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Abstract

This dissertation describes a data compression system optimized for high energy particle detectors.
The aim is to reduce the data in the front-end electronics installed in different kind of particle
detectors as used for example along the Large Hadron Collider at CERN. The signals collected
and digitized from calorimeters, time projection chambers and in general from all detectors with a
large number of sensors produce an extensive amount of data, which need to be reduced. Real-time
data compression algorithms applied right at the detector front-end is able to reduce the amount of
data to be transmitted and stored as early as possible in the data chain.

Different lossless and lossy compression methods are analyzed regarding their efficiency in
compressing data from particle detectors that produce signals amplified and/or shaped to various
waveforms. In addition, the complexity of the algorithms is evaluated to determine their suitability
for a real-time hardware implementation. From the analyzed methods, a new developed lossless
compression method turned out to be the best suitable one for the implementation in high energy
physics applications. The detector data are used to search for rare particle physics phenomena,
which makes it crucial that the compression method retains the important information in the data
with an appropriate accuracy. Considering the importance of not distorting detector data, a lossless
compression method was preferred instead of a lossy method.

To go beyond what can be achieved by conventional lossless compression schemes, which are
mostly limited by the intrinsic entropy of the underlying data, the proposed compression method
makes use of a new scheme where entire vectors of samples are compressed instead of handling
the data from the ADCs as individual uncorrelated samples.

Our method works by first approximating the incoming vectors, formed by the digitization of the
shaped input waveforms from the detector signals, with a set of digitized reference vectors. This
is generally known as vector quantization. To prevent information loss the differences between the
incoming vector and the best matching reference vector are retained. These differences are then
Huffman encoded to obtain the compression. The performance of the compression method was
first evaluated by modeling the algorithm in Matlab and using test-data measured with the time
projection chamber in the ALICE experiment at CERN. A compression ratio of 50% has been
achieved for this test-data (better as the intrinsic entropy of the test-data of 62%).

For a demonstration of the functionality of the developed compression method in hardware, a
digital IP block was realized and modeled using the hardware description language Verilog. The
compression algorithm was optimized for the data from a time projection chamber and tested using
a FPGA development board applying the same test-data from the ALICE time projection chamber
as used previously in Matlab. The implementation achieved almost the same compression ratio.

In this thesis, I show that a data compression of digitized detector data is possible to be realized
in the detector front-end electronics very close to the data source by still maintaining the accuracy
of the data. The developed and realized lossless compression algorithm achieved a compression
ratio of about 50%. The hardware implementation of the algorithm proved its real-time suitability
by compressing 10 000 consecutive input signals without introducing dead time. Only an average
latency of about 30 clock cycles of 40 MHz has to be accepted.

The designed data compression IP block is available for an implementation in current and future
detector front-end electronics either inside FPGAs or inside full custom ASICs. The compression
block requires about 2 700 logic slices inside a Virtex-4 FPGA and around 12 200 gates for an
ASIC implementation without taking into account the required memory of 7 kbyte.
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Kurzfassung

Diese Dissertation beschreibt eine Komprimierungsmethode, welche für Anwendungen in der
Hochenergiephysik optimiert ist. Das Ziel dieser Komprimierung ist die Reduktion der Daten,
die in der Front-End-Elektronik von Teilchendetektoren entstehen, welche zum Beispiel entlang
des Large Hadron Colliders am CERN installiert sind. Die Menge der digitalisierten Signale von
Kalorimetern, Zeit-Projektionskammern (TPC) und im Generellen allen Detektoren die eine große
Anzahl von Sensoren besitzen, bringt die Anforderungen an die Datenübertragung und Speiche-
rung an ihre Limits. Eine Echtzeit-Datenkomprimierung in der Front-End-Elektronik von Detek-
toren kann diese Datenmengen frühestmöglich im Datenpfad reduzieren um die Datenübertragung
und Speicherung zu vereinfachen.

Verschiedene verlustlose und verlustbehaftete Komprimierungsmethoden werden hinsichtlich
ihrer Effizienz untersucht. Die Detektordaten bestehen dabei aus Signalen, die durch die Verstär-
kung und/oder Signalformung verschiedene digitalisierte lineare Impulsformen ergeben können.
Zusätzlich wird die Komplexität der Methoden evaluiert um ihre Einsatzfähigkeit in Echtzeit-
Hardware zu erörtern. Die Detektordaten werden benutzt um seltene Phänomene in der Teilchen-
physik zu erforschen und das bedingt, dass die Komprimierungsmethode die enthaltenen Informa-
tionen mit der nötigen Genauigkeit erhält. Daher wurde eine verlustlose Komprimierung bevor-
zugt entgegen verlustbehafteten Methoden. Eine neu entwickelte verlustlose Komprimierungsme-
thode hob sich dabei als die Bestgeeignetste für die Datenkomprimierung in Hochenergiephysik-
Anwendungen hervor.

Die vorgeschlagene Komprimierungsmethode bedient sich einer neuen Methodik, welche die
digitalen Daten nicht als einzelne unabhängige Abtastwerte sieht, sondern einen Vektor von meh-
reren Abtastwerten zugleich komprimiert. Dadurch kann eine höhere Effizienz erzielt werden als
bei herkömmlichen verlustlosen Methoden, welche meistens durch die intrinsische Entropie limi-
tiert sind.

Die entwickelte Methode vergleicht zuerst die Eingangsvektoren, gebildet von den Abtastwer-
ten der Eingangssignale welche von den Detektor-Sensoren kommen, mit einem Set von Refe-
renzvektoren. Der Index des ähnlichsten Referenzvektors wird ausgesendet. Dies wird im Allge-
meinen als Vektor-Quantisierung bezeichnet. Zusätzlich werden die Differenzwerte zwischen dem
Eingangsvektor und dem verwendeten Referenzvektor berechnet um einen Informationsverlust zu
vermeiden. Diese Differenzwerte werden mit Huffman kodiert um eine Komprimierung zu er-
reichen. Die Komprimierungsmethode wurde zuerst in Matlab modelliert und mit Testdaten von
Messungen mit dem TPC in ALICE getestet. Eine Komprimierungsrate von 50% konnte für diese
Testdaten erzielt werden (die Entropie der Testdaten liegt bei 62%).

Um die Funktionalität des entwickelten Komprimierungsverfahrens in Hardware zu demonst-
rieren wurde ein digitaler IP-Block mit der Hardwarebeschreibungssprache Verilog designt. Der
Kompressionsalgorithmus wurde für TPC-Daten optimiert und in einem FPGA Evaluationskit mit
denselben Testdaten wie für das Matlab Model getestet. Die Implementierung errichte annähernd
dieselbe Kompressionsrate.

In dieser Dissertation konnte ich zeigen, dass eine Datenkomprimierung von digitalisierten De-
tektordaten nahe der Datenquelle in der Front-End-Elektronik unter Beibehaltung der Datenge-
nauigkeit möglich ist. Der entwickelte und realisierte Komprimierungsalgorithmus erreicht eine
Effizienz von rund 50%. Die Hardware Implementierung bewies ihre Echtzeit-Einsetzbarkeit durch
die kontinuierliche Komprimierung von 10 000 Eingangsvektoren ohne dabei eine Totzeit zu erzeu-
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Kurzfassung

gen. Lediglich eine Zeitverzögerung von ca. 30 Taktzyklen von 40 MHz muss in Kauf genommen
werden.

Für eine FPGA Implementierung des entwickelten Komprimierungs-Blocks in zukünftigen Ex-
perimenten werden ca. 2 700 Slices benötigt und für eine Realisierung in einem ASIC benötigt
man ca. 12 200 Grundgatter ohne Berücksichtigung des Speichers von 7 kbyte.
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1. Introduction

1.1. Why data compression in front-end electronics is a
useful tool in particle detectors?

Modern particle detectors are large structures, which contain a vast number of pads and readout
channels. Particle detectors are used to collect momentum- and energy-information of particles
created by particle collisions, with the aim of performing basic research in high energy physics.

Most of the modern particle detector types are installed along the LHC (Large Hadron Collider)
particle accelerator located at CERN (European Organization for Nuclear Research) near Geneva
that has been build to perform basic research in High Energy Physics (HEP). The LHC accelerates
protons or heavy ions close to the speed of light and collides them in four different points where
the four large detector experiments ALICE, ATLAS, LHCb and CMS are located.

In the light of new projects of particle accelerators and their required particle detectors, a study
of a data compression method optimized for data from such detectors is developed in my PhD
work. The aim of this work is to develop an implementation of a data compression algorithm inside
the front-end electronics of future particle detectors to perform a data compression as close as
possible to the source of the data (the detector pads) in order to reduce data transfer bandwidth and
storage requirements. This could help to handle an increased number of channels in the confined
space of future detector experiments.

Data compression is widely used in numerous computing and communication applications,
ranging from text to music and video compression, but is currently relatively little used in data
acquisition systems for particle physics. This possibly derives from two facts that data in particle
physics often resembles random data even over a large number of samples. Random data can-
not very effectively be reduced by compression. In addition, data compression methods are often
difficult to be implemented in real-time hardware.

Nonetheless, trying to compress the data from particle detectors as much as possible makes
sense if one considers the enormous amount of data produced in the vast number of channels of
modern detector experiments (e.g. the ATLAS detector experiment at CERN has approximately
one hundred million readout channels).

Already in current detector front-ends a data reduction is implemented based on trigger signals,
which filter out only the physically interesting events from all the created signals. A lossy com-
pression named zero suppression (based on run-length encoding) is used to separate the interesting
data from the baseline data. However, all this effort is not enough to reduce the data to a level
where they can be handled easily. Therefore, a further compression method for an implementation
in the front-end electronics is developed and presented in this work. This method can provide a
further compression of the interesting data by a factor of 2 without introducing additional informa-
tion loss. The trend of modern detector data production is given in figure 1.1 to show the amount
of data produced by recent particle detectors.

The development of the new data compression hardware is based on the requirements extracted
from the Time Projection Chamber (TPC) front-end electronics in the ALICE experiment at CERN
which I used as an example for a target application. Nevertheless, the data compression method is
suitable for all detector front-ends, which digitize signals amplified and filtered (shaped) to various
waveforms.
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Figure 1.1.: Estimated data production of various particle detector experiments per year

The TPC is the main detector of the ALICE experiment and provides three-dimensional infor-
mation of the trajectories from particles generated from the collisions. The ALICE TPC is the
largest of such detectors built in recent years. It consists of an 88 m3 cylinder filled with gas as
shown in figure 1.2. A more detailed description of CERN, the LHC, ALICE and the TPC is given
in chapter 2.

E
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Inner and Outer 
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Figure 1.2.: ALICE Time Projection Chamber [1]

In case of ion beam collisions, up to 10 000 particles may traverse the TPC for each bunch
crossing. The LHC will produce ion collisions with a frequency of 8 kHz. The rate of interesting
events for the ALICE TPC is estimated at around 300 Hz and the event size is estimated at 60 MB
after the zero suppression [2, 3]. With these estimations, the maximum data rate for the TPC can
be calculated as follows:

Drate = 60MB× 300Hz ≈ 20GB s−1 (1.1)

Considering that an experiment runs for years, this amount of data cannot be stored easily. The
occupancy is expected to be low in ALICE and zero suppression is used for the first data reduction.
This mechanism reduces the amount of data significantly (≈ 80%). Nevertheless, the data rate
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CHAPTER 1. INTRODUCTION

in (1.1) is estimated after the zero suppression and is still high. For a further data reduction, the
developed data compression method can be used.

The data compression has to be realized in hardware into a confined space inside the detector
area and with low power consumption for a reasonable low head production, which gives tight
restrictions on the possible complexity of the compression algorithm. In addition, it is important
that the loss of accuracy introduced by the compression is low in order to prevent the loss of any
valuable measurement information from the physics point of view. The developed algorithm is
presented in detail in chapter 4 comparing it to other promising compression methods.

The research work carried out by me in this dissertation is based on the investigation of several
compression methods regarding the properties of the underlying digital data from the ALICE TPC
and other detector concepts. A development of a compression algorithm with good compression
performance and suitability for a real-time hardware implementation has been carried out. I have
implemented the algorithm in hardware using a FPGA development board and optimized for a
direct implementation in the front-end electronics of the TPC in ALICE. The functionality of the
hardware implementation has been tested by me using measured data from the TPC. At the end
of this study, I have compared the compression performance of the realized hardware with the
predictions extracted from the simulated software model of the compression algorithm. A good
match between the achieved real compression efficiency and predicted simulated efficiency was
reached. I analyzed the complexity of the implementation and this can be used to estimate the
effort and requirements for an implementation of the chosen compression method in future detector
front-ends.

1.2. Organization of the document
Throughout this document, two measures are used to evaluate the performance of different com-
pression methods, the compression ratio and the compression factor.

The compression ratio is defined as:

compression ratio =
size of output stream

size of input stream
(1.2)

The compression ratio represents the ratio between the number of bits in the compressed data and
the bits used for representing the original data. If the compression ratio is multiplied with 100 it is
given in % which is normally used throughout this document. A compression ratio of 0.6 means
therefore the compressed data set occupies 60% of the original data set. A compression ratio above
1 means expansion.

The compression factor is defined as:

compression factor =
size of input stream

size of output stream
(1.3)

The compression factor is the inverse of the compression ratio and tells how much compression
could be achieved. A factor grater then 1 defines compression whereas a compression below 1
represents expansion.

A third measure can be found in the literature, which is the space savings factor. The space
savings factor in % is defined as 100× (1− compression ratio).

The document itself is organized as follows:

The theory background in this document is divided in two parts in order that readers with a
pre-knowledge in high energy physics detectors or in data compression can skip the corresponding

3
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chapter.

Chapter 2 introduces the physics, which is important to understand the requirements put on the
compression algorithm regarding the different kind of measurements and detector concepts. This
chapter serves as well to get the reader familiar with some physical expressions used in this doc-
ument. Therefore, this chapter includes a brief presentation of CERN and the LHC accelerator
project. The larger part of the chapter consists of an introduction to the main kinds of particle
detectors used along the LHC. The focus is mainly put on the front-end electronics of the detectors
and the signals created in this electronic. At the end of the chapter a short summery presents the
most important parameters of the most common output signal found in the different particle detec-
tor front-ends and for which the chosen compression method will be optimized.

Chapter 3 gives an introduction into the data compression theory. The most common lossless
and lossy data compression methods are presented briefly. The different methods are explained
by using small examples. At the end of each presented method a brief discussion of its suitability
for the implementation in the detector front-end is given taking into account the signal parameters
discussed at the end of chapter 2. A deeper investigation of the most promising methods is then
carried out in chapter 4.

In chapter 4 the most promising data compression methods are analyzed in terms of compres-
sion efficiency and complexity of their realization in hardware. Different methods are realized in
Matlab and tested using measured data from the ALICE TPC. A method is found, which is con-
sidered the best suitable for an implementation in the detector front-end electronics by resulting a
good compression efficiency without introducing significant information loss.

The implementation of this best suitable compression method is presented in chapter 5. This
chapter summarizes the implementation work as well as the properties of the implementation. The
RTL Verilog model of the algorithm is presented. The Verilog model is optimized for an imple-
mentation of the data compression in the readout control unit of the TPC in ALICE.

The results from the implemented compression method are presented in chapter 6. The simu-
lation of the RTL model with measured data from the ALICE TPC is presented and the simulation
results are compared with the theoretical results obtained in chapter 4. The RTL Verilog model
is tested for a FPGA implementation by using a development board with a Virtex-4 FPGA. The
synthesis results and the hardware test results are presented. A first investigation of a possible im-
plementation in a full custom front-end ASIC in deep submicron 130 nm CMOS IBM technology
is summarized. As well a Matlab model of a Decoder for the corresponding data compression
algorithm is presented and used to decode the output data of the implementation and to compare it
with the original data.

Chapter 7 finalizes the analysis of the data compression method with a research summary and
an outlook for possible field of applications of the data compression implementation.
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2. High energy physics: Properties of
signals from detectors

The topic of this dissertation is the study, evaluation and development of a compression method
that can be implemented in the front-end electronics of particle detectors for the reduction of data
representing signal waveforms from nuclear sensors. To develop an efficient compression in the
hardware of detectors it is crucial that the compression method is optimized for the specific data
generated by detector sensors and electronics. An introduction in the high energy physics and the
detector concepts of the LHC experiments at CERN are presented to give an idea of the origin and
properties of the data to be compressed.

High energy physics is used to study the elementary constituents of matter and the fundamental
forces through which the elementary constituents interact among them [4]. The underlying branch
of physics studying the elementary particles is called elementary particle physics. Since many ele-
mentary particles are not stable and do not exist under normal conditions in nature, particle physics
experiments use energetic collisions of other particles to create and study them. The objective of
these studies can be very diverse, but in general are focused to understand the fundamental forces
and constituents of matter.

CERN, the European Organization for Nuclear Research, is the largest laboratory in the world
currently focusing on this type of research. It houses the world’s largest particle accelerator called
LHC that is used to produce high energy collisions. The LHC consists of a 27 km long ring,
which accelerates protons or heavy ions near to the speed of light and collides them. The LHC
produces the highest energy proton-proton collisions ever made by humans and it is expected that
it will allow new important discoveries in physics [5]. Physicists hope to prove with the LHC the
existence of the Higgs boson, which is theorized to be responsible for giving mass to matter. Four
huge experiments with complex detectors are built around collision points of the LHC with the
objective of performing measurements on the short living particles created by the collisions on the
two highly energetic beams.

In this section a short introduction to particle physics will be given. CERN and the LHC will be
presented briefly, as well as the different types of particle detectors used along the LHC. The focus
is put on the description of the front-end electronics of these particle detectors and the electric
signals present in this front-end electronics. In the following, the shapes and properties of these
electric signals are important for designing a data compression algorithm, which can be efficiently
implemented in the front-end electronics of the detectors.

2.1. High energy physics and CERN
The theoretical understanding of particle physics is currently based on the so called “Standard
Model” which provides the most widely accepted classification of the known elementary particles
and of their interactions. In the Standard Model 24 elementary particles are distinguished. The
Standard Model categorizes them in two different kinds of particles called the ”Leptons” and the
”Hadrons”. Hadrons (from Greek ’adros’ meaning ’bulky’) are particles composed of quarks. The
protons and neutrons building atomic nuclei for example contain three quarks. In total there are six
quarks distinguished in the Standard Model called Up, Down, Charm, Strange, Top and Bottom.
Leptons (from Greek ’leptos’ meaning ’thin’) are so called elementary particles that are not made
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out of quarks as for example electrons, positrons and muons. [6]
In addition to the elementary particles the Standard Model provides a theoretical background

for the fundamental forces which act on the particles. In total four forces are described in the
Standard Model; the electromagnetic force, the strong force, the weak force and the gravitation.

The electromagnetic force is together with the gravitation the most well known of the four and
it holds the electrons to the nuclei to form atoms and binds atoms to molecules. The force acts for
example between the atomic nuclei and the electrons. The carrier of the force is the photon [6].

The gravitation is an attractive force, which acts between all objects with mass. It binds matter
in planets and stars, stars in galaxies and us to the earth. The carrier of the force is the graviton. [6]

The strong force binds the quarks together to form protons and neutrons (and other hadrons).
This force also binds the protons and neutrons in the atomic nuclei, where it overcomes the enor-
mous electric repulsion between the equally charged protons. The carrier of this force is the
gluon. [6]

The weak force underlies natural radioactivity and is essential for the reactions occurring for
example during nuclear fusion in the center of stars like our Sun. The carriers are bosons (W-, W+,
Z0). [6]

The Standard Model describes all our current understanding of the fundamental particles and
forces, but some phenomena recently observed in the universe remain unexplained by this theory.
The Standard Model cannot account for dark matter and dark energy, which is supposed to be
present in the universe but is not visible to us. The Standard Model also does not explain the origin
of mass, why some particles have mass and others have no mass. The search for the Higgs boson
and the study of dark matter, dark energy, as well as the investigation of the properties of quarks
and gluons are among the main objectives for the LHC experiment at CERN.

2.1.1. CERN History and numbers
CERN is located at the border between Switzerland and France near Geneva. CERN provides fa-
cilities (accelerators) to perform fundamental physics research for studying the basic constituents
of matter. At the end of the Second World War, a visionary idea of a handful of scientists was to
create a European atomic physics laboratory to unify the forces of the national institutes and to per-
form research in a large scale. Raoul Dautry, Pierre Auger and Lew Kowarski in France, Edoardo
Amaldi in Italy and Niels Bohr in Denmark were among these pioneers. At the beginning, 12
Member States ratified the founding of CERN: Belgium, Denmark, France, the Federal Republic
of Germany, Greece, Italy, the Netherlands, Norway, Sweden, Switzerland, the United Kingdom
and Yugoslavia. In 1954, the European Organization for Nuclear Research, CERN, came officially
into being. The CERN’s first particle accelerator the 600 MeV SynchroCyclotron (SC), was built
in 1957, and it provided particle beams for first particle and nuclear physics experiments. [7]

Since then the laboratory, has grown to be the largest particle physics laboratory in the world
and one of the world’s largest and most respected centers for scientific research [7]. At present,
CERN has 20 member states, and around 6500 scientists are working at CERN from over 500
Universities in more than 80 countries [8].

2.1.2. The LHC
The Large Hadron Collider is a 27 km long accelerator ring, which is placed in an underground
tunnel. The tunnel with a mean depth of 100 m was already built for the predecessor accelerator
LEP (Large Electron-Positron). The LEP was dismantled in 2001 to give space to the LHC. Su-
perconducting dipole magnets bend the accelerated particles in a circular track. Along the 27 km
circumference 1232 superconducting dipole magnets are placed, which are cooled down to 1.9 K
and provide a magnetic field of up to 8 T. Two beam pipes are surrounded by the magnets in which
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two proton beams are traveling in a high vacuum in opposite directions. At four points along the
accelerator ring, the particle beams can be brought to collide. Detectors are placed around these
collision points to detect the secondary particles generated by the collisions. In the two beam pipes,
protons as well as heavy ions can be accelerated to nearly the speed of light (99.9999991%c). The
LHC is designed to accelerate protons to a maximum energy of 7 TeV per beam, while the heavy
lead ions can reach an energy of 575 TeV. The collision energy is given by the sum of the energies
of the two colliding beams. The collisions of protons with 14 TeV will recreate the conditions
which are supposed to have happened a few moments (≈10−12 s) after the Big Bang. In this way,
physicists hope to discover how the Universe evolved and probably solve some mysteries, which
are not yet fully described by the Standard Model. [6]

There are six experiments placed along the LHC, which house the different particle detectors.
They are called: ALICE, ATLAS, CMS, LHCb, LHCf, TOTEM.

The two experiments ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid)
contain general-purpose detectors to cover the widest range of physics at LHC, mainly targeting in
the discovery of the Higgs boson, searching for supersymmetry and extra dimensions [6].

ALICE (A Large Ion Collider Experiment) is specialized in studying the quark-gluon plasma
produced in the heavy ion collisions to understand better the properties of quarks [6].

The main objective of the LHCb (Large Hadron Collider beauty) experiment is to study the
slight asymmetry between matter and antimatter present in interactions of particles containing
beauty quarks [6]. This could provide an answer to the question why the Universe is made out of
the matter we observe and what happened with the antimatter as well created in the Big Bang.

The LHCf (Large Hadron Collider forward) experiments will be used to measure particles pro-
duced very close to the direction of the beams to test models which are used to estimate the primary
energy of ultra high-energy cosmic rays.

The TOTEM (TOTal cross section, Elastic scattering and diffraction dissociation Measurement)
experiment targets to measure the effective size of the protons in the LHC.

The main kinds of particle detectors used in the different experiments will be described in the
following.

2.2. Particle detectors
The different experiments along the LHC use similar detector schemes even though they focus on
different physics measurements. In this chapter, the detector structure of the ALICE experiment
is given as an example for the composition of the experiments at LHC and is shown in figure 2.1.
The main detectors of ALICE are presented together with some additional detector concepts from
the other three large experiments (ATLAS, CMS, LHCb).

Most of the detectors of ALICE are installed inside a large solenoid magnet, which provides a
high magnetic field. Charged particles emerging the collisions and traversing the detectors are de-
viated by the magnetic field forcing them on a curved path. The curvature of the particle trajectory
is used to determine the charge polarity and the momentum (product of mass and velocity) of the
particles, which are important for the particle identification. Different detection methods are used
to track and identify different kinds of particles. In the following, some of these detector methods
are described briefly and the signals which are produced in the detector front-end electronics, are
discussed.

2.2.1. Silicon based detectors
Silicon based detectors, e.g. the silicon pixel detector and the silicon microstrip detector, are used
in all experiments as the innermost detectors, which are closest to the collision point and surround
the beam pipe. The inner detector of the ALICE experiment ITS (Inner Tracking System) contains
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ALICE detector
HMPID

TOF

TRD

PMD

ITS
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 Magnet
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Figure 2.1.: The ALICE experiment with the detectors: HMPID (High Momentum Particle Identification
detector), EMCal (ElectroMagnetic Calorimeter), TOF (Time-Of-Flight detector), TRD (Tran-
sition Radiation Detector), PMD (Photon Multiplicity Detector), ITS (Inner Tracking System),
TPC (Time Projection Chamber), PHOS (PHOton Spectrometer), Muon detectors

in addition a silicon drift detector. The advantage of silicon detectors is that they provide a high
granularity due to small sizes of the detecting pixels. Silicon detectors produce short signals,
which allows them to handle very high particle rates [9]. This makes the silicon detectors the
best choice for the innermost detection as close as possible to the collision point where a high
number of particles emerge from the collisions and a high precision is required to track them.
Several layers of these detectors are used to track the paths of charged particles covering a high
range of particle energies. Therefore, in combination with the detectors farther away from the
collision point an exact reconstruction of the particle trajectories and their origin can be achieved.
Interesting events can be identified by detecting short-lived particles, which after their creation in
the primary collision decay already inside the beam pipe in secondary particles. To identify these
short-lived particles it is crucial that the first detectors detect the secondary particles precisely to
reconstruct their trajectories and to find the common point of origin displaced from the primary
collision point to determine the primary particle [9]. The silicon detectors near the collision point
are subject the high radiation generated by the secondary particles. This radiation damages silicon
sensors and components and reduces their lifetime. The relatively high cost of silicon detectors
makes them not feasible to cover large detection areas forcing physicists to use other detectors at
large external radii.

Silicon pixel detector

Silicon pixel detectors provide a detection of charged particles in two dimensions with a high
resolution in space and time. Each pixel has a size of a few tenths or hundreds of micrometers
(microns) per side. A pixel corresponds to a reverse biased diode and a pixel detector consists
of a matrix of several such pixels as shown in figure 2.2(a). The working principle of a pixel is
shown in figure 2.2(b). The reverse biased p-n junction forming the diode creates a large depletion
region (space charge region). A charged particle passes through this depletion region liberates
electrons from the n-doped silicon creating electron-hole pairs. Each silicon pixel contains a top
and bottom electrode supplied with a high reverse biasing voltage (in the order of 100 V), which
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forms an electric field inside the depletion region. The created charges drift in the electric field
towards the electrodes and their movement induces a signal in the electrodes. The electrodes
are then connected to a silicon front-end ASIC chip, which reads out the induced signal. The
connection between the pixel matrix structure and the front-end chip can be realized for example
by bump bounding techniques as shown in figure 2.2(a). The width of the silicon pixel structure

(a) Hybrid Pixelelement [10] (b) One silicon pixel element [11]

Figure 2.2.: Principle and composition of a silicon pixel element

is a few 100 µm. A pixel, which is traversed by a charged particle, provides the information of
its position in two dimensions, together with the time information when the particle hit occurred
(time stamp). This information is used to reconstruct the particle trajectory by installing several
layers of pixel detectors around the beam pipe providing a few space points of each trajectory. In
this way, a three dimensional reconstruction of the particle tracks emerging the collision point is
obtained. In addition, the number of generated electron-hole pairs is proportional to the energy loss
of the particle, which can be determined by integrating the induced current in the electrodes. This
information is used to identify the detected particle. An example of a particle track through the
ATLAS inner tracker structure is shown as an example in figure 2.3. The signal which is induced
in the electrode of a pixel element is composed by a fast rise time created by the fast moving
electrons, which are present in the depletion region for less than 10 ns before they are collected
at the electrode. The decay time of the signal is dominated by the slower motion of the positive
charged holes, which drift to the opposite electrode having a collection time of around 25 ns. The
first stage of the front-end electronics is an analogue current integrator, which integrates the input
signal to translate the induced signal charge into a voltage level. The signal amplitude can be
small which requires also an amplification operation of the integrator. Therefore, in high-energy
physics this step is called sometimes pre-amplification. The second stage is a differentiator (high-
pass filter) which brings the integrated voltage level back to ground (defines the decay-time of
the output signal). To increase the signal-to-noise ratio a third stage can be added consisting of
low-pass filters to limit the output signal bandwidth. This bandwidth limitation will cut the noise
outside the signal spectrum but it also increases the signal duration, which can be problematic
for pile-up effects regarding later arriving signals. The last two stages are named often as signal
shaping stage. The output of the shaper is an analogue signal that will have in most cases a
semi-Gaussian shape. An example of the ALICE pixel detector front-end electronics is shown in
figure 2.4 together with the output signal after the analogue preamplifier-shaper. This front-end
electronic can cope with both positive and negative induced charges depending on which electrode
it is connected. [9]

Upon traversal of a pixel by a charged particle, the analogue output signal of the shaper can
then be processed in different ways. A comparator can be used to detect when the output signal
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Pixels

SCT

TRT

Figure 2.3.: The figure shows the inner detector layers of the ATLAS experiment and a horizontal charged
particle track exiting the beryllium beam-pipe, in which the accelerated particles travel and
collide. The several layers of pixel sensors, silicon microstrip sensors (SCT) and the transition
radiation tracker (TRT), which surrounding the beam pipe at different radii provide the space
points for the particle tracks passing through them [12]

rises above a defined threshold. The comparator output is typically stored in a memory waiting for
the arrival of an external trigger. To identify unambiguously the event in time, a time stamp when
this hit occurred is stored as well. This gives the information, which pixels are hit at which time
from the particles and can be used for tracking their path. If in addition the amplitude of the signal
should be retained as well, a possibility is to digitize the shaper output signal using an ADC. In
order to obtain the amplitude, the signal can be reconstructed offline using a fitting of the samples.
The amount of charge induced in a pixel element can also be measured using the so called Time
Over Threshold (TOT) method. This consist in measuring the time during which a signal remains
higher than a predefined threshold and gives an approximate relation to the amplitude of the signal.

Not all signals caused by a particle detection of all collisions can be read out because that would
lead to a huge amount of data coming from the high number of channels (in ALICE ≈ 10 million
pixels) and the high collision rate of the LHC of 40 MHz. Therefore, a trigger system decides if
the data from a collision event should be retrieved or rejected.

(a) ALICE pixel readout mixed signal chip (ALICE1)
[13]

(b) Output signal of the shaper [14]

Figure 2.4.: Block diagram of the front-end chip for the ALICE pixel detector and the LHCb RICH detector.
The signal after the shaper is shown to the right.
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In the ALICE experiment, several detectors e.g. Transition Radiation Detector (TRD), silicon
detectors etc. can provide information to the trigger system. For example if the TRD detects
an interesting event, a level 0 trigger (L0) is created. A pre-trigger activates the TRD after each
collision (<900 ns) to collect the data for the L0-trigger. The L0-trigger is sent out after around
1.2 µs. The TRD performs some quick analysis on the detected signals to decide if the event
is interesting and fulfills some criteria. In the case that the event could be interesting a level 1
(L1) trigger is generated in 6.5 µs. Some further online data analysis is performed to decide if
the collected data from the event are read out or discarded. A level 2 (L2) trigger arrives at the
detectors around 100 µs after the L1-trigger deciding to read out the data or throw them away. The
detectors (e.g. TPC) use the three level of triggers to control their signal processing and readout of
data.

The ALICE pixel detector front-end contains a discriminator and a digital delay line to delay the
input signal until the L1-trigger arrives. The discriminator (comparator) digitizes the input signal
sending out a logic high signal if the signal is above the threshold. Then the pixel hit data proceed
through the digital delay line for 6.5 µs. If the L1-trigger arrives within this delay, the pixel-hit
data are stored in a multi-event buffer inside the front-end electronics. The data are rejected if the
L1-trigger does not arrive. The multi-event buffer (4-bit FIFO) is capable to store up to four hit
events. After arrival of a L2-trigger, the multi-event buffers of the pixel chips are read out starting
from the oldest stored event.

Silicon microstrip detector

The silicon microstrip detector or simply strip detector is similar to the pixel detector. In the ex-
periments, the strip detectors surround the beam pipe at a larger radius from the collision point
than the pixel detectors and cover a larger area. The charged particle density is smaller than for the
pixel detectors (for ALICE <1 particle/cm2) but the larger detection area needs a different concept
to limit the number of readout channels. The main difference between silicon pixel detectors and
silicon strip detectors is that a strip provides a high spatial resolution in one direction whereas a
pixel gives a high resolution in two dimensions. Figure 2.5(a) shows the principle of a silicon
strip detector. The free charges created in the depletion region by a traversing charged particle,

(a) Principle of a silicon strip detector [15] (b) Double sided silicon strip detector with orthogonal
strips [16]

Figure 2.5.: Silicon strip detector element single sided for a one dimensional space resolution and double
sided for two dimensional space resolution

are drifting in the electric field towards the electrodes. The top electrode has a strip form. The
induced signal in the strip electrodes is detected by the front-end electronics, which has similar re-
quirements as for the pixel detectors. A front-end electronics channel contains a pre-amplifier and
a shaper. The effect of charge sharing between neighboring strips caused by a particle traversing
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the sensor at an angle can be used to obtain a space resolution better than the strip pitch. To obtain
a space resolution in direction of the microstrips a double-sided strip detector (so called stereo-
module) can be constructed with two microstrip elements glued together back to back resulting
in two strip planes arranged at an angle. The principle of double sided strip detector elements is
shown in figure 2.5(b).

In the ALICE experiment around 1700 double sided silicon strip modules are installed leading
to 2.5 million readout channels. A picture of such a strip module is shown in figure 2.6(a).

P‐Hybrid

N‐Hybrid

(a) ALICE Silicon Strip Module (b) Alice silicon strip detector front-end electronics, pre-
amplifier-shaper output signals of positive and negative
charge induction [17]

Figure 2.6.: ALICE silicon strip detector module and analogue output signal of the front-end amplifier-
shaper circuit

The front-end electronics consist in most cases of pre-amplifier, shaper, discriminator, delay
elements and output buffers similar to the pixel detector. The output signal of the shaper is again
a semi-Gaussian waveform. This semi-Gaussian output signals are shown in 2.6(b) with positive
and negative polarity depending on the strip plane of the double sided strip element.

Silicon drift detector

In the ALICE inner tracking system, a third type of silicon detector is installed containing silicon
drift sensors. The silicon drift detector is located between the silicon pixel detector and the silicon
strip detector as sketched in figure 2.7(a). The principle of a silicon drift detector is shown in figure
2.7(b).

A silicon drift detector is used to detect charged particles passing through the sensor and de-
termine the position in two dimensions. The charged particle liberates electrons in the depletion
region (high resistive n-type wafer). The p+ doped strips on both sides create an electrostatic field,
which forces the free electrons in the center of the depletion region. An additional electric field is
applied between a cathode on one side of the detector element and an anode region at the opposite
side. This electric field forces the liberated electrons in the middle of the depletion region to drift
to the anode region. The anode region contains several separated electrodes to improve space reso-
lution in x direction. The electrons drift with constant drift velocity from their creation point to the
anodes and the drift time is used to determine the position of the particle trajectory in y direction.
The front-end electronics is connected to the anodes and performs the amplification and shaping
of the signal.

The architecture of an ALICE silicon drift detector module is shown in figure 2.8(a) and consists
of two sensor elements separated by a high voltage cathode. Each element has 256 anodes con-
nected to the front-end electronics. The ALICE silicon drift detector has in total around 133 000
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(a) ALICE inner tracking system: Silicon Pixel Detector
(SPD), Silicon Drift Detector (SDD), Silicon Strip De-
tector (SSD) [18]

(b) Silicon drift detector element [19]

Figure 2.7.: ALICE silicon drift detector position in the inner tracking system and working principle of a
detector element

(a) Silicon Drift Detector Module (b) Silicon Drift detector Readout System

Figure 2.8.: ALICE silicon drift detector module and readout system containing PASCAL, ALBRA, CAR-
LOS

channels (anodes). The front-end electronics is composed of three full custom chips (ASIC) which
perform the amplification, shaping, digitization, compression and buffering of the input signals
from each anode. The front-end electronics is shown in figure 2.8(b). The first chip called PAS-
CAL contains 64 channels, each one containing an analogue amplifier and shaper producing a
semi-Gaussian waveform. The analogue signal is then stored in an analogue memory composed
of 256 cells to account for the L0-trigger latency (1.2 µs) and the maximum drift time (5 µs). The
analogue memory is frozen upon arrival of a L0-trigger accept signal and the digitization of the
analogue value is started. A successive approximation analog to digital converter (SAR-ADC)
with 10 bit resolution and a clock of 40 MHz digitizes the signal stored in the analogue memory.
The structure of the PASCAL chip is shown in figure 2.9(a).

The digital signal is then send to the next chip called AMBRA, which performs a baseline
correction and a data reduction by a non-linear compression of the 10-bit samples from PASCAL
to 8-bit words. The 8-bit words are stored in one of sixteen on board RAM memories. An output
signal and the digitized sample values are shown in figure 2.9(b). [20]

When the full content of the analog memory is read out and digitized the AMBRA chip starts
transferring the data from the RAM memory to a third chip called CARLOS. During the slow speed
transfer from AMBRA to CARLOS, the PASCAL chip can continue the data acquisition and new
digitized data are stored in another RAM memory inside the AMBRA chip. If the L1-trigger does
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(a) Silicon Drift detector front-end chip PASCAL (b) Silicon Drift detector digitized output signal

Figure 2.9.: ALICE silicon drift detector PASCAL ASIC and its output signal

not arrive during the digitization phase (around 320µs) the process is aborted and the memory in
the AMBRA chip is cleared. The data are discarded as well if a L2-trigger reject signal arrives.
The CARLOS chip performs a further data compression by performing a zero suppression before
the data are transferred outside the experimental area.

2.2.2. Calorimeter
Calorimeters are devices used in particle physics experiments to measure the energy of particles
created in the collisions. When traversing heavy materials, charged particles are progressively
slowed down by electromagnetic interactions with the atoms of the absorbing materials. In this
process, electrons and photons are mainly created (sometime nuclear interactions are also gener-
ated). The photons in turn are mostly converted into electron-hole pairs. A measurement of the
amount of free electrons provides an estimate of the energy belonging to the primary particle. The
basic objective of measuring energy of particles in calorimeters is simply achieved by interspersing
layers of absorbers and layers of detecting materials in a way as to measure the energy of all sec-
ondary particles produced. The free electrons induce a signal in electrodes, whereas light sensing
devices detect the photons if these are produced with wavelength roughly close to visible light.
The fact that calorimeters cause the detected particles to stop requires that they be positioned in
the outer layers of the experiments. ATLAS and CMS use calorimeters as their main detecting
devices, but also ALICE and LHCb make use of calorimeters. There are mainly two different
types of calorimeters used in the experiments: the electromagnetic calorimeter and the hadronic
calorimeter. These two types are described in the following.

Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) is used to determine the energy of electrons and photons
created by the collision. These are interesting particles for the discovery of the Higgs bosons.
To detect the energy of the high energetic electrons or photons the electromagnetic calorimeter
consists of alternating layers of absorber material and active material such as scintillators or liq-
uids. When the electrons and photons are passing through the absorber material, they interact with
the atoms of the material either by producing electron-positron pairs or through bremsstrahlung
producing secondary photons. This leads to a particle shower in the ECAL layers of low-energy
electrons, positrons and photons. The primary high-energy electron or photon passes through sev-
eral layers of the ECAL until eventually it has lost all its energy and stops as shown in figure
2.10(b).

The ECAL of the ATLAS experiment consists of accordion shaped absorber plates made of
lead and stainless steel. The active material between the absorber plates is liquid argon [12]. A
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copper grid is placed in the liquid argon, which is supplied with high voltage to create an electric
field (drift region). The shower of secondary low-energy particles ionizes the liquid argon and the
movement of the liberated electrons and ions in the drift region, induce a signal in the grid that
then is read out.

The CMS electromagnetic calorimeter uses lead tungstate crystals. A small amount of oxy-
gen is added inside the crystalline structure of the lead tungstate, which makes the crystals highly
transparent. A high-energy electron or photon interacts with the heavy nuclei of the crystal and
produces a shower of secondary low-energy electrons, positrons and photons. The energy of pass-
ing by secondary particles excites the electrons in the atoms of the crystal that when relaxing emit
photons. These photons are detected by photo detector devices, which transform the light into
an electrical signal [21]. The position of the ECAL inside the CMS barrel is shown in figure
2.10(a) and is located immediately after the inner silicon tracker and before the hadronic calorime-
ter. ECAL end-cap wheels are placed on both sides of the silicon tracker. The PHOS detector and
the EMCal in the ALICE experiment use also lead tungstate scintillators and their position can be
seen in figure 2.1.

(a) CMS structure (b) CMS slice

Figure 2.10.: CMS experiment detector structure and radial slice showing the particle path of different
particles

To distinguish the high-energy electrons from the high-energy photons the track of the particle
shower in the ECAL is followed back and combined with the tracks detected inside the inner
tracker. If the silicon detectors have detected a particle track, which matches with the track of the
particle shower, the detected particle is a high-energy electron, because high-energy photons have
no charge and leave no track in the silicon detectors.

The composition of an ECAL module is shown in figure 2.11 together with an image of the
modules front view. The image in figure 2.12(a) shows half an end-cap ECAL with the scintillator
crystals.

The detection of the light inside the barrel ECAL is performed by avalanche photo diodes
(APD), while for the end-cap ECAL vacuum photo triodes (VPT) are used. Two crystals one with
the APD and the other with the VPT are shown in figure 2.12(b). The photo detectors APD and
VPT transform the scintillator light into electric signals, which are then processed in the front-end
electronics.

A front-end electronics channel of the CMS ECAL consists of a pre-amplifier and shaper, three
additional amplifiers with different gain, three ADC’s, a digital pipeline with 256 words, an event
buffer, a trigger generator and a gigabit optical link. The different blocks are shown in figure 2.13.

The signal from the APD or VPT is first amplified and shaped resulting in a semi-Gaussian
shape. An additional set of three single-ended to differential amplifiers with gains 1, 6 and 12 are
used to best amplify the signal to the full scale of the ADC’s. The shaping and amplification units
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(a) Module layout of CMS barrel ECAL (b) Picture of the front view of the barrel ECAL
of CMS

Figure 2.11.: The barrel electromagnetic calorimeter of the CMS experiment containing the lead tungstate
crystals [22]

(a) Picture of half of the end-cap ECAL in the
CMS

(b) Two lead tungstate crystals: left with APD, right with VPT

Figure 2.12.: The end-cap electromagnetic calorimeter of the CMS experiment and two lead tungstate crys-
tals with photo elements [22]

are combined in an analogue 0.25 µm ASIC called MGPA (Multi Gain Pre-Amplifier). The three
amplifier outputs of the MGPA are differentially connected to three ADC’s with 12-bit resolution
and 40 MHz sampling frequency. The highest not saturated output signal of the three ADC’s
is detected and the 12-bit words are sent out combined with two bits to indicate the used gain. A
LVDS (Low Voltage Differential Signal) chip adapts the differential outputs of the ADC’s to single
ended signals. These blocks are realized in a very front-end card (VFE) connected to 5 crystals.
The single ended signals of the VFE cards are transferred to an additional front-end card (FE)
where the digital data are stored in a 256-word deep dual port memory to buffer them for the level-
1 trigger latency. A chip called FENIX performs a summation of the energy of the 5 crystals and
sends the information to the off-detector trigger concentration card, which controls the L1-trigger
creation. If a L1-trigger indicates an interesting event, the data stored in the 256-word buffer are
transferred to a multi-event buffer before they are readout via a gigabit optical hybrid link upon a
L2-trigger accept signal.
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Figure 2.13.: Block diagram of the ECAL front-end electronics in the CMS experiment [22]

Hadronic Calorimeter

The hadronic calorimeters (HCAL) are used in the experiments to detect hadrons which are par-
ticles made out of quarks e.g. protons, neutrons, kaons and pions. The hadronic calorimeters
are positioned after the electromagnetic calorimeters (seen from the interaction point) as shown
in figure 2.10(a) for the CMS detector. After the high-energy electrons and photons are stopped
in the electromagnetic calorimeters, the heavier hadrons are stopped in the hadronic calorimeter
(HCAL). The concept and structure of the hadronic calorimeters are similar to the ECAL. An
absorber material slows down the hadron particles from the collision until they stop. When the
hadrons pass through several layers of absorber material, they lose energy by elastic and inelastic
scattering between the particle and the nucleons of the calorimeter material until they release their
remaining energy by ionization or nuclear absorption. The loss of energy of the primary hadron
particle leads to the production of secondary particles that create a particle shower in the HCAL.

In the CMS experiment, the hadronic calorimeter is composed of alternating layers of absorber
material (brass or steal) and layers of active material so called scintillators (plastic). As the particle
shower produced by the primary hadron develops through the HCAL, the particles pass through
the scintillator material and cause this material to emit blue-violet light [23]. This blue-violet
light is absorbed by wavelength-shifting fibers installed in the scintillators and transferred to green
light. The green light can be transported with clear optical cables to readout boxes and the light
of a full sector of the hadronic calorimeter is summed up optically by bundling the cables. This
allows detecting the total light produced by one particle shower, which corresponds to the energy
of the primary hadron. In the readout box photo-sensing devices, e.g. photo-multiplier tubes or
hybrid photodiodes are transferring the incoming photons in electrical signals, which then can be
processed by the front-end electronics. The CMS front-end electronics of the hadronic calorime-
ters, which are based on scintillators is composed by a charge-integrating ADC chip called QIE
(Charge-Integrator and Encoder). The analogue signal from the hybrid photodiode (HPD) is inte-
grated by four capacitors that are connected in turn to the input of the QIE each one having a time
constant of 25 ns. The integrated charge from the capacitors is converted then to a digital value
of 7-bit resolution with a non-linear scale. The digital values from the QIE outputs are combined
with some monitoring information to 32-bit words and send with 40 MHz via a gigabit optical link
to the counting room.

Steel absorbers and plastic scintillators as active medium are installed as well in the central
hadronic calorimeter of the ATLAS experiment. Wavelength-shifting fibers absorb the light pro-
duced in the scintillators and shift it to the green spectrum (longer wavelength). Photomultiplier
tubes detect and convert the green light into electrical signals. The Hadronic End-cap Calorimeters
(HEC) and the forward calorimeters of ATLAS are based on copper absorber material and liquid
argon as active medium between the copper plates similar to the ECAL. The particle shower ionizes
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the liquid argon. Electrode plates are inserted in the liquid argon and supplied with high voltages
to form an electric field and a drift region. The electrons and ions drift towards the electrodes and
their movement induces a signal in the electrodes, which is then readout from the front-end elec-
tronics connected to the grounded electrode. A schematic view of a hadronic end-cap calorimeter
module and the readout structure are shown in figure 2.14.

(a) Schematic view of the HEC module of ATLAS (b) Schematic of the readout structure in the liq-
uid argon gap of the HEC module

Figure 2.14.: ATLAS hadronic end-cap calorimeter (HEC) module [12]

The front-end electronic of the ATLAS hadronic calorimeters based on liquid argon is identical
to the front-end electronics used for the ECALs of ATLAS. This front-end electronic is composed
of a pre-amplifier and shaper with three different linear gain scales, analogue memory (SCA-
switched capacitor array), and 12-bit ADCs to digitize the buffered analogue signals if a L1-trigger
arrives. The digital values are then sent via optical links to the counting room. A schematic of the
front-end electronic for liquid argon calorimeters is shown in figure 2.15, together with the shaped
output signal of the front-end boards.

(a) Block diagram of the front-end board architecture (b) Triangular input signal and shaped out-
put signal of the front-end board

Figure 2.15.: Front-end electronic block diagram and input-output signals of the ATLAS liquid argon
calorimeters [12]
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The front-end electronics of the scintillator based hadronic calorimeter in the ATLAS experi-
ment is composed by a shaper and amplifier board, which is located in the photomultiplier tube
(PMT) boxes and gives the analogue signal from the PMT a unipolar semi-Gaussian shape. This
board is called 3-in-1 card [24]. In addition, the 3-in-1 card uses charge-averaging amplifiers to
provide a signal for calibration and monitoring and analogue signals for the L1-trigger handling.
Two amplified and shaped signals with high and low gain amplification are then differentially sent
to a digitizer board. The digitizer board contains a 10 bit ADC with 40 MHz sampling frequency.
The digital data are saved in a pipeline memory for the latency of the L1-trigger signal. If a L1-
trigger signal indicates an interesting event, the data in the pipeline memory are read out selecting
the high or low gain data according to the value of the maximum samples. The selected data are
stored in the output memory that can store data from 36 events. The data from the output buffer are
sent to the off-detector readout driver by an optical interface card, which adds a cyclic redundancy
check and transmits the data via an optical link to the counting room. A block diagram of the
front-end electronics is shown in figure 2.16.

Figure 2.16.: Block diagram of the readout electronic of the ATLAS scintillator based hadronic calorimeter
[12]

The LHCb experiment contains also a hadronic calorimeter made of iron absorbers and scintil-
lators as active material. Wavelength-shifting fibers and PMTs are used to transfer the scintillating
light in electrical signals. The electrical signal is shaped to a semi-Gaussian shape and digitized
by a 12-bit ADC sampling at 40 MHz.

The ALICE experiment has a small hadronic calorimeter as forward detector called zero degree
calorimeter (ZDC). This calorimeter is made of quartz fibers as active material and tungsten alloy
or brass as absorber material. Particles passing through the absorber layers produce Cherenkov
radiation in the quartz fibers. PMTs are detecting the light from the quartz fibers. The analogue
signals from the PMTs are transferred via long coaxial cables to the counting rooms behind the
detector cavern where the analogue signals are digitized and processed.

2.2.3. TPC detector
A Time Projection Chamber (TPC) composes the central detector of the ALICE experiment. The
TPC consists of a cylindrical vessel filled with gas and it is used to provide a 3-dimensional image
of the trajectory of charged particles emerging the interaction point. Two cylinders are forming
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a 88 m3 gas volume around the beam pipe as shown in figure 2.17(a). The diameter of the inner
cylinder is 1.14 m and the outer cylinder has a diameter of 5.56 m. The gas filled cylinder volume

(a) Schematics of the TPC in the ALICE experiment
[1]

(b) Working principle of the ALICE TPC [25]

Figure 2.17.: Time Projection Chamber (TPC) of the ALICE experiment

is divided by a central electrode into two drift regions. The central electrode is biased to a high
voltage (−100 kV) to provide a high electric field between the central electrode and the end-caps
(grounded). The end-caps at both ends of the detector house the readout chambers, which contain
Multi-Wire Proportional Chambers (MWPC) and the readout pads.

The working principle of the TPC is presented in figure 2.17(b). A charged particle, which
emerges from the interaction point, traverses the gas volume and ionizes the gas. The liberated
electrons in the gas volume are drifting towards the endplates guided by the high homogenous
electric field (400 V cm−1) whereas the ions are collected at the central electrode. In the MWPC at
the end-caps, an avalanche process multiplies the drifting electrons. This amplification leads to a
measurable electrical signal in the detector pads. The position of the pads which detect the signals
provides an x-y resolution (min. pad size 4 mm×7.5 mm) of the particle trajectory. The third co-
ordinate (z) is obtained by measuring the drift time of the liberated electrons from the trajectory
until the end-caps. Therefore, a 3-dimentional image of the charged particle trajectory is obtained.
For a good resolution in z, the electric field inside the gas volume has to be highly homogenous
providing a constant drift velocity of the electrons in the overall drift zone. A magnetic field of
0.5 T is applied to the TPC by the large solenoid magnet in the ALICE experiment (see 2.1). This
magnetic field causes a deviation of the trajectory of charged particles. According to this devia-
tion, the momentum of the charged particle is calculated. The track and momentum information in
combination with the measurement of the specific energy loss dE/dx provides good particle iden-
tification. The induced charge in the detector pads is proportional to the specific energy loss of the
ionizing particle. This is measured by the amplitude of the electrical signal (voltage) generated in
the front-end electronics connected to the pad.

The MWPC in the readout chamber consists of three layers of wire grids above the pad plane
as shown in figure 2.18. Above the pads, there is an anode wire grid and above the anode wires, a
cathode wire grid is placed with the same pitch. Between this cathode wires and the anode wires a
high electric field is formed, which chausses an avalanche initiated by an electron entering from the
drift region. A gating grid above the cathode wires prevents that created ions from the avalanche
enter the drift region, which would cause severe distortions to the drift (electric) field for following
events. The gate also blocks electrons from the drift region to enter the MWPC if no valid trigger
signal is received. The electrons and ions created in the avalanche process move to the anode wires
and cathode wires respectively and induce a signal in the underneath positioned detector pads. The
TPC in ALICE contains in total around 560 000 such readout pads.

The front-end electronics is connected via Kapton cables to the detector pads. The induced
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(a) Geometry of the MWPC wires in the outer part of
the readout chamber [2]

(b) Cross section through a readout camber [3]

Figure 2.18.: Multi-wire proportional chamber (MWPC) inside the readout chamber of the ALICE TPC

electrical signal of each detector pad is first amplified and shaped by an analogue Pre-Amplifier
and Shaper ASIC called PASA. The PASA chip contains 16 channels directly connected to 16 pads.
Each channel integrates and amplifies the induced charge and send out an equivalent voltage signal
with a semi-Gaussian shape and shaping time of around 190 ns (equal to Full Width Half Maximum
(FWHM) of impulse response). The impulse response of the PASA is shown in figure 2.19(b). The
PASA is connected differentially to a chip called ALice Tpc Read Out (ALTRO), which contains
as well 16 channels. Each channel of ALTRO contains an ADC with 10-bit resolution and a digital
signal processing unit. The ADC samples the semi-Gaussian shape with a frequency of 10 MHz.
The digitized signal is processed then by the signal processing unit, which contains two baseline
correction filters and a tail cancelation filter. The full signal chain of the front-end electronic of the
TPC is sketched in figure 2.19(a).
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(a) Block diagram of the front-end electronics (b) Impulse response of the PASA having a semi-
Gaussian shape 4th order (horiz. 100 ns/div, vert.
200 mV/div) [26]

Figure 2.19.: Front-end electronics of the TPC in the ALICE experiment and the shaped output signal of
the PASA connected to the detector pads

The signal-processing unit will correct the digital signal for baseline distortions and reduce
the long tail caused by the slow moving ions of the avalanche process to perform then a data
reduction using zero suppression. The zero suppression is performed on the digital signal with
corrected, stable baseline by applying a threshold and saving only the sample values rising above
the threshold level combined with a time stamp for each waveform cluster to preserve the arrival
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time information (z resolution of trajectory). The zero suppressed digital samples together with
the time stamp are saved in Multi-Event Buffer (MEB) memories if a L1-trigger signal has arrived.

A FPGA based control board called Readout Control Unit (RCU) is handling the data readout
and is connected to up to 25 front-end cards each card containing 8 PASA and 8 ALTRO chips. If
the RCU receives, a L2-trigger signal for accepting the event it starts reading out the MEB from
each channel one after one and building a defined data format for transmitting the data via optical
links to the counting room.

