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Kurzfassung

Das kardiale elektrische Nahfeld (CNF) ist ein zeitvariantes elektrisches Feld, das sich
aus Potentialdifferenzen an der Herzoberfläche ergibt. Diese Potentialdifferenzen entste-
hen durch die elektrische Erregung des darunter liegenden Gewebes. Extrazelluläre Po-
tentialdifferenzen, nahe der Herzoberfläche mit hoher räumlicher und zeitlicher Auflösung
gemessen, sogenannte CNF-Signale, ermöglichen die Charakterisierung des Erregungsmus-
ters. Damit können Regionen mit mikrostrukturellen Heterogenitäten, welche potentielle
Substrate für die Entstehung von Herzrhythmusstörungen darstellen, identifiziert wer-
den. Das Ziel dieser Arbeit ist die Charakterisierung lokaler Erregungsausbreitung an-
hand der Analyse von CNF-Signalen, die in elektrophysiologischen in-vitro Experimenten
mit Herzpräparaten aufgenommen werden. Spezielles Augenmerk wird auf die Analyse
fraktionierter CNF-Signale gelegt, welche auf heterogene Struktur des darunter liegenden
Herzgewebes hindeuten. Algorithmen für die Analyse von CNF-Signalen werden mithilfe
von Signalverläufen aus Computersimulationen von virtuellem Herzgewebe entwickelt. Um
deren Robustheit zu testen, wird Rauschen mit der gleichen Charakteristik wie unter ex-
perimentellen Bedingungen hinzugefügt. Die wichtigsten Ergebnisse sind die zuverlässige
Berechnung der lokalen Ausbreitungsgeschwindigkeit, die Einführung eines quantitativen
Maßes für die Fraktionierung von CNF-Signalen und die Zerlegung fraktionierter Signale
in nichtfraktionierte Komponenten. Abschließend wird ein neuartiger Ansatz zur Klassifi-
kation von kardialer Fibrose basierend auf der Analyse von CNF-Signalen präsentiert.





Abstract

The cardiac electric near field (CNF) is a time-varying electric field formed by potential
differences at the surface of the heart muscle, which result from the sequence of electrical
activation in the underlying tissue. Extracellular potentials measured close to the surface
of the heart tissue with high spatial and temporal resolution, termed CNF signals, en-
able characterizing the pattern of activation. This may allow the identification of regions
containing microstructural heterogeneities which are seen as potential substrates for the
genesis of arrhythmias. The aim of this work is the characterization of local propagation of
activation by analysis of CNF signals recorded during electrophysiological in-vitro experi-
ments with heart preparations. Special emphasis is placed on the analysis of fractionated
CNF signals which are attributed to heterogeneous structure in the underlying heart tis-
sue. Algorithms for the processing of CNF signals are developed using waveforms obtained
from computer simulations of virtual heart tissue. To test their robustness, noise of the
same characteristics as observed under experimental conditions was added. The main
findings are the reliable computation of local conduction velocity, the introduction of a
quantitative measure of CNF signal fractionation, and the decomposition of fractionated
signals into nonfractionated components. Moreover, a novel approach to the classification
of cardiac fibrosis through the analysis of CNF signals is presented.
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Chapter 1

Introduction

1.1 Motivation

Cardiac arrhythmias are widespread life-threatening diseases and their prevalence is ex-
pected to increase with increasing life expectancy. They arise from impaired generation
of electrical activation or disturbances in its propagation through the heart muscle. In-
creased heterogeneity in the microscopic structure of the heart muscle causes complex
local propagation which promotes arrhythmogenesis. The study of microscopic propaga-
tion of electrical activation in the heart muscle (micropropagation) has therefore been an
important topic in basic research and is very likely to get increased importance in clinical
application.

One approach to the investigation of micropropagation is the measurement and analy-
sis of extracellular potentials acquired in the electric field close to the surface of the heart,
the so-called cardiac electric near field (CNF). Computer simulation studies have demon-
strated that these CNF signals can provide information about the micropropagation in
the tissue beneath the recording point.

The aim of this work is to examine and characterize micropropagation through CNF
signals recorded during electrophysiological in-vitro experiments with heart preparations.

1.2 Overview of the Following Chapters

The work is divided into two parts. Part I comprises the electrophysiological and technical
background of the analysis of cardiac near field signals and the description of experimental
and computer simulation setups.
In Chapter 2, the electrophysiological background of cardiac activation and its propagation
across the heart muscle is outlined. Methods for measurement and computer simulation

1



2 CHAPTER 1. INTRODUCTION

of cardiac impulse propagation are presented.
A description of origin and properties of CNF signals is given in Chapter 3. Parameters
extracted from CNF signals are specified and the class of fractionated local electrograms
is introduced.
Chapter 4 gives a description of the experimental setup and applied methods.
Based on the state-of-the-art in cardiac near field technique, aims of this work are specified
in Chapter 5.

In Part II, the performed studies on analysis of CNF signals are specified. This Part
is divided into Introduction (Chapter 6), Methods (Chapter 7), Results (Chapter 8), and
Discussion (Chapter 9).
The last Chapter (10) summarizes the main findings and gives an outlook on possible
further research in this field.



Part I

Background
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Chapter 2

Propagation of Activation in

Myocardium

This Chapter gives an overview of basic principles of cardiac electrophysiology and in-
troduces electrophysiological terms used throughout this work. First, it is described how
cardiac muscle cells are electrically activated and how this activation propagates across
the heart muscle (myocardium). Electrical signals which represent these processes are
introduced and methods to measure them are presented and compared. Finally, it is
shown how computer models are being utilized to simulate cardiac activation and impulse
propagation.

2.1 Cardiac Activation and Impulse Propagation

The contraction of a heart muscle cell (cardiomyocyte) is triggered by an electrical im-
pulse1. The propagation of this activation and the following contraction and recovery of
the cardiomyocytes in a controlled sequence results in the pumping function of the heart.
A normal heart beat is initiated in the sinoatrial node, the primary pacemaker area lo-
cated in the right atrium2. The impulse spreads from cell-to-cell activating the working
myocytes of the atria and is conducted via the atrioventricular node3 and the specialized
cardiac conduction system to the ventricles from where the activation propagates across
the working myocytes of the ventricles. The specialized cardiac conduction system con-
sists of the His-bundles and the Purkinje fibers which ensure the fast conduction of the

1In electrophysiological literature, the transient alteration in transmembrane voltage (see Figure 2.1) is

referred to as impulse.
2Recent anatomical and electrophysiological studies have proven that the sinoatrial node is a rather

elongated area spreading across the terminal crest. [1, 2, 3].
3The atrioventricular node is the only electrical connection between atria and ventricles. There, the

impulse propagation is delayed to allow the contraction of the atria to fill the ventricles with blood.

Furthermore, the frequency of ventricular activation in case of atrial arrhythmias is limited.

5



6 CHAPTER 2. PROPAGATION OF ACTIVATION IN MYOCARDIUM

activation impulse to many locations in the ventricles. Then the activation spreads across
the working myocardium from cell-to-cell.

2.1.1 Activation of a Single Cardiomyocyte

The heart consists of the following types of excitable myocytes: working muscle cells,
specialized conduction cells, and pacemaker cells. Cardiac myocytes have an elongated
cylindric shape with a length of 50-120µm and a diameter of approximately 5-25µm. The
size of the cells varies for different regions of the heart but the length-to-width ratio of
about 5 is fairly constant [4]. Each cardiomyocyte is enclosed by a phospholipid bilayer
membrane which electrically separates the inside from the outside of the cell. The mem-
brane can electrically be considered as a parallel plate capacitor with only about 75 Å
distance between the plates and hence a high capacitance of approximately 1µF/cm2 [5].
The intracellular (cytoplasm) and extracellular fluids contain ions at different concentra-
tions. For each ion type, the concentration gradient from higher to lower ion concentration
causes a diffusion force. The difference between extracellular and intracellular ion charge
causes a transmembrane voltage Vm across the charge separating membrane capacitor.
The sum of these two forces is called electrochemical potential gradient [6, p.13]. The cell
membrane contains proteins which form ionic channels and ionic pumps. Ionic channels
can be considered as leaks through which ions can pass the membrane down their concen-
tration gradient, whereas ionic pumps continuously transform metabolic energy to pass
ions against their concentration gradient through the membrane and thus maintain the
concentration differences that allow activation to occur. The types of ions that carry most
of the current flow across cardiac cell membranes are sodium (Na+), calcium (Ca2+),
potassium (K+), and chloride (Cl−) [6, p.10]. Ionic channels can switch their state be-
tween open and closed. The process of change of the channel state, called channel gating,
can depend on the transmembrane voltage (voltage-gated), the binding of chemical mes-
sengers (ligand-gated) [7, p.160ff.], or mechanical properties (stretch activated) [8]. Most
of the ionic channels are selectively permeable to one single type of ions. The probability
of open channels for a certain ion type is represented by an electrical conductivity. Ionic
currents are classified depending on ion type, channel-gating, and properties concerning
the respective conductivity dependent on time (slow vs. fast channels) or voltage (e.g.
rectification). The properties of ionic channels and pumps as well as of transmembrane
ionic currents have extensively been studied. Mathematical models representing the mem-
brane kinetics have been introduced and consequently refined to reflect physiological and
pathophysiological behavior of cardiac myocytes (see Section 2.3).
The value and time course of the transmembrane voltage Vm reflect the activation state
of a cardiomyocyte.
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Resting Potential

In the absence of electrical activation the value of Vm is termed resting potential 4 (RP).
The resting potential of a cardiac myocyte is approximately RP = −90 mV 5.

To trigger the activation of a cardiomyocyte, its transmembrane voltage needs to be el-
evated above the specific threshold level which is about Vmth

= −60 to −75 mV in working
myocytes and about Vmth

= −40 to −60 mV in pacemaker cells of the sinoatrial and atri-
oventricular nodes [10]. In pacemaker cells this happens spontaneously, working myocytes
are activated due to propagated activation from a neighboring cell or by artificial electri-
cal stimulation. The complicated interaction between electrochemical potential gradient
and channel gating generates a characteristic transient alteration in Vm, termed action
potential (AP).

Cardiac Action Potential

Plateau

Repolarization

Resting potential

Overshoot

U
p

s
tr

o
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e

Activation

-85

0

40

0 50 100 150 200 250 300 350
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Figure 2.1: Action potential of a ventricular myocardial cell generated with the Mahajan-Shiferaw
membrane kinetics model [11]. Provided by F. Campos (Medical University of Graz, Institute of
Biophysics, 2011).

Figure 2.1 shows the action potential Vm(t) of a ventricular myocardial cell as a func-
4In electrophysiological literature, the term ”potential” is often used without definition of the reference

potential. In case of the ”resting potential” it means the transmembrane voltage, in case of the ”action

potential” it means the transient alteration of transmembrane voltage over time. To stay consistent with

literature, this physically incorrect nomenclature is adopted throughout this work.
5This value roughly corresponds to the Nernst potential of potassium, because at rest the membrane is

mainly permeable to potassium. More accurately, the RP can be determined using the Goldman-Hodgkin-

Katz equation which takes other ion types into consideration [9, p.106].
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tion of time. Starting from the resting potential of about Vm = −90 mV, an upstroke
reaching a peak of approximately Vm = +40 mV characterizes the short depolarization
phase with a duration of ∆t0 < 1 ms. In most6 excitable heart muscle cells, the depo-
larization is generated by an inflow of sodium ions [6, p.43]. After the overshoot, the
depolarization phase abruptly ends because of the closure of the sodium channels. Vm

slowly approaches zero during the relatively long plateau phase, before it falls back on
the resting potential during the repolarization phase. The time interval from the onset of
the depolarization phase and the return of Vm to the resting potential7 is termed action
potential duration (APD).

The shape of the AP considerably differs for myocytes from different regions in the
heart as well as for different species [12]. AP’s of atrial myocytes in general show a shorter
plateau phase and a reduced APD compared to those of ventricular myocytes.

During a certain phase within the activation process a myocardial cell is unreceptive to
new stimulation. This refractory time prevents from reentrant activation waves within the
heart8. In healthy myocardium there is a close temporal relationship between refractory
time and APD. Hence, APD may be used as estimate of refractory time, and vice versa [13].

2.1.2 Propagation of Activation

Each heart muscle cell is connected to several neighboring cells (on average 6 in the
terminal crest9 in the right atrium, 11 in the left ventricle [4]). The voltage gradient from
an activated to a quiescent neighboring cell causes a current via low electrical resistance
channels, so-called gap junctions. The local current circuit is closed through the low
resistance in the extracellular space, the so-called volume conductor. A constriction of the
volume conductor results in impaired or terminated propagation of activation [15].
The passage of the electrical activation from cell-to-cell across the myocardium is often
described as propagating depolarization wavefront10.

6In some parts of the heart, e.g. the atrioventricular node, calcium currents are mainly responsible for

the depolarization process [6, p.43].
7Due to the fact that the exact instant of the return of Vm to the resting potential is difficult to identify,

the APD is commonly determined from the onset of the depolarization phase to the time when Vm reaches

90 % of its resting value.
8It should be noted that the refractory time is subdivided into an absolute and a relative refractory

time. During the latter one, the cell may be activated but the threshold voltage is elevated.
9The terminal crest (Crista terminalis) is a significant fiber bundle in the right atrium [14].

10In contrast to the depolarization, the repolarization of cardiac tissue is not a propagation phenomenon

but takes place spontaneously in each cell. Nevertheless, the term ”repolarization wave” is used.
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Anisotropy of Cardiac Propagation

Propagation of activation in myocardium is generally anisotropic, i.e. the conduction ve-
locity11 along the fiber axis is higher than transverse to the axis. The anisotropy ratio, i.e.
the ratio between longitudinal and transversal conduction velocity, is between 3:1 in the
ventricles and 10:1 in the terminal crest [16]. This anisotropy has two major reasons [17].

1) Cell geometry: As mentioned in Section 2.1.1, cells have elongated shape and the
resistance of the cytoplasm is lower than the resistance of the gap junctions [18].

2) Gap junction distribution: The gap junctions are not uniformly distributed around
a cell. In left ventricular cells of adult dogs, about 50 %, in the terminal crest about
80 % of the gap junctions are on the frontal side of the cell [4].

Like ion channel conductivity (see Section 2.1.1), gap junction conductivity can be mod-
ulated [19]. The reduction of gap junction conductivity stronger affects transversal con-
duction velocity and increases the anisotropy ratio [20].

Due to the anisotropy in the electrical properties of the myocardium, a propagating
activation wavefront which originates from a point-like stimulus has an elliptic shape.

2.1.3 Continuity of Propagation

From a macroscopic point of view, the propagation of electrical activation in homogeneous
heart tissue is continuous, albeit anisotropic. In the following, the propagation is examined
in different size scales, namely subcellular, microscopic, and macroscopic. Subcellular
propagation refers to dimensions smaller than the size of a single cardiomyocyte (about
100µm), dimensions below the spatial extent of the upstroke of the action potential (0.25−
1 mm) are called microscopic, otherwise macroscopic [21].

Macroscopic Propagation

In the macroscopic view, the course of impulse propagation is determined by the gross
anatomy of the myocardium. Infarcted tissue or large vessels are obstacles which force the
propagating activation wave to change its pathway.

In order to mathematically describe impulse propagation in myocardium, the tissue
was represented as electrical syncytium12. Its resistance and capacitance were expressed

11Conduction velocity is attributed to the active propagation process in contrast to passive so-called

electrotonic electric conduction. To stay consistent with electrophysiological literature, this notation has

been adopted.
12The heart muscle is seen as a functional syncytium, a network of cells. The contraction follows the

”all-or-nothing” principle, i.e. if one cell is activated all the others are activated.
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per unit length as lumped parameters. The obtained cable equations13 introduced a rela-
tion between tissue geometry, ionic currents, and transmembrane voltage in a continuous
cable-like fiber structure. It was demonstrated that according to experimental results the
conduction velocity is proportional to the square root of the fiber diameter and to the
square root of the maximum uprise in transmembrane voltage [6, p.32],[22],[23].

The cable theory (partially) succeeded in explaining macroscopic electric properties of
propagation in well-defined tissue structures like the cylindrical papillary muscle [16] and
was extended to model two-dimensional tissues with anisotropic properties [24].

Extensive experimental studies, however, have revealed that the continuous descrip-
tion is an oversimplification of reality. Spach et al. observed, contrary to the cable theory,
faster action potential upstroke velocity in slower transversal propagation in comparison
to longitudinal propagation [25]. The explanation for this phenomenon was that the tis-
sue consists of low resistance cytoplasm and high resistance cell-to-cell connections which
could not be interpreted by the lumped parameters in the cable equations. Kléber et al.
demonstrated the limits of the cable theory in case of increased cell-to-cell uncoupling [26].
Therefore, even in macroscopically continuous tissue the discontinuous nature of the my-
ocardial microstructure has effects on the macroscopic impulse propagation, which cannot
be explained by the continuous cable theory. Especially the research of cardiac arrhyth-
mogenesis requires taking the microscopic propagation into account.

Microscopic Propagation

The propagation of activation in cardiac tissue is influenced by heterogeneities in mi-
crostructure and dispersion of gap junctions. Such microstructural heterogeneities may
cause a change in activation source-sink relation, i.e. the number of downstream cells to
depolarize is decreased or increased. The first case occurs at tissue boundaries where cur-
rent flow is disabled, which influences the shape of the action potential [27]. The opposite
case is given at a tissue expansion, as for instance at a fiber branching, where the enhanced
number of downstream cells causes a reduction in conduction velocity or even a conduction
block [28]. In this case, the impulse propagation terminates because the initiating cell may
not furnish enough current to depolarize the downstream cells.
Microscopic propagation is furthermore impaired by fibrosis14. The connective tissue em-
bedded between cardiomyocytes forms microstructural obstacles for the propagation of
electrical activation. These obstacles usually have elongated shape and dimensions in cell
size range.

13The underlying equations are commonly known as telegraph equations. In electrophysiological literature

the telegraph equations describing the continuous impulse propagation along a cable-like muscle fiber are

denoted as ”cable equations”.
14Cardiac fibrosis denotes the increased fraction of connective tissue between cardiomyocytes. Fibrosis

is caused by aging or diseases by reorganization of cardiomyocytes [29].
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Depending on their density and distribution, these obstacles may form constrictions or
complex pathways for the impulse propagation. Whereas the former may cause unbalanced
source-sink relation, the latter may result in wavefront collisions and tedious course of
propagation. In a macroscopic view, substantial delays in activation and a reduction in
conduction velocity can be observed.

Reduced conduction velocity and (unidirectional) conduction block are major factors
for reentry15 and, as a consequence, arrhythmias [16].
Cardiac diseases often lead to a modification of tissue function and structure, called re-
modeling, which in turn favors arrhythmogenesis.

Subcellular Propagation

At a subcellular size scale, the propagation of activation is inherently discontinuous, be-
cause the cardiac tissue is a network of discrete muscle cells with different electrical prop-
erties of cytoplasm and gap junctions. Apart from that, conduction properties are not
continuous within a heart muscle cell but depend on the dispersion of gap junctions and
the activation sequence. Computer simulation studies [30] as well as experimental studies
using optical mapping in single cardiomyocytes [31, 32] and cell cultures [33, 34] have
demonstrated the heterogeneity of impulse propagation in a subcellular range.

2.1.4 Extracellular Electrical Signals

As described in Section 2.1.2 the propagation of activation in myocardium involves local
current flow through the volume conductor in the extracellular space. Hence, the tissue
can be considered as current source. The extracellular electric potential at a point of
observation is related to the subjacent source currents as follows: For a set of source
points xs within the surface area ΓT of the tissue, the extracellular potential Φe at the
point of observation xf is given as

Φe(xf , t) =
1

4πσe

∫
ΓT

Im(xs, t)
rsf

dΓT , (2.1)

where σe is the conductivity of the volume conductor16, and rsf is the geometric
distance between source and field points. Equation 2.1 states that the waveform of the
extracellular potential is affected by the waveforms of the current sources and their distance
to the point of observation. In other words, the volume conductor acts as a spatial lowpass
and temporal averaging filter for electric current. Extracellular electrical signals, denoted
electrograms, therefore reflect the electrical activation of cells in the adjacencies of the
measurement position.

15In normal cardiac activation, the refractoriness of the cardiac tissue prevents a given site from being

repeatedly activated by single impulse. In pathological settings, the activation wave can reenter and

reactivate this site in repetitive cycles. This mechanism is termed reentry [16].
16It is assumed that the volume conductor has infinite extent and its conductivity σe is continuous and

anisotropic.
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2.2 Measurement of Cardiac Activation

Depending on the purpose of the study, the species and type of preparation, the extent
of the area under investigation, the spatial and temporal resolution, and the experimental
or clinical environment, a variety of different measurement techniques are being used to
measure cardiac electrical activation and its propagation across the heart tissue. After
a description of the different measurement techniques, methods for cardiac activation
mapping, i.e. specifying the spatial and temporal sequence of electrical activation, in in-
vitro experiments with cardiac tissue preparations or isolated entire hearts are presented.
A brief insight into clinical mapping systems is given at the end of the Section.

2.2.1 Measurement Techniques of Cardiac Activation

Transmembrane Measurement of Cardiac Activation

The action potential of a cardiomyocyte can be detected by directly measuring the poten-
tial difference across the cell membrane with an extracellular electrode and an intracellular
electrode inserted into the tissue. As intracellular electrode for cardiomyocytes microelec-
trodes consisting of a glass micropipet filled with an electrolyte [35] are used. The reference
electrode is placed on the outside of the investigated cell closely to the inserted microelec-
trode.
Transmembrane measurements allow the direct determination of the AP, but usually dam-
age the tissue under investigation. The fine electrode tips are hardly durable and parallel
measurements at multiple positions are a laborious task.
The advantage of this method is that the course of the AP as well as absolute values of
Vm can be determined.

