,17 = 0, E13,18 = 0, E13,19 = 0, E13,20 = 1, E13,27 = 0, E13,28 = 1, E13,13 6= E13,0,
E13,14 = E13,0, E13,6 = E13,1, E13,14 6= E13,1, E13,15 6= E13,1, E13,15 = E13,2, E13,29 = E13,2, E13,21 6= E13,3,
E13,30 6= E13,3, E13,22 6= E13,4, E13,31 6= E13,4, E13,23 6= E13,5, E13,24 6= E13,6, E13,25 = E13,7, E13,13 6= E13,8,
E13,14 = E13,9, E13,30 = E13,11, E13,31 6= E13,12

25

14 E14,16 = 0, E14,17 = 0, E14,18 = 0, E14,19 = 0, E14,20 = 0, E14,27 = 0, E14,28 = 0 7
15 E15,16 = 1, E15,17 = 1, E15,18 = 1, E15,19 = 1, E15,20 = 1, E15,27 = 1, E15,28 = 1 7
17 W17,16 = 0, W17,27 = 0, W17,14 6= W4,15, W17,4 = W17,2, W17,29 6= W17,20 5
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Table A.6: Starting point for a collision for 27 steps of SHA-256.

i ∇Ai ∇Ei ∇Wi

-4 --------------------- ----------- --------------------------------

-3 -------------------------------- --------------------------------

-2 -------------------------------- --------------------------------

-1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -------------------------------- -------------------------------- --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- -------------------------------- --------------------------------

6 -------------------------------- -------------------------------- --------------------------------

7 ???????????????????????????????? ???????????????????????????????? ?????????????????????????????x??

8 ???????????????????????????????? ???????????????????????????????? ????????????????????????????????

9 ???????????????????????????????? ???????????????????????????????? --------------------------------

10 -------------------------------- ???????????????????????????????? --------------------------------

11 -------------------------------- ???????????????????????????????? --------------------------------

12 -------------------------------- ???????????????????????????????? ????????????????????????????????

13 -------------------------------- ???????????????????????????????? --------------------------------

14 -------------------------------- -------------------------------- --------------------------------

15 -------------------------------- -------------------------------- ????????????????????????????????

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- ????????????????????????????????

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 -------------------------------- -------------------------------- --------------------------------

25 -------------------------------- -------------------------------- --------------------------------

26 -------------------------------- -------------------------------- --------------------------------
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Table A.7: Characteristic for a collision for 27 steps of SHA-256.

i ∇Ai ∇Ei ∇Wi

-4 -------------------------------- --------------------------------

-3 -------------------------------- --------------------------------

-2 -------------------------------- --------------------------------

-1 -------------------------------- --------------------------------

0 -------------------------------- -------------------------------- --------------------------------

1 -------------------------------- -------------------------------- --------------------------------

2 -------------------------------- -------------------------------- --------------------------------

3 -------------------------------- -------------------------------- --------------------------------

4 -------------------------------- -------------------------------- --------------------------------

5 -------------------------------- ----------------1--------1------ --------------------------------

6 -------------------------------- -1--------0--0-10-1----0-0------ --------------------------------

7 -------unn--u------n---nn-uuuu-- 101-11---u10u1-0nuu-uuuu1n---n0- 00---1--un-0u-nuuuuu1-nu0n101n--

8 nnnnn-nnnn--------nuu----------- 0n0n001001u-1u1n01un010n01n00110 -----u--n---n---------nn--------

9 ----un--n--nu-------nu-u-------- -1n1n1011u011100nn100u10-10000u- --------------------------------

10 -------------------------------- u00000nuuu10uun01u00n00n110-u-u1 --------------------------------

11 -------------------------------- 0n000uuuuu01010111n-uun01n000n01 --------------------------------

12 -------------------------------- 01---1010u01u----111-010-0--110- ------110-u-------n0--u--n-n--nn

13 -------------------------------- 01-10u1nunuuu---1110-1nn11---01- --------------------------------

14 -------------------------------- -----1-01011----------00-------- --------------------------------

15 -------------------------------- -----1-001000---------11-------- 0u1-nn-n-u-1u---11un0uu10u101u0-

16 -------------------------------- -------------------------------- --------------------------------

17 -------------------------------- -------------------------------- ---0-1nnn---u-1-----10uu0-------

18 -------------------------------- -------------------------------- --------------------------------

19 -------------------------------- -------------------------------- --------------------------------

20 -------------------------------- -------------------------------- --------------------------------

21 -------------------------------- -------------------------------- --------------------------------

22 -------------------------------- -------------------------------- --------------------------------

23 -------------------------------- -------------------------------- --------------------------------

24 -------------------------------- -------------------------------- --------------------------------

25 -------------------------------- -------------------------------- --------------------------------

26 -------------------------------- -------------------------------- --------------------------------
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Table A.8: Set of conditions for the collision for 27 steps of SHA-256.

