
Graz University of Technology

Institute for Computer Graphics and Vision

Dissertation

WIMP Interfaces for Emerging Display

Environments

Manuela Waldner
Graz, Austria, June 2011

Thesis supervisor

Prof. Dr. Dieter Schmalstieg

Referee

Prof. Dr. Andreas Butz

To Martin

Abstract

With the availability of affordable large-scale monitors and powerful projector hardware,

an increasing variety of display configurations can be found in our everyday environments,

such as office spaces and meeting rooms. These emerging display environments combine

conventional monitors and projected displays of different size, resolution, and orientation

into a common interaction space. However, the commonly used WIMP (windows, icons,

menus, and pointers) user interface metaphor is still based on a single pointer operating

multiple overlapping windows on a single, rectangular screen. This simple concept cannot

easily capture the complexity of heterogeneous display settings. As a result, the user

cannot facilitate the full potential of emerging display environments using these interfaces.

The focus of this thesis is to push the boundaries of conventional WIMP interfaces

to enhance information management in emerging display environments. Existing and

functional interfaces are extended to incorporate knowledge from two layers: the physical

environment and the content of the individual windows. The thesis first addresses the tech-

nical infrastructure to construct spatially aware multi-display environments and irregular

displays. Based on this infrastructure, novel WIMP interaction and information presenta-

tion techniques are demonstrated, exploiting the system’s knowledge of the environment

and the window content. These techniques cover two areas: spatially-aware cross-display

navigation techniques for efficient information access on remote displays and window man-

agement techniques incorporating knowledge of display form factors and window content

to support information discovery, manipulation, and sharing.

Results of user studies indicate that environment- and content-awareness of WIMP

interfaces indeed improves information management in many varieties of emerging display

environments. Awareness of the environment and the window content thereby can be

facilitated without an obtrusive and expensive hardware and software infrastructure.

Keywords. WIMP Interfaces; Multi-Display Environments; Irregular Displays; Large-

Scale Displays; Information Management; Human-Computer Interaction; Computer-

Supported Cooperative Work; Window Management; Information Presentation; Cross-

Display Navigation; Windowing Systems

v

vii

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources / resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich

und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift

Acknowledgments

There is a large number of people without whom this thesis would not have been pos-

sible and many people that directly or indirectly supported my work through technical,

scientific, or personal support. First of all, I want to acknowledge my supervisor Dieter

Schmalstieg who gave me the opportunity to join his research group at Graz University of

Technology. I particularly want to thank him for letting me pursue my own goals – despite

often going far away from the actual research agenda of this institute – while still guiding

and supporting my work. I also want to thank my referee Andreas Butz from Ludwig-

Maximilian University in Munich for his spontaneous and uncomplicated agreement to

support this thesis and our precedent discussions at conferences.

In addition, I want to acknowledge all my colleagues of the Deskotheque project. First

of all, I want to thank Christian Pirchheim for teaching me so many things about Linux,

for the countless shell scripts, for doing so much “dirty” work in our lab, and for endless

discussions – not necessarily limited to the project. I also want to point out the short

but fruitful collaboration with Werner Puff who made valuable contributions to the visual

links infrastructure and was also a great help for porting the Deskotheque framework.

Finally, Markus Steinberger was more than just a “coding monkey” for this project. Still,

I first want to point out his stunning ability to implement high-performance solutions to

complex optimization problems in minimum time. I also want to thank him for his general

support in the last year of the project.

Apart from the project members, there are many other colleagues at ICG that deserve

being mentioned at this point, for discussions and support: Alexander Lex and Marc

Streit, Albert Walzer, Raphael Grasset and Ernst Kruijff, Mark Dokter, Markus Murschitz,

Werner Trobin, Matthias Rüther, and Christopher Zach, Erick Mendez, Markus Tatzgern,

Andreas Wurm, and many more. A special thank, of course, goes to all the participants

of our user studies, their patience and all their valuable feedback! This is probably also

the right spot to also acknowledge all the Linux open source developers – especially the

Compiz and multi-pointer X developers.

Finally, I want to thank my family who made this work possible by believing in me

all these years. I want to gratefully mention my partner Martin for always being there for

me, for all his support and endless patience. The least I can do is dedicate this thesis to

you.

ix

Contents

I Overview 1

1 Introduction 3

1.1 Emerging Display Factors . 5

1.2 WIMP Interfaces . 6

1.3 Information Management . 7

1.4 Research Hypothesis . 13

1.5 Contribution . 13

1.6 Collaboration Statement . 14

2 Background and Related Work 21

2.1 Visual Information Management . 21

2.2 Display Environments . 36

2.3 Enabling Technologies . 54

II Multi-Display Framework 57

3 System Infrastructure of the Deskotheque Environment 59

3.1 Requirements and Design Principles . 59

3.2 Distributed Software Infrastructure . 61

3.3 Discussion . 65

4 Spatial Awareness in the Deskotheque Environment 67

4.1 Spatial Model Creation . 68

4.2 Compensation of Projected Displays . 79

4.3 User Location Estimation . 81

4.4 Multi-Display Coordinate Systems . 82

4.5 Discussion . 88

xi

xii CONTENTS

III Multi-Display Navigation 91

5 Cross-Display Navigation Techniques 93

5.1 Design Space . 94

5.2 Mouse Pointer Navigation Infrastructure . 96

5.3 Exemplary Navigation Techniques . 101

5.4 Cross-Display Information Sharing . 104

5.5 Discussion . 105

6 Evaluations of Multi-Display Navigation 107

6.1 Comparison of Cross-Display Navigation Techniques 107

6.2 Comparison of Pointer Warping and Seamless Navigation 119

6.3 Comparison of Outcome Positions for Pointer Warping 128

6.4 Discussion . 133

IV Window Management for Emerging Display Environments 135

7 Window Manager Extensions 137

7.1 Multi-User Interaction and Identification . 137

7.2 Accessing Window Content . 138

7.3 Display Adaptivity . 143

7.4 Importance-Driven Compositing Window Management 147

7.5 Discussion . 152

8 Window Management Techniques 155

8.1 Visual Links . 155

8.2 Uncovering Windows . 164

8.3 Display-Adaptive Window Management . 166

8.4 Polarization-Based Interfaces . 174

8.5 Discussion . 179

9 Evaluations of Window Management Techniques 183

9.1 Exploratory Evaluation of Visual Links across Applications 184

9.2 Exploratory Evaluation of Collaborative Information Linking 187

9.3 Comparison of Techniques to Discover and Access Occluded Windows . . . 195

9.4 Exploratory Evaluation of Window Management on Irregular Displays . . . 201

9.5 Discussion . 212

CONTENTS xiii

V Summary 215

10 Discussion and Future Directions 217

10.1 Information Discovery . 217

10.2 Information Access . 220

10.3 Information Manipulation . 221

10.4 Information Sharing . 223

11 Conclusion 225

Bibliography 228

Part I

Overview

1

Chapter 1

Introduction

In recent years, display hardware has become more affordable and more powerful, in terms

of resolution, size, and brightness. As a result, we can see a variety of display configurations

in our everyday working environments, living rooms, meeting rooms, control rooms, and

public spaces. Examples range from already quite common dual monitor configurations

connected to a work PC to complex control room setups combining multiple personal and

shared display spaces into a common interaction space. Of particular interest are office

environments leveraging projection technologies to augment multiple isolated single-user

workspaces to a shared interaction space (Figure 1.1).

Figure 1.1: Multi-display environments combine projected displays and monitors of different size,
resolution, and orientation into a common interaction space.

Yet, the WIMP (windows, icons, menus, and pointers) metaphor has remained largely

unchanged since its introduction more than 30 years ago. The Smalltalk system (1979)

[89] and the Xerox Star (1981) [132] were the first systems allowing users to show multiple

pieces of information (views [89]) simultaneously on the screen (Figure 1.2(a)). Today,

WIMP interfaces mainly rely on the same fundamental concepts: they provide multi-

3

4 Chapter 1. Introduction

ple overlapping, rectangular windows to physically separate different applications on the

screen (Figure 1.2(b)) and a single pointer to access and manipulate their content. The

internal screen representation – describing either a single or multiple output devices –

of WIMP interfaces has hardly been adapted to the emerging display factors and is still

described as simple rectangle defined by the overall number of pixels.