Optical Measurement of Cardiac Activation

The preparation is stained with a voltage-sensitive dye17 which binds to the cell membrane
and changes its optical properties (e.g. fluorescence) due to the changes of the membrane
potential. These transient changes can be measured by means of optical color sensors [37].
Drawbacks of optical techniques are the low signal-to-noise ratio of the overall measure-
ment system and the photo-toxicity of the applied dye substances which may affect the
impulse propagation [38, 36]. Because optical mapping methods are contact free, the
mechanical movement of the tissue due to the contraction leads to artifacts in the mea-
sured signals. In order to study repolarization, substances blocking the contraction are
used, which in turn have effects on the activation pattern [39, 40]. Moreover, the optical
recording does not represent the action potential of a single cell but rather the sum of

17In optical measurement of cardiac activation, the ANEP (AminoNaphtylEthenylPyridinium) sub-

stances di-4-ANEPPS and di-8-ANEPPS, respectively, are predominantly used [36].
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action potentials in the adjacency of the measurement site. This phenomenon is caused
by photon scattering effects [41]. To obtain the absolute value of the membrane resting
potential, a reference measurement by a transmembrane microelectrode is required [42].

Extracellular Measurement of Cardiac Activation

Extracellular electrograms (see Section 2.1.4) may be determined by means of so-called
unipolar or bipolar electrode setups in the volume conductor surrounding the cardiac tis-
sue. Unipolar methods measure the potential difference of an electrode with respect to a
distant reference electrode. In case of bipolar methods, the voltage between two closely
spaced electrodes is considered [43].
Each type of measurement has advantages over the other: Unipolar methods are less sen-
sitive to the direction of impulse propagation than bipolar methods. The bipolar setup
fails to detect activation when a wavefront reaches both electrodes simultaneously. Bipo-
lar measurements, in turn, are less sensitive to other local and distant activation events
which superimpose within the volume conductor. A quadrupolar setup consisting of two
orthogonal bipolar measurements is described in detail in Chapter 3.
It should be noted that no direct mechanical contact between the electrode and the tissue
is required. In contrast to transmembrane voltages, extracellular signals are weaker in
amplitude and more variable in wave shape.

Measurement of Monophasic Action Potentials

A monophasic action potential (MAP) is an extracellular potential waveform whose shape
is similar to the shape of a transmembrane voltage. MAP’s are measured between two
extracellular electrodes one of which is placed at a permanently depolarized site on the
tissue. In the past, such a permanently depolarized site was obtained by injury. In
contemporary MAP measurement systems, a contact electrode is either pressed against
the tissue surface [44], or a syringe needle filled with KCl is slightly inserted into the
tissue [45]. The two electrodes usually have a diameter of 1 − 2 mm and are separated
by about 5 mm, which is on one hand distant enough to ensure that the non-contact
electrode is outside the permanently depolarized area, and on the other hand close enough
to minimize far field influence on the recorded signal [44].

MAP measurements are used in clinical application because they allow the estimation
of the action potential duration without damaging the tissue. Simultaneous measurements
at several positions are possible. Although the shape of the MAP is fairly similar to
the shape of the AP, upstroke velocities during the depolarization phase and absolute
potential values are not comparable. The locality of the measured waveform is limited to
several millimeters. Moreover, MAP’s often show an additional deflection in the upstroke.
Unstable electrode contact due to the movement of the beating heart causes artifacts which
may be misinterpreted [44].
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Experimental and computer simulation studies have compared shapes of AP and MAP.
In case of a good signal quality, the MAP can estimate action potential duration with high
fidelity [44, 46]. Nevertheless, the mechanisms which lead to MAP’s are still not completely
clear [45, 47, 48].

2.2.2 Cardiac Activation Mapping

In order to specify the cardiac activation sequence, multisite recordings are required. This
can be obtained by multiple simultaneous recordings or by time serial mapping. The latter
supposes stability of the activation pattern during the recording procedure.

Optical Mapping Systems

Optical mapping methods are applied to cardiac preparations to investigate propagation
phenomena from subcellular to organ level [49].
Optical mapping allows the specification of global activation and is thus well-suited for
the investigation of arrhythmias. Moreover, the measurement systems are hardly affected
by the presence of external electric fields, allowing cardiac activation mapping even during
defibrillation18.

Extracellular Mapping Systems

In order to study the pattern of activation at the surface of cardiac tissue preparations,
sensors consisting of arrays of multiple wire electrodes (up to several hundreds) have been
constructed [50]. For inter-electrode distances of less than 100µm thin-film technique on
rigid or flexible substrates was used [51, 52].
Despite the small inter-electrode distances, the multitude of electrodes and the space
required for their wiring make the entire sensor bulky. It is not feasible to adjust the plane
sensor plaque to the complex topology of the tissue in a way that all electrodes maintain
equal distance to the surface of the tissue. Moreover, the sensor may impair the spread
of activation across the tissue by obstructing the volume conductor at the surface of the
tissue. Besides, the measurement, acquisition, and visualization systems for these types
of sensors are complex [53].
A different approach is time serial mapping using microminiature, flexible sensors which
allow accessing any point of interest even in tissue with complex anatomical structure [54].

18Defibrillation means the application of an electric current to the heart tissue in order to terminate

arrhythmia.
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Clinical Mapping Systems

Clinical mapping systems are predominantly used in the treatment of atrial arrhythmias by
catheter ablation19 [55]. State-of-the-art clinical mapping systems consist of a catheter sys-
tem for intracardiac recording in combination with an anatomical navigation system [56].
Intracardiac electrograms are commonly recorded by means of circular mapping catheters
with a variable diameter of 15 . . . 20 mm comprising 10-20 electrodes [57].

2.3 Computer Simulation of Cardiac Activation

Computer simulation has become an indispensable tool to study electrophysiological phe-
nomena in the healthy and diseased heart. In contrast to experimental studies, all relevant
parameters can be controlled and observed with high accuracy, and the resulting signals are
free of noise. Nevertheless, computer models of cardiac activation are simplifications of the
real propagation phenomena. Moreover, they need to be validated through experiments.

Two components contribute to the simulation of cardiac electric activation. First,
a model of cellular membrane dynamics which describes the flow of ions across the cell
membrane, and second, a tissue model which combines cells and environment to a virtual
tissue.
Computer models of single cardiomyocytes are commonly based on the mathematical de-
scription of the gating of ionic channels and the resulting ionic currents across an electric
equivalent circuit of the cell membrane. Numerous models of membrane kinetics, differing
in species, specimen, and detail level, have been developed [58, p.65]. Usually the mem-
brane kinetics are formulated as a system of ordinary differential equations (ODE’s).
Multiple cells are combined to represent the anatomical structure at the tissue level.
The propagation of activation is modeled by incorporating intercellular electrical cou-
pling. These cell-to-cell interactions are described by a set of partial differential equa-
tions (PDE’s).
Coupling the ODE’s and the PDE’s leads to the bidomain model [9, p.298ff.].

The bidomain equations are numerically solved after spatial discretization (finite ele-
ments methods) and temporal discretization (Crank-Nicholson method) [59, 60]. Solving
the bidomain equations is computationally demanding, however, under certain assump-
tions the bidomain model may be reduced to the monodomain model [61].

An important issue of computer simulations of the heart is the required computational
power which depends on the number of elements, the number of time steps, i.e. the product
of the temporal resolution and the duration of the simulation, the used cell membrane
model, and the model type (monodomain or bidomain).

19Catheter ablation is an invasive technique in the treatment of various tachyarrhythmias. Electrical

pathways which may lead to arrhythmias are ablated, either by alternating current at radiofrequencies

(radiofrequency ablation) or by freezing (cryoablation).





Chapter 3

Cardiac Electric Near Field

Signals

In this Chapter, the origin and properties of cardiac electric near field (CNF) signals
are described and methods to calculate characteristical parameters from CNF signals are
introduced.

3.1 Definition of the Cardiac Electric Near Field

The potential gradients in the volume conductor at the cardiac surface due to the activation
sequence describe a time-dependent electric field. The components of the electric field
strength vectors which arise in a two-dimensional plane, parallel and very close to the
tissue surface build up the CNF [62]. At a point of observation xF , the CNF field strength
E is

E(xF , t) = −∇Φ(xF , t), (3.1)

where Φ(xF , t) is the extracellular potential at xF . The temporal development of
the electric field strength E(xF , t) provides information about local properties of the
propagation of activation in the subjacent tissue.

Univariate or multivariate extracellular potential waveforms acquired within the CNF
are henceforth termed CNF signals.

3.2 Computation of the CNF Strength

A spatially discrete approximation Ẽ of the CNF strength E can be established from two
extracellular potential differences1. The components Ex and Ey, i.e. the potential gradient

1In the following, E is used to denote the spatially discrete approximation of the CNF strength.

17
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in two dimensions in parallel to the surface of the tissue can be estimated by potential
differences between two recording sites divided by the distance [63]. Figure 3.1 shows the
principle of a sensor with four electrodes arranged in a square. The acquired extracellular
potentials Φ1 . . .Φ4 allow the computation of E in the center of the four electrodes.

2

3

Sensor axis

Sensor tip

Electrodes 1..4

reference coordinate
system xy

electrode coordinate
system x*y*

x

y

x*y*

1

4

DD

21

3 4

Figure 3.1: Principle of a CNF sensor. Four electrodes 1 . . . 4 at the tip of the sensor are
arranged in a square with diagonal distance DD. The four extracellular recordings Φ1 . . .Φ4 allow
the reconstruction of the CNF strength. The electrode coordinate system x∗ y∗ is rotated by the
deflection angle α with respect to the reference coordinate system x y. In this arrangement, the
reference coordinate system is arranged with the sensor axis and α = 45◦.

For the estimation of the components of the CNF strength E∗ =
[
E∗x E

∗
y

]
, the poten-

tials at two diagonal electrode pairs separated by the distance DD are used. E∗x and E∗y
calculate as follows:

E∗x(t) =
−(Φ2(t)− Φ3(t))

DD
(3.2)

E∗y(t) =
−(Φ1(t)− Φ4(t))

DD
(3.3)

The electrode coordinate system x∗ y∗ is rotated by the deflection angle α in math-
ematically positive sense with respect to the reference coordinate system x y. To obtain
the components Ex and Ey in the reference coordinate system, α has to be added to the
angles of Ex and Ey.

For a certain instant of time τ , Ex and Ey are:
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Ex(τ) =
√
E∗x(τ)2 + E∗y(τ)2 cos

(
arctan

E∗y(τ)
E∗x(τ)

+ α

)
(3.4)

Ex(τ) =
√
E∗x(τ)2 + E∗y(τ)2 sin

(
arctan

E∗y(τ)
E∗x(τ)

+ α

)
(3.5)

In order to resolve E with the necessary accuracy for the evaluation of impulse prop-
agation in microstructural range, an ultra-dense arrangement of electrodes is required.
The maximum electrode distance DD depends on the spatial extent of the depolarization
wavefront. In a computer simulation study the effects of spatial undersampling in the
approximation of the E were investigated and the theoretical basis for the development of
CNF sensors was accomplished [62]. The authors found that the accurate measurement
of E would require DD < 100µm.

3.3 Properties of Local Propagation Computed from CNF

Signals

In this Section, parameters for the characterization of the local propagation of activation,
computed from univariate CNF signals Φ as well as from multivariate CNF signals Φ are
described.

3.3.1 Activation Time

The activation time denotes the instant of time at which a heart muscle cell is activated.
By means of isochrones of local activation time (LAT), the activation pattern of a tissue
region can be reconstructed. The time of the maximum upstroke of the transmembrane
voltage Vm is seen as reference value for the local activation time (LAT) [64].

The standard method of LAT determination from extracellular potentials Φ is to iden-
tify the time of the maximum negative peak of its temporal derivative Φ̇, which highly
correlates with the time of maximum upstroke in Vm, as was shown in computer simula-
tion [65] and experimental studies [64]. Another computer simulation study demonstrated
that the times of maximum upstroke in Vm and maximum downstroke in Φ coincide for
starting, ending, free running, and colliding wavefronts of activation [27]. Experiments
with human atrial myocardium confirmed these findings [66]. In poorly coupled car-
diomyocytes as well as in case of heterogeneities in membrane properties or cell coupling,
significant discrepancies may occur [65].
The minimum derivative method frequently fails when Φ is fractionated, i.e. Φ̇ shows
multiple negative deflections [67]. Furthermore, this method is prone to noise which is
enhanced by the temporal differentiation operation. Hence, many authors have presented
alternative methods for LAT determination.
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Geselowitz et al. have shown that the zero crossing of surface Laplacian, an approxima-
tion of the transmembrane current Im, is an accurate marker for LAT [68] while suppressing
distant activity. The determination of LAT using the spatial gradient of Φ, i.e. the CNF
strength E, has been investigated by Plank et al. [69] in a computer simulation study.
They found that their method was more robust against noise and shows lower errors in
the vicinity of structural discontinuities, compared to the minimum derivative method.

Ellis et al. introduced a deconvolution method based on the expression of the volume
conductor equation as a linear filtering operation (see Section 2.1.4) [70], i.e. a convolu-
tion of membrane current obtained from a computer simulation and a transfer function
incorporating geometric parameters and conduction velocity. They concluded that their
method was more accurate than the minimum derivative method and was suitable for LAT
determination from fractionated electrograms.

Punske et al. [67] have shown in an experimental study that for nonfractionated as
well as for fractionated electrograms spatial methods performed better, i.e. determined
activation times were closer to those obtained by visual assessment of isopotential maps.
LAT isochrones were obtained from isopotential maps by hand, which made the method
at least partly subjective.

Chouvarda and Maglaveras introduced a spatial deconvolution method as well as a
wavelet-based method to estimate membrane currents and activation times in a discontin-
uous 2D-computer model [71].

3.3.2 Conduction Velocity

The conduction velocity (CV), i.e. the speed which the electrical activation propagates
with, differs considerably in different regions of the heart. The fastest CV’s are found in
the Purkinje fiber network (θ = 2m/s), the slowest in the ventricles (θ = 0.5m/s) [16].

Slow conduction is an important factor of arrhythmogenesis, because the CV is a de-
terminant factor of the size of reentrant circuits [16]. Reduced CV may have different
anatomical, physiological, and pathophysiological reasons. Alterations in membrane prop-
erties, especially the reduced sodium conductance may decrease the CV down to a lowest
limit of about θ = 0.17 m/s, below which the propagation of activation is blocked [72].
Very slow conduction, however, is caused either by reduced cell-to-cell coupling [72] or by
complex microstructure of the cardiac tissue [73].

The determination of conduction velocity between two or more recording sites requires
estimating two parameters, 1.) the distance and 2.) the time delay in activation between the
recording sites. When activation mapping is conducted by electrode arrays, the distance
between the recording sites is given. The distance between two spatially independent
electrodes requires the localization of the recording positions. Especially in tissue with
complex macrostructure or microstructure, however, the activation may not propagate
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along the shortest pathway between the recording sites. For multiple measurement sites
with known distance between each other on known pathways, as e.g. in cable-like tissue
structures, the CV can be obtained by linear regression of path length and LAT. The slope
of the linear regression line corresponds to CV. The goodness of fit can be evaluated by
the Pearson product-moment correlation coefficient r between the regression line and the
measured values.
Figure 3.2 gives an example of the determination of CV along a pectinate muscle in rabbit
atrium by means of linear regression of path length and LAT from 11 recording positions.
The global CV in the muscle is compared to local conduction velocities θ at the recording
positions.
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Figure 3.2: Conduction velocity along a pectinate muscle in rabbit atrium. The image shows the
measurement positions 1-11 along the muscle. Upper diagram: Path length s as a function of local
activation times LAT along the muscle. The slope of the regression line represents a conduction
velocity CV = 0.999 m/s, the correlation coefficient r=0.9805. Lower diagram: Local conduction
velocities θ at positions 1-11 compared with CV.
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From four CNF signals Φ1 . . .Φ4 measured in a square arrangement the gradient of LAT
and thus the vector of local conduction velocity (LCV) θ pointing in the main direction
of propagation of activation can be estimated. The principle of this arrangement with
distance DD between diagonal observation points is shown in Figure 3.1. To determine
magnitude θ and direction ϕ of θ, the following methods are used.

Minimum Derivative Method (dmin)

The four LAT’s LAT1 . . .LAT4 from Φ1 . . .Φ4 are determined by the time of the maximum
negative peak of their temporal derivatives Φ̇1 . . . Φ̇4. The gradient of LAT is computed
at the center of the four observation points using a finite difference approach:

∇LAT (x, y) =

[
LATx

LATy

]
≈ 1

DD

[
LAT4 − LAT1

LAT3 − LAT2

]
(3.6)

The vector of LCV θ is expressed as follows:

θ =

[
θx

θy

]
=

1
LAT2

x + LAT2
y

[
LATx

LATy

]
. (3.7)

Magnitude θ and angle ϕ are obtained:

θ =
√
θ2
x + θ2

y, ϕ = arctan
θy
θx

+ α , (3.8)

where α is the deflection angle (see Section 3.2).

Cross Correlation-Based Method (CCF)

A common method to obtain the time delay between two waveforms is the use of their
cross correlation function (CCF). The time of the maximum of the CCF gives the time
delay between the two waveforms. This method has also been applied to extracellular
electrograms in order to determine time delays and hence, according to Equations 3.6
and 3.7, conduction velocities. Often, the maximum of the CCF is not well-defined but
rather broad, which may lead to ambiguous results. In such cases, the use of the Hilbert
transform may simplify the time delay estimation. The imaginary part of the Hilbert
transform of the CCF shows a negative-to-positive zero crossing at the time of the maxi-
mum of the CCF [74]. Shors et al. [75] have improved the resolution of the estimated time
delay by linear interpolation of the section around the zero crossing.
The CCF method has has been established for the computation of θ from CNF signals [76].
The accuracy of the resulting values is enhanced by sinc-interpolation of the CCF (cf. Sec-
tion 7.2.1). Fast correlation and sinc-interpolation by zero padding of the CCF in the
frequency domain were combined.
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Maximum Field Strength Method (Emag)

Apart from ϕ, the angle of θ, the main direction of propagation can be estimated from the
angle of CNF strength E. At the time of the maximum of |E|, E is oriented perpendicu-
larly to the isochrones of LAT and points in the opposite direction of the local propagation
of activation [62]. The magnitude of LCV, however, cannot be determined from a single
waveform of E.

3.3.3 Vector Loop of E during Depolarization

At a particular point within the CNF, the plot of the two orthogonal components of the
CNF strength, Ex(t) and Ey(t) against each other is considered. During depolarization of
the underlying tissue, this plot exhibits a loop-type shape, and is therefore called vector
loop of E.
Such vector loops of E have been acquired in experimental studies [63], [77], [78], and
variations in their morphology have been reported.
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Figure 3.3: The vector loop of CNF strength E in case of continuous elliptic propagation of
electrical activation. The activation was induced by a point-like stimulus in the center of the left
tissue edge. Extracellular potentials Φ1(t) . . .Φ4(t) were observed close to the center of the tissue
in a square arrangement with diagonal distance DD. Orthogonal electric field components Ex and
Ey as functions of time were computed from Φ1(t) . . .Φ4(t). The vector loop of E is the plot of
Ey = f(Ex). Its tip points opposite to the main direction of propagation. The isochrone interval
is 100µs.
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Figure 3.3 illustrates the vector loop of E resulting from the continuous anisotrop-
ic spread of an activation wave. The diagrams show the extracellular potentials
Φ1(t) . . .Φ4(t) at four points of observation 1 . . . 4 as well as the orthogonal components
Ex(t) and Ey(t) of the CNF strength E and the associated vector loop of E computed
in the center of four points of observation. The tip of the vector loop indicates Ê, the
vector with the peak magnitude of E(t). It points opposite to the main direction of the
activation wave. The time at which Ê occurs, is an accurate marker of LAT [62].

Due to its geometric structure and its sensitiveness to beat-to-beat changes of propaga-
tion parameters, the vector loop of E is an excellent tool for on-line evaluation of cardiac
impulse propagation.

Several computer simulation studies have been carried out to investigate the origin of
the vector loop morphology. The vector loop morphology in continuous tissue depends
on the curvature of the depolarization wavefront. In case of planar wavefront, the vector
loop of E becomes a straight line. During elliptic propagation, the vector loop of E is
open at sites lateral to the axis of the elliptic wavefront. In a curved tissue structure
representing a branching, the vector loop morphologies differ from those observed during
uniform propagation [79]. Microscopic obstacles for the impulse propagation, such as in-
lays of connective tissue, lead to a deformation of the vector loop of E [80]. The collision
of an activation wavefront with such an obstacle and resulting fractionated extracellular
electrograms may give rise to complex vector loop morphologies [81].
In experiments a great variety of shapes of vector loops of E has been noticed [82]. How-
ever, the influence of imperfect experimental conditions on the morphology of vector loops
of E is widely unclear.

3.3.4 Wavefront Curvature

The degree of wavefront curvature is defined as

ρ = −1
r
, (3.9)

where r is the radius of the curvature of the wavefront [16].
To obtain r or ρ, respectively, the activation pattern, i.e. the isochrones of LAT are

required. Compared to the conduction velocity of a planar wavefront, the CV at the tip of
a convex wavefront is lower whereas the CV of a concave wavefront is higher. The reason
for this is a mismatch in the source-sink relation (cf. Section 2.1.3) [16].
As described in the previous Section 3.3.3, the curvature of the activation wavefront influ-
ences the morphology of the vector loop of E. Open vector loops of E are attributed to
strong wavefront curvature. However, the morphology of the vector loop of E is affected
by other conditions like structural discontinuities in the tissue and measurement artifacts
(cf. Sections 3.3.3 and 8.4).



3.3. PROPERTIES OF LOCAL PROPAGATION COMPUTED FROM
CNF SIGNALS 25

3.3.5 Action Potential Duration

The depolarization and the repolarization of a cardiomyocyte are reflected in the extracel-
lular potential waveform in an analogous manner. However, compared to the depolariza-
tion phase, the repolarization phase has a long duration and thus a large spatial extent.
As a consequence, the respective event in Φ - if detectable at all - is characterized by very
low amplitude and SNR. Due to the long duration of the depolarization, the respective
event within Φ is more prone to power line interference.