2.2.4. Transition Radiation Detector
The Transition Radiation Detector (TRD) of the ALICE experiment is used to provide electron
identification for momenta higher than 1 GeV/c where the energy loss in the TPC is not high
enough to provide a good tracking. The TRD is installed on the outside of the TPC below the
Time-Of-Flight detector as can be seen in figure 2.1. The TRD surrounds the TPC and is made
of 540 individual readout detector modules arranged in 18 super modules. Each super module is
build by 30 readout modules. The layout of the TRD is shown in figure 2.20(a). Each readout

(a) Schematic view of the TRD layout [18] (b) Cross-section view of a detector module [18]

Figure 2.20.: Transition Radiation Detector of the ALICE experiment

module is made of a radiator with a gas filed drift chamber and a MWPC above it as can be seen
in figure 2.20(b).

The radiator consists of polypropylene fibers in a carbon fiber-laminated Rohacell casing of
48 mm thickness [18]. The above drift region of 30 mm is filled with Xenon gas. The MWPC
at the end of the drift region creates an amplification of the electrons by an avalanche process
equal to the MWPC of the TPC. High energetic particles traversing the drift volume are ionizing
the gas producing free electrons, which drift towards the MWPC guided by a high electric field
(0.7 kV cm−1). Particles with energies exceeding the threshold for transition radiation production
e.g. high-energy electrons create in addition X-ray photons in the radiator. These X-ray photons
are converted in the Xenon gas into additional free electrons, which increase the amplitude of the
signal in the readout pads. The liberated electrons in the gas drift towards the MWPC where they
are amplified through an avalanche process between the cathode and anode wires. The charges
created in the avalanche induce a signal in the segmented cathode pads. The transition radiation is
important to differentiate the high-energy electrons from the pions, which are not causing transition
radiation. The detector front-end electronic is connected to the cathode pads and the schematic
overview is shown in figure 2.21.
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Figure 2.21.: Block diagram of the front-end electronics of the TRD in the ALICE experiment [18]

The front-end electronics contains as well a pre-amplifier and shaper ASIC called PASA as in
the TPC front-end. This charge sensitive pre-amplifier and shaper transforms the induced signal in
the cathode pad into a semi-Gaussian shaped voltage signal with 120 ns shaping time [18]. A 10-
bit ADC samples the analogue shaped signal with 10 MHz and a signal processor made of digital
filters performs a baseline correction and tail cancelation equal to the TPC front-end electronics.
The filtered digital signal is once fed to an event buffer and second to a processing unit (Tracklet
Preprocessor and Processor). The processing unit calculates the inclination of a track in the bend-
ing direction and the total charge along the track. This information allows identifying interesting
particles (high transverse momentum). The short drift region compared to the TPC leads to a fast
signal creation in the detector pads (drift time 2 µs) and to fast information about interesting events,
which is used to created the L1-trigger information. If the L1-trigger indicates an interesting event,
the data stored in the event buffer are serialized by the Optical Readout Interface (ORI) and send
via optical fibers to the Global Tracking Unit (GTU) in the counting room. The GTU sends then
the data to the DAQ upon a L2-trigger accept signal arrives.

The ATLAS experiment contains also a transition radiation detector, which is called Transition
Radiation Tracker (TRT) and is installed in the inner tracking system (see figure 2.3). The TRT
consists of small straw tubes (d=4 mm), which are filled with Xenon gas and contain a sensing
wire in the center. The TRT is build of 52 544 straw tubes in the barrel region and 122 880
straw tubes in the end-cap wheels. Between the tubes, polypropylene fibers (barrel) and foils
(end-caps) are installed and used as radiator material. Charged particles from the collision point,
which traverse the straw tubes, are ionizing the gas in the tubes. The X-ray photons created in the
radiator material by high-energy particles (e.g. electrons) are transferred in the Xenon gas inside
the tubes into additional free electrons. These liberated electrons are drifting towards the sensing
wires guided by a high electric field applied between the tube wall and the sensing wire. The small
diameter of the straws and the isolation of the sensing wires within individual gas volume lead to
a high detection rate. The schematic view of a TRT end-cap module is shown in figure 2.22(a).

The front-end electronic of the TRT is connected to the sensing wires and consist of an analogue
amplifier and shaper chip called ASDBLR and a second ASIC for the data handling. The schematic
of the ASDBLR chip together with the signal forms at different points in the signal chain are shown
in figure 2.22(b). The shaper produces a semi-Gaussian waveform. To digitize the signal two
discriminators are used one with a low threshold and the other one with a high threshold. With the
two threshold levels, it can be distinguished if the signal is produced by a high-energy particle that
causes a transition radiation or by a particle that does not cause transition radiation. A subsequent
second ASIC performs a drift-time measurement, digital pipelining of the discriminator signals for
the L1-trigger latency and an output buffering for the L2-trigger latency. This ASIC is connected
via a 40 Mbit s−1 optical interface to the off-detector electronics.
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(a) Schematic view of a TRT module [12] (b) Schematics of the ASDBLR TRT front-end electronic
ASIC [12]

Figure 2.22.: Transition Radiation Tracker module and front-end of the ATLAS experiment

2.2.5. Time-Of-Flight detector
The Time-of-Flight detector (TOF) of the ALICE experiment is positioned on the outside of the
TRD as shown in figure 2.1. The TOF consists of 18 super modules surrounding the TRD as shown
in figure 2.23(a). Each super module contains 5 modules which are build of Multi-gap Resistive-
Plate Chamber (MRPC). A MRPC consists of a small gap (≈ 10 mm) filled with gas and a high
uniform electric field is applied to this gap. To increase the detection performance multiple layers
of anode-cathode plates are inserted in the gas volume, which create multiple intermediate gaps
and a higher signal in the readout electrodes. The structure of a MRPC is shown in figure 2.23(b).

(a) TOF super module and the ALICE spaceframe [18] (b) Principle of a MRPC [27]

Figure 2.23.: ALICE Time-of-Flight detector (TOF) super module and Multi-gap Resistive Plate Chamber
(MRPC) working principle

A charged particle, which traverses the gas volume, ionizes the gas and the liberated electrons
immediately start an avalanche process in the gas gaps caused by the high electric field uniformly
applied to the gas volume. The signal, which is induced in the pick-up electrodes, is the sum of the
avalanches in the different gaps.

The advantages of a Multi-gap Resistive-Plate Chamber is that unlike other gaseous detectors
there is no long drift time associated with the movement of electrons to a region of high electric
field. The time jitter of this detector is related only to the fluctuation of the avalanche process.
The induced signal contains no long ion tail since the gaps where the avalanches take place are
small having short drift times. The charge spectrum is not of an exponential shape but has a well
separated peak from zero [18]. The schematics of a MRPC strip cross-section is shown in figure
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2.24(a) and contains two 5-gap gas chambers mounted back to back with two rows of 48 pick-
up pads. In total, the TOF of the ALICE experiment contains 157 248 such readout pads. The
intermediate electrode plats in the gas volume are electrically floating and capacitive coupled to
the external plates.

(a) Schematic cross section of a 10-gap double-
stack MRPC strip [18]

(b) Schematic of the TOF front-end electronics [18]

Figure 2.24.: ALICE Time-Of-Flight detector (TOF) Multi-gap Resistive Plate Chamber (MRPC) strip and
the front-end electronics connected to the pick-up pads of the strips

The front-end electronic connected to the readout pads consists of a front-end analogue ASIC
called NINO which contains an input amplifier and a comparator both using differential signals,
which provide information of the hit time (leading edge) and of the Time-Over-Threshold (TOT).
Three NINO chips are mounted on a Front-End Analogue (FEA) card each chip contains 8 channels
connected to 8 readout pads. A schematic of the TOF front-end electronic is shown in figure
2.24(b).

The signal from the FEA is send to a TDC (Time-to-Digital Converter) Readout Module (TRM)
card, which contains high performance TDCs (24.4 ps resolution) to digitize the hit time of charged
particles traversing the MRPC. A second card the Data Readout Module (DRM) reads and encodes
the data from the TRM’s and sends the data via optical links to the DAQ upon a trigger signal
arrival (L1-trigger and L2-trigger). Two more cards are included in the custom crate of the TOF;
the Local Trigger Module (LTM) and the Clock and Pulser Distribution Module (CPDM). The
CPDM provides a high precision clock signal to the TRM, DRM and LTM.

2.2.6. Muon detectors
The outer part of the ATLAS and CMS experiment is covered by the muon spectrometer. These
muon detectors are used to detect charged particles, which have energies high enough to pass the
inner detectors and calorimeters. The muon spectrometer identifies muons and measures their
momenta. Muons can be used to prove the existence of the Higgs boson and can revile some new
information about the SUper-SYmmetry (SUSY) theory. The muon spectrometer is also designed
to provide trigger information to the experiment for interesting events. ATLAS and CMS contain
muon detectors in the barrel region and in several end-cap wheels. CMS uses three different types
of muon detectors: Drift Tubes chambers (DT), Cathode-Strip Chambers (CSC) and Resistive
Plate Chambers (RPC). The ATLAS experiment uses as well these types of detectors and contains
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in addition Thin Gap Chambers (TGC) in the end-cap region. Drift tubes and CSC provide a
precise momentum measurement. The fast RPC and TGC detectors are used as trigger generators,
because they are able to provide track information within a few tens of nanoseconds after the
crossing of a charged particle [12]. A cross-section of the ATLAS muon system perpendicular to
the beam axis and in plane of the beam axis are shown in figure 2.25.

(a) Cross-section perpendicular to the beam axis [12] (b) Cross-section of the muon system in a plane of the
beam axis showing the four different muon detector posi-
tions. The numerated boxes contain the MDT’s. [12]

Figure 2.25.: Layout of the ATLAS muon system composed by Monitored Drift Tubes (MDT), Cathode-
Strip Chambers (CSC), Resistive Plate Chambers (RPC) and Thin Gap Chambers (TGC)

Drift Tube chambers

The drift tube chambers are used as muon detectors in the barrel region of CMS and ATLAS and
in the end-cap region of ATLAS. A drift tube chamber is composed by aluminum tubes with a
diameter of around 30 mm. The tubes are filed with gas and held under pressure. In the center
of the tube a gold plated tungsten-rhenium wire with a diameter of 50 µm is placed and charged
to 3080 V. Charged particles emerging the collision point and traversing the gas-filled tube ionize
the gas liberating electrons. The electrons drift towards the central wire guided by an electric field
created between the tube wall and the central anode wire. The cross-section of such a drift tube in
front and longitudinal view can be seen in figure 2.26(a). These drift tubes are similar to the once
in the transition radiation detector in the ATLAS inner tracker but with a much larger diameter
and without radiator material between the tubes. Several tubes are mounted together to form a
drift tube chamber shown in figure 2.26(b). The number of tubes per chamber and the length of
the tubes vary according to the position of the chamber in the experiment. In total, the ATLAS
experiment contains 354 384 tubes each one connected to a front-end electronic channel.

The drift tube front-end electronics of ATLAS consists of an Amplifier/Shaper/Discriminator
ASIC called (ASD), a Time-to-Digital Converter (TDC) chip and a Chamber Service Module
(CSM). The block diagram of the front-end is shown in figure 2.27(a).

The ASD will amplify and shape the signals creating bipolar semi-Gaussian shapes. Then a
threshold is applied to the shaped analogue signal by the discriminator (comparator) to produce a
digital signal, which indicates a particle hit. The arrival times of the leading and trailing edges of
the input signal are detected to obtain the TOT information. The schematic of the ASD and the
shaper output is shown in figure 2.27(b). In addition, the analogue shaper output is fed also into
an ADC, which will measure and digitize the signal charge in a defined time window (integrated
charge) to determine the maximum signal height [28].
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(a) Cross-section front view (top) and longitudinal view
(bottom) of a Monitored Drift Tube [12]

(b) Mechanical structure of a MDT chamber with drift
tubes on top and bottom [12]

Figure 2.26.: Monitored Drift Tube (MDT) detector of the ATLAS experiment

(a) Schematic of the MDT readout electronics
[12]

(b) Block diagram of the MDT front-end ASD chip [28]

Figure 2.27.: Monitored Drift Tube (MDT) front-end electronics and shaper output signal

The binary differential signal from the ASD is send to the TDC chip which performs a time-to-
digital conversion of the leading and trailing edge times with a resolution of 0.78 ns. The digital
time information is stored in a buffer memory inside the TDC chip together with a flag bit to
distinguish between leading and trailing edge, a beam-crossing identifier and a tube identifier.

The TDC data in the buffer are sent to the Chamber Service Module (CSM), which packages
the data and sent them via optical link to the off-detector Readout Drivers (ROD) in the service
cavern.

Cathode-strip chambers

Cathode-strip chambers are used in the end-cap region close to the collision point instead of
MDT’s, because they support better the higher rate of particles (radiation) traversing the detec-
tor area (counting rate > 150 Hz cm−1). Cathode-strip chambers (CSC) combine high spatial and
time resolution and provide double track points resolution [12]. The CSC chambers are based on
MWPCs, similar to the ones used in the TPC and TRD of the ALICE experiment. The layout of
the CSC end-caps of ATLAS is shown in figure 2.28(a).

The MWPC is composed by a gas filed chamber with anode wires in the center running in
radial direction of the end-cap wheel. Both sides of the chamber contain cathode strips. These
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(a) Layout of the CSC end-cap detector
[12]

(b) Structure of the CSC module [12]

Figure 2.28.: Cathode-strip chamber of the ATALS experiment with two cathode strip layers in x and y
direction

strips are oriented at one side parallel to the central anode wires and at the other side perpendicular
to the wires. The structure of a CSC module is shown in figure 2.28(b). The charged particle
traversing the chamber ionizes the gas and the liberated electrons are causing an avalanche in
the high electric field between the anode wires and the cathode strips. The free charges drift
towards the electrodes and induce a charge in the cathode strips. Between two strips connected
to the front-end electronics, there are two intermediate strips, which are electrically floating and
capacitively coupled to the readout strips. This capacitive coupled strips provide an additional
charge interpolation, which increases the precision of the position measurement of the particle
tracks [12].

Preamp 
and
Shaper

Figure 2.29.: Schematics of the CSC front-end electronics of the ATLAS experiment [12]

The front-end electronics connected to the cathode strips of CSC in ATLAS consists of an
Amplifier Storage Module (ASM) containing an amplifier, shaper, an analogue storage and an
ADC as shown in figure 2.29. The amplifier and shaper stage gives the induced signal in the
cathode strip a bipolar semi-Gaussian shape. The shaped signal is sampled at a rate of around
40 MHz and stored in a Switched Capacitor Array (SCA), which works as analogue memory. The
analogue memory is used to store the input signal for the L1-trigger latency. If a L1-trigger accept
signal arrives indicating an interesting event the analogue data in the SCA are digitized by a 12-bit
ADC, multiplexed, and transferred via optical fibers to the off-detector ROD’s (Readout Driver).

28



CHAPTER 2. HIGH ENERGY PHYSICS: PROPERTIES OF SIGNALS FROM DETECTORS

The ROD performs a zero suppression and event data formatting and sends out the data to the DAQ
system.

Resistive Plate Chambers

Three concentric cylinders of Resistive Plate Chambers (RPC) serving as trigger stations are in-
stalled in the ATLAS barrel region as shown in figure 2.25. The trigger chambers provide fast
information on muon tracks, their multiplicity and approximate energy range, which are used to
perform a L1-trigger decision [12]. The RPC chambers are mounted on top and/or bottom of the
middle and outer layers of the MDT’s.

A RPC chamber consists of two parallel resistive electrode-plates with a 2 mm gap between
them, which is filled with gas similar to the TOF detector of ALCIE. A high electric field (about
4.9 kV mm−1) is applied to the gas volume through the two resistive plates, which are made of
plastic laminate and graphite electrodes. Charged particles traversing the gap ionize the gas and
the ionization electrons cause avalanches due to the high electric field. The electrons and ions
from the avalanche drift in the electric field towards the electrodes and induce a signal in metal-
lic strips mounted on the outer face of the resistive plates. A cross-section of a resistive plate
chamber is shown in figure 2.30(a) together with the structure of a RPC module consisting of two
units with two chambers. The front-end electronics is connected to the metallic strips, which are
mounted longitudinal on top of the chamber and transversal on the bottom of the chamber. This
orthogonality of the strips provides a resolution of the particle track in 2-dimensions.

(a) Structure of the resistive plate chamber module com-
posed by two units. Each unit has two RPC’s. The cross-
section of an RPC is shown at the bottom [12]

(b) Layout of the RPC readout strip plane [12]

Figure 2.30.: Resistive plate chamber (RPC) muon detector in the ATLAS barrel region

The front-end electronic board is mounted directly along the edges of the RPC and soldered to
the metallic readout strips as illustrated in figure 2.30(b). The front-end electronics consists of a
three-stage shaping amplifier followed by a comparator as shown in figure 2.31(a). The shaping
amplifier produces a bipolar semi-Gaussian output signal as shown in figure 2.31(b).

The shaped signal is then compared to a threshold by the comparator (discriminator) and if the
input signal raises above the threshold a digital impulse is send out by the discriminator preserving
the arrival time of the input signal. The signals of all three layers of the RPC muon trigger in the
barrel region are combined and used to obtain a L1-trigger decision.
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(a) Schematics of the front-end electronics [29] (b) Shaped output signal of the Ampli-
fier/Shaper stage [30]

Figure 2.31.: Front-end electronic of the RPC in the ATLAS experiment

Thin gap chambers

In the end-cap regions of the ATLAS muon detection system Thin Gap Chambers (TGC) are used
as trigger stations instead of RPC’s because of the high particle rate in this end-cap regions. The
position of the TGC’s is shown in figure 2.25. The TGC is a MWPC similar to the one of the TPC
and TRD in the ALICE experiment, but with the characteristic that the distance between the wire
and the cathode plane is smaller than the wire-to-wire distance. A small wire-to-wire distance and
a high electric field around the wires leads to a very good time resolution of the particle tracks [12].
The structure of a TGC is shown in 2.32(a). There are two types of TGC modules in the end-cap
wheels of the ATLAS experiment one with three TGC’s (Triplet) and one with two TGC’s (doublet)
as shown in figure 2.32(b).

(a) Structure of a Tin Gap Chamber [12] (b) Cross-section of a TGC triplet and doublet module. The
triplet has three wire layers but only two strip layers. The
doublet has two wire and strip layers [12]

Figure 2.32.: Thin-Gap Chambers (TGC) used in the muon system of the end-cap region of the ATLAS
experiment

A charged particle ionizes the gas in the chamber and an avalanche process starts, which induces
a signal in the anode wires and in the cathode strips running perpendicular to the wires, which gives
a 2-D resolution.

The front-end electronic connected to the strips and the wires consist of an Amplifier-Shaper-
Discriminator chip (ASD) and is shown in figure 2.33(a). The ASD chip performs the amplification
and shaping of the induced signal, which results in a bipolar semi-Gaussian shape. Then the
semi-Gaussian shaped signal is digitized by a comparator with an adjustable threshold to set an
adequate level for the wire signals and for the cathode strip signals. The output signals of the
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(a) Front-end electronics of the TGC [31], [32] (b) Output signals of the pre-amplifier, the
main-amplifier with shaper and the discrim-
inator (comparator) [32]

Figure 2.33.: Front-end electronics of the Thin Gap Chambers (TGC) of the ATLAS experiment

pre-amplifier and main-amplifier as well as the comparator output of the discriminator are shown
in figure 2.33(b).

The digital output signals of the ASD’s are sent to a Patch-Panel (PP) ASIC which performs
a time-alignment and synchronization to the beam-crossing frequency [12]. The PP ASIC is
mounted on the back of the chamber close to the ASD’s. A SLave Board (SLB) mounted on
the back of the chamber is taking the signals of the PP ASICS and performs a coincidence decision
as well as a data formatting and buffering for the L1-trigger latency. The SLB combines the three
signals from the triplet wires to perform a 2-ot-of-3 coincidence decision for improving the rejec-
tion of fake trigger. For the duplets, the SLB performs a 3-out-of-4 coincidence decision using the
two wire layer signals and the two cathode strip layer signals. A Hi-pT (high momentum) and Star
Switch Control (HSC) crate which is mounted at the outer rim of the chamber sends the readout
data via the Star-Switch (S-SW) to the off-detector readout drivers.

2.3. Summary
Different detector concepts are explained in this chapter and the structure of their front-end elec-
tronics is presented. The front-end electronics contain a pre-amplifier and shaper stage, which
transforms the induced charge signal from the detector pads in a voltage signal. This stage consist
of an integrator to translate the induced chare in a voltage signal. The integrator follows a differ-
entiator, which brings the integrator output voltage back to ground. Then low pass filters are used
to limit the bandwidth of the voltage signal. The output voltage from this stage has in most cases
a semi-Gaussian shape that can be represented mathematically by a gamma function 4th order. In
some detector front-ends the semi-Gaussian waveforms are bipolar and in others they are unipo-
lar as shown in figure 2.34. The amplitude of the semi-Gaussian waveform is proportional to the
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induced charge in the detector pads and therefore also related to the energy-loss of the charged
particles in the detector, which emerge the collision point. Some discussed particle detectors in
this chapter use ADCs to digitize the semi-Gaussian shaped voltage signal to preserve the ampli-
tude information and therefore the energy-loss information of the detected particle. To reduce data
most of the detectors use a zero suppression, which eliminates the baseline data before and after
an interesting signal and retains only the sample values of the interesting waveform. Nevertheless
also the zero suppressed data amount is high and therefore an additional digital data compression
algorithm should be found to further reduce this kind of digital data. The amount of data saved per
semi-Gaussian signal depends on the number of samples and their range of values. The range of
the sample values is represented by the ADC resolution in the front-end electronics. The number
of samples per semi-Gaussian waveform is given by the shaping time of the pre-amplifier/shaper
stage and the sampling rate of the ADC and depends on the duration of the waveform. The sig-
nal duration depends on the detector structure, the charge creation of the detected particle and the
avalanche process in the detector amplification region.
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Figure 2.34.: Semi-Gaussian signal with the digitized sample values (sampling rate 10 MHz)

Summing up the properties of the digital data, which have to be compressed by the searched
compression method, it will be consider in the following that they consist of digitized semi-
Gaussian waveforms with varying amplitudes and signal durations. The variation in amplitude
leads to large variations in the sample values requiring a certain bit-resolution (in most cases
10 bit). The variation in signal duration leads to varying numbers of samples per waveform. The
samples are normally stored in memories in the front-end electronics to buffer them for a L1-trigger
latency. This allows the data compression algorithm either to compress the samples individually
or to compress vectors containing all samples of one waveform.
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3. Data compression

Data compression is well known from software applications for home computers to reduce disc
space occupation and to reduce data size for transmission via internet, email or facsimile. The
most popular compression tools in this field are WinZip, GNUzip and compression standards for
audio files like mp3 and image files like jpeg or others. In telecommunication systems, data com-
pression is mainly used in source coding components to increase the amount of data, which can be
transferred over a communication channel in a certain time.

The objective of this work is the reduction of the size of data transfer and data storage in applica-
tions for high energy physics experiments. Detectors in such experiments produce a huge amount
of data that have to be transferred from the detectors to the counting rooms, where computer-farms
perform first analysis of the data. Then the data collected from the detectors have to be stored and
distributed to different Institutes all over the world for further investigating the data and extracting
relevant physics information. To reduce the amount of data as early as possible in the data chain,
e.g. already in the front-end electronics, a data compression algorithm is developed. An important
attribute of this algorithm is that it should be possible to implement it in real-time using relative
simple hardware.

Different compression methods are presented in this chapter and the block diagram in figure 3.1
shows a breakdown of them. Each of the different compression schemas is evaluated in terms of
its usability for the underlying kind of data.
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Figure 3.1.: Breakdown of the lossless and lossy compression methods presented in this chapter.

A detailed discussion and comparison of the most promising methods is then given in chapter 4
based on their performance on example data from real measurements carried out with the TPC of
the ALICE experiment.
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The descriptions of the compression methods in here are elaborated using the references [33–
36].

3.1. Lossless compression
Lossless compression methods attempt to reduce as much as possible the redundancy of the input
data. Therefore, the original data are analyzed and characterized to find encoding schemes which
represent the same information using a minimum of redundancy. The reduction of redundancy
caused by the compression reduces the error robustness of the code and makes data transmission
more problematic. Some of these encoding methods are specialized to certain types of data coming
from defined data sources others can be used on every kind of input data (general-purpose methods)
The encoding of the data has to be performed in a way that the decoder can perfectly reconstruct
the original data. Some of the information used for the encoding have to be transferred to the
decoder, while others are predefined and are already known to both the encoder and the decoder.
For lossless data compression three main concepts can be defined:

The frequency based methods (statistical methods), which in a first step analyze the frequencies
of the different symbols in the input data and then compress the input data using these proba-
bilities. Otherwise, a statistical model for the specified data source can be used to obtain the
probability values of the different input symbols. Variable length codewords are then assigned to
the different symbols, according to the probabilities, in such a way that frequently occurring sym-
bols (high probability) produce short output codes and unlikely occurring symbols produce longer
codewords. In this way the variable length codes can reduce the average number of bits per symbol
and compress the underlying data set.

The dictionary-based methods create a dictionary containing blocks of input data like words or
phrases. The encoder searches for entries in the dictionary, which match the input data and sends
out the position of the best matching entry. Since the original data block is substituted with just
the position number compression can be achieved. The decoder has to have the same dictionary or
be able to construct the same dictionary from the (de)compressed data.

Furthermore, there are also some other methods that do not fit in one of the two previous cate-
gories which for example use substitution of blocks of input data with special characters or count
the number of consecutive equal symbols like run-length-encoding.

Some of the most popular lossless compression methods are described in the following.

3.1.1. Run-Length encoding
Run-length encoding (RLE) is a lossless data compression method, which is used for example in
facsimile transmission. The idea is simple; Always when several consecutive identical symbols S
in the input bit stream are appearing the run-length encoder replaces these run of symbols with a
run-length-encoding pair nS where n is the count, i.e. the number of consecutive equal symbols.
If for example there are five symbols a in the input stream xaaaaaz the run length encoder sends
out x 5a z, which compresses the bit stream from 7 symbols to only 4 symbols [33]. If the input
data can contain also numbers and not only letters a problem of RLE arises in how to distinguish
the count number of a RLE pair from a normal occurrence of a number in the input data. There are
different solutions to this problem which are described in the following.

One possibility is to precede every pair of count and symbol (nS) with an escape character,
which is a symbol that cannot appear in the input stream. If an escape character, e.g. the @
symbol, is used, then the bit stream above is compressed as x @5a z. With this escape character
the decoder has no problem anymore to distinguish between numbers contained in the input data
and the count number of a RLE pair. The drawback is that an additional symbol has to be added to
the compressed data, which reduces the compression efficiency. Therefore, 5 symbols have to be
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used now to represent the 7 input symbols instead of 4. That means also that only runs of three and
more consecutive equal symbols should be substituted by the RLE pair, whereas three consecutive
symbols lead to no compression. Runs of four and more characters are resulting in compression for
this case. In normal text files, it is quite unlikely to find many of four consecutive equal characters.
In mathematical texts, the numbers can have four or more consecutive equal characters and RLE
could lead to good compression. Better results could be archived in image compression, where
runs of pixels with equal color values can occur.

If all possible characters or bit combinations could appear in the input data, no special character
(escape character) can be identified. Another method to distinguish a RLE pair from the input
symbols is required. Such a method is used in modems and is known as MNP5 (Microcom Net-
work Protocol). The MNP5 method defines a RLE pair by writing three consecutive equal symbols
followed by a count number on the output data. If the encoder identifies a run of three or more
equal symbols it writes three equal symbols followed by the number of total, consecutive equal
symbols (whereas a count of 0 means only three equal symbols are present). The decoder knows
that if it receives three equal symbols the following symbol is the count number. The disadvantage
of this method is that a run of three consecutive equal symbols leads to four characters in the output
data and therefore to expansion. A run of four equal symbols do still not produce compression. To
achieve a compression with this method five or more consecutive symbols in the input data have
to occur.

A third possibility is to use one additional bit for each symbol to indicate whether it is a count
of a RLE pair, or a symbol of the input stream. If for example the pixels of a grayscale image have
a maximum value of 128 then each pixel can be represented with 8 bit (1 byte) where the most
significant bit (MSB) represents a flag bit. This flag bit indicates if the byte is a grayscale value or
a count.

A variant of this is to not add the additional bit to each symbol but to group them together to
an additional word. For example if each pixel of a grayscale image is represented by a byte then
after 8 byte written on the output data an additional byte is added, which contains the 8 flag bits to
classify the preceding 8 byte. In this example, the additional byte increases the encoded output bit
stream by 12.5%.

Another possibility is not to precede RLE pairs with a special character, but precede a run of
different symbols by the number of different symbols until the next RLE pair. The different input
symbols between two RLE pairs can be identified by preceding them with a negative number,
whereas the absolute value represents how much consecutive different symbols are following. A
negative number in the output bit stream like -4 indicates that the following 4 symbols are not RLE
encoded, they are normal different input symbols and after them the next RLE pair follows. This
is advantageous in cases where many RLE pairs are present and between them only a few different
symbols.

In bitmap images of only black and white pixels, for example in facsimiles of text documents,
the encoder and decoder agree whether each row starts with a white pixel or a black pixel. The
image is then encoded row by row and just the counts of consecutive white pixels and black pixels
are written on the output stream. If for example the encoder writes 17, 1, 55 to the output file
and the agreement says that each row starts with a white pixel, it means that the row starts with 17
consecutive white pixels followed by one black pixel and then again 55 white pixels occur. If a row
starts with black pixels, the encoder writes 0 to indicate that no white pixel is at the beginning of
the row and then the number of the black pixels which are at the beginning. As the decoder knows
from the agreement that each row stars with white pixels it can perfectly decode the rows. To split
the encoded bit stream in the correct number of pixels per row the encoder has to add the size of
the image to the output data. A good encoder should be able to scan images by row, by column
or in a zigzag way. If for example, an image contains a large number of vertical lines but this
image is scanned and compressed row by row, the compression efficiency is very low. However,
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scanning this image column wise would result in a good compression. The encoder should scan
and compress the image in all three ways and then decide which scan method produces the best
compression and retain the corresponding compressed data.

To increase the efficiency of RLE the input data can also first be modified in a way that not only
the absolute values of the symbols are encoded but differences to a reference value. For example in
sensor networks, a temperature sensor could collect the temperature every hour. Instead of send-
ing all the measured temperature values, only the first temperature could be send followed by the
differences between the first temperature value and the successive measured temperatures. Suc-
cessive measured temperatures normally differ not by much and the resulting differences should
have small values. The encoder could have a limit for the differences so that if the differences are
below this limit they are send out, otherwise the absolute measured temperature values are send.
The use of the differences has the advantage that since their values should be small they need fewer
bits to be represented and they are concentrated in a smaller range, which could then lead to more
runs of equal values and increase the performance of RLE. To distinguish between absolute values
and difference values some of the methods described before can be used. In image compression
neighboring pixels are often not differing by much and the use of differences instead of absolute
values can lead to improved compression performance of compression methods.

Another compression method similar to RLE is based on the idea of substituting frequently used
words or common combinations of letters (digram) in text files with symbols, which cannot occur
in the input data or with a special character and a signature of the digram. In English texts for
example the combination th is really common and this could be substituted with another ASCII
character which is not used in English writings. In computer programs common words like printf
could be substituted with a special character such as @ followed by a signature like p resulting in
printf(a) being substituted by @p(a).

Suitability of RLE for the implementation of a detector data compression:
+ Advantageous is that a hardware implementation is easy to realize requiring mainly a counter
– Disadvantageous is that the expected performance is low for data containing semi-Gaussian

waveforms because consecutive equal sample values are not likely due to this signal shape.
The baseline between interesting signals is already RLE by the so-called zero suppression,
which is explained in chapter 4 in more detail.

– Better performance can be expected by first calculating the differences between consecutive
samples of the input waveform and then RLE the differences. However, the semi-Gaussian
shaped input waveforms have different amplitudes and no regular shapes, that leads not to
many consecutive differences being equal.

– Disadvantageous is also that the semi-Gaussian input waveforms have normally not a high
number of samples. Compressing several semi-Gaussian waveforms at once is also not so
promising since they can have different amplitudes.

3.1.2. Move-to-Front encoding
The idea of this method is to update the alphabet in the dictionary in a way that frequently occur-
ring symbols are located near to the front positions of the dictionary. Each symbol is encoded by
the position number where it appears in the alphabet. Frequent symbols should get small position
numbers indicating a position near the front of the alphabet. If for example the alphabet is con-
taining the symbols A = h, e, r, ... and the next symbol to encode is e it gets represented by the
position number 1 because one symbol precedes e in the alphabet. Before the next input symbol
gets encoded the encoder updates the alphabet by moving the actually encoded symbol e in front
of the alphabet so that now A = e, h, r, ... is used the next time. If the next input symbol is again
an e this gets encoded this time as 0.
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The advantage of getting small position numbers is related to a possible combination of this
method with Huffman coding or arithmetic coding. In the case of using Huffman coding the
encoder will assign the position numbers variable size codewords in a way that the small numbers
get assigned short codewords and larger position numbers get assigned long codewords. This can
result for example in the following codes for the position numbers [33]:

0→ 0; 1→ 10; 2→ 110; 3→ 1110; 4→ 111110; 5→ 111110
By using the move-to-front method, local frequencies of the symbols are exploited to compress

concentrations of identical symbols in the input stream. In input streams with a good concentra-
tion property, the move-to-front method performs better than the normal Huffman coding alone.
An advantage is also that the encoder has not to analyze first the entire input data to extract the fre-
quencies of the different symbols for building the Huffman codewords. The Huffman codewords
are defined previously and the move-to-front method performs the correct assignment of the code-
words according to the local frequencies. The method has a drawback if symbols are appearing
frequently in the input stream but not in consecutive order, then the move-to-front method creates
poorer results than by other methods, which first analyze the frequencies of the entire input data.
This behavior is shown in a small example for better illustration of the presented method [33].

The alphabet used in this example is containing the following symbols I,M, S,W . The two
strings SWISSMISS and MISSSWISS containing these characters in different order are en-
coded and shown in table 3.1. In addition, the changing alphabet is shown and both strings are
compared with the position numbers in column (b) resulting by not applying the move-to-front
method to the alphabet. If the average of the position numbers is calculated for the first string

Table 3.1.: Move-to-front method for SWISSMISS and MISSSWISS

IMSW IMSW IMSW
S SIMW 2 S IMSW 2 M MISW 1
W WSIM 3 W IMSW 3 I IMSW 1
I IWSM 2 I IMSW 0 S SIMW 2
S SIWM 2 S IMSW 2 S SIMW 0
S SIWM 0 S IMSW 2 S SIMW 0
M MSIW 3 M IMSW 1 W WSIM 3
I IMSW 2 I IMSW 0 I IWSM 2
S SIMW 2 S IMSW 2 S SIWM 2
S SIMW 0 S IMSW 2 S SIWM 0

(a) (b) (c)

SWISSMISS in column (a) it results in 1.77. The second column (b), which shows the same
string as in (a) but encoded without updating the alphabet results in an average of 1.55. The re-
organized string MISSSWISS, in column (c), results an average of 1.22. This shows that the
first string in column (a) has a higher average and therefore larger position numbers due to the
move-to-front method compared to (b) without the move-to-front. This is related to the fact that
the concentration property of this string is lower having only, two times two identically consecutive
characters. The string in column (c), containing the same characters but in a different order, per-
forms better by using the move-to-front method then without updating the alphabet. The second
string has a higher concentration property having one run of three consecutive identically char-
acters and another run of two consecutive identically characters. To increase the concentration
property of the input data a method can be used before performing the move-to-front called the
Burrows-Wheeler transform, which is explained in the next section.

Some variants of the move-to-front method are shortly explained as followes.
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1. Move-ahead-k. The current input symbol in the alphabet A is moved ahead only k positions
and not all the way to the front. The value k is defined by the user. This decreases the performance
of input streams with a high concentration property but it can work better for input streams with
low concentration property. If k is chosen k = n, where n is the number of elements in the alphabet
this equals to the move-to-front method. The case k = 1 requires only a swap of the actual input
symbol in the alphabet with the one preceding its position. This is simple and produces less
complexity for an implementation.

2. Wait-c-and-move. In this method, the elements in the alphabet are not moved after each
encoding of a symbol. An element in the alphabet is only moved to the front after it appeared c
times in the input stream. The c times of appearance of a symbol have not necessarily to be seen
consecutively. This reduces the times the alphabet has to be updated and is therefore advantageous
in implementations where updating the alphabet is slow.

3. Move-words-to-front. This method can be used for example in text compressions. The al-
phabet contains not just single characters but entire words. Each input word is encoded by the
position of it in the alphabet, which results in a great compression. The entire input word is then
moved in the alphabet to the front. The problem is that an alphabet containing entire words can
become large requiring a lot of memory space in the encoder and decoder. These large memory
requirements are in most hardware implementations not realizable. A solution to this problem is
that the encoder and decoder will start with an empty alphabet. The encoder reads a word from
the input stream and if the word is not already contained in the alphabet, it adds the word to the
alphabet in the next free position. Then the position of the new word is send out followed by the
word itself. The decoder reads the position number and detects that this position is empty in its
alphabet and it knows that the following symbols are representing a new word terminated by the
space character or the end-of-text. The decoder adds the new word to the empty position in its
alphabet. If an already contained word in the alphabet is appearing at the input, only the position
number is sent out from the encoder. If the memory space reserved for the alphabet is full, the
entire alphabet can be deleted and everything restarts again, or only the last entry is deleted if a
new word appears in the input stream. In both cases it has to be defined a way to tell the decoder
to perform the chosen action.

Suitability of Move-to-Front for the implementation of a detector data compression:
+ Advantageous is that a hardware implementation is easy to realize requiring only shifts of

memory words or pointer systems.
– Disadvantageous is that the memory accesses to perform the several memory shifts for each

input sample require some clock cycles which makes it difficult to realize a real-time imple-
mentation.

+ Advantageous is that the code tables for entropy coding are easy to build, not requiring
knowing the frequencies of the different sample values.

– Disadvantageous is that this method uses the concentration properties of the sample values,
which is normally not high since the semi-Gaussian waveforms have different amplitudes
and consecutive samples have mostly quite different values.

+ This method could be used in combination with other methods to increase a bit the perfor-
mance of the entropy coding but the additional effort for the implementation has to be taken
into account.

3.1.3. Burrows-Wheeler Transform
Burrows-Wheeler coding or Burrows-Wheeler transform is a context based method, which works
on sequences of input symbols. The Burrows-Wheeler transform (BWT) do not produce any com-
pression by itself. The BWT prepares a sequence of input symbols so that additionally used com-
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pression methods like run-length-encoding and move-to-front coding in combination with Huff-
man coding result in good compression performances. The BWT is a general-purpose method
(universal coding method) that works on every kind of input data. As discussed in the previous
section the problem of the move-to-front method arises when equal symbols are present in the data,
but they are not next to each other, i.e. the concentration property of the data is not high. The BWT
reorganizes the input sequence so that equal symbols are concentrated in a region, which gives a
much higher concentration property and an increased efficiency of the move-to-front method. Run-
length encoding can also be used prior to the move-to-front method to gain compression efficiency.

The BWT decoder performs not exactly the reverse operation of the encoder, which means that
after knowing how the encoder works it is not immediately evident to see how the decoder works.
First, I will explain how the encoder works and then I will show how the decoder executes.

1. The first step of the BWT encoder is to create the permutations of the input sequence with
length N . This is done by cyclic shifting the input sequence by one character to get all N − 1
cyclically shifted variants (permutations) of the input sequence. To illustrate the creation of the
permutations a short example is used consisting of the sequence swiss miss. The cyclic shifts
can be seen in table 3.2(a).

2. The second step is to sort the created cyclic shifts and the original sequence, in alphabetic
(lexicographic) order. The sorted list is shown in table 3.2(b).

3. The last characters of the sorted cyclic shifts are used to form the output sequence L, which is
send to the decoder. The sequence L swm siisss consists of the same symbols as the original input
sequence but in a different order. L is a permutation of the original input sequence with the property
that after sorting the cyclic shifts L will have concentrations of equal symbols. Compressing now L
instead of the original sequence by using move-to-front eventually in combination with run-length
encoding and then Huffman coding can yield in a better efficiency. In addition to L also the index
of the position of the original input sequence in the sorted list is send out denoted by I = 8 (starting
counting from 0). These two information are enough to reconstruct the original sequence.

Table 3.2.: Permutations of the input sequence swiss miss

(a) Cyclic shift of the se-
quence

swiss miss
wiss misss
iss misssw
ss missswi
s missswis
missswiss

missswiss
issswiss m
ssswiss mi
sswiss mis

(b) Sorted cyclic shift

missswiss
iss misssw
issswiss m
missswiss
s missswis
ss missswi
ssswiss mi
sswiss mis
swiss miss
wiss misss

Decoding the received sequence L to obtain the original sorted input sequence works as follows:
1. After the decompression, the sequence L is obtained and the decoder starts creating an

additional sequence F by sorting L in alphabetic order. This sequence F corresponds to the first
characters of the sorted list in table 3.2(b).

2. Then another vector is created denoted by T, which helps to resort L to get back the original
sequence. To get T the two sequences F and L are compared and for each character in F the
corresponding character in L is searched and its position number in L is entered in T starting
counting by 0.
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3. The second received information I is then used to know at which position of T the de-
coder has to start performing the decoding. The decoding steps are now explained by using a
small pseudo code execution for the resulting vectors: I=8; L=[swm siisss]; F=[ iimsssssw];
T=[3, 5, 6, 2, 0, 4, 7, 8, 9, 1].
k = T [I]
D [0] = L [k]
for j = 1 to N-1
{
k = T [k]
D [j] = L [k]
}
The decoded sequence is represented by the vector D, which corresponds to the original input
sequence.

To get good concentration properties and good compression efficiency the length of the se-
quences, which are encoded individually, should be some thousand symbols. This shows already
the disadvantage of the BWT, which cannot compress the input symbols on the fly and needs large
buffers to store a sequence before being able to process it.

Suitability of Burrows-Wheeler transform for the implementation of a detector data compression:
+ Advantageous is that with the Burrows-Wheeler transform the concentration property of the

samples can be significantly improved, which makes the move-to-front method and the RLE
method suitable for this kind of data. This can work only well if several semi-Gaussian
waveforms are grouped together and the Burrows-Wheeler transform is executed on this
group.

– Disadvantageous is that the number of waveforms per group should be high to get a high
efficiency. This on the other hand requires a lot of memory space in hardware to buffer the
group of waveforms and the permutations.

– Disadvantageous is that the Burrows-Wheeler transform will not help a lot if only single
semi-Gaussian waveforms are transformed since not a lot of samples in one waveform are
likely to be equal.

+ Advantageous is that the realization of the Burrows-Wheeler transform in hardware requires
only shift registers to get the permutations and a sorting algorithm.

3.1.4. Tunstall code
The Tunstall code is a variable-length to fixed-length coding method, which encodes a variable
number of input symbols with codewords of fixed length. As described in section 3.1.7 prefix
codes can be used for variable length codewords to allow the decoder to separate the different
codewords without the use of boundary symbols. Variable length codewords are used in a way
that frequent symbols are assigned short codewords and not so common symbols are encoded with
longer codewords. Depending on the statistics of the input data the average number of bits can
be less than by using fixed length codewords, what leads to a compression. The disadvantage is
that variable length codewords are difficult to work with especially in hardware implementations,
because big buffers are required at the encoder- and the decoder side. The handling of fixed
length codewords is much easier and the Tunstall code offers this advantage by still providing the
compression performance of variable-length codewords.

Instead of assigning variable-length codewords to the different symbols, the Tunstall code as-
signs a variable number of symbols to fixed length codewords. The simplest way to explain this
method is by showing an example:

The example consists of the already familiar four symbols S, I , M and W (N = 4) having the
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probabilities 0.6, 0.2, 0.1 and 0.1 respectively. The number of bits for the different Tunstall codes
has to be defined and is in this example n = 3bit. Then the Tunstall tree can be build starting
by the root to which the four symbols are connected as children, as it is shown in figure 3.2(a).
Then the child with the highest probability is searched resulting in S and turned into a root of a

S I W

0.6 0.2 0.1

a b c

0.1

M S I W

0.36 0.12 0.060.06

M

S I W

0.2 0.10.1

M

S I W

0.216 0.072 0.0360.036

M

S I W

0.12 0.060.06

M

S I W

0.2 0.10.1

M

' 001' ' 010' ' 011' ' 100'

' 101' ' 110' ' 111'

Figure 3.2.: Example of constructing a Tunstall tree

subtree which contains again the four children S, I , M and W . The probability of the root S is
divided according to the probabilities of the four children resulting in 0.36 (0.6 ∗ 0.6) for SS, 0.12
(0.6 ∗ 0.2) for SI and 0.06 (0.6 ∗ 0.1) for SM and SW . This step has added N − 1 = 3 leaves
to the tree by removing the leaf with the highest frequency and adding the N symbols. This action
will be executed iteratively as long as the number of leafs of the tree do not exceed the number
of possible Tunstall codes defined by n. For this small example n = 3 is sufficient which results
in maximum 2n = 8 leaves and therefore the Tunstall tree in figure 3.2(b) is used containing 7
leaves. In figure 3.2(c) also the next iteration is shown, which results in a tree with 10 leaves and
is therefore only relevant for higher values of n. Each leaf of the tree 3.2(b) receives a fixed length
codeword of 3 bit. Following the tree from the root to its leaves, defines the symbol sequences
corresponding to each Tunstall code. The encoder follows the tree according to the input symbols
until it reaches a leaf, sends out the Tunstall code related to this leaf and restarts from the root for
the next input symbols. The input sequence SwissMissSwiss is encoded as the following output
bit stream: 100, 101, 001, 110, 101, 001, 100, 101, 001.

This results in 27 bit instead of 28 bit (N=4 symbols need 2 bit/symbol and therefore in a slight
compression. In real implementations, the Tunstall tree will be much higher as in this example to
get a good compression performance. This on the other hand causes the problem that a high tree
will need a large memory in the encoder and the decoder. Therefore, a good compromise between
compression performance and memory space has to be found.

Suitability of Tunstall coding for the implementation of a detector data compression:
+ Advantageous is that the Tunstall coding exploits the probabilities of the sample values by

producing fixed length codewords.
+ Advantageous is that the fixed length codewords are easier to handle in hardware than vari-

able length codewords. Especially concatenating the fixed length coderwords for sending
them sequentially is simple.

– Disadvantageous is that saving the Tunsall codebook requires a large memory space in hard-
ware especially if several levels of the Tunnstal tree are used to achieve a good compression
ratio. The codebook consists of the codewords and the corresponding sample values.

3.1.5. Golomb code
The Golomb code is a prefix code, which can be used to encode a run-length encoding (RLE) of
consecutive equal symbols in the input stream when the occurrence of the different RLE is not
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known in advanced. The Golomb code produces parameterized prefix codes which depend on the
probability p and have infinite possible number of codewords.
To explain how the different codewords are calculated a small example will help. In 3.1 a bit
stream is shown containing 55 zeros and 15 ones.

0000001000011000000000101000000000000111000100001000000100000000100111 (3.1)

This leads to the probability of zeros of p = 55/(55 + 15) = 0.79%. The 15 run lengths of
consecutive zeros in the bit stream above are 6,4,0,9,1,12,0,0,3,4,6,8,2,0,0. The median of this
run length is 3. The median m of a sequence of numbers is defined as the number which halves
the sequence in the middle so that about half the numbers are smaller than m and about half the
numbers are greater or equal to m. After sorting the run lengths in ascending order, resulting
0,0,0,0,0,1,2,3,4,4,6,6,8,9,12 it can be seen that the number 3 is the median. For example, the
run length values could be encoded using Huffman coding but in a system where the number
of different appearing RLE cannot be predicted, it can be difficult to guaranty that the Huffman
codebook contains codewords for all possibly appearing run length values. Therefore, in such
cases the Golomb code can be used, which produces also prefix codewords.

To construct the Golomb code m has to be chosen or calculated or predicted. Then three impor-
tant parameters have to be calculated as shown in 3.2.

q =
⌊ n
m

⌋
, r = n− q ×m, c = dlog2(m)e (3.2)

c corresponds to the number of bits needed to represent m, q represents the quotient of the run
length number n divided by the median m and r gives the reminder of n/m. The brackets d e
and b c indicate that the result is rounded to the nearest integer towards ∞ and towards −∞,
respectively. The Golomb code for each run length is calculated in two steps:

First, the quotient q is calculated and encoded in unary code. The unary code represents q as
the number of leading ones followed by a zero.

Second, the reminder is calculated and added to the unary code in one of two different ways.
The possible resulting reminders are the integer numbers from 0 to m − 1. The first 2c − m

values of the reminder are represented in binary with c− 1 bit each. The rest is represented as the
binary value r + 2c −m with c bit which assigns the biggest reminder c ‘1’. This is only the case
if m is not a power of 2, otherwise all the reminder values get represented in binary with c bit. The
example above results in the following Golomb code for the first run length n = 6:
q = 2, r = 0, and c = 2 which gives the unary code ‘110’. The reminder is 0, which is less than
2c −m = 22 − 3 = 1 and therefore it is represented by c − 1 = 1 bit resulting ‘0’. The Golomb
code for m = 3 and run length n = 6 results from the concatenation of the unary code and the
representation of the reminder giving the codeword ‘110|0’.

For the second run length number n = 4 the resulting parameters are q = 1, r = 1 and c = 2.
The unary code is ‘10’. The reminder is equal to 22 − 3 = 1, which means that c = 2bit are used
to represent it. The two resulting bits given by r + 2c −m = 1 + 1 = 2 are ‘10’. The resulting
Golomb code for n = 4 is therefore ‘10|10’.

To decode the Golomb codes the decoder has to perform the following steps:
The decoder starts reading the bit stream from the beginning and counts the number of 1’s

preceding the first 0. This represents the quotient and is named hear with A.
If m is a power of two it corresponds to the simpler case and the decoder just calculates c out

of m like in 3.2 and then takes the c+ 1 bit following the 1’s of A. This c+ 1 bit following A are
denoted byR. The encoded number of run length n is then reconstructed by calculatingm×A+R.
The code length is A + 1 + c and these number of bits are then removed from the bit stream and
the decoder starts again counting the 1’s preceding the next ‘0’.

If m is not a power of 2 the decoder starts removing the 1’s (giving A) preceding the first ‘0’
which also is removed and then takes the following c − 1 bit. This c − 1 bit are denoted by R.
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Then the decoder checks if R < 2c −m. If that is the case the reconstruction of n is calculated by
m × A + R. The length of the code is A + 1 + (c − 1) (the A 1’s + the ‘0’ following them + the
c-1 bit of R). After the A 1’s and the following ‘0’ are already removed from the bit stream, also
the c− 1 bit have to be removed and the decoder starts again counting 1’s.

If R ≥ 2c − m the decoder reconstructs n by calculating A × m + R′ − (2c − m). R′ is the
concatenation of the bits of R and the bit following R because the reminder is represented by c bit
(length of the code is A + 1 + c). After the decoder already removed A and the following ‘0’, it
has to remove also the bits of R′ from the bit stream before it can restart counting the leading 1’s
of the next code. To clarify better the steps of the decoder, three short examples are given in the
following.

The first example uses m = 4 which is a power of 2 and the first part of the incoming bit stream
is ‘11001xxx...’.

The decoder starts by calculating c, which results c = dlog2(m)e = 2. Then the leading 1’s are
counted resulting A = 2. The following c + 1 = 3 bit are giving R = ‘001’ which equals R = 1.
The value of the encoded run-length results now in n = m×A+R = 4× 2 + 1 = 9. The length
of the codeword is A + c + 1 = 2 + 2 + 1 = 5 and this number of bits have to be removed from
the bit stream before the decoder restarts counting the next leading 1’s.

The second example is related to the example used for the encoding process and uses m = 3,
which is not a power of 2. That gives c = dlog2(m)e = 2. The first bits of the encoded bit
stream are ‘11001010xxx...’. The first ones preceding the ‘0’ are giving A = 2. Then the decoder
removes these two 1’s and the following ‘0’ from the bit stream. After that the decoder has to
look at the c − 1 = 1 bit which build R and result in R = 0. The decoder checks whether
R < 2c −m = 4− 3 = 1, which is the case and therefore the decoded run-length value results in
n = m×A+R = 3×2+0 = 6. The length of the codeword isA+1+(c−1) = 2+1+(2−1) = 4
and after the A 1’s and the following ‘0’ have been already removed from the bit stream, the fourth
bit of R the ‘0’ has also to be removed. Then the decoder can restart counting the next leading 1’s.

The remaining bit stream ‘1010xxx...’ from the second example is used in the third example
by keeping the same median m = 3. Again the decoder counts the leading 1’s resulting A = 1
and removes the ′1′ and the following ‘0’. Then it looks at the c − 1 = 1 bit following A and see
that the bit R = 1 is ≥ 2c −m = 1. In this case the decoder takes also the next bit following R
which is ‘0’ and concatenates it with R to R′ = ‘10’ = 2. The reconstructed run-length value now
results in n = m × A + R′ − (2c −m) = 3 × 1 + 2 − (4 − 3) = 4. The length of the codeword
is A + 1 + c = 1 + 1 + 2 = 4 and after the leading 1’s and the following ‘0’ have been already
removed from the bit stream also the following bits of R′ are removed before the decoder restarts
counting the next 1’s.

The Golomb code is defined by the value of the median m and this value can be calculated in
order to get the best prefix codes. The equation for m in 3.3 contains the probability p of the most
common bit value in the input bit stream, either ‘1’ or ‘0’.

m =

⌈
− log2(1 + p)

log2p

⌉
(3.3)

Glomb codes result good performances for input data which have a probability distribution of the
form p(i) = qi(1− q). For the use of this method in real-time applications the problem arises that
p is not known in advance and therefore m cannot be calculated. To be able to use the Golomb
code in real-time applications an adaptive algorithm can be used that varies m according to the
input data which have been encoded so far. In this case the best value of m cannot be used from
the beginning, but it will evolve during the encoding. The evolution of m can be performed in
changing the value of m just in powers of 2 to facilitate the implementation, although this can
further decrease the quality of the adaptive Golomb code.

Another method is to estimate m. The probability p can be estimated using representative data
from the data source or use a statistical model.
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Suitability of Golomb coding for the implementation of a detector data compression:
+ Advantageous is that the Golomb codes can be used in combination with the Burrows-

Wheeler transform and the RLE to get better compression results. With the Golomb codes,
the RLE can be easer variable length encoded instead of using entropy encoding methods
with predefined code tables.

+ Advantageous is that the implementation is not so difficult requiring one division, one multi-
plication and some summation or subtraction.

– Disadvantageous is that the compression efficiency can be not so high if only short RLEs
are produced. The right choice of the median has to be estimated beforehand by analyzing
representative data.

3.1.6. Shannon Fano coding
The Shannon-Fano coding is similar to the Huffman coding described in 3.1.7 and uses the proba-
bilities of the different symbols in a given data set to compress the data set. Symbols that are more
often contained in the data set, i.e. have a higher frequency and therefore a higher probability, get
assigned short codewords. Sparse symbols with low frequency and low probability are assigned
long codewords. The average number of bits per symbol for the entire data set can be calculated
and can result in fewer bits as by encoding all symbols with equal length codewords.

