
The medial axis of geometric objects

for various convex metrics

Doctoral Thesis
at

Graz University of Technology

submitted by

Wolfgang Aigner

August 2, 2011

Institute for Software Technology

Faculty of Computer Science,
Graz University of Technology

A-8010 Graz, Austria

Advisor: Dipl.-Ing. Dr.techn. Associate Prof. Oswin Aichholzer

Acknowledgements

I want to thank my family in general which always provided me a safe
haven when I felt the need to flee the big city of Graz, and my parents in
particular, who made my academic education possible in the first place
by supporting me (not only) financially.

No less I want to thank my dear Karin, who admittedly quit reading
through this thesis after the abstract (as if her logic and verification
mambo jambo was any more fun...), but still has been my most important
moral support during the last years.

From the academic point of view I probably owe the most part of my
progress to (what I call them off the record) the triumvirate of Compu-
tational Geometry. Thus I sincerely thank

Oswin Aichholzer for being my supervisor and adviser, who I could
rely on when it came to any difficulties whatsoever and who redefined
for me the notion of “networking”,

Franz Aurenhammer for luring me into the realm of CG, who was
always up for a good chat and a good beer and who writes papers as
thrilling to read as a spy novel,

and last but not least Bert Jüttler who supported me financially when
the roof was on fire, and creatively when things seemed so often hopeless.

For their valuable contributions I would also like to express my gratitude
to my other co-authors, namely (in no particular order) Thomas Hackl,
Nicola Wolpert, Günter Rote, Margot Rabl, Elisabeth Pilgerstorfer and
Katerina Čech Dobiášová.

Finally I owe many thanks to my colleagues and friends in Graz and Linz,
who were always available for questions, discussions and the occasional
after-work get-together, which is in my opinion the icing on the cake :)

i

Abstract

A geometric shape in the plane or in space is usually considered to be an open connected set
Ω ⊂ Rd for d = 2, 3, and there exist various ways to define and represent such an object.

A possibility for describing such a shape is by its boundary ∂Ω. This boundary can be
given in an exact way as a collection of algebraic curves and surfaces (e.g. piece-wise linear).
If no exact representation is possible, then approximations of ∂Ω can be considered, realized
by e.g. point representations. Shapes with piece-wise linear boundaries are called polygons in
the plane, and polyhedra in space. Especially in 2D, properties and structures (e.g. skeletal
structures) of such objects are well-known and efficient algorithms for computing them do
exist. But already by replacing the straight line components of such a polygon by circular
arcs we enter almost uncharted territory in many contexts. In 3D, even for simple boundary
representations the complexity of many applications (e.g. offset computation) is usually rather
high, also concerning algebraic issues.

For many of these problems a different representation of the shape is helpful: the medial axis
transform. The medial axis MA(Ω) of a shape Ω consists of the union of all centers of maximal
inscribed disks in the plane, and maximal inscribed spherical balls in space. The medial axis
transform MAT(Ω) associates with every point of MA(Ω) the radius of the corresponding
maximal disk (ball), and thus fully represents Ω.

On one hand we want to be able to compute the medial axis for a wide set of shapes, on
the other hand we want to reduce its complexity especially concerning the algebraic degree
of its primitives. Thus the two main tasks of this thesis are:

1. The set of shapes for medial axis computation in two dimensions are extended by allow-
ing circular boundary representations. For that matter we describe a divide-and-conquer
approach which allows efficient medial axis computation, and in the progress even offers
the possibility for Voronoi computation with respect to complex sites.

2. The difficulty of exact medial axis computation for triangulated solids in 3D is reduced
by introducing a piece-wise linear metric. The provided algorithm computes the medial
axis (which is also piece-wise linear) by its projections on the boundary contacts of the
shape.

The two approaches provide an exact medial axis of the respective class of shapes and allow
convenient trimmed offset computation. In both cases, the medial axis computation as well
as the offset computation are fully implemented.

Keywords: medial axis, Voronoi diagram, piece-wise linear, exact computation, offset com-
putation, divide and conquer, bisector computation, convex distance functions

ii

Zusammenfassung

Eine geometrische Form in der Ebene oder im Raum ist eine offene, zusammenhängende
Punktmenge Ω ⊂ Rd für d = 2, 3, und es gibt verschiedene Möglichkeiten ein solches Objekt
darzustellen.

Eine Möglichkeit um so eine Form zu beschreiben, ist ihr Rand ∂Ω. Dieser Rand kann
exakt als eine Menge von algebraischen Kurven und Oberflächen gegeben sein (z.B. stückweise
linear). Wenn keine exakte Darstellung möglich ist, dann können Annäherungen von ∂Ω be-
trachtet werden die z.B. durch Punktwolken realisiert werden können. Formen mit stückweise
linearem Rand werden in der Ebene Polygone genannt, und im Raum Polyeder. Speziell in
2D sind die Eigenschaften und Strukturen (z.B. das Skelett) solcher Objekte bekannt und
in der Regel existieren effiziente Algorithmen für deren Berechnung. Aber schon wenn man
die linearen Segmente durch Kreisbögen ersetzt betritt man in vielerlei Hinsicht Neuland. In
3D ist die Komplexität vieler Anwendungen (z.B Offsetberechnung) schon fuer sehr einfache
Randdarstellungen recht hoch, auch in algebraischer Hinsicht.

Für viele dieser Probleme ist eine alternative Darstellung einer geometrischen Form sehr
hilfreich: die Mittelachsen-Transformation. Die Mittelachse MA(Ω) einer Form Ω besteht
aus den Mittelpunkten aller maximal-eingeschriebenen Kreisscheiben in der Ebene, und aller
maximal-eingeschriebenen Bällen im Raum. Die Mittelachsen-Transformation MAT(Ω) as-
soziiert mit jedem Punkt von MA(Ω) den Radius der entsprechenden maximalen Scheibe
(bzw. des maximalen Balles), und stellt Ω daher vollständig dar.

Auf der einen Seite ist es unser Ziel die Mittelachse für eine möglichst große Menge an
Formen berechnen zu können, auf der anderen Seite wollen wir auch die Komplexität der
Berechnungen möglichst gering halten. Daher sind die zwei Hauptpunkte dieser Arbeit die
folgenden:

1. Die Menge der geometrischen Formen in der Ebene, für welche die exakte Mittelachse
berechnet werden kann, wird durch Objekte deren Ränder aus Kreisbögen bestehen
erweitert. Der entwickelte Divide-und-Conquer Algorithmus ist effizient, und kann auch
für die Berechnung von komplexen Voronoi-diagrammen erweitert werden.

2. Die Komplexität der Mittelachsen-Berechnung für Polyeder mit trianguliertem Rand in
3D wird durch das Verwenden von stückweise linearen Metriken reduziert. Der Algo-
rithmus berechnet die induzierte stückweis lineare Mittelachse über ihre Projektionen
auf dem Rand des Objektes.

Beide Algorithmen berechnen die exakte Mittelachse für die entsprechende Objekt-Klasse.
Außerdem sind beide einfach erweiterbar für Offset-Berechnung, was, zusätzlich zur eigent-
lichen Mittelachsenberechnung, auch implementiert wurde.

iii

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

Contents

Acknowledgements i

Abstract ii

Zusammenfassung iii

Statutory declaration iv

Table of contents v

1 Introduction 1
1.1 Contribution of this thesis . 3

1.1.1 Chapter 2: Free-from shapes in 2D . 3
1.1.2 Chapter 3: Piece-wise linear medial axis in 3D 5
1.1.3 Related publications . 6

1.2 General definitions . 7
Medial axis structure in two and three dimensions 8

2 Circular boundary representation 10
2.1 Preliminaries . 10

Biarc approximation . 10
2.2 Medial axis of simple shapes . 12

2.2.1 Divide step . 13
Base cases . 15

2.2.2 Termination arguments . 16
2.2.2.1 Preventing redundant cuts 16
2.2.2.2 Special geometric set-ups . 18
2.2.2.3 Local maximal curvature . 19

2.2.3 Conquer step . 19
Branching points . 20

2.2.4 Putting the pieces in place . 21
Expected runtime O(n log n) . 21

2.2.5 Implementation and examples . 22
2.2.5.1 Implementation with CGAL 22
2.2.5.2 Examples . 25

2.3 Voronoi diagram via medial axis . 30
2.3.1 Computation of medial axes with cycles 31

v

vi

2.3.1.1 Where to break the cycles . 31
2.3.1.2 Augmented domains . 32
2.3.1.3 How to break the cycles . 34
2.3.1.4 Computing the medial axis of AS 35

2.3.2 Practical Aspects . 35
2.4 Trimmed offset computation . 38

2.4.1 The base case set-up . 38
2.4.2 Medial axis-induced subshapes . 39

Monotonic subshapes . 39
2.4.3 Partial offset computation . 40

2.5 Exact computation for circular boundaries with rational coefficients 41
2.5.1 Rational circular arc boundary . 42
2.5.2 Exact construction of a maximal disk 43
2.5.3 Exact bisector computation . 43
2.5.4 Partial axis confinement . 46

Apollonius: tritangent circles . 47
2.5.5 Handling degeneracies . 50

2.6 Conclusion of Chapter 2 . 51

3 Piece-wise linear metrics 52
3.1 Preliminaries . 52

3.1.1 Piece-wise linear metric . 52
3.1.2 Contact types and classes . 54
3.1.3 MAB̃ in the plane . 56

Pseudo-branchings and jump edges . 56
3.1.4 MAB̃ in 3-space . 57

Pseudo-seams and jump sheets . 58
3.2 The medial axis of polygons . 60

3.2.1 Piece-wise and Euclidean medial axis 60
3.2.1.1 Jumps . 60
3.2.1.2 Implicit pruning . 61
3.2.1.3 Convergence . 63

3.2.2 Combinatorial size . 63
3.2.2.1 Reflex and convex features 64
3.2.2.2 An upper bound . 65

3.3 The medial axis of polyhedra . 68
3.3.1 Projections and arrangements . 68

3.3.1.1 Projections . 69
3.3.1.2 Contact arrangements . 69

3.3.2 Arrangement Computation . 72
3.3.2.1 Algorithm outline . 72
3.3.2.2 Constructing maximal∗ balls 73

3.3.2.2.1 AABB Trees . 74
3.3.2.2.2 Computing the contact domain 75
3.3.2.2.3 Contact domain for EE contacts 75
3.3.2.2.4 Contact domain for FV contacts 76

3.3.2.3 Finding projection lines . 77

vii

3.3.2.3.1 Different opposite contact classes 78
3.3.2.3.2 Equal opposite contact classes 79
3.3.2.3.3 Putting things together 81

3.3.2.4 Arrangement computation: the algorithm 81
Vertex-dependent jump projections 86

3.3.3 Assembling the medial axis and offset 88
3.3.3.1 Assembling the medial axis from its projections 88

Connectivity . 90
3.3.3.2 Assembling the offset from the medial axis 90

3.3.4 Implementation and Examples . 92
3.3.4.1 CGAL implementation details 92
3.3.4.2 Runtime examples . 94

3.4 Conclusion of Chapter 3 . 101

4 Summary and future work 103

Glossary 107

Bibliography 113

Curriculum Vitae 114

Chapter 1

Introduction

The description of geometric shapes and objects is an important topic in computational
geometry, and plays a central role in numerous areas of related fields such as robotics, solid
modeling and computer-aided design in general. Throughout this work a shape Ω is considered
to be a connected open set in Rd for d = 2, 3.

A common way to represent a shape Ω is via its boundary ∂Ω. Depending on the nature
of the shape, it is either possible to give an exact boundary representation (e.g. piece-wise
linear boundaries for polytopes or boundaries composed of more complex algebraic curves
and surfaces), or it has to be dealt with an approximation of the shapes contour. Such an
approximation may again be a piece-wise smooth structure (e.g. joint biarcs in the plane [52,
79] or meshes in space [18]), but also a description via point clouds [78] as resulting from 2D-
and 3D-acquisition devices.

In 1967, Blum [17] introduced the medial axis as a possibility for shape description. The
medial axis MA(Ω) of a shape Ω is the locus of points inside the shape being equidistant (with
respect to the Euclidean distance) from the contour of this shape. This is equivalent to the
locus of center points of maximal inscribed balls in Ω (see Figure 1.1). The set of all these
maximal inscribed balls is called medial axis transform or MAT(Ω). A more formal definition
is given in Section 1.2.

The union over all balls in the medial axis transform is a full representation of the shape,
while the medial axis is directly linked to the shapes boundary.

The usefulness of the medial axis transform as a shape descriptor shows itself in appli-
cations such as offset computation [15, 23, 60] and mesh generation [57, 56]. The tree-like
structure of the medial axis itself is commonly used for e.g. shape matching [31, 36] and
manipulation (animation) [20, 38] or motion planning [11, 12]. Almost every application
brings a different boundary representation to work with, requiring different approaches for
the computation of the medial axis.

For non-exact shape representations the proximity of the obtained medial axis approxima-
tion to the axis of the original shape is usually one of the main quality criteria. For boundary-
representing point samples it is a common approach to obtain a medial axis approximation
by considering a subset of the Voronoi diagram [8, 35]. However, like for polygonal approx-
imations of a shape, these approaches have to deal with a lot of unwanted artefacts which
require expensive pruning [14, 24]. The scale axis approach [54], processing shapes that are
represented by finite sets of balls, tries to achieve the pruning of unnecessary parts by care-

1

2

B

cB

∂Ω

MA(Ω)

Figure 1.1: The picture shows a shape represented by its boundary ∂Ω together with its medial
axis MA(Ω). The center cB of the maximal inscribed ball B lies on the medial axis.

ful scaling of these balls. This, however, can lead to the introduction of other topologically
incorrect fragments if not done with care.

For medial axis computation of a given exact shape boundary there exist two principal
problems that need to be addressed.

1. Determination of the combinatorial structure of the axis.

2. Computation of the bisectors.

The simpler the boundary representation, the easier these two tasks can be accomplished.
In 2D, algorithms for polygonal boundaries in [27, 61, 76, 86] are fast in general. Bisectors

in this case are line segments and parabolic curves. In space, bisectors of linear primitives are
quadric surfaces, the trisectors (being bisector intersections), are curves of algebraic degree
already up to 4 [48]. Even for piece-wise linear boundaries, exact medial axis computation
therefore requires complex algebraic algorithms [33].

Even in the plane, for curved boundaries, bisector computation is, due to numeric and
algebraic complexity (see [29] for a short overview of previous work), usually a hard problem.
Quite a lot of work has been devoted to this geometric aspect of the medial axis. See,
for example, [42] where focus lies on rational boundary curves, and [34] where curvature
properties are utilized for treating cubic boundary splines. A popular approach is local
tracing [30, 58], where the medial axis is calculated by tracing either the shape boundary
or the axis bisectors. In particular, so-called predictor/corrector methods [23, 34] have been
proposed for approximating the medial axis in a piecewise manner.

In addition to the problematic evaluation of the bisectors often comes the nontrivial de-
termination of the axis’ combinatorial structure. For curved boundary objects in the plane,

3

most theoretically fast algorithms compute the entire Voronoi diagram, and afterwards prune
away unwanted and incorrect features. Complicated merging, or insertion, steps have to be
performed, depending on whether the algorithm was based on divide-&-conquer [66, 86], or
on incremental insertion [10, 50, 51]. As such steps process previously computed parts of
the medial axis, they are numerically involved and subject to errors if not implemented with
care [49].

Many of the above-mentioned approaches are limited to the plane. Most of the imple-
mented algorithms in 3D are computing approximations of the medial axis for data that does
not fully represent the shape, as point samples [35] or sets of balls [6, 54]. In the case of
polyhedral objects, there exist numerical tracing techniques [19] (which have recently been
extended to objects with curved boundaries [59]) and methods based on spatial decomposi-
tions [47, 77].

While the above methods for polyhedral input have (to my knowledge) not been used in
practice and often only provide approximations of the medial axis, the algorithm described
in [33] is fully implemented and computes the algebraically exact medial axis of a polyhedron.
The problematic issue here is the complexity of the combinatorial structure for larger inputs
as well as the high algebraic degree of the axis primitives, resulting to some extent from the
Euclidean unit ball. Bisector computation by the use of more general distance functions [25,
67] or in particular polyhedral ones [26] has up to this point only been considered from a
more theoretical point of view.

1.1 Contribution of this thesis

This thesis contributes two principal approaches with rather different objectives to the field
of medial axis computation.

1.1.1 Chapter 2: Free-from shapes in 2D

Most of the approaches described above that deal with curved input are rather theoretical
work. A recent practical one in the plane has been the extension of the VRONI Voronoi
code [61] for points and line segments to circular arcs [62]. The program is fast with an
expected O(n log n) runtime, however the underlying algorithm is incremental insertion and
endpoints of the circular arcs have to be inserted prior to their defining objects. In addition
the computation of the medial axis of a smooth object with VRONI would require heavy
pruning at the joined points of the bounding arcs.

In Section 2.2 we will describe a divide-and-conquer approach for medial axis computation
of simple free-form shapes (represented by biarc approximations) in the plane (published
as [2]). By choosing an appropriate biarc approximation scheme [52, 80] the monotonicity of
curvature of the original shape as well as its basic topology can be preserved, which makes
the computed medial axis converge to the exact one. See Figure 1.2a and Figure 1.2b for a
demonstration of the advantages of a biarc approximation over a, e.g., polygonal one. As the
medial axis of a shape with piece-wise circular boundary is composed of conic arcs it has the
same analytic complexity as for polygonal domains.

The shape decomposition approach [28] is adopted to achieve simplicity and numerical
robustness of the algorithm. As decomposition is by maximal inscribed balls (disks in the
plane), it is naturally suited to shapes with piecewise circular boundaries. The resulting

4

(a) Polygon approximation (b) Biarc approximation

Figure 1.2: The calculation of the lion shape was done with 292 primitives in both cases. The
medial axis of the polygonal approximation contains numerous artefacts, while the medial axis
of the biarc boundary approximation is topologically correct.

randomized divide-and-conquer algorithm runs in expected time O(n log n) if mild assump-
tions on the graph diameter of the medial axis are met. A high-level description, including a
formal runtime and data volume analysis, and a proof of convergence (medial axis stability)
are given in [5]. The theoretical foundations being laid, we will concentrate on practical and
experimental aspects of the algorithm.

First, a careful description of the main medial axis algorithm is given, followed by en-
hancements ensuring robustness in the presence of geometric degeneracies. This includes
(but is not restricted to) the proper classification and treatment of base cases, in order to
establish correctness and to gain running speed, for both smooth and non-smooth circular
boundary spline inputs. At the end of this section implementation details, experimental data,
and selected examples are provided.

In Section 2.3, the class of shapes which can be processed for medial axis computation is
extended to domains with holes. By considering the free-form holes as sites, the concept is
conveniently adaptable to Voronoi computation (published as [1]). Up to this point, divide-
and-conquer for Voronoi computation has had much attention from a theoretical point of view,
but was no favorite for implementation, neither for point sites [65], nor for more complex
sites as lines segments, circles and circular arcs [37, 73, 83, 86]. Problems that may arise
include complicated merge steps and bisector intersection, as well as the resulting expensive
discarding and recomputing of parts of the diagram. An alternative strategy is incremental
insertion [74], which turns out to be nontrivial for general sites, as either the splitting into
simpler pieces [10], or the a priori insertion of reference data [62] becomes necessary. What
all these algorithms have in common is that the bisector curves take part in the computation,
which, already in the case of line segments, may be composed of up to 7 pieces, and may even
be two-dimensional if not defined carefully in the case of shared endpoints.

The approach proposed in Section 2.3 shifts the problematic part to the divide step, by
first extracting the combinatorial structure of the Voronoi diagram, and filling in the bisector
curves later on (if they are needed at all). The shape with holes (representing a domain and
Voronoi sites) is transformed into a so-called augmented domain, which is combinatorially
simply connected. This augmented domain has a combinatorially tree-like medial axis, and

5

(a) Medial axis (b) Trimmed offset

Figure 1.3: Piece-wise linear approximation of the Euclidean medial axis and trimmed offset for
a dragon mesh with 12, 000 faces, using a quasi-metric defined by a tetrahedral unit ball.

can as such be processed by the medial axis algorithm introduced in Section 2.2. This section
is completed by some experimental data on sites of varying complexities.

In Section 2.5 we discuss the possibility of algebraically correct computation of the medial
axis and Voronoi diagram, given some requirements on the circular arc boundary (Rational
Circular Arc Boundary). It is shown that on such an RCAB, the computation of the bisectors
as well as of the confining endpoints of the medial axis edges can be performed over the field
of Q with a small number of adjoint square-roots (published as [4]).

In Section 2.4 this chapter is concluded by describing an approach for trimmed offset
computation which takes advantage of the combinatorial representation of our medial axis
via base cases.

1.1.2 Chapter 3: Piece-wise linear medial axis in 3D

As already mentioned, exact medial axis computation for shapes in space is a topic that has
not attracted much attention so far. In fact [33] is to our knowledge the only implementation-
oriented work in this context. Problems that occur in this context are on one hand the complex
topological structure of the medial axis and on the other hand the high algebraic degree of
some axis primitives.

In the second main part of this thesis we present an approach that computes the exact
medial axis of a triangulated solid (i.e., a solid object whose boundary surface is a triangular
mesh) with respect to a piecewise linear quasi-metric δB̃ [85] induced by a convex polyhedral
unit ball B̃ (see also Minkowski functionals [70]) as introduced in [3]. While the use of
more general convex distance functions for bisector and Voronoi computation is no novelty in
theory [26, 67], these generalized distances have not been used much in practice so far, and
not for medial axis computations in particular. This is quite surprising, considering that for
given rational data (rational coordinates of mesh and unit ball vertices) the resulting linearity
of the structure allows all computations to be performed within the field of rational numbers.
We take advantage of this, providing a robust and stable implementation of the algorithm.
Practical results and details are collected in Section 3.3.4.

6

(a) Tower mesh (b) Simple unit ball (c) Large unit ball

Figure 1.4: Tower mesh and medial axis approximations with respect to two different polyhedral
unit balls (4 faces and 128 faces).

The quasi-metric δB̃ induces a piece-wise linear medial axis transform MATB̃(Ω), which
describes the shape Ω fully and exactly, see Figure 1.3a for an example. In order to deal
with the structural complexity of the medial axis in 3D, single components are computed via
their linear projections on the boundary contacts defined by components of special maximal∗

balls1 and the boundary of Ω (see also Section 3.3.1). In this way the problem of medial
axis construction in 3D is reduced to a number of two-dimensional problems, namely the
computation of so-called contact arrangements (see Section 3.3.2 for a detailed description of
the algorithm).

The use of polyhedral unit balls now does not only turn the resulting medial axis into a
piece-wise linear structure, but also permits interesting operations such as implicit pruning,
resulting in pseudo-seams which will be introduced in Section 3.1. This allows us to influence
the structure and complexity of the medial axis by varying combinatorial and geometrical
properties of the unit ball. Figure 1.4b and Figure 1.4c show how strongly axes may differ for
different polygonal unit balls. Also in Section 3.1 we will discuss the occurence of so-called
jump-edges (on the plane) and jump-sheets (in the 3D case), which require the definition
of maximal∗ balls in the first place. Furthermore, it is shown in Section 3.3.3 that the
representation via MATB̃(Ω) is very convenient to compute trimmed offsets with respect to
δB̃, see Figure 1.3b.

Finally in Section 3.2.1.3 the close relation between the medial axis MA(Ω) induced by
the Euclidean unit ball and MAB̃(Ω) induced by a piece-wise linear metric will be described.
This also identifies MAB̃(Ω) with respect to a piecewise linear metric δB̃ as an approximation
of the Euclidean medial axis, where the quality of the approximation depends on the chosen
unit ball B̃.

1.1.3 Related publications

The content of Section 2.2 is based on the ideas formulated in [7] and developed in [2].
The version in this thesis further elaborates many aspects of these two works and provides
additional example and runtime data.

1The notion of maximal∗ is explained in Definition 3.1.5 in Section 3.1.

7

In Section 2.3 and Section 2.4 relevant parts of the concepts formulated in [1] are picked
up and again complemented by enhanced examples.

Section 2.5 is based on [4]. Where appropriate, adaptions and extensions with regard to
contents and illustrations have been made.

The 2D part of Chapter 3 is almost completely original work. The 3D medial axis com-
putation algorithm treated in Section 3.3 is based on [3]. However, this thesis goes into
more detail, ties up possible loose ends and provides in general more information about the
structure. In addition a more extensive example study is provided.

1.2 General definitions

In this section we will provide some definitions which are relevant throughout the thesis. First
we define the set of shapes, for which a meaningful medial axis can be defined.

Definition 1.2.1. A shape Ω ⊂ Rd with d = 2, 3 is a connected open set. The boundary ∂Ω
is then the closure of Ω minus Ω itself.

This definition guarantees that a shape is full-dimensional, and contains no features of
lower dimension as e.g flat sheets in space.

Of most importance are of course the introduction of maximal inscribed balls and in
consequence of the medial axis.

Definition 1.2.2. Given a convex distance function δ and a central point O, the associated
unit ball B̃ ⊂ Rd is the convex open set of points p, for which

δ(O, p) < 1 .

A ball B is an arbitrarily translated and scaled copy of B̃.

This means that the form of a ball B is directly related to the underlying distance function.
If not mentioned otherwise, then it can be assumed that δ is the Euclidean distance, and thus
B is an Euclidean ball.

Definition 1.2.3. Given a shape Ω, a ball B ⊆ Ω is called maximal inscribed, if there does
not exist a ball B′ ⊆ Ω, B′ 6= B, which contains B. We denote the set of all maximal inscribed
balls with MAT(Ω) (medial axis transform of Ω).

Definition 1.2.4. A point that is shared by the boundary of a shape Ω and the boundary of
a maximal inscribed ball B is called a footpoint of B on ∂Ω.

Definition 1.2.5. Given a shape Ω, its medial axis MA(Ω) is defined as the locus of centers
cB of all maximal inscribed balls B in Ω:

MA(Ω) := {cB | B ∈ MAT(Ω)} .

The Hausdorff distance is a measure for the maximal devation between two sets in Rd.

Definition 1.2.6. For two sets X and Y in Rd the symmetric Hausdorff distance between
these two sets is defined as

HD(X, Y) = max(sup
x∈X

inf
y∈Y
‖x− y‖, sup

y∈Y
inf
x∈X
‖x− y‖) .

8

leaf point
branching

edge

(a) 2D structure

sheet

seam

junction

(b) 3D structure

Figure 1.5: The structure of the medial axis in two and three dimensions.

Definition 1.2.7. Let Ω be a shape in Rd, and B̃ be a unit ball in the same dimension. The
trimmed inner offset of Ω at distance % with respect to B̃ is defined as

Ω% = Ω \
⋃

x∈∂Ω

B(x, %)

where B(x, %) is a copy of the the unit ball centered at x and scaled by %.

Medial axis structure in two and three dimensions

The medial axis of a shape in the plane is a skeleton-like structure, composed of one-
dimensional components (bisector curves) that join at points of degree ≥ 3. The bisector
curves are also called edges, and their intersections branching points. For general shapes
with non-degenerate configuration, the branching points have degree 3, meaning that they
are defined by the joint of three axis edges and are thus center points of balls with three
footpoints.

For a simply connected shape, the medial axis in 2D is a tree. For this reason, points of
valency one are called leaf points of the medial axis (see Figure 1.5a)2. If the shape has holes,
then the resulting medial axis contains a cycle for every hole. For more details on pierced
shapes see Section 2.3.

In space, the medial axis of a shape is in general composed of two-dimensional components,
namely bisector surfaces (for special set-ups, as e.g. a cylinder, also one-dimensional parts
may occur). They are called sheets of the medial axis. Maximal inscribed balls centered on a
sheet induce two footpoints. For non-degenerate constellations, three sheets intersect in a one-
dimensional seam (trisectors3 which are composed of centers of balls with three footpoints),
and four seams intersect in a so-called junction point (see Figure 1.5b). A maximal ball
associated with a junction point has usually four footpoints.

2If the boundary of a shape is not tangent continuous at a point p and if this point induces a convex feature,
then an edge of the medial axis goes towards p. Note however that the point p itself is not part of the medial
axis in this case, as a maximal inscribed ball is an open set.

3Do not confuse with the notion of distance trisector curves as introduced in [13].

9

For shapes in space which have a connected boundary (note that this also includes objects
pierced by tunnels as e.g. a torus), the respective medial axis is also connected and does not
enclose any volumes. In this work we do not consider shapes with disconnected boundaries
as it occurs for objects which enclose empty bubbles (Swiss cheese model).

Chapter 2

Circular boundary representation

2.1 Preliminaries

In this chapter we only consider medial axis computation of shapes in the plane with respect
to the Euclidean distance function.

Given a shape Ω as defined in Definition 1.2.1 in R2, a maximal inscribed Euclidean ball
with respect to Ω as defined in Definition 1.2.3 is also called a maximal disk for the remainder
of this chapter.

Biarc approximation

Biarc approximation of free-form curves has been studied by many authors, see e.g. [52, 79] and
the references cited therein. As this is not the topic of this thesis, we will not go into detail here
and therefore only provide some basic information about this way of shape approximation.

A biarc is obtained by joining two circular arcs in a way such that they possess a common
unit tangent vector at their joint. By this means, smoothness on the boundary of a shape can
be maintained. In view of the medial axis computation the arcs and their joints are chosen
such that the curvature extrema of the given shape boundary are preserved. This suggests the
use of so-called spiral biarcs as introduced by [80], and allows arbitrary close approximation
by adaptive bisection (see [2]).

Observation 1. Consider a shape Ω in the plane with piece-wise smooth boundary ∂Ω. Then
for any ε > 0 there exists a spiral biarc approximation ∂Ω′ such that HD(∂Ω, ∂Ω′) < ε and
which preserves the curvature extrema of ∂Ω.