The shape of the AP and its duration (APD) vary across the myocardium and differ
among species. Spatial dispersion of APD across the myocardium may lead to different
directions of the gradients of depolarization time and repolarization time. Thus, positive or
negative deflection within Φ̇ is possible. Only a limited number of studies have evaluated
extracellular estimators of APD. Millar et al. [83] have found a very high correlation
between the activation-recovery interval2 and the refractory time in unipolar electrograms
from ventricular epicardium in dogs under a variety of physiological conditions. In a
computer simulation study, the reliability of the activation-recovery interval in estimating
the APD was demonstrated [65]. Recently, a series of repolarization time markers were
compared in a 3D-computer simulation study [84]. Vigmond et al. have investigated the
estimation of APD from atrial electrograms in a combined experimental and computer
simulation study [85]. They have shown that lower signal amplitudes and different shape
of the AP lead to a much worse estimation of APD in the atrium than in the ventricle.

Figure 3.4 shows AP and extracellular electrogram recorded in the right atrium of a
guinea pig. The smooth descent of the AP in the repolarization phase leads to a moderate
elevation in Φ.

3.3.6 Morphological Measures

From univariate CNF signals Φ(t) the following morphological properties can easily be
determined.

• Amplitude of Φ: Φpp = max Φ−min Φ

• Symmetry of Φ [86]: a = max Φ−|min Φ|
max Φ−min Φ

• Amplitude of Φ̇, the derivative of Φ: Φ̇pp = |max Φ̇−min Φ̇|

• Depolarization time tdep: tdep = t|min Φ − t|max Φ

2The activation-recovery interval denotes the time between the maximum negative peak in the temporal

derivative of the electrogram (LAT) and the maximum positive peak during the repolarization phase.
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Figure 3.4: Action potential and extracellular electrogram recorded in guinea pig right atrium.
Upper diagram: Action potential Vm. Lower diagram: Extracellular potential Φ. Recording posi-
tions and thus activation times are not identical. Unpublished experimental recordings provided
by R. Arnold and E. Hofer (Medical University of Graz, Institute of Biophysics, 2011).

3.4 Morphology of Extracellular Electrograms

3.4.1 Nonfractionated Extracellular Waveforms

Even during uniform propagation, the waveform shapes of electrograms may vary. In
the case of a free running activation along a cable-like muscle strand, the corresponding
electrogram Φ shows a biphasic shape with similar magnitude of positive and negative
phase. Close to an initiation site of impulse propagation, the positive amplitude of Φ is
reduced, whereas close to a sealed end or a wavefront collision site, the negative amplitude
is diminished [27].
Figure 3.5 gives an example of characteristic shapes of nonfractionated electrograms Φ. A
cable-like myocardial fiber of 20 mm length was represented in a 1D-computer simulation.
Activation was induced by stimulation at one end of the cable (Position A). At the sur-
face of the cable, Φ was recovered at the beginning, in the middle, and at the end of the
cable. The respective waveforms of Φ represent starting, free running, and terminating
propagation of activation. In Φ̇, the differences in wave shape are not as clear as in Φ.
However, it can be observed that the third phase of the triphasic waveform Φ̇ vanishes at
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the cable end. Likewise, the first phase of Φ̇ vanishes at the beginning of the cable, which
is not visible in this example because the waveform is corrupted by the stimulus artifact.
An explanation for the shape of Φ and its variations may be given by simplifying the de-
polarizing activation wavefront as propagating dipole with non-zero spatial extent. When
the dipole moves towards the recording site, Φ rises. After it has reached the recording
site, Φ falls and becomes zero, when the dipole is centered at the recording site. As it
moves away, Φ increases again. The lack of an approaching or leaving phase of the dipole,
respectively, leads to the characteristic waveforms of Φ in case of a starting or terminating
activation wavefront [87].
In case of a collision of activation wavefronts, Φ exhibits a similar shape as in case of a
terminating wavefront at a sealed end.

3.4.2 Fractionated Extracellular Waveforms

Extracellular electrograms frequently do not show a single biphasic or monophasic deflec-
tion but a more complex morphology. Such electrograms Φ with two or more distinct
deflections are referred to as fractionated3. Each deflection in Φ is manifested as nega-
tive peak in Φ̇. There is, however, no common agreement about the minimum magnitude
of a peak to be taken into account. Values between 10 % and 20 % of the amplitude of
the maximum negative peak value in Φ̇ are used. Fractionated electrograms are usually
characterized by lower amplitude and longer duration [92].

Figure 3.6 shows a normal or nonfractionated as well as a fractionated waveform of
Φ, their temporal derivatives Φ̇, and vector loops of E. Both waveforms Φ were recorded
during the same experiment at the surface of the right atrium of a rabbit.

Genesis of Fractionated Electrograms

The genesis of fractionated electrograms in the context of clinical recordings has been
comprehensively reviewed by de Bakker and Wittkampf [87]. The authors discussed the
following circumstances which may lead to fractionated electrograms: Artifacts due to the
movement of the electrodes and power line interference, artifacts due to filtering, delay
in activation of regions that are located close to each other, anisotropy of tissue prop-
erties, overlaying tissue structures, alterations in conduction velocity, and asynchronous
conduction.

As described in Section 3.2, computation of the CNF strength requires small inter-
electrode distances and small distances between electrodes and surface of the tissue.
Therefore, electrograms recorded with CNF technique may be considered to represent

3Electrograms with two distinct deflections were also denoted double potentials [88], electrograms with

more than one deflection fragmented [89], multicomponent [90], or multiphasic [91]. Throughout this work,

the term fractionated is used.
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Figure 3.5: Characteristic waveform shapes of nonfractionated extracellular electrograms along a
cable-like myocardial fiber. Activation is induced by stimulation at site A. Extracellular potentials
Φ are recorded at the surface of the cable at positions I (x = 0.025 mm), II (x = 10 mm), and
III (x = 19.975 mm). Upper diagram: Overlay plot of Φ(t) at positions I, II, and III. Lower
diagram: Overlay plot of respective temporal derivatives Φ̇(t). The stimulus artifact is clearly
visible in Φ̇(t) at measurement position I.

local propagation patterns. The major reason for the occurrence of fractionated local
electrograms is the delayed activation of neighboring but electrically uncoupled regions.
Those delayed activations interfere with the local signal via electrotonic interaction in the
volume conductor surrounding the tissue. The reasons for delayed activation of adjacent
tissue are on one hand structural complexities like muscle fiber junctions or electrically
uncoupled parallel or crossing muscle fibers [21], and on the other hand embedded obsta-
cles for propagation of activation. Such obstacles may be small scars or vessels, or inlays
of connective tissue [29].

In a computer model study, it was demonstrated that the spatial variation of morphol-
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Figure 3.6: Nonfractionated vs. fractionated electrogram. Left: Nonfractionated electrogram Φ
atop its temporal derivative Φ̇ and vector loop of CNF strength Ey(Ex). Right: Fractionated Φ
and derived signals.

ogy of electrograms increases with increasing heterogeneity of intercellular coupling [93].
Recently, the influence of microfibrosis on electrogram fractionation and macroscopic con-
duction parameters has been investigated in another computer simulation study [86].

Gardner et al. observed that the direction of propagation of activation has an influence
on the fractionation of electrograms [94]. It was demonstrated in a computer simulation
study that for fractionated electrograms to occur not only the presence of conduction ob-
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stacles, but also their orientation with respect to the direction of propagation matters [81].
Figure 3.7 demonstrates that on the same substrate fractionated electrograms may be ob-
served or not, depending on the direction of propagation with respect to the orientation
of the obstacle. A rectangular tissue sheet with an embedded elongated nonconducting
obstacle was represented by a computer model. The stimulus site was chosen to induce
either longitudinal elliptic propagation (LEP) or oblique elliptic propagation (OEP). The
isochrones of LAT reflect the pattern of activation. In case of LEP, the obstacle has an
influence on the activation pattern, but no significant delays in activation of adjacent re-
gions occur. The temporal derivative Φ̇(t) of the electrogram recorded at position × has
a single negative peak. In case of OEP, the activation wavefront propagates continuously
until encountering the lower left corner of the obstacle. Due to the changed electrotonic
load, the activation propagates faster in front, and slower lateral to and behind the ob-
stacle. Φ̇(t) exhibits two negative peaks representing activation of the tissue below (first
peak) and above (second peak) the obstacle.
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Figure 3.7: Directional dependence of electrogram fractionation. Computer simulation of a sheet
of ventricular tissue (2000µm× 750µm) with embedded nonconducting obstacle (500µm× 50µm)
in the center of the tissue sheet. Left: Schematic drawing of tissue sheet with longitudinal elliptic
propagation (LP). Isochrones of LAT were created from Vm. Below, Φ̇(t) computed 50µm above
the surface of the tissue is plotted. Right: Oblique elliptic propagation (OP) results in fractionated
Φ̇(t). The recording and stimulus positions are indicated with × and ∗, respectively.



3.4. MORPHOLOGY OF EXTRACELLULAR ELECTROGRAMS 31

Analysis of Fractionated Electrograms

The identification and characterization of complex fractionated atrial electrograms
(CFAE’s) has become an important task in clinical cardiology. Areas where fraction-
ated electrograms are recorded during catheter mapping are seen as critical substrates for
arrhythmogenesis. Those sites are being used as targets for catheter ablation [95].
Apart from classification upon visual inspection, automated algorithms for real time ap-
plication have been developed. Scherr et al. have used morphological features of 2.5 s
recordings of bipolar electrograms during atrial fibrillation (AF) to classify CFAE’s [96].
Křemen et al. have used wavelet analysis to classify degrees of fractionated electrograms
recorded during AF [97]. CFAE’s have been associated with tachyarrhythmias, however,
they are also observed during sinus rhythm, in an increased proportion with increasing
age [98].

Different time and size scales as well as the fact that the mentioned automated algo-
rithms are dedicated to CFAE’s recorded during AF, they are not directly applicable to
CNF signals. Two major problems arise when calculating parameters from fractionated
local electrograms. First, the signal amplitude is usually lower and thus the signal-to-noise
ratio (SNR) is reduced, and second, the determination of LAT may become ambiguous
(cf. Section 3.3.1).





Chapter 4

Experimental Setups and Methods

In this Chapter, the setups which are used to carry out electrophysiological experiments
using CNF technique, computer simulations of electrical activation, and analyses of the
obtained CNF signals are introduced.

4.1 Electrophysiological Experiments

The setup for conducting electrophysiological experiments at the Institute of Biophysics
at Medical University of Graz has been developed over many years. In this Section, a
brief description is given, details have been specified elsewhere [99, 54]. The setup mainly
consists of dedicated components which have been developed and manufactured in-house.
In this Chapter, such components are marked with an asterisk (∗).

4.1.1 Experimental Setup

Figure 4.1 shows a schematic of the experimental setup. The measurements take place on
an absorbing table within a metal cage∗ which serves as Faraday cage to shield external
electric fields. The preparation is fixed within a tissue bath∗ including a bath heating∗

and a transillumination device∗ with LED technology [100]. Oxygenated Tyrode’s so-
lution1 is kept circulating through the bath via a tubing system by a roller pump. The
temperature of the solution is regulated using PID control. Around the tissue bath five 3D-
micromanipulators∗ holding pen-shape fixtures for the CNF sensors are attached. These
fixtures contain the impedance converters∗. Shielded cables connect to the preamplifiers∗

and the main amplifier∗. Further recording or stimulus electrodes are applied to the
preparation by means of 3D-micromanipulators.

1Tyrode’s solution consist of (in mM/l): NaCl 132.1, KCl 5.4, CaCl2 2.5, MgCl2 1.15, NaHCO3 24,

NaHPO4 0.42, D-glucose 5.6. The solution is gassed with a mixture of 95 %O2 and 5 %CO2.

33
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Figure 4.1: Experimental Setup. a) Specimen, b) tissue bath, c) CNF sensor, d) stimulus
electrode, e) specimen carrier containing LED’s, f) impedance converter, g) preamplifier, h) main
amplifier, i) PXI rack containing FPGA, ADC, and DO (digital output) boards, j) PC, k) digital
camera, l) current source, m) LED control, n) bath heating, o) roller pump, and p) Tyrode reservoir
and preheating.

The measurement hardware comprises electrodes, amplifiers, and data acquisi-
tion (DAQ) boards for acquisition, conditioning, and digitalization of CNF signals as well
as digital cameras for the acquisition of images. Furthermore, a computer system for the
processing and visualization of the digitized signals and images is part of the measurement
hardware.

Sensors

Extracellular potentials at the cardiac surface are detected by unipolar voltage measure-
ments with respect to an electrode at reference potential. The CNF sensor consisting of
a four channel electrode array allows the simultaneous measurement of four extracellular
voltage signals. The Ag/AgCl-electrodes have a pad diameter of 18µm and are arranged
in a square with inter-electrode spacing of 50µm. Images and a schematic drawing of
the CNF sensor are shown in Figure 4.2. This ultra-dense quadratic arrangement of the
electrodes allows the accurate approximation of orthogonal potential gradients and thus
the CNF strength (see Section 3.2).
The tips of the silver electrodes are electro-chemically chlorinated to decrease their cou-
pling impedance and to stabilize the electrode potential [101, pp.5]. Fabrication and
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Figure 4.2: CNF sensor. a) Images in different magnifications. b) Schematic drawing. With
permission from [54].

detailed specifications of the CNF sensor are given in the article of Hofer et al. [54]. This
tongue-like type of sensor allows to access any point of interest even in complex anatomi-
cal structures. Due to the mechanical properties of its polyimide carrier, the sensor floats
with the contraction of the tissue under examination. The tip of the sensor is equipped
with spacer pillars from epoxy-based photoresist. They avoid the lateral displacement of
the sensor due to the contraction and maintain a constant distance z = 50µm between
electrodes and surface of the tissue.
In order to correctly assign the reconstructed CNF strength vector to the measurement
position, the rotation angle β of the sensor with respect to the orientation of the specimen
has to be taken into account. Images of the recording site taken with the digital camera
(see Section 4.1.3) allow the estimation of β with sufficient accuracy. For the computation
of CNF parameters, β has to be regarded in the same manner as the deflection angle α,
which is explained in Section 3.2.

Reference electrode In experiments with tissue preparations, a ring-shaped reference
electrode surrounding the investigated preparation is placed inside the tissue bath. In
Langendorff experiments (see Section 4.1.2), the reference electrode is placed close to the
cannula which is used to perfuse the heart.

The Amplifier Circuit

The 20-channel signal amplifier with an overall gain A = 100 consists of separate impedance
converters (unity gain), preamplifiers (A = 10), main amplification stages (A = 10), and
anti-aliasing filters for 20 input channels plus five reference channels. It adapts the small
potential differences between each of the four electrodes and the reference electrode to the
input range of the DAQ board. Due to the fact that the electrodes are highly sensitive to
bias currents, very high demands on the shielding of the signal cables and on the input
stage of the preamplifier2 are made.

2Ultra-low bias current operational amplifiers with a maximum bias current of less than 100 fA are used

(Texas Instruments OPA129, USA).
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The amplified signals are then filtered with a 4th order Bessel-type lowpass filter with a
cutoff frequency fC = 20 kHz. This filter also works as an anti-aliasing filter for the dis-
cretization of the amplified signals. Additionally, a highpass filter with a cutoff frequency
fC = 0.6 Hz can be switched on to compensate the polarizing DC components of the sensor
signals.

Data Acquisition Board

The electrically conditioned sensor signals are digitized with dedicated DAQ boards (Na-
tional Instruments NI PXI–6123 and NI PXI–6120, USA). The DAQ boards contain
separate analog-to-digital converters (ADC) for each of their input channels. Thus, simul-
taneous sampling of up to 20 analog signals at a sampling rate fS = 100 kHz is performed.

Quantization noise of the ADC The ADC with a resolution N = 16 bit has a full
scale range (FSR) of ±10 V. Taking into account the overall amplifier gain A = 100 of the
three amplifier stages, the FSR corresponds to a signal range Φpp = 200mV. The voltage
resolution q is:

q =
Φpp

2N
= 3.052µV

Computer System

The controlled acquisition of the CNF signals, on-line signal processing, visualization,
and signal recording, is performed by a custom-designed measurement system termed
HARMS (high-performance arrhythmia research measurement system)∗ [99]. The hard-
ware of HARMS consists of a PXI3 rack (National Instruments NI PXI-1024Q, USA)
containing data acquisition and generation boards, and a desktop PC with quad core pro-
cessor (Dell Optiplex, USA). PC and PXI are connected via MXI interface with a data
throughput of 110 MB/s. An arbitrary impulse generator used for electrical pacing of the
preparation has been implemented on an FPGA4 (National Instruments NI PXI-7813R,
USA) [102].

The software of HARMS was programmed in LabVIEW (National Instruments, USA).
It controls data acquisition, stimulus generation, and audio acquisition as well as camera
control and image acquisition via USB5 and firewire (IEEE 1394). The acquired CNF
signals are processed and displayed in real time. On-line processing comprises filtering
and computation of E and LCV. Signal data can be stored to hard disk either as a
continuous stream or per beat during a window of defined length. The modular software
design allows the integration of new developed signal processing algorithms.

3PXI (PCI (Peripheral Component Interconnect) eXtensions for Instrumentation) is a modular instru-

mentation platform which is based on the PCI. It adds integrated timing and synchronization functionality

and a rugged industrial form-factor.
4FPGA: Field-Programmable Gate Array
5USB: Universal Serial Bus
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4.1.2 Specimen

The experimental setup is geared to preparations from small mammalian hearts. Prepa-
rations of mouse, rat, guinea pig, and rabbit have been used for experimental studies.
Animal preparation has conformed the national ethic guidelines.

The three most common specimen in experiments which are described in this work are
the right atrial isthmus, the papillary muscle, and the Langendorff preparation. Figure 4.3
shows images taken during experiments with these specimen.

Figure 4.3: Specimen in electrophysiological experiments with CNF measurement. (a) Au-
torhythmic right atrial isthmus of a guinea pig. Two CNF sensors are placed at the surface of
the preparation, in the network of pectinate muscles (left sensor) and at the terminal crest (right
sensor). (b) Electrically paced guinea pig papillary muscle. The muscle is stimulated at its base.
CNF signals are recorded with two sensors. (c) Langendorff preparation of a rat heart. The coro-
nary occlusion caused by a piece of a toothpick impairs the supply with Tyrode’s solution in the
adjacent ventricular tissue. A CNF sensor is placed inside the ischemic zone.

Right Atrial Isthmus

The right atrial isthmus comprises the terminal crest, the network of pectinate muscles,
and the tricuspid valve vestibule [103]. This region is seen as a critical substrate for
the genesis of intermittent block of conduction and atrial flutter6 [104] and is targeted
during catheter ablation of atrial flutter [105]. The dissected specimen is fixed inside a
temperature controlled tissue bath and superfused with oxygenated Tyrode’s solution (see
Figure 4.3 (a)). This preparation contains the sinoatrial node and therefore usually is
autorhythmic.

6Atrial flutter is characterized by rapid, irregular atrial contractions. As a result, the pumping of blood

into the ventricle is impaired.
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Papillary Muscle

The papillary muscles7 of the right ventricle have a relatively large cable-like geometry
and are therefore preferred substrates for studying the propagation of activation. Papil-
lary muscles have been considered as anatomical substrates which show fairly continuous
impulse propagation. An experimental study, however, has revealed partially complex mi-
cropropagation [82].
The preparation is fixed in the tissue bath as shown in Figure 4.3 (b). Because the
isolated papillary muscle usually is not autorhythmic, electrical pacing is required. A pro-
grammable current-impulse generator [106] and a pacing electrode from tungsten wire are
used for stimulation. Pacing in constant intervals as well as sophisticated pacing protocols
are being used [102].

Langendorff Preparation

An isolated beating heart is attached to the Langendorff apparatus (IH-5, HUGO SACHS
ELEKTRONIK, Germany) and perfused with Tyrode’s solution which is introduced into
the aorta by a cannula [107] (see Figure 4.3 (c)). This type of experiment allows the
investigation of cardiac impulse propagation at autorhythmic activation. A series of other
physiological parameters such as left ventricular pressure, electrocardiogram, and coronary
flow can be measured. In Langendorff preparations, arrhythmia studies and ischemia-
reperfusion studies8 are common experimental protocols.

4.1.3 Documentation of Macrostructure

During the experiment, the positions of sensors and stimulus electrodes at the surface of
the tissue are documented by means of digital images. Image acquisition and storage is
controlled via HARMS. After the experiment, high resolution transillumination images
can be taken with a custom-designed scanning device∗. Three digital cameras are in use.

1) Microscope camera (Sony DFW–X700, Japan): This C-mounted color digital video
camera outputs images with a resolution of 1024 × 768 pixels. The camera is con-
trolled via firewire.

2) Compact camera (Olympus C–5060WZ, Japan): The compact camera is used during
Langendorff experiments. Images are acquired in super macro mode at a resolution
of 5.1 MPixel (2592 × 1944) in a minimum distance of 3 cm. This corresponds to a
maximum resolution of 10µm/Pixel. The camera is controlled via USB 1.0.

7Papillary muscles exist in the right and in the left heart. They prevent the atrioventricular valves from

prolapsing into the atrium.
8Myocardial ischemia is caused by insufficient blood flow to the muscle tissue, predominantly due to a

narrowing of the coronary arteries or thrombosis. The restoration of the blood flow is termed reperfusion.
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3) Single-lens reflex camera (Canon EOS 5D Mark II, Japan): The camera has a 36×
24 mm CMOS9 chip which allows a resolution of 21.1 MPixel (5616 × 3744 Pixel).
During the experiment the camera is attached to the top of the experimental cage
at a distance of approximately 60 cm from the specimen and takes images from a
fixed perspective using a macro objective (Canon 3,5/180mm L USM, Japan). The
images show sections of 60 × 40 mm at a resolution of 10.68µm/Pixel. After the
experiment the camera is used with a macro lens (Canon MP–E65 Zoom, Japan)
to take transillumination images with a resolution of 1.28µm/Pixel. The camera is
controlled via USB 2.0 [108].

Image acquisition with either of the described cameras during the experiments has
turned out to have no detectable influence on the measured signals.

4.1.4 Documentation of Microstructure

After the experiment, the tissue is fixed with a mixture of paraformaldehyde-glu-
taraldehyde, embedded in paraffin, and sliced with a microtome. The sections are stained
using Masson’s Trichrome, which results in a coloring of myocytes in red, connective tissue
in blue, and intercellular clefts in white. Micrographs are digitized using a slide scanner
(Aperio ScanScope, USA) with a resolution of 0.25µm/pixel. The digital images are stored
in single-file pyramidal tiled TIFF10 (SVS format).

