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Kurzfassung

Neben ihrer großen Bedeutung in der Konsumerelektronik wie z.B. Kameras, Laptops

oder Mobiltelefonen kommt der Lithium-Ionen Batterie steigende Bedeutung als En-

ergiespeicher für Elektro- und Hybridfahrzeuge zu. Für einen zuverlässigen Betrieb

sowie Erhöhung der Lebensdauer und der damit verbundenen Kostenreduktion, ist

eine Zustandsüberwachung der Batterie in Fahrzeugen unerlässlich. Da allerdings nur

eine sehr geringe Anzahl an Parametern direkt durch Messungen zugänglich ist, wer-

den leistungsfähige Batteriemodelle, welche das Batterieverhalten exakt wiedergeben

können sowie eine klare Trennung der einzelnen chemischen und physikalischen Ef-

fekte ermöglichen, benötigt. Deshalb werden in dieser Arbeit sowohl die Entwick-

lung als auch die numerische Realisierung sowie die Validierung anhand von Mess-

daten für ein physikalisch-chemisches Modell zur Zustandsdiagnose behandelt. Im

ersten Teil der Arbeit werden die elektrochemischen Grundlagen zur Funktionsweise

der Batterie kurz zusammengefasst. Des weiteren wird ein Satz gekoppelter par-

tieller Differentialgleichungen basierend auf vorhandener Literatur entwickelt. Der

zweite Teil der Arbeit widmet sich der numerischen Realisierung des Satzes von

Erhaltungsgleichungen mit besonderem Augenmerk auf numerische Stabilität und

Rechengeschwindigkeit. Neben der Integration eines Schemas zur Zeitschrittweit-

ensteuerung und der Verwendung eines modifizierten Newtonschemas werden Wege

zur Reduktion des Rechenaufwandes in der Partikeldiffusion aufgezeigt. Zur Vali-

dierung des Modells wird im dritten Teil der Arbeit ein Vergleich zwischen Simula-

tion und Messung bei verschiedenen Betriebsbedingungen im Zeit- und Frequenzbere-

ich durchgeführt. Im Zeitbereich ist mit einem rein physikalisch-chemischen Modell

ein zu rasches Folgen der simulierten Zellspannung auf Änderungen des Stromes zu

beobachten. Wie bei der Bleibatterie wird vermutet, dass dies auf eine unzureichend

berücksichtigte Konzentrationsabhängigkeit in den Gleichungen zurückzuführen ist.

Im vereinfachenden Impedanzansansatz zur Modellierung einer Batterie wird diese

Abhängigkeit durch die sogenannte Diffusions- oder Warburgimpedanz, welche bei

kleinen Frequenzen im Impedanzspektrum auftritt, beschrieben.
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Abstract

Besides their important role in consumer electronics such as cameras, laptops or

mobile phones, lithium-ion batteries are considered a promising candidate as en-

ergy storage for use in electric and hybrid electric vehicle applications. To ensure a

reliable use and to extend the lifetime of the battery and thus reducing costs, mon-

itoring of the actual state is an essential task in such vehicles. Furthermore, since

only a few quantities are directly accessible by means of measurements a powerful

battery model capable to accurately rebuild the battery behavior and further allow-

ing a distinct separation of the underlying chemical and physical processes within

the battery is required. Therefore, this work deals with the development, numerical

realization and validation of a physico-chemical battery model for condition moni-

toring applications. In the first part of the thesis the electrochemical fundamentals

of the battery are briefly summarized. Further, a set of coupled partial differential

equations is developed describing the main processes based on existing literature.

The second part of the thesis concentrates on the numerical realization of this set of

governing equations with focus on numerical stability as well as calculating speed.

Besides the integration of a variable time stepping scheme and the use of a modified

Newton scheme the focus is set on reduction of the calculation effort for the par-

ticle diffusion. To validate the developed model in the third part of the thesis the

obtained simulation results are compared to measurements under various operating

conditions in the time and frequency domain. In the time domain it can be observed

that with the pure physico-chemical model the simulated cell voltage responds to fast

to changes in the input current. Same as for the lead-acid battery it is assumed that

this is related to an insufficient incorporation of the concentration dependency in the

set of equations. In the simplifying impedance approach for battery modeling this

dependency is described by the so-called Diffusion or Warburg Impedance occurring

at low frequencies in the impedance spectrum.
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1. Introduction

1.1. Motivation

Due to their high volumetric and gravimetric energy density lithium-ion batteries

have already been established as energy storage in mobile applications such as lap-

tops, cameras or cellular phones in the last two decades. Besides their important

role in consumer electronics, lithium-ion batteries are also regarded as promising

candidates for use in electric and hybrid electric vehicle applications, given the as-

pects of legislation on reduction of CO2 emissions, the worldwide increase of the

transport volume and the finiteness of fossil fuels [31]. The advantage of lithium-ion

batteries as energy storage in cars originates from their exceptionally high specific

energy outperforming competing technologies such as mechanical, electrical or other

electrochemical storages even for power-optimized systems distinctively. In fig. 1.1

typical values for specific power and energy of commercially available energy storages

are summarized in a so-called ragone diagram assuming a system efficiency of 90 %.

Although vehicles with lithium-ion batteries are already available, e.g. Opel Ampera,

103102101100

104

103

102

101

Specific energy in Wh/kg

Sp
ec

ifi
c 

po
w

er
 in

 W
/k

g

Ragone Diagram

1 h6 min

36 s

3.6 s

10 h

FlywheelSupercap

Li-Ion

NiMH

Flywheel mob.
Flywheel stat.
Supercap mod.
Supercap cell
NiMH mod.
NiMH cell
Li-Ion mod.
Li-Ion cell

Figure 1.1.: Ragone diagram of common energy storage devices for electric and hy-
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1 Introduction 2

Tesla Roadster, Mercedes S400 Blue Hybrid or the Mitsubishi i-Miev, the battery

still remains the crucial component due to high costs, operational safety and lifetime.

Thereby, for a reliable use of the energy storage while achieving maximum system

efficiency the knowledge of the actual condition of the battery is essential [38]. Based

on the actual state of the battery on the one hand the remaining capacity can be

predicted and on the other hand predictions can be made on the acceptable current

during recuperation as well as the deliverable current during acceleration in order

to stay within a specified operating range [16]. This results in an extended lifetime

of the battery. Furthermore, monitoring of the battery state allows the early detec-

tion of imminent failures of single cells or battery packs allowing to initiate suitable

counteractions in time [82].

Since only a few quantities of the battery are directly accessible by measurements such

as load current, terminal voltage, temperature or in some cases headspace-pressure

for the determination and separation of internal processes as well as monitoring of

the actual state of the battery a powerful model capable to accurately predict the

battery behavior given these measurements is required. In the following the state of

the art of existing battery models is summarized briefly. For further information on

the topic of model based condition monitoring it is referred to [93] where it is used

for fault diagnosis as well as [86] where a detailed analysis of the relevant quantities

and existing strategies for battery condition monitoring is given.

1.1.1. State of the Art of Battery Models

The choice of a suitable model for a particular applications is always a trade-off

between calculation time, model accuracy and parametrization effort. Considering

these aspects in case of battery modeling, depending on the level of abstraction, a

classification into three categories of models can be made.

In the simplest case the battery can be regarded as kind of black box without consid-

eration of the underlying physical processes. Therefore, it is either tried to reproduce

the battery behavior directly from measurements by means of curve fitting [20] or

some kind of learning models (e.g. neural networks [21] or fuzzy logic [74]). Alter-

natively, the battery response to a certain input is predicted from data stored in a

look-up table [63]. As stated in [46] the main drawbacks of this approach are the huge

parametrization effort and the risk of high extrapolation errors outside the measured

range. Furthermore, according to [16] black box models are usually restricted to

quasi-stationary conditions which is usually not the case in automotive applications.
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A more detailed description of the battery can be obtained by the use of an equivalent

circuit model. Therefore, using impedance spectroscopy data for the development

and parametrization of such a model the most important effects and processes within

the battery can be identified and thus being integrated into the model. On the one

hand the resulting equivalent circuit can be used to analyze changes in the battery

impedance and thus allowing to draw conclusions on the actual state of charge (SOC)

and state of health (SOH) [42, 88, 22]. On the other hand, impedance-based bat-

tery models are very accurate in reproducing the dynamic behavior of the device

[33, 17, 3]. Additionally, equivalent circuit models offer a high versatility and thus

can be easily adapted to other kinds of electrochemical energy storages. However,

due to the already mentioned strong dependence of the impedance on the battery

state (SOC, SOH) as well as temperature, a large amount of measurements is re-

quired to parametrize such a model to cover all relevant battery conditions.

Further extending the level of detail finally results in an explicit description of all

physico-chemical processes within the battery by means of a set of coupled partial

differential equations (PDEs). In case of lithium-ion batteries models of this type

are mostly based on the early work of John Newman [27, 32, 28]. Available software

solutions based on this set of governing equations are for example the FORTRAN

programs of the Newman Research group [84], the lithium-ion battery model in-

cluded in the multiphysics simulation environment COMSOL Multiphysics R© [23] or

the Battery Design Studio R© [1] by Robert Spotnitz. Besides the set of equations

from Newman there exist also other electrochemical approaches for battery model-

ing such as e.g. [53, 54] where a mathematical model with focus on thermodynamic

consistency is derived, [30, 29] concentrating on many particle modeling and phase

transition for FePO4 cathodes as well as [8] dealing with all-solid lithium ion bat-

teries. Compared to the previously described approaches this type of model has

the advantage that besides the terminal voltage additional information on internal

quantities of the battery such as potential, concentration or temperature distribu-

tion depending on the particular load current are obtained. Additionally, since the

physico-chemical model can be parametrized on the basis of geometrical as well as

material data and not, as the other model types, on measurements in principle the

operation range is not limited [46]. Moreover, with increasing computing power of

modern PCs and the integration of methods for model reduction as e.g. in [78, 19]

the disadvantage of the large computational effort can be overcome, too. However,

for a good battery model based on PDEs a detailed knowledge of all underlying pro-
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cesses as well as model parameters is required. Thus, the remaining problems are

still the smaller dynamic range compared to equivalent circuit models as well as the

difficulties in obtaining some of the required material parameters.

Summarizing, both the equivalent circuit and the physico-chemical model fulfill the

requirements for battery condition monitoring in an automotive environment. How-

ever, due to the strong cooperation to chemical institutions as well as the access

to manufacturer information within the ‘COMET K2 project: Modellierung, Va-

lidierung und Test von Lithium-Ionen-Batterien für Hybridfahrzeuge’ allowing the

determination of critical model parameters and to ensure a simple extension of the

basic model with e.g. thermal or aging models in this thesis a battery model on the

basis of the physico-chemical approach is developed. Thereby, the focus of this work

is put on improvements on the dynamic behavior as well as model performance with

respect to calculation time and robustness.

1.2. Contribution of the Thesis

As stated previously the solution of the coupled set of partial differential equations

results in a high computational effort. Therefore, this thesis is focused on the de-

velopment of an efficient numerical solver based on the control volume (CVM) or

finite volume method (FVM) which is particularly suited for the solution of govern-

ing equations. Special interest is laid on the solution of the particle diffusion since

for that equation only the surface and the average concentration are of interest and

not the exact concentration distribution. Two strategies to reduce the calculation

effort of that equation have been investigated. The first is based on a change of

variables to overcome the nonlinear characteristics of the equation and thus simpli-

fying the integration over the single control volumes published in [79] whereas the

second concentrates on point reduction based on a POD analysis [80]. To validate

the overall battery model the obtained simulation results are compared to measure-

ments for various operating conditions. From the analysis of the frequency domain

behavior same as for the lead-acid battery it is assumed that the deficiencies in the

cell response to dynamic excitation are related to an insufficient incorporation of the

concentration dependency in the set of equations. In the simplifying impedance ap-

proach for battery modeling this dependency is described by the so-called Diffusion

or Warburg Impedance. Based on these findings in [72] an equivalent circuit model

of a 70 Ah cell has been developed.
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In addition, thesis-related work on the topic of model based condition monitoring

has appeared in [93].

Since this thesis is part of the ‘COMET K2 project: Modellierung, Validierung und

Test von Lithium-Ionen-Batterien für Hybridfahrzeuge’ fragments that have been

developed or extended in cooperation with project partners are explicitly denoted.

1.3. Outline

Chapter 1 gives a short review on existing battery models with respect to their

applicability for condition monitoring systems on the basis of which the physico-

chemical based approach has been chosen as the most promising candidate to meet

the requirements posed on such a system. Moreover, to obtain a deeper insight in

the functionality of the battery in chapter 2 the electrochemical fundamentals and

underlying processes are summarized. Concluding the first part of the thesis in chap-

ter 3 a set of coupled partial differential equations based on a review on modeling of

lithium batteries given in [89] is presented.

The second part of the thesis deals with the numerical realization of the previously

defined set of governing equations as well as the validation of the battery model by

comparing the simulation results to measurement data for various test cases. There-

fore, in chapter 4 starting from a basic implementation a great effort in improving

the model performance with respect to robustness and calculation speed has been

made. In chapter 5 the obtained simulation results are validated for a 50 mAh pouch

cell covering an analysis of the long term as well as the dynamic behavior of the cell

by comparing the measurements to the simulation both in the time and frequency

domain. Finally, in chapter 6 a summary of the thesis together with a short outlook

to possible future work including some further model improvements for a reliable

condition monitoring system is given.



2. Electrochemistry of a Lithium-Ion

Battery

Secondary or rechargeable lithium-ion batteries consist of two porous electrode mate-

rials and an ion-conducting eletrolyte as well as an electronically insolating separator.

The chemical reactions inside the battery can be described by the so-called reaction

equations. The transition from electronic to ionic conduction is described by the

kinetics of the electrode. Both effects are described briefly in the following chapter.

2.1. Electrochemical Reactions

Depending on geometrical properties such as particle size or electrode thickness

lithium-ion batteries can be divided into high power and high energy cells. If the

particles of the active material are very small the surface where the electrochemical

reaction takes place is very big. Thus, high discharge currents can be achieved. On

the other hand when the particles are big more lithium can be stored in a single

particle and a high energy density can be achieved. Throughout this thesis lithium

iron phosphate (LiFePO4) is used as electrode material for the positive electrode

and carbon (LiC6) for the negative. LiFePO4 with its nanosized particles is mainly

used in high-power batteries. The active material was patented first in 1999 by John

Goodenough [35]. The major advantages of the material including safety aspects,

non-toxicity and low price are summarized and compared to other common cathode

materials in [69].

2.1.1. Insertion Process

In contrast to many other battery technologies in lithium-ion batteries the active elec-

trode material is not chemically transformed but the Li+ ions are inserted/deinserted

directly in the structure of the active electrode material. Thus, the lattice of the host

material suffers only from minor (LiC6) or even no (LiFePO4) structural changes re-

lated to lithium insertion and is not chemically transformed due to current flow.

6
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Figure 2.1.: Schematic of a graphite (LiyC6)/lithium iron phosphate (Li1−yFePO4)
cell on the basis of [82] with the dimensionless parameter y ∈ [0, 1]
indicating the amount of lithium stored in an electrode.

During discharge the Li+ ions inside the negative electrode are deinserted from the

active material to the electrolyte whereas in the positive electrode the opposite reac-

tion, insertion of Li+ ions into the active material, takes place. Due to the resulting

concentration gradient the lithium ions are driven from the negative to the positive

electrode. Because of the nonconducting separator the electrons are forced to use a

different path via an electric circuit. This basic principle of operation is depicted in

fig. 2.1 showing the transport of only the Li+ cation in the electrolyte. The interca-

lation of the solvated Li+ ion into the host structure of the anode is shown in more

detail in fig. 2.4 after [10].

Similar to the layered metal oxide LiCoO2 versus hard carbon described in [16] the

reaction equations for the phospho olivine compound LiFePO4 versus LiC6 can be

written as follows with

LiyC6

discharge−−−−−⇀↽−−−−−
charge

C6 + y · Li+ + y · e− (2.1)

FePO4 + y · e− + y · Li+
discharge−−−−−⇀↽−−−−−

charge
LiyFePO4 (2.2)

representing the electrode reactions and

LiyC6 + FePO4

discharge−−−−−⇀↽−−−−−
charge

C6 + LiyFePO4 (2.3)
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the overall cell reaction. The dimensionless parameter y ∈ [0, 1] indicates the amount

of lithium stored in an electrode with the two boundaries 1 and 0 representing a

fully charged/discharged electrode, where either no more lithium can be inserted or

deinserted.