Step Set of conditions #

5 E5,6 = 1, E5,15 = 1 2
6 A6,2 = A5,2, A6,3 6= A5,3, A6,7 = A5,7, A6,8 6= A5,8, A6,19 6= A5,19, A6,22 6= A5,22, A6,23 = A5,23,

E6,6 = 0, E6,8 = 0, E6,13 = 1, E6,15 = 0, E6,16 = 1, E6,18 = 0, E6,21 = 0, E6,30 = 1, E6,2 = E5,2,
E6,9 6= E5,9, E6,14 = E5,14

18

7 A7,2 = 1, A7,3 = 1, A7,4 = 1, A7,5 = 1, A7,7 = 0, A7,8 = 0, A7,12 = 0, A7,19 = 1, A7,22 = 0,
A7,23 = 0, A7,24 = 1, A7,10 6= A7,1, A7,11 6= A6,11, A7,25 6= A6,25, A7,31 6= A7,10, A7,31 6= A7,11,
A7,25 = A7,14, A7,26 = A7,15, A7,27 = A7,16, A7,28 = A7,16, A7,28 = A7,17, A7,29 = A7,17,
A7,31 6= A7,20, E7,1 = 0, E7,2 = 0, E7,6 = 0, E7,7 = 1, E7,8 = 1, E7,9 = 1, E7,10 = 1,
E7,11 = 1, E7,13 = 1, E7,14 = 1, E7,15 = 0, E7,16 = 0, E7,18 = 1, E7,19 = 1, E7,20 = 0,
E7,21 = 1, E7,22 = 1, E7,26 = 1, E7,27 = 1, E7,29 = 1, E7,30 = 0, E7,31 = 1, E7,5 = E6,5,
E7,12 = E6,12, E7,28 = E6,28, E7,5 = E7,0, E7,23 = E7,4, E7,28 6= E7,23, W7,2 = 0, W7,3 = 1,
W7,4 = 0, W7,5 = 1, W7,6 = 0, W7,7 = 0, W7,8 = 1, W7,9 = 0, W7,11 = 1, W7,12 = 1, W7,13 = 1,
W7,14 = 1, W7,15 = 1, W7,16 = 1, W7,17 = 0, W7,19 = 1, W7,20 = 0, W7,22 = 0, W7,23 = 1,
W7,26 = 1, W7,30 = 0, W7,31 = 0, W7,21 6= W7,0, W7,18 6= W7,1, W7,29 6= W7,1, W7,21 6= W7,10,
W7,25 = W7,10, W7,29 = W7,18, W7,29 = W7,25

80

8 A8,11 = 1, A8,12 = 1, A8,13 = 0, A8,22 = 0, A8,23 = 0, A8,24 = 0, A8,25 = 0, A8,27 = 0,
A8,28 = 0, A8,29 = 0, A8,30 = 0, A8,31 = 0, A8,10 6= W12,10, A8,14 6= W12,14, A8,26 6= W12,26,
A8,19 6= A6,19, A8,10 6= A7,10, A8,20 = A7,20, A8,26 6= A7,26, A8,10 = A8,1, A8,16 6= A8,4,
A8,17 = A8,5, A8,15 6= A8,6, A8,18 = A8,6, A8,18 6= A8,7, A8,19 = A8,7, A8,20 6= A8,8, E8,0 = 0,
E8,1 = 1, E8,2 = 1, E8,3 = 0, E8,4 = 0, E8,5 = 0, E8,6 = 1, E8,7 = 0, E8,8 = 0, E8,9 = 0,
E8,10 = 1, E8,11 = 0, E8,12 = 0, E8,13 = 1, E8,14 = 1, E8,15 = 0, E8,16 = 0, E8,17 = 1, E8,18 = 1,
E8,19 = 1, E8,21 = 1, E8,22 = 1, E8,23 = 0, E8,24 = 0, E8,25 = 1, E8,26 = 0, E8,27 = 0, E8,28 = 0,
E8,29 = 0, E8,30 = 0, E8,31 = 0, W8,8 = 0, W8,9 = 0, W8,19 = 0, W8,23 = 0, W8,26 = 1,
W8,20 6= W8,5, W8,22 = W8,5, W8,27 = W8,6, W8,15 = W8,11, W8,24 6= W8,13, W8,30 6= W8,15,
W8,29 = W8,25