4.2 Computer Models and Simulation

In order to study propagation by means of the CNF, a series of computer models of different
dimensions and complexity have been established. Activation was induced by simulating
electric current stimuli of 1 ms duration. Extracellular electrograms were computed as
described by Plank and Hofer [62] with a temporal resolution of 10µs, which corresponds
to the sampling interval used during the acquisition of CNF signals in experiments.
All simulations were performed using the Cardiac Arrhythmia Research Pack-
age (CARP) [109]. The utilized computer system is equipped with eight Quad-Core AMD
Opteron 8386 SE 2.8 GHz processors with 126 GB of RAM running a 64-bit Linux system.

4.2.1 Continuous Tissue Models

Cardiac myocytes were arranged in a regular grid to build up a mesh of finite elements in
a simple geometric form. Depending on the aim of the study, 1D, 2D, or 3D-tissue models
have been created.

9CMOS: Complementary Metal-Oxyd-Semiconductor
10TIFF: Tagged Image File Format



40 CHAPTER 4. EXPERIMENTAL SETUPS AND METHODS

A single strand of cardiomyocytes was represented by a 1D-monodomain model. Hence,
the propagation of activation along a thin cable-like muscle fiber could be studied.
A thin sheet of cardiac tissue was represented by a 2D-monodomain model. Different lon-
gitudinal and transversal conductivities allowed incorporating anisotropy in propagation.
Moreover, structural discontinuities like embedded nonconducting obstacles for propaga-
tion were realized.
A cylindrical muscle fiber was represented by a 3D-monodomain model. This model was
used to evaluate the contribution of deeper current sources on the electrograms and the
2D-representation in the CNF strength.

4.2.2 Histologically Detailed Tissue Model

A digitized image taken from a single histological slice of a rabbit’s right atrial isthmus,
created as described in Section 4.1.4, was segmented using color clustering and thresholding
technique to distinguish myocardium (red staining) from connective tissue (blue staining)
and intercellular clefts (white background) [110]. The microscopic fiber orientations were
obtained using an image intensity gradient method [111]. The generation of the finite
element mesh from the segmented histograph was described in detail elsewhere [112]. At
a spatial resolution of 8µm, in total 2 695 299 nodes and 1 792 896 elements set up the
microscopic model.
The histologically detailed 2D-model reveals the complexity of activation patterns caused
by the microstructure, but does not reflect the shunting effects of subsequent layers of tissue
in 3D. In order to alleviate such a drawback, a second layer of cardiac tissue was added. The
structure of this shunt layer based on the same histograph, but neglected some microscopic
details. Its conductivity was adjusted by comparing extracellular electrograms computed
at the surface of the virtual tissue with those recorded in the particular heart region
during electrophysiological experiments, in terms of the distribution of the fractionation
index (cf. Section 7.5).

4.3 Signal Processing

The development of signal processing algorithms applied to CNF signals acquired
with HARMS as well as obtained from computer simulations was done with MAT-
LAB R2009a [113] including signal processing, optimization, statistical, and BioSig [114]
toolboxes.
Developed algorithms for beat and artifact detection [102], calculation of LCV (described
in Section 3.3.2), and quantification of fractionation (Section 7.5.2) have been implemented
in LabVIEW and integrated in HARMS for on-line processing of CNF signals.
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Figure 4.4: Generation of a histologically detailed tissue model of a rabbit’s right atrial isthmus.
a) Histograph of tissue slice. Myocytes are stained in red, connective tissue in cyan. b) Segmented
image distinguishing myocytes (black) from connective tissue and intercellular clefts. c) Deter-
mined fiber directions indicated as direction vectors. Tissue histology was provided by D. Sánchez-
Quintana (Department of Human Anatomy, Faculty of Medicine, University of Extremadura, Bada-
joz, Spain, 2011) images were provided by H. Ahammer and F. Campos (Medical University of
Graz, Institute of Biophysics, 2011).





Chapter 5

Aims and Strategy

The theoretical basis of the CNF measurement technique has been established, and com-
puter simulation studies have demonstrated its benefits and to a certain degree its limita-
tions [62, 79, 80, 69]. A novel sensor to acquire CNF signals has been developed [54], and a
comprehensive measurement systems has been presented which allows the on-line process-
ing and visualization of magnitude and direction of the local conduction velocity (LCV)
and the vector loop of CNF strength E [99].

Based on the experience gained during numerous electrophysiological in-vitro experi-
ments with different preparations and animal species, two major problems became evident.
First, no information could be given, how reliable the determined values of LCV and vector
loop of E were, and second, no appropriate methods to identify and analyze the important
class of fractionated local electrograms were available.

Hence, the specific aims of this work are

1) to investigate the influence of experimental conditions on the LCV and the vector
loop of E,

2) to introduce signal processing methods for the identification and analysis of fraction-
ated local electrograms, and

3) to extract parameters from CNF signals which allow characterizing the microstruc-
ture of the underlying heart tissue.

The presented methods are aimed at electrograms obtained from experiments. For the
development of these methods, however, waveforms resulting from established computer
models of cardiac tissue have been used. These waveforms are noise-free and, in contrast
to recorded signals, all relevant factors of their genesis are known and can be adjusted
with high accuracy. To estimate the robustness of developed methods, noise of the same
characteristics as observed under experimental conditions was added.
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Chapter 6

Introduction

The studies presented in this Part comprise the analysis of CNF signals from electrophys-
iological in-vitro experiments and computer simulations, the design and conductance of
computer simulations and experiments, the development and evaluation of signal process-
ing algorithms, and the application of developed methods to CNF signals from experiments
and computer simulations.

6.1 Signal and Noise Analysis of CNF Signals

In order to develop dedicated processing algorithms for CNF signals, detailed knowledge
about time and frequency domain properties of signal and noise within the experimental
environment is required.

Characteristical parameters of CNF signals have been described in Section 3.3. Their
probability distribution and the correlation between the parameters was examined in a
set of electrograms recorded during several experiments. The set was then separated into
fractionated and nonfractionated electrograms, and the distributions of the parameters
between the two classes were analyzed and compared. The obtained results were conse-
quently used as constraints for CNF signal processing algorithms.

CNF signals recorded during electrophysiological experiments are perturbed by noise
and power line interference. The major noise sources in the measurement chain are the
electrode-electrolyte interface, the signal cables, the amplifier stages (impedance converter,
preamplifier, main amplifier), and the ADC. To create artificial noise of the same charac-
teristics as observed under experimental conditions, noise in the measurement chain needs
to be analyzed. Detailed frequency analysis of the CNF sensor and the amplifier have
been described previously [54, 115]. In this study, it was examined if the overall noise in
the measurement chain may be represented by additive Gaussian band limited white noise
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and if noise should be created independently for the individual channels.

Design and parametrization of acquisition systems and processing routines are essen-
tially based on the frequency response of the targeted signals. Therefore, a frequency
analysis of CNF signals from computer simulations and experiments was performed.

6.2 Determination of Local Conduction Velocity

In Section 3.3.2, methods to compute the vector of local conduction velocity (LCV) from
multivariate CNF signals Φ were described. The vector of LCV θ, pointing in the direction
of propagation, consists of the magnitude θ and the angle ϕ. In addition to the values θ
and ϕ, their uncertainty was analyzed.
The uncertainty of θ has two reasons. First, the limited temporal resolution of the time
discrete electrograms Φ and second, the overall noise in the measurement chain.
The temporal resolution of Φ is determined by the sampling rate fS of the ADC. Increasing
the temporal resolution by a factor M by raising fS to M fS results in an M-fold amount
of data to be acquired, processed, and stored. Another approach to increase the temporal
resolution is digital resampling, i.e. interpolation of the acquired waveforms. Thus, only
the interesting segments of the waveform can be extracted and interpolated for subsequent
on-line analysis and display.
In order to examine the influence of noise in the measurement chain of Φ on the uncer-
tainty of LCV, a computer simulation study has been carried out. The aims of this study
were 1.) to determine the minimum amplitude-to-noise ratio (ANR) in the extracellular
potential waveforms Φ at which the uncertainty of the determined values θ and ϕ remains
within a given tolerance band, 2.) to determine the optimum cutoff frequency of a lowpass
filter applied to Φ, and 3.) to compare different algorithms for the computation of LCV
in terms of robustness against noise.
LAT’s determined from fractionated electrograms Φ may be ambiguous and thus, the
computation of LCV may lead to erroneous results. Therefore, this study concentrates on
nonfractionated electrograms which were obtained from computer simulations of continu-
ous tissue models.

LAT’s determined from transmembrane voltages Vm are being considered as gold stan-
dard (cf. Section 3.3.1). First, because such LAT’s represent the activation of single cells,
and second, because the steep slope of Vm during the depolarization phase allows reliably
determining the LAT by the instant of the maximum V̇m, the temporal derivative of Vm.
Therefore, also the LCV determined from a multivariate Vm can be considered as reference
value. To study the deviation of LCV computed from extracellular signals with respect
to the reference value, multivariate transmembrane voltages and extracellular potentials
have to be recorded at the same position. In experiments, this is not feasible because
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glass pipet microelectrodes and extracellular electrodes cannot be placed at the same po-
sition and the impalement by the microelectrode would falsify the extracellular signals.
Computer simulation, however, can provide both signals, Vm and Φ, from the same site.

The aim of this study was to compare LCV θ determined from Φ across the surface
of a continuous anisotropic tissue sheet with the values obtained from Vm. Furthermore,
the influence of the direction of propagation with respect to the fiber direction on the
deviation between θ computed from Vm and from Φ was examined.
The study was repeated using a computer simulation of a continuous anisotropic tissue
sheet with an embedded obstacle. Thus, the deviation between θ computed from Vm and
from Φ was investigated in the adjacency of a microstructural obstacle.

6.3 Analytic Signal Model of Extracellular Electrogram

An analytic signal model of a nonfractionated unipolar electrogram during depolarization
was developed. The signal model is based on sigmoid functions. By variation of four
parameters, a wide range of shapes including electrograms emerging from starting, free
running, terminating, and colliding wavefronts of activation can be created.
This novel signal model was consequently used for template-based algorithms for the anal-
ysis of CNF signals.

6.4 Analysis of Vector Loops of CNF Strength

Vector loops of CNF strength E are being used during experiments to evaluate the local
pattern of activation in the underlying tissue. It has been shown in computer simulation
studies that the morphology of the vector loop of E indicates the main direction of prop-
agation, is related to the curvature of the wavefront, and may reveal discontinuities in the
adjacency of the recording site [62, 79, 80, 69, 81]. It has not been investigated, as to how
the imperfect experimental conditions influence the shape of the vector loop of E.

In previous studies it was assumed that multisite recordings of extracellular electro-
grams are taken exactly at the same distance from the surface for all electrodes. During
the experiment this cannot be guaranteed because the surface of the tissue is not per-
fectly planar or may not allow the positioning of the CNF sensor in parallel to the surface.
Moreover, the sensor is subjected to aging, particularly due to the exposure to Tyrode’s
solution. The spacer pillars which maintain a certain distance between the electrodes and
the surface of the tissue may break and thus introduce a tilt to the sensor with respect to
the tissue surface. As a consequence, unequal distances between the individual electrodes
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and the surface of the tissue arise. The effects on the determined direction of propagation
were investigated by means of electrograms obtained from computer simulation.

Great effort has been made to minimize the influence of noise and power line inter-
ference on the acquired CNF signals by proper design of the experimental setup (cf. Sec-
tion 4.1.1). Nevertheless, a 50 Hz power line interference may hardly be eliminated from
the signal recordings. It has not been evaluated how this interference affects E and derived
parameters of local impulse propagation.

It was shown that the vector loop of E indicates the angle of local propagation ϕ in
that its tip points opposite to the main direction of the propagating wavefront [62]. In case
of fractionated electrograms recorded at sites of parallel, branching, crossing, or merging
muscle fibers, abundant in the right atrial isthmus, the time course of the tip of E often
describes double or multiple loops. The aim of this computer simulation study was to
examine as to how the angles determined from the vector loop of E allow estimating the
structure of the underlying tissue, i.e. the crossing angle of fibers beneath the recording
position.

6.5 Evaluation of Fractionated Electrograms

Since electrogram fractionation is usually caused by the presence of multiple current
sources which differ in strength, distance to the recording site, and activation time, frac-
tionated electrograms may be considered as superimposed nonfractionated components
(cf. Section 3.4.2).
In order to quantitatively describe fractionated electrograms, a new measure termed frac-
tionation index (FI) was introduced. The integer value FI indicates the number of su-
perimposed nonfractionated components within a fractionated electrogram. In addition
to the FI, fractionated electrograms are characterized by the difference between the local
activation times of the components (∆LAT) and the relation of their amplitudes.

6.6 Decomposition of Fractionated Electrograms

The decomposition of fractionated electrograms enables the analysis of its nonfractionated
components in terms of amplitude, symmetry, and – for multisite recordings – local con-
duction velocity and direction of propagation. The number of nonfractionated components
and their waveform characteristics can be used as additional features for the classification
of the microstructural composition of the tissue in the adjacency of the recording site.
The strategy of the decomposition of a fractionated electrogram Φ is to repeatedly fit
in and subtract a template, created by means of the analytic signal model introduced in
Section 6.3.
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6.7 Discrimination of Local and Distant Activation

Extracellular electrograms not only represent the activation of a single cardiomyocyte
but emerge from the spatio-temporal integration of current sources in the recording area
(cf. Section 2.1.4). Especially when fractionated electrograms are recorded, it is desirable
to estimate the distance z between recording site and current sources, i.e. the myocardial
fibers, or at least to distinguish which deflection represents local and which one remote
activation, in order to assign correct local activation times. When the source strengths
are equal, as given for the theoretical example of muscle fibers with equal geometric (e.g.
diameter) and electrophysiological properties (e.g. conduction velocity, curvature of prop-
agating activation wave), the amplitude of Φ, Φpp, gives a measure of the distance, because
Φpp falls with increasing distance to the current source (see Equation 2.1). The amplitude
of the temporal derivative Φ̇pp, has been used to distinguish local and distant activation,
as shown in experimental studies [116, 117]. In general, muscle fibers show individual
properties and the task of estimating the distances between current sources and deflec-
tions within a fractionated electrogram Φ may become more complicated. As extreme case
activations from a strong distal source (e.g. a thick fiber bundle) and a weak local source
superimposed within Φ can be considered.

An approach to this issue is finding a ratio between two parameters extracted from
Φ, which both change with increasing distance but at a different rate. Spach and Dol-
ber showed that for a cylindric fiber the amplitude of the second derivative of Φ with
respect to time Φ̈pp falls more rapidly with the distance than the amplitude of the first
derivative Φ̇pp [66]. They suggested therefore to use the ratio Φ̈pp : Φ̇pp as an estimator
of z. Hofer et al. observed that |Ė|pp, the amplitude of the temporal derivative of the
magnitude of CNF strength |E|, decreases at a higher rate with increasing z than |E|pp
and thus suggested using the ratio |Ė|pp : |E|pp as a measure of locality of the observed
electrogram deflection [118].

Chouvarda et al. have used a dipole model as well as a nonlinear model to represent
the time course of the transmembrane current and the volume conductor equation and an
optimization procedure to solve the inverse problem of determining the distance z between
current source and recording site [119]. They yielded promising results, as the estimation
error for z was below 50µm. However, the method required the accurate determination of
the local conduction velocity and noise dramatically deteriorated the results. The method
was based on a very simple anatomical model of a myocardial bundle as one-dimensional
strand of current sources.

The aim of this study was to examine the two proposed morphological measures,
Φ̈pp : Φ̇pp and |Ė|pp : |E|pp determined at varying distances z from the surface of fibers
with different diameters and tissue sheets incorporating anisotropy, elliptic propagation of
activation, and structural heterogeneities.
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The experimental study was intended to examine the feasibility of determining the
proposed measures. Specifically, the influence of noise and measurement artifacts on the
parameters and the size of the calculated ratios and their accordance with values obtained
from computer simulations was investigated.

6.8 Classification of Tissue Microstructure through CNF

Signals

The presented CNF measurement technique allows the resolution of discontinuous activa-
tion in the submillisecond range resulting from structural discontinuities in the submil-
limeter range as for instance caused by fibrosis. One major challenge for this technique
is the characterization of the microstructure of the underlying tissue through recorded
electrograms. With regard to the achieved spatio-temporal resolution, particularly the
distinction between normal and fibrotic tissue, as well as the classification into different
types and degrees of fibrosis is desirable.
Currently, there is no common quantitative definition of certain classes of fibrosis. Quali-
tatively, a distinction between patchy fibrosis and diffuse fibrosis has been made. Patchy
fibrosis is characterized by longitudinal compact inlays of fibrotic strands, diffuse fibrosis
by short strands [22]. Kawara et al. have shown that not only the amount of fibrosis, i.e.
the percentage of fibrosis in terms of area, but as well the texture of fibrosis is essential for
the activation pattern [120]. They compared impulse propagation in tissue with patchy
fibrosis and diffuse fibrosis at the same percentage, and observed that the former leads to
increased conduction delays.

The characterization of the microstructure of the tissue through electrograms requires
the classification of microstructure from histological images from the recording area. The
procedure of embedding and slicing the preparation, as described in Section 4.1.4, causes
shrinkage, morphologic distortions, and clefts. For these reasons, the annotation between
histograph and macroscopic digital image and thus the recording position with the neces-
sary accuracy has turned out to be unfeasible.

Therefore, as a first approach to classification of the microstructure through CNF
signals, the histologically detailed computer model of rabbit atrium described in Section 4.2
was used.
The computer simulation study has been carried out in order to classify myocardium
in terms of its microstructure into three classes: 1.) well coupled tissue, 2.) tissue with
longitudinal inlays, and 3.) tissue with complex distribution of inlays of connective tissue.

It was demonstrated in Section 3.4.2 that electrogram fractionation may depend on
the direction of impulse propagation. The basic idea of the study was to vary the stimulus
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site in order to induce different directions of propagation while recording electrograms in a
certain region of interest. Dependent on the type of tissue, the parameters extracted from
the recorded electrograms are expected to show different behavior. The study examines the
ability in classifying the type of tissue from features extracted from electrograms recorded
during varying direction of propagation of activation.





Chapter 7

Methods

In this Chapter, the methods to obtain the results presented in Chapter 8 are described.

7.1 Signal and Noise Analysis of CNF Signals

7.1.1 Statistical Analysis of CNF Signal Parameters

In order to statistically evaluate CNF signal properties, a set containing 566 multivari-
ate electrograms Φ = [Φ1 Φ2 Φ3 Φ4]T recorded at 566 different positions during 9 elec-
trophysiological experiments with preparations of the rabbit’s right atrial isthmus was
created. This set A was separated into two sets containing nonfractionated or fraction-
ated waveforms, respectively, using the SM algorithm described in Section 7.5.2. From
both sets 200 waveforms were randomly chosen, resulting in set I containing 200 non-
fractionated waveforms of Φ and set II containing 200 fractionated waveforms of Φ. The
waveforms were bidirectionally lowpass filtered (4th order Butterworth-type, cutoff fre-
quency fC = 1.5 kHz).
The signal quality of a recorded unfiltered electrogram Φ was quantified by means of the
amplitude-to-noise ratio (ANR) [76], which calculates as follows:

ANR = 20 log10

Φpp

σN
, (7.1)

where Φpp is the peak-to-peak amplitude of Φ, and σN is the standard deviation of the
noise which was determined in a quiescent section of the recording.
Φpp and its temporal derivative Φ̇pp as well as fractionation index FI (see Section 7.5.2) and
ANR were determined from Φ1. The maximum of the CNF strength |E|p was determined
from Φ.
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The probability distributions of Φpp, Φ̇pp, ANR, and |E|p from set I and set II were
compared using a Mann-Whitney-U test1.
From the distributions of ANR, lower quartile ANR.25, median ANR.50, and upper quar-
tile ANR.75 for set A, set I, and set II were computed.
Furthermore, the correlation matrix of the variables FI, Φpp, Φ̇pp, ANR, and |E|p was
calculated.

7.1.2 Analysis of Noise in the Measurement Chain

In the absence of a tissue preparation, electric potential signals of 1 s duration were
recorded in the tissue bath filled with Tyrode’s solution and digitized using the mea-
surement system described in Section 4.1.1. Thus, the noise signal induced by the entire
measurement chain containing electrode-electrolyte interface, CNF sensor, impedance con-
verter, preamplifier, main amplifier, cables, and DAQ board was acquired. The noise signal
induced by the amplifier chain was acquired by a recording of 1 s duration without the
CNF sensor and with all input channels of the preamplifier connected to signal ground.
The quantization noise of the ADC was simulated by generating a noise signal with an
amplitude range of ±q/2 with uniform distribution2, where q is the voltage resolution of
the ADC (cf. Section 4.1.1).
The power spectral densities (PSD’s) of quantization noise, amplifier noise, and measure-
ment noise were estimated using Welch’s method with 50 segments and 50% overlap [123].
The acquired noise signal was lowpass filtered (4th order Butterworth type, fC = 100 Hz).
Its peak-to-peak amplitude AΦ̃ was considered as the amplitude of the 50 Hz power line
interference signal.

7.1.3 Frequency Analysis of CNF Signals

It has been shown that the volume conductor surrounding the tissue is a low pass filter
for extracellular potential waveforms [124] and that its cutoff frequency decreases with
increasing distance between current sources and measurement position. To determine
the highest relevant frequency components that may occur in CNF measurements, an
extracellular electrogram Φsim was computed directly, i.e. 1µm above the surface of a
computer simulated sheet of cardiac tissue. As a comparison Φsim was computed 50µm
above the surface, which corresponds to the distance between surface and electrodes of
CNF sensors used in the electrophysiological experiments. The PSD was estimated using
Welch’s method with 50 segments and 50% overlap.