Due to the layered structure of the graphite electrode the intercalation process of

lithium into the graphite structure occurs at several stages s denoted by roman

numerals. This results in a stepwise profile of the potential curve versus lithium

for galvanostatic (i = const.) conditions at low current depicted in fig. 2.2 with y

being the normalized amount of lithium stored in the electrode and thus also being

a measure for the state of charge of the electrode, s the actual stage and t time

according to [95]. The plateaus are indicating two-phase regions. Additionally, due

to the intercalation of lithium into the host structure of the graphite according to

[96] the volume of the electrode is changing by ∼ 10% between the lithiated and

delithiated state. A detailed description of the intercalation process of lithium into

graphite can be found in [89] and [95].
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Figure 2.2.: Stage formation of the potential of the graphite electrode versus lithium
under galvanostatic (i = const.) conditions at low current related to
lithium intercalation into graphite with y being the normalized amount
of lithium stored in the electrode and thus being also a measure for the
state of charge of the electrode, s the actual stage and t time. The
plateaus are indicating two-phase regions. Modified from [95].
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2.1.2. Electrolyte Processes

Apart from the transport of the positively charged Li+ ions in the electrolyte the

transport of negatively charged ions such as e.g. PF−6 from the conducting salt has

to be considered. Thus, electroneutrality within the battery is setting up due to

the PF−6 ions within the electrolyte compensating the charge of the Li+ ions. The

conducting salt is added to the solvent mixture to overcome the low conductivity of

the electrolyte by increasing the number of charge carriers. Nevertheless, the con-

ductivity of the electrolyte can not be increased in any order because an increase of

conducting salt leads to a reduction of free ions due to ion pair formation together

with an increase of the viscosity. Figure 2.3 shows a measured conductivity curve

passing through a maximum at ∼1.2 mol/l. According to [45] to the left side of the

maximum the lack of ions leads to solvent excess whereas to the right side of the

maximum the lack of free ions due to ion pair formation together with the increased

viscosity leads to salt excess.

In [89] the reaction equations for several solvent mixtures and conducting salts to-

gether with common side reactions due to various contaminants in the solvent mix-

ture are summarized. For the battery under consideration the combination ethylene

carbonate/ethylmethyl carbonate (EC/EMC) for the solvent and LiPF6 for the con-

ducting salt is used. The reaction equation for the salt together with the side reaction
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Figure 2.3.: Measured conductivity curve of the electrolyte with a maximum conduc-
tivity near 1.2 mol/l.
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for water contamination can be summarized as follows

LiPF6 
 LiF + PF5 (2.4)

PF5 + H2O ⇁ PF3O + 2HF . (2.5)

The occurrence of hydrogen fluoride (HF) is related to a leakage in the battery

housing allowing water to diffuse into the interior of the battery and thus reducing

the lifetime of the battery. A detailed mathematical description of the ionic transport

in the electrolyte of a lithium-ion battery considering both Li+ and PF−6 diffusion is

given in [24].

2.1.3. Surface Film Formation

Surface films play a key role in lithium as well as lithium-ion batteries because their

operating voltage lies beyond the thermodynamic stability limit of todays electrolyte

systems. Further decomposition of the electrolyte is prevented by the formation

of such an electrically insulating ‘passivating’ film at the interface of the negative

electrode and the electrolyte. At the same time this ‘protective layer’ is selectively

permeable for electrochemically active Li+ ions but ideally impermeable to any other

electrolyte component thus behaving as a solid electrolyte interface (SEI), as pro-

posed by [65]. A schematic representation of the SEI in organic solvent-based elec-

trolytes consisting of an electrolyte permeable porous organic layer of poly- and

oligomeric decomposition products and an electrolyte impermeable compact layer of

inorganic decomposition products such as lithium fluoride (LiF) and lithium carbon-

ate (Li2CO3) is shown in fig. 2.4 based on [10]. The properties of an ‘ideal’ SEI can

lithium

inorganic (nm)

organic (µm)

electrolyte

solvent

Li

Figure 2.4.: Schematic representation of protective surface film on Li or LiyCn anodes
in organic electrolytes known as SEI (modified from [10]).
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be summarized after [9] and [47] as follows:

• high ionic conductivity for Li+ cations (t+ close to 1)

• electrically insulating to prevent further electrolyte decomposition

• well adherent and flexible

• little charge capacity consumption during SEI formation

A more detailed description on the formation mechanisms and composition of surface

films in lithium-ion batteries as well as a mechanistic modeling approach of SEI

growth can be found in [5] whereas in [4] a simplified model based on film resistances

is introduced.

2.1.4. Aging Mechanisms

According to [89] the aging of a battery can be defined as the modification of its

properties with time and use. These modifications can lead to an increased cell

impedance on the one hand and a decreased cell capacity on the other hand resulting

in a reduced power capability and energy content respectively.

Further, as stated in [89] two different aging situations can be distinguished – aging

during storage determining the ‘calendar’ life of the battery, and aging during cycling

determining the battery’s ‘cycle’ life. Generally, aging during cycling can be described

by the degradation of the active material due to lithium insertion/deinsertion, while

aging on storage is mainly related to side reactions on the interface between the

electrode and the electrolyte depending on SOC as well as temperature. Although

both aging situations are mostly considered as additive interactions may definitely

occur as stated in [89].

According to [81] the temperature dependency of capacity fade during aging under

storage conditions is considered to be of the Arrhenius type

∆Q = Ke(−
Ea
RT )tz (2.6)

with ∆Q being the irreversible capacity loss in %, Ea the activation energy of the

chemical process, R the gas constant, T the temperature, t the time, and K a

constant. This relation was modified by [11] by introducing the additional parameter

z as the exponent of time and thus getting the percentual increase in impedance
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or percentual loss in power respectively with z = 0.5 being typical for diffusion

limitation or layer growth. A different approach for modeling the capacity fade of

a lithium-ion battery is given in [15] where the corrosion of lithium is investigated

following the equation

t =
B

2nκAelec
χ2 +

L0

nκAelec
χ (2.7)

with Aelec being the interface area of the anode, κ the specific electronic conductivity

of the layer, χ the amount of lithium corroded, L0 the initial layer thickness, t the

time, and n and B coefficients of proportionality. While all these methods focus on

aging under storage conditions [70] concentrates on the capacity fade during cycling

at elevated temperatures based on a simple physics-based model.

Aging Mechanisms on the Anode

According to [90] aging on the anode is considered to be mostly related to changes

at the anode/electrolyte interface due to reactions of the anode with the electrolyte.

The dominant aging mechanisms on carbon-based anodes including impedance rise

due to SEI formation and growth, lithium corrosion leading to self-discharge and loss

Electrolyte decomposition
and SEI formation

SEI conversion,
stabilization and growth

SEI dissolution, precipitation

Positive / Negative interactions

Lithium plating and
subsequent corrosion

Graphite exfoliation, cracking
(gas formation, solvent co-intercalation)

Donor solvent

SEIGraphene layer

Li

Mn
2+

H
+

+

Figure 2.5.: Summary of basic aging mechanisms on the carbon anode due to changes
at the anode/electrolyte interface according to [90].
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of mobile lithium, and lithium plating occurring at low temperatures as well as in-

homogeneous current or potential distribution are depicted in fig. 2.5 after [90].

Aging Mechanisms on the Cathode

Cathode aging is strongly dependent on the composition of the electrode and can

be considered as a sum of effects influencing each other making it nearly impossible

to study them separately. In [90] aging of the active material itself, degradation of

inactive electrode components, the oxidation of electrolyte components, and interac-

tion of aging products with the negative electrode are summarized as the main aging

mechanisms on the cathode depicted in fig. 2.6.

According to [47] lithium iron phosphate shows minor aging effects compared to

other cathode materials because on the one hand the host material does not undergo

any structural changes and on the other hand loss of mobile lithium has not been

observed. Thus, aging of the carbon-based anode material can be considered to be

the main source of aging for the lithium ion battery investigated.

binder
decomposition

micro-cracking

gas evolution

electrolyte
decomposition

structural
disordering surface layer

formation
dissolution

oxidation
of conductive

particles

corrosion
of current

collector

migration of
soluble species

re-precipitation of
new phases

loss of contact to
conductive paticles

Figure 2.6.: Summary of basic aging mechanisms on the cathode according to [90].
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2.2. The Open Circuit Voltage

If an electrode is operating at nearly currentless state, e.g. by discharging with an in-

finite load resistor, the electrochemical processes within the electrode are completely

reversible. Thus, the potential obtained is always equal to the equilibrium or open

circuit voltage (OCV). As stated in [6] the resulting change in the standard free

energy ∆G0 is given by

∆G0 = −nFU0 (2.8)

with n the number of electrons involved in the reaction, Faradays constant F , and

the open circuit voltage U0. Additionally, the change in standard free energy can be

regarded as the driving force to be able to deliver electrical energy according to [56].

To be able to deal with conditions different from the standard state the potential

can be obtained by the Nernst equation

U = U0 +
RT

nF
ln

∏
aox∏
ared

(2.9)

with aox representing the activities of the oxidized species and ared the activities of the

reduced species respectively. Because the activity coefficients are mostly unknown

often the concentrations of the oxidized and reduced species together with a measured

OCV curve are used instead.

2.3. Electrode Kinetics

The theoretical electrical energy deliverable by an electrode is defined by the standard

free energy given in equ. 2.8. However, this theoretical value can only be achieved at

very low discharge rates. By increasing the discharge current density i the voltage

in each electrode uelec is striding away from the open circuit voltage U0 due to

polarization effects including activation polarization due to charge transfer at the

electrode/electrolyte interface (ηct) and concentration polarization due to diffusion

effects (ηd) as well as the ‘ohmic polarization’ or IR drop (ηIR). Under operating

conditions when the battery is connected to an external load the effective achievable

voltage of each electrode uelec can be described by

uelec = U0 − ( ηIR︸︷︷︸
iRi

+ηct + ηd) (2.10)
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Figure 2.7.: Drop of the available cell voltage ucell summarizing polarization effects
in both electrodes and the electrolyte including activation polarizations
(ηct), concentration polarizations (ηd) and ‘ohmic polarizaion’ (ηIR) ver-
sus discharge current density i after [56].

considering polarization effects as well as the IR drop caused by the inner resistance

Ri of the battery. In Ri the ionic resistance of the electrolyte, the electronic resistance

of the active electrode material and the current collector as well as the contact

resistance between the active material and the current collector are summarized.

The effective cell voltage can then be obtained as the potential difference between

the current collectors of both electrodes. In fig. 2.7 the relation between the operating

voltage ucell and discharge current density i is shown graphically summarizing the

losses in both electrodes as well as the electrolyte according to [56].

2.3.1. Butler-Volmer Representation

For the derivation of the activation polarization it is assumed that only one electron

is transferred at the interface between the species O and R according to [6]

O + e−
kb−⇀↽−
kf

R (2.11)

with O being the oxidized and R the reduced species respectively. The reaction rate

coefficients for the forward kf and backward kb reaction are resulting from the theory

of the activated complex considering the change in the standard free energy from the
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initial state to the activated complex explained in [37]. In fig. 2.8 the change in the

standard free energy Fη related to a potential shift η is shown. By analyzing the

intersection region between the oxidized and the reduced species of the redox system

the total change in the standard free energy can be divided into a forward αFη and

a backward fraction (1− α)Fη according to

∆G0
f −∆Gf = αFη (2.12)

∆G0
b −∆Gb = −(1− α)Fη (2.13)

with α ∈ [0, 1] being the transfer coefficient assuming same as in [6] a one-step

one-electron process. Using the definitions for the rate constants kf and kb of the

Arrhenius type from [6] and considering no limitation by mass transfer effects this

theory leads to the current-potential relation known as Butler-Volmer equation

i = i0

[
e
αF
RT

η − e−
(1−α)F
RT

η
]

(2.14)

with i0 being the exchange current density and η the deviation from the OCV. Due to

the nonlinear characteristic of equ. 2.14 for a high overpotential η either the forward

or the backward term, depending on the sign, can be neglected leading to a simplified

form of the equation.

a hF
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DGf
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0
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Figure 2.8.: Change in the standard free energies αFη and (1 − α)Fη related to a
potential shift η for a redox system. Modified from [6].
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2.3.2. Influence of the Electrochemical Double Layer

On the interface between the electrode and the electrolyte separation of charge occurs

by forming a layer of charge in both species. This region is called the electrical double

layer. Basically the electrical double layer can be divided into a compact (Helmholtz)

and a diffusive (Gouy-Chapman) layer depicted in fig. 2.9 together with the potential

distribution at the interface between the electrode (φs) and the solvent (φ`) due to

charge separation. A detailed description of modeling approaches of the electrical

double layer is given in [6, 37, 56].

IHP OHP

diffuse
layer

compact
layer

E
le

ct
ro

d
e

specifically
adsorbed anion

water
dipole

solvated
cation

x

f
l

f
s

f

Figure 2.9.: Electrical double layer consisting of a compact (Helmholtz) and a dif-
fusive (Guy-Chapman) layer together with the potential distribution at
the interface between electrode and electrolyte. Modified from [45].
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In this thesis, however, the simplest representation of the electrical double layer con-

sidering only the compact layer is used. This approach is comparable to a capacitor

with a distance between the plates equal to the dimension of the compact layer. The

current-voltage characteristics of the electrical double layer can then be described by

i = Cdl
∂(φs − φ`)

∂t
(2.15)

with Cdl being the capacitance at the interface called double-layer capacitance.

2.3.3. Mass Transfer Limitation

During current flow a concentration profile c` is formed from the phase interface into

the bulk. Thereby, the concentration on the interface is decreasing from the initial

value c0
` to a new value csurf

` depending on the allowed overpotential. The region

where this concentration gradient is formed is called the Nernst diffusion layer δN .

Its thickness is defined by the intersection of the tangent to the concentration profile

at the interface to the initial horizontal profile c0
` from [37]

δN =
c0
` − csurf

`

(∂c`/∂x)|(x=0)
. (2.16)

In Figure. 2.10 the movement of the concentration profile into the interior of the

solution is shown for two cases 2 and 3 with 2a and 3a representing stationary

conditions. Additionally, the current density is approaching its limiting value ilim as

the concentration on the surface is approaching 0 depicted in curves 3 and 3a. This

cl

x

c
0

0

lc
surf

l

dN

1
2 2a

3 3a

0

Figure 2.10.: Formation of a concentration profile during current flow for two cases 2
and 3 with 2a and 3a representing stationary conditions and δN being
the thickness of the Nernst diffusion layer. In curves 3 and 3a the
limiting current is applied. Modified from [37].



2 Electrochemistry of a Lithium-Ion Battery 19

region where csurf
` → 0 which goes along with an increased overpotential is called

limiting current region. Because in that case the charge transfer reaction is fast

compared to the diffusion process the overpotential can be reduced to the diffusion

overpotential ηd. From the Nernst Equation ηd can be calculated as follows

ηd =
RT

F
ln
csurf
`

c0
`

(2.17)

using the fraction between the concentration on the interface csurf
` and the bulk c0

` .



3. Mathematical Model Formulation

Whereas in the previous chapter the electrochemistry of a lithium-ion battery was

discussed, this chapter provides a purely mathematical description of the previously

described mechanisms in the battery. The model equations investigated are mostly

based on a review on mathematical modeling of lithium batteries summarized in [89].

Since within the framework of this thesis only a fundamental mathematical descrip-

tion of the lithium battery will be given for a detailed deviation of the underlying

theories and concepts it is referred to [61].

3.1. Model Simplifications

Due to the complexity of the internal processes within the battery in the follow-

ing the assumptions made on the physics of the battery with focus on finding a

trade-off between complexity and accuracy of the resulting model with focus on the

current-voltage behavior are summarized in accordance to existing literature on bat-

tery modeling.

3.1.1. General Assumptions

As already stated in [71] for the lead-acid battery, the lithium-ion battery is consid-

ered as a closed system treated as isothermal. An additional thermal model consid-

ering electrochemical heat generation within the battery as well as heat transfer to

the surroundings via the surface of the battery described in e.g. [43, 49, 77] is not

incorporated.

The current collectors are supposed to be inert equipotential regions having homo-

geneous contact with the active electrode material across the whole area. Thus the

contact resistance to the electrodes can be regarded as part of the inner resistance

of the battery. Due to these properties the current collectors need not be considered

separately in the modeling domain.

It is further assumed that the electrodes and the separator are uniform in their poros-

20
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ity distribution across the area allowing to relate all quantities to the cross-sectional

area of the electrodes after [71]. Thus the computational domain can be reduced in

the direction of the main reaction x.

According to [34] the electrolyte can be considered to be binary with only the Li+

cations as the electroactive species. Due to electroneutrality the mass balance for

both the anion and the cation must be the same. Thus, for simplicity reasons in [89]

mass transport in the electrolyte is derived for the anion applying the concentrated

solution theory described in [61]. It is further assumed that convection within the

battery can be neglected and therefore species transport within the electrolyte is only

due to diffusion and migration.

Volume changes of the electrode materials usually can be neglected and there is

only little change in the morphology of the active material according to [89]. There-

fore, the electrode porosity can be assumed as constant and there is no flow in the

electrolyte due to displacement of the liquid phase. Furthermore, mechanical stress

during lithium insertion/deinsertion into the active material as proposed in [98] as

well as the repair of SEI damage due to intercalation-related stress is not considered.

Since all phases are considered to be electrically neutral, the dimension of the elec-

trochemical double layer is assumed to be small relative to the pore volume according

to [89].

Diffusivity of the solid (Ds) and liquid (D`) phase as well as the transference number

t0+ are assumed to be constant values with respect to time after [34].

3.1.2. Porosity Modeling

To incorporate the properties of the porous electrodes without going into geometric

detail a macroscopic description explained in [61] and [89] is used. Following this

approach, instead of dealing with the exact position and shape of the particles and

pores respectively, the properties of the electrode material are averaged over a volume

small with respect to the overall dimensions but large compared to the pore structure.