70

9 A9,8 = 1, A9,10 = 1, A9,11 = 0, A9,19 = 1, A9,20 = 0, A9,23 = 0, A9,26 = 0, A9,27 = 1,
A9,13 6= A7,13, A9,4 = A8,4, A9,7 6= A8,7, A9,12 6= A9,0, A9,22 6= A9,1, A9,15 6= A9,3, A9,16 6= A9,4,
A9,15 6= A9,6, A9,18 6= A9,7, A9,30 6= A9,7, A9,29 6= A9,9, A9,30 6= A9,21, A9,31 6= A9,22, E9,1 = 1,
E9,2 = 0, E9,3 = 0, E9,4 = 0, E9,5 = 0, E9,6 = 1, E9,8 = 0, E9,9 = 1, E9,10 = 1, E9,11 = 0,
E9,12 = 0, E9,13 = 1, E9,14 = 0, E9,15 = 0, E9,16 = 0, E9,17 = 0, E9,18 = 1, E9,19 = 1, E9,20 = 1,
E9,21 = 0, E9,22 = 1, E9,23 = 1, E9,24 = 1, E9,25 = 0, E9,26 = 1, E9,27 = 0, E9,28 = 1, E9,29 = 0,
E9,30 = 1

50

10 A10,8 6= A8,8, A10,10 6= A8,10, A10,19 6= A8,19, A10,20 = A8,20, A10,26 6= A8,26, A10,12 = A9,12,
A10,13 = A9,13, A10,22 = A9,22, A10,24 6= A9,24, A10,25 6= A9,25, A10,28 = A9,28, A10,29 = A9,29,
A10,30 6= A9,30, A10,31 6= A9,31, E10,0 = 1, E10,1 = 1, E10,3 = 1, E10,5 = 0, E10,6 = 1, E10,7 = 1,
E10,8 = 0, E10,9 = 0, E10,10 = 0, E10,11 = 0, E10,12 = 0, E10,13 = 0, E10,14 = 1, E10,15 = 1,
E10,16 = 0, E10,17 = 0, E10,18 = 1, E10,19 = 1, E10,20 = 0, E10,21 = 1, E10,22 = 1, E10,23 = 1,
E10,24 = 1, E10,25 = 0, E10,26 = 0, E10,27 = 0, E10,28 = 0, E10,29 = 0, E10,30 = 0, E10,31 = 1

44

11 A11,8 = A10,8, A11,10 = A10,10, A11,11 6= A10,11, A11,19 6= A10,19, A11,20 6= A10,20, A11,23 =
A10,23, A11,26 6= A10,26, A11,27 6= A10,27, E11,0 = 1, E11,1 = 0, E11,2 = 0, E11,3 = 0, E11,4 = 0,
E11,5 = 0, E11,6 = 0, E11,7 = 1, E11,8 = 0, E11,9 = 0, E11,10 = 1, E11,11 = 1, E11,13 = 0,
E11,14 = 1, E11,15 = 1, E11,16 = 1, E11,17 = 0, E11,18 = 1, E11,19 = 0, E11,20 = 1, E11,21 = 0,
E11,22 = 1, E11,23 = 1, E11,24 = 1, E11,25 = 1, E11,26 = 1, E11,27 = 0, E11,28 = 0, E11,29 = 0,
E11,30 = 0, E11,31 = 0

39

12 E12,1 = 0, E12,2 = 1, E12,3 = 1, E12,6 = 0, E12,8 = 0, E12,9 = 1, E12,10 = 0, E12,12 = 1,
E12,13 = 1, E12,14 = 1, E12,19 = 1, E12,20 = 1, E12,21 = 0, E12,22 = 1, E12,23 = 0, E12,24 = 1,
E12,25 = 0, E12,26 = 1, E12,30 = 1, E12,31 = 0, E12,11 = W12,11, E12,27 6= W12,27, E12,0 6= A8,0,
E12,5 = E12,0, W12,0 = 0, W12,1 = 0, W12,4 = 0, W12,6 = 0, W12,9 = 1, W12,12 = 0, W12,13 = 0,
W12,21 = 1, W12,23 = 0, W12,24 = 1, W12,25 = 1

