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Preface

This PhD thesis contains a collection of papers of the author. Three of

these are already published. All the details can be found in the Publication List

following this preface. The fourth paper Invariants of functional decomposition

of rational functions is in preparation and will soon be submitted for publication.

The structure of this thesis is as follows. After the introduction, there are

four chapters and each corresponds to one publication. At the beginning of each

of those chapters, more information about the publication can be found. The last

chapter contains a publication that is quite unrelated to the main topic of this

thesis. This publication is incorporated into the thesis, since it was published

during the doctoral studies of the author.
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Chapter 1

Introduction

In 1920’s, the creators of modern iteration theory Fatou, Julia and Ritt

made extensive studies of commuting polynomials, that is, f, g ∈ C[x] that

satisfy f ◦ g = g ◦ f . The Julia set arose from such studies, as a consequence

of a result of Julia that two commuting polynomials have the same Julia set.

Ritt [85] determined all commuting rational functions. Ritt [84] further studied

more general functional equation f1 ◦ f2 ◦ · · · ◦ fm = g1 ◦ g2 ◦ · · · ◦ gn in non-

constant complex polynomials. This led him to study possible ways of writing a

complex polynomial as a functional composition of polynomials of lower degree.

A polynomial f ∈ C[x] with deg f > 1 is called indecomposable if it cannot be

written as a composition f(x) = g(h(x)) with g, h ∈ C[x] and deg g,deg h >

1. It follows by induction that any polynomial f(x) with deg f > 1 can be

written as a composition of indecomposable polynomials – such an expression

of f(x) is said to be a complete decomposition of f(x). Ritt proved that one

can obtain any complete decomposition of f(x) from any other through finitely

many steps, where each step consists of replacing two adjacent indecomposable

polynomials by two others with the same composition. This result is known in

literature as Ritt’s first theorem. Ritt then solved the equation a ◦ b = c ◦ d
in indecomposable a, b, c, d ∈ C[x]. The trivial solutions are a ◦ b = (a ◦ `) ◦
(`〈−1〉 ◦ b) for any linear ` ∈ C[x], where `〈−1〉(x) denotes the inverse of `(x) with

respect to functional composition. Ritt proved that, up to such insertions of

linear polynomials, the only nontrivial solutions are xn ◦ xmf(xn) = xmf(x)n ◦
xn and Tn(x) ◦ Tm(x) = Tm(x) ◦ Tn(x), where f(x) ∈ C[x], n,m are positive

integers and Tn(X) is the n-th Chebychev polynomial of the first kind (defined

via identity Tn(cos(α)) = cos(nα)). Ritt further generalized this result by finding

all solutions of the equation a ◦ b = c ◦ d, which satisfy deg(a) = deg(d) and

gcd(deg(a),deg(c)) = 1 (note that the solutions of a◦b = c◦d in indecomposables

satisfy these conditions). This result is known in literature as Ritt’s second

1



2 1. INTRODUCTION

theorem. Simplified and modernized versions of Ritt’s proofs together with a

complete exposition of related results can be found in [96].

In his proofs, Ritt used the language of Riemann surfaces. It was there-

fore somewhat surprising that his results could be extended to polynomials over

fields other than the complex numbers. In 1941 and 1942, Engstrom [36] and

Levi [65], using different (algebraic) methods, showed that the great portion

of Ritt’s results (these did not include Ritt’s second theorem in full generality)

hold over an arbitrary field of characteristic zero. In 1969, Fried and McRae [45]

proved that these results remain valid over fields of positive characteristic as

well, provided characteristic of the field does not divide the degree of the poly-

nomial under consideration. In 1974, Dorey and Whaples [25] noticed that Ritt’s

proofs do not make essential use of the topological structure of Riemann surfaces;

they followed Ritt’s ideas and gave group-theoretic proof of Ritt’s first theorem

and valuation-theoretic proof of Ritt’s second theorem (but under simplifying

assumption that a, b, c, d ∈ C[x] in a ◦ b = c ◦ d are indecomposable). In the

same paper Dorey and Whaples further provided an example of a polynomial

f(x) with coefficients in a field K satisfying char(K) | deg f , which has two com-

plete decompositions consisting of a different number of indecomposables. In

1993, Zannier [94] proved an analogue of Ritt’s second theorem in fields of posi-

tive characteristic. Alternative proofs of the aforementioned results were further

given by Fried [43], Schinzel [88, 89], Tortratt [93], Bilu and Tichy [13] and

others. These results have many applications to various areas of mathematics

that include:

1. Bilu and Tichy’s [13] classification of all f, g ∈ Q[x] such that the

equation f(x) = g(y) has infinitely many integer solutions,

2 Pakovich’s classification [75] of f, g ∈ C[x] and compact subsets A,B ⊆
C such that f−1(A) = g−1(B),

3 Beal, Wetherell and Zieve’s [7] description of K[f ] ∩K[g] and K(f) ∩
K(g) for f, g ∈ K[x], where K is a field of characteristic zero,

4 Ghioca, Tucker and Zieve’s [48] classification of complex polynomials

that have orbits with infinite intersection,

5 Medvedev and Scanlon’s [68] description of the affine varieties that are

invariant under a coordinatewise polynomial action.

We come back to Bilu and Tichy’s classification later in this introduction.

Chapters 3 and 4 concern the applications of Bilu and Tichy’s classificiation.

In what follows, we study in more detail polynomial decomposition questions

with special focus on invariants of complete decomposition, as well as rational

function analogues of these results; this is the main topic of Chapter 2.
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1. Invariants of rational function decomposition

As we have seen, all the solutions of the equation a ◦ b = c ◦ d in inde-

composable a, b, c, d ∈ C[x] satisfy either deg a = deg c and deg b = deg d, or

deg a = deg d and deg b = deg c. From Ritt’s first theorem it follows therefore

that any two complete decomposition of f ∈ C[x] consist of the same num-

ber of indecomposable polynomials and that the sequences of degrees of inde-

composable polynomials in any two complete decompositions of f(x) are the

same, up to permutation. In 2000, Beardon and Ng [8] presented another in-

variant of polynomial decomposition. Writing Γ(f) for the set of linear ` ∈ C[x]

such that f ◦ ` = f and γ(f) for the size of the set Γ(f), Beardon and Ng

showed that if f = f1 ◦ f2 ◦ · · · fn is a complete decomposition of f ∈ C[x],

then the sequence (γ(f1), γ(f2), . . . , γ(fn)) is uniquely determined by f(x), up

to permutation. Beardon and Ng further showed that if f = f1 ◦ f2 ◦ · · · fn for

f, f1, . . . , fn ∈ C[x], then γ(f) | γ(f1)γ(f2) · · · γ(fn). Gutierrez and Sevilla [55]

extended the latter result to the case when f, f1, . . . , fn ∈ K[x], where K is a

field such that char(K) - deg f .

Very recently, Zieve and Müller [96] presented a new invariant which gen-

eralizes both Ritt’s degree invariant and the invariant of Beardon and Ng. To

state it, we need to introduce the notion of monodromy group.

Definition 1. Let K be a field. Given a f ∈ K(x)\K the monodromy group

Mon(f) is the Galois group of (the numerator) of f(x)− t over K(t), where t is

transcendental over K, viewed as a group of permutations of the roots of f(x)−t.

The importance of the monodromy group when analyzing various questions

about polynomials was exhibited by Fried in [42, 41]. More details on the

importance of the monodromy group when analyzing decomposition questions,

will be given later in this introduction. Zieve and Müller [96] showed that if

f = f1 ◦f2 ◦ · · · fn is a complete decomposition of f(x) ∈ C[x], then the sequence

of permutation groups (Mon(f1),Mon(f2), . . . ,Mon(fn)) is uniquely determined

by f(x), up to permutation. Since Mon(fi) acts on the set of size deg fi, it follows

that the monodromy invariant generalizes Ritt’s degree invariant. In [96], it is

proved that for indecomposable fi, γ(fi) = 1 unless Mon(fi) is cyclic, in which

case γ(fi) = |Mon(fi)| = deg fi; hence the monodromy invariant generalizes the

invariant of Beardon and Ng as well.

In Chapter 2 we give a common generalization of these results for rational

functions over an arbitrary field that satisfy certain conditions on the mon-

odromy group. In so doing, we recover most of the known results on invariants

of polynomial decomposition and present several new ones. In our proofs, we

follow the Galois-theoretic approach developed by Ritt [84], which we recall in
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the following section. The approach we take clarifies why these results are true

in some settings and not in others.

Methods and results. We use the following notation throughout this sec-

tion: K is an arbitrary field and f ∈ K(x). We define a decomposition of f(x)

to be an expression f = f1 ◦ · · · ◦ fn with fi ∈ K(x) and deg fi > 1. We say that

f ∈ K(x) with deg f > 1 is indecomposable (over K) if it has no decomposition

of length n ≥ 2. Complete decomposition of f(x) (over K) is an expression of

f(x) as the composition of indecomposable rational functions in K(x). Write

f(X) = fN (X)/fD(X), where fN , fD ∈ K[X] are relatively prime and recall

that then deg f is defined as maximal between deg fN and deg fD.

The following result of Lüroth, provides a dictionary between decompositions

of f(x) and fields between K(f(x)) and K(x).

Theorem 1 (Lüroth’s theorem). Let K and L be fields such that K ⊆ L ⊆
K(x), where x is transcendental over K. Then L = K(h(x)) for some h(x) ∈
K(x).

If f = g ◦ h, then K(h(x)) clearly lies between K(f(x)) and K(x). For a

non-constant f ∈ K(x), Lüroth’s theorem implies that any field L such that

K(f(x)) ⊆ L ⊆ K(x) must be of the form L = K(h(x)) for some h(x) ∈ K(x).

Since f(x) ∈ K(h(x)) it follows that f = g ◦h for some g(x) ∈ K(x). We do not

have a bijection here since the generator of an intermediate field ofK(x)/K(f(x))

is not uniquely determined. However, for non-constant h1, h2 ∈ K(x), it is easy

to see that K(h1(x)) = K(h2(x)) if and only if h1 = µ ◦ h2 for some degree-one

µ(x) ∈ K(x). This motivates the following definition.

Definition 2. For f ∈ K(x), we say that two decompositions f = f1◦· · ·◦fn
and f = g1 ◦ · · · ◦ gm of f(x) are equivalent if n = m and there are degree-one

µ0, . . . , µn ∈ K(x), with µ0 = µn = x, such that gi = µi−1 ◦ fi ◦ µ〈−1〉i for

1 ≤ i ≤ n, where µ〈−1〉 denotes the inverse of µ with respect to functional

composition.

Hence, the class of decompositions of f(x) that are equivalent to the decom-

position f = f1 ◦ · · · ◦ fn, corresponds to the chain of fields K(x) ⊃ K(fn(x)) ⊃
K(fn−1 ◦ fn(x)) ⊃ · · · ⊃ K(f1 ◦ · · · ◦ fn(x)) = K(f(x)). We are of course in-

terested in the possible ways rational functions decompose up to equivalence,

so we may say that a complete decomposition of f(x) corresponds to the chain

of fields between K(f(x)) and K(x). Note that if f ′(x) 6= 0, the extension

K(x)/K(f(x)) is separable. If so and if L is the Galois closure of K(x)/K(f(x)),

then fields between K(f(x)) and K(x) correspond to groups between associated

Galois groups – Mon(f) = Gal(L/K(f(x))) and the point stabilizer in Mon(f),

that is Gal(L/K(x))). Note that a complete decomposition of f(x) corresponds
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to the decreasing maximal chain of groups between Mon(f) and the point sta-

bilizer in Mon(f). Further note that f(x) is indecomposable if and only if the

point stabilizer is a maximal subgroup of Mon(f). It is well known that the

point stabilizer is a maximal subgroup of the permutation group if and only if

this group is primitive (it does not preserve a non-trivial partition of the under-

lying set). Hence, f(x) is indecomposable if and only if Mon(f) is a primitive

permutation group. This was first observed in [45]. We remark that Müller [71]

classified the monodromy groups of indecomposable complex polynomials using

the classification of finite simple groups.

There are no known analogues of Ritt’s results for rational functions. Ritt [85,

86] first studied this question and was aware of the fact that there exist com-

plex rational functions with two complete decompositions of different length; he

noticed that the fact that A4 has two maximal chains of subgroups of different

length, namely 1 < C2 < V4 < A4 and 1 < C3 < A4, implies the following

counterexample, that was recently reproduced in [54].

Example 1. Let

f(x) =
x3(x+ 6)3(x2 − 6x+ 36)3

(x− 3)3(x2 + 3x+ 9)3
∈ Q(x).

Then

f(x) = g1 ◦ g2 ◦ g3 = x3 ◦ x(x− 12)

x− 3
◦ x(x+ 6)

x− 3

= h1 ◦ h2 =
x3(x+ 24)

x− 3
◦ x(x2 − 6x+ 36)

x2 + 3x+ 9
.

To see that g1(x), g2(x), g3(x) and h2(x) are indeed indecomposable rational

functions, note that every rational function of prime degree is indecomposable

(since if rational functions f, g, h satisfy f = g ◦h, then deg f = deg g ·deg h). It

can be directly verified that h1(x) can not be written as a functional composition

of two rational functions of degree 2, which is the only possibility for h1(x) to

be indecomposable since deg h1 = 4.

Further families of counterexamples to the rational function analogues of

Ritt’s results can be found in [67]. It is further noted there that all known

counterexamples fall into certain classes, which suggests that there might be a

precise description of all such counterexamples, but that current techniques seem

to be insufficient for proving such results. In general, very few results on rational

function decomposition exist. Among best ones is still already mentioned Ritt’s

result on commuting rational functions [85]. We further mention [95], where

analogues of Ritt’s results are shown for Laurent polynomials.

We now quickly explain why Ritt’s method for polynomials does not apply to

rational functions. Ritt [84] observed that for f ∈ C[x] there exists a transitive
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cyclic subgroup of Mon(f), namely the inertia group at any infinite place of the

Galois closure of C(x)/C(f(x)), and that the questions about decompositions of

f(x) can be translated into questions about subgroups of this cyclic group. The

same holds if f ∈ K[x], where K is a field such that char(K) - deg f ; as already

mentioned, the analogues of Ritt’s results are known in this case, see [45]. A

transitive cyclic subgroup of Mon(f) does not need to exist when f ∈ K[x] with

char(K) | deg f , nor when f ∈ K(x) is arbitrary. As already mentioned, in both

cases there exist examples with two complete decompositions of different length,

see [25, 55, 86].

Several appealing results can be shown for f ∈ K(x) such that Mon(f)

has a transitive quasi-Hamiltonian subgroup. A group A is said to be quasi-

Hamiltonian if the product of any two subgroups of A is a group; the structure

of such groups was described by Iwasawa [58] in 1941. As we have seen, the study

of decompositions of f(x) reduces to the study of groups between Mon(f) and the

point stabilizer Stabx in Mon(f). If A is a transitive subgroup of Mon(f), then

clearly Mon(f) = AStabx. Then the study of groups between Stabx and Mon(f)

reduces to the study of subgroups of A. If A is further quasi-Hamiltonian, then

we can prove the following generalization of Ritt’s first theorem. To state our

theorem precisely, we first introduce the following definition.

Definition 3. We call two complete decompositions f = f1 ◦ · · · ◦ fn and

f = g1 ◦ · · · ◦gn Ritt neighbors if there exists i, with 1 ≤ i < n, such that fj = gj

for all j /∈ {i, i+ 1} and fi ◦ fi+1 = gi ◦ gi+1.

Theorem 2. Let K be a field and f ∈ K(x) such that f ′(x) 6= 0. If the

monodromy group of f(x) has a transitive quasi-Hamiltonian subgroup, then any

complete decomposition of f(x) can be obtained from any other complete decom-

position of f(x) through finitely many steps, where in each step we replace a

complete decomposition of f(x) by a Ritt neighbor.

We further study the solutions of f = a◦b = c◦d, in indecomposable rational

functions a, b, c, d ∈ K(x) under the same assumption on f(x) as in Theorem 2.

We get that the degrees of a and b are the same as those of c and d, but possibly in

reversed order. We do not know whether, under the same condition on f(x), one

has that Mon(a) and Mon(c) are isomorphic as permutation groups to Mon(b)

and Mon(d) (again possibly in reversed order). Despite of a deep computer

search, we did not find any counterexamples. We prove this result under a

stronger condition on f(x). If f ′(x) 6= 0 and the monodromy group of f(x) has

a transitive quasi-Hamiltonian subgroup A such that any nontrivial subgroup

of A contains a nontrivial normal subgroup of A, then the result follows. This

clearly holds if Mon(f) has a transitive Dedekind subgroup. Recall that a group

A is called Dedekind if every subgroup of A is normal. Under this stronger



1. INVARIANTS OF RATIONAL FUNCTION DECOMPOSITION 7

assumption on f , we also get that if f = f1 ◦ f2 ◦ · · · fn for f1, . . . , fn ∈ K(x),

then γ(f) | γ(f1)γ(f2) · · · γ(fn), where γ(f) = |{µ ∈ K(x) : f(µ(x)) = f(x)}|. In

this way we generalize and give new proofs of aforementioned results of Beardon–

Ng [8] and Gutierrez–Sevilla [55].

The following conjecture was posed by Gutierrez and Sevilla [55].

Conjecture 1. If f, f1, · · · , fn ∈ C(x) satisfy f = f1 ◦ f2 ◦ · · · fn, then

γ(f) | γ(f1)γ(f2) · · · γ(fn).

We show that this conjecture does not hold and construct several explicit

counterexamples to the conjecture. These can be found in Chapter 2. In light

of aforementioned results, that was expected since if f ∈ C(x) is arbitrary, then

no transitive Dedekind subgroup of Mon(f) needs to exist.

We further explain the consequences of our general results for two well-

studied classes of polynomials, namely additive polynomials and subadditive

polynomials. Additive polynomials over a field K are those that satisfy the

identity f(x + y) = f(x) + f(y). It is well known and easy to see that if K is

a field of characteristic p > 0, then additive polynomial over K are exactly the

polynomials of the form f(x) = anx
pn + an−1x

pn−1
+ · · · + a1x

p + a0x, and if

char(K) = 0, the only additive polynomials over K are f(x) = a0x for some

a0 ∈ K; see [66, Ch. 3] for a proof and more details on additive polynomials.

Note that if char(K) > 0 and f is additive over K, then char(K) | deg f (this is

the case to which Ritt’s method does not apply). We show that the monodromy

group of a separable additive polynomial over a field K of positive characteristic

has a transitive abelian subgroup, so that our general results can be applied to

additive polynomials. Note that an additive polynomial f(x) is separable exactly

when f ′(x) 6= 0. We prove the following theorem.

Theorem 3. Let K be a field of characteristic p > 0 and let f(x) ∈ K[x] be

a separable additive polynomial.

i) Any complete decomposition of f(x) can be obtained from any other

complete decomposition of f(x) through finitely many steps, where in

each step we replace a complete decomposition of f(x) by a Ritt neigh-

bor.

ii) If f1◦f2◦· · ·◦fm = f = g1◦ g2◦. . .◦gn are two complete decompositions of

f(x) in K[x], then m = n and there is a permutation π of {1, 2, . . . ,m}
such that Mon(fi) ∼= Mon(gπ(i)) for each i. It follows that deg fi =

deg gπ(i) and γ(fi) = γ(gπ(i)).

iii) If f1, f2, . . . , fm ∈ K[x] satisfy f = f1 ◦ f2 ◦ · · · ◦ fm, then

γ(f) | γ(f1)γ(f2) . . . γ(fm).
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Additive polynomials have been widely studied ever since Ore’s papers [73,

74] in 1933. In [74] Ore proved that any two complete decompositions of a

separable additive polynomial consist of the same number of indecomposables

and moreover that the sequences of degrees of indecomposables are the same up

to permutation. We note that Ore’s proof is completely different from ours. In

particular, while both proofs show that any complete decomposition of an ad-

ditive polynomial can be obtained from any other such decomposition through

finitely many steps, our steps involve replacing two adjacent indecomposables

by two others having ths same composition, whereas Ore’s steps replace a block

of m ≥ 2 consecutive indecomposables by another block of m indecomposables

which have the same composition, where the degrees of the second batch of

indecomposables are a circular shift of the degrees of the first batch of inde-

composables. Moreover, since Ore does not use Galois closures or monodromy

groups, his methods do not give information about the other parts of Theorem 3.

We further prove that the analogous results hold for subadditive polynomi-

als. If K is a field of characteristic p > 0, a polynomial S ∈ K[x] is said to be

subadditive if there exists a separable additive f ∈ K[x] and n ∈ N coprime to p

such that S(xn) = f(x)n. There is a series of papers on subadditive polynomials

[20, 21, 56, 57], in which several interesting properties of these polynomials

are exposed, including partial results on decomposition properties of subaddi-

tive polynomials. These results rely on Ore’s arguments and long computations

involving factors of S(xn) − S(yn). In proving our stronger results we recover

most of these results and we give new and much shorter proofs.

We remark that additive and subadditive polynomials are well-studied classes

of polynomials also in the following context. It is well known that if char(K) -
deg f and f(x) is indecomposable over K, then f(x) is also indecomposable over

any extension field of K, see for instance [89, Ch. 1, Thm. 6]. The extent of

failure of this statement in the case when char(K) | deg f is a well-investigated

topic. Dorey and Whaples [25] were first to point out that if char(K) | deg f ,

there exist indecomposable f ∈ K[x] which are decomposable over some exten-

sion field of K. A method for finding such counterexamples had already been

supplied by Ore [74] in 1933, who showed that an indecomposable additive poly-

nomial f ∈ K[x], where char(K) = p > 0, can be represented as a functional

composition of additive polynomials over K of degree p. Until 1993, when [44]

appeared, the only known counterexamples involved additive and subadditive

polynomials. Further families of counterexamples as well as description of all

such polynomials can be found in [52, 53, 70, 64].
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2. Diophantine equations

Ritt’s polynomial decomposition results have been applied to a variety of

topics. As already mentioned, one such topic is the classification of polynomials

f, g ∈ Q[x] such that the equation f(x) = g(y) has infinitely many integer

solutions. In 2000, Bilu and Tichy [13] presented a complete and definite answer

to this problem. In what follows we recall the result of Bilu and Tichy and

explain the historical background of the problem.

We say that the equation f(x) = g(y) has infinitely many rational solutions

with a bounded denominator if there exists λ ∈ N such that f(x) = g(y) has

infinitely many solutions x, y ∈ Q that satisfy λx, λy ∈ Z. If the equation f(x) =

g(y) has only finitely many rational solutions with a bounded denominator, then

it clearly has only finitely many integer solutions.

We further need to define five kinds of so-called standard pairs of polynomials.

In what follows a and b are nonzero rational numbers, m and n are positive

integers, r ≥ 0 is an integer, p(x) ∈ Q[x] is a nonzero polynomial (which may

be constant) and Dm(x, a) is the m-th Dickson polynomial with parameter a,

defined by the functional equation

Dm

(
x+

a

x
, a
)

= xm +
(a
x

)m
.

Standard pairs of polynomials over Q are listed in the following table.

kind standard pair (or switched) parameter restrictions

first (xm, axrp(x)m) r < m, (r,m) = 1, r + deg p > 0

second (x2,
(
ax2 + b)p(x)2

)
-

third (Dm(x, an), Dn(x, am)) (m,n) = 1

fourth (a
−m
2 Dm(x, a),−b

−n
2 Dn(x, b)) (m,n) = 2

fifth
(
(ax2 − 1)3, 3x4 − 4x3

)
-

Theorem 4 (Bilu and Tichy, 2000). Let f(x) and g(x) be non-constant

polynomials in Q[x]. Then the following assertions are equivalent.