The particles within the electrodes are treated as spheres of uniform size according

to [34].

A schematic representation of a porous electrode consisting of spherical particles

is shown in fig. 3.1 (a) together with a detailed view of an infinitesimal electrode

fragment of length dx composed of spherical particles of conductivity σ and diffusivity
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Figure 3.1.: (a) Schematic representation of an electrode consisting of spherical par-
ticles; (b) Detailed view of an infinitesimal electrode fragment of length
dx composed of spherical particles(b, based on [58]). Within the volume
element current can flow in the solid and the liquid phase with both
species interacting at the particle/electrolyte interface.

Ds surrounded by an electrolyte of conductivity κ and diffusivity D` depicted in

fig. 3.1 (b) on the basis of [58]. Within the volume element current can be divided

in a solid (is) as well as a liquid fraction (i`). Both species are interacting at the

particle/electrolyte interface with aj being the reaction current per volume. The

‘active’ surface area per volume a where the charge transfer reaction takes place is

often calculated by

a =
Asurf

V
εs =

3εs
rp

(3.1)

with Asurf and V being the surface area and the volume of the particles of radius rp

and εs being the volume fraction of the solid phase after [77]. Incorporating εs into

equ. 3.1 is due to the contact between the particles and thus reducing the exchange

surface between the solid and the electrolyte.

Since the material parameters of the solid and liquid phase are not directly accessi-

ble within the porous electrode often effective material properties based on known

parameter values of the homogeneous materials are introduced. In most cases the

Bruggeman relationship according to [61] considering porosity as well as tortuosity

of the material is applied to obtain effective values for the conductivities of the solid
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and liquid phase

σeff = σεbrug
s (3.2)

κeff = κεbrug
` (3.3)

as well as the effective diffusivity of the electrolyte

Deff
` = D`ε

brug
` (3.4)

with εs and ε` being the volume fraction of the solid and liquid phase and brug

being the Bruggeman exponent. In equ. 3.2 to equ. 3.4 the influence of porosity

and tortuosity is already summarized to a single correction term εbrug
s and εbrug

`

respectively. Thus tortuosity τi can be expressed in terms of the volume fraction of

the solid εs and liquid phase ε` to

τi = ε1−brug
i with i = {s, `} (3.5)

according to [85] where also a summary of parameter values for equ. 3.5 for different

porous structures can be found.

3.2. Model Equations

Considering the assumptions given at the beginning of this chapter in this section a

system of governing equations for the following state variables is derived:

φs . . . potential in the solid phase

φ` . . . potential in the liquid phase

cs . . . concentration in the solid phase

c` . . . concentration in the liquid phase

Therefore, the modeling domain of the lithium-ion battery is divided into three sub-

domains numbered from left to right as depicted in fig. 3.2 based on [97]. The

subdomains Ω1 = (0, L1) and Ω3 = (L − L3, L) are representing the negative and

positive electrode and subdomain Ω2 = (L1, L − L3) the separator in between with

L = L1 + L2 + L3 being the total length of the whole modeling domain. Because

there is no solid material within the separator some equations are only fulfilled for the

electrodes. Thus, throughout this chapter the index j is used to define the validity
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x

Figure 3.2.: Division of the battery in 3 subdomains Ω1, Ω2, Ω3 representing the
negative electrode, the separator, and the positive electrode according
to [97].

area of each equation.

3.2.1. Potentials in the solid and liquid phase

Besides the potential distributions in the solid and liquid phase in the following the

driving forces of electrons to flow in the matrix and ions to flow in the solution are

summarized.

Potential in the solid phase – electric conduction

In the solid material the electrons move in response to an electric field E which is

proportional to the negative gradient of the potential φs,j

E = −∂φs,j
∂x

, j = {1, 3} . (3.6)

The relation between current density is,j and the potential gradient is given by Ohm’s

law

is,j = −σeff
j

∂φs,j
∂x

, j = {1, 3} (3.7)

with σeff
i being the effective electrical conductivity of the electrodes. From the po-

tential distribution in the solid phase the terminal voltage of the battery can be
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obtained by

ucell = φs,3|∂Ω3 − φs,1|∂Ω1 − iRi (3.8)

with ∂Ω1 and ∂Ω3 being the contact points of the current collectors with the negative

and positive electrode and the inner resistance Ri summarizing the ohmic losses of

the battery.

Potential in the liquid phase – ionic conduction

In contrast to electron flow in the solid the motion of ions in the electrolyte is not only

due to the presence of a potential gradient (migration) but also due to concentration

gradients (diffusion) and fluid motion (convection). Thus the current density in the

solution i`,j can be derived from the electrochemical net flux Jnet

i`,j = F (Jmigration + Jdiffusion + Jconvection︸ ︷︷ ︸
net flux Jnet

), j = {1, 2, 3} (3.9)

resulting in

i`,j = −κeff
j (c`,j)

∂φ`,j
∂x︸ ︷︷ ︸

migration

+
2κeff

j (c`,j)RT

F

∂lnc`,j
∂x︸ ︷︷ ︸

diffusion

, j = {1, 2, 3} (3.10)

with F being Faraday’s constant, κeff
j (c`,j) being the effective ionic conductivity of

the electrolyte depending on the salt concentration c`,j and φ` being the potential of

the electrolyte. According to [89] φ` is defined as the measured potential difference

of a reversible lithium electrode versus a lithium reference electrode in a half-cell. As

stated early in this chapter in equ. 3.10 the influence of convection is neglected.

Presetting the input current via boundary conditions

Assuming a homogeneous current distribution across the electrode surfaces the over-

all charge/discharge current I can be expressed in terms of the current density i

I =

∫
Aelec

idAelec = iAelec (3.11)

with Aelec being the cross-sectional area of the electrodes. Thus for galvanostatic

operation of the battery the current density in the solid phase at the boundaries of
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the negative and positive electrode being in contact with the current collectors

is,1
∣∣
∂Ω1

= is,3
∣∣
∂Ω3

= i (3.12)

is resulting. Within an electrode the total current density is transformed from an

electronic partial current density into an ionic one and accordingly reversely on the

counter electrode. Considering the separator as an ideal electric insulator between

the electrodes the division of the total current density for all three modeling domains

can be summarized

i =

{
is,j + i`,j , j = {1, 3}
0 + i`,j , j = {2} .

(3.13)

3.2.2. Conservation of Charge and Charge Transfer

Due to the prerequisite of electroneutrality it is advantageous to consider the conser-

vation of charge compared to the conservation of current densities described in the

previous section.

Conservation of Charge

Deriving equ. 3.13 with respect to the spatial coordinate x leads to

0 =


∂is,j
∂x

+
∂i`,j
∂x

, j = {1, 3}

0 +
∂i`,j
∂x

, j = {2} .
(3.14)

By introducing the reaction current density at the interface jj into the continuity

equation we get a relation between the spatial derivative of the current density and

the time derivative of charge in the form

∂i`,j
∂x

= − ∂ρj
∂t

= ajjj , j = {1, 3} (3.15)

with ρ being the charge density and aj the ‘active’ surface area per volume.. After

employing equ. 3.7 and equ. 3.10 into equ. 3.14 and using the relation given in

equ. 3.15 for the spatial derivative of i`,j one obtains the charge balance in the solid

− ajjj = − ∂

∂x

(
σeff
j

∂φs,j
∂x

)
, j = {1, 3} (3.16)
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and liquid phase

− ∂

∂x

(
κeff
j (c`,j)

∂φ`,j
∂x
−

2κeff
j (c`,j)RT

F

∂lnc`,j
∂x

)
=

{
ajjj , j = {1, 3}

0 , j = {2} .
(3.17)

To ensure that no additional charge is produced or consumed within the electrode

domains the total current density can be expressed by the reaction current using an

integral formulation of equ. 3.15

a1

∫
Ω1

j1dx = −a3

∫
Ω3

j3dx = i (3.18)

considering the boundary conditions for the current densities given in the previous

section.

Charge Transfer

The faradaic reaction current density jj,f determining the charge transfer reaction is

usually described by the Butler-Volmer equation

jj,f = i0,j

[
eαfη − e−(1−α)fη

]
, j = {1, 3} . (3.19)

Thereby, according to [89], the surface overpotential η represents the deviation of

the thermodynamic potential difference between the solid φs,j and liquid phase φ`,j

η = φs,j − φ`,j − U0
j (csurf

s,j ), j = {1, 3} (3.20)

with U0
j (csurf

s,j ) being the open circuit voltage depending on the local lithium concen-

tration in the solid. According to [89] the concentration dependency of the exchange

current density for an insertion electrode is often expressed by

i0,j = Fkj

(
cmax
s,j − csurf

s,j

)1−α (
csurf
s,j

)α (
c`,i

)α
, j = {1, 3} . (3.21)

with cs being the concentration of the solid and c` the concentration of the liquid

respectively and F being Faraday’s constant. Instead of splitting up in a forward

and backward part here the reaction rate is summarized in a single parameter kj . As

depicted in fig. 3.3 the exchange current density tends to zero for the concentration in

the solid approaching either cmax
s or 0 resulting in high overpotentials η. The location

of the maximum between these two extrema depends on the transfer coefficient α
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Figure 3.3.: Dependency of the exchange current density i0 on the normalized surface
concentration of the particle csurf

s /cmax
s being a measure for the local

SOC.

which is usually set to 0.5. Thus, the behavior of i0 is symmetric to the normalized

amount of lithium at the surface of the particles csurf
s /cmax

s which can be regarded

as a measure for the local state of charge. In the following it has been decided with

experts in the ‘Comet K2 project: Modellierung, Validierung und Test von Lithium-

Ionen-Batterien für Hybridfahrzeuge’ to use a more general approach for the charge

transfer reaction of a redox system based on [6]

jj,f = i0,j

[(
c`,j
c0
`,j

)
eαfη − w

(
csurf
s,j − cmin

s,j

cave
s,j

)
e−(1−α)fη

]
, j = {1, 3} (3.22)

with the exchange current density

i0,j = Fkj

(
csurf
s,j − cmin

s,j

cmax
s,j

)1−α(
c`,j
c0
`,j

)α
, j = {1, 3} . (3.23)

Hence, deviations from equilibrium are considered by the fraction from the local

concentration to the bulk concentration for the solid and liquid phase. The addi-

tional parameter cmin
s is used to incorporate the amount of inactive lithium of the

electrodes not participating in the reaction and w denotes an additional weighting

factor between the forward and backward reaction.
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Extension of the Charge Transfer Equation with the Electrochemical Double Layer

In addition to the faradaic fraction of the charge transfer reaction represented by the

Butler-Volmer equation the influence of the interface between the electrode and the

electrolyte forming an electrochemical double layer described in section 2.3.2 has to

be considered. As already mentioned the relation between the double layer reaction

current density jj,dl and the potential difference at the interface (φs,j − φ`,j) is given

by

jj,dl = Cdl,j
∂(φs,j − φ`,j)

∂t
, j = {1, 3} (3.24)

with Cdl being the double layer capacitance which can be calculated by applying the

Gouy-Chapman theory explained in [6]. Following this approach the total charge on

the interface Qdl,j can be calculated using Gauss’s law

Qdl,j =

∮
εEdA = εAelec

∂(φs,j − φ`,j)
∂x

∣∣∣
surf

(3.25)

with Aelec being the electrode cross-sectional area, E the electric field strength, and ε

the permittivity of the electrode material. The double layer capacitance Cdl,j results

from the deviation of the charge density (Qdl,j/Aelec) with respect to the difference of

the potential in the solid φs,j and liquid phase φ`,j evaluated at the electrode surface

denoted by the subscript surf

Cdl,j =
∂(Qdl,j/Aelec)

∂(φs,j − φ`,j)|surf
=

√
2c0εfF cosh

(
f(φs,j − φ`,j)|surf

2

)
. (3.26)

Thus, considering the double layer capacity Cdl,j, the overall reaction current density

jj can be calculated by superposition of the faradaic jj,f and the double layer partial

current density jj,dl

jj = jj,f + jj,dl, j = {1, 3} . (3.27)

In [62] the influence of the electrochemical double layer on the positive and negative

half cell reactions is analyzed using pulse excitation in the ms range. A more detailed

description on modeling the electrochemical double layer can be found in [89] and

[73].
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3.2.3. Diffusion Processes

To incorporate the influence of differences in concentration on the terminal voltage

ucell as well as the concentration dependency of several parameters such as the ex-

change current density i0,j in this section the diffusion equations for the solid and

liquid phase are derived.

Concentration in the liquid phase

Neglecting side reactions mass transport in the electrolyte for a porous material can

be deduced from the spatial derivative of the electrochemical flux J`,j

ε`,j
∂c`,j
∂t

= −∂J`,j
∂x

, j = {1, 2, 3} (3.28)

with c`,j being the lithium concentration in the liquid and ε` being the volume fraction

of the void. Considering the concentrated solution theory and neglecting structural

changes of the electrode according to [89] one obtains

ε`,j
∂c`,j
∂t

=


∂

∂x

(
Deff
`,j

∂c`,j
∂x

)
+

1− t0+
F

ajjj , j = {1, 3}

∂

∂x

(
Deff
`,j

∂c`,j
∂x

)
, j = {2}

(3.29)

with aj being the ‘active’ surface area per volume, Deff
`,j the effective diffusivity of

the electrolyte, F Faraday’s constant and t0+ the transition number. Because there

is no transport of lithium into the current collectors there is no electrochemical flux

on the outer boundaries

Deff
`,1

∂c`,1
∂x

∣∣∣∣
∂Ω1

= Deff
`,3

∂c`,3
∂x

∣∣∣∣
∂Ω3

= 0 (3.30)

whereas on the interface to the separator the electrochemical flux J`,j has to be

preserved

− Deff
`,1

∂c`,1
∂x

∣∣∣∣
∂Ω12

= − Deff
`,2

∂c`,2
∂x

∣∣∣∣
∂Ω12

, − Deff
`,2

∂c`,2
∂x

∣∣∣∣
∂Ω23

= − Deff
`,3

∂c`,3
∂x

∣∣∣∣
∂Ω23

(3.31)

Furthermore, as initial condition the concentration c`(0, x) is assumed to be constant

in all three modeling domains

c`(0, x) = c0
` , j = {1, 2, 3} (3.32)
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representing the resting state of the battery.

Concentration in the solid phase

In the solid phase transport of lithium is modeled by particle diffusion. For a sin-

gle particle of radius rp,j of the electrode the diffusion equation can be written in

spherical coordinates

∂cs,j
∂t

=
1

r2
j

∂

∂x

(
Ds,jr

2
j

∂cs,j
∂x

)
, j = {1, 3} . (3.33)

assuming isotropic diffusion across the particle surface with cs,j being the lithium

concentration and Ds,j the diffusivity of the solid and r the spatial coordinate in

radial direction. The electrochemical flux (jj/F ) is incorporated via the boundary

conditions depending on the position of the particle within the electrode

−Ds,j
∂cs,j
∂r

∣∣∣∣
rj=0

= 0 and −Ds,j
∂cs,j
∂r

∣∣∣∣
rj=rp,j

=
jj
F
, j = {1, 3} . (3.34)

Same as for diffusion in the electrolyte the initial concentration for diffusion in the

particles cs,j(0, rj) is assumed to be constant

cs,j(0, rj) = c0
s,j , j = {1, 3} . (3.35)

At this point it has to be mentioned that this approach only includes diffusion in

radial direction whereas diffusion between neighboring particles is neglected. Never-

theless according to [89] the error resulting from this simplification is negligible.



4. Numerical Realization

This chapter deals with solving the set of governing equations introduced in the

previous chapter. Although there exist some analytical approaches especially for

the lithium insertion process in the electrodes as is discussed in [57, 40, 92] in this

work only numerical solution techniques are considered. This is due to the complex

coupling of the governing equations via the charge transfer equation. Thus, resulting

in a nonlinear set of equations. For a better understanding of the solution strategies

presented later on a short introduction on the used numerical methods is given at the

beginning of this chapter. After a detailed description of the numerical realization the

chapter concludes with some improvements made on the implementation to enhance

the overall model performance.

4.1. Numerical Methods

In the following the principles of the Finite Difference Method (FDM), the Finite

Element Method (FEM) and the Control Volume (CVM) or Finite Volume Method

(FVM) are summarized briefly. Additionally, the strengths and limitations of each

method are evaluated referring to [44] and [60]. Hence, the most appropriate method

to solve the set of governing equations is selected.

4.1.1. The Finite Difference Method

The idea of the FDM is to approximate the derivatives in a differential equation

with finite differences. Thus, according to [55] the derivative of a function u(x) at a

particular point xn can be approximated by its neighboring points using a one-sided

approximation

D+u(xn) ≡ u(xn + h)− u(xn)

h
, D−u(xn) ≡ u(xn)− u(xn − h)

h
(4.1)

withD+u andD−u being the difference quotients from the left and right, respectively.