The difference between Huffman coding and Shannon-Fano coding consist in the way the opti-
mal codewords for the symbols are found regarding their probabilities. The Shannon-Fano method
builds the codewords top to bottom that means from the most significant bit (MSB) to the least
significant bit (LSB) whereas the Huffman method builds a tree from bottom up and creates the
codewords starting from the LSB.

To create the best variable-size codewords for the symbols the first step is to derive the frequen-
cies of the symbols, which means the amount how often each symbol is contained in the data set.
The probabilities of the symbols can be calculated by dividing the frequencies by the total number
n of symbols in the data set p = f/n. The symbols and their probabilities are then arranged in a
list with descending order of the probabilities.

The second step is to divide the list in two subsets in a way that both subsets have the same or
almost the same sum of probabilities. Then all symbols in one subset are assigned a bit with value
‘0’. The symbols in the other subset are assigned a bit with value ‘1’.

Next, the second step is repeated by dividing the two subsets into two parts with the same or
almost the same sum of probabilities. Again a bit ‘0’ is added to one of the parts concatenated
with the bit already assigned in the previous iteration. The symbols in the second part are assigned
an additional bit with value ‘1’. This dividing of the subsets is continued for all the subsets until
a subset contains only one or two symbols anymore. One of the two symbols is assigned an addi-
tional bit ‘0’ and the other an additional bit ‘1’ and therewith the codewords of this two symbols
are defined. The described process continues for the other subsets until all symbols have received
their complete codewords.

To better clarify the steps described above again a short example of a data set containing four
different symbols is shown. The data set contains in total 9 elements n = 9 out of this four symbols
resulting in the phrase SwissMiss. The frequencies of the symbols are given in table 3.3(a) and
the probabilities are calculated.

The output bitstream of the encoding of SwissMiss using the Shannon-Fano coding gives the
following codewords:
0, 111, 10, 0, 0, 110, 10, 0, 0
The output bitstream consists of 15 bit, which is less than by using fixed length codewords. For
fixed length codewords 2 bit per symbols are needed to code 4 different symbols, which results in
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Table 3.3.: Creating the codewords using Shannon-Fano coding

(a) Symbol-frequencies and probabil-
ities

Symbol Freq. Prob. (p)
S 5 0.55
I 2 0.22

M 1 0.12
W 1 0.11

(b) Dividing in subintervals

0.55

0.22
0.12
0.11

'0'

'1'
'0'

'1'

0.22
0.12
0.11

0.12
0.11

'0'
'1'

(c) Codewords of the symbols

Symbol p Code
S 0.55 0
I 0.22 10

M 0.12 110
W 0.11 111

18 bit for the phrase SwissMiss. The average number of bits per symbols for the Shannon-Fano
codes is
(5× 1 bit + 2× 2 bit + 1× 3 bit + 1× 3 bit) /9 = 1.6 bit/symbol.

Suitability of Shannon Fano coding for the implementation of a detector data compression:
+ Advantageous is that the Shannon Fano coding is a entropy coding method which uses the

probabilities of the sample values independent in which order the values occur to assign them
variable length codewords. A good compression can be expected without the need of a good
concentration property.

– Disadvantageous is that the Shannon Fano coding produces the code tree from top to dawn
starting with the most significant bit. This can lead to not optimal codewords for the sam-
ples. The Huffman coding is preferable because it produces always optimal codewords and
therefore has equal or better efficiency.

3.1.7. Huffman coding
The Huffman coding method was developed in 1952 by David A. Huffman during his PhD. It
is similar to the Shannon- Fano coding described in section 3.1.6 with the difference that in the
Huffman coding the codewords are constructed starting from the LSB up to the MSB (i.e. bottom
up). Therefore, the Huffman coding method produces in general better codes.

To construct the codewords a Huffman tree is build. Before the tree can be build the frequencies
of the different symbols in the data set which has to be compressed, have to be counted and the
probabilities have to be calculated. Then the Huffman tree is constructed by writng the different
symbols and their probabilities (or frequencies) in a list in descending order of the probabilities.
In the next step, the two symbols with the lowest probability values are searched and replaced with
a new auxiliary symbol, which is the combination of the two replaced symbols and gets their sum
of probabilities. The auxiliary symbol is added to the Huffman tree as the parent node of the two
symbols containing them as leaves. Then the step is repeated with the next two symbols in the list,
which have the smallest probabilities. The two found symbols and their parent (a new auxiliary
symbol) are added to the tree and the tree grows. When the new parent reaches the probability 1,
it becomes the root of the tree and the tree is completed. In the list remains only one auxiliary
symbols with probability 1, this is the sum of all the probabilities of the different symbols.

A Huffman tree that is built from bottom up can now be used to determine the codewords for
each symbol. To use the tree to define the codewords one has to decide that left branches of the
tree are adding a bit of value ‘0’ to the codeword and right branches add a ‘1’ to the codeword
or vice versa. For getting the full codeword for a symbol, the tree has to be followed from the
root to the leaf, which corresponds to the symbol and the bits have to be recoded according which
branches ware taken. After all the codewords of the different symbols are defined, the data set can
be encoded by replacing the symbols with their Huffman codewords. The probability distribution
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of the symbols in the data set defines the quality of the compression. The construction of the
Huffman tree and the resulting codewords are shown in figure 3.3 by using the same short example
as in 3.1.6 for the Shannon-Fano coding. The usually used phrase SwissMiss throughout this
chapter is encoded.

S
0.55

I
0.22

M
0.12

W
0.11

S
0.55

I
0.22

MW
0.12+0.11=0.23

S
0.55

IMW
0.22+0.23=0.45

SIMW
0.55+0.45=1

(a) List of Symbols and Probabilities

(0.55) (0.45)

(0.22) (0.23)

(0.12) (0.11)

'0'

'0'

'0'

'1'

'1'

'1'
(1.0)

(b) Huffman tree

Figure 3.3.: Construction of the Huffman tree

The resulting bit stream for SwissMiss using the Huffman codewords results in:
0, 111, 10, 0, 0, 110, 10, 0, 0
The Huffman tree produces the same results, as by using the Shannon-Fano coding but in some
cases the construction of the tree in bottom up manner as Huffman tree leads even to better results.
That is the reason that the Huffman coding is much more used than the Shannon-Fano coding.
There are some properties of this Huffman tree, which will be discussed in details as follows:
• Huffman codewords are not unique
• Optimality of the Huffman tree
• Huffman codewords are prefix free
• Height of a Huffman tree

If there are more than two symbols or auxiliary symbols in the list with the same probabilities, dif-
ferent combinations can be used to form the new auxiliary symbol, which means that the Huffman
tree and therefore the Huffman codewords are not unique. Nevertheless, all possible Huffman trees
for the same given probabilities have to result in the same average number of bits per symbol. The
different possibilities in constructing the Huffman tree and codewords are relevant only if the en-
coded data stream has to be sent over a communication line because larger variations in codeword
lengths require larger buffers to guaranty a continuous data handling.

The Huffman codewords, which are produced by building a Huffman tree fulfill the properties of
a prefix free code. The prefix free codes are codes where no codeword can be the prefix of another
codeword. If for example a codeword is ‘01’ no other codeword can start with the bits ‘01xxx’.
With this property, each codeword is uniquely distinguishable in a bit stream. This means that
the resulting Huffman codewords from the encoder can be joined together to a bit stream without
using any boundary symbols like start and stop bits. The decoder starts reading bit by bit from the
incoming bit stream and follows the Huffman tree from the root down to the leaves according to
the values of the bits. If the decoder reaches a leaf it outputs the symbol which corresponds to this
leaf and jumps back to the root before continuing reading the next bits from the bit stream.

The height of the Huffman tree gives the length of the longest Huffman codeword, which is
important for the determination of the size of the memory to store the Huffman codewords in
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encoder and decoder. Furthermore for designing the buffer, the maximum length of the Huffman
codewords is important and to calculate the amount of extra bits which have to be send from the
encoder (as side information) to the decoder in order to transmit the used Huffman tree.

Canonical Huffman Codes

Canonical Huffman codes are codes, which are build by a Huffman tree but with special construc-
tion rules. They are simple to use and can be of benefit when fast decoding is required. The
canonical Huffman codes are also useful in circumstances where the alphabet (number of different
symbols) is large.

The first step is to determine the length of the required Huffman codewords for the different
symbols. For a large alphabet, the construction of a Huffman tree to determine the length can be
not possible because it would require too large memory space. Another possibility to determine
the length of the needed Huffman codewords is to use a heap. In this case the required memory
space is 2× n where n is the number of different symbols. For a description of the construction of
a heap, see [33].

After the code length for the different symbols is known all possible lengths from 1 to the
maximum required length are written in a list as it can be seen in table 3.4(b). In the second row,
the number of needed codewords for each length is inserted. The third row contains the integer
number at which each set of equal codeword length starts. The canonical codes are built in a way
that each set of codewords with equal length starts at a calculated integer value and increments
for each following codeword by 1 as it can be seen in table 3.4(a). The start value for each set of

Table 3.4.: Canonical Huffman coding

(a) Canonical Huffman Codes

1: 011 9: 01000
2: 100 10: 000000
3: 101 11: 000001
4: 110 12: 000010
5: 00100 13: 000011
6: 00101 14: 000100
7: 00110 15: 000101
8: 00111 16: 000110

(b) Codeword length an start value

length: 1 2 3 4 5 6
numel: 0 0 4 0 5 7

First: 2 4 3 5 4 0

equal length is calculated in a way that prefix codes are guaranteed. The third row in table 3.4(b)
contains the first integer value from which each set of equal codeword length starts. To determine
the start value for each set the following equation is used:

Firstl =

⌈
Firstl+1 + numell+1

2

⌉
(3.4)

According to that equation the 5-bit codewords start with integer value 4 and contain all values till
8. The 6-bit codewords start at 0 till 6. The biggest 6-bit codeword with value 6 has the five most
significant bits representing the integer value 3. Since the 5-bit codewords start at value 4, they
cannot be prefixes of the 6-bit codewords. This is valid for all codewords.

The decoder can now easily identify the length of the codeword by reading bit by bit the incom-
ing data stream. The decoder starts reading the first bit of the data stream and compares the value
with the value of First1. If the value is below the value of First1 then the decoder continues
reading the second bit and checks if the first two bits denoted by V are smaller than First2. If
this is the case, the decoder continues reading the following bits. If the value of the l bits read up
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to now denoted by V exceed Firstl then the length of the codeword is l and the decoded symbol
for this codeword can be found by subtracting the value of Firstl from the value of V . The result
gives the position in the set of codewords with length l counted from the first codeword in this
set. By adding the number of codewords shorter than l it gives the position of the codeword in the
whole codebook shown in table 3.4(a) and the symbol is found.

Adaptive Huffman Coding

Normally the frequencies of the different symbols of the data set to be compressed are not known
in advanced. The encoder can compress the data in two steps by reading in the data set two times.
In the first step, the encoder reads in the symbols of the data set and counts the frequencies of
the different symbols. Then the encoder builds the Huffman tree and defines the best Huffman
codewords for the different symbols. In the second step, the encoder reads the data set again and
encodes each symbol with the corresponding Huffman codeword created in the previous step. This
approach is slow and the created Huffman tree has to be added to the output data so that the decoder
knows how to decode the compressed data. The approach with the two steps is also not useable if
the input data are a data stream, which has to be processed on the fly. Otherwise, a huge memory
space has to be used to save the whole data set first. Therefore, often the Huffman coding method
is implemented in an adaptive way.

The principle of the adaptive Huffman coding is that the encoder starts with an empty tree. The
first symbol, which is read in, is just send out in its uncompressed form. The symbol is added to the
Huffman tree and a Huffman codeword is assigned to the symbol. The next symbols are read in and
as long as they are not already included in the Huffman tree they are send out uncompressed and
added to the tree. If a symbol is already present in the Huffman tree, the corresponding Huffman
codeword is send out and the frequency value of the symbols is incremented. The Huffman tree is
updated and the next symbol is read in. To distinguish between variable length Huffman codewords
and uncompressed symbols a special variable length codeword an escape symbol precedes each
uncompressed send symbol. This special codeword has also to be included from the beginning in
the Huffman tree and follows the changes when the Huffman tree is updated. The decoder starts
as well whit an empty Huffman tree and mirrors the actions of the encoder. The decoder reads
in the first word, which is the special codeword (escape symbol) indicating that the following bits
are presenting the first uncompressed symbol. The decoder then adds the escape symbol and the
uncompressed symbol to the Huffman tree. The decoder continues reading in the bits from the
bit stream and following the Huffman three from the top to the bottom and as long as it ends by
the escape symbol, it reads the following bits belonging to the uncompressed symbol and adds the
symbols to the Huffman tree following the same rules as the encoder. If the decoder ends up at a
leaf, which is not the escape symbol, it outputs the symbol corresponding to the received Huffman
codeword. The decoder has decoded the received Huffman codeword. The decoder then increases
the frequency of the decoded symbol and updates the Huffman tree in the same way as the encoder
does it. With this adaptive method of the Huffman coding, some compression performance gets
lost especially at the beginning as the symbols are not compressed and the escape symbol has to
be added to the output stream. On the other hand, no Huffman tree has to be send to the decoder
because the decoder constructs the Huffman tree from the received data during decompression by
following the same rules as the encoder.

If the source of the data to be compress, is known in advanced and a probability model can be
created so that adequate Huffman codewords can be estimated a Huffman tree can be predefined.
The encoder and decoder are preset with this Huffman tree so that already the first symbols of the
data set can be encoded properly. The encoder and decoder can then update the Huffman tree dur-
ing execution to adjust it to the real input data and to increase the compression performance. The
frequency values predefined for the different symbols should be as small as possible so that the
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actual input symbols at the encoder have a maximum impact on the reorganization of the Huffman
tree and the best Huffman codewords are found as fast as possible for the underlying data set.

Suitability of Huffman coding for the implementation of a detector data compression:
+ Advantageous is that the Huffman coding is an entropy coding method which uses the prob-

abilities of the sample values to assign variable length codewords independent of concentra-
tion properties of the samples. A good compression of the samples close to their entropy can
be expected.

+ Advantageous is that the Huffman coding builds the code tree from bottom up and produces
always optimal codeword length for the probabilities of the samples.

+ Advantageous is also that the produced codewords are prefix free which allows them to be
concatenated without boundary symbols. The codeword table can be calculated before the
encoding of the data by using representative detector data from previous measurements.

+ Advantageous is that the codeword table size is at most as large as the number of different
sample values. It is expected to be smaller as for Tunstall coding.

+ Advantageous is that the implementation is easy by using only a memory to store the code
table in a way that it is seen as Look-Up table using the sample values as addresses. The
corresponding addressed Huffman codeword is reed out and concatenated.

– Disadvantageous is that each sample is assigned a codeword with an integer number of bits,
which can produce a compression efficiency not as good as the entropy of the data.

– Disadvantageous is that by wrongly predefining the code table with representative data low
compression efficiency can occur. Adaptive Huffman coding could reduce this problem but
this increases the implementation effort.

3.1.8. Arithmetic coding
Arithmetic coding is an entropy based coding method, which uses the probability of the different
symbols in a given data set to compress this data set. In contrary to the above described Huffman
coding, which codes symbol by symbol assigning a codeword to each symbol, the arithmetic cod-
ing creates only one output codeword for a sequence of input symbols. Ideally, arithmetic coding
creates one output word for the entire data set. Huffman coding is limited to assign integer num-
bers of bits to each symbol. Therefore with Huffman coding, the theoretical compression limit
given by the entropy is reached only if the probabilities of the symbols are negative powers of two.
Since arithmetic coding encodes a set of symbols by using a mathematical calculated number it
can reach the entropy limit better then Huffman coding.

The method of arithmetic coding bases on the idea of narrowing a defined interval by using
the probability values of the incoming symbols. The encoder starts dividing the given interval
(e.g. [0,1)) according to the probabilities of the different symbols and assigns each subinterval the
corresponding symbol name. Then the subinterval is selected to which the first incoming symbol
is assigned and this subinterval is defined as the new interval for the next iteration. The new
interval is again divided according to the probabilities of the different symbols and the resulting
subintervals are assigned to the corresponding symbol names. The second input symbol selects
then the corresponding subinterval, which becomes the new interval for the next step and so on.
These steps are executed until all symbols are read from the input stream, which should be encoded
together. The output word of the encoder is then any number contained in the final subinterval
defined by the last input symbol. To represent a narrower interval more bits are required because a
more precise floating-point number has to be used for the upper and lower limit of the subinterval.
To achieve a compression the symbols with a high probability are narrowing the interval less as
symbols with low probability and therefore fewer bits have to be used to represent the resulting
subinterval.
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The decoder receives the bit stream representing the number send by the encoder, which is
contained in the final subinterval. The decoder too has to know the probabilities of the different
symbols and has to divide the defined interval in the same way as the encoder dose it. Then the
decoder can search the subinterval in which the received number is contained and the correspond-
ing symbol for this subinterval is the first decoded symbol from the data set. Then the decoder too
selects the resulting subinterval as the new interval and divides this again in subintervals according
to the probabilities of the symbols. The decoder therefore executes the narrowing of the interval
in the same way as the encoder. By repeating these steps, it can decode all symbols from the com-
pressed data set by only using the received number and the probabilities of the different symbols.
For a better illustration of this method a short examples is shown as follows:

The example consists of the usual four symbols I,M, S,W forming the sequence SwissMiss.
The different symbols and their probabilities, as well as the defined ranges are shown in table 3.5.
The initial range is chosen to be [0,1) so that all the range limits are below 1 and the floating point

Table 3.5.: Arithmetic Coding example: symbols and their probabilities
Symbol Probability Range

I 0.22 [0.00,0.22)
M 0.12 [0.22, 0.34)
S 0.55 [0.34, 0.89)

W 0.11 [0.89, 1.00)

numbers can be represented as integer numbers after the decimal point, skipping the leading 0.
The notation [a,b) used above means that the range represents all real numbers between a and b
including a but not including b. The notation expresses that the range is closed at the bottom (a)
but open at the top (b).

The encoding of the input sequence SwissMiss is described subsequently. The figure 3.4
shows the evolution of the interval which is narrowed according to the symbols in the input se-
quence and their probabilities. 3.4. The interval [0,1) is divided in the subintervals according to
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Figure 3.4.: Arithmetic Coding: narrowing of the interval

the probabilities of the different symbols given in table 3.5. The ranges of the intervals can be seen
in the table as well as in the figure. Then the first input symbol S is used to select the corresponding
subinterval. The boundaries of this selected subinterval become the limits of the new interval used
in the next iteration. The new interval is again divided in subintervals according to the percentage
of the probabilities. The order of the subintervals is not important but the decoder has to be able
to divide the intervals in the same way. Therefore, in this example the subintervals are sorted in
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alphabetic order of their symbol names from bottom up. To make the figure better readable only
the boundaries of the intervals and the limits of the subinterval for the next symbol are shown.
The next input symbol w selects the first subinterval, which is used in the next iteration as the new
interval. The floating-point number has to get more precise from iteration to iteration to be able
to represent the boundaries of the subintervals, which are narrowed more and more from step to
step. The important property of this compression is that symbols with higher probability narrow
the intervals less. Therefore, the increase of precision of the floating-point numbers, which have
to be used to represent the intervals, is less. When all input symbols are used to narrow the ini-
tial interval [0,1) the resulting narrow interval has a range 0.83748832109097-0.83745616725882.
To represent the full sequence of input symbols any number contained in this final range can be
send to the decoder. To represent the range the minimum number of bits needed is calculated by
the −log2(intervalsize) = −log2(0.00003215383215) resulting in 15 bit. For this example the
chosen floating-point number in the final interval is 0.83746337890625 which is represented by
the binary number 0.110101100110010. The encoder send only the binary values after the floating
point to the decoder since the leading 0 is obvious because the initial interval has been chosen to
be [0,1) and therefore all the floating-point numbers of the subintervals are below 1.

The decoder needs only this number and the table 3.5 to reconstruct the input sequence. The
decoder also has to respect the rule of sorting the subintervals from bottom up in alphabetic order
what is the definition for this example. The way the decoder reconstructs the input symbols out
of the received number is similar to the encoder with the difference that it uses the received num-
ber to select the right subintervals and outputs the symbol names corresponding to the selected
subintervals. In figure 3.5 the evolution of the interval for the decoding process is shown. The
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Figure 3.5.: Arithmetic Decoding: narrowing of the interval

decoder divides the interval [0,1) in the same way as the encoder according to the probabilities of
the different symbols in the table 3.5. Then the subinterval is search which contains the received
number 0.83746337890625 resulting from the received 15 bit. The subinterval related to the sym-
bol S contains the input number and the first reconstruct symbol is S. Then like in the encoder, the
found subinterval is used as the new interval, which is again divided into subintervals according
to the probabilities. The decoder searches again the subinterval, which contains the received input
number. This time the subinterval corresponding to the symbol w is containing the number and
the next reconstructed symbol is w. The decoder repeats the described steps until the full sequence
SwissMiss of the symbols is reconstructed. The achieved result by arithmetic coding leads to the
same number of bits needed to encode the same sequence of symbols as by using Huffman coding.
An advantage of the arithmetic coding is that its complexity is independent of the length of the
sequence to encode which makes it possible to encode much longer sequences as the one used in
the short example and therefore the efficiency can get better as by using Huffman coding. The
mean number of bits per symbol for arithmetic coding will approach the entropy when the number
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of symbols in the sequence to encode grows towards infinity.
For a real implementation of the arithmetic coding algorithm, one problem arises that the pre-

cision of the floating-point number can get very high but the representation of this floating point
values is always limited to the number of bits used to represent them by the implementation. One
property of the arithmetic coding which can help to solve this problem in a real implementation
is the fact that if the first digits after the decimal point of the upper limit and the lower limit of
the range become equal than they will never change again in the next iterations. In this case, the
digits, which are equal, can be shifted out of the register holding the upper and lower limit. To
shift out the equal digits the upper limit gets filled up on the other end with 9’s and the lower limit
gets shifted in 0’s. The exact procedure is explained in the following using the previous example.

The two variables for the lower and higher limit of the interval are called IntHigh and IntLow
and the variables for the resulting subinterval, which becomes the new interval are NewHigh and
NewLow. The length of these variables is defined to be a 4 digits integer which need 14 bit to
be represented. The initial interval is [0,1) which leads to the initial values of IntHigh = 9999
and IntLow = 0000 assuming that both values represent the digits after the decimal point. The
representation in this case of the upper limit 1 with 0.9999 is allowed, since there is now real value,
which could be contained between 1 and 0.9999 if all numbers are limited to 4 digits.

The first step is to calculate the limits of the subinterval corresponding to the first input symbol,
which becomes the new interval by using the following formula:

NewHigh = IntLow +Range×HighRange(x)− 1 (3.5)
NewLow = IntLow +Range× LowRange(x) (3.6)
Range = IntHigh− IntLow + 1 (3.7)

The variables HighRange and LowRange represent the upper and lower limit of the ranges of
the different symbols according to their probabilities which are given in table 3.5. The first input
symbol is S which leads to the following results:

Range = 9999− 0 + 1 = 10000

NewHigh = 0 + 10000× 0.89− 1 = 8899

NewLow = 0 + 10000× 0.34 = 3400

The next input symbol is w and gain the formulas 3.5-3.7 are used to calculate the limits for
the subinterval corresponding to it. The values for IntHigh and IntLow are now the previous
calculated values of NewHigh = 8899 and NewLow = 3400. The next values of NewHigh and
NewLow are resulting as follows:

Range = 8899− 3400 + 1 = 5500

NewHigh = 3400 + 5500× 1− 1 = 8899

NewLow = 3400 + 5500× 0.89 = 8295

From the results it can be seen that the first digit from the left has the same value 8 in both variable
NewHigh and NewLow. Therefore, this value 8 will not change anymore in the following step
of arithmetic encoding as it can be seen also in figure 3.4. Since the value will not change anymore
it will be contained also in the final output value of the encoder and therefore one can already add
this value to the output stream and shift it out of the two variables NewHigh and NewLow to
prevent the problem of limited representation in real applications. The value 8 is add to the output
variableArithmCOut = 8 and the digits in the two variablesNewHigh andNewLow are shifted
to the left by shifting in from the right a 9 for the NewHigh and a 0 for the NewLow. The shifted
values for the variables NewHigh and NewLow are resulting in the values IntHigh = 8999 and
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IntLow = 2950 and are used in the next iteration for the input symbol I .

Range = 8999− 2950 + 1 = 6050

NewHigh = 2950 + 6050× 0.22− 1 = 4280

NewLow = 2950 + 6050× 0 = 2950

The results show that this time the first digit of NewHigh and NewLow is not equal and therefore
no shift of the variables will be done and no additional value is add to the output stream. For the
next step the variables IntHigh and IntLow get the values ofNewHigh = 4280 andNewLow =
2950 without any change.

A problem can arise if the values of the two variablesNewHigh andNewLow are getting close
to each other, but the first digits differ in each step. This can cause the problem that the limited
precision of the two variables is reached by the variables and the algorithm above continues forever
producing an incorrect result. To prevent this problem a rescaling of the variables should be done
as sun as there is the indication that they can get to close to each other. If the content of the register
is seen as binary numbers as it is the case in real implementations then rescaling will be done
if the most significant bits are getting ‘10’ for NewHigh and ‘01’ for NewLow. The first bit of
NewHigh andNewLow is shifted out and the second most significant bits are inverted. A counter
variable count = 1 is set to indicate that one rescaling has been performed. If in the next step,
the most significant bits of the two variables are again ‘10’ for NewHigh and ‘01’ for NewLow
another rescaling is done and the counter variable is incremented to count = 2. Several rescaling
steps might be executed until the first bits of the two variables NewHigh and NewLow becomes
equal and can be shifted out. Before adding the equal most significant bit to the output as many
bits with the inverted value of the most significant bit are added to the output ArithmCOut as the
value count results followed by the most significant bit itself. [36]

Adaptive arithmetic coding

Adaptive arithmetic coding can be used in applications where it is not possible to construct the
probability model of the different symbols before the encoder starts encoding. In this case, the
encoder starts with an empty model where all the symbols have the same probability or with a
probability model for the known source. Like in adaptive Huffman coding the encoder creates the
correct probabilities of the symbols while encoding the input data. The important step where the
arithmetic coder needs the probabilities of the symbols is when calculating the boundaries for the
subinterval NewHigh and NewLow of the actual input symbol like described above. However, in
this step, it is not important in which order the different symbols are and which actual probability
values they have as long as the encoder and the decoder use at each step the same table.

The adaptive arithmetic encoder reads in the first symbol and encodes it using the equal prob-
abilities or the probability model. Then the frequency value of the actual symbol is incremented
and the probability table is updated and resorted if needed. The decoder reads in the codeword,
decodes it using the actual table and then adds the resulting decoded symbol to the table by incre-
menting the corresponding frequency value and if necessary resorting the table. Both the encoder
and decoder have to resort the symbols in the same way. The important rule is that the encoder
has to update the probability table only after encoding the input symbol. This is important because
the decoder has now knowledge about the actual symbol, before it decodes the received codeword
and only than the decoder can update the probability table accordingly. After each input symbol,
the probability table is updated and it evolves closer to the ideal model for the underlying data set.
The implementation of the arithmetic coding is the same for adaptive and not adaptive coding apart
from the updating of the probability table.

Suitability of arithmetic coding for the implementation of a detector data compression:
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+ Advantageous is that the arithmetic coding is an entropy coding method, which uses the
probabilities of the sample values. A good compression of the samples close to their entropy
can be expected.

+ Advantageous is that the arithmetic coding encodes several samples at once which reduces
the problem of assigning integer number of bits and therefore it can produce compression
performances very close to the entropy even better than Huffman coding.

+ Advantageous is also that the probability model can be defined using representative detector
data from previous measurements.

– Disadvantageous is that the realization of arithmetic coding requires implementing some
arithmetic operations as multipliers, dividers, adders and subtractors. This makes the imple-
mentation more complex as Huffman coding.

– Disadvantageous is that by wrongly predefined the probability model from representative
data low compression efficiencies can occur. Adaptive arithmetic coding could reduce this
problem but this increases even more the implementation afford by updating continuously
the probability model.

3.1.9. PPM
The abbreviation PPM stands for ”Prediction with Partial string Matching”. The PPM method
bases on an arithmetic coding but the way it assigns the different symbols of the alphabet is differ-
ent. The arithmetic coding calculates the frequencies of the different symbols based on the number
each symbol appears in the input data. Either, this is done by analyzing the full data set before
the compression step or by counting the frequencies of the different symbols by the time they are
encoded and decoded.

In the PPM method, not the frequency of each symbol is used but the probability of its appear-
ance, taking into account the preceding symbols arrived at the encoder. This method is a statistical
compression method, which uses prediction by looking at a context instead of the frequency of the
symbols. This method tries to predict the next input symbols by looking at a defined number of
already received symbols. The encoder reads the actual input symbol and looks how often in the
past the symbol already appeared preceded by a string of N characters, which is called the order-N
context C. This determines the probability of the input symbol regarding C. The probability is
then used to perform an adaptive arithmetic coding as described in section 3.1.8. By looking for
example at typical English texts the probability of encountering a h is about 5% but the probability
of h is much high (about 30%) if it is known that the previous input symbol was t, since the digram
th is common in English. By predicting the symbols, a better compression can be achieved with
the drawback of a higher complexity in constructing a probability model. To illustrate better the
concept of PPM a short example is given using English texts. Let us assume that the string the has
been seen 100 times so far in the input text. From this 100 times it has been followed 42 times by
the space character , 21 times by r, 16 times by s, 14 times by n, 5 times by m and 2 times by i.

The probabilities of the different letters following the context C = the are summarized in the
table 3.6. If for example the next input symbol is r then the probability 21% of r following the
order-3 context the is given to the adaptive arithmetic encoder to encode this symbol. Then the
table is updated by increasing the count of the followed by r and the probabilities are recalculated.

If for example the next input symbol would have been a which is not contained in the table,
because the context the followed by the character a has been not yet seen in the input text. This
would mean that the probability of a according to the order-3 context would be 0% but the arith-
metic encoder cannot handle a symbol with 0%. The solution of the PPM encoder to this is to
shorten the context and to see if the shorter string appeared already in the input data. The order-3
context is shortened to the order-2 context he. Again the encoder searches if the context he has
been seen already followed by the character a. As it can be seen in table 3.6 the probability of a
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Table 3.6.: Order-3 and Order-2 context of the as example of English text and there counts and probabilities
Order-3 context Counts Probability Order-2 context Counts Probability

the→ 42 42% he→ 64 32%
the→ r 21 21% he→ r 40 20%
the→ s 16 16% he→ a 32 16%
the→ n 14 14% he→ s 20 10%
the→m 5 5% he→ n 16 8%
the→ i 2 2% he→ e 12 6%

he→ l 8 4%
he→m 6 3%
he→ i 2 1%

following he is 16%. This can now be encoded by the arithmetic encoder.
What, if the actual input symbol is the character x. Even the order-2 context has been not seen

so far followed by the character x. The encoder reduces again the context to order-1 and searches
if e has been seen already followed by x. If this is the case the probability of symbol x following
e is used for the arithmetic coding.

Otherwise, the PPM encoder reduces again the context order to 0, which means it searches if
the character x itself already appeared in the input data without taking into account any context.
If x already appeared in the input, the probability is calculated out of the frequency of x divided
by the total amount of received symbols. This corresponds to the normal approach of arithmetic
coding by using the frequencies of the symbols.

At the end it can also happen that the input symbol x is seen the first time in the input data. In
this case the PPM encoder reduces the order to -1 and sends a probability of 1/alphabet for the
symbol to the arithmetic coder, where the alphabet contains all possible different symbols which
can appear in the input data.

One aspect, which has to be discussed, is the way the PPM encoder tells the decoder when to
reduce the order of the context. The decoder has no knowledge of the next symbol appearing in
the input data, before it decodes the compressed symbol. Therefore, the decoder cannot predict
that for the next symbol it has to reduce the context and use another column in the table containing
the right probability model. To solve this problem the encoder has to add an escape symbol to the
encoded data. The escape symbol is a special character what is not part of the normal alphabet of
the input data. The escape symbol has to be included in the probability table by both the encoder
and the decoder. The way the escape symbol is added to the probability model is shown on behalf
of the example swissMiss already used in the previous discussed methods.

The order-2, order-1 and order-0 context of the string swissMiss are shown in the table 3.7.
One way to add the escape symbol is to extend each context by this escape character (@). In
the table, each group of the contexts is shown separately with the additional escape symbol. The
probability of the escape symbol depends on the number of different characters following the
corresponding context. For example the context C = is has been seen twice in the past and both
times it has been followed by the character s. Therefore, in this group the symbol s receives a
probability of 2/3 and the escape symbol @ has the probability 1/3. On the other hand the context
ss has been seen also two times, but one time it was followed by the character m and the second
time by the character. The escape symbols @ gets the count two in this group because two
different combinations are contained in this context. The idea of assigning the probabilities of the
escape symbol in this way is; If a context is seen several times and it is always followed by the
same character the probability is high that the next time the context is seen it is again followed by
the same character. Therefore, the encoder should not have to send often the escape symbol for
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Table 3.7.: Context counts order 2, 1, 0 and probabilities of swissMiss as example of including the escape
character

Order-2 Counts Prob. Order-1 Counts Prob. Order-0 Counts Prob.
sw→ i 1 1/2 s→ w 1 1/9 s 5 5/15

@ 1 1/2 s→ s 2 2/9 w 1 1/15
s→M 1 1/9 i 2 2/15

wi→ s 1 1/2 s→ 1 1/6 M 1 1/15
@ 1 1/2 @ 4 4/9 1 1/15

@ 5 5/15
is→ s 2 2/3 w→ i 1 1/2

@ 1 1/3 @ 1 1/2

ss→M 1 1/4 i→ s 2 2/3
ss→ 1 1/4 @ 1 1/3

@ 2 2/4
M→ i 1 1/2

sM→ i 1 1/2 @ 1 1/2
@ 1 1/2

Mi→ s 1 1/2
@ 1 1/2

this context and therefore the probability can be low.
On the other hand if a context is seen several times but is always followed by a different char-

acter the chance is high that the next time this context is followed again by a new character. The
encoder has to use the escape symbol @ to switch to a lower order context. Since the escape sym-
bol in this case is used more frequently, it gets a higher probability to narrow the interval of the
arithmetic coder not too much causing many bits to represent the narrow interval. The probability
of the escape symbol is also updated continuously as input symbols arrive.

There are also other ways to determine the probability assigned to the escape symbol. The one
described above is known as PPMC.

Another method is called PPMA, which assigns the escape symbol in a group of context always
the count 1. If the total number of counts in the group is n not including the count of the escape
symbol, then the escape symbol gets the probability of 1/(n + 1). The rest of the symbols in the
group get their original probability of x/n, where x is the count value of the corresponding symbol
following the context of the group.

A third method has the name PPMB and is similar to PPMC with the distinction that it assigns
a probability to a symbol, which follows the corresponding context only after the symbol is seen
twice. The way this is realized is that the probability of each symbol is calculates as (x − 1)/n.
If the count of the symbol following the context C is x = 1, then this symbol has probability
((1 − 1)/n = 0). In this case, the escape symbol is used. The reason for this constrained is that
a symbol which is seen twice following the context is more reliable to happen again in future, the
”believe” in the prediction is strong.

Another method called PPMP (P stands for Poisson) assigns each symbol a probability under
the assumption that the appearance of the symbol follows a Poisson distribution. The expectation
value (average) for the Poisson distribution is retrieved from the already received symbols. By
using the Poisson distribution, it is tried to simulate the probability of the symbol for the entire
input data (including future data) based on the already processed input data. With this method the
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expected number of new symbols following the context C can be calculated by 3.8, where t1 is the
number of symbols that appeared only once so far, t2 is the number of symbols that appeared twice
and so on.

P = t1
1

n
− t2

1

n2
+ t3

1

n3
− ... (3.8)

This expression represents the probability that the next symbol is a new symbol, which means this
probability is assigned to the escape character.
A version of the PPMP method is the PPMX (the X stands for approximate) method which uses
only the first term t1

n
of the expression 3.8. If t1 = 0, this method world assign a probability of 0 to

the escape symbol which cannot be handled by the arithmetic coding and therefore it is modified
to PPMXC which in this case uses the same method as described for PPMC.

One improvement of the PPM method can be achieved by exclusion. The probabilities of the
different symbols in a context after a shift down from a higher order context can be increased by
excluding the symbols already analyzed in the higher order context. If we look at the table 3.7 and
assume that the next input symbol is w and the context is actually the order-2 ss the encoder cannot
find ss followed by w. Therefore, the encoder switches down to order-1 context. In the order-1
context s the encoder finds the case of s followed by w which has the probability 1/8. However,
the fact that first the encoder search the w in order-2 tells that the two cases of order-2 ss followed
by and M can be excluded in order-1, otherwise the encoder would have already found the next
symbol in order-2. That means that the order-1 case of s can be reduced to three possibilities and
therefore the next symbol w which is found in order-1 following s gets the probability 1/6. With
this exclusion the probabilities increase after a shift down of the context order and therefore the
arithmetic coder narrows the interval less which leads to less bits and a higher compression. The
disadvantage of the exclusion is that it increases the complexity due to the symbols, which have to
be remembered to be excluded and the probabilities, which have to be recalculated more often.

Suitability of PPM coding for the implementation of a detector data compression:
+ Advantageous is that the PPM method is used in combination with arithmetic coding and

uses the probabilities of the samples for a good compression.
+ Advantageous is that with the PPM method not only the probabilities of the samples can be

used but also their correlations according to the defined waveform shape. This can lead to
better compression efficiencies as arithmetic coding itself even better than the entropy of the
data.

– Disadvantageous is that the constructing of the probability models is much more complicated
as for arithmetic coding alone. This increases significantly the complexity by requiring much
more memory space as in arithmetic coding for the various possible probability models and
requires updating continuously the model.

– Disadvantageous is that with the complex probability models a wrongly predefinition from
representative data is much likelier as for the simple probability model of arithmetic coding.
This can lead to bad compression performances.

– Disadvantageous is also the additional required escape symbol and the difficult handling of
the escape symbol.

3.1.10. Lempel-Ziv
The compression method LZ77 was developed from the two researchers Abraham Lempel and
Jacob Ziv in the 1970s. This compression method bases not on statistical properties of the input
data as previous mentioned methods, but is a dictionary based method. The performance of the
statistical compression methods is related to the accuracy of a statistical model representing the
probability distribution of the symbols in the input data. A dictionary based compression method
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does not look at the probabilities of the symbols; it just selects strings of symbols like words in text
documents and encodes them using a token, which tells their position in a dictionary. Therefore,
this dictionary based compression methods are called universal coding methods because they work
on all kind of data independent of any probability model. The universal compression methods from
Lempel and Ziv are the most popular used methods for file compression and are included e.g. in
compression methods like compress, zip, gzip, png, gif. The way a dictionary-based encoder works
is by using a dictionary in which a set of symbol-combinations (strings) are saved and sequences
of input symbols are compared to the entries in the dictionary. If a corresponding string is found in
the dictionary, the encoder adds the index to the output data. The index tells the decoder where to
find the encoded string in the dictionary. Therefore, the decoder in a dictionary-based method has
not to perform the exact opposite of the encoder like in statistical methods, but only has to use the
index to find the right string in the dictionary. The dictionary-based decoder is much simpler as
the encoder because it has not to divide the input bit stream in strings and has not to find a match
of the strings in the dictionary.

A simple example of this method is to use the English dictionary and searching the words of an
English text in this dictionary. If a word is found, the index of it in the dictionary is added to the
output stream, otherwise the word itself is written on the output.

In addition, they use strings and not single symbols what makes them often more efficient than
statistical methods. The statement that compressing strings yield better efficiency than compress-
ing single symbols, can be explained as follows:

In statistical methods like Huffman coding described in 3.1.7 the efficiency of the compression
increases the more the probabilities of the different symbols differ from each other. The probability
of strings differ more and more the longer the strings gets. Short strings are more likely to appear
more often in the input data as longer strings. The prove that the probabilities of strings varies
more than the probabilities of the single symbols can be given by the short example shown in the
table 3.8 and table 3.9.

Table 3.8.: Probabilities and Huffman Codes for a Two-Symbol Alphabet Pa1 = 0.8 and Pa2 = 0.2

String Probability Code String Probability Code
a1a1 0.8× 0.8 = 0.64 0 a1a1a1 0.8× 0.8× 0.8 = 0.512 0
a1a2 0.8× 0.2 = 0.16 11 a1a1a2 0.8× 0.8× 0.2 = 0.128 100
a2a1 0.2× 0.8 = 0.16 100 a1a2a1 0.8× 0.2× 0.8 = 0.128 101
a2a2 0.2× 0.2 = 0.04 101 a1a2a2 0.8× 0.2× 0.2 = 0.032 11100

a2a1a1 0.2× 0.8× 0.8 = 0.128 110
a2a1a2 0.2× 0.8× 0.2 = 0.032 11101
a2a2a1 0.2× 0.2× 0.8 = 0.032 11110
a2a2a2 0.2× 0.2× 0.2 = 0.008 11111

Table 3.9.: Probability variance and average code size
String size Variance of Probability Average Code size
1 Symbol 0.6 1
2 Symbols 0.78 0.78
3 Symbols 0.792 0.728

The resulting variances of the probabilities for the three cases of single symbols, strings of two
symbols and strings of three symbols are shown in the table 3.9 and the strings result higher values.
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The variance of the probabilities reflects the deviation of the individual probability values from the
average value. The higher the variance the more the probability values varies from the average
value. The calculation of the variance of the probabilities is given in 3.9.

v =
∑
|pi −m| = |0.64− 0.25|+ |0.16− 0.25|+ |0.16− 0.25|+ |0.04− 0.25| = 0.78 (3.9)

In the equation 3.9, m represents the mean value of the probabilities and pi are the probability
values of the symbols or strings.

If one would use variable length codewords like Huffman coding the strings with their higher
variance world yield in a better codeword length distribution and a smaller average number of bits
per string than by encoding the individual symbols.

The big disadvantage of the dictionary based compression methods using strings instead of
individual symbols is that the number of different strings (different symbol combinations) is much
higher, than the number of different single symbols which requires a huge dictionary size. To store
all possible strings a large memory space is needed for the dictionary and the search for a matching
string in the dictionary is slowed down because of the large number of entries to check.

A possible solution to this problem is to use a sliding window as dictionary and not creating the
full dictionary of all possible strings as it is used in the LZ77 compression method.

LZ77

The method developed by Lempel and Ziv in 1977 called LZ77 uses a part of the already received
input stream as the dictionary to encode the next input symbol. The encoder shifts the received
input symbols in a buffer from the right, which is called the window. The window is divided in
two parts; the part to the left is the dictionary, which is followed by the part to the right, which is
the lock-ahead buffer. The dictionary part contains the last already encoded input symbols and the
look-ahead buffer is filled with the next input symbols, which have to be compressed. The encoder
now looks if it can find the first leftmost character of the look-ahead buffer inside the dictionary
part of the window, scanning the dictionary from right to left. If a match of a number of characters
(string) larger than 2 is found somewhere in the dictionary the encoder sends out a token containing
three entries;

The first number represents the offset (number of characters) from the end of the dictionary
until the first character of the found match.

The second value of the token is the length of the found matched string, the number of matching
characters.

The third entry of the token is the next symbol in the look-ahead buffer following the string,
which has been found in the dictionary.

This third entry of the token is important in the case where no match can be found in the
dictionary. In this case, the encoder sends out a token, which has an offset value and a length
value of 0 and as the third entry the character which couldn’t be found in the dictionary. This is
especially the case at the beginning of the encoding, where the dictionary contains no or only a
few symbols. If the encoder finds more than one match in the dictionary, the one, which contains
the most characters, is used. In the case where more equally long matches are found, the last one
is used, so that the encoder does not need to keep track of the found match, which simplifies the
algorithm.

After the encoder encoded one matching string of the look-ahead buffer, the window has to be
shifted to the right for the length of the encoded string. The look-ahead buffer is filled up with new
characters to encode. The actually encoded characters are shifted into the dictionary part and the
leftmost characters, the oldest ones are shifted out of the dictionary at the left side. This described
compression method with the sliding window is illustrated in a small example to understand the
algorithm better.
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Before, one aspect of the LZ77 has to be discussed that is the choice of the length of the dic-
tionary and the look-ahead buffer. The longer the dictionary is, the more characters are contained
and the higher is the chance to find matches for the new input symbols. A long dictionary on the
other hand creates the need of more bits to represent the offset value. These bits, which have to be
used for the offset, are contained in every token created by the encoder.

The length of the look-ahead buffer defines the maximum length of a matching string, which
can be found in the dictionary. Even if the matched string in the dictionary would be longer, the
encoder could not see this, because it cannot see the new input symbols, which are not already
shifted into the look-ahead buffer. A too short look-ahead buffer would split up long matching
strings in different tokens and therefore decrease the compression efficiency. Typically, in text
compression the length of the dictionary is a few thousand characters, which results in 10 bit-
12 bit for the offset value. The length of the look-ahead buffer is only a few tenths or hundreds of
characters long, needing a few bits (4 bit-8 bit) for the length value in the tokens.

An example of the LZ77 compression method is shown below containing the sliding window
with the two parts, the dictionary (left) and the look-ahead buffer (right).

Bilbo’s favorite, was young Frodo Baggins. When Bilbo was ninety- nine he adopted Frodo as

The encoder looks at the first character, the leftmost in the look-ahead buffer, n and searches
this in the dictionary. The encoder finds four n in the dictionary and looks now which of these
are followed by the second character in the look-ahead buffer, i. The second n in the dictionary
from right, which has the offset value 7, is followed by i. The encoder continues to investigate
how many characters following the ni match as well in the dictionary. The next two characters
ne following ni also match in the dictionary, so the string nine is found in the dictionary with
an offset of 7. The encoder adds the token (7,4, ) to the output data, and shifts the window five
characters to the right. The third entry of the token is the space character , which follows the
matching string nine in the look-ahead buffer. After the shift of the window of five characters is
the first word in the look-ahead buffer he and the string nine is shifted into the dictionary, while
Frodo is shifted out of the dictionary on the left side.

This shows another deficiency of the LZ77 method. When the encoder starts looking at the
word Frodo in the look-ahead buffer this word is already shifted out of the dictionary and the
encoder will not find a match anymore in the dictionary. This word Frodo is encoded by using
several tokens instead of one single token. The LZ77 assumes that pattern in the text occur close
together which fails if words are common in the text but uniformly distributed. To overcome this,
common words should be store in a separate buffer.

The decoder of LZ77 is much simpler; it has not to execute a search operation. It only needs a
buffer to store the dictionary. The decoder reads in a token and uses the offset to point to the first
character in the dictionary. Then it outputs as many characters as the second value of the token
tells, starting from the one it points too. At the end, it adds the character, which is contained as the
third entry in the token. Then the string, which is just send out by the decoder, is also shifted into
the dictionary buffer from the right to update the dictionary for the next token.

A variant of the LZ77 called LZSS that was developed by Storer and Szymanski in 1982. This
algorithm improves the LZ77 in tree aspects:

1. It uses a circular queue for the look-ahead buffer.
2. To fasten up the search in the dictionary, a binary tree is used to organize the dictionary.
3. The tokens are reduced to two entries instead of three.
A circular queue is a basic data structure, which uses two pointers to point to the start and

the end of the string, which is searched. These two pointers are moved instead of shifting all the
characters in the buffer. If a string in the look-ahead buffer is extended to find a longer match in
the dictionary only the end pointer is moved.
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A binary tree is a tree where the left children B of a parent node A is smaller than A, and the
right children C is greater than A (B<A<C). For text compression, smaller and greater strings
are defined lexicographically, that means the string, which precedes another one in the alphabetic
order, is smaller. This binary tree organization of the dictionary fastens up the search step of LZ77.
The height of a binary tree defines the maximum steps to find a string in the dictionary. The height
of a binary tree is given by log2(n), where n is the number of elements in the tree.

The third difference of LZSS to LZ77 is that the tokens contain only two values, the offset value
and the length value of the matched strings. The third entry, the character following the matched
string, which is used to encode also non-matching characters, is not used in LZSS. Instead of using
the third element in LZSS the characters which are not found in the dictionary are send out one
by one with their original uncompressed codes and are distinguished to the tokens by a preceding
flag bit. That means that all words in the output stream contain a preceding flag bit, which tells if
the word is part of a token or an uncompressed character. This gives two outputs token: for found
matches the token (‘1’,o,l) is send, for a non matching character the token (‘0’,c) is send.

LZ78

Another variant of dictionary based compression method was published again by Lempel and Ziv
in 1978 with the name LZ78. This method does not use a sliding window, but a dictionary, which
contains previously seen strings. The size of the memory space limits the dictionary but it has to
be sufficiently large because no entries are ever deleted from the dictionary. The encoder searches
the input string in the dictionary and if it finds the string then a token is added to the output stream
containing two words. The first word of the token is a pointer (address) which gives the position
of the matched string in the dictionary. The second word represents the not matching character,
which follows the matched string in the input data. Then the encoder saves the matched string
followed by the following input character as a new string in the next free position of the dictionary.
The tokens do not contain the length of the strings since this is already defined by the entry in the
dictionary. At the beginning, the encoder starts with an empty dictionary containing only a null
token at address 0. The first token send by the encoder is this null token together with the first
input character C1 (0, C1). The C1 character is then added to the dictionary at position 1. The next
character C2 is searched in the dictionary and since there is only C1 contained yet C2 is compared
to C1. If the two characters are not the same the encoder uses again the null token (0, C2), and
writes C2 in the dictionary at position 2.

If the two characters C1 and C2 are equal the encoder reads in the next character C3 from the
input stream and concatenates it with C2 to form the string C2C3. It searches the string in the
dictionary, but there is only C1 no further match is found. The encoder then sends out the token
(1, C3), where 1 is the pointer to C1 since C2 and C1 are matching. The character C3 is added as
well to the token since it is the next symbol which caused the search to fail. Then the encoder adds
the new stringC2C3 to the dictionary at position 2. For a better understanding the dictionary entries
and the tokens are shown in table 3.10 for the example string ”When Bilbo was ninety− nine”.
As it can be seen in the table, the first 10 characters of the phrase are simply added to the dictionary
and the null tokens are used to send them out. This show how fast the dictionary can grow if no
matches are found. In these cases, the method creates expansion rater then compression because
to each input character the null token has to be added which means that they are represented by
two words instead of one.

After the first ten individual character the following space character has been seen already
before and is found in the dictionary at position 5. The encoder concatenates the next character w
to the space character to form the string w. This string is not found anywhere in the dictionary,
so the encoder creates the token (5, w) and adds the string w to the dictionary at position 11.
An expansion is also in this case most likely because the pointer value will need more bits than a
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Table 3.10.: LZ78 example for the string ”When Bilbo was ninety − nine”

Dictionary Token Dictionary Token Dictionary Token
Pointer Entry Pointer+C Pointer Entry Pointer+C Pointer Entry Pointer+C

0 null 8 l (0, l) 16 ne (4, e)
1 W (0,W ) 9 b (0, b) 17 t (0, t)
2 h (0, h) 10 o (0, o) 18 y (0, y)
3 e (0, e) 11 w (5, w) 19 − (0,−)
4 n (0, n) 12 a (0, a) 20 nin (15, n)
5 (0, ) 13 s (0, s)
6 B (0, B) 14 (0, )
7 i (0, i) 15 ni (4, i)

character to permit a large dictionary for more matches in later steps.
At the end the string ni is found in the table at position 15. The encoder creates the token (15, n)

and adds the string nin to the dictionary. Now a compression can be achieved since tree characters
are represented by one token. The more input symbols are read, the more matches can be found
and the longer are the strings in the dictionary, which increases the efficiency of the compression.
On the other hand the more the dictionary grows the more memory space is needed and the search
for matching strings becomes slower. A good way to organize the dictionary and speed up the
search process is to use a tree structure.

A binary tree like the one described in LZSS would not be the best choice, therefore a tree
structure called trie is used in LZ78 [33]. The tree starts with the null token as the root. Then all
the individual characters requesting the null token are added as children to the root. If strings of
two characters are build the second character is add as a child of the first character which already
is the child of the null token. In the next level, the last characters of 3-character strings are added
at their parents, which are the second character and so on. The trie for the example in table 3.10 is
shown in figure 3.6.

null

W h e n B i l b o aw s _t y ‐

wi e

n

Figure 3.6.: Trie for LZ78 example ”When Bilbo was ninety − nine”

One problem of LZ78 arises when the memory space of the dictionary is full. The simplest
solution is to keep the dictionary unchanged until the end of the compression, but this can reduce
the performance of the compression quite a lot.

Another possibility is to delete the entire dictionary and restart from the beginning with the
assumption that further symbols benefit more from the new data than from the old one. This is the
case if the data can be divided in blocks, which are uncorrelated. The third solution is to delete
the least used entries in the dictionary, but this creates the problem of how to track the use of the
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entries. Unfortunately, there is no good, simple algorithm to find the right entries to delete.
The decoder of LZ78 has to mirror the steps of the encoder and build up the same dictionary,

which makes it more complex than the decoder for LZ77 does.
One frequently use variant of the LZ78 method was developed by Terry Welch in 1984 and

named LZW. This method uses tokens, which contain just the pointer value. The first entries of
the dictionary are initialized to the different characters of the alphabet. In this way, the encoder
will always find a match of the next character in the dictionary and the tokens contain no following
character but only the pointer to the matched strings or single characters. The encoder concatenates
the incoming characters to a string I as long as it finds the string in the dictionary. If the next added
character Cn causes the string ICn not to be found anywhere in the dictionary the encoder sends
out the token with the pointer to the position of the last match of I . The string ICn is then added to
the dictionary and the encoder starts concatenating the next input characters to Cn to form a new
string I .

The LZW decoder reads the token containing the pointer to the string I . It extracts the string I
from the dictionary and sends it out. Then the string I is stored until the next token arrives. The
next pointer points to the next string J and the decoder extracts J from the dictionary. Then it
sends out J and stores the string I followed by the first character of J in the dictionary as a new
entry. The first character of J is Cn which caused the encoder to fail the search of ICn.

Suitability of Lempel-Ziv coding for the implementation of a detector data compression:
+ Advantageous is that the Lempel-Ziv coding is a dictionary based method which requires no

probability model. The problem of correctly building a probability model for the data to be
compressed as for entropy coding methods is not necessary for Lempel-Ziv coding.

+ Advantageous is that neighboring channels of detectors often register waveforms with similar
amplitudes, which can increase the length of matching sample values found in the dictionary.

– Disadvantageous is that the amplitude of the waveforms can vary in a large range, which can
make it difficult to find long matching sequences of consecutive samples in the dictionary.
The possible variation of consecutive sample values is quite large.

– Disadvantageous is that for a good compression performance it is important that the dictio-
nary can store several combinations of sample values, which requires a large memory space
in hardware.

– Disadvantageous is that the search for matches in the dictionary costs time, which makes it
problematic for a real-time implementation.

3.2. Lossy compression
In addition to the lossless compression methods described in section 3.1, several lossy compression
methods are presented now in this section. The lossy compression methods try not only to reduce
the redundancy of the input data, but they also reduce the data by rejecting irrelevant information.
In lossy compression, the properties of the expected data, which have to be compressed, are eval-
uated and a decision is taken which information is indispensable for the application and has to be
retained and which part of the data can be rejected by accepting some reduction of accuracy of the
reconstructed data (error). The irrelevant information is information, which is not important to the
user of the data. For example in image compression, mostly the user is a person, which looks at
the image. The sensitivity of human eyes is limited. Therefore, some loss of information in dig-
ital image representation might be tolerated, because human eyes cannot recognize the decreased
quality of the image caused by this information loss.