- The equation f(x) = g(y) has infinitely many rational solutions with a

bounded denominator;

- We have

f(x) = ϕ (f1 (λ(x)) , g(x) = ϕ (g1 (µ(x))) ,

where ϕ(x) ∈ Q[x], λ(x), µ(x) ∈ Q[x] are linear polynomials, and

(f1(x), g1(x)) is a standard pair over Q such that the equation f1(x) =

g1(y) has infinitely many rational solutions with a bounded denomina-

tor.

The proof of Theorem 4 relies on Siegel’s classical theorem [90] on inte-

gral points on curves, and is consequently ineffective. Davenport, Lewis and
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Schinzel [22] were first to obtain a finiteness criterion for the equation f(x) =

g(y), but it was far from explicit and well-applicable. Fried [43] presented a quite

general finiteness criterion, but still very restrictive for applications. Siegel’s the-

orem implies that the finiteness problem for the equation f(x) = g(y) reduces to

the question of whether or not the corresponding plain curve has a component of

genus 0 and with at most 2 points at infinity. Fried [43] further showed that this

question reduces to two independent problems, one of which is when a polynomial

of the form f(x) − (y) has a quadratic factor and the other is a special version

of Ritt’s second theorem. First problem was resolved by Bilu [11]. Schinzel [88]

obtained a completely explicit finiteness criterion for the equation f(x) = g(y)

under the assumption (deg f, deg g) = 1. Bilu and Tichy [13] followed the ap-

proach of Fried [43] and Schinzel [88], but also employed several new ideas to

avoid Schinzel’s assumption (deg f, deg g) = 1, and so proved Theorem 4.

Theorem 4 proved to be suitable for applications; the applications include

Diophantine equations with power-sum polynomials [12, 62, 80], orthogonal

polynomials [92], polynomials arising from counting combinatorial objects [14,

77, 92], and several other families of polynomials [34, 61, 76].

Methods and results. Proving that the equation of the type f(x) =

g(x) has only finitely many integer solutions by using Bilu–Tichy theorem, re-

duces to showing that polynomials f(x) and g(x) can not be written as f(x) =

ϕ (f1 (λ(x))) and g(x) = ϕ (g1 (µ(x))), in notation of Theorem 4. The first and

the key step in applications is to determine possible decompositions of f(x) and

g(x). This step usually requires applying some general results on polynomial

decomposition, such as those of Ritt [84] and Schinzel [89, Ch. 1] that were

mentioned earlier in this introduction, but the success in completing this step

depends on particular properties of polynomials f(x) and g(x) and is by no

means guaranteed. Sufficient conditions for f to be indecomposable or to have

decompositions only of certain type, were systematically treated in [31, 32, 92].

If one succeeds in finding possible decompositions of f(x) and g(x) (or at least

enough information about them), further steps in applications of Theorem 4 to

the equation f(x) = g(y) are usually technical and lengthy, but possible to com-

plete; they consist of comparing possible decompositions of f(x) and g(x) with

those prescribed in Theorem 4.

In Chapter 3 we prove the finiteness theorems for two concrete Diophantine

equations using Theorem 4. We show that the equation−1k+2k−· · ·+(−1)xxk =

g(y), with g ∈ Q[x], has only finitely many integer solutions unless g(x) can be

decomposed in ways that we list explicitly. It is well known that the alternating

power sum −1k+2k−· · ·+(−1)xxk is closely related to the k-th Euler polynomial,

see Chapter 3 for more details. As a side result, we give a complete description
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of possible decompositions of Euler polynomials into polynomials with complex

coefficients. Since Euler polynomials appear in many classical results and play

an important role in various approximation and expansion formulas in discrete

mathematics and in number theory (see for instance [1], [15]), we believe that

this result might be of broader interest.

In Chapter 4, we study Diophantine equations involving power sums of arith-

metic progressions. For integers a and b with gcd(a, b) = 1 and k, n ∈ N, with

n ≥ 2, we let Ska,b (n) = bk + (a+ b)k + · · · + (a (n− 1) + b)k. We prove that

the equation Ska,b(x) = Slc,d(y) for 2 ≤ k < l has only finitely many solutions in

integers x and y. As a special case, that is when a = c = 1, b = d = 0, we obtain

the main result of [12].

3. Diophantine m-tuples

In this section we give introduction to Chapter 5 that concerns the topic

known as Diophantine m-tuples. Greek mathematician Diophantus of Alexan-

dria first studied the problem of finding four numbers such that the product of

any two of them increased by 1 is a perfect square. Such set of size m is said

to be a Diophantine m-tuple. Diophantus found a set of four rationals with the

given property, namely the set {1/16, 33/16, 17/4, 105/16}. Fermat found a first

Diophantine quadruple in integers - the set {1, 3, 8, 120}. The folklore conjec-

ture is that there are no Diophantine quintuples in integers. In 1969, Baker and

Davenport [3] proved that the set {1, 3, 8} can not be extended to a Diophantine

quintuple, which was the first result supporting the conjecture. Moreover, they

showed a stronger result by proving that the triple {1, 3, 8} can be extended to a

Diophantine quadruple in integers only by adding 120 to the set. An integer N

which can replace 120 while preserving the property must satisfy N+1 = x2, i.e.

must be of the form N = x2 − 1 and the other two conditions 3N + 1 = y2 and

8N + 1 = z2 correspond to solutions of the following system of Pellian equations

3x2 − 2 = y2, 8x2 − 7 = z2.

Thus the question is whether this system of equations has any solutions in pos-

itive integers, other than the solutions with x = 1 and x = 11, corresponding to

N = 0 and N = 120, respectively. The solutions to each of these Pellian equa-

tions lie in finitely many binary recurrent sequences, so the problem reduces to

finding the intersections of these sequences. The proof of Baker and Davenport

relies on Baker’s theory on linear forms in logarithms of algebraic numbers and a

reduction method based on continued fractions. This paper provided a method

and consequently opened the door for investigating Diophantine m-tuples.
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In 1997, by employing several new ideas and results from Diophantine ap-

proximations, such as a result of Rickert [83] on simultaneous rational approx-

imations of algebraic numbers, Dujella [26] generalized the result of Baker and

Davenport by proving that no Diophantine triple of the form {k − 1, k + 1, 4k},
with k ≥ 2, can be extended to a Diophantine quintuple in integers. In 1998,

Dujella and Pethő [33] showed that not even the pair {1, 3} can be extended to a

Diophantine quintuple in integers. In 2008, Fujita [46] proved that no Diophan-

tine pair {k− 1, k+ 1}, with k ≥ 2, can be extended to a Diophantine quintuple

in integers. In 2004, Dujella [29] showed that there are no Diophantine sextu-

ples in integers and that there are at most 101930 Diophantine quintuples, which

was a giant step towards proving the conjecture. This bound was subsequently

significantly improved in [47] and [37], and very recently in [35]. It is proved

there that there exist at most 6.8 · 1032 Diophantine quintuples. In light of these

results, we may say that the problem of the existence of Diophantine quintuples

in integers is almost completely solved.

One way to generalize the problem was to study sets {a1, a2, . . . , am} of

nonzero elements of an arbitrary ring R satisfying aiaj + a is a square in R for

all 1 ≤ i < j ≤ m and for some a ∈ R. Such sets are said to have property D(a)

and they have been studied at least since 1985, see [17, 51, 69]. One may further

generalize the problem by studying sets {a1, a2, . . . , am} of nonzero elements in

a ring R that satisfy aiaj + a is an n-th power in R for all 1 ≤ i < j ≤ m

and for some fixed a ∈ R and n ≥ 2. These were first studied by Bugeuad and

Dujella [18]. In 1997, Dujella [26] studied sets of Gaussian integers with the

property D(a) with a ∈ Z[i]. Dujela examined the question of the existence of

such sets with four or more elements. This was the first paper concerning the

size of Diophantine m-tuples in Z
[√
d
]

with d ∈ Z. In [38] it was shown that no

Diophantine triple of the form {k − 1, k + 1, 4k}, with k ∈ Z[i] and k /∈ {0,±1},
can be extended to a Diophantine quintuple in Gaussian integers. We can extend

the triple {1, 3, 8} to a Diophantine quintuple in Z
[√
d
]

for some values of d; for

instance {1, 3, 8, 120, 1678} is a Diophantine quintuple in Z
[√

201361
]
. It is

natural to start investigating the upper bound for the size of Diophantine m-

tuples in Z[
√
d] by focusing on a problem of extensibility of Diophantine triples

{k − 1, k + 1, 4k} and Diophantine pair {1, 3} to a Diophantine quintuple in

Z
[√
d
]
, since the problem in integers was approached similarly, see [27, 33, 46].

Franušić [39] proved that the pair {1, 3} can not be extended to a Diophantine

quintuple in Z
[√
d
]

if d is a negative integer and d 6= −2.

We resolve the case d = −2. If d = −2 and {1, 3, c} is a Diophantine triple

in Z
[√
−2
]
, then c ∈ {ck, dl}, where the sequences (ck) and (dl) are defined as
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follows

c0 = 0, c1 = 8, ck+2 = 14ck+1 − ck + 6;

d0 = −1, d1 = −3, dl+2 = 14dl+1 − dl + 8.

The set {1, 3, ck, dl} is not a Diophantine quadruple for k ≥ 1 and l ≥ 0 since

1 + ckdl is a negative odd number and hence it can not be a square in Z
[√
−2
]
.

Therefore, if there is an extension of the Diophantine pair {1, 3} to a Diophantine

quadruple in Z
[√
−2
]
, then it is of the form {1, 3, ck, cl}, with l > k ≥ 1 or

{1, 3, dk, dl}, with l > k ≥ 0. We eliminate the possibility of the extension of

the set {1, 3, ck, cl} to a Diophantine quintuple in Z
[√
−2
]

by using the result

of Dujella and Pethő [33]. The remaining case is much more difficult to handle.

We prove the following theorem.

Theorem 5. Let k be a nonnegative integer and d an integer. If the set

{1, 3, dk, d} is a Diophantine quadruple in Z
[√
−2
]
, then d = dk−1 or d = dk+1.

We remark that if d is a negative integer and d 6= −2, and if {1, 3, c} is a

Diophantine triple in Z
[√
d
]
, then the case c = dk can not occur, see [39].

In the proof of Theorem 5, we follow a method of Dujella and Pethő [33]. In-

stead of applying linear forms in logarithms, we further use a result of Bennett [9]

on simultaneous rational approximations of algebraic numbers, that proved suit-

able for applications in some previous papers on Diophantine m-tuples, such as

[29]. Theorem 5 implies that the pair {1, 3} can not be extended to a Dio-

phantine quadruple in Z
[√
−2
]
. Hence, the pair {1, 3} can not be extended to

a Diophantine quintuple in Z
[√
d
]
, where d is a negative integer. As already

suggested, this can be considered as a step forward to finding an upper bound

for the size of Diophantine m-tuples in Z
[√
d
]

with d ∈ Z.





Chapter 2

Invariants of functional

decomposition of rational

functions

This chapter contains a preliminary version of the paper [60] with the title

Invariants of functional decomposition of rational functions, which is a joint

paper with Michael Zieve. This paper is in preparation and is soon going to be

submitted for publication.

Abstract. For any rational function f(X) with coefficients in a field K, we

examine the structure of an expression of f(X) as the composition f1◦f2◦· · ·◦fm
where each fi is an element of K(X) of degree at least two which cannot be

written as the composition of lower-degree functions in K(X). Under certain hy-

potheses, we exhibit several invariants of any such decomposition. This provides

a common generalization of results of Ore and Ritt, among others. As special

cases, we obtain new proofs of results of Beardon–Ng and Gutierrez–Sevilla; our

method also yields several counterexamples to a conjecture of Gutierrez–Sevilla.

Finally, we explain the consequences of our general results for two much-studied

classes of polynomials, namely additive and subadditive polynomials; in so doing,

we recover most of the known results about decompositions of these polynomials,

as well as several new results.

1. Introduction

In 1920’s, Ritt [84] studied functional equations of the type f1◦f2◦· · ·◦fm =

g1 ◦ g2 ◦ · · · ◦ gn in non-constant complex polynomials. This led him to study

possible ways of writing a complex polynomial as a functional composition of

polynomials of lower degree. A polynomial f ∈ C[X] with deg f > 1 is called

indecomposable if it cannot be written as the composition f(X) = g(h(X)) with

15



16 2. INVARIANTS OF FUNCTIONAL DECOMPOSITION OF RATIONAL FUNCTIONS

g, h ∈ C[X] and deg g,deg h > 1. By induction it follows that any polynomial

f(X) with deg f > 1 can be written as a composition of indecomposable poly-

nomials – such an expression of f(X) is said to be a complete decomposition of

f(X). Ritt proved that one can obtain any complete decomposition of f(X) from

any other through finitely many steps, where each step consists of replacing two

adjacent indecomposable polynomials by two others with the same composition.

This result is known in literature as Ritt’s first theorem.

Ritt then solved the equation a◦b = c◦d in indecomposable a, b, c, d ∈ C[X].

In so doing, Ritt noticed that in every solution of the equation, the degrees

of a(X) and b(X) are the same as those of c(X) and d(X), though possibly

in a different order. From Ritt’s first theorem it follows that the number of

indecomposable polynomials in any two complete decomposition of f(X) is the

same, as well as the sequences of degrees of indecomposable polynomials (up

to permutation). In 2000, Beardon and Ng [8] presented another invariant of

polynomial decomposition. Writing Γ(f) for the set of linear ` ∈ C[X] such

that f ◦ ` = f , and γ(f) for the size of Γ(f), Beardon and Ng showed that

if f = f1 ◦ f2 ◦ · · · ◦ fn is a complete decomposition of f ∈ C[X], then the

sequence (γ(f1), γ(f2), . . . , γ(fn)) is uniquely determined (up to permutation)

by f(X). They further showed that if f, f1, . . . , fn ∈ C[X] satisfy f = f1 ◦
f2 ◦ · · · fn, then γ(f) | γ(f1)γ(f2) · · · γ(fn). Very recently, Zieve and Müller [96]

presented a new invariant which generalizes both Ritt’s degree invariant and the

invariant of Beardon and Ng. They showed that if f = f1 ◦ f2 ◦ · · · ◦ fn is a

complete decomposition of f ∈ C[X], then the sequence of monodromy groups

(Mon(f1),Mon(f2), . . . ,Mon(fn)) is uniquely determined (up to permutation) by

f(X), where the monodromy group Mon(fi) denotes, as usual, the Galois group

of the Galois closure of C(x)/C(fi(x)), viewed as a permutation group on the

conjugates of x over C(fi(x)).

These results hold over fields other than the complex numbers. Engstrom [36]

and Levi [65] proved the analogues of Ritt’s results in the case of fields of char-

acteristic zero, Fried and McRae [45] proved them in the case of fields of positive

characteristic when the degree of the polynomial under consideration is not divis-

ible by the characteristic of the underlying field. It is explained in [96] that the

monodromy invariant holds also for polynomials that satisfy the latter condition.

Gutierrez and Sevilla [55] showed that in this case also γ(f) | γ(f1)γ(f2) · · · γ(fn)

when f = f1 ◦ f2 ◦ · · · fn.

In this paper, we examine the analogues of the aforementioned results for

rational functions with coefficients in an arbitrary field, and prove that these

invariants remain valid under certain hypothesis on the monodromy group. We

follow a Galois-theoretic method for addressing decomposition questions, that
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was developed by Ritt [84] and simplified and modernized in [96]. The ap-

proach we take clarifies the reason why these results are true in some settings

and not in others. The importance of the monodromy group when studying

various questions about polynomials, in particular decomposition questions, was

exhibited by Fried in [41, 42, 45].

Ritt [84] noticed that if f ∈ C[X], then the inertia group I at any infi-

nite place of (the Galois closure of) C(x)/C(f(x)) is a transitive cyclic sub-

group of Mon(f). The same holds if f ∈ K[X], where K is a field such that

char(K) - deg f . In that case, one can translate questions about decompositions

of f(X) into questions about subgroups of I, which are possible to resolve since

I is cyclic, see [96] for details. A transitive cyclic subgroup of Mon(f) does not

need to exist when f ∈ K[X] with char(K) | deg f , nor when f ∈ K(X) is arbi-

trary. Dorey and Whaples [25] were first to provide an example of a polynomial

f(X) with coefficients in a field K with char(K) | deg f , that has two complete

decompositions consisting of a different number of indecomposables. Ritt him-

self [85, 86] studied decomposition questions for complex rational functions and

had noticed that a certain rational function of degree 12 can be represented as

a composition of two and as a composition of three indecomposable complex

rational functions. This and further families of counterexamples to the ratio-

nal functions analogues of Ritt’s results can be found in [67]. It is further noted

there that all known counterexamples to the rational function analogues of Ritt’s

results fall into certain classes, which suggests that there might be a precise de-

scription of all such counterexamples, but that present techniques seem to be

insufficient for proving such results. Very few results on rational function de-

composition exist. Among best ones is still Ritt’s result on commuting rational

functions [85]. See also [95] where the analogues of Ritt’s results are shown for

Laurent polynomials.

In this paper, we examine decompositions properties of rational functions

whose monodromy group has a transitive quasi-Hamiltonian subgroup, and then

of those whose monodromy group has a transitive Dedekind subgroup. A group

A is said to be quasi-Hamiltonian if the product of any two subgroups of A is

a group. Note that the product of two subgroups I, J of A is a group if and

only if IJ = JI. A group is said to be Dedekind it it has no nonnormal sub-

groups. Note that all abelian groups are Dedekind groups and all Dedekind

groups are quasi-Hamiltonian. A non-abelian Dedekind group is called a Hamil-

tonian group. Dedekind [23] showed that finite Hamiltonian groups consist of

the direct products of the order-8 quaternion group with an abelian group con-

taining no elements of order 4. Iwasawa [58] showed a similar structural result

for quasi-Hamiltonian groups.
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In Section 3 we prove that if f(X) has coefficients in an arbitrary field,

f ′(X) 6= 0, and the monodromy group of f(X) has a transitive quasi-Hamiltonian

subgroup, then an analogue of Ritt’s first theorem holds for f(X), i.e. any com-

plete decomposition of f can be obtained by any other by repeatedly replacing

two adjacent indecomposable rational functions by two others with the same

composition. In Section 4, we prove that if f ′(X) 6= 0 and if the monodromy

group of f(X) has a transitive Dedekind subgroup, then the pairs of indecom-

posables (a, b) and (c, d) such that f = a ◦ b = c ◦ d have the same pair of

monodromy groups, possibly in reversed order. Under the same hypothesis on

f(X), in Section 5 we prove that if rational functions f, f1, . . . , fn with coeffi-

cients in a field K satisfy f = f1 ◦ f2 ◦ · · · ◦ fn, then γ(f) | γ(f1)γ(f2) · · · γ(fn),

where γ(f) = |{µ ∈ K(X) : f(µ(X)) = f(X)}|. In this way we generalize and

give new proofs of the aforementioned results of Beardon–Ng [8]. In [55] Gutier-

rez and Sevilla conjectured that if f, f1, · · · , fn ∈ C(X) satisfy f = f1◦f2◦· · · fn,

then γ(f) | γ(f1)γ(f2) · · · γ(fn). In Section 5 we show that this conjecture does

not hold. In light of aforementioned results, that was expected since if f ∈ C(X)

is arbitrary, then no transitive Dedekind subgroup of Mon(f) needs to exist.

Several explicit counterexamples to the conjecture can be found in Section 5.

In the last two sections, we discuss consequences of our general results for two

widely-studied classes of polynomials, namely additive and sub-additive polyno-

mials. The Definitions of additive and subadditive polynomials will be given

in Section 6 and Section 7, respectively. We prove the analogues of the afore-

mentioned results by Ritt, Beardon–Ng, Gutierrez-Sevilla, Zieve-Müller for both

additive and subadditive polynomials. In proving these results, we recover most

of the known results on decompositions of additive and subadditive polynomials,

such as those in [19, 21, 25, 57, 73, 74].

2. Notation and preliminary results

In this section we present some preliminary results which will be used in the

paper.

Let K be a field and f ∈ K(X). We define a decomposition of f(X) to be an

expression f = f1 ◦ · · · ◦ fn with fi ∈ K(X) and deg fi > 1. We say that f(X)

with deg f > 1 is indecomposable if it has no decomposition of length n > 1. A

complete decomposition of f(X) is an expression of f(X) as the composition of

indecomposable rational functions. In what follows, we reduce reduce the study

of decompositions of f(X) to the study of subgroups of the monodromy group

of f(X), which is defined as follows.

Definition 2.1. Let K be a field. Given a f ∈ K(X) \K the monodromy

group Mon(f) is the Galois group of (the numerator) of f(X) − t over K(t),
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where t is transcendental over K, viewed as a group of permutations of the roots

of f(X)− t.

Write f(X) = a(X)/b(X) where a(X) and b(X) are coprime polynomials

in K[X]. Let t be transcendental over K and let L be the splitting field of

φ(X) := a(X) − t · b(X) over K(t). Let x be a root of f(X) − t in L, so that

t = f(x). Then Mon(f) = Gal(L/K(f(x)). Note that φ(X) is an irreducible

polynomial in K(t)[X] (it follows from Gauss’s Lemma). If f ′(X) 6= 0, then

φ′(X) 6= 0 as well and φ(X) is hence separable; then L is the Galois closure

of K(x)/K(f(x)). Since φ(X) is irreducible, the monodromy group of f(X),

viewed as a group of permutation of the roots of φ(X), is a transitive group. If

Stabx denotes the stabilizer of x in Mon(f), then W 7→ K(x)W is a bijection from

the set of groups between Stabx and Mon(f) to the set of fields between K(x)

and K(f(x)). Lüroth’s theorem provides a dictionary between decompositions

of f(x) and the increasing chain of fields between K(f(x)) and K(x). Indeed,

if f = g ◦ h, with g, h ∈ K(X), then K(h(x)) clearly lies between K(f(x)) and

K(x). For a non-constant f(X) ∈ K(X), Lüroth’s theorem implies that any

field L such that K(f(x)) ⊆ L ⊆ K(x), must be of the form L = K(h(x)) for

some h(X) ∈ K(X). Since f(x) ∈ K(h(x)) it follows that f = g ◦ h for some

g(X) ∈ K(X). A generator of an intermediate field of K(x)/K(f(x)) is not

uniquely determined, but it is easy to see that for non-constant h1(X), h2(X) ∈
K(X), we have that K(h1(x)) = K(h2(x)) if and only if h1 = µ ◦ h2 for some

degree-one µ(X) ∈ K(X), which motivates the following definition.

Definition 2.2. For f ∈ K(X), we say two decompositions f = f1 ◦ · · · ◦ fn
and f = g1 ◦ · · · ◦ gm of f(X) are equivalent if n = m and there are degree-

one µ0, . . . , µn ∈ K(X), with µ0 = µn = X, such that gi = µi−1 ◦ fi ◦ µ〈−1〉i for

1 ≤ i ≤ n, where µ〈−1〉(X) denotes the inverse of µ(X) with respect to functional

composition.

Therefore, the class of decompositions of f(x) that are equivalent to the

decomposition f = f1 ◦ · · · ◦ fn corresponds to the maximal decreasing chain of

fields K(x) ⊃ K(fn(x)) ⊃ K(fn−1◦fn(x)) ⊃ · · · ⊃ K(f1◦· · ·◦fn(x)) = K(f(x)),

which in turn corresponds to the maximal decreasing chain of groups between

Mon(f) and the point stabilizer in Mon(f).

Hence, the study of decompositions of f(X) reduces to the study of groups

between Mon(f) and the point stabilizer Stabx in Mon(f). If we assume that

there exists a transitive quasi-Hamiltonian subgroup A of Mon(f), then clearly

Mon(f) = AStabx; then the study of groups between Stabx and Mon(f) reduces

to the study of subgroups of A via the following simple lemma.