1The Mann-Whitney-U test was chosen for variance analysis because a Lilliefors composite goodness of

fit test has shown that none of the compared variables are normally distributed [121].
2The assumptions enabling the presented statistical considerations are described in [122, p.194].
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7.2 Determination of Local Conduction Velocity

7.2.1 Uncertainty Due to Temporal Discretization

In the absence of noise, the uncertainty of magnitude θ and direction ϕ of the LCV is
dependent on the value of θ, the inter-electrode distance DD, and the sampling rate fS .
To quantify the uncertainty of θ, a simplified arrangement consisting of two electrodes was
considered.
The latency of the propagating impulse between the electrodes causes a temporal shift tD
between the simultaneously acquired waveforms Φ1 and Φ2. The magnitude θ of the LCV
is:

θ =
DD
tD

The absolute deviation ∆tD is dependent on the temporal resolution of the digitized
waveforms Φ1 and Φ2, i.e. the sampling interval TS and the sampling rate fS = 1/TS ,
respectively:

∆tD = ±TS = ± 1
fS

As a consequence, the absolute deviation in θ, calculated by the propagation of uncer-
tainty is:

∆θ = ∓ θ2

fS ·DD
(7.2)

The uncertainty of the direction of propagation ϕ is examined using an arrangement
of two orthogonal electrode pairs with equal inter-electrode distance DD. The electrode
pairs allow determining the longitudinal and transversal conduction velocities θl and θt.
Velocity θ and angle ϕ in the main direction of propagation calculate as follows:

θ =
√
θ2
l + θ2

t

ϕ = arctan
θt
θl

The absolute deviation in ∆ϕ is:

∆ϕ = arctan
∆θ
θ

= arctan∓ θ

fS ·DD
(7.3)

Equations 7.2 and 7.3 show that for given inter-electrode distance DD the uncertainty
in the determination of LCV can be decreased by increasing the sampling rate fS or rather
by digital resampling of the acquired electrograms.
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Digital Resampling

The chosen method for increasing the temporal resolution of electrograms Φ is sinc-
interpolation by zero padding in the frequency domain. The extracted signal is windowed
using a rectangular window with length N and Fast Fourier transformed (FFT). The fre-
quency domain signal is extended by N · (M − 1) zeros and transformed to time domain
using inverse FFT. Thus, almost arbitrary interpolation factors M can be achieved, pro-
vided that the sampling theorem was satisfied when acquiring the waveforms [125].

In order to evaluate the digital resampling and the theoretical considerations concern-
ing the uncertainty of LAT delays, two extracellular electrograms Φh1 and Φh2 with a
temporal resolution of 1µs were created by 1D-computer simulation. The local activation
times of Φh1 and Φh2 differed by ∆LATh = 70µs, which – assuming an inter-electrode
distance DD = 70µm – corresponds to an LCV θ = 1 m/s.
The temporal resolution of Φh1 and Φh2 was reduced by a factor of 50, which corresponds
to the downsampling to fS = 20 kHz. The decimation phase was varied from i = 0 . . . 49
and electrograms Φl1i

and Φl2i
were obtained. Then the decimated electrograms were

sinc-interpolated by a factor of 50 and the respective LAT1i and LAT2i were calculated.
The range of LAT2i −LAT1i was determined and compared to the uncertainty due to the
temporal resolution of Φh1 and Φh2 (1µs).

7.2.2 Uncertainty Due to Noise

Two different anatomical substrates were analyzed. a) A cable-like strand of cells with
atrial membrane kinetics (Lindblad et al. model [126] of rabbit atrium) and b) a con-
tinuous anisotropic tissue sheet (4000µm× 1250µm) with ventricular membrane kinetics
(Beeler-Reuter-Drouhard-Roberge model of general mammalian ventricle [127]). The fiber
orientation was defined in the long axis of the tissue sheet by introducing a transversal-
to-longitudinal anisotropy ratio of 0.174. This setup is illustrated in Figure 7.1. Point-like
stimuli were applied to the tissue at the indicated positions to induce longitudinal ellip-
tic propagation (b1), transversal elliptic propagation (b2), and oblique elliptic propaga-
tion (b3), respectively.

Four extracellular potentials Φ were computed in a square with 50µm lateral length,
centered in the tissue sheet, in a plane 50µm above the surface. The tolerance band for ϕ
was chosen ±20◦ which even in worst case should enable a distinction between longitudinal,
oblique, or transversal propagation with respect to the fiber orientation. The tolerance
band for θ was chosen ±0.1 m/s which gives a maximum uncertainty of 20 % in case
θ = 0.5 m/s. Reference values for θ and ϕ were taken from noise-free waveforms Φ. ANR
was varied from 70 down to 15 in steps of 1. For each value of ANR, Gaussian white noise
with corresponding level was generated and added to Φ. Then, Φ was bidirectionally
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Figure 7.1: Computer simulation setup of a 2D-sheet of cardiac tissue. Stimulus positions to
induce longitudinal elliptic (LP), transversal elliptic (TP), and oblique elliptic (OP) wavefronts of
propagation of activation are indicated. The section demarcated by dashed line was considered for
signal analysis. Dimensions are given in µm.

filtered using a lowpass filter (4th order Butterworth type), whose cutoff frequency fC was
varied from 5 kHz down to 200 Hz. The filtered waveforms were sinc-interpolated with
factor 20 to increase the temporal resolution to 0.5µs.
LCV’s (θ and ϕ) were computed using the minimum derivative method (dmin method)
and the cross correlation method (CCF method). Additionally, ϕ was determined from
the CNF strength E (Emag method). A detailed explanation of these methods is given in
Section 3.3.2.
For each pair of ANR and fC , θ and ϕ were computed 100 times with regenerated noise.
The uncertainty of θ and ϕ was expressed as the three-fold standard deviation of the
respective 100 values.
Hence, for each fC , the minimum ANR was determined, at which the uncertainty of θ and
ϕ, respectively, remains within the given tolerance band.

The following computer simulation study was carried out to obtain the uncertainty of
θ and ϕ for the range of values of ANR and θ which can be expected during electrophysio-
logical experiments with the described setup (see Section 4.1.1). A noise-free extracellular
potential Φ1(t) was obtained from a computer simulation with the setup a). The four
waveforms Φ = Φ1(t) . . .Φ4(t) according to the sensor described in [54] were obtained by
copying Φ1(t) and shifting it in time. Thus, propagation velocities θ in a range of 0.1 m/s
to 2 m/s in steps of 0.05 m/s were mimicked. Again, the ANR was varied from 70 down to
15 in steps of 1. Gaussian white noise with respective level was added to Φ. For each tuple
(θ, ANR), noise was regenerated 100 times and the three-fold standard deviations 3σθ and
3σϕ of θ and ϕ, determined using the CCF method and the Emag method, respectively,
were calculated.
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7.2.3 Comparison to LCV Determined from Transmembrane Voltages

The computer model of a 2D-sheet of cardiac tissue (depicted in Figure 7.1) was used.
A point-like stimulus was applied to the tissue at positions LP, TP, and OP to induce
a) longitudinal elliptic propagation (LP), b) transversal elliptic propagation (TP), and
c) oblique elliptic propagation (OP), respectively.

In order to exclude possible artifacts within Φ due to the borders of the simulated
tissue, a rectangle of 2000µm× 625µm was extracted from the center of the tissue sheet
for signal analysis. LCV (magnitude θ and direction ϕ) was calculated in a grid of 50µm
lateral length from Vm (θV m, ϕV m) and Φ (θΦ, ϕΦ). The deviation of θ, eθ = θΦ − θV m
and the deviation of ϕ, eϕ = ϕΦ − ϕV m were calculated for each grid point.

The study was repeated with a nonconducting obstacle (500µm×50µm) embedded in
the center of the tissue sheet. OP was induced and θV m, ϕV m, eθ, and eϕ were computed.

7.3 Analytic Signal Model of Extracellular Electrogram

7.3.1 Signal Model

The template Φm(t), centered at t = 0 consists of four sigmoid functions: The positive
phase of the biphasic waveform Φm(t) is created by multiplication of the rising function
sPR(t) and the falling function sPF (t). Likewise, the negative phase consists of sNR(t)
and sNF (t). The function Φm(t) is described by four parameters [a b c d]T , where b, c,
and d determine the waveform of the sigmoids and a scales the overall function.

Φm(t) = a (sPR(t) sPF (t)− sNR(t) sNF (t))

sPR(t) =
b

1 + exp(−tb)

sPF (t) =
c exp(−tc)

1 + exp(−tc)

sNR(t) =
c

1 + exp(−tc)

sNF (t) =
d exp(−td)

1 + exp(−td)

Figure 7.2 illustrates the generation of Φm(t) and shows the modeling of waveforms
which represent initiating, free running, and colliding wavefronts of activation by variation
of [a b c d]T .

7.3.2 Curve Fitting

The task of finding a set of the four parameters [a b c d]T for which Φm(t) best fits a given
waveform Φ(t) was solved by nonlinear curve fitting in least-squares sense using the Trust-
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Figure 7.2: Modeling of depolarization waveform Φm(t), t = −5 . . . 5 in steps of 0.01. Amplitude
and time scales are dimensionless. Subfigures (a)-(f) illustrate the composition of Φm(t) (h)
by sigmoid functions sPR(t), sPF (t), sNR(t), and sNF (t). The coefficients for the sigmoids are
indicated in subfigures (a), (b), (d), and (e). Subfigures (g)-(i) show starting, free running, and
terminating or colliding waveforms and respective parameters [a b c d]T . Figure adopted from [128].
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Table 7.1: Choice of start, minimum, and maximum coefficients for the optimization process.
Φpp: amplitude of Φ(t), Φmax: magnitude of positive phase of Φ(t),

∣∣∣Φ̇min∣∣∣: amplitude of Φ̇(t),
|Φmin|: magnitude of negative phase of Φ(t).

Coefficient Initialization Minimum value Maximum value
a a1 := Φpp

2 al := Φpp

400 ah := 4 · Φpp

b b1 := Φmax
Φpp

bl := 1
1000

Φmax
Φpp

bh := 20 Φmax
Φpp

c c1 := 5 |Φ̇min|
Φpp

cl := 1
5
|Φ̇min|

Φpp
ch := 20 |Φ̇min|

Φpp

d d1 := |Φmin|
Φpp

dl := 1
1000

|Φmin|
Φpp

dh := 20 |Φmin|
Φpp

Region-Reflective method (MATLAB function lsqcurvefit) [113]. The depolarization
time tdep was determined. Φ(t) was windowed using a rectangular window of tW = 4 tdep
length. Start coefficients [a1 b1 c1 d1]T , minimum coefficients [al bl cl dl]T , and maximum
coefficients [ah bh ch dh]T were calculated from Φ(t) following empirically established rules
(see Table 7.1). The maximum number of function evaluations was chosen 2000, the
termination tolerance for the function value was set to tol = Φpp · 10−4.

The ability of the proposed signal model to represent a wide range of nonfractionated
electrograms was tested using a computer simulation of a one-dimensional cable-like fiber
of 20 mm length.
Extracellular potentials Φ(t) were computed at different positions x along the fiber
(x = 0 mm, 10 mm, and 20 mm) representing starting, free running, and terminating prop-
agation and at different distances z from the surface of the fiber (z = 5, 250, and 500µm)
representing local and remote activation events. Moreover, membrane kinetic models for
atrial (LMCG) as well as ventricular activation (MSH) were used [126, 11]. For each x and
z as well as for both membrane kinetic models, the curve fitting procedure was applied to
Φ(t) to obtain a modeled waveform Φm(t).

The goodness of fit was quantified by a) the sum of the squared errors sseΦ, which
calculates as follows:

sseΦ =

N−1∑
t=0

(Φm(t)− Φ(t))2

N−1∑
t=0

(Φ(t))2

, (7.4)

where N is the length of the sequences Φ(t) and Φm(t) and b) the Pearson product-
moment correlation coefficient rΦ between Φ(t) and Φm(t). Likewise, sseΦ̇ and rΦ̇ were
determined for the temporal derivative.
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7.4 Analysis of Vector Loops of CNF Strength

7.4.1 Influence of Unequal Distances between Electrodes and Tissue

The influence of unequal distances between the electrodes and the surface of the tissue
under examination on the determined angle of impulse propagation ϕ was investigated
using the computer model described in Section 7.2.3. Two scenarios were taken into
consideration: a) altered distance ∆z from the tissue surface of one of the four electrodes
and b) ∆z of two electrodes. In both scenarios, all options, i.e. ∆z for any electrode or any
electrode pair, were evaluated and the respective worst case in terms of deviation in ϕ was
selected. Assuming a regular distance of 50µm from the surface, ∆z was varied from 5 to
50µm in steps of 5µm. Thus, a maximum tilt of the CNF sensor of 45◦ with respect to the
tissue surface was mimicked. A further tilt would certainly be noticed by the experimenter
and the repositioning of the sensor would be initiated. To simulate sensor tilt by broken
spacer pillars, ∆z= −5µm and ∆z= −10µm were evaluated.
The angle of impulse propagation was determined on one hand from the CNF strength
E (ϕE) and on the other hand from the vector of local conduction velocity θ (ϕ). For
both scenarios – ∆z effective on one or two electrodes – the respective deviations from ϕ0

in the absence of a ∆z (eϕE and eϕ) were calculated for different values of ∆z.

7.4.2 Influence of Power Line Interference

Multivariate electrograms Φ of 10 ms duration were obtained with the computer model
described in Section 7.2.3 and perturbed by adding an artificial sinusoidal interference
signal. Two scenarios were taken into consideration: a) effective power line interference in
one channel (Φ1) and b) effective power line interference in two channels (Φ1 and Φ2). In
the latter case, two channels whose waveforms are not subtracted from each other when
computing E (see Equations 3.2 and 3.3) were perturbed to the same extent.
A sinusoid Φ̃(t) with frequency f = 50 Hz and variable amplitude and phase was generated
and added to Φ1, or Φ1 and Φ2, respectively. The relation of the amplitude of Φ̃(t) and
Φ1 (AΦ̃/A) was varied from 0 . . . 20 % in steps of 1 %, the phase angle ζ was varied from
1 . . . 360◦ in steps of 1◦. For each value of ζ and AΦ̃/A, the absolute deviation in angle
eϕ = |ϕE − ϕ0| was computed, where ϕ0 is the angle in the undisturbed case. For each
value of AΦ̃/A, the maximum value of eϕE for varying ζ was determined.
Moreover, it was examined if eϕE could be reduced by elimination of linear or quadratic
trend in Φ using curve fitting in the least-squares sense [114].

7.4.3 Estimation of Crossing Angle of Fibers

The computer simulation setup is illustrated in Figure 7.3. Two fibers crossing each
other at half of their length in an angle α = 90◦ were represented by a 2D-monodomain
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model of two continuous anisotropic tissue layers (10 mm × 10 mm) separated by 25µm
with perpendicular fiber direction. The areas around the cable-like fibers were set to
be isolating. Membrane kinetics were modeled by the Lindblad et al. model [126]. At
positions A and B, point-like stimuli of 1 ms duration were induced. Discretization steps
were 25µs in space and 10µs in time. Extracellular potentials were recovered 50µm above
the surface in a grid of 25µm. Transversal to longitudinal conductivity ratio was set to
0.174, longitudinal conduction velocity was 0.5 m/s.
By stimulation of fiber I at position A and – after a time delay ∆LAT – fiber II at
position B, fractionated electrograms with two components were obtained at the point of
observation (1). The crossing angle was varied from 0 ≤ α ≤ 180◦ in steps of 5◦. Thus,
crossing, parallel, and antiparallel (i.e. parallel but with opposite directions) fibers could
be mimicked.

For each component, the direction of local propagation (ϕ) was determined at the in-
stants of peak magnitude of E (cf. Section 3.3.2). Peaks higher than 20 % of the maximum
peak amplitude were taken into consideration. The deviations in ϕ for the two components
(eϕ1 and eϕ2) were obtained as follows:

eϕ = |ϕ− α|

The deviations eϕ1 and eϕ2 as functions of α were determined for two time delays
∆LAT1 = 1 ms and ∆LAT2 = 1.5 ms.
Furthermore, ∆LAT was varied from ∆LAT = 3 . . . 1 ms in steps of−0.1 ms. For each value
of ∆LAT, |êϕ1| and |êϕ2|, the maximum deviations of eϕ1(α) and eϕ2(α) were computed.

7.5 Evaluation of Fractionated Electrograms

To determine the fractionation index (FI) of an electrogram Φ, two algorithms have been
developed: 1) A simple peak counting within the temporal derivative Φ̇, termed pCt and
2) a cross correlation-based algorithm, SM, which uses a template of Φ created by means
of the analytic signal model described in Section 8.3.

7.5.1 Peak Counting Algorithm (pCt)

Fractionated electrograms Φ are characterized by multiple bipolar deflections and conse-
quently multiple negative peaks in the temporal derivative Φ̇. The straightforward ap-
proach to determining the number of superimposed nonfractionated components (FI) is
thus to count the negative peaks within Φ̇.
The algorithm requires two input variables, a threshold th and a separation time tsep

which specifies the minimum time between subsequent peaks. The appropriate choice of
tsep is necessary to avoid counting one peak within Φ̇ several times, when the waveform
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is perturbed by noise or the peak is not well-defined. Peaks higher than th · (−Φ̇)p are
counted, where (−Φ̇)p is the magnitude of the maximum negative peak. The threshold has
been set to th = 0.1. The output values of the algorithm are the fractionation index (FI)
and the vector (length FI) of local activation times (LAT) of the components.

7.5.2 Signal Model Algorithm (SM)

This cross correlation-based algorithm uses a template of Φ̇ created by means of the
analytic signal model of Φ introduced in Section 7.3. The block diagram shown
in Figure 7.4 illustrates the procedure. The template Φm with the duration tW =
16tdep is created by means of the signal model using the coefficients [a b c d]T =[
Φpp/4 2Φmax/Φpp |Φ̇min|/2 |Φmin|/Φpp

]
and differentiated with respect to time

(Φ̇m). Φ is bidirectionally lowpass filtered (Butterworth IIR, 4th order, fC = 1.5 kHz)
and temporally differentiated (Φ̇). A window of duration tW is extracted around the
maximum negative peak of Φ̇. The cross correlation function cΦ̇Φ̇m

(τ) of Φ̇ and the tem-
poral derivative Φ̇m of the modeled waveform Φm is calculated by fast correlation in the
frequency domain [122, p.746]. The second derivative of cΦ̇Φ̇m

(τ) with respect to τ is
calculated and multiplied with a Kaiser window to attenuate artifacts at the borders of
the waveform induced by the differentiation operations. From c̈Φ̇Φ̇m

(τ), peaks with a mag-
nitude above 20 % of the maximum peak are identified. The number of peaks as well
as their instants of time and magnitudes relative to the maximum peak are determined.
These values represent FI, the vector of local activation times (LAT), and the vector of
magnitudes (A).

7.5.3 Evaluation of FI Detection Algorithms

In order to evaluate the limitations of the algorithms pCt and SM to determine the FI,
the following computer simulation study has been carried out. Two nonfractionated elec-
trograms Φ1 and Φ2 were added to generate a fractionated electrogram Φ12. The latency
between the LAT’s of Φ1 and Φ2, ∆LAT, was varied by temporally shifting Φ2 against Φ1

in the range of 2 ms down to 0 ms in steps of 0.05 ms. Φ1 was computed 50µm above the
surface, corresponding to the dimensions of CNF sensors [54]. Because differences in ampli-
tude between the components of fractionated electrograms are usually due to the different
distances between measurement site and current sources of the individual components, the
distance z from the surface in which Φ2 was recovered was varied from 50µm to 300µm in
steps of 5µm. Thus, the relation A2 of the amplitudes of Φ2 and Φ1 varied from 1 down
to 0.24 in a nonlinear manner, inversely proportional to the distance z. The robustness
of the algorithms against noise was evaluated by regenerating and adding noise 100 times
for each pair (∆LAT , A2) and calculating the mean of the FI from these 100 runs. The
noise level was set to achieve an amplitude-to-noise ratio ANR = 38 dB, which corresponds
to the lower quartile of the ANR-distribution from fractionated electrograms determined
from electrophysiological experiments in the rabbit’s right atrial isthmus (see Section 8.1.1
and Table 8.1).
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Figure 7.4: Block diagram of the algorithm SM for the detection of the fractionation index (FI):
A: Differentiation, B : Determination of the depolarization duration tdep, C : Signal generation using
analytic signal model, D : Differentiation, E,F : Rectangular windowing, G : Calculation of cross
correlation, H : Differentiation (second derivative), I : Windowing using Kaiser window, J : Peak
detection algorithm. I.) Input waveform Φ, II.) Temporal derivative Φ̇, III.) Modeled waveform
Φm, IV.) Temporal derivative of modeled waveform Φ̇m, V.) Cross correlation function cΦ̇Φ̇m

(τ),
VI.) Second temporal derivative c̈Φ̇Φ̇m

(τ).

7.6 Decomposition of Fractionated Electrograms

The decomposition of fractionated electrograms is performed by repeated application of
the curve fitting procedure described in Section 7.3.
The curve fitting procedure is carried out in n iterations i = 1 . . . n. Hence, it is applied
nFI times centered at the local activation time LATk, k = (j−1 mod FI)+1, j = 1..nFI.
Window size and termination tolerance for the optimization procedure are adapted as
follows: tW = tdep22(i−1), tol = Φpp10−(i+3). After each iteration j, Φm,j(t) is modeled
using the determined coefficients. For i = 1 the coefficients for the FI components are
determined by fitting the signal model into Φj = Φ−

∑j−1
k=1 Φj . For i > 1 the curve fitting

is done for Φj = Φ−
∑FI

k=1(Φm,l)l=FI (i−2)+k, l 6=j−FI . Because the subtraction of modeled
components might alter the LAT’s, the respective LAT is recomputed prior to the curve
fitting. The resulting components are Φm,(n−1)FI+1..Φm,nFI .