Given a sequence of approximating curves that converge to the (exact) boundary of a
given planar domain, the medial axes of the approximate domains do not necessarily con-
verge to the medial axis of the given domain (e.g. polygonal approximations, where each
convex vertex creates its own branch of the medial axis, see Figure 1.2a). However, since
the curvature maxima are preserved by the spiral biarc approximation, the number of leaves
of the approximate medial axis is equal to the number of leaves of the exact medial axis.
Moreover, we have geometric convergence as follows.

Assume that HD(∂Ω, ∂Ω′) < ε for a shape Ω and an approximation Ω′ of it. Then for any
p ∈ MA(Ω) which is sufficiently far away from the leaves (where the required distance tends
to zero as ε→ 0), it is possible to derive a bound on the distance dp to the nearest point on

10

11

MA(Ω′), namely,

dp ≤
4

1− cos(ξp/2)
· ε .

Here, ξp ∈ [0, π] is the maximum angle between any two rays that connect the center of
the maximal inscribed circle which is centered at p with any two of its tangency points.
Consequently, except for the vicinity of the leaves, the medial axis inherits the approximation
order of the boundary approximation by spiral biarcs.

Observation 2. Consider the boundary ∂Ω of a shape, and for any ε > 0 the spiral biarc
approximation ∂Ω′ with HD(∂Ω, ∂Ω′) < ε, then

MA(Ω′) ε→0−→ MA(Ω) .

If the medial axis of the original shape contains only branchings with valency three, then the
spiral biarc approximation preserves the topology of the axis, provided that the error of the
boundary approximation is sufficiently small.

For more details, proofs and algorithms of the above we refer to [2, 5]. For the remainder
of this chapter we will only consider shapes Ω with spiral biarc, or even more general, circular
arc representations.

Definition 2.1.1. For the remainder of this chapter we denote with Ω a simply connected
shape with a circular arc representation, meaning that ∂Ω consists of a finite set of circular
arcs (and possibly line segments). Furthermore, two neighbored arcs on the boundary are
considered to lie on different supporting circles, otherwise they are regarded as a single arc.

Definition 2.1.2. If all transitions between the arcs of ∂Ω are tangent continuous, then ∂Ω
is called a smooth or C1 boundary. Otherwise, a boundary that contains non-continuous arc
joints, defining either reflex or convex corners, is called a non-smooth or C0 boundary.

12

∂Ω

cD

D

(a) Maximal disk

∂Ω1

∂Ω2cD

cD

(b) Divide

MA(Ω1)

MA(Ω2)

cD

cD

(c) Compute axes

MA(Ω)

cD

(d) Conquer

Figure 2.1: If the shape Ω is decomposed via a maximal disk D, then the partial axes of the two
resulting subshapes Ω1 and Ω2 can be computed separately. The axis of Ω is the concatenation
of MA(Ω1) and MA(Ω2); shown here from left to right.

2.2 Medial axis of simple shapes

In this section we provide a description (and details of the implementation) of a randomized
divide-and-conquer algorithm which computes the exact medial axis of any simply connected
shape Ω with a circular arc representation. If the boundary ∂Ω consists of n arcs, then the
expected runtime is O(n log n) under the assumption that the graph diameter of the medial
axis is Θ(n). Even for shapes with heavily branched medial axes this only plays a role for
coarse biarc approximations.

Observation 3. The number of branching points of the medial axis is independent of the
input size n (the number of circular arcs on the boundary) which, in turn, grows arbitrarily
with the user-defined accuracy of the spiral biarc approximation.

The algorithm is based on the fact that decomposing a given shape with an inscribed
disk leaves two (or more) subdomains whose medial axes can be computed independently
(see Figure 2.1a to Figure 2.1d for illustration). This observation has first been made use of
in [28]. It holds for simply connected planar shapes of any form, and is particularly suited
for circular boundaries as this allows the convenient definition of very simple abort criteria
for the divide step.

In a nutshell, the algorithm proceeds as follows.

• Divide step: A random maximal disk is computed for a shape, and it is checked wether
the induced decomposition is progressive (see Definition 2.2.1). If this is not the case
then the disk is recomputed deterministically to fulfill this requirement. Each partial
shape is then treated recursively, until one of the base cases is reached, for which the
medial axis is calculated directly.

• Conquer step: Here only the computed medial axes of the partial shapes are concate-
nated as they fit together at the centers of the maximal disks, used during the divide
step.

By this means the expensive and critical computations are delegated to the divide step,
while in the conquer step, the subsolutions are simply glued together without the need of any
merging or adjustment operations. This reduces the effect of error accumulation, and keeps
numerical imprecision, if it occurs at all, locally restricted.

13

P
cD

a1

a2

ak

a

rk

rk

c

ck

c
′

k

l

l⊥

Figure 2.2: Constructing a maximal disk tangent to arc a at point P. The dashed disks induced
by a1 and a2 overlap other boundary arcs.

2.2.1 Divide step

The divide step carefully chooses a maximal disk D and splits the shape boundary into two
or more chains, depending on the number of footpoints (see Definition 1.2.4) of D.

Definition 2.2.1. A maximal disk is called dividing disk, if the boundaries of all partial
shapes that result from the induced decomposition are combinatorially smaller (consist of less
arcs) than the boundary of the intial shape. Otherwise it is called a non-dividing disk.

The resulting subshapes are completed with circular arcs which have ∂D as their support-
ing circle. As Ω is defined as the original complete shape, we will henceforth write Ω′ for an
arbitrary subshape of Ω.

Definition 2.2.2. Circular arcs on the boundary of subshapes, that have the boundary of
dividing disks as their supporting circles are called auxiliary arcs, while arcs that are part of
∂Ω are called original arcs.

Every maximal disk is, via its footpoints, uniquely assigned to two or more arcs on ∂Ω.
A possible way to pick a random maximal disk in Ω′ [5] is to choose a random original arc a
on ∂Ω′ and to construct the maximal disk whose center lies on the line through the center of
the supporting circle of a and a fixed point P on a (e.g., its midpoint). The resulting disk
then has P as one of its footpoints.

Given the set of arcs ai, i = 1 . . . n, that represent ∂Ω′, this is accomplished by iteratively
constructing disks that are tangent to a at the point P and to some other original arc ak

(for k starting at 1). If the resulting disk still intersects or overlaps an original arc al with
1 ≤ k ≤ l ≤ n, then a new disk (which is smaller than the preceding one) tangent to al is

14

computed, until a valid maximal disk D is obtained. For step by step details of the maxdisk
procedure see Algorithm 1).

Observation 4. An auxiliary arc lies on the boundary of a maximal disk and thus does
not contain a footpoint of any other maximal disk. Therefore only original arcs have to be
considered for the iterative construction of a new maximal disk in a partial shape.

As all n arcs of the boundary have to be checked, an O(n) time complexity for the
computation of a single maximal disk is obtained.

Algorithm 1 maxdisk(a,∂Ω′) computes a maximal disk in Ω′ tangent to a

1: procedure maxdisk(a,∂Ω′)
. choose footpoint on arc

2: if endpoint of a is reflex corner of Ω′ then
3: P ← reflex endpoint
4: else
5: P ← arbitrary inner point of a
6: end if

. iterative computation of the maximal disk
7: D ← disk with infinite radius tangent to a at P
8: n← number of arcs on ∂Ω′

9: for i = 1 . . . n do
10: ai ← ith arc of ∂Ω′

11: if a 6= ai ∧ ai is original ∧D ∩ ai 6= ∅ then
12: D ← disk tangent to a at P and tangent to ai

13: end if
14: end for
15: return D
16: end procedure

The central part of this calculation is the geometric construction of a disk which is tangent
to an arc a at a fixed point P, and which is arbitrarily tangent to another arc ak. See Figure 2.2
for an illustration. The point cD, which is the center of the desired maximal disk, is the matter
of interest. This point must lie on the line l through c, the center of the supporting circle of a,
and P. If you move from the point P a distance of length rk (the radius of ak) towards c,
you arrive at the point c′k. Together with ck (the center of the supporting circle of ak) and cD

this point forms an isosceles triangle. Let lb be the perpendicular bisector of ckc
′
k, then the

intersection of l⊥ and l gives the point cD. This construction can, with slight modificiations,
be applied to pairs of arcs in arbitrary position. When replacing the circular arc ak by a line
segment, the problem can be reduced to the intersection of the line l with an angle bisector
of the line perpendicular to l through P and the supporting line of the segment.

This disk construction is, together with intersection and overlap checks, the most frequent
and numerically most complex step in the entire medial axis algorithm. Thus the main atomic
operations are computing intersections of circles and lines.

15

(a) (b) (c) (d)

Figure 2.3: Base cases for C1 boundaries.

Base cases

We will now provide a classification and analysis of appropriate termination conditions for the
divide step. When considering a C1 boundary as precondition, then any shape bounded by
circular arcs and line segments can be decomposed into only four base cases; see Figure 2.3.

This is simply accomplished by dividing iteratively until the number of original arcs drops
below four. Let us argue that the cases in Figure 2.3 cover all possibilities. Observe first that
no consecutive auxiliary arcs may occur, because for smooth boundaries we construct every
maximal disk at an inner point of an arc a.

• All possible combinatorial constellations with 3 original arcs are covered in the cases
(a), (c), and (d), provided no consecutive auxiliary arcs are allowed.

• The combination shown in case (b) is the only one which may occur with 2 original
arcs. A base case with two consecutive original arcs, connected by an auxiliary arc
while guaranteeing smoothness at all vertices would require all arcs to be on the same
supporting circle, what is considered to be a degenerate case (see Definition 2.1.1).

• A base case with one original and one auxiliary arc would also require both arcs to be
on the same supporting circle. This is not a real base case, however, it can be used to
speed up the decomposition process as will be shown in Section 2.2.2.

If reflex and convex vertices on the boundary are allowed, then more attention has to be
paid to the choice of the point P to keep the number of arising base cases small. If a randomly
chosen arc a has some reflex endpoint, we do not choose its midpoint but rather the reflex
endpoint itself as P.

Furthermore the termination conditions have to be slightly extended. We keep on splitting
until all of the following criteria are satisfied:

1. The number of original arcs is ≤ 3.

2. There exists no original arc with a reflex vertex.

3. If three original arcs are consecutive then no convex vertex occurs.

16

(e) (f) (g) (h)

(i) (j) (k) (l) (m)

Figure 2.4: Additional base cases for C0 boundaries.

This results in nine additional possible base cases as shown in Figure 2.4. These new
cases cover all possible non-smooth varations of the cases (a), (b) and (c). Variations include
the turning of a smooth vertex into a convex one and the replacement of an isolated original
arc with a reflex vertex as induced by the termination criteria. The base case (d) has no
non-smooth derivatives because of splitting rule 3. Additionally, if we consider a reflex vertex
as an arc with length zero, we can maintain the observation that no consecutive auxiliary arcs
do occur. Together with the following analytic enumeration of the new base cases it is obvious
that the arguments concerning completeness of the smooth cases apply to the situation of a
C0 boundary as well.

• For smooth case (a) the joint vertex can become convex, the isolated original arc can
be exchanged by a reflex vertex, or both. These variations are covered by the cases (e),
(g), and (f) in Figure 2.4.

• The two variations of smooth case (b) are obtained by replacing either one or both
original arcs by reflex vertices. See case (h) and case (i) for a realization of this.

• The new base cases (j), (k), and (l) represent all possible combinatorial variations of
smooth case (c) caused by turning isolated original arcs into reflex vertices.

• Finally, the case (m) can be derived from the earlier mentioned, for smooth boundaries
degenerate, case of two consecutive original arcs and a single auxiliary one.

2.2.2 Termination arguments

2.2.2.1 Preventing redundant cuts

During the division process–especially when dealing with reflex boundary vertices–situations
may occur where a maximal disk obtained by the maxdisk algorithm is not a dividing disk
as defined in Definition 2.2.1 and thus fails to decompose the shape into partial shapes with
boundaries that are combinatorially smaller. As the property for the partial boundaries to
shrink is needed to assure a termination of the algorithm, such a situation may lead to an

17

a

a
′

a1

a2

P

D

(a) Non-dividing disk D

a

a
′

a1

a2

D
′

(b) Starting disk

a

a
′

a1

a2

D
∗

(c) Branching disk D∗

Figure 2.5: The disk D∗, tangent to three boundary arcs, is constructed by maxdisk∗ after
detection of a non-dividing maximal disk D.

a

a
′

P

D

D
∗

Figure 2.6: The algorithm maxdisk for the origi-
nal arc a finds the maximal but non-dividing disk
D which induces the redundant cut splitting into
a base case of type (b) and a subshape of the
same combinatorial size as the initial one. In the
smooth case, as here, the center of the disk D∗,
computed by maxdisk∗, does not have to be a
branching point of the medial axis.

infinite loop if a non-dividing disk is returned by maxdisk(a,∂Ω′) for unfavorable choice of a.
See Figure 2.5a for an example, where, even independent of the choice of a and P, the
constructed maximal disk D causes base cases of the form (h) to be cut away over and over
again. The other remaining subshape has the same number of arcs as the preceding one, and
so undergoes no combinatorial reduction.

These redundant cuts can be detected, and subsequently be avoided, by a more sophisti-
cated choice of the dividing disk. As a pleasing side effect, this choice will also handle the
intriguing case of multi-branching of the medial axis.

As soon as a non-dividing disk D, as shown in Figure 2.5a or Figure 2.6 is detected, a
new algorithm maxdisk∗ is invoked which computes a disk D∗ that is tangent to three arcs
on the shapes boundary instead of only two. Similar to the original algorithm maxdisk, the
procedure traverses all original boundary arcs ai. It checks, however, which of them is a
potential third tangent arc, as the first two are known to be the footarc a and the arc a′

chosen by the maxdisk algorithm holding the second footpoint of D.
A disk D′ induced by three arcs a, a′ and ai now has to satisfy two criteria to be the

sought-after dividing disk:

1. Consider the line defined by the two footpoints of the disk D on a and a′. Then the
center point of the disk D′ must lie on the side opposite to the auxiliary arc that connects
a and a′.

2. The disk D′ does not overlap any other boundary arc of Ω′.

18

cD∗

cD∗

cD∗

cD∗

cD∗

D∗

f1

f1
f1

f2

f2

f2

f3

f3

f3

f4

f4

f4

Figure 2.7: A degenerate case where four branches of the medial axis meet at a single point cD∗ .
The shape is decomposed into four subshapes. This situation is handled by maxdisk∗.

In the example depicted in Figure 2.5b, the disk D′ tangent to the three arcs a, a′, and a1 gets
constructed first, which satisfies criterion 1. It is thus a valid starting disk for the following
procedure: It is checked if this disk overlaps another arc of ∂Ω′ (here e.g. a2). The disk being
tangent to a, a′ and this very arc is constructed and assigned to D′. This is repeated until
the obtained disk does not overlap any other part of the shapes boundary, and the process
terminates with the desired dividing disk D∗. Note that by this means all intermediate disks
satisfy criterion 1. In Figure 2.5c each of the three resulting subshapes boundaries is lacking at
least one original arc, namely, one of the tangent primitives. Thus a reduction is guaranteed.

The situation depicted in Figure 2.6 also shows a choice of a and P which causes a non-
dividing disk. Here the center point of the valid dividing disk D∗ that gets computed by
maxdisk∗, however, is not a branching point of the medial axis. The reason for this is the
smooth transition between arc a′ and its neighbored original one.

Note also that in this, as in most cases, another choice of a and P might render the
application of maxdisk∗ unnecessary. The reason why this does not apply to the situation
as depicted in Figure 2.5a, is that zero-length arcs representing the reflex corners are not
suitable for maximal disk construction by maxdisk.

2.2.2.2 Special geometric set-ups

The maxdisk∗ algorithm also recognizes and handles multi-branchings, i.e., nodes of the
medial axis with valency four or more. If a valid branching point disk D∗ is tangent (or,
for the implementation, ε-tangent for a predefined small ε) to m ≥ 4 primitives, then such
a multiple branching point occurs. Every tangent arc defines a point of tangency for D∗ on
the shape boundary, and the shape is divided into m subshapes which are all joined together
at D∗. Figure 2.7 gives an illustration.

When several reflex vertices agglomerate in a relatively small area of a shape (perhaps
with no separating boundary parts) then another non-reducable case may occur: a subshape
consisting of an arbitrary number of auxiliary arcs, separated by arcs of zero length (as they
result from reflex boundary vertices). The medial axis of such a case is a subset of the standard
Voronoi diagram, with the zero length arcs as the defining points. With a construction very

19

Ω Ω1

Ω2

cD

cD

cD

D

a

a
′

Figure 2.8: The maximal disk found by maxdisk for an arc a which defines a locally maximal
curvature can be the supporting circle of a itself.

similar to the maxdisk∗ algorithm, these cases can be reduced to base cases of the form (l)
from Figure 2.4. Two zero-length arcs (points) neighboured on the subshape’s boundary are
fixed. A third zero-length arc is then determined in the iterative process, such that the disk
defined by these three points does not contain any other point. This disk is a valid maximal
disk, which is tangent to the boundary at three points.

2.2.2.3 Local maximal curvature

As said in Section 2.1, the spiral biarc approximation preserves the curvature extrema of the
original shape boundary. All leaves of the medial axis are defined by locally maximal curvature
regions of the boundary (locally convex features of the shape), but not every locally maximal
curvature does necessarily induce a leaf.

Observation 5. An arc a of the circular boundary representation ∂Ω defines a leaf of the
medial axis MA(Ω) if the disk bounded by its supporting circle is a subset of Ω.

See Figure 2.8, where the arc a represents a locally maximal curvature feature. If the arc
a′ would intersect ∂D, then no leaf point of the medial axis would occur here. As can be seen,
if such a leaf-point defining arc a is chosen for maxdisk, then the resulting maximal disk is the
one bounded by the supporting circle of a. To achieve a combinatorial reduction, the initial
shape is split up as shown in Figure 2.8, where the shape defining solely a leaf point of the
axis, is considered to be a base case. Note, however, that by choosing a and P differently, it is
always possible to represent a leaf point by a base case of the type (d) as shown in Figure 2.3.

2.2.3 Conquer step

In the conquer step, the (partial) medial axes of the base cases are computed directly, and then
are concatenated at centers of maximal disks whose boundary circles support the respective
artifical arcs. At this point, we know exactly which parts of the (global) medial axis correspond
to which parts of the boundary of the shape. As the shape boundary is piecewise circular, the
medial axis consists of conic arcs. Each such arc is assigned to two primitives on the boundary
where it is equidistant from. Possible primitives are circular arcs, line segments, and points
(boundary vertices). Different pairs of primitives result in different types of conics:

• Two circular arcs may define an elliptic or a hyperbolic arc, depending on the position
of the two supporting circles, and the orientation of the arcs on the boundary. See
Section 2.5 and [7] for a more detailed classification.

20

a1 a2

a3

c∗

g2
g1

D1

D2

(a)

a1

a2

a3

c∗

g1

g2

g3

D1

D2

D3

(b)

Figure 2.9: The medial axis of a case of type (g) and a case of type (c) in detail.

• A circular arc and a line always define a parabolic arc.

• A circular arc and a point define an elliptic arc if the point lies inside the arc’s supporting
disk, and a hyperbolic arc, otherwise.

• Two line segments define a straight line.

• A line segment and a point define a parabolic arc.

• Two points again define a straight line.

Let us give two examples for illustratory reasons. First consider a shape of the base case
type (g) with a labeling as in Figure 2.9a. The original arc a1 and the reflex point (or arc
of length zero) a3 define the conic arc g1. As the point a3 lies inside the supporting circle of
a1, the curve g1, leading from the center of D1 to the center c∗ of the disk being tangent to
all three non-auxiliary arcs on the boundary, is an elliptic arc. The same applies to the curve
g2, which is defined by a2 and a3, and goes from c∗ to the center of D2. Note that c∗ is not
a branching point of the medial axis, as there is a smooth transition between a1 and a2.

Next, consider a case of type (c) where a branching of the medial axis occurs (Figure 2.9b).
Curve g1 is an elliptic arc defined by a1 and a2. The curves g2 and g3 are parabolic arcs, as
one of the defining arcs (a3 in this case) is a line segment, respectively. The special feature of
this base case is the branching point c∗ which is the center of a tritangent maximal disk, and
at which all three aforementioned curves join. As said in Section 1.2, a branching point is a
point on the medial axis which is equidistant from at least three primitives on the boundary.
Its assigned maximal disk touches the boundary at more than two points. The positions of the
branching points are needed as endpoints for our conic arcs, and thus have to be computed
directly. In this example, the point c∗ has to be computed, that has the same distance to the
two arcs a1 and a2 and the line segment a3.

Branching points

If we consider a base case of type (c), with all possible combinations of circular arcs and line
segments and the possibility to replace arcs by (reflex) points, as in the base cases (j), (k),

21

and (l), we get ten possible combinations of three primitives. What we are looking for is
the disk that is simultaneously tangent to all three of them. This is a long-known geometric
issue, also known as the Apollonius problem, named after the ancient Greek geometer who
posed this classical problem. (discussed among others by [55, 75]). As up to eight circles may
satisfy the tangency conditions to the circles (lines) supporting the primitives, we have the
problem of singling out the unique valid disk that touches them at the right portion. This
task has been implemented for all triples of primitives, as this is needed in the computation
of all the branching points ocurring in the base cases (c), (e), (f), (j), (k), and (l). For more
details see Section 2.5 and [7].

2.2.4 Putting the pieces in place

By combining the procedures introduced above we obtain the main algorithm for the medial
axis computation, as lined out in Algorithm 2. Its input is the shape Ω, represented by its
piecewise circular boundary ∂Ω. The algorithm divides Ω recursively into partial shapes, until
they match any of the base cases introduced before. The choice of the disk (constructed by
maxdisk) which is used for the decomposition is random at first.1 If a non-dividing maximal
disk occurs, then a disk centered at a branching point is computed by the extended algorithm
maxdisk∗. If the state of a base case is reached, there are two possible ways to proceed:

• The medial axis of the base case is computed directly. It exclusively consists of conic
arcs. This is one of the benefits from the circular boundary representation. For alge-
braically exact computation of the arcs see Section 2.5.

• For certain applications, the curve equations of the axis segments may be of small
or no interest at all, as rather the topological or combinatorial structure is needed.
Through the use of base cases, which reveal various special features of the shape and its
medial axis (branching points, local curvature maxima, etc.), it is easy to derive useful
information on the axis without calculating the conic arcs right away. By storing the
combinatorics of all base cases, the exact medial axis can be computed at a later point,
and for any required part of the shape.

Expected runtime O(n log n)

The number of branching points of the medial axis of a circular boundary representation is
independent from the accuracy of the spiral biarc approximation and thus the number n of
approximating arcs. By this means, for large enough accuracy and n, the graph diameter of
the medial axis is Θ(n).

Corollary 1. If the boundary representation ∂Ω consists of n circular arcs, and the medial
axis MA(Ω) has a diameter of Θ(n), then medax(Ω) computes this medial axis in expected
O(n log n) time.

Under the assumption that the graph diameter of MA(Ω) is linear in n, the center point
of a random dividing disk computed by maxdisk(a,∂Ω) for a randomly chosen boundary arc

1Other approaches to achieve a more balanced decomposition as discussed in [5] give stronger theoretical
bounds and might prove useful on multi-processor architectures. However on single CPU architectures, using
solely random choices has turned out to be more efficient [7].

22

Algorithm 2 medax(Ω′) computes the medial axis of Ω′

1: procedure medax(Ω′)
. decide if shape is further decomposed

2: if Ω′ is base case then
3: compute medial axis of Ω′ directly
4: else
5: a← random original arc in ∂Ω′

6: D ← maxdisk(a, ∂Ω′)
7: if D is non-dividing disk with second footpoint on a′ then
8: D ← maxdisk∗(a, a′, ∂Ω′)
9: end if

10: k ← number of footpoints of D
11: split Ω′ into Ω′

1, . . . ,Ω
′
k

. recursive medial axis computation
12: for i = 1 . . . k do
13: medax(Ω′

i)
14: end for
15: end if
16: end procedure

a lies on the diameter with constant probability. Thus MA(Ω) is split at this center point
into two parts of expected size Θ(n). A randomized runtime of O(n log n) results.

On the other hand, if the diameter is rather small (Θ(log n) for a very ramified shape),
it is very likely that a randomly chosen arc induces a dividing disk, whose center lies rather
far from the center of the graph. This is also confirmed in the practical results provided in
Section 2.2.5.

2.2.5 Implementation and examples

2.2.5.1 Implementation with CGAL

The algorithm presented in the previous section has been implemented in C++ for matters
of performance and availability of supporting libraries. As many geometrical constructions
and checks are necessary during the course of the algorithm, the Computational Geometry
Algorithms Library (CGAL) [90] proved to be the most appropriate choice. CGAL is a
C++ package for combinatorial, algorithmic, and geometrical solutions with an emphasis on
flexibility, stability, exactness, and performance. It provides simple geometric calculations
as intersection, position, and distance checks, supports the visual output with simple GUIs
and visualization libraries as Qt [89], and also incoorporates useful packages of the Boost
library [87].

The main benefit of CGAL is, however, the possibility to choose between different kernels
(providing different number types) which satisfy the demanded requirements, and which may
be varied with minimal effort due to CGAL’s template architecture. The implementation of
the medial axis algorithm has been realized in two different versions:

1. To achieve an implementation as reliable as possible, the exact rational number type
Gmpq from the GNU Multiple Precision Arithmetic Library [91] has been chosen in the

23

first version. The main reason for this decision is the representation of a circle as an
algebraic quadratic equation in CGAL. An arbitrary point on a circle is a solution of
this equation, and thus has irrational coordinates, in general. As float numbers then
are necessarily imprecise, we seek rational points which exactly lie on a circle defined
by three rational points. It is known that such a circle has the following properties:

• The center of the circle has rational coordinates.

• Points with rational coordinates lie dense on the circle.

So it is possible to find a rational point as near to any point on a circle as desired. This
has been implemented in our program following the results from [21]. Due to the very
large integers needed in these calculations, the choice of an elaborate rational type as
Gmpq is inevitable for a reliable implementation.

2. If exactness is not the main issue (and, as observed in practical tests, the results do
often not decisively differ) then the use of a float number type results in faster runtimes.
A version of the program which uses explicitely double numbers has been implemented
for this purpose. As the statistical evaluation in Section 2.2.5.2 will show, the gain in
runtime is considerable, but computational inaccuracy may possibly result in incorrect
(though locally restricted) partial solutions.

Problems with the double implementation arise especially when dealing with very large
circles, which result from three almost collinear points defining an arc. Lines which are nearly
parallel also raise a problem, as the resulting intersection point can often not be properly
represented by a float type. If such situations occur, the double implementation reaches its
limitations, and locally incorrect sets of maximal disks are the outcome.

The implementation of the algorithms offer several features for the manipulation of both,
the input and the output. Using some of them is occasionally necessary to generate appro-
priate data, others can be seen as a possibility to experiment with the problem:

• As every considered boundary is a collection of arcs and line segments, and does not
consist of one single differentiable function, it does make sense to take a closer look
at the connecting vertices between two arcs. The spiral biarcs approximation generally
assures a smooth boundary, but as the representation is not totally exact, it makes sense
to introduce a small error constant. Via this constant it is decided whether a vertex
defines a (convex or reflex) corner of the shape, or if the shape is considered smooth in
the neighborhood of this vertex. The constant can be varied to fit the quality of the
used input data. The issue of an algebraically exact C1 circular arc boundary is dealt
with in Section 2.5.

• The output of the computed circular boundary representation and its medial axis is
realized in two different ways. On one hand, the Qt library from Trolltech [89] is used
for the visualization on screen, supporting various functions as translation and zoom.
On the other hand, it is possible to write the obtained medial axis directly to PostScript,
where the conic arcs are approximated either simply by line segments or by cubic Bézier
curves, which are more convenient for output in PostScript than conics.

24

• There exist various other possible modifications to tune the input or the ouput, as for
example the possibility to convert the input arcs into x-monotone arcs before processing,
or the use of a bound flag for the arc’s radii which causes arcs defined by almost collinear
points to be recognized as line segments (which makes sense to avoid numerical errors
especially when working with the double kernel).

In the following we report on the experimental behavior of the medax algorithm, and
display and interpret the produced output for selected examples. We will also include runtimes
for offset computation, which will be introduced in more detail in Section 2.4.

With growing approximation quality of the boundary, the computed medial axis converges
to the exact axis of the original shape. To rate the influence of the approximation accuracy
on the speed of the implementation, several different circular boundary representations of a
particular shape have been generated.

Every example is provided with a picture of the original free-form shape together with
its medial axis, as well as a detailed view (including an offset) of a smaller fraction. The
runtimes in the respective tables are given in seconds, for the different approximations of the
shapes. The column # arcs gives the number of boundary arcs of a single approximation.
For the double as well as for the Gmpq kernel, Divide shows the elapsed seconds for the
decomposition into the base cases, Conquer for the assembling of the base cases medial axes,
adding up to the values in the column total. For the double kernel also the time needed for
the computation of a trimmed offset (see Section 2.4), assuming a complete medial axis, is
given. All these values have been averaged over 10 runs.

The calculation of the coefficients for the equations of the conics building the medial axis
is included in the times given for the base case computation. It is interesting to see that the
amount of elapsed seconds grows in an almost linear fashion with regard to the number of
arcs. To emphasize this, the log-log graphs representing the runtimes for the two different
kernels are shown with linear reference functions for hypothetical runtimes of 50 µs, 200 µs,
5 ms and 15 ms per arc from the bottom up.

Note again that, by construction, the number of branching points of the medial axis stays
the same for all approximations, because the number of leaves is the same as for the original
free-form shape.

The configuration used for all tests is a 32 bit installation of Linux Debian on an Intel
Core 2 Quad Q9300 architecture2 with 8 GB RAM.3 As no parallel processing is implemented
yet, only one core is used so far.

2Note that this is a system different to the one used in [2], leading (mainly due to the change from 64 bit
to 32 bit for reasons of better comparability) to slightly higher runtimes.