Lemma 2.3. Let G be a finite group and A and H subgroups of G such that

G = HA and that A is quasi-Hamiltonian. If W is any group lying between
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H and G, then W = HJ where J = W ∩ A and H ∩ J = H ∩ A. If W1 and

W2 are groups between H and G and if we denote Ji := Wi ∩ A, i = 1, 2, then

W1 ∩W2 = H(J1 ∩ J2) and 〈W1,W2〉 = HJ1J2.

Proof. We prove only that 〈W1,W2〉 = HJ1J2. The proofs of other claims

are similar and simple. Since A is quasi-Hamiltonian, it follows that J1J2 is a

subgroup of A. Since HJ1 = J1H and HJ2 = J2H, we have that HJ1J2 =

J1HJ2 = J1J2H, wherefrom it follows that HJ1J2 is a group. Clearly W1 =

HJ1 ≤ HJ1J2 and W2 = HJ2 ≤ HJ1J2 and hence W := 〈W1,W2〉 ≤ HJ1J2.

Since W = HJ , where J = W ∩ A, and since W1,W2 ≤ W , it follows that Ji =

Wi∩A ≤W ∩A = J for i = 1, 2. Then J1J2 ≤ J , wherefrom HJ1J2 ≤ HJ = W ,

so W = HJ1J2. �

3. Ritt’s first theorem

In this section we show that if the monodromy group of a rational function

f(X) has a transitive quasi-Hamiltonian subgroup, then an analogue of Ritt’s

first theorem holds for f(X), i.e any two complete decompositions of f(X) can be

obtained one from another by repeatedly replacing two adjacent indecomposable

rational functions by two others with the same composition.

Definition 3.1. Let K be a field and f ∈ K(X). We say that two complete

decompositions f = f1 ◦ · · · ◦ fn and f = g1 ◦ · · · ◦ gn of f(X) are Ritt neighbors

if there exists i with 1 ≤ i < n, such that fj = gj for all j /∈ {i, i + 1} and

fi ◦ fi+1 = gi ◦ gi+1.

Theorem 3.2. Let K be a field and f ∈ K(X) such that f ′(X) 6= 0. If the

monodromy group of f(X) has a transitive quasi-Hamiltonian subgroup, then

any complete decomposition of f(X) can be obtained from any other complete

decomposition of f(X) through finitely many steps, where in each step we replace

a complete decomposition of f(X) by a Ritt neighbor.

We prove Theorem 3.2 by translating it into the following group-theoretic

statement.

Lemma 3.3. Let G be a finite group and A and H subgroups of G such that

G = HA and A is quasi-Hamiltonian. Let H = V0 < V1 < . . . < Vn = G and

H = W0 < W1 < . . . < Wm = G be two maximal chains of groups. Then one

can pass from the first chain to the second chain in finitely many steps, where

in each step we replace a chain H = C0 < C1 < · · · < Ck = G by a chain

H = D0 < D1 < · · · < Dk = G, where Di = Ci for all i except for one value j

between 0 and k.
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Proof. Suppose that the result does not hold for G,A,H that satisfy the

assumptions of the theorem and are such that |A| is minimal among all coun-

terexamples. By Lemma 2.3 it follows that Vi = HJi, where Ji = Vi ∩ A,

and analogously Wi = HKi where Ki = Wi ∩A, and furthermore that H ∩ Ji =

H∩Ki = H∩A. If Vn−1 = Wm−1, then we would have a smaller counterexample,

since Vn−1 = HJn−1 and Jn−1 is also quasi-Hamiltonian, since it is a subgroup

of A. Hence Vn−1 6= Wm−1 and consequently 〈Vn−1,Wm−1〉 = G, since the

chains are maximal. Then again by Lemma 2.3 it follows that 〈Vn−1,Wm−1〉 =

HJn−1Km−1, wherefrom Jn−1Km−1 = A. Let U be a group between Vn−1 ∩
Wm−1 and Vn−1. Then Lemma 2.3 implies that Vn−1∩Wm−1 = H(Jn−1∩Km−1),

and U = HJ , where J = U ∩ A, and hence Jn−1 ∩Km−1 ≤ J ≤ Jn−1, where-

from it follows that J ∩Km−1 = Jn−1 ∩Km−1. Let Ũ = 〈U,Wm−1〉. Then by

Lemma 2.3 it follows that Ũ = HJKm−1. Then

[Ũ : Wm−1] =
|J |

|J ∩Km−1|
=

|J |
|Jn−1 ∩Km−1|

= [U : (Vn−1 ∩Wm−1)].

Analogously

[G : Ũ ] =
|HJn−1Km−1|
|HJKm−1|

=
|Jn−1|
|J |

= [Vn−1 : U ].

Therefrom it follows that if U is properly between Vn−1 ∩Wm−1 and Vn−1, then

Ũ is properly between Wm−1 and G, which can not be, since Wm−1 is maximal

in G. Hence there are no groups properly between Vn−1 ∩Wm−1 and Vn−1. Let

H = E0 < E1 < . . . < Ek = Vn−1 ∩Wm−1 be a maximal chain of groups. Then

the chain H = E0 < E1 < . . . < Ek < Vn−1 < Vn = G is also maximal. By the

hypothesis we can pass from the chain H = V0 < V1 < . . . < Vn−1 < Vn = G to

the chain H = E0 < E1 < . . . < Ek < Vn−1 < Vn = G by required steps. In one

more step, we can pass from the chain H = E0 < E1 < . . . < Ek < Vn−1 < Vn =

G to the chain H = E0 < E1 < . . . < Ek < Wm−1 < Wm = G. Finally, by the

hypothesis, we can pass from the chain H = E0 < E1 < . . . < Ek < Wm−1 <

Wm = G to the chain H = W0 < W1 < . . . < Wm−1 < Wm = G by required

steps �

Proof of Theorem 3.2. Let G be the monodromy group of f(X) and H

the point stabilizer in Mon(f). Then by assumption G = HA for some quasi-

Hamiltonian subgroup A of G. Since (the equivalence class of) any complete

decomposition of f(X) corresponds to the maximal chain of groups between H

and G, Lemma 3.3 completes the proof. �

Remark 3.4. In [63] it is proved that under the same hypothesis on f(X)

as in Theorem 3.2, any two complete decompositions of f(X) consist of the same
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number of indecomposable polynomials. The proofs there are simple, but note

that this result is weaker than the Theorem 3.2. To the proof of Theorem 3.2,

Lemma 3.3 was of crucial importance. This lemma is a generalization of the [96,

Lem. 2.10].

4. The monodromy invariant

Let K be an arbitrary field. Next we study the equation f = a ◦ b = c ◦ d
in indecomposable a, b, c, d ∈ K(X), under the assumption that f ∈ K(X) has

a nonzero derivative and Mon(f) has a transitive Dedekind subgroup. We prove

that the pairs (a, b) and (c, d) have the same pair of monodromy groups, possibly

in reversed order. This generalizes [96, Thm. 2.13].

Theorem 4.1. Let K be a field and f ∈ K(X) such that f ′(X) 6= 0. If the

monodromy group of f(X) has a transitive Dedekind subgroup and if f = a ◦ b =

c ◦ d, where a, b, c, d ∈ K(X) are indecomposable, then

i) either there is a degree-one rational function µ ∈ K(X) such that a =

c ◦ µ and b = µ
〈−1〉 ◦ d,

ii) or Mon(a) and Mon(d) are isomorphic permutation groups, and so are

Mon(b) and Mon(c); in which case deg a = deg d and deg b = deg c.

We first recall the definition of isomorphic permutation groups.

Definition 4.2. Let G and G̃ be permutation groups acting on sets S and

S̃, respectively. We say that G and G̃ are isomorphic as permutation groups if

there is a group isomorphism φ : G → G̃ and a bijection ψ : S → S̃ such that

ψ(ωτ ) = ψ(ω)φ(τ) for each ω ∈ S and τ ∈ G.

We prove Theorem 4.1 by translating it into a group-theoretic statement. In

what follows, the core of a subgroup W of G denotes, as usual, the intersection

of all conjugates of W in G, that is the largest normal subgroup of G contained

in W . Consider the action of G on the set G/W of left cosets of W in G by

left multiplication; then coreG(W ) is the kernel of this action, so the quotient

G/ coreG(W ) embeds into the symmetric group Sym(G/W ).

The following lemma is crucial to the proof of Theorem 4.1.

Lemma 4.3. Let G be a finite group and A and H subgroups of G such that

coreG(H) = 1, G = HA and A is Dedekind. Let H �W1 � G and H �W2 � G

be two maximal chains of groups such that W1 ∩W2 = H and G = 〈W1,W2〉.
Let N be the core of W1 in G, and let C be the core of H in W2. Then G/N

and W2/C are isomorphic permutation groups, seen as subgroups of Sym(G/W1)

and Sym(W2/H).
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Proof. Since N is normal in G, it follows that NW2 is a subgroup of G,

N ∩W2 is a normal subgroup of W2, and NW2/N ∼= W2/(N ∩W2). Note that

C =
⋂
g∈W2

Hg =
⋂
g∈W2

(W1 ∩W2)
g =

 ⋂
g∈W2

W g
1

 ∩W2

=

⋂
g∈G

W g
1

 ∩W2 = N ∩W2.

Since W2 is maximal in G and NW2 contains W2, it follows that either NW2 =

G or NW2 = W2. If G = NW2, then it follows that G/N and W2/C are

isomorphic groups. One verifies directly that these are moreover isomorphic

permutation groups with respect to their actions on the coset spaces W2/H and

G/W1, respectively. If on the other hand NW2 = W2, then N ≤ W2. Since

N ≤ W1 by definition, it follows that N ≤ W1 ∩ W2 = H. Since N is a

normal subgroup of G and coreG(H) = 1, it follows that N = 1, wherefrom

C = N ∩W2 = 1. Note that

N =
⋂
g∈G

W g
1 =

⋂
g∈A

W g
1 ≥

⋂
g∈A

(W1 ∩A)g =
⋂
g∈A

Jg1 ,

Since N = 1, it follows that the core of J1 in A is trivial. But A is Dedekind, so

coreA(J1) = J1, wherefrom J1 = 1 and W1 = HJ1 = H, contradiction. �

Proof of Theorem 4.1. Let G denote the monodromy group of f(X) and

H the point stabilizer in G. Let x be transcendental over K. Let W1 and W2

be subgroups of G fixing b(x) and d(x) respectively, so H ≤ W1,W2 ≤ G. Let

W := 〈W1,W2〉. Then the chain of groups H ≤ W1 ∩ W2 ≤ W1 ≤ W ≤ G

corresponds to the chain of fields K(x) ≥ K(h(x)) ≥ K(b(x)) ≥ K(â(b(x)) ≥
K(f(x)), where h, â ∈ K(x). Then clearly b = b̂ ◦ h for some b̂ ∈ K(x) and

a ◦ b = f = g ◦ â ◦ b, wherefrom a = g ◦ â for some g ∈ K(x). Analogously,

the chain of groups H ≤ W1 ∩W2 ≤ W2 ≤ W ≤ G corresponds to the chain

of fields K(x) ≥ K(h(x)) ≥ K(d(x)) ≥ K(â(b(x)) ≥ K(f(x)), so d = d̂ ◦ h
and â ◦ b = ĉ ◦ d with ĉ, d̂ ∈ K(x), whence c = g ◦ ĉ and â ◦ b̂ = ĉ ◦ d̂. Since

a, b, c, d ∈ K(x) are indecomposable, if either deg g > 1 or deg h > 1, then there

exists a degree-one rational function µ ∈ K(x) such that a = c◦µ and b = µ−1◦d.

Indeed, if deg g > 1, then deg â = deg ĉ = 1 and µ = ĉ
〈−1〉 ◦ â. If deg h > 1, then

deg b̂ = deg d̂ = 1 and µ = d̂ ◦ b̂〈−1〉
.

It remains to consider the case when deg g = 1 and deg h = 1. If deg g = 1,

then f(x) = â(b(x)) and hence K(f(x)) = K(â(b(x)), wherefrom W = G. If

deg h = 1, then K(h(x)) = K(x) and hence W1 ∩W2 = H. Let N be the core of

W1 in G. The quotient G/N embeds into the symmetric group Sym(G/W1) and

is isomorphic to Mon(a). Let C be the core of H in W2. Then W2/C embeds
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into the symmetric group Sym(W2/H) and is isomorphic to Mon(d). Note that

H � W1 � G and H � W2 � G are maximal chains of groups, since a, b, c, d

are indecomposable over K. By definition H does not contain a non-trivial

normal subgroup of G. By assumption, G = HA for some quasi-Hamiltonian

group A. Then from Lemma 4.3 it follows that G/N and W2/C are isomorphic

permutation groups, i.e. Mon(a) and Mon(d) are isomorphic permutation groups.

By symmetry we have that Mon(a) and Mon(d) are isomorphic permutation

groups as well. �

Remark 4.4. We do not know whether Theorem 4.1 would remain true if

the hypothesis of a transitive Dedekind subgroup were replaced by the weaker

hypothesis of a transitive quasi-Hamiltonian subgroup. Any counterexample to

this generalization of Theorem 4.1 would have N = C = 1 in the notation of

Lemma 4.3, but we do not know whether this can happen. The following obser-

vations can be easily extracted from the proofs of Theorem 4.1 and Lemma 4.3.

If A is quasi-Hamiltonian and such that any nontrivial subgroup of A contains

a nontrivial normal subgroup of A, then the case N = C = 1 can not occur. If

N = 1, then Mon(a) and Mon(f) are isomorphic groups, but not as permuta-

tion groups. What would remain true if the hypothesis of a transitive Dedekind

subgroup were replaced by the weaker one of a transitive quasi-Hamiltonian sub-

group is that in f = a◦b = c◦d, either there exists a degree-one rational function

µ ∈ K(x) such that a = c ◦µ and b = µ−1 ◦ d or deg a = deg d and deg b = deg c.

The latter result is proved also in [63].

5. The Beardon–Ng invariant

Let K be a field and f(X) ∈ K(X). Further let Γ(f) denote the set of

rational functions µ ∈ K(X) such that f ◦ µ = f and let γ(f) denote the size of

the set Γ(f). In what follows, we show that if indecomposable a, b, c, d ∈ K(X)

satisfy f = a◦b = c◦d, where f ∈ K(X) is such that f ′(X) 6= 0 and Mon(f) has

a transitive Dedekind subgroup, then (γ(a), γ(b)) = (γ(c), γ(d)) or (γ(a), γ(b)) =

(γ(d), γ(c)). We further prove that, under the same condition on f(X), if f =

f1 ◦ f2 ◦ · · · fn for some f1, . . . , fn ∈ K(X), then γ(f) | γ(f1)γ(f2) · · · γ(fn).

Note that if f ∈ K[X], then every element of Γ(f) is necessarily a polynomial.

Beardon and Ng [8] showed that both of the aforementioned results hold when

f ∈ C[X]. In [55] the latter result is extended to the case when f, f1, . . . , fn ∈
K[X], where K is a field such that char(K) - deg f . In this section we give a

common generalization of these results. As special cases, we obtain new proofs

of these results.

Note that if f ′(X) 6= 0 and if µ is a degree-one rational function such that

f ◦µ = f , then if x is transcendental over K, the maps from K(x) to K(x) which
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fix K and map x to µ(x) are automorphisms of K(x) which fix K(f(x)), and

vice versa. Hence, Γ(f) ∼= Aut(K(x)/K(f)) ∼= NG(H)/H, where G = Mon(f)

and H is the point stabilizer in G.

Lemma 5.1. Let K be a field and f(X) ∈ K(X) such that f ′(X) 6= 0. If

f(X) is indecomposable, then

i) either γ(f) = 1;

ii) or f(X) is of prime degree, Mon(f) is cyclic and γ(f) = |Mon(f)| =

deg f .

Proof. Let G be the monodromy group of f(X), H the point stabilizer in

G and x transcedental over K. Then Γ(f) ∼= NG(H)/H. If f(X) is indecompos-

able, there are no proper groups between H and G, so either NG(H) = H, in

which case γ(f) = 1, or NG(H) = G. In the latter case H is a normal subgroup

of G, wherefrom by definition of H and G it follows that K(x) is a normal exten-

sion of K(f(x)), and hence that H = 1. Hence γ(f) = |G| = [K(x) : K(f(x)] =

deg f . Since there are no proper groups between H and G and H = 1, it follows

that G is cyclic of prime order. �

Corollary 5.2. Let K be a field and f(X) ∈ K(X) such that f ′(X) 6= 0.

If the monodromy group of f(X) has a transitive Dedekind subgroup, and f =

a ◦ b = c ◦ d in indecomposable a, b, c, d ∈ K(X), then

i) either there is a degree-one rational function µ ∈ K(X) such that a =

c ◦ µ and b = µ
〈−1〉 ◦ d; in which case γ(a) = γ(c) and γ(b) = γ(d),

ii) or γ(a) = γ(d) and γ(b) = γ(c).

Proof. This is a direct consequence of Theorem 4.1 and Lemma 5.1 �

We further prove the following theorem.

Theorem 5.3. Let K be a field and f(X) ∈ K(X) such that f ′(X) 6= 0.

If the monodromy group of f(X) has a transitive Dedekind subgroup and if

f1, f2, . . . fm ∈ K(X) satisfy f = f1 ◦ f2 · · · ◦ fn, then

γ(f) | γ(f1)γ(f2) · · · γ(fn).

To the proof of Theorem 5.3, we need the following lemma.

Lemma 5.4. Let G be a finite group and A and H subgroups of G such that

G = HA and A is Dedekind. If W is any group lying between H and G, then

[NG(H) : H] | [NG(W ) : W ][NW (H) : H].

Proof. From Lemma 2.3 it follows thatNG(H) = HJ where J = NG(H)∩A
and W = HJ1 where J1 = W ∩ A and that H ∩ J = H ∩ J1 = H ∩ A. Then

[NG(H) : H] = [HJ : H] = |J |/|H ∩ J | = |J |/|H ∩ A|. Furthermore, NW (H) =
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W ∩ NG(H) = H(J1 ∩ J), again by Lemma 2.3. Hence [NW (H) : H] = |J1 ∩
J |/|H ∩A|. Since [NG(W ) : W ] = |NG(W )||H ∩A|/|H||J1|, it remains to prove

that |NG(W )| is a multiple of |H||J1||J |/(|J1 ∩ J ||H ∩ A|). From Lemma 2.3 it

follows that 〈NG(H),W 〉 = 〈HJ,HJ1〉 = HJJ1, so

|H||J1||J |
|J1 ∩ J ||H ∩A|

= |HJJ1| = |〈NG(H),W 〉|.

So, it remains to prove that |NG(W )| is a mutiple of |〈NG(H),W 〉|. To do so it

suffices to prove that NG(H) is a subgroup of NG(W ). Since J = NG(H)∩A, it

follows that J normalizes H. Since A is Dedekind, J normalizes J1. Then J ≤
NG(W ). Since H ≤W ≤ NG(W ), it follows that NG(H) = HJ ≤ NG(W ). �

Proof of Theorem 5.3. Let G be the monodromy group of f(X) and

H the point stabilizer in G, so that Γ(f) ∼= NG(H)/H. Let further x be

transcedental over K. We first prove that the result holds when n = 2. If

f = f1 ◦ f2 and W is a subgroup of G fixing K(f2(x)), then Γ(f1) ∼= NG(W )/W

and Γ(f2) ∼= NW (H)/H. By assumption there exists a Dedekind subgroup A

of G such that G = HA. From Lemma 5.4 it follows that γ(f) | γ(f1)γ(f2).

Since H ≤ W ≤ G, from Lemma 2.3 we get that W = HJ , where J = W ∩ A.

Since A is Dedekind, J is Dedekind as well. Therefore, we may apply Lemma 5.4

to any decomposition of f2 into two polynomials. Inductively, it follows that if

f = f1 ◦ f2 · · · ◦ fn for any n ∈ N, then γ(f) | γ(f1)γ(f2) . . . γ(fn). �

The following conjecture was posed by Gutierrez and Sevilla in [55].

Conjecture 5.5. If f, f1, · · · , fn ∈ C(X) satisfy f = f1 ◦ f2 ◦ · · · fn, then

γ(f) | γ(f1)γ(f2) · · · γ(fn).

In what follows, we show that the Conjecture 5.5 does not hold. In light of

Theorem 5.3 that was expected since if f ∈ C(X) is arbitrary, then no transi-

tive Dedekind subgroup of the monodromy group of f(X) needs to exist. We

first explain a method for finding counterexamples and then construct explicit

counterexamples to the Conjecture 5.5.

Let x be transcendental. Since Γ(f) ∼= Aut(C(x)/C(f(x))), it follows that

γ(f) ≤ [C(x) : C(f(x))] = deg f . Note that γ(f) = deg f if and only if the

extension C(x)/C(f(x)) is Galois. In what follows, we explain how to find

f, g, h ∈ C(X) such that f = g ◦h, γ(f) = deg f , γ(h) = deg h and γ(g) < deg g.

Then clearly γ(f) > γ(g)γ(h), which contradicts the conjecture 5.5.

Let G be a finite subgroup of automorphisms of C(x) that fix C. Then

Lüroth’s theorem implies that the subfield of C(x) fixed by G is generated over

C with one rational function; let f ∈ C(X) be such that C(x)G = C(f(x)).

Then C(x)/C(f(x)) is Galois and γ(f) = deg f . Choose H ≤ G, so that it is not
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normal in G. Let h ∈ C(x) be such that C(x)H = C(h(x)); then γ(h) = deg h and

f(x) = g(h(x)) for some g(x) ∈ C(x), since C(f(x)) ⊆ C(h(x)). Furthermore,

Γ(g) ∼= Aut(C(x)/C(g(x))) ∼= Aut(C(h(x))/C(f(x))). Assume γ(g) = deg g.

Then

|Aut(C(h(x))/C(f(x)))| = deg g = deg f/deg h = [C(h(x)) : C(f(x))],

which implies that C(h(x)) is a Galois extension of C(f(x)) and H is hence

normal in G, a contradiction. Hence, γ(g) < deg g.

If G is a finite subgroup of automorphisms of C(x) which fix C, then Klein

showed that G is either cyclic, dihedral, A4, S4 or A5. Therefore, in each case,

except when G is cyclic, there exists a subgroup H of G which is not normal

in G, and in each such case, we can construct counterexamples. We do that as

follows. Starting with any group presentation of the groups Dn, A4, S4 or A5 we

find an isomorphic group G of automorphisms of C(x) that fix C, via generators.

We then choose any subgroup H of G, which is not normal in G. Next we need

to compute the generator of C(x)G and C(x)H . The main assertion in the proof

of Lüroth’s theorem is that the generator of the fixed field of G can be found by

computing elementary symmetric polynomials in the values g(x) with g ∈ G until

we find one whose value isn’t in C; that value f(x) will satisfy C(x)G = C(f(x)),

see [54] for more details. We analogously compute the generator h(x) of C(x)H .

Then there exists a unique g ∈ C(x) such that f = g ◦ h and we can easily

compute it.

Example 5.6. Recall that one group presentation for the symmetric group

S4 is 〈a, b : a4 = 1, b3 = 1, (ab)2 = 1〉. Let

ϕ1(x) = −x+ 1

x− 1
and ϕ2(x) = −x− i

x+ i
.

Since ϕ
(4)
1 (x) = x and ϕ

(3)
2 (x) = x and ϕ3(x) := ϕ1(ϕ2(x)) is such that ϕ

(2)
3 (x) =

x, it follows that the group G of automorphisms of C(x) which fix C, generated

with the automorphisms x 7→ ϕ1(x) and x 7→ ϕ2(x), is isomorphic to S4. Take

H to be a subgroup of G generated with the automorphisms x 7→ ϕ1(x) and

x 7→ ϕ2(ϕ
(3)
1 (ϕ2(x))); then H ∼= D4 and is hence not normal in G. Then C(x)G =

C(f(x)) and C(x)H = C(h(x)) where

f(x) =
x24 + 759x16 + 2576x12 + 759x8 + 1

x4(x4 − 1)4
and h(x) =

x8 + 1

x4
.