The goodness of fit was quantified by a) the sum of the squared errors sseΦ (see
Equation 7.4) and b) the Pearson product-moment correlation coefficient rΦ between Φ(t)
and Φm(t). Likewise, sseΦ̇ and rΦ̇ were determined for the temporal derivative.
Figure 7.5 shows the decomposition procedure for n = 3. With i the fit improves, i.e.
sse decreases and r increases. For the choice of n a trade-off between goodness of fit and
computation time has to be made. In the following, n = 5 was chosen.
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activation times LAT1 and LAT2, respectively; number of iterations n=3: For better visibility, the
graphs show the development of the temporal derivatives of simulated waveform Φ̇ and modeled
waveform Φ̇m. The decomposition starts by fitting in the signal model at LAT1 (panel j=1). The
modeled waveform Φm,1 is subtracted from Φ and LAT2 is adapted before curve fitting centered
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iteration i. The diagram below displays the changes in error (sse) and correlation coefficient r
between the simulated waveform Φ and the modeled waveform Φm (sseΦ and rΦ), as well as
between their derivatives Φ̇ and Φ̇m (sseΦ̇ and rΦ̇). Figure adopted from [128].
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7.6.1 Evaluation of the Decomposition of Fractionated Electrograms

Two setups, depicted in Figure 7.6 were considered. The first setup consists of two 20 mm
long strands of cardiomyocytes where the distance z between strand 2 and recording
site could be varied (Figure 7.6 (a)). The weighting of two propagating sources on the
extracellular potential Φ at the recording position was separately analyzed by stimulating
only either strand 1 or strand 2. Φ was obtained by adding the contributions Φ1 and Φ2

of the two strands.
The second setup modeled a 2D-anisotropic sheet of tissue of 4 mm×1.25 mm in which

obstacles were embedded to mimic the effect of microfibrosis upon activation patterns at a
microscopic size scale (Figure 7.6 (b)). Longitudinal to transversal conductivity ratio was
set to 9.158; longitudinal conduction velocity was 0.7 m/s. Two rectangular nonconducting
obstacles of 500µm × 50µm, oriented parallel to the fibers were embedded at a distance
of 100µm in the center of the tissue sheet, mimicking inlays of interstitial connective
tissue. Point-like stimulation of 1 ms duration was applied to the lower left corner of the
sheet to induce an elliptic wavefront which propagates towards the obstacles in an oblique
direction. To mask the influence of borders, an area of 1 mm× 0.3 mm at the center of the
sheet was extracted for signal analysis.

The setup consisting of two 1D-strands of cardiomyocytes was used to synthesize frac-
tionated electrograms Φ12 in a well-controlled manner by superposition of two nonfraction-
ated waveforms Φ1 and Φ2. Two limiting parameters for the decomposition of fractionated
electrograms were taken into consideration: 1.) the difference ∆LAT between the local ac-
tivation times of Φ1 and Φ2, and 2.) the difference in the distance between recording site
and the sources of Φ1 and Φ2, respectively. The components Φ1 and Φ2 were recorded at
site II, with only either strand 1 or strand 2 being stimulated. The minimum distance of
50µm between recording site and strand corresponds to the distance between electrodes
and tissue surface of the used CNF sensors [54]. Φ2 was computed with strand 2 being
located at distances z = 50 . . . 300µm in steps of 5µm, which resulted in an amplitude
ratio between Φ2 and Φ1, A2/A1, in the range of 1 to 0.24.

The depolarization time of Φ1, tdep1 was 0.94 ms, whereas the depolarization time of
Φ2, tdep2 constantly increased from 0.94 to 1.8 ms with increasing z. The difference in LAT
(∆LAT) was varied by temporally shifting Φ2 with respect to Φ1 from 0.5 to 3 ms in steps
of 0.1 ms. The resulting fractionated electrogram Φ12 was decomposed with the described
procedure to recover the nonfractionated components Φm1 and Φm2 as well as their sum
Φm12. To evaluate the goodness of fit, the amplitudes B1 and B2, the symmetry factors b1
and b2, and the depolarization times tdepm1 and tdepm2 of Φm1 and Φm2 were compared to
the values A1, A2, a1, a2, tdep1, and tdep2, respectively, obtained from Φ1 and Φ2. For each
distance z and each parameter (B1, B2, b1, b2, tdepm1, and tdepm2), the minimum values
of ∆LAT were determined above which the chosen error tolerance of ±20% for amplitude
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Figure 7.6: Computer simulation setups. (a) Two 20 mm long strands of cardiomyocytes stim-
ulated at x = 0 mm. Recording positions (×) at the beginning (I, x = 0 mm), in the middle (II,
x = 10 mm), and at the end of the strands (III, x = 20 mm) at a fixed distance of 50µm from
strand 1 and a variable distance z from strand 2. (b) 2D-sheet of tissue with embedded obstacles
obs1 and obs2, stimulated at the lower left corner. Fiber orientation is aligned with the x-axis.
The dashed area was considered for signal analysis. Dimensions are given in µm. Figure adopted
from [128].



7.7. DISCRIMINATION OF LOCAL AND DISTANT ACTIVATION 71

and depolarization time, and ±0.2 for the symmetry factor, were not exceeded.
To examine the robustness of the decomposition method against noise, for each z

and ∆LAT Gaussian white noise with amplitudes according to experimental values (see
Table 8.1) was regenerated 100 times and added to Φ12 before the decomposition procedure
was performed. The mean values µ and standard deviations σ of B1, B2, b1, b2, tdepm1,
and tdepm2 were calculated and compared to the corresponding values A1, A2, a1, a2, tdep1,
and tdep2. Again, the minimum values of ∆LAT were determined above which µ ± σ did
not exceed the chosen error tolerance. The respective values were denoted ∆LATmin,B1 ,
∆LATmin,B2 , ∆LATmin,b1 , ∆LATmin,b2 , ∆LATmin,tdepm1

, and ∆LATmin,tdepm2
.

7.6.2 Application of the Decomposition Procedure to Fractionated Elec-

trograms Caused by a Microstructural Obstacle

In order to obtain fractionated electrograms with a fractionation index 1 ≤ FI ≤ 3, the
2D-computer model of a tissue sheet with two embedded elongated microobstacles was
used. This setup is depicted in Figure 7.6 (b). As demonstrated in Section 3.4.2, for
the occurrence of fractionated electrograms not only the presence of conduction obstacles
but also their orientation with respect to the direction of propagation is essential. That
is, wavefronts propagating aligned with the axis of an elongated obstacle do not produce
any relevant fractionation. Therefore, a stimulus site was chosen to induce propagation in
an oblique direction relative to the alignment of the obstacle, to ensure sufficiently large
delays in activation time between the split wavefronts. In a grid of 25µm lateral length
spanning an area of approximately 1 mm× 0.3 mm, 602 extracellular potentials Φ(t) were
computed at a distance z = 50µm. The decomposition procedure was applied to the entire
set of electrograms. FI, sseΦ, sseΦ̇, rΦ, and rΦ̇ were computed.

7.7 Discrimination of Local and Distant Activation

7.7.1 Computer Simulation Study

To investigate the influence of fiber thickness and direction of propagation with respect to
the fiber orientation on two distance measures, the following two computer models were
created.

3D-Fiber

Two myocardial muscle fibers with different diameters were modeled by a three-
dimensional cubic monodomain model. The dimensions were 5 mm×0.25 mm×0.25 mm for
the thin fiber (cable A) and 5 mm× 1 mm× 1 mm for the thick fiber (cable B). Membrane
kinetics were represented by the Mahajan-Shiferaw model [11]. Propagation of activation
was induced by an electrical stimulus at one fiber end.
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sitions to induce planar (PLA), longitudinal elliptic (LP), transversal elliptic (TP), and oblique
elliptic (OP1 and OP2) wavefronts of activation. The point of observation for Φ, in the center of
the sheet, is marked with ×.

Extracellular potentials Φ were computed in the middle of the fibers at distances z =
50 . . . 500µm from the surface in steps of 5µm.

The amplitudes of Φ and its first and second temporal derivative (Φpp, Φ̇pp, Φ̈pp) as
well as the maxima of the magnitude of CNF strength (|E|pp) and its temporal derivative
(|Ė|pp) were computed.

2D-Sheet

The tissue model depicted in Figure 7.7 was used. Membrane kinetics were represented by
the Mahajan-Shiferaw model [11]. Stimulus sites were chosen to induce planar (PLA) as
well as elliptic wavefronts of activation propagating in longitudinal (LP), transversal (TP),
and oblique (OP1 and OP2) directions.
Extracellular potentials Φ were computed in the center of the tissue sheet at distances
z = 50 . . . 500µm from the surface in steps of 5µm.

From Φ, Φpp, Φ̇pp, Φ̈pp, |E|pp, and |Ė|pp were computed.

2D-Sheet with Branching

In the described tissue sheet, an electric isolator was embedded to mimic a branching
structure. The asymmetric position of this obstacle within the tissue (see Figure 7.8)
formed a thick branch with a diameter of 575µm and a thin branch with a diameter of
250µm. Stimulus positions were chosen to induce planar (PLA), longitudinal elliptic (LP),
and oblique elliptic (OP) wavefronts of impulse propagation.
Extracellular potentials Φ were computed in the center of the thin tissue branch (1), in the
center of the obstacle between the branches (2), and in the center of the thick branch (3)
at distances z = 50, 100, 200, 300, 400, and 500µm from the surface.

The local conduction velocity (LCV) θ was calculated from Vm in Pos. 1 and 3 for
stimulus sites PLA, LP, and OP. In order to vary the LCV, simulations were performed
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Figure 7.8: Computer simulation arrangement of a 2D-sheet of cardiac tissue with embedded
obstacle. Stimulus positions to induce planar (PLA), longitudinal elliptic (LP), and oblique ellip-
tic (OP) wavefronts of activation. At the points of observation 1, 2, and 3, Φ is computed at 50,
100, 200, 300, 400, and 500µm above the surface of the tissue. Dimensions are given in µm.

with the intracellular conductivity 3 gI reduced by 50%. Unchanged gI was denoted as
1 gI , reduced gI as 0.5 gI .
Φpp, Φ̇pp, Φ̈pp, |E|pp, and |Ė|pp were computed.
In case of oblique elliptic propagation (OP) of the activation wavefront, fractionated elec-
trograms Φ are observed in Pos. 2. This is, because the wavefront collides with the lower
left side of the obstacle and then gets accelerated in front, and decelerated in moving
around the obstacle. The fractionated Φ were separated into the contributions from the
thin and the thick tissue branch by windowing, and Φpp, Φ̇pp, Φ̈pp, |E|pp, and |Ė|pp were
computed for the individual contributions to Φ.

7.7.2 Experimental Study

Guinea pig papillary muscles were stimulated at a rate of 2/s with a current pulse of 1 ms
duration and a magnitude of approximately 1.5 times the stimulation threshold. Figure 7.9
shows an image, taken during such an experiment.

The common sensor setup had to be modified in order to overcome two difficulties.
First, the CNF sensor 1 was stiffened by applying a glue film onto its polyimide carrier.
Hence the floating of the sensor due to streaming of the Tyrode’s solution was reduced.
Second, sensor 1 was positioned laterally to the papillary muscle in order to monitor its
distance z from the surface of the muscle. Using a 3D-micromanipulator, z was varied from
50µm, which corresponds to the height of the spacer pillars, to approximately 500µm. The
current position of the sensor was documented by a digital image taken with a single-lens
reflex camera (see Section 4.1.3). The CNF sensor 2 was positioned close to sensor 1 at the

3The intracellular conductivity seen in the traditional bidomain and monodomain equations is an ef-

fective (or average) conductivity. It is obtained by considering the effect of gap junction resistance on

propagation to be small enough that it may be ignored or at least averaged over the entire cell [61]. In

this work, such conductivities are termed gI .
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50µm
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stimulus

Figure 7.9: Measurement of Φ at different distances z from the surface of a guinea pig papillary
muscle. The green lines indicate different positions of sensor 1. z was recovered after the experiment
from digital images. Sensor 2 was kept at the same position throughout the experiment.

surface of the muscle to monitor the stability of the activation during the entire recording
process.

A single cycle of Φ was recorded from sensor 1 at every position. After the experiment
the actual distances z between sensor and surface of the tissue were recovered by means
of the digital images. |E|pp, ˙|E|pp, |Φ̇|pp, and |Φ̈|pp were calculated.

7.8 Classification of Tissue Microstructure through CNF

Signals

7.8.1 Computer Model

From the computer model of a rabbit atrium (see Section 4.2.2), 6 sections (1 mm×1 mm)
were extracted and classified by an expert into

1) WC: well coupled tissue (number of sections n=2),

2) PO: tissue with separating structures which are in parallel to the fiber direction
(n=2), or

3) CO: tissue with complex pattern of separating structures (n=2).

Figure 7.10 shows a sample of each tissue class.
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a) b) c)
200 µm

well coupled parallel inlays complex structure

Figure 7.10: Samples of tissue sections (1 mm× 1 mm) representing three tissue classes. a) WC:
Well coupled tissue. b) PO: Tissue containing parallel inlays of connective tissue. c) CO: Tissue
with complex arrangement of microstructural obstacles for propagation of activation. Myocytes
are stained in red, connective tissue in blue, and interstitial clefts in white.

7.8.2 Stimulation and Recording

The arrangement is illustrated in Figure 7.11. Twelve stimulus sites (STIM 1 . . . 12) were
equally distributed on an imaginary ring around the tissue section under examination.
The number of stimulus sites M was then varied (M = 12, 6, and 3).
Extracellular electrograms were computed 50µm above the surface of the tissue. The grid
length d was varied (d = 100, 200, 300, 400, and 600µm) yielding 121, 36, 15, 9, and 4
simultaneously recorded electrograms, respectively.

7.8.3 Feature Extraction

For each stimulus site, the fractionation index (FI) was calculated for the entire set of
electrograms using the algorithm SM described in Section 7.5.2. Moreover, the amplitude
Φpp of each electrogram was computed. The means of FI (µFI) and Φpp (µamp) were
determined for each stimulus site.

From FI and Φpp, the following three features were selected for the classification pro-
cess.

1) mFI : mean of µFI over all stimulus sites.

2) ∆FI: range of µFI (∆FI = max
M

µFI −min
M

µFI).

3) ξamp: normalized range of µamp. ξamp = ∆amp/mamp, where ∆amp = max
M

µamp −
min
M

µamp and mamp is the mean of µamp over all stimulus sites.

In case the number of stimulus sites M = 6, the features were computed for stimulus
positions 1, 3, 5, 7, 9, and 11. Then, the imaginary ring containing the stimulus electrodes
was rotated by 30◦ and the features were again computed. Thus, e.g. for M = 3, three
feature sets were obtained. In the same manner, for d = 200µm the grid of recording
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Figure 7.11: Principle of the circumferential stimulation. Twelve stimulus electrodes are arranged
on an imaginary ring surrounding the tissue section under inspection. Image was provided by
F. Campos (Medical University of Graz, Institute of Biophysics, 2011).
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points was shifted in x and y direction by [x y]T = [100 0]µm, [x y]T = [0 100]µm, and
[x y]T = [100 100]µm. Thus, e.g. for d = 200µm, four feature sets were obtained. The
obtained sample sizes for varying M and d are listed in Tables 8.10-8.12.

7.8.4 Classification

A linear discriminant analysis (LDA) classifier [130] was used to classify a tissue section
into one of three classes based on the three features extracted from the electrograms. Cross
validation was done using the leave-one-out method [131]. Evaluation criterion was the
classification accuracy [132] for each class (acc1 for WC, acc2 for PO, and acc3 for CO) as
well as the overall accuracy acctot.





Chapter 8

Results

In this Chapter, the results of theoretical analyses, computer simulation studies, and
electrophysiological experiments described in the previous Chapters 6 and 7 are presented.
Page numbers of the corresponding Sections in Chapter 7 are given in footnotes.

8.1 Signal and Noise Analysis of CNF Signals

8.1.1 Statistical Analysis of CNF Signal Parameters 1

Figure 8.1 displays box plots of parameters FI, Φpp, Φ̇pp, ANR, and |E|p determined from
signals of set A. Figure 8.2 compares box plots from Φpp, Φ̇pp, ANR, and |E|p determined
from nonfractionated signals (set I ) and fractionated signals (set II ).
The medians of all displayed parameters are significantly higher in set I than in set II
(Mann-Whitney-U test, p < 0.05). In addition, the quartiles of the distribution of the
ANR are listed in Table 8.1.

1Methods, see p.55.
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Set A I II
n 566 200 200

ANR.25 in dB 39.83 44.30 38.00
ANR.50 in dB 43.07 48.97 40.97
ANR.75 in dB 49.68 55.08 43.25

Table 8.1: Lower quartile (ANR.25), median (ANR.50), and upper quartile (ANR.75) of the
amplitude-to-noise ratio in dB of set A, set I, and set II.
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FI Φpp Φ̇pp ANR
Φpp -0.340
Φ̇pp -0.322 0.977

ANR -0.512 0.863 0.857
|E|p -0.272 0.903 0.898 0.788

Table 8.2: Cross correlation coefficients between parameters from set A (n = 566).

In Table 8.2 the Pearson product-moment cross correlation coefficients r of the de-
termined parameters from set A are displayed. It can be seen that there is a very high
correlation (rΦppΦ̇pp

= 0.977) between Φpp and Φ̇pp. Moreover, strong correlations are

given between |E|p and the parameters Φpp (r|E|pΦpp
= 0.898) and Φ̇pp (r|E|pΦ̇pp

= 0.903).

The duration of depolarization tdep, symmetry a, and magnitude of local conduction
velocity θ were evaluated only for set I, because these parameters might show ambiguous
results in case of fractionated electrograms. Box plots from these values are presented in
Figure 8.3.

8.1.2 Analysis of Noise in the Measurement Chain 2

Power spectral densities (PSD’s) of the quantization noise, the amplifier noise, and the
noise of the entire measurement chain are depicted in Figure 8.4 d). The latter is signifi-
cantly higher than the PSD of the amplifier noise.

The comparison of noise power of individual channels and difference signals between
channels has shown no significant differences.

In histogram plots, the amplitude distribution of the noise signal of the measurement
chain resembles a normal distribution. However, a normal probability plot and a logarith-
mic plot of the probability distribution [133] (not shown) have revealed slight deviations
from a normal distribution in the tails of the function.

The maximum amplitude of the power line interference in four recording channels was
AΦ̃ = 49.6µV.

8.1.3 Frequency Analysis of CNF Signals 3

Figure 8.4 a) shows Φsim(t) computed at distances z = 1µm and z = 50µm from the
surface of the tissue. The temporal resolution was 10µs which corresponds to the sampling
rate of 100 kHz used for the acquisition of CNF signals with HARMS. The PSD’s of Φsim,
computed at distances z = 1µm and z = 50µm from the surface of the tissue are given in

2Methods, see p.56.
3Methods, see p.56.
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Figure 8.4 b). For the purpose of comparison, the PSD of an experimental waveform Φexp

is plotted in Figure 8.4 d). It can be seen that the relevant frequency components from
Φsim recorded at z = 1µm range from f = 0 · · · ≈ 7 kHz. For Φsim recorded at z = 50µm
as well as for Φexp, the bandwidth is even smaller with an upper limit f ≈ 6 kHz.
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Figure 8.4: Frequency response of CNF and noise signals from computer simulation and experi-
ment. a) Electrograms from computer simulation computed at distances z = 1µm and z = 50µm
above the surface of the tissue, normalized. b) Corresponding power spectral densities (PSD’s).
c) Electrogram recorded during electrophysiological experiment. d) Corresponding PSD (black
curve) as well as PSD’s of the noise of the entire measurement chain (green), the noise of the am-
plifier circuit (cyan), and the quantization noise introduced by the 16 bit ADC (blue). For better
visibility, frequency axes are displayed in the range of 0 to fS/10, where fS = 100 kHz.
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8.2 Determination of Local Conduction Velocity

8.2.1 Uncertainty Due to Temporal Discretization 4

Figure 8.5 shows the uncertainty range in θ and ϕ as functions of θ for spatial and temporal
resolution according to the experimental setup as well as for a temporal resolution increased
by a factor of 20.
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Figure 8.5: a) Uncertainty of θ as function of θ. b) Uncertainty of ϕ as function of θ. The
uncertainty ranges are demarcated with red lines for sampling rate fS = 100 kHz and green lines
for fS = 2 MHz. The inter-electrode distance DD = 71µm.

Digital Resampling 5

The range of LAT2i −LAT1i did not exceed the uncertainty of ±1µs due to the temporal
resolution of Φh1 and Φh2. Hence, it was demonstrated that the achieved reductions in
uncertainty of θ and ϕ by means of sinc-interpolation are in accordance with the results
of the theoretical analysis shown in Figure 8.5.

8.2.2 Uncertainty Due to Noise 6

Tables 8.3-8.6 list the minimum ANR (ANRmin) for which θ and ϕ (µ ± 3σ) remain
within the given tolerance band for simulation setups a), b1), b2), and b3). Figures 8.6
and 8.7 show the dispersion of θ and ϕ as functions of ANR, respectively, for the simulation
setup b3). θ was calculated with CCF and dmin methods, ϕ was calculated with CCF,
dmin, and Emag methods.

4Methods, see p.57.
5Methods, see p.58.
6Methods, see p.58.
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Figure 8.6: Dispersion of the magnitude θ of local conduction velocity resulting from 100 runs
with regenerated noise for varying ANR. Oblique elliptic propagation, θ = 0.42 m/s, ϕ = 235◦,
was simulated. θ was calculated using CCF and dmin methods. Red horizontal lines indicate the
chosen tolerance limits for θ (±0.1 m/s).

Table 8.3: ANRmin for different methods of LCV determination and cutoff frequencies fC of
lowpass filter. a) Cable-like fiber θ = 0.5 m/s, ϕ = 180◦. Bold numbers indicate the minimum
ANRmin for the respective method.

fC in kHz - 5 4 3 2.5 2 1.5 1 0.5 0.2

θ
CCF 61 34 31 28 26 25 25 23 23 36
dmin 70+ 56 53 47 42 37 34 27 23 26

ϕ

CCF 55 31 28 24 22 20 18 18 16 21
dmin 70+ 51 46 40 37 33 26 21 17 20
Emag 32 22 21 20 19 18 19 23 21 34
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Figure 8.7: Dispersion of the direction ϕ of local conduction velocity resulting from 100 runs
with regenerated noise for varying ANR. Oblique elliptic propagation, θ = 0.42 m/s, ϕ = 235◦, was
simulated. ϕ was calculated by CCF, dmin, and Emag methods. Red horizontal lines indicate the
chosen tolerance limits for ϕ (±20◦).