Both expressions in equ. 4.1 give a first order accurate approximation to the derivative

32
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Figure 4.1.: Approximation of the derivative of u(x) using one-sided approximations
D+u and D−u as well as a centered approximation D0u (modified from
[55]).

of u(x) with the error being proportional to h. Alternatively, the average of the one-

side approximations D+u and D−u resulting in the centered approximation

D0u(xn) ≡ u(xn + h)− u(xn − h)

2h
=

1

2
(D+u(xn) +D−u(xn)) (4.2)

can be used. Thus, resulting in a second order accurate approximation with the error

being proportional to h2 instead of h as for the first order accurate approximation

leading to a much smaller error for small values of h. In fig. 4.1 the slopes of the

single approximations and the exact derivative at xn are shown together with the

the function u(x).

Finally, the advantages and disadvantages of the FDM are summarized with respect

to the applicability for solving the battery equations. Due to the simple geometry of

the model the restrictions with respect to the geometry of the domain are neglected.

Advantages of the FDM

• well described in literature

• transparent method allowing straightforward implementation

• use of higher order approximations to derivatives possible

• well suited for rectangular domains (such as battery geometry)
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Disadvantages of the FDM

• special treatment of Neumann- or mixed boundary conditions

• difficulties in handling problems with unsteady coefficients

• for non-rectangular domains the FDM tends to cause problems

4.1.2. The Finite Element Method

In contrast to the difference schemes the basis of the FEM is not the classical formu-

lation but the so-called weak or variational formulation of the (partial) differential

equation. According to [44] the variational formulation for the Poisson equation

∆u(x) = f(x) in Ω

−u(x) = 0 on ∂Ω
(4.3)

can be derived by multiplying the differential equation equ. 4.3 with a basis function

v(x) and subsequent integration over the domain Ω. Applying integration by parts

using the divergence theorem and integration of the boundary condition one obtains∫
Ω

f(x)v(x)dx =

∫
Ω

∇u(x) · ∇v(x)dx−
∫
∂Ω

∇u(x) · ν(x)v(x)dx

︸ ︷︷ ︸
=0

=

∫
Ω

∇u(x) · ∇v(x)dx

(4.4)

with the test function v(x) being zero at ∂Ω and ν(x) being the outward unit surface

normal to ∂Ω. To get an approximate solution uh to the variational problem the

Galerkin approach

uh(x) =
N∑
n=0

unpn(x) (4.5)

is used. Thus, according to [41] a linear combination of finite functions pn being

different from zero only in a ‘small’ subdomain is searched. The unknown node

parameters un representing the approximate solution of u(xn) are determined by the

solution of a linear equation system. Generally uh(xn) = u(xn) does not hold as

can be seen in fig. 4.2 showing the exact solution u together with the approximate
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Figure 4.2.: Exact solution u(x) and approximate solution uh(x) by a linear combi-
nation of finite functions pn and node parameters un.

solution uh. In contrast to the early described FDM where a vector consisting of the

approximate solution of u at xn is obtained for the FEM one obtains functions uh

and vectors containing the coefficients un of the Galerkin approach.

Same as for the FDM the advantages and disadvantages of the FEM with respect

to the battery equations are summarized. Further, due to its wide application area

there exist a lot of commercial software packages for the numerical solution of PDEs

based on the FEM.

Advantages of the FEM

• wide application area

• use of higher order basis functions possible

• simple discretization of boundary conditions (especially the treatment of Neu-

mann- or mixed boundary conditions)

Disadvantages of the FEM

• computation of the elements of the stiffness matrix and the entries of the load

vector has to be carried out by numerical integration mostly (accuracy is de-

pending on the amount of supporting points)

4.1.3. The Control Volume or Finite Volume Method

Although the CVM contains ideas of both the difference scheme as well as the fi-

nite element method it can be regarded as an independent discretization method.
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Nevertheless, due to its affinity to the aforementioned methods the CVM is often

interpreted as a ‘generalized difference scheme’ or an alternate formulation of the

FEM. The main field of application of the CVM lies in the numerical approximation

of hyperbolic continuity equations of the form

∂u

∂t
+∇f(u) = s (4.6)

with u being the accumulated quantity and f describing the flux. The generation

term s in equ. 4.6 becomes 0 for conserved quantities that cannot be generated

or destroyed. The basis of the CVM is the division of the modeling domain in N

non-overlapping so-called control volumes (CVs) with the node points being located

either in the center of the CV (cell-centered) or at the edges of the CV (cell-vertex)

and building the integral over each control volume. After applying the divergence

theorem one obtains

∂

∂t

∫
Ωn

udx = −
∫
∂Ωn

ν · f(u)dσ +

∫
Ωn

sdx (4.7)

with ν being the outward normal to ∂Ωn. Within the control volumes the solu-

tion variables can either be treated as constant or linear in the case that the spatial

derivative of the function is considered. In fig. 4.3 both situations are depicted for the

one-dimensional case. Regarding the battery equations the ability of conservation of

certain principles allowing among other things the successful handling of unsteady

coefficients as is the case on the interfaces between the electrodes and the separator

xn-1/2xn-1

un-1

x0 xxNxn+1/2 xn+1

un+1

xn

u

un

Figure 4.3.: Approximation of the solution variable u for the CVM by a constant or
linear profile within the control volumes.
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are the main benefits of the CVM. See also [67] where the CVM is used to describe

nonlinear diffusion in lithium-ion batteries. After [44] the advantages and disadvan-

tages of the method can be summarized as follows.

Advantages of the CVM

• simple assembling

• conservation of certain principles of the continuous problem (e.g. conservation

laws, maximum principles). This allows amongst other things the successful

handling of equations with unsteady coefficients as well as diffusion-convection-

equations

• simple linearizeability of nonlinear problems (simpler than Finite-Element-

Methods (Newton method))

• simple discretization of boundary conditions (same as Finite-Element-Methods,

especially the treatment of Neumann- or mixed boundary conditions)

Disadvantages of the CVM

• smaller application area than Finite-Element-Method or Difference schemes

• problems with constructing methods of higher order (no so-called p-version as

for the Finite-Element-Method existent)

• difficult mathematical analysis (stability, convergence,. . .)

4.2. Implementation of the Battery Model

In a first attempt the applicability of the lithium-ion battery model included in the

batteries and fuel cells module of the commercial FEM simulation software COMSOL

Multiphysics R© [23] for the lithium iron phosphate battery used in this thesis has been

investigated. Thus, material properties of the electrolyte and the active materials

as well as geometric parameters such as electrode dimensions or particle size have

been adapted. In fig. 4.4 the simulation result at C-rates from 0.5 C to 2 C are

summarized. In contrast to the measurement the simulation shows a great difference

between the charge and discharge behavior. Also the relaxation behavior at the end

of the simulation when the current is turned off can not be reproduced accurately.

Besides that a ‘complete’ charge/discharge of the battery is not possible because
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Figure 4.4.: Comparison between measured (solid) and simulated (dashed) cell volt-
age using the multiphysics software package COMSOL Multiphysics R©.

the simulation stops before the cut-off voltage in the measurement is reached. This

is due to concentration gradients in the solid phase as well as possible problems

with the OCV values used in the extreme regions. Therefore, if the concentration

at the particle surface at any position within the electrode reaches its minimum or

maximum value the simulation is aborted. Due to the limited access into the solver

architecture as well as the difficult implementation of a reliable exception handling

for such ‘undefined’ states in the following the development of a numerical solver for

the battery equations is derived. The focus of the implementation lies in obtaining

a robust and accurate battery model which is able to cover a wide application area

including a proper representation of the dynamical as well as the long term current-

voltage behavior of the battery.

4.2.1. Presumptions for the implementation of the model

Before coming into detail on the implementation at first the simplifications and

modifications performed on the set of equations as well as assumptions made on the

state variables are summarized briefly.

Since only the boundary flux is known for the potential equations in the solid and

liquid phase a reference potential has to be introduced to obtain unique solutions.

Therefore, the potential in the solid phase is set to zero at the outer boundary of the
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negative electrode

φs,1
∣∣
∂Ω1

= 0 . (4.8)

Additionally, to simplify Ohm’s law in the liquid phase a change of variables on the

electrolyte potential of the form

φ̃` ← φ` −
2

f
lnc` (4.9)

is used according to [97]. Thus equ. 3.17 can be brought into the same shape as the

potential in the solid phase represented by equ. 3.16

− ∂

∂x

(
κeff
j (c`,j)

∂φ̃`,j
∂x

)
=

{
ajjj , j = {1, 3}

0 , j = {2} .
(4.10)

This change of variables of the liquid potential has to be considered in the calcu-

lation of the reaction current density jj as well where the original potential φ`,j is

required. Thus, the surface overpotential in the Butler-Volmer equation represented

by equ. 3.20 has to be modified to

η = φs,j −
(
φ̃`,j +

2

f
lnc`,j

)
− U0

j (csurf
s,j ), j = {1, 3} . (4.11)

Additionally, the double layer fraction of the reaction current density represented by

equ. 3.24 has to be modified to

jj,dl = Cdl,j

∂
(
φs,j −

(
φ̃`,j + 2

f lnc`,j

))
∂t

, j = {1, 3} (4.12)

incorporating the transformed potential φ̃`,j . Therefore the set of equations to be

solved is complete.

Further, it is assumed that the concentrations are changing at a much lower rate than

the potentials, especially if the load current is changed. Hence, for the calculation

of the reaction current in the actual time step the concentrations of the previous

time step can be used. Therefore, the overall cell voltage can be calculated without

iterating the solution at each time step and thus reducing the calculation effort as

well as the simulation time. In fig. 4.5 the division of the battery in finite volume

elements so called control volumes (CVs) is shown with a spherical particle located in
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Figure 4.5.: Division of the battery in so called control volumes. In the electrode
regions a spherical particles is introduced in each control volume to in-
corporate lithium diffusion in the solid phase resulting in a pseudo 2D
representation of the battery (from [79]).

each CV of the electrodes resulting in a pseudo 2D representation of the battery. The

discretization in x-direction was chosen such that the electrodes and the separator

are sharing a discretization point at the interfaces allowing a simple treatment of the

different material properties across the interface. Thus, each domain can be dealt

with separately.

For simplicity reasons throughout the rest of this chapter the implementation is

explained on the example of the negative electrode. Thus, the index indicating the

number of the domain is omitted.

4.2.2. Discretization in Space and Time

Based on the information on numerical schemes at the beginning of this chapter the

CVM is considered to be the most suitable method for solving the set of govern-

ing equations describing the lithium-ion battery. In the following the discretization

scheme is explained on the example of the diffusion equation in the liquid phase.

Same as in [71] for the lead-acid battery the development of the discretized system

is strongly related to the CVM approach given in [64].

Spatial Discretization

In a first step the concentration equation is brought in an integral form by integrating

over the modeling domain and reformulating the resulting equation using the diver-

gence theorem. Applying the control volume method the integral is approximated by

dividing the modeling domain in a finite number of non-overlapping control volumes
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and integrating over each control volume separately. For a single control volume the

integral can be written in the form

e∫
w

ε`
∂c`
∂t

dx =

e∫
w

∂

∂x

(
Deff
`

∂c`
∂x

)
dx+

1− t0+
F

a

e∫
w

jdx (4.13)

with the lower case letters w and e denoting the interfaces to the neighboring control

volumes. After dissolution of the integrals one obtains

ε`
∂c`
∂t

∆x =

(
Deff
`

∂c`
∂x

)
e

−
(
Deff
`

∂c`
∂x

)
w

+
1− t0+
F

aj̄∆x (4.14)

with the integral in the source term being approximated by the product of the average

value of the reaction current density j̄ and ∆x the distance between the interfaces.

The remaining differentials in equ. 4.14 are approximated using piecewise linear shape

functions for interpolating the solution variable within the control volume. Thus,

resulting in

ε`
∂c`,P
∂t

=
1

∆x

[(
Deff
`,e(c`,E − c`,P )

(δx)e

)
−
(
Deff
`,w(c`,P − c`,W )

(δx)w

)]
+

1− t0+
F

aj̄ (4.15)

for a control volume around a discretization point P and its neighboring points

indicated by the upper case letters W and E as well as the distances between the grid

points (δx)w and (δx)e across the interfaces denoted by the lower case letters w and e.

P EW

w e

Dx

(d )x

x

Bl Br

x = Lx = 0

(d )x(d )x

Figure 4.6.: Spatial discretization of the diffusion equation for a CV around a point
P neighbored by the points W and E and interfaces between the grid
points w and e as well as ∆x being the distance between the interfaces
indicated by the lower case letters w and e and δx the distance between
the grid points indicated by the upper case letters W and E. To be able
to calculate the concentration on the boundaries directly so-called ‘half’
control volumes are introduced at x = 0 and x = L (modified from [64]).
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In fig. 4.6 the spatial discretization is shown graphically for internal and boundary

points. At the domain boundaries so-called ‘half’ control volumes are introduced

to be able to calculate the solution at the boundary points directly. Furthermore,

allowing a simple integration of the electrochemical flux across the boundary. For

the 1D diffusion equation setting up the overall system results in a set of ordinary

differential equations (ODEs) with a sparse system matrix of tridiagonal shape.

Interface Properties

Because in equ. 4.15 the diffusivity between the control volumes is required the

interface diffusivity has to be calculated given only the values at the grid points.

Using the arithmetic mean can lead to rather incorrect implications in some cases

and can not deal with abrupt changes of material properties or even one control

volume having a diffusivity of 0. Therefore the approach proposed in [64] is used

instead to calculate the interface diffusivity

D`,n,n+1 =

(
1− ζ
D`,n

+
ζ

D`,n+1

)−1

(4.16)

with the interpolation factor being defined as

ζ ≡ (δx)+

(δx)
. (4.17)

For the discretization used, with the interfaces being midway between the grid points,

ζ = 0.5 equ. 4.16 becomes equivalent to the harmonic mean.

Time Discretization

In the next step the remaining time derivative in equ. 4.15 has to be approximated

numerically. Therefore, to obtain the net flux generated within a control volume in

a certain interval of time equ. 4.15 is integrated in the time interval from t to t+ ∆t

resulting in

ε`

t+∆t∫
t

∂c`,P
∂t

dt =
1

∆x

t+∆t∫
t

(
Deff
`,e(c`,E − c`,P )

(δx)e

)
−
(
Deff
`,w(c`,P − c`,W )

(δx)w

)
dt

+
1− t0+
F

a

t+∆t∫
t

j̄dt

(4.18)
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for the investigated control volume around the discretization point P . According to

[64] the integrals on the right hand side of equ. 4.15 for c`,P , c`,E , and c`,W can be

expressed by a linear combination of the concentrations at time t and t+ ∆t

t+∆t∫
t

c`,Pdt =
(
βcm+1

`,P + (1− β)cm`,P

)
(4.19)

with β being a weighting factor ranging from 0 to 1. After introducing equ. 4.19 into

equ. 4.15 one obtains the following expression

ε`
cm+1
`,P − cm`,P

∆t
=

β1

∆x

[(
Deff
`,e(c

m+1
`,E − cm+1

`,P )

(δx)e

)
−
(
Deff
`,w(cm+1

`,P − cm+1
`,W )

(δx)w

)]

+
(1− β1)

∆x

[(
Deff
`,e(c

m
`,E − cm`,P )

(δx)e

)
−
(
Deff
`,w(cm`,P − cm`,W )

(δx)w

)]
(4.20)

+ β2
1− t0+
F

aj̄m+1 + (1− β2)
1− t0+
F

aj̄m .

using different values of the weighting factor for the state variable and the source

term. For the choice of the weighting factor β the following three standard cases

known from literature can be distinguished.

• Explicit (β = 0)

• Semi implicit (0 < β < 1; e.g. Crank-Nicolson with β = 0.5)

• Fully Implicit (β = 1)

Due to the dependency of the source term on the state variables throughout the

thesis a mixture of fully implicit scheme for the state variables and explicit scheme

for the source term is used. Consequently, for the choice of the step sizes the Courant-

Friedrichs-Lewy condition given in [60]

|D`|
∆t

∆x
< 1 (4.21)

has to be fulfilled for the resulting semi-implicit scheme to obtain physically realistic

results. Setting up the overall system one obtains the desired linear set of equations
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for the 1D diffusion equation evolving from timestep m to m+ 1

aP,1 −aE,1 0 · · · 0

−aW,2 aP,2 −aE,2
. . .

...

0
. . .

. . .
. . . 0

0
. . . − aE,N−1 aP,N−1 −aE,N−1

0 · · · 0 −aW,N aP,N





cm+1
`,1

cm+1
`,2

...

cm+1
`,N−1

cm+1
`,N


=



b1

b2

...

bN−1

bN


(4.22)

with the coefficients of the system matrix

aE,n =
Deff
`,en

(δx)en
, aW,n =

Deff
`,wn

(δx)wn
, aP,n = aE,n + aW,n + ε`

∆xn
∆t

(4.23)

and the source term vector

bn =
1− t0+
F

aj̄mn ∆xn + ε`
∆xn
∆t

cm`,n . (4.24)

Since only the main diagonal is affected by the discretization in time the tridiagonal

shape of the system matrix from the set of ODEs is being preserved.