3Memory consumption is not a real issue, as the space complexity is also expected O(n log n) for ∂Ω
composed of n arcs.

25

2.2.5.2 Examples

(a) Shape with axis (b) Detail with offset

Figure 2.10: Lion shape

double Gmpq
arcs Divide Conquer total Offset Divide Conquer total

284 0.03 0.00 0.03 0.01 1.58 0.10 1.68
732 0.07 0.01 0.07 0.02 4.43 0.21 4.64

1230 0.11 0.01 0.12 0.03 8.42 0.32 8.75
2656 0.24 0.03 0.27 0.06 18.53 0.62 19.15
5678 0.51 0.05 0.56 0.13 41.36 1.24 42.60

12044 1.20 0.08 1.28 0.28 95.80 2.54 98.34
25948 2.67 0.22 2.89 0.60 208.08 5.32 213.40
56150 6.13 0.47 6.60 1.31 466.70 11.12 477.83

 0.01

 0.1

 1

 10

 100

 1000

 1000 10000

ax
is

 c
om

pu
ta

tio
n

tim
e

in
 s

ec
s

Lion circular arc representation

Gmpq
double

linear slopes

The above table shows the computation
times in seconds, needed by the medial
axis algorithm for the Divide (decompo-
sition) and the Conquer (base case axis
computation) step, when processing dif-
ferent circular arc approximations of the
lion shape in Figure 2.10. The four dot-
ted lines in the associated log-log graph to
the left show linear reference functions for
hypothetical runtimes of 50 µs, 200 µs, 5
ms and 15 ms per arc from the bottom up.

26

(a) Shape with axis (b) Detail with offset

Figure 2.11: Hand shape

double Gmpq
arcs Divide Conquer total Offset Divide Conquer total

180 0.01 0.00 0.02 0.00 1.06 0.08 1.13
322 0.02 0.00 0.02 0.01 1.87 0.10 1.96
674 0.05 0.00 0.05 0.02 4.33 0.16 4.49

1460 0.11 0.01 0.12 0.04 9.83 0.33 10.16
3110 0.24 0.03 0.27 0.07 21.66 0.64 22.31
6616 0.58 0.04 0.62 0.15 48.54 1.23 49.77

14426 1.33 0.08 1.42 0.32 108.63 2.62 111.26
31138 3.11 0.18 3.29 0.69 254.70 5.39 260.10
66764 7.10 0.43 7.53 1.47 762.95 14.05 777.00

146116 16.46 0.92 17.38 3.21 1737.09 29.75 1766.84

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000

ax
is

 c
om

pu
ta

tio
n

tim
e

in
 s

ec
s

Hand circular arc representation

Gmpq
double

linear slopes

The hand shape of Figure 2.11 has a
smooth boundary, and its medial axis con-
tains rather few branching points. The
resulting good runtime behaviour is re-
flected in the graph by the proximity of
the two kernel runtimes to the respective
lower linear reference functions. The av-
erage recursion depth during decomposi-
tion is 24.4 for the combinatorially small-
est boundary and 53.8 for the largest one.

27

(a) Shape with axis (b) Detail with offset

Figure 2.12: Austria shape

double Gmpq
arcs Divide Conquer total Offset Divide Conquer total

838 0.14 0.02 0.15 0.02 9.01 0.42 9.43
1772 0.29 0.02 0.31 0.05 20.67 0.54 21.20
3564 0.63 0.03 0.66 0.09 45.97 0.93 46.90
7382 1.20 0.06 1.26 0.17 85.04 1.75 86.79

15614 2.50 0.13 2.64 0.35 183.31 3.33 186.63
33450 5.67 0.29 5.96 0.76 404.91 6.87 411.78
71876 10.88 0.57 11.45 1.61 867.09 14.25 881.34

154900 26.46 1.25 27.70 3.47 2011.97 29.24 2041.20
335122 57.85 2.61 60.46 7.49 3932.38 60.99 3993.37

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000

ax
is

 c
om

pu
ta

tio
n

tim
e

in
 s

ec
s

Austria circular arc representation

Gmpq
double

linear slopes

The axis of the Austria shape depicted
in Figure 2.12 is heavily branched and
its boundary contains numerous non-
smooth features. This bumpy bound-
ary also induces a rather high average
recursion depth of the decomposition
step for the different approximations
lying between 81.5 and 117.9. As can
be seen in the log-log plot this results
in a relative runtime that is worse than
for other examples.

28

(a) Shape with axis (b) Detail with offset

Figure 2.13: Snowflake shape

double Gmpq
arcs Divide Conquer total Offset Divide Conquer total

4950 0.61 0.03 0.63 0.12 55.36 1.78 57.13
9440 1.21 0.05 1.26 0.21 96.25 2.62 98.87

20132 2.59 0.13 2.72 0.43 216.14 4.46 220.61
43332 6.01 0.29 6.29 0.89 504.19 8.71 512.90
93224 12.76 0.60 13.36 1.90 1039.95 17.78 1057.73

201688 30.45 1.27 31.71 4.05 2301.31 36.10 2337.41
437616 67.37 2.81 70.17 8.79 5094.80 75.65 5170.45
948706 149.93 5.91 155.84 18.98 11573.27 156.40 11729.67

 1

 10

 100

 1000

 10000

 10000 100000 1e+06

ax
is

 c
om

pu
ta

tio
n

tim
e

in
 s

ec
s

Snow circular arc representation

Gmpq
double

linear slopes

The snow shape shown in Figure 2.13
has a medial axis similarly strongly
branched as the one from Figure 2.12.
However the smooth boundary of the
snow shape induces a better perfor-
mance of the algorithm and thus the
resulting relative runtimes are also
better than for the Austria shape as
can be compared by the relative po-
sitions to the reference slopes in the
according log-log plots.

29

(a) Shape with axis (b) Detail with offset

Figure 2.14: Tree shape

double Gmpq
arcs Divide Conquer total Offset Divide Conquer total

2096 0.26 0.02 0.28 0.06 24.75 1.11 25.86
3736 0.44 0.04 0.48 0.09 42.68 1.38 44.06
7840 1.02 0.06 1.08 0.17 94.04 2.20 96.24

16970 2.24 0.10 2.35 0.35 190.29 3.95 194.24
36674 5.08 0.23 5.31 0.74 455.62 7.69 463.31
78736 10.88 0.48 11.36 1.58 894.97 15.37 910.34

169418 25.87 1.07 26.94 3.37 2091.90 31.95 2123.85
364528 59.08 2.28 61.36 7.25 4693.75 65.83 4759.58
784972 122.97 4.91 127.87 15.61 9772.96 138.96 9911.92

 0.1

 1

 10

 100

 1000

 10000

 10000 100000 1e+06

ax
is

 c
om

pu
ta

tio
n

tim
e

in
 s

ec
s

Tree circular arc representation

Gmpq
double

linear slopes

The structure and thus also the runtime
behaviour of the medial axis algorithm for
the tree shape is similar to the one of the
snow shape from Figure 2.13. The aver-
age recursion depths of the decomposition
step for the different approximations lie
between 74.2 and 101.9. Considering that
the combinatorially largest boundary ap-
proximation has over 370 times more arcs
than the smallest one, this is a satisfacto-
rily small fluctuation.

30

2.3 Voronoi diagram via medial axis

In this section we will extend the class of shapes for medial axis computation to domains with
an arbitrary number of free-form holes (again represented by biarc boundaries).

Definition 2.3.1. Given a connected shape Ω in the plane, the set R2 \ Ω consists of ≥ 1
connected components, whereas exactly one component is unbounded. A bounded component
of R2 \Ω is a simply connected closed set h which is henceforth denoted as a hole of Ω. In a
set of holes H = {hi} for a shape Ω, all hi are pairwise disjoint topological disks of dimension
two (shapes), one (curves) or zero (points).

Let Γ be the outer part of the boundary of Ω which is not shared by a hole (the partial
boundary of the unbounded connected component of R2 \ Ω), then

∂Ω = Γ ∪
⋃
i

∂hi .

When considering the holes as Voronoi sites, the medial axis of the pierced shape can be
used to derive the edge graph of a generalized Voronoi diagram, which is defined as follows.

The sites are the pairwise disjoint holes, being topological disks of dimension two, one,
or zero in the Euclidean plane. That is, a site is either homeomorphic to a disk or to a line
segment, or is simply a point. This includes polygons, circular disks, and open spline curves
as sites. Here and throughout this section, let S denote the given set of sites, wheres H ⊂ S.
The distance of a point x to a site s ∈ S is

d(x, s) = min
y∈s
‖x− y‖ .

The Voronoi diagram, V (S), of S is then defined via its edge graph, GS , which is the set of
all points having more than one closest point on the union of all sites. As in our case the
sites are represented in a reasonable way (analytic curve pieces), this geometric graph is well
defined [28]. An edge of GS containing points equidistant from two or more different points
on the same site s is called a self-edge for s. The regions of V (S) are the maximal connected
subsets of the complement (of the closure) of GS in R2. They are topologically open sets.

Corollary 2. The regions of V (S) bijectively correspond to the sites in S. Each site is
contained in its region, and regions are simply connected.

Proof. Let x be a point in the region R of V (S). To x there exists a unique closest point, y,
on the union of the sites in S. (Otherwise, x would be a point on the edge graph GS .) The
sites are pairwise disjoint, so there is a unique site s ∈ S with y ∈ s. Site s is the same for all
x ∈ R, because d(x, s) is a continuous function of x. This maps regions to sites.

Now, obviously, with x also the closed line segment xy is part of R. This implies that R
is simply connected. In particular, we have y ∈ R, which implies s ⊂ R and maps sites to
regions.

We thus can talk of the region of a site, s, which will be denoted with R(s) in the sequel.
Henceforth the set of S will, beside the set of holes H, also contain the surrounding boundary
Γ of the pierced shape Ω. Then V (S) can be derived from the medial axis of a pierced shape
Ω as follows.

31

Γ

GS

hi
Figure 2.15: The edge graph GS of a Voronoi
graph taking the holes {hi} and the outer
boundary Γ of a shape as its sites. The
sites are topological disks of dimension 0
(points), 1 (curves) and 2 (regions) with cir-
cular boundary representations. Note that
the edge graph GS includes self-edges, de-
scribed by points which have two closest
points on the same site.

Observation 6. Let Ω be a shape pierced by the set of holes H, and with outer boundary Γ,
and let S = H∪{Γ} be a set of Voronoi sites, then MA(Ω) is equivalent to the closure of GS .4

All regions of V (S) are bounded, except, of course, the region R(Γ). Note that the outer
curve Γ can always be chosen in a way such that each vertex of V (S \ {Γ}) is also a vertex
of V (S).

The differences to a bisector-based definition of the Voronoi diagram should be noticed.
Self-edges are ignored in such a definition unless the sites are split into suitable pieces. Such
pieces, however, share boundaries—a fact that, if not treated with care, may give rise to
unpleasant phenomena like two-dimensional bisectors.

2.3.1 Computation of medial axes with cycles

2.3.1.1 Where to break the cycles

The medial axis algorithm introduced in Section 2.2 works only on simply connected shapes,
represented by one connected circular arc boundary. This is due to the fact that the medial
axis of a shape Ω with holes can not be decomposed into two partial axes at every point of
MA(Ω), as it contains cycles.

For this reason we intend to show that removal of certain points on the medial axis MA(Ω),
being equivalent to GS , breaks all its cycles. Finding such points is nontrivial, in view of the
possible presence of self-edges. For a site s 6= Γ, let p(s) be a point on s with smallest ordinate,
and denote with q(s) the closest point on GS vertically below p(s). By the boundedness of
R(s), the point q(s) always exists. Without loss of generality, it can be assumed that q(s) is
not an endpoint of any edge of GS ; this can always be achieved by rotating the coordinate
system slightly.

Lemma 1. For a set of sites S derived from a shape with holes as demonstrated in Observa-
tion 6, the geometric graph

TS = GS \ {q(s) | s ∈ S \ {Γ}}
4The reason why the closure of GS has to be considered lies in the possible existence of osculating maximal

inscribed disks for Ω. The centers of such disks, while belonging to MA(Ω), are not part of GS . This subtle
difference may be ignored for the purposes of this thesis.

32

A A0

D

D
1

D
2

u

v

MA(A) MA(A′

Figure 2.16: Domain A′ (right) obtained as the augmentation of a given domain A (left) with
a splitting maximal disk D. The medial axis (dashed) is split at the center of D.

is combinatorially a tree and thus cycle-free.

Proof. For each bounded region of V (S), the edge graph GS contains a unique elementary
cycle, because of the simple connectivity of regions (Corollary 2). For the same reason, the
set of cycles does not change if self-edges are ignored. Interrupting each elementary cycle at
a point vertically below its site leaves a geometric forest, because no path can continue below
any site. Moreover, as these points are assumed to lie in the interiors of edges of GS , each
point destroys only one elementary cycle. That is, a geometric tree is obtained.

It remains to show that, for each site s 6= Γ, the point q(s) ∈ Gs does not lie on a self-edge
for s. Recall that q(s) is equidistant from p(s) and from at least one other point, say y, on
the union of all the sites. The ordinate of y is smaller than the ordinate of p(s), because p(s)
lies vertically above q(s). Thus, assuming that such a point y stems from s, which has to be
the case if q(s) lies on a self-edge for s, contradicts the definition of p(s).

2.3.1.2 Augmented domains

The goal is now to combinatorially disconnect the shape Ω at appropriate positions, such that
the medial axis of the resulting domain corresponds to the tree decomposition TS of V (S)
as introduced in Lemma 1. As said (see [28]), a maximal inscribed disk can be used to split
the medial axis of a simply connected shape into two components which share a point at the
disk’s center. In order to extend this result to shapes with holes, the notion of an augmented
domain is introduced in a recursive manner as follows.

Definition 2.3.2. An augmented domain is a set A together with a projection πA : A → R2.
Initially, A is the original shape Ω, and the associated projection πΩ is the identity. Now,
consider a maximal disk D of an augmented domain A, which touches the boundary ∂A in
exactly two points u and v. Denote with

_
uv and

_
vu the two circular arcs which the boundary

of D is split into. The new augmented shape, A′, which is obtained from A by splitting it via
the maximal disk D, is defined as

A′ = A0 ∪D1 ∪D2

where A0 = {(x, 0) | x ∈ A \ D}, D1 = {(x, 1) | x ∈ D} and D2 = {(x, 2) | x ∈ D}. See
Figure 2.16 for an illustration. The associated projection is

πA′ : A′ → R2, (x, i) 7→ πA(x) .

We say that the line segment in A between points (x, i) and (y, j) is contained in A′ if one
of the following conditions is satisfied:

33

h1

h2

Figure 2.17: Oriented boundary of an augmented domain induced by two holes.

1. i = j and the line segment xy avoids ∂D,

2. {i, j} = {0, 1} and xy intersects the arc
_
uv, or

3. {i, j} = {0, 2} and xy intersects the arc
_
vu.

For any two points (x, i) and (y, j) in A′, their distance now can be defined. It equals the
distance of πA(x) and πA(y) in R2, provided the connecting line segment is contained in A′,
and is ∞, otherwise. An (open) disk in A′ with center (m, i) and radius % is the set of all
points in A′ whose distance to (m, i) is less than %. Such a disk is said to be inscribed in A′
if its projection into R2 is again an open disk.

Having specified inscribed disks for A′, the boundary of A′ and the medial axis (transform)
of A′ can be defined as in the case of planar shapes. In particular, ∂A′ derives from ∂A by
disconnecting the latter boundary at the contact points u and v of the splitting disk D,
and reconnecting it with the auxiliary circular arcs (see Definition 2.2.2)

_
uv and

_
vu. This

process is depicted schematically in Figure 2.17. Note that when ∂A′ is traversed in a fixed
orientation, the interior of A′ stays on a fixed side.

Concerning the medial axis, every maximal inscribed disk in A different from D cor-
responds to exactly one maximal inscribed disk in A′, hence there is a bijection between
MAT(A) \ {D} and MAT(A′) \ {D1, D2}. The medial axis of A′ therefore is the same geo-
metric graph as MA(A), except that the edge of MA(A) containing the center of D is split
into two disconnected edges which both have the center of D as one of their endpoints. These
two points are two leaves of MA(A′); consult Figure 2.16 again.

To draw the connection to the edge graph GS of V (S), the initial perforated shape Ω is
augmented with |S| − 1 maximal inscribed disks, namely, the ones centered at the points
q(s) ∈ GS (for all s 6= Γ), where q(s) was the vertical projection onto GS of a point with
smallest ordinate on the site s. Denote with AS the resulting domain after these |S| − 1
augmentation steps. The main finding of this section is concluded as follows.

34

Lemma 2. The tree TS from Lemma 1 is the medial axis of the augmented domain AS .

2.3.1.3 How to break the cycles

Using Lemma 2, the Voronoi diagram V (S) can be obtained by constructing the medial axis
of the augmented domain AS . The next aims are to show how to compute AS efficiently, and
how to construct its medial axis without the need of calculating distances between points in
AS directly.

Consider a planar perforated shape Ω whose augmentation has led to the augmented
domain AS . From the algorithmic point of view, augmenting Ω amounts to connecting its
boundary ∂Ω to a single cyclic sequence, ∂AS , that consists of pieces from ∂Ω and auxiliary
arcs from circles bounding the splitting maximal disks. (One-dimensional sites contribute
to ∂Ω with two curves, one for either orientation, and the special case of point sites can be
handled consistently.) Each such boundary piece is used exactly once on ∂AS , and traversing
∂AS corresponds to tracing the medial axis tree MA(AS) in preorder. See Figure 2.17, where
a shape having two planar sites h1 and h2 as its holes is augmented with two disks, and the
boundary of the resulting augmented domain is oriented for better visualization.

The construction of ∂AS is trivial once the splitting disks are available.5 The main task
is, therefore, to find these disks Di, one for each site (hole in the shape) hi ∈ S \ {Γ}. Recall
from Section 2.3.1.1 that Di is horizontally tangent to hi at a lowest point p(hi) of hi. The
center q(hi) of Di lies on the edge graph GS of V (S) but, of course, Di needs to be found
without knowledge of GS .

Indeed, a simple and efficient plane-sweep can be applied as follows. Sweep across S from
above to below with a horizontal line L. For a site hi, let xi be the abscissa of p(hi), and define
EL(i) = hi ∩L. Note that EL(i) may consist of more than one component. We maintain, for
each site hi whose point p(hi) has been swept over, the site hj where EL(j) is closest to xi

on L. The unique disk with north pole p(hi) and touching hj is computed, and the minimal
such disk for hi so far, DL(i), is updated if necessary. The abscissa xi is deactivated again
when DL(i) has been fully swept over by L.

Lemma 3. After completion of the sweep, DL(i) = Di holds for each site index i.

Proof. For a fixed index i, let hk be the site that defines the disk Di. We have to show
that EL(k) and xi become neighbors on L while xi is active. Consider a point t where Di

is tangent to hk. Then, because Di avoids all the sites, the line segment xit ⊂ Di does the
same. Thus EL(k) and xi are adjacent when L passes through t. Also, xi is active at this
moment, Di ⊂ DL(i) holds.

To keep small the number of neighbor pairs (xi, hj) on L processed during the plane sweep,
only pairs where no other active abscissa xm lies between xi and EL(j) are considered; the
disk DL(i) cannot have a contact beyond the one of DL(m), otherwise. The number of such
pairs is linear. Thus the construction can be implemented in O(n log n) time if the sites in S
are described by a total of n objects, each being managable in constant time. Note that ∂AS
then consists of Θ(n) pieces.

5As a possible degenerate case, a splitting disk may have more than two points of contact with the boundary
∂Ω. In that case, any two contact points on different components of ∂Ω may be chosen. The algorithm that
is described in the following automatically yields such a pair of points for each disk.

35

2.3.1.4 Computing the medial axis of AS

Given the description of an augmented domain A′ by its connected boundary (consisting of
original and auxiliary arcs), it can be split into subdomains with the same property using
maximal disks computed by maxdisk(a,∂A′) from Algorithm 1 for an arbitrary original arc
a of ∂A′.

Lemma 4. The algorithm maxdisk(a,∂AS) correctly computes a dividing disk D for AS at
an arbitrary point on the arc a.

Proof. From Section 2.3.1.2 we know that the set of maximal inscribed disks is the same for
AS and the perforated shape Ω, except for the (finitely many) disks Di taking part in the
augmentation. The assertion follows.

In other words, the distances to the sites which are needed in the medial axis computation
are the same in AS and in Ω. (This is, of course, not true for all possible distances.) Note
that the auxiliary arcs are used only to link the site segments in the correct cyclic order; they
do not play any geometric role (and do also not play a role for maxdisk).

The domain and its medial axis tree can again be split recursively, until the directly solv-
able base cases of the forms depicted in Figure 2.3 and Figure 2.4 remain. The decomposition
of the augmented domain AS is evoked by calling medax(AS) described in Algorithm 2.

2.3.2 Practical Aspects

As argumented in Section 2.2.4, the algorithm medax performs best on medial axes with
linear diameter and few branchings. In the case of Voronoi computation this corresponds
to scenarios where a small number of sites is represented by a large number of individual
objects (circular arcs in this case). The required accuracy for approximating the sites then
typically leads to an input size that is independent from the branching of MA(AS). The tests
in this context report small constants in the O(n log n) term in this case. The implementation
also shows favorable behaviour when compared to the demo package provided by CGAL for
Voronoi computation with polygonal sites (see [69]). See Table 2.1 and Figure 2.18, where
runtimes (averaged over 10 runs) for Voronoi computation of 40 sites with different input
sizes are shown. The atomic step is the intersection test of a site-describing circular arc and a
given disk, which is among the simplest imaginable tests when a closest-site Voronoi diagram
is to be computed by means of distance calculations.

The other extreme is the case of many sites respectively represented by a small constant
number of primitives. Here, by the way how AS is constructed, the diameter of MA(AS) will
be typically much smaller. In this case the runtime development of the relevant CGAL demo
program is (at least by trend) similar to the one of medax. In this worst case still a O(n

√
n)

behaviour of the algorithm can be guaranteed; see Table 2.2 and Figure 2.19.

36

medax(AS) CGAL
#arcs (n) seconds atomic steps ratio n log n seconds

1714 0.19 45283 2.46 3.41
2824 0.31 72663 2.24 7.47
5622 0.66 166955 2.38 22.47

11822 1.40 355721 2.22 84.31
25210 3.16 819843 2.22 359.26
54214 7.00 1813780 2.13 1793.53

116460 16.08 4205066 2.15 11547.91
250366 35.62 9292356 2.07 126064.00
537360 80.73 21327696 2.09 > 1 week

Table 2.1: Computation times for the Voronoi diagram of 40 complex sites with different input
sizes, the medax algorithm compared to an according CGAL demo package for polygons.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000

V
or

on
oi

 c
om

pu
ta

tio
n

tim
e

in
 s

ec
s

Voronoi for 40 complex sites

CGAL
medax

Figure 2.18: The medial axis of a shape with 40 holes. In grey the augmenting disks, which
break all cycles of the medial axis. To the right the log-log plot graph to Table 2.1.

37

medax(AS) CGAL
#sites #arcs (n) seconds atomic steps ratio n

√
n seconds

100 400 0.07 10036 1.25 1.12
500 2000 0.45 94163 1.05 6.02

1000 4000 0.99 228483 0.90 12.84
5000 20000 7.30 2017601 0.71 64.76

10000 40000 16.96 4891802 0.61 133.43
50000 200000 173.66 56629826 0.63 714.25

100000 400000 451.24 150649053 0.60 1429.26

Table 2.2: Computation times for the Voronoi diagram of very small sites with a constant
number of arcs. The time needed by the sweep line algorithm for the computation of the
augmenting disks is not included.

 0.01

 0.1

 1

 10

 100

 1000

 1000 10000 100000

V
or

on
oi

 c
om

pu
ta

tio
n

tim
e

in
 s

ec
s

Voronoi for many small sites

CGAL
medax

Figure 2.19: The main part of the Voronoi diagram for 500 small sites. In grey the augmenting
disks, which break the diagram into a tree-like structure. To the right the log-log plot graph to
Table 2.2.

38

(a) Inner offset (b) Outer offset

Figure 2.20: To the left inner offsets of the planar fleur-de-lis shape for different values of % as
defined in Definition 1.2.7. If the same shape is embedded into another shape as a hole then
also outer offsets can be obtained (to the right).

2.4 Trimmed offset computation

Offsetting is a fundamental operation for planar shapes, and it is needed frequently, e.g., in
computer-aided manufacturing [63, 43]. Several authors base their offsetting algorithms on
the Voronoi diagram or the medial axis [63, 32, 60, 23]. A piecewise-curvilinear representation
of the input shape is advantageous, because the class of such shapes is closed under offsetting
operations.

This means that for a shape Ω with circular boundary representation, the boundary ∂Ω%

of an offset shape (see Definition 1.2.7) consists of circular arcs again, which are offsets of the
circular arcs in ∂Ω. However, simply offsetting ∂Ω does not give ∂Ω%, since self-intersections
may be present. The medial axis MA(Ω) is used to trim away these self-intersecting parts.

2.4.1 The base case set-up

The subdivision into simple base cases (see Section 2.2.1), as resulting from the medial axis
computation of simply connected shapes in Section 2.2 as well as from the construction of
the Voronoi diagram of augmented domains in Section 2.3), is particularly well suited for the
task of offset computation, because it delivers the necessary combinatorial structure without
computing the edge graph explicitely.

As the structural information of the combinatorial medial axis is required for the trimming,
only the inner offsets of a base case can be obtained. This allows inner offset computation
for a given planar shape (see Figure 2.20a). For outer offsets, as shown in Figure 2.20b, a
shape Ω can be defined as a hole within a suitable topological disk covering the shape, thus
resulting in the inner offset of the complement of Ω.

39

Ω

∂Ω

Ωδ

∂Ωδ

B(x, δ)

l1
e2

e3

e4l5

e6

l7 Ω1

Ω1

Ω2

Ω2Ω3

Ω4

Ω5

Ω6

Ω7

Ωδ

2

⋆

⋆
⋆

⋆

(a) (b) (c) (d)

Figure 2.21: (a) Definition of the trimmed offset, (b) segmentation of the medial axis into edges
and leaf points (additional arc endpoints are marked with ?), (c) segmentation of the shape, (d)
offsets of subshapes.

Every edge of the medial axis corresponds (detected via the respective base case) to two
defining primitives (point or arc) on the boundary of the original shape Ω (see Section 2.2.3).
Every leaf point of the axis is assigned to a single arc on the boundary which defines a local
curvature maximum (see Observation 5). The general idea is now, to find partial offset curves
for every edge and leaf point of the medial axis, which, concatenated, give the complete
trimmed offset.

2.4.2 Medial axis-induced subshapes

In Section 2 during the divide step, the idea was to find, via the boundary of the shape, a
decomposition into simple base cases, which allow the computation of the medial axis. Now,
I want to use the computed medial axis, to find a decomposition of the initial shape into
subshapes which allows convenient offset computation.

The medial axis of a circular boundary representation consists of conic segments ei. For
every edge (or leaf) ei of the medial axis MA(Ω) we define a subshape Ωi as follows.

Definition 2.4.1. Let ei be an edge or a leaf point of the medial axis MA(Ω). Let Di be the
set of all maximal disks D centered on ei, and for a maximal disk D let FD be the set of all
footpoints of D on ∂Ω. Then the subshape Ωi ⊆ Ω, induced by ei, is defined as the union over
all segments, connecting the center cD of a maximal disk with one of its footpoints, namely

Ωi =
⋃

D∈Di

 ⋃
f∈FD

cDf

 .

For an illustration of the above definition see Figure 2.21 (b) and (c).

Monotonic subshapes

A subshape Ωi is said to be monotonic if the radii of the maximal disks of Ω with centers on
ei have no inner extrema. The extremal radii rmin, rmax are then realized at the boundaries.
Depending on the position (with respect to Ωi) of the line L spanned by the centers of the

40

⋆
⋆

⋆

⋆

⋆

⋆

⋆

⋆

(a) (b) (c) (d)

a
1

i a
1

i
a

1

i

a
1

i

a
2

i

a
2

ia
2

i
a

2

i

c
1

i

c
1

i

c
1

i

c
1

i

c
2

i

c
2

i

c
2

i

c
2

i

Figure 2.22: Splitting subshapes into monotonic pieces at the points marked with ?. The centers
of the arcs a1

i , a
2
i span the dashed lines.

supporting circles of the arcs a1
i , a2

i , the radii have no, one, or two extrema.6 The subshapes
associated with leaves are already monotonic. Note that for splitting into monotonic sub-
shapes we simply intersect a1

i , a2
i with the line L, rather than computing the bisector of these

arcs; see Figure 2.22.

2.4.3 Partial offset computation

The offsetting is done separately for each monotonic subshape. If % < rmin, then the offsets
of the arcs at distance % are fully contained in ∂Ω%. For rmin ≤ % ≤ rmax, the offset arcs
are trimmed at their intersection; see Figure 2.21 (d), bottom. Finally, if rmax < %, then the
subshape does not contribute to ∂Ω% (Figure 2.21 (d), top for a subshape defined by a leaf).

The implementation shows that offset computations require only little additional time
after the medial axis construction; the tables for the examples Figure 2.10 to Figure 2.14 give
several examples. The total time thus will not increase much in applications where many
different offset layers are needed.

6If one of the arcs is a line segment, then L is the unequivocal line through the center of the supporting
circle of the circular arc, perpendicular to the supporting line of the line segment. If both arcs are linear, then
the subshape is always monotonic.

41

2.5 Exact computation for circular boundaries with rational
coefficients

The Divide-&-Conquer approach presented in Section 2.2 has some minor drawbacks concern-
ing exactness. This mainly results from the biarc construction of the boundary (as described
in [2]), which provides theoretical smoothness, that is however not representable by usual float
or rational number types. Further on, degenerate branching points of the medial axis cannot
be detected exactly but have to be found with help of a proximity argument, as mentioned
in Section 2.2.2.2.