35

13 E13,1 = 1, E13,2 = 0, E13,6 = 1, E13,7 = 1, E13,8 = 0, E13,9 = 0, E13,10 = 1, E13,12 = 0,
E13,13 = 1, E13,14 = 1, E13,15 = 1, E13,19 = 1, E13,20 = 1, E13,21 = 1, E13,22 = 0, E13,23 = 1,
E13,24 = 0, E13,25 = 1, E13,26 = 1, E13,27 = 0, E13,28 = 1, E13,30 = 1, E13,31 = 0, E13,5 = E13,0,
E13,17 = E13,4, E13,18 = E13,5, E13,29 = E13,11

27

14 E14,8 = 0, E14,9 = 0, E14,20 = 1, E14,21 = 1, E14,22 = 0, E14,23 = 1, E14,24 = 0, E14,26 = 1 8
15 E15,8 = 1, E15,9 = 1, E15,19 = 0, E15,20 = 0, E15,21 = 0, E15,22 = 1, E15,23 = 0, E15,24 = 0,

E15,26 = 1, W15,1 = 0, W15,2 = 1, W15,3 = 1, W15,4 = 0, W15,5 = 1, W15,6 = 1, W15,7 = 0,
W15,8 = 1, W15,9 = 1, W15,10 = 1, W15,11 = 0, W15,12 = 0, W15,13 = 1, W15,14 = 1, W15,15 = 1,
W15,19 = 1, W15,20 = 1, W15,22 = 1, W15,24 = 0, W15,26 = 0, W15,27 = 0, W15,29 = 1, W15,30 = 1,
W15,31 = 0, W15,23 6= W15,0, W15,25 6= W15,0, W15,25 = W15,18, W15,28 6= W15,21

37

17 W17,7 = 0, W17,8 = 1, W17,9 = 1, W17,10 = 0, W17,11 = 1, W17,17 = 1, W17,19 = 1, W17,23 = 0,
W17,24 = 0, W17,25 = 0, W17,26 = 1, W17,28 = 0, W17,2 6= W17,0, W17,30 = W17,0, W17,31 = W17,1,
W17,31 = W17,6, W17,21 = W17,12, W17,21 = W17,14, W17,22 = W17,15, W17,27 6= W17,18

20
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Block Ciphers Sensitive to Gröbner Basis Attacks. In David
Pointcheval, editor, CT-RSA, volume 3860 of Lecture Notes in
Computer Science, pages 313–331. Springer, 2006.

[BR93] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical:
A Paradigm for Designing Efficient Protocols. In ACM Conference
on Computer and Communications Security, pages 62–73, 1993.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box
Analysis of the Block-Cipher-Based Hash-Function Constructions
from PGV. In Moti Yung, editor, CRYPTO, volume 2442 of Lecture
Notes in Computer Science, pages 320–335. Springer, 2002.

[BS92] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Full
16-Round DES. In Ernest F. Brickell, editor, CRYPTO, volume
740 of LNCS, pages 487–496. Springer, 1992.

[Can06] Christophe De Cannière. Trivium: A Stream Cipher Construction
Inspired by Block Cipher Design Principles. In Sokratis K. Kat-
sikas, Javier Lopez, Michael Backes, Stefanos Gritzalis, and Bart
Preneel, editors, ISC, volume 4176 of Lecture Notes in Computer
Science, pages 171–186. Springer, 2006.

[CB07] Nicolas Courtois and Gregory V. Bard. Algebraic Cryptanalysis
of the Data Encryption Standard. In Steven D. Galbraith, editor,
IMA Int. Conf., volume 4887 of Lecture Notes in Computer Science,
pages 152–169. Springer, 2007.

[CC98] Anne Canteaut and Florent Chabaud. A New Algorithm for
Finding Minimum-Weight Words in a Linear Code: Application
to McEliece’s Cryptosystem and to Narrow-Sense BCH Codes of
Length 511. IEEE Transactions on Information Theory, 44(1):367–
378, 1998.