(a) (b)

Figure 1.2: WIMP interfaces 1981 and now: (a) the desktop metaphor of the Xerox Star [132]
and (b) of a modern Linux (Ubuntu) operating system.

To access and manipulate the window content, as well as to lay out the individual

windows on the screen, indirect pointing devices, like mouse or trackball, are still the

most common input devices. Although a variety of input technology is now available for

emerging displays, like touch-sensitive surfaces, digital pens, or some sort of embodied

interaction, the mouse is still a valuable universal controller for heterogeneous displays.

However, as displays are getting larger and more discontinuous (like in Figure 1.1), map-

ping the incoming 2D motion events to a specific location in the environment is becoming

more challenging. In today’s systems, the screen space – consisting of a single or multiple

displays – is mapped onto a simple rectangle, which defines the boundaries of the naviga-

tion space. In an environment like in Figure 1.1, a simple rectangle cannot capture the

complexity of the display setup and may lead to an unintuitive navigation space.

As a result, new resources and possibilities emerging from new display hardware remain

largely unused in conventional working environments, as a significant cognitive effort is

required to use these mature, but maybe no longer appropriate, WIMP interfaces in such

an environment. The focus of this thesis therefore is to enhance information management

with WIMP interfaces in emerging display environments – in particular in office spaces –

by addressing three major areas:

1. Designing an infrastructure for interactive workspaces, extending multiple isolated

single-user workspaces to a shared interaction space,

2. exploring multi-display navigation techniques for the conventional computer mouse

1.1. Emerging Display Factors 5

for effective information access in discontinuous display environments, and

3. extending window management techniques to improve information discovery, manip-

ulation, and sharing in such an interactive workspace with conventional application

windows.

1.1 Emerging Display Factors

With the introduction of low-cost high-resolution monitors, self-contained devices, and

projectors, new display form factors and arrangements have evolved:

(a) (b) (c)

Figure 1.3: Emerging display factors: (a) large, ubiquitous displays, (b) non-planar, non-
rectangular displays, and (c) horizontal displays.

� Monitors have a higher number of pixels than a few decades ago. In addition, mul-

tiple monitors or projectors can now be combined to a large display space, resulting

in a display surface of several megapixels, or even gigapixels. When using projec-

tors, the boundaries of these large displays may be visually dissolved, leading to

ubiquitous information spaces (Figure 1.3(a)).

� Projectors may be mounted to cast images onto an irregular, non-planar surface.

Oblique projection angles or combinations of multiple projectors additionally cause

non-rectangular outlines (Figure 1.3(b)).

� While the number of pixels generally increases, the resolution of displays may

strongly vary. Projected displays usually have a much lower resolution than mon-

itors and are located at a greater distance from the user. Therefore, projectors

are rarely employed for private work but are rather suitable for public information

spaces, observed and operated by multiple users.

� Projectors easily enable the creation of non-vertical displays, such as tabletop dis-

plays or tilted surfaces (Figure 1.3(c)).

� Finally, all of these display factors may be arranged in a common environment,

resulting in a heterogeneous interaction and viewing space (Figure 1.1).

6 Chapter 1. Introduction

This list is not exhaustive but aims to capture the most important properties with

respect to office environments. Particular properties of very small, portable devices or

devices with direct input capabilities will not be addressed in this thesis.

Definitions

In the context of display environments, the following terms will be used in this thesis:

An output device refers to a single monitor or projector, i.e., a single physical display

entity connected to a single PC. In this thesis, a display is defined as a continuous output,

such as a single monitor or projected imagery – either produced by a single projector

or by multiple projectors. A display composed of multiple, seamlessly aligned projected

images will be referred to as tiled display or multi-projector display. The resulting display

from a projector mounted towards a non-planar surface will be called irregular display. A

horizontal display will be called tabletop display.

A multi-display environment (MDE) combines multiple discontinuous, heterogeneous

displays into a common virtual space. In this thesis, MDEs will be discriminated from

multi-monitor environments, which consist only of monitors, which are often heteroge-

neous. The reason for this separation stems from the fact that multi-monitor environments

are already becoming ubiquitous and the motivating scenario for this thesis evolves mainly

around heterogeneous environments, combining multiple monitors with projected displays

(irregular and / or tiled). MDEs can be driven from a single or from multiple machines

(distributed MDE). Each machine in this distributed environment has one screen, which is

the entity of virtual pixels assigned to one or multiple connected output devices. The case

of multiple virtual screens, by using multiple virtual desktops [70], will be disregarded in

this thesis.

One in general ambiguously used term is resolution. In this thesis, we will refer to

resolution as the pixel density, i.e., the resulting pixels per inch on the display. Resolution

will not be used to describe the number of pixels of a screen or output device.

1.2 WIMP Interfaces

Windows are views of some particular data or application in the computer [51, 89]. They

visualize data, such as text, graphics, or videos [162], usually within a rectangular bound-

ary. A window manager is responsible to manage multiple of such windows on the screen

[162] and to forward input from a specific device to a particular window. Window man-

agers are special management entities of windowing systems (like the X Window System

[211]), which provide the windows themselves, as well as low-level rendering capabilities

and input handling [163]. On top of the windowing system, (GUI-)toolkits provide common

user interface widgets, like menus or buttons [163].

The term WIMP (windows, icons, menus, pointers) interfaces is commonly used to

describe the currently most wide-spread type of “point-and-click” graphical user inter-

1.3. Information Management 7

faces [248]: multiple windows embedded in a desktop environment with icons or panels,

operated by an indirect pointing device like the mouse. The focus of this thesis lies on

window management and (mouse) pointer interaction. Menus and icons are not explicitly

addressed.

Figure 1.4: WIMP in-
terface layers.

With respect to WIMP interfaces, we will discriminate the fol-

lowing three interface layers in this thesis (Figure 1.4):

� The top environment layer contains a single or multiple dis-

plays of various form factors, which are somehow spatially ar-

ranged towards each other, as well as one or multiple users.

� The screen layer is the virtual representation of one of these

displays. Each screen contains multiple windows, which are

spatially arranged on the available screen space, together with

other desktop elements, such as icons and menus.

� The bottom window layer deals with the content of the win-

dow. A window may contain different kind of visual informa-

tion, like text, images, charts, or videos.

Classic WIMP interfaces manage the second layer and also derive their knowledge only

from the screen layer. Window managers deal with the initial window placement when

a window is mapped and provide interaction techniques for manual window repositioning

and resizing with pointing devices, like the mouse. In addition, they provide slightly more

sophisticated features like maximize, which resizes the window to fit the margins of the

display – often even aware of multi-monitor seams. However, classic WIMP interfaces are

unaware of the windows’ content and the surrounding context by the physical environment,

such as the spatial arrangement of multiple displays and the users in the environment.

1.3 Information Management

Modern information workers need to explore large information spaces to reach crucial

decisions. With modern processing powers and the availability of a massive amount of

data in the world-wide-web, information workers need to conduct a number of steps to

extract knowledge from the available information sources. According to the sensemaking

model (e.g., [53, 102, 206]), information workers first need to forage for data (i.e., gaining

an overview, browsing, searching), then create a schema (i.e., operating on the data and

synthesizing results), to finally solve a problem, make a decision, and act. Pirolli and Card

[182] separate the overall sensemaking process into two major loops (Figure 1.5): The

foraging loop includes processes of information search, filtering, reading, and searching

for relations. In the subsequent sensemaking loop, the user schematizes the collected

information, generates hypotheses, and communicates the findings. From the final step,

8 Chapter 1. Introduction

Figure 1.5: The sensemaking loop by Pirolli and Card (from [182]).

the user may then re-evaluate the findings and search for evidence, which leads back into

the foraging loop.

There is evidence that emerging display form factors support users in their sensemaking

process. Large displays may act as external memory, helping users to memorize and

organize information items [4]. Physical discontinuities caused by monitor bezels can help

users to partition their information [91]. In addition, emerging display form factors, such

as tabletop displays or large wall displays, may enhance co-located collaboration [74, 215],

which is known to improve quality and performance of information extraction and decision

making tasks [104].