Then f = g ◦ h with

g(x) =
x3 + 756x+ 2576

(x− 2)2
.

Then by construction γ(f) = deg f = 24 and γ(h) = deg h = 8. We can easily

verify that γ(g) = 1 < deg g = 3.
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Example 5.7. Recall that one group presentation for the alternating group

A4 is
〈
a, b : a2 = b3 = (ab)3 = 1

〉
. Let

ϕ1(x) = −1

x
and ϕ2(x) = − i(x− 1)

x+ 1
.

Then ϕ
(2)
1 (x) = x, ϕ

(3)
2 (x) = x and ϕ3(x) := ϕ1(ϕ2(x))) is such that ϕ3(x)(3)(x) =

x. Then the group G of automorphisms of C(x) which fix C, generated with the

automorphisms x 7→ ϕ1(x) and x 7→ ϕ2(x), is isomorphic to A4. Take H to be a

subgroup of G generated with x 7→ ϕ1(x), so H ∼= C2 and H is hence not normal

in G. Then C(x)G = C(f(x)) and C(x)H = C(h(x)) where

f(x) =
x12 − 33x8 − 33x4 + 1

x2(x− 1)2(x+ 1)2(x2 + 1)2
and h(x) =

x2 + 1

x
.

Then f = g ◦ h with

g(x) =
(x2 − 8)(x2 − 2)(x2 + 4)

x2(x− 2)(x+ 2)
.

Then by construction γ(f) = deg f = 12 and γ(h) = deg h = 2. We can easily

verify that γ(g) = 2 < deg g = 6.

Example 5.8. Recall that one group presentation for the alternating group

A5 is
〈
a, b : a2 = 1, b5 = 1, (ab)3 = 1

〉
. Let ζ be a primitive 5th root of unity and

ω = ζ + 1/ζ. Let further

ϕ1(x) =
ωx+ 1

x− ω
and ϕ2(x) = ζ2x

Since ϕ
(2)
1 (x) = x and ϕ

(5)
2 (x) = x and ϕ3(x) := (ϕ1(ϕ2(x))) is such that

ϕ
(3)
3 (x) = x, it follows that the group G of automorphisms of C(x) which fix

C generated with the automorphisms x 7→ ϕ1(x) and x 7→ ϕ2(x), is isomor-

phic to A5. Take H to be a subgroup of G generated with the automorphisms

x 7→ ϕ
(2)
2 (ϕ1(ϕ2(ϕ1(x))))) and x 7→ ϕ1(ϕ2(x)); then H ∼= A4 and is hence not

normal in G. Then C(x)G = C(f(x)) and C(x)H = C(h(x)) where

f(x) =
(x20 − 228x15 + 494x10 + 228x5 + 1)3

x5(x10 + 11x5 − 1)5
,

and

h(x) =
x12 − 6ζ2x10 − 20ζ3x9 + 15ζ4x8 − 24x7 + 24ζ2x5 + 15ζ3x4 + 20ζ4x3 − 6x2 + ζ2

x(x10 + 11x5 − 1)
.

Then f = g ◦ h with

g(x) = (x+ ζ)3(x2 − 3ζt+ 36ζ2).

Then by construction γ(f) = deg f = 60 and γ(h) = deg h = 12. We can easily

verify that γ(g) = 1 < deg g = 5.
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Example 5.9. One group presentation for the dihedral group Dn is 〈a, b :

a2 = 1, bn = 1, (ab)2 = 1〉. Let ζ be a primitive n-th root of unity and let

ϕ1(x) =
1

x
and ϕ2(x) = ζx

Since ϕ
(2)
1 (x) = x, ϕ

(n)
2 (x) = x and ϕ1(ϕ2(x))(2)(x) = x, it follows that the group

Gn of automorphisms of C(x) which fix C generated with the automorphisms

x 7→ ϕ1(x) and x 7→ ϕ2(x) is isomorphic to Dn. Take Hn to be a subgroup of

Gn generated with x 7→ ϕ1(x); then Hn
∼= C2 and Hn is hence not normal in G

for n ≥ 3. Then C(x)Gn = C(fn(x)) and C(x)Hn = C(h(x)) where

fn(x) = xn +
1

xn
and h(x) = x+

1

x
.

Then gn(x) ∈ C(x) such that fn(x) = gn(h(x)) is a polynomial of degree n. Then

by construction γ(fn) = deg f = 2n, γ(h) = deg h = 2 and γ(gn) < deg gn = n.

In particular, if n = 3, then

f3(x) = x3 +
1

x3
, h(x) = x+

1

x
, g3(x) = x3 − 3x,

and γ(f3) = deg f = 6, γ(h) = deg h = 2 and γ(g3) = 1.

6. Additive polynomials

In this section we explain the consequences of our general results for additive

polynomials. Additive polynomials are defined as follows.

Definition 6.1. If K is a field of characteristic p ≥ 0, then f ∈ K[X] is

called additive if it satisfies the identity f(X + Y ) = f(X) + f(Y ).

It is well known that if char(K) = p > 0, the additive polynomials over K

are exactly polynomials of the type

f(X) = anX
pn + an−1X

pn−1
+ · · ·+ a1X

p + a0X,

with ai ∈ K for 0 ≤ i ≤ n, and if char(K) = 0, the only additive polynomials

over K are f(X) = a0X for some a0 ∈ K. See [50, Chap. 1] for a proof and more

details on additive polynomials. Note that an additive polynomial f(X) ∈ K[X]

is separable exactly when f ′(X) 6= 0.

If K is a field and x is transcendental over K, Soundararajan [91] gave

necessary and sufficient conditions on f ∈ K[X] so that K(x)/K(f(x)) is Galois.

Such polynomials f(X) are closely related to additive polynomials. We now recall

the result of Soundararajan.

Lemma 6.2. Let K be a field of characteristic p ≥ 0 and K(x) a simple

transcendental extension of K. Let f(x) ∈ K[x] be of degree n = pm · n1,

gcd(pm, n1) = 1. Then K(x) is a Galois extension over K(f(x)) if and only if
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(6.2.1) f(x) = A(g(x))n1 +B, where

g(x) = xp
m

+ a1x
ps1 + · · ·+ ar−1x

psr−1
+ arx+ ar+1

with n1 dividing each psi − 1 and ar 6= 0, and A,B ∈ K.

(6.2.2) K contains all the roots of Xn1 = 1 and all the roots of g(z) = ζg(0)

for each root ζ of Xn1 = 1.

For the sake of completeness (since we use Lemma 6.2 in this and in the

following section), we explain the main lines of the argument of Soundarara-

jan. One direction is easy. Assume that both (6.2.2) and (6.2.1) hold. Note

that then for any ζ ∈ K such that ζn1 = 1 and any ν ∈ K such that g(ν) =

ζg(0), the automorphisms of K(x) which fix K and map x 7→ ζx + ν, leave

K(f(x)) fixed. There are clearly n1 · deg g = deg f such automorphisms. Then

deg f ≤ |Gal(K(x)/K(f(x)))| ≤ [K(x) : K(f(x))] = deg f , wherefrom it fol-

lows that K(x)/K(f(x)) is Galois. Proving that the converse also holds is

somewhat more difficult. If K(x)/K(f(x)) is Galois, then there are exactly

|Gal(K(x)/K(f(x))| = deg f automorphisms of K(x) that leave K(f(x)) fixed.

Since f(x) is a polynomial, each of these automorphisms maps x 7→ ax+ b with

a, b ∈ K, that satisfy f(ax + b) = f(x). By closer inspection of the equation

f(ax+b) = f(x) (that involves multiple comparison of coefficients), Soundarara-

jan proves that there exists a subgroup H of G = Gal(K(x)/K(f(x))) of size

pm, consisting of the automorphisms of G that map x 7→ x+ b for some b ∈ K.

Then he shows that g̃(x) =
∏
τ∈H τ(x) is an additive polynomial which is up to

constant coefficient the polynomial g from (6.2.1).

Using Lemma 6.2, we can give the following characterization of separable

additive polynomials.

Lemma 6.3. Let K be a field of characteristic p > 0 and f(X) ∈ K[X]. Let

x be transcendental over K. Then the following are equivalent:

(6.3.1) K(x)/K(f(x)) is Galois and deg f is a power of p.

(6.3.2) F (X) := f(X)− f(0) is a separable additive polynomial.

When these conditions hold, the Galois group of K(x)/K(f(x)) is an elementary

abelian p-group.

Proof. From Lemma 6.2 we get that (6.3.1) and (6.3.2) are equivalent. If

both (6.3.1) and (6.3.2) hold, note that A := Gal(K(x)/K(f(x))) consists of the

automorphisms of K(x) which fix K and map x 7→ x+ α where F (α) = 0; A is

hence an elementary abelian p-group of order deg f . �

We use the above characterization of separable additive polynomials to give

a short proof of the fact that additive polynomials decompose into additive poly-

nomials. This was first proved by Dorey and Whaples [25].
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Lemma 6.4. Let K be a field of characteristic p > 0 and f ∈ K[X] a separable

additive polynomial. If f = g◦h, then g(X)−g(0) and h(X)−h(0) are separable

additive polynomials as well.

Proof. Let x be transcendental over K. Then by Lemma 6.3 it follows that

K(x)/K(f(x)) is Galois with G := Gal(K(x)/K(f(x)) an elementary abelian

p-group. Since K(f(x)) ⊆ K(h(x) ⊆ K(x), it follows that K(x)/K(h(x)) is

Galois as well. Since deg f is a power of p, it follows that deg h is a power of p

as well, so from Lemma 6.3 we get that h(X)− h(0) is separable additive. If we

denote y = h(x), then g(y) = f(x) and K(x)/K(g(y)) is hence Galois. Since G

is abelian, the subgroup N of G fixing K(y) is normal in G, so K(y)/K(g(y)) is

Galois. Since deg g is a power of p, from Lemma 6.3 it follows that g(X)− g(0)

is separable additive as well. �

It is further proved in [25] that any nonzero additive polynomial (so, not

necessarily separable) decomposes into additive polynomials. The argument is

very simple and we now quickly recall it.

Corollary 6.5. Let K be a field of characteristic p > 0 and f ∈ K[X] a

nonzero additive polynomial. If f = g ◦h, then g(X)− g(0) and h(X)−h(0) are

additive polynomials as well.

Proof. Suppose that there exists a nonzero additive polynomial f(X) such

that f = g ◦ h, but g(X) − g(0) and h(X) − h(0) are not both additive and

assume that f(X) is of minimal degree among all such counterexamples. Then

f ′(X) = 0 by Lemma 6.4, so either g′(X) = 0 or h′(X) = 0. If h′(X) = 0, then

f(X) = f1(X) ◦Xp and h(X) = h1(X) ◦Xp for some f1, g1 ∈ K[X], wherefrom

f1 = g ◦ h1, so we have a counterexample of lower degree, a contradiction. Now

assume g′(X) = 0. Then f(X) = f1(X) ◦ Xp and g(X) = g1(X) ◦ Xp, so

f1(X
p) = g1(h(X)p). Since h(X)p = h0(X

p) for some h0 ∈ K[X], it follows that

f1(X
p) = g1(h0(X

p)), wherefrom f1 = g1 ◦ h0, which is again a counterexample

of lower degree, a contradiction. �

Next we show that the monodromy group of a separable additive polynomial

has a transitive abelian subgroup, so that our general results apply to additive

polynomials.

Lemma 6.6. Let K be a field of characteristic p > 0 and let f ∈ K[X] be

separable additive. Then the monodromy group of f(X) has a transitive abelian

subgroup.

Proof. Let L be the splitting field of f(X) over K. Let t be transcendental

over K and let Ω denote the splitting field of φf (X) = f(X)− t over K(t). By

Gauss’s Lemma it follows that φf (X) is irreducible over K(t). Since f ′(X) 6= 0,
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it follows that φf (X) is separable. Let x be a root of φf (x) in Ω, so t = f(x).

For any α ∈ L such that f(α) = 0, we get that x+ α is a root of φf (x), since

φf (x+ α) = f(x+ α)− f(x) = f(x) + f(α)− f(x) = f(α) = 0.

These are all the roots of φf (X) since f(X) is separable and deg φf = deg f . So,

Ω = L(x) and L(x) is hence the Galois closure of K(x)/K(f(x)). Let G be the

monodromy group of f(X), that is G = Gal(L(x)/K(f(x)), and let H be the sta-

bilizer of x in G, so H = Gal(L(x)/K(x)). Let further A = Gal(L(x)/L(f(x))).

Note that A consist of the automorphisms of L(x) that fix L and map x 7→ x+α,

where f(α) = 0 and is hence an elementary abelian p-group of order deg f . Fur-

ther note that A ∩ H = 1, so |HA| = |H||A| = [L(x) : K(x)] · deg f = [L(x) :

K(x)][K(x) : K(f(x))] = [L(x) : K(f(x)] = |G|, whence G = HA. Since H is

the point stabilizer in G, it follows that A is a transitive subgroup of G. �

We are now ready to apply our general results from the previous sections to

additive polynomials.

Proposition 6.7. Let K be a field of characteristic p > 0 and let f(X) ∈
K[X] be separable additive.

(6.7.1) Any complete decomposition of f(X) can be obtained from any other

complete decomposition of f(X) through finitely many steps, where in

each step we replace a complete decomposition of f(X) by a Ritt neigh-

bor.

(6.7.2) If f1◦f2◦· · ·◦fm = f = g1◦ g2◦. . .◦gn are two complete decompositions of

f(X) in K[X], then m = n and there is a permutation π of {1, 2, . . . ,m}
such that Mon(fi) ∼= Mon(gπ(i)) for each i. It follows that deg fi =

deg gπ(i) and γ(fi) = γ(gπ(i)).

(6.7.3) If f1, f2, . . . , fm ∈ K[X] satisfy f = f1 ◦ f2 ◦ · · · ◦ fm, then

γ(f) | γ(f1)γ(f2) . . . γ(fm).

Proof. From Lemma 6.6 it follows that the monodromy group of f(x) has

a transitive abelian subgroup. Now (6.7.1) follows from Theorem 3.2. Proposi-

tion 6.4 implies that whenever we replace a complete decomposition with a Ritt

neighbor we are replacing two indecomposable polynomials whose composition

is an additive polynomial (plus a constant coefficient) by two other indecompos-

able polynomials with the same composition. Then Theorem 4.1 implies that

these pairs of indecomposable polynomials have the same pair of monodromy

groups, possibly in reversed order, which proves (6.7.2). Lastly, (6.7.3) follows

from Theorem 5.3. �



7. SUBADDITIVE POLYNOMIALS 33

Remark 6.8. Ore [73, 74] studied additive polynomial decomposition. He

proved that the number and the sequence of degrees of indecomposable polynomi-

als in any complete decomposition of a separable additive f(X) is uniquely deter-

mined by f(X), up to permutation. Ore’s methods are quite different from ours

and yield weaker result. At the end of the next section, more words about Ore’s

methods can be found. We further remark that the proof of Lemma 6.6 is con-

tained in the proof of [25, Thm. 4]; this theorem corresponds to our Lemma 6.4.

Since Dorey and Whaples followed Ritt’s ideas in [25], their proof is of similar

flavor as ours.

7. Subadditive polynomials

In this section we discuss decompositions of subadditive polynomials, which

are defined as follows:

Definition 7.1. For any field K of characteristic p ≥ 0, a polynomial S ∈
K[X] is called subadditive if S(Xn) = f(X)n for some separable additive f(X) ∈
K[X] and some positive integer n for which p - n.

We will show that the monodromy group of a subadditive polynomial S(X)

over K contains a transitive abelian subgroup, so that the results of the previous

sections apply to subadditive polynomials. We do this by showing that the mon-

odromy group of S(X) over a suitable extension of K contains such a subgroup.

In fact we prove the following stronger result.

Lemma 7.2. Let K be a field of characteristic p > 0, and let n be a positive

integer coprime to p. Let y be transcendental over K, and put x := yn. For any

g ∈ K[X] \K[Xp], the following are equivalent:

(7.2.1) g(Xn) = a(f(X) + c)n + b for some a, b, c ∈ K and some separable

additive f(X) ∈ K[X].

(7.2.2) K(y)/K(g(x)) is Galois and deg g is a power of p.

When these conditions hold, the Galois group of K(y)/K(g(x)) is the semidirect

product of the normal elementary abelian subgroup Gal(K(y)/K(f(y))) and the

cyclic subgroup Gal(K(y)/K(x)).

Proof. First assume (7.2.2). By Theorem 6.2, we have g(Xn) = a(f(X) +

c)n+b for some a, b, c ∈ K with a 6= 0 and some separable additive f(X) ∈ K[X].

In order to obtain (7.2.1), we must show that we can choose a, b, c to be in K

and f(X) to be in K[X]. First, we may assume that f(X) is monic, upon

replacing (a, c, f(X)) by (adn, c/d, f(X)/d) where d is the leading coefficient of

f(X). Then the leading coefficient of g(Xn) equals a, so a ∈ K∗. If n = 1 then

we may replace (b, c) by (b+ ac, 0), so that g(X) = af(X) + b; then comparing

terms of like degrees shows that f(X) ∈ K[X] and b ∈ K, so that (7.2.1) holds.
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Now suppose n > 1, and write pk := deg f . If f(X) + c /∈ K[X], then let dXpk−i

be the highest-degree term of f(X)+c which is not in K[X]; then the coefficient

of Xnpk−i in g(Xn) is not in K, since a, c ∈ K, a contradiction. Therefore

f(X) + c ∈ K[X], so f(X) ∈ K[X] and c ∈ K, and thus also b ∈ K. It follows

that (7.2.1) holds in every case.

Now assume (7.2.1). Theorem 6.2 implies that K(y)/K(g(x)) is Galois.

Moreover, deg g = deg f is a power of p, so (7.2.2) holds.

Henceforth assume that both (7.2.1) and (7.2.2) hold. Then in particu-

lar, K(y)/K(g(x)) is Galois, so G := Gal(K(y)/K(g(x))) has order [K(y) :

K(g(x))] = [K(y) : K(x)] · [K(x) : K(g(x))] = n · deg g. Note that A :=

Gal(K(y)/K(f(y))) consists of the automorphisms of K(y) which fix K and map

y 7→ y + α where f(α) = 0, and H := Gal(K(y)/K(x)) consists of the automor-

phisms of K(y) which fix K and map y 7→ ζx where ζn = 1. Hence A is elemen-

tary abelian of order deg f (which equals deg g), and H is cyclic of order n. Since

gcd(n, deg g) = 1 we have A ∩H = 1, so that |AH| = |A| · |H| = n · deg g = |G|,
whence G = AH. Pick any σ ∈ A and τ ∈ H, so that σ(y) = y+α and τ(y) = ζy

where f(α) = 0 and ζn = 1. Then τ−1στ(y) = y + ζα. But since G = AH, and

the only elements of AH which map y 7→ y + β (with β ∈ K) are the elements

of A, it follows that τ−1στ ∈ A. Therefore H normalizes A, so A is a normal

subgroup of G, whence G = AoH. �

We now show that the element c in (7.2.1) must be 0 if n > 1, so that

the polynomials g(X) in (7.2.1) are obtained from subadditive polynomials by

composing with degree-one polynomials.

Lemma 7.3. For any field K of characteristic p ≥ 0, any separable additive

f(X) ∈ K[X], any a, b, c ∈ K with a 6= 0, and any integer n > 1 with p - n, the

following are equivalent:

(7.3.1) there exists g(X) ∈ K[X] for which g(Xn) = a(f(X) + c)n + b;

(7.3.2) c = 0 and there exists h(X) ∈ K[X] for which f(X) = Xh(Xn).

When these conditions hold, g(X) and h(X) are uniquely determined, and g(X) =

aXh(X)n + b.

Proof. Suppose that g(Xn) = a(f(X) + c)n + b. If ζ is a primitive n-th

root of unity then g(Xn) is unchanged upon replacing X by ζX. Therefore

(f(ζX) + c)n = (f(X) + c)n, so that f(ζX) + c = ζ ′(f(X) + c) for some n-th

root of unity ζ ′. It follows that if f(X) + c has a term of degree i then ζi = ζ ′.

Since f(X) has a term of degree 1, every such i satisfies ζi = ζ ′ = ζ, so that

i ≡ 1 (mod n). Since n > 1, it follows that f(X) + c has no term of degree 0,

so that f(X) + c = Xh(Xn) for some h(X) ∈ K[X]. Finally, since f(0) = 0, we

conclude that c = 0.
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Conversely, if f(X) = Xh(Xn) then plainly g(X) := aXh(X)n + b satisfies

g(Xn) = af(X)n + b. Moreover, both h(X) and g(X) are uniquely determined

by the equations f(X) = Xh(Xn) and g(Xn) = af(X)n + b. �

We now use the above results to show that subadditive polynomials can only

decompose as the composition of subadditive polynomials. This result was first

proved by Henderson and Matthews as the main result of [57].

Proposition 7.4. Let K be a field of characteristic p > 0, let n be a positive

integer coprime to p, and let S, f ∈ K[X] \K[Xp] satisfy S(Xn) = f(X)n where

f(X) is additive. For S1, S2 ∈ K[X], we have S = S1◦S2 if and only if there is a

degree-one µ ∈ K[X] for which S1◦µ(Xn) = f1(X)n and µ−1◦S2(Xn) = f2(X)n

where f1, f2 ∈ K[X] are separable additive polynomials such that f = f1 ◦ f2.

Proof. We may assume that n > 1, since if n = 1 then the result follows

from Theorem 6.4. The “if” direction is easy: if such µ, f1, f2 exist, then

S1 ◦ S2(Xn) = S1 ◦ µ ◦ f2(X)n = f1(X)n ◦ f2(X) = f(X)n = S(Xn),

so S1 ◦ S2 = S. It remains to prove the “only if ” direction. Thus, for the

rest of this proof we assume that S = S1 ◦ S2. Let y be transcendental over

K, and put x := yn. Lemma 7.2 implies that K(y)/K(S(x)) is Galois. Since

K(S(x)) ⊆ K(S2(x)) ⊆ K(x) ⊆ K(y), it follows that K(y)/K(S2(x)) is Galois.

Now Lemma 7.2 and Lemma 7.3 imply that S2(X
n) = µ ◦ f2(X)n for some

degree-one µ ∈ K[X] and some separable additive f2(X) ∈ K[X].

By Lemma 7.2, the Galois group G of K(y)/K(S(x)) equals AH where

A := Gal(K(y)/K(f(y))) and H := Gal(K(y)/K(x)), and likewise G2 :=

Gal(K(y)/K(S2(x)) contains A2 := Gal(K(y)/K(f2(y))). Since A2 ⊆ G2 ⊆
G = AH, and an element σ ∈ AH satisfies σ(y) − y ∈ K if and only σ ∈ A, it

follows that A2 ⊆ A. Therefore f(y) = f1(f2(y)) for some f1 ∈ K(X). Since

both f(x) and f2 are in K[X], also f1 must be in K[X], so Theorem 6.4 shows

that f1 is additive. Now, writing S1(X) := S1(µ(X)) and S2(X) := µ−1(S2(X)),

we have

f(X)n = S(Xn) = S1 ◦ S2(X
n) = S1 ◦ f2(X)n.

Since both the leftmost and the rightmost expressions are functions of f2(X),

we can equate the corresponding functions to get f1(X)n = S1(X)n, which

completes the proof. �

Remark 7.5. Our proof of Proposition 7.4 is completely different from the

proof in [57], which relied on several pages of computations involving factors of

S(Xn)− S(Y n).