186 Bibliography

[Cha94] Florent Chabaud. On the Security of Some Cryptosystems Based
on Error-Correcting Codes. In Alfredo De Santis, editor, EURO-
CRYPT, volume 950 of LNCS, pages 131–139. Springer, 1994.

[CJ98] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-
0. In Hugo Krawczyk, editor, CRYPTO, volume 1462 of LNCS,
pages 56–71. Springer, 1998.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi
Shamir. Efficient Algorithms for Solving Overdefined Systems of
Multivariate Polynomial Equations. In Bart Preneel, editor, EU-
ROCRYPT, volume 1807 of Lecture Notes in Computer Science,
pages 392–407. Springer, 2000.

[CL96] Thomas F. Coleman and Yuying Li. An Interior Trust Region
Approach for Nonlinear Minimization Subject to Bounds. SIAM J.
Optim., 6(2):418–445, 1996.

[CLO07] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and
Algorithms. Undergraduate Texts in Mathematics. Springer, New
York, third edition, 2007. An Introduction to Computational Al-
gebraic Geometry and Commutative Algebra.

[CM03] Nicolas Courtois and Willi Meier. Algebraic Attacks on Stream Ci-
phers with Linear Feedback. In Eli Biham, editor, EUROCRYPT,
volume 2656 of Lecture Notes in Computer Science, pages 345–359.
Springer, 2003.

[CN08] Donghoon Chang and Mridul Nandi. Improved Indifferentiability
Security Analysis of chopMD Hash Function. In Kaisa Nyberg,
editor, FSE, volume 5086 of LNCS, pages 429–443. Springer, 2008.

[CNO08] Nicolas Courtois, Karsten Nohl, and Sean O’Neil. Algebraic At-
tacks on the Crypto-1 Stream Cipher in MiFare Classic and Oyster
Cards. IACR Cryptology ePrint Archive, 2008:166, 2008.

[CP02] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of Block Ci-
phers with Overdefined Systems of Equations. In Yuliang Zheng,
editor, ASIACRYPT, volume 2501 of Lecture Notes in Computer
Science, pages 267–287. Springer, 2002.

[CPSY06] Hong-Su Cho, Sangwoo Park, Soo Hak Sung, and Aaram Yun.
Collision Search Attack for 53-Step HAS-160. In Min Surp Rhee
and Byoungcheon Lee, editors, ICISC, volume 4296 of LNCS, pages
286–295. Springer, 2006.

[Dam89] Ivan Damg̊ard. A Design Principle for Hash Functions. In Gilles
Brassard, editor, CRYPTO, volume 435 of LNCS, pages 416–427.
Springer, 1989.



Bibliography 187

[Dau05] Magnus Daum. Cryptanalysis of Hash Functions of the MD4-
Family. PhD thesis, Ruhr-Universität Bochum, May 2005. Avail-
able online: http://www.cits.rub.de/imperia/md/content/magnus/

dissmd4.pdf.

[Deu04] Peter Deuflhard. Newton Methods for Nonlinear Problems, vol-
ume 35 of Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, 2004. Affine invariance and adaptive algorithms.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A
Machine Program for Theorem-Proving. Commun. ACM, 5(7):394–
397, 1962.

[DMR07] Christophe De Cannière, Florian Mendel, and Christian Rech-
berger. Collisions for 70-Step SHA-1: On the Full Cost of Collision
Search. In Carlisle M. Adams, Ali Miri, and Michael J. Wiener, ed-
itors, Selected Areas in Cryptography, volume 4876 of LNCS, pages
56–73. Springer, 2007.

[Dob97] Hans Dobbertin. RIPEMD with Two-Round Compress Function is
Not Collision-Free. J. Cryptology, 10(1):51–70, 1997.

[Dob98] Hans Dobbertin. Cryptanalysis of MD4. J. Cryptology, 11(4):253–
271, 1998.

[DP92] Peter Deuflhard and Florian A. Potra. Asymptotic Mesh Indepen-
dence of Newton-Galerkin Methods via a Refined Mysovskĭı Theo-
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ferential Attacks on Reduced RIPEMD-160. In ISC 2012 - Information
Security Conference, 2012. In press

2. Florian Mendel, Tomislav Nad, and Martin Schläffer. Collision Attacks on
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