In particular, the correct representation of the medial axis curve is a challenging task if the
boundary input data does not comply with certain (numerical or algebraic) quality criteria
as being rational representable or providing algebraically smooth joints between arcs.

An important part of most medial axis algorithms is the bisector computation. This
problem has been approached for various types of rational curves, but mostly relying on
machine arithmetic as in [41, 42].

In this section, the goal is to compute the algebraically correct medial axis. Thus, it has
to be coped with exact bisector computation of (arc-supporting) circles. For this purpose
we require all arcs on the boundary, that are involved in the bisector computation, to be
rational. Arcs which do not directly contribute to the medial axis, but describe a local
curvature maximum (see Observation 5) and thus merely a leaf-point of the axis, are allowed
to be rational square-root expressions (rasqex).

Definition 2.5.1. Integers are rasqex. If x and y are rasqex, so are x + y, x− y, x · y, x/y
and
√

x.

The number type rasqex has exact comparison operators =, <, and >, realized in LEDA
[22, 81] or the Core library [39, 40]. Actually, these two packages are able to represent
arbitrary k-th root numbers, what is more than we need. For our purposes the FieldWithSqrt
concept, which is part of the algebraic kernel provided by the CGAL library [64], is sufficient.

Several details of the algorithm, e.g. bisector and tritangent circle computation, are similar
to those needed for the construction of an Apollonius diagram, as examined extensively in
the work of Emiris and Karavelas [44]. They show that the operations allowed in the rasqex
number type are sufficient to compute all predicates. Similar efforts have been made for
ellipses and even more general smooth convex sites [45, 46].

Beside the similarities there are serveral additional aspects which have to be taken into
account for the algebraically exact medial axis construction.

• The medial axis contains parts from the underlying bisectors different from the ones
needed for the Apollonius diagram.

• In this work not an incremental approach as in [44] is pursued, but a Divide-&-Conquer
algorithm is used. It is not obvious that all required steps therein can be accomplished
with rasqex numbers.

• As opposed to the Apollonius diagram, medial axis computation does in general not
deal with single sites and complete circles, but one closed curve (in this case composed
of circular arcs) representing a planar shape.

42

Concerning the last point, we consider, for matters of clarity, only circular boundaries
without line segments. The extension to boundaries with linear components would require an
extension of the cases that may occur for bisector computation as well as for the Apollonius
problem. To allow exact computation the boundary has to fulfill some additional criteria
(discussed in Section 2.5.1), which qualifies it as a Rational Circular Arc Boundary or RCAB.

Given a RCAB, decomposition is done mainly as in the medax procedure (Algorithm 2),
with only minor modifications of maximal disk construction, see Section 2.5.2.

For bisector computation in the conquer step, it is shown that these bisectors are algebraic
curves of degree 4 over the rational numbers Q, which can be expressed as the product of two
quadratic polynomials (conics) over a simple extension field of Q, see Section 2.5.2.

Finally in Section 2.5.4 the center points of auxiliary arcs (Section 2.5.2) and branching
points (Section 2.5.4) are used to isolate relevant parts of the conic curves which contribute
to the medial axis, completing the conquer-part of the algorithm.

2.5.1 Rational circular arc boundary

A circular boundary representation is defined in a form, that allows exact bisector and medial
axis construction. This requires some definitions, starting with rational circles. Let Q denote
the set of rational numbers.

Definition 2.5.2. For a circle C with center c the following definitions are equivalent:

C is a rational circle ⇐⇒ c ∈ Q2 and ∃u ∈ C : u ∈ Q2

⇐⇒ ∃u, v, w ∈ Q2 : u, v, w ∈ C .

Note that the squared radius of a rational circle is rational. It is also well-known that on
a rational circle C points with rational coordinates are lying dense (see [82]). This means
that near an arbitrary point p on C and for any ε > 0 one can find a rational point in an
ε-environment around p, that lies on C. We say that an arc is rational, if its supporting circle
and its two endpoints are rational. By extending to rasqex numbers, we can now define rasqex
circles as a superset of rational circles.

Definition 2.5.3. For a circle C with center c and squared radius r the following definitions
are equivalent:

C is a rasqex circle ⇐⇒ c and r are rasqex .

An arc is rasqex, if its supporting circle and its two endpoints are rasqex. A rational
circle is always a rasqex one, but not vice versa. For the C1-boundary representation we want
to rely on rational circles as much as possible. The demands are only softened by allowing
rasqex arcs whenever they are not directly contributing to bisector calculation. This is true
for arcs which describe a local curvature maximum, as such a maximum always defines a
leaf-point of the medial axis. This means that such an arc does not contribute to any bisector
computation later on, however its center point is eventually required for point location as
shown in Section 2.5.4).

Definition 2.5.4. Consider a circular arc boundary representation ∂Ω. An arc that consti-
tutes a local curvature maximum, and thus a leaf point of the medial axis, has to be at least
rasqex. If all other arcs are rational, then we call ∂Ω a Rational Circular Arc Boundary
(RCAB).

43

The reason why these special arcs only have to be rasqex lies in the fact that the support-
ing circles of these arcs are not directly participating in bisector computation, but are only
required for confining the relevant parts.

2.5.2 Exact construction of a maximal disk

The construction of a dividing maximal disk has to be done with care, to take advantage
of the properties of rational arcs. The centers of the maximal disks (providing the auxiliary
arcs) play an important role, as they are required to lie exactly on the bisector curves for
segment confinement. A general maximal disk has two contact points on ∂Ω, which lie on
two different arcs of the RCAB.

We will now give details about the construction of a maximal disk with the required
algebraic properties in comparison to the maxdisk procedure introduced in Section 2.2.1 and
the details illustrated in Figure 2.2.

It is started by choosing a random arc a on the boundary, which is not allowed to be a
local curvature maximum. As ∂Ω is a RCAB, a is rational and thus a rational point P as
close to an arbitrary point on a as is seen fit can be chosen. See [21] for a detailed algorithm
and implementation on how to choose such a point. For every arc ak 6= a of ∂Ω we construct
the disk that touches a at P and is tangent to ak (see Figure 2.2), as usual. The arc holding
the second footpoint of the sought-after maximal disk D again has to be a rational one. The
RCAB now guarantees certain algebraic properties of D. As the point c as well as P are
rational, so is the line l. The radius rk as shown in Figure 2.2 (being the square-root of the
r from Definition 2.5.3) is not rational in general, as a consequence so isn’t c′k. However,
c′k ∈ Q(rk)2. Therefore also the point of intersection between l and l′, being the center of D,
is in this extension field.

Corollary 3. Consider a maximal disk D of a RCAB. Let D be tangent to the two arcs ap

and aq, lying on the rational circles Cp and Cq with squared radii rp and rq respectively. If
the footpoint of D on ap has rational coordinates, then

cD ∈ Q(
√

rq)2 .

Values in Q(√rq) can be represented exactly by the rasqex numbers, which makes later
point location on the bisector curves convenient (see Section 2.5.4). Furthermore, note that
the (rasqex) auxiliary arcs, stemming from the (rasqex) boundary circle of a maximal dividing
disks, always describe a local curvature maximum of a partial boundary ∂Ωi. This is coherent
with Definition 2.5.4.

2.5.3 Exact bisector computation

We next show how to compute the bisector between two rational arcs in an algebraic way,
avoiding any numerical errors.7 It will be shown that the whole computation can be done
over the field of rational numbers with only a few adjoint square-roots. Let Cp and Cq be
the supporting circles of the two arcs with centers cp = (xp, yp) and cq = (xq, yq) and squared
radii rp and rq, respectively:

7Note that a reflex point (if bisector-defining) can be regarded as a circle with radius zero for all computa-
tions in this section.

44

Cp(x, y) := (x− xp)2 + (y − yp)2 − rp

Cq(x, y) := (x− xq)2 + (y − yq)2 − rq .

As before, we assume cp, cq ∈ Q2 and rp, rq ∈ Q.

Definition 2.5.5. The bisector curve between the two circles Cp and Cq consists of all points
(x, y) in the plane for which∣∣|(x, y)− cp| ±

√
rp

∣∣ =
∣∣|(x, y)− cq| ±

√
rq

∣∣
Lemma 5. The bisector curve of the two circles Cp and Cq factors into two curves B1(x, y) =
0 and B2(x, y) = 0 where

B1(x, y) = (d2
1 + d2

2 − r2)2 − 4d2
1d

2
2 ∈ Q(

√
rprq)[x, y]

B2(x, y) = (d2
1 + d2

2 − r̃2)2 − 4d2
1d

2
2 ∈ Q(

√
rprq)[x, y]

with d1 := d1(x, y) := |(x, y) − cp|, d2 := d2(x, y) := |(x, y) − cq|, r := √rp −
√

rq and
r̃ := √rp +√rq.

Proof. For the bisector-curve there exist two cases:

Case 1



{
d1 +√rp = d2 +√rq ∨ d1 −

√
rp = d2 −

√
rq

∨ d1 +√rp = −d2 +√rq ∨ d1 −
√

rp = −d2 −
√

rq

⇐⇒
{

d1 − d2 = −r ∨ d1 − d2 = r
∨ d1 + d2 = −r ∨ d1 + d2 = r

| 2

⇐⇒ d2
1 + d2

2 − r2 = 2d1d2 ∨ d2
1 + d2

2 − r2 = − 2d1d2 | 2

⇐⇒ (d2
1 + d2

2 − r2)2 = 4d2
1d

2
2

This is exactly the equation for B1(x, y) = 0. Similar for B2(x, y) = 0:

Case 2


{

d1 +√rp = −d2 −
√

rq ∨ d1 −
√

rp = −d2 +√rq

∨ d1 +√rp = d2 −
√

rq ∨ d1 −
√

rp = d2 +√rq

⇐⇒ (d2
1 + d2

2 − r̃2)2 = 4d2
1d

2
2

Since d2
1, d

2
2 ∈ Q[x, y], r̃2 = (√rp +√rq)2 = rp + 2√rprq + rq ∈ Q(√rprq), and r2 = (√rp −√

rq)2 = rp − 2√rprq + rq ∈ Q(√rprq), it follows that B1(x, y), B2(x, y) ∈ Q(√rprq)[x, y].

From now on B1 and B2 denote the curves described by B1(x, y) = 0 and B2(x, y) = 0
respectively. This allows us to prove the following well-known fact in a convenient way:

Lemma 6. B1 and B2 in Lemma 5 are conics, i.e. planar curves of degree two.

Proof. It suffices to prove that B1 and B2 are conics when the centers of the circles Cp and
Cq are x-axis aligned and lie symmetrically on both sides of the y-axis:

Cp(x, y) := (x + d)2 + y2 − rp, Cq(x, y) := (x− d)2 + y2 − rq .

45

This is no restriction because every pair of circles with d being half the distance between their
two center points can be moved to this position by rotation and translation. B1 and B2 are
then subject to the same transformation which does not change their degrees.

For Cp and Cq being in this special position it is

d2
1 = d2

1(x, y) = | (x, y)− cp |2 = | (x, y)− (−d, 0) |2 = (x + d)2 + y2

d2
2 = d2

2(x, y) = | (x, y)− cq |2 = | (x, y)− (d, 0) |2 = (x− d)2 + y2 .

This yields for the two cases

Case 1


(d2

1 + d2
2 − r2)2 = 4d2

1d
2
2

⇐⇒ (x2 + d2 + y2 − r2

2)2 = ((x + d)2 + y2)((x− d)2 + y2)

⇐⇒ 0 = 4x2d2 − x2r2 − d2r2 − y2r2 + r4

4

This is the quadratic equation for B1.

Case 2

{
(d2

1 + d2
2 − r̃2)2 = 4d2

1d
2
2

⇐⇒ 0 = 4x2d2 − x2r̃2 − d2r̃2 − y2r̃2 + r̃4

4

This is the quadratic equation for B2.

Altogether Lemma 5 and Lemma 6 lead up to the main result:

Theorem 1. The bisector of the two circles Cp and Cq in our original coordinate system
factors into two conics over the field Q(√rprq) which is in rasqex.

Corollary 4. Each of B1 and B2 is either a hyperbola or an ellipse or a pair of identical
lines.8

Proof. Looking further at the equations for B1 and B2 in the special case where the center-
points are x-axis aligned we first observe that B1 and B2 are the two conics

B1(x, y) := bx2 − ay2 − ab, B2(x, y) := b̃x2 − ãy2 − ãb̃

with

a =
(√rp −

√
rq)2

4
=

r2

4
, b = d2 − a = d2 − r2

4
and

ã =
(√rp +√rq)2

4
=

r̃2

4
, b̃ = d2 − ã = d2 − r̃2

4
.

First consider B1. If rp = rq we have a = 0, b = d2 and B1(x, y) = d2x2 consists of two
identical lines along the y-axis. If rp 6= rq it is true that a > 0 and

b > 0 ⇔ d2 >
r2

4
⇔ 4d2 > (

√
rp −

√
rq)2 ⇔ 2d > |√rp −

√
rq| .

That means,
8For concentrical circles Cp and Cq the ellipse degenerates to a circle. For circles with infinite radius (to

represent e.g. linear segments) also parabolas would occur.

46

• if 2d > |√rp −
√

rq|, then b > 0 and B1 is an hyperbola,

• if 2d = |√rp−
√

rq|, then b = 0 and B1(x, y) = −ay2 consists of two identical lines along
the x-axis,

• if 2d < |√rp −
√

rq|, then b < 0 and B1 is an ellipse.

For B2 we always have ã > 0 and

b̃ > 0 ⇔ d2 >
r̃2

4
⇔ 4d2 > (

√
rp +

√
rq)2 ⇔ 2d >

√
rp +

√
rq .

• The two circles Cp and Cq do not intersect iff 2d >
√

rp +√rq. In this case b̃ > 0 and
B2 is a hyperbola.

• Cp and Cq touch tangentially iff 2d = √rp +√rq. Then B2(x, y) = −ãy2 consists of two
identical lines along the x-axis.

• Cp and Cq intersect iff 2d <
√

rp +√rq. In this case b̃ < 0 and B2 is an ellipse.

2.5.4 Partial axis confinement

In order to compute and represent the medial axis of the exact circular arc boundary it must
be possible to analyze a bisector-conic over the extension field Q(√rprq). This means that
in a so called one-curve analysis a bisector-conic B, described by B(x, y) ∈ Q(√rprq)[x, y],
is divided into x-monotone arcs. This is not difficult and works analogously to the one-curve
analysis of a conic over Q described in [16]. The bisector-conic B is split at its x-extreme
points, that are points where B(x, y) and the partial derivative B(x, y)y = ∂B(x,y)

∂y vanish
simultaneously. If the bisector-conic consists of a pair of identical lines, we make the defining
polynomial square-free. Now every resulting x-monotone arc can be represented by a tuple
([le, ri], nr), where le and ri are the x-coordinates of the left and right endpoint, respectively.
Since le and ri are roots of quadratic polynomials over Q(√rprq)[x], they can be represented
by rasqex numbers. The branch number nr is either 0 or 1 and indicates which of the two
x-monotone arcs of the curve above the x-interval [le, ri] is meant.

As mentioned in Section 2.5.2, point-location is an important issue. For a given point
t = (tx, ty), the coordinates of which are rasqex, the x-monotone arc of B1 or B2 it lies on has
to be determined. First of all it is checked whether t lies on B1 or B2 by testing

B1(tx, ty) = 0 or B2(tx, ty) = 0 . (2.1)

Since all the numbers in B1(tx, ty) and B2(tx, ty) are rasqex numbers, the exact test for zero
can be realized by using the equality operator of the rasqex numbers. Assume that p lies on
B1. The <-operator of the rasqex numbers is used to determine the two x-monotone arcs of
B1 for which

le ≤ tx ≤ ri . (2.2)

The last step is to determine whether t lies on the upper or lower branch, i.e., algebraically
whether ty is the greater or smaller root of the polynomial B1(tx, y). Since B1(tx, y) is a

47

τ1

τ2

τ3
τ4

(a) Limiting points

t1

t2

Cp

Cq

Cs

(b) Tritangent disks

Figure 2.23: (a) Different types of points used for conic curve confinement, (b) two disks with
center t1 and t2 tritangent to Cp, Cq and Cs.

quadratic polynomial the coefficients of which are rasqex, its two roots r1 and r2 can be
computed symbolically by introducing a new square-root. Now it has to be checked whether

ty − r1 = 0 or ty − r2 = 0 . (2.3)

Again this can be done by using rasqex numbers. Notice that in cases where locally around t
neither the second bisector-conic nor the second arc pass by and all x-extreme points are far
away, the three steps for point-location can be sped up by using isolating intervals for tx and
ty and evaluating the expressions in (2.1), (2.2) and (2.3) with interval arithmetic, if desired.

The medial axis of a circular boundary representation is computed as the union of bisector-
conic segments. Each conic segment is limited by center points of maximal disks. Maximal
disks of interest in this context are of four different forms, as illustrated in Figure 2.23a.

τ1 : A convex point on ∂Ω (inducing a maximal disk with radius zero) confines a conic curve
of the axis. Such a point is always a joint between two arcs, and thus rasqex.

τ2 : The bounding circle of a limiting maximal disk may support an arc on the boundary
which defines a local curvature maximum. From Definition 2.5.4 it can be assumed that
such a point is rasqex.

τ3 : Center points of maximal disks which induce auxiliary arcs during the decomposition
process are needed to confine axis curves. In Section 2.5.2 it is guaranteed that these
points are rasqex.

τ4 : Center points of tritangent disks are used for point location and subsequent confinement
as well.

In the following section it is shown, that also center points of maximal disks with more
than two points of tangency have rasqex coordinates, if ∂Ω is a RCAB.

Apollonius: tritangent circles

As said in the above section, points of type τ4, being the branching points of the medial axis,
are needed for the confinement of axis curves. The intention is to show that these points are
rasqex, if the supporting circles of the defining arcs are rational.

48

Cp

Cq

Cs

t1

t2t
Cp

1

t
Cp

2

t
Cq

1

t
Cq

2

t
Cs

1

t
Cs

2

(a) Φ(ti) ∈ {(0, 0, 0), (1, 1, 1)}

Cp

Cq

Cs

t1

t2t
Cp

1

t
Cp

2

t
Cq

1

t
Cq

2

t
Cs

1

t
Cs

2

(b) Φ(ti) ∈ {(0, 0, 1), (1, 0, 0)}

Cp

Cq

Cs

t1

t2

t
Cp

1

t
Cp

2

t
Cq

1

t
Cq

2

t
Cs

1
t
Cs

2

(c) Φ(ti) ∈ {(1, 0, 0), (0, 1, 1)}

Cp

Cq

Cst1

t2

t
Cp

1

t
Cp

2

t
Cq

1

t
Cq

2

t
Cs

1

t
Cs

2

(d) Φ(ti) ∈ {(1, 0, 1), (0, 1, 0)}

Figure 2.24: Three fixed circles Cp, Cq and Cs with all eight possible circles, that are tangent to
the former three. If the segment defined by the two points ti and t

Cj

i overlaps the disk bounded
by the circle Cj then the tritangent disk with center ti is called inner tangent to Cj , otherwise
outer tangent.

It suffices to consider tritangent maximal disks, as any branching point of higher valency
is defined by at least three rational arcs. A bisector curve between two rational circles is an
algebraic curve of degree 4, and the branching point is one of the intersection points where
all three bisectors between three circles meet.

There are two variations how a point on a bisector-curve may describe tangency at its
footpoint on a defining circle.

Definition 2.5.6. Consider a bisector-curve B and one of its two defining circles C. For a
point t ∈ B let tC be its unequivocal footpoint on C and ΓC the open region bounded by C.
Then the function ϕ(t, C) is defined on B as follows:

ϕ(t, C) =

{
0 if t tC ∩ ΓC = ∅
1 otherwise

If ϕ(t, C) is 0 then the circle with center t and radius t tC is called outer tangent to C,
otherwise inner tangent.

As proved in Section 2.5.3 every bisector B consists of two conic curves, B1 and B2. By

49

construction, the points on these two conics have certain properties concerning the function
ϕ which are investigated next.

Lemma 7. Consider the bisector B consisting of the two bisector-conics B1 and B2 and its
two defining circles Cp and Cq, then

∀t ∈ B1 : (ϕ(t, Cp), ϕ(t, Cq)) ∈ {(0, 0), (1, 1)}
∀t ∈ B2 : (ϕ(t, Cp), ϕ(t, Cq)) ∈ {(0, 1), (1, 0)} .

Proof. As derived in the proof of Lemma 5, for every point t on B1 it holds that

|t− cp|+
√

rp = |t− cq|+
√

rq ∨ |t− cp| −
√

rp = |t− cq| −
√

rq

∨ |t− cp|+
√

rp = −|t− cq|+
√

rq ∨ |t− cp| −
√

rp = −|t− cq| −
√

rq .

This leads to

ϕ(t, Cp) = 1 ∧ ϕ(t, Cq) = 1 ∨ ϕ(t, Cp) = 0 ∧ ϕ(t, Cq) = 0
∨ ϕ(t, Cp) = 1 ∧ ϕ(t, Cq) = 1 ∨ ϕ(t, Cp) = 1 ∧ ϕ(t, Cq) = 1 .

For every point t on B2 it is

|t− cp|+
√

rp = −|t− cq| −
√

rq ∨ |t− cp| −
√

rp = −|t− cq|+
√

rq

∨ |t− cp|+
√

rp = |t− cq| −
√

rq ∨ |t− cp| −
√

rp = |t− cq|+
√

rq .

This leads to

undefined ∨ ϕ(t, Cp) = 0/1 ∧ ϕ(t, Cq) = 1/0
∨ ϕ(t, Cp) = 1 ∧ ϕ(t, Cq) = 0 ∨ ϕ(t, Cp) = 0 ∧ ϕ(t, Cq) = 1 .

Of interest is the situation where three rational circles Cp, Cq and Cs are given. They define
three bisectors: B

′
between Cp and Cq, B

′′
between Cq and Cs and B

′′′
between Cp and Cs.

A branching point t∗, being the center of a tritangent circle, lies on all three bisectors and so
ϕ(t∗, C) is well defined for C ∈ Cp, Cq, Cs. Let

Φ(t∗) := (ϕ(t∗, Cp), ϕ(t∗, Cq), ϕ(t∗, Cs)) . (2.4)

Observation 7. Depending on which bisector-conics intersect in a branching point t∗, it can
be distinguished between four different sets of contact tuples (see Figure 2.24 for illustration).
For all other possible combinations of three bisector-conics a common intersection point is
impossible.

t∗ ∈ B
′
1 ∩B

′′
1 ∩B

′′′
1 ⇒ Φ(t∗) ∈ {(0, 0, 0), (1, 1, 1)} (2.5)

t∗ ∈ B
′
1 ∩B

′′
2 ∩B

′′′
2 ⇒ Φ(t∗) ∈ {(0, 0, 1), (1, 1, 0)} (2.6)

t∗ ∈ B
′
2 ∩B

′′
1 ∩B

′′′
2 ⇒ Φ(t∗) ∈ {(1, 0, 0), (0, 1, 1)} (2.7)

t∗ ∈ B
′
2 ∩B

′′
2 ∩B

′′′
1 ⇒ Φ(t∗) ∈ {(1, 0, 1), (0, 1, 0)} (2.8)

50

For example, considering case (2.5), if t∗ ∈ B
′
1 ∩ B

′′
1 ∩ B

′′′
1 , then due to Lemma 7 it holds

that

(ϕ(t∗, Cp), ϕ(t∗, Cq)) ∈ {(0, 0), (1, 1)}
∧ (ϕ(t∗, Cq), ϕ(t∗, Cs)) ∈ {(0, 0), (1, 1)}
∧ (ϕ(t∗, Cp), ϕ(t∗, Cs)) ∈ {(0, 0), (1, 1)} .

This is only true if ϕ(t∗, Cp) = ϕ(t∗, Cq) = ϕ(t∗, Cs) = 0 or ϕ(t∗, Cp) = ϕ(t∗, Cq) = ϕ(t∗, Cs) =
1. The other cases work analogously.

The construction of all possible circles that are tangent to three given circles is a much
discussed topic, with various possible ways of solution (see e.g. [75]). There exist at most 8
different circles that are tangent to three circles in the plane (see Figure 2.24).9 The Gergonne
construction, named after french mathematician Joseph Diaz Gergonne, is based on inverse
geometry and uses so-called lines of similitude. For three circles in general position, there
exist 4 lines of similitude. Each line induces at most 2 tritangent circles, which can both
together be assigned to one specific case (2.5) to (2.8) from Observation 7. Note however,
that e.g. for case (2.7) there may be two solutions of the form (1, 0, 0) and none for (0, 1, 1)
(see Figure 2.23b for an example).

Altogether this means that constellations of three bisector-conics as shown in Observa-
tion 7 have at most two common intersection points. The x-coordinates of the intersection
points of two of the three conics are roots of a degree four polynomial P1 (which can be de-
rived by a resultant computation). For another pair of conics we obtain another polynomial
P2. We now isolate the common x-components by computing the greatest common divisor
P ′ = gcd(P1, P2). As at most two common solutions may exist, P ′ is a quadratic polyno-
mial. Its roots can be represented exactly by rasqex numbers.10 The same way the possibly
two y-coordinates can be computed. This shows that the coordinates of the center points of
tritangent circles can be represented as rasqex numbers and we get 2 · 2 = 4 candidates for
them.

2.5.5 Handling degeneracies

In the general approach a maximal disk that is tangent to more than three boundary arcs
cannot be detected accurately, but is instantiated so to speak on spec if a ε-proximity criterion
is satisfied (Section 2.2.2.2).

Granted algebraic correctness such degenerate cases can be detected more easily. When
arriving during decomposition at a partial shape, whose boundary is an alternating sequence
of auxiliary and original arcs, then all bisectors between original arcs that are only separated
by a single auxiliary arc are computed. If all these bisectors intersect in one single point
then a degenerate case has occured. Computation is based on the principle introduced in
Section 2.5.4, meaning that again rasqex numbers are sufficient for exact calculation. This
elegant and intuitive handling of branching points with valency > 3 is one of the main
advantages of the algebraically correct approach to medial axis computation.

9The classical Apollonius problem deals with three sites in a more general form, namely points, lines and
circles. Points can be interpreted as circles with zero radius, for lines more case studies are necessary.

10In the special case where P1 and P2 have more than two common roots due to covertical intersection points,
we shear the coordinate system, compute the center points of the tritangent circles in the sheared system and
transform the result back to the original coordinate system.

51

Figure 2.25: The axis and offsets of
this figure, as of all other examples
up to this point, that depict complete
shapes have been computed with the
algorithms described in the previous
sections.

The Firefox logo R© is a registered
trademark of Mozilla R© [88].

2.6 Conclusion of Chapter 2

In Section 2.2 we provide the theory and construction details for an efficient and stable
implementation of a medial axis algorithm for planar, simply connected free-form shapes.
To our knowledge this is the first implementation that runs fast in practice and, combined
with a biarc approximation of increasing accuracy, converges to the exact medial axis of the
input shape. The program can compete with current state-of-the-art implementations on this
field with regard to correctness, speed, and reliability. The basic idea was using a piecewise
circular boundary conversion, which allows for appropriate feature preservation of the shape,
as well as for a simple and fast medial axis algorithm. Expected runtime for a shape with
increasing input value n of boundary arcs is O(n log n), a worst-case runtime of n

√
n can

always be guaranteed.
In Section 2.3 this algorithm is extended for shapes with arbitrary holes, which can be

adapted for Voronoi computation of very general sites which are allowed to be topological
disks of dimension zero, one and two. While classical Voronoi algorithms are in general fast on
small sites, the merits of Voronoi computation via a medial axis construction reveal themselves
when dealing with fewer sites, represented by a high number of boundary primitives. The
performance is favorable when compared to other algorithms (e.g. the relevant demo CGAL
package [69]) in this context.

The applicability of a circular boundary as well as the representation of the shape and its
medial axis via simple base cases for trimmed offset computation is explored in Section 2.4.
Not only is the described approach very intuitive and simple, but also performs, given that
the medial axis is already computed, very fast (linear in the number of edges of the axis).

Finally, in Section 2.5, the algebraically exact computation of the medial axis is explained
for boundaries essentially composed of rational arcs (RCAB). It is shown that all necessary
computations can be performed over the field of rational numbers with a small number of
adjoint square-roots. The defined rasqex number type can be realized in existing libraries as
LEDA [81] and the Core library [39] (supported by e.g. CGAL [90]), and so also the exact
computation recommends itself for implementation.

Chapter 3

Piece-wise linear metrics

3.1 Preliminaries

In this chapter we will discuss medial axis computation for shapes with piecewise linear
boundaries with respect to piece-wise linear metrics. The main focus will be on shapes
in space, bounded by triangular meshes, for which an algorithm and its implementation is
described.

Definition 3.1.1. Throughout this chapter a shape Ω ⊂ Rd for d = 2, 3 is considered to
have a boundary ∂Ω which is piece-wise linear and triangulated. This means it consists of
edges, vertices, and triangular facets (the latter ones only for d = 3), which we shall denote
as components of this boundary. We shall refer to such a shape Ω as a triangulated solid.

3.1.1 Piece-wise linear metric

In this section we will provide the basic setup of the underlying metric spaces.

Definition 3.1.2. Consider a distance function δ. If the induced unit ball, as defined in
Definition 1.2.2, is a polytope then we call δ a piece-wise linear distance function.

The other way around, this allows us to derive a distance function from a d-polytope,
which defines a special type of metric, called quasi-metric [85].

Definition 3.1.3. A distance function δ defines a quasi-metric if it is positive definite and
fulfills the triangle inequality, but is not necessarily symmetric.