We now apply our general results from the previous sections to the case of

subadditive polynomials.
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Proposition 7.6. Let K be a field of characteristic p > 0, and let S(X) ∈
K[X] \K[Xp] be subadditive.

i) Any complete decomposition of S can be obtained from any other com-

plete decomposition of S through finitely many steps, where in each step

we replace a complete decomposition of S by a Ritt neighbor.

ii) If f1◦f2◦· · ·◦fr = S = g1◦ g2◦. . .◦gs are two complete decompositions of

S(X) in K[X], then r = s and there is a permutation π of {1, 2, . . . , r}
such that Mon(fi) ∼= Mon(gπ(i)) for each i. It follows that deg fi =

deg gπ(i) and γ(fi) = γ(gπ(i)).

iii) If f1, f2, . . . , fm ∈ K[X] satisfy S = f1 ◦ f2 ◦ · · · ◦ fm, then

γ(S) | γ(f1)γ(f2) . . . γ(fm).

Proof. All assertions are vacuously true if degS = 1, so we assume hence-

forth that degS > 1. We first show that the monodromy group Mon(S) of

S(X) over K contains a transitive abelian subgroup. Write S(Xn) = f(X)n

where f(X) ∈ K[X] \K[Xp] is additive and n is a positive integer coprime to

p. Let y be transcendental over K, and put x := yn. Proposition 7.2 shows that

K(y)/K(S(x)) is Galois, and its Galois group G equals AH where A and H are

the Galois groups of K(y)/K(f(y)) and K(y)/K(x), both of which are abelian.

Note that H contains no nontrivial normal subgroup of G: for, any τ ∈ H \ {1}
and σ ∈ A \ {1} satisfy τ(y) = ζy and σ(y) = y + α where α 6= 0 and ζ 6= 1,

so that σ−1τσ maps y 7→ ζy + α(1 − ζ) /∈ K∗y, whence σ−1τσ /∈ H. It follows

that K(y) is the Galois closure of the extension of fixed fields K(y)H/K(y)G, or

equivalently of K(x)/K(S(x)). Since H is the subgroup of G which fixes x, the

factorization G = HA shows that the abelian subgroup A of G acts transitively

on the conjugates of x over K(S(x)), or equivalently, on the roots of S(X)−S(x).

Now let Ω be the Galois closure of K(x)/K(S(x)). Then Ω ⊆ K(y), and restrict-

ing elements of G to Ω induces an isomorphism of G onto Gal(Ω/L(S(x))), where

L := Ω∩K. In particular, G is isomorphic as a permutation group to a subgroup

of Mon(S), so since G has a transitive abelian subgroup, it follows that Mon(S)

does as well.

Now (7.6.1) follows from Theorem 3.2. Proposition 7.4 implies that if S =

h1 ◦ h2 ◦ · · · ◦ hm where each hi ∈ K[X], then hi ◦ hi+1 = µ ◦ Si ◦ ν where Si ∈
K[X] is subadditive and µ, ν ∈ K[X] have degree one. Therefore whenever we

replace a complete decomposition of S by a Ritt neighbor, we are replacing two

indecomposable polynomials whose composition is subadditive (composed with

linears) by two other indecomposable polynomials having the same composition.

It follows from Theorem 4.1 that these two pairs of indecomposable polynomials

have the same pair of monodromy groups, possibly in reversed order. This

implies (7.6.2). Finally, (7.6.3) follows from Theorem 5.3. �
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Remark 7.7. The only part of this result which has been stated previously

is the assertion that any two complete decompositions of a subadditive polyno-

mial have the same length and the same sequence of degrees of indecomposables,

up to permutation. This assertion occurs on [21, p. 325], together with a two-

sentence sketch of the proof strategy. Essentially they argue that, in light of

Proposition 7.4 and Lemma 7.3, this assertion reduces to showing the analogous

properties for expressions of members of a certain subclass Λ of additive polyno-

mials as compositions of members of Λ. Specifically, Λ consists of those additive

polynomials in which all terms have degree congruent to 1 mod pk, where Fpk is

the extension of Fp obtained by adjoining all n-th roots of unity. The relevant

properties of members of Λ were proved by Ore [74, Thm. 1 of Chap. II, p. 494].

We note that Ore’s proof is completely different from ours. In particular, while

both proofs show that any complete decomposition of an additive polynomial

can be obtained from any other such decomposition through finitely many steps,

our steps involve replacing two adjacent indecomposables by two others having

ths same composition, whereas Ore’s steps replace a block of r ≥ 2 consecutive

indecomposables by another block of r indecomposables which have the same

composition, where the degrees of the second batch of indecomposables are a

circular shift of the degrees of the first batch of indecomposables. Moreover, Ore

does not use Galois closures or monodromy groups, so his methods do not give

information about the other parts of Proposition 7.6.





Chapter 3

Diophantine equations with

Euler polynomials

This chapter contains the paper [59] with the title Diophantine equations

with Euler polynomials. It is a joint paper with Csaba Rakaczki. The article

was published in Acta Arithmetica in 2013. The presentation of the paper here

is slightly modified from the published version of the paper.

Abstract. In this paper we determine possible decompositions of Euler poly-

nomials Ek(x), i.e. possible ways of writing Euler polynomials as a functional

composition of polynomials of lower degree. Using this result together with the

well-known criterion of Bilu and Tichy, we prove that the Diophantine equation

−1k + 2k − · · ·+ (−1)xxk = g(y),

with deg g ≥ 2 and k ≥ 7, has only finitely many integers solutions x, y unless

polynomial g can be decomposed in ways that we list explicitly.

1. Introduction

If K is a field and g(x), h(x) ∈ K[x], then f = g ◦ h is a functional compo-

sition of g and h and (g, h) is a (functional) decomposition of f (over K). The

decomposition is nontrivial if g and h are of degree at least 2. A polynomial is

said to be indecomposable if it is of degree at least 2 and does not have a nontriv-

ial decomposition. Given f(x) ∈ K[x] with deg f > 1, a complete decomposition

of f is a decomposition f = f1◦f2 · · ·◦fm, where polynomials fi ∈ K[x] are inde-

composable for all i = 1, 2, . . . ,m. Two decompositions f = g1 ◦ h1 = g2 ◦ h2 are

said to be equivalent over K if there exists a linear polynomial ` ∈ K[x] such that

g2 = g1 ◦ ` and h1 = ` ◦ h2. Complete decomposition of a polynomial of degree

greater than 1 clearly always exists, but it does not need to be unique. In 1922,

J. F. Ritt [84] proved that any two complete decomposition of f ∈ C[x] consist

39
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of the same number of indecomposable polynomials and moreover that the se-

quence of degrees of polynomials in a complete decomposition of f is uniquely

determined by f , up to permutation. This result is known in literature as Ritt’s

first theorem. For more on the topic of polynomial decomposition we refer to

[89].

Ritt’s polynomial decomposition results have been applied to a variety of

topics. One such topic is the classification of polynomials f and g with rational

coefficients such that the equation f(x) = g(y) has infinitely many integer so-

lutions. In 2000, Bilu and Tichy [13] presented a complete and definite answer

to this question. In the past decade the theorem of Bilu and Tichy has been

applied to various Diophantine equations. For example, in [12] it is shown that

the equation 1m+2m+· · ·+xm = 1n+2n+· · ·+yn has only finitely many integer

solutions x, y, provided m,n ≥ 2 and m 6= n. In [80] Rakaczki investigated the

question of the finiteness of the number of integer solutions x, y of the equation

1m + 2m + · · · + xm = g(y) with an arbitrary g(x) ∈ Q[x]. We mention that

the study of Diophantine equations involving power sums of consecutive integers

has a long history, dating back to the work of Schäffer in 1956, see [87]. In the

present paper we study a related problem.

The purpose of this paper is to characterize those g ∈ Q[x] for which the

Diophantine equation

(1.1) −1k + 2k − · · ·+ (−1)xxk = g(y)

has infinitely many integer solutions. It is well known, see for instance [1], that

the following relation holds:

−1k + 2k − 3k + · · ·+ (−1)nnk =
Ek(0) + (−1)nEk(n+ 1)

2
,

where Ek(x) denotes the k-th Euler polynomial, which is defined by the following

generating function:
∞∑
k=0

Ek(x)
tk

k!
=

2 exp(tx)

exp(t) + 1
.

In the present paper we give a complete description of decompositions of Euler

polynomials into polynomials with complex coefficients.

Theorem 1.2. Euler polynomials Ek(x) are indecomposable for all odd k.

If k = 2m is even, then every nontrivial decomposition of Ek(x) over complex

numbers is equivalent to

(1.3) Ek(x) = Ẽm

((
x− 1

2

)2
)
, where Ẽm(x) =

m∑
j=0

(
2m

2j

)
E2j

4j
xm−j

and Ej is the j-th Euler number defined by Ej = 2jEj(1/2). In particular, the

polynomial Ẽm(x) is indecomposable for any m ∈ N.
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Since Euler polynomials appear in many classical results and play an impor-

tant role in various approximation and expansion formulas in discrete mathemat-

ics and in number theory (see for instance [1, 15]), we find that Theorem 1.2

might be of broader interest. Theorem 1.2 together with the aforementioned

criterion of Bilu and Tichy allows us to prove the following theorem.

Theorem 1.4. Let k ≥ 7 be an integer and g(x) ∈ Q[x] with deg g ≥ 2. Then

the Diophantine equation (1.1) has only finitely many integer solutions unless we

are in one of the following cases

i) g(x) = f (Ek(p(x))),

ii) g(x) = f
(
Ẽs
(
p(x)2

))
,

iii) g(x) = f
(
Ẽs
(
δ(x)p(x)2

))
,

iv) g(x) = f
(
Ẽs
(
γδ(x)t

))
,

v) g(x) = f
(
Ẽs
((
aδ(x)2 + b

)
p(x)2

))
,

where a, b, γ ∈ Q\{0}, t ≥ 3 odd, Ek(x) is the k-th Euler polynomial, p(x) ∈ Q[x],

δ(x) ∈ Q[x] is a linear polynomial,

f(x) = ±x
2

+
Ek(0)

2
and Ẽs(x) =

s∑
j=0

(
2s

2j

)
E2j

4j
xs−j .

The proof of Theorem of Bilu and Tichy relies on Siegel’s classical theorem

on integral points on curves, which is ineffective. Consequently, the Theorem 1.4

is ineffective.

In the proof of Theorem 1.4 in each of the exceptional cases, we find an

infinite family of integer solutions of the equation (1.1).

In relation to our problem we mention a paper by Dilcher [24], where the

effective finiteness theorem is established for the Diophantine equation

(1.5) −1k + 3k − · · · − (4x− 3)k + (4x− 1)k = yn,

which was viewed as a ”character-twisted” analogue of Schäffer’s equation [87],

and a recent paper by Bennett [10], where the same equation was completely

solved for 3 ≤ k ≤ 6 using methods from Diophantine approximations, as well

as techniques based upon the modularity of Galois representations. Using our

techniques, one can obtain ineffective finiteness theorems of a similar flavor as

Theorem 1.4 for the Diophantine equation

(1.6) −1k + 3k − · · · − (4x− 3)k + (4x− 1)k = g(y),

with k ∈ N and an arbitrary g(x) ∈ Q[x].
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2. Decomposition of Euler polynomials

In this section we recall and establish some results on polynomial decompo-

sition and then use them to determine decomposition properties of Euler poly-

nomials.

The following lemma describes the structure of the set of all decompositions

of a fixed monic polynomial into two decomposition factors in the case when

the corresponding field is either of characteristic 0 or of positive characteristic,

but the degree of the polynomial is not divisible by the characteristic of the

field. This case is known in literature as the tame case. In the tame case, there

are known analogues of Ritt’s theorems. The case in which the degree of the

polynomial is divisible by the characteristic of the field is called wild and in this

case analogues of Ritt’s results do not hold, see [25]. Similarly, the following

lemma also fails in wild case.

Lemma 2.1. Let f(x) ∈ K[x] be a monic polynomial such that char(K) -
deg f . Let L be an arbitrary extension field of K. Then for any nontrivial

decomposition f = f1 ◦ f2 with f1(x), f2(x) ∈ L[x], there exists a unique decom-

position f = f̃1 ◦ f̃2, such that the following conditions are satisfied:

i) f̃1(x) and f̃2(x) are monic polynomials with coefficients in K,

ii) f̃1 ◦ f̃2 and f1 ◦ f2 are equivalent over L,

iii) if we denote t := deg f̃1, then the coefficient of xt−1 in f̃1(X) is 0.

Proof. Let f(x) = f1(f2(x)) be a nontrivial decomposition of f(x) ∈ K[x]

with f1(x), f2(x) ∈ L[x]. Let t = deg f1, k = deg f2 and let bk ∈ L be the leading

coefficient of f2(x). Then

f̂1(x) := f1(bkx), f̂2(x) := b−1k f2(x)

are clearly monic polynomials. Let ât−1 be the coefficient of xt−1 in f̂1(x). Let

f̃1(x) := f̂1(x− t−1ât−1), f̃2(x) := f̂2(x) + t−1ât−1.

It is easy to verify that the coefficient of xt−1 in f̃1(x) is 0 and since f̂1 and

f̂2 are monic, so are f̃1 and f̃2. Let f̃1(x) = xt + at−1x
t−1 + · · · + a0 and

f̃2(x) = xk+bk−1x
k−1+· · ·+b0, where ai, bj ∈ L, for i = 0, 1, . . . , t, j = 0, 1, . . . , k,

and at−1 = 0. Further let f(x) = cnx
n + · · · + c1x + c0. Now we can easily see

that f̃1 and f̃2 are uniquely determined and have coefficients in K. From

(2.2) f(x) = f̃1(f̃2(x)) = f̃2(x)t + at−2f̃2(x)t−2 + · · ·+ a1f̃2(x) + a0,
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by expanding f̃2(x)t we get the following system of equations which completely

determine coefficients of f̃2(x):

(2.3)



cn−1 = tbk−1

cn−2 = tbk−2 +
(
t
2

)
b2k−1

...

cn−k = tb0 +
∑

i1+2i2+···+(k−1)ik−1=k

di1,i2,...,ik−1
bi1k−1b

i2
k−2 . . . b

ik−1

1 ,

where

di1,i2,...,ik−1
=

(
t

i1, i2, . . . , ik−1

)
.

Since ci ∈ K, it follows that bi ∈ K for all i = 0, 1, . . . , k − 1 and hence f̃2(x) ∈
K[x]. Furthermore, from (2.2) it follows that the coefficients of f̃1 are uniquely

determined by F and f̃2. Recursively, ai ∈ K for all i = t − 2, . . . , 1, 0. Hence,

f̃1(x) ∈ K[x] as well. �

The proof of Lemma 2.1 fails when the degree of the polynomial is divisible

by the characteristic of the field, since in this case there does not exist the

multiplicative inverse of the degree of the polynomial in the field.

Lemma 2.1 implies that if f ∈ K[x] is indecomposable over K, then it is

indecomposable over any extension field of K, provided char(K) - deg f . This

result is well known. In fact, we built up a proof of Lemma 2.1 based on [?,

Theorem 6, Chapter 1.3].

We will further need the following lemma.

Lemma 2.4. Let f ∈ K[x] such that char(K) - deg f . If f = g1 ◦ g2 =

h1 ◦h2 and deg g1 = deg h1, and hence deg g2 = deg h2, then there exists a linear

polynomial ` ∈ K[x] such that g1(x) = h1(`(x)) and h2(x) = `(g2(x)).

Proof. The case K = C is contained already in [84]. Lemma was later

proved in generality by Levi [65]. �

The following observation will be of great help to the proof.

Lemma 2.5. Let n be an even positive integer. If

(x+ 1)n − xn = g(x)h(x)

with g(x), h(x) ∈ R[x], then the coefficients of g(x) and h(x) are either all positive

or all negative.

Proof. We have (x + 1)n − xn =
∏n
i=1(x + 1 − ωix), where ωi = e

2πi
n ,

i = 1, 2, . . . , n. Let n = 2k. Hence, ω2k = 1, ωk = −1, and ω2k−j = ωj for all
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j = 1, 2, . . . , k − 1. Therefore we have

(x+ 1)n − xn = (2x+ 1)
k−1∏
j=1

(x+ 1− ωjx) (x+ 1− ωjx)

= (2x+ 1)

k−1∏
j=1

(
(2− (ωj + ωj))x

2 + (2− (ωj + ωj))x+ 1
)
.

Clearly 2− (ωj + ωj) > 0 for all j ∈ {1, 2, . . . , k − 1}. Now the assertion follows

from the fact that the ring R[x] is a unique factorization domain. �

We will make an extensive use of the following theorem of Rakaczki [81].

Theorem 2.6. Let m ≥ 7 be an integer. Then the polynomial Em(x) + b has

at least three simple zeros for arbitrary complex number b.

Finally, to the proof of Theorem 1.2 we need the following proposition, in

which we collect some well known properties of Euler polynomials, which will be

used in the sequel, sometimes without particular reference, see [15] for proofs.

Proposition 2.7.

i) En(x) = (−1)nEn(1− x);

ii) En(x+ 1) + En(x) = 2xn;

iii) E′n(x) = nEn−1(x);

iv) E5(x) is the only Euler polynomial with a multiple root.

v) If Ek denotes the k-th Euler number, which is defined by Ek = 2kEk(1/2),

then

En(x) =
n∑
k=0

(
n

k

)
Ek
2k

(
x− 1

2

)n−k
,

i.e. En(x) =
∑n

k=0 ckx
k with

ck =
n−k∑
j=0

(
n

j

)
Ej
2j

(
n− j
k

)(
−1

2

)n−k−j
,

for k = 0, 1, . . . , n. In particular,

cn = 1, cn−1 = −1

2
n, cn−2 = 0, cn−3 =

1

4

(
n

3

)
, etc.

Proof of Theorem 1.2. Let n ∈ N and

(2.8) En(x) = g(h(x))

be a nontrivial decomposition of the n-th Euler polynomial. By Lemma 2.1 we

may assume that polynomials g(x) and h(x) are monic with rational coefficients;

let g(x) = xt + at−1x
t−1 + · · ·+ a0 ∈ Q[x] and h(x) = xk + bk−1x

k−1 + · · ·+ b0 ∈
Q[x]. By the same lemma we may assume at−1 = 0. Note t, k ≥ 2 by assumption.



2. DECOMPOSITION OF EULER POLYNOMIALS 45

Using (2.3) we can express the coefficients of h(x) in terms of coefficients of the

En(x), which are given in Proposition 2.7, so

bk−1 = −k
2
, bk−2 = −(t− 1)k2

8
,(2.9)

bk−3 =
1

4

(
k

3

)
+

(t− 1)k2(k − 2)

16
.

From En(1− x) = (−1)nEn(x), it follows that

(2.10) g(h(1− x)) = (−1)ng(h(x)).

We first consider the case when n is even. Then g(h(1 − x)) = g(h(x)). From

Lemma 2.4, by using at−1 = 0, we get that either h(1− x) = h(x) or h(1− x) =

−h(x) and g(x) = g(−x). In the former case k is even. From Proposition 2.7 we

get

2 ((x+ 1)n − xn) = En(−x− 1)− En(x) = g(h(−x− 1))− g(h(x)),

so (x+ 1)n − xn is divisible by h(−x− 1)− h(x) in Q[x]. Note that the leading

coefficient of h(−x − 1) − h(x) is k − 2bk−1 = 2k. If k ≥ 4, from Lemma 2.5 it

follows that the coefficient of xk−4 in h(−x− 1)− h(x) is positive, so

(2.11)

(
k

4

)
−
(
k − 1

3

)
bk−1 +

(
k − 2

2

)
bk−2 −

(
k − 3

1

)
bk−3 > 0.

Using (2.9) we obtain (
k

4

)
>

(t− 1)k2(k − 2)(k − 3)

16
,

wherefrom t ≤ 1, contradicting the assumption. Since k is even, we conclude

k = 2 and hence n = 2t. Lemma 2.4 implies that this decomposition is equivalent

to the decomposition (1.3).

In the case when h(1 − x) = −h(x) and g(x) = g(−x) one can deduce that

k is odd, t is even, g(x) = xt + at−2x
t−2 + · · ·+ a2x

2 + a0 and

En(x) = g(h(x)) = g1(h1(x)),

where

g1(x) = xt/2 + at−2x
t/2−1 + · · ·+ a2x+ a0, h1(x) = h(x)2.

But then h1(x) = h1(1−x) and we can use the argument above to get a contradic-

tion provided t ≥ 4. If t = 2, then g(x) = x2 +a0 and hence En(x) = h(x)2 +a0.

From Theorem 2.6 it follows that this is possible only when n ≤ 6. Since n ≥ 4

and k is odd, it follows that the only possibility is n = 6, but a direct calculation

shows that E6(x) is not of this form.
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If n is odd, then k and t are also odd. Proposition 2.7 implies

2xn = En(x)− En(−x) = g(h(x))− g(h(−x)),

wherefrom we deduce that h(x) − h(−x) divides 2xn in Q[x]. Hence, h(x) −
h(−x) = qxl with q ∈ Q and l ≤ n. By expanding h(x) − h(−x) we obtain

l = k, q = 2 and bk−2 = 0, which together with (2.9) implies t = 1 or k = 0,

contradicting the assumption k, t ≥ 2. Hence, Euler polynomials with odd index

are indecomposable. �

3. Application of the theorem of Bilu and Tichy

To the proof of Theorem 1.4 we need some auxiliary results. First we recall

the finiteness criterion of Bilu and Tichy [13].

We say that the equation f(x) = g(y) has infinitely many rational solutions

with a bounded denominator if there exists a positive integer λ such that f(x) =

g(y) has infinitely many rational solutions x, y satisfying λx, λy ∈ Z. If the

equation f(x) = g(y) has only finitely many rational solutions with a bounded

denominator, then it clearly has only finitely many integer solutions.

We further need to define five kinds of so-called standard pairs of polynomials.

In what follows a and b are nonzero rational numbers, m and n are positive

integers, r ≥ 0 is an integer and p(x) ∈ Q[x] is a nonzero polynomial (which may

be constant).

A standard pair over Q of the first kind is (xm, axrp(x)m), or switched, i.e

(axrp(x)m, xm), where 0 ≤ r < m, gcd(r,m) = 1 and r + deg p > 0.

A standard pair over Q of the second kind is
(
x2,
(
ax2 + b

)
p(x)2

)
, or switched.

Denote by Dm(x, a) the m-th Dickson polynomial with parameter a, defined

by the functional equation

Dm

(
x+

a

x
, a
)

= xm +
(a
x

)m
or by the explicit formula

(3.1) Dm(x, a) =

bm/2c∑
i=0

m

m− i

(
m− i
i

)
(−a)ixm−2i.

A standard pair over Q of the third kind is (Dm (x, an) , Dn (x, am)), where

gcd(m,n) = 1.

A standard pair over Q of the fourth kind is(
a−m/2Dm(x, a),−b−n/2Dn(x, b)

)
,

where gcd(m,n) = 2.

A standard pair over Q of the fifth kind is
((
ax2 − 1

)3
, 3x4 − 4x3

)
, or switched.
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Theorem 3.2. Let f(x) and g(x) be non-constant polynomials in Q[x]. Then

the following assertions are equivalent.

- The equation f(x) = g(y) has infinitely many rational solutions with a

bounded denominator;

- We have

f(x) = ϕ (f1 (λ(x))) , g(x) = ϕ (g1 (µ(x))) ,

where λ(x) and µ(x) are linear polynomials in Q[x], ϕ(x) ∈ Q[x],

and (f1(x), g1(x)) is a standard pair over Q such that the equation

f1(x) = g1(y) has infinitely many rational solutions with a bounded

denominator.

The following theorem for hyperelliptic equations is due to Baker [2].