4.3. Solution Strategies

Due to the complex coupling of the potential equations in the solid and liquid phase

in the electrodes via the reaction current density j the resulting discrete equivalent

system of equations is of implicit structure. Thus an iterative solution strategy based

on the Newton scheme to solve these equations is developed. For the remaining

diffusion equations in the solid and liquid phase as well as the liquid potential in

the separator region a standard tridiagonal matrix algorithm is implemented. In the

following the basic concepts of both solution strategies are summarized briefly.

4.3.1. Tridiagonal Matrix Algorithm

The linear system of equations with a tridiagonal system matrix as obtained for

the 1D diffusion equation can be solved efficiently with respect to calculation effort

and memory requirement using the so-called tridiagonal matrix algorithm (TDMA)

based on the Gaussian elimination principle. Therefore, as stated in [41] the system

of equations 4.22 can be brought from tridiagonal into triangular shape as a result
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of the forward elimination

1 −α2 0 · · · 0

0 1 −α3
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0 1 −αN

0 · · · 0 0 1





cm+1
`,1

cm+1
`,2

...

cm+1
`,N−1

cm+1
`,N


=



β2

β3

...

βN

βN+1


(4.25)

with the new coefficients of the system matrix

α2 =
aE,1
aP,1

, αn+1 =
aE,n

aP,n − aW,nαn
for n = 2, 3, . . . , N − 1 (4.26)

and the new entries of the source term vector

β2 =
b1
aP,1

, βn+1 =
bn + aW,nβn
aP,n − aW,nαn

for n = 2, 3, . . . , N . (4.27)

Instead of the forward elimination equ. 4.25 can also be derived using the LU-

factorization of the system matrix A = LU with L being a lower and U being

an upper triangular matrix and multiplication of the resulting equation with L−1.

In the second step the solution of the system of equations 4.25 can be found by back

substitution using the following relations

c`,N = βN+1

c`,n = βn+1 + αn+1c`,n+1, n = N − 1, N − 2, . . . , 1 .
(4.28)

Therefore, in contrast to the standard Gaussian elimination in the presented method

the number of arithmetic operations is proportional to the number of grid points N .

Additionally, since only the non-zero elements of the system matrix have to be stored

the memory requirement is of order N as well.

4.3.2. Iterative Solver

Same as for the diffusion equation in a first step the discrete equivalent system for the

potential in the solid and liquid phase is derived. Due to the implicit structure of the

equations via the Butler-Volmer equation the standard CVM is slightly modified. In

the following the discretization scheme is described on the example of the potential

in the solid phase within the negative electrode. Since the potential φs,1 on the
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electrode boundary is known to be 0 from the equation for the first control volume

−
(
σeff
e1

(φs,2 − φs,1)

(δx)e1

)
e1

= i− aj̄1∆x1 (4.29)

the potential in the second control volume φs,2 can be derived with aj̄1∆x1 being the

boundary flux at the interface between the control volumes 1 and 2. Now that the

potential φs,2 is known the potential in the third control volume can be calculated

from

−
(
σeff
e2

(φs,3 − φs,2)

(δx)e2

)
e2

+

(
σeff
w2

(φs,2 − φs,1)

(δx)w2

)
w2

= −aj̄2∆x2 . (4.30)

For symmetry reasons with the effective conductivities in the solid σeff
e1 = σeff

w2
and

the distances between the grid points (δx)e1 = (δx)w2 this relation can be simplified

by building the sum between equ. 4.29 and equ. 4.30 resulting in

−
(
σeff
e2

(φs,3 − φs,2)

(δx)e2

)
e2

= i− aj̄1∆x1 − aj̄2∆x2 . (4.31)

Thus, the same structure as in equ. 4.29 is obtained representing only a ‘half’ con-

trol volume and the flux entering via the western interface. This procedure of re-

placing the western ‘half’ control volume with the boundary flux can be continued

successively throughout the whole electrode resulting in an equation system with a

triangular system matrix

−aE,1 0 0 · · · 0

aE,2 −aE,2
. . .

. . .
...

0 aE,3 −aE,3
. . . 0

0
. . .

. . .
. . . 0

0 · · · 0 aE,N−1 −aE,N−1





φs,2

φs,3

φs,4
...

φs,N


= −



−i+ b1 + aE,1φs,1

−i+ b1 + b2

−i+ b1 + b2 + b3
...

−i+
∑N−1

n=1 bn


.(4.32)

with the coefficients of the system matrix

aE,n =
σeff
en

(δx)en
(4.33)

and the entries in the source term vector representing the flux between two neigh-
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boring control volumes

bn = aj̄n∆xn . (4.34)

With φs,1 being given due to the structure of the matrix the potential distribution

can be obtained by applying forward elimination

φs,n = − 1

aE,n−1

(
i−

n−1∑
k=1

bk − aE,n−1φs,n−1

)
for n = 2, 3, . . . , N . (4.35)

In the same way, assuming φ̃`,1 being known as well, the relation for the potential

distribution in the liquid phase can be derived as follows

φ̃`,n = − 1

aE,n−1

(
0 +

n−1∑
k=1

bk − aE,n−1φ̃`,n−1

)
for n = 2, 3, . . . , N . (4.36)

Looking at the terms in brackets in equ. 4.35 and 4.36 it can be observed that the

electric current density is successively transferred into an ionic one throughout the

electrode. The proposed method is related to multiple shooting where the boundary

value problem is replaced by a series of initial value problems as described in e.g.

[12], [26] or [66]. In fig. 4.7 this splitting of the current density into a solid and a

i

i

j j j j

solid

liquid

x

fl
(0) = ?

1 2 n N

fs (0) = 0 i a j xD1 1

~

0 a j xD1 1

Figure 4.7.: Division of the current density into an electric and ionic fraction. Within
the negative electrode the electric current density entering the electrode
is transformed completely into an ionic current density (modified from
[71]).



4 Numerical Realization 48

liquid fraction is shown graphically. Additionally, it has to be guaranteed that the

integral of the reaction current density j equals the overall current density i entering

via the electrode boundary. Thus, the integral is approximated by building the sum

over all partial reaction current densities

a

L∫
0

jdx =
N∑
n=1

bn =
N∑
n=1

aj̄n∆xn = i . (4.37)

From forward elimination the sum of bn is already known until N−1. Therefore, only

the last element has to be added to obtain the required sum. Since the calculation

is only based on an assumption of φ̃`,1 in the next step a φ̃`,1 has to be found that

fulfills equ. 4.37. Calculating the potential distributions on the positive electrode

follows the same principle with the difference of φ̃`,1 being known and φs,1 being the

variable to be searched for. Due to the strong nonlinear coupling of the potentials

with the reaction current densities via exponential functions the search for suitable

values for φs,1 and φ̃`,1 is numerically difficult. To ensure global convergence of the

algorithm in the following a combination of the Newton algorithm with the bisection

method as proposed in [71] is used. The applied strategy has the advantage that

a possible overshoot in the accumulated reaction current density can be detected

early and thus allowing an efficient problem handling avoiding early abortion of the

algorithm. Improvements on the Newton algorithm as well as the introduction of the

bisection method have been realized in cooperation with the K2 Competence Center

Virtual Vehicle.

The Newton Method

Following the Newton approach the update of the solution variable from iteration

step k to k + 1 is calculated by

φ̃
(k+1)
`,1 = φ̃

(k)
`,1 + λ(k)s(k) (4.38)

with the Newton step size

s(k) = −f
(k)

g(k)
(4.39)

and λ(k) ∈ ( 0, 1 ] being a scaling factor. To obtain an optimal performance for the

applied method utilizing the full Newton step size s(k) whenever possible a back-
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tracking scheme according to [25] is used for the calculation of the scaling factor

λ(k). Whereas the error required in equ. 4.39 can be calculated directly by building

the difference of the calculated to the desired value of the current density

f (k) =
N∑
n=1

b(k)
n − i (4.40)

the gradient being the derivative of f (k) with respect to φ̃
(k)
`,1 is only approximated.

Therefore, since all potentials are depending on φ̃
(k)
`,1 the gradient can be expressed

by

g(k) =
N∑
n=1

∂b
(k)
n

∂φ̃
(k)
`,1

=
N∑
n=1

∂b
(k)
n

∂φ̃
(k)
`,n

∂φ̃
(k)
`,n

∂φ̃
(k)
`,1

(4.41)

splitting up the derivative of b
(k)
n after φ̃

(k)
`,1 in two terms. Furthermore, the derivative

of φ̃
(k)
`,n after φ̃

(k)
`,1 in equ. 4.41 can be written as a product requiring only the derivatives

of the potentials at neighboring points. Since the potentials can be assumed to

be changing at a low rate between two neighboring control volumes the required

derivative can be simplified to

∂φ̃
(k)
`,n

∂φ̃
(k)
`,1

=
n−1∏
j=1

∂φ̃
(k)
`,n−j+1

∂φ̃
(k)
`,n−j

≈ 1 . (4.42)

Therefore the gradient can be approximated by

g(k) ≈
N∑
n=1

∂b
(k)
n

∂φ̃
(k)
`,n

(4.43)

requiring no inner derivative of φ̃
(k)
`,n after φ̃

(k)
`,1 . The end of the Newton iteration is

reached when either the error falls below a specified tolerance limit tol∣∣∣∣∣
N∑
n=1

b(k)
n − i

∣∣∣∣∣ < tol (4.44)

or a maximum number of iterations is reached. Further, to spare iterations when

φ̃
(k)
` is only changing insignificantly from one iteration to the other the step size |s(k)|

should also be observed. The remaining rest current density is distributed equally

over all control volumes within the electrode. Although the Newton method is a
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powerful technique of quadratic convergence it suffers from some limitations which

can lead to non-convergence of the algorithm especially if a poor initial estimate φ̃
(0)
`,1

is chosen. To avoid this behavior and to ensure global convergence of the algorithm

the Newton scheme is extended with the bisection method.

The Bisection Method

Since the bisection or binary search method is based on the intermediate value the-

orem a bracket [l, u] around φ̃`,1 minimizing the error f between the calculated and

the desired value of the current density can be found such that f(`) and f(u) are of

opposite sign. In the following in each iteration step the interval [l, u] can be divided

into two subintervals and a new bracket around φ̃
(k)
`,1 can be determined by evaluating

f(`) · f(φ̃
(k)
`,1 ) > 0 l = φ̃

(k)
`,1

f(`) · f(φ̃
(k)
`,1 ) < 0 u = φ̃

(k)
`,1

(4.45)

with φ̃
(k)
`,1 being the midpoint between l and u. In fig. 4.8 the principle of continu-

ously narrowing the interval [`, u] around the root of the error function φ̃`,1 is shown

graphically. The main drawback of the method is that it converges very slowly com-

pared to other methods. According to [18] the convergence behavior of the bisection

method can be approximated by

∣∣φ̃(k)
`,1 − φ̃`,1

∣∣ ≤ u− `
2k

k ≥ 1 (4.46)

with k being the number of iterations. Nevertheless, as implied in equ. 4.46 the

f   
,1
(5)~

f   
,1
(1)~

f   
,1
(k)~

f   
,1
(4)~

f   
,1
(2)~

f   
,1
(3)~

f

Figure 4.8.: Iterative approximation of φ̃
(k)
`,1 to the root of the error function φ̃`,1 with

the bisection method. The root of the error function is indicated by the
white dot.
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bisection method has the advantage that it always converges to a solution. Therefore,

as proposed in [18], it can be used as a ‘starter’ giving a rough approximation to the

solution for more efficient methods such as the Newton method described previously.

However, in this thesis the bisection method is only used if either the solution does

not convergence to a satisfactory solution within a specified number of iterations

or a poor initial estimate has been chosen such that the calculated current density

becomes infinite.

4.4. Improving the Model Performance

Because not every parameter in the lithium-ion battery is directly accessible param-

eter estimation routines are needed to parametrize the electrochemical model. Thus,

the model has to be solved several times to obtain a proper set of parameters. To

minimize the overall calculation effort besides an efficient parameter estimation rou-

tine a fast battery model is required. Therefore, in the following a variable time

stepping as well as a model order reduction scheme are introduced. The latter is

based on a reformulated version of the diffusion equation in the solid phase.

4.4.1. Adaptive Time Stepping Scheme

According to [48] for the choice of the step size for time discretization using a step-

by-step method two things have to be considered. On the one hand the step size

should not be chosen too small to avoid a large number of steps as well as the

corresponding accumulation of the round-off error and on the other hand the step

size should not be chosen too large to avoid a large truncation error. Additionally,

to spare calculation time as well as memory requirements for long term simulations

it is advantageous to use an adaptive step size considering these constraints. The

adaptive time stepping scheme described in this section is based on the information

given in [59] and has been realized with the support of the K2 Competence Center

Virtual Vehicle. Therefore, as shown in fig. 4.9, the simulation result uc obtained by

taking a full step ∆t and uf taking two half steps ∆t/2 are compared to each other

introducing an error measure

δ =

∥∥∥∥uc − ufuf

∥∥∥∥
∞

(4.47)

being the maximum relative error between uc and uf . The decision whether to keep

or discard an actual time step is determined by comparing δ to a local goal error δg
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after the scheme proposed in [59].

if δ < 1
2δg

accept solution + ∆tm+1 = ∆tm · 1.5
elseif 1

2δg ≤ δ < δg

accept solution + ∆tm+1 = ∆tm

elseif δg ≤ δ < 2δg

accept solution + ∆tm+1 = ∆tm · 0.5
elseif δ ≥ 2δg

decline solution + ∆tm = ∆tm · 0.5
end

This procedure is performed for all diffusion equations. Thus, the step size for the

overall system is limited by the minimum step size obtained for the actual time step.

The step size is bounded in the interval

1 ms ≤ ∆t ≤ 60 s (4.48)

avoiding a possible runaway of the step size in both directions. To guarantee a

correct reproduction of a preset current profile the step size at the end of a charge

or discharge pulse is shortened such that the interval boundary of a certain pulse is

not exceeded.

m+1/2t m+1t t

d

mt

u

}

Figure 4.9.: Basic concept of the variable time stepping scheme comparing the solu-
tions obtained taking a full step and two half steps introducing the error
measure δ.
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4.4.2. Reduction of the Calculation Effort for the Particle Diffusion

From the Butler-Volmer equation it can be seen that only certain values of the particle

concentration are of interest and thus the exact concentration profile over the particle

is not required. Therefore, in equs. 3.20 and 3.22 only the surface concentration

csurf
s , where the reaction with the electrolyte takes place, as well as the average

concentration cave
s in the bulk, being a measure for the amount of lithium being

transfered, are needed to solve the overall system of equations. Since the particles

are distributed all over the electrode the concentration equation for the particles

has to be calculated several times and thus requiring a lot of computation time.

Therefore, to obtain a fast battery model the number of discretization points within

the particle has to be minimized. By doing so one has to guarantee that the system

dynamics on the one hand as well as the amount of lithium transferred is being

preserved. Parts of the following section on the reduction of the calculation effort

have already been published in [79] and [80].

Due to the nonlinear structure of the diffusion equation in a single particle in a first

attempt equ. 3.33 is discretized following the approach given in [55] for the nonlinear

heat conduction problem with a varying thermal conductivity. Therefore, same as

for the CVM, the differential r2Ds(∂cs/∂x) is approximated at interfaces halfway

between the grid points using a centered approximation resulting in(
r2Ds

∂cs
∂x

)
e

= r2
eDs,e

(cs,E − cs,P )

(δr)e
;

(
r2Ds

∂cs
∂x

)
w

= r2
wDs,w

(cs,P − cs,W )

(δr)w
.(4.49)

In contrast to the standard CVM scheme where the whole equation is integrated

within the interval w and e a second differentiation is performed. Therefore, one

finally obtains a centered approximation for the right hand side of equ. 3.33 resulting

in

1

r2
∂

∂x

(
r2Ds

∂cs
∂x

)
≈ 1

∆r

[
r2e
r2P

(
Ds,e(cs,E − cs,P )

(δr)e

)
e

− r2w
r2P

(
Ds,w(cs,P − cs,W )

(δr)w

)
w

]
(4.50)

at the discretization point P which is equal to the result given in [19]. Since equ. 4.50

can be regarded as a balance equation between the input and output flux at the inter-

faces w and e the boundary conditions can be incorporated by simply replacing the

derivatives on the boundaries by the given boundary flux. For the time discretization

again the fully implicit scheme is used resulting in(
cm+1
s,P − cms,P

)
∆t

=
1

∆r

[
r2e
r2P

(
Ds,e(c

m+1
s,E − cm+1

s,P )

(δr)e

)
e

− r2w
r2P

(
Ds,w(cm+1

s,P − cm+1
s,W )

(δr)w

)
w

]
(4.51)
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for the discretization point P . Since no ‘half’ control volumes on the domain bound-

aries are used according to [19] the required surface concentration is obtained by

solving equ. 4.51 and approximating the outward concentration derivative by a three

point backward difference. To investigate the influence of the discretization on the

surface concentration an error analysis is performed. As a reference the surface con-

centration is calculated at the end of a 3400 s constant current discharge at 1 C where

97 % of the lithium within the particle are consumed using 1000 discretization points

in the particle. Assuming a uniform current distribution across the electrode accord-

ing to [78] the required boundary flux can be calculated from the preset discharge

current density by i/(aLF ). In fig. 4.10 the distribution of the relative error with

respect to the reference concentration csurf
s (tend) together with the calculation time

required versus the number of discretization points N is shown. The strong decay

of the relative error is related to the decreasing asymmetrie in the system matrix

with the fraction r2
e/r

2
P and r2

w/r
2
P approaching 1 by increasing the number of dis-

cretization points N . Additionally for the three point backward difference significant

points near the boundary are required to obtain reliable results for csurf
s . Therefore,

to overcome these limitations in the choice of N an alternative discretization scheme

allowing a direct calculation of csurf
s is sought after. Furthermore, according to [13]
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Figure 4.10.: Analysis of the relative error at the particle surface at the end of a
3400 s discharge at 1 C together with the calculation time required for
a different number of discretization points N using the FDM approach
(from [79]).
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for a PDE with derivative terms included in both boundary conditions (e.g. Neu-

mann or Robin type boundary conditions) the CVM is preferable since in contrast

to the FDM it does not fail to preserve mass even for a low number of N .