Definition 3.1.4. Let B̃ be a bounded, open and convex polytope in Rd which contains the
origin O. By assuming B̃ to be a unit ball, a distance function induced by B̃ for any two
points x, y ∈ Rd can be defined as follows: Let r be the ray from x through y and B the unit
ball B̃ translated by

−→
Ox. There exists a unique intersection point v of ∂B and r. Then the

distance function

δB̃(x, y) :=
‖y − x‖
‖v − x‖

(3.1)

defines a quasi-metric.1

1If B̃ is centrally symmetric with respect to the origin O, then δB̃ is a metric.

52

53

B

cB

∂Ω

MAB(Ω)

Figure 3.1: The picture shows a shape with its piece-wise linear boundary ∂Ω together with
the medial axis MAB̃(Ω) (the dashed lines represent jump edges) induced by a piece-wise linear
quasi-metric. The maximal∗ ball B is a translated and scaled copy of a polygonal unit ball B̃,
and cB the corresponding copy of the origin O.

For the remainder of this chapter, if not mentioned otherwise, O is considered to lie on
the center of mass defined by the set of vertices v1, · · · , vk on ∂B̃:

O =
1
k
·

k∑
i=1

vi .

Furthermore we shall assume that no edge or facet of ∂B̃ is parallel to any edge or facet
of ∂Ω, or in other words, that Ω is in general position with respect to B̃. In space we also
assume that ∂B̃ contains only triangular facets.

As introduced in Definition 1.2.2, the convex point set B = B(x, ρ) is obtained from B̃

by applying restricted Euclidean similarity transformations consisting of a translation
−→
Ox

combined with a scaling by the factor ρ. These convex sets represent balls with respect to
the quasi-metric induced by B̃, since they consist of all points whose distance (with respect
to δB̃) from x does not exceed the scaling factor ρ.

In addition and as an alternative to the notion of maximal inscribed balls from Defini-
tion 1.2.3, the definition of another set of balls is essential when dealing with piece-wise linear
quasi-metrics.

Definition 3.1.5. A ball B is called a maximal∗ ball associated with Ω, if it is contained
in Ω and its boundary ∂B shares at least two points with ∂Ω. The set of all maximal∗ balls
associated with Ω is called MATB̃(Ω).

In the Euclidean space, the two notions of maximal inscribed and maximal∗ are equivalent
for piece-wise linear boundaries ∂Ω. For piece-wise linear metrics and quasi-metrics however,

54

VF VE VV

EE EV FV

Figure 3.2: The six possible contact types for a polyhedral ball and a triangulated solid (bound-
ary parts in grey), if they are in general position (which avoids the occurrence of contacts
between a face of the unit ball and a face of the solid). The types VF, EE and FV are called
regular.

the maximal inscribed balls are only a subset of the set of maximal∗ balls, as will be discussed
in Section 3.1.3 and Section 3.1.4.

Definition 3.1.6. The medial axis MAB̃(Ω) with respect to a piece-wise linear quasi-metric
δB̃ is defined as the union of the centers of all maximal∗ balls in MATB̃(Ω).

3.1.2 Contact types and classes

As said in Definition 3.1.1, the boundary of a triangulated solid can be grouped into vertices,
edges and (in space) facets. The same applies to the boundary of a maximal∗ ball derived
from a polygonal or polyhedral unit ball.

Since it is assumed that B and Ω are in general position, every boundary component
(vertex, edge or facet) of a maximal∗ ball shares at most one point with a component of ∂Ω.
For a two-dimensional domain Ω in the plane, the following types of contact between ∂Ω and
the boundary ∂B of a maximal∗ ball are possible:

VE: A vertex of ∂B is in contact with an edge of ∂Ω,

VV: a vertex of ∂B is in contact with a vertex of ∂Ω,

EV: or an edge of ∂B is in contact with a vertex of ∂Ω.

55

The case where a maximal∗ ball possesses two contacts of the type EV that are realized
at two different vertices of ∂Ω, but only one edge of the ball, are excluded by requiring that
no edge of ∂B is parallel to any line connecting any two vertices of ∂Ω. (It suffices to assume
that this condition is satisfied by all pairs of non-convex vertices of ∂Ω.) This is subsumed
by the fact that we assume B and Ω to be in general position and can be achieved easily by
slight perturbation. This condition is necessary to avoid two-dimensional structures in the
resulting medial axis.

In the three–dimensional case, the following types of contact between ∂Ω and the bound-
aries ∂B of maximal∗ balls are possible (for illustration see Figure 3.2):

VF: A vertex of ∂B is in contact with a facet of ∂Ω,

VE: a vertex of ∂B is in contact with an edge of ∂Ω,

VV: a vertex of ∂B is in contact with a vertex of ∂Ω,

EE: an edge of ∂B is in contact with an edge of ∂Ω,

EV: an edge of ∂B is in contact with a vertex of ∂Ω,

FV: or a facet of ∂B is in contact with a vertex of ∂Ω.

The case of maximal∗ balls with two contacts of the type FV which are realized in the
interior of only one facet of ∂B are again excluded by assuming that Ω and B are in general
position. The same applies to the case of two contacts of type EE which are formed by the
same edge on ∂B, and whose shape component edges are lying on the same plane. Both cases
would create three-dimensional components of the medial axis, which are clearly not wanted.

Observation 8. The set of maximal∗ balls with two contacts of type EE which are realized
in the interior of a single edge of the balls boundary cannot be avoided by perturbation, as the
two shape edges do not have to lie on the same plane for such a constellation. The center
points of these maximal∗ balls span a sheet which has no equivalent in the Euclidean case.

Definition 3.1.7. Consider a piece-wise linear quasi-metric. Then for a maximal∗ ball B
associated with Ω, a footpoint is induced by a contact C = (x, y), with x being the component
of ∂B, and y of the shapes boundary ∂Ω. The maximal∗ ball B is said to feature the contact C.

A component x (vertex, edges, facet) from the boundary of a ball B is derived from
a component x̃ of the respective unit balls boundary ∂B̃ by the corresponding similarity
transformation. By this means, classes of contacts can be defined as follows.

Definition 3.1.8. Given a shape Ω, a class of contacts C = (x̃, y) represents all contacts C =
(x, y) featured by maximal∗ balls associated with Ω, with x being derived from the primitive
x̃ ⊂ ∂B̃.

By this means, a contact class can be associated with a set of maximal∗ balls.

Definition 3.1.9. Given a shape Ω and a class of contacts C = (x̃, y), then the set of maximal∗

balls induced by C is denoted as follows:

B(C) = {B | B is maximal∗ and features a contact (x, y)} .

56

This allows a recursive definition for arbitrary many classes of contacts Ci with i = 1 . . . n:

B(C1, . . . , Cn) =
n⋂

i=1

B(Ci) .

Observation 9. For a contact class C of type VV, B(C) consists of a single maximal∗ ball.

Definition 3.1.10. Two contact classes C1 = (x̃1, y1) and C2 = (x̃2, y2) are said to be neigh-
boring on ∂B̃, if

x̃1 ∩ x̃2 6= ∅ ,

and neighboring on ∂Ω if the same applies to y1 and y2.

So neighboring means, that two components share at least a vertex. A facet and an edge,
for example, are neighboring, if the edge is part of the facets boundary or if one of the edges
end-points is a corner point of the facet. An edge and a vertex are neighboring, if the vertex
is one of the edges end-points, and so on.

Henceforth, in the plane, we shall call the contact types VE and EV regular, and the
contact type VV non-regular. In space the contact types VF, EE and FV are considered
regular and the contact types VE, EV and VV non-regular.

3.1.3 MAB̃ in the plane

First consider the two-dimensional case. The structure of the Euclidean medial axis MA(Ω)
for general shapes (and thus also for polygonal domains) is described in Section 1.2.

The axis MAB̃(Ω) with respect to a piece-wise linear metric δB̃ has a similar structure:

Edge: An edge e of MAB̃(Ω) is formed by the center points of all maximal∗ balls which
feature contacts from the same two classes of contacts Ci, Cj , being of the types VE or
EV.

e = {cB | B ∈ B(Ci, Cj)} .

Branching point: A branching point of the medial axis is the center point of a maximal∗

ball featuring (in the non-degenerate case) three contacts.

Property 1. For Ω a polygonal domain and B̃ a convex polygonal unit ball, the medial axis
MAB̃(Ω) is piece-wise linear.

Proof. The medial axis is composed of parts of bisectors between boundary components of Ω.
As Ω is a triangulated solid, only bisectors between lines and points have to be considered,
which are–when the underlying distance function is piece-wise linear– straight lines. As a
consequence MAB̃(Ω) is piece-wise linear.

Pseudo-branchings and jump edges

A new phenomenon that occurs when using a piece-wise linear metric instead of the Euclidean
one is the implicit pruning of convex features of the boundary, which are flat with respect
to the unit ball, in the sense that a vertex of the unit ball fits into the wedge defined by
the feature. Such features lead, in 2D, to the appearance of special branching points (see
Figure 3.3a), from now on called pseudo branchings. The maximal∗ ball centered there shares

57

pseudo-

branching

branching

(a) Pseudo-branching

jump

edge

p

(b) Jump edge

Figure 3.3: (a) A triangular unit ball induces a pseudo-branching in the medial axis of a square
domain. (b) 2D example of a jump edge with center of scaling p.

only two points with the boundary of Ω, where one contact is of type VV and the other one
regular. In contrast to a branching point, only two edges of the medial axis are incident to a
pseudo-branching.

Another peculiarity for a piece-wise linear quasi-metric δB̃ is that the centers of all maximal
inscribed balls are not necessarily sufficient to obtain a connected medial axis MAB̃(Ω).
Consider a maximal∗ ball B that features exactly two contacts of the contact classes Ci and
Cj that are neighboring on the boundary of the unit ball (not on ∂Ω) and let p be the point of
incidence of the two unit ball components of these contact classes. In this case, any uniform
scaling with center p and a factor f sufficiently close to 1 transforms B into another maximal∗

ball which is either a subset (if f < 1) or a super-set (if f > 1) of B. The latter means that
B is not maximal inscribed. The edge e = B(Ci, Cj) of the medial axis which connects the
possibly disconnected components induced by maximal inscribed balls is called a jump edge
of MAB̃(Ω) since the maximal inscribed balls jump between the two extreme positions. See
Figure 3.3b for an illustration.

A sum-up of the above:

Pseudo-branching: A pseudo-branching of MAB̃(Ω) is the center point of a maximal∗ ball
featuring two contacts, where at least one of them is of type VV.

Jump edge: A jump edge is an edge of the medial axis, where the two defining contact
classes are neighboring on ∂B̃.

3.1.4 MAB̃ in 3-space

In three dimensions, the medial axis of a triangulated solid with respect to a piece-wise linear
quasi-metric consists of the following primitives:

58

Sheet: A sheet ς is the set of center points of maximal∗ balls which are defined by the same
two classes of contacts Ci, Cj , being of regular type VF, EE or FV.

ς = {cB | B ∈ B(Ci, Cj)} .

Seam: A seam s consists of the center points of maximal∗ balls featuring contacts from three
classes of contacts Ci, Cj , Ck, being of the same types as for the sheet.

s = {cB | B ∈ B(Ci, Cj , Ck)} .

Junction point: If a maximal∗ ball features four (or more in the degenerate case) contacts
of regular type, then its center defines a junction point of the medial axis.

By this means, in the general case, three sheets meet in a seam, and four seams are joined
in a junction point (see again Figure 1.5b). Similar to the planar case the following can be
stated:

Property 2. For Ω a triangulated solid and B̃ a convex polyhedral unit ball, the medial axis
MAB̃(Ω) is piece-wise linear.

Proof. Similar as in the proof of Property 1 all bisectors with respect to a piece-wise linear
distance function between boundary components of a triangulated solid are planes. The
medial axis is composed of sheets which lie on these planes, and which are bounded by
intersections of such planes, which are again linear. As such MAB̃(Ω) is piece-wise linear.

Pseudo-seams and jump sheets

The pseudo-structures in the three-dimensional case result from contact classes of the non-
regular types VE, EV and VV. The center points of a set of maximal∗ balls, defined by two
contact classes, where one of them is of the type VE or EV, form a component of MAB̃(Ω),
that we will call henceforth pseudo-seam. While in a usual seam three sheets meet, only two
sheets meet in a pseudo-seam (for illustration see Figure 3.14a and Figure 3.14b).

A point of the medial axis, which is the endpoint of at least one pseudo-seam is called a
pseudo-junction. Let B be the maximal∗ ball with its center cB at such a point, then it can
be distinguished between three types of pseudo-junctions:

(I): Two pseudo-seams whose defining non-regular contact class are the same, and two seams
meet at cB. In this case B features three contacts, and one of them is of type VE or
EV.

(II): Exactly four pseudo-seams are meeting at cB, coming in pairs which share their regular
defining contact class. In this case B features two contacts, where both are of type VE
or EV.

(III): Several pseudo-seams with the same defining regular contact classe meet at cB, what
happens if and only if one of the two featured contacts of B is of type VV.

Similar to the discussion of jump edges in the planar situation one may observe that
a maximal∗ ball B with only two contacts, whose classes are neighboring on ∂B̃, is not

59

maximal inscribed, since it is possible to apply a uniform scaling with a center that is located
in the intersection of the ball components of the two contacts. The center points of the
set of maximal∗ balls obtained by such a scaling form a so-called jump sheet of the medial
axis. A group of maximal∗ balls defined by three classes of contacts, which are all mutually
neighboring on the boundary of the unit ball, and whose ball components all intersect in a
common vertex, induces a jump seam, which naturally always lies on the boundary of a jump
sheet.

A more formal definition is given in the following:

Pseudo-seam: A pseudo-seam is a part of MAB̃(Ω) that is defined by two classes of contacts,
where one of the two classes is of the type VE or EV and the other one of a regular
type.

Pseudo-junction: A pseudo-junction is the center point of a maximal∗ ball with (I) three
contacts, where one is of type VE or EV and the other two regular, (II) two contacts
where both are of the type VE or EV, or (III) two contacts with one being of type VV
and the other one regular.

Jump sheet: A jump sheet is a sheet of the medial axis, where the two defining contact
classes are neighboring on ∂B̃.

Jump seam: A jump seam is a seam of the medial axis, defined by three mutually neigh-
boring regular contact classes (x̃1, y1), (x̃2, y3) and (x̃3, y3) such that

x̃1 ∩ x̃2 ∩ x̃3 6= ∅ .

Once again, the jump edges in 2D and jump sheets in 3D – and consequently the consider-
ation of maximal∗ balls – are needed in order to guarantee that the medial axis of connected
domains is again connected. Also note again, that the definition of maximal∗ would lead to
two-dimensional components of the medial axis in the plane, and three-dimensional ones in
3-space, if the notion of general position would be relaxed.

60

EV EV

EV

VE
VE

VE

(a) Two incident jump edges

EV

EV

EV

(b) Three incident jump edges

Figure 3.4: Shown above are contact constellations, which cause branching points where several
jump edges (grey dashed) join. The maximal∗ balls, indicated by dotted lines, are centered at
the endpoint of a jump edge and feature one contact of type VV.

3.2 The medial axis of polygons

In this section we will discuss certain features of the piece-wise linear medial axis in the
plane. Many of the properties that characterize this structure are easy to understand in the
two-dimensional case, and can for the most part be intuitively extended to 3-space. As such
the following can be seen as a warm-up for the three-dimensional set up.

3.2.1 Piece-wise and Euclidean medial axis

The medial axis MAB̃(Ω) with respect to a piece-wise linear metric δB̃ suggests itself for
comparison with the one for Euclidean distance (denoted by MA(Ω)). The two axes may
differ from one another not only with regard to geometrical deviation, but also concerning
structure and topology. Nevertheless a close connection between them can be established for
certain preconditions on the unit ball, see Section 3.2.1.3 for more details.

3.2.1.1 Jumps

A jump edge e in the plane can only occur in correlation with a reflex vertex of ∂Ω which
does induce a contact class of type EV.2 A more formal definition is the following:

Observation 10. Given a jump edge

e = {cB | B ∈ B(Ci, Cj)} ,

at least one of the two contact classes Ci = (x̃i, yi) and Cj = (x̃j , yj) must be of type EV.

Proof. The reason for this is that the two contact classes (x̃i, yi) and (x̃j , yj) that define e have
to be neighboring on ∂B̃. Assume that both contact classes are of type VE. Then the two

2One of the two maximal∗ balls centered at the endpoints of a jump edge has to feature a contact of type
VV, where the shape component is a reflex vertex. Its center represents a pseudo-branching, while the center
of the other ball is always a branching point of the axis.

61

vertices x̃i and x̃j have to be equal to be neighboring. Consider a maximal∗ ball B centered
on e. It has to feature two different contacts where the ball component is the same vertex on
∂B. This would be at the joint vertex of yi and yj , defining a contact of type VV, with cB

being a pseudo-branching. Thus one of the two contact classes has to be of type EV.

Consider a maximal∗ ball B, featuring the contacts C1, C2 and C3, whose center represents
a branching point of the medial axis. If the contact classes of C1 and C2 and the contact
classes of C2 and C3 are neighboring on the unit balls boundary, then two jump edges meet at
cB (see Figure 3.4a). If even all three contact classes are mutually neighboring on ∂B̃, then
three jump edges join at cB. Note however that this is only possible for a triangular unit ball
and three contacts of type EV as depicted in Figure 3.4b.

At least one of the two contact classes that induce a jump edge is of type EV. A jump edge
can be seen as the replacement of all bisectors between the accordant reflex vertex on ∂Ω and
any other boundary component of the shape in the Euclidean medial axis. By this means,
jump edges in general introduce considerable structural and geometrical deviations between
MAB̃(Ω) and MA(Ω). It is obvious that, by trend, a combinatorially larger unit ball causes
less jump edges, as featured contacts are less likely of contact classes that are neighboring on
the boundary of B̃.

3.2.1.2 Implicit pruning

In the Euclidean case, the medial axis MA(Ω) enters every convex feature (vertex) of a
polygonal shape Ω. A maximal∗ polygonal ball B in the plane, which features a contact of
type VV, induces a pseudo-branching of MAB̃(Ω). If this contact is realized at a convex
vertex of ∂Ω, then this corner is not visited by an edge of the medial axis induced by B̃.

Definition 3.2.1. Consider a polygonal shape Ω, and a maximal∗ ball B, with respect to a
quasi-metric δB̃, which features a contact (x, y) of type VV. If y is a convex vertex of Ω, then
MA(Ω) does contain an edge which enters y, while MAB̃(Ω) does not. In this case we say
that B̃ prunes the convex vertex y (with respect to the Euclidean axis).

This pruning effect evokes structural differences between MA(Ω) and MAB̃(Ω) concerning
the number of branching points.

Corollary 5. For a polygonal shape Ω, let m and mB̃ be the number of branching points of
MA(Ω) and MAB̃(Ω) respectively. Let lB̃ be the number of convex vertices on ∂Ω which are
pruned by B̃, then

mB̃ = m− lB̃ .

Proof. Every convex vertex on the boundary of Ω pruned by a polygonal unit ball B̃ induces
a pseudo-branching in MAB̃(Ω) but a branching point in MA(Ω).

This technique of pruning now allows to thin out and capture the more essential parts
of the medial axis by choosing an appropriate unit ball. This makes sense especially for
approximations of shapes with via a larger number of segments. As shown in Figure 3.5a and
Figure 3.5b the Euclidean medial axis can vary strongly for different approximations of the
same shape, while the pruned piece-wise linear medial axis with respect to an appropriate
polygonal unit ball is globally quite stable and deviates mainly locally (compare Figure 3.6
and Figure 3.7).

62

(a) 284 segments (b) 1230 segments

Figure 3.5: MA(Ω) for two input sizes of ∂Ω.

(a) 284 segments (b) Detail

Figure 3.6: MAB̃(Ω) for input size 284 and triangular B̃.

(a) 1230 segments (b) Detail

Figure 3.7: MAB̃(Ω) for input size 1230 and triangular B̃.

63

B

Ω MA(Ω)

MA
B̃
(Ω)

(a) B̃ is regular 3-gon

B

Ω

(b) B̃ is regular 12-gon

Figure 3.8: The medial axis of a simple polygon for different polyhedral unit balls.

3.2.1.3 Convergence

The quasi-metric defined by a convex polyhedron B̃ can be seen as an approximation of the
Euclidean metric. Indeed, if the unit ball B̃ converges to the Euclidean unit ball, then the
quasi-metric defined by it converges to the Euclidean metric. The convergence of the unit
balls can be described with the help of the Hausdorff distance as defined in Definition 1.2.6.

In this section we consider simultaneously two metrics and the associated medial axes.
On the one hand, there is the piece-wise linear (quasi-) metric δB̃ defined by the convex
polyhedron B̃ and the medial axis MAB̃(Ω) of the given domain Ω with respect to it. On
the other hand, we have the usual Euclidean metric δ and the standard medial axis, which
is denoted with MA(Ω). The following result established a close connection between the two
skeletal structures MAB̃(Ω) and MA(Ω):

Theorem 2. If the convex polyhedral unit ball B̃ that induces the (quasi-)metric δB̃ converges
to the Euclidean unit ball B̊, then the Hausdorff distance between the medial axes MAB̃(Ω)
and MA(Ω) of a triangulated solid Ω with respect to the piece-wise linear (quasi-)metric and
the Euclidean metric, respectively, tends to zero:

HD(B̃, B̊)→ 0 ⇒ HD(MAB̃(Ω),MA(Ω))→ 0 .

Thus, the convergence of the unit ball implies the convergence of the medial axis. See
e.g. the example depicted in Figure 3.8a, where the piece-wise linear medial axis with respect
to a triangular unit ball deviates notably from the (grey dashed) Euclidean medial axis, in
particular concerning topology. The medial axis with respect to a regular 12-gon, as shown
in Figure 3.8b, is considerably closer to the real medial axis MA(Ω).

The detailed proof for the planar case can be found in [3].

3.2.2 Combinatorial size

As stated in Property 1, the medial axis of a polygonal area with respect to a piece-wise
linear quasi-metric is also piece-wise linear. The number of line segments, which this axis is
composed of, depends on various factors as

64

v

(a) B̃ is regular 3-gon

v

(b) B̃ is regular 12-gon

Figure 3.9: The same reflex feature of a shape, handled with two polygonal unit balls of different
combinatorial sizes.

1. the number of segments on the boundary of the shape Ω,

2. the geometrical alignment of ∂Ω, in particular the number of its reflex features,

3. as well as the combinatorial size of the polyhedral unit ball B̃ and the placement of its
defining vertices,

to name the most important ones. While it is trivially clear that the first point has a direct
influence on the combinatorial size of the medial axis, the two other points are linked with
one another and may require further explanation.

3.2.2.1 Reflex and convex features

Consider an edge e on ∂Ω. The ball component x of every contact (x, e) featured by any
maximal∗ ball, is derived from the same vertex x̃ on the unit balls boundary (as B̃ and Ω
are considered in general position). This means, that for every edge on the boundary of the
polygonal shape, there exists exactly one corresponding contact class of type VE. This is not
necessarily true for vertices of ∂Ω which represent a reflex feature. For such a vertex v, there
may exist several classes of contacts (x̃i, v) of type EV (with unit ball edges x̃i), which define
an edge of the medial axis. How many classes exist for a single reflex vertex depends on the
unit ball’s geometry and on its combinatorial size. As shown in Figure 3.9a, a regular 3-gon
as unit ball creates one edge of the medial axis around the reflex vertex v. The use of a 12-gon
(see Figure 3.9b) already results in 3 edges for the accordant portion of the axis.

Observation 11. Consider a unit ball B̃ and a unit ball B̃′, where the vertices of B̃ are a
subset of the vertices of B̃′ and a reflex vertex v on ∂Ω. Then the number of different contact
classes with v as their shape component induced by B̃ is smaller or equal to the number induced
by B̃′.

Also convex features have, depending on the unit ball, a certain influence on the com-
binatorial size of the medial axis. Consider a convex vertex w on ∂Ω, being an endpoint of
the two boundary edges e1 and e2. Each of these two edges has one corresponding contact

65

w1

w2

(a) B̃ is regular 3-gon

w1

w2

(b) B̃ is regular 12-gon

Figure 3.10: The coarser unit ball to the left does not induce edges that lead into the flat convex
features, what results in pseudo-branchings. The unit ball with size 12 does not prune these
components.

class Ci = (x̃i, ei) with x̃i being a vertex of B̃, for i = 1, 2. If now x̃1 = x̃2, then there exists
a maximal∗ ball B that features a contact of the contact class (x̃1, w), whose center is thus
a pseudo-branching. By this means, there is no edge of the medial axis which has w as an
endpoint (see Figure 3.10a). For a different unit ball, the vertices x̃1 and x̃2 may be different,
what results in a branching point and an additional edge of the medial axis, as shown in
Figure 3.10b. So the choice of the unit ball does, via this pruning, also have a direct impact
on the number of branching points, and thus structure of the resulting medial axis, as can
also be seen in Figure 3.8a and Figure 3.8b.

Similar to the fact stated in Observation 11, a unit ball which contains the vertices of B̃
as a subset of its vertices causes the pruning of fewer or the same amount of edges as B̃.

3.2.2.2 An upper bound

For this section let n be the number of segments on ∂Ω, r the number of its reflex vertices and
k the number of segments on the boundary of the underlying unit ball B̃. When we denote
the combinatorial size of the medial axis with |MAB̃(Ω)| then it is obvious that its size is at
least linear with respect to n and thus Ω(n) is a lower bound for |MAB̃(Ω)|.

For the upper bound, the variations in the medial axis size, caused by the unit ball choice
as discussed above, have to be considered. In general it can be said that a combinatorially
larger unit ball causes less pruning and more axis edges induced by reflex features. While
the additional branches caused by a larger unit ball at convex features are in their number
again at most linear to n, the number of segments generated by reflex vertices are in general
dependent on k. Thus the following upper bound for the combinatorial size is obtained:

|MAB̃(Ω)| ∈ O(n + r · k) .

Note that r can be replaced by the number of maximal reflex polygonal chains on ∂Ω. A
reflex polygonal chain is a connected chain of segments where all vertices, formed by two
segments of the chain, represent a reflex corner of ∂Ω. A reflex chain is maximal, if the two
outer most endpoints of the chain form a convex corner on the boundary of Ω. Obviously,
this bound is tight when considering the generalization of the example shown in Figure 3.11.

66

B

∂Ω

MA
B̃
(Ω)

Figure 3.11: Such a zigzag-shape with size n and r reflex vertices together with a unit ball of
size k as indicated by B induces a medial axis MAB̃(Ω) of size Θ(n + r · k) .

(a) n = 50, k = 64 (b) n = 400, k = 3

Figure 3.12: Two random polygons with their medial axis with respect to different unit balls.

Also for random polygons and regular k-gons as unit balls the connection between the
size of the medial axis and k (disregarding the minimal effect of pruning) is clearly visible
when consulting Table 3.1 and the according plot Figure 3.13. For this data, the medial axis
MAB̃(Ω) has been computed for random polygons (for two examples see Figure 3.12) with
different input sizes n, and for various unit balls B̃. All obtained values are averaged over 20
input polygons of the same combinatorial size. As can be seen from this experimental data,
the size of the resulting axis is always between n and n + rk.

67

3-gon 12-gon 64-gon 200-gon
n |MA| |MA|/n+rk |MA| |MA|/n+rk |MA| |MA|/n+rk |MA| |MA|/n+rk

50 76 0.65 125 0.4 364 0.25 979 0.22
100 156 0.64 261 0.39 771 0.24 2095 0.22
200 315 0.64 522 0.38 1555 0.24 4226 0.21
400 634 0.64 1054 0.38 3145 0.24 8567 0.21
800 1265 0.64 2116 0.38 6305 0.24 17182 0.21

1600 2535 0.64 4239 0.38 12683 0.24 34555 0.21

Table 3.1: The sizes of the medial axis for various n and k – averaged over 20 input polygons
– and the ratios with respect to the upper bound are given in the columns labeled with |MA|
and |MA|/n+rk respectively.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200

M
ed

ia
l a

xi
s

si
ze

Unit ball size

Medial axis size as a function of the unit ball size

n = 1600
n = 800
n = 400
n = 200
n = 100
n = 50

Figure 3.13: Plot of data from Table 3.1.

68

v

B

cB

C1

C2

C3

(a) Seam

v
B

cB

C1

C2

(b) Pseudo-seam

Figure 3.14: (a) The center cB of the maximal∗ ball B lies on a seam of the axis. The point v,
being the image of the representative vertex of C3, is its projection on the contact plane of C3.
(b) The contact C2 is of type VE as v lies on an edge of ∂Ω. Therefore the center of B lies on
a pseudo-seam, where only two sheets of the medial axis meet.

3.3 The medial axis of polyhedra

3.3.1 Projections and arrangements

In this section we will develop an algorithm for the medial axis computation in the three-
dimensional case. Henceforth we consider solely shapes Ω which are triangulated solids, which
means that they are bounded by a triangular mesh ∂Ω. For such a solid we want to construct
the medial axis with respect to a piece-wise linear quasi-metric δB̃, induced by an arbitrary
convex polyhedral unit ball. Note again, that MAB̃(Ω) is in this case also a piece-wise linear
structure.

Recall that a ball B is a scaled and translated copy of the polyhedral unit ball B̃. For
any boundary component x̃ of B̃, we denote with x its image under the restricted similarity
transformation (translation and scaling) that maps B̃ to B. Moreover, for each boundary
component x̃ of ∂B̃ we choose an arbitrary but fixed representative vertex ṽ = ṽ(x̃), which
is one of the three vertices of a triangular facet, one of the two end points of an edge, or the
vertex itself in the case of a vertex. Again, let v denote its respective copy on the boundary
of B.

The regular contact types or combinations of boundary components – which determine
the basic structure of the medial axis (sheets, seams and junctions) – are VF, EE and FV (see
Section 3.1.4). Even for objects and unit balls in general position, maximal∗ balls featuring
contacts of the non-regular types VE, EV and VV do occur, however they can be regarded
as being singular, and do only induce the pseudo-structures of the medial axis.