The rejection of parts of the data by the compression results in an irrevocable loss of infor-
mation, but this yields in general in higher compression efficiency as with lossless compression
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methods could be achieved. The difficulty is to find methods, which are capable to separate the
important information of the input data from the unimportant (irrelevant) one in a way that a high
compression rate is achieved by maintaining a tolerable loss of data.

In the following, the most important different lossy compression methods are presented.

3.2.1. Scalar and Vector Quantization
The by far best known quantization method is the scalar quantization used for example to digi-
tize analogue signals. The representation of a time-continuous analogue signal with a time-discrete
digital signal by sampling the analogue signal in defined time intervals can be seen also as lossy
data reduction. The analogue signal, which contains information in every point in time, is quan-
tized to a digital signal, which retains the information in only certain (discrete) points in time. This
reduces the amount of data by losing the analogue information between two discrete points in time.

The scalar quantization can also be used for example in image compression. A simple way to
compress an image which consists for example of 8 bit pixels can be quantized to 4 bit by cutting
of the least significant four bits. This results in a fixed compression ratio of 1/2, which is known
in advanced. The drawback is that the possible 256 different grayscale or color values are reduced
to just 16 different values. This creates a high distortion and can cause bands of different colors
with sharp transitions, which are annoying to the user. For example, a row of grayscale pixels can
consist of the following 12 values.

Row1 = 215, 214, 213, 211, 210, 209, 207, 206, 205, 204, 203, 202

Rowbin = 11010111, 11010110, 11010101, 11010011, 11010010, 11010001, ... 11001010

After the quantization only the 4 MSBs of each pixel are retained which yield in the first 6 pixel
being represented by 1101b = and the last 6 pixels being represented by 1100b.

The decoder adds to each of the 4 bit input words 4 LSBs with value 0. This results in 12 pixel
value where the first six have value 1101000b = 208 and the last six have value 11000000b = 192.
From a row where the pixel values change smoothly after the quantization, the row has a sharp
change in the middle from 208 to 192. If the following rows result similar behavior the image is
divided in two grayscale bands with a sharp transition in between.

A variant of the scalar quantization, which tries to reduce the effect, is called Improved Grayscale
Quantization (IGS). The principle of this method is to reduce the pixel representation to 4 bit not
by just cutting the least significant bits, but by adding randomness depending on the neighboring
pixels.

The first pixel is still quantized by just cutting the 4 LSBs. For the next pixels, the encoder
calculates an intermediate 8 bit value R by summing the 8 bit of the actual pixel P and the 4 LSBs
of R (at the beginning R is initialized to 0). The 4 MSBs of R are then added to the output stream.
One special case is when P has a value 1111xxxxb, then P is just copied in R. The table 3.11
shows the encoding of the last 6 pixels of the previous example.

Often scalar quantization is used in lossy compression in combination with other data trans-
forming methods or predictive methods discussed later in this section. The input data e.g. a block
of an image are first transformed in another domain by one of the described transform methods in
section 3.2.2 and then the resulting transform coefficients are scalar quantized to achieve compres-
sion.

Another well-known quantization method is the vector quantization. The vector quantization
do not quantizes each input value separately as the scalar quantization does, but groups a defined
number of input values to an input vector and compares each input vector with reference vectors
stored in a codebook. Vector quantization is also used in lossy images compression. An image is
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Table 3.11.: IGS method on 6 grayscale pixels
Pixel Value R Compressed output

1 1100 1111 0000 0000 1100
2 1100 1110 1100 1110 1100
3 1100 1101 1101 1011 1101
4 1100 1100 1101 0111 1101
5 1100 1011 1101 0010 1101
6 1100 1010 1100 1100 1100

divided in blocks of for example 4×4 or 8×8 pixels and each block forms an input vector. The
vector quantizer has several reference vectors stored in a codebook and each input vector is com-
pared to these reference vectors to find the best matching one. Then only the index of the best
matching reference vector is added to the output data.

The decoder has just to read the incoming indices from the compressed stream and use them to
address the corresponding reference vectors in the codebook. Then the indexed reference vector,
which represents an uncompressed block of pixels, is sent out. While the encoder has to perform
a comparison between the input vectors and the reference vectors, the decoder has only to use the
received index to readout the corresponding reference vector from the codebook. The decoder is
much simpler because it does not mirror the steps of the encoder and therefore vector quantization
is an asymmetric compression method. The compression efficiency is known in advanced and
given by I/(block size). The variable I is the number of bits used to represented all the indices
of the codebook and it is divided by the bits contained in each image block (block size) which
represents an input vector.

If for example each block contains 2×2 pixel values, then each input vector consist of 4 pixels.
If each pixel is represented by only one bit like in a bi-level image (normally a black and white
image) then the block size is 4 bit and the possible number of different input vectors is 24 = 16. If
the codebook now contains all the 16 possible combinations of a block of pixels as the reference
vectors, the encoder will find the reference vector, which exactly matches the input vector. In this
case, the decoder will find the reference vector and reconstruct perfectly the input vector with no
information loss. On the other hand since the codebook contains all the possible combinations of
the input vectors which are 16 the index to select each of the 16 reference vectors has also to be
represented by 4 bit, which then yield in no compression I = 4; pixels/block = 4; bits/pixel =
1; I/(block size) = 4 bit/4 bit = 1. Vector quantization used in compression makes only sense
if not all the possible reference vectors are stored in the codebook and therefore the index can be
represented with less bits as the input vectors. This is also more realistic since for example by
using a block size of 2×2 pixels and each pixel is represented by 8 bit like in grayscale images the
number of different reference vectors world already result in 22×2×8 ≈ 4.3 billion. The reduced set
of reference vectors can cause that an input vector is not exactly identical to a reference vector in
the codebook. Then, the encoder selects the best matching reference vector to represent the input
vector. This causes an error in the reconstruction of the image, since the real input vectors are not
all identical to the used reference vectors, which can be seen also as loss of information (i.e. lossy
compression). A intuitive example of vector quantization used in image compression is shown in
figure 3.7.

The input vectors (image blocks) containing 4 pixels and are compared with the reference vec-
tors in the codebook to find the best index value. The decompressed blocks are shown on the
bottom of the figure. One can see that not all pixels are reconstructed with the correct original
colors but the overall impression is quite similar.

One aspect of the vector quantizer, which has still to be discussed, is the way that the encoder
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Figure 3.7.: Intuitive vector quantization of an image block

finds the best matching reference vector in the codebook. Three measures are presented in the
following, which can be used to find the best matching reference vector:

Let B = (b1, b2, ..., bn) denote the input vector and C = (c1, c2, ..., cn) be a reference vector.
The first measure is the so-called ”distance” d between the input vector B and a reference vector
C. The distance is defined as:

d1(B,C) =
n∑
i=1

|bi − ci| (3.10)

The distance d(B,C) for n = 3 represents the distance between the two three-dimensional vectors
B and C when moving along the coordinates axes. The second measure is the Euclidean (straight
line) distance defined as:

d2(B,C) =
n∑
i=1

(bi − ci)2 (3.11)

The third measure gives the maximum difference between the components of the two vectors B
and C and is defined as:

d3(B,C) =
n

max
i=1
|bi − ci| (3.12)

One of these measures can now be used to classify the degree of similarity between the input vector
and a reference vector. This comparison has to be calculated for all the reference vectors in the
codebook and this for each input vector. If the codebook contains k reference vectors, then this
means that the encoder has to calculate one of the distance measures above k times for each input
vector. The reference vector, which results in a minimum of the used measure, is then selected and
the corresponding index is added to the output data.

A variant of the vector quantization is called tree-structured vector quantization (TSVQ), and
this method tries to fasten up the search process for the right reference vector. This method will find
the right reference vector in log2k steps by using the individual bits of the pixels in the input vector
to locate the different block areas in space and to exclude some reference vectors in this way. The
more the area is confined the more reference vectors can be excluded. The search algorithm takes
bit per bit of the pixels starting by the MSB and uses them to find the corresponding path through
a tree at which leafs the reference vectors are listed. For example when each image block consists
of two 8 bit pixels this input vector can be seen as a point (x,y) in a two dimensional space. The
two dimensional space can be divided in four regions numbered with the bits ‘00’, ‘01’, ‘10’, ‘11’.
The most significant bit of both pixels in the input vector is then used to determine in which region
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the input vector is present. Then this region is again split into four sub-regions with the numbering
‘00’, ‘01’, ‘10’, ‘11’ and the second MSBs its of the two pixel-values are used to allocate the input
vector in one of these four sub-regions. This is continued for all the bit pairs of the input vector
and the sub-region resulting at the end corresponds to a reference vector in the codebook. This
works with every number of pixels per input vector, but for orders higher than three it cannot be
visualized anymore in space. [33]

A key function of the vector quantization is the way the codebook is constructed, which has to
ensure a good compression by maintaining a small distortion in the reconstruction of the image.
Yoseph Linde, Andrés Buzo and Robert M. Gray developed an algorithm (called LBG), which is
often used in vector quantization for image and audio compression. The algorithm starts with an
initial codebook and then modifies this codebook to adapt it to the actual image. The codebook has
to be included in the compressed output data but since it is optimized to the image, the compression
ratio can be significant. The first step is to select a threshold ε which defines when the codebook is
optimized enough to use it for the encoding.

The encoder starts to divide the image in the different blocks Bi. Then it groups the blocks by
finding all blocks Bm which are closer to a reference vector Ci than to any other reference vector.
All found blocks Bm which are closest to Ci are forming the group Pi. The boundaries which
surround each group Pi and are at half way between the reference vector belonging to Pi and the
neighboring reference vectors are giving the Voronoi region for Pi. Each input vector positioned
inside the Voronoi region is closest to the reference vector belonging to the corresponding Voronoi
region.

After all blocks are partitioned into groups Pi, the encoder calculates the distortion Di for all
groups Pi which are not empty. The average of the distances calculated between each block Bm in
the group Pi and the reference vector Ci related to this group gives the distortion Di. The average
distortion D is then calculated out of all Di.

The distortion for the actual iteration k denoted byDk and the distortion of the previous iteration
Dk−1 are used to decide if another iteration is needed by solving equation 3.13.(

Dk−1 −Dk
)
/Dk ≤ ε (3.13)

If the equation results true, no further iteration is needed and the actual codebook is used to perform
the vector quantization on the image. The actual codebook has to be included in the output data.

If a further iteration is needed then the encoder updates the codebook by calculating the average
of all the input vectors Bm in one group Pi and replaces the reference vector Ci by this average
vector. After this, the blocks Bi of the image are partitioned again into the groups Pi and new par-
titions can occur after the reference vectors are updated. The average distortion is again calculated
and should now be smaller than the one from the previous iteration k − 1. The equation 3.13 is
used again to decide if a further iteration has to be performed. An example of this algorithm is
shown in [33].

Suitability of Quantization for the implementation of a detector data compression:
+ Advantageous is that the scalar quantization can be used in all lossy compression methods

for a fast and easy reduction of the range or representation of resulting numbers.
+ Advantageous in terms of vector quantization is that samples of one waveform can be quan-

tized together. A good compression performance can be achieved by using small codebook
sizes.

+ Advantageous is that the realization in hardware is simple requiring a memory as look-up
table for the reference vectors and some summations and comparisons for finding the best
matching reference vector to the input waveform (e.g. Manhattan distance).

+ Advantageous is also that the size of the output words is fixed and known in advance de-
pending on the size of the codebook. If the input waveform would have a fixed number of
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samples, the compression efficiency is also known in advance.
– Disadvantageous is that the introduced distortion by using small codebook sizes is high since

only a few reference vectors are available to represent the input waveforms.
– Disadvantageous is also that for a reasonably low distortion a large codebook has to be used

with reference vectors representing waveforms with different amplitudes and number of sam-
ples. This increases the area of the implementation requiring large memories.

– Disadvantageous is that if the input waveforms have variable numbers of samples an align-
ment step has to be performed to align the reference vectors and input waveforms that in-
creases complexity and requires additional information (about the alignment) to be trans-
ferred.

3.2.2. Transforms
A transform used for data compression is a mathematical calculation like Fourier transform, which
is executed by grouping the input data into matrices or vectors and multiplying those with a trans-
form matrix to weight the input symbols.

The idea to use a transform method in data compression is that the transform should decorrelate
the symbols in the input data and concentrate the energy in the first resulting transform coefficients.
The energy of a vector or matrix is defined as the sum of the squares of the elements a2+ b2+ c2+
d2 + .... If the energy is concentrated in the first coefficients, they hold the important information
and have large values, whereas the following coefficients have small and not so important values.
Compression can be achieved by heavily quantizing the small unimportant coefficients and lightly
quantizing the important coefficients or even not changing them.

The transform coefficients can also be seen as the frequency components of the input data,
where the frequency represents the information of how strong elements of the input data are chang-
ing between them. The first transform coefficient represents the DC component with frequency 0,
whereas the following coefficients correspond to AC components of the input data with increasing
frequencies. The concept of frequencies of the input data can be illustrated by figure 3.8.

Figure 3.8.: Bi-level image frequencies [33]

The pixels in the first row are uniform, they do not change and therefore they have frequency
”a” = 0 shown as a straight horizontal line in figure 3.8. The second row changes one time the pixel
values and therefore the frequency is low as shown by line ”b”, which crosses one time the 0-line.
The pixels of the next row are changing twice the color and therefore the frequency is higher and
the line ”c” crosses twice the 0-line. The frequency gets continuously higher for the last two rows.

To visualize the use of a transform for compression an example is presented based on 128×128
grayscale image with one byte per pixel. This image is known as the Lena image in the data
compression community and is one of several test images to analyze and compare compression
methods. The image is grouped in vectors of two pixels each. These input vectors can be shown
as dots in a 2-diemnsianl space (x, y), where all the odd-numbered pixels are representing the x
coordinates and the even numbered pixel are the y coordinates. A natural image has the property
that adjacent pixels have similar or equal values and therefore the most points in the 2-dimentional
representation are lying on the 45◦-line x = y as it can be seen in figure 3.9(a). This is representing
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the correlation between the pixels. With a transform all points can now be rotated 45◦ clockwise so

(a) 2-pixel input vectors in 2D (b) Rotated input vectors

Figure 3.9.: 2D representation of the input vectors containing two pixels of the grayscale Lena image [33]

that the most points are coming to lie on the x-axis as it can be seen in figure 3.9(b). The rotation
is done mathematically by multiplying each input vector with the rotation matrix R as given in
equation 3.14.

(x∗, y∗) = (x, y)R = (x, y)

(
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

)
= (x, y)

1√
2

(
1 −1
1 1

)
(3.14)

Most points have after the rotation a y-component concentrated around y = 0. The values of the x-
component are slightly increased after the transform. Therefore, the energies of the y-components
are transferred to the x-components. The reduction in correlation between the pixels before and
after the transform can be retrieved by comparing the cross-correlation. The cross-correlation is
defined as the sum

∑n
i=1 xiyi of the input vectors (xi, yi). The resulting rotated (x∗, y∗) can be

quantized separately and are representing the compressed data. [33]
The decoder reconstructs the input vectors by taking the received transform coefficients (x∗, y∗)

and multiplying them with the inverse of the transform matrix as given in equation 3.15.

(x, y) = (x∗, y∗)R−1 = (x∗, y∗)RT = (x∗, y∗)
1√
2

(
1 1
−1 1

)
(3.15)

The transform matrix R is not the only possible transform matrix which can be used in lossy
compression. In the following different transform methods are discussed and some properties of a
good transform matrix are presented.
A transform matrix which can lead to good lossy compression should:

1. Reduce the redundancy of the input data by decorrelating the elements.
2. Identify the less important components of the input data to quantize them strongly.

To achieve the first aim the elements of the transform matrix, the weights wij should be positive
and negative. To ensure that the first transform coefficient c1 becomes the most information and
the other coefficients are getting small, the first row of the transform matrix w1j should have only
positive elements. The other rows of the transform matrix should have equal numbers of positive
and negative weights, so the other coefficients become much smaller than the first one.

The second aim is to separate the important and the unimportant components of the input data.
Therefore, the resulting transform coefficients should be related to different frequency-components
of the input data. The first coefficient should represent the DC component with frequency 0 and the
following coefficients should represent components related to increasing frequencies. To achieve
this relation the weights of the transform matrix should change their sign according to the fre-
quency components. The first roww1j is related to the DC component and therefore no sign-change
is present, all elements are positive. The second row w2j should have only one sign change, that
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can be achieved by selecting the first half elements of the row as positive values and the second
half as negative values. The third row of the transform matrix should have two sign changes, the
fourth row three and so on. A possible transform matrix showing this properties is given in 3.16.
This matrix is orthogonal, which means that the inverse of the matrix and the transpose are equal
W−1 = W T . This is important to guarantee that the transform can be reversed perfectly resulting
in the original input matrix if no quantization would be performed on the coefficients.

W =


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 (3.16)

Other possible transform methods are described in the following:

Walsh-Hadamard Transform

The transform method of Joseph L. Walsh and Jacques S. Hadamard (WHT) is fast and easy to
implement because it uses only additions, subtractions and right shifts. Unfortunately, the com-
pression efficiency is not very high, which is the reason why it is not used frequently. The WHT is a
generalized Fourier transform. The transformation and inverse transformation is given by equation
3.17 and equation 3.18, respectively.

H(u, v) =
N−1∑
x=0

N−1∑
y=0

f(x, y)g(x, y, u, v)

H(u, v) =
1

N

N−1∑
x=0

N−1∑
y=0

f(x, y)(−1)
∑n−1

i=0 [bi(x)pi(u)+bi(y)pi(v)] (3.17)

f(x, y) =
N−1∑
u=0

N−1∑
v=0

H(u, v)h(x, y, u, v)

f(x, y) =
1

N

N−1∑
u=0

N−1∑
v=0

H(u, v)(−1)
∑n−1

i=0 [bi(x)pi(u)+bi(y)pi(v)] (3.18)

The variables bi represent the single bits of the binary representation of the integers u, v, x and y.
The term pi is defined by the bits of the indices u and v as following:

p0(u) = bn−1(u),

p1(u) = bn−1(u) + bn−2(u),

p2(u) = bn−2(u) + bn−3(u),
...

pn−1(u) = b1(u) + b0(u) (3.19)

The results of the transform, H (u, v) are the coefficients of the WHT. The functions g(x, y, u, v)
and h(x, y, u, v) are equal and represent the weighting matrix with elements of +1 and −1 and the
matrix is divided by

√
N . The value of N represents the row and column length of the input data

block N×N , and N must be a power of 2. Since N = 2n is a power of two the division for N > 2
can be performed by a right-shift of n− 1 positions.

For each coefficient, the elements of an input block are multiplied by +1 or−1 and all resulting
values of each input block are summed up and divided by

√
N to normalize them. Then the
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resulting coefficients can be quantized and add to the compressed stream. A resulting Walsh-
Hadamard transform matrix for N=2 and N=4 is shown in 3.20 and as well the manner to construct
Walsh-Hadamard matrixes for higher N. The normalization of the transform matrix by

√
N is

needed that the magnitude of the row vectors becomes 1 so that an orthonormal matrix is the
result.

H2 =
1√
2

(
1 1
1 −1

)
H2N =

(
HN HN

HN −HN

)
H4 =

1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (3.20)

Suitability of Walsh-Hadamard transform for the implementation of a detector data compression:
+ Advantageous is that the WHT is executed fast by multiplying an input vector with the trans-

form matrix. A real-time implementation is possible.
+ Advantageous is also that the WHT is easy to implement requiring only a few additions

subtractions and shift operations.
– Disadvantageous is that the lossy compression efficiency is low compared to other transform

methods. The decorrelation property of the WHT is not too good.

Karhunen-Loève Transform

The Karhunen-Loève transform creates a transform matrix out of the data set, which has to be com-
pressed. This optimal transform matrix is then used in a second stage to transform the data set for
compression. This method has the best efficiency in terms of energy compaction and decorrelation
because it is optimized to the underlying input data. The drawback is that the calculated transform
matrix has to be added to the compressed data in order that the decoder is able to perform the
inverse transform to reconstruct the original data. The second problem is that the calculation of the
transform matrix is not trivial and no fast implementation is developed so fare, which makes this
method less than ideal for practical implementations.

To calculate the transform matrix the input data set is first grouped to input vectors of a defined
length. In image compression a input vector b(i) contains the pixels of one block. The image to
compress can for example be divided into k blocks, each of 8 × 8 pixels, which results in n = 64
pixels per input vector and k such input vectors.

Then the average vector b of the k input vectors b(i) with length n can be calculated as b =∑k
i=1 b

(i)/k.
A new set of vectors v(i) is calculated, which has an average of 0 by subtracting the average

vector b from each input vector by v(i) = b(i) − b. This new vectors are combined to the matrix V
having n rows and k columns.

The searched transform matrix is denoted by A. This matrix (A) is multiplied by V to form the
weighting matrixW = A·V . The rows ofW represent the n coefficient vectors c(j), j = 1, 2, ..., n.

The matrix productW ·W T represents in their diagonal elements the variances of the coefficient
vectors. The off-diagonal elements are the covariances of the coefficients. To decorrelate the
coefficients, in the Karhunen-Loève transform the covariances have to become 0. That means that
the matrix product W ·W T has to result in a diagonal matrix with all the diagonal elements being
the eigenvalues (λ1, λ2, ..., λn) of V × V T and the off-diagonal elements have to be 0. This leads
to the equation 3.21 from which the elements of the transform matrix A can be calculated for the
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given input data (image).

W ·W T = (AV ) · (AV )T = A(V · V T )AT =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
... . . . ...

0 0 0 . . . λn

 (3.21)

The product matrix V · V T is symmetric and its eigenvectors are orthogonal. Therefore, the rows
of A have to become normalized, which means that their magnitude has to result 1 and then the
matrix become a orthonormal matrix.

Suitability of Karhunen-Loève transform for the implementation of a detector data compression:
+ Advantageous is that this transform method is optimized for the input data to compress. This

transform produces a perfect decorrelation of the input data and the highest compression
performance from all the transform methods.

– Disadvantageous is that the arithmetic to calculate the transform matrix out of the input data
is difficult to implement. No fast execution for real-time implementation is evident at this
time.

– Disadvantageous is also that for calculating the transform matrix for many input waveforms,
they have to be buffered in large memories together with the transform matrix elements.

– Disadvantageous is also that the calculated transform matrix has to be included in the out-
put data in order to send it to the decoder. This decreases the compression performance
significantly.

Discrete Cosine Transform

The discrete cosine transform (DCT) is one of the most popular transform methods in lossy com-
pression used principally in images and audio compression. The transform in one dimension for a
vector pt is given by the equation 3.22.

Gf =

√
2

n
Cf

n−1∑
t=0

pt cos

[
(2t+ 1)fπ

2n

]
(3.22)

Cf =

{
1√
2
, f = 0,

1, f > 0,
for f = 0, 1, ..., n− 1.

The idea of the DCT is that after the transform the resulting coefficients Gf are decorrelated and
the energy is concentrated in the first few coefficients. The first coefficients, which represent the
low frequency components of the input data should have large values, whereas the remaining co-
efficients representing the high frequency components, will have small values close to 0 or even 0.
The small values will be quantized strongly, even down to 0 because the high frequency compo-
nents normally are less important giving only the details of the input signal. This is true for input
data where the elements are correlated between them. For a strong correlation of the input data, the
DCT can achieve results as good as the Karhunen-Loève transform. Otherwise, if the correlation
is low the coefficients are all becoming large. To perform the quantization the first coefficients,
which hold the important low frequency information, can be quantized for example to the nearest
integer and the rest of the coefficients can be quantized to 0. The quantized coefficients can then
be further compressed by using lossless compression methods like Huffman coding or RLE since
many coefficients are 0.
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The decoder performs the inverse discrete cosine transform (IDCT) after decompressing the
quantized coefficients, to reconstruct the input data. The inverse transform is given in equation
3.23.

pt =

√
2

n

n−1∑
j=0

CjGj cos

[
(2t+ 1)jπ

2n

]
, for t = 0, 1, ..., n− 1 (3.23)

The DCT splits the input signals in their different frequency components and therefore it can be
compared with the discrete Fourier transform (DFT). The DFT is used for example in telecom-
munications engineering to transform a modulation signal from the time domain to the frequency
domain. The difference between DCT and DFT is that the Fourier transform tends to produce peri-
odical signals while DCT works for non-periodic signals, which can be illustrate with the following
example:

The input data consist of the vector (8, 16, 24, 32, 40, 48, 56, 64) and are displayed in figure
3.10(a). The DCT results in the coefficients (102,−52, 0,−5, 0,−2, 0, 0.4). These coefficients are
quantized to (102,−52, 0,−5, 0, 0, 0, 0). The inverse DCT on the quantized coefficients yield
in the reconstructed input vector (8, 15, 24, 32, 40, 48, 57, 64). The reconstructed input vector
is almost identical to the original input data by having only the first 4 coefficients not quan-
tized. When the input vector is transformed by using the DFT the resulting coefficients are
(36, 10, 10, 6, 6, 4, 4, 4) as described in [33]. These coefficients are now quantized in the same way
as before for the DCT, resulting in (36, 10, 10, 6, 0, 0, 0, 0). After the inverse DFT on the quantized
coefficients the reconstructed input vector results in (24, 12, 20, 32, 40, 51, 59, 48), which is illus-
trated in figure 3.10(b). The tendency of the Fourier transform to produce periodic signals can be
seen.
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(a) Input vector for DCT and DFT
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(b) Reconstructed vector after DFT

Figure 3.10.: 1-dimensional discrete cosine transform showing tendency for periodic results

One property of the DCT coefficients is that they are real numbers with positive and negative
signs even if the input data consist of only non-negative integer values. If the DCT coefficients
would not be quantized, the original data could be reconstructed perfectly with a small error related
to the limited precision of the representation of the real numbers. The use of the DCT in lossless
compression is not considered, because the compression performance due to the smaller coefficient
values is marginal and the problem of representing real numbers is not trivial in implementations.
For the lossy compression, the DCT results in good performances if the coefficients are quantized
properly.

In image compression the DCT is used in two dimensions by performing a one dimensional
DCT first to the rows and then to the columns of an image block or vice versa. The mathematical
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way to perform this is given in equation 3.24.

Gij =

√
2

n

√
2

m
CiCj

n−1∑
x=0

m−1∑
y=0

pxy cos

[
(2x+ 1)iπ

2n

]
cos

[
(2y + 1)jπ

2m

]
(3.24)

The indizes i and j move in the ranges 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1, respectively. The
inverse DCT in 2D is given by equation 3.25.

pxy =

√
2

n

√
2

m

n−1∑
i=0

m−1∑
j=0

CiCjGij cos

[
(2x+ 1)iπ

2n

]
cos

[
(2y + 1)jπ

2m

]
(3.25)

The encoder first divides the image into k blocks of normally 8×8 pixels. If the image rows are not
exactly divisible by 8, the bottom row is duplicated as many times as needed to complete 8 rows.
The same applies to the columns of the image. Then the DCT is performed on each block resulting
a vector of 64 coefficients w(i)

j (where j = 0, 1, ..., 63 and i = 1, 2, ..., k). The k coefficient vectors
become the rows of the matrix W .

W =


w

(1)
0 w

(1)
1 w

(1)
2 . . . w

(1)
63

w
(2)
0 w

(2)
1 w

(2)
2 . . . w

(2)
63

...
...

... . . . ...
w

(k)
0 w

(k)
1 w

(k)
2 . . . w

(k)
63

 (3.26)

Then each column of W is quantized separately so that the first column which represents the DC
components, is quantized slightly and the later ones are stronger quantized. The resulting quantized
matrix (denoted by Q) is then encoded by using for example variable-size codes (e.g. Huffman
coding).

The decoder receives the variable size codes and decodes them. It saves the decoded values
as the elements of a matrix which corresponds to the quantized matrix Q. Then it performs the
inverse DCT on each row of Q to reconstruct the image resulting in some slight distortion caused
by the quantization. An example is shown in [33].

The equation 3.22 can also be written in matrix notation. Therefore, a order n = 3 is chosen,
which corresponds to a representation in a 3-dimansional space. For the simplicity, in the first
steps the normalization factors

√
2/3 and Cf are ignored, which leads to the following equation: G0

G1

G2

 =

 cos (0) cos (0) cos (0)
cos
(
π
6

)
cos
(
3π
6

)
cos
(
5π
6

)
cos
(
2π
6

)
cos
(
23π

6

)
cos
(
25π

6

)
 p0

p1
p2

 = D · p (3.27)

The matrix D is the transform matrix for the DCT and it is an orthogonal matrix (D−1 = DT ).
The matrix D contains the following values:

D =

 1 1 1
0.866 0 −0.866
0.5 −1 0.5


The particular choice of the angles makes the vectors (rows) of the matrix orthogonal but they
are not orthonormal. To get orthonormal vectors their magnitude has to be one, which means they
have to be normalized. This normalization is done by multiplying the elements of D with the
normalization factors

√
2/3 and Cf as given in equation 3.22. This results the orthonormal matrix

M :

M =

 0.5774 0.5774 0.5774
0.7071 0 −0.7071
0.4082 −0.8165 0.0.4082

 (3.28)
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The vectors (rows) of the matrix M starting from the first on top, have increasing frequencies.
The frequencies of the three rows are shown in figure 3.11. This property allows extracting the
frequencies contained in the input data and concentrating the energy (important information) in
the first resulting transform-coefficients.

The orthonormal property of the matrixM leads to the decorrelation of the input data by return-
ing decorrelated transform coefficients, which are also related to the different frequencies in the
input data. Another, property of orthonormal matrices is that the inverse of the matrix is also its
transpose, what makes it possible to reconstruct the input vector (v) by multiplying the coefficients
with MT . If M · v = c then v can be reconstructed from c by MT · c =M−1 · c = v.
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Figure 3.11.: Increasing frequencies of the vectors of the DCT matrix

Suitability of discrete cosine transform for the implementation of a detector data compression:
+ Advantageous is that the DCT method produces a good decorrelation of the input data by

extracting the different frequency components from the input waveforms.
+ Advantageous is that according to the good decorrelation an easy and efficient quantization

of the high frequency coefficients can be achieved which can yield in a good compression
performance with acceptable low distortion of the reconstruction.

+ Advantageous is that the transform matrix elements consist only of a few different values,
which makes it easier to store the transform matrix.

+ Advantageous is also that the number of resulting transform coefficients is equal to the num-
ber of samples in the input waveforms, which makes it easy to handle variable waveform
lengths (variable elements per input vector).

– Disadvantageous is that the multiplication of the input vectors with the transform matrix is
not so easy to implement.

– Disadvantageous is also that the DCT results in positive and negative floating-point coeffi-
cients even if the sample values at the input are pure positive integers.

Wavelet Transform (Subband coding)

In the previous section the transform coding is described, which uses orthogonal basis functions
to decompose the input signal in different frequency components. Another method to decompose
the input signal is the wavelet transform, which splits the input signal in subbands with dedicated
frequency bands.

The name wavelet is related to the requirements, which such functions have to fulfill. Among
these requirements is that a wavelet has to integrate to zero [33]. That means that the area the
wavelet curve encloses above the x-axis it also has to have bellow the x-axis, which justifies the
first part of the name ”wave”. A second requirement is that the wavelet function has to be localized
in space (or time), which means that it has to be limited in a certain range and result zero outside
this range. This non-infinitely continuing wave therefore is named with the diminutive ”wavelet”
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to define it as a small part of a wave. The wavelet transform can be compared with the Fourier
transform. The Fourier transform is used to translate a signal from the time domain to the frequency
domain. The Fourier transform returns the frequency components, which are present in the input
signal and the amplitude of these frequency components. The disadvantage is that the Fourier
transform decomposes the input signal in sums of sine and cosine functions, which periodically
continue infinitely and therefore, are not localized. This results in a good resolution of the signal in
the frequency domain but gives no time information while representing the signal in the frequency
domain. After the Fourier transform of a signal, we know all the frequencies contained in the signal
and there amplitudes but we do not know at which time each frequency component appears in the
analyzed signal. The Fourier transform and its inverse give us either a good resolution in time and
zero resolution in frequency or a good resolution in frequency but zero resolution in time. The
wavelet transform uses localized functions to transform an input signal in the frequency domain,
it uses a window, which slides over the input signal and gives us the frequency components seen
in this window. The window is shifted in time to analyze the different parts of the input signal
separately, but it is also scalable to see the overall behavior of the signal as well as the detailed
aspects. One fact is that it is not possible to achieve a perfect resolution of the signal in time and
frequency at the same time, which is described by the uncertainty principle known from particle
physics. The better the resolution in frequency is the lower the resolution in time can be and vice
versa.

To compute the wavelet transform a wavelet function has to be defined which is denoted by the
”mother wavelet”. To execute the transform the inner product of the input signal and the mother
wavelet is calculated. As described above the mother wavelet has to fulfill the following conditions:

1. The total area under the curve of the function is zero, i.e.∫ ∞
−∞

ψ(t)dt = 0. (3.29)

2. The total area of |ψ(t)|2 is finite, i.e.∫ ∞
−∞
|ψ(t)|2 dt <∞. (3.30)

This means that 1. the mother wavelet has to be a wave that oscillates above and below the t(x)-
axis and that the total area below this wave is zero. The 2. condition implies that the energy of
the function is finite, which means that the function is localized in some finite interval and is zero
outside this interval. The continuous wavelet transform is than given by:

W (a, b) =

∫ ∞
−∞

f(t)ψa,b(t)dt. (3.31)

ψa,b(t) =
1√
|a|
ψ

(
t− b
a

)
(3.32)

The mother wavelet ψ is scaled by the factor a and shifted by the translation factor b. The quantity
1/
√
|a| is a normalization factor that ensures that the energy of ψ(t) remains independent of a and

b [33].
The inverse wavelet transform is given by:

f(t) =
1

C

∫ ∞
−∞

∫ ∞
−∞

1

|a|2
W (a, b)ψa,b(t)da db (3.33)

where the quantity C is defined as:

C =

∫ ∞
∞

|ψ(ω)|2

ω
dω. (3.34)
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Figure 3.12.: Three examples of mother wavelet functions

In figure 3.12 three examples of a mother wavelet are illustrated. The way the continuous wavelet
works can be explained by the example of transforming a pure sine wave. The used mother wavelet
is the ”Mexican Hat”. In figure 3.13(a) the sine wave is shown in the first graph. The second graph
shows the Mexican Hat mother wavelet and a shifted (translated) version of the Mexican Hat
function. The third graph shows the resulting wavelet coefficients. The resulting coefficient values
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Figure 3.13.: Continuous Wavelet decomposition of a pure sine wave

are received by continuously shifting the Mexican Hat function from left to right (along the time
axis) and calculating the inner product of the Mexican Hat and the sine wave. The first Mexican
Hat is located at a point where the sine wave has a maximum and therefore it has a good match
with the sine function. The resulting wavelet coefficient has a maximum at this position. The
second, translated Mexican Hat is positioned where the sine wave has a minimum. At this point
the wavelet and the sine wave are mirrored which leads to a large negative transform coefficient.
In between the coefficients drop from positive to zero to negative values.

If the wavelet is scaled the frequency of the wavelet and the sine wave are not anymore similar
and the resulting coefficients get smaller. This can be seen in figure 3.13(b). The Mexican Hat
function is either stretched to cover several periods of the sine wave or shrunk to be much narrower
than one cycle of the sine wave. If these scaled functions are translated from left to right, the
resulting coefficients are much smaller than in the previous case. The larger the scaling is the
closer the coefficients become to a constant value.

In data compression, the input signals are in most of the cases discrete signals e.g. obtained
by sampling audio signals. Therefore, the use of the wavelet transform in data compression is
executed in the discrete form. To explain how the discrete wavelet transform works the simplest
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mother wavelet is used, which is the Haar wavelet shown in figure 3.12(c). To illustrate the use
of the Haar wavelet in data compression a single row of pixel values of a grayscale image is used.
The vector containing the pixel values has a length of n, where n should be a power of 2. If the
number of pixels is not a power of 2 the vector can be extended with 0’s, which are then cut again
at the decoder. Let us use now an example vector of 8 pixel values being (1, 2, 3, 4, 5, 6, 7, 8) [33].

The first step is to calculate the averages between two adjacent pixels resulting in the four
values (1 + 2)/2 = 3/2, (3 + 4)/2 = 7/2, (5 + 6)/2 = 11/2, (7 + 8)/2 = 15/2. Trans-
mitting these four values is not enough to reconstruct the original pixels. In addition the dif-
ferences between adjacent pixels are calculated which result in the four values (1 − 2)/2 =
−1/2, (3 − 4)/2 = −1/2, (5 − 6)/2 = −1/2, (7 − 8)/2 = −1/2. The resulting vector has
the values (3/2, 7/2, 11/2, 15/2,−1/2,−1/2,−1/2,−1/2). The first four elements, the averages,
are called the smooth coefficients and the last four values, the differences are called the detail coef-
ficients. With these eight values, the original pixel values can now be reconstructed. If the adjacent
pixel values are correlated, the smooth coefficients will resemble the original pixel values and the
differences will be small values. The small values can now be compressed efficiently by using
RLE or Move-to-Front and Huffman coding. This algorithm can be applied iteratively by calculat-
ing the averages and differences of the remaining smooth coefficients. After the second iteration
the vector contains the values (10/4, 26/4,−4/4,−4/4,−1/2,−1/2,−1/2,−1/2). The next and
final iteration gives the final output vector (36/8,−16/8,−4/4,−4/4,−1/2,−1/2,−1/2,−1/2).
This vector is the output of the Haar wavelet transform of the original input vector. The origi-
nal pixel values can perfectly be reconstructed with an iteratively reverse algorithm and the small
difference (detail) coefficients help to compress the resulting output vector.

To achieve an orthonormal Haar Transform the output vector should be normalized by dividing
the coefficients with the square root of the resolution. The resolution is defined as the number of
remaining smooth coefficients after each iteration. The normalized output vector is given by:(

36/8√
20
,
−16/8√

20
,
−4/4√

21
,
−4/4√

21
,
−1/2√

22
,
−1/2√

22
,
−1/2√

22
,
−1/2√

22

)
(3.35)

The wavelet transformation of a 2D-image can be performed by applying the iterative algorithm
first to each row of the image matrix, which results in the first column containing all averages and
the other columns contain the differences. Then the iterative algorithm is applied column-vice to
the resulting values, which gives one average value at the top-left corner. The rest of the top row is
the average of the differences and all other values are differences. This approach is called standard
decomposition [33].

A second approach is to apply each iteration of the wavelet transform alternating to the rows
and columns. The first step is to calculate the averages and differences for all rows and then for
all columns. These results in the averages in the first halve of the rows and upper half of the
columns (top-left quarter) and the rest are differences. In the second iteration, the averages and
differences are calculated only for the top-left quarter, and so one. This approach is called pyramid
decomposition [33].

The calculation of the wavelet transform can also be executed by a matrix approach. The calcu-
lation of the averages and differences for the Haar wavelet transform can be done using a transform
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matrix. The transform matrix for the first iteration is given by A1.

A1 =



1
2

1
2

0 0 0 0 0 0
0 0 1

2
1
2

0 0 0 0
0 0 0 0 1

2
1
2

0 0
0 0 0 0 0 0 1
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1
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1
2
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2
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0 0
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2
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, A1 ·



1
2
3
4
5
6
7
8


=



3/2
7/2
11/2
15/2
−1/2
−1/2
−1/2
−1/2


(3.36)

For the second iteration the transform matrix results in A2 and the third iteration is performed with
A3:

A2 =



1
2

1
2
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, A3 =
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2
−1

2
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0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
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0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(3.37)

The Haar wavelet transform can be calculated by multiplying the transform matrices for each
iteration resulting the Haar wavelet transform matrix W = A3 · (A2 · A1). Then to calculate the
transform coefficients the input vector containing the pixel values is multiplied with the overall
transform matrix W .
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(3.38)

To perform the Haar transform on a 2-D image, W is first applied to the columns of the pixel matrix
and then to the resulting rows. Mathematically this can be written as follows:

Itr =
(
W (W · I)T

)T
= W · I ·W T (3.39)

In order to receive a orthonormal transform matrix for the Haar wavelet the used division by 2 in
the transform matrixes A1, A2, A3 have to be exchanged by 1/

√
2.

The implementation of wavelet transform can be done by using so called filter banks. Consid-
ering the example of the Haar wavelet transform, the average and difference coefficients (smooth
and detail) can be obtained by using low-pass and high-pass linear filters. The building of the
averages of the input samples can be compared with a linear low-pass filtering of the input sig-
nal, while the differences are obtained by linear high-pass filtering. Each filter output produces
n values where n is the length of the input vector, which results in twice as much output values
than input samples. The Nyquist criteria says that sampling a continuous signal which has a finite
bandwidth with a rate slightly more than double the maximum contained frequency allows us to
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reconstruct the original signal by interpolating between the samples. The finite bandwidth of the
signal source (such as microphone, speaker) is given by the limited respond speed of the source
and prevents that the signal can change faster as 2 times the maximum frequency. The decompo-
sition of the input signal by using a low-pass and a high-pass filter results in two output signals,
which have half the input bandwidth. Since the output bandwidth of each linear filter is half the
input bandwidth, we only need half the output samples of both to reconstruct the original input
samples. Therefore, after the filters the outputs are down sampled by a factor of 2 retaining only
the even numbered output values. In the previous discussion of the wavelet transform is shown
that only four averages and four differences are needed to reconstruct the eight input pixel values.
The decomposition of the input signal into two subbands by using a low-pass filter and a high-pass
filer is called subband coding. The iterative execution of the Haar transform can be achieved by
consecutively connecting several low-pass and high-pass filters as well as down sampling devices.
Two different approaches are shown in figure 3.14 [35]. For the low-pass and high-pass filters,
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Figure 3.14.: Subband decomposition using 2 different filter bank concepts

liner finite impulse response (FIR) filters are preferred. The FIR filter coefficients for the Haar
wavelet result for the low-pass filter in h(0) = 1/2, h(1) = 1/2 and for the high-pass filter in
h(0) = 1/2, h(1) = −1/2. The disadvantage of the Haar wavelet decomposition using the FIR
filters for example in image compression is that artifacts, such as ringing or aliasing, are introduced
caused by the not ideal filters and the down sampling. To reduce this problem better FIR filters
with higher tab order are searched. Some well known mother wavelet functions which result in
better FIR filters are the Coifman wavelet, the Daubechies wavelet, Beylkin wavelet and more [33].

Suitability of discrete wavelet transform for the implementation of a detector data compression:
+ Advantageous is that the DWT method produces a good decorrelation of the input data by

consecutively splitting the input waveforms (vectors) in two frequency bands.
+ Advantageous is that the low frequency band contains the averages, which still preserve some

properties of the input waveform. This can be used for preselecting some data at the decoder
to find some signals with certain properties without having to decode all the received data.

+ Advantageous is that the transform is easy to implement using FIR filter banks.
+ Advantageous is that pipelined filter banks allow a perfect real-time implantation.
– Disadvantageous is that a right mother-wavelet has to be defined for the underlying input

data to obtain a good compression efficiency with low distortion.
– Disadvantageous is also that it is more complicated to find the coefficients, which can be
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quantized strongly since the high frequency coefficients are not all at the end of the resulting
coefficient vectors.

– Disadvantageous is that for the DWT the number of samples per input waveform has to be
a power of two. This can decrease the compression performance since input waveforms can
have variable number of samples and need to be extended to input vectors with a power of
two numbers of elements.

3.2.3. Predictive coding
Another lossy compression method, which is used e.g. in image and audio coding is based on
predictive coding. Some kinds of data to be compressed contain a large correlation between neigh-
boring samples. That means that for example neighboring pixels in natural images are likely to
have similar or equal color values, or consecutive (in time) samples of audio signals are likely to
have similar amplitudes. To use this correlation the first idea what comes in mind is to encode the
differences between neighboring samples or pixels instead of encoding the original values. The
differences of strongly correlated input data should be presented in a much smaller range as the
original values and this requires fewer bits to present them. In addition, if a quantization is per-
formed on the differences the error introduced will be much smaller then by quantizing directly
the original samples. The compression efficiency is depending on how close the value of the ac-
tual sample xn is to the preceding sample xn−1 and therefore how small the difference gets. An
even better compression performance can be achieved by not just using the preceding sample and
calculating the difference but by using more than one preceding sample to predict the value of
the actual sample xn and then calculating the difference between the predicted value x̂n and the
original value. In this way, not only the similarity of neighboring samples is used but also the trend
in the signal, which corresponds to the higher order correlation.

A general predictive coder usesN signal samples back in time or previous encoded neighboring
pixels to make a prediction of the actual signal sample and then encoding the difference between
the predicted and the original value [35].

The decoder will use the same N previous reconstructed samples to do the same prediction and
then use the received difference to correct the prediction and to obtain the original value.

If the difference between the predicted value and the original value is quantized, as it is the
case for lossy compression then the encoder has to use the reconstructed values for the prediction,
that is the encoder has to mimic the decoder. This is important because the decoder has only the
information about the previous reconstructed samples containing the quantization error and not of
the exact original values. Therefore, the decoder can predict the value of the actual sample only
based on the previous reconstructed samples and the encoder has to use the same information what
is available to the decoder, which is the reconstructed value including the quantization error and
not the original values. This important fact is illustrated in figure 3.15.

There are different functions to estimate (predict) the value of the actual sample. In the fol-
lowing the use of linear predicators is explained which bases on a linear combination of previous
sample values and is considered as a auto regressive (AR) model of the source [35].

pn = a1x̂n−1 + a2x̂n−2 + ...+ aN x̂n−N =
N∑
i=1

aix̂n−i (3.40)

The prediction error dn = x̂n − pn is quantized and transmitted. Both the coder and decoder then
reconstruct d̂n and x̂n = pn+ d̂n which is used in the next iteration to predict the next input sample.

The predictor coefficients ai should be chosen in a way to minimize the distortion D.

D =
1

N

N∑
n=1

(xn − x̂n)2 =
1

N

N∑
n=1

(
dn − d̂n

)2
(3.41)
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Figure 3.15.: Blockdiagram of the predictive coding method

The quantization makes it difficult to calculate the predictor coefficients, but if one assumes fine
quantization which means that the number of quantization levels is large, the approximation x̂n ≈
xn can be done [35]. With this assumption, the variance of the prediction error is given by:

σ2
d =

1

N

N∑
n=1

(xn − pn)2 =
1

N

N∑
n=1

(
xn −

N∑
i=1

aix̂n−i

)2

≈ 1

N

N∑
n=1

(
xn −

N∑
i=1

aixn−i

)2

(3.42)

To calculate the coefficients which give the minimum distortion D the variance of the prediction
error is differentiated with respect to each ai and the resulting equation is set to 0. This gives N
equations for the N predictor coefficients as in 3.43.

∂

∂aj
σ2
d = −2

1

N

N∑
n=1

[(
xn −

N∑
i=1

aixn−i

)
· xn−j

]
= 0 (3.43)

The predictor coefficients can be calculated also by using matrix notation and the auto correlation
function 3.44.

RXX(k) =
1

n− k

n−k∑
i=1

xi · xi+k (3.44)

R =


RXX(0) RXX(1) . . . RXX(N − 1)
RXX(1) RXX(0) . . . RXX(N − 2)

...
... . . . ...

RXX(N − 1) RXX(N − 2) . . . RXX(0)

 (3.45)

The predictor coefficients can now be calculated as:

RA = P⇒ A = R−1P (3.46)

Where P contains the resulting predicted values which should be the original values and A is the
vector of the predictor coefficients and they are given by:

P =


RXX(1)
RXX(2)

...
RXX(N)

 , A =


a1
a2
...
aN

 (3.47)

Suitability of predictive coding for the implementation of a detector data compression:
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+ Advantageous is that predictive coding can perfectly use the correlation of the samples ac-
cording to the predefined signal shape. A good compression performance can be obtained by
quantizing the differences between predicted values and original sample values.

+ Advantageous is also that a simple calculation of only the differences between consecutive
samples can be used in combination with other compression methods to increase their com-
pression efficiency. With the differences the correlation is already exploit to some extend in
a simple way.

– Disadvantageous is that a more complex prediction using more than one preceding sample is
difficult to implement in hardware.

– Disadvantageous is also that by using the quantization for increasing the compression per-
formance a decoding has to be performed already in the implementation of the encoder to
predict following samples value in the same way as the decoder does.

3.2.4. Model based coding
In model based coding a parametric function is searched, which can model the underlying data
source. To compress the data, the resulting model parameters for the input signals are sent to
the decoder instead of encoding the input signal directly. This principal is also known as analy-
sis/synthesis coding and is used for example in human speech coding.

The encoder uses the defined model for the given source and performs an analysis of the input
signal to estimate the model parameters corresponding to the input signal. These model parameters
are then send to the decoder [35].

The decoder uses the received parameters to control the same model for the underlying source
and performs a synthesis to recreate the input signal.

A variant of this method is called analysis by synthesis coding, where the encoder also performs
a decoding (synthesis) step and tries to find the model parameters that give the closest decoded
signal to the original signal. The encoder optimizes the parameter with respect to the decoded
signal before they get transmitted [35].

Model based coding will work well when a good model of the source can be found which
represents a narrow class of signals. For example, the way that human speech sounds are produced
has been studied extensively and a good model for this is developed. In contrary, for audio coding
of music it is much more difficult to define a model since the spectrum of how music can be
produced is broad. As an example of model based coding the human speech coding is described in
the following.

The sounds for speech are produced by forcing air through the vocal cords in the larynx. If the
vocal cords are tense, they vibrate and generate tones and overtones (voiced sound). If the vocal
cords are relaxed, a noise-like sound is produced (unvoiced sound) [35]. This can be modeled by
a switch that switches between a noise source and a signal source. The signal source produces a
signal train that can have variable or fixed amplitudes at constant intervals that correspond to the
pitch period of the input signal. The rest of the vocal tract of humans can be modeled by a linear
filter.

The input speech signal is split in short segments. For each segment, the filter coefficients and
the switch position (voiced/unvoiced sound) are estimated and for a voiced segment, a signal train
is defined according to the pitch period. Then the switch position, the filter coefficients and if
required the defined signal train are transmitted to the decoder. The blocks of the simple speech
model are shown in figure 3.16.

The decoder uses the received filter parameters and the switch position to recreate the sounds
for the spoken phrases. If voiced sounds are received, the decoder uses the received signal train
information to recreate the input signal for the filter. The more parameters are used for the model
the less the recreated voice sounds artificial. On the other hand, the more parameters have to be
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Noise

Signal source

Filter Speech

Figure 3.16.: Model for human speech model [35]

transferred, the lower the compression efficiency gets.
For other kind of sources, other models have to be found which are capable to produce signals

similar to the real input signals and which can be described with a few model parameters to result
in a good compression.

Suitability of model based coding for the implementation of a detector data compression:
+ Advantageous is that for the high energy physics not the single sample values are important,

only the amplitude of the input waveforms and the time stamps. If a model can be created
which extracts these tow information of the received waveforms with an accuracy, which is
high enough for the aimed physics research, a very high compression performance could be
achieved.

+ Advantageous is also that the off detector analysis of the detector data already would have
the important information. For the time being a complicated fitting of the sample values is
done offline to reconstruct the original amplitude and time of the corresponding analogue
signal before the digitization.

– Disadvantageous is that this complicated fitting cannot be performed in a hardware imple-
mentation because it is to complex. A simpler model has to be found.

– Disadvantageous is that by using a simpler model a good accuracy of the extraction of the
important information cannot be guaranteed. Considering different effects on the input wave-
forms (e.g. pile-up effects) can cause wrong parameters. A mechanism has to be imple-
mented in hardware to check back the quality of the extracted parameters, which increases
the complexity of the implementation. If the quality is low, the corresponding input wave-
form has to be sent out uncompressed.
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4. Algorithm for data compression in
particle detectors

After a short inside in the data compression theory is given in chapter 3 in this chapter a deeper
analysis of the promising compression methods is discussed using measured data from the ALICE
TPC front-end electronics. The best-suited compression algorithm found in this chapter is then
used to develop an implementable real-time hardware solution that is optimized for the TPC front-
end electronics in ALICE. All promising compression methods are discussed and compared in this
aspect. Thereby a distinction between lossless and lossy compression methods is applied. The
constellation of the data from the ALICE TPC consist of digitized samples from pre-amplified
and shaped semi-Gaussian waveforms that are produced in the front-end electronics as already
discussed in chapter 3. The investigated compression methods in this chapter are executed in
Matlab on these TPC data to retrieve their compression efficiency and compare them. The same
data are used as well for testing the developed real-time hardware implementation as presented
later in chapter 6.

The chapter starts with a discussion of the characteristics of the underlying TPC data set. Then a
closer look first to the promising lossless compression methods is given and then some lossy meth-
ods are discussed. The algorithms are analyzed focusing on the requirements for the underlying
data set and the possible implementation in real-time front-end electronics. The lossy methods are
also carefully investigated and compared for their introduction of distortion in the reconstructed
data caused by the information loss. Therefore, the Peak-Signal-to-Noise Ratio (PSNR) is used as
a measure of the introduced distortion. A first estimate of the effect of the distortion on the phys-
ical relevant information is given by fitting the original input waveforms and the reconstructed
waveforms and comparing the amplitudes and peak times.

4.1. Characteristics of the digitized detector data from
the ALICE TPC

The signal from the ALICE TPC pads is pre-amplified and shaped by the PASA chip. The PASA
consists of an integrator stage, which integrates the charge induced in the detector pad and converts
the induced current into a voltage. A second stage of a differentiator brings the voltage back to
ground and a filter bank limits the spectrum of the voltage signal. This results in a semi-Gaussian
shaped output voltage signal with a fast rise time of a few nanoseconds and a slower decay time.
The fast rise time is correlated to the fast moving electrons from the avalanche process in the
MWPCs, whereas the slower decay time is related to the slow moving ions of the avalanche pro-
cess. The movement of the electrons and ions created by the avalanches induces the charge in the
detector pads.

The primary electrons that are liberated by the traversing charged particles in the TPC gas
volume and start the avalanches in the MWPC, are not only spread in space but also in time.
Therefore is the induced signal in a pad spread over 400 ns to 500 ns in time. The shape of a
cluster in the detector plain is given by a Gaussian distribution in space and time. The folding
of the impulse response of the PASA with the induced signal results in a semi-Gaussian shaped
voltage signal with around 500 ns-600 ns duration as shown in figure 4.1.
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Figure 4.1.: Example of a PASA output signal with semi-Gaussian shape

The voltage output signal of the PASA is then digitized by an ADC in the ALTRO chip which
samples the signal with 10 MHz resulting in around 5 to 6 samples. By a high occupancy of the
TPC detector, it can happen that one pad records two semi-Gaussian waveforms within a short time
distance and the tail of the first waveform adds up to the second one. This leads to so called pile-
up effects and the tow waveforms are seen as one long signal by the following digital processing
block.

The digital processing unit inside the ALTRO chip prepares the signal for a zero suppression to
reduce the data volume. At the end, the zero suppressed data are stored in multi-event buffers from
where they can be readout and compressed further from the implementation of the compression
method of choice.