Even though the display form factors potentially support users in their sensemak-

ing process, WIMP interfaces, which are not adapted to these display form factors, can

hamper the user in her sensemaking process. The following examples will illustrate these

deficiencies with respect to specific activities: information discovery, access, manipulation,

and sharing.

1.3.1 Information Discovery

With a wealth of information sources available, the user has to search for particular infor-

mation items contained in multiple sources. She might look for a specific object or she may

conduct an exploratory, open-ended search concerning a particular topic. The information

of interest may be scattered in different application windows in the environment, together

with information, which is not relevant for the current task.

With increasing display space, more information can be visualized concurrently. How-

1.3. Information Management 9

ever, relevant information on the screen can also be invisible for the user, even if there

is sufficient display space to arrange multiple non-overlapping windows. With increasing

display space, users simply have more application windows open [112]. Bezerianos et al.

[31] list a number of possibilities why information may be hidden, for instance due to

an occluder window, physical occlusions, or because the information is outside the user’s

visual field of view. Inspired by this list, we categorized these possibilities into the three

layers of WIMP interfaces (cf., Table 1.1).

Window Screen Environment

Occluded tabs overlapping windows physical occlusion

Cropped window boundary display boundary field of view

Diminished zoomed out minimized, iconified too distant

Table 1.1: Invisible information on window, display, and environment level: information can be
occluded, cropped, or too small or abstracted to be perceived (diminished).

Simple occlusion management techniques [73] are available in nowadays’ window man-

agers – for instance as Exposé or Alt+tab menu (Figure 1.6). However, these techniques

operate on a screen level only and neither take the windows’ content, nor the display

factors into account. For instance, the Alt+tab menu of Figure 1.6 hardly helps users to

discover a specific window on a very large display, if windows are arranged side-by-side,

and does not reveal information outside a window’s visible boundary. The simple occlu-

sion management techniques of current window managers also do not help users to filter

a large amount of visible information.

Figure 1.6: Alt+tab on a conventional dual-monitor screen: Switching through the application
thumbnails brings the individual windows to the front, but there is no visual cue about the location
of the currently selected window.

With classic WIMP interfaces, the user therefore has to undertake a series of actions

to discover information: She has to spatially lay out multiple application windows, restack

windows to reveal occluded elements, resize windows to discover cropped elements, and

physically navigate to locate items in a distance. Future window management techniques

should provide effective occlusion management techniques and attention guiding mech-

anisms to help the user discover invisible information on all levels and to filter a large

amount of visible information.

10 Chapter 1. Introduction

1.3.2 Information Access

Once a desired piece of information is discovered, the user may want to access or select it

for further manipulation or transfer to a remote location. Users need to resolve potential

occlusions and maybe relocate the item of interest to a convenient location. In the simple

example of the Alt+tab menu in Figure 1.6, the user linearly steps through the menu

until reaching the anticipated target window. Releasing the keyboard shortcut brings the

window to the front, i.e., it resolves the occlusion on the screen level. To access the window

content with the mouse, she first needs to move the cursor on top of the window. On a

small-scale monitor this often does not require any additional activity.

However, in a large display environment, accessing information often leads to either

extensive virtual or physical navigation. Users may either move their cursors to a remote

display space or physically walk or reach to a distant location. In heterogeneous, discon-

tinuous display environments, accessing an application window’s content with the cursor

leads to considerable user interface challenges: The user may have to overcome extensive

distances between the current focus object and the anticipated target location – either by

crossing a large number of pixels or by overcoming display-less space between displays. In

addition, combining displays of diverging form factors leads to a heterogeneous navigation

space with respect to resolution, orientation, size, and distance to the user. Visibility is-

sues, such as readability problems of distant information or distortions caused by oblique

viewing angles, may necessitate the user to change physical location, to transfer the item

closer, or to adjust the window content’s zoom level.

WIMP interfaces for emerging display environments therefore do not only need to

optimize navigation in the environment in terms of travel distances and mental effort,

but may also consider unifying window manager functions and navigation tasks for more

efficient information access.

1.3.3 Information Manipulation

Once an item is selected, the user can apply more fine-grained operations, such as ex-

tracting detailed information, operating on the data, or comparing items across multiple

objects. On the screen level, a large screen space allows the user to freely arrange and

organize separate pieces of information, represented by individual application windows,

resulting in a large visual search space. She can place pieces of information next to each

other for comparison, maximize windows to focus on a single item, deposit items for later

investigation, or spatially organize items for a better overview. However, window man-

agers usually leave the spatial window arrangement and window resizing to the user. This

results in a considerable management overhead for the user when dealing with multiple

information sources. To user has to frequently move windows and to carefully select the

window’s optimal size, balancing the amount of unimportant content with the amount of

information lying outside the window’s visible boundary. Early experiences with window

managers [50] have shown that having multiple windows helps users to finish a task more

1.3. Information Management 11

accurately, but managing the windows introduces so much effort that users are actually

faster with non-windowed interfaces. More recently, it has been shown that users have

more open application windows if the available display space increases [112]. This leads

to an increased amount of time spent for window management on large-scale displays,

compared to conventional monitors [32].

Future window management techniques may support users in creating an optimal spa-

tial window layout by automatically increasing information visibility or by transferring

items to suitable locations, thereby exploiting inherent knowledge of the spatial environ-

ment configuration. Also, information management across multiple windows can be facil-

itated by providing special side-by-side comparison arrangements or by attaching related

windows to each other, without introducing additional occlusions.

1.3.4 Information Sharing

Solving a complex task often requires the expertise of multiple users with different knowl-

edge backgrounds. In large display environments, sufficient screen space, ample space in

front of the display, and physical partitions help users to arrange their territories and to

lay out information sources in different, user-specific visual encodings.

Figure 1.7: Two users interacting on a shared display: although the pointers are color-coded,
they are hard to spot and to discriminate (located in the two lateral browser windows on the lower
display half). On a distant display, this makes deictic referencing challenging.

Current WIMP interfaces do not support such a co-located collaborative information

work in a sufficient manner. Crucial underlying requirements, such as multi-pointer sup-

port and access management, have hardly found their way from research prototypes to

fully functional window management features. This lack of support impedes parallel work

in shared display environments, but is also hampering communication and an equitable

workload, as usually one user is taking control.

Apart from these fundamental requirements, window managers do not provide the

necessary coordination techniques to support successful collaboration (cf., the mechan-

ics of collaboration [95, 179]). Coordination techniques may provide subtle awareness of

12 Chapter 1. Introduction

other users’ activities, support for obtaining, reserving, and handing over resources. In

particular, window managers for large display environments may visually highlight items

which are currently under other users’ investigations, thereby providing basic workspace

awareness and supporting deictic referencing during discussions. Consider, as an example,

Figure 1.7: even with sufficient multi-pointer support, synchronous interaction is chal-

lenging, as there is no visual support for multi-user activities across multiple application

windows.

In addition, interaction techniques are required to take over items from a collaborator

without disturbing the others’ workflow and to easily protect workspace items from other

users’ activities. When sharing information with a collaborator, objects are often moved

to a display location where all involved team members can easily view and, if necessary,

operate on the data. As the users return to individual investigations again, the content is

transferred back to private display spaces, where uninterrupted work should be possible.

Future window managers should support users in simple window transfer by exploiting

their knowledge of the environment’s configuration.

The four above listed activities of information management in WIMP interfaces (dis-

covery, access, manipulation, and sharing) were chosen after careful inspection of related

work in the field, such as the sensemaking model [53, 102, 182, 206]. In more specific con-

texts, other categorizations are used. In the context of occlusion management interfaces,

Elmqvist and Tsigas [73] discriminate three visual tasks where occlusion management usu-

ally occurs: object discovery, object access, and object relation. The first two tasks have

been adapted in our categorization, while object relation is reflected in the information

manipulation category.

In an even more specific taxonomy, Nacenta et al. [166] define “powers” of object move-

ment techniques in MDEs into remote putting, placing, manipulating, and getting. These

powers of object movement techniques are low-level activities embedded in information

access, manipulation, and sharing in our activities.