Definition 3.3.1. For a regular contact (x, y) of a maximal∗ ball, the component y ∈ ∂Ω and
the ball component x ∈ ∂B span a plane. This plane is the same for all contacts in the same
contact class, and will be called the contact plane associated with the contact class.

69

A non-regular contact class (x̃, y) of type VE or EV in a similar way defines a contact line
(parallel to y or x̃ respectively), a contact class of type VV a single point.

3.3.1.1 Projections

A maximal∗ ball B features at least two contacts, and unless its center defines a pseudo-
junction of type (II), at least one of these contacts is regular (see Section 3.1.4). Every
regular contact defines a contact plane, which contains the contact component of B.

Definition 3.3.2. Let the contact (x, y), featured by the maximal∗ ball B, be of a regular
type, and let ṽ(x) be the representative vertex of x. We call v, i.e., the equivalent of ṽ on the
translated and scaled copy B of the unit ball B̃, the projection of the center cB (or B) into
the contact plane of (x̃, y) (with respect to ṽ).

For a singular contact class of type VE or EV, the center point of a maximal∗ ball projects
into the associated contact line. For a contact (x, y) of type VV the projection of the center
is the vertex y ∈ ∂Ω itself. Note however, that – except for contacts of type VF, VE and VV
– the footpoints of a maximal∗ ball do in general not coincide with the projections of their
centers, as v does not have to be the point of contact.

Definition 3.3.3. Let C = (x̃, y) be a contact class of regular type and ṽ its representative
vertex. Then the set of all projections of the balls in B(C) into the contact plane of C describes
a region in this contact plane. We will call this region

D(x̃, y) = {v | ∃B ∈ B(C) : v is projection of cB}

the contact domain of (x̃, y) (with respect to ṽ).

Roughly speaking, the contact domain D(x̃, y) describes the trace of the representative
vertex ṽ(x̃) for all maximal∗ balls B which feature a contact represented by the contact class
(x̃, y). By this means a contact domain is a union of projections of medial axis sheets. As
all sheets are polygonal subsets of planes, so are their projections on the contact plane of C.
Thus the contact domain is, as union of polygonal regions, again a domain with a piece-wise
linear boundary.

For a contact class (x̃, y) of type VF the contact domain is defined by the triangular facet
y itself. For a EE or FV contact class, different choices of the representative vertex result in
different contact domains, which naturally all lie on the same plane. For more details we refer
to Section 3.3.2.2.2. The non-regular contact types do not define a two-dimensional domain
at all.

3.3.1.2 Contact arrangements

A component γ of the medial axis is induced by the contact classes C1, . . . , Cn with 2 ≤ n ≤ 4,

γ = {cB | B ∈ B(C1, . . . , Cn)} .

Every regular typed contact class Ci = (x̃i, yi) defines a contact plane, and via its represen-
tative vertex a contact domain Di = D(x̃i, yi). The component γ now, representing a set of
center points of maximal∗ balls, projects on the contact plane of Ci, whereas the projection
is contained in Di. Depending on γ, the projections may be of various forms.

70

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�
�
�

�
�
�

�������
�������
�������
�������

�������
�������
�������
�������

v
B

cB

C1

C2C3

s

ς

Figure 3.15: The center cB of the maximal∗ ball B lies on the seam s. This seam lies on the
boundary of the jump sheet ς, defined by the two contact classes represented by C1 and C2.

γ is a sheet: The projection of a sheet on the contact planes of both of its defining regular
contact classes is a polygonal area.

γ is a seam: A seam is defined by three regular contact classes. Its projection on the three
respective contact domains is a segment as illustrated in Figure 3.14a.

γ is a junction: A junction point projects on a single point inside the contact domains of
all four defining contact classes.

γ is a pseudo-seam: A pseudo-seam projects to a segment on the contact plane of the one
defining contact class, which is regular. The other, singular, contact class does not span
a contact plane. See Figure 3.14b.

γ is a pseudo-junction: If a pseudo-junction has a regular defining contact class, than it
projects down to a point inside the respective contact domain.3

γ is a jump sheet: Let C1 = (x̃1, y1) and C2 = (x̃2, y2) be the two defining contact classes
of a jump sheet, and let

c̃ = x̃1 ∩ x̃2

be the shared component on the boundary of the unit ball. Then the form of the
projection depends on the choice of the representative vertex ṽi for the contact class Ci,
with i = 1, 2.

γ projects in D(x̃i, yi) to a

{
segment if ṽi ⊆ c̃

polygonal region otherwise .

3Pseudo-junctions of type (II) do not have a contact of regular type, however their projections lie on the
boundary of two contact domains of regular typed contact classes.

71

See Section 3.3.2.4 for more details.

γ is a jump seam: The situation is similar to the one of jump sheets. Let Ci = (x̃i, yi) for
i = 1, 2, 3 be the defining contact classes, and c̃ be the shared component on ∂B̃. Then
for a contact class Ci and its representative vertex ṽi

γ projects in D(x̃i, yi) to a

{
point if ṽi ⊆ c̃

segment otherwise

If a jump sheet projects to a segment in a contact domain, then the reason for this is that
for all maximal∗ balls centered on this sheet, the point v derived from ṽ lies on a segment,
which also contains the center of uniform scaling as explained in Section 3.1.4. By this
means, all projections of ball centers into this domain (with respect to ṽ) collapse down to
this segment. Consider the example depicted in Figure 3.15. Here the seam s, defined by
the respective contact classes of Ci = (xi, yi) for i = 1, 2, 3, projects to a segment in all three
affected contact domains. The contacts C1 and C2 share the vertex v on ∂B, and so their
contact classes are neighboring on the unit ball, generating the jump sheet ς. If the vertex ṽ
is also the representative vertex of the contact class of C1, then ς projects into a segment on
D(x̃1, y1). The projection of ς into D(x̃3, y3) is a polygonal domain.

Definition 3.3.4. The projections of all seams, pseudo-seams – and possibly jump sheets and
jump-seams for a certain choice of the representative vertex – that share a given contact class
(x̃, y) form an arrangement of line segments in the contact domain D(x̃, y). From now on
this arrangement A(x̃, y) is called the contact arrangement (with respect to the representative
vertex ṽ(x̃)).

Every face of the contact arrangement represents a sheet of the medial axis. An edge
of the arrangement represents either a seam or pseudo-seam, or a jump seam or jump sheet
for an appropriate choice of the representative vertex. A vertex represents either a (pseudo-
)junction, or possibly a jump seam. The edges meeting in such a vertex obey certain rules,
reflecting the connectivity of the accordant medial axis components in space.

As a consequence, every components of the medial axis is in some way represented by a
component of the contact arrangement of a contact class with regular type VF, EE or FV (see
Section 3.1.4). In the following subsection we will describe how to obtain the contact domain
for such a contact class, and provide an algorithm for the computation of the respective
arrangement.

72

D(x̃, y)

(a) Contact do-
main

L

(b) Projection line

ς1

ς1

ς2

ς3

(c) Clean subdo-
mains

ς1

ς2
ς3

(d) Arrangement

Figure 3.16: Computation of a contact arrangement: (a) The contact domain is the intial
subshape. (b) A crossing projection line L is found. (c) Each clean subdomain is part of the
projection of a single medial axis sheet ςi. (d) Subdomains defined by the same axis sheet are
merged.

3.3.2 Arrangement Computation

For the triangulated solid Ω and the unit ball B̃ in general position, the center point of every
maximal∗ ball with respect to Ω projects into the contact domain of at least one contact class
of regular type VF, EE or FV. By this means, the medial axis MAB̃(Ω) is fully represented
by the contact arrangements of all regular typed contact classes. In order to analyze the
medial axis, the contact arrangements for all relevant contact classes (x̃, y) are computed.
Consequently, the problem of medial axis computation in space is reduced to a finite number
of two-dimensional problems, which can moreover be addressed in parallel, since they are
mutually independent.

3.3.2.1 Algorithm outline

For each contact class C = (x̃, y) of regular type, the contact domain D(x̃, y) with respect to
the representative vertex is computed (details in Section 3.3.2.2.2). Afterwards the following
algorithm, summarized visually in Figure 3.16, is performed:

1. Create a stack of polygonal subdomains in the contact plane of C and initialize it with
the entire contact domain D(x̃, y).

2. If the stack is empty, then continue with step 4, otherwise take a subdomain D from
the stack.

3. Check if there exists a seam, pseudo-seam or (for an appropriate representative vertex)
jump seam or jump sheet, which defines a projection segment in D(x̃, y) that hits the
subdomain D. If such a projection is found, then split D along the projection line L,
being the supporting line of the projection segment, into two new subdomains and add
them to the stack. Continue with step 2.

4. Remove all redundant line segments in the arrangement that do not represent projec-
tions of seams, pseudo-seams or jump sheets.

73

p
C

(a) Ball before shrinking

p
C

C∗

(b) The maximal∗ ball at p

Figure 3.17: Iterative computation of a maximal∗ ball for a given projection p in the contact
plane associated with C. The opposite contact is C∗.

3.3.2.2 Constructing maximal∗ balls

Let ṽ – chosen from x̃ – be the representative vertex of the contact class C = (x̃, y). The most
frequent (and also most expensive) operation of the algorithm is to compute a maximal∗ ball
B for a point p on the contact domain of C, such that v ∈ ∂B and p coincide. In particular, it
is crucial to identify the remaining contacts of such a maximal∗ ball, as these contacts decide
which part of the medial axis projects to p. If there is only one additional contact of regular
type, then p lies on a face of the contact arrangement, otherwise, it belongs to an edge or
vertex.

A maximal∗ ball is found by iterative shrinking – similar to the procedure described for
piece-wise circular boundaries in Algorithm 1 – where p is the center of scaling. The starting
ball has to satisfy p = v and has to be sufficiently large to intersect the boundary mesh (see
Figure 3.17a). With help of an AABB (Axis Aligned Bounding Box) tree (see next section),
the intersections between components of the balls boundary and the mesh are efficiently
detected. The component of the mesh closest to p determines the shrinking factor. This is
done iteratively until the shrunk ball and the mesh are intersection-free (see Figure 3.17b).
The last component of the mesh which is used to define the shrinking induces the second
contact of the maximal∗ ball, from now on called opposite contact.

Lemma 8. If all vertices of ∂Ω and ∂B̃ have rational coordinates, then all vertices of a
maximal∗ ball B have rational coordinates, if at least one of them does.

Proof. Let u be the vertex with rational coordinates, and let w 6= u be a vertex of B which
lies on the ball component of an arbitrary contact (x̃, y) featured by B. The shape component
y is rational, and the line parallel to the vector

−→̃
uw̃ and containing u is rational. As such also

74

f

f ′

f ′′

v′

v′′

Figure 3.18: The maximal∗ ball projecting on v′ is of size zero, as f forms a convex edge with
f ′. The ball projecting on v′′ is centered on a pseudo-seam.

their intersection, being w, has rational coordinates. The rational factor ‖ũ−w̃‖
‖u−w‖ is the same

for all pairs of points on ∂B̃ and ∂B, therefore all vertices of B have rational coordinates.

This means that all computations needed for the construction of maximal∗ balls can be
done within the set of rational numbers, if p on the contact plane is chosen rational. Note
that also the center points of such maximal∗ balls are rational, and as such span components
of the medial axis which are rational.

3.3.2.2.1 AABB Trees

We use the Axis Aligned Bounding Box tree [9], provided by the CGAL library [90] for
fast detection of intersections between ∂Ω and ∂B for a maximal∗ ball B. The AABB tree is
mainly a hierarchy of bounding boxes. A more detailed explanation is given in [9]:

The AABB tree component offers a static data structure and algorithms to perform effi-
cient intersection and distance queries against sets of finite 3D geometric objects. The set
of geometric objects stored in the data structure can be queried for intersection detection,
intersection computation and distance.
· · ·
Examples of intersection queries include line objects (rays, lines, segments) against sets
of triangles, or plane objects (planes, triangles) against sets of segments.
· · ·
The AABB tree data structure takes as input an iterator range of geometric data, which is
then converted into primitives. From these primitives a hierarchy of axis-aligned bounding
boxes (AABBs) is constructed and used to speed up intersection and distance queries.

The triangles of the static shape boundary mesh are stored in the AABB tree, and are
checked for intersections with the boundary triangles of a maximal∗ ball. The performance
benefit of the tree is hard to measure in terms of bounds, as it strongly depends on the
form and alignment of the boundary of the shape Ω. However, considerable speed-up can be
measured for large mesh data with roughly equally sized triangles as demonstrated in Sec-
tion 3.3.4.2.

75

3.3.2.2.2 Computing the contact domain

As defined in Definition 3.3.3, the contact domain of a contact class C = (x̃, y) (with
respect to the representative vertex ṽ) is the locus of all points p on the contact plane of C
which have the property that there exists a maximal∗ ball B ∈ B(C) such that B projects on
p (meaning that the accordant copy v of the representative vertex coincides with p).

The polygonal boundary of the contact domain is needed for initialization of the main
algorithm as discussed in Section 3.3.2.1. This is trivial for a contact class (ṽb, fs) of type
VF, as the representative vertex ṽ is identical to the ball component ṽb, and thus the domain
is equivalent to the facet being the shape component. The set of balls projecting on an edge
of the boundary of such a contact domain D(ṽb, fs) either induce a pseudo-seam of MAB̃(Ω),
or they are all of size zero if the corresponding edge on ∂Ω is convex with respect to B̃. See
Figure 3.18 for an illustration. Similar to this, a ball projecting on a vertex on the boundary
either defines a pseudo-junction, or is of size zero if the vertex is convex.

For a contact class of type EE or FV the appearance of a contact domain is dependent on
the choice of ṽ, and as such has a more complex form. However, what can be stated for all
contact domains of regular typed contact classes is the following:

Observation 12. Consider a contact class C = (x̃, y) of regular type with representative
vertex ṽ and contact plane PC. Furthermore consider another contact class C′ = (x̃′, y′) for
which it is true that

• C′ is of non-regular type and

• y′ ⊆ y.

Then the projection (with respect to ṽ) of a maximal∗ ball, featuring a contact of C′, into PC
lies on the boundary of D(x̃, y).

3.3.2.2.3 Contact domain for EE contacts

Consider a contact class C = (ẽb, es) of type EE and its contact plane PC . Let ṽ = ṽ(ẽb)
be the representative vertex of C, and ṽ∗ the other endpoint of ẽb.

Proposition 1.

1. The contact domain D(ẽb, es) is contained in one of the two halfplanes in PC, separated
by the supporting line of es.

2. The edge es lies on the boundary of D(ẽb, es).

Proof. Ad 1: For every contact (eb, es) of the class C, the endpoint v ∈ PC lies on one side
of the supporting line of es and v∗ on the other. So the choice of the representative vertex ṽ
dictates, which halfplane contains the contact domain (again with respect to ṽ).
Ad 2: The edge es represents in PC the projection of all maximal∗ balls in B(C′) for C′ =
(ṽ, es)). The class C′ is of non-regular type and es ⊆ es, see Observation 12.

Proposition 2. The contact domain D(ẽb, es) is contained in the slat of PC that is bound
by the two lines being parallel to the supporting line of ẽb, and containing one endpoint of es

respectively.

76

es

eb

v
v
′

v∗

B

B
′

Ci

(a) v 6= v′

es

eb

v, v′

v∗

B

B′

Ci

Cj

(b) v = v′

Figure 3.19: In the pictures above two sketches of a cross section through the shape Ω and a
maximal∗ ball B are shown, where the edge es ∈ ∂Ω lies perpendicular to the viewer-plane.
While in the left picture the contact (eb, es) is not neighboring to Ci on the ball, it is in the
right one.

Proof. For every contact (eb, es) of the class C, eb must intersect es. For a fixed es this is only
true if eb, and thus v lies in the slat as defined above.

Proposition 3. Consider the contact class C∗ = (ṽ∗, es) of type VE. Then the projection
(with respect to ṽ) of all balls in B(C∗) in PC forms a polygonal line, which is part of the
boundary of D(ẽb, es).

Proof. Consider a maximal∗ ball B ∈ B(C∗) and the corresponding copy v of the representative
vertex. Assume that v does not lie on the boundary of D(ẽb, es). This means, that there exists
a maximal∗ ball B′ % B which shares the footpoint of B on es, but with v′ 6= v. As can be
seen in Figure 3.19a, this is a contradiction to the fact that B is maximal∗. Thus v has to lie
on the boundary of D(ẽb, es).

Every segment di of the polygonal line described in Proposition 3 corresponds to the
projection of a set B(C∗, Ci) of maximal∗ balls. If Ci is neighboring to C on ∂B̃ then di is even
the projection of a jump sheet and consequently of a seam represented by B(C, Ci, Cj) on PC
as illustrated in Figure 3.19b.

In Figure 3.20a an example for a possible contact domain of a contact class of type EE
is given. To find the points shared between the segments of the polygonal line, a procedure
based on the projline algorithm as introduced in Section 3.3.2.3.3 is used.

3.3.2.2.4 Contact domain for FV contacts

Let C = (f̃b, vs) be a contact class of type FV and PC its associated contact plane. Let ṽ
be the representative vertex on the triangle represented by ∂f̃b, and ẽ∗ the segment on this
triangle that is not incident to ṽ. Then, similar to the contact domain for contact classes of
type EE, certain criteria can be given for the placement and form of D(f̃b, vs):

77

es

eb

v

v∗

di

(a) EE contact domain

vs

fb

v

e∗

l′

l′′

(b) FV contact domain

Figure 3.20: Two contact domain examples.

1. The contact domain of C has vs on its boundary.

2. Consider the two supporting lines of the segments on ∂f̃b that are incident to ṽ and
call them l̃′ and l̃′′. Let l′ and l′′ be the lines through vs that are parallel to l̃′ and l̃′′

respectively. Then D(f̃b, vs) does overlap neither l′ nor l′′.

3. Let C∗ be the contact class (ẽ∗, vs). Then the polygonal line in PC , resulting from the
projection of all maximal∗ balls in B(C∗) is part of the boundary of D(f̃b, vs).

Ad 1: The reflex vertex vs of ∂Ω induces a maximal∗ ball featuring the contact (v, vs) of type
VV. The projection of this ball on PC (with respect to ṽ) is vs. As vs ⊆ vs, vs lies, according
to Observation 12, on the boundary of the domain.
Ad 2: The two lines l′ and l′′ split the contact plane into four sectors. D(f̃b, vs) has to be
contained as a whole in one of these sectors.
Ad 3: The obtained polygonal line also marks the sector which contains the contact domain.
See Figure 3.20b for a detailed example.

3.3.2.3 Finding projection lines

Given a contact class C = (x̃, y), consider its assigned final contact arrangement. Two
maximal∗ balls projecting into two different faces of this arrangement feature of course both
a contact of C, but their opposite contact comes from two different contact classes. By this
means, a projection line in a contact domain – determined by a seam (possibly combined with
a jump sheet) or a pseudo-seam – always corresponds to a change of the opposite contact of
the associated maximal∗ balls. Thus, the projection lines subdivide a contact domain into
subdomains Di whose points are the projections of maximal∗ balls with the same opposite
contact.

Consider two points p and q on the contact domain of C, which both do not lie on a
projection line. If the two associated maximal∗ balls Bp and Bq feature opposite contacts Cp

and Cq of two different contact classes Cp and Cq, then there exists a projection line crossing

78

pq. On the other hand, if Cp = Cq, then this does not imply that there is no such crossing
line, since the faces of the final contact arrangement are not necessarily convex.

3.3.2.3.1 Different opposite contact classes

If the associated opposite contacts Cp and Cq of p and q are of different contact classes, a
point on the segment pq has to be found, which lies on a projection line. We now assume that
Cp 6= Cq, and that exactly one projection line L exists, that crosses pq. Then three categorical
possibilities for the change of the opposite contact and the resulting L exist (for illustrating
sketches see Figure 3.21):

(a): The contact classes Cp and Cq are neighboring on ∂B̃ and on ∂Ω. Then the projection
of a pseudo-seam crosses pq.

(b): There exists a maximal∗ ball, projecting on pq, that features a contact of Cp and Cq.
The ball is centered on a seam, and its projection crosses pq.4

(c): There exists a maximal∗ ball, projecting on pq, that features a contact of one of the two
known contact classes, let’s say Cp. Furthermore it features a contact of a contact class
C′q which is neighboring to Cq, on the boundary of both, the unit ball and the shape.
Then this ball is centered on a seam, that lies on the boundary of a jump sheet. The
seam projects on a line in the contact plane of C, which crosses pq. For a certain choice of
the representative vertex, also the jump sheet projects on this line, causing this special
possibility for a change of the opposite contact. For another representative vertex the
projection of the jump sheet is two-dimensional and the bounding projections of seams
and pseudo-seams are found as indicated in case (a) and (b). See Section 3.3.2.4 for
details on this.

Henceforth we shall say that Cp and Cq are witnesses to a projection line that crosses pq,
if they fit one of the three scenarios described above.

If the two different contact classes are not witnesses to a projection line, then more than
one projection line crosses pq. This means that a point t on pq exists, whose associated
maximal∗ ball features a opposite contact that is neither in Cp nor in Cq. Such a point is
computed by the simple binary search algorithm searchcc, which takes the two points p, q
as well as C as arguments (see Algorithm 3).

By applying searchcc recursively, a pair of points on pq can be found, whose opposite
contact classes are witnesses to a projection line that crosses pq. In non-degenerate configu-
rations, this process is guaranteed to terminate. For an illustrative example have a look at
the two points p and q in the final contact arrangement A as depicted in Figure 3.22a. Their
associated opposite contact classes are different, but they are not witnesses to a projection
line, as more than one line crosses pq. The segment pt, with t being the midpoint of p and q,
is still crossed by two projection lines. Finally, searchcc(p, t, C) returns the point t′, whose
opposite contact class witnesses together with Cp a single projection line.

4Possible jump seam projections are indicated in the same way.

79

D

p q

Cp

Cq

(a) Pseudo-seam

D

p q

Cp

Cq

(b) Seam

D

p q

Cp

Cq

C ′

q

(c) Seam and jump sheet

Figure 3.21: These sketches of a cross section through Ω show the three categorical possibilites
for a contact change of maximal∗ balls associated with a segment between two points p and q
in a contact domain D. The contact domain is in a plane orthogonal to the viewer plane, such
that pq lies in the viewer plane.

Algorithm 3 searchcc(p, q, C) returns point on pq with different opposite contact
Precondition I: Cp and Cq are not from the same contact class
Precondition II: Cp and Cq are not witnesses of a projection line crossing pq

1: procedure searchcc(p, q, C)
2: Cp, Cq ← opposite contact classes associated with p, q
3: t← midpoint between p and q
4: Ct ← opposite contact class associated with t

5: if Ct = Cp then
6: return searchcc(t, q, C)
7: else if Ct = Cq then
8: return searchcc(p, t, C)
9: else

10: return t
11: end if
12: end procedure

3.3.2.3.2 Equal opposite contact classes

Now assume that the maximal∗ balls associated with p and q have an opposite contact
of the same contact class. In order to verify that no projection line crosses pq, the family of
maximal∗ balls projecting on this segment has to be contained in Ω. This family of maximal∗

balls spans a convex polyhedron, which is identical to the convex hull of all vertices on the
boundary of Bp and Bq (see Figure 3.22b). A pseudo-code description of the according
algorithm sweep, which takes C and the two maximal∗ balls Bp and Bq as arguments, is given
in Algorithm 4. The most expensive step is the one at line 6, where the obtained convex hull
and ∂Ω are checked for intersections.

80

p∗

q∗

p

q

t
t′

t∗ A

(a) Binary search

p

q

Bp

Bq

(b) Sweep

Figure 3.22: (a) Binary search to find witnessing contact classes. The solid lines represent the
final contact arrangement A. (b) The convex hull resulting from the vertices on Bp and Bq.

Algorithm 4 sweep(Bp, Bq, C) returns true if no intersection with ∂Ω, false otherwise
Precondition: Cp and Cq are from the same contact class
1: procedure sweep(Bp, Bq, C)
2: Cpq ← opposite contact class of Bp and Bq

3: y ← shape component of C
4: y′ ← shape component of Cpq

5: CH ← convex hull of vertices on ∂Bp and ∂Bq

6: if CH ∩ (∂Ω \ {y, y′}) = ∅ then
7: return true
8: else
9: return false

10: end if
11: end procedure

If sweep(Bp, Bq, C) detects an intersection, a point on pq with an associated opposite
contact of a different contact class has to exist, and is found by the algorithm searchcc* (see
Algorithm 5) that works similar to searchcc.

While searchcc starts with two points whose opposite contact classes are different,
searchcc* does not. That makes repeated use of the sweep-algorithm (line 8) necessary.
See again Figure 3.22a for an example. The midpoint t∗ between p∗ and q∗ lies again in the
same face of the final contact arrangement A. Only by use of the sweep function, it can be
decided if p∗t∗ or t∗q∗ is crossed by a projection line.

If no intersection is detected by sweep(Bp, Bq, C), and thus the line segment pq is not
crossed by any projection line, then this segment is called crossing-free. The final subdomains
of the contact arrangement are characterized by the fact that they are bounded by crossing-
free segments, and are then also called crossing-free. A proof of this property, valid for all
shapes which do not contain inclusions, is given in Section 3.3.2.4

81

Algorithm 5 searchcc*(p, q, C) returns point on pq with different opposite contact
Precondition I: Cp and Cq are from the same contact class
Precondition II: sweep(Bp, Bq, C) = false
1: procedure searchcc*(p, q, C)
2: Bp ← maximal∗ ball projecting on p
3: Cpq ← opposite contact class of Bp and Bq

4: t← midpoint between p and q
5: Ct ← opposite contact class associated with t
6: Bt ← maximal∗ disk projecting on t

7: if Ct = Cpq then
8: if sweep(Bp, Bt, C) = true then
9: return searchcc*(t, q, C)

10: else
11: return searchcc*(p, t, C)
12: end if
13: else
14: return t
15: end if
16: end procedure

3.3.2.3.3 Putting things together

Consider a contact class C, with a fixed representative vertex ṽ, and two points p and
q in its contact domain. Let Bp and Bq be the two maximal∗ balls that project on p and
q respectively, and Cp and Cq the accordant opposite contact classes. Then the procedure
projline(p, q, C), described in Algorithm 6, returns a projection line that crosses pq on the
contact plane, if one exists, or ∅ if the segment is crossing-free.

If Cp = Cq, queried in line 4, and the sweep algorithm does not indicate an intersection
with ∂Ω (line 5), then pq is crossing-free. If sweep detects an intersection, then crossing
projection lines exist. This means that a point on pq with a different associated opposite
contact class has to exist. This point is found with help of the searchcc* algorithm and a
recursive call of projline is invoked (see lines 8 and 9).

If Cp 6= Cq then at least one crossing projection line exists. If these two contact classes
are witnesses to a projection line L (checked in line 12), the projline algorithm terminates
by returning L. Otherwise, two points on pq whose opposite contact classes are witnessing a
single projection line are found by applying binary search of searchcc and, again, recursive
calls of projline as invoked in lines 16 and 17. For a flow chart representation of the outlined
procedure consult Figure 3.23.

3.3.2.4 Arrangement computation: the algorithm

For any given point on a contact domain the associated maximal∗ ball can be constructed as
described in Section 3.3.2.2. For two points on the domain it can be decided if there exists
a projection line, induced by a pseudo-seam or a seam (possibly together with a jump edge)
that crosses the connecting segment. If a crossing line exists, it can be found. As will be

82

yesyes

yes

yes yes

no no

no

no no

return L

pq is
crossing-free input p, q, C

Cp = Cqsweep(Bp, Bq, C)
= true

Cp, Cq
witness proj.

line L

Ct = CpCt = Cq

t←
midpoint(p, q)

p← tq ← tq ← t

searchcc(p, q, C)

searchcc*(p, q, C)

sets p and q

on original
segment such
that Cp 6= Cq

Figure 3.23: This flow chart summarizes the algorithm projline which finds a possible projec-
tion line, that crosses the segment pq in the contact domain of C.

83

Algorithm 6 projline(p, q, C) returns projection line that crosses pq

1: procedure projline(p, q, C)
2: Bp, Bq ← maximal∗ balls projecting on p, q
3: Cp, Cq ← opposite contact classes of Bp, Bq

4: if Cp = Cq then . equal opposite contact classes
5: if sweep(Bp, Bq, C) = true then . check if pq is crossing-free
6: return ∅
7: else
8: t← searchcc*(p, q, C)
9: return projline(p, t, C)

10: end if
11: else . different opposite contact classes
12: if Cp and Cq are witnesses to a projection line crossing pq then
13: L← projection line witnessed by Cp, Cq
14: return L
15: else
16: t← searchcc(p, q, C)
17: return projline(p, t, C)
18: end if
19: end if
20: end procedure

shown in the following, this is all that is needed to build the contact arrangement in a given
contact domain.

As said in Section 3.3.2.1, the basic idea is to split the initial contact domain into subdo-
mains which are not intersected by any projection lines. To decide if a given subdomain D
is crossing-free, and thus does not have to be divided any further, its bounding edges are in-
spected for crossings. The procedure projline(p, q, C) requires the two associated maximal∗

balls Bp and Bq to have one unequivocal opposite contact, respectively. If one of the two

D

D
′

L1

L2
e1

e2 e3

e
D

1

e
D

2
e

D

3

e
D

′

3

Figure 3.24: The projection line L1 is detected by segment eD
3 , associated with D, while L2 is

detected by the opposite segment, associated with D′.

84

points is chosen on a projection line, which may partially define the boundary of a subdo-
main, then this criterion is not always satisfied. To avoid this, the segment eD, associated
with a boundary edge e of a subdomain D, is chosen such that

• HD(e, eD) < ε for an ε > 0, and

• eD ⊂ D \ ∂D.