Table 8.4: ANRmin for different methods of LCV determination and cutoff frequencies fC of
lowpass filter. b1) Rectangular tissue sheet, longitudinal propagation θ = 0.7 m/s, ϕ = 175◦. Bold
numbers indicate the minimum ANRmin for the respective method.

fC in kHz - 5 4 3 2.5 2 1.5 1 0.5 0.2

θ
CCF 55 28 26 25 26 24 24 24 29 54
dmin 70+ 38 33 30 28 27 26 28 33 50

ϕ

CCF 45 21 20 17 17 17 16 17 20 44
dmin 64 30 25 21 19 18 17 17 19 37
Emag 27 17 17 15 16 16 18 20 28 46
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Table 8.5: ANRmin for different methods of LCV determination and cutoff frequencies fC of
lowpass filter. b2) Transversal propagation θ = 0.28 m/s, ϕ = 267◦. Bold numbers indicate the
minimum ANRmin for the respective method.

fC in kHz - 5 4 3 2.5 2 1.5 1 0.5 0.2

θ
CCF 67 40 39 34 31 30 29 42 38 70+
dmin 70+ 51 46 40 38 33 31 25 27 42

ϕ

CCF 60 37 35 32 30 28 25 26 31 70+
dmin 70+ 48 44 38 35 31 28 24 27 50
Emag 37 27 25 25 24 23 24 24 28 40

Table 8.6: ANRmin for different methods of LCV determination and cutoff frequencies fC of
lowpass filter. b3) Oblique propagation θ = 0.42 m/s, ϕ = 237.8◦. Bold numbers indicate the
minimum ANRmin for the respective method.

fC in kHz - 5 4 3 2.5 2 1.5 1 0.5 0.2

θ
CCF 53 28 25 23 24 22 22 24 31 52
dmin 70+ 40 34 30 28 25 23 23 30 61

ϕ

CCF 47 25 23 20 20 20 18 19 23 47
dmin 67 35 31 27 25 22 19 19 21 42
Emag 30 21 19 18 17 18 18 20 28 45

In case of longitudinal propagation (b1), the conduction velocity and thus the ampli-
tude of Φ is higher than in case of transversal (b2) or oblique (b3) propagation. Assuming
a certain noise level in the experimental environment which is independent of the type of
propagation, the values for ANR in case of transversal or oblique propagation refer to the
noise level at the respective ANR in case of longitudinal propagation.
The Emag method to compute ϕ is less sensitive to noise because it does not require the
temporal differentiation of Φ.
The results shown in Tables 8.3-8.6 suggest to use a filter cutoff frequency fC = 1.5 kHz
for CCF and dmin methods and fC = 2.5 kHz for the Emag method.

Figures 8.8 and 8.9 show the uncertainty of θ (3σθ) and the uncertainty of ϕ (3σϕ) as
functions of θ and ANR. The values of 3σθ and 3σϕ are clipped at 0.1 m/s and 20◦, the
chosen tolerance bands for θ and ϕ, respectively. A wider range of pairs of (ϕ, ANR) lies
within the chosen tolerance band of ϕ than pairs of (θ, ANR) within the tolerance band
of θ.
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Figure 8.8: Uncertainty of the magnitude θ of local conduction velocity. 3σθ as a function of θ
and ANR. Values of 3σθ were clipped at 0.1 m/s.
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Figure 8.10: Isochrones of local activation time (LAT) for longitudinal (LP), oblique (OP), and
transversal propagation (TP). The isochrone intervals are 100µs.

8.2.3 Comparison to LCV Determined from Transmembrane Voltages 7

Isochrones of LAT for longitudinal (LP), oblique (OP), and transversal impulse propaga-
tion (TP) are given in Figure 8.10.

Figure 8.11 shows LCV determined from Vm (θV m, ϕV m) and deviation in LCV de-
termined from Φ (eθ, eϕ) for longitudinal (LP), oblique (OP), and transversal propaga-
tion (TP).
The highest deviations in θ and ϕ occur during LP, most notably in regions with a high
curvature of the activation wavefront.

Figure 8.12 depicts LCV determined from Vm (θV m, ϕV m) and deviation in LCV
determined from Φ (eθ, eϕ) for a tissue sheet with embedded obstacle during OP.
Close to the obstacle, the propagation is characterized by increased θ and changed ϕ, i.e.
the activation wavefront changes its direction. eθ and eϕ show high values up to a distance
of about 500µm from the obstacle.

8.3 Analytic Signal Model of Extracellular Electrogram 8

Figure 8.13 depicts the simulated waveforms Φ using the LMCG model, the waveforms
Φm modeled with the introduced signal model, and the residuals eΦ = Φm − Φ at the

7Methods, see p.60.
8Methods, see p.60.
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Figure 8.11: Comparison of LCV (magnitude θ and direction ϕ) computed from transmembrane
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90 CHAPTER 8. RESULTS

400

500

600

700

800

900

1000

y
in

µ
m

0

0.2

0.4

0.6

0.8

1

1200 1400 1600 1800 2000 2200 2400 2600 2800
x in µm

400

500

600

700

800

900

1000

y
in

µ
m

-0.1

-0.05

0

0.05

0.1

40

50

60

70

80

90

100

1200 1400 1600 1800 2000 2200 2400 2600 2800
x in µm

-20

-15

-10

-5

0

5

10

15

20

a) b)

c) d)

�Vm �Vm

e�e�

m/s

m/s °

°

Figure 8.12: Comparison of LCV (magnitude θ and direction ϕ) computed from transmembrane
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Table 8.7: Goodness of fit sseΦ, rΦ for Φ obtained from computer simulations using LMCG and
MSH kinetic models.

z(µm) x = 0 mm x = 10 mm x = 20 mm

LMCG
5 0.041, 0.98 0.009, 1 0.009, 0.997

250 0.111, 0.944 0.009, 1 0.006, 1
500 0.197, 0.904 0.011, 1 0.008, 0.998

MSH
5 0.025, 0.987 0.008, 0.999 0.075, 0.998

250 0.032, 0.984 0.018, 1 0.069, 0.988
500 0.022, 0.99 0.018, 1 0.061, 0.97

beginning, in the middle, and at the end of the fiber in three different distances from the
surface. Tables 8.7 and 8.8 list sseΦ and rΦ as well as sseΦ̇ and rΦ̇ for electrograms from
the LMCG and the MSH model, respectively. The window for the evaluation of sse and
r was chosen 3 tdep centered at the LAT.
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Table 8.8: Goodness of fit sseΦ̇, rΦ̇ for Φ obtained from computer simulations using LMCG and
MSH kinetic models.

z(µm) x = 0 mm x = 10 mm x = 20 mm

LMCG
5 0.587, 0.651 0.006, 0.997 0.031, 0.986

250 0.367, 0.795 0.003, 0.999 0.015, 0.993
500 0.281, 0.85 0.003, 0.999 0.031, 0.984

MSH
5 0.449, 0.742 0.019, 0.991 0.025, 0.997

250 0.334, 0.82 0.006, 0.998 0.07, 0.963
500 0.231, 0.889 0.008, 0.997 0.179, 0.9
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8.4 Analysis of Vector Loops of CNF Strength

8.4.1 Influence of Unequal Distances between Electrodes and Tissue 9

Figure 8.14 displays the influence of altered distance (distance deviation ∆z) from the
tissue surface of one or two electrodes of a CNF sensor on the computed local direc-
tion of impulse propagation. The direction was determined on one hand from the CNF
strength (ϕE) and on the other hand from the vector of local conduction velocity (ϕ). The
respective deviations from ϕ0, the angle determined in the absence of a ∆z, (eϕE and eϕ)
are shown for different values of ∆z. Negative values of ∆z indicate simulated breakage of
the spacer pillars which maintain the distance z = 50µm between electrodes and surface
of the tissue. The deviation eϕE increases with increasing ∆z. The impact on LAT’s and
thus on LCV determination is negligible (see right diagrams in Figure 8.14).

The shape of the vector loop of E is impaired by unequal electrode-tissue distances in
the way that its opening changes. Figure 8.15 gives an example of the changes in shape of
the vector loop of E for longitudinal elliptic propagation (LP). In case of ∆z = 0µm the
vector loop of E is a straight line. With increasing |∆z| the opening of the loop increases.
This effect is stronger when two electrodes deviate in distance from the tissue surface.

8.4.2 Influence of Power Line Interference 10

Figure 8.16 shows the deviation in angle eϕE for varying amplitude of the power line in-
terference signal. The three curves display the results of solely removing the base line
(detrend 0), removing linear trend (detrend 1), and removing quadratic trend (detrend 2)
prior to the computation of ϕE . The results in Figure 8.16 a) refer to an effective interfer-
ence in one channel, whereas the results given in Figure 8.16 b) show the case when two
channels are perturbed to the same extent.
The deviation in angle increases with increasing amplitude of the interference signal. An
effective power line interference in two channels has a stronger effect on eϕE .

8.4.3 Estimation of Crossing Angle of Fibers 11

Figure 8.17 a) shows the deviation between the angles of the vector loop of E (ϕ1 and ϕ2)
and the direction of impulse propagation as functions of the crossing angle α of underlying
muscle fibers for ∆LAT1 = 1 ms and ∆LAT2 = 1.5 ms. eϕ1(α), the deviation of ϕ1 from
180◦, and eϕ2(α), the deviation of ϕ2 from the crossing angle of the fibers α, are not
constant over the range of α but have a maximum at α ≈ 120◦. The values of eϕ1(α) for
∆LAT1 and ∆LAT2 are very similar and the corresponding curves in Figure 8.17 a) are
not distinguishable.

9Methods, see p.63.
10Methods, see p.63.
11Methods, see p.63.
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Figure 8.17 b) displays the maxima êϕ1 and êϕ2 as functions of ∆LAT. The values increase
with decreasing ∆LAT until they level off for ∆LAT < 1.2 ms. Below ∆LAT = 1 ms the
activation events in the two fibers are not separable within the CNF strength E(t).

8.5 Evaluation of Fractionated Electrograms 12

Figure 8.18 displays the results of the evaluation of algorithms pCt and SM for the de-
tection of the fractionation index (FI). Subfigures 8.18 a) and 8.18 b) show that both
algorithms are very robust against noise. The transition zones, where FI varies between 1
or 2 during the 100 runs is very narrow. The minimum ∆LAT for which FI=2 is detected
varies with z. The reason for this is that with increasing z also the waveform of Φ gets
expanded in time. That means the depolarization time tdep increases linearly with z from
tdep = 0.98 ms for z = 50µm to tdep = 1.84 ms for z = 300µm.
The deviation in amplitude of component Φ2 (eA2) is solely shown for algorithm SM (Fig-
ure 8.18 f)), because algorithm pCt is not capable of reliably determining the magnitudes
of the components, at least not for low values of ∆LAT in relation to tdep.

The algorithm SM has been implemented in HARMS for on-line application. The
computation time has been evaluated for 340 consecutive heart beats. Apart from the FI,
LCV was determined using the CCF method (see Section 3.3.2). The computation time
per beat (mean ± standard deviation) was 19± 6 ms.

12Methods, see p.64.
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8.6 Decomposition of Fractionated Electrograms 13

The synthesis of fractionated electrograms Φ12 from the components Φ1 and Φ2 and the
decomposition into Φm1 and Φm2 are illustrated in Figure 8.19 (a).

Figure 8.19 (b) displays FI for the range of 0.5 ≤ ∆LAT ≤ 3 ms and 50 ≤ z ≤ 300µm.
The minimum value of ∆LAT for which FI=2 is detected is 0.6 ms for 50 ≤ z ≤ 95µm,
then increases with increasing z (cf. Section 8.5).

For ∆LAT = 1 ms three sites A), B), and C) with z = 50, 100, and 250µm, respectively,
were selected. Φ1, Φ2, and Φ12 as well as Φm1, Φm2, and Φm12 for sites A), B), and C) are
plotted in Figure 8.19 (c). In point C), FI=1 was detected and therefore only Φm1 was
modeled.

For each z, Figure 8.19 (d) shows the respective minimum ∆LAT for which the pa-
rameters B1, b1, and tdepm1, determined from Φm1, have an error which is within the
given tolerance band. ∆LATmin,B1 ≤ 0.7 ms for all values of z, whereas ∆LATmin,b1 and
∆LATmin,tdepm1

slightly increase with increasing z.
In Figure 8.19 (e), ∆LAT for the parameters determined from the second component

Φm2 are given. From 0.7 ms for z = 50µm, ∆LATmin,B2 , ∆LATmin,b2 , and ∆LATmin,tdepm2

increase with increasing z.

Figure 8.20 depicts the results for the 2D-setup with two embedded obstacles.
Isochrones based on local activation time were calculated from transmembrane voltages
(Figure 8.20 (a)), which remained nonfractionated throughout the entire sheet, including
the vicinity of the obstacles. Their density and curvature reflect the substantial varia-
tions in local conduction velocity and direction of propagation around the obstacles. The
activation wavefront remains largely undisturbed until encountering with the lower left
corner of obs1 which leads to acceleration of propagation due to reduced electrotonic load
downstream and reduced wavefront curvature.

The bold isochrone demonstrates the split of a wavefront into three components, α, β,
and γ. For recordings at sites p1 and p2 on top of obs1 and obs2, the wavefront components
pass by with delays of roughly 0.7 . . . 0.8 ms between α and β as well as between β and γ

which is responsible for the fractionation of Φ.
In the vicinity of the obstacles extracellular potentials Φ at z = 50µm were fraction-

ated, showing either 2 or 3 distinct components (Figure 8.20 (b)). Within the observation
area percentages of Φ with FI=1, 2, and 3 were 33%, 20%, and 47% (N=602). The
goodness of fit parameters and their distribution are shown in Figure 8.20 (c)-(f).

The application of the decomposition procedure to an experimentally recorded mul-
tivariate electrogram Φ is demonstrated in Figure 8.21. The fractionated waveform Φ
(FI=3) is decomposed into three components. The comparison between recorded and
modeled waveform is presented.

13Methods, see p.67.
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Table 8.9: Branching simulation: Local conduction velocities in m/s at recording sites Pos. 1
and Pos. 2 for different stimulus sites (PLA, LP, and OP) and different intracellular conductivities
(0.5 gI and 1 gI).

PLA LP OP
Pos. 1 3 1 3 1 3

0.5 gI 0.444 0.446 0.444 0.409 0.444 0.323
1 gI 0.628 0.633 0.618 0.430 0.629 0.304

8.7 Discrimination of Local and Distant Activation

8.7.1 Computer Simulation Study 14

The values of (Φ̈pp : Φ̇pp)(z) and ( ˙|E|pp : |E|pp)(z) differ substantially for different fiber
diameters as well as for different directions of the propagating activation wavefront with
respect to the fiber orientation (see Figure 8.22 a) and b), respectively). The values of
(Φ̈pp : Φ̇pp)(z) in case of TP, OP1, and OP2 do not show a monotonic decay because they
were affected by artifacts which arose in Φ̈ due to border effects in the simulated tissue
sheet.

In Figure 8.23 the measures (Φ̈pp : Φ̇pp)(z) and (|Ė|pp : |E|pp)(z) obtained at Pos. 1 and
Pos. 3 are given for different stimulus settings (PLA, LP, OP), and different intracellular
conductivities (0.5 gI and 1 gI). The dispersion of both measures is quite high, especially
in case of stimulus setting OP.

Table 8.9 lists respective local conduction velocities θ determined from the transmem-
brane voltages Vm. At Pos. 1, θ is equal for different stimulus positions. As expected, for
planar wavefront of activation (PLA), θ is equal at Pos. 1 and Pos. 3. For stimulus settings
LP and OP, θ at Pos. 3 is reduced but remains widely unchanged when the intracellular
conductivity is twice as high.

Figure 8.24 displays the measures (Φ̈pp : Φ̇pp)(d) and (|Ė|pp : |E|pp)(d) obtained at
Pos. 2, between the tissue branches, for stimulus setting OP and intracellular conductivities
0.5 gI and 1 gI . d represents the distance to the closest current source, which is not
directly beneath observation Pos. 2 and calculates as follows: d =

√
z2 + (b/2)2 µm, where

b = 425µm is the width of the obstacle.

14Methods, see p.71.
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Figure 8.22: Distance measures. a) Φ̈pp : Φ̇pp as function of the distance z between tissue surface
and point of observation for fiber A, 0.25 mm diameter, (blue line), fiber B, 1 mm diameter, (green),
tissue sheet with planar (PLA, red), longitudinal elliptic (LP, cyan), transversal elliptic (TP, ma-
genta), and oblique elliptic (OP1, yellow and OP2, black) propagation of activation. b) Respective
curves for (|Ė|pp : |E|pp)(z). c) Experimental results for (Φ̈pp : Φ̇pp)(z). d) Experimental results
for (|Ė|pp : |E|pp)(z).
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Figure 8.23: Distance measures. Left column: Φ̈pp : Φ̇pp as function of the distance z between
tissue surface and point of observation for planar (PLA, upper row), longitudinal elliptic (LP,
middle row), and oblique elliptic propagation (OP, lower row) determined at Pos. 1 in the thin tissue
branch (red markers) and Pos. 3 in the thick tissue branch (blue markers). Different conductivities
are marked by dots (0.5 gI) and crosses (1 gI). Right column: Respective values for (|Ė|pp :
|E|pp)(z).



104 CHAPTER 8. RESULTS

Thin branch, 0.5 gI

Thin branch, 1 gI

Thick branch, 0.5 gI

Thick branch, 1 gI

100 200 300 400 500
0

2

4

6

8

10

d in µm

�
�

p
p

p
p

:

100 200 300 400 500
0

2

4

6

8

10

d in µm

|
|

:
|

|
E

E
p
p

p
p

O
P

� �pp pp: | | : | |E Epp pp

Figure 8.24: Distance measures. Left diagram: Φ̈pp : Φ̇pp as function of the distance d between
tissue surface and point of observation for oblique elliptic propagation (OP) determined at Pos. 2
between the tissue branches. Red markers indicate the contribution of the thin tissue branch,
blue markers the contribution of the thick tissue branch. Different intracellular conductivities are
marked by dots (0.5 gI) and crosses (1 gI). Right diagram: Respective values for (|Ė|pp : |E|pp)(d).

8.7.2 Experimental Study 15

A total number of 94 recordings of Φ taken from 6 different sites at the surface of 3 different
papillary muscles have been analyzed. The collective values of (|Φ̈|pp : |Φ̇|pp)(z) and ( ˙|E|pp :
|E|pp)(z) are shown in Figure 8.22 c) and d), respectively. The ranges of both measures
determined from CNF signals recorded during experiments are in accordance with those
determined from signals obtained from computer simulations. For (|Φ̈|pp : |Φ̇|pp)(z), the
decay with increasing z is comparable to that of signals obtained from computer simulation,
whereas ( ˙|E|pp : |E|pp)(z) rather shows arbitrary values. The dispersion of both measures
is quite high.

8.8 Classification of Tissue Microstructure through CNF

Signals 16

Figure 8.25 gives examples of determined parameters µFI and µamp for three different
tissue classes, namely WC, PO, and CO. The diagrams show the results for M = 12 and
d = 100µm. In an effort to compare the diagrams between the tissue classes, the following
observations were made. In well coupled tissue (e.g. WC1), µFI and ∆FI are relatively
low, whereas µamp and ∆amp are high. In tissue with uncoupling structures oriented
parallel to the cardiac fibers (e.g. PO1), ∆FI and ∆amp are high and µamp is lower than
in case of WC1. In tissue with complex arrangement of uncoupling structures (e.g. CO1),
µamp and ∆amp are very low, whereas µFI is high and ∆FI is moderate.

15Methods, see p.73.
16Methods, see p.74.
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Figure 8.25: Features for the classification. Examples for different tissue classes: WC (diagrams
in left column), PO (center column), and CO (right column). Upper diagrams: µFI as function of
the stimulus position STIM. Lower diagrams: µamp as function of STIM.

Figure 8.26 shows the samples (mFI , ∆FI, ξamp) for one configuration (d = 600µm
and M = 3) in the three-dimensional feature space. The clustering of the samples suggests
a good separability into the three classes WC, PO, and CO.

Tables 8.10, 8.11, and 8.12 present the results of the classification. Classification
accuracies for each of the three classes (acc1 for WC, acc2 for PO, and acc3 for CO)
as well as the overall accuracy acctot are given. For each sample set, the number of
recording sites (i.e. the number of points in the measurement grid) is listed. The number
of sample sets results from the number of tissue samples (6), the number of rotations in the
arrangement of the stimulus electrodes, and the number of variations in the positioning of
the measurement grid.
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Figure 8.26: Feature space: 3D-plot of mFI , ∆FI, and ξamp for grid length d = 600µm and
M = 3 stimulus sites yielding 648 samples. Samples from different classes are indicated by red
asterisks (WC), green diamonds (PC), and blue circles (CO).

Table 8.10: Classification results for M = 12 stimulus sites, for features obtained from electro-
grams recorded in a grid with varying length d. Classification accuracies for each of the three
classes (acc1, acc2, and acc3) as well as the overall accuracy acctot are given.

d in µm
Recording Sample

acc1 acc2 acc3 acctotsites sets
100 121 6 1.00 1.00 1.00 1.00
200 36 24 1.00 1.00 1.00 1.00
300 15 54 1.00 1.00 1.00 1.00
400 9 96 0.97 0.97 1.00 0.98
600 4 216 0.93 0.91 0.99 0.94

Table 8.11: Classification results for M = 6.

d in µm
Recording Sample

acc1 acc2 acc3 acctotsites sets
100 121 12 1.00 1.00 1.00 1.00
200 36 48 1.00 1.00 1.00 1.00
300 15 108 0.96 0.96 1.00 0.97
400 9 192 0.98 0.98 1.00 0.98
600 4 432 0.90 0.87 0.99 0.92
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Table 8.12: Classification results for M = 3.

d in µm
Recording Sample

acc1 acc2 acc3 acctotsites sets
100 121 18 1.00 0.83 0.83 0.89
200 36 72 1.00 0.87 0.88 0.92
300 15 162 1.00 0.87 0.89 0.92
400 9 288 0.99 0.84 0.87 0.90
600 4 648 0.90 0.70 0.85 0.82





Chapter 9

Discussion

9.1 Signal and Noise Analysis of CNF Signals

Median and lower quartile of the distribution of the ANR listed in Table 8.1 were considered
to represent average (ANR.50) and poor signal quality (ANR.25), respectively. These values
were consequently used for the generation of artificial noise added to noise-free waveforms
from computer simulations in order to test the robustness of developed signal processing
algorithms. The reason for the use of the ANR instead of the noise level is the fact that
waveforms from computer simulations have arbitrary magnitude scaling. Previously given
numbers for ANR distribution of nonfractionated electrograms were considerably higher,
namely ANR.25 = 54.16 dB, ANR.50 = 57 dB, and ANR.75 = 60.35 dB [76]. The reason
for this is that electrograms had mainly been recorded at ventricular tissue preparations
showing higher amplitudes. CNF signal amplitudes in the atrium are very low compared
to other regions of the heart. This is, on one hand due to the structural complexity and
on the other hand due to the functional heterogeneities, especially in the terminal crest
where the primary pacemaker area is located. Moreover, measurement in a superfusion
bath introduces a huge volume conductor which leads to very low local current densi-
ties. In contrast, in the Langendorff perfused isolated heart (see Section 4.1.2) the volume
conductor is formed by a thin film of perfusate. The resulting high extracellular current
densities result in large amplitudes of the electrograms compared to measurements in a
superfusion bath.
The separate statistical analysis of nonfractionated and fractionated electrograms has
shown that Φpp, Φ̇pp, ANR, and |E|p are on average higher in nonfractionated electro-
grams. This finding has been considered for the development of dedicated signal process-
ing algorithms.
The very high correlation between Φpp and Φ̇pp is due to the fact that signals were recorded
at fairly constant distance from the surface of the cardiac tissue (cf. Section 6.7).