4.1.1. Zero suppression
The digital processing unit consists of two baseline corrections and a tail cancelation. After the
digital processing unit has corrected the baseline and the pile-up possibility is minimized, zero
suppression can be performed by applying a threshold level. If a sample rises above the threshold,
the start of a waveform is indicated and all samples above the threshold are saved until a sample
falls again below the threshold. The zero suppression concept is illustrated in figure 4.2.

above‐threshold samples

rejected glitches

dismissed samples

discarded glitches

Figure 4.2.: Principle of the zero suppression

Single samples above the threshold are not saved because they are considered as glitches. A
time stamp is added to each saved waveform to preserve the arrival time information, which is
important to get the z-component of the particle trajectory. The compression of the time stamp is
not considered in this work.
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4.1.2. Test-data characteristics
The following compression methods are modeled and tested according to the data from a measured
data set of the ALICE TPC. This data set contains 10 000 waveforms recorded from cosmic ray
measurements realized in 2006. The front-end electronic was configured to performed the statis-
tical baseline correction, whereas the tail cancelation filter and the baseline correction with the
moving average filter are deactivated. The measured data are recorded without zero suppression.
From the recorded data around 10 000 detected semi-Gaussian waveforms from different detector
pads are combined to form a Matlab test-data matrix which than is used to investigate the different
compression methods. Since the data are not zero suppressed in Matlab a zero suppression with
a low threshold is simulated giving waveforms with a constant length of 15 samples. The wave-
forms are saved in the matrix with the samples in increasing sampling time order and with their
maximum samples positioned all in the same column. A illustration of the matrix is shown in 4.1.

S1P1 . . . S5P1 S6P1(Max) S7P1 . . . S15P1

8 . . . 31 71 67 . . . 10
7 . . . 47 50 36 . . . 9
... . . . ...

...
... . . . ...

S1P10000 . . . S5P10000 S6P10000(Max) S7P10000 . . . S15P10000

 (4.1)

The symbol S1P1 stands for the first sample (S1) of the first input waveform (P1) in the test-
data matrix. The second and third row of the matrix 4.1 shows real sample values of the waveforms
from the measurement. The waveforms in the test-matrix have different amplitudes and different
widths at half maximum (FWHM). Some waveforms contain even pile-up effects. I have chosen
a number of 15 samples for the signal widths regarding the specifications of future front-end elec-
tronics, which will most likely sample the analogue signals with 40 MHz, which is four times faster
as the actual 10 MHz-ADC does. An average semi-Gaussian waveform with actually around 3 to 5
samples will result in 12-20 samples with the higher sampling and assuming the same signal dura-
tion. Therefore, I use 15 samples per waveform as mean signal duration in these first investigations
of the compression algorithms.

The probabilities of the samples and the distribution of the amplitude of the input waveforms in
the data set are represented in figure 4.3.
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(a) Distribution of the sample values in the test-data
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(b) Distribution of the amplitude of the waveforms in the
test-data

Figure 4.3.: Distribution of the single sample values and of the amplitudes of the semi-Gaussian waveforms
in the test-data matrix used for the investigation of the compression methods in Matlab
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A few sample values are seen above 300 ADC counts but are cut out in the graph for a better
visualization.

First analysis of more recently recorded data by the ALICE TPC front-end from real proton-
proton collisions in the LHC in 2010 result in an amplitude distribution shown in figure 4.4. The
distribution of the sample values of the waveforms are shown as well. The measured data from
these proton-proton collisions is already zero suppressed. It can be seen that the distribution of the
waveform amplitudes and the sample values in the test-data are similar to the one of the obtained
real collision data from 2010.
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(a) Distribution of the sample values
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(b) Distribution of the amplitudes of the waveforms

Figure 4.4.: Distribution of the sample values and amplitudes of real zero suppressed proton-proton colli-
sion waveforms measured from the TPC in ALICE in 2010

The properties of the data set can be summarized as follows:
• Correlation of consecutive samples in a waveform according to the defined signal shape
• Different amplitudes of the waveforms (i.e. samples) in the range of 10-411
• The sample values are represented by 10 bit which gives a maximum range of 1024 possible

values
• All sample values are positive
• Different widths of the waveforms at half maximum (FWHM)
• Some waveforms with pile-up effect are present as well in the test-data
• Different probabilities of the sample values

4.1.3. Categorizing the data compression methods
Two different approaches can be distinguished in compressing the data from the TPC. The data can
be compressed either locally on a channel-by-channel (pad-by-pad) basis or globally by compress-
ing full clusters, which are extended over several pads and over time. The clusters are produced
by the primary electrons from the TPC drift region, which start the avalanche processes that create
clouds of electrons and ions close to the detector pads. The charge cloud has a Gaussian distribu-
tion and extends over several pads inducing signals in these pads as it can be seen in figure 4.5. The
important information from this cloud is the position in the pad plain and the time to reconstruct
the particle trajectories as well as the amplitude, which is related to the energy loss of the primary
particle.

An investigation of data compression methods based on the global cluster compression can be
found in [37]. The efficient compression methods are based on models to extract the important
physical information from the clusters instead of transmitting every single signal from the pads.
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Figure 4.5.: Schematic of the charge cloud from the avalanche process in the MWPC of the ALICE TPC
(top) together with the schematics of the induced signals in the detector pads underneath (bot-
tom)

In [37] a compression efficiency of around 85%-90% is stated with a mentioned feasible loss of
information.

In this work, I focus on the local channel-by-channel based compression approach since the
aim is to implement the compression method in the front-end electronics. Each front-end chip
is connected to only a limited number of pads (e.g. 16 or 64) and has only access to data from
these limited number of channels. To implement global data compression methods in the front-
end an inter-chip communication would be required to access channels in neighboring chips to
guarantee the processing of full clusters, which can extend over more than the pads connected to
one front-end chip. An inter-chip communication will increase the complexity of the front-end
electronics and is not implemented yet in the TPC front-end. First investigations are started for
a future realization of this inter-chip communication but for the time being it is more evident to
focus on local compression approaches for the implementation of a compression in the front-end
hardware.

In the following, the different compression methods, which are promising for a local compres-
sion approach, are discussed.

4.2. Lossless compression methods
Several lossless compression methods are investigated in order to find an algorithm that optimally
compresses the digitized, zero suppressed data from a single channel in the detector front-end elec-
tronics. In the ALICE TPC front-end, the data are saved in the multi-event buffers of the ALTRO
chips. The data compressor can read out the data from these buffers and compress them before
they are sent out of the detector. Since the data from the detector contain important information for
the HEP research and the zero suppression already causes some information loss, especially loss-
less compression methods are preferable to prevent additional information loss. Therefore, special
emphasis is put on lossless compressions in this chapter. The compression methods are analyzed
in terms of their suitability for compressing the underlying data, their compression efficiency and
their feasibility for a real-time implementation in hardware.

Dictionary based methods like Lempel-Ziv coding require a large memory for the dictionary
to achieve a good compression performance and therefore are considered to be too demanding in
terms of resource/area requirements for a hardware implementation (resources in case of using
FPGAs and area in case of using ASICs). More promising lossless methods are investigation in
Matlab and are described in the following.

The raw data reduction using zero suppression can also be seen as a kind of RLE (run-length-
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encoding) method. The samples above the threshold are saved in the MEB unchanged and all
samples below the threshold are considered to have a value of 0. The number of samples with value
0 (= samples below the threshold) between two valid waveforms (samples above the threshold) give
the run-length value. Therefore, the data can be saved in the MEBs consisting of the run-length
number of zeros preceding the original sample values above the threshold, which are belonging
to a recorded waveform. In the context of the zero suppression method, the rung-length value is
named as time stamp and preserves the information of the time the waveform is seen at the detector
pad. Since the zero suppression performs already a RLE a further used of RLE on the waveform
samples seems to be not promising also considering that consecutive sample values in one semi-
Gaussian waveform are normally not equal. A Burrows-Wheeler Transform (BWT) of a group of
several semi-Gaussian signals could increase the probability of having several consecutive equal
sample values which could make a RLE more efficient. First tests executed on the test-data in
Matlab showed that a compression can be obtained by using the BWT in combination with the
RLE and followed by Huffman coding. The BWT is performed on blocks of four individual semi-
Gaussian waveforms from the test-data matrix in Matlab. Then the L vector from the BWT of
the sample values of these four waveforms is run-length encoded and the run-length values are
Huffman encoded together with the corresponding sample values of the run-length pair (nS). The
index values from the BWT are as well Huffman encoded. The output data consist therefore of
the Huffman coded BWT indices, the Huffman coded RLE sample values and the Huffman coded
RLE run values for the L. This resulted in a compression ratio of 69%. A direct Huffman coding
of the original sample values as presented later in this chapter in the diagram in figure 4.13 results
in a better compression with less effort making this method not useful.

The choice of the block sized for the BWT is made taking into account a possible hardware im-
plementation with limited amount of memory space. A block of four waveforms with 15 samples
contains in total 60 sample values of 10 bit. Since the BWT requires calculating and temporally
storing all possible permutations of these blocks the memory size has to be chosen in order to store
602 samples of 10 bit resulting in a required size of 4.4 kB. In addition to this memory also the
Huffman code tables for the RLE and the index have to be stored resulting in a memory require-
ment larger than 7 kB.

Another compression algorithm using the BWT is known as bzip2. The bzip2 performs a
Burrows-Wheeler transform followed by a move-to-front encoding and then a Huffman coding.

The Move-to-Front encoding method can be used to exploit local frequencies of symbols (con-
secutive equal symbols). Consecutive sample values in the case of the TPC are normally not
equal to each other since they are belonging to a semi-Gaussian waveform and each recorded
semi-Gaussian signal can have a different width and amplitude. The TPC data offer not a good
concentration property making the move-to-front method by itself not very efficient. In combina-
tion with the BWT as in bzip2 the efficiency of the move-to-front method can be increased. The
move-to-front method is tested in Matlab on the L of the BWT of the test-data (BWT block of 4
waveforms). A memory is initialized with all possible sample values from the test-data and then
the move-to-front method sent out the indices of the sample values in L found in this memory
by updating the memory according to the move-to-front rule. The indices from the move-to-front
encoding and the one from the BWT are Huffman encoded. The bzip2 method with BWT, move-
to-front encoding and Huffman coding resulted in a compression ratio of 65%. This is better as
by using the BWT together with the RLE, but still worse than the direct Huffman encoding of the
original samples values as presented later (see figure 4.13). The memory requirements are similar
to the BWT with the RLE.

An additional RLE on the move-to-front indices from the bzip2 approach before the Huffman
encoding showed a worsening of the compression efficiency compared to the bzip2 approach.

This first investigation showed that a more promising compression approach is to exploit the
overall frequencies of sample values in the entire data by entropy coding methods as the Huff-
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man encoding and the arithmetic encoding, instead of exploiting local frequencies. The overall
frequencies are advantageous because several samples distributed in the entire test-data can have
equal values resulting in a high frequency (probability). The frequencies of the different sam-
ple values can be estimated by using representative data of previous measurements to obtain the
probability model.

This probability model is then used by the so-called statistical methods (entropy coding meth-
ods) to encode each sample in the data set with a variable length codeword regarding its probability.
The theoretical limit to which the statistical methods can compress a data set is given by the Shan-
non entropy. The Shannon entropy gives the average uncorrelated amount of information contained
in the symbols of the data set and is defined as:

H = −
n∑
i=1

pi × log2(pi) (4.2)

The probability of a symbol i is represented by pi in the formula. The term log2(pi) represents
the theoretical best codeword length for the symbol i. The entropy for the test-data used in Matlab
to investigate the compression methods results in:

H = 6.24 bit/symbol

Regarding the statistical methods mentioned in 3.1 the Tunstall coding would be advantageous in
terms of a simple hardware implementation, because it produces fixed length codewords, which
are easier to handle in hardware as variable length codewords. The problem is that for a good
performance the Tunstall coding method needs to create a large code tree. The sample values can
have theoretically 1024 (10 bit) different values. A simple Tunstall tree with four levels would
require already a codebook of 4093 entries with 12 bit codewords and will be not enough for a
good compression performance. The larger the codebook is the more memory is required in the
hardware implementation, which increases significantly the resource/area requirements and the
power consumption of the data compression block. Other statistical methods as Huffman coding
require a codebook of maximum 1024 entries with a maximum codeword length of 22 bit (as it
will be shown in the following).

The Huffman coding is similar to the Shannon-Fano coding but it generates always optimal
codes. Therefore, the Huffman coding is preferable to the Shannon-Fano coding because it pro-
duces equal or better compression performances. The most promising statistical compression
methods are therefore the Huffman coding and the arithmetic coding, which are easily applica-
ble on the sample values of the waveforms in the test-data and provide a feasible complexity for a
hardware realization. These two compression methods are discussed in detail in the following.

4.2.1. Simple Huffman coding
As stated before, the entropy of the used test-data results in average 6.24 bit/symbol. The sample
values are represented with a 10 bit resolution from the ADC in the ALTRO chip. This gives a
compression ratio of 62.4%, which can be maximally achieved by statistical compression methods
using the probabilities of the sample values.

To perform a Huffman coding of the samples of the 10 000 semi-Gaussian waveforms in the
test-data matrix in Matlab first the Huffman codewords for the different samples have to be defined.
The first step is to calculate the probabilities of the different sample values in the test-data matrix.
To calculate the probability of a sample value the frequency is determined, which represents the
number of times the value is contained in the test-data matrix. The frequency value is then divided
by the total number of sample values in the test-data matrix as shown in equation 4.3:

pi =
Freqi

15× 10000
(4.3)
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The probabilities of the different sample values are combined to a probability model. In a hard-
ware implementation, this probability model can be calculated either inside the front-end electron-
ics or offline by using representative data from previous measurements.

Using the probabilities (or the frequencies), the Huffman tree can be build, which gives the ideal
codeword lengths for the different samples in the test-data matrix. For example the most common
sample has a frequency of 9283 and a probability of 6.19% and gets assigned a codeword of 3 bit.

If the codewords are determined, the samples in the test-data matrix are encoded one by one
with the corresponding codeword and the single bits are saved from the developed Matlab function
in a text file. The Huffman compression of the underlying test-data resulted in an output data file
containing 939 896 bit. This gives a compression ratio of:

comp. ratio =
size of output stream

size of input stream
(4.4)

=
939 896 bit

10 000waveforms× 15 samples× 10 bit
× 100 =

939 896

1 500 000
× 100 ≈ 62.7%

This compression ratio is close to the Shannon entropy using only the probabilities of the dif-
ferent sample values and not exploiting the relation between neighboring samples. There is a
dependence of neighboring samples of a waveform regarding the signal shape and this shape is
known because the pre-amplifier and shaper chip PASA in the front-end of the ALICE TPC de-
fines it. This known dependency of neighboring samples introduced by the waveform shape can
be considered by a compression method to improve the compression efficiency further than the
entropy limit of this kind of data.

The first approach to use the dependency of neighboring samples is to calculate the differences
between them. Similar waveforms should produce similar differences between consecutive sam-
ples. An example of resulting differences of a waveform from the test-data matrix is shown in
figure 4.6.

0 19 49 99 121 84 43 20 13 10 25 6660

0 0 0-5 -14 -30 -50 -22 37 41 23 7 3 4 4

Samples

Differences

Ref. Sample

pulsesNew(22,6:20)

Figure 4.6.: Example of the difference values between neighboring samples of a waveform from the test-
data matrix

The first sample of each waveform is compared to a reference sample of value 0. This is re-
quired to preserve the original first sample value that is used by the decoder as the starting value
to reconstruct the original waveform from the differences. The calculation of the entropy of the
differences of the test-data results in average 5.87 bit/symbol (58.7%). Huffman encoding the dif-
ference values instead of the original sample values of the test-data matrix results in a compression
ratio of 59%. The compression of the differences results in a better compression as by encoding
the original sample values, because it makes use of the dependencies of the samples according to
the signal shape.

Another approach to use the correlation between the samples is to use several different Huffman
codebooks. For the first sample of each waveform, the general codebook is used based on the
statistical model. For the following samples, several different codebooks are developed based on
the value of the preceding sample. For example, the second sample can be encoded by selecting
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one out of four different codebooks. The four codebooks are obtained by dividing the range of the
first sample (0...1023) in four parts and optimizing the probabilities of the second sample value
according to these ranges. Then the corresponding codebook for encoding the second sample
value is chosen according to the range in which the first sample is contained. If for example
the first sample has a value contained in the first range the probabilities of possible values of the
second sample are different then if the first sample would be contained in the second range. The
multiple statistical models can also be used for an arithmetic coding instead of Huffman coding.
This encoding scheme with entropy coding based on multiple statistical models (codebooks) is
described in [38] and [39]. The encoding scheme named as Temporal Correlation (TC) in the
paper of [38] achieves a compression ratio of 54% for the sample values as stated in table II of
the paper. This compression ratio resulted from using 20 different codebooks (code tables), which
makes it quite complex for a hardware implementation requiring a huge memory space to store all
these codebooks and is therefore not considered here.

An even better lossless method, which uses the dependencies of the sample values based on
lossless vector quantization is presented later in this chapter.

4.2.2. Simple Arithmetic coding
A second well-known and good qualified lossless compression method, which bases on a statistical
model, is the arithmetic coding. In general, arithmetic coding can achieve a compression efficiency
equal or better than Huffman coding. By calculating the entropy of a data set, the probability of
a symbol is used to find the optimal codeword length for this symbol, which results not necessary
in an integer value. The Huffman coding can assign each symbol a codeword with only an integer
number of bits, which results in a compression ratio higher than the entropy. The property of the
arithmetic coding to encode a stream of several symbols with one codeword reduces this problem
and can result in a compression ratio closer to the entropy. The samples in the test-data matrix are
encoded by arithmetic coding all in one floating-point number using the same statistical model as
for the Huffman coding. In a real application, the waveforms generated in one event in the detector
can be encoded in one large floating-point number. A large number of bits are required to represent
this floating-point number with the required precision. The high precision for the floating-point
number is crucial in order to guarantee that the arithmetic decoder is able to reconstruct all samples
of the encoded waveforms. In case of encoding all the test-data in one floating-point number the
required number of bits is 938 605 bit. This results in a compression ratio of:

compression ratio =
938 605 bit

10 000waveforms× 15 samples× 10 bit
×100 =

938 605

1 500 000
×100 ≈ 62.6%

(4.5)
The arithmetic coding requires 1291 bit less than the Huffman coding to compress the test-data.

This is closer to the entropy but no significant improvement of the compression ratio is achieved
compared to the Huffman coding.

The compression of the differences of neighboring samples inside each waveform results as
well in a similar compression performance as for Huffman coding with a compression ratio of
59% and 3560 bit less.

The lower complexity of the Huffman coding and the similar compression performance with the
arithmetic coding, makes the Huffman coding preferable for a hardware implementation. Arith-
metic coding requires some arithmetic operations as multiplications, divisions, subtractions as also
stated in [39] that require quite some resources/area to be realized in hardware. In addition, the
implementation of the arithmetic encoder can access only to data from a limited number of pads
connected to the corresponding front-end unit what can decrease the compression performance.
The Huffman coding requires only a memory to store the Huffman codebook if the codebook is
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calculated off-line by using representative data. The received sample values are used as address to
readout the corresponding Huffman codewords from the memory, which can be seen as Look-Up-
Table (LUT).

The PPM method can be seen as an arithmetic coding with multiple statistical models from
which one is selected based on the previous sample value as described for the Huffman coding with
multiple codebooks. The complexity of the PPM with several probability models is considered too
high for an actual hardware implementation.

4.2.3. Lossless Vector Quantization
A method that makes use of the correlation of the samples from a waveform is presented next.
The method bases on a vector quantization. The vector quantization is normally known as lossy
compression method and is similar to the scalar quantization beside the fact that a set of several
input symbols are quantized together whereas for the scalar quantization each input symbol is
quantized individually. To perform the vector quantization on the test-data all the samples of one
semi-Gaussian waveform are considered as the elements of one input vector. For the quantization,
each input vector is compared to several reference vectors stored in a codebook and the best match-
ing reference vector is searched. The index of the best matching reference vector is then sent out.
The decoder uses this index to find the corresponding reference vector in the codebook and uses it
for the reconstruction of the original input waveform.

The problem is that even though this is the best matching reference vector it is not guaranteed
that it is equal to the input vector. The difference between the input vector and the reference
vector is seen as an error in the reconstruction of the original input data. The fact that the shape
of the input waveforms is known makes it easier to define reference vectors, which match well
with the input vectors. This can be expressed as the use of the correlation of the data to reduce the
information loss. Nevertheless, to obtain small errors between the input vector and the reference
vector a large codebook has to be created, which takes into account the different amplitudes of the
input waveforms as well as other effects. On the other hand, the larger the codebook is the more
bits have to be used for the index, which decreases the compression ratio. The memory required for
storing the codebook in hardware increases with larger codebook size and this increases drastically
resource/area requirements for a hardware implementation.

Another possibility to reduce the error is to calculate the difference between each element (sam-
ple of the waveform) of the input vector and the chosen best matching reference vector and send
out these differences in addition to the index (as side-information). The additional data from the
difference values reduce drastically the compression ratio. The differences can be scalar quantized
before they are sent to limit the additional side-information by still keeping the introduced error
small.

Otherwise, the differences can be sent unchanged which would reduce the reconstruction error
to zero and make the vector quantization lossless. The advantage is that normally the differences
have smaller values as the original sample values and can be represented using fewer bits. In addi-
tion, the differences can be entropy coded e.g. Huffman coded to reduce the side-information. The
gain of using a vector quantization in combination with the calculation of the differences (deltas)
which then are Huffman coded is that the differences normally are small values with high prob-
abilities, which increases significantly the efficiency of the Huffman coding compared to directly
Huffman code the original samples. This higher efficiency regarding the Huffman coding is only
reduced slightly because the index for each reference vector has to be sent as well. A drawback
of using the vector quantization in combination with Huffman coding is that in additional to the
memory for the Huffman codebook a second large memory has to be provided to store the refer-
ence vectors. The performance of this method based on vector quantization and entropy coding
of the differences (residuals) is presented in [40]. A compression ratio of 64% for the lossless
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version with a codebook of 256 reference vector could be achieved for simulated TPC data from
ALICE and original sample values with a resolution of 8 bit (instead of 10 bit as for the measured
TPC data used in this work). The quantization of the differences before entropy coding resulted in
48% with some small loss of information as stated in [40]. Another method for a lossless vector
quantization with similar results and better properties for a hardware implementation is developed
and presented next.

This method uses a reduced set of maximum four reference vectors in the codebook. To avoid
defining several different reference vectors for a good match to input waveforms with different
amplitudes the input waveforms are first normalized in amplitude. Then their sample values are
compared to the reduced set of reference vectors with equal maxima.

To perform this normalization the maximum sample value of each input waveform is searched.
Then a pre-defined normalization value is divided by the maximum sample value to calculate the
normalization factor as given in 4.6.

NormFactor =
NormV alue

Max. Sample
(4.6)

To obtain the normalized input waveform every sample is multiplied with this normalization
factor. Figure 4.7 shows the original sample values of some input waveforms from the test-data
and the normalized sample values of the input waveforms.
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(a) Original sample values
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(b) Normalized sample values

Figure 4.7.: Samples of first 30 input waveforms in the test-data matrix in original form and the normalized
sample values

The calculated normalization factor for each input waveform has to be added as side-information
to the output data, in order to reconstruct the original sample values and the original waveform am-
plitudes at the decoder. Then the lossless vector quantization is performed on the normalized input
waveforms.

After the normalization of the input waveform, the resulting input vector is compared to the
reference vectors in the codebook and the best matching reference vector is searched. Since the
amplitude of the normalized input waveforms corresponds to the maximum of the reference vec-
tors, the quality of the matching depends only on the different shapes of the input waveforms.
Different reference vectors can be calculated to cover different effects on the input waveforms e.g.
different signal durations (FWHM) or pile-up effects. After the best matching reference vector is
found the corresponding index is add to the output data and the differences to the normalized input
waveform (in the following named as deltas) are calculated. The figure 4.8 shows a normalized
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input waveform, a reference waveform created from the elements of a reference vector, and the
resulting delta values.

1 2 4 6 8 10 12 14 15
0

20

40

60

80

100

120

Time

A
D

C
 c

ou
nt

s

(a) Normalized input waveform (blue o) vs. reference
waveform (red *)
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(b) Delta values for corresponding example

Figure 4.8.: Example of a normalized input waveform and a reference waveform constructed from the el-
ements of a reference vector. The resulting delta values at the right have to be transmitted to
prevent information loss.

To realize the normalization step in hardware an integer divider and a multiplier are needed in
the implementation, which require some resources/area depending on their resolution. On the other
hand the memory space for the reference vector codebook is drastically reduced (e.g. from 256 to
4) by still obtaining small differences between input vectors and the chosen reference vectors.

The hardware realization of the normalization step can introduce some error in the reconstruc-
tion of the original sample values, because the division and multiplication implementation have
a limited precision. The precision of the divider and multiplier in hardware depends on the used
number of bits to represent their results, which determines the resource/area requirements as well
as clock speed limitations for the implementation. The truncation of the normalization factor and
the multiplier results to a defined number of bits can cause rounding errors in the normalized and
reconstructed sample values. To make the transmitted number of bits for side-information of the
normalization independent from the choice of resolution for diver and multiplier the maximum
sample value per waveform can be included in the output data instead of the normalization factor.
In this way, the additional side-information is fixed to the resolution of the samples of the input
waveforms and the decoder can recalculate the normalization factor from the received maximum
sample in the same way as the encoder. The resolution of the multiplication and division step in
the encoder and decoder can be chosen independent from the defined transmission format and can
be adjusted to the requirements of the corresponding target application.

The algorithm intended for the implementation represents the elements of the reference vectors
by integer values and after the normalization step, the normalized samples are as well rounded to
integer values. These introduce already a small round-off error and therefore no further quanti-
zation of the delta values is done. The delta values are directly encoded using Huffman coding.
The analysis of the encoding of the delta values showed that the performance of using arithmetic
coding or Huffman coding is almost equal resulting in the same compression ratio. Therefore, the
Huffman coding, which is simpler to realize in hardware is chosen as entropy coding method for
the delta values.

The steps of the developed lossless vector quantization algorithm are summarized as follows:
• Normalization of the input waveforms
• Vector quantization: finding the best matching reference vector
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• Delta calculation: calculating the differences between the normalized sample values of the
input waveform and the elements of the best matching reference vector

• Huffman coding of the resulting delta values (no further scalar quantization)
The content of the output data including the side-information and all pre-information, which

are necessary for the decoder, can be summarized as follows:
Transmission data:
• Maximum sample value of each input waveform, which is used to calculate the normalization

factor at the encoder and decoder
• Index of chosen reference vector (can be omitted if only one reference vector is contained in

the codebook)
• Huffman coded delta values
Predefined data:
• The NormV alue to which each input waveform is normalized has to be known to encoder

and decoder
• The codebook, which contains the reference vectors for the vector quantization has to be

predefined and used by encoder and decoder
• The position of the maximum sample in the reference vector is used to alien properly the

normalized input vector with the reference vector for the delta calculation
• The codebook for the Huffman coding which contains the Huffman codewords and their

lengths has to be used by encoder and decoder

Creation of the codebook for the vector quantization

To find the reference vectors for the codebook of the vector quantization an analysis of the test-
data is performed. The first approach is to define only one reference vector for all the test-data
and analyze the achievable compression performance. The easiest way to define a reference vector
is to calculate the mean sample values of the input waveforms. Therefore, first each waveform
in the test-data matrix has to be normalized. The NormV alue to which the input waveforms are
normalized is obtained by calculating the mean of the maximum samples of all waveforms. Then
the normalization factors are calculated by dividing the NormV alue with the maximum sample
values and multiplying each sample of an input waveform with the corresponding normalization
factor. The resulting normalized waveforms are saved in a matrix called NormVectors taking care
that the maximum samples are all in the same column of the matrix as it is the case also for the
test-data matrix. In this way the waveforms are aligned as it can be seen in 4.7.


NS1W1 . . . NS5W1 NS6W1(Max) NS7W1 . . . NS15W1

12 . . . 47 108 102 . . . 15
15 . . . 102 108 78 . . . 19
... . . . ...

...
... . . . ...

NS1W10000 . . . NS5W10000 NS6W10000(Max) NS7W10000 . . . NS15W10000


(4.7)

The symbol NS1W1 stands for the first normalized sample (NS1) of the first waveform (W1)
in the NormVectors matrix. The second and third row of the matrix 4.7 shows the values of the
normalized samples of the second and third waveforms normalized to 108. The reference vector
can be obtained by calculating the mean of the sample values in each column. The samples in a
column are representing all samples of the 10 000 waveforms in the same position aligned with the
maximum sample. Each normalized input vector of the NormVectors matrix can be aligned with
the reference vector by using the position of the maximum element of both and the delta values
can be obtained by calculating the differences between the elements in the corresponding positions
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of both. A detailed description how this alignment is realized in hardware for zero suppressed
waveforms with different lengths is explained in chapter 5.

Another approach to find an ideal reference vector is to perform an up-sampling of the wave-
forms in the test-data. This up-sampling can be done by fitting the samples of the waveforms with
a semi-Gaussian function. From the fitted oversampled waveforms an average waveform is cal-
culated, which then is again down-sampled to obtain the elements of the reference vector. In this
way, maybe a more suitable reference vector is found by using representative data from previous
measurements. The fit-command in Matlab called “lsqcurvefit” is used to perform a data fit of
the samples of each input waveform. The fit-function which is used for the fitting with lsqcurvefit
bases on a gamma-4 function as given in 4.8 [41].

f(t, τ) = ttp n! e
n

(
n− ttp

τ

)−(n+1)
(
e−t/τ − e−nt/ttp

n∑
m=0

1

m!

[(
n− ttp

τ

)
t

ttp

]m)
(4.8)

The variable ttp stands for the peaking time of the signal and n is the order of the function which
is 4 for a gamma-4 function that produces a semi-Gaussian shaped signal. The used fit function
is given by several exponential terms of f(t, τ) as shown in equation 4.9. The more exponential
terms are used the better the function can model special effects in the signal, like for example a
small after-pulse or undershoot on the tail of the semi-Gaussian signal created from slow moving
ions (third term). For the fitting of the samples in the test-data with a semi-Gaussian shape two
exponentials showed to be enough (no after-pulsing is considered). Two time constants are used
in the two exponentials being τ1 and τ2. The constant τ1 is dedicated to the signal part induced by
the fast moving electrons in the MWPC, whereas τ2 is dedicated to the signal part induced by the
slower ion movements. The variable t is replaced in the equation 4.10 with t− t0 to account for a
time shift of the rising edges of some signals.

Ffit = A1f(t, τ1) + A2(f(t, τ2)) (4.9)
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(4.10)

To perform a fit the right starting values have to be given to the variables t0, A1, A2, τ1
and τ2. In general the initial values are chosen as t0 = 800 ns, A1 = 100ADC counts, A2 =
10ADC counts, τ1 = 100 ns and τ2 = 1000 ns. The peaking time ttp was set to 224 ns. For some
input waveforms different sets of initial values have to be used mainly changing the t0. [42]

98



CHAPTER 4. ALGORITHM FOR DATA COMPRESSION IN PARTICLE DETECTORS

In the case, the calculated reference vector build by using the fitted input waveforms resulted in
an almost equal compression performance then by using just the mean values of the input samples.

Further analysis of the fitted input waveforms are used for defining additional reference vectors
and extending the codebook to increase the compression performance. A histogram from the
distribution of the rising edges and falling edges of the fitted waveforms showed that there is a
certain time variance in the sampling position of the signals. The oversampled and normalized
input waveforms are shown in figure 4.9(a). The histogram in figure 4.9(b) shows the distribution
of the points where the rising and falling edges of the waveforms crossed the red line which is at
half the maximum.
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(a) Fitted, oversampled, normalized input waveforms
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(b) Histogram of the distribution of the rising and
falling edges

Figure 4.9.: The fitted input waveforms are oversampled and normalized. The distribution of the points
where the rising and falling edges of the waveforms cross the red line is shown in the histogram.
The red line is positioned at half maximum.

From the histogram, it can be seen that the rising and falling edges are widespread. The sam-
pling of the analogue shaped input signal from the ADC causes this time variance because the
sampling is not synchronized with the arrival time of the signals at the detector pads. The 10 MHz
ADC clock is received from the RCU unit that derives it from the 40 MHz LHC clock using a
frequency divider. The LHC clock is a general clock, which is not synchronized with the drift time
of the electrons in the gas volume of the ALICE TPC. This variance in the sampling time causes
a mismatching of the input vectors containing the normalized input waveforms with the reference
vectors, which produces larger delta values. The larger delta values limit the compression perfor-
mance of the lossless vector quantization.

A second analysis with the fitted normalized waveforms aligned in time on their rising edges
(as illustrated in 4.10(a)) revealed that also the signal widths (FWHM) are not constant among the
input waveforms. A second histogram shown in 4.10(b) on the time aligned waveforms shows that
even if the rising edges are aligned, the falling edges are still distributed in a large range. This
variation in the signal widths can be explained by different time spreads of the primary electrons
depending on their drift distance in the gas volume causing an avalanche in the MWPC of different
duration.

The distribution of the falling edges shows four main ranges of the signal widths. This discovery
is used to define four reference vectors to match waveforms with different FWHMs consistent
with these four ranges. The reference vectors are calculated by using the indices of the fitted
normalized waveforms contained in each of the defined ranges. The indices are used to segment
the test-data matrix in the corresponding waveforms belonging to each range and calculating the
mean values of the samples of the waveforms in each segment. The mean values represent the
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(a) Time aligned, fitted, normalized input waveforms
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(b) Histogram of the distribution of the rising and
falling edges

Figure 4.10.: The fitted input waveforms are oversampled and normalized and time aligned on their rising
edge. The distribution of the points where the rising and falling edges cross the red line is
shown in the histogram. The red line is positioned at half the maximum.

elements of the reference vector dedicated to the corresponding range. In this way, a first set
of four reference vectors is obtained. The reference vectors are then optimized using the LBG
algorithm. Each input vector is compared to all the four reference vectors and the delta values are
calculated. To determine the best matching reference vector the distance between the input vector
and the reference vector is calculated. There are different norms, which can be used to calculate
the distances, the most common ones are the Manhattan distance L1 and the Euclidian distance
L2, which are explained in section 3.2.1. The Manhattan distance is the simpler one to realize in
hardware and used here for the LBG optimization. The L1 norm is given by:

d1(InV ec, RefV ec) =
n∑
i=1

|Ini −Refi| (4.11)

The variables Ini and Refi represent the values of the input vector and the reference vector,
respectively. After the distances between the input vector and the four reference vectors are calcu-
lated the minimum of the distances is searched and the input vector is included in the set dedicated
to the reference vector with the minimum distance. After all 10 000 input vectors in the test-data
are grouped in the four sets a new set of reference vectors is defined by calculating the mean of
all the input vectors in each set. After the new reference vectors are calculated, a next iteration of
the LBG optimization is performed until the optimal reference vectors are found. The reference
vectors resulting from the test-data are shown in figure 4.11.

The optimized four reference vectors are then used to perform a lossless vector quantization
with delta calculation and Huffman coding. Each input vector containing a normalized input wave-
form is compared to the four reference vectors and four sets of delta values are calculated. The
Manhattan distance is calculated from each set of delta values by summing up the absolute delta
values in the set. The minimum of the four resulting Manhattan distances is determined and the
best matching reference vector is found. The index of this reference vector is added to the output
data. The corresponding set of delta values, which resulted the minimum distance is then send to
the Huffman coder and the Huffman codewords for the delta values are concatenated to an output
bitstream.

The Huffman codebook is optimized for the resulting delta values from the test-data. If the
correct maximum sample of each input waveform is found and the normalization is performed cor-
rectly the maximum resulting delta value between the input vector and the best matching reference
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Figure 4.11.: The four reference waveforms obtained by semi-Gaussian fitting the elements of the reference
vectors.

vector can be at most ±NormV alue. This maximum delta value can occur for example when
an input vector contains an normalized input waveform with pile-up effect resulting in a second
peak from a second semi-Gaussian signal on the tail of the first signal. In this case, the position
of the second peak falls in the region of the tail of the reference waveform, which is close to the
baseline or already 0 giving a delta value as large as the second peak value that can correspond to
the NormV alue. The maximum possible delta defines the size of the Huffman codebook being
2 × NormV alue + 1 codewords to cover all possible delta values. For safety reasons a larger
Huffman codebook can be used including a larger range of delta values in case some wrong max-
imum samples are causing normalized input waveforms with higher peaks then the NormV alue.
A larger Huffman codebook needs more memory space and can lower the compression efficiency
because the codeword length of the delta values change.

An enlarging of the vector quantization codebook with more than four reference vectors has
been investigated as well. It showed that using more reference vectors for the test-data decreased
not significantly the delta values and since more bits have to be used for the index of the reference
vectors, the compression efficiency decreased. That leads to the assumption that four reference
vectors that represent waveforms with different FWHM are optimal for the underlying test-data.
The fact that the reference vectors are predefined by using representative data and then downloaded
to a memory in the hardware implementation allows updating the codebook at every time to opti-
mize the compression.

A compression ratio of 50% has been achieved with the four optimal reference vectors and the
optimized Huffman codebook for the resulting deltas.

It can be said that the major limitation for the compression efficiency is related to finding good
reference vectors for an optimal matching with the input vectors. Two effects worsen the matching
are the time variance of the sampling of the input waveforms and the variance in the signal widths
(FWHM).

A second set of data has been analyzed coming from test measurements of the ECAL detector
in the CMS experiment. The advantage of this set of data is that the sampling of the detector
signals is synchronized with their arrival time, which results in minor variations between the input
waveforms. The normalized input waveforms have as well much more uniformity in their signal
widths as it can be seen in figure 4.12.

The histogram in figure 4.12(b) shows that the rising edges and most of the falling edges are
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(a) Fitted, normalized ECAL waveforms
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(b) Histogram of the distribution of the rising and
falling edges

Figure 4.12.: Fitted input waveforms from ECAL data that are oversampled and normalized. The distri-
bution of the points where the rising and falling edges cross the red line is shown in the
histogram. The red line is positioned at half the maximum.

crossing the red line all in the same time bin. This shows that the waveforms from the ECAL are
aligned in time and have low variation in their widths. These properties are advantageous for the
efficiency of the lossless vector quantization method because an adequate reference vector can be
found and the input vectors of the normalized input waveforms from ECAL are matching well with
the reference vectors.

The ECAL data have been scaled for a comparison with the TPC data in a way that the sample
values are contained in a similar range and have similar entropy. A compression ratio of 49% has
been achieved on the ECAL data using only one reference vector. That is better as the achieved
50% of the TPC data using four reference vectors.

4.2.4. Comparison of different lossless compression performance
The resulting compression ratios of the different analyzed lossless methods are summarized in the
following. The results are obtained by compressing the test-data matrix using Matlab models of
the different compression methods. The most interesting compression ratios are compared in the
diagram in figure 4.13. The results obtained by the Burrows-Wheeler transform based compres-
sion methods, PPM and other methods giving worst compression performances as entropy coding
methods are not considered as suitable for an implementation and are not listed in the diagram.

The diagram shows the percentage of the size of the compressed output data compared to the
size of the uncompressed test-data. The entropy of the test-data is shown in addition.

The compression ratios of a direct compression of the sample values with arithmetic coding
(Simple Arithmetic coding) and Huffman coding (Simple Huffman coding) can be compared and
show that they are equal and close to the entropy. A Huffman compression or arithmetic compres-
sion of the differences between the sample values of each waveform result in a better compression
ratio as by the direct compression of the sample values. This proves that a significant improvement
could be achieved by exploiting the correlation between neighboring samples.

The best compression ratios are achieved with the developed lossless vector quantization method,
which fist normalizes the input waveforms. The exploitation of the knowledge of the signal shape
in this compression method gives the best performance using the correlation of the samples. It
can be seen that using four different reference vectors could improve the compression efficiency
compared to the version that uses only one reference vector. No further improvement has been
discovered by using more than four reference vectors. No significant difference in performance
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Figure 4.13.: Comparison of the compression ratios resulting from the analyzed lossless methods compress-
ing the test-data from the ALICE TPC

between Huffman coding and arithmetic coding has been seen.
The performance of the lossless vector quantization on the more uniform ECAL data is illus-

trated in the diagram in figure 4.14.
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Figure 4.14.: Compression performance of the lossless vector quantization on ECAL test-data from CMS

The ECAL data show fewer variations on the signal widths (FWHM), which leads to a good
compression efficiency by using the simpler version of the lossless vector quantization with only
one reference vector.

The good performance of the lossless vector quantization and the good properties for hard-
ware implementations makes it the first choice for a lossless data compression realization in the
hardware of the front-end electronics of particle detectors as for the TPC in ALICE. The memory
requirement of the lossless vector quantization algorithm is given mainly by tree memories:

One memory is used as buffer for the input samples of each waveform while the normalization
is performed and needs a sizes of a few words of 10 bit (e.g. 64 words×10 bit).

A second memory is required for the LUT of the Huffman codebook, which has to store the
Huffman codewords and codeword lengths for all possible delta values. The range of possible delta
values depends on the NormV alue. The maximum Huffman codeword length seen for the test-
data in the Matlab tests resulted in 17 bit. This together with 5 bit for representing the codeword
length gives a word length of 22 bit per LUT memory word. Assuming a maximum range of input
words for the Huffman coder of 1024 (corresponds to the range of 10 bit input sample values) this
results in a maximum memory size for the LUT of 1024 words×22 bit.
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The third memory is used for the vector quantization codebook. For storing up to four reference
vectors, which are estimated to have a maximum length of 64 elements requires a memory size of
256 words×10 bit.

In total this gives an estimated memory requirement of 3.2 kByte. This is less then normally
required for lossless compression methods, which are based on a large dictionary for a good com-
pression efficiency as bzip2 or deflate. A first estimation of the complexity for a hardware imple-
mentation can be summarizes as follows:

The most complex part is the normalization of the input waveforms, which requires mainly some
comparators for the maximum finding, an integer divider and a multiplier for the calculation of the
normalization factor and the normalized samples. The vector quantization and delta calculation
needs some adders (respectively subtractors) and comparators. The concatenation of the Huffman
codewords can be realized with shift registers and multiplexers.

The lossless vector quantization algorithm is advantageous in terms of introduced distortion
compared to lossy compression methods discussed in the following. The fact that a lossy com-
pression is already performed in the front-end by the zero suppression and that the estimation of
the effect of additional information loss on the physical parameters of the detectors is difficult for
the time being, the lossless compression is the method of choice for the hardware implementation
realized in this PhD work. The distortion of the samples according to the limited precision of the
divider and multiplier in hardware used for the normalization is discussed after the presentation
of the implementation of the algorithm in chapter 6 to include some properties and requirements
of the realized implementation especially regarding the choice of the resolution of the divider and
multiplier.

Nevertheless, the problematic discussion on the amount of information loss, which can be tol-
erated by the physics experiments an investigation of some interesting lossy compression methods
are discussed in the following.

4.3. Lossy compression methods
Lossy compression methods can be more efficient in compressing certain kinds of data as lossless
compression methods. In this work a compression method is searched, which provides a good
performance especially on particle detector data not requiring to be a general-purpose method.
Therefore, lossy compression methods can maybe use specific properties of these data to obtain a
better compression ratio as the lossless methods, by having a tolerable loss of information. The
detector data are used to discover new physics, which makes it crucial that no information gets lost
that can reveal this new phenomena. The most important criteria of the lossy compression methods
are their information loss.

Already in previous projects and documents several lossy compression methods have been dis-
cussed, which are optimized for the data of the ALICE TPC. These projects focused mainly on
software solutions based on global compression of the data already sent off detector for a high-
level trigger processing and data storage. Further information on this global lossy compression
methods can be found in [37, 43].

In this work only a local, channel-by-channel based compression is considered, which allows
a compact implementation in the front-end electronics on detector. In case of the TPC of the
ALICE experiment, the digitized shaped semi-Gaussian waveforms are representing the signals
in the readout channels that should be compressed. The important information contained in these
waveforms is the amplitude or energy (i.e. sum of the sample values of a waveform) and the time
when they have been recorded. This information should not be significantly distorted after the
decompression. Some previously investigated local compression methods for a lossy compression
of the TPC data can be found in [39,40,44]. In the following, a few more algorithms are discussed
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and tested with the same test-data matrix in Matlab as used for the lossless methods.

4.3.1. Discrete cosine transform
One of the most used lossy compression methods is the discrete cosine transform for example in-
cluded in the JPEG image coding. The description of the DCT method is given in section 3.2.2.
The advantage of the DCT on the TPC data is that the low frequency components of the semi-
Gaussian signal are concentrated in the first few resulting coefficients and can be separated from
the not so important high frequency components that are small values and can be quantized. The
resulting coefficients can then be Huffman coded before they are sent out. With the inverse DCT,
the decoder can reconstruct the original sample values with some distortion caused by the quanti-
zation of the high frequency components.

To investigate the efficiency of a DCT based compression methods different variants are realized
in Matlab. First, a DCT is performed on the test-data waveforms to calculate the DCT coefficients.
Then several methods are investigated to quantize and manipulate the coefficients to compress them
efficiently with Huffman coding. The first manipulation of the coefficients is to round them to the
nearest integer, since the DCT returns real numbers. The number of coefficients in the resulting
DCT vectors is equal to the number of samples of the according input vectors representing the
semi-Gaussian waveforms in the test-data. Some of these DCT vectors resulting from input vectors
are shown in the matrix 4.12 that represents a part of the DCT output matrix of the 10 000 input
vectors containing the test-data waveforms.



69 14 −33 −30 0 20 13 −2 −7 −5 0 2 1 1 0
88 14 −55 −36 15 31 8 −14 −10 1 6 5 −1 −4 −2
79 24 −28 −35 −12 6 7 0 −4 −1 1 3 4 2 1
96 20 −56 −39 5 19 10 −2 −3 −2 −1 1 2 −1 −1
191 77 −98 −120 −37 37 36 −2 −25 −14 3 12 7 −1 −3
226 94 −112 −129 −36 25 16 −10 −11 3 12 7 0 −6 −6
71 10 −39 −26 10 24 7 −7 −10 −3 2 3 3 −1 −2
100 19 −68 −48 19 42 11 −18 −14 1 7 4 −1 −3 −2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...


(4.12)

It can be seen in the matrix that the absolute values of the first coefficients to the left of the
resulting DCT vectors (rows of the matrix) are higher than the absolute values to the right. The
first coefficients are representing the low frequencies, i.e. if for example the waveforms are shifted
by a constant value representing a DC offset only the first coefficient of each row changes. To
analyze the resulting coefficients the distributions of their values according to their positions in
the DCT vectors (column-by-column of the coefficients matrix) are calculated and shown in figure
4.15.

It can be seen that the values of the first nine coefficients of the coefficient vectors are varying
in a larger range as the six coefficients at the end of the vectors.

If one would transmit these DCT coefficients encoding them with Huffman the original sample
values could be reconstructed by producing only a very small distortion of the original values
caused by the rounding of the coefficients. The drawback is that the compression ratio is 68%,
which is even worst then by encoding directly the original sample values with Huffman. This can
be explained by the fact that the overall coefficients are signed values distributed in a larger range as
the original sample values and they are now decorrelated. The advantage of using DCT is based on
its ability to produce decorrelated coefficients, which then can be quantized individually in a way
that gives an acceptable low distortion of the reconstructed data by producing high compression
efficiency.
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(a) Coefficients 1(blue), 2(red),
3(black)
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(b) Coefficients 4(blue), 5(red),
5(black)
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(c) Coefficients 7(blue), 8(red),
9(black)
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(d) Coefficients 10(blue), 11(red
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(e) Coefficients 12(blue), 13(red)
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(f) Coefficients 14(blue), 15(red)

Figure 4.15.: Histogram of the distribution of the DCT coefficients according to their position in the result-
ing vector per input vector.

Regarding the distributions of the coefficient values shown in figure 4.15 the first idea is to
quantize strongly the last six coefficients of each DCT vector, whereas just rounding the first
coefficients. The last six coefficients are distributed in a small range around 0. Therefore, an
obvious quantization of the last six coefficients per input vector is performed by forcing them to
0. The compression ratio after Huffman coding of the coefficients from all 10 000 input vectors
with the quantized last six coefficients to 0 results in 56%. In the domain of lossy compression,
a measure called Peak-Signal-to-Noise Ratio (PSNR) is often used to compare the quality of the
reconstructed data according to the information loss among different compression methods and
quantization methods [33]. The PSNR uses the Root Mean Squared Error (RMSE) between the
original sample data (Si) and the reconstructed data (Ri) and is defined in 4.14:

RMSE =

√√√√ 1

n

n∑
i=1

(Si −Ri)
2 (4.13)

PSNR = 20 log10

(
maxi |Si|
RMSE

)
= 20 log10

(
210

RMSE

)
(4.14)

The term maxi |Si| represents the maximum possible sample value which here is given by the
resolution of the ADC being 10 bit for the ALICE TPC resulting in 210 = 1024. The PSNR
uses the logarithm and results in a decibel (dB) value. The resulting value gives a quantitative
measure of the error introduced by the lossy compression with quantization but cannot qualita-
tively determine the effect of this error on the relevant information of the data. For example in
image compression the PSNR can be used to compare different compression methods or differ-
ent quantization algorithms but it cannot qualitatively tell how the error affects the impression of
the reconstructed image on an observer. In this document the PSNR is used to compare DCT
results with different quantization methods and with other lossy compression methods discussed
in the following.
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For the DCT of the original sample values and the quantization of the coefficients by rounding
them to the nearest integer a PSNR = 71 dB is obtained. For the case where a quantization of the
last six coefficients to 0 is performed and the remaining ones are rounded to the nearest integer the
PSNR resulted in 51 dB.

To reduce further the range of the remaining not quantized coefficients they can be subtracted
from a pre-defined reference vector. The reference vector is created by calculating the mean value
of the coefficients in each column of the resulting coefficients matrix. The differences between the
reference vector and each coefficient vector are calculated. The reference vector and a coefficient
vector are shown in figure 4.16 together with the resulting differences (delta values). This is similar
to the previously explained lossless vector quantization using one reference vector.

‐84Reference vector

Coefficient vector

Delta values

‐71 ‐1 35 21 0‐2 ‐10 0 0 0 0 036105

‐33 ‐30 0 20 13 0‐2 ‐7 0 0 0 0 01469

‐51 ‐41 ‐1 15 8 00 ‐3 0 0 0 0 02236

Figure 4.16.: Reference vector calculated from the mean of the coefficient vectors. One of the coefficient
vectors is shown below the reference vector with the last six coefficients quantized to 0. On
the bottom, the resulting delta values are given obtained from the subtraction of the coefficient
vector from the reference vector

The resulting deltas between the reference vector and the coefficient vectors are then Huffman
encoded. The resulting compression ratio is 50% and the PSNR results in 52 dB.

If the last seven deltas per coefficient vector are quantized to 0 a compression ratio of 46% is
achieved giving a PSNR of 50 dB. A quantization of the last 8 deltas results in a compression
ratio of 42% and a PSNR = 48 dB.

To determine which effect the quantization has on the reconstruction of the important informa-
tion of amplitude and time stamp of each input waveform the errors in these two parameters are
investigated. To calculate the error the original sample values of each input waveform are fitted
using the “lsqcurvefit” operation in Matlab (see section 4.2.3). The reconstructed sample values of
each waveform after the quantization and inverse DCT with the reference vector are fitted with the
same function. Then the difference in amplitude and time stamp of each fitted input waveform and
reconstructed waveform is calculated. The amplitude error is normalized to the amplitude of the
fitted input waveforms and is given in percent. The time error is expressed in nanoseconds. The
histogram of the distribution of the amplitude error and time error for different quantization cases
of the DCT with reference vector are shown in figure 4.17.

The error in amplitude of the reconstructed sample values after the DCT, the quantization of the
coefficients and the comparison with the reference vector is shown in 4.17(a) for the two cases of
quantizing the last six coefficients to 0 (red line) and the last 8 coefficients to 0 (blue line). The last
six quantized coefficients version results in around 80% of the waveforms with errors less than 1%
of the original amplitude. In contrary, it can be seen that the error is significantly increased for the
quantization of the last 8 coefficients to 0, having only around 68% of the reconstructed waveforms
with an error less than 1%. The red line also stops by much lower error values as the blue line. This
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(a) Amplitude Error
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(b) Time Error

Figure 4.17.: Histogram of the error in amplitude (left) and time (right) between the original waveforms and
the reconstructed waveforms from the DCT. The deviation in amplitude is given in % of the
original amplitude and the error in time is given in nanoseconds. The number of waveforms
corresponding to the error is given in % of the total analyzed waveforms

gives an idea of the error introduced in the important parameters caused by the quantization of the
coefficients showing that quantizing the last 8 coefficients to 0 still preserves a good accuracy for
more than 60% of the reconstructed waveforms and a seen maximum error of 12%. In a further
consideration of this method, the limit that would be acceptable from the physics point of view
has to be investigated to find the right trade-off between compression ratio and introduced error.
At this moment, this limit is not known and is under investigation by analyzing the actual detector
data from real collision in the LHC.

In addition two other error distributions are shown in figure 4.17 retrieved from the concept of
not performing a DCT on the original sample values but on the differences between neighboring
samples of each input waveform as already analyzed for the lossless compression methods. First,
the differences between consecutive samples of one waveform are calculated and built the new
input vector and then this new input vector is transformed with the DCT. A new reference vector
is calculated from the new coefficients. The rounded coefficients vectors are subtracted from the
new reference vector and the resulting values are then quantized and Huffman coded. For the
first investigations, again the last six coefficients are quantized to 0. The error introduced from
this quantization causes a distortion in the reconstructed differences. When the sample values are
reconstructed from the differences the error in one difference value is extended to the consecutive
samples of the reconstructed input waveform, which increases the distortion compared to the DCT
of the original sample values. The PSNR of the DCT of the differences with quantization of the
last 6 coefficients to 0 results in 51 dB (1 dB less as for the DCT of the samples). On the other
hand the compression efficiency is significantly increase resulting in a compression ratio of 43%.
The error introduced in the amplitude and time stamp of the input waveform is shown by the black
line in figure 4.17 and is worst than for the DCT of the samples represented by the red line. In
addition the error of the DCT of the differences with the quantization of the last 7 coefficients to
0 is shown in magenta in figure 4.17 and is worst then the error introduced by the DCT of the
samples quantizing the last 8 coefficients. The compression ratio of the DCT of the differences
with the quantization of the last 7 coefficients is 39%.

At the end, a DCT is investigated performed on the Delta values of the lossless vector quan-
tization presented above, before they are Huffman encoded to see the possible improvement of
the compression efficiently. The coefficients of the DCT of the delta values are rounded and then
Huffman encoded without further quantization. The rounding of the DCT coefficients introduces
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an additional error to the already existing error from the limited precision of the normalization step.
The curves in figure 4.18 show the effect of the introduced error on the important parameters am-
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(a) Amplitude Error of the DCT of the Deltas
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(b) Time Error of the DCT of the Deltas

Figure 4.18.: Histogram of the error in amplitude (left) and time (right) between the original waveforms and
the reconstructed waveforms from the DCT of the deltas from the lossless vector quantization
method. The error in amplitude is given in % of the original amplitude and the error in time
is given in nanoseconds. The number of waveforms corresponding to the error is given in %
of the total analyzed waveforms.

plitude and time stamp and can be compared to the results shown in chapter 6 for the realized and
implemented lossless vector quantization without DCT. Only a few percent of the reconstructed
waveforms have amplitude errors slightly above 1%. The time error is also very small with more
than 80% of the waveforms having no error in the time stamp.