In other words, the endpoints of eD lie infinitesimally close to the endpoints of e, but
still inside D. An example is given in Figure 3.24, with D being the subdomain of interest.
The two dashed grey lines, representing projections of two different (pseudo-)seams, do not
yet participate in the intermediate (solid grey) arrangement, but are part of the final contact
arrangement. The segment eD

2 is obviously crossing-free, while eD
1 and eD

3 , when passed via
their endpoints to the projline algorithm, both return L1, being the supporting projection
line of one projected (pseudo-)seam. Note however that the edge eD′

3 , associated with the
neighboring subdomain D′, returns a different projection line, namely L2.

Property 3. Let D be a subdomain bounded by the edges ei. If all segments eD
i are crossing-

free, then D is crossing-free if ∂Ω is connected (or Ω does not contain inclusions).

Proof. Assume that the aforementioned segments eD
i are crossing-free with the shared oppo-

site contact class C′, but D is not crossing-free. This means that D contains a set of edges
of the final contact arrangement, which can be separated from ∂D by a closed curve h. Let
H ⊂ B(C) be the set of maximal∗ balls that project on h. The opposite contact of every ball
of H is of the class C′, and their projections define another closed curve h′ on the contact
domain of C′. There must exist a point on the bounded side of h on the contact plane of C,
which has an associated opposite contact of a class C∗ 6= C′. All maximal∗ balls of H, as well
as the two domains bounded by h and h′ in their respective contact domain, are clearly free
of intersections with ∂Ω that are not induced by C or C′. Thus the part of ∂Ω inducing a
contact of type C∗ must lie inside the convex hull spanned by the set H. As a consequence,
∂Ω has to be disconnected.

Given a triangulated solid without inclusions, the final observation in Property 3 now
allows the formulation of the algorithm arrang(C) which computes the contact arrangement
A(x̃, y) for a regular typed contact class C = (x̃, y). See Algorithm 7 for a pseudo-code
description of the procedure, which is now discussed in more detail.

The procedure takes as input a contact class C of regular type. In the lines 2 to 7 several
necessary initializations are invoked: a representative vertex, and to compute the contact
domain D with respect to it is computed. The boundary of D is already part of the contact
arrangement A.

The first major subpart of arrang is responsible for the decomposition of the contact
domain into crossing-free subdomains (lines 8 to 24). Due to Property 3 it is possible to
determine via the boundary edges of a subdomain (in the first step the whole contact domain)
if it is crossing-free (see line 13). If one of these edges is not crossing-free (detected in line 19),
it induces at least one projection line L which splits the subdomain into two new subdomains.
The above is applied recursively on these new subdomains, until only crossing-free ones are
left. Note again: all points of a crossing-free subdomain are projections of maximal∗ balls
featuring an opposite contact of the same contact class, and are thus centered on the same
sheet of MAB̃(Ω).

85

Algorithm 7 arrang(C) returns the final contact arrangment for the contact class C
1: procedure arrang(C)
2: ṽ ← representative vertex of the ball component of C
3: D ← contact domain of C with respect to ṽ
4: A ← empty arrangement
5: Q← empty stack of subdomains
6: Q.push(D)
7: A.insert(∂D)

8: while Q is not empty do . decompose into crossing-free subdomains
9: D ← Q.pop()

10: k ← number of boundary segments of D
11: i← 1
12: L← ∅
13: while i ≤ k ∧ L = ∅ do
14: e← ith segment of ∂D
15: i← i + 1
16: p, q ← endpoints of eD

17: L← projline(p, q, C)
18: end while
19: if L 6= ∅ then
20: D1, D2 ← decomposition of D via projection line L
21: Q.push(D1, D2)
22: A.insert(D ∩ L)
23: end if
24: end while
25: for all edges a of A do . remove dispensable arrangement edges
26: Da

1 , Da
2 ← the two subdomains incident to a

27: Ca
1 , Ca

2 ← the two opposite contact classes associated with Da
1 , Da

2

28: if Ca
1 = Ca

2 then
29: A.remove(a)
30: end if
31: end for
32: return A
33: end procedure

86

B̃

ṽ1 ṽ2

ṽ3

ṽ4

ẽ1

ẽ2

(a) Unit ball

B

B′

y1

y2

y3

L

v1, v
′

1

(b) Projection to line

B

B′

y1

y2

y3

LL′

v2
v′

2

(c) Projection to region

Figure 3.25: Depending on the chosen representative vertex, a jump sheet may project to a one-
or a two-dimensional component in the contact domain.

All edges shared by two crossing-free subdomains are now part of the intermediate ar-
rangement A. In the second subpart of arrang (lines 25 to 31), artifact edges between
neighboring subdomains that describe the same sheet are removed from A. This results in
the final contact arrangement.

A convex region that is intersected by a line, is by this line always split into two regions
that are again convex. The contact domains for a contact class of type EE and FV however,
are not necessarily convex. This has the unwanted effect that a projection line may split a
domain into more than two subdomains. To prevent this, a non-convex contact domain is
initially split by dummy lines into simple convex subdomains which are used to initialize the
stack in the arrang algorithm. These dummy lines are removed in the second subpart of
arrang. In the final arrangement non-convex subdomains of course may be created due to
deleting artifact edges.

Vertex-dependent jump projections

For a contact class of type EE the representative vertex is one of two possible vertices on
the unit ball component, for a contact class of type FV there are even three possible choices.
As mentioned in Section 3.3.1.2 and Section 3.3.2.3.1, a jump sheet of the medial axis may,
depending on this chosen representative vertex, project to a one-dimensional component on
the contact plane, while for another representative vertex the jump sheet may correspond to
a two-dimensional component (i.e., face) of the contact arrangement. Consult Figure 3.25 for
an example where the contact domains (shown dotted black) are associated with the contact
class C = (ẽ1, y1) of type EE with respect to two different representative vertices ṽ1 in (b) and
ṽ2 in (c). The maximal∗ ball B is centered on the seam s defined by B(C, (ẽ2, y2), (ṽ3, y3)),
while B′ is centered on the pseudo-seam s′ defined by B(C, (ṽ4, y2)). The two contact classes
C and (ẽ2, y2) are neighboring on ∂B̃ and so induce a jump sheet ς.

(b): Let ṽ1 be the representative vertex. It lies in the intersection of the two ball components
ẽ1 and ẽ2 which participate in the contact classes generating the jump sheet. As a

87

consequence the projections of s and s′ in the contact domain with respect to ṽ1 coincide
at the projection line L. The jump sheet ς is spanned by s and s′ and as such also
projects to L.

(c): For ṽ2 being the representative vertex, s and s′ project to two different projection lines
L and L′ respectively. The region between L and L′ on the accordant contact domain
is part of the two-dimensional projection of the jump sheet ς.

88

B̃ with 4 facets B̃ with 20 facets B̃ with 128 facets

contact arrangements

medial axes

Figure 3.26: Contact arrangements (top row) and medial axes (bottom row) of a slightly per-
turbed octahedron with respect to polyhedral unit balls with 4, 20 and 128 facets (from left to
right). Dashed lines are projections of pseudo-seams.

3.3.3 Assembling the medial axis and offset

Once the contact arrangements of all regular typed contact classes, that occur for a unit ball
B̃ and a triangulated solid Ω, have been computed, the medial axis components as well as
their interconnections can be assembled easily. Based on the obtained data representation,
the problem of trimmed offset computation is addressed.

3.3.3.1 Assembling the medial axis from its projections

As stated in detail in Section 3.3.1.2, every sheet can be associated with two faces on two
different contact arrangements, every seam with three edges on three different contact ar-
rangements, and so on. By this means every component of the medial axis is represented by
at least one component of a contact arrangement. So the assembling of the medial axis can
be performed by a simple computation as follows.

The medial axis MAB̃(Ω), with B̃ and Ω being triangulated solids, can be represented
as a triangulated non-manifold mesh. In the non-degenerate case, such a mesh is completely
described by its triangles. To store also connectivity information, the mesh can be embedded
into a more sophisticated data-structure, as e.g. the radial edge structure introduced in [84].

89

ej

s

s
′

ςj

∆ς

∆f

MA

A

Figure 3.27: Part of a contact arrangement A. The center points of the associated maximal∗

balls span a part of the medial axis MA.

In an arbitrary contact arrangement A consider a face f that has no segment on its
boundary which results from a jump projection. Then for every vertex on the boundary of
f , there exists an unequivocal maximal∗ ball that projects on it and that is known. Let ς
be the sheet of the axis whose projection in A is f . Then every triangle ∆f of the polygon
triangulation of f is the projection of a triangle ∆ς of the polygon triangulation of ς. Moreover,
∆ς is spanned by the center points of the three maximal∗ balls that are associated with the
three vertices of ∆f .

If a boundary edge e of a triangle ∆f is the projection of a jump sheet, then special care
has to be taken. In general every point on such a jump projection edge is the projection of
a whole family of maximal∗ balls, where the largest ball of this family is centered on a seam
s, and the smallest one on a pseudo-seam s′ (as discussed in Section 3.3.2.4). In practice,
this means that an endpoint of e is associated with two maximal∗ balls, B(s) and B(s′). If
one of the contacts featured by B(s) is of the opposite contact class associated with f , then
the center point of B(s) has to be chosen to span the according ∆ς , otherwise the center of
B(s′). Note, that also the jump sheet part represented by the jump projection edge e has to
be dealt with. If s and s′ meet in the center point of a maximal∗ ball that projects to an
endpoint of e, then the part of the jump sheet that is associated with e is a triangle, otherwise
a quadrilateral which is split into two triangles.

By iterating over the faces, edges and vertices of all contact arrangements, all medial
axis components–spanned by the center points of the maximal∗ balls that project on the
arrangement vertices–can be computed. See Figure 3.27 for an illustrative example, where
the edge ej denotes a jump projection edge, which is the projection of all maximal∗ balls
centered on the seam s, the jump sheet ςj and the pseudo-seam s′. Polygon triangulations of
arrangement facets are adopted by the associated axis sheets: ∆f is the projection of ∆ς .

As most components project into more than one contact arrangement, duplicates have to
be avoided when iterating over all arrangements. This is done by sorting out the primitives
via the set of defining contact classes, which is unique for every component. As an exam-
ple consider a slightly perturbed octahedron Ω and its medial axis with respect to several
polyhedral unit balls B̃, where the number of facets increases from 4 to 128. The results are
shown in Figure 3.26. Since Ω is convex in this example, all contact domains are contained in

90

the facets of Ω and only contact classes of type VF occur. Consequently, the projections and
contact arrangements can be visualized directly on ∂Ω (shown in the first row). The medial
axis of the octahedron Ω with respect to the Euclidean unit ball consists of three squares
which intersect each other along their diagonals. The medial axis with respect to a sparse
polyhedral unit ball (a tetrahedron) is quite different (bottom left), since some of the vertices
of the ball fit into the edge and vertex wedges of of the domain. When using a polyhedral
unit ball with a larger number of facets (bottom center and right), however, the structure of
the computed medial axis gets (as expected) more similar to the Euclidean case.

Connectivity

Basically all connectivity information can be read directly from the contact arrangements.
A sheet is incident to a seam or pseudo-seam, if their projections are incident on any contact
arrangement. A seam or pseudo-seam is incident to a (pseudo-)junction, if their projections
are.

Again, things get a bit more complex for a jump projection edge e in a contact arrangement
A, as it represents a pseudo-seam s′, a seam s and (the part of) a jump sheet at the same
time. Obviously, the jump sheet is incident to s′ and s. Consider a sheet ς that projects to
a face f in A that is incident to e. If one of the defining contact classes of s is equal to the
opposite contact class associated with f , then ς is incident to s, otherwise to s′. In a similar
fashion the connectivity information between a jump projection edge and its two endpoints
is obtained.

3.3.3.2 Assembling the offset from the medial axis

The medial axis is a useful tool for trimmed offset computation as already demonstrated in
Section 2.4. While this is generally well-established in the two-dimensional case [1, 23], the
structure has not yet been used much in 3-space for this purpose [15].

The medial axis representation as generated by the aforementioned algorithm is directly
useful for offset computation with respect to the underlying linear quasi-metric. The sheets
are the only axis components needed in the following. Each sheet ς of the medial axis is
associated with two contact classes C1 and C2. A maximal∗ ball B with center point cB on
ς and scaling factor β has a unique point of contact pi induced by Ci for i ∈ {1, 2}. Let %
be the offset size. Then the offset operation with % applied to B gives us a new point p%

i for
each of the two contact classes. This new point p%

i lies on the line defined by pi and cB. The
position of p%

i with respect to the sheet ς determines whether or not it has to be trimmed:

• If β > % then p%
i lies between pi and cB. Therefore p%

i is a valid point of the offset
surfaces.

• If β < % then cB lies between pi and p%
i . Therefore p%

i has to be trimmed.

• If β = % then p%
1 = p%

2 = cB and the point lies on the axis sheet where the trimmed and
valid part of the offset surfaces join.

As mentioned above, the sheets of the piece-wise linear medial axis are stored as polygon
triangulations. This results in one recurring configuration for the whole offset computation
as visualized in Figure 3.28a. The three maximal∗ balls at the corner points are known.

91

∆1

∆2

∆

t(∆1)

t(∆2)

v(∆1)

v(∆2)

(a) Trimming

B̃ with 4 facets B̃ with 128 facets

(b) Trimmed offsets

Figure 3.28: (a) Basic configuration for offset computation. (b) Offsets of a slightly perturbed
octahedron induced by unit balls with 4 and 128 facets.

Depending on the offset size %, certain parts of the triangles that lie on planes parallel to the
contact planes define the valid offset surface. In particular, the triangle ∆ of an axis sheet
projects to two triangles ∆1 and ∆2 on two different contact arrangements. The offset surface
generated from each of these triangles is split into a valid (v(∆)) and a trimmed (t(∆)) part,
which intersect in the corresponding axis sheet. Note that a part derived from an EE- or
FV-typed contact class resides on a plane which is partially defined by features of the unit
ball.

Observation 13. It has to be noted that the offset computed by the above procedure does
not fully match with the one defined in Definition 1.2.7. Given a polyhedral unit ball B̃, let
B̃∗ be the polyhedron that is centrally symmetric to B̃ with O being the center of symmetry.
Then the offset we obtain from the medial axis MAB̃(Ω) is the trimmed inner offset of Ω with
respect to B̃∗.5

In Figure 3.28b the inner trimmed offset of an octahedron with respect to two different
distance functions δB̃ is shown.

5For a polyhedral unit ball B̃ which is centrally symmetric to itself, the notions coincide. The respective
distance function δB̃ then induces not only a quasi-metric, but a metric.

92

(a) Triangulated solid (b) Medial axis (c) Trimmed offset

Figure 3.29: The medial axis and trimmed offset of a 5000-facet instance of the Stanford bunny
model with respect to a polyhedral unit ball with 128 facets.

3.3.4 Implementation and Examples

In the course of our work on medial axis computation with respect to piece-wise linear quasi-
metrics, we implemented parts of the algorithm. Finally we assembled the single pieces to a
program, which is now able to compute the medial axis (Figure 3.29b) as well as the trimmed
inner offset (Figure 3.29c) of a triangulated solid (Figure 3.29a), with respect to a quasi-
metric induced by an arbitrary convex polyhedron. The software is not ready for release, but
basically fully functional.

In Section 3.3.4.1 we will provide some details of the implementation done for the medial
axis and offset computation, in particular regarding the underlying geometric library CGAL
(Computational Geometry Algorithms Library) [90]. In Section 3.3.4.2 we will present some
examples of different meshes and varying polyhedral unit balls, with runtimes and other
statistical data of interest.

3.3.4.1 CGAL implementation details

The implementation has been done in the object-oriented programming language of C++.
There have been several reasons for this choice:

• C++ is a widespread, popular and efficient programming language.

• The data representation and interaction between the shape and the unit ball recom-
mends itself for an object-oriented approach.

• There exists an extensive C++ package for geometric problems, which provides data
structures, algorithms for popular problems and robust implementations of exact num-
ber types. This collection of libraries is called CGAL [90].

Especially the prefabricated data structures of CGAL proved to be useful for the im-
plementation. The Polyhedron 3 structure, for example, is used to represent the shape–a

93

(a) Shape with genus 2 (b) Medial axis for tetrahedral B̃

Figure 3.30: Also the representation of shapes with genus > 0 is possible, as is the medial axis
computation for such a shape.

triangulated solid–as well as the unit ball via their boundary. Some details for the applica-
tion, as given in [71], are the following:

The polyhedral surface is realized as a container class that manages vertices, halfedges,
facets with their incidences, and that maintains the combinatorial integrity of them. It is
based on the highly flexible design of the halfedge data structure
· · ·
Vertices represent points in space. Edges are straight line segments between two endpoints.
Facets are planar polygons without holes. Facets are defined by the circular sequence of
halfedges along their boundary. The polyhedral surface itself can have holes (with at least
two facets surrounding it since a single facet cannot have a hole). The halfedges along
the boundary of a hole are called border halfedges and have no incident facet. An edge is
a border edge if one of its halfedges is a border halfedge. A surface is closed if it contains
no border halfedges. A closed surface is a boundary representation for polyhedra in three
dimensions.
· · ·
Other intersections besides the incidence relation are not allowed.

One of the big advantages of this data structure, beside its use of the powerful halfedge data
structure [72], and that it allows also the handling of shapes with genus > 0 (see Figure 3.30),
is the possibility to embed its components in an AABB tree [9], which facilitates intersection
detection, as described in Section 3.3.2.2.1.

The contact arrangements of the regular typed contact classes are realized by instances
of the Arrangement 2 class, described in [53]:

Given a set C of planar curves, the arrangement A(C) is the subdivision of the plane into
zero-dimensional, one-dimensional and two-dimensional cells, called vertices, edges and
faces, respectively induced by the curves in C.
· · ·
This graph can be represented using a doubly-connected edge list data-structure (Dcel
for short), which consists of containers of vertices, edges and faces and maintains the
incidence relations among these objects. The main idea behind the Dcel data-structure
is to represent each edge using a pair of directed halfedges

94

(a) Medial axis structure (b) Contact arrangements

Figure 3.31: (a) Seams and jump sheets (black) and pseudo-seams (grey). (b) The respective
projections define the contact arrangements.

· · ·
Halfedges are used to separate faces, and to connect vertices
· · ·
Each halfedge e stores a pointer to its incident face, which is the face lying to its left.
Moreover, every halfedge is followed by another halfedge sharing the same incident face,
such that the target vertex of the halfedge is the same as the source vertex of the next
halfedge. The halfedges are therefore connected in circular lists, and form chains, such
that all edges of a chain are incident to the same face and wind along its boundary.

In Figure 3.31 the medial axis components which project to arrangement segments (seams,
pseudo-seams and jump sheets) are shown to the left, and their projections to the right. Note
that contact arrangements for contact classes of type EE and FV do not lie on the boundary
of Ω.

Another major contribution of the CGAL framework is that data structures can be ini-
tialized with user-defined number types. This is done with help of the template-mechanism,
supported by the recent C++ architecture standards. For my implementation we chose the
exact rational number type Gmpq [91]. As shown in Section 3.3.2.2, for ∂Ω and ∂B̃ given
with rational vertex coordinates, all points obtained by the construction of a maximal∗ ball
also have rational coordinates. As a consequence also the medial axis–spanned by rational
center points of maximal∗ balls–is exactly representable by rational numbers as implemented
by Gmpq.

For the two-dimensional representation of the final contact arrangements we use the
CGAL-supported Qt library [89]. All 3D-objects are represented as OOGL objects, sup-
ported by the mesh-visualization program Geomview [68]. This is sufficient, as the medial
axis as well as the trimmed offset surfaces are visually representable as triangle-meshes.

3.3.4.2 Runtime examples

The time needed for the computation of the contact arrangements depends on various criteria:

95

mesh facets axis computation offset computation # axis sheets
115 115.54 secs 1.87 secs 417
267 284.04 secs 4.15 secs 1021
575 525.19 secs 7.73 secs 2088

1396 1209.51 secs 15.63 secs 4653

Table 3.2: Computation times for the medial axis and trimmed offset with respect to a tetra-
hedral unit ball of various instances of the Venus model as depicted in Figure 3.33.

• The quality of the boundary mesh influences the time gain provided by the AABB-tree
structure [9]. A mesh with roughly equally sized and equilateral triangles is advanta-
geous, while single large triangles can impair the nesting balance of the tree.

• A rather complex and strongly branched shape has more reflex features thus inducing
more contact classes of type EE and FV. This means that more contact arrangements
have to be computed, and also the construction of the contact domain is more costly
for these contact types.

• The nesting complexity of a single contact arrangement, however, which also has a
certain influence on the performance, is in average higher for less ramified shapes, as in
general more components of the medial axis project on the accordant contact domain.

• Besides the combinatorial sizes of the triangulated solid and the unit ball, also the
mutual geometric alignment of them plays a role when it comes to the complexity of
the resulting axis (remember the worst case example in the planar case as depicted in
Figure 3.11). A complex axis means high computation costs.

For all these reasons it is hard to provide theoretical bounds for the algorithms complexity
and runtime, which is why in the following we will concentrate on empirical data obtained
from test runs on several instances of mesh models with varying properties.

As a first example we consider the simple “Venus” model as it has also been used in
[33]. In Figure 3.33 several mesh instances of this shape are shown, together with different
representations of the medial axis with respect to a unit ball with 4 facets. The respective
computation times compare favorably with the ones reported in [33] for the same shape.6

There, the computation of the medial axis for the Venus shape with 250 facets is performed
in 5.6 hours, with computing times growing considerably with respect to the number of faces.
As can be seen in Table 3.2, the new algorithm computes the exact medial axis with respect
to the quasi-metric induced by a tetrahedral B̃ for an instance of comparable size (267 facets)
in less than 5 minutes. Also, the approach presented in [33] is likely to suffer from much worse
runtime development for larger input sizes, than the algorithm introduced herein. See again
Table 3.2, which indicates an almost linear relation between mesh size and computation time.
Computation times for the trimmed offset are linear to the combinatorial axis size, and as
such very moderate.

6This is the only implementation we are aware of that constructs the exact medial axis with respect to a
specific metric. According to [33] some effort has been put into optimzation, but still runtimes have to be
regarded with care, as they are obtained from an older SGI system, running with 300 MHz.

96

mesh facets axis computation offset computation # axis sheets
174 165.10 secs 2.29 secs 559
404 473.47 secs 8.84 secs 1657
860 923.99 secs 16.94 secs 3590

1814 1922.14 secs 35.95 secs 7736
3490 3926.88 secs 69.23 secs 14936

Table 3.3: Axis and offset computation times for different instances of the Lion model.

(a) Iron maiden pizza box (b) Medial axis seam structure

Figure 3.32: Iron maiden pizza box mesh (with omitted top and bottom facets), and its medial
axis seam and jump sheet structure (with respect to a tetrahedral unit ball).

The Lion model (some mesh instances together with medial axis and trimmed offsets are
depicted in Figure 3.34) represents a slightly more ramified shape. However, like for the Venus
model, the axis size as well as the time needed for its computation, grows in an almost linear
fashion with respect to the input mesh size.

The more convoluted “Iron-maiden pizza box” mesh (also introduced in [33]), has 60 facets,
but already a medial axis with 583 sheets, when computed with respect to a tetrahedral unit
ball (see Figure 3.32). This is clearly more than for the Venus mesh with 115 and the Lion
mesh with 174 facets.

The most extensive tests have been performed with the Armadillo model. It comes in
mesh instances of combinatorial sizes between 100 and 100000 facets, and is as such the
most diversified among the models we considered. With help of these mesh-instances (see
Figure 3.35 for some examples), experimental results that indicate the relation between the
complexity of the input mesh data (number of facest on ∂Ω and ∂B̃), the computing times
and the size of the generated output have been obtained. The computation times for the
Armadillo example, reported in Table 3.4, grow only slightly super-linearly with respect to
the number of facets of the mesh, and even sub-linearly with respect to the number of facets
in the unit ball. In addition, when analyzing the relation between the size (i.e., the number
of planar sheets) of the computed medial axis and the number of facets on the boundaries of
Ω and of B̃, it comes into notice, the size of the medial axis grows linearly with the size of
∂Ω, but only very slowly (much less than linear) with the size of ∂B. See Table 3.5.

97

facets 4 8 20 128
96 1.08E+2 1.80E+2 5.40E+2 4.61E+3

194 1.80E+2 4.32E+2 1.22E+3 9.47E+3

390 3.60E+2 8.64E+2 2.38E+3 1.82E+4

780 7.56E+2 1.84E+3 5.15E+3 3.65E+4

1562 1.55E+3 3.42E+3 8.78E+3 6.90E+4

3124 3.06E+3 6.26E+3 1.68E+4 1.23E+5

6250 5.98E+3 1.20E+4 3.02E+4 2.09E+5

12500 1.21E+4 2.24E+4 5.54E+4 3.64E+5

25000 2.64E+4 4.46E+4 1.01E+5 6.14E+5

50000 6.58E+4 9.89E+4 2.07E+5 −
100000 1.88E+5 2.40E+5 4.47E+5 −

Table 3.4: Left: Computation times (in seconds)
for several polyhedral unit balls (shown in the dif-
ferent columns; the first row specifies the number
of faces) and various instances of the Armadillo
mesh (shown in the rows) on a single CPU with
2.5 GHz. Right: Results plotted on a log-log scale.

102

103

104

105

106

 100 1000 10000 100000

el
ap

se
d

se
cs

number of mesh facets

Runtimes with respect to boundary mesh

4
8

20
128

102

103

104

105

106

 10 100

el
ap

se
d

se
cs

number of ball facets

Runtimes with respect to unit ball

780
1562
3124
6250

12500
25000

facets 4 8 20 128
96 315 325 375 542

194 661 714 819 1097
390 1410 1437 1709 2315
780 2879 3154 3661 4945

1562 6106 6689 7316 10091
3124 12514 13365 15043 20655
6250 24764 26519 29841 39906

12500 48592 52655 58055 78155
25000 94715 101733 111355 148967

Table 3.5: Number of sheets of the medial axis for
several polyhedral unit balls (shown in the differ-
ent columns; the first row specifies the number
of faces) and various instances of the Armadillo
mesh (shown in the rows). Right: Results plotted
on a log-log scale.

102

103

104

105

 100 1000 10000

ax
is

 s
iz

e

number of mesh faces

Axis size with respect to boundary mesh

4
8

20
128

102

103

104

105

 10 100

ax
is

 s
iz

e

number of ball faces

Axis size with respect to unit ball

780
1562
3124
6250

12500
25000

98

triangular mesh seam structure for tetrahedral B̃ axis for tetrahedral B̃

267 facets

575 facets

1396 facets

Figure 3.33: Mesh instances of the Venus model (left), seam and jump sheet structures (middle)
and medial axes as non-manifold, piece-wise linear meshes (right).

99

triangular mesh axis for tetrahedral B̃ offset for tetrahedral B̃

860 facets

1814 facets

3490 facets

Figure 3.34: Various mesh instances of the Chinese-lion model with medial axes and offsets.

100

triangular mesh axis for tetrahedral B̃ axis for B̃ with 128 facets

390 facets

780 facets

1562 facets

3124 facets

Figure 3.35: Various instances of the Armadillo mesh and their medial axes.

101

Figure 3.36: These trimmed offset examples, as well as the offsets and medial axes of all other
example meshes in the previous chapter have been computed with the algorithm and the im-
plementation described in Section 3.3.2 and Section 3.3.4.

3.4 Conclusion of Chapter 3

Exact medial axis computation is, especially in space, a challenging task. In the Euclidean
case, already for piece-wise linear boundary representations (as triangular meshes), bisectors
of higher algebraic complexity occur, resulting in even more complex trisectors and overall in
a problem being intricate concerning numerical as well as structural issues.

The use of piece-wise linear quasi-metrics has, to our knowledge, up to this point not been
directly considered for medial axis computation.7 As shown in this chapter, the benefits of
exact computation with respect to such a metric are numerous.

For triangulated solids, the medial axis with respect to a piece-wise linear quasi-metric is
again piece-wise linear. This is one of the reasons why the algorithm presented herein recom-
mends itself for implementation, as for a boundary that is given with rational coordinates, all
computations can be done within the set of rational numbers. This guarantees a numerically
stable and robust implementation, and allows an exact representation of the medial axis.

To handle the combinatorial and structural complexity of the axis, its three-dimensional
components are projected to two-dimensional contact arrangements which represent the com-
plete structure. The algorithm works solely on these contact arrangements, thus reducing
a three-dimensional problem to a number of intuitively solvable two-dimensional ones. The
completeness of the representation is guaranteed due to the fact that every maximal∗ ball of
MATB̃(Ω) being centered on the medial axis must have at least one regular contact (or at
least projects on the boundary of a respective contact domain). By computing the contact
arrangements of all occuring regular typed contact classes, all maximal∗ balls of MATB̃(Ω)
are covered. The implementation is also easily adaptable for parallel data processing, as the
above mentioned contact arrangements can be computed independently from one another.

By assembling the medial axis components, a representation as a non-manifold triangular
mesh is obtained, which then allows convenient trimmed offset computation with respect to
the underlying quasi-metric.

It might be no big surprise, that the medial axis with respect to a piece-wise linear quasi-
7Approaches for Voronoi computation with respect to different convex distance functions exist but are not

very elaborate or hard to implement [25, 26, 67].

102

metric induced by a unit ball B̃ converges towards the Euclidean axis if B̃ converges towards
the Euclidean unit ball.

But the manipulation of the unit ball raises several other interesting questions, being
the main issues for ongoing work in this context. Given a mesh, what does a (preferably
combinatorially small) polyhedral unit ball have to look like to reduce the occurrence of
pseudo-seams? With a decreasing number of pseudo-seams, a combinatorial structure close
to the Euclidean medial axis is to be expected. On the other hand the implicit pruning induced
by the piecewise linear metric might be a welcome feature. This leads to the question how
to locate points on the unit sphere, such that the vertices of the resulting convex polyhedral
ball enter as many flat convex features of a mesh as possible. Modifications of the unit
ball B̃ do affect the geometric as well as the combinatorial appearance of MAB̃(Ω). Another
interesting task for future research is to identify and isolate the combinatorially stable –
and thus essential – parts of the medial axis by comparing the representations for different
quasi-metrics δB̃ resulting from several different polyhedral unit balls B̃.