109
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From the separate analysis of the PSD of the noise emerging from the amplifier circuit
only and from the entire measurement chain, respectively, it is obvious that the major
noise source in the measurement chain is the electrode-electrolyte interface. The increased
PSD of the measurement noise at low frequencies is due to the 50 Hz power line interfer-
ence. The Welch method and the frequency resolution of the PSD lead to a smoothing
of the PSD curve at these frequencies. Therefore, the interference is not represented by a
distinct peak.
The finding that noise power of difference signals of any two channels is not different from
that of individual signals is due to the high common mode rejection of the amplifier cir-
cuit [54].
Based on the presented results, the noise induced by the measurement chain was repre-
sented by additive Gaussian band limited white noise and individually created for each
recording channel.

Computer simulations of CNF signals directly acquired at the surface of the tissue have
shown that the theoretical maximum frequency component occurs not beyond f = 10 kHz.
According to the sampling theorem, the minimum required sampling frequency fS to avoid
aliasing is fS = 20 kHz. The used measurement system contains an anti-aliasing lowpass
filter with a cutoff frequency fC = 20 kHz. Taking the finite slope in the stopband of the
filter into account, the theoretical minimum sampling frequency fS = 40 kHz needs to be
exceeded. Sampling rates fS ≥ 100 kHz were used in order to resolve the small latencies
between the densely packed electrodes with the necessary accuracy. A reduction of this
uncertainty, however, can be achieved by digital resampling, as shown in Section 7.2.1.
Hence, for the CNF measurement system in use, fS may be reduced by the factor of 2,
i.e. to about fS = 50 kHz, without loss of information. For future developments, a further
reduction down to fS = 20 kHz is feasible, provided that appropriate anti-aliasing filters
are applied prior to the digitalization. The display of smooth vector loops of E can then be
achieved by on-line digital resampling. This operation has been implemented in HARMS
and has turned out to be feasible as far as computational expense is concerned. Moreover,
a reduction by the factor of 5 of the amount of data to be acquired, preprocessed (filtered,
etc.), and stored means a significant gain in computational power which can be utilized
for computationally intensive on-line signal processing.

9.2 Determination of Local Conduction Velocity

The reasons for uncertainty of LCV are on one hand the limited temporal resolution in
LAT latencies, and on the other hand noise.
It was shown that the temporal resolution of Φ can be increased by means of digital
resampling. Given an inter-electrode distance of DD = 70µm, as in the used CNF sensors,
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an interpolation factor M = 20 and thus a temporal resolution of 0.5µs is sufficient so that
the uncertainty of θ and ϕ due to the temporal discretization may be neglected, as shown
in Figure 8.5.
Hence, the reason for the overall uncertainty of θ and ϕ may be reduced to the influence
of noise.
Two opposed mechanisms determine the robustness of LCV determination in the presence
of noise. First, higher conduction velocity is related to higher amplitudes of Φ and thus
a higher signal-to-noise ratio. Second, higher conduction velocity means smaller delay
between two measurement sites and thus a higher uncertainty in LCV determination.

The uncertainty of θ and ϕ due to noise increases with increasing ANR. The appropriate
cutoff frequency of a lowpass filter for Φ prior to the computation of θ and ϕ using the CCF
method or the dmin method was determined as fC = 1.5 kHz. Using the Emag method to
compute ϕ, fC = 2.5 kHz is being suggested. During the experiment it is desirable to be
aware of the overall uncertainty of the determined θ and ϕ which depends on the inter-
electrode distance DD, the ANR, and the magnitude θ of LCV. The values displayed in
Figures 8.8 and 8.9 may be implemented as lookup tables in HARMS for on-line calculation
and display of the uncertainty of θ and ϕ. At the beginning of an electrophysiological
experiment with CNF measurement it is necessary to determine the noise level, i.e. the
standard deviation σN of a signal representing the noise of the measurement chain. It
has turned out that σN remains fairly constant throughout the experiment using the
described CNF sensors [54]. Thus, along with the on-line determined values of Φpp and θ,
the uncertainty of θ and ϕ can be determined and displayed from beat-to-beat.

The comparison of LCV (θ and ϕ) determined from Vm and Φ has shown considerable
differences in regions with strong curvature of the activation wavefront. The reason for
this might be that the curvature is reduced with increasing distance from the surface of
the tissue due to the spatial integration effect of the volume conductor surrounding the
tissue. In case of a fairly planar wavefront of activation, the deviations eθ and eφ are
negligible and LCV determined from Φ represents well LCV determined from Vm.
In the vicinity of microstructural obstacles for impulse propagation, the values of θ and ϕ
determined from Φ differ dramatically from those determined from Vm. This may have
two reasons. First, as in the continuous case, the spatial integration effect of the volume
conductor which might alter activation times determined from Φ, and second, erroneous
LAT’s computed from the fractionated electrograms in such areas.

9.3 Analytic Signal Model of Extracellular Electrogram

Exponential functions have been used previously to model bioelectric signals. For in-
stance, Chouvarda et al. used a modified Morita function to model the waveform of the
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transmembrane current in a cardiac muscle fiber [119], or van Veen et al. used exponential
functions to represent single fiber action potentials of skeletal muscles [134]. The described
templates, however, turned out to be not sufficiently versatile for the purpose of modeling
the various shapes of CNF signals as the dedicated signal model presented in this work.

Figure 8.13 and Tables 8.7 and 8.8 clearly demonstrate the suitability of the introduced
signal model for representing a wide range of wave shapes of nonfractionated electrograms.
This includes waveforms emerging from starting, free running, and terminating/colliding
wavefronts of activation at different distances from the current sources. As expected, dif-
ferences in the goodness of fit between atrial and ventricular electrograms were negligible,
because the modeling is restricted to the depolarization phase, which has a similar time
course in the underlying action potentials. The noticeable residuals eΦ in the case of a
starting wavefront, as shown in the left panels of Figure 8.13, are due to the stimulus
artifact. In case of electrograms representing starting activation caused by structural dis-
continuities like tissue expansions (cf. Section 3.4.1), such stimulus artifacts would not
occur.

9.4 Analysis of Vector Loops of CNF Strength

It was shown that altered distance ∆z between a single electrode or an electrode pair
compared to the remaining electrodes of a CNF sensor with respect to the surface of
the tissue has a tolerable influence on the angle of propagation ϕE , determined from E.
However, even |∆z| = 5µm may significantly affect the morphology of the vector loop of
E. The influence of a sensor tilt on ϕ, determined from θ, is considerably smaller.

Interference signals of the power line may cause a significant bias in the angle of
propagation ϕ, determined from E. This may be alleviated by linear or quadratic de-
trending, when the considered signal window has a length of 10 ms, as in the presented
study. The power line interference and the detrending methods were not investigated if Φ
is asymmetric, like in case of initiating, terminating, or colliding activation wavefronts or
as occasionally seen in fractionated electrograms.
The amplitude of the power line interference AΦ̃ in the recorded electrograms may vary
during an experiment because of the changes in the cabling and operation of power line
driven electric devices in the vicinity of the experimental setup. During test recordings
carried out without preparation, AΦ̃ ≈ 50µV was determined. In case of a relation to
the signal amplitude AΦ̃/A = 20%, which was used as maximum value for AΦ̃/A, this
corresponds to a CNF signal amplitude A = 0.25 mV.
The identification of amplitude and phase of the interference signal and consequently its
cancellation may be achieved for longer lasting signal recordings. Another option how
to reduce or cancel power line interference is the application of an adaptive filter to the
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CNF signals before recording [135]. These methods are taken into consideration for future
signal recordings.

The CNF technique is limited to detecting propagation of activation in parallel to
the surface of the tissue. In thin preparations like the right atrial isthmus (see Sec-
tion 4.1.2) this can be assumed without risking substantial errors. Nevertheless, it should
be emphasized that CNF technique leads to a two-dimensional representation of three-
dimensional impulse propagation phenomena. In in-vitro experiments with isolated entire
hearts mounted on the Langendorff apparatus and in in-vivo application, however, impulse
propagation differing from in parallel to the surface and particularly break-through points,
where the activation propagates perpendicularly to the surface of the tissue, need to be
taken into consideration. At the ventricles, break-through points are widespread because
at the junction of Purkinje fibers with myocardium the activation propagates transmu-
rally1. In this case, the CNF strength vanishes if the activation propagates transversal
to the tissue surface or the long axis of the sensor, respectively. However, nonfraction-
ated electrograms showing normal amplitudes but unrealistically high values of LCV, low
CNF strength, and very small vector loops, respectively, may be potential indicators of
break-through points of impulse propagation.

In electrophysiological in-vitro experiments the on-line display of the vector loop of E
has turned out to be an excellent tool to quickly gauge the local activation pattern in the
adjacency of the recording site. Moreover, its morphology is very sensitive to beat-to-beat
changes of activation. However, the morphology of the vector loop of E is influenced
by many factors, such as waveform curvature, power line interference and DC offset in
the electrograms, relative position of the CNF sensor with respect to the direction of
propagation, sensor tilt, and many more. It is therefore difficult to exclusively assess one
of these contributions by inspection of the vector loop of E.
Electrogram fractionation is also reflected in the vector loop of E. Provided that the local
activation times of the nonfractionated components are sufficiently different, the individual
directions of propagation may be derived from the vector loop of E. An approach to
separating complex vector loops of E created from fractionated electrograms into simple
vector loops by decomposition of the electrograms is presented in Section 7.6.

9.5 Evaluation of Fractionated Electrograms

The basic assumption in the development of algorithms to quantify the fractionation as
well as to decompose fractionated electrograms was that such fractionated electrograms
emerge from a superposition of nonfractionated components. The number of components,

1Transmural means from the endocardium through the ventricular wall to the epicardium or vice versa.



114 CHAPTER 9. DISCUSSION

their amplitudes, and the delay between their LAT’s are characteristic parameters of a
fractionated electrogram. The developed algorithm SM delivers these parameters.

The template-based algorithm SM offers a more robust approach to quantifying the
presence and degree of fractionation compared to previously applied methods such as a
peak counting within the temporal derivative of Φ (algorithm pCt) where the choice of
parameters for deciding which peaks to include may cause a significant bias. Further, this
novel algorithm allows to detect electrogram fractionation down to smaller differences in
LAT’s of the wavefront components causing the fractionation. Figure 8.18 shows that
the minimum ∆LAT above which two contributing components can be discriminated,
i.e. FI=2, increases with z. The minimum ∆LAT that could be resolved was 0.6 ms at
z = 50µm, i.e. when both sources were located 50µm away from the point of observation.
The corresponding durations of depolarization of Φ1 and Φ2 were tdep1 = tdep2 = 0.94 ms.
Using the pCt method, a minimum ∆LAT of only 1 ms could be resolved. As shown
in Figure 8.20, local delays in activation caused by microobstacles can be expected in
the range of 0.7 ms which is below the separability threshold of the pCt method, thus
underlining the benefits of the SM method. Both methods show an increased error in LAT
(eLAT ) in the range (∆LAT, z) ≈ (0.6 ms, 50µm). The reason for this is the assignment
of the determined LAT’s to the wrong events within the fractionated electrogram, which
may occur when peak amplitudes in Φ̇ are very similar.

Although the algorithm SM comprises computationally intensive operations like cross
correlation, the on-line determination of FI is possible for heart rates of up to 30 Hz
(1800 bpm). This enables the examination of FI even during tachycardia in mouse hearts.

9.6 Decomposition of Fractionated Electrograms

Figure 8.19 (d) and (e) demonstrate that with increasing z the minimum ∆LAT for which
the errors of B, b, and tdepm remain within the given tolerance increases, i.e. the sep-
arability decreases. This is due to the broadening of Φ2 with z, caused by the relative
reduction in weight given to local sources. Once a fractionated electrogram is decomposed,
the parameters amplitude and duration of depolarization of the decomposed signals may
be additional features for the discrimination between local and distant activations. The
parameter symmetry factor may allow to discriminate between starting, free running, and
terminating/colliding wavefronts. The presented decomposition method enables the esti-
mation of these parameters with satisfactory accuracy, even if they are masked within a
fractionated electrogram.
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9.6.1 Robustness against Noise

The minimum ∆LAT’s in Figure 8.19 (d) and (e) were calculated for noisy waveforms.
The respective values for noise-free waveforms (not shown) differ only marginally for the
parameters obtained from Φm2 for z > 200µm, i.e. the minimum ∆LAT’s are only slightly
lower, which suggests that the decomposition method is also well-suited for electrograms
recorded under experimental conditions.

9.6.2 Limitations

The decomposition procedure for fractionated electrograms by means of the novel analytic
signal model has been developed as a method for detailed analysis of local electrograms
during sinus rhythm. The main goal has been to extract information from fractionated
electrograms, which allows to elucidate propagation mechanisms and characterize tissue
structure at a microscopic scale. The suitability of the methods has been demonstrated for
a microscopic size scale. It has not yet been investigated whether the method is applicable
to electrograms recorded at a larger size scale, for instance, intracardiac electrograms
as recorded with clinical mapping systems. The method has been applied successfully
to electrograms recorded experimentally from rabbit atria (see Figure 8.21), however, a
careful validation of the decomposition method in an experimental context has not yet
been performed.

The most important limiting parameter underlying the presented decomposition
method is the time difference ∆LAT between the local activation times of two concurrent
activation events relative to their duration of depolarization tdep. When ∆LAT is large
enough the decomposition can be achieved more easily by windowing Φ, i.e. by temporal
segmentation of the waveform into its components.

Another limiting parameter for a successful decomposition is the maximum value of
FI (FImax). In this work, the decomposition has been examined for FImax=3. Although
a decomposition is feasible for FI>3, the interpretation of the resulting components is
questionable.

9.6.3 Relevance for Electrophysiological Experiments

Pad size and inter-electrode spacing of multielectrode sensor arrays and their distance to
the bioelectric sources determine whether or not individual depolarization events can be
resolved. The utilized CNF sensors with pad sizes of 18µm and inter-electrode spacings
of 50µm allow to detect the presence of multiple wavefronts in the submillimeter range at
a distance z = 50µm away from the tissue surface [54].
From multiple simultaneously recorded electrograms, direction and velocity of propagat-
ing wavefronts can be determined in the case of nonfractionated electrograms [62]. The
application of the decomposition method to fractionated multivariate CNF signals enables
estimating local velocities and directions of each individual nonfractionated component.
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Thus, it is expected that parameters obtained by this method allow the following additional
characterizations of the microstructure at the recording site:

1) Classification of the microstructural makeup of fibrotic tissue such as a) longitudi-
nally separating inlays of connective tissue, as in patchy fibrosis [22], b) crossing
fibers, and c) microscopic obstacles leading to a zig-zag course of propagation.

2) Detection of components representing starting or terminating/colliding wavefronts.
Thus, discontinuities in the underlying structure of the tissue, which are considered
to be potential sites for unidirectional conduction block [136], may be revealed.

9.7 Discrimination of Local and Distant Activation

The discrimination of local and distant activation within a fractionated electrogram is
crucial for the construction of activation maps and for the computation of conduction
velocities. In general, no other information about the tissue in the adjacency of the
recording site than the electrogram is available. In view of the large variety of possible
structural and functional properties of the tissue, it seems unpromising to reconstruct the
configuration of current sources or to determine the distance between the recording site
and an assumed configuration of current sources.
A different approach to the problem of distinguishing local and distant activation within
an electrogram is computing the ratio Φ̈pp : Φ̇pp, or |Ė|pp : |E|pp which both fall with
increasing distance between current sources and recording site. It had, however, not been
examined, if these measures have equal values and fall with the same space constant for
different anatomical structures and different patterns of activation.
Figure 8.22 demonstrates that both measures show an exponential decay with increasing
distance z from the surface of the tissue, however, with different values for z = 50µm and
different space constants. Contrary to what was expected, both measures have smaller
values for the thicker fiber (cf. blue and green curves in Figure 8.22). The measures are
dependent on the conduction velocity, as shown in a simulation of an asymmetric tissue
branching with different conductivities (Figure 8.23).

In case of oblique propagation of activation, the tissue branching led to delayed acti-
vation of the thick branch and thus fractionated electrograms were recorded between the
tissue branches. With neither of the two measures it was possible to distinguish whether
a certain deflection within the fractionated electrogram originates from the thick or from
the thin tissue branch (see Figure 8.24).

The results of computer simulation and experimental studies clearly demonstrate that
both proposed measures are not capable of reliably discriminating local from distant acti-
vation. Therefore, any further investigations based only on these measures, like the design
of a classifier for local vs. distant activation or an estimator for the distance between
current source and recording site, were abandoned.
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9.8 Classification of Tissue Microstructure through CNF

Signals

The presented computer simulation study is based on a new concept of classifying tissue
microstructure through inspection of extracellular electrograms. Fractionation is known
to depend not only on the structure of the subjacent tissue but also on the direction
of the activation wavefront (cf. Section 3.4.2). Therefore, in order to characterize the
microstructure of the tissue under examination, it was assumed that different directions
of propagation need to be induced.
The features were selected based on observations during previous computer simulation
and experimental studies. Additional features as for instance the LAT dispersion within
fractionated electrograms or the symmetry of the electrograms determined by means of
the decomposition method presented in Section 7.6 as well as the selection of appropriate
features by means of feature ranking algorithms (e.g. [137]) might improve the classification
accuracy.
The simple LDA classifier was used because scatter plots of the three-dimensional feature
space suggested a good separability by hyperplanes. Nevertheless, other classifiers may
lead to a better classification performance.
The leave-one-out method for cross validation was chosen, because in the case of M = 12
and d = 100µm, only two samples per class (6 samples in total) were available. Other cross
validation methods would presumably deselect all samples of a certain class from the set
of training data or test data, respectively, and thus lead to a biased result of classification
accuracy. The chosen values for the number of stimulus sites, the grid size, and the number
of recording electrodes are considered as technically feasible. Arrays with 32 electrodes
with interelectrode spacing of 300µm are available (FlexMEA36; Multichannel Systems,
Reutlingen, Germany).

With regard to the limited number of tissue samples (2 samples per class, 6 samples in
total) and the fact that the chosen sections represent clear examples of the respective class,
the obtained classification accuracies might be too optimistic. Nevertheless, the results
suggest conducting a continuative experimental study.





Chapter 10

Conclusion and Outlook

Cardiac near field technique denotes the acquisition and analysis of local extracellular
electrograms at the surface of the heart with high spatial and temporal resolution. Such
cardiac near field signals may enable the characterization of the microscopic pattern of
activation and thus the identification of regions containing microstructural heterogeneities
which are seen as potential substrates for the genesis of arrhythmias. In the following, the
main findings presented in this work are summarized.

A robust and accurate method for the computation of magnitude and direction of
local conduction velocity (LCV) has been presented. Along with the value of LCV, its
uncertainty has been evaluated. Hence, the reliable on-line computation of LCV during
electrophysiological experiments has been enabled.

The fractionation index (FI), a quantitative measure representing the degree of frac-
tionation of an electrogram, has been introduced. For the use in template-based CNF
signal processing algorithms, an analytic signal model of extracellular electrogram wave-
form based on sigmoid functions has been developed. A novel approach to analyzing
fractionated local electrograms by decomposition into nonfractionated components has
been presented.

The computation of the FI by means of an algorithm based on the novel analytic signal
model has been realized. This algorithm has been implemented for on-line computation
of FI.

The discrimination between local and distant activation reflected within an electrogram
has turned out to be unfeasible using measures proposed in the literature.

Finally, based on the observation that fractionation of local electrograms is not only
dependent on the microstructure but also on the direction of the activation wavefront, a
method for the characterization of microstructure through CNF signals has been presented.

The decomposition method has been evaluated for fractionated local electrograms ob-
tained from computer simulations. In order to validate this method with electrograms
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recorded during experiments, the assignment of recording positions to the microstructure
needs to be enabled. This requires a procedure of generating micrographs from prepara-
tions without deforming them. A solution of this problem would also allow the experi-
mental validation of histologically detailed computer models.
The computer simulation study of the classification of different types of fibrosis through
CNF signals has yielded promising results. For an experimental study based on the pre-
sented findings, two major problems need to be solved. First, heart tissue of different
classes of fibrosis is required. Preliminary tests using aged rats or chronic administration
of Cyclosporine A, an immunosuppressive drug, or L-NAME, a nitric oxide inhibitor, have
not shown the desired effects. Contrary to the figures presented in literature [138, 139], a
significant degree of fibrosis in the treated hearts has not arisen. Second, stimulus elec-
trodes and an array of recording electrodes need to be integrated on a common substrate.
Such sensors have been used on a larger size scale [140, 141], however, the requirements on
inter-electrode distance and number of electrodes require a new development of a dedicated
sensor.
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[16] André G Kléber and Yoram Rudy. Basic mechanisms of cardiac impulse propagation
and associated arrhythmias. Physiol Rev, 84(2):431–488, Apr 2004.
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