The improvement in compression efficiency is by 3% resulting in a compression ratio of 47%
instead of 50% as achieved by the lossless vector quantization without DCT. The PSNR is 66.6 dB
which is around 3 dB lower than for the PSNR of the lossless vector quantization without DCT
of the deltas resulting in 70 dB.

At the end a diagram is shown in figure 4.19 which summarizes the compression ratios of the
different versions of the DCT. The PSNR values for the according DCT methods are shown in
figure 4.20.
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Figure 4.19.: Comparison of the compression ratios resulting from the various DCT methods performed on
the test-data from the ALICE TPC
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Figure 4.20.: Comparison of the peak signal to noise ratios (PSNR) resulting from introduced distortion of
the various DCT methods performed on the test-data from the ALICE TPC

With the DCT methods a compression ratio down to 39% could be achieved, which is better
than by the lossless compression methods but the introduced error has to be considered.

4.3.2. Wavelet transform
Another well-known transform method used in lossy data compression is the wavelet transform.
The wavelet transform is used for example in image compression based on JPEG 2000. The
difference of the wavelet transform compared to the DCT is that it splits the input signal in a coarse
information part and a detailed information part and not into the single frequency components as
the DCT does. The coarse information can be seen as a representation of the input signal with a
lower resolution by calculating the averages between neighboring samples. The coarse information
preserves still the shape of the input signal as it can be seen in figure 4.21.
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Figure 4.21.: Samples of an input waveform (in red *) versus the coarse information coefficients of the
DWT (in blue o)

The detailed information is then used to reconstruct the original signal form the coarse repre-
sentation and is composed by the differences between neighboring samples. If the input signal
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has a strong correlation, the resulting detailed coefficients have small values, which can be quan-
tized stronger. On the other hand, the coarse information can be used to perform first analyses to
classify and select certain signals before decompressing them totally. An execution of the wavelet
transform can be realized in hardware by using the Discrete Wavelet Transform (DWT) in matrix
form or with filter banks. The simplest DWT is obtained from the Haar-wavelet as mother-wavelet
and can be implemented by using two FIR-filters. One filter is a low-pass filter (LP) with the
coefficients h(0) = 1/2 and h(1) = 1/2 used to calculated the coarse information coefficients
(averages). The second filter is a high-pass filter (HP) with the coefficients h(0) = 1/2 and
h(0) = −1/2 that gives the detailed information coefficients (differences). In this way, the in-
put signal is split into two subbands containing low frequencies and high frequencies, respectively.
Each of the two FIR filters produce as many output coefficients as number of sample values in the
input signal, i.e. if the input signal contains 16 samples the two FIR filters produce together 32
coefficients. According to the fact that the bandwidth of the output signal of each filter is half the
input bandwidth since we divided the input signal into two subbands and regarding the Nyquist cri-
teria, only half the output coefficients are needed to reconstruct the input signal. A down-sampling
block is positioned after each FIR to discard every second coefficient value in order to obtain equal
number of coefficients as elements in the input vector given by the input samples per waveform.
Some resulting coefficient vectors of a Haar-wavelet transform of the test-data are given in the
matrix 4.15.



11 16 64 45 19 16 13 12 0 −4 −11 12 2 0 0 1
11 16 72 76 26 19 14 13 1 −4 −28 19 5 2 0 1
11 40 69 42 20 14 14 12 −1 −4 −2 9 1 1 0 1
11 26 83 72 33 19 13 13 −1 −9 −12 10 6 4 1 1
16 88 215 110 39 25 21 14 −11 −18 −24 36 5 3 1 3
21 127 217 144 49 29 21 16 −13 −32 −25 40 8 2 1 4
11 11 59 54 23 16 14 11 0 0 −19 11 3 0 1 0
11 15 90 92 28 18 14 13 0 −4 −35 27 5 1 0 1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...


(4.15)

From the 16 coefficients, the first half are representing the coarse information and the other
half the detailed information. The detailed information coefficients can be quantized to obtain a
good compression without reducing too much the quality of the reconstruction of the signal. The
coarse information, which is similar to the input signal can be transformed again using recursively
the DWT. A second set of FIR filters (LP+HP) and down-sampling blocks can be connected to
the output of the first low-pass filter with down-sampling block (see figure 3.14(b)). The second
step produces four coarse coefficients and four detailed coefficients. The detailed coefficients are
combined with the already previously calculated eight detailed coefficients and the new coarse
coefficients are again DWT transformed in a next iteration. This can be executed until only one
coarse information coefficient remains per input vector and the rest are detailed coefficients, which
can be quantized to obtain a good compression performance. For reconstructing the original sam-
ple values, the inverse DWT has to be performed iteratively in the reverse order on the quantized
coefficients.

In Matlab first tests are performed using the DWT with the Haar-wavelet in matrix form applied
on the test-data matrix to investigate the compression performance and the distortion using the
PSNR measure. The results can be compared with the previously discussed DCT. The DWT re-
quires that the input vectors containing the sample values of the input waveforms have a length that
is a power of two. Therefore, an extension of the input vectors containing the test-data waveforms,
from 15 samples to 16 values was done by adding a 0 value at the end.

The Haar wavelet transform matrix is extended to a 16 × 16 matrix according to the rules
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described in section 3.2.2. The transform matrix elements are calculated to perform the four it-
erations of the wavelet transform at ones resulting in only one coarse coefficient per input vector.
The remaining coefficients are the detailed values from the different resolutions (iteration steps).
The product between the transform matrix and each input vector (row) of the test-data matrix is
calculated resulting in the 16 transform coefficients. These coefficients are rounded to the nearest
integer and can then be quantized with different methods. By Huffman coding the rounded coeffi-
cients without farther quantization, a compression ratio of 72% has been achieved with a PSNR
of 70 dB. The compression efficiency is lower as for the DCT (68%) because the input vectors
had to be extended by one element for the power of two length requirement. The PSNR on the
other hand is almost equal. The extension of the input vectors is tried to be compensated by quan-
tizing the last coefficient of each output vector to 0, which results in a compression ratio of 69%
which is closer to the one from the DCT. The PSNR of the DWT with the quantization of the last
coefficient is 63 dB and is worst compared to the DCT. Another quantization method searches all
coefficients that have absolute values of 1 and quantizes them to 0. In this case the compression
ratio stays at 69% but the PSNR is better resulting in 66 dB.

A calculation of a reference vector from the DWT transform coefficients can also be performed
similar to the DCT resulting in the following values:

102, 68, −93, 15, −19, 24, 12, 3, −1, −16, −19, 23, 8, 2, 1, 2

Each DWT coefficient vector can then be subtracted from the reference vector before the re-
sulting deltas are quantized and Huffman coded. The compression ratio using a reference vector
results in 62% with the same PSNR = 70 dB as by transforming directly the sample values. If
the differences (deltas) between the reference vector and the transform coefficients are quantized
before the Huffman encoding the compression efficiency can be increased further. The quantiza-
tion of the deltas with absolute values of 1 to 0 and quantizing as well the last delta value from
each vector to 0 results in a compression ratio of 56% and a PSNR of 64 dB.

A quantization of the last seven deltas to 0 including the added 16th coefficient results in a
compression ratio of 46% and a PSNR = 45 dB. This can be compared with the DCT with
reference vector and quantization of the last 6 coefficients and shows that the DWT gives a better
compression performance but a worst PSNR.

An equal compression ratio of 46% can be achieved by transforming the differences between
neighboring input samples of one input waveform instead of transforming the sample values di-
rectly. From the resulting transform coefficients, a new reference vector is calculated. The dif-
ferences between each coefficient vector and the new reference vector are calculated and all dif-
ferences with absolute value of 1 are quantized to 0 as well as the last coefficient. The Huffman
coded quantized differences are resulting a compression ratio of 46% but a PSNR of 57 dB is
much better as for the previous method with quantizing the last 7 deltas. This can be compared
with the DCT of the differences between sample values and quantizing the last 6 coefficients. The
DCT shows a lower compression ratio but also a lower PSNR.

The following diagram in figure 4.22 summarizes the compression ratios achieved by the DWT
with the Haar-wavelet and can be compared to the results from the DCT and the lossless compres-
sion methods.

The distortion introduced in the reconstruction of the input waveforms caused by the different
quantization methods of the transform coefficients is summarized in figure 4.23.

A second wavelet transform is being analyzed using the Daubechies 4 wavelet with eight fil-
ter coefficients for the LP-filter and HP-filter. This wavelet has a shape closer to the one of the
semi-Gaussian waveform assuming therefore a better compression ratio with lower distortion. The
achieved results can be compared to the DWT with the Haar wavelet to see if an improvement
could be obtained by changing the mother-wavelet.

By transforming the input vectors of 16 samples with the Daubechies 4 wavelet (db4) and
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Figure 4.22.: Comparison of the compression ratios resulting from the various DWT methods with the Haar
wavelet performed on the test-data from the ALICE TPC extended to 16 elements per input
vector
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Figure 4.23.: Comparison of the peak signal to noise ratios (PSNR) resulting from the introduced distortion
of the various DWT methods with Haar wavelet performed on the test-data from the TPC

rounding the resulting 16 coefficients to the nearest integer a compression ratio of 69% has been
achieved. This compression ratio is much closer to the one from the DCT even with the extension
of the input vectors to 16 samples as by using the Haar wavelet. The resulting PSNR = 71 dB is
also equal to the DCT transform.

A quantization of the coefficients with absolute value 1 to 0 and of the last coefficient of the
resulting transform vectors to 0 gives a compression ratio after Huffman coding of 62% for the
db4-wavelet. This is 4% better as for the Haar wavelet by producing an equal PSNR of 62 dB.

The calculation of a reference vector from the transform coefficients of the db4 and using it to
obtain the differences (deltas) between the coefficient vectors and the reference vector produces a
compression ratio of 53% when all deltas with absolute values of 1 are quantized to 0 and the last
delta value per vector is quantized to 0. This is better than the 56% of the Haar wavelet by a bit
lower PSNR of 62 dB (for Haar PSNR = 64 dB).

A quantization of the last 7 delta values per coefficient vector results in a compression ratio of
48% and a PSNR of =49 dB. The compression ratio is a bit higher than for the Haar wavelet but
the PSNR is a bit lower.

The transformation of the differences between sample values of the input waveforms using the
db4 wavelet results as well in a lower compression ratio as for the Haar wavelet (48% for db4;
46% for Haar) and also the PSNR = 55 dB is lower.

The compression ratios for the DWT with the db4 wavelet are summarized in figure 4.24 and
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the resulting PSNRs are shown in figure 4.25.
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Figure 4.24.: Comparison of the compression ratios resulting from the various DWT methods with the
Daubechies 4 wavelet performed on the test-data from the TPC extended to 16 elements per
input vector
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Figure 4.25.: Comparison of the peak signal to noise ratios (PSNR) resulting from the introduced distortion
of the various DWT methods with Daubechies 4 wavelet performed on the test-data from the
TPC

The analysis of the wavelet transform on the test-data matrix showed that it produces similar
compression results as the DCT with in most cases better PSNR values, which shows a reduced
distortion in the reconstructed waveforms. For the DWT more caution has to be put in the quanti-
zation of the resulting transform coefficients because the coefficients with the small values are not
all concentrated in the end of the resulting coefficient vectors as for the DCT.

The comparison of two different mother-wavelets, the Haar wavelet and the Daubecies 4 wavelet,
showed that the right choice of the wavelet can improve the compression efficiency by keeping the
same PSNR or improving the PSNR. Another advantage of the wavelet transform is that not
all coefficient values have to be decoded to investigate some simple properties of an input signal
for a possible pre-selection of data before performing a total decoding for the analysis. For exam-
ple after the iteratively executed wavelet-transform, the only remaining coefficient with the coarse
information represents the mean value of the samples of a input waveform, which represents the
energy of the signal.

A realization of the wavelet-transform in hardware requires FIR filters and down-sampling
blocks, which are common blocks in digital signal processing circuits. The complexity of the
implementation is defined by the number of taps per FIR-filter (given by the underlying mother-
wavelet) and the number of required iterations.

The biggest disadvantage of the wavelet-transform is the requirement that the input vectors
have to have a number of elements, which are a power of two. Since the input vector have various
different lengths after the zero suppression in the Alice TPC this criteria can cause sometimes
lower compression efficiencies due to a required extension of the input vectors.

Both transform methods, the DCT and DWT can produce higher compression efficiencies as
the lossless methods if some information loss can be tolerated. A deeper investigation of the
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acceptable distortion and a related optimization of the quantization of the transform coefficients
has to be carried out for each target application before these methods can be implemented and used
efficiently.

4.3.3. Model based coding
Model based coding is a lossy compression method, which is used for example in speech coding
and is promising as well for an efficient use on detector data. The important information from
the semi-Gaussian waveform is the amplitude and the time (time stamp) when the signal has been
recorded. The difficulty is to find out the real amplitude and time stamp of the analogue signals
from the few digitized samples. The digitization of the analogue signal through the ADC in the
front-end chip has a sampling rate that is not high enough to guarantee a precise measurement of
the amplitude and time by just taking the maximum sample value and position. Since the sampling
time of the input waveforms is not synchronized with their arrival, it is not known how close
the maximum sample is to the real amplitude of the analogue signal. This implies that the time
between the maximum sample and the real peak of the waveform is not constant which makes a
simple extraction of the amplitude and time stamp impossible. In the actual offline data analysis,
the samples of a detected waveform are fitted with a semi-Gaussian fit function to reconstruct the
original amplitude and time stamp. This fitting of the waveforms requires an exponential function
(e.g. as given in equation 4.9), which is too complex to perform in hardware.

The idea of the model based coding is to find a simple model, which allows a parameter extrac-
tion for the important parameters from the received sample values, in order to send out only these
parameters with the required precision instead of sending the individual sample values. This re-
duces the data of an input waveform to two values instead of the corresponding number of samples.
The key-point of this compression method is to find a model, which is simple enough to be imple-
mented in real-time hardware with a reasonable resource/area requirement and power consumption
but which is good enough to extract the parameters with a high precision.

One method to extract the important parameters from a few samples of an input waveform is
presented in [44]. This model bases on two simple linear polynomial equations weighting the
sample. One equation is used for the amplitude extraction and the second one for the time stamp
determination. The realization of the polynomial equations in hardware is simple requiring a few
additions and multiplications like for FIR-filters. To determine the optimal constant elements
(coefficients) of the two polynomials presented in the following equations 4.16 and 4.18 and in
[44], the samples of the input waveforms are represented in the sample space where they form
a representative curve. For the test-data matrix, the input waveforms have 15 samples. In the
15-diminsional sample space, each input waveform is represented by a point. If we take an ideal
semi-Gaussian waveform sampled 15 times as shown in figure 4.26(a), the position in the sample
space varies according to the sampling times depending on the shift in respect of the peak of the
waveform. The waveform in figure 4.26(a) is sampled with a sampling period of 100 ns and 20
sets of samples are created by shifting the sampling time in 5 ns steps within a sampling period.
The different points in a 3-dimensional sample space using the three samples at position 2, 3 and 4
of each set describe the representative curve shown in figure 4.26(b) that can be seen as a section
of the 15-dimensional sample space.

It can be seen that the illustrated representative curve in 3-dimensons lies in one plane of the
3-D space. A plane curve can be represented by the polynomial in equation 4.16 as stated in [44].∑

i

aisi = v (4.16)

For a precise description of the representative curve several sets of samples si from the ideal
semi-Gaussian waveform with different time shifts are used. All sets of samples ski and the constant
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Figure 4.26.: An ideal semi-Gaussian waveform sampled at shifting sampling times of 5 ns in the range of
[0,T] with a sampling period T of 100 ns. The resulting sets of samples are illustrated as points
in a sample space. A 3-dimensional section of the sample space is shown using the samples
2, 3 and 4.

coefficients ai have to result the same amplitude of the ideal semi-Gaussian waveform represented
by v. From this constrained the calculation of the coefficients ai can be performed in Matlab using
the matrix notation in equation 4.17.

s11 s12 s13 s14 . . . s115
s21 s22 s23 s24 . . . s215
s31 s32 s33 s34 . . . s315
s41 s42 s43 s44 . . . s415
s51 s52 s53 s54 . . . s515
...

...
...

... . . . ...


·



a1
a2
a3
a4
...
a15


=



100
100
100
100
100

...


(4.17)

If now an input vector containing the samples of an input waveform is multiplied with the
resulting coefficients ai it should result the corresponding real amplitude value. The coefficients
are weighting the sample values in order to obtain the real amplitude value.

For the time stamp, a similar polynomial equation is used with a different set of coefficients giv-
ing the time shift of the sampling time of the semi-Gaussian waveform. The polynomial equation
is as follows: ∑

i

bis
k
i = tk = t0 + kτ k = 0, ..., N − 1 (4.18)

To determine the time stamp first the input waveforms have to be normalized in amplitude to
a defined NormV alue. The coefficients have to be calculated in order to result together with the
normalized samples the time shift tk. Again the matrix notation is used to calculate the coefficients
as given in equation 4.19.

Ns11 Ns12 Ns13 Ns14 . . . Ns115
Ns21 Ns22 Ns23 Ns24 . . . Ns215
Ns31 Ns32 Ns33 Ns34 . . . Ns315
Ns41 Ns42 Ns43 Ns44 . . . Ns415
Ns51 Ns52 Ns53 Ns54 . . . Ns515

...
...

...
... . . . ...


·



b1
b2
b3
b4
...
b15


=



k1
k2
k3
k4
k5
...


(4.19)

116



CHAPTER 4. ALGORITHM FOR DATA COMPRESSION IN PARTICLE DETECTORS

The normalized sample values with different time shifts are named Nski in the matrix and the
time shifts are reduces to the multiplying constant k of the time units τ . The real-time shift is
composed from the offset time t0 and the time shift τ . The offset time t0 represents the time when
the charged particles cross the detector until the related signals are seen at the pads and sampled.
To this t0 the number k of time units τ is added which represents the time difference from the
maximum taken sample by the ADC and the real peak time of the recorded input waveform. The
offset time is already determined by the zero suppression, which means that only the time shift kτ
has to be extracted from the input signals. The multiplication of the samples of a normalized input
waveform with the coefficients bi should result the real-time shift kτ between the sampling of the
waveform and the peak time. The resolution of the time extraction depends on the time unit τ and
is here 5 ns.

First tests are carried out using ideal semi-Gaussian waveforms scaled to different amplitudes
and sampled at different time shift as shown in figure 4.27. The tests showed a good performance
of the model based coding method using the parameter extraction described above.
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Figure 4.27.: Some ideal semi-Gaussian waveforms with different amplitudes and sampled at different
times

First the amplitudes of the semi-Gaussian waveforms are extracted from the 15 samples by
using the coefficients ai. The waveforms are sampled with a sampling period of 100 ns and a
random number of steps of 5 ns in the range of [0,100]. The obtained extracted amplitudes are then
compared to the real amplitudes of the semi-Gaussian waveforms and the absolute differences are
calculated. The differences are compared to the real amplitudes of the corresponding waveforms
and shown in % in figure 4.28(a).

Then the time shifts are calculated using the coefficients bi. First, the samples from the semi-
Gaussian waveforms are normalized using the extracted amplitude values and multiplying each
sample of the corresponding waveform with the factor 100/ExtAMPi. The input waveforms are
normalized to the defined amplitude of 100, which is equal to the amplitude of the semi-Gaussian
waveforms used to calculate the coefficients bi. Then the normalized samples of each waveform
are multiplied with the coefficients bi and summed up. The resulting time shifts tk are compared
to the random generated time shifts of the sampling time. The absolute differences are presented
in nanoseconds in figure 4.28(b).

It can be seen that the errors in amplitude and time are very small compared to the original
amplitude or the sampling periods. This would make the model based method perfectly suited for
a parameter extraction in the front-end electronics obtaining a high compression efficiency. For
example if one uses 17 bit to represent the amplitude and 7 bit to represent the k of the time shift
unit kτ (gives a resolution of better than 1 ns for 100 ns sampling period) one needs to sent 24 bit
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(a) Amplitude error of ideal semi-Gaussian signal
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(b) Time stamp error of ideal semi-Gaussian signal

Figure 4.28.: Error in amplitude and time of the parameter extraction from 1000 ideal semi-Gaussian signals
with different amplitudes and sampling times. The amplitude error is given in percent of the
differences normalized to the original amplitudes of the waveforms. The error in time is given
in nanoseconds.

per input waveform out of the detector. For the underlying example, the input waveforms have 15
samples with 10 bit per sample which results in the following compression ratio:

Compression Ratio =
17 bit + 7 bit

10 bit× 15
× 100 =

24 bit

150 bit
× 100 = 16% (4.20)

The compression ratio depends on the required (chosen) resolution of the two parameters and
the number of samples per input waveform, but it is independent from the probabilities of the
samples. Nevertheless, one aspect has to be taken into account that the real digitized signals
in the front-end electronics are not ideal semi-Gaussian waveforms but they contain noise. The
samples of the input waveforms are distorted by different sources in the detector structure (e.g. gas
fluctuation distortion, field distortion, drift time uncertainties etc.) and in the front-end electronics
(e.g. limited bandwidth of filters, rounding errors from limited precisions in the digital processing
unit etc.). Therefore, the method has to be evaluated on real data to see how much the noise from
the samples affects the accuracy of the reconstructed parameters.

The parameter extraction is executed in Matlab using the test-data matrix, which already has
been used for testing the previous compression concepts. The coefficients ai and bi are calculated
in order to optimize them for this test-data. To determine the coefficients ai, the waveforms in
the test-data matrix are fitted to find out the original amplitude represented by the maximum of
each fitted waveform. These maximum values are then building the vector v of the equation 4.16.
Next, the pseudoinverse matrix is calculated out of the test-data matrix. This pseudoinverse matrix
is multiplied with the vector v to obtain the coefficients ai. The use of the pseudoinverse matrix
produces small coefficient values so that the effect of the noise of the sample values is reduced on
the coefficients (see [45]). The values of the coefficient vector a are as follows:

a = [−0.02,−0.01,−0.07,−0.04, 0.22, 0.67, 0.22, 0.06,−0.01,−0.08,−0.02,−0.01, 0.02,
−0.05,−0.04]

The resulting coefficient vector a is then multiplied to each row of the test-data matrix contain-
ing the samples of each input waveform and the amplitude of the waveforms is extracted. The
extracted amplitude values from all the 10 000 waveforms in the test-data matrix are compared
with the original amplitudes from the fitted waveforms and the difference (error) is calculated.

After the extraction of the amplitudes, the time stamps can be extracted. First, the original am-
plitudes of the fitted waveforms are used to calculate the normalization factor (fi = 100/ampi) for
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each input waveform. Then the samples of the waveforms in the test-data matrix are normalized
using the corresponding factors and a second pseudoinverse matrix is calculated from the normal-
ized test-data matrix. To obtain the coefficients bi the pseudoinverse matrix is multiplied with the
vector tk, which contains the sample positions of the maximum samples from the fitted waveforms.
The resulting values for the coefficient vector b are as follows.

b = [0.22,−0.11,−0.21,−0.06,−0.12, 0.15, 0.10, 0.22,−0.03, 0.09,−0.02,−0.18, 0.23,
−0.29,−0.17]

To extract the time stamps out of the waveforms in the test-data matrix, each row of samples of
the test-data matrix is first normalized using the extracted amplitudes from the previous step. Then
the normalized waveforms are multiplied with the resulting coefficient vector b to extract the time
stamps. The extracted time stamps are then compared with the original position of the peak of the
fitted waveforms and the difference (error) is calculated.

The resulting error for the extracted amplitudes and time stamps of the 10 000 test-data wave-
forms are evaluated and shown in figure 4.29.

0 1 2 3 4 5 6 8 10 12 14 16 18 20
0,01

0,1

1

10

100

Error [%]

P
er

ce
nt

ag
e 

of
 N

um
be

r o
f w

av
ef

or
m

s 
[%

]

(a) Amplitude error using real measured data
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(b) Time error using real measured data

Figure 4.29.: Error in amplitude and time of the parameter extraction from 10 000 real measured waveforms
from the test-data used in the previous compression methods. The amplitude error is given in
percent of the differences normalized to the original amplitudes of the waveforms. The error
in time is given in nanoseconds.

The error is comparable to the previously presented lossy compression methods. More than
90% of the 10 000 extracted amplitudes have an error below 5%. A bit more than half of the
10 000 waveforms have an error below 2%. The error of the reconstruction of the time stamp
is a bit higher because the extraction has to use the already extracted erroneous amplitudes to
normalize the input waveforms. More than 90% of the 10 000 extracted time stamps have an error
less than 25 ns (sampling time is 100 ns). Around 45% of the input waveforms have an error below
10 ns. The introduced error from the model based method is higher as by other lossy compression
methods but the achievable compression ratio is significantly better.

For the hardware implementation two FIR filter could be used with a latch at the output to
extract the parameter values in the right moments when all samples of an input waveform are
shifted to the correct position in the FIR filters. The normalization logic previously presented is
needed to scale the input waveforms using the extracted amplitudes before the time stamps can be
extracted.

To guarantee the quality of the reconstructed important information using this method a quality
check could be performed in the hardware on the extracted parameters before they are send out.
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An ideal semi-Gaussian waveform can be saved in an internal memory with a sampling time of τ
that is used in the time stamp extraction process. Then the extracted amplitude from the samples
of an input waveform is used to scale the stored semi-Gaussian signal to the corresponding height.
The extracted time stamp determines which samples of the ideal semi-Gaussian signal have to be
taken considering the original sampling rate of the input waveforms (e.g. 10 MHz). The selected
samples of the ideal semi-Gaussian signal are then compared to the original samples of the input
waveforms and the residuals are calculated. The absolute values of these residuals are summed up
and compared to a defined threshold value to qualify the precision of the extracted parameters. If
the sum of the absolute residuals is below the defined threshold, the two extracted parameters are
sent out; otherwise, the original samples of the input waveform are transmitted in uncompressed
form. In this way, a good lossy compression can be achieved by guaranteeing a quality of the
parameter extraction that is acceptable. This check has the disadvantage that a memory is required
to store the oversampled semi-Gaussian signal in addition to the FIR filters. By using a τ of
20 times smaller than the sampling period of the input waveforms and assuming that the input
waveforms have at most 15 samples the memory has to be able to store 300 samples of 10 bit. If
the τ is selected to be smaller a better resolution of the time stamp extraction is achieved which
might reduce the error but this will increase the required memory space.
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5. Implementation of the algorithm in a
FPGA

After a suitable compression algorithm for particle detector front-ends is found and evaluated in
chapter 4 an implementation of this algorithm is presented in this chapter. The implementation
of the lossless vector quantization method bases on normalization of the input signals, vector
quantization, delta calculation and Huffman coding. A project for the ALICE Time Projection
Chamber front-end electronics foresees the design of a new mixed signal full custom ASIC in
130µm technology with the name S-ALTRO, which will combine the analogue pre-amplifier and
shaper chip PASA and the digital chip ALTRO. In the course of this project the R&D of a data
compression method is foreseen with the aim to implement an additional data compression in the
new mixed signal front-end ASIC. For a first prove of concept of the here developed compression
algorithm an implementation in a Field Programmable Gate Array (FPGA) is carried out. The
presented implementation in this chapter is targeted on a FPGA, which is installed in the Readout
Control Unit (RCU) of the ALICE TPC front-end electronics that gives the possibility for a future
integration in the real detector environment. The RCU is sitting behind the front-end cards, which
house the PASA and ALTRO chips and it controls the data taking from the ALTRO chips as well
as preparing the data for sending them off-detector to the counting room. The design is realized in
the hardware description language Verilog. The developed Verilog code can be used as well for a
later ASIC implementation in the new front-end chip to move the data compression closer to the
data source (detector pads). This chapter presents the specifications, the parts and the challenges
of the data compression implementation.

5.1. Specification of the RCU Data Compression
implementation

The lossless compression algorithm described in chapter 4 consists of three main parts: Normal-
izer, Vector Quantizer, Delta Calculator and Huffman Coder.

The data compression block containing these three parts is designed to meet the requirements of
an implementation in the RCU FPGA. To understand the requirements first the data path through
the front-end electronics of the TPC in ALICE from the detector pads until the data compression
block inside the RCU has been investigated. A block diagram showing the components along this
data path can be seen in figure 5.1.

The different components of the front-end electronics are described in the following:
The signal induced in the detector pads is first amplified and shaped by the PASA. The PASA

is an analogue ASIC containing 16 channels connected to 16 detector pads [26]. The first stage
of a PASA channel is an integrator, which integrates the current induced in the detector pad to
obtain a charge-equivalent output voltage. Then a differentiator performs a pole-zero cancellation
to prepare the signal for the last stage made of two low-pass filters second order. The two low-pass
filters are seen as shaping amplifiers. The output signal of the PASA after the filters has a semi-
Gaussian shape 4th order as presented in chapter 2 and 4. The semi-Gaussian signal is then send to
the ALTRO chip. The ALTRO chip contains as well 16 channels [47, 48]. Each channel has a 10-
bit ADC sampling at 10 MHz to digitize the analogue signal. The digital signal is processed by the
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Figure 5.1.: Block diagram of the front-end electronics of the TPC in the ALICE experiment (modified
from [46])

digital processor in each ALTRO channel. The digital processor performs first a baseline correction
based on pedestal values stored in a memory. The pedestal values are subtracted from the digitized
input signal to correct the baseline for systematic errors and prepare the signal for the following tail
cancelation filter. The tail cancelation is performed by a 3-stage Infinite Impulse Response (IIR)
filter used to cancel the long signal tail caused by the slow moving ions from the avalanche process
in the MWPC. This long ion tail is problematic for pile-up effects on following input waveforms,
which would render the zero suppression inefficient and cause an error in the signal amplitude.
The last filter of the digital processor is a moving average filter to perform the second baseline
correction, which reduces non-systematic perturbations. After the filtering of the input signal the
zero suppression is performed, which can be considered as a first lossy data compression after the
digitization of the input signal. The zero suppression uses a defined threshold to distinguish useful
information from non important data (zero data). The zero suppression is explained in figure 5.2.

above‐threshold samples

dismissed samples

discarded glitches

adjoined pre and post 
samples

merged clusters

rejected glitches

Figure 5.2.: Zero Suppression in the ALTRO chip [3]

When a sample is found above the threshold, it is considered as the start of a waveform. To-
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gether with the following samples above the threshold it is stored in the Multi-Event Buffer (MEB)
until a sample is received with a value below the threshold. This sample is considered as the end
of a waveform. A number of pre- and post-samples can be defined to be stored in the MEB to-
gether with the detected waveform. If only a single sample (or less than 3 samples) raise above
the threshold it is considered as a glitch and nothing is saved. Each cluster (group of samples
ideally considered as one waveform) is combined with a time stamp, which preserves the arrival
time information of the waveform. If a pile-up effect occurs, one cluster contains more than one
waveform. If a L1-trigger arrived the zero suppressed data are stored in a MEB using the format
shown in figure 5.3.

(a) Cluster data formation including samples, time stamps
(T06) and cluster width (number of words per cluster e.g.
07) [2]

0x000

0x001

0x2FF

(b) ALTRO output data format stored in the MEB [47]

Figure 5.3.: Zero suppressed output data of the ALTRO stored in the MEB with the ALTRO channel header
(Trailer word) and read out by the RCU

The data in the MEB of the ALTRO channels are then readout by the RCU upon a L2-trigger
accept signal. The data transfer to the RCU is performed with 40 MHz and a word length of 40 bit.
This means that up to 4 sample values are received every 25 ns at the RCU. Inside the RCU FPGA,
there are four buffer memories to save the data from the ALTROs.

The Data Compression block (DC-block) will read the data from the internal buffer memories
inside the RCU and compress them. The DC-block has then to bring the compressed data in a
defined format and to store them in an output buffer inside the Source Interface Unit (SIU) of the
RCU. The command to the DC-block for starting reading an internal buffer is given from the RCU
by setting the corresponding data ready signal. This signal contains 4 bit, each one is set high
after the RCU has saved all data from one ALTRO channel MEB in the corresponding internal
buffer. The RCU then can read in the next ALTRO channel MEB and save the data in the next free
internal buffer, while the data compressor is reading and processing the data of the current buffer.
The data compressor will perform the compression of the single waveforms (clusters) and build
the output format. After the formatted compressed data are stored in the SIU output memory they
can be read out and transferred via optical links to the counting room (off-detector).

For the new version of a TPC mixed signal front-end chip with the name S-ALTRO, a clock
frequency of 40 MHz and a readout frequency of 80 MHz is planned. In order to prepare the data
compression for a future implementation in this S-ALTRO, two clock input signals with frequen-
cies of 40 MHz and 80 MHz are used inside the DC-block.

The description of the actual TPC front-end electronics leads to the following conditions that
the design of the data compression block has to fulfill:
• The input bandwidth is 40 bit× 40MHz = 1.6Gbit/s ≈ 191Mbyte/s
• Controlling the reading of the four internal buffers of the RCU

123



CHAPTER 5. IMPLEMENTATION OF THE ALGORITHM IN A FPGA

• Compressing the data in real-time by processing four sample values per clock cycle to cope
with the 191 Mbyte/s

• Formatting the compressed data according to the RCU output format
• Controlling the storage of the formatted data in the SIU output buffer
• Two input clocks one with 40 MHz and one with 80 MHz
A top level block diagram of the implementation of the DC-block in the RCU FPGA envi-

ronment is shown in figure 5.4. The different parts of the realized data compression block are
described in the following.
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Figure 5.4.: Block diagram of the RCU and data compression block interface [49]

5.2. Overview of the data compression block
According to the specifications and the algorithm described in chapter 4 a first conceptual block
diagram is presented in figure 5.5 as an overview for the created RTL Verilog model. The functions
of the parts inside the data compression block are explained shortly, before each part is discussed
more in detail in the following sections.

The different parts are realized in individual Verilog modules, which are instantiated in a top
module called DataCompressor. This DataCompressor module represents the entire data compres-
sion block and in the following “DataCompressor” is used to refer to the implementation of the
compression algorithm. The DataCompressor uses the two clock signals, which are provided by
the RCU. The 40 MHz input clock is called Clock40 and is the primary clock signal used widely
in the implementation. A second fast input clock signal of 80 MHz is called Clock80 and is used
mainly in the OutputFormatter module for the readout of the data. A pipelined divider inside the
Normalizer module uses as well the fast 80 MHz clock.
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Figure 5.5.: Conceptual block diagram of the RTL Verilog model for the DataCompressor

The DataCompressor top module (DC1) handles the communication with the remaining RCU
logic. A state machine in the DC1 module controls the readout of the data from the internal buffers
of the RCU. The data from the internal buffers, which are formatted according to the ALTRO data
format, are split up in the individual components. The sample values are sent together with the
waveform width (number of samples per waveform) to the Normalizer module called Normalizer
(NZ1).

The Normalizer stores the sample values of the input waveform in a buffer memory while it
starts searching for the maximum sample value of the waveform. If the maximum sample is de-
tected the normalization factor is calculated using a pipelined integer divider. After the Divider
module returns the calculated normalization factor, the sample values of the corresponding wave-
form are read out from the Normalizer internal buffer and multiplied with this factor. In this way, a
normalized input waveform is obtained. Four multipliers are working in parallel to normalize four
sample values per Clock40 cycle. This is important to cope with the input bandwidth of four 10-bit
input sample words per 40 MHz. The Normalizer will send each Clock40 cycle up to four normal-
ized samples to the VectorQuantizer module. In addition, the position of the maximum sample in
each input waveform is sent to the VectorQuantizer to perform a time alignment between the input
vector containing the samples of the normalized input waveform and the reference vector.

The DataCompressor top module contains two different VectorQuantizer modules, which can
be instantiated; one called VectorQuantizer1QSimple (VQ1), which uses only one reference vector
and a second one called VectorQuantizer4Q (VQ4), which uses four reference vectors. According
to the available resources in the target FPGA one of the two VectorQuantizer modules can be used.

The VQ1 contains two dual-port memories, which are programmed prior to the measurements
with the elements of the reference vectors. The index of the maximum sample of a received
normalized waveform is used to address the reference vector memory and to read out the corre-
sponding reference vector elements, which are aligned with the normalized samples from the input
vectors. Then the differences of the reference vector elements (reference samples) and the nor-
malized samples are calculated and the resulting Delta values are forwarded to the HuffmanCoder.
Two dual-port memories have to be used for storing the reference samples twice to allow reading
out four reference samples per Clock40 cycle and therefore being able to process four normalized
samples in parallel. The VQ4 uses four different reference vectors to obtain a better compression
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efficiency, which requires four times more memory as for VQ1 to save them. The index of the
maximum sample is as well used to align the normalized input samples to the for reference vec-
tors. Then four sets of Delta values are calculated in parallel using the input vector and each of
the four reference vectors. To decide which of the four sets of Delta values give the best com-
pression efficiency the sum of the absolute values of each set is calculated and the set with the
minimum sum is sent out to the HuffmanCoder. The index indicating the selected set is sent to the
OutputFormatter module to be included in the output data.

The Huffman coding module is called HuffmanCoder (HC1) and it consists of two dual-port
memories, which serve as Look-Up Tables (LUT1 and LUT2) and a ConCatenator module. The
two dual-port memories are programmed prior to operation with the Huffman codebook, which is
calculated in Matlab using representative data. The received Delta values are used as address for
the two memories and the corresponding Huffman codewords and codeword lengths are read out
and sent to the ConCatenator module. The two dual-port memories containing the same codebook
and are required to process four Delta values per Clock40 cycle. The HuffmanCoder can also
be used to compress directly the original input samples if the corresponding Mode is set and the
corresponding codebook is saved in the two memories. The ConCatenator called ConCatenator60
(C1) uses barrel shifters to concatenate the variable length Huffman codewords to an output bit
stream. The output bit stream is then sent to the OutputFormatter in blocks of 60 bit.

The data-formatting module is called OutputFormatter (OF1) and it combines the compressed
data with header and trailer information from the RCU to a defined output package. The Output-
Formatter formats the information in 32-bit words where the two most significant bits (MSB) are
flag bits to distinguish the different kind of package words. Each data package for an event starts
with a common data header and ends with a trailer.

The implementation of the data compression block is designed to support three modes of oper-
ation.

The general mode, which is selected by setting the DcMode register to ‘11’, performs the
described data compression algorithm of chapter 4. In this mode all the above described modules,
Normalizer, VectorQuantizer, HuffmanCoder and OutputFormatter are in use to obtain the best
compression efficiency.

The second mode of operation, which is selected by setting the DcMode register to ‘01’ uses
only the HuffmanCoder and the OutputFormatter inside the DataCompressor top module. A direct
compression of the input samples using only Huffman coding is performed. The resulting concate-
nated Huffman codewords are then send to the OutputFormatter and used as the payload for the
data package. Important is to program the LUT memories of the HuffmanCoder with the correct
Huffman codebook. The compression efficiency will be lower than by using the full algorithm as
shown in chapter 4, but the execution of this compression is simpler and faster (lower latency).
The modules Normalizer and VectorQuantizer are not used in this mode of operation.

The third mode of operation is selected by setting the DcMode register to ‘00’ and is not
performing any compression on the input data. The sample values of the RCU internal buffers are
directly send to the OutputFormatter where they are included uncompressed in the data package.

The following sections describe the realization of the individual Verilog modules in more detail.

5.3. Data Compressor top module
The DataCompressor module (DC1) is the top module of the design, which is connected to the
other blocks of the RCU. Before the DataCompressor can start working, it has to be initialized;
the Huffman codebook and reference vectors have to be programmed into the dedicated memories.
A 16-bit wide address bus is used to address the corresponding memories and registers. A 32-bit
wide bidirectional data bus is used inside the RCU and to program the data compression block.
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The DataCompressor internally uses a 22-bit wide bidirectional bus to distribute the data to the
various memories and registers. With this bidirectional bus, it is as well possible to read back
the programmed data for testing purposes or to check the mode of operation and configurations.
The RCU itself uses the Detector Control System interface (DCS) to receive instructions from the
counting room and to provide control information. To access the programmable memories and
registers the input signal WriteEn has to be set to ‘1’ for writing or ‘0’ for reading. The correct
address has to be set at the address bus rcu address and then the data can be written or read via
the data bus called rcu prog data.

Inside the DataCompressor, a module called DCAddrDec (AD1) is performing the address de-
coding. This module has to decode the addresses received from the RCU and set the corresponding
enable signals and addresses to select the corresponding memory or register. The composition of
the received address from the RCU is as follows:

Bits 15-13 Bits 12-10 Bits 9:0
For DC fixed to ‘011’ Instruction Set Address to select the words of the memory or register

The three MSBs ‘011’ indicate that the address is dedicated to the data compression block. The
next three bits are selecting the programmable device. The values ‘000’-‘010’ of the bits 10 to 12
are reserved to address the two Huffman LUTs for storing or reading the codebook (‘000’ enables
LUT1, ‘001’ enables LUT2, ‘010’ enables both). If the bits are set to ‘011’ the registers for the
DcMode, NormV alue, NormV alueIndex and FristSecond can be programmed. The values
‘100’-‘111’ are used to program the four reference vectors. The remaining 10 bits of the address
word (0 to 9) are used to access the individual words in the memories or to select the corresponding
register. The resulting address space dedicated to program the data compression block is listed in
table 5.1.

Table 5.1.: Adress space for the parameter registers and programmable memories

Dc Registers:
Name Address Size Access Description

NormValue 0x6C00 1x10 W/R Defines the max sample value of
the Reference Vectors. Default:100

NormValueIndex 0x6C01 1x6 W/R Defines index of the max sample
in the Ref. Vectors. Default: 31

DcMode 0x6C02 1x2 W/R Data Compressor working mode.
Default: 3

FirstSecond 0x6C03 1x1 W/R To switch between 2 equal Mems

Dc Memories:
Name Address Size Access Description

Huffmem 0x6000-0x63FF 22x1024 W/R LUT for the Huffman Codewords
RVmem1 0x7000-0x703F 10x64 W/R Memory for the Ref. Vector1.

Used for 1Q&4Q.
RVmem 2 0x7400-0x743F 10x64 W/R Memory for the Ref. Vector2.

Used only for 4Q.
RVmem 3 0x7800-0x783F 10x64 W/R Memory for the Ref. Vector3.

Used only for 4Q
RVmem 4 0x7C00-0x7C3F 10x64 W/R Memory for the Ref. Vector4.

Used only for 4Q.

After the data compression block is programmed and initialized, it is ready to take data and
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compress them. The DataCompressor module contains a state machine, which controls the reading
of the four internal buffers of the RCU. The diagram of the state machine is shown in figure 5.6(b).
After the RCU has finished reading one MEB content from a channel of one ALTRO chip and
has stored the data in one of the four internal buffers, it sets a ready signal for the corresponding
buffer. A 4-bit input signal called data ready indicates which internal buffer is filled and ready to
be readout from the DataCompressor. The value of the data ready signal is stored in a four word
deep data readyReg buffer and the state machine starts the readout operation. The data ready
signal is readout from the data readyReg buffer to know which internal buffer is ready to be
readout next. The buffering of the data ready signal is important in case the RCU sends already
a new ready signal while the DataCompressor is still reading out the previous internal buffer. The
corresponding input word dstbnumX belonging to the internal buffer which is ready is used by
the state machine to know the address of the last word of the data packet saved in the internal
buffer. From this address, the DataCompressor starts reading the internal buffer. The first word
which is read in is the trailer of the ALTRO format (see 5.3(b)). At each Clock40 cycle the address
output word ch rd add is decremented by one to read in the next word from the internal buffer
until address=0 is reached. If the address=0 is reached the pop signal is send to the RCU and the
reset command for the corresponding internal buffer is set in the rst mem emp[x] output. This
releases the corresponding internal buffer and it can be refilled by the RCU. The DataCompressor
busy signal da bsy is set when the RCU has filled all the remaining internal buffers before the
DataCompressor can release one buffer. This prevents that the RCU starts overwriting the actual
buffer before it is fully read out by the DataCompressor. The DataCompressor module is also
handling the unpacking of the data according to the ALTRO data format show in figure 5.3.

(a) Input (left) and output (right)
pins of the DataCompressor mod-
ule

IB0:
chA_rd_sel = 1;
chB_rd_sel = 0;

Ch_rd_add = 
dstbnumA0-addr-1;

addr = addr + 1;
PreeMebValid = 1;

IB3:
chA_rd_sel = 0;
chB_rd_sel = 1;

Ch_rd_add = 
dstbnumB1-addr-1;

addr = addr + 1;
PreeMebValid = 1;

IB1:
chA_rd_sel = 1;
chB_rd_sel = 0;

Ch_rd_add = 
dstbnumA1-addr-1;

addr = addr + 1;
PreeMebValid = 1;

IB2:
chA_rd_sel = 0;
chB_rd_sel = 1;

Ch_rd_add = 
dstbnumB0-addr-1;

addr = addr + 1;
PreeMebValid = 1;

data_ready 
register

data_ready_reg = ‘0001’ data_ready_reg = ‘0010’ data_ready_reg = ‘0100’ data_ready_reg = ‘1000’

rst_mem_emp[0]=1;
pop = 1;

chA_rd_sel = 0;
Next_ready = 1;

da_bsy = 0;

rst_mem_emp[3]=1;
pop = 1;

chB_rd_sel = 0;
Next_ready = 1;

da_bsy = 0;

rst_mem_emp[1]=1;
pop = 1;

chA_rd_sel = 0;
Next_ready = 1;

da_bsy = 0;

rst_mem_emp[2]=1;
pop = 1;

chB_rd_sel = 0;
Next_ready = 1;

da_bsy = 0;

addr = dstbnumA0 addr = dstbnumA1 addr = dstbnumB0 addr = dstbnumB1

addr < 
dstbnumA1

addr < 
dstbnumA0

addr < 
dstbnumB0

addr < 
dstbnumB1

da_bsy = 1;

data_ready_addrIn +1 = 
data_ready_addrOut

data_ready[3:0]

(b) State machine of the Data Compressor interface to the RCU

Figure 5.6.: DataCompressor module and input interface state machine

The trailer word of the ALTRO format contains a 12-bit address, which tells the ALTRO chip
ID and the channel number (indicates the detector pad) from which the data originates. This word
is directly sent to the OutputFormatter to be included in the output data packet. A second word
of 10 bit in the trailer gives the number of all 10-bit words (samples, time stamps, and cluster
widths) contained in the payload. This word is used to calculate the position of the first cluster
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width word in the first 40-bit word of the payload (the second word read in). To calculate this
position the number of 10-bit words is subtracted from the received dstbnumX values decreased
by one and multiplied by four (multiplication realized by shifting 2 position to the left) resulting
in (dstbnumX − 1) << 2−#10 bit w. Another state machine is splitting the payload in cluster
width words (Nr. samples), time stamp words and sample words starting from the first cluster
width word at the calculated position (in figure 5.3(b) it is 007). The cluster width indicates the
number of words belonging to one zero suppressed cluster (ideally one waveform). The cluster
width words and time stamp words are sent to the OutputFormatter to be included in the waveform
headers of the output data format. If the mode of operation is set to DcMode=‘11’, the sample
words together with the number of samples (Nr.Sample = ClusterWidth−2) for each waveform
are sent to the Normalizer. In DcMode=‘01’ the samples are directly sent to the HuffmanCoder
and in DcMode=‘00’ they are given to the OutputFormatter.

The input and output signals of the DataCompressor module are shown in figure 5.6(a) and
described in table 5.2.

Table 5.2.: Input and Output signal list of the DataCompressor

Signal Polarity Description
rcu prog data [31:0] Bidirect Data bus to access the Huffman LUT, Ref. Vectors etc.
WriteEn In ‘1’ for Write/ ‘0’ for read of Huffman LUT, Ref. Vectors,...
rcu address [15:0] In Address to the memories of Huffman LUT, Ref. Vectors,...
reset In Asynchronous reset signal
Clock40 In 40 MHz Clock input
Clock80 In 80 MHz Clock input
end rdo In End readout. High when last MEB data is saved in RCU
Xoff In Output FIFO in SIU is full (pause data sending to SIU)
header [31:0] In Common Data Header (CDH) from TTRx
dstbnumA0[15:0] In Start address for reading the 1. internal buffer of the RCU
dstbnumA1[15:0] In Start address for reading the 2. internal buffer of the RCU
dstbnumB0[15:0] In Start address for reading the 3. internal buffer of the RCU
dstbnumB1[15:0] In Start address for reading the 4. internal buffer of the RCU
dm sel [1:0] In Shows which internal memory actually gets filled
data ready [3:0] In Indicates which internal memory is ready to read out
DataIn [39:0] In Input data from the read RCU internal memory
read enable Out Starts the readout if the TTRx for the CDH
ch rd add [15:0] Out Selects address to be read from the internal memory
chA rd sel Out Select the access to data memory in branch A
chB rd sel Out Select the access to data memory in branch B
Pop Out Indicates that the memory is read out and can be rewritten
rst mem emp[3:0] Out Clears the corresponding memory
da bsy Out Indicates that the data compressor is busy
SOEV Out Indicates a write to the SIU from the data compressor
EOEV Out Indicates the end of the writing to the SIU
OutputWord[59:0] Out Output words from the Data Compressor to the SIU
OutputWordV alid Out Validates the output words from the Data compressor
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5.4. Normalizer
The Normalizer module (NZ1) performs a normalization of the input waveforms to the ampli-
tude defined by the value in the NormV alue register. This register is programmed prior to
operation via the rcu prog data bus. The first operation of the Normalizer is to find the max-
imum sample of each input waveform. This is performed with the MaxFinder module (MF1).
Then the normalization factor has to be calculated, which requires an integer divider realized in
the VQDiv module (Div1). The divider needs a few Clock40 cycles to perform the calculation
(NormV alue/MaxSample). This makes it necessary to buffer the received input samples in the
meantime. Four dual-port memories are available inside the Normalizer for the buffering. The
dual-port memories are used in a cyclic manner with one port for writing and one for reading
to allow the writing into the memories and the reading from the memories simultaneously. Four
memories are used in parallel to be able to write and read four sample values per Clock40 cycle.
After the normalization factor is calculated for an input waveform the corresponding samples are
read out from the buffers and multiplied with the normalization factor by using four multipliers in
parallel.

The Normalizer is designed to handle input waveforms with more than 3 samples and at most
32 samples. The signal from the ALICE TPC is considered to have a maximum duration of around
600 ns caused by the time spread of the induced signal in the pads and the shaping time of the
PASA chip (around 190 ns). The ADC in the ALTRO of the TPC has a sampling frequency of
10 MHz, which leads to maximum 6 samples per waveform (if no pile-up effect occurred). In the
future, it is planned to implement an ADC sampling with 40 MHz inside the new TPC front-end
chip S-ALTRO, which results in max. 24 samples for a similar waveform duration. Therefore,
for the actual implementation of the Normalizer a maximum waveform length of 32 samples is
considered. Bunches having more than 32 samples are considered to contain multiple waveforms
due to pile-up effects combined to one cluster by the zero suppression. In this case, the comparison
with a reference vectors will result in large Delta values and therefore in an inefficient compression
of the data. Consequently, waveforms with more than 32 samples are not compressed in the full
compression mode (DcMode=‘11’), but they are included uncompressed (in their original form)
in the output data. In case waveforms have only three or less samples (less than 3 should be filtered
out by the zero suppression) they are also included in original form in the output data because the
effort to compress them is higher as the expected compression efficiency.

5.4.1. Max Finder
As soon as the input samples arrive at the Normalizer the MaxFinder module starts searching
for the maximum sample. The MaxFinder uses combinational logic to compare the four input
samples, which arrive at every Clock40 cycle and determines the maximum value of the four. It
compares the maximum value with the one found in the previous Clock40 cycle that is stored in
a Temp register. If the value in the Temp register is larger than the new maximum value the Temp
register value is sent out representing the maximum of the current waveform and the Temp register
is cleared. Otherwise, the Temp register is updated with the actual maximum sample value for
the next Clock40 cycle. In addition, the position of the maximum sample has to be calculated.
This is performed by detecting the position of the maximum sample in each clock cycle. Until the
maximum sample is found, the samples of a waveform received per Clock40 cycle are counted. If
the maximum is found, the counted samples of the previous clock cycles are added to the position
of the maximum sample in the actual clock cycle. A block diagram of the combinational logic of
the MaxFinder is shown in figure 5.7.

The index of the maximum sample of the waveform is sent to the VectorQuantizer where it is
used to align the input vector with the reference vectors. The value of the maximum sample is
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Figure 5.7.: Block diagram of the MaxFinder module, which uses combinational logic to search for the
maximum sample value and the position of the maximum sample in the input waveforms

forwarded to the integer divider module for the calculation of the normalization factor. In addition,
it is sent to the OutputFormatter to be included in the output data for the re-normalization process
in the decoder.

5.4.2. Pipelined Integer-Divider
To calculate the normalization factor for each input waveform the NormV alue has to be divided
by the maximum sample value of the waveforms.

NormFactor =
NormV alue

MaxSample
(5.1)

The NormV alue is programmed prior to operation in the dedicated register via the programming
interface of the RCU and DataCompressor. This value represents the amplitude to which the input
waveforms have to be normalized and it should be close or equal to the maximum of the reference
vectors. To perform the division a pipelined integer divider is realized. This integer divider is
contained in the VQDiv module and uses the fast 80 MHz clock signal Clock80. The divider is
realized in five pipelined stages, each stage processes 3 bit of the numerator using combinational
logic. The division concept is shown in figure 5.8 using an example. The divider consists of
essentially three comparators, three subtractors and three shift-registers. At each step, one bit of
the numerator is shifted into the reminder from the right and then the reminder is compared with
the divisor. If the reminder is smaller than the divisor, a ‘0’ is added to the output word and the
next numerator bit is shifted into the reminder. Otherwise, a ‘1’ is added to the output word and
the difference between the reminder and the divisor is calculated. This difference represents the
new reminder and the next bit of the numerator is shifted into the new reminder from the right
(CLK Cycle 4 and 5 in figure 5.8). Three comparator and subtractor have to be used sequentially
to process 3 bit per Clock80 cycle of the numerator. By using more comparator and subtractor
sequentially the logic will require more time than one period of the Clock80 cycle which causes
a timing violation. In case the 40 MHz clock (Clock40) is used, more comparator and subtractor
can process more bits of the numerator in the longer clock period, which reduces the number of
pipeline stages. On the other hand, more area is required for the increased logic without obtaining
an overall faster calculation time. Therefore, the 80 MHz clock signal is chosen for the divider to
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Figure 5.8.: Pipelined integer divider with five pipeline stages

save logic. Nonetheless, the Register Transfer Level (RTL) Verilog code for the divider module
is written using parameter statements so that a fast and easy conversion of the number of pipeline
stages can be performed. The RTL Verilog code of the Divider module is included in the appendix
C.

To obtain a high precision of the normalization factor (given by the division result) the pro-
grammed NormV alue (numerator) is shifted 6 positions to the left after programming to multiply
it with 64 (26). In the implementation a 15-bit register is used to store the shifted NormV alue.
The shiftedNormV alue is then used in VQDiv and divided by the 10-bit maximum sample value.
The resulting normalization factor is truncated to 10-bit and multiplied to all the samples of the
waveform. The results of the multipliers are stored in 20-bit registers and are then shifted back 6
positions to the right to perform a division by 64. This is needed to compensate for the previous
left shift in order to get the correct normalized samples of each waveform. This can be expressed
mathematically by:

NormSOut =
NormV alue

MaxV alue
× SampleIn =

NormV alue× 26

MaxV alue
× SampleIn ×

1

26
(5.2)

By shifting the NormV alue the truncation of the results from the divider and the multipliers
is affecting less the precision of the resulting normalized samples. Most of the FPGA families
targeted for the implementation have embedded multipliers, which are used in parallel to perform
the four multiplications in one Clock40 cycle. The normalized sample values of each waveform
are sent in blocks of four samples perClock40 cycle to the VectorQuantizer together with the index
of the maximum sample.