Chapter 4

Summary and future work

The main motivation for the work presented in this thesis, was to provide more than theoret-
ical concepts and bounds of abstract algorithms for medial axis computation. The emphasis
was more on the practicability and the implementation of the algorithms, as well as their
flexibility and applicability for related problems. In particular we wanted to point out and
exploit the strong link between the boundary representation of a shape and its medial axis
transform. Together with the requirement of numerical stability these considerations natu-
rally suggested the use of a powerful library as CGAL [90], which already provides many basic
geometric tools, allowing the user to focus on the more sophisticated problems.

The initial problem treated in Chapter 2 was to compute the exact medial axis of shapes
with smooth circular boundary representations. This led to the development of four base
cases, to which every shape can be reduced by decomposing it via the footpoints of maximal
disks, already exploiting the connection between the medial axis transform and the boundaries
shape.

By adapting parts of the algorithm, the original four base cases were supplemented by
nine more, extending the set of processable shapes to general circular boundaries.

The next logical step was to extend the set of valid shapes to non-simple ones, enclosing
holes. This was achieved by augmenting such a shape at specific locations, thus enabling us to
handle it like a combinatorially simple one. When interpreting the occuring holes as Voronoi
sites, the resulting structure is equivalent to the edge graph of an extended Voronoi diagram.
Self-edges can be pruned, by having a look at the boundary primitives associated with them.
Again we take advantage of the link between the axis and associated boundary structures.

However, where this relation of the axis and the boundary really shows its potential is
trimmed offset computation. Especially convenient is the fact that the partial offsets of the
base cases can be merged by simple concatenation. In general, the concept of divide-and-
conquer proved to be very efficient and flexible for all the above problems, as virtually all
implementation issues could be handled on the low complexity level of the occuring base cases.

Efforts to extend the divide-and-conquer approach from the 2D to the 3D case mainly failed
due to two major drawbacks. Not only is the definition and identification of base cases a
difficult task, but also the curves on the boundary at which we would have to split are of
higher algebraic complexity. Consequently, the philosophy behind the approach chosen in
Chapter 3 was different than the one for the 2D one. While the algorithm in Chapter 2
computes the exact medial axis of a circular boundary representation with respect to the

103

104

Euclidean metric, we adapted the underlying metric in the 3D case to obtain a piece-wise
linear medial axis for triangulated solids.

In the approach from Chapter 2, by letting the circular boundary representation converge
towards the original shape, the medial axis of arc approximation converges towards the medial
axis of the original shape. The algorithm in Chapter 3 computes the exact medial axis of a
triangulated solid, but with respect to a piece-wise linear distance function. By letting the
metric-inducing polyhedral unit ball converge towards the Euclidean unit ball, the resulting
piece-wise linear medial axis converges towards the Euclidean one.

Medial axis computation for the triangulated solid is now not achieved by means of divide-
and-conquer and base cases, but by building projection arrangements on the planes resulting
from contacts between the solids boundary and the polyhedral unit ball. These are now, due
to the piece-wise linear metric, composed of simple line segments. Again, the medial axis is
constructed with help of its relation to the boundary of the respective shape.

This again results in a set-up which is very convenient for the computation of trimmed
inner offsets, of course with respect to the piece-wise linear distance function. Unlike in the
2D approach, however, not base-case-shapes are the smallest subproblems, but single axis
sheets represented by arrangement faces are to be handled directly.

Although the above algorithms have alread gone through a considerable development in the
course of their extension history, the possibilities for ongoing work are far from being ex-
hausted.

The 2D-algorithm from Chapter 2 certainly recommends itself (concerning its basic divide-
and-conquer mechanism) for application on shapes with algebraically more complex bound-
aries. This would cause an increase in the number of base cases that have to be considered,
and bisectors with higher algebraic degree, what will be examined in future work.

The approach from Chapter 3, dealing with piece-wise linear metrics and triangulated
solids seems even more interesting for further research. Convergence of the induced piece-
wise linear medial axis to the Euclidean one could so far only be proven for the planar case
(see [3]). Still missing as well is an upper bound for the combinatorial size of the axis in
3D, with respect to the size of the shapes and the unit balls boundary. Beside these rather
theoretical issues, also the pruning effect caused by a polygonal or polyhedral unit ball deserves
more attention in ongoing work, for more details see Section 3.4. The main question is: What
does a unit ball have to look like, which maximizes or minimizes this implicit pruning for a
given shape? A closer look at the distance relation between a polyhedron-induced and the
Euclidean medial axis is also a promising topic and may yield interesting results.

All in all we hope for this thesis to have shown, that the medial axis, despite it already being
the topic of numerous scientific works, still deserves attention in future research due to its
thematic diversity and varied applicability.

Glossary

AABB tree data structure that speeds up detection of intersections in 3D, 73

arrang algorithm for computation of the contact arrangement of a contact class, 83

augmented domain domain in the plane enhanced by an augmenting disk, 31

augmenting disk maximal disk whose center point breaks cycle of the medial axis, 31

auxiliary arc circular arc derived from a dividing disk, 12

base case partial shape composed of circular arcs, whose medial axis can be computed di-
rectly, 13

bisector a bisector between two sites is the locus of points that are equidistant to both sites,
42

branching point point on the medial axis in 2D with three footpoints, 8

CGAL C++ library with geometric and numerical tools, 21

circular arc boundary boundary which is composed of circular arcs, 10

contact pair consisting of one component of a shapes boundary, and one component of a
maximal∗ balls boundary, 54

contact arrangement arrangement of projection lines, 70

contact class set of contacts sharing the shape component, and whose ball component is
derived from the same component of the underlying unit ball, 54

contact domain set of projections on the contact plane, associated with a contact class, 68

contact plane plane spanned by the components of a regular contact class, 67

contact type describes the type of components forming a contact, 53

convex in a convex feature of a shape all line segments connecting two points that lie in this
feature are contained in the shape, 14

cycle in this context: closed curve in a line graph, 30

105

106

dividing disk maximal disk which induces split of the medial axis into combinatorially
smaller partial axis, 12

footpoint point shared by a maximal inscribed or maximal∗ ball and the boundary of a
shape, 7

Gmpq exact rational number type, 21

Halfedge data type used for representing a mesh in the halfedge structure, 92

Hausdorff distance distance measure between two arbitrary sets in the same space, 7

hole set of points bounded by a boundary part of a shape, which is not part of this shape;
here also considered as a Voronoi site, 29

jump edge special medial axis edge in 2D that results from piece-wise linear quasi-metrics,
55

jump sheet special medial axis sheet in 3D that results from piece-wise linear quasi-metrics,
57

junction point point on the medial axis in 3D with four footpoints, 8

leaf point point on the medial axis in 2D associated with local curvature maximum, 8

local maximal curvature point / arc on the boundary of shape in 2D, which describes a
local maximum of curvature, 18

maxdisk algorithm for computation of a maximal disk of a circular arc boundary shape, 13

maximal∗ ball ball contained in a shape that shares at least two points with its boundary,
52

maximal disk maximal inscribed ball in the plane, 9

maximal inscribed ball ball which is maximal with respect to inclusion in a shape, 7

medax algorithm for computation of the medial axis of a circular arc boundary shape, 20

medial axis shape descriptor composed of the center points of maximal inscribed balls, 7

medial axis transform set of all maximal inscribed balls of a shape, 7

mesh polygonal net, mostly composed of triangles, 51

offset curve whose points are at a fixed normal distance of a given curve, 7

opposite contact maximal∗ ball centered on sheet projects in two contact domains, one
contact is called the opposite contact of the other one and vice versa, 72

original arc circular arc derived from an arc on the boundary of a shape, 12

107

partial axis medial axis of a part of a shape, obtained by decomposition, 18

piece-wise linear structure composed of straight lines and planes, 51

projection projection of a maximal∗ ball in a contact domain, 68

projection line projection of a seam, pseudo-seam or jump sheet in a contact domain, 76

projline algorithm for computation of a projection line in a contact domain that crosses a
given segment, 80

pruning thinning effect of the medial axis resulting from pseudo-structures, 60

pseudo-branching branching on the medial axis in 2D which has only two footpoints, 55

pseudo-seam a seam in 3D represented by set of maximal∗ balls which have only two foot-
points, 57

quasi-metric metric without symmetry property, 51

rasqex rational number type extended by the square-root operator, 40

RCAB circular arc boundary composed of rational arcs, 41

reflex concave feature, opposite of convex, 14

seam set of points on the medial axis in 3D with three footpoints, 8

searchcc binary search algorithm for new opposite contact, 77

self-edge edge of Voronoi diagram representing maximal disks which have two footpoints on
the same site, 29

shape connected set in two or three dimensions, 7

sheet set of points on the medial axis in 3D with two footpoints, 8

sweep algorithm for intersection detection along an edge of a contact arrangement, 78

tree connected, cycle-free line graph in the plane, 8

triangulated solid simple polygonal area in 2D, connected shape bounded by a triangular
mesh in 3D, 51

trimmed offset offset whithout self-intersecting parts, 7

unit ball convex set, containing the origin, that induces a distance function, 7

Voronoi diagram decomposition of a space determined by distances to a discrete set of
sites, 29

Bibliography

[1] O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jüttler, E. Pilgerstorfer, and
M. Rabl. Divide-and-conquer for Voronoi diagrams revisited. Computational Geometry:
Theory and Applications, 43:688–699, 2010.

[2] O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jüttler, and M. Rabl. Medial
axis computation for planar free-form shapes. Computer-Aided Design, 41:339–349, 2009.

[3] O. Aichholzer, W. Aigner, F. Aurenhammer, and B. Jüttler. Exact medial axis compu-
tation of triangulated solids with respect to piecewise linear metrics. Lecture Notes in
Computer Science, to appear 2011.

[4] O. Aichholzer, W. Aigner, T. Hackl, and N. Wolpert. Exact medial axis computation for
circular arc boundaries. Lecture Notes in Computer Science, to appear 2011.

[5] O. Aichholzer, F. Aurenhammer, T. Hackl, B. Jüttler, M. Oberneder, and Z. Śır. Com-
putational and structural advantages of circular boundary representation. In Lecture
Notes in Computer Science, volume 4619, pages 374–385, 2007.

[6] O. Aichholzer, F. Aurenhammer, B. Kornberger, S. Planting, G. Rote, A. Sturm, and
G. Vegter. Recovering structure from r-sampled objects. In Proceedings of the Symposium
on Geometry Processing ’09, pages 1349–1360, 2009.

[7] W. Aigner. The medial axis of planar shapes. Master’s thesis, University of Technology,
Graz, 2007.

[8] V. R. Algazi and J. W. Brandt. Continuous skeleton computation by Voronoi diagram.
CVGIP: Image Understanding, 55:329–338, 1991.

[9] P. Alliez, S. Tayeb, and C. Wormser. AABB tree. In CGAL User and Reference Manual.
CGAL Editorial Board, 3.7 edition, 2010.

[10] H. Alt, O. Cheong, and A. Vigneron. The Voronoi diagram of curved objects. Discrete
& Computational Geometry, 34:439–453, 2005.

[11] H. Alt and C.-K. Yap. Motion planning in the CL-environment. In Lecture Notes In
Computer Science, volume 382, pages 373–380. 1989.

[12] N. M. Amato, P. F. Stiller, and S. A. Wilmarth. Motion planning for a rigid body using
random networks on the medial axis of the free space. In Proceedings of the 15th annual
symposium on Computational geometry ’99, pages 173–180, New York, USA, 1999. ACM.

108

109

[13] T. Asano, J. Matousek, and T. Tokuyama. The distance trisector curve. Advances in
Mathematics, 212(1):338–360, 2007.

[14] D. Attali, J.-D. Boissonnat, and H. Edelsbrunner. Stability and computation of medial
axes: a state of the art report. In B. Hamann T. Moeller and B. Russell, editors,
Mathematical Foundations of Scientific Visualization, Computer Graphics and Massive
Data Exploration. Springer-Verlag, Mathematics and Visualization, 2007.

[15] B. Bastl, B. Jüttler, J. Kosinka, and M. Lávička. Volumes with piecewise quadratic
medial surface transforms: Computation of boundaries and trimmed offsets. Computer-
Aided Design, 42:671–679, 2010.

[16] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, and E. Schömer. A
computational basis for conic arcs and boolean operations on conic polygons. In ESA
2002, Lecture Notes in Computer Science, pages 174–186, 2002.

[17] H. Blum. A transformation for extracting new descriptors of shape. In Weiant Wathen-
Dunn, editor, Models for the Perception of Speech and Visual Form, pages 362–380. MIT
Press, Cambridge, England, 1967.

[18] J.-D. Boissonnat and S. Oudot. Provably good sampling and meshing of surfaces. Graph-
ical Models, 67:405–451, 2005.

[19] E. Brisson, N. M. Patrikalakis, and E. C. Sherbrooke. An algorithm for medial axis trans-
form of 3-D polyhedral solids. IEEE Trans. on Visualization and Computer Graphics,
2:44–61, 1996.

[20] D. Brunner and G. Brunnett. Automatic bone generation for character animation using
the discrete medial axis transformation. Tagungsband Virtuelle und Erweiterte Realität,
1. Workshop der GI-Fachgruppe VR/AR, pages 339–350, 2004.

[21] C. Burnikel. Rational points on circles. Technical report, Max-Planck-Institut für Infor-
matik, 1998.

[22] C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation bound
for real algebraic expressions. In ESA 2001, Lecture Notes in Computer Science, pages
154–265, 2001.

[23] L. Cao and J. Liu. Computation of medial axis and offset curves of curved boundaries
in planar domain. Computer-Aided Design, 40:465–475, 2008.

[24] F. Chazal and A. Lieutier. The λ-medial axis. Graphical Models, 67:304–331, 2005.

[25] L. P. Chew and R. L. Drysdale. Voronoi diagrams based on convex distance functions.
In Proc. 1st Ann. ACM Symposium on Computational Geometry, pages 235–244, 1985.

[26] L. P. Chew, K. Kedem, M. Sharir, B. Tagansky, and E. Welzl. Voronoi diagrams of lines in
3-space under polyhedral convex distance functions. Journal of Algorithms, 29:238–255,
1998.

[27] F. Chin, J. Snoeyink, and C. A. Wang. Finding the medial axis of a simple polygon in
linear time. In Discrete Computational Geometry, pages 382–391. Springer-Verlag, 1995.

110

[28] H. I. Choi, S. W. Choi, and H. P. Moon. Mathematical theory of medial axis transform.
Pacific Journal of Mathematics, 181(1):57–88, 1997.

[29] H. I. Choi and C. Y. Han. The medial axis transform. In J. Hoschek G. Farin and
M. S. Kim, editors, The Handbook of Computer Aided Geometric Design, pages 451–471.
Amsterdam, The Netherlands, 2002.

[30] J. J. Chou. Voronoi diagrams for planar shapes. IEEE Computer Graphics and Appli-
cations, 15:52–59, 1995.

[31] J.-M. Chung and N. Ohnishi. Matching and recognition of planar shapes using medial
axis properties, 2007.

[32] E. Cohen, S. Drake, and G. Elber. Medial axis transform toward high speed machining
of pockets. Computer-Aided Design, 37(2):241–250, 2005.

[33] T. Culver, J. Keyser, and D. Manocha. Exact computation of the medial axis of a
polyhedron. Computer-Aided Geometric Design, 21(1):65–98, 2004.

[34] W. L. F. Degen. Exploiting curvatures to compute the medial axis for domains with
smooth boundary. Computer-Aided Geometric Design, 21(7):641–660, 2004.

[35] T. K. Dey and W. Zhao. Approximating the medial axis from the Voronoi diagram with
a convergence guarantee. Algorithmica, 38:179–200, 2003.

[36] S. J. Dickinson, A. Shokoufandeh, K. Siddiqi, and S. W. Zucker. Shock graphs and shape
matching. International Journal for Computer Vision, 35:13–32, 1999.

[37] R. L. S. Drysdale and D. T. Lee. Generalization of Voronoi diagrams in the plane. SIAM
Journal on Computing, 10:73–87, 1981.

[38] H. Du and H. Qin. Medial axis extraction and shape manipulation of solid objects
using parabolic pdes. In Proceedings of the 9th ACM symposium on Solid modeling and
applications ’04, pages 25–35, Aire-la-Ville, Switzerland, 2004. Eurographics Association.

[39] Z. Du, C. Li, S. Pion, V. Sharma, and C. Yap. The Core library.
http://cs.nyu.edu/exact/core pages/downloads.html.

[40] T. Dubé and C. K. Yap. The exact computation paradigm. In D.-Z. Du and F. K.
Hwang, editors, Computing in Euclidean Geometry, volume 1 of Lecture Notes Series on
Computing, pages 452–492. World Scientific, 1995.

[41] G. Elber, I. Hanniel, M.-S. Kim, and R. Muthuganapathy. Precise Voronoi cell extraction
of free-form rational planar closed curves. In SPM ’05: Proceedings of the 2005 ACM
symposium on Solid and physical modeling, pages 51–59, New York, USA, 2005. ACM.

[42] G. Elber and M.-S. Kim. Bisector curves of planar rational curves. Computer-Aided
Design, 30(14):1089–1096, 1998.

[43] G. Elber, M.-S. Kim, and J.-K. Seong. Trimming local and global self-intersections in
offset curves/surfaces using distance maps. Computer-Aided Design, 38:183–193, 2006.

111

[44] I. Z. Emiris and M. I. Karavelas. The predicates of the Apollonius diagram: Algorithmic
analysis and implementation. Computational Geometry, 33(1-2):18–57, 2006.

[45] I. Z. Emiris, E. P. Tsigaridas, and G. M. Tzoumas. Exact delaunay graph of smooth
convex pseudo-circles: general predicates, and implementation for ellipses. In SPM ’09:
2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, pages 211–222,
New York, USA, 2009. ACM.

[46] I. Z. Emiris and G. M. Tzoumas. Exact and efficient evaluation of the incircle predicate
for parametric ellipses and smooth convex objects. Computer-Aided Design, 40(6):691–
700, 2008.

[47] M. Etzion and A. Rappoport. Computing the Voronoi diagram of a 3-D polyhedron by
separate computation of its symbolic and geometric parts. In Proceedings Symposium on
Solid Modeling and Applications, pages 167–178. ACM, 1999.

[48] H. Everett, C. Gillot, D. Lazard, S. Lazard, and M. Pouget. The voronoi diagram of three
arbitrary lines in R3. In In Proc. 25th European Workshop on Computational Geometry
’09, pages 297–300, 2009.

[49] R. T. Farouki and R. Ramamurthy. Degenerate point/curve and curve/curve bisec-
tors arising in medial axis computations for planar domains with curved boundaries.
Computer-Aided Geometric Design, 15(6):615–635, 1998.

[50] R. T. Farouki and R. Ramamurthy. Voronoi diagram and medial axis algorithm for planar
domains with curved boundaries i. theoretical foundations. Journal of Computational and
Applied Mathematics, 102(1):119–141, 1999.

[51] R. T. Farouki and R. Ramamurthy. Voronoi diagram and medial axis algorithm for
planar domains with curved boundaries ii: detailed algorithm description. Journal of
Computational and Applied Mathematics, 102(2):253–277, 1999.

[52] R. Feichtinger, B. Jüttler, and Z. Š́ır. Approximating curves and their offsets using biarcs
and Pythagorean hodograph quintics. Computer-Aided Design, 38:608–618, 2006.

[53] E. Fogel, D. Halperin, R. Wein, and B. Zukerman. 2D arrangements. In CGAL User
and Reference Manual. CGAL Editorial Board, 3.8 edition, 2011.

[54] J. Giesen, B. Miklos, and M. Pauly. Discrete scale axis representations for 3d geometry.
ACM Transactions on Graphics, 29:101:1–101:10, 2010.

[55] D. Gisch and J. M. Ribando. Apollonius’ problem: A study of solutions and their
connections, 2004.

[56] H. Nebi Gürsoy and N. M. Patrikalakis. An automatic coarse and fine surface mesh
generation scheme based on medial axis transform: Part ii implementation. Engineering
with Computers, 8:179–196.

[57] H. Nebi Gürsoy and N. M. Patrikalakis. An automatic coarse and fine surface mesh
generation scheme based on medial axis transform: Part i algorithms. Engineering with
Computers, 8:121–137, 1992.

112

[58] B. Gurumoorthy and M. Ramanathan. Constructing medial axis transform of planar
domains with curved boundaries. Computer-Aided Design, 35(7):619–632, 2003.

[59] B. Gurumoorthy and M. Ramanathan. Interior medial axis transform computation of
3D objects bound by free-form surfaces. Computer-Aided Design, 42:1217–1231, 2010.

[60] M. Held. Voronoi diagrams and offset curves of curvilinear polygons. Computer-Aided
Design, 30(4):287–300, 1998.

[61] M. Held. Vroni: An engineering approach to the reliable and efficient computation of
Voronoi diagrams of points and line segments. Computational Geometry: Theory and
Applications, 18(2):95–123, 2001.

[62] M. Held and S. Huber. Topology-oriented incremental computation of Voronoi diagrams
of circular arcs and straight-line segments. Computer-Aided Design, 41:327–338, 2009.

[63] M. Held, G. Lukacs, and L. Andor. Pocket machining based on contour-parallel tool paths
generated by means of proximity maps. Computer-Aided Design, 26:189–203, 1994.

[64] M. Hemmer. Algebraic foundations. In CGAL User and Reference Manual. CGAL
Editorial Board, 3.7 edition, 2010.

[65] D. Hoey and M. I. Shamos. Closest-point problems. In Proc. 16th Ann. Symp. Founda-
tions of Computer Science, pages 151–162, 1975.

[66] I.-K. Hwang, D.-S. Kim, and B.-J. Park. Representing the voronoi diagram of a simple
polygon using rational quadratic bézier curves. Computer-Aided Design, 27:605–614,
1995.

[67] C. Icking, R. Klein, N.-M. Lê, L. Ma, and F. Santos. On bisectors for convex distance
functions in 3-space. In In Proc. 11th Canadian Conference on Computational Geometry,
1999.

[68] T. Jones. Geomview. Linux Journal, 1996. http://www.geomview.org/.

[69] M. Karavelas. 2D segment Delaunay graphs. In CGAL User and Reference Manual.
CGAL Editorial Board, 3.7 edition, 2010.

[70] J. L. Kelley and I. Namioka. Linear topological spaces. Springer, New York, USA, 1976.

[71] L. Kettner. 3D polyhedral surfaces. In CGAL User and Reference Manual. CGAL
Editorial Board, 3.8 edition, 2011.

[72] L. Kettner. Halfedge data structures. In CGAL User and Reference Manual. CGAL
Editorial Board, 3.8 edition, 2011.

[73] D. G. Kirkpatrick. Efficient computation of continuous skeletons. In Proc. 20th Ann.
Symp. Foundations of Computer Science, pages 18–27, 1979.

[74] R. Klein, K. Mehlhorn, and S. Meiser. Randomized incremental construction of abstract
Voronoi diagrams. Computational Geometry: Theory and Applications, 3:157–184, 1993.

113

[75] P. Kunkel. The tangency problem of Apollonius: three looks. BSHM Bulletin: Journal
of the British Society for the History of Mathematics, 22:34–46, 2007.

[76] D. T. Lee. Medial axis transformation of a planar shape. IEEE Pattern Analysis and
Machine Intelligence, vol. PAMI-4:363–369, 1982.

[77] Y.-G. Lee and K. Lee. Computing the medial surface of a 3-D boundary representation
model. Advances in Engineering Software, 28:593–605, 1997.

[78] L. Linsen. Point cloud representation. Technical report, Fakultät f. Informatik, Univer-
sität Karlsruhe, 2001.

[79] D. S. Meek and D. J. Walton. Approximating smooth planar curves by arc splines.
Journal of Computational and Applied Mathematics, 59(2):221–231, 1995.

[80] D. S. Meek and D. J. Walton. Spiral arc spline approximation to a planar spiral. Journal
of Computational and Applied Mathematics, 107(1):21–30, 1999.

[81] K. Mehlhorn and S. Näher. The LEDA platform for combinatorial and geometric com-
puting. Cambridge University Press, 1999.

[82] A. Schinzel and W. Sierpinski. Elementary theory of numbers (second edition). North-
Holland mathematical library, 31, 1988.

[83] M. Sharir. Intersection and closest-pair problems for a set of circular discs. SIAM Journal
on Computing, 14:448–468, 1985.

[84] K. Weiler. The radial-edge structure: A topological representation for non-manifold
geometric boundary representations. Geometric Modelling for CAD Applications, pages
3–36, 1988.

[85] W. A. Wilson. On quasi-metric spaces. American Journal of Mathematics, 53(3):675–
684, 1931.

[86] C.-K. Yap. An O(n log n) algorithm for the Voronoi diagram of a set of simple curve
segments. Discrete & Computational Geometry, 2:365–393, 1987.

[87] z. Boost C++ libraries. http://www.boost.org/.

[88] z. Mozilla. http://www.mozilla.org/.

[89] z. Qt, cross-platform application framework. http://trolltech.com/products/qt/.

[90] z. Cgal, Computational Geometry Algorithms Library. http://www.cgal.org/.

[91] z. GMP, GNU Multiple Precision Arithmetic Library. http://gmplib.org/.

Curriculum Vitae of Wolfgang Aigner August 2, 2011

Affiliation

Dipl.-Ing. Wolfgang Aigner
Institute for Software Technology
Graz University of Technology
Inffeldgasse 16b, A-8010 Graz, Austria
Email: waigner@ist.tugraz.at

Personal Data

Born 10th of August, 1982 in Tamsweg (Austria)
Austrian nationality

Education

Graz University of Technology, Austria
2007 - present
PhD student, Adviser: Prof. O. Aichholzer

Graz University of Technology, Austria
2001 - 2007
Dipl.-Ing. (MSc), Technical Mathematics, Adviser: Prof. F. Aurenhammer
Studies of Technical Mathematics (with emphasis on informatics), Diploma Thesis at
the Institute for Theoretical Computer Science (with distinction)

High School, Tamsweg, Austria
1992 - 2000
Matura (A-levels) in mathematics, english, german, latin and philosophy and psychol-
ogy (with distinction)

114

115

Career History

Graz University of Technology, Austria
2011 - present
Institute for Theoretical Computer Science
Research Assistant, supported by the Austrian FWF ’EuroGIGA Voronoi’

Graz University of Technology, Austria
2007 - 2009 and 2010 - 2011
Institute for Software Technology
Research Assistant, supported by the Austrian FWF National Research Network ’In-
dustrial Geometry’ S9205-N12

Johannes Kepler University Linz, Austria
2009 - 2010
Institute of Applied Geometry
Research Assistant, supported by the Austrian FWF National Research Network ’In-
dustrial Geometry’ S9205-N12

Grazer Wechselseitige Versicherung AG, Austria
2005 - 2007
Part-time employee as insurance mathematician in the headquarters in Graz, Austria

Other Occupations

Comenius Education Project
2006 - 2007
Free programmer (Mathematica)

Austrian Armed Forces
2000 - 2001
National service (8 months)

Research Interests

Data structures, algorithms, computational geometry and graph theory in general, medial axis
and offset computation, numerical exact computation in particular, software development in
C++ (CGAL) and various other programming environments.

Publications Overview

2 articles in refereed journals.
3 [+1 accepted, +2 to appear] articles in refereed proceedings.
1 poster presentation.
Diploma Thesis.

116

Publications

Articles in refereed journals (thesis-relevant marked bold):

O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jüttler, E. Pilgerstorfer,
and M. Rabl. Divide-and-conquer for Voronoi diagrams revisited. Computational
Geometry: Theory and Applications, 43(8):688–699, 2010. Special Issue on the 25th
Annual Symposium on Computational Geometry (SoCG’09).

O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jüttler, and
M. Rabl. Medial axis computation for planar free-form shapes. Computer-
Aided Design, 41(5):339–349, 2009. Special issue: Voronoi Diagrams and
their Applications.

Articles in refereed proceedings (thesis-relevant marked bold):

O. Aichholzer, W. Aigner, F. Aurenhammer, K.Č Dobiášová, B. Jüttler and G. Rote.
Triangulations with circular arcs. 19th Symp. on Graph Drawing 2011, accepted.

O. Aichholzer, W. Aigner, F. Aurenhammer, and B. Jüttler. Exact me-
dial axis computation of triangulated solids with respect to piecewise linear
metrics. Lecture Notes in Computer Science, to appear 2011.

O. Aichholzer, W. Aigner, T. Hackl, and N. Wolpert. Exact medial axis
computation for circular arc boundaries. Lecture Notes in Computer Sci-
ence, to appear 2011.

O. Aichholzer, W. Aigner, F. Aurenhammer, K.Č Dobiášová, and B. Jüttler. Arc
triangulations. In Proc. 26th European Workshop on Computational Geometry EuroCG
’10, pages 17–20, Dortmund, Germany, 2010.

O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jüttler, E. Pilger-
storfer, and M. Rabl. Divide-and-conquer for Voronoi diagrams revisited.
In 25th Ann. ACM Symp. Computational Geometry, pages 189–197, Aarhus,
Denmark, 2009.

O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jüttler, E. Pilgerstorfer, and
M. Rabl. Divide-and-conquer for Voronoi diagrams revisited. In Proc. 25th European
Workshop on Computational Geometry EuroCG ’09, pages 293–296, Brussels, Belgium,
2009.

Poster presentations:

W. Aigner. Exact medial axis computation for circular arc boundaries. Poster presen-
tation at Curves & Surfaces 2010, Avignon, 2010.

Diploma thesis:

W. Aigner. The medial axis of planar shapes. Master’s thesis, IGI-TU Graz, Austria,
2007.