Theorem 3.3. Let f(x) ∈ Q[x] be a polynomial with at least three sim-

ple roots. Then all the integer solutions of the equation f(x) = y2 satisfy

max {|x|, |y|} ≤ C, where C is an effectively computable constant that depends

only on the coefficients of f .

For P (x) ∈ C[x], a complex number c is said to be an extremum if P (x)− c
has multiple roots. If P (x) − c has s multiple roots, the type of c is the tuple

(α1, α2, . . . , αs) of multiplicities of its roots in an increasing order. Clearly s <

degP , (α1, α2, . . . , αs) 6= (1, 1, . . . , 1) and α1 + α2 + · · ·+ αs = degP .

In what follows Dk(x, a) denotes the Dickson polynomial of degree k ∈ N
with parameter a ∈ Q \ {0}. The following result on Dickson polynomials can

be found in [11, Proposition 3.3].

Theorem 3.4. If k ≥ 3, then Dk(x, a) has exactly two extrema and those

are ±2a
k
2 . If k is odd, then both are of type (1,2,2,. . . ,2). If k is even, then 2a

k
2

is of type (1,1,2,. . . ,2) and −2a
k
2 is of type (2,2,. . . ,2).

What follows is a technical lemma which will be needed in the proof of

Theorem 1.4.

Lemma 3.5. The polynomial En(cx+ d) is neither of the form uxq + v with

q ≥ 3, nor of the form uDk(x, a) + v with k > 4, where c, u ∈ Q \ {0}, d, v ∈ Q.

Proof. Suppose En(cx+ d) = uxq + v with q ≥ 3, so q = n. It follows that

the polynomial (En(cx+ d)− v)′ = ncEn−1(cx+ d) has a zero with multiplicity

n− 1. This is not possible, see Proposition 2.7. Now assume that En(cx+ d) =

uDk(x, a) + v and n ≥ 7. So, k = n and

Dn(x, a)± 2a
n
2 =

1

u

(
En(cx+ d)− v ± 2ua

n
2

)
.
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Then from Theorem 2.6 it follows that Dn(x, a)± 2a
n
2 has at least three simple

zeros, which contradicts Theorem 3.4. In the case when n = 5 and n = 6, a

direct calculation shows that En(cx + d) is not of the form uDn(x, a) + v. We

remark that

E4

(
cx+

1

2

)
= c4D4

(
x,

3

8c2

)
+

1

32
.

�

Proof of Theorem 1.4. We recall

−1k + 2k + · · ·+ (−1)nnk =
Ek(0) + (−1)nEk(n+ 1)

2
.

Therefore, the study of integer solutions of the equation (1.1) reduces to the

study of solutions of the equations

Ek(0) + Ek(2x+ 1)

2
= g(y)(3.6)

Ek(0)− Ek(2x)

2
= g(y).(3.7)

in integers x, y with x positive. We can study these two equations at once by

writing

(3.8) f(Ek(h(x))) = g(y),

where the equation (3.6) corresponds to polynomials

(3.9) f(x) =
Ek(0) + x

2
, h(x) = 2x+ 1,

and the equation (3.7) to polynomials

(3.10) f(x) =
Ek(0)− x

2
, h(x) = 2x.

We further denote

(3.11) Fk(x) = f(Ek(h(x))).

If deg g = 2, then the equation (3.8) can be re-written as

df(Ek(h(x))) = ay2 + by + c

with a, b, c, d ∈ Z, a, d 6= 0, which can be transformed into

(3.12) uEk(h(x)) + v = (2ay + b)2,

where u, v ∈ Q and u 6= 0. From Theorem 3.3 and Theorem 2.6, we get that

the equation (3.12) has only finitely many integer solutions x, y, which can be

effectively determined, since k ≥ 7 by assumption.

Let deg g > 2. Suppose that the equation (3.8) has infinitely many inte-

ger solutions. By Theorem 3.2 there exists ϕ(x) ∈ Q[x], linear polynomials
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λ(x), µ(x) ∈ Q[x] and a standard pair (f1(x), g1(x)) over Q such that

(3.13) Fk(x) = ϕ(f1(λ(x))), g(x) = ϕ(g1(µ(x))).

Then from Theorem 1.2 and (3.11) we get that either degϕ = k or degϕ = 1 or

degϕ = k/2.

Consider the case degϕ = k. Then from (3.13) we get deg f1 = 1, so Fk(x) =

ϕ(t(x)), where t(x) ∈ Q[x] is a linear polynomial. Then clearly

Fk

(
t〈−1〉(x)

)
= ϕ(x),

wher t〈−1〉 denotes the inverse of t with respect to functional composition. Then

from (3.13) we get

g(x) = ϕ(g1(µ(x))) = Fk

(
t〈−1〉 (g1(µ(x)))

)
,

that is

(3.14) g(x) = f(Ek(p(x)))

with p(x) = h
(
t〈−1〉 (g1(µ(x)))

)
∈ Q[x]. In this particular case the equation (3.8)

turns into

(3.15) f(Ek(h(x))) = f(Ek(p(y)).

If we let r(x) ∈ Q[x] be an integer valued polynomial which attains only positive

values and p(x) = h(r(x)), then the equation (3.15) clearly has infinitely many

positive integer solutions.

Consider the case degϕ = 1. Let ϕ(x) = ϕ1x + ϕ0, where ϕ1, ϕ0 ∈ Q and

ϕ1 6= 0. From (3.13) it follows that

Fk

(
λ〈−1〉(x)

)
= ϕ(f1(x)) = ϕ1f1(x) + ϕ0

and from (3.11) it follows that

f
(
Ek

(
h
(
λ〈−1〉(x)

)))
= Fk

(
λ〈−1〉(x)

)
= ϕ1f1(x) + ϕ0.

Since f(x), h(x), λ〈−1〉(x) ∈ Q[x] are linear polynomials, we have that

(3.16) Ek(cx+ d) = uf1(x) + v

for some c, d, u, v ∈ Q, c, u 6= 0. Next we study five kinds of standard pairs of

polynomials over Q.

First consider the case when (f1(x), g1(x)) is a standard pair over Q of the

first kind. From (3.16) we get that either Ek(cx+ d) = uxt + v or Ek(cx+ d) =

uaxrq(x)t + v, where 0 ≤ r < t, (r, t) = 1 and r + deg q > 0. In the former case

we get a contradiction by Lemma 3.5, since by assumption k = t ≥ 7. In the

latter case, from Theorem 2.6 we get t ≤ 2, contradiction.
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Let now (f1(x), g1(x)) be a standard pair over Q of the second kind. Then

either Ek(cx+ d) = ux2 + v or Ek(cx+ d) = u
(
ax2 + b

)
q(x)2 + v. The former

case is not possible since k ≥ 7 and the latter case is not possible by Theorem

2.6.

Next let (f1(x), g1(x)) be a standard pair of the third or of the fourth kind.

Then by (3.16) it follows that

Ek(cx+ d) = uDk(x,w) + v,

where w = at or w = a. Since k ≥ 7 by assumption, we have a contradiction

with Lemma 3.5

Finally, (f1(x), g1(x)) can not be a standard pair over Q of the fifth kind

since k ≥ 7.

Finally, consider the case degϕ = k/2. Then k = 2s and deg f1 = 2. From

(3.11) and (3.13) we get

(3.17) Ek(x) = f 〈−1〉 (ϕ(f1(τ(x)))) ,

where τ(x) is a linear polynomial in Q[x]. Since deg f1 = 2 and k ≥ 7, we have

a nontrivial decomposition of Ek(x) in (3.17). From Theorem 1.2 it follows that

there exists a linear polynomial u(x) such that

(3.18) ϕ(x) = f
(
Ẽs (u(x))

)
, u (f1(τ(x))) =

(
x− 1

2

)2

,

which together with (3.13) implies

(3.19) g(x) = f
(
Ẽs(u(g1(µ(x))))

)
.

Next we study five kinds of standard pairs over Q.

First consider the case when (f1(x), g1(x)) is a standard pair over Q of the

first kind. If f1(x) = xt, then t = 2 and hence r = 1. Then f1(x) = x2 and

g1(x) = axq(x)2 for some q(x) ∈ Q[x]. Then from (3.18) we get u(x) = x/c2 and

hence from (3.19) it follows that

g(x) = f

(
Ẽs

(
aµ(x)q(µ(x))2

c2

))
,

which we can write as

(3.20) g(x) = f
(
Ẽs
(
δ(x)p(x)2

))
with δ(x) = aµ(x)/c2 and p(x) = q(µ(x)). Clearly δ(x), p(x) ∈ Q[x] and deg δ =

1. Now (3.8) turns into

(3.21) f

(
Ẽs

((
h(x)− 1

2

)2
))

= f
(
Ẽs
(
δ(y)p(y)2

))
.



3. APPLICATION OF THE THEOREM OF BILU AND TICHY 51

We easily find a choice of parameters such that the equation (3.21) has infin-

itely many positive integer solutions. For example, let δ(x) = x, let r(x) be a

polynomial which attains positive odd integer values for every x ∈ N and let

p(x) = r(x) − 1/2. Either h(x) = 2x or h(x) = 2x + 1, see (3.9) and (3.10),

which corresponds to solutions

x =
(4k + 3)r

(
(4k + 3)2

)
− (2k + 1)

2
, y = (4k + 3)2,

and

x =
(4k + 1)r

(
(4k + 1)2

)
− (2k + 1)

2
, y = (4k + 3)2,

of the equation (3.21) for any k ∈ N, respectively. Since deg f1 = 2, when

(f1(x), g1(x)) =
(
axrq(x)t, xt

)
with 0 ≤ r < t, (r, t) = 1, r + deg q > 0, then

either r = 0, t = 1 and deg q = 2 or r = 2, t ≥ 3 odd and q(x) is a constant

polynomial. In the former case we have g1(x) = x and hence from (3.19) we get

g(x) = f
(
Ẽs(u(g1(µ(x))))

)
= f

(
Ẽs
(
δ(x)p(x)2

))
where p(x) = 1 and δ(x) ∈ Q[x] is a linear polynomial, which is a decomposition

of g that already appeared, see (3.20). In the latter case we have f1(x) = bx2

and from (3.18) we get u(x) = x/(bc2), where b ∈ Q \ {0}. Then

g(x) = f

(
Ẽs

(
(µ(x))t

bc2

))
,

which we can write as

(3.22) g(x) = f
(
Ẽs
(
γδ(x)t

))
,

where γ = 1/(bc2), δ(x) = µ(x). So, γ ∈ Q, δ(x) is a linear polynomial in Q[x]

and t is odd. Now (3.8) turns into

(3.23) f

(
Ẽs

((
h(x)− 1

2

)2
))

= f
(
Ẽs
(
γδ(y)t

))
.

We easily find a choice of parameters such that the equation (3.23) has infinitely

many integer solutions. For example, let γ = 1/4, δ(x) = x and t ≥ 3 odd. For

h(x) = 2x, and h(x) = 2x+ 1,

x =
(4k − 1)t + 1

4
, y = (4k − 1)2

and

x =
(4k + 1)t − 1

4
, y = (4k + 1)2

are solutions in positive integers of the equation (3.23), respectively.
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Next suppose that (f1(x), g1(x)) is a standard pair of the second kind over

Q. If f1(x) = (ax2 + b)q(x)2, then g1(x) = x2, so from (3.19) we get

g(x) = f
(
Ẽs
(
u1µ(x)2 + u0

))
,

which we can re-write as

(3.24) g(x) = f
(
Ẽs
((
aδ(x)2 + b

)
p(x)2

))
with a = u1, b = u0, δ(x) = µ(x) and p(x) = 1. So, p(x), δ(x) ∈ Q[x] and

deg δ = 1. If f1(x) = x2, then from (3.18) we get u(x) = x/c2 and hence

g(x) = f

(
Ẽs

((
aµ(x)2 + b

)
q(µ(x))2

c2

))
,

which we can re-write as

(3.25) g(x) =
(
Ẽs
((
aδ(x)2 + b

)
p(x)2

))
,

with p(x) = q(µ(x))/c and δ(x) = µ(x). Clearly p(x), δ(x) ∈ Q[x] and deg δ = 1.

Then (3.8) turns into

(3.26) f

(
Ẽs

((
h(x)− 1

2

)2
))

= f
(
Ẽs
(
(aδ(y)2 + b)p(y)2

))
.

Let δ(x) = x, let r(x) be any integer valued polynomial which attains only

positive values and p(x) = 4r(x) + 1. Let a = 1/2 and b = 1/4. Let an and bn

be such that

an + bn
√

2 = (3 + 2
√

2)n, n ∈ N.

For h(x) = 2x, and h(x) = 2x+ 1,

x =
a2n+1(4r(y) + 1) + 1

4
, y = b2n+1

and

x =
a2n(4r(y) + 1)− 1

4
, y = b2n,

are solutions of the equation (3.26), respectively. Let now (f1(x), g1(x)) in (3.13)

be a standard pair of the third kind over Q. Then

(f1(x), g1(x)) =
(
D2

(
x, at

)
, Dt

(
x, a2

))
with odd t. Substituting f1(x) = D2(x, a

t) = x2 − 2at into (3.18), we get

u(x) = (x+ 2at)/c2, so

(3.27) g(x) = f

(
Ẽs

(
Dt

(
µ(x), a2

)
+ 2at

c2

))
.

From Theorem 3.4 it follows that the polynomialDt(µ(x), a2)/c2 has two extrema

and those are ±2at/c2. Since t is odd, both extrema are of type (1, 2, 2, . . . , 2).
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From (3.27) we deduce

(3.28) g(x) = f
(
Ẽs
(
δ(x)p(x)2

))
with δ(x), p(x) ∈ Q[x] and deg δ = 1, which is a decomposition that already

appeared, see (3.20).

Let now (f1(x), g1(x)) be a standard pair of the fourth kind over Q. Then

(f1(x), g1(x)) = (a−1D2(x, a), b−t/2Dt(x, b))

with even t. From (3.18) we get u(x) = (ax+ 2a)/c2, which together with (3.13)

implies

g(x) = f(Ẽs(u(g1(µ(x))))) = f

(
Ẽs

(
ab−t/2Dt(µ(x), b) + 2a

c2

))
.

The extrema of ab−t/2Dt(µ(x), b)/c2 are ±2bt/2ab−t/2/c2 = ±2a/c2, and the

extremum −2a/c2 is of type (2, 2, . . . , 2) by Theorem 3.4. Therefore

(3.29) g(x) = f
(
Ẽs
(
p(x)2

))
with p(x) ∈ Q[x]. Then the equation (3.8) turns into

(3.30) f

(
Ẽs

((
h(x)− 1

2

)2
))

= f
(
Ẽs
(
p(y)2

))
.

If we let r(x) be an integer valued polynomial which attains only positive values

and p(x) = 2r(x) − 1/2 if h(x) = 2x and p(x) = 2r(x) + 1/2 if h(x) = 2x + 1,

then (x, y) = (r(k), k) are solutions of the equation (3.30) for any k ∈ N.

Since deg f1 = 2, the pair (f1(x), g1(x)) can not be a standard pair over Q
of the fifth kind. �





Chapter 4

On equal values of power sums

of arithmetic progressions

This chapter contains the paper [5] with the title On equal values of power

sums of arithmetic progressions. It is a joint paper with András Bazsó, Florian

Luca and Ákos Pintér. The article was published in Glasnik Matematički in

2012. The presentation of the paper here is slightly modified from the published

version of the paper.

Abstract. In this paper we consider the Diophantine equation

bk + (a+ b)k + · · ·+ (a (x− 1) + b)k =

= dl + (c+ d)l + · · ·+ (c (y − 1) + d)l ,

where a, b, c, d, k, l are given integers. We prove that, under some reasonable

assumptions, this equation has only finitely many integer solutions.

1. Introduction and the main result

For integers a and b with gcd(a, b) = 1 and k, n ∈ N, n ≥ 2, let

(1.1) Ska,b (n) = bk + (a+ b)k + · · ·+ (a (n− 1) + b)k .

It is easy to see that the above power sum is related to the Bernoulli polynomial

Bk(x) in the following way:

Ska,b (n) =
ak

k + 1

((
Bk+1

(
n+

b

a

)
−Bk+1

)
−
(
Bk+1

(
b

a

)
−Bk+1

))
,

55
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see [6] for more details. Bernoulli polynomials Bk(x) are defined by the gener-

ating series

t exp(tx)

exp(t)− 1
=
∞∑
k=0

Bk(x)
tk

k!
.

For the properties of Bernoulli polynomials which will be often used in this paper,

sometimes without particular reference, we refer to [79, Chap. 1 and 2]. We can

extend the definition of Ska,b(x) for every real value x as follows

(1.2) Ska,b (x) :=
ak

k + 1

(
Bk+1

(
x+

b

a

)
−Bk+1

(
b

a

))
.

As usual, we denote with C[x] the ring of polynomials in variable x with

complex coefficients. If G1(x), G2(x) ∈ C[x], then F (x) = G1(G2(x)) is a func-

tional composition of G1 and G2 and (G1, G2) is a (functional) decomposition

of F (over C). It is said to be nontrivial if degG1 > 1 and degG2 > 1. Two

decompositions F (x) = G1(G2(x)) and F (x) = H1(H2(x)) are said to be equiv-

alent if there exists a linear polynomial `(x) ∈ C[x] such that G1(x) = H1(`(x))

and H2(x) = `(G2(x)). The polynomial F (x) is called decomposable if it has at

least one nontrivial decomposition; otherwise it is said to be indecomposable.

In a recent paper, Bazsó, Pintér and Srivastava [6] proved the following

theorem about decompositions of the polynomial Ska,b (x).

Theorem 1.3. The polynomial Ska,b (x) is indecomposable for even k. If

k = 2v − 1 is odd, then any nontrivial decomposition of Ska,b (x) is equivalent to

the decomposition

(1.4) Ska,b (x) = Ŝv

((
x+

b

a
− 1

2

)2
)
,

where Ŝv is an indecomposable polynomial of degree v, which is uniquely deter-

mined by (1.4).

Using Theorem 1.3 and the general finiteness criterion of Bilu and Tichy [13]

for Diophantine equations of the form f(x) = g(y), we prove the following result.

Theorem 1.5. For 2 ≤ k < l, the equation

(1.6) Ska,b(x) = Slc,d(y)

has only finitely many solutions in integers x and y.

Since the finiteness criterion from [13] is based on the ineffective theorem

of Siegel [90], Theorem 1.5 is ineffective as well. We note that for a = c = 1,

b = d = 0 our theorem gives the result of Bilu, Brindza, Kirschenhofer, Pintér

and Tichy [12].
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Combining the result of Brindza [16] with recent theorems of Rakaczki [82]

and Pintér and Rakaczki [78], for k = 1 and k = 3 we obtain effective results.

Theorem 1.7. If l /∈ {1, 3, 5}, then integer solutions x, y of the equation

(1.8) S1
a,b(x) = Slc,d(y)

satisfy max {|x|, |y|} < C1, where C1 is an effectively computable constant de-

pending only on a, b, c, d and l.

In the excepted cases l = 3 and l = 5 of Theorem 1.7, it is possible to

find integers a, b, c, d such that the corresponding equations have infinitely many

solutions. For example, if a = 2, b = 1, c = 1, d = 0 and l = 3, the equation (1.8)

turns into

x2 = 1 + 3 + · · ·+ 2x− 1 = 13 + 23 + · · ·+ (y − 1)3

and if l = 5, it turns into

x2 = 1 + 3 + · · ·+ 2x− 1 = 15 + 25 + · · ·+ (y − 1)5.

These equations have infinitely many integer solutions, see [87].

Theorem 1.9. If l /∈ {1, 3, 5}, then integer solutions x, y of the equation

(1.10) S3
a,b(x) = Slc,d(y)

satisfy max {|x|, |y|} < C2, where C2 is an effectively computable constant de-

pending only on a, b, c, d and l.

2. Auxiliary results

In this section we collect some results needed to prove Theorem 1.5. First,

we recall the finiteness criterion of Bilu and Tichy [13].

We say that the equation f(x) = g(y) has infinitely many rational solutions

with a bounded denominator if there exists λ ∈ N such that f(x) = g(y) has

infinitely many solutions x, y ∈ Q that satisfy λx, λy ∈ Z. If the equation f(x) =

g(y) has only finitely many rational solutions with a bounded denominator, then

it clearly has only finitely many integer solutions.

We further need to define five kinds of so-called standard pairs of polynomials.

In what follows a and b are nonzero rational numbers, m and n are positive

integers, r ≥ 0 is an integer and p(x) ∈ Q[x] is a nonzero polynomial (which may

be constant).

A standard pair over Q of the first kind is (xm, axrp(x)m), or switched, i.e

(axrp(x)m, xm), where 0 ≤ r < m, gcd(r,m) = 1 and r + deg p > 0.

A standard pair over Q of the second kind is
(
x2,
(
ax2 + b

)
p(x)2

)
, or switched.
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Denote by Dm(x, a) the m-th Dickson polynomial with parameter a, defined

by the functional equation

Dm

(
z +

a

x
, a
)

= xm +
(a
x

)m
or by the explicit formula

(2.1) Dm(x, a) =

bm/2c∑
i=0

m

m− i

(
m− i
i

)
(−a)ixm−2i.

A standard pair over Q of the third kind is (Dm (x, an) , Dn (x, am)), where

gcd(m,n) = 1.

A standard pair over Q of the fourth kind is(
a−m/2Dm(x, a),−b−n/2Dn(x, b)

)
,

where gcd(m,n) = 2.

A standard pair over Q of the fifth kind is
((
ax2 − 1

)3
, 3x4 − 4x3

)
, or switched.

The following theorem is the main result of [13].

Theorem 2.2. Let f(x) and g(x) be non-constant polynomials in Q[x]. Then

the following assertions are equivalent.

- The equation f(x) = g(y) has infinitely many rational solutions with a

bounded denominator;

- We have

f(x) = φ (f1 (λ(x))) , g(x) = φ (g1 (µ(x))) ,

where λ(x) and µ(x) are linear polynomials in Q[x], φ(x) ∈ Q[x],

and (f1(x), g1(x)) is a standard pair over Q such that the equation

f1(x) = g1(y) has infinitely many rational solutions with a bounded

denominator.

The following lemmas are the main ingredients of the proofs of Theorems 1.7

and 1.9

Lemma 2.3. For every b ∈ Q and every integer k ≥ 3 with k /∈ {4, 6}, the

polynomial Bk(x) + b has at least three zeros of odd multiplicities.

Proof. For b = 0 and odd values of k ≥ 3 this result is a consequence of

the theorem of Brillhart [15, Corollary of Theorem 6]. For a non-zero b ∈ Q and

odd k with k ≥ 3 and for even values of k ≥ 8, the result follows from the main

theorem of [78] and from [82, Theorem 2.3], respectively. �

Our next auxiliary result is an easy consequence of an effective theorem

concerning the S-integer solutions of hyperelliptic equations, which is the main

result of [16].
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Lemma 2.4. Let f(x) be a polynomial with rational coefficients and with at

least three zeros of odd multiplicities. Let u be a fixed positive integer. If x and

y are integer solutions of the equation

f
(x
u

)
= y2,

then we have max {|x|, |y|} < C3, where C3 is an effectively computable constant

depending only on u and f .

In the sequel we assume c1, e1 ∈ Q \ {0} and c0, e0 ∈ Q.

Lemma 2.5. The polynomial Ska,b(c1x+ c0) is not of the form e1x
q + e0 with

q ≥ 3.

Lemma 2.6. The polynomial Ska,b(c1x+ c0) is not of the form

e1Dm(x, δ) + e0,

where Dm(x, δ) is the m-th Dickson polynomial with m > 4 and δ ∈ Q \ {0}.