For window management, Kandogan and Shneiderman [135] discriminate three tasks:

environment setup, task environment switching, and task execution. Windows are as-

sumed to be uniquely associated with a single task, while the user has to frequently switch

between tasks in the course of her work. Task execution is furthermore split into se-

quential scanning of multiple windows for a certain information item, comparing multiple

sources based on the identified items, determining the context by filtering the items and

proceeding to scan, and recalling previous items. While task management and switching

is a very important topic in window management and computer-supported information

management in general [15, 52, 67], it is not reflected in our activities. We rather concen-

trated on single task execution, such as scanning (information discovery), comparing and

filtering (manipulation).

1.4. Research Hypothesis 13

1.4 Research Hypothesis

These previous examples demonstrate that current WIMP interfaces do not adequately

support users in information management in emerging display environments. Therefore,

such environments are usually equipped with radically new user interfaces explicitly tai-

lored towards the emerging display factors (for an overview, refer to Section 2.2). In

contrast, this thesis aims towards a different goal: pushing the boundaries of existing

WIMP interfaces to break out of the single-user, single-display box.

The research question addressed in this thesis evolves around information management

in office environments. Single-user workspaces are extended to collaborative interactive

spaces using off-the-shelf projection technology. WIMP interfaces and interaction tech-

niques are facilitated and extended for improved information management.

The basic hypothesis is: Incorporating knowledge of the physical environment and win-

dow content in WIMP interfaces will support users in discovering, accessing, manipulating,

and sharing information.

To test this hypothesis, user interface prototypes have been developed on top of a

spatially aware multi-display framework facilitating compositing window managers and

recently established multi-pointer technologies. These interfaces have been evaluated in

laboratory experiments – either as controlled comparative studies or as exploratory inves-

tigations.

1.5 Contribution

We addressed the goal to facilitate knowledge of the physical environment and the window

content in WIMP interfaces on two levels:

1. the design and implementation of the technical foundations for awareness of the

physical environment and the window content in WIMP interfaces and

2. the extension of existing WIMP interfaces to facilitate this knowledge and evaluation

of their impact on information management activities in emerging display environ-

ments.

Extensions and add-ons to existing system infrastructure enabled the creation of fully

functional multi-display WIMP interfaces and interaction techniques, based on a spatially-

aware multi-display framework. In this way, we could properly design and evaluate our

prototypes for “real” information management usage.

In the following, an overview of the individual contributions in this thesis will be

presented:

� Creation of a multi-display framework for the construction of multi-planar multi-

projector displays in a low-cost fashion, which allows the employment of legacy

applications in a conventional desktop environment with interactive frame-rates.

14 Chapter 1. Introduction

The main distinguishing aspect is an automatically created fine-grained model of the

environment, which can be exploited by different components of the multi-display

environment.

� Development of different cross-display mouse pointer navigation techniques for effi-

cient information access, automatically derived from the spatial model of the display

environment. An experiment comparing different spatial configurations for cross-

display pointer navigation was conducted and follow-up studies were employed to

clarify some of the exploratory findings in controlled experiments.

� Design and implementation of window management techniques for emerging display

factors, exploiting knowledge of window content and display factors, for more efficient

and satisfactory information discovery, manipulation, and sharing. The following

techniques have been designed:

– Visual links connect related information contained in multiple application win-

dows across window and display boundaries for multiple users to improve infor-

mation discovery and sharing. Exploratory experiments have been conducted

to assess the efficiency of information discovery using visual links across ap-

plication windows and to evaluate the effectiveness and user satisfaction of

collaborative information discovery and sharing on a large, shared display.

– Uncovering windows is a window management function that analyses the vi-

sual window content to temporarily maximize the amount of visual information

on the screen for more efficient information discovery and access. An experi-

ment was conducted to compare window uncovering with conventional window

switching techniques.

– Display-adaptive window management adapts the spatial window layout to the

prevalent display form factor for easier information manipulation on irregu-

lar displays. An exploratory experiment compared selective display-adaptivity

features to window management without any spatial awareness on an irregular

display.

– Polarization-based interfaces support information comparison of two spatially

registered information layers using a light-weight tangible magic lens interface.

1.6 Collaboration Statement

The following publications (in chronological order) were published in the course of this

thesis and serve as foundation for the thesis text:

� Manuela Waldner, Michael Kalkusch, Dieter Schmalstieg, Optical Magic Lenses

and Polarization-Based Interaction Techniques, In Proc. Eurographics Sym-

posium on Virtual Environments and Immersive Projection Technology Workshop

1.6. Collaboration Statement 15

(IPT-EGVE), pages 61–68, July 2007.

Summary: This paper introduces the concept of a purely optical magic lens user

interface which relies on polarization properties to separate information layers on a

single shared display.

Contribution: idea and concept (together with Martin Braun); implementation of

simple calibration routine; hardware setup; application scenarios (partially); content

creation.

References: Section 8.4.

� Manuela Waldner, Christian Pirchheim, Marc Streit, Dieter Schmalstieg, Multiple

View Visualization On A Multi-Display Setup, In International Workshop on

Giga-Pixel Displays & Visual Analytics (GIANT), April 2008.

Summary: This poster illustrates the concept of using multi-display environments

to physically separate multiple coordinated views.

Contribution: main contributor for idea and concept, support for hardware setup

and content creation.

� Manuela Waldner, Christian Pirchheim, Dieter Schmalstieg, Multi projector dis-

plays using a 3D compositing window manager, In Proc. Workshop on Im-

mersive projection technologies / Emerging display technologiges (EDT-IPT), pages

1–4, August 2008.

Summary: This paper presents warping and blending for displays combined by multi-

ple casually aligned projectors on multi-planar surfaces, implemented on the window

manager level.

Contribution: main contributor for design and implementation of calibration rou-

tine; support for window manager integration.

References: Section 4.1 (spatial model creation), Section 7.3.2 (window manager

integration).

� Christian Pirchheim, Manuela Waldner, Dieter Schmalstieg, Deskotheque: Im-

proved Spatial Awareness in Multi-Display Environments, Proc. of IEEE

Virtual Reality Conference (VR), pages 123–126, March 2009.

Summary: In this paper, the technical infrastructure and the creation of the spatial

model of the multi-display environment “Deskotheque” is presented.

Contribution: main contributor to concept of spatially aware multi-display envi-

ronment; design and implementation of seamless navigation; minor contributions to

software framework and hardware setup.

References: Section 3.2 (distributed software infrastructure).

� Manuela Waldner, Alexander Lex, Marc Streit, Dieter Schmalstieg, Design Con-

siderations for Collaborative Information Workspaces in Multi-Display

Environments, Proc. of Workshop on Collaborative Visualization on Interactive

Surfaces (CoVIS), October 2009.

16 Chapter 1. Introduction

Summary: In this paper, we presented design considerations for collaborative infor-

mation visualization in multi-display environments and derived a system infrastruc-

ture for a multi-user information space using multiple discontinuous displays.

Contribution: main contributor to overall concept, in particular for interaction tech-

niques, environment, and system design.

References: Section 10.3 (conceptual discussion on information manipulation and

transfer).

� Manuela Waldner, Christian Pirchheim, Ernst Kruijff, Dieter Schmalstieg, Auto-

matic configuration of spatially consistent mouse pointer navigation in

multi-display environments, Proc. of the international conference on Intelligent

user interfaces (IUI), pages 397–400, February 2010.

Summary: In this paper, we describe spatially consistent mouse pointer navigation

techniques in multi-display environments, which are automatically configured based

on the spatially aware environment of Deskotheque.

Contribution: concept and implementation of navigation techniques (except for

world-in-miniature); main contributor of user study design, conduction, and eval-

uation.

References: Section 5.3 (exemplary navigation techniques), Section 6.1 (comparison

of navigation techniques).

� Manuela Waldner, Dieter Schmalstieg, Experiences with Mouse Control in

Multi-Display Environments, Proc. of Workshop on coupled display visual in-

terfaces (PPD), pages 6–10, May 2010.