5.5. Vector Quantizer
The data compression algorithm presented in chapter 4 foresees that the input vectors containing
the normalized waveforms are compared with reference vectors, which are stored prior to operation
in on chip memories. The difference between an input vector and the best matching reference
vector is calculated and results in Delta values that are send to the decoder together with the index
of the chosen reference vector. For the implementation of the algorithm in the FPGA, two different
versions of the VectorQuantizer are produced; one version using only one reference vector and the
second version using four reference vectors.

The VectorQuantizer module with the name VectorQunatizer1QSimple contains two dual-
port memories to store only one reference vector. The input vectors are compared to this reference
vector and the Delta values are calculated and sent to the HuffmanCoder.
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The second module named VectorQuantizer4Q contains eight memories to store up to four
different reference vectors. Each input vector is compared to the four reference vectors and four
sets of Delta values are calculated. The set with the lowest sum of the absolute Delta values is then
send out.

Each reference vector is programmed into two dual-port memories running at 40 MHz, which
allows to read four reference samples a time and to compare them to four normalized samples
arriving in one Clock40 cycle.

An important step in both VectorQuantizer modules is the alignment of the input vectors con-
taining the normalized waveforms with the reference vectors in a way that the maximum elements
of the two are at equal positions and are compared to get the Delta. The remaining vector el-
ements of the input vector are then compared accordingly to the corresponding elements of the
reference vector. The positions of the maximum sample of the incoming normalized waveform
and the reference vectors are required to both VectorQuantizer modules for the alignment. The
index of the maximum sample in the normalized waveform MaxIndex is hand over from the
Normalizer. The index of the maximum element in the reference vector is programmed prior to
operation in the register called NormV alueIndex. The received MaxIndex is subtracted from
the NormV alueIndex and the difference represents the position of the first relevant element in
the reference vector, which has to be compared to the first normalized sample in the input vector.
Starting from this position, the required following number of reference samples are read out from
the memories of the reference vectors and compared to the normalized samples. The alignment of
one reference vector and one input vector is shown in figure 5.9.
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19 32

15 0280 0 1 1 2 2 3 5 7 9 25 47 79 100 73 30 0… …
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Reference vector
aligned
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Figure 5.9.: Alignment of the input vector, containing the normalized samples of a waveform and one ref-
erence vector. On the bottom, the Delta calculation from the aligned samples is shown.

The VectorQuantizer1QSimple module uses four subtractors working in parallel to calculate
four Delta value per Clock40 cycle. The resulting Delta values are sent directly to the Huffman-
Coder.

In the VectorQuantizer4Q module, 16 subtractors are used in parallel because the normalized
input waveform has to be compared to four different reference vectors. After the alignment, four
samples of the received normalized waveform are compared with four elements of each reference
vector resulting in 4 sets of Delta values. These Delta values are buffered in four buffers dedicated
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to the four reference vectors until all Delta values per normalized waveform are calculated. Then
the sum of the absolute Delta values in each buffer is calculated (Manhattan distance). The four
summation results are compared to identify the buffer, containing the smallest absolute Deltas.
The content of the buffer with the smallest Delta values is then sent to the HuffmanCoder. Each
buffer is associated with a 2-bit index indicating the used reference vector. This index is sent to
the OutputFormatter to be included in the output data. The decoder uses this index to identify the
right reference vector for the reconstruction of the normalized input waveform.

Another important information for the decoder is the maximum sample used to re-normalize the
input waveform. In addition, also the position of the maximum sample used for the alignment in
the VectorQuantizer is important for the decoder in order to execute the same alignment between
the selected reference vector and the received Delta values.

One option is to include an additional word in the output data containing the index of the max-
imum samples in the input waveforms. This will increase the amount of data that have to be
transferred to the decoder and reduces the compression performance. Nevertheless, this option is
foreseen in the implementation and can be selected by setting the DcMode to ‘10’.

The preferred variant for the implementation is to include the information in the Delta values
itself (which is implemented in mode DcMode=‘11’). This method bases on a few assumptions
made on the data produced by the TPC. After the normalization, the amplitude of the normalized
input waveform and the maximum of the reference vector should be equal and therefore the Delta
value corresponding to the maximum sample should be 0. It can happen that the Delta value for
the maximum sample is not 0 because a truncation error is introduced by the limited precision
of the divider and the multiplier logic. In this case, the Delta value is anyway forced to 0 in the
VectorQuantizer module, regarding the fact that the original maximum value is included in the
output data and anyway sent to the decoder. In most cases, the samples of a waveform following
the maximum sample (representing the rising edge of the input waveform according to 5.3) result
in Delta values different than 0 caused by a not perfect match of the normalized waveform and
the reference vector. This property can be used to define that the last 0 Delta value received for
each waveform represents the position of the maximum sample, which the decoder uses for the
alignment. In case there are single Delta values being 0 after the maximum sample position they
are changed to 1 introducing a small error in the reconstruction but this is seldom and negligible
after a fitting process of the waveforms is performed in the offline analysis, as can be seen later in
chapter 6. The HuffmanCoder codebook used to compress the Delta values assigns to the Deltas
with value 0 and 1 a codeword with the same length of 3 bit and therefore the output data volume
after Huffman coding remain unaffected by the change of the 0 Delta values.

5.6. Huffman Coder
The HuffmanCoder module performs a codification of the input data using variable length code-
words. The codewords are created by building a Huffman tree using representative data from
previous measurements and then these Huffman codewords are stored prior to operation in on-chip
memories. The HuffmanCoder module receives input data either from the VectorQuantizer oper-
ating in mode DcMode=‘11’ (Delta values) or from the RCU internal buffer through the interface
in the DataCompressor in mode DcMode=‘01’ (original input data). Depending on the input data,
the correct Huffman codewords (codebook) have to be loaded in two dual-port memories inside
the HuffmanCoder module. This codewords are defined by performing a Huffman tree on rep-
resentative data outside the detector (offline). Two dual-port memories are used to read out four
Huffman codewords per Clock40 cycle, which allows to process four input words in parallel. The
data arriving at the HuffmanCoder are used to address the memories that can be seen as Look-Up
Tables (LUT). In DcMode=‘01’ the original input samples can directly be used as addresses. In
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DcMode=‘11’ the Delta values are signed value and therefore they are shifted into the positive
domain to be used as addresses for the memories. A fixed value of 512 is added to the Delta val-
ues, which requires that the codeword for a Delta value of 0 is stored at address 0x200h (512d)
in the memories. Huffman codewords for negative Delta values are saved at preceding addresses,
whereas Huffman codewords of positive Delta values are placed at higher addresses. Each entry
in the memories consists of a 22-bit word, where the five MSBs are representing the codeword
length and the remaining bits contain the codeword bits filled up with zeros. This scheme which
is used for the organization of the Huffman codewords in the memories is illustrated in table 5.3.
The addressed words in the memories are readout and sent to the ConCatenator60 module.

Table 5.3.: Look-up table for the Huffman codewords and their length in the two dual-port HuffmanCoder
memories

Codeword -512 Length -512 0x000

0x1FE
0x1FF
0x200
0x201
0x202

0x3FF

(Delta -512)

(Delta  -2)
(Delta  -1)
(Delta   0)
(Delta   1)
(Delta   2)

(Delta  511)

01722

Codeword -2 Length -2 
Codeword -1 Length -1 
Codeword  0 Length 0 
Codeword  1 Length  1
Codeword  2Length  2

Codeword 511 Length 511 

5.6.1. Concatenator
The ConCatenator60 module concatenates the received Huffman codewords (up to 4 perClock40
cycle), which have variable length (variable number of bits) to an output bit stream. This bit
stream is split in 30-bit words and included as the payload in the output data package of the
DataCompressor. The ConCatenator60 uses the Clock40 signal for the internal logic and sends the
output bit stream in blocks of 60-bit words to the OutputFormatter. The OutputFormatter then split
up the 60-bit words in two 30-bit words using the 80 MHz clock and add two identifier bits before
they are included in the output data package. The ConCatenator60 is designed to concatenate all
Huffman codewords resulting from data acquired during one TPC event and readout by the RCU
from all the MEBs in the connected ATLRO chips. This allows achieving a good information
density in the output package by minimizing meaningless zeros used to fill-up incomplete 30-bit
words. To concatenate variable length Huffman codewords several barrel shifters are used in a
pipelined structure.

At each Clock40 cycle up to four Huffman codewords arrive at the ConCatenator60 module.
Two barrel shifter are working in parallel each one concatenating two of the four input Huffman
words using their codeword length value. The resulting concatenated codewords are stored in two
34-bit registers called ConcRegA and ConcRegB. In the following Clock40 cycle these two
register contents are concatenated from a third barrel shifter and stored in the 68-bit register called
ConcRegAB. The relevant bits in the ConcRegAB register are then concatenated to the Huffman
codewords from previous input data stored in a Temp register by using a fourth barrel shifter. If
the resulting concatenated output word from the fourth barrel shifter has a length of 60 or more
relevant bits, the ConCatenator60 sends out the 60 most significant bits. Another barrel shifter that
works in left shift mode is used then to store the remaining bits into the Temp register. In case the
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resulting concatenation output contains less than 60 relevant bits all bits are shifted to the Temp
register and no valid output word is sent in this clock cycle.

The combinational logic function of a barrel shifter allows shifting an input word by a variable
number of positions in one clock cycle. The barrel shifters use the length of one input word
(number relevant bits) to right shift the second input word accordingly. A following multiplexer
network guides then the relevant bits of the two input words to the output register. If for example
the first input word of a barrel shifter contains 3 relevant bits then the second input word is shifted
3 positions to the right. The following multiplexer network will connect the first 3 bit of the first
word to the output register. The remaining bits of the output register are connected to the barrel
shifter output starting from position 4 (first bit of second input word). The barrel shifter pipeline
structure including this example is shown in figure 5.10.
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Figure 5.10.: Block diagram of the ConCatenator60 structure with the three pipeline stages of barrel shifters

In case a stop concatenating signal (StopConCat) arrives at the ConCatenator60 the last re-
ceived Huffman coderwords are concatenated and at the end the content of the Temp register is
sent out which contains the last Huffman codeword bits. If the number of the last relevant bits
in the Temp register is larger than 30 a signal called LastBitsMore30 is set high. This tells the
OutputFormatter to include all 60 bit of the last ConCatenater60 output word in the output data
package. If this signal is low, the OutputFormatter includes only the 30 MSBs from the last Con-
Catenater60 output word in the package. There are two cases where the StopConCat signal is set
to interrupt the concatenation:

First, all input data from the MEBs in the connected ALTRO chips belonging to one event are
processed.

Second, a too long or too short input waveform is detected by the Normalizer in the full com-
pression mode (DcMode=‘11’). In this case, the ConCatenator60 finishes concatenating the Huff-
man coded Delta values belonging to the last good waveform to allow then the OutputFormatter
to include the original, uncompressed samples of the too long or too short waveforms into the
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DataCompressor output data package. The ConCatenator60 restarts concatenating when the Huff-
man codewords of Deltas from new accepted waveforms arrive.

5.7. Output Formatter
The OutputFormatter module is included in the DataCompressor to prepare the resulting output
data for sending them off detector by using a format similar to actual one of the RCU in the ALICE
TPC. The module controls as well the writing of the formatted output data into the SIU memory of
the RCU. As soon as the first data ready signal starts the data compression, the OutputFormatter
starts reading the Common Data Header (CDH) information from the Trigger Receiver module
(TTRx) contained in the RCU. The CDH consists of 8 words to 32-bit containing the version
number of the format, the trigger information event ID and error message codes. The CDH defined
in [50] for the RCU is read in and add unchanged to the DataCompressor Output data Package
(DCOP).

After the CDH, the payload is included in the DCOP consisting of the ALTRO channel headers,
waveform headers and the compressed data. The two MSBs of the payload words are used to
distinguish between the different components of the payload. The trailer words are added at the end
of the DCOP and distinguished from the payload by the two MSBs. The defined DataCompressor
Output Format (DCOF) is shown in table 5.4(a).

Table 5.4.: Data Compressor Output Format (DCOF) including Common Data Header and Trailer

(a) Data Compressor Output format
Address 

0x0000 
••• 
0x0007 
0x0008 01 ALTRO channel header 0
0x0009 11 NrSamples01 [29:20], TimeStamp01 [19:10], NormFactor01 [9:0]
0x0010 00 Concatenated Huffman Codewords bit stream: word-0 [29:0]
0x0011 00 Concatenated Huffman Codewords bit stream: word-1 [29:0]
0x0012 00 Concatenated Huffman Codewords bit stream: word-2 [29:0]
0x0013 11 NrSamples02 [29:20], TimeStamp02 [19:10], NormFactor02 [9:0]
0x0014 11 NrSamples03 [29:20], TimeStamp03 [19:10], NormFactor03 [9:0]
0x0015 00 Concatenated Huffman Codewords bit stream: word-4 [29:0]
0x0016 00 Concatenated Huffman Codewords bit stream: word-5 [29:0]
0x0017 00 Concatenated Huffman Codewords bit stream: word-6 [29:0]
0x0018 01 ALTRO channel header 1
0x0019 11 NrSamples11 [29:20], TimeStamp11 [19:10], NormFactor11 [9:0]
0x0020 11 NrSamples12 [29:20], TimeStamp12 [19:10], NormFactor12 [9:0]
0x0021 00 Concatenated Huffman Codewords bit stream: word-6 [29:0]
••• 01 ALTRO channel header M
+n+N 11 NrSamplesMn [29:20], TimeStampMn [19:10], NormFactorMn [9:0]
+n+N+1 00 Concatenated Huffman Codewords bit stream: word-N-1 [29:0]
+n+N+2 00 Concatenated Huffman Codewords bit stream: word-N [29:0]

+n+N+3 10 RCU Trailer: First word
••• 10 RCU Trailer: optional words 
Last addr 10 RCU Trailer: Last word 

Data Compressor Output Format

Comon Data Header (CDH)

32  .   .   .   .   .   .   .   .   .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 0 

(b) Modified Trailer from the RCU [50] includ-
ing DataCompressor configuration word

Word ID Parameter Value

10 Pay Load Length 0000 Number of 32 bit words

10 Error Register 1 0001 Error Registers for Branch A and B

10 Error Register 2 0010 Read out Errors

10 Error Register 3 0011 Number of Altro Trailer Errors

10 Act FEC A 0100 Active Front End Cards for Branch A

10 Act FEC B 0101 Active Front End Cards for Branch B

10 RDO CONFIG 1 0110 Readout configuration Register1 of Altro

10 RDO CONFIG 2 0111 Readout configuration Register2 of Altro

10 DC CONFIG 1 1000 DcMode NormValue NormValue
Index

10 DC CONFIG 2 1001 Reference Vector Set ID

10 DC CONFIG 3 1010 Huffman Codebook ID

10 RCU ID 1011 RCU FW 
version RCU address

031 25262930

The ALTRO channel header contains the information about the channel address and the block
length number of 10-bit words contained in the ALTRO data package, which is read in by the RCU
from the MEB of each channel and saved in the internal buffer. An error bit is added to the ATRO
channel header to indicate a mismatch between the read words of a channel data package and the
stated number of 10-bit words in this package. Each ALTRO channel header can be identified by
the two MSBs set to ‘01’.

The waveform header consists of the three 10-bit words NrSamples, TimeStamp, MaxValue and
the two MSBs set to ‘11’. MaxValue represents the value of the maximum sample of each input
waveform and is hand over from the Normalizer to the OutputFormatter. This value is important
for the decoder to calculate the NormFactor and to re-normalize the decompressed waveform.
The TimeStamp of each input waveform is obtained from the ALTRO data package in the RCU
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internal buffers and included unchanged in the DCOP. The NrSamples word tells the number of
samples belonging to the input waveform. These NrSamples words are important for the decoder
to split correctly the Huffman bitstream and to combine the reconstructed normalized samples to
the corresponding waveforms.

The concatenated Huffman codewords are included in the payload in 30-bit words combined
with two MSBs set to ‘00’. The 60-bit words coming from the ConCatenator60 are synchronous
with the Clock40 and have to be divided by the OutputFormatter into two 30-bit words using the
80 MHz clock. For a future implementation in the new TPC front-end chip S-ALTRO the 80 MHz
clock is intended to be used as well for the readout in order to combine the 30-bit words with the
two MSBs and sending them out. In the actual RCU version, the SIU can be accessed only with
40 MHz, therefore the 30-bit words are buffered in a small memory inside the OutputFormatter
and send with 40 MHz to the SIU. This is possible because the compression using variable length
Huffman codewords produces not every Clock40 cycle a full output word of 60 bit.

The ALTRO channel header and waveform header information are buffered as well. They
are sent out at any time there is no valid compression word from the HuffmanCoder to be sent.
The decoder separates the header words from the compressed bit stream by using the two MSBs.
This scrambling scheme of the payload reduces the overall time required to send the DCOP by
requires smaller buffers. The scrambling scheme requires assuring the correct order of channel
header and waveform headers regarding their input sequence to assign correctly in the decoder the
reconstructed waveforms to the individual channels in the corresponding ALTRO chips.

At the end, the trailer words are added to the output data package. This trailer contains the num-
ber of 32-bit words included in the package, which is added by the OutputFormatter. The trailer
information received from the RCU contains error messages, and configuration information, which
are included as well in the DCOP. This information can be extended by the configuration infor-
mation of the DataCompressor containing the DcMode, NormV alue and NormV alueIndex
information. In addition, identifiers can be included to track the programmed reference vectors
set and Huffman codebook. At the end, the trailer terminates with a word containing the RCU
Firmware version and RCU address. All trailer words are identified by the two MSBs set to ‘10’.
The trailer for the DCOF is shown in table 5.4(b).

5.8. Test module for testing the DataCompressor
To test the written RTL Verilog model inside a FPGA a development board from Xilinx is used
named ML401 containing a Virtex-4 FPGA [51]. The FPGA contains in total 10 752 slices of
24 192 logic cells. Block RAM memories of 1296 Kb are available inside the Virtex-4 for the
DataCompressor module and to store the programming data of Huffman LUTs and reference vec-
tors. The test pattern data will also be stored in a block RAM memory inside the FPGA from
where they can be readout by the DataCompressor. In addition the FPGA contains 48 DSP blocks
with 18 bit × 18 bit multipliers from which four multiplier are used in the Normalizer. To test the
DataCompressor a top level module called DataCompression2ClockExt Top is created, which
handles the programming of the DataCompressor at the initialization phase and the communication
with the DataCompressor module in replacement of the real RCU. Memories inside the Virtex-4
are pre-initialized with the codebook, reference vectors and the test pattern data during the pro-
gramming of the FPGA. The Clock80 signal for the DataCompressor is provided by a crystal
oscillator mounted in the user-clock socket of the development board. The 40 MHz signal for the
Clock40 is created by a clock divider logic realized inside the DataCompression2ClockExt Top
module. The module uses three input signals connected to buttons on the development board to
control the testing procedure. One button is used to start the initialization of the DataCompres-
sor. This button gives the command for DataCompression2ClockExt Top module to read the data
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from the pre-initialized RAM memories and programs the DataCompressor via the rcu prog data
bus. After the initialization phase, a second button has to be pressed to start the data compression.
The DataCompression2ClockExt Top module sets one of the data ready signal high and provides
a RAM memory that is pre-initialized with the test pattern data from where the DataCompressor
reads in the data. The test pattern data are stored in the ALTRO format in the RAM memory, which
simulates a RCU internal buffer. The DataCompressor performs the compression on the test pat-
ter data according to the programmed mode of operation. The OutputFormatter stores the output
words in a memory provided by the DataCompression2ClockExt Top module, which simulates the
SIU output buffer of the RCU. The DataCompression2ClockExt Top module contains a module of
a UART interface, which is used to read out the data in the output memory (SIU) via the serial port
of the development board. The DataCompression2ClockExt Top module starts sending the data
via the UART to the PC after the pop signal is set from the DataCompressor indicating the end of
the compression. A third button is used to reset the DataCompression2ClockExt Top module and
the DataCompressor.

The Huffman codebook and the reference vectors for the initialization of the DataCompressor
are calculated in Matlab using measured data from the ALICE TPC measuring cosmic rays. These
data are used as well to create the input test pattern data for the DataCompressor. The formatting of
the input data according to the ALTRO format is performed as well in Matlab. In addition, a model
of the DataCompressor is created in Matlab to compare the results coming from the simulations
and implementation of the DataCompressor RTL code for correctness.

The test results of the DataCompressor module in the different modes of operation are summa-
rized in the next section.
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6. Implementation Test Results
In this chapter the test results are summarized which are obtained by the Verilog simulations and
hardware tests of the data compression unit that is implemented in the Virtex-4 FPGA. First, the
functionality of the implementation is tested and then the compression performance is evaluated
using the test-data obtained from the measured data from the TPC in ALICE. These test-data have
been already used in the Matlab simulations. For testing the functionality, a dedicated Matlab
model is created to emulate exactly the steps of the hardware implementation. The results from
the dedicated Matlab model are compared with the results from the Verilog simulation of the
implementation. At the end the functionality is tested as well by decompressing the bitstream sent
out from the data compression hardware implementation in the Virtex-4 and comparing it with the
original test-data.

The obtained compression performance of the implementation is compared with the theoretical
results from the data compression Matlab simulation of the algorithm presented in chapter 4. The
introduced distortion by the Normalizer is discussed.

In addition to the compression performance, also the complexity of the implementation is dis-
cussed in this chapter by analyzing the resource requirements inside the FPGA. The latency intro-
duced by the compression block is investigated in order to prove the usability in real-time applica-
tions.

At the end of the chapter, a layout of the synthesized Verilog code for a deep-submicron ASIC
implementation is presented to discuss the requirements for an implementation of the DataCompres-
sor in a full custom ASIC as the S-ALTRO chip. More and more detector front-end electronics is
realized using full custom ASICs to optimize the electronics for the specific applications and to
reduce area/power requirements.

The organization of this chapter is divided in four parts:
First, the test setup and procedure of the DataCompressor is presented together with the test

pattern data, which are used in the tests.
Then the simulation results of the RTL Verilog model are presented, which are carried out using

NC-Sim from Cadence and the Integrated Software Environment tool (ISE) from Xilinx.
Afterwards, the implementation of the DataCompressor in the Virtex-4 FPGA of the develop-

ment board is tested.
At the end, the full custom layout is presented and discussed.

6.1. Test setup and test-data
The DataCompressor is tested first in the full compression mode by setting the DcMode to ‘11’.
Then, it is tested in the Huffman only mode by setting the DcMode to ‘01’.

In the full compression mode, the VectorQuantizer1QSimple module is instantiated inside the
DataCompressor top module to test the DataCompressor version, which uses only one reference
vector (1Q version). The full compression mode using all four reference vectors (4Q version) is
tested subsequently by instantiating the VectorQuantizer4Q module instead of the VectorQuan-
tizer1QSimple module.

All reference vectors have a maximum element with value of 100 ADC counts and therefore the
NormV alue register for the normalization is programmed to 100. This NormV alue and the ref-
erence vectors itself are determined in Matlab by calculating the average of the input waveforms in
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the measured data set from the ALICE TPC and optimizing the reference vectors according to the
LBG algorithm. The reference vectors are stored in the memories of the DataCompressor in a way
that their maximum element is saved at position 32, which requires that the NormV alueIndex
register is initialized with 32. This is important for the correct alignment of the reference vectors
with the input vectors (normalized input waveforms). The used reference vectors for the 1Q ver-
sion and the 4Q version are fitted with the semi-Gaussian function and shown together with their
elements(samples values) in figure 6.1.
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(a) Fitted reference vector for the 1Q version
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(b) The four fitted reference vectors for the 4Q version

Figure 6.1.: The reference vectors fitted with the semi-Gaussian function and their elements used in the full
compression mode of the DataCompressor in versions 1Q and 4Q

The x-axes numbering represents the position numbers of the elements (samples) as saved in
the memories. The samples from 1 to 14 and from 40 to 64 have a value of 0 and are cut out
in the figures to improve the readability. The y-axis numbering represents the ADC counts from
the ALTRO chip with 10-bit resolution. For the alignment of the reference vectors with the input
vectors, the maximum compressible waveform length of 32 samples is considered, which lead to
the defined length of the reference vectors to be 64 (2×32) elements with the maximum at 32.
This guarantees the possibility to align the input vector with the reference vector independent of
the position of the maximum sample in the input vector.

The test pattern for testing the DataCompressor consists of waveforms from the measured data
set from the ALICE TPC measuring cosmic rays. The test pattern data from the cosmic ray run of
the ALICE TPC in 2006 are formatted according to the ALTRO format shown in 5.3 and contain
10 002 waveforms (140 311 samples). The time stamps related to the waveforms in the test pattern
data contain not the original values but continuous numbers for improving the waveform identifi-
cation during the tests. The time stamps are not compressed in this work but included unchanged
in the output data and therefore their exact value is not important for the tests of the DataCompres-
sor. The waveforms in the test pattern are zero suppressed and have variable numbers of samples.
The waveform lengths in the test pattern data are chosen according to the assumed analogue signal
duration (around 600 ns) and a sampling frequency of 40 MHz(according to the new S-ALTRO
project specifications). The test pattern contains also a waveform with a too large number of sam-
ples (86) and another one with only 3 samples. These two waveforms cannot be compressed in
the full compression mode and are used to test the correct embedding of them in uncompressed
form in the output bitstream of the DataCompressor. The distributions of the waveform lengths
and amplitudes in the test pattern data are shown in figure 6.2.

The Huffman codebooks for the 1Q version and the 4Q version as well as for the Huffman Only
mode are calculated in Matlab using the test pattern data and are given in appendix A.
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(b) Histogram of the waveform lengths

Figure 6.2.: Histogram of the amplitudes and waveform lengths (number of samples) in the test pattern data

6.2. Simulation results
Two signal generators are used for the simulation, the NC-Sim (Simvision) from Cadence and the
ISE tool from Xilinx. With these two simulators, the functionality of the developed RTL Verilog
model is simulated and tested. At the beginning, the signals are tested and analyzed manually, but
to check the compression of the large number of waveforms in the test pattern data, several contents
of registers are dumped during simulation into text files. Afterwards, these files are imported into
an Excel sheet, where the contents are compared with results obtained by the Matlab model of the
DataCompressor.

The Matlab model is executed on the same test pattern data that are used for the simulations of
the RTL code described above. The test pattern data are organized in Matlab in a matrix in which
each row contains the samples of one waveform. Then the maximum sample of each waveform
is searched in Matlab and the normalization factors are calculated. To model in Matlab the shift
of the NormV alue 6 positions to the left the NormV alue is multiplied by 26. In the same way
the right shift after the multiplication of the samples with the normalization factor is performed by
dividing the results by 26. The resulting normalized waveforms are then organized in rows of a new
matrix so that they all have their maximum sample in column 32. In this way, the alignment of the
normalized waveforms with the reference vectors can be performed easily in Matlab. Afterwards,
the Delta value sets can be calculated by subtracting the reference vectors from each input vector.
A Matlab implementation of a Huffman coding algorithm is used to encode the Delta values.
With the same Huffman algorithm the codebook, which is stored in the LUT memories inside the
DataCompressor implementation is create. Important output values of the Matlab model resulting
from the different steps of the data compression algorithm (e.g. max values, normalized sample
values, Delta values etc.) are copied into the Excel sheets. The Excel sheets are then used for the
comparison of the results from the Matlab model with the ones obtained by the simulations of the
RTL Verilog model and by the hardware tests. An exact match of the results from both models
shows the correct functionality of the DataCompressor implementation on the test pattern data.

In the following, the simulation tests are presented by using some screen shots from the sig-
nal generator and from Excel. The test procedure is organized according to the data flow in the
DataCompressor:

• Checking the correct reading and unfolding of the ALTRO data packages from the RCU
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internal buffer memories
• Checking the MaxFinder and Divider results
• Checking the Normalizer output
• Checking the Delta values from the two versions of the VectorQuantizer
• Checking the Huffman Coder for the correct addressing, reading and concatenating of the

Huffman codewords
The first test is dedicated to the correct reading and unfolding of the ATLRO data package from

the RCU internal buffer. It has to be guaranteed that the splitting of the data in samples, time
stamps and cluster widths is performed correctly for all input waveforms. A small section of the
analysis of the relevant signals using the signal generator implemented in the ISE tool is shown in
figure 6.3.

Figure 6.3.: Signal diagram showing the reading and unfolding of the input data from the RCU internal
buffers (test patter)

After the data readyReg signal changes, the ch A rd sel goes high and the ch rd add starts
decreasing from the value received by dstbnumA0. The addressed words from the internal RCU
buffer are read in through the DataIn bus and are split into their components. The first word con-
tains the Nr10BitWords and the ChipAddress. The OutputFormatter adds the ChipAddress
to the output data package. The Nr10BitWords is used in combination with the dstbnumA0 to
calculate the first waveform header position named in the Verilog model as PulseHeaderPos.
The first PulseHeaderPos value gives the position of the first cluster width word, which is saved
in the PulseLengthMemReg register. The following 10-bit word represents the first time stamp
and is stored in TimeStampMemReg. These two words and the following cluster width words
and corresponding time stamp words are buffered in the dedicated RAM memories until the Out-
putFormatter adds them to the output data package. The cluster width words are also used to
calculate the corresponding next PulseHeaderPos. The sample values of the waveforms are
transferred to the BlockSample1-BlockSample4 registers. The signals BlockSample1V alid-
BlockSample4V alid indicate which of the BlockSample registers contain valid sample values
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per Clock40 cycle. The BlockSample values are sent to the Normalizer together with the cluster
width value in the PulseLengthMemReg. It can be seen that sample values are saved in the
BlockSample register each Clock40 cycle, without any dead time. This is normally the case un-
less there are waveforms with a too large number of samples that cannot be compressed and require
an introduction of dead time. Due to the fact that four samples are received contemporary while
only three samples can be included uncompressed in the output data, after every third Clock40
cycle the reading of the RCU internal buffer is interrupted for one cycle. Additional dead time
can be introduced by setting the da bsy signal high, which can be useful e.g. when buffers in the
DataCompressor tent to overflow. This is not implemented in the actual version because the buffers
are designed (sized) to cope with a constant input data stream of the full test pattern data (10 002
waveforms with 140 311 samples).

To be able to test the correct unfolding of the 10 002 waveforms in the test pattern data the
manually evaluation through the waveform simulator is not adequate and therefore the method with
the Excel sheets is used. The values of the BlockSample registers are dumped during simulation
according to the BlockSampleV alid high signals in a text file. This text file is imported into an
Excel sheet and the values are compared with the results obtained from the Matlab model copied
in the same Excel sheet (original concatenated samples from the test pattern data). A cut-out of
the Excel sheet is shown in table 6.1.

Table 6.1.: A cut-out of the Excel sheet used to check the correct unfolding of the ALTRO data package in
the Data Compressor compared with the Matlab model

In Excel the command “exact” compares two cells and returns TRUE if their content is exactly
the same or FALSE if they are not equal. With the filter function in Excel the rows can be found,
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which contain a FALSE check result. If all comparisons return TRUE the Verilog code can be
considered to work correctly. The 10 002 cluster width words and time stamp words are as well
compared with the ones obtained by the Matlab model in the Excel sheet.

The next tests are made to investigate the correct execution of the MaxFinder and Divider in the
Normalizer module. To analyze the functionality in the time domain again the ISE signal generator
is used and a cut-out of the signal diagram is shown in figure 6.4.

Figure 6.4.: Signal diagram showing the MaxFinder and Divider time requirement

The MaxFinder output is saved in theMaxOut register which shows the maximum value of the
four received samples per Clock40 cycle. The MaxFinder logic needs one Clock40 cycle to deter-
mine the MaxOut values so that the value corresponds to the maximum of the samples seen in the
previous cycle. If the maximum value in the MaxOut register is detected as the maximum of the
entire actual waveform the MaxOutV alid signal goes high. For the identification of the MaxOut
value as the maximum of the waveform the MaxFinder needs to wait for the following MaxOut
value which is lower than the actual one. Therefore, the MaxOutV alid signal is delayed for one
Clock40 cycle in respect to the MaxOut value. To compensate for this delay, the MaxOut value
is as well delayed for one Clock40 cycle by copying it into the MaxOutDelay register which
than is aligned with the MaxOutV alid signal. To check that the maximum values for all 10 000
waveforms (not including the too long and to short waveform) are found correctly the values in the
MaxOutDelay register are dumped in a text file each time the MaxOutV alid signal is high. The
file is imported into an Excel sheet and checked against the maximum values given by the Matlab
model. The register MaxIndexMemReg contains the position of the found maximum sample of
the received waveform and is checked as well in the Excel sheet. The comparison with the Matlab
model showed that all maximum values are found correctly and the MaxIndexMemReg values
are calculated correctly.

The MaxOutV alid high signal starts the divider, which uses the MaxOutDelay values as the
divisor. The numerator value is given by the NormV alue (100) shifted 6 positions to the left
(6400). The divider performs the division in six Clock80 cycles which is defined by the NrStage
parameter (5 pipelined stages) and can be seen by the changes of the Reminder register value and
the x value. After the five stages, the result is stored in the register Result. A high level of the sig-
nal ResultV alid shows that the divider output is ready and can be used for the normalization. The
value in the Result register and the high level of the ResultV alid signal are held unchanged for
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two Clock80 cycles to guarantee the synchronization with the remaining logic running at 40 MHz.
The Result value is written in a file each time a ResultV alid high signal is detected to compare
it in Excel with the Matlab model results. All calculated normalization factors (divider results)
from the VQDiv module turned out to be correct. Figure 6.4 shows the latency between the input
of the maximum sample until the normalization factor (divider result) is calculated consisting of 6
Clock40 cycles. The Verilog code of the Divider has been tested as well as a standalone module for
an eventual use in other projects. The high level of theResultV alid signal starts the multiplication
of the sample values with the calculated normalization factor and the shift back of 6 positions to
obtain the normalized samples. All 140 222 normalized samples from the 10 000 waveforms are
written in a file and compared in Excel with the normalized samples from the Matlab model to
approved the functionality of the Normalizer.

After that, the Delta calculation in the VectorQuantizer is tested. First, the correct initialization
of the reference vector memories is checked manually with the ISE simulator displaying the mem-
ory contents. Then the correct performance of the VectorQuantizer module for the 1Q version and
the 4Q version is simulated and the calculated DeltaW0-DeltaW3 values are dumped into a file
each time the DeltaW0V alid-DeltaW3V alid signals are high. These are checked then in Excel
against the Delta values calculated with the Matlab model. Two tests are made, first instantiating
the VectorQuantizer1QSimple module to check the DeltaW values using only one reference vec-
tor. The second test is made with the VectorQuantizer4Q module being instantiated to check the
DeltaW values resulting by using four reference vectors. In the 4Q version, the summation of
the DeltaW values for each input waveform is checked as well to ensure the correctness of the
best matching reference vector selection. At the end the index, which is sent out to preserve the
information of the chosen reference vector per input vector is checked in an Excel sheet and turned
out to be consistent with the Matlab model.

Then the Huffman coding of the Delta values is tested. At the beginning, the correct initial-
ization of the Huffman codebook in the LUT memories is checked manually in the ISE waveform
simulator. The readout of the Huffman codewords according to the Delta values and the concate-
nation can be seen in the signal diagram screenshot which is presented in figure 6.5.

To use the Delta values as address for the LUT in the memories the value 512 is added which
results in the values seen in the registers HuffIn1-HuffIn4. In case the HuffmanOnly mode is
selected (DcMode=‘01’) the inputs HuffIn1-HuffIn4 receive the original samples of the test
pattern data as read from the RCU internal buffers. The addressed words of the LUT are read out
from the memories and transferred to the ConCatenator module. The signals HuffW1AV alid-
HuffW2BV alid indicate which Huffman words (HuffW1A-HuffW2B) have to be concatenated.
The correct readout of the Huffman codewords is checked by random visual inspection in the ISE
waveform simulator.

The ConCatenator60 concatenates the first two Huffman words and stores them in ConcRegA.
The second two Huffman words are concatenated and stored in ConcRegB contemporaneously.
The 5 MSBs of the Huffman codewords HuffW1A-HuffW2B are representing the Huffman word
length and only the remaining relevant bits of the Huffman codewords can be seen concatenated
in the ConcRegA and ConcRegB register. These two registers are concatenated then in the next
Clock40 cycle and stored in ConcRegAB. In the following Clock40 cycle the relevant bits of the
ConcRegAB are added to the bits of previous received Huffman codewords saved in the Temp
register. The new concatenated word is stored in the HuffmanWord register. If 60 bit are con-
catenated and stored in theHuffmanWord theHuffmanV alid signal goes high. This indicates
that the bits in the HuffmanWord register can be added to the DCOP by the OutputFormatter.

To check if all Huffman codewords are concatenated correctly the content of HuffmanWord
is written in a file each time the HuffmanV alid signal is high. The file is read into an Excel
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Figure 6.5.: Signal diagram of the Concatenation of the Huffman codewords corresponding to the Delta
values

sheet and compared with the resulting Huffman codewords from the Matlab model.

To investigate the latency introduced by the DataCompressor a last signal diagram is shown
in figure 6.6. The cut-out of the signal diagram shows the time delays from the first received
input samples to the different steps of the DataCompressor until the first bits are stored in the
HuffmanWord (output bitstream). The latency between input and output is not constant and the
shown time delays have to be considered as an example. The latency between the receptions of the
first samples of an input waveform and the MaxOutV alid high signal depends on the waveform
length and the position of the maximum sample in the waveform. Therefore, this latency depends
on the signal shape and is not constant. The latency between the detection of the maximum sample
(MaxOutV alid=high) and the divider result is constant and results in 4 Clock40 cycles. As
well 4 Clock40 cycles of latencies arise between the divider result and the signal named with
NormPulseReady indicating the end of the normalization of a waveform. Also between the
NormPulseReady and the output of the calculated Delta values the latency corresponds to 4
Clock40 cycles as shown in figure 6.6. The HuffmanCoder adds a fixed latency of 4 Clock40
cycles from the receiving of a Delta value until the corresponding Huffman codeword bits for this
Delta value are added to the output bitstream in theHuffmanWord. The time delay until enough
Huffman codewords are concatenated to result in a valid 60 bit HuffmanWord is also variable
and depends on the length of the Huffman codewords related to the Delta values.

The overall latency of the DataCompressor from the input samples to the Huffman codeword
outputs cannot be given as a fixed value but is estimated to be in average 30 Clock40 cycles for
the 1Q version.

The 4Q version has 2 Clock40 cycles longer latency resulting in 32 Clock40 cycles because the
VectorQuantizer4Q requires extra time to determine the best matching reference vector.

The latency for the HuffmanOnly mode is given in average by 10 Clock40 cycles.
These average latencies are calculated using the test pattern data described above and can
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Figure 6.6.: Signal diagram used to investigate the latency of the DataCompressor

change for other input data.

6.2.1. Final simulation check using the Decompressor
The final check of the correct execution of the DataCompressor described in Verilog is performed
by dumping the resulting output data package created by the OutputFormatter in a file. This file is
imported in Matlab and a model of a Decompressor programmed in Matlab (given in appendix B)
starts unfolding and decompressing the DCOP. The Decompressor is decoding and reconstructing
the unfolded Huffman bitstream in the payload to obtain the original waveform samples. These
samples can then be compared with the original data of the test pattern.

For the reconstruction of the original data, the Decompressor first needs to decode the Huffman
bitstream contained in the payload of the DCOP. Therefore, it uses the same Huffman codebook
as loaded in the DataCompressor prior to operations. The bits contained in the Huffman bitstream
are compared to the Huffman codewords in the codebook and the corresponding Delta values are
reconstructed. The decoder processes the bitstream sequentially. TheNrSampleswords for every
waveform that are contained in the waveform headers of the DCOP are used to group the obtained
Delta values in rows of a matrix corresponding to the waveform lengths. If a waveform header
in the DCOP contains a NrSamples higher than 32 or less than 4 the Decoder knows that the
following bits in the bitstream are representing not compressed data and have to be split in groups
of 10 bit. These groups are representing the original samples of the corresponding waveform and
are written directly in the original data matrix. After all samples of 10 bit are saved regarding to
the NrSamples, the Decompressor continues with the Huffman decoding of the Delta values. For
the reconstruction of the normalized waveforms, the Decompressor needs to know which reference
vector has been used by the DataCompressor for each input vector. For the 1Q version, only one
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reference vector exists and the Decompressor uses this one for all Delta values. In the 4Q version,
the Decompressor uses the indices sent by the DataCompressor to identify the correct reference
vector for each row of Delta values. To align the reference vector with each row of the Delta value
matrix the Decompressor searches the first 0 value scanning the Delta values rows from the right
(last received 0 Delta value for each input waveform). The position of the first 0 from the right tells
the position of the maximum sample in this input waveform. The aligned Delta values are summed
up to the elements of the reference vector. The resulting normalized waveforms are saved in rows
of a matrix. The Decompressor uses the received MaxV alues contained in the waveform headers
of the DCOP to calculate the normalization factor for each normalized waveform in the same way
as the DataCompressor did. Therefore the Decompressor needs to know the NormV alue which
was programmed into the DataCompressor prior to operation (being 100 in our case). Each row of
the normalized waveform matrix is then multiplied with the corresponding normalization factor to
reconstruct the original sample values of the test pattern data. The reconstructed samples by the
Decompressor can be compared to the original samples of the test pattern data. The comparison
showed that most of the samples are equal. From all reconstructed samples only around 16% differ
from the original values, which can be explained by an error introduced from the limited precision
of the divider and the multipliers used in the Normalizer and by the manipulation of some Delta
values for the alignment information. Less than 0.25% of the reconstructed samples have an error
of more than±1 ADC count. The percentage of the erroneous samples is not differing significantly
between the 1Q version and the 4Q version.

To investigate the effect of this error on the important waveform parameters (amplitude and
peak time) the original waveforms and the reconstructed waveforms is fitted in Matlab by using
the gamma-4 function and the “curvefit” command. Each original input waveform is compared
to the corresponding reconstructed waveform and the differences in amplitude and peak time are
calculated. The distribution of the difference in amplitude normalized to the original amplitude of
the waveforms is shown in % in figure 6.7(a). The distribution of the error in time of the position of
the maximum sample values of the waveform is shown in nanoseconds in figure 6.7(b). The error
distribution histograms shown in 6.7 result from the analysis of all 10 002 waveforms contained in
the test pattern. Around 85% of the reconstructed waveforms have an error in amplitude less than
0.1%. The remaining waveforms have an error above 0.1%, among them only a few reconstructed
waveforms have errors up to 1%. No reconstructed waveform was seen with an error in amplitude
higher than 1%. The error in time is even smaller resulting in around 95% of the reconstructed
waveforms having no time error. Around 5% of the waveforms show errors of up to 5 ns. Only
a few reconstructed waveforms have errors above 5 ns (at most 25 ns). Considering other sources
of imprecision in the front-end electronics (ADC, digital signal processor), these errors can be
tolerated easily. An increase of the divider and multipliers resolution would farther reduce the
error by the cost of additional hardware. In addition, more effort in controlling and improving of
the fit results could reduce some obtained error.

After the functionality of the DataCompressor is approved and the introduced error by the lim-
ited precision of the logic is analyzed and considered to be not critical the compression perfor-
mance is discussed.

The compression performance achieved by the DataCompressor realization in Verilog is cal-
culated. The resulting performance of the DataCompressor in the different modes of operation is
presented in the diagram in figure 6.8.

As it can be seen from the diagram the results obtained by compressing the 10 002 waveforms
of the test pattern data are close to the theoretical results obtained by the Matlab investigation of
the algorithm presented in chapter 4. This proves that a data compression based on the developed
algorithm can be realized in hardware providing the expected compression performance.

To ensure the functioning of the DataCompressor in hardware an implementation of the RTL
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(b) Time Error

Figure 6.7.: Histogram of the error in amplitude (left) and time (right) between the reconstructed waveforms
and the original waveforms. The error in amplitude is given in % of the original amplitude and
the error in time is given in nanoseconds. The number of waveforms corresponding to the error
is given in % of the total analyzed waveforms
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Figure 6.8.: Compression performance of implementation on zero suppressed data

Verilog model is performed inside a FPGA. The results of the hardware tests are presented in the
following.

6.3. Hardware results
To investigate if the written Verilog code is synthesizable and works as expected also in hardware
it is implemented in a FPGA development board from Xilinx [51]. The development board with
the name ML401 contains a Virtex-4 LX25 FPGA as shown in the image in figure 6.9.

The synthesis and Place&Route of the RTL Verilog model are executed in the Xilinx ISE tool
version 10.1.03. The settings for the Xilinx Synthesis Technology (XST) tool in ISE are set to the
default values except for the following changes:

— Optimization goal: AREA
— Optimization effort: High
— FSM Encoding Algorithm: Gray

The synthesis is set to optimize the area of the DataCompressor module in order to minimize the
required resources in the FPGA. Both the 1Q version and the 4Q version of the DataCompressor
in combination with the DataCompression2ClockExt Top module are synthesized and tested with
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Figure 6.9.: FPGA development platform from Xilinx called ML401 containing a Virtex-4 [51]

the Virtex-4 FPGA. In addition, the DataCompressor is also tested in the Huffman Only mode
(DcMode=‘01’). The DataCompression2ClockExt Top module is required to control the data flow
to and from the DataCompressor module so that the DataCompressor functionality can be tested.
A summary of the synthesis report is shown in figure 6.10 and in figure 6.11.

Figure 6.11 shows the device utilization summary for the 1Q version and for the 4Q version.
The device utilization for the 4Q version is much higher as for the 1Q version because the Vec-
torQuantizer4Q module is not optimized in terms of area requirements for the actual design. For
the use in future applications some registers in the module can be exchanged with block RAM
memories to reduce significantly the area. For the moment I optimized only the area of the 1Q
version to prepare it for an eventual implementation in the Virtex-2P FPGA of the actual RCU in
the TPC of ALICE to show the operability. More information about a first implementation in the
RCU of the ALICE experiment is given in chapter 7. Nevertheless, figure 6.11(b) shows that the
functionality of the 4Q version can be tested with the development board using the resources of
the Vitrex-4 FPGA.

To better understand the resource requirements a synthesis of the DataCompressor as a stan-
dalone module is performed and the device utilization summaries for the 1Q version and the 4Q
version are given in figure 6.12.

The main difference in the resource requirements between the standalone version and the pre-
vious combined version can be seen in the usage of the block RAM memories. The combination
with the DataCompression2ClockExt Top for testing purposes uses more RAM memories to store
the initialization data and the test pattern data, which are sent to the DataCompressor. The output
data of the DataCompressor are saved in a RAM memory, from where the data are sent to the PC
via the UART serial interface. As well, the number of used IO buffers is high but this is from
minor importance because the DataCompressor is intended to be implemented in a larger system
and internally connected to logic, not to input and output pins. The timing analysis summary of the
synthesis report is shown in figure 6.13(a) and results from estimations of the synthesizer taking
into account the delays of the logic.

The timing constraints for the Clock40 and Clock80 signals are the same for all the synthesis
performed for the Virtex-4. This estimations for the timing delay are giving a maximum frequency
that can be applied to the Clock40 and Clock80 signals. The critical path for the timing (path
with the maximum delay) is inside the Divider which required the pipelined structure of it as ex-
plained above. The maximum usable frequencies are higher as the specified frequencies for the
DataCompressor, which allows to implement the DataCompressor with the foreseen clock frequen-
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(a) First part of the settings (b) Second part of the settings

Figure 6.10.: Summary of the settings for the synthesis of the DataCompressor module in combination with
the DataCompression2ClockExt Top module

cies in the Virtex-4. According to investigations for an implementation of the DataCompressor in
the Virtex-2P FPGA of the ALICE RCU the synthesis shows that the maximum clock frequencies
for this device are closer to the specified frequencies. Nevertheless, the estimated maximum fre-
quencies show that they have still some margin regarding the specified clock frequencies for the
DataCompressor. The number of foreseen pipeline stages for the divider are suitable for a future
implementation of the DataCompressor in the RCU.

After the synthesis is performed, the remaining design implementation steps are executed in
ISE until the Place&Route model is obtained and a programming file is created. The ISE default
settings are used for these steps. A Post-Place&Route Simulation model is created as well to
perform a sign-off simulation of the DataCompressor design [52]. For this model the option -ism
is included in the command-line, which generates a netlist Verilog file where the Xilinx primitive
models are included. In this way, the netlist generated after the Place&Route using logic primitives
can be directly simulated with the ISE simulator or with the Cadence NC-Sim simulator.

In addition, a user constraint file is used in the project to include timing constraints, which
are then checked in the Post-Place&Route simulation. The timing constraints are set to the clock
frequencies of 40 MHz and 80 MHz. The simulation results of the Post-Place&Route netlist model
are checked again by dumping some register contents in text files and comparing them in Excel
against the results from the RTL Verilog model and the Matlab model. All tests confirmed that
the Post-Place&Route model gives equal results as the behavioral model and the Matlab model.
The timing checks resulted in a warning for a possible timing constrained violation in the UART
module. Since the UART has been already tested with the development board and showed to
work correctly for sending the output memory data to the PC, this warning was ignored because
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DataCompressor with DataCompression2ClockExt_Top 1Q version 4Q DataMem

(a) Device utilization summary for the 1Q version

DataCompressor with DataCompression2ClockExt_Top 4Q version 4K DataMem

(b) Device utilization summary for the 4Q version

Figure 6.11.: The synthesis report device utilization summaries for the 1Q version and the 4Q version of the
DataCompressor module in combination with the DataCompression2ClockExt Top module

DataCompressor allone 1Q version

(a) Device utilization summary for the 1Q version

DataCompressor allone 4Q version

(b) Device utilization summary for the 4Q version

Figure 6.12.: The synthesis reports device utilization summaries for the 1Q version and the 4Q version of
DataCompressor module as a standalone unit

it is not related to the DataCompressor itself. The timing constraints are met as well for the
DataCompressor stand-alone simulation with the Virtex-2P FPGA for the RCU.

To test the DataCompressor module in a hardware environment, the generated programming
file from the ISE tool is downloaded to the Virtex-4 FPGA of the development board. The clock
signal for the Clcok80 is generated by a crystal oscillator from SaRonix mounted in the custom
clock socket on the backside of the development board delivering a stable 80 MHz signal. The
40 MHz signal for the Clock40 is generated in the DataCompression2ClockExt Top module by
using a clock divider logic. Three buttons on the development board are used to control the test
process. The names and positions of the FPGA pins connected to the user clock socked and the pins
connected to the buttons can be found in the schematics of the ML401 development board available
from the Xilinx homepage [53]. The button SW S is used to initiate a reset and is connected to
the reset signal of the DataCompressor. The button SW E starts the initialization phase in which

(a) Timing analysis results for the 1Q version of the
DataCompressor module using a Virtex-4

Time analysis for Virtex‐2P

(b) Timing analysis results for the 1Q version of the
DataCompressor module using a Virtex-2P

Figure 6.13.: Timing analysis results for the DataCompressor module
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the DataCompressor is programmed via the bidirectional Data bus with the Huffman codebook
and the reference vectors data pre-initialized in RAM memories inside the FPGA. The codebook
and reference vector elements are pre-initialized in RAM memories using initialization files during
the programming phase of the FPGA. The button SW C starts the data compression by setting the
data ready signal high. The DataCompressor starts reading the test pattern data from a RAM
memory, which represents a RCU internal buffer. The test pattern data of 4000 waveforms (limited
by the available RAM space) are pre-initialized in two RAM memories of the FPGA during the
programming phase. The output data coming from the SOB Din output bus of the DataCompressor
are stored in a RAM memory each time the output signal SOB we is high. This corresponds to the
saving of the output data in the SIU output buffer of the RCU. If all test pattern data in one RAM
memory are processed and compressed the pop signal goes high for one Clock40 cycle and the
DataCompressor starts reading the next (second) RAM memory. After also the data in the second
RAM are processed and compressed the data in the output memory are automatically sent via the
UART interface to the serial input port (e.g. COM1) of the PC. A provisional trailer word is added
to indicate the end of the words in the output memory and to ensure that all output data are received
at the PC.

The received data can be visualized with a terminal program on the PC as shown in the screen-
shot in figure 6.14.

Figure 6.14.: Terminal program used to display the output of the DataCompressor sent via the UART to the
PC
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For the first testing of the interface, the terminal program is useful. To investigate the correctness
of all output words from the DataCompressor send to the PC, the terminal program is not suitable
and therefore a small C-program is written that reads the data received at the COM port and dumps
them in a text file. The text file can be imported in Matlab and the Decompressor model can be
used to decode and reconstruct the original test pattern data. The text file can also be imported in
Excel to check if the output words are equal to the words generated by the simulation of the Verilog
model. The tests showed that the output words produced by the hardware implementation of the
DataCompressor in the Virtex-4 match exactly the simulation results. The output bus can easily be
redirected inside the DataCompressor module to send out intermediate data from the Normalizer
module, VectorQuantizer module or HuffmanCoder module, which allows checking the individual
functionality of the different modules in hardware and performing a stepwise verification. The
correct initialization of the LUT memories and the other memories inside the DataCompressor are
checked by using the bidirectional rcu prog data bus, which allows to read-back the data from the
selected memories inside the DataCompressor and to store these data as well in the output RAM
memory from where it is sent to the PC. The DataCompression2ClockExt Top module controls the
execution of this read-back process. After all simulation tests and hardware tests are completed
successfully for the DataCompressor module a first investigation of a possible implementation of
the module in a future ASIC project is presented in the following.

6.4. Analysis for an Implementation in an ASIC
The DataCompressor development is included in a project which targets the development of a new
mixed signal ASIC for the front-end electronics of the TPC in the ALICE experiment (S-ALTRO).
In order to investigate the requirements for an implementation of the developed DataCompressor
module in such a deep-submicron front-end chip the RTL Verilog model is synthesized (RTL
Compiler). A Place&Route is performed using the Cadence Encounter tool version 8.1.

An Intellectual Property (IP) block for the DataCompressor logic is generated without includ-
ing RAM memories. The used technology for the IP block is the IBM 130 nm 8RF-DM CMOS
technology with DM metal stack and Process Design Kit (PDK) version 1.6 [54]. This technology
is used as well for a first prototype development of the new TPC front-end ASIC S-ALTRO. The
created layout for the DataCompressor IP block is shown in figure 6.15(a) and some parts of the
logic are highlighted. The summary of the area requirements for the DataCompressor is shown in
figure 6.15(b).

The required number of logic gates (cells) for the DataCompressor results in 12 235 gates.
The estimated area of the IP block (core size) is around 496 µm×496 µm. The required memories
that have to be added in a future implementation of the DataCompressor inside the ASIC are
summarized in table 6.2.

The memory requirements can be reduced by almost a factor of two if their clocking is changed
to run with the 80 MHz clock instead of the actually used 40 MHz clock. The 40 MHz clock is used
in the actual implementation because the memories in the RCU work as well at this frequency. In
addition, an optimization of some memory sizes (buffer sizes) can be performed for specific target
applications.