Reformulation of Diffusion in the Particle

To exploit the property of the CVM of mass conservation also for the nonlinear

diffusion equation in the particle represented by equ. 3.33 the change of variables

proposed in [6] is performed

c̃s ← rcs (4.52)

with c̃s being the transformed concentration. Additionally, same as for the diffusion

in the liquid, the diffusion coefficient Ds is assumed to be constant within the particle.

Therefore, one obtains the desired linear structure and the CVM can be applied

directly

e∫
w

∂c̃s(r, t)

∂t
dr = Ds

e∫
w

∂

∂r

[
∂c̃s(r, t)

∂r

]
dr (4.53)

requiring no approximation of the integrals over the single control volumes. Using

an implicit time discretization scheme the discrete equivalent system for the particle

diffusion for a discretization point P evolving from timestep m to m + 1 can be

written as follows(
c̃m+1
s,P − c̃ms,P

)
∆t

∆r =

(
Ds,e(c̃

m+1
s,E − c̃m+1

s,P )

(δr)e

)
e

−
(
Ds,w(c̃m+1

s,P − c̃m+1
s,W )

(δr)w

)
w

. (4.54)

After applying a back substitution and rearranging the resulting discretized equation

one finally obtains(
cm+1
s,P − cms,P

)
∆t

∆r =

(
Ds,e(

rE
rP
cm+1
s,E − cm+1

s,P )

(δr)e

)
e

−
(
Ds,w(cm+1

s,P − rW
rP
cm+1
s,W )

(δr)w

)
w

(4.55)

for the original concentration. Although the discretization dependency has been

reduced with this approach the asymmetry in the system matrix is still present and

thus limiting the reduction of N . Since the exact concentration profile, which is

not accessible by measurements, is not required but mainly the amount of lithium
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transferred within a certain time interval is of interest the right hand side of equ. 4.55

can be approximated such that the balance between input and output flux is being

preserved. Thus, to obtain the desired symmetric structure the spherical diffusion

equation is mapped on an equivalent linear one(
cm+1
s,P − cms,P

)
∆t

∆r ≈
(
D̃s,e(c

m+1
s,E − cm+1

s,P )

(δr)e

)
e

−
(
D̃s,w(cm+1

s,P − cm+1
s,W )

(δr)w

)
w

(4.56)

with D̃s,e and D̃s,w representing the new diffusion coefficients at the interfaces be-

tween neighboring control volumes. Considering the assumptions made for the diffu-

sion properties in porous media by introducing the spherical particle representation

the approximation in equ. 4.56 can describe the diffusion characteristics in the solid

with sufficient accuracy since most electrode materials have a preferred diffusion di-

rection and are composed of particles of arbitrary shape and size. To compare the

error distribution obtained with the CVM based method again the surface distribu-

tion at the end of a 3400 s discharge with 1 C is evaluated. In contrast to the FDM

with the CVM csurf
s can be calculated directly by introducing a ‘half’ control volume

at the outer boundary. Figure 4.11 shows the resulting error distribution together
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Figure 4.11.: Analysis of the relative error at the particle surface at the end of a
3400 s discharge at 1 C together with the calculation time required for
a different number of discretization points N using the modified CVM
approach (from [79]).
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with the calculation time required against the number of discretization points N for

the CVM. Whereas the distribution of the calculation time is nearly the same as for

the FDM the error level for low numbers of N has been reduced remarkably with

the error remaining < 0.1 % using N < 5. Thus, the error obtained with the CVM

is even below the error between both methods using the reference discretization of

N = 1000 being 0.31 %. In tab. 4.1 the results for the FDM and CVM are compared

for two test cases. In the first case the discretization is chosen such that the same

accuracy level for both methods is achieved whereas in the second case both methods

are in the range of the error between the two methods. In both examples the CVM

requires a factor 10 less discretization points.

Table 4.1.: Comparison of FDM to CVM results with respect to calculation speed
and accuracy after a simulation time of 3400 s (from [79]).

method number of discretization rel. error on particle calculation time
points N surface in % in s

FDM 500 2.7 · 10−3 0.789
CVM 10 2.1 · 10−3 0.148

FDM 50 0.36 0.177
CVM 2 0.087 0.145

Since not only the static but also the dynamic behavior of the particle diffusion

is of interest also simulations using pulse excitation are performed. Therefore, in

fig. 4.12 and 4.13 the results obtained with the FDM are compared to the CVM

results using 1 C pulses with a pulse length of 100 s by evaluating the normalized

surface concentration csurf
s /cmax

s for two different values of the diffusion coefficient Ds.

If there is no diffusion limitation related to a homogeneous concentration distribution

in the particle as is the case in fig. 4.12 there is nearly no difference between both

methods. On the other hand if there is a strong diffusion limitation related to a

strong concentration gradient in radial direction as shown in fig. 4.13 the results are

slightly differing. Since the shape of csurf
s is preserved and the maximum error is still

< 1 % for further investigations the CVM based approach can be used.
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Figure 4.12.: Surface concentration with respect to the maximum concentration for
a particle without diffusion limitation using 10 discretization points in
the bulk. Due to the homogeneous concentration distribution there is
nearly no difference between the CVM and FDM results being visible.
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Figure 4.13.: Surface concentration with respect to the maximum concentration for
a strong diffusion limitation using 10 discretization points in the bulk.
Due to the stronger diffusion limitation and the resulting concentration
gradient in the bulk the results of the CVM compared to the FDM are
differing but still the maximum error remains < 1%.
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Investigation of the Particle Dynamics with POD

Since so far in this thesis only the advantage of the CVM of mass conservation

even for a small number of N has been exploited in the following a more specific

approach for the reduction of discretization points considering the particle dynamics

is introduced. A reduced basis method for finite volume approximations has also been

published in [36]. Same as in [19] the starting point for the proposed point reduction

is a so-called proper orthogonal decomposition (POD) on the basis of which a low-

dimensional representation of the high-dimensional problem without losses in the

system characteristics can be derived. For discrete problems the required orthogonal

basis functions {ϕi}`i=1 can be obtained by solving the symmetric N ×N eigenvalue

problem

Kϕ̄i = λiϕ̄i for 1 ≤ i ≤ ` (4.57)

with eigenvalues λi and using the substitution

ϕ̄i = W 1/2ϕi . (4.58)

The kernel function

K = W 1/2Y DY TW 1/2 (4.59)

is composed of a precalculated high-dimensional solution to the concentration equa-

tion at M different time steps

Y = [cs(t1), cs(t2), . . . , cs(tM )] (4.60)

called snapshots, a M ×M weighting matrix for the time discretization

D = diag

{
∆t1

2
,
∆t1 + ∆t2

2
, . . . ,

∆tM−1 + ∆tM
2

,
∆tM

2

}
(4.61)

containing the time step sizes ∆tm at each time step in the main diagonal as well as

a N ×N weighting matrix for the spatial discretization

W = diag

{
δr1

2
,
δr1 + δr2

2
, . . . ,

δrN−1 + δrN
2

,
δrN

2

}
(4.62)

with δrn indicating the distance between the grid points. For the one dimensional
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case W has also only entries in the main diagonal. Due to the close connection

between POD and singular value decomposition (SVD) for rectangular matrices as

explained in [91] instead of equ. 4.57 a SVD of the discrete kernel function yielding

SVD(K) = Φ̄ΛΦ̄
T

(4.63)

can be used. Therefore, from the column vectors of the square matrix Φ̄, being the

eigenvectors of K, the orthogonal basis function {ϕi}`i=1 can be calculated as follows

ϕi = W−1/2ϕ̄i for 1 ≤ i ≤ ` . (4.64)

Additionally a N ×N diagonal matrix is obtained

Λ = diag {λ1, λ2, . . . , λN} (4.65)

containing the singular values which can be regarded as a measure for the importance

of each orthogonal mode with N being the number of discretization points used.

Furthermore, by applying the SVD the singular values and eigenvectors are sorted

automatically such that the magnitude of λi is of decreasing order

λ1 ≥ λ2 ≥ . . . ≥ λN > 0 . (4.66)

A more detailed analysis on using SVD for POD can be found in [52] and [83].

Alternatively, for more complex geometries where the calculation of W 1/2 imply a

high computational effort or for a large dimension of W the method of snapshots from

[75] presents an efficient method to obtain the required orthogonal basis functions.

Thus, instead of equ. 4.57 the symmetric M ×M eigenvalue problem

Kϕ̃i = λiϕ̃i for 1 ≤ i ≤ ` (4.67)

with the kernel function

K = D1/2Y TWY D1/2 (4.68)

has to be solved. The orthogonal basis functions can than be calculated from

ϕi =
1

λi
Y D1/2ϕ̃i for 1 ≤ i ≤ ` . (4.69)
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For further details it is referred to [91]. From the distribution of the singular values

the characteristic modes of the system can be identified. To maintain the tridiagonal

structure of the system matrix for the particle diffusion and thus requiring no mod-

ifications in the previously described solver architecture the calculation effort is not

reduced by a transformation into a reduced order subspace based on the dominant

orthogonal modes like in [19]. Instead, the POD is only used for data analysis to

determine the required minimum discretization to preserve the dominant orthogonal

modes in the system. Since there is no general rule on how to determine the num-

ber of the dominant orthogonal modes often same as in [19] the smallest number to

satisfy the following inequality

ε(k) =

k∑
i=1

λi

N∑
i=1

λi

≥ 99.99% (4.70)

is chosen. Therefore the variable ε is called the energy content of the first k basis

functions {ϕi}ki=1. The challenging task is now to find a proper excitation to obtain

a representative data set Y on the basis of which a low-dimensional representation

of the diffusion in the particle can be derived. Thus, an a priori analysis as proposed

in [52] is required. The applicability of a constant current charge/discharge profile

with POD has already been published in [19] and [80]. Therefore, in this thesis, the

analysis is extended to a dynamic test signal to cover as much operating conditions

for a single particle and consequently the entire battery as possible. The resulting

reduced particle model should also be able to reproduce rapid changes in the input

signal, as is required for pulse excitation, correctly. Regarding these specifications

white noise is considered to be a suitable test signal. Due to its wide bandwidth white

noise is frequently used for system identification as well. Nevertheless, in the discrete

case white noise can only be realized in a certain frequency band. Due to this property

of band limitation a representative frequency band with sufficiently high frequency

resolution for battery simulations has to be chosen. For the analysis a sample time

of 50 ms and simulation time of 102.4 s with a frequency resolution of 9.8 mHz is

used resulting in a bandwidth of 10 Hz. Additionally, due to the property of white

noise of being zero-mean during the simulation with band-limited white noise nearly

the same amount of lithium is inserted and deinserted in the particle respectively. In

fig. 4.14 the distribution of the singular values of the kernel matrix K composed of

the simulation results for excitation with band-limited white noise using a different
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Figure 4.14.: Distribution of singular values of the kernel function K for white noise
excitation using CVM for a different number of discretization points N
in radial direction. For the dominant singular values there is nearly no
discretization dependency visible.

number of discretization points N in radial direction is displayed. From the steep

decay in the distribution of the singular values, indicating a low number of dominant

orthogonal modes ϕi, the applicability to derive a low-dimensional representation

for the particle diffusion can be deduced. Since there is only a minor discretization

dependency in the first few singular values, model order reduction can be performed

by taking only a low number of points in the bulk. Even the shape of the curve is

preserved except for the lowest number of discretization points of N = 10. However,

due to the small values of the higher order singular values the energy content is mostly

influenced by the lower order singular values. Investigating the orthonormal modes

as shown in fig. 4.15 and 4.16 starting from the 4th mode aliasing effects depending

on the number of discretization points could be detected. Thus, convergence of the

lower order models for N → ∞ can be observed. A more detailed analysis on POD

convergence and convergence rate can be found in e.g. [51] or [50]. Nevertheless, due

to the dominance of the first mode these effects can be neglected although the ratio

of the energy content falls slightly below the 99.99 % given in equ. 4.70. In tab. 4.2

the calculation times required together with the ratio of the energy content for the

different number of discretization points are summarized. Therefore, the simulation

time is increasing rapidly by taking more than 30 points.



4 Numerical Realization 63

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2000

−1500

−1000

−500

0

500

1000

1500

2000

r in µm

ϕ
4

4th mode for a different number of discretization points N

N = 10

N = 25

N = 30

N = 50

N = 100

Figure 4.15.: 4th mode of the kernel function K for white noise excitation using CVM
for a different number of discretization points N in radial direction. To
avoid aliasing in the 4th mode N has to be > 10.
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Figure 4.16.: 5th mode of the kernel function K for white noise excitation using CVM
for a different number of discretization points N in radial direction. To
avoid aliasing in the 5th mode N has to be > 25.
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Thus, for the investigated particle for the choice of the discretization a trade-off

between simulation time and accuracy in the interval 10 < N < 30 is suggested.

Table 4.2.: Evaluation of the CVM with respect to energy content and calculation
time for excitation with band-limited white noise using a different number
of discretization points N .

# of N
N∑
i=1

λi

/
100∑
i=1

λi calculation time in s

10 0.952 0.286
25 0.985 0.359
30 0.988 0.397
50 0.995 0.759
100 1.000 1.704



5. Results

In this chapter the ability of the developed model to reproduce the behavior of a

lithium-ion battery and thus its applicability for battery condition monitoring is

validated on small-size test cells. For that purpose a test pattern covering repre-

sentative operating conditions for HEV and EV applications is simulated and the

results compared to measurement data with the measured variables being terminal

voltage and load current. Additionally, from these measurements internal quantities

of the battery such as capacity, state of charge or cell impedance can be derived and

monitored.

To ensure comparability between measurement and simulation a reference state for

the model has to be defined. Therefore, to not change the amount of active lithium

within the cell each simulation is started from the same SOC. Further, both for sim-

ulation and measurement all diffusion processes are assumed to be equalized. Thus,

a rest period is required before each test pattern.

The 50 mAh Test Cell

For the comparison between measurement and simulation special 50 mAh LFP test

cells made from commercial materials from Südchemie prepared by GAIA1 are used.

Due to their small capacity and accordingly energy content the fault behavior of the

cells is rather unproblematic and testing of the cells can be performed in a standard

testing environment. Further, large C-rates at comparatively low charge/discharge

currents are possible allowing to test several cells simultaneously instead of one large-

sized cell. Additionally, for the small-sized pouchbag cell a uniform temperature dis-

tribution can be assumed and thus requiring no additional thermal model of the cell.

In fig. 5.1 the build-up of a non-activated test cell consisting of the active materials

of the electrodes connected to the current collectors, a separator foil, an electrolyte

bag, a plastic tube and pouch foil is displayed. For the measurements an additional

lithium reference electrode is attached to distinguish between the fractions of the

positive and negative electrode to the overall cell potential. After assembly of the

1 http://www.gaia-akku.com/

65
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Figure 5.1.: Build-up of the 50 mAh pouchbag test cell consisting of the active ma-
terials of the electrodes, separator foil, current collectors, an electrolyte
bag, a plastic tube, and pouch foil. After assembly of the whole system
the pouch is evacuated and sealed with a welding line (foto provided
by Michael Sternad of the Institute for Chemistry and Technology of
Materials (ICTM), Graz University of Technology).

cell the pouch is evacuated and sealed with a welding line. To activate the cell the

electrolyte bag has to be squashed. Due to the vacuum inside the cell the surplus

electrolyte is collected in the free volume of the plastic tube. Before the cell is ready

to be used a so-called formation process has to be run through until the cell reaches

its full capacity.

At this point it has to be mentioned that the parametrization of the model is not

part of this thesis. The set of parameters used for the upcoming simulations has

been collected within the ’COMET K2 project: Modellierung, Validierung und Test

von Lithium-Ionen-Batterien für Hybridfahrzeuge’ and is composed of manufacturer

informations as well as measurements. Furthermore, for the remaining parameters

which are not accessible by measurements a parameter optimization is performed at

the K2 Competence Center Virtual Vehicle2 in accordance with literature values.

2 http://www.vif.tugraz.at/

http://www.vif.tugraz.at/
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5.1. Measurements on the 50 mAh Test Cell in the Time

Domain

For the measurements in the time domain the battery testing system BT 2000 from

Arbin Instruments3 located at the K2 Competence Center Virtual Vehicle is available.