Summary: This paper reports on observational results and implications from an ex-

periment comparing different mouse pointer navigation techniques in a multi-display

environment.

Contribution: see previous paper.

References: Section 5.1 (cross-display navigation design space), Section 5.3 (exem-

plary navigation techniques), Section 6.1 (comparison of navigation techniques).

� Manuela Waldner, Werner Puff, Alexander Lex, Marc Streit, Dieter Schmalstieg,

Visual Links across Applications, Proc. of Graphics Interface (GI), pages 129–

136, May 2010.

Best Student Paper Award

Summary: This paper reports on the design and implementation of visual links

across applications, visually connecting related items across application windows.

Contributions: contributing to idea and concept (mainly motivated by a cross-

display and multi-user scenario which was not covered in the initial publication);

design and implementation of links routing, rendering in the window manager; “eval-

uation” of observational user study results.

References: Section 7.2.1 (central application coordination), Section 8.1 (visual

1.6. Collaboration Statement 17

links), Section 9.1 (exploratory evaluation of visual links).

� Manuela Waldner, Ernst Kruijff, Dieter Schmalstieg, Bridging Gaps with Pointer

Warping in Multi-Display Environments, Proc. Nordic Conference on Human-

Computer Interaction (NordiCHI), pages 813–816, October 2010.

Summary: This paper describes an experiment comparing pointer warping to seam-

less mouse pointer navigation in multi-display environments.

Contribution: idea and concept; main contributor of user study design, conduction,

and evaluation.

References: Section 6.2 (evaluation).

� Manuela Waldner, Dieter Schmalstieg, Collaborative Information Linking:

Bridging Knowledge Gaps between Users by Linking across Applications,

Proc. IEEE Pacific Visualization Symposium (PacificVis), pages 115–122, March

2011.

Summary: Collaborative information linking, which visually connects information

across private and shared application windows to bridge knowledge gaps between

users, is presented.

Contribution: idea and concept; implementation of multi-user extension for visual

links; design and implementation of collaborative information linking interaction

techniques; design, conduction, and evaluation of exploratory evaluation.

References: Section 7.2.1 (multi-user extensions to central application coordination),

Section 8.1.2 (concept and interaction techniques), Section 9.2 (exploratory evalua-

tion).

� Manuela Waldner, Markus Steinberger, Raphael Grasset, Dieter Schmalstieg,

Importance-Driven Compositing Window Management, Proc. Conference

on Human Factors in Computing Systems (CHI), May 2011 (to appear as full pa-

per).

Honorable Mention Award

Summary: Importance-driven compositing optimizes the spatial window layout for

maximum visibility and interactivity of occluded content in combination with see-

through windows. Emerging window manager functions to minimize information

overlap and to improve access to occluded information are presented.

Contribution: main contributor to idea and concept; main contributor of window

manager integration (CPU-side), as well as cut-away compositing; main contributor

of design and implementation of window management functions; design, conduction,

and evaluation of user study.

References: Section 7.2.2 (window importance maps), Section 7.4 (window layout,

compositing, and implementation), Section 8.2 (uncovering window function), Sec-

tion 8.3.2 (semi-automatic window layout, used for display-adaptive window man-

agement), Section 9.3 (experiment).

18 Chapter 1. Introduction

The following persons have to be explicitly mentioned as they contributed a significant

amount of work to the outcome of the research prototypes presented in this thesis.

� Christian Pirchheim of Graz University of Technology was one of the co-workers

of the Deskotheque system. His main responsibility was the distributed software in-

frastructure of Deskotheque (Section 3.2): network communication, the first version

of input redirection and multi-pointer support, window migration, and plugins for

the Beryl window manager. In addition, he designed and implemented the Coin3D-

based version of the world-in-miniature switcher used for input redirection in the

Deskotheque environment (Section 5.3.3). He was also the primary “system admin-

istrator” of software and hardware in the Deskotheque lab until 2008. As building

the Deskotheque framework and physical environment was a matter of years and was

conducted as teamwork, there have also been countless contributions in components

of the framework not explicitly mentioned here.

� Werner Puff, who was temporarily part of Graz University of Technology, created

the single-user management layer of the visual links infrastructure and implemented

the application scenarios presented as use cases for the infrastructure (Section 7.2.1).

Additionally, he supported the porting of Deskotheque to Ubuntu 10.04 and Compiz,

respectively, where he was mainly responsible for the window manager plugins. For

his master’s thesis, he extended the Caleydo framework [142] for distributed usage,

and he supported the integration of the Caleydo framework into the Deskotheque

framework.

� Markus Steinberger of Graz University of Technology is responsible for the GPU-

side implementation of importance-driven compositing: the integration and adaption

of the saliency GLSL shaders by Mendez et al. [156] (Section 7.2.2), the OpenCL-

based layout algorithm, and the main part of the compositing shaders (Section 7.4).

He continued working on the concept of importance-driven compositing and facil-

itated the concept of importance maps for optimal routing of visual links. This

follow-up work is not presented in this thesis.

� Ernst Kruijff of Graz University of Technology helped with the design and evalua-

tion of mouse pointer navigation techniques for multi-display environments (Chapter

6).

� Alexander Lex and Marc Streit contributed to the concepts of a collaborative

information workspace and visual links across applications (Section 8.1), in particu-

lar.

� Erick Mendez provided his GLSL-based implementation for saliency computation

[156], used for the creation of window importance maps (Section 7.2.2).

1.6. Collaboration Statement 19

� Markus Murschitz was a master student of Graz University of Technology and

created a flexible, hierarchical structured light process for multi-display environments

(Section 4.1.1). This structured light technique was used many times to reconstruct

more or less complex environments. He also contributed valuable additions and bug

fixes to the Deskotheque master and server components for the calibration process.

� Ralph Wozelka was a master student of Graz University of Technology and imple-

mented a parameterization of reconstructed surfaces based on least-squares confor-

mal maps [141], as suggested by Raskar et al.[190] (Section 4.1.4).

� Mark Dokter is a bachelor’s student of Graz University of Technology and created

Synergy+MPX – a combination of the mouse pointer sharing tool Synergy [212] and

multi-pointer X [115] – for flexible multi-pointer sharing across multiple machines

(Sections 2.3.2 and 3.2.2).

� Joris Bayer is a bachelor’s student of Graz University of Technology and imple-

mented a Compiz-based world-in-miniature [227] for window relocation and input

redirection in multi-display environments using a single machine (mentioned in Sec-

tion 5.4).

� Albert Walzer of Graz University of Technology created all videos for the papers

and contributed some valuable ideas (e.g., semi-automatic window coordination as

window manager function, as described in Section 8.3.2).

� Andreas Wurm of Graz University of Technology was a great support in manag-

ing the Deskotheque laboratory. Also, Albert Walzer and Christian Pirchheim,

already mentioned further above, invested considerable effort in building and main-

taining the lab.

Chapter 2

Background and Related Work

The goal of this thesis is to design and develop interfaces and interaction techniques to

facilitate visual information management in emerging display environments. Similar to

the focus areas of this thesis, the discussion of related work will be separated into two

categories: visual information management (Section 2.1) and display environments (Sec-

tion 2.2). Finally, enabling technologies that facilitated the development of the research

prototypes in this thesis will be presented (Section 2.3).

2.1 Visual Information Management

This related work section will discuss two areas of visual information management: gen-

eral information presentation techniques, like multiple coordinated views, focus+context,

magic lenses, and cue-based techniques (Section 2.1.1), and window management (Section

2.1.2). Subsequently, collaborative aspects of information management will be discussed

(Section 2.1.3). The related work on visual information management will be finished with

a discussion (Section 2.1.4).

2.1.1 Information Visualization and Presentation

Carpendale and Montagnese [54] divide interfaces for visual access to information into

two components: representation and presentation. The representation component is re-

sponsible to map abstract data to a visual structure that can be displayed on the screen,

such as maps, charts, or graphs. The presentation component is responsible to display

the resulting image and to organize elements of interest. Interaction techniques, such as

panning, zooming, or applying visual distortion, lead to changes in the presentation. The

focus of this thesis lies on the second component: information presentation.