Before proving the lemmas above, we introduce the following notation. Let

(2.7) Ska,b(c1x+ c0) = sk+1x
k+1 + skx

k + · · ·+ s0,

and c′0 := b/a+ c0. From (1.2) we get

sk+1 =
akck+1

1

k + 1
, sk =

akck1
2

(2c′0 − 1)(2.8)

sk−1 =
akck−11

12
k(6c′20 − 6c′0 + 1), k ≥ 2,(2.9)

and for k ≥ 4,

(2.10) sk−3 =
akck−31

720
k(k − 1)(k − 2)(30c′40 − 60c′30 + 30c′20 − 1).

Proof of Lemma 2.5. Suppose that Ska,b(c1x+ c0) = e1x
q + e0, where q =

k+ 1 ≥ 3. Then sk−1 = 0 and from (2.9) we get 6c′20 − 6c′0 + 1 = 0, contradiction

with c′0 ∈ Q. �

Proof of Lemma 2.6. Suppose that Ska,b(c1x+ c0) = e1Dm(x, δ) + e0 with

k + 1 = m > 4. Then

sk+1 = e1, sk = 0,(2.11)

sk−1 = −e1mδ,(2.12)

sk−3 =
e1(m− 3)mδ2

2
.(2.13)

From (2.8) and (2.11) it follows that

(2.14) e1 =
am−1cm1
m

and c′0 =
1

2
.
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In view of (2.9), by substituting (2.14) into (2.12), we obtain

(2.15) c21 =
m− 1

24δ
.

Similarly, by comparing the forms (2.10) and (2.13) of sk−3 and by using (2.14),

we obtain

(2.16) c41 =
7(m− 1)(m− 2)

2880 δ2
.

After substituting (2.15) into (2.16), we obtain 7(m− 2) = 5(m− 1), wherefrom

m = 9/2, a contradiction. �

One can see that the condition m > 4 in Lemma 2.6 is necessary. Indeed,

S2
2,1(x) =

4

3
x3 − 1

3
x =

4

3
D3

(
x,

1

12

)
,

S3
2,1(x) = 2x4 − x2 = 2D4

(
x,

1

8

)
− 1

16
.

3. Proofs of the theorems

Proof of Theorem 1.7. One can rewrite the equation (1.8) as

cl

l + 1

(
Bl+1

(
y +

d

c

)
−Bl+1

(
d

c

))
=

1

2
ax2 +

(
b− a

2

)
x,

that is

8acl

l + 1

(
Bl+1

(
y +

d

c

)
−Bl+1

(
d

c

))
= (2ax+ 2b− a)2 − (2b− a)2.

Then the result follows from Lemma 2.3 and Lemma 2.4. �

Proof of Theorem 1.9. Using (1.4) we easily see that

S3
a,b(x) =

a3

4

(
x+

b

a
− 1

2

)4

− a3

8

(
x+

b

a
− 1

2

)2

+
a4 − 16a2b2 + 32ab3 − 16b4

64a
.

Using the above representation, we rewrite the equation (1.10) as

64aSlc,d(y) + 3a4 + 16a2b2 − 32ab3 − 16b4 = (X − 2a2)2,

where X = (2ax + 2b − a)2. Then Lemma 2.3 and Lemma 2.4 complete the

proof. �

Proof of Theorem 1.5. If the equation (1.6) has infinitely many integer

solutions, then by Theorem 2.2 it follows that

Ska,b(a1x+ a0) = φ(f(x)), Slc,d(b1x+ b0) = φ(g(x)),
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where (f(x), g(x)) is a standard pair over Q, a0, a1, b0, b1 are rationals with

a1b1 6= 0 and φ(x) is a polynomial with rational coefficients. Assume that

h := deg φ > 1. Then Theorem 1.3 implies 0 < deg f, deg g ≤ 2, and since k < l

by assumption, we have deg f = 1, deg g = 2. Hence k + 1 = h and l + 1 = 2h,

wherefrom l = 2k + 1. Since k ≥ 2 and l = 2k + 1, it follows that l ≥ 5. Since

deg f = 1, there exist f1, f0 ∈ Q, f1 6= 0, such that Ska,b(f1x+ f0) = φ(x), so

Ska,b(f1g(x) + f0) = φ(g(x)) = Slc,d(b1x+ b0) = S2k+1
c,d (b1x+ b0).

Since g(x) is quadratic, by making the substitution x 7→ (x− b0)/b1, we obtain

that there exist c2, c1, c0 ∈ Q, c2 6= 0, such that

(3.1) Ska,b(c2x
2 + c1x+ c0) = S2k+1

c,d (x).

Since degSka,b = k+1 ≥ 3 and c2 6= 0, in (3.1) we have a nontrivial decomposition

of S2k+1
c,d (x). From Theorem 1.3 it follows that there exists a linear polynomial

`(x) = Ax+B ∈ C[x] such that

c2x
2 + c1x+ c0 = A

(
x+

d

c
− 1

2

)2

+B.

Then clearly A,B ∈ Q. From (3.1) we obtain

Ska,b

(
A

(
x+

d

c
− 1

2

)2

+B

)
= S2k+1

c,d (x),

wherefrom by linear substitution x 7→ x− d/c+ 1/2 we obtain

(3.2) Ska,b(Ax
2 +B) = S2k+1

c,d

(
x− d

c
+

1

2

)
.

Thus, we have an equality of polynomials of degrees 2k + 2 ≥ 6. We calculate

and compare coefficients of the first few highest monomials of the polynomials in

(3.2). The coefficients of the polynomial on the right-hand side are easily deduced

by setting c1 = 1, c0 = −d/c + 1/2 into (2.8), (2.9) and (2.10). Therefrom it

follows that if we denote

S2k+1
c,d

(
x− d

c
+

1

2

)
= r2k+2x

2k+2 + · · ·+ r1x+ r0,

then we get

r2k+2 =
c2k+1

2k + 2
, r2k+1 = 0,

r2k =
−c2k+1(2k + 1)

24
,

r2k−2 =
7c2k+1(2k + 1)k(2k − 1)

2880
.
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The coefficients sk+1, sk, sk−1, sk−3 of the polynomial Ska,b(x) can be found by

setting c1 = 1, c0 = 0 into equations (2.8), (2.9) and (2.10). Since

Ska,b(Ax
2 +B) =

k+1∑
m=0

sm

m∑
i=0

(
m

i

)(
Ax2

)i
Bm−i,

it follows that if we denote

Ska,b(Ax
2 +B) = t2k+2x

2k+2 + · · ·+ t1x+ t0,

then

t2k+2 =
akAk+1

k + 1
, t2k+1 = 0,

t2k = akAkB +
akAk

2

(
2

(
b

a

)
− 1

)
,

t2k−2 =
akk

2
Ak−1B2 +

akk

2
Ak−1B

(
2

(
b

a

)
− 1

)
+

akk

12
Ak−1

(
6

(
b

a

)2

− 6

(
b

a

)
+ 1

)
.

Next we compare coefficients. It must be ri = ti for all i = 0, 1, . . . , 2k + 2.

Comparing the leading coefficients yields

(3.3)
akAk+1

k + 1
=

c2k+1

2k + 2
, so 2akAk+1 = c2k+1.

By comparing the coefficients of index 2k and using (3.3) we obtain

(3.4)
b

a
− 1

2
= − 1

12
A(2k + 1)−B.

By comparing the coefficients of index 2k − 2 and after simplifying we obtain

B2

2
+
B

2

(
2

(
b

a

)
− 1

)
+

1

12

(
6

(
b

a

)2

− 6

(
b

a

)
+ 1

)
=

7(4k2 − 1)A2

1440
.

From (3.4) it follows that the last relation above can be transformed into

B2

2
+B

(
− 1

12
A(2k + 1)−B

)
+

1

2

(
− 1

12
A(2k + 1)−B

)2

− 1

24

=
7A2(4k2 − 1)

1440
.

After simplification we obtain

A2(k − 3)(−2k − 1) = 15.

For k ≥ 3, the expression on the left-hand side above is negative or zero, contra-

diction. If k = 2, then A2 = 3, which contradicts A ∈ Q. Therefore, there are
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no rational coefficients a, b, c, d, A and B such that (3.2) is satisfied, wherefrom

it follows that deg φ = 1.

If deg φ = 1, then we have

Ska,b(a1x+ a0) = e1f(x) + e0, Slc,d(b1x+ b0) = e1g(x) + e0,

where e1, e0 ∈ Q, e1 6= 0. Clearly deg f = k + 1 and deg g = l + 1.

In view of the assumptions on k and l, it follows that (f(x), g(x)) cannot be

a standard pair over Q of the second kind, and with the exception of the case

(k, l) = (3, 5), of the fifth kind either. If (k, l) = (3, 5), by using formula (2.9) for

k = 3, it is easy to see that S3
a,b(c1x+ c0) = e1(3x

4 − 4x3) + e0 is not possible.

If (f(x), g(x)) is of the first kind, then one of the polynomials Ska,b(a1x+ a0)

and Slc,d(b1x + b0) is of the form e1x
q + e0 with q ≥ 3. This is impossible by

Lemma 2.5.

If (f(x), g(x)) is a standard pair of the third or fourth kind, then we have

that either Slc,d(b1x+ b0) = e1Dm(x, δ) + e0 with m = l+ 1 ≥ 5 and δ ∈ Q \ {0},
which contradicts Lemma 2.6, or k = 2, l = 3. In the latter case, Theorem 1.9

gives an effective finiteness statement. �





Chapter 5

Non-extensibility of the pair

{1, 3} to a Diophantine

quintuple in Z
[√
−d
]

This chapter contains the paper [40] with the title Non-extensibility of the

pair {1, 3} to a Diophantine quintuple in Z
[√
−d
]
. It is a joint paper with Zrinka

Franušić. The article was published in Journal of Combinatorics and Number

Theory in 2011. The presentation of the paper here is slightly modified from the

published version of the paper.

Abstract. We show that the Diophantine pair {1, 3} can not be extended to

a Diophantine quintuple in the ring Z
[√
−2
]
. This result completes the work of

the first author and establishes non-extensibility of the Diophantine pair {1, 3}
to a Diophantine quintuple in Z

[√
−d
]

for all d ∈ N.

1. Introduction and results

Let R be a commutative ring with unity 1. The set {a1, a2, . . . , am} in R

such that ai 6= 0 for all i = 1, . . . ,m, ai 6= aj and aiaj + 1 is a square in R

for all 1 ≤ i < j ≤ m, is called a Diophantine m-tuple in R. The problem of

constructing such sets was first studied by Diophantus of Alexandria who found

a set of four rationals
{

1
16 ,

33
16 ,

17
4 ,

105
16

}
with the given property. Fermat found a

first Diophantine quadruple in integers - the set {1, 3, 8, 120}. A Diophantine pair

{a, b} in a ring R, which satisfies ab+ 1 = r2, can be extended to a Diophantine

quadruple in R by adding elements a + b + 2r and 4r(r + a)(r + b), provided

all four elements are nonzero and different. Hence, apart from some exceptional

cases, Diophantine quadruples in a ring R exist, but can we obtain Diophantine

m-tuples of size greater than 4?

65
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The folklore conjecture is that there are no Diophantine quintuples in inte-

gers. In 1969, Baker and Davenport [3] showed that the set {1, 3, 8} can not be

extended to a Diophantine quintuple, which was the first result supporting the

conjecture. This result was first generalized by Dujella [27], who showed that the

set {k − 1, k + 1, 4k}, with integer k ≥ 2, can not be extended to a Diophantine

quintuple in Z. Dujella and Pethő [33] later showed that not even the Diophan-

tine pair {1, 3} can be extended to a Diophantine quintuple in Z. Greatest step

towards proving the conjecture did Dujella [29] in 2004; he showed that there

are no Diophantine sextuples in integers and that there are only finitely many

Diophantine quintuples. In [30] it was proved that there are no Diophantine

quintuples in the ring of polynomials with integers coefficients under assumption

that not all elements are constant polynomials.

The size of Diophantine m-tuples can be greater than 4 in some rings. For

instance, the set {
11

192
,

35

192
,
155

27
,
512

27
,
1235

48
,
180873

16

}
is a Diophantine sextuple in Q; it was found by Gibbs [49].

Furthermore, we can construct Diophantine quintuples in the ring Z
[√
d
]

for

some values of d; for instance {1, 3, 8, 120, 1678} is a Diophantine quintuple in

Z
[√

201361
]
. It is natural to start investigating the upper bound for the size

of Diophantine m-tuples in Z
[√
d
]

by focusing on a problem of extensibility of

Diophantine triples {k−1, k+1, 4k} and Diophantine pair {1, 3} to a Diophantine

quintuple in Z
[√
d
]
, since the problem in integers was approached similarly, see

[33] and [27]. In [39] Franušić proved that the Diophantine pair {1, 3} can not

be extended to a Diophantine quintuple in Z
[√
−d
]

if d is a positive integer and

d 6= 2. The case d = 2 was also considered and it was shown that if {1, 3, c} is a

Diophantine triple in Z
[√
−2
]
, then c ∈ {ck, dl}, where the sequences (ck) and

(dl) are given by

ck =
1

6

(
(2 +

√
3)(7 + 4

√
3)k + (2−

√
3)(7− 4

√
3)k − 4

)
,(1.1)

dl =
−1

6

(
(7 + 4

√
3)l + (7− 4

√
3)l + 4

)
,(1.2)

where k ≥ 1 and l ≥ 0. Sequences (ck) and (dl) are defined recursively as follows

c0 = 0, c1 = 8, ck+2 = 14ck+1 − ck + 6;(1.3)

d0 = −1, d1 = −3, dl+2 = 14dl+1 − dl + 8.(1.4)

It is known that {1, 3, ck, ck+1}, with k ≥ 1, is a Diophantine quadruple in

integers, see [33], and is hence also in Z
[√
−2
]
. The set {1, 3, dl, dl+1} is a

Diophantine quadruple in Z
[√
−2
]

since

(1.5) dldl+1 + 1 = (cl + 2)2
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for every l ≥ 0; this easily follows from identities (1.1) and (1.2). The set

{1, 3, ck, dl} is not a Diophantine quadruple for k ≥ 1 and l ≥ 0 since 1 + ckdl is

a negative odd number and hence it can not be a square in Z
[√
−2
]
. Therefore,

if there is an extension of the Diophantine pair {1, 3} to a Diophantine quadruple

in Z
[√
−2
]
, then it is of the form {1, 3, ck, cl}, with l > k ≥ 1 or {1, 3, dk, dl},

with l > k ≥ 0. In the former case, the set can not be extended to a Diophantine

quintuple in Z, see [33], wherefrom it easily follows that it can not be extended

to a Diophantine quintuple in Z
[√
−2
]
. It remains to examine the latter case.

We can formulate the following theorem.

Theorem 1.6. Let k be a nonnegative integer and d an integer. If the set

{1, 3, dk, d} is a Diophantine quadruple in Z
[√
−2
]
, where dk is given by (1.2),

then d = dk−1 or d = dk+1.

From Theorem 1.6 we immediately obtain the following corollary.

Corollary 1.7. The Diophantine pair {1, 3} can not be extended to a Dio-

phantine quintuple in Z
[√
−2
]
.

The organization of the paper is as follows. In Section 2, assuming k to

be minimal integer for which Theorem 1.6 does not hold, we translate the as-

sumption of Theorem 1.6 into system of Pellian equations from which recurrent

sequences ν
(i)
m and ω

(j)
n are deduced, intersections of which give solutions to the

system. In Section 3 we use a congruence method introduced by Dujella and

Pethő [33] to determine the fundamental solutions of Pellian equations. In Sec-

tion 4 we give a lower bound for m and n for which the sequences ν
(i)
m and ω

(j)
n

intersect. In Section 5 we use a theorem of Bennett [9] to establish an upper

bound for k. Remaining cases are examined separately in Section 6 using lin-

ear forms in logarithms, Baker-Wüstholz theorem [4] and the Baker-Davenport

method of reduction [3].

2. The system of Pellian equations

Let {1, 3, dk, d} be a Diophantine quadruple in Z
[√
−2
]

where k is the mini-

mal integer for which Theorem 1.6 does not hold. Assume k ≥ 6. Clearly d = dl

for some l ≥ 0. Since d + 1 and 3d + 1 are negative integers and dkd + 1 is a

positive integer, it follows that there exist x, y, z ∈ Z such that

(2.1) d+ 1 = −2x2, 3d+ 1 = −2y2, dkd+ 1 = z2.

The system of equations (2.1) is equivalent to the following system of Pellian

equations

z2 + 2dkx
2 = 1− dk(2.2)

3z2 + 2dky
2 = 3− dk(2.3)
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where

(2.4) dk + 1 = −2s2k, 3dk + 1 = −2t2k,

for some sk, tk ∈ Z. Note that we may assume sk, tk ∈ N. Conditions (2.4) follow

from the fact that {1, 3, dk} is a Diophantine triple in Z
[√
−2
]

and the fact that

dk + 1 and 3dk + 1 are negative integers.

The following propositions describe the set of positive integer solutions of

equations (2.2) and (2.3).

Proposition 2.5. There exist i0 ∈ N and z
(i)
0 , x

(i)
0 ∈ Z, i = 1, 2, . . . , i0, such

that
(
z
(i)
0 , x

(i)
0

)
are solutions of the equation (2.2), which satisfy

1 ≤ z(i)0 ≤
√
−dk(1− dk), 1 ≤

∣∣∣x(i)0

∣∣∣ ≤
√

1− d2k
2dk

,

and such that for every solution (z, x) ∈ N×N of the equation (2.2), there exists

i ∈ {1, 2, . . . , i0} and an integer m ≥ 0 such that

z + x
√
−2dk =

(
z
(i)
0 + x

(i)
0

√
−2dk

)(
−2dk − 1 + 2sk

√
−2dk

)m
.

Proof. The fundamental solution of the related Pell’s equation z2+2dkx
2 =

1 is −2dk − 1 + 2sk
√
−2dk since

(−2dk − 1)2 + 2dk · (2sk)2 = 4d2k + 4dk + 1− 4dk(1 + dk) = 1

and −2dk − 1 > 2s2k − 1 = −dk − 2, see [72, Theorem 105]. Following arguments

of Nagell [72, Theorem 108] we obtain that there are finitely many integer so-

lutions
(
z
(i)
0 , x

(i)
0

)
, i = 1, 2, . . . , i0 of the equation (2.2) such that the following

inequalities hold

1 ≤
∣∣∣z(i)0

∣∣∣ ≤√−dk(1− dk), 0 ≤
∣∣∣x(i)0

∣∣∣ ≤
√

1− d2k
2dk

,

and such that if z + x
√
−2dk is a solution of the equation (2.2) with z and x in

Z, then

z + x
√
−2dk =

(
z
(i)
0 + x

(i)
0

√
−2dk

)(
−2dk − 1 + 2sk

√
−2dk

)m
for some m ∈ Z and i ∈ {1, 2, . . . , i0}. Hence

z
(i)
0 + x

(i)
0

√
−2dk =

(
z + x

√
−2dk

)(
−2dk − 1 + 2sk

√
−2dk

)−m
,

wherefrom it can be easily deduced that if z + x
√
−2dk is a solution of the

equation (2.2) with z and x in N, then z
(i)
0 > 0. Hence

1 ≤ z(i)0 ≤
√
−dk(1− dk)
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for all i ∈ {1, 2, . . . , i0}. If x
(i)
0 = 0, we get a contradiction with the upper bound

for z
(i)
0 , hence

∣∣∣x(i)0

∣∣∣ ≥ 1. To complete the proof it remains to show that m ≥ 0.

Assume to the contrary that m < 0. Then(
−2dk − 1 + 2sk

√
−2dk

)m
= α− β

√
−2dk

with α, β ∈ N and α2 + 2dkβ
2 = 1. Since

z + x
√
−2dk =

(
z
(i)
0 + x

(i)
0

√
−2dk

)(
α− β

√
−2dk

)
,

we have x = −z(i)0 β + x
(i)
0 α. By squaring x

(i)
0 α = x + z

(i)
0 β and substituting

α2 = 1− 2dkβ
2 we get(

x
(i)
0

)2
= β2(1− dk) + x2 + 2xz

(i)
0 β > β2(1− dk) ≥ 1− dk >

1− d2k
2dk

,

since x, z
(i)
0 , β and k are positive integers. This is in contradiction with the

upper bound for x
(i)
0 . �

Using the same arguments we can prove the following proposition.

Proposition 2.6. There exists j0 ∈ N and z
(j)
1 , y

(j)
1 ∈ Z, j = 1, 2, . . . , j0,

such that
(
z
(j)
1 , y

(j)
1

)
are solutions of the equation (2.3), which satisfy

1 ≤ z(j)1 ≤
√
−dk(3− dk), 1 ≤

∣∣∣y(j)1

∣∣∣ ≤
√

(3− dk)(1 + 3dk)

2dk
,

and such that for every solution (z, y) ∈ N×N of the equation (2.3), there exists

j ∈ {1, 2, . . . , j0} and an integer n ≥ 0 such that

z
√

3 + y
√
−2dk =

(
z
(j)
1

√
3 + y

(j)
1

√
−2dk

)(
− 6dk − 1 + 2tk

√
−6dk

)n
.

�

Finitely many solutions that satisfy bounds given in Proposition 2.5 and

Proposition 2.6 will be called fundamental solutions.

From Proposition 2.5 and Proposition 2.6 it follows that if (z, x) is a solution

in positive integers of the equation (2.2), then z = ν
(i)
m for some m ≥ 0 and

i ∈ {1, 2, . . . , i0}, where

ν
(i)
0 = z

(i)
0 ,

ν
(i)
1 = (−2dk − 1)z

(i)
0 − 4skdkx

(i)
0 ,

ν
(i)
m+2 = (−4dk − 2)ν

(i)
m+1 − ν

(i)
m ,(2.7)
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and if (z, y) is a solution in positive integers of the equation (2.3), then z = ω

(j)
n

for some n ≥ 0 and j ∈ {1, 2, . . . , j0}, where

ω
(j)
0 = z

(j)
1 ,

ω
(j)
1 = (−6dk − 1)z

(j)
1 − 4tkdky

(j)
1 ,

ω
(j)
n+2 = (−12dk − 2)ω

(j)
n+1 − ω

(j)
n .(2.8)

Therefore, we are looking for the intersection of sequences ν
(i)
m and ω

(j)
n .

3. Congruence method

Using the congruence method introduced by Dujella and Pethő [33] we de-

termine the fundamental solutions of the equations (2.2) and (2.3).

Lemma 3.1.

ν
(i)
2m ≡ z

(i)
0 (mod − 2dk), ν

(i)
2m+1 ≡ −z

(i)
0 (mod − 2dk),

ω
(j)
2n ≡ z

(j)
1 (mod − 2dk), ω

(j)
2n+1 ≡ −z

(j)
1 (mod − 2dk),

for all m,n ≥ 0, i ∈ {1, 2, . . . , i0}, j ∈ {1, 2, . . . , j0}.

Proof. Easily follows by induction. �

Lemma 3.2. If ν
(i)
m = ω

(j)
n for some m,n ≥ 0, i ∈ {1, 2, . . . , i0}, j ∈

{1, 2, . . . , j0}, then z
(i)
0 = z

(j)
1 or z

(i)
0 + z

(j)
1 = −2dk.

Proof. From Lemma 3.1 it follows that either z
(i)
0 ≡ z

(j)
1 (mod − 2dk) or

z
(i)
0 ≡ −z

(j)
1 (mod − 2dk). In the latter case z

(i)
0 + z

(j)
1 ≡ 0 (mod − 2dk). From

Proposition 2.5 and Proposition 2.6 we get

0 < z
(i)
0 + z

(j)
1 ≤

√
−dk(1− dk) +

√
−dk(3− dk)

< −dk + 1− dk + 2 = −2dk + 3,

wherefrom it follows that z
(i)
0 + z

(j)
1 = −2dk. If z

(i)
0 ≡ z

(j)
1 (mod − 2dk) and

z
(i)
0 > z

(j)
1 , then

0 < z
(i)
0 − z

(j)
1 < z

(i)
0 ≤

√
−dk(1− dk) < −2dk,

contradiction. Analogously, if z
(j)
1 > z

(i)
0 , then

0 < z
(j)
1 − z

(i)
0 < z

(j)
1 ≤

√
−dk(3− dk) < −2dk,

contradiction. �

Lemma 3.3.