The required logic can also be reduced if for example the input bandwidth is reduced to 10 bit
per 40 MHz which is possible in a direct implementation in the front-end AISC by taking the
digital data directly after the digital processor and before the formatting process. The reduction
of the input bandwidth requires less parallelism in the DataCompressor. For example, the actually
four multipliers in the Normalizer working in parallel can be reduced to one. The disadvantage of
the reduction of input bandwidth is an increase in latency and overall compression time.
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Figure 6.15.: DataCompressor IP block Layout and Design Summary

Table 6.2.: List of memories and their sizes in the DataCompressor

Memory Name Word Length Depth Total space
[bit] [words] [bit]

TimeStampMem 10 64 640
PulseLengthMem 10 64 640
PulseLengthMem2 10 64 640
MaxValueMem 10 64 640
InputBuffer1 10 64 640
InputBuffer2 10 64 640
InputBuffer3 10 64 640
InputBuffer4 10 64 640
MaxIndexMem 5 32 160
NFactorMem 10 32 320
RVmem11 10 64 640
RVmem12 10 64 640
RVmem21(only 4Q version) 10 64 640
RVmem22(only 4Q version) 10 64 640
RVmem31(only 4Q version) 10 64 640
RVmem32(only 4Q version) 10 64 640
RVmem41(only 4Q version) 10 64 640
RVmem42(only 4Q version) 10 64 640
Huffmem LUT1 22 1024 22528
Huffmem LUT2 22 1024 22528
HuffBufferMem 30 128 3840
LongShortPulseMem 30 32 960
Total Memory requirements 1Q version: 56736 (6.9 kB)
Total Memory requirements 4Q version: 60576 (7.4 kB)
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7. Conclusion and possible fields of
application

In this doctoral thesis, a data compression method is developed with the aim to implement it in
the front-end electronics of particle detectors used in high energy physics applications. A new
developed lossless compression algorithm is presented and optimized for digital detector data that
have been obtained from the TPC in the ALICE experiment. This algorithm is than implemented
in hardware.

An introduction to the value of a implementation of a data compression in particle detector
front-end electronics is given in chapter 1. The question “Why data compression in front-end
electronics is a useful tool in particle detectors?” is answered first. The ALICE TPC detector is
introduced that is used as an example application for the implementation of the data compression
in the front-end electronics throughout this thesis. Then the two important measures of evaluating
and comparing the efficiency of compression methods is explained.

First investigations on the properties and shape of digitized detector signals appearing in the
front-end electronic is given in chapter 2. Different kinds of particle detectors are investigated and
their front-end electronics and signals are present. The most common digitized front-end signal
shape of these detectors, which is compressed is shown at the end of this chapter.

A discussion and evaluation of the most known compression methods are given in chapter 3.
The different lossless and lossy compression methods are explained and an evaluation for their
suitability of compressing the underlying detector signal data as well as their suitability for a real-
time hardware implementation are given.

The best suited compression methods are then analyzed and compared carefully in chapter 4.
The different lossless and lossy compression methods are modeled and used to compress a example
set of measured data from the ALICE TPC to understand their efficiency for them. Their compres-
sion efficiency has been compared and an estimation of their complexity is given in order to find the
best-suited compression algorithm for a hardware implementation. A new developed compression
method with the name “lossless vector quantization” is chosen for the hardware implementation.

In chapter 5 the realization of the lossless vector quantization method in a FPGA based system
is given. The compression method is modeled in the hardware description language Verilog and a
detailed description of the different parts of this implementation is presented. The critical aspects
and solutions for this hardware implementation are pointed out. The hardware implementation
is optimized regarding the requirements of a possible implementation in the RCU FPGA of the
ALICE TPC front-end electronics.

The results obtained from simulations and hardware tests of the implementations are discussed
in chapter 6. The developed hardware solution is tested with the same set of measured data from the
ALICE TPC as already used for the analysis and comparison of the different compression methods.
Firstly, the simulation results of the Verilog code are presented and a proof of the functionality of
the implementation on the TPC data is given. Then the hardware tests of the implementation are
shown which have been carried out using a FPGA development board containing a Virtex-4 chip.
At the end of this chapter a first investigation of the requirements for a hardware implementation
in an ASIC chip is given.

To conclude the thesis a summary of the obtained research results is given in the following
including a detailed description of the authors contribution to this research. At the end a short
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outlook of possible fields of applications for the developed compression unit are presented.

7.1. Research Summary
The research carried out in this document comprised the investigation of the commonly known
compression methods regarding their usability and efficiency for compressing digitized detector
data, which are already reduced strongly by a zero suppression. The underlying detector data for
this research have been obtained by measurements with the ALICE TPC. The data are zero sup-
pressed and consist of samples belonging to waveforms with a known shape introduced by the
analogue amplifiers and/or shapers in the detector front-end. It could be shown that the signals
from the ALICE TPC similarly appear also in various other types of particle detector concepts
allowing to use the development data compression unit in a wide range of particle detector experi-
ments. A developed lossless compression algorithm based on a modified lossy vector quantization
has been selected as the best suited method for the compression of these detector data and for a
hardware implementation. The lossless vector quantization algorithm offers the highest compres-
sion efficiency for the corresponding detector data among all lossless methods. With this method,
the zero suppressed data could be further reduced by a factor of 2. This allows to relax signifi-
cantly the requirements for data transfer and data storage earliest in the data chain already inside
the front-end electronics of particle detectors.

Because of the low distortion introduced on the important information of the detector data
by this compression method, it is preferred instead of using one of the as well analyzed lossy
compression methods. The lossless vector quantization produces a negligible distortion of the data
in the hardware implementation caused by limited precisions of some required arithmetic logic
for a normalization of the input waveforms. The lossy compression methods on the other hand
produce a higher distortion by systematic data loss in order to obtained a higher compression ratio.

The implemented algorithm consists of a Normalizer, Vector Quantizer and Huffman encoder.
The Normalizer normalizes the incoming waveforms to a predefined amplitude, which is equal to
the maximum element of the reference vectors saved in an on-chip memory. The Vector Quantizer
then compares the normalized samples of the input waveforms that form an input vector with
different reference vectors and searches for the best matching reference vector. The differences
(Deltas) between the best matching reference vector and the input vector are calculated and then
Huffman encoded.

The data that are sent out of the detector front-end consists of the waveform lengths, the time
stamps (both deriving from the zero suppression), the normalization factors (which in the actual im-
plementation are represented by the maximum sample values of the input waveforms), the indices
of the chosen reference vectors and the Huffman encoded Deltas. The decoder reconstructs Delta
values from the received Huffman words and restores the normalized sample values by adding the
Deltas to the elements of the corresponding reference vector selected by the received index. Then
the decoder recalculates the normalization factor using the received maximum sample value to re-
normalize the original sample values of the input waveform out of the normalized samples. Both
the Data Compressor and the Decompressor have to be loaded prior to operation with the same
reference vector set, normalization value and Huffman codebook which are obtained by analyzing
representative data from previous measurements.

The compression algorithm has been tested first using a Matlab model and then the imple-
mentation of the algorithm has been evaluated using a simulator and signal generator for HDL
codes. Afterwards, the developed implementation has been tested for its functionality and real-
time behavior in hardware by using a FPGA development board. The results obtained from the
implementation are very close to the results from the Matlab model.

The hardware implementation showed its ability for a real-time application by consecutively
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compressing 10 000 waveforms without causing any wait cycle running at 40 MHz. The imple-
mentation has been realized in a pipeline structure which causes a latency of around 30 clock
cycles of 40 MHz. Since the algorithm executes on entire waveforms the latency is not constant
and depends on the length of the input waveforms, which after the zero suppression are composed
by varying number of samples. The actual RCU implementation without data compression on the
other hand requires every third clock cycle one wait cycle stopping reading data from the MEBs to
cope with the different input (40 bit) to output (30 bit) word length (input and output frequency is
40 MHz). The implementation of the data compression allows the continuous reading of the MEBs
without introducing wait cycles.

Two versions of the data compression block are realized, one using only one reference vector
and the second using four reference vectors. To determine the minimum required resources of
the data compression block in hardware the version with one reference vector is implemented in
the Virtex-4 FPGA of the development board. This 1Q version requires around 24% of the slices
and 25% of the block RAMs. The version with 4 reference vectors is implemented as well in the
Virtex-4 to investigate the best achievable compression performance for the used data and to prove
also the functionality of this version. The timing analysis showed that the used clock frequencies
of 40 MHz main clock and 80 MHz fast clock are perfectly suited for both versions and can be
used as well for an implementation in the smaller Virtex-2P FPGA of the current RCU installed in
the ALICE TPC.

In addition to the resource requirements of the data compression implementation in FPGAs,
also the area requirements of an implementation of the data compression unit in a full custom
ASIC are presented. The layout of the data compression IP block has been realized in the IBM
130 nm technology with DM metal stack. It shows that the 1Q version would fit in around 500 µm
× 500 µm area and requires around 12 200 logic gates (without counting the required memory of
around 7 kB)

This proves that an implementation of the developed compression method in future particle
detector front-ends is possible and can obtain a good data reduction very close to the detector
pads. The data compression in the front-end offers the possibility to relax the limits of data transfer
bandwidth and data storage for future experiments, by still maintaining the required data integrity
and measurement accuracy.

7.1.1. Main contributions of the author
The author claims to have made the following contributions to the described research activity:
• I could prove that a further data reduction of zero suppressed digitized detector data can be

obtained by implementing a data compression unit in the front-end electronics of detectors,
without introducing relevant distortions on the measurements. A data reduction of 50% has
been achieved by this implementation. To the best of my knowledge this has been not yet
achieved inside the front-end electronic of detectors on zero suppressed data. This helps to
relax significantly the data transfer and storage requirements.

• At the beginning of my research activities I have studied different types of particle detectors
to investigate the form, parameters and information content of the digitized detector data
produced in the front-end electronics. For most detector types, including the TPC, I identified
a signal form corresponding to a digitized semi-Gaussian waveform that represented the basic
data for which I developed my data compression implementation.

• During my research activities I have compared different compression methods to find and
develop the best-suited method for compressing the corresponding detector data. Compar-
ing the compression efficiencies of the different methods, I could show that the best-suited
method is the new developed lossless vector quantization composed by the normalization,
delta calculation and Huffman coding.
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• I have optimized the concept of lossless vector quantization for the compression of the detec-
tor data from the ALICE TPC. The key point of this method is the normalization of the input
waveforms before performing the vector quantization in order to reduce the required number
of reference vectors and therefore the memory space in the hardware to store this reference
vectors.

• I have realized a hardware implementation block performing this lossless vector quantiza-
tion using Verilog and implementing it in a FPGA development board. I tested the data
compression in hardware and I could prove its functionality and real-time performance. The
implementation achieved the expected compression ratio of a factor of 2 obtained by the
Matlab model. In addition, a fasten-up of the readout has been achieved compared to the
actually implemented RCU logic in the ALICE TPC.

• During the hardware realization of the data compression unit I implemented an integer di-
vider that is used to normalize the input waveforms. This divider has to perform the calcula-
tion in a fast way in order to keep the buffers for the input samples small. To run the divider
with the 80 MHz input clock I have realized the divider in a pipelined structure with 3 stages.

• To send the information about the normalization factor resulting from the division I decided
to use the original value of the maximum sample instead of the calculated normalization
factor itself. This requires that the decoder has to recalculate the normalization factor using
the received maximum value. On the other hand, this keeps the number of used bits for
transmitting the information independent from the used precision of the implemented diver
and multipliers. Therefore, more flexibility is achieved for future applications in terms of
optimizing arithmetic precision versus acceptable distortion and area/recourse requirements
without having to change the output data format.

• Another important aspect of the data compression implementation is the alignment of the
input vectors with the reference vectors and the transfer of this alignment information to the
decoder. Therefore, I have used the position of the maximum sample of the input waveforms
to align them with the reference vectors. I have embedded the information of the position of
the maximum sample in the values of the resulting Deltas. This concept allows transmitting
the alignment information without adding additional bits to the output data, with the expense
of introducing some small additional distortions to the detector data. I could show that these
small distortions have negligible impact on the important information of the data (amplitudes
and time stamps).

• For the transmission of the output data of the data compressor I defined a new output format
based on the current RCU format. The difference to the actual RCU output format consists
in the scrambling of the compressed bitstream words with the waveform headers in order
to optimize the output package for the unoccupied bus time between the sporadic obtained
compressed Huffman words. To distinguish the different components of the output package
the two MSBs are used which already exist in the current RCU format.

• To investigate the possibility of implementing the data compression unit also in further ASIC
projects I created an IP block in 130 nm CMOS technology and extracted the area require-
ments and the number of required logic gates.

• During my investigations of the different compression methods I could show that the best
lossy compression method is the model based method for the underlying detector data. I have
created a model based on the idea of the parameter extraction published in [44] and I could
show that a good extraction of amplitudes and time stamps from the ALICE TPC waveforms
can be performed with this model by obtaining in most of the cases small distortions. A
hardware realization of this parameter extraction can be performed by implementing tow
FIR filter. A concept of proving the quality of the parameter extraction in the hardware has
still to be developed in order to guarantee the required measurement accuracy.
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• To improve the efficiency of the lossy compression methods based on DCT and DWT I com-
bined them with the concept of using a reference vector and delta calculation. The resulting
coefficient vectors are compared to a reference vector and then the differences (deltas) are
quantized and Huffman encoded. This improved the performance of the transform methods.

7.2. Outlook
The designed data compression algorithm named lossless vector quantization showed its function-
ality in a hardware implementation and its ability to compress the detector data by around 50%.
There are some future projects listed in the following where the data compression IP block could
be implemented to facilitate the data transfer and storage in new detectors with large amounts of
readout channels. The smaller the front-end electronic can be designed by using for example new
full custom ASICs and new FPGA devices (with much more resources) the more readout pads can
be used in the limited space of the detector area. This could allow reducing the size of the readout
pads providing a higher resolution of the particle tracking which on the other hand produce more
readout channels and more data that have to be handled. The data compression block could be a
good option to handle these data.

7.2.1. SALTRO
An actual ongoing project is aiming to design a new front-end chip for the ALICE TPC and other
detectors, which combines the analogue font-end electronics of the PASA and the digital front-end
electronics of the ALTRO chip. A first prototype of this mixed signal ASIC called S-ALTRO has
been produced and is currently under test. As well the data compression IP block could be im-
plemented in this new front-end ASIC in order to move the data compression even closer to the
detector pads. The plans for the S-ALTRO foresee also the investigation of a data link between
neighboring chips to allow an inter-chip communication in order to increase the performance of the
zero suppression by a 3D zero suppression [55]. This inter-chip communication could also be used
to increase the compression performance of the implemented data compression method. Neigh-
boring channels can measure contemporary singles created by the same cluster of induced charges
produced from the avalanche process in the amplification region of the TPC end caps (MWPC).
The signals in neighboring channels from the same cluster are quite similar with a predictable
variation in amplitude according to a Gaussian distribution. That means that the digitized signal
from one channel could be used as a reference vector for compressing the signal of a neighboring
channel. This would maybe increase the compression efficiency and reduce the complexity of the
lossless vector quantization.

The layout of the data compression block, which is presented in chapter 6 is designed in the
same technology as the actual prototype of the mixed-signal ASIC S-ALTRO. This would allow
an easy implementation in a next generation of the S-ALTRO. The area of the data compression
IP can be reduced further in the new ASIC by using less parallelization of the data paths changing
the input data format at the data compressor.

7.2.2. ALICE TPC upgrade
The resource requirements of the version with one reference vector showed that an implementation
of the data compression block in the Virtex-2P FPGA of the RCU actually installed in the TPC
front-end inside the ALCIE experiment requires half of the resources. A first investigation of
a combination of the data compression block with a reduced version of the actual RCU logic
showed that a slight exceed of the available recourses is encountered for the Virtex-2P as shown
in figure 7.1. A further effort in reducing the complexity of the required RCU logic and the data
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compressor logic could result in a possible implementation of the data compressor inside the actual
RCU unit inside the ALICE TPC. This would allow testing the data compressor already inside the
real environment of TPC front-end electronics in the ALICE experiment.

An upgrade of the LHC and the experiments is actually scheduled for the year 2015. In this
period, also the ALICE experiment will be upgraded and possibly some parts of the TPC readout
electronics can be exchanged [56].

If in the planned upgrade for the ALICE TPC also the RCU FPGA can be exchanged to a newer,
larger FPGA like the Virtex-4, a permanent implementation of the data compression block in the
ALICE TPC is possible by maintaining the full functionality of the RCU.

RCU with Data Compressor 1Q combined in Virtex‐2P 

Figure 7.1.: The synthesis report device utilization summary for the DataCompressor combined with the
necessary RCU logic in the Virtex-2P FPGA installed in the RCU of the TPC.

7.2.3. CLIC
First studies for a new accelerator project called “CLIC” are triggered by CERN, which could be
the follower of the LHC. The concept of a Compact LIner Collider (CLIC) is based on a 48 km
linear accelerator probably be built somewhere in the neighborhood of CERN. The collider will
provide two accelerated beams, one of electrons and one of positrons, which then collide in the
middle of the structure where the detectors are placed (interaction point). To accelerate the elec-
trons and positrons the CLIC uses a new concept of two beams, a drive beam that injects energy in
a main beam, which then is brought to collision [57]. The concept is shown in figure 7.2.

The CLIC is planned to provide collisions of elementary particles with energies up to 5 TeV
(nominal 3 TeV). The previously most powerful electron-positron accelerator was the LEP with a
collision energy of 209 GeV build at CERN (in the tunnel where now the LHC is placed).

The detector experiment placed at the interaction point will contain a variety of different kinds
of detectors. The detector concept for the CLIC is carried out together with the collaboration for
the ILC project under the Linear Collider Detector (LCD) collaboration. In tree of the four detector
concepts a TPC is included, which would allow the use of the actual data compression block in
the front-end electronics. The detector concepts are presented within the ILC project description
in the following.

7.2.4. ILC
A second research study is initiated for a future linear collider called “ILC”. The International
Linear Collider (ILC) project is based on two particle beams, one of electrons and the other one
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of two rings, the delay loop and the combiner ring (figure 5). This 
part of CTF3 is a scaled-down version of the complex required to 
generate the CLIC drive beam. It will demonstrate the principle of the 
novel bunch-interleaving technique using RF deflectors to produce 
the compressed drive-beam pulses. In CTF3 the compressed beam 
is then sent into the CLIC Experimental Hall (CLEX). This houses 
several beam lines where the CLIC acceleration scheme will be 
tested, including the extraction of RF power from the drive beam 
and transfer of this RF power to the accelerating structure, which 
will accelerate a “probe beam” in a full demonstration of the CLIC 
acceleration principle. 

Construction of CTF3 started after the closure of LEP in 2001, 
taking advantage of equipment from LEP’s pre-injector complex. Its 
installation is on schedule: the linac, delay loop and combiner ring 

have already been operated with beam, and further commissioning 
is on going. The new CLEX building is now ready, with most of the 
equipment installed, and it should see beam from August 2008 
onwards. 

The first major milestone towards CLIC will be in 2010 when the 
most important new technologies should be shown to be feasible, 
so that a conceptual design report can be published. A technical 
design phase will follow, including industrialization and cost opti-
mization. Pending a decision based on physics results from the 
LHC, construction, which is estimated to last seven years from the 
moment of project approval, could then begin.

 The R&D work towards CLIC is done by an international collab- ●

oration organized like those for the large particle physics experi-
ments at CERN. It is managed by a collaboration board with 
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Fig. 3. The proposed layout for CLIC, showing the various components of the injection system and the drive-beam system (not to scale). 

Fig. 4. A power-extraction and transfer structure (PETS). Eight octants like the one shown left form a closed structure (right). (Courtesy CLIC.)

s

Figure 7.2.: Compact Linear Collider Concept. New accelerator project intended to be the follower of the
LHC at CERN. Nominal collision energy will be 3 TeV. [57]

of positrons brought to collision in the middle of the structure as shown in figure 7.3. The ILC
will be around 31 km long and produce a collision energy of 500 GeV with a possible upgrade to
1 TeV. The accelerator uses well-known technologies and is shorter as the CLIC but provides also
less collision energy. The results obtained by the LHC will show which collision energy is needed
for the new targeted particle physics research.

Figure 7.3.: The international linear collider project.

For the detectors of the ILC (or as well for CLIC) there are four concepts developed and de-
scribed in the reference design report [58].

The first is the SiD detector concept. This detector experiment is composed of only silicon
trackers and calorimeters. There are no gaseous detectors such as TPCs in this concept. This is
probably the most expensive concept because of the high costs of the calorimeters. They should
be designed as compact as possible to save costs.

The second concept is the LDC (Large Detector Concept). This detector concept has as its
central component a TPC. A vertex detector is between the beam pipe and the TPC and on the
outside of the TPC, there are electromagnetic and hadronic calorimeters placed. The TPC has
a inner radius of 32 cm and an outer radius of 168 cm with a length of 273 cm. A 4 T magnet
produces the required magnetic field.

The third proposal is the GLD (Global Large Detector) concept. This concept has as well a
TPC as main tracker component. The TPC is even larger as the one of LDC with an inner radius
of 40 cm and an outer radius of 200 cm. A vertex detector is paced between the beam pipe and
the TPC. The TPC is surrounded of electromagnetic, hadronic and forward calorimeters. A 3 T
magnet produces the surrounding magnetic field.
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The 4th concept is quite different from the other tree. It uses compensated dual readout
calorimeters instead of the particle flow calorimeters used in the other ones. As well, this con-
cept has a TPC as central component. The TPC probably would have an inner radius of 20 cm and
an outer radius of 140 cm. The magnetic field is planned to be 3.5 T.

Since a TPC is included in three of the four detector concepts, it is possible that the data com-
pression IP block optimized for TPC data could provide its usability into the new detector experi-
ment of the ILC or CLIC. However, also in ECALs and other kinds of detectors the data compres-
sion block could be implemented with an optimization rework for the respective data properties.

The new TPC studies investigate new methods to amplify the ionized charge in the detector drift
volume. Two possible alternatives to the MWPC used actually in the ALCIE TPC are under in-
vestigation named GEM (Gas Electron Multiplier) and MICROMEGAS (MICRO MEsh GAseous
Structure). These new concepts are shown in figure 7.4. They are promising in terms of increased
position resolution for the new TPCs to get a better momentum measurement of the primary parti-
cles.

Chapter  1 Introduction 
 

8 

Not all generated ions are absorbed at the upper metal plane. Some drift back to the 
detector volume. This effect is called ion feedback. Also not all of the generated electrons 
reach the anode plane. Similar to the MWPC where M determines the gas amplification 
factor, a ratio (M) determining the effective gain can be defined. 
 

hole GEM  thereaching electronsor Number 
 anode  thereaching electronsor Number 

== effGM  (1.12) 

 
The gain of a single GEM stage is a function of the applied potential difference. Higher 
gain can be obtained by a higher voltage difference. An increase in potential difference also 
enhances the probability of discharge sparks that may damage the detector. Cascading of 
GEM foils can be applied for cases where high gain is demanded. Each GEM is operated 
below the discharge limit.  
 

 

Figure 13 Triple GEM [9]  

 

 

Figure 14 Gain for multiple GEM [9]  

 
Signal Polarity: 
The induced signal at the GEM anode plane has the opposite polarity to a signal at the pad 
plane of a MWPC. In the case of GEM an electron cloud drifting towards the readout plane 
induces the signal. In the other case positively charged ions drift towards the readout plane 
and electrons away. 
 

Gelöscht: 14

Eingefügt: 14

Gelöscht: 13

Gelöscht: 15

Eingefügt: 15

Gelöscht: 14

(a) Schematic structure of a triple GEM [26]

Micromash 

Pillar 

Cathode 

Insulator 

Anode strips 

(b) Schematic structure of the Micromegas [59]

Figure 7.4.: Structural concept of GEM and Micromegas

The advantage of the new concepts in comparison to the MWPC is that the signals in the detector
pads get induced mainly by electrons, which give a fast signal and prevent almost the existents of
long ion tails in the signals caused by induction from ions crated in the avalanche effects [60]. Ion
tails cause pile-up problems in consecutive signals from the same pad. A prevention of these pile-
up effects is also advantageous for the data compression with lossless vector quantization since the
strange waveform shapes from pile-ups increase the Deltas and therefore reduce the compression
efficiency.

7.2.5. PANDA
Another new experiment is planned at DESY in Darmstadt called PANDA (anit-Proton ANnihila-
tion at DArmstadt). This detector experiment will be installed in the FAIR accelerator complex,
which accelerates anti-protons and ions. The detector concept of PANDA includes as well GEMs
and ECALs in which the digital compression block could be implemented in the front-end elec-
tronics. A comparison of some important parameters between the discussed future experiments is
given in table 7.1.

An important aspect for the data compression block is the cluster width, which is affected by
the signal duration and therefore determines the number of samples per waveform. The cluster
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Table 7.1.: Comparison of some important parameters between the actual ALCIE TPC and future detector
experiments containing GEMs or MICROMEGAS. [61]

with for ILC and CLIC detector experiments is predicted similar to the ALICE experiment. The
dynamic range stays probably the same and the number of readout channels is as well large for the
future detectors listed in the table. Therefore, the implementation of the data compression block
would give advantages in handling the readout data. An implementation in the new SALTRO
front-end ASIC would provide an easy, efficient and compact system for the detector pad readout.
The time will show in which form data compression will find the way into future particle detector
electronics.
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A. Code Tables

In the following the codebook tables used for the compression of the ALICE TPC test-data matrix
with the data compression implementation are given. Three different Huffman codebooks are listed
for the 1Q version, the 4Q version and the HuffmanOnly mode.

The entries in the codebook are given in the columns named Code in hexadecimal form. The
input values of the Huffman coder corresponding to the codes are given in the columns Delta or
Input. The hexadecimal values of the codes represent the binary words of 22 bit of the Huffman
codeword length and the Huffman codeword. The five most significant bits of each code represent
the codeword length the following bits are the Hoffman codeword filled up with 0 to the 22 bit.

For example, the code for the Delta value 0 of the 1Q version is 68000h. This gives the binary
number 0001101000000000000000b. The five MSBs are 00011b which gives a codeword length
of 3 bit. The next three bit 010b therefore represent the Huffman codeword for the Delta value
0. The remaining bits of value 0 are used to fill up the binary word to the memory word size of
22 bit. The Code for the Delta value 1 of the 1Q version is 64000h representing the binary word
0001100100000000000000b. The 5 MSBs give the same codeword length of 3 and the correspond-
ing Huffman codeword for the Delta value 1 is 001b. This shows that the codeword of the Delta
values 0 and 1 have equal length which was used in the data compressor for the alignment concept
of the input vectors with the reference vectors to obtain the best compression ratio. The problem-
atic 0 Delta values for this alignment are changed to the value 1 which not increases the resulting
encoded bitstream.

This property is also true for the 4Q version with the difference that the codewords for the
Delta values 0 and 1 are 2 bit long. The maximum considered Delta values are ±100 because the
normalization value for the test-data is set to 100. The remaining codes for Deltas smaller than
-100 and lager +100 are not shown in the tables because they have all a hexadecimal value of
000000h. The codebook table for the HuffmanOnly mode shows only the codes for input values
from 0 to 222. The full codebook is too large to show and its importance is not high, since the
HuffmanOnly mode of the data compressor is not the principally mode used within this research.
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Table A.1.: The Huffman Codebook for the 1Q version of the data compressor
Delta Code Delta Code Delta Code Delta Code Delta Code
-512 000000 -61 23FFE4 -20 11E200 21 11E800 62 1DFF68

...
... -60 23FFE5 -19 11E400 22 11E000 63 1BFE90

-100 21FFB0 -59 23FFE6 -18 11EA00 23 11DE00 64 1BFE70
-99 23FFBE -58 1FFF90 -17 11EC00 24 11D400 65 1DFF50
-98 23FFBF -57 23FFE7 -16 F8C00 25 11DA00 66 1DFF70
-97 23FFC0 -56 23FFE8 -15 F9800 26 13F300 67 1DFF78
-96 23FFC1 -55 23FFE9 -14 F9C00 27 15F880 68 1DFF58
-95 23FFC2 -54 21FFB2 -13 FA400 28 13EE00 69 1DFF20
-94 23FFC3 -53 21FFB4 -12 FB000 29 15F780 70 1FFFA8
-93 23FFC4 -52 23FFEA -11 FC000 30 15F700 71 1DFF28
-92 23FFC5 -51 1FFF94 -10 FCC00 31 15F800 72 1FFFAC
-91 23FFC6 -50 1DFF60 -9 D5000 32 15F600 73 1FFF9C
-90 23FFC7 -49 1FFF98 -8 D6000 33 15F680 74 23FFEB
-89 23FFC8 -48 1DFF38 -7 D7000 34 17FC00 75 1DFF30
-88 23FFC9 -47 1DFF40 -6 D8000 35 15F500 76 21FFB6
-87 23FFCA -46 1FFFA4 -5 B1000 36 15F480 77 23FFEC
-86 23FFCB -45 1BFEB0 -4 B2000 37 17FC40 78 23FFED
-85 23FFCC -44 1DFF48 -3 B3000 38 15F400 79 21FFB8
-84 23FFCD -43 1DFF80 -2 8C000 39 17FB00 80 23FFEE
-83 23FFCE -42 1BFE80 -1 8E000 40 17FBC0 81 23FFEF
-82 23FFCF -41 1BFED0 0 68000 41 17FB40 82 23FFF0
-81 23FFD0 -40 1BFEF0 1 64000 42 17FAC0 83 23FFF1
-80 23FFD1 -39 19FCC0 2 60000 43 17FA00 84 23FFF2
-79 23FFD2 -38 19FC80 3 B4000 44 17FA40 85 21FFBA
-78 23FFD3 -37 19FCE0 4 B0000 45 17F980 86 1FFFA0
-77 23FFD4 -36 19FE00 5 D7800 46 19FE40 87 21FFBC
-76 23FFD5 -35 17F900 6 D6800 47 19FE20 88 23FFF3
-75 23FFD6 -34 19FDC0 7 D5800 48 19FD00 89 23FFF4
-74 23FFD7 -33 19FDE0 8 FD000 49 19FD80 90 23FFF5
-73 23FFD8 -32 17F940 9 FC800 50 19FD40 91 23FFF6
-72 23FFD9 -31 17F9C0 10 FC400 51 19FDA0 92 23FFF7
-71 23FFDA -30 17FA80 11 FBC00 52 19FCA0 93 23FFF8
-70 23FFDB -29 17FB80 12 FB800 53 19FD60 94 23FFF9
-69 23FFDC -28 15F580 13 FA000 54 19FD20 95 23FFFA
-68 23FFDD -27 13EF00 14 FB400 55 1BFF10 96 23FFFB
-67 23FFDE -26 13F000 15 FA800 56 1BFF00 97 23FFFC
-66 23FFDF -25 13F200 16 FAC00 57 1BFEA0 98 23FFFD
-65 23FFE0 -24 13F100 17 F9400 58 1BFEE0 99 23FFFE
-64 23FFE1 -23 11D600 18 F9000 59 1BFEC0 100 23FFFF

-63 23FFE2 -22 11D800 19 F8800 60 1BFE60
...

...
-62 23FFE3 -21 11DC00 20 11E600 61 1DFF88 511 0000000
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Table A.2.: The Huffman Codebook for the 4Q version of the data compressor
Delta Code Delta Code Delta Code Delta Code Delta Code
-512 000000 -61 23FFDE -20 13F100 21 13EF00 62 21FFB0

...
... -60 23FFDF -19 13F200 22 13F000 63 1FFF90

-100 23FFB8 -59 23FFE0 -18 11D600 23 13EB00 64 21FFB2
-99 23FFB9 -58 23FFE1 -17 11D800 24 13ED00 65 1FFF94
-98 23FFBA -57 23FFE2 -16 11DE00 25 15F900 66 1FFF98
-97 23FFBB -56 1FFF70 -15 11E000 26 15F780 67 1FFF9C
-96 23FFBC -55 23FFE3 -14 11E200 27 15F800 68 1FFF7C
-95 23FFBD -54 21FFAE -13 11E800 28 15F600 69 1FFF80
-94 23FFBE -53 1FFF74 -12 F9800 29 15F580 70 23FFE5
-93 23FFBF -52 23FFE4 -11 FA400 30 15F300 71 1FFF84
-92 23FFC0 -51 1DFF40 -10 FB800 31 15F480 72 21FFB4
-91 23FFC1 -50 1FFF88 -9 FB400 32 17FCC0 73 23FFE6
-90 23FFC2 -49 21FFAA -8 FBC00 33 17FAC0 74 23FFE7
-89 23FFC3 -48 1FFFA0 -7 FC800 34 17FBC0 75 21FFAC
-88 23FFC4 -47 1FFFA4 -6 FD000 35 17FB40 76 23FFE8
-87 23FFC5 -46 1DFF48 -5 D7000 36 17FB00 77 23FFE9
-86 23FFC6 -45 1BFE60 -4 D7800 37 17FA00 78 23FFEA
-85 23FFC7 -44 1DFF50 -3 D8800 38 19FDE0 79 23FFEB
-84 23FFC8 -43 1BFE90 -2 B5000 39 19FE40 80 23FFEC
-83 23FFC9 -42 1BFEA0 -1 90000 40 19FDC0 81 23FFFF
-82 23FFCA -41 19FD20 0 48000 41 19FE00 82 21FFB6
-81 23FFCB -40 1BFEC0 1 40000 42 19FD60 83 23FFED
-80 23FFCC -39 19FD00 2 92000 43 19FD80 84 23FFEE
-79 23FFCD -38 19FE20 3 B4000 44 19FDA0 85 23FFEF
-78 23FFCE -37 17F980 4 D9000 45 1BFF00 86 23FFF0
-77 23FFCF -36 17FA40 5 D8000 46 1BFF20 87 23FFF1
-76 23FFD0 -35 17F9C0 6 D6800 47 19FD40 88 23FFF2
-75 23FFD1 -34 17FA80 7 D6000 48 1BFF10 89 23FFF3
-74 23FFD2 -33 17FC00 8 FCC00 49 1BFED0 90 23FFF4
-73 23FFD3 -32 17FB80 9 FC400 50 1BFEE0 91 23FFF5
-72 23FFD4 -31 17FC40 10 FC000 51 1DFF60 92 23FFF6
-71 23FFD5 -30 17FC80 11 FAC00 52 1BFEF0 93 23FFF7
-70 23FFD6 -29 15F400 12 FB000 53 1DFF68 94 23FFF8
-69 23FFD7 -28 15F380 13 FA800 54 1BFE70 95 23FFF9
-68 23FFD8 -27 15F500 14 F9C00 55 1BFEB0 96 23FFFA
-67 23FFD9 -26 15F680 15 FA000 56 1BFE80 97 23FFFB
-66 23FFDA -25 15F700 16 11E600 57 1DFF58 98 23FFFC
-65 23FFDB -24 15F880 17 11E400 58 1DFF30 99 23FFFD
-64 23FFDC -23 13EC00 18 11DA00 59 1FFF8C 100 23FFFE

-63 21FFA8 -22 13EA00 19 11DC00 60 1FFF78
...

...
-62 23FFDD -21 13EE00 20 11D400 61 1DFF38 511 0000000
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Table A.3.: The Huffman Codebook for the HuffmanOnly mode of the data compressor
Delta Code Delta Code Delta Code Delta Code Delta Code

0 21FF54 45 11B400 90 13C400 135 17F8C0 180 19FCC0
1 23FF86 46 11A400 91 13C700 136 17F7C0 181 19FCE0
2 64000 47 11A800 92 13C600 137 15E200 182 19FB20
3 60000 48 11A600 93 13CA00 138 17F880 183 19FA20
4 8A000 49 119A00 94 13C900 139 15E100 184 19FA00
5 88000 50 11A000 95 13C800 140 17F780 185 19FB40
6 AF000 51 119C00 96 13C100 141 17F740 186 1BFE30
7 AE000 52 11A200 97 15F180 142 17F940 187 19FAA0
8 AD000 53 119800 98 13C000 143 17F900 188 19FA40
9 AC000 54 119E00 99 13C500 144 17F840 189 1BFDE0

10 D2800 55 119400 100 15EF00 145 17F680 190 19FA60
11 D2000 56 119600 101 15F080 146 17F440 191 19F9A0
12 D1800 57 119200 102 13C200 147 17F5C0 192 1BFE50
13 D1000 58 118E00 103 15F100 148 17F700 193 19FAC0
14 D0800 59 119000 104 13C300 149 17F300 194 1BFD70
15 D0000 60 118C00 105 15ED00 150 17F800 195 1BFE00
16 F7800 61 118800 106 15EE00 151 17F400 196 19F980
17 F7400 62 118A00 107 15EE80 152 17F380 197 19F9C0
18 F7000 63 118600 108 15EC80 153 17F480 198 1BFE40
19 F6800 64 118200 109 15EF80 154 17F500 199 1BFE10
20 F6C00 65 118400 110 15ED80 155 17F4C0 200 1BFDC0
21 F6400 66 13DF00 111 15F000 156 17F600 201 19FA80
22 F6000 67 117C00 112 15EA00 157 17F540 202 1BFD40
23 F5C00 68 117E00 113 15E980 158 17F6C0 203 19F9E0
24 F5800 69 118000 114 15EC00 159 17F2C0 204 1BFE20
25 F5400 70 13DE00 115 15EA80 160 17F640 205 1BFD50
26 F5000 71 13DD00 116 15E800 161 17F3C0 206 1BFD10
27 F4800 72 13DB00 117 15E880 162 17F340 207 1BFD20
28 F4C00 73 13DC00 118 15E680 163 17F580 208 1DFED0
29 F4000 74 13D800 119 15EB80 164 19FC60 209 1BFDF0
30 F3C00 75 13DA00 120 15EB00 165 17F280 210 1BFDB0
31 F3400 76 13D900 121 15E780 166 19FCA0 211 1BFDD0
32 11BE00 77 13D700 122 15E900 167 17F240 212 1DFEC8
33 F3000 78 13D300 123 15E300 168 19FC80 213 1BFD80
34 11B000 79 13D600 124 15E580 169 17F200 214 1BFD30
35 11B800 80 13CC00 125 15E400 170 19FC40 215 1DFED8
36 11BC00 81 13D200 126 15E380 171 19FB00 216 1BFDA0
37 11AE00 82 13D500 127 15E700 172 19FB80 217 1BFD00
38 11B200 83 13CE00 128 15E180 173 19FB60 218 1BFD60
39 11AA00 84 13CF00 129 15E480 174 19FC00 219 1DFEE0
40 F4400 85 13D100 130 15E500 175 19FBA0 220 1BFD90
41 F3800 86 13D400 131 15E000 176 19FBC0 221 1DFEB0
42 11BA00 87 13CB00 132 15E600 177 19FC20 222 1DFEE8

43 11B600 88 13D000 133 15E280 178 19FAE0
...

44 11AC00 89 13CD00 134 15E080 179 19FBE0 1023 0000000
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B. Matlab codes
In this section the code of the two Matlab functions for the decompressor is given. These functions
are used to decompress the output data of the DataCompressor unit.

% *****************************************************************
% Huffman_decoder30bit.m
%
% Christian Patauner
% 04.03.2010: Performs the decompression of the output data of
% the DataCompressor by decompressing the Huffman
% bitstream reconstruction of the NormSamples from
% the Deltas and the reference vector.
%
% - 01.08.2011: Add Comments
%
% *****************************************************************
% Variable and functions
% *****************************************************************
% InputMatrix = Matrix which contains the symbols to code
% Codebook = Is the codetable for decoding the Huffman bitstream
% Input_words30bit = Are the input Huffman coded bitstream words
% ClusterWidth = Is a vector which contains the length (number of
% samples) of each compressed input waveform
% extracted from the output data package.
% MaxValues = Is a vector which contains the maximum sample
% values of the compressed waveforms extracted
% from the output data package.
% NrP = Is a value representing the total number of
% compressed waveforms extracted from the output
% data package.
% Q = Is a vector (only one reference vector) or
% matrix containing the reference vectors.
% NormValue = Is the programmed NormValue to which the input
% waveforms are normalized.
% MaxIndex = Is the value giving the Index of the maximum
% value in the reference vectors.
% RefVector_Index = Is a vector containing the indexes which
% define the used reference vector for each
% input waveform.
%
% ReconstructPulses = Is the output containing the decompressed
% waveforms (and can be compared to the
% original input waveform)
% Origin_Delta = Contains the decompressed Delta values out of
% the Huffman bitstream.
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%
% Used Functions: Decompressor_vector_q.m; Hex2bitStream.m
%
% *****************************************************************

function [ReconstructPulses,Origin_Delta] = Huffman_decoder30bit...
(Codebook, Input_words30bit, ...
ClusterWidth, MaxValues, NrP,...
Q, NormValue, MaxIndex,...
RefVector_Index)

%*************************************************************
% Initialization of variables
%*************************************************************
index_max = length (Codebook(:,5));
i = 1;
x = 1;
j = 1;
k = 1;
n = 1;
m = 1;
NoCompressData = 0;
index_new = [1:index_max];

%*************************************************************
% Create output bit stream from hexadecimal 30 bit input words
%*************************************************************
for l = 1:numel(Input_words30bit)

Input_bin(l,:) = Hex2bitStream (Input_words30bit(l),30);
end

Input_bin2 = Input_bin(:,end:-1:1);

%*************************************************************
% Decodes Huffman bitstream to obtain the Delta values
%*************************************************************
while (m <= numel(Input_words30bit))

if (NoCompressData == 0)
while (i<=30)
symbol = Input_bin2(m,i);
index_old = index_new;
index = find (Codebook(index_old,4+x)==symbol);% find Code
index_new = index_old(index);
if (numel (index)>1)

x = x +1 ;
else

%********************************************************
% when a valid codeword is found representing a decoded
% Delta
%********************************************************
Origin_Delta(n,j) = Codebook(index_new,1);

176



APPENDIX B. MATLAB CODES

if (numel(ClusterWidth)>=n && j == ClusterWidth(n))
% when enough deltas are decoded to form the new waveform

if exist(’RefVector_Index’) ˜= 0 && numel(Q)>1
%***********************************************
% if more than one reference vector was used the
% following is used to recalculate NormSamples
% from the Deltas and the original sample values
% by renormalizing
%************************************************
[ReconstructPulses(n,1:64)] = ...
Decompressor_vector_q (Origin_Delta(n,:)’,...

MaxValues(k), ClusterWidth(n), Q, ...
NormValue, MaxIndex, RefVector_Index(k));

elseif (numel(Q)>1) % if only one reference vector
[ReconstructPulses(n,1:64)] = ...
Decompressor_vector_q (Origin_Delta(n,:)’,...
MaxValues(k), ClusterWidth(n), Q,...
NormValue, MaxIndex);

end
n = n + 1; % counts for the next input waveform

end
% when the whished number of decompressed pulses is
% archived stops executing by breaking the loop
if (n==NrP+1) break; end

k = k + 1; % counts only compressed waveforms (not too
% long or too short uncompressed clusters)

j = 0;
if (numel(ClusterWidth)<n) % if not enough deltas are

% decoded for the corresponding waveform length
x = 1;
j = j +1;
index_new = [1:index_max];
break;

end
%****************************************************
% Indicates that a cluster with too long or too short
% length is received uncompressed. Sets
% NoCompressData one and breaks loop to jump in the
% NoCompressData routine
%*****************************************************

if ((ClusterWidth(n)>32||ClusterWidth(n)<4)&&numel(Q)>1)
NoCompressData = 1;
break;

end

end
x = 1;
j = j +1;
index_new = [1:index_max];

177



APPENDIX B. MATLAB CODES

end

i=i+1;
end

i = 1;
m = m + 1;

end

if (numel(Q)<=1)
ReconstructPulses = Origin_Delta;

end
%**************************************************************
% Routine for the handling of uncompressed waveforms which are
% too long or too short
%**************************************************************
if (NoCompressData == 1)
j = 1;
x = 1;
p = 1;
index_new = [1:index_max];
while(p<ClusterWidth(n)) % counts and converts the following 10

% bit sample words
ReconstructPulses(n,p:p+2)=[binvec2dec(Input_bin2(m,10:-1:1)),...

binvec2dec(Input_bin2(m,20:-1:11)),...
binvec2dec(Input_bin2(m,30:-1:21))];

p = p + 3;
m = m + 1;

end
n = n + 1;
if (ClusterWidth(n)>3&&ClusterWidth(n)<33) % if a new compressed

% waveform arrives
NoCompressData = 0;

end
if (n==NrP+1) break; end
end

end

% *****************************************************************
% UnComp_quanttiz_vector.m
%
% Christian Patauner
% 17.10.2009: Uncompressing the Delta values from the vector
% quantization to reconstruct the original normalized
% pulses and then renormalizing them to reconstruct
% the original waveforms
%
% - 01.08.2011: Add Comments
%
% ****************************************************************
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% Variables and functions
% ****************************************************************
% Input_Delta = Matrix with the Delta values Huffman decompressed
% Q = Reference vectors
% NormFac = Normalization factor to renormalize the samples
%
% Orig_waveforms = Resulting original waveforms (reconstructed and
% renormalized
% ReconstructWaveforms = Aligned and rounded Orig_waveforms
% Norm_WF_re = Resulting reconstructed normalized waveforms
% using the Delta values and the Q vector
%
% no custom functions used
%
% *****************************************************************

function [ReconstructWaveforms, Norm_WF_re, Orig_waveforms] =...
Decompressor_vector_q (Input_DeltaStream, ...
WaveformsMax, WaveformsLength, Q, NormValue, ...

NormValueIndex, RefVecIndex)

%**************************************************************
% Initialization of variables
%**************************************************************
n = numel(WaveformsMax); % number of contained waveforms in the

% Input data
LengthSum = 0;
ReconstructWaveforms = zeros(1,64);

%*************************************************************
% sorting the Received Deltas in the corresponding waveforms
% clusters and searching the first 0 Delta in the rising edge
% for the alignment index
%*************************************************************
for j = 1 : numel(WaveformsMax)
DeltaShaped(j,1:WaveformsLength(j)) = ...

Input_DeltaStream(LengthSum+1:LengthSum+WaveformsLength(j));
LengthSum = LengthSum + WaveformsLength(j);
MaxIndexTemp = find (DeltaShaped(j,1:WaveformsLength(j)) == 0);
MaxIndex_Rec(j,:) = MaxIndexTemp(end);
end

%****************************************************************
% Calculates the IndexDifference and aligning the Deltas of the
% waveforms for adding them to the corresponding reference vector
%****************************************************************
IndexDiff = NormValueIndex -MaxIndex_Rec;
for i = 1:numel(WaveformsMax)
Delta_Aligned(:,i) = [zeros(1,IndexDiff(i)),DeltaShaped(i,...

1:WaveformsLength(i)),zeros(1,64-...
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IndexDiff(i)-WaveformsLength(i))];
end

Delta_Aligned(32,:) = ...
round((floor((NormValue*2ˆ6)./WaveformsMax).*WaveformsMax)./2ˆ6)...

-100;

% Calculating the normalization factor out of the maximum samples
NormFac = floor((NormValue*2ˆ6)./WaveformsMax);

%*************************************************************
% Reconstructs the normalized sample values by adding the
% Deltas to the corresponding reference vectors per waveform
% and renormalizing the normalized samples to the original
% samples by multiplying them with the calculated NormFactor
%*************************************************************
for i = 1:n

if exist(’RefVecIndex’) ˜= 0
Norm_WF_re(:,i) = Delta_Aligned(:,i)+Q(RefVecIndex(i),:)’;

else
Norm_WF_re(:,i) = Delta_Aligned(:,i)+Q’;

end
Norm_pu_1Q(:,i) = Norm_WF_re(:,i).*2ˆ6;

Orig_waveforms(i,:) = (Norm_pu_1Q(:,i)./NormFac(i));
end

% Rounds the obtained renormalized samples to get the
% integer values of the original sample values per waveform
ReconstWaveforms = round(Orig_waveforms);

%*************************************************************
% Reorganizing the samples of the input waveform in a matrix
% to compare them with the original test-data matrix
%*************************************************************
for i = 1: numel(WaveformsMax)
ReconstWaveforms(i,IndexDiff(i)+WaveformsLength(i)+1:64) = 0;
end
for i = 1: numel(WaveformsMax)
ReconstWaveforms(i,1:IndexDiff(i)) = 0;
end
for i = 1: numel(WaveformsMax)
ReconstructWaveforms(i,1:WaveformsLength(i))= ...

ReconstWaveforms(i,IndexDiff(i)+1:IndexDiff(i) +...
WaveformsLength(i));

end
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C. Verilog Code
In this section the Verilog code of the behavioral model of the Integer Divider is given. This model
is written using two parameters to define the number pipelined stages and the number of bits of the
Enumerator processed in each stage. In this way, the code can be adapted fast for different clock
frequencies and application requirements.

/****************************************************************
Divider module for the Normalizer *

*****************************************************************
*

file: VQDiv.v *
authors: Christian Patauner *
creation: 12.07.09 *

*
description: Module containing a function to divide two integer *
values. The divider is needed to calculate the normalization *
factor to normalize the input waveforms. The function performs a*
"DivDim/NrStage" bit division in several pipeline stages *
according to the set parameters "DivDim" and "NrStage". *

*
Included Modules: No other modules are included *

*
- 17.07.09: using a for loop suggested by Dr. Sandro Bonacini *
- 26.08.09: Add comments *
- 10.10.11: Add comments *
*****************************************************************/

//‘timescale 10 ps / 1 ps // for a time based simulation

module VQDiv (Result, ResultValid, DivEnd, Numerator, Divisor,
StartDiv, Clock80, reset);

/****************************************************************
Definition of parameters to adjust the number of pipelined stages

*****************************************************************/
parameter DivDim = 15;
parameter NrStage = 5;

/****************************************************************
Definition of the input and output signals

*****************************************************************/
output [9:0] Result;
output ResultValid;
output DivEnd;
input [DivDim-1:0] Numerator;
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input [9:0] Divisor;
input StartDiv;
input Clock80;
input reset;

/****************************************************************
Definition of the registers

*****************************************************************/
reg [3:0] x;
reg [DivDim/NrStage-1:0] Numerator2;
reg [DivDim-1:0] Reminder;
reg [9:0] ResultTemp;
reg [9:0] Result;
reg ResultValid, ResultValidEnd;
reg DivEnd, StopDiv;

/***************************************************************
Function atomdiv which compares the Divisor with the Reminder

****************************************************************/
function [DivDim:0] atomdiv;

input [DivDim-1:0] Reminder;
input [DivDim-1:0] Divisor;
reg [DivDim-1:0] Reminder;
reg [DivDim-1:0] Divisor;

/* returns one output bit indicating if the Reminder is greater
than the Divisor or not; the second part of the output is
the difference between Reminder and Divisor already shifted
one position to the right */
atomdiv = {Reminder>=Divisor,(Reminder-Divisor)<<1};

endfunction

/***************************************************************
Function DIV which performs the division in a single stage

****************************************************************/
function [DivDim*2-1:0] DIV;
input [DivDim/NrStage-1:0] DivE;
input [DivDim-1:0] DivD;
input [DivDim-1:0] Reminder;
input [DivDim-1:0] ResultTemp;
reg [DivDim/NrStage-1:0] DivE;
reg [DivDim-1:0] DivD;
reg [DivDim-1:0] Reminder2;
reg [DivDim-1:0] Reminder3;
reg [DivDim-1:0] Result2;
reg [4:0] i;
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begin
Reminder2 = Reminder;
Result2 = ResultTemp;

// for loop executing the number of bit times executed per stage
for (i = 0; i < DivDim/NrStage; i = i + 1) begin

// calls atomdiv to perform the division of the corresp. bits
{Result2[0],Reminder3} = atomdiv (Reminder2, DivD);

// differentiates if the Reminder is greater than the Divisor or
// not in order to use the new reminder or the old one

if (Result2[0] == 1) begin
Reminder2 = {Reminder3[DivDim-1:1],DivE[DivDim/NrStage-1-i]};
end
else begin
Reminder2 = {Reminder2[DivDim-2:0],DivE[DivDim/NrStage-1-i]};
end
Result2 = Result2<<1; // shifts the Result register one bit to

// the right to include the new result bit
end // end for
DIV = {Result2,Reminder2};
end

endfunction

/*****************************************************************
Procedural block: positive clock edge triggered and asynch. reset

******************************************************************/
always @ (posedge Clock80 or posedge reset) begin
if (reset == 1) begin

x <=#1 0;
DivEnd <=#1 0;
Reminder <=#1 0;
ResultTemp <=#1 0;
Numerator2 = 0;
Result <=#1 0;
ResultValid <=#1 0;
ResultValidEnd <=#1 0;
StopDiv <=#1 0;

end
else begin
if (StartDiv == 1) begin

if (x < NrStage) begin
case (x) // state machine for handing over the corresponding

// bits of the enumerator to the function in each stage
5’d0: Numerator2 = Numerator[DivDim-1:DivDim-DivDim/NrStage];
5’d1: Numerator2 = Numerator[DivDim-1-DivDim/NrStage:DivDim-

DivDim/NrStage*2];
5’d2: Numerator2 = Numerator[DivDim-1-DivDim/NrStage*2:DivDim-

DivDim/NrStage*3];
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5’d3: Numerator2 = Numerator[DivDim-1-DivDim/NrStage*3:DivDim-
DivDim/NrStage*4];

5’d4: Numerator2 = Numerator[DivDim-1-DivDim/NrStage*4:DivDim-
DivDim/NrStage*5];

// not used stages are commented
// 5’d5: Numerator2 = Numerator[DivDim-1-DivDim/NrStage*5:DivDim-

DivDim/NrStage*6];
// 5’d6: Numerator2 = Numerator[DivDim-1-DivDim/NrStage*6:DivDim-

DivDim/NrStage*7];
// 5’d7: Numerator2 = Numerator[DivDim-1-DivDim/NrStage*7:DivDim-

DivDim/NrStage*8];
// 5’d8: Numerator2 = Numerator[DivDim-1-DivDim/NrStage*8:DivDim-

DivDim/NrStage*9];
// 5’d9: Numerator2 = Numerator[DivDim-1-DivDim/NrStage*8:DivDim-

DivDim/NrStage*10];
default: Numerator2 = 0;

endcase
x <=#1 x+1; // switch to next stage
// save intermediate results in ResultTemp register and update
// Reminder

{ResultTemp,Reminder}<=#1 DIV(Numerator2, Divisor, Reminder,
ResultTemp);

// indicates the end of the Division if all stages are executed
if (x == NrStage-1) begin

DivEnd <=#1 1;
end
end

end

// Transfers the ResultTemp value to the output register and
// updating the last bit of the Result
if(DivEnd == 1 && StopDiv == 0) begin

ResultValid <=#1 1;
Result <=#1 ResultTemp;
Result[0] <=#1 (Reminder)>=Divisor;
x <=#1 0;
//DivEnd <=#1 0;
StopDiv <=#1 1;
Reminder <=#1 0;
ResultTemp <=#1 0;

end

// strobe indicating the end of the calculation
if (StopDiv == 1) begin

StopDiv <=#1 0;
DivEnd <=#1 0;

end

// strobe indicating that the Result is valid
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if (ResultValid == 1) begin
ResultValidEnd <=#1 1;
//ResultValid <=#1 0;

end

if (ResultValidEnd == 1) begin
ResultValidEnd <=#1 0;

ResultValid <=#1 0;
end

end // else if (reset==1) -> reset = 0
end // always @ (posedge Clock80 or posedge reset)

endmodule
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