Information visualization is responsible for the visual encoding or representation of

data. Usually, this involves massive amounts of data, and the research field addressed by

an information visualization tool is mostly very specialized and narrow [103]. Card et al.

[53] define visualization as

21

22 Chapter 2. Background and Related Work

the use of computer-supported, interactive, visual representations of data to

amplify cognition.

With cognition, they refer to acquisition or use of knowledge. Examples of well-known

information visualization systems are Spotfire [2], prefuse [103], or Cerebral [16]. As this

thesis does not have information visualization as its primary focus, information represen-

tation techniques will not be discussed in more detail here. The interested reader should

refer to basic literature on information visualization (e.g., [53, 136]) for more details.

An important goal of information presentation techniques is to display large data sets.

Limiting factors for the display of these data sets are usually given by the screen real

estate problem [54] and by deficiencies of the human visual system or cognitive abilities to

distinguish between important and unimportant information [59].

A popular method to overcome these limitations is to put more emphasis on the in-

formation currently in the user’s focus, while compressing the context information to fit

to the screen. Cockburn et al. [59] distinguish the following interface types for separating

focus and context information:

� Spatially separated interfaces (overview+detail) show an overview and a detailed

view synchronously.

� Temporally separated interfaces (zooming) use (de)magnifying to separate views tem-

porarily, while keeping the views in place.

� Seamlessly integrated interfaces (focus+context) show focus and context views si-

multaneously – usually by employing geometric distortion.

� Cue-based techniques modify the rendering of focus objects or introduce proxies (e.g.,

text labels).

The purpose of these techniques is not necessarily limited to compressing information to

overcome limited space (or time) resources. For instance, spatially separated, coordinated

views can also be useful for comparison of different datasets or to allow for more diversity

by providing complementary details in each view [259].

In the following, we will discuss three interface categories for information in more detail:

multiple coordinated views, seamlessly integrated focus and context techniques, and cue-

based techniques. The fourth category mentioned above – namely zooming interfaces, like

Pad++ [26] – will not be discussed, as its relevance for this thesis is not directly given.

In addition, the benefit of zooming interfaces for visual information management has only

been demonstrated for small visual data sets [183]. For larger data sets, multiple windows

introduced a lower demand on the visual working memory.

Multiple Coordinated Views

Multiple coordinated views employ two or more visualization views for data investigation.

A wide-spread type of multiple coordinated views consists of exactly two views (dual-view

2.1. Visual Information Management 23

coordinated visualizations [62]), such as overview+detail, difference views, or world-in-

miniatures [227].

In contrast to simple uncoordinated display in multiple separated application windows,

an important aspect of multiple coordinated view applications is that information repre-

sentations and operations on the views are coordinated [199]. North and Shneiderman

[173] established a taxonomy of multiple window (or view) coordination, which distin-

guishes two dimensions: the basic user actions to be synchronized (i.e., selecting items

and navigating views) and whether the presented information is the same or different (but

somehow related) in two views.

Many information visualization systems rely on multiple coordinated views, for in-

stance LinkWinds [126], Improvise [261], or Caleydo [142], to name only very few exam-

ples. To overcome screen space limitations, individual views are sometimes perspectively

distorted, like the free-floating view planes in VisLink [61] or the “bucket” arrangement

in Caleydo [142] (Figure 2.1). Such view arrangements support information exploration

by exploiting the user’s spatial cognition, but introduce visual distortions to some views.

Figure 2.1: Caleydo [142] integrates multiple coordinated views in simple side-by-side or tabbed
arrangements and in the “bucket”. Visual links connect related elements in the bucket views.

North and Shneiderman [174] pointed out the strength of coordinated views for tasks

involving analysis of overview and detailed information on demand. Plumlee and Ware

[183] showed that multiple windows are more efficient than zoomable interfaces if the

number of items to be investigated is high and, as a consequence, the demands on visual

memory are high. Wang Baldonado et al. [259] set up rules for multiple view usage and

recommend the employment when the information can be represented in diverse ways (like

24 Chapter 2. Background and Related Work

overview+detail), if multiple views illustrate correlations, or if complex data can be split

into smaller, easily manageable chunks. They also pointed out the importance of making

the relationships among multiple views apparent to the user.

Typically, multiple coordinated views are embedded into a specialized information

visualization framework. The framework is responsible for the coordination of the rep-

resentation and user operations. This is a main distinguishing aspect between multiple

coordinated views embedded into a visualization framework and multiple sources of infor-

mation displayed by different applications in separate windows on the desktop: Operating

systems treat individual application windows independently without coordinating their

content, their visual representations, or visualizing correlations across multiple windows.

Stone et al. [228] address this issue theoretically when discussing software architectures

for dynamic queries across applications: A standard language for a rich object description

for applications with specific semantics is required. In addition, modifications to low-level

graphics libraries would be necessary to alter the appearance of application content in a

unified way.

As a first step towards this vision, Snap-Together Visualization [174] treats conven-

tional application windows as multiple coordinated views by “snapping together” visual-

ization views by different applications. Snapped applications provide mechanisms such

as synchronized highlighting and scrolling. Highlighting is accomplished by the specific

applications. Thus, no visually consistent synchronized highlighting is available.

Focus+Context and Magic Lenses

In information visualization, focus+context techniques are well-established to allow for a

large overview integrated with details without spatial separation. A focus area – which is

usually movable – is surrounded by a context area, which is often compressed or distorted

(e.g., Fisheye views [85], the Perspective Wall [147], or the Document Lens [203]).

Instead of distorting views on a small-scale display, others facilitated special display

arrangements to seamlessly integrate high-resolution focus information with low-resolution

context. The focus+context screen [21] surrounds a high-resolution monitor with a low-

resolution projection. Similarly, Escritoire [8] superimposes a low-resolution tabletop pro-

jection with a high-resolution inset. In contrast to these static insets, PixelFlex [266] and

foveal inset [224] use a pan-tilt projector unit to achieve a movable, high-resolution fo-

cus area within a lower-resolution large-scale projected display. A comparative evaluation

showed that using a focus+context screen increases performance and reduces error rates

compared to zoom and pan and overview+detail interfaces on single and dual monitor

settings, respectively [20].

In contrast to the above mentioned focus+context techniques, magic lenses do not have

a continuous transition between a focus and a context region, but rather apply a hard

boundary between the conventional view and a filtered representation. Magic lenses were

initially described as movable visual filters that change the representation of the underlying

2.1. Visual Information Management 25

data [38]. They can be used as virtual magnifying glasses, to reveal hidden information

by showing an in-place complimentary view [228], or to filter the data representation by

dynamic queries [77]. As magic lenses do not have a continuous transition between focus

and context, Cockburn et al. [59] do not consider magic lenses as seamlessly integrated

views. They argue that magic lenses actually apply a spatial separation on the z-axis

and therefore assign magic lenses to spatially separated interfaces, like overview+detail or

multiple coordinated views.

The operation of the magic lens was initially designed for the non-dominant hand,

while controlling the cursor with the dominant hand [38]. To ease interaction, many in-

vestigations concern the embodiment of magic lenses through physical objects and tangible

interfaces. Ullmer and Ishii [247] distinguish active and passive tangible lenses for their

metaDESK : Active lenses are self-contained, tracked display devices. In the metaDESK

environment [247], the active lens was represented as an arm-mounted flat-panel monitor,

which shows 3D geographical information augmenting the 2D map displayed on the table.

In Ubiquitous Graphics [210], the user can get a more detailed view of a projected map

by holding a tablet PC in front of the projected display. While this basic functionality is

similar to a dynamic focus+context screen, the user can use the tablet PC also as input

device to add annotations or virtual objects to the map. The high-resolution display and

the possibility to provide input, if using a PDA, tablet PC, or cell phone, are advantageous

features of active magic lenses. However, active magic lenses have the disadvantage that

they are more expensive and fragile, compared to passive lenses.