ν(i)m ≡ (−1)m
(
z
(i)
0 + 2dkm

2z
(i)
0 + 4dkskmx

(i)
0

)
(mod 8d2k)(3.4)

ω(j)
n ≡ (−1)n

(
z
(j)
1 + 6dkn

2z
(j)
1 + 4dktkny

(j)
1

)
(mod 8d2k)(3.5)
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for all m,n ≥ 0, i ∈ {1, 2, . . . , i0}, j ∈ {1, 2, . . . , j0}.

Proof. Easily follows by induction. �

Lemma 3.6. If ν
(i)
m = ω

(j)
n for some m,n ≥ 0, i ∈ {1, 2, . . . , i0}, j ∈

{1, 2, . . . , j0}, then m ≡ n (mod 2).

Proof. If m is even and n odd, then Lemma 3.1 and Lemma 3.2 imply

z
(i)
0 + z

(j)
1 = −2dk. Lemma 3.3 implies

z
(i)
0 + 2dkm

2z
(i)
0 + 4dkskmx

(i)
0 ≡ −z

(j)
1 − 6dkn

2z
(j)
1 − 4dktkny

(j)
1 (mod 8d2k),

wherefrom, by substituting z
(i)
0 + z

(j)
1 = −2dk and dividing by 2dk, we obtain

−1 +m2z
(i)
0 + 2skmx

(i)
0 ≡ −3n2z

(j)
1 − 2tkny

(j)
1 (mod − 4dk).

Since dk is always odd, from (2.2) and (2.3) we get that z
(i)
0 and z

(j)
1 are even,

hence the last congruence can not hold. Indeed, on the left side is an odd integer

and on the right side is an even integer, contradiction. If m is odd and n even,

a contradiction can be obtained analogously. �

Therefore, the equations ν
(i)
2m = ω

(j)
2n+1 and ν

(i)
2m+1 = ω

(j)
2n have no solutions in

integers m,n ≥ 0, i ∈ {1, 2, . . . , i0}, j ∈ {1, 2, . . . , j0}.
It remains to examine the cases when m and n are both even or both odd.

In each of those cases we have z
(i)
0 = z

(j)
1 . Since(

z
(i)
0

)2
− 1 = dk

(
−2
(
x
(i)
0

)2
− 1

)
,

it follows that

δ :=

(
z
(i)
0

)2
− 1

dk
is an integer. Furthermore,

δ + 1 = −2
(
x
(i)
0

)2
, 3δ + 1 = −2

(
y
(j)
1

)2
, δdk + 1 =

(
z
(i)
0

)2
.

Thus δ satisfies system (2.1) and hence δ = dl for some l ≥ 0. Moreover,

{1, 3, dk, dl} is a Diophantine quadruple in Z
[√
−2
]

since dl 6= dk. Indeed, if

dl = dk then

d2k + 1 =
(
z
(i)
0

)2
,

contradiction with d2k ≡ 1 (mod 4). In what follows we show that l = k − 1.

Assume δ > dk−1, that is l < k − 1. Then the triple {1, 3, dl} can be extended

to a Diophantine quadruple in Z
[√
−2
]

by dk, which differs from dl−1 and dl+1

since l − 1 < l + 1 < k by assumption; this contradicts the minimality of k.

Therefore l ≥ k − 1. On the other hand, since

δdk + 1 =
(
z
(i)
0

)2
≤ −dk(−dk + 1),
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from Proposition 2.5 it follows that δ = dl > dk − 1 and hence l ≤ k. Since

dl 6= dk we have dl = dk−1. Hence(
z
(i)
0

)2
= dkdk−1 + 1.

From (1.5) we obtain z
(i)
0 = z0 = ck−1 + 2. Furthermore, from (2.2), (2.3) and

(2.4) we get
∣∣∣x(i)0

∣∣∣ = sk−1 and
∣∣∣y(j)1

∣∣∣ = tk−1. Moreover, from

sk =
1

2
√

3

((
2 +
√

3
)k
−
(

2−
√

3
)k)

,

tk =
1

2

((
2 +
√

3
)k

+
(

2−
√

3
)k)

,

we get

(3.7) 2sksk−1 = ck−1, 2tktk−1 = 3ck−1 + 4.

This brings us to the important conclusion. If the system of Pellian equations

(2.2) and (2.3) has a solution in positive integers, where k is the smallest integer

for which Theorem 1.6 does not hold and under assumption k ≥ 6, the funda-

mental solutions of Pellian equations (2.2) and (2.3) are (z0, x
±
0 ) and (z1, y

±
1 )

respectively, where

(3.8) z0 = z1 = 2(sksk−1 + 1),

(3.9) x±0 = ±sk−1, y±1 = ±tk−1.

4. The lower bound for m and n

After plugging (3.8) and (3.9) into (2.7) and (2.8) and expanding we get

ν±m =
1

2

(
2(sksk−1 + 1)± sk−1

√
−2dk

)(
−2dk − 1 + 2sk

√
−2dk

)m
+

1

2

(
2(sksk−1 + 1)∓ sk−1

√
−2dk

)(
−2dk − 1− 2sk

√
−2dk

)m
,

and

ω±n =
1

2
√

3

(
2(sksk−1 + 1)

√
3± tk−1

√
−2dk

)(
−6dk − 1 + 2tk

√
−6dk

)n
+

1

2
√

3

(
2(sksk−1 + 1)

√
3∓ tk−1

√
−2dk

)(
−6dk − 1− 2tk

√
−6dk

)n
,

for m,n ≥ 0. One intersection of these sequences is clearly

ν±0 = ω±0 = 2(sksk−1 + 1),

wherefrom it follows that the triple {1, 3, dk} can be extended to a Diophantine

quadruple in Z
[√
−2
]

by dk−1. Another intersection is ν−1 = ω−1 . Indeed, (3.7)



4. THE LOWER BOUND FOR m AND n 73

implies

(4.1) sksk−1 + 1 =
1

3
(tktk−1 + 1)

and hence

ω−1 = −2− 12dk − 2sksk−1 − 12dksksk−1 + 4dktktk−1

= −2− 4dk − 2sksk−1 = ν−1 .

Therefrom it follows that the triple {1, 3, dk} can be extended to a Diophantine

quadruple in Z
[√
−2
]

by dk+1. Using (4.1) we can write ω±n as follows

ω±n =
1

6

(
2(tktk−1 + 1)± tk−1

√
−6dk

)(
−6dk − 1 + 2tk

√
−6dk

)n
+

1

6

(
2(tktk−1 + 1)∓ tk−1

√
−6dk

)(
−6dk − 1− 2tk

√
−6dk

)n
.

Since

2(sksk−1 + 1)− sk−1
√
−2dk = 2−

√
−2dk−1 − 2

√
−2dk − 2 +

√
−2dk

> 2−
√
−2dk − 2√

−2dk − 2 +
√
−2dk

> 1,

it follows that

ν+m ≥ ν−m >
1

2

(
−2dk − 1 + 2sk

√
−2dk

)m
.

Furthermore,

ω−n ≤ ω+
n <

1

2

(
−6dk − 1 + 2tk

√
−6dk

)n+1
,

since

2(tktk−1 + 1)− tk−1
√
−6dk <

(
−6dk − 1− 2tk

√
−6dk

−6dk − 1 + 2tk
√
−6dk

)n
and

1

3

(
2(tktk−1 + 1) + tk−1

√
−6dk + 1

)
< −6dk − 1 + 2tk

√
−6dk,

which can be easily verified using (2.4). Therefore, if one of the equations ν±m =

ω±n has solutions, then

1

2

(
−2dk − 1 + 2sk

√
−2dk

)m
<

1

2

(
−6dk − 1 + 2tk

√
−6dk

)n+1
,

wherefrom
m

n+ 1
<

log
(
−6dk − 1 + 2tk

√
−6dk

)
log
(
−2dk − 1 + 2sk

√
−2dk

) .
The expression on the right side of the inequality decreases when k increases.

Since k ≥ 6 it follows that
m

n+ 1
< 1.072.
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We may assume n ≥ 2. Indeed for n = 1 we have m ≤ 2 and since m and n

are both even or both odd it follows that the only possibility is m = 1. We

have already established the intersection ν−1 = ω−1 and it can be easily verified

that ν+1 6= ω±1 and ν−1 6= ω+
1 . Now it can be easily deduced that m < n

√
3.

Hence, if the sequences (ν±m) and (ω±n ) have any intersections besides two already

established ones, then n ≥ 2, m and n are of the same parity and m < n
√

3. We

further on assume these conditions.

Proposition 4.2. Let n ≥ 2. If one of the equations ν±m = ω±n has solutions

then

m ≥ n ≥ 2

3
· 4
√
−dk.

Proof. If m < n, then m ≤ n − 2, since m and n are of the same parity.

From (2.7) and (2.8) using (3.7) one easily finds ν+0 < ω−2 . It can be shown by

induction that ν+m < ω−m+2 for m ≥ 0. Indeed, sequences (ν±m) and (ω±n ) are

strictly increasing positive sequences, which can be easily checked by induction

after plugging (3.8) and (3.9) into (2.7) and (2.8). Hence

ν+m+1 < (−4dk − 2)ν+m, ω−m+3 > (−12dk − 3)ω−m+2.

Then clearly ν+m < ω−m+2 implies ν+m+1 < ω−m+3, which completes the proof by

induction. Since

ν−m ≤ ν+m < ω−m+2 ≤ ω
+
m+2,

it follows that if one of the equations ν±m = ω±n has solutions, then m + 2 > n,

a contradiction. Hence m ≥ n. For the second part of the statement assume to

the contrary that n < 2
3

4
√
−dk. Let us show how we can reach a contradiction

in the case ν+m = ω+
n . Other three case can be similarly resolved. Since m and n

are of the same parity, Lemma 3.3 implies that if ν+m = ω+
n , then

(4.3) (ck−1 + 2)(m2 − 3n2 +m− 3n) ≡ 2(m− n) (mod − 4dk),

and since (1.5) implies (ck−1 + 2)2 ≡ 1 (mod − dk), we obtain

(m2 − 3n2 +m− 3n)2 ≡ 4(m− n)2 (mod − dk).

Moreover

(4.4) (m2 − 3n2 +m− 3n)2 ≡ 4(m− n)2 (mod − 4dk)

since (4, dk) = 1 and both sides of the congruence relation are divisible by 4, since

m and n are of the same parity. Under assumption n < 2
3

4
√
−dk one easily sees

that the expressions on both sides of the congruence relation (4.4) are strictly

smaller than −4dk. Indeed,

0 ≤ 2(m− n) ≤ 2n
(√

3− 1
)
< 2

(√
3− 1

) 2

3
4
√
−dk <

√
−4dk
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and

0 < −m2 + 3n2 −m+ 3n ≤ 2n2 + 2n ≤ 3n2 <
12

9

√
−dk <

√
−4dk.

Therefore −m2 + 3n2−m+ 3n = 2(m−n), wherefrom clearly m 6= n, so m > n.

From (4.3) we obtain

−(ck−1 + 2) · 2(m− n) ≡ 2(m− n) (mod − 4dk),

wherefrom

−2sksk−1(m− n) ≡ 3(m− n) (mod − 2dk).

Since (2.4) implies −2s2k ≡ 1 (mod − dk), by multiplying both sides of the

previous equation by sk we obtain

sk−1(m− n) ≡ 3sk(m− n) (mod − dk),

and since 2 | m− n and (dk, 2) = 1, it follows that

(4.5) (m− n)(3sk − sk−1) ≡ 0 (mod − 2dk).

On the other hand, from

0 < m− n < n
(√

3− 1
)
<
(√

3− 1
) 2

3
4
√
−dk < 0.49 · 4

√
−dk

and

0 < 3sk − sk−1 ≤ 3sk = 3 ·
√
−dk − 1

2
< 3 ·

√
−dk

2
it follows that

0 < (m− n)(3sk − sk−1) < 1.04 · 4

√
−d3k < −2dk.

Therefore, we have a contradiction with (4.5). Completely analogously a contra-

diction can be obtained in other three cases, i.e when ν+m = ω−n , ν−m = ω+
n and

ν−m = ω−n . �

5. The application of Bennett’s theorem

Lemma 5.1. Let

θ1 =

√
1 +

1

dk
, θ2 =

√
1 +

1

3dk

and let (x, y, z) be a solution in positive integers of the system of Pellian equations

(2.2) and (2.3). Then

max

{∣∣∣∣θ1 − 6skx

3z

∣∣∣∣ , ∣∣∣∣θ2 − 2tky

3z

∣∣∣∣} < (1− dk)z−2.
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Proof. Clearly θ1 = 2sk√

−2dk
and θ2 = 2tk√

−6dk
. Hence,∣∣∣∣θ1 − 6skx

3z

∣∣∣∣ =

∣∣∣∣ 2sk√
−2dk

− 2skx

z

∣∣∣∣ = 2sk

∣∣∣∣z − x√−2dk

z
√
−2dk

∣∣∣∣
=

2sk

z
√
−2dk

· 1− dk
z + x

√
−2dk

<
2sk(1− dk)√
−2dk

· z−2

< (1− dk) · z−2.

and ∣∣∣∣θ2 − 2tky

3z

∣∣∣∣ =

∣∣∣∣ 2tk√
−6dk

− 2tky

3z

∣∣∣∣ =
2tk√

3

∣∣∣∣∣z
√

3− y
√
−2dk

z
√
−2dk

√
3

∣∣∣∣∣
=

2tk

3z
√
−2dk

· 3− dk
z
√

3 + y
√
−2dk

<
2tk(3− dk)

3
√
−6dk

· z−2 < 3− dk
3
· z−2 < (1− dk) · z−2.

�

In order to establish the lower bound for the expression in Lemma 5.1 we

use the following result of Bennett [9] on simultaneous rational approximations

of square roots of rationals which are close to 1.

Theorem 5.2. If ai, pi, q and N are integers for 0 ≤ i ≤ 2 with a0 < a1 < a2,

aj = 0 for some 0 ≤ j ≤ 2, q nonzero and N > M9 where

M = max{|ai| : 0 ≤ i ≤ 2},

then we have

max
0≤i≤2

{∣∣∣∣√1 +
ai
N
− pi
q

∣∣∣∣} > (130Nγ)−1q−λ

where

λ = 1 +
log(33Nγ)

log
(

1.7N2
∏

0≤i<j≤2(ai − aj)−2
)

and

γ =

{
(a2−a0)2(a2−a1)2

2a2−a0−a1 , a2 − a1 ≥ a1 − a0
(a2−a0)2(a1−a0)2

a1+a2−2a0 , a2 − a1 < a1 − a0.

We can apply Theorem 5.2 with

N = −3dk, a0 = −3, a1 = −1, a2 = 0,

M = 3, q = 3z, p1 = 6skx, p2 = 2tky,

since N = −3dk > 39 for k ≥ 6. So,

max

{∣∣∣∣θ1 − 6skx

3z

∣∣∣∣ , ∣∣∣∣θ2 − 2tky

3z

∣∣∣∣} > (130 · (−3dk)γ)−1 · (3z)−λ,
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where

γ =
36

5
, λ = 1 +

log
(
−99dk · 365

)
log
(
1.7 · 9d2k ·

1
36

) .
From Lemma 5.1 we get

z−λ+2 < (1− dk)
(

130 · (−3dk) ·
36

5

)
· 3λ.

Since λ < 2 and −dk(1− dk) < 1.000000821d2k for k ≥ 6, it follows that z−λ+2 <

25272.03d2k and hence

(−λ+ 2) log z < log
(
25272.03d2k

)
.

Since
1

2− λ
=

1

1− log(−99dk· 365 )
log(1.7·9d2k·

1
36)

≤
log
(
0.425d2k

)
log(−0.00059dk)

we have

(5.3) log z <
log
(
25272.03d2k

)
log
(
0.425d2k

)
log(−0.00059dk)

.

Furthermore, since z = ν±m for some m ≥ 0, it follows that

z >
1

2

(
−2dk − 1 + 2sk

√
−2dk

)m
.

Since 2sk
√
−2dk > −2dk − 2 for k ≥ 0 it follows that

z >
1

2
(−4dk − 3)m .

From (−4dk − 3)−1 < 1
2 for k ≥ 1, we get z > (−4dk − 3)m−1. Therefore,

log z > (m− 1) log(−4dk − 3),

and since m ≥ n ≥ 2
3 ·

4
√
−dk, it follows that m− 1 > 0.5 · 4

√
−dk and hence

log z > 0.5 · 4
√
−dk · log(−4dk − 3).

Using (5.3) we obtain

4
√
−dk <

log
(
25272.03d2k

)
log
(
0.425d2k

)
0.5 · log(−0.00059dk) log(−4dk − 3)

.

The expression on the right side of the inequality decreases when k increases,

and hence by substituting k = 6 we obtain

4
√
−dk < 20.477

and finally

−dk < 175 817.
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This implies k ≤ 5, which contradicts the assumption k ≥ 6. Therefore, the

minimal integer k for which Theorem 1.6 does not hold, if such exists, is smaller

than 6.

6. Small cases

To complete the proof it remains to show that Theorem 1.6 holds also for

0 ≤ k ≤ 5. In each case we have to solve a system of Pellian equations where

one of the equations is always the Pell’s equation

y2 − 3x2 = 1

and the second one is as follows

• if k = 0 z2 − 2x2 = 2,

• if k = 1 z2 − 6x2 = 4,

• if k = 2 z2 − 22y2 = 12,

• if k = 3 z2 − 902x2 = 452,

• if k = 4 z2 − 4182y2 = 2092 ,

• if k = 5 z2 − 58242y2 = 29122.

All the solutions in positive integers of y2−3x2 = 1 are given by (x, y) = (x′m, y
′
m),

where

x′m =
1

2
√

3

(
(2 +

√
3)m − (2−

√
3)m

)
,

y′m =
1

2

(
(2 +

√
3)m + (2−

√
3)m

)
and m ≥ 0. Likewise, we can find a sequence of solutions for any of the equations

listed above. The above systems can be reduced to finding the intersections of

(x′m) and following sequences:

k = 0 : xn =
1 +
√

2

2
(3 + 2

√
2)n +

1−
√

2

2
(3− 2

√
2)n,

k = 1 : xn =
1√
6

(5 + 2
√

6)n − 1√
6

(5− 2
√

6)n,

k = 3 : x±n =± 61 + 2
√

902√
902

(901± 30
√

902)n,

∓ 61− 2
√

902√
902

(901∓ 30
√

902)n
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that is to finding the intersections of (y′m) and following sequences:

k = 2 : y±n =± 5 +
√

22√
22

(197± 42
√

22)n ∓ 5−
√

22√
22

(197∓ 42
√

22)n,

k = 4 : y±n =± 841 + 13
√

4182√
4182

(37637± 582
√

4182)n∓

∓ 841− 13
√

4182√
4182

(37637∓ 582
√

4182)n,

k = 5 : y±n =± 23419 + 97
√

58241

2
√

58241
(524177± 2172

√
58241)n∓

∓ 23419− 97
√

58241

2
√

58241
(524177∓ 2172

√
58241)n,

with n ≥ 0. In what follows, we will briefly resolve the case k = 1, so to

demonstrate a method based on Baker’s theory on linear forms in logarithms.

If k = 1 the problem reduces to finding the intersection of sequences

x′m =
1

2
√

3

(
(2 +

√
3)m − (2−

√
3)m

)
xn =

1√
6

(
(5 + 2

√
6)n − (5− 2

√
6)n
)

Clearly x′0 = x0 = 0 and x′2 = x1 = 4. We have to show that there are no other

intersections. Assume m,n ≥ 3 and x′m = xn. Setting

P =
1

2
√

3
(2 +

√
3)m, Q =

1√
6

(5 + 2
√

6)n,

we have

P − 1

12
P−1 = Q− 1

6
Q−1.

Since

Q− P =
1

6
Q−1 − 1

12
P−1 >

1

6
(Q−1 − P−1) =

1

6
P−1Q−1(P −Q),

we have Q > P . Furthermore, from

Q− P
Q

=
1

6
Q−1P−1 − 1

12
P−2 <

1

6
Q−1P−1 +

1

12
P−2 < 0.25P−2

we get

0 < log
Q

P
= − log

(
1− Q− P

Q

)
<
Q− P
Q

+

(
Q− P
Q

)2

<
1

4
P−2 +

1

16
P−4 < 0.32P−2 < e−m.

The expression log Q
P can be written as a linear form in three logarithms in

algebraic integers. Indeed

Λ := log
Q

P
= −m logα1 + n logα2 + logα3,
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with α1 = 2 +

√
3, α2 = 5 + 2

√
6 and α3 =

√
2. Then 0 < Λ < e−m.

Now, we can apply the famous result of Baker and Wüstholz [4].

Lemma 6.1. If Λ = b1α1 + · · · + blαl 6= 0, where α1, . . . , αl are algebraic

integers and b1, . . . , bl are rational integers, then

log |Λ| ≥ −18(l + 1)!ll+1(32d)l+2h′(α1) · · ·h′(αl) log(2ld) logB,

where B = max{|α1|, . . . , |αl|}, d is the degree of the number field generated by

α1, . . . , αl over Q,

h′(α) =
1

d
max{h(α), | logα|, 1}

and h(α) denotes the logarithmic Weil height of α .

In our case l = 3, d = 4, B = m, α1 = 2 +
√

3, α2 = 5 + 2
√

6 and α3 =
√

2.

From Lemma 6.1 and from Λ < e−m we obtain

m ≤ 2 · 1014 logm.

Since the previous inequality does not hold for m ≥M = 1016, we conclude that

if there is a solution of x′m = xn then n ≤ m < M = 1016. This upper bound

can be reduced by using the following lemma, which was originally introduced

in [3].

Lemma 6.2 ([28], Lemma 4a). Let θ, β,α, a be a positive real numbers and

let M be a positive integer. Let p/q be a convergent of the continued fraction

expansion of θ such that q > 6M . If ε = ‖βq‖−M · ‖θq‖ > 0, where ‖ ·‖ denotes

the distance from the nearest integer, then the inequality

|mθ − n+ β| < αa−m,

has no integer solutions m and n such that log(αq/ε)/ log a ≤ m ≤M .

After we apply Lemma 6.2 with θ = logα1/ logα2, β = logα3/ logα2, α =

1/ logα2, M = 1016 and a = e, we obtain a new upper bound M = 38 and

by another application of Lemma 6.2 we obtain M = 7. By examining all the

possibilities, we prove that the only solutions of x′m = xn are x′0 = x0 = 0 and

x′2 = x1 = 4.

All the other cases can be treated similarly. We get these explicit results.

k = 0 : x0 = x′1 = 1

k = 1 : x0 = x′0 = 0, x1 = x′2 = 4

k = 2 : y+0 = y′1 = 2, y−1 = y′3 = 26

k = 3 : x+0 = x′2 = 4, x−1 = x′4 = 56

k = 4 : y+0 = y′3 = 26, y−1 = y′5 = 362

k = 5 : y+0 = y′4 = 97, y−1 = y′6 = 1351.
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These can be interpreted in terms of Theorem 1.6. So, if 0 ≤ k ≤ 5 and the set

{1, 3, dk, d} is a Diophantine quadruple in Z
[√
−2
]
, then d = dk−1 or d = dk+1,

which completes the proof of Theorem 1.6.
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