Due to the unhandiness of the BT 2000 additionally a 1 channel battery testing board

offering a greater flexibility has been developed by Daniel Hrach at the institute. In

fig. 5.2 the layout of the 1 channel battery testing board is shown. Due to the

modular layout of the board the test system can be easily extended with further

channels using a common power supply. Both testing equipments can provide a

charge/discharge current up to 5 A/channel and are controlled via a host PC where

the acquired measurement data for temperature, voltage and current are stored for

later evaluation. The data handling for the comparison with the simulation results

is carried out with the software package Matlab R©. Further, to be able to study the

temperature behavior the cells are tested at several temperatures within a climatic

chamber.

USB µC

power
supply

cell
connecter

temperature
connecter

Figure 5.2.: 1 channel mobile battery testing board with current/voltage measure-
ment using the 4-wire technique, temperature output, and USB commu-
nication to a host PC allowing a maximum charge/discharge current of
5 A developed by Daniel Hrach at the institute.

3 http://www.arbin.com/

http://www.arbin.com/
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5.1.1. Measurement of the Open Circuit Voltage

The open circuit voltage can be determined by either discharging the battery at low

discharge rates thus eliminating polarization or diffusion effects or by using pulse

excitation such as the Galvanostatic Intermittent Titration Technique (GITT) ex-

plained in [94]. This method is mostly used to measure diffusion coefficients or ion

mobility. On the other hand with this method the electrode potentials can be de-

termined under load and in currentless state at the same time at different state of

charges thus allowing a pointwise measurement of the OCV because after each exci-

tation pulse the battery is returning to the equilibrium as is shown in fig. 5.3. During

the pulse the charge

q =

t0+τ∫
t0

idt = I0τ (5.1)

is transferred into the battery leading to a different state of charge after each pulse.

Figures 5.4 and 5.5 show the OCV versus normalized lithium concentration for a

graphite and and iron phosphate electrode based on a C/100 discharge provided by

the K2 Competence Center Virtual Vehicle.

ucell

tt t + t0 0

IR drop

IR drop

U
0

t

i

I
0

DU

Figure 5.3.: GITT pulse with period τ and voltage response of a battery according
to [94]. After each pulse the battery is returning to the equilibrium with
the SOC being changed by I0τ leading to the new OCV value U0 + ∆U .
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Figure 5.4.: Measured open circuit voltage for the graphite electrode versus normal-
ized lithium concentration.
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Figure 5.5.: Measured open circuit voltage for the iron phosphate electrode versus
normalized lithium concentration.

Since the OCV in the extreme regions 0 and 1 is hard to access, to ensure that the

cut-off voltages are reached, the OCV curves have to be slightly modified. Thus in the

critical regions at the boundaries additional points are introduced before the OCV

curves are incorporated into the model. Further, hysteresis effects of iron phosphate

as reported e.g. in [30] are not considered in the model.
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5.1.2. Validation of the Battery Model in the Time Domain

For the validation of the battery model each simulation is started at a common SOC

of 0.5. Before each test a common procedure is carried out to obtain a basis of

comparison between simulation and measurement. Therefore, the battery is charged

to an upper limit of 3.8 V. Afterwards the discharge capacity at 1 C is determined by

a discharge of the battery to the lower cut-off voltage of 2.5 V. The obtained value

is taken as new cell capacity on the basis of which the charge/discharge current for

the upcoming test procedure is calculated. Finally, the cell is charged to the upper

cut-off voltage of 3.8 V again.

In the following the simulation results for a test matrix containing constant current

as well as dynamic operating conditions are compared to measurements at three

different temperatures 10◦C, 30◦C and 50◦C. The presented test procedure has

been defined in the ’COMET K2 project: Modellierung, Validierung und Test von

Lithium-Ionen-Batterien für Hybridfahrzeuge’.

Test A – rate test

In the first test the long term behavior of the cell is investigated. Therefore, the cell

runs through a series of charge and discharge sequences between the upper and lower

cut-off voltages at 3.8 V and 2.5 V at C-rates [0.2, 0.5, 1, 2, 5] in ascending order. To

avoid cell aging due to lithium plating by charging the battery at low temperatures

at high C-rates the 2 C and 5 C sequences are skipped for 10◦C. To compensate

the dispersive capacities of the measurement cells among each other and for a better

comparison to the simulated data a normalization is required. Therefore, a correction

of the measurement and simulation data is made on the basis of the 1 C discharge

sequence such that the 1 C discharge lasts exactly the expected 3600 s. Figure 5.6, 5.7

and 5.8 show the comparison between simulated (dashed line) and measured (solid

lines) cell voltage for the rate test at 10◦C, 30◦C and 50◦C. Furthermore, in fig. 5.9

a comparison between the relative cell voltage error at the different temperatures is

given. Especially for the C-rates 0.2, 0.5 and 1 the charge and discharge behavior at

30◦C and 50◦C depicted in fig. 5.7 and 5.8 can be reproduced quite well. Nevertheless,

for the C-rates 2 C and 5 C the shape of the cell voltage for the charge sequence

starts to differ from the measurements resulting in an increasing error for charging

the cell at higher C-rates. The simulated cell voltage at 10◦C in fig. 5.6 shows a

considerable offset to the measurements as a result from a too small inner resistance.

Thus, with the actual set of equations with the temperature influence only being in-
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Figure 5.6.: Comparison of the simulated (dashed line) to the measured (solid lines)
cell voltage for a charge/discharge sequence at C-rates [0.2, 0.5, 1] at
10◦C. To avoid cell aging due to lithium plating the measurements at
2 C and 5 C are skipped.
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Figure 5.7.: Comparison of the simulated (dashed line) to the measured (solid lines)
cell voltage for a charge/discharge sequence at C-rates [0.2, 0.5, 1, 2, 5]
at 30◦C.
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Figure 5.8.: Comparison of the simulated (dashed line) to the measured (solid lines)
cell voltage for a charge/discharge sequence at C-rates [0.2, 0.5, 1, 2, 5]
at 50◦C.
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Figure 5.9.: Relative error of the cell voltage for the rate test consisting of a
charge/discharge sequences at C-rates [0.2, 0.5, 1, 2, 5] at tempera-
tures 10◦C, 30◦C and 50◦C.
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tegrated in the Butler-Volmer equation the rise of the inner resistance at lower tem-

peratures can not be reproduced correctly. However, the deviation in reaching the

upper and lower cut-off voltage at all C-rates is very low for all three temperatures

applying the normalization to the 1 C discharge. The model gives a good estimate

for the achievable charge/discharge capacity of each sequence. Therefore, in general

the model allows to reproduce the long term behavior of the cell quite well with the

relative error depicted in fig. 5.9 remaining mostly below 2.5 % except for the regions

near the fully charged/discharged state of the battery.

Test B – pulse test

In the second test the dynamic behavior of the cell is investigated. Therefore, a

dynamic test pattern consisting of charge/discharge pulses of length 1 s, 7 s and 49 s

with increasing amplitudes of 0.5 C, 1 C and 5 C and a pause of 300 s between the

different pulse lengths is run through. Again, to avoid lithium plating during charge,

the 5 C pulses are skipped for the test at 10◦C. To be able to observe the influence

of the SOC on the cell response the test pattern is repeated at SOC = [0.8, 0.5, 0.2].

The simulated (dashed line) and measured (solid lines) voltage response to the entire
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Figure 5.10.: Comparison between simulation (dashed line) and measurement (solid
lines) at 30◦C for the pulse test. The test pattern is composed of pulses
of length 1 s, 7 s and 49 s with amplitudes of 0.5 C and 1 C and a
pause of 300 s between the different pulse lengths. The sequence is run
through at SOC = [0.8, 0.5, 0.2].
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Figure 5.11.: Comparison between simulation (dashed line) and measurement (solid
lines) at 10◦C using pulse excitation. The test pattern is composed of
pulses of length 1 s, 7 s and 49 s with amplitudes of 0.5 C and 1 C and
is run through at SOC = [0.8, 0.5, 0.2]. The sequences between the
pulses have been cut out. Again the 5 C current is skipped for 10◦C.
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Figure 5.12.: Comparison between simulation (dashed line) and measurement (solid
lines) at 30◦C using pulse excitation. The test pattern is composed of
pulses of length 1 s, 7 s and 49 s with amplitudes of 0.5 C, 1 C and 5 C
and is run through at SOC = [0.8, 0.5, 0.2]. The sequences between
the pulses have been cut out.
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Figure 5.13.: Comparison between simulation (dashed line) and measurement (solid
lines) at 50◦C using pulse excitation. The test pattern is composed of
pulses of length 1 s, 7 s and 49 s with amplitudes of 0.5 C, 1 C and 5 C
and is run through at SOC = [0.8, 0.5, 0.2]. The sequences between
the pulses have been cut out.
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Figure 5.14.: Relative error of the cell voltage for the pulse test consisting of a se-
quence of pulses of length 1 s, 7 s and 49 s with amplitudes of 0.5 C, 1 C
and 5 C and is run through at SOC = [0.8, 0.5, 0.2] at temperatures
10◦C, 30◦C and 50◦C. The sequences between the pulses have been cut
out.
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test pattern at 30◦C is depicted in fig. 5.10. For a better comparison in fig. 5.11, 5.12

and 5.13, showing the simulated (dashed line) and measured (solid lines) cell voltage

at 10◦C, 30◦C and 50◦C, the sequences between the pulses have been cut out because

in this test only the shape of the pulses is of interest. Furthermore, in fig. 5.14 a

comparison between the relative cell voltage error at the different temperatures is

given. In contrast to the measurement in the simulation a distinct difference in the

voltage response of the cell for the charge and discharge pulse is visible. Whereas

for the charge pulse a similar voltage response is obtained for the discharge pulse

the voltage is following the excitation too fast. Again the temperature influence can

not be reproduced correctly. Therefore, for the test at 10◦C depicted in fig. 5.11

the pulse height is slightly underestimated whereas for the test at 50◦C shown in

fig. 5.13 the pulse height is slightly overestimated. Especially for the 0.5 C and 1 C

pulses at 30◦C in fig. 5.12 the simulation correlates quite well to the measurements.

The cell voltage is not drifting away in the simulation for all three temperatures and

there is also only a small offset visible at SOC = 0.5 and SOC = 0.2. Although the

maximum relative error is ∼ 6 % in fig. 5.14 the error in the shape of the pulses is

clearly visible.

Test C – pulse test with overlay

In the third test a combined load spectrum is designed since so far the long term be-

havior and the cell response to pulse excitation have only been dealt with separately.

Thereby allowing a better insight of the influence of the SOC on the pulse behavior.

The implemented test pattern consists of pulses of length 1 s, 7 s, and 49 s with pulse

heights of 0.5 C and 1 C with an overlay of a 1 C constant current charge/discharge

and increasing pulse length for each charge/discharge cycle. The simulated (dashed

line) and measured (solid lines) voltage response to the entire test pattern at 30◦C

is given in fig. 5.15. For a better comparison in fig. 5.16, 5.17 and 5.18, showing

the simulated (dashed line) and measured (solid lines) cell voltage at 10◦, 30◦ and

50◦, the sequences between the pulses have been cut out since as before the focus

of this test is on the shape of the pulses. Furthermore, in fig. 5.19 a comparison

between the relative cell voltage error at the different temperatures is given. Espe-

cially for the overlay with the 1 C discharge current at 30◦ C depicted in fig. 5.17

the simulation correlates quite well to the measurements. On the other hand at all

three temperatures in the simulation an increased pulse height is observed during

the charge overlay compared to the discharge overlay. Additionally, as expected the

same temperature influence on the simulation as for the previous tests is obtained.
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Figure 5.15.: Comparison between simulation (dashed line) and measurement (solid
lines) at 30◦C for the pulse test with overlay. The test pattern is com-
posed of pulses of length 1 s, 7 s and 49 s with amplitudes of 0.5 C
and 1 C overlaid with a 1 C current. The sequence is run through at
SOC = [0.8, 0.5, 0.2].
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Figure 5.16.: Comparison between simulation (dashed line) and measurement (solid
lines) at 10◦C using pulse excitation overlaid with a 1 C current. The
dynamic part of the test pattern is composed of pulses of length 1 s,
7 s and 49 s with amplitudes of 0.5 C and 1 C and is run through at
SOC = [0.8, 0.5, 0.2]. The sequences between the pulses were cut out.
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Figure 5.17.: Comparison between simulation (dashed line) and measurement (solid
lines) at 30◦C using pulse excitation overlaid with a 1 C current. The
dynamic part of the test pattern is composed of pulses of length 1 s,
7 s and 49 s with amplitudes of 0.5 C and 1 C and is run through at
SOC = [0.8, 0.5, 0.2]. The sequences between the pulses were cut out.
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Figure 5.18.: Comparison between simulation (dashed line) and measurement (solid
lines) at 10◦C using pulse excitation overlaid with a 1 C current. The
dynamic part of the test pattern is composed of pulses of length 1 s,
7 s and 49 s with amplitudes of 0.5 C and 1 C and is run through at
SOC = [0.8, 0.5, 0.2]. The sequences between the pulses were cut out.
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Figure 5.19.: Relative error of the cell voltage for the pulse test consisting of a
sequence of pulses of length 1 s, 7 s and 49 s with amplitudes of
0.5 C, 1 C and 5 C overlaid with a 1 C current and is run through
at SOC = [0.8, 0.5, 0.2] at temperatures 10◦C, 30◦C and 50◦C. The
sequences between the pulses have been cut out.

The simulation at 10◦ C in fig. 5.16 has also a small offset to the measurements. A

difference in the pulse heights is obtained between measurement and simulation with

an undersized pulse height at 10◦ C and an oversized pulse height at 50◦ C. Same

as for the previous test as depicted in fig. 5.19 the problem is again the shape of the

pulses with the maximum relative error being ∼ 6 % as well.

Test D – NEDC test

In the fourth test the usability of the battery model for automotive applications is

investigated. Therefore, a current profile is derived for the simulation on the basis

of the New European Driving Cycle (NEDC) [2] with the battery being discharged

during acceleration and charged during deceleration due to recuperation. The data

for the current profile have been provided within the ’COMET K2 project: Mod-

ellierung, Validierung und Test von Lithium-Ionen-Batterien für Hybridfahrzeuge’.

Figure 5.20, 5.21 and 5.22 show the comparison between simulated (dashed line) and

measured (solid lines) cell voltage for the NEDC at 10◦C, 30◦C and 50◦C starting at

SOC = 0.5. The maximum load current has been limited to 5 C. Further, in fig. 5.23

a comparison between the relative cell voltage error at the different temperatures is
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Figure 5.20.: Comparison between simulation (dashed line) and measurement (solid
lines) for a current profile based on the NEDC by discharging the cell
during acceleration as well as recuperative charging during deceleration
starting at SOC = 0.5 at 10◦C. The cell current has been limited to 5 C.
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Figure 5.21.: Comparison between simulation (dashed line) and measurement (solid
lines) for a current profile based on the NEDC by discharging the cell
during acceleration as well as recuperative charging during deceleration
starting at SOC = 0.5 at 30◦C. The cell current has been limited to 5 C.
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Figure 5.22.: Comparison between simulation (dashed line) and measurement (solid
lines) for a current profile based on the NEDC by discharging the cell
during acceleration as well as recuperative charging during deceleration
starting at SOC = 0.5 at 50◦C. The cell current has been limited to 5 C.
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Figure 5.23.: Relative error of the cell voltage for a current profile based on the
NEDC by discharging the cell during acceleration as well as recuperative
charging during deceleration starting at SOC = 0.5 at temperatures
10◦C, 30◦C and 50◦C. The cell current has been limited to 5 C.
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given. In the measurements the temperature difference is clearly visible whereas in

the simulation only a small difference in the cell voltage at the different temperatures

can be observed. The displacement in the simulated cell voltage is too small for the

simulation at 10◦C depicted in fig. 5.20. On the other hand for the simulations at

30◦C and 50◦C shown in fig. 5.21 and 5.22 the displacement of the cell voltage is

too big. Additionally, similar to the previous tests, in the simulation the cell voltage

responds too fast to a change in the input current resulting in a nearly rectangular

shape of the overall voltage profile. This behavior is clearly visible at the transition

from the NEDC stress pattern to a constant current discharge at 0.2 C at the end of

the simulation. But as can be seen in fig. 5.23 the relative error still remains < 10 %.

Regarding the calculation speed of the single tests depending on the test pattern and

temperature a ratio between measurement and simulation time tmeas/tsim up to 50

can be reached.

Since the remaining error in the cell response to pulse excitation could not be elimi-

nated by changing the model parameters and to identify the source of the deviation

between measurement and simulation in the upcoming section the analysis of the cell

is extended to the frequency domain.

5.2. Measurements on the 50 mAh Test Cell in the

Frequency Domain

A deeper insight into the dynamical behavior of the lithium battery is required to be

able to overcome the limitations of the model for pulse excitation. Therefore, in this

section the cell impedance is analyzed using impedance spectroscopy (IS). Although

this method is based on a small signal analysis of the current-voltage behavior at

a single SOC, as stated in [7], it has the advantage that electrochemical reactions

as well as diffusion processes within the battery can be assigned to a dedicated fre-

quency range in the spectrum. Thus, the limiting factor in the voltage response

during pulse excitation can be identified.