Passive lenses are tracked props without display capabilities, which alter the appear-

ance of a larger scale display within its boundaries. For the metaDESK [247], the passive

lens is a transparent item which modifies the view of a map displayed on the tabletop sur-

face. Spindler et al. [222] use non-transparent tracked cardboards (Paper Lenses), which

are augmented by a front projection system, in combination with a rear-projected table-

top display. They introduced several tangible magic lens interaction techniques, such as

free exploration of a volumetric space, as well as exploration of layered, zoomable, and

temporal information spaces. For information visualization, they use tangible views for

multiple view visualization and lens techniques [223].

Cue-Based Techniques

Cockburn et al. [59] established two categories of cue-based techniques: visual cues to

highlight the focus objects and cues for visualizing off-screen locations.

Selections in individual views are traditionally expressed through conventional high-

lighting or color-coding. As an example, refer to the bottom views in Figure 2.1: the

selected data set is color-coded in yellow in the parallel coordinates plot, framed in the

heatmap, and the label of the data set is shown in the info bar on the left. As the

views are coordinated, a user selection in one view is propagated to all the other views

– an interaction technique which is usually referred to as brushing [154] in information

26 Chapter 2. Background and Related Work

visualization.

A few systems use more expressive highlighting mechanisms to show the relationship

of selected items across multiple views. Spiral calendar [148] indicates the relationships

among multiple calendar hierarchies through half-transparent connections. Shneiderman

and Aris [218] link categories of network visualizations to another. To avoid visual clutter,

the user can filter the number of links by dynamic queries. In VisLink, Collins and

Carpendale [61] visualize the relationships of heterogeneous 2D visualizations arranged

in 3D space through multiple edge connections. They argue that these edge connections

help to reveal relationships, patterns, and connections between views. Lex et al. [142] use

visual links to show dependencies between 2D pathways (models of biological processes)

and gene activities in their “bucket” (cf., Figure 2.1).

Off-screen visualizations should help the user to discover – or even navigate to – in-

formation located outside the display region. This is a very common problem for visual-

izations on small-scale displays, such as handheld devices, where the amount of available

screen space is very low. Halos [23] were developed for map interfaces on handheld devices.

Halos are circles rendered around off-screen locations. The size of the circles is chosen so a

small portion of the ring is visible at the display boundary. Thus, the location of the visi-

ble ring portion and its curvature inform the user about the location of the off-screen item

and its approximate distance. City Lights [269] are 2D objects arranged along window

boundaries, which indicate the existence, size, distance, and other properties of interest

of clipped information. Irani et al. [118] combined Halos with a teleportation mechanism

called hop to allow for easy recognition and navigation to off-screen objects.

2.1.2 Window Management

Card et al. [51] define a window as

a particular view of some data object in the computer.

Windows can contain various types of visual information, such as text, images, charts, or

videos [162].

Having multiple windows allows the user to interact with multiple sources of infor-

mation simultaneously. A window manager is responsible to separate different contexts

physically onto different parts of one or more display screens [162]. However, it is not re-

sponsible for the representation of the information contained within its boundaries. Card

and Henderson [52] therefore use the term placements as description of the visual presen-

tation of the window on the screen. It consists of a reference to a window and its content,

a location, shape, and presentation attributes, like whether the window border has drop

shadows. The advantage of this approach is that the application’s visual output and the

mapping on the display is conceptually separated. However, this notation is no longer

used in today’s window managers.

Card et al. [51] distinguish four types of window system designs:

2.1. Visual Information Management 27

1. simple TTY (“teletypewriter”) windows, with single-direction scrolling and com-

mand input on the bottom of the screen,

2. time-multiplexed windows, where one window is visible at a time and new content

can be revealed by scrolling or flipping between frames consecutively,

3. space-multiplexed windows, where multiple windows are shown concurrently on the

screen, either separated along one or two dimensions, or by 2.5D arrangements,

where windows can partially overlap, and

4. non-homogeneous windows, where the level of detail within a window or across

multiple windows can change by zooming or fisheye techniques.

Space-multiplexing is the most wide-spread design of today’s window managers – except for

very small handheld devices, where time-multiplexing is more common. Space-multiplexed

windows can be roughly divided into two categories [162]:

1. covered (or overlapping) windows and

2. tiled windows.

In the following, there will be a presentation of overlapping windows (in particular with

respect to window switching) and tiled window managers, as well as hybrid techniques.

In addition, depth-multiplexed windows and other window management approaches will

be shortly discussed.

Overlapping Windows

Overlapping windows are the standard approach to modern window management. They

correspond to the category of 2.5D space-multiplexing introduced by Card et al. [51],

where windows have an (x, y) position on the two-dimensional screen space and a unique

z-value, defining its depth order in the window stack. The z-value is usually assigned by

its recency of use, leaving recently used windows on top of the stack and windows unused

for a long period of time buried on the bottom.

One of the first computing systems using overlapping “windows” was the Smalltalk

system by Xerox PARC [89] (1979). In the Smalltalk system, views had similar properties

as our current windows [89]:

The display screen contains one or more rectangular areas called views. The

views are displayed on a gray background and may overlap. Each view has a

title shown at its upper left corner.

The window concept has later been adapted by Xerox Star [132] (1981), Apple’s Lisa

(early 1980s) and Macintosh (1984), and Microsoft’s Windows (1983).

To bring an occluded, or partially occluded, window to the front, window managers pro-

vide window lists, sequential window switching techniques (such as the temporal Alt+Tab

28 Chapter 2. Background and Related Work

sequence), or space-filling window layouts (such as Apple’s Exposé∗). Gaylin [87] observed

that the most frequent activity in early window managers was cycling through windows.

Moving and resizing windows was rather conducted at the beginning of the interaction ses-

sion (during the task environment setup activity [135]), and the thereby created window

layout remained largely unchanged during the session. However, cycling through windows

using Alt+Tab window switching has been described as tedious by many users [91].

Therefore, when users have sufficient screen space, they “carefully coordinate” their

windows to keep a small portion of occluded windows visible [113]. This way, they can

directly select a partially obscured window by clicking onto its visible area and thereby

circumvent explicit window switching, such as Alt+Tab. Bi and Balakrishnan [32] observed

that, especially when working with very large displays, users spend a significant amount

of time resizing and moving windows, as opposed to small-scale displays, where windows

are often simply maximized to select. But despite this increased window management

overhead, users overwhelmingly preferred working with a large display.

To ease the switching between layers of windows, more advanced switching interfaces

have been created. For instance, Faure et al. [75] group non-overlapping windows to

common z-layers and provide a crossing-based interface to quickly select another window

layer. Tak et al. [236] found out that spatial consistency of window switching interfaces is

more important than recency-based consistency. Their space-filling tree-map [131] window

switching interface therefore considers the spatial history and frequency of use when laying

out the windows on the screen [235].

Others group windows by assigning them to different tasks. Switching between tasks

brings a new set of windows to the screen. One of the first examples of a task management

system was Rooms [70]. Each virtual room contains a set of windows, and virtual doors

connect these rooms. The principle was adopted by virtual desktops, which is a standard

feature of many Linux desktop environments. Another prominent example is Scalable

Fabric [201], where the screen is partitioned into a central focus area and a peripheral

context area. In the focus area, windows are treated as conventional overlapping windows.

By dragging windows into the periphery, they are scaled down. Users can drop them onto

existing piles and thereby create tasks consisting of multiple windows. Clicking on such

a task restores all contained windows to the focus region. Similarly, Task Gallery [202]

assigns windows to tasks and displays them on different surfaces in a virtual room. The

primary task is displayed on the “stage”, where windows are arranged in a conventional

overlapping fashion. As the user “backs up” from the stage, the peripheral walls are shown

and she can navigate to adjacent rooms.

In these examples, the user has to assign application windows to the tasks manually.

Techniques to assign windows to tasks automatically have also been explored, for instance

by analyzing the switching history and comparing window titles [175].

∗http://www.apple.com/macosx/what-is-macosx/expose.html

2.1. Visual Information Management 29

Tiled Windows

Tiled window managers arrange windows side-by-side without overlap. Simple tiled win-

dow managers arrange windows in one dimension only, while more sophisticated ones sup-

port 2D grids, constraint-based tiling [60], or hierarchical setups [135]. Bly and Rosenberg

[43] compared tiled and overlapping windows in a user study. Their results showed that

users performed a decreased amount of window management operations with tiled win-

dows and that handling overlapping windows required a higher level of training. However,

most users preferred overlapping windows to tiled windows.

Tiled window managers have the advantage that the user does not have to resize and

position windows manually to fill the entire screen space. It assures that no space is

left empty and leads to a decreased amount of manual window management operations.

However, especially on small-scale displays, a tiled window manager has to resize or even

close certain windows to avoid overlap. Automatic down-sizing introduces the risk of

clipping important content at the window’s boundary. Miah and Alty [157] overcome this

issue for document editors: when scaled down, they visually highlight the most important

document keywords to support the users in window recognition. For such an approach,

the window manager requires access to the window’s application content.

Hybrid Tiled-Overlapping Windows

Strictly tiled windows do not play an important role in modern window managers any

more. Tiling is merely a semi-automatic feature in many window managers today, where

overlapping windows are automatically positioned and resized to allow for quick side-by-

side comparison without tedious manual arrangement. For instance, in Windows XP, users

could select windows to be tiled vertically or horizontally in the taskbar. In Windows 7,

the user can drop windows at the window boundaries to maximize them to the half of the

screen. In the Grid plug-in† of the Compiz window manager (cf., Section 2.3.1), users can

employ keyboard shortcuts to move and resize windows into a regular grid. In all these

examples, windows are placed and resized without considering their content.

To reduce the risk of cropping important elements of application windows, Snipped

Windows [114], and Window Clips [155] only show the most relevant regions of context

windows (i.e., windows which are providing background information and do not currently

hold the user’s input focus). These cropped window regions are arranged at the screen

periphery – either as conventional overlapping windows [114] or in a sequential list [155].

Thereby, the majority of the screen space can be left to the focus window(s) while main-

taining important elements of peripheral windows. Similarly, WinCuts [238] are small,

freely movable windows containing a copy of dedicated screen content for easier visual

comparison and manual arrangement of relevant content. User interface façades [232] al-

low for re-configuration of certain user interface elements (e.g., buttons) or other arbitrary

†http://wiki.compiz.org/Plugins/Grid

30 Chapter 2. Background and Related Work

window regions into a new parent window – the façade. However, in these systems, the

user has to define the relevant regions manually, which can be a tedious task.

Other hybrid techniques between strict tiling and overlapping windows are systems that

re-locate or resize windows semi-automatically. One example is overlap-avoiding dragging

[27], which relocates windows after a dragging operation to avoid overlaps. The authors

presented two possibilities of overlap-avoidance: either the window being dragged snaps

to the closest empty location after releasing or the windows being covered by the released

windows are relocated. The optimal window layout is calculated by consulting a dynamic

representation of 2D space, consisting of full-space rectangles (i.e., application windows or

other user interface elements) and empty space (i.e., the desktop background). Badros et

al. [10] presented a constraint-enabled window manager, where users can manually define

a set of constraints on windows, which are evaluated to create an optimal window layout.

For instance, a user can bind a window to another window’s edge or restrict a window’s

size or distance to a screen edge. In both examples, a sufficiently large screen is required

to accommodate for all the non-overlapping windows.

Other techniques change the window layout only temporarily in certain situations.

Chapuis and Roussel [56] fold or roll partially occluding windows away if the user selects

text in an occluded window for copy-and-paste. Occlusion-aware interfaces [251] relocate

user interface elements (or windows) when a physical occlusion on a pen-based system has

been detected.

Except for manually cropped windows [114, 155, 238], all of the above mentioned

window management techniques treat windows as simple rectangular shapes – irrespective

of their content. This does not leave much room for (semi-)automatic window layout if

the screen is cluttered with a large number of windows.

Depth-Multiplexing

As an additional window management category to space-multiplexed windows and time-

multiplexed windows introduced by Card et al. [51], Harrison et al. [98] include depth-

multiplexed windows. They are based on the idea of see-through user interfaces, initially

introduced by Bier et al. [38]. Depth-multiplexed windows use transparency to reveal the

content of the obscured windows in an overlapping window interface. However, experi-

ments of transparent dialogs over 3D objects [99] and images [22] have shown that simple

alpha blending either causes readability problems with the dialog items or decreases the

perception of the background image – depending on the chosen alpha level. Outlines of

text and icons [98] or multiblending [22] have been shown to improve recognizability of

blended content.

In a window management environment, Zanella and Greenberg [268] apply trans-

parency only if window regions owned by different collaborators overlap. Ishak and Feiner

[123] apply free-space transparency only to “unimportant” window regions. They define

unimportant regions as those with white pixels. This guarantees that “important” con-

2.1. Visual Information Management 31

tent in top-level windows is preserved, while unimportant regions can be used to reveal

obscured content.

None of these techniques guarantees that important content in occluded windows or

views are actually revealed. If important content in the occluded window is located un-

derneath the important window regions of the overlay item, the user has to manually

re-arrange windows or menus to access hidden content.

Other Window Management Approaches

This section shortly discusses window management techniques that do not apply any spa-

tial or task-based organization, such as time-based interfaces or physics-based interfaces.

Time-based interfaces allow users to manage windows based on a history. Time-

machine computing [194] is a history approach to file management. WindowScape [242]

extends this concept to window managers: each time the user re-arranges a window, a

snapshot of the environment is created, which the user can re-instantiate at any time.

Mnemonic Rendering [31] buffers individual pixels in (partially) occluded windows and

replays the changes of a pixel in high speed, if it becomes visible again. The aim of this

technique is to help the user perceive and understand invisible content changes.

Other window managers aim at physical realism. Beaudouin-Lafon [25] introduced

window stacks, a paper-like presentation technique, where overlapping windows are rotated

and peeled back to reveal regions of underlying windows. BumpTop [1] uses physics

simulations to organize desktop icons and windows on a virtual desk. Users can create

piles, leave through items, or fan out their desktop items on the virtual desk surface. Paper

Windows [109] is a tangible window manager, where individual windows are attached to

deformable, rectangular objects, similar to physical paper. Different physical window

manager operations were introduced.

2.1.3 Collaborative Information Management

Almost all of the information management techniques presented in this section were de-

signed for individuals. However, deriving knowledge from a wealth of complex information

sources and making decisions based on this knowledge is a task where teams are superior

to the individual [104].

A typical collaborative work style observed when dealing with problem solving in

teams is mixed-focus collaboration [94]. These mixed-focus situations comprise times of

close collaboration (tight coupling), as well as times when people work individually (loose

coupling) [208]. In a co-located setting, there is frequent switching between those work

styles [74, 94, 122, 240]. Basic operations of teamwork have been summarized in the me-

chanics of collaboration [95, 179]. The mechanics are divided into the general categories

communication and coordination, and describe operations team workers have to accom-

plish to complete a collaborative task. Examples are spoken and gestural messages, basic

awareness, obtaining, reserving, and protecting resources.

32 Chapter 2. Background and Related Work

In the field of computer-supported cooperative work (CSCW), numerous groupware

applications have been presented for collaborative information search, browsing, and anal-

ysis. Groupware is usually categorized along the time and space dimensions (cf., [11]): it

can support synchronous or ansynchronous communication (time), as well as one meeting

site or multiple meeting sites (space). The collaborative aspects discussed in this thesis

will concentrate on synchronous, co-located collaboration, i.e., a single meeting site where

multiple collaborators are present at the same time.

Examples for synchronous, co-located groupware for information management range

from collaborative picture galleries [158], web search [3, 246], tree comparisons [120], text

analysis [121], and graph visualization [119], to more general data visualization in multiple

coordinated views [243]. An important aspect of collaborative information management

is that experts from different fields may prefer different information representations based

on their field of expertise, subjective preferences, and role within the examination process

[104]. Wang Baldonado et al. [259] therefore state in their “rule of diversity” that multiple

coordinated views should be employed if users from different fields collaborate. On the

other hand, Heer and Agrawala [102] outline the importance of sharing the same visual

environment to establish “common ground”. Convertino et al. [63] therefore proposed a

single team view and role-specific views for each team member to ease the group analysis

task. In Lark [243], users can “branch” coordinated views from a shared visualization

pipeline, connected to