The measurements have been performed on a test bench consisting of a combined Po-

tentiostat/Galvanostat 1287A and an Impedance/Gain-Phase Analyzer 1260A from

Solartron4 located at the Institute of Physical Chemistry (IPC), University of Muen-

ster. As for the time domain measurements the data handling for the compari-

4 http://www.solartronanalytical.com/

http://www.solartronanalytical.com/
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son between measurement and simulation is performed with the software package

Matlab R©. The routine for the simulation of the impedance spectrum has been

developed in cooperation with the K2 Competence Center Virtual Vehicle.

5.2.1. Validation of the Battery Model in the Frequency Domain

For the validation of the battery model in the frequency domain the simulation

is again started at SOC = 0.5 and charged to the upper cut-off voltage of 3.8 V. In

contrast to the time domain measurements the battery is charged from the lower cut-

off voltage to the desired SOC directly after the determination of the cell capacity.

The spectrum itself is obtained by driving the cell with a small sinusoidal current

at different frequencies such that the voltage deviation does not exceed a peak to

peak voltage of 50 mV. To ensure that the cell is operating at steady state three full

periods are simulated at each frequency with the impedance being calculated for the

last one.

Consistency Check of Measurement Data

In advance to the comparison to the simulated data the validity of the measured data

has to be checked. Therefore, according to [14] and [87] to meet the requirements

of causality, linearity, stability and stationarity the Kramers-Kronig transformations

ZIm(ω) =
2ω

π

∞∫
0

ZRe(x)− ZRe(ω)

x2 − ω2
dx

ZRe(ω) =
2

π

∞∫
0

xZIm(x)− ωZIm(ω)

x2 − ω2
dx

(5.2)

relating the real and imaginary part of the impedance data have to be fulfilled.

Since for measurement data the integrals in equ. 5.2 can not be solved an alternate

approach based on RC-elements as in [14] and [87] is used. Therefore, with a single

RC-element fulfilling the requirements in equ. 5.2 a series of these elements

Zkk = R∞ +

k∑
i=1

Ri
jω
ωg,i

+ 1
, ωg,i =

1

RiCi
(5.3)

fitted to the measured impedance has to fulfill them too. The validation of the

measurement data can be performed by evaluating the residuals between Zkk in

equ. 5.3 and the measurement data. On the basis of the described principle the data
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points at 100 Hz and 200 Hz have been identified as outliers in the measurements

and thus been eliminated.

In fig. 5.24 and 5.25 the measured and simulated impedance spectra of the cell are

depicted. The results between measurement and simulation in the frequency domain

show distinct differences since the model has been parameterized on the basis of

measurements in the time domain. Therefore, the diameter of the semicircle is clearly

overestimated in the simulation whereas the cut-off frequency is underestimated.

Further, in the measurements the center of the semicircle does not fall together

with the real axis as is the case in the simulation. As has been observed by [71]

for simulations of a lead-acid battery the behavior of the battery especially at low

frequencies can not be reproduced correctly with an electrochemical model. In the

simulation a constant real part of the cell impedance is obtained at frequencies below

1 Hz in contrast to the measurements where the beginning of a large semi-circle can

be observed. In the following this low-frequency effect known as Diffusion or Warburg

Impedance is further investigated since this is the frequency range relevant for the

pulse lengths > 1 s used for the previous analysis of the dynamic behavior.
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Figure 5.24.: Measured impedance spectrum of the 50 mAh pouchbag cell.
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Figure 5.25.: Simulated impedance spectrum of the 50 mAh pouchbag cell.

The Warburg Impedance

As stated in [7] the Warburg Impedance can be regarded as the electrical analogue to

diffusion processes in absence of migration by an equivalent circuit. Thus, in the first

place the diffusion equation represented by Fick’s 2nd law given e.g. in [6] and [37]

has to be transformed in the frequency domain using the Laplace Transformation

resulting in

sC(x)− c0 = ∇(D∇(C(x))) (5.4)

with C being the transformed concentration denoted by the upper case letter and c0

the concentration at t = 0. From the solution to the resulting ODE and inserting

the transformed boundary condition at the electrode/electrolyte interface obtained

from Fick’s 1st law

JW (0) = −DF∇(C(0)) (5.5)

given e.g. in [6] and [37] the transfer behavior between the transformed input current

density JW (0) and the transformed concentration C(0) at the electrode surface can

be derived with the upper case letters indicating a transformed variable. Further, to
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obtain the required impedance a relationship between the transformed ac overvoltage

and the transformed concentration has to be found which, assuming only a small

perturbation around the equilibrium, can be derived by a linearization of the diffusion

overpotential represented by the Nernst Equation given e.g. in [6]. Depending on

the boundary conditions three types of Warburg Impedances can be distinguished

(see also [42] and [16]).

(i) semi-infinite diffusion layer:

c = c0 for x→∞

ZW =
1

c0fF
√

2D

1− j√
ω

= σW
1− j√
ω

(5.6)

(ii) limited diffusion layer with ideal reservoir at finite distance:

c = c0 for (x = l)

ZW =
1

c0fF

tanh

(
l
√

jω
D

)
√
jωD

(5.7)

(iii) limited diffusion layer with non-permeable wall at finite distance:

jd = −DF∂c/∂x for (x = l)

ZW =
1

c0fF

coth

(
l
√

jω
D

)
√
jωD

(5.8)

The related impedance distributions are depicted in fig. 5.26.
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Figure 5.26.: Nyquist plots of different types of Warburg Impedances: (i) semi-
infinite diffusion layer; (ii) limited diffusion layer with ideal reservoir;
(iii) limited diffusion layer with non-permeable wall.
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A more detailed analysis of the Diffusion Impedance dealing besides planar diffusion

with diffusion in cylindrical and spherical symmetry as well is given in [39].

5.3. Simulation of a 70 Ah Lithium Polymer Cell based on

Impedance Data

To show the influence of the cell impedance on the dynamic as well as the relax-

ation behavior of the battery in [72] an equivalent circuit model for a large-sized

lithium polymer cell suitable for EV and HEV applications based on the Randles

equivalent circuit [68] has been developed. Since for the used 70 Ah cell no measure-

ments with a lithium reference are available in fig. 5.27 no distinction between the

positive and negative electrode is made. Further, assuming limited diffusion with

an ideal reservoir, the Warburg Impedance can be approximated with an additional

RC-element as described in [3]. To be able to analyze the dynamic as well as the

relaxation behavior simultaneously the 70 Ah cell is discharged by applying a series

of 60 s discharge pulses at 3 C with a pause of 96 s in between. Comparing the sim-

ulated to the measured cell response at SOC≈ 0.5 depicted in fig. 5.28 only minor

differences in the cell response are visible. Although the results of the equivalent

circuit model are in good agreement with the measurements and thus the origin of

the deficiencies in the dynamic behavior obtained with the electrochemical model

can be explained by the missing Warburg Impedance the remaining question on how

to reproduce this behavior with the electrochemical model has not been solved yet,

especially with not violating the demand of including no empirical terms without a

clear physico-chemical background into the model.

Ri

Cdl CW

RW

ucell

icell

L

U0 = f(SOC)

Rct

Figure 5.27.: Simple battery model based on the Randles equivalent circuit [68] of the
electrode/electrolyte interface with the Warburg Impedance being ap-
proximated with an additional RC-element assuming limited diffusion
with an ideal reservoir (from [72]).
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Figure 5.28.: Zoomed view of the voltage response of the cell to a series of 60 s
discharge pulses at 3 C with a pause of 96 s in between at SOC≈ 0.5
allowing a simultaneous investigation of the dynamic as well as the
relaxation behavior (from [72]).



6. Conclusion & Outlook

As stated in chapter 1 the goal of this thesis has been the development of a fast and

accurate battery model with respect to the comparison to measurable quantities such

as the current-voltage behavior for battery condition monitoring with focus on auto-

motive applications. Since for that purpose a deep insight into the electrochemical

fundamentals and the underlying processes within the battery (chapter 2) is required

a physico-chemical representation of the battery has been chosen as a promising can-

didate. In chapter 3 a set of coupled partial differential equations based on a review

on modeling of lithium batteries given in [89] is presented with focus on reduction of

the model complexity under consideration of the underlying physics of the battery

as well as model accuracy. Thus, the geometry has been reduced into 1D with an

additional coordinate for radial diffusion.

Chapter 4 deals with the numerical realization of the set of governing equations.

Therefore, starting from a basic implementation of the model applying the control

volume method, the model performance has been improved with respect to numeri-

cal stability using a modified Newton scheme and calculation speed introducing an

adaptive time stepping routine. Further, a detailed analysis of the particle diffusion

to reduce the number of discretization points in the bulk as well as the overall cal-

culation effort and thus resulting in an performance increase of the model has been

made at the end of the chapter considering both constant current as well as dynamic

excitation of the battery.

The developed battery model is able to reproduce the long term behavior of the

investigated cell quite well although some deficiencies of the model regarding the

temperature behavior as well as in the voltage response to pulse excitation have

been observed in chapter 5. Same as in [71] it is assumed that the deviations in

the dynamic behavior are related to the missing Diffusion or Warburg Impedance

occurring at low frequencies in the impedance spectrum. The question on how to

reproduce this behavior with the set of governing equations has not been solved yet,

especially not without violating the prerequisite for a pure physico-chemical repre-

89
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sentation. Despite the aforementioned small deviation of the cell response to pulse

excitation the implemented battery model offers an acceptable accuracy level for

battery condition monitoring systems fulfilling the additional requirements on calcu-

lation speed and robustness. Thus, the maximum relative error in the cell voltage in

the investigated test cases is < 10 % and a ratio between measurement and simula-

tion time tmeas/tsim up to 50 depending on the input current can be achieved.

Besides further investigations on improving the dynamic behavior of the model e.g.

by following a combined electrochemical/equivalent circuit approach as proposed in

[76] further extensions of the model regarding the thermal as well as the long term

behavior are required which are both topics of ongoing research at the K2 Compe-

tence Center Virtual Vehicle. Thus, in a future work, temperature dependencies as

well as parameter variations due to cell aging as well as concentration dependencies

of diffusion within the battery have to be included into a reliable battery condition

monitoring system. Applying model order reduction on the entire set of governing

equations and thus sparing calculation time future work may also include an exten-

sion of the actual 1D model into a complete 3D representation with adequate model

performance. Furthermore, the scalability of the model parametrized for the small

50 mAh pouch cell for large-sized pouch and cylindrical cells used in automotive

applications has to be investigated.



A. List of Abbreviations

Short Symbols

symbol description

CMS condition monitoring system

CV control volume

CVM control volume method

FDM finite difference method

GITT galvanostatic intermittent titration technique

OCV open circuit voltage

ODE ordinary differential equation

Li lithium

PCA principal component analysis

PDE partial differential equation

POD proper orthogonal decomposition

SEI solid electrolyte interface

SOC state of charge

SVD singular value decompostion
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B. List of Symbols

Parameters

symbol unit description

Aelec m2 electrode face

aj m2/m3 ‘active’ surface area per volume in region j = {1, 3}
αj - transfer coefficient in region j = {1, 3}

brugj - bruggeman coefficient in region j = {1, 3}
Cj,dl F/m2 double layer capacity in region j = {1, 3}
cmin
s,j mol/m3 minimum lithium concentration of particles

in region j = {1, 3}
cave
s,j mol/m3 average lithium concentration of particles

in region j = {1, 3}
cmax
s,j mol/m3 maximum lithium concentration of particles

in region j = {1, 3}
c0
s,j mol/m3 initial lithium concentration of particles

in region j = {1, 3}
c0
` mol/m3 initial lithium concentration in the liquid phase

Di,j m2/s diffusion coefficient of species i = {s, `}
in region j = {1, 2, 3}∗

E V/m electrical field strength

εs,j - active material fraction in region j = {1, 3}
ε`,j - porosity of region j = {1, 2, 3}

∗ note that there is no solid material in the separator region thus the index {s, 2} is not possible
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F As/mol Faraday constant

f 1/V F
RT

i A/m2 charge/-discharge current density

i0 A/m2 exchange current density

jj A/m2 transfer current density in region j = {1, 3}
Ji,j mol/m2s electrochemical flux of species i = {s, `} in region

j = {1, 2, 3}
kj - reaction rate in region j = {1, 3}
κj S/m conductivity of the liquid phase in region j = {1, 2, 3}
Lj m layer thickness of region j = {1, 2, 3}
rp,j m mean particle radius in region j = {1, 3}
R J/molK gas constant

ρ As/m3 charge density

σj S/m conductivity of the solid phase in reg. j = {1, 3}
t0+ - transition number

T K temperature

U0
j V open circuit voltage in region j = {1, 3}

State Variables

symbol unit description

cs,j mol/m3 lithium concentration of the solid phase

in region j = {1, 3}
c`,j mol/m3 lithium concentration of the liquid phase

in region j = {1, 2, 3}
φs,j V potential of the solid phase in region j = {1, 3}
φ`,j V potential of the liquid phase in region j = {1, 2, 3}
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Mathematical Symbols

symbol description

a vector

A matrix

diag{·} diagonal matrix

Im{·} imaginary part

Re{·} real part

rj radial coordinate in the particle in region j = {1, 3}
t time coordinate

x spatial coordinate in direction of the main reaction

λ eigenvalue

ϕ eigenvector

Ωi mathematical domain

∂Ωi domain boundary

Subscripts Superscripts

symbol description symbol description

1 negative electrode 0 initial value

2 separator ave average value

3 positive electrode eff effective property

dl double layer min minimum value

s solid phase max maximum value

` liquid phase surf surface value
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[69] M. Y. Säidi and J. Barker. The safety advantages of valence’s saphionR©

technology. Technical report, Valence Technology, 2004. 6

[70] S. Santhanagopalan, Q. Zhang, K. Kumaresan, and R. E. White. Parameter

estimation and life modeling of lithium-ion cells. Journal of The Electrochemical

Society, 155(4):A345–A353, 2008. 12

[71] B. Schweighofer. Simulation of the Dynamic Behavior of a Lead-Acid Battery.

Dissertation, Graz University of Technology, Institute of Electrical Measurement

and Measurement Signal Processing, 2007. 20, 21, 40, 47, 48, 84, 89

[72] B. Schweighofer, H. Wegleiter, M. Sommer, and M. Recheis. Fast and accu-

rate battery model applicable for system level simulation. In European Electric

Vehicle Congress EEVC 2011, 2011. 4, 87, 88

[73] G. Sikha, R. E. White, and B. N. Popov. A mathematical model for a lithium-ion

battery/electrochemical capacitor hybrid system. Journal of The Electrochemi-

cal Society, 152(8):A1682–A1693, 2005. 29

[74] P. Singh, J. Craig Fennie, and D. Reisner. Fuzzy logic modelling of state-

of-charge and available capacity of nickel/metal hydride batteries. Journal of

Power Sources, 136:322–333, 2004. 2

[75] L. Sirovich. Turbulence and the dynamics of coherent structures, parts i-iii.

Quaterly of Applied Mathematics, XLV:561–590, 1987. 60

[76] K. Smith, C. D. Rahn, and C.-Y. Wang. Control oriented 1d electrochemical

model of lithium ion battery. Energy Conversion and Management, 48:2565–

2578, 2007. 90

[77] K. Smith and C.-Y. Wang. Power and thermal characterization of a lithium-ion

battery pack for hybrid-electric verhicles. Journal of Power Sources, 160:662–

673, 2006. 20, 22



Bibliography 102

[78] K. A. Smith, C. D. Rahn, and C.-Y. Wang. Model order reduction of 1d diffusion

systems via residue grouping. Journal of Dynamic Systems, Measurement and

Control, 130:011012.1–011012.8, 2008. 3, 54

[79] M. S. Sommer, D. Hrach, B. Schweighofer, and M. Cifrain. Fast algorithm

for calculating the surface concentration of spherical particles for lithium-ion

battery simulations. In Procedia Engineering, volume 5, pages 389–392, 2010.

4, 40, 53, 54, 56, 57

[80] M. S. Sommer and C. F. Wallinger. Reduction oft the calculation effort for the

li-diffusion in li-ion battery modeling. In Proceedings of the 14th International

IGTE Symposium 2010, 2010. 4, 53, 61

[81] R. Spotnitz. Simulation of capacity fade in lithium-ion batteries. Journal of

Power Sources, 113:72–80, 2003. 11

[82] M. Sternad, M. Cifrain, D. Watzening, G. Brasseur, and M. Winter. Condition

monitoring of lithium-ion batteries for electric and hybrid electric vehicles. e &

i Elektrotechnik und Informationstechnik, 126(5):186–193, 2009. 2, 7

[83] A. Studinger and S. Volkwein. Numerical analysis of pod a-posteriori error

estimation for optimal control. submitted 2011, 2011. 60

[84] The Newman Research Group. Fortran programs for the simulation of electro-

chemical systems, http://www.cchem.berkeley.edu/jsngrp/. 3

[85] I. V. Thorat, D. E. Stephenson, N. A. Zacharias, K. Zaghib, J. N. Harb, and

D. R. Wheelera. Quantifying tortuosity in porous li-ion battery materials. Jour-

nal of Power Sources, 188:592–600, 2009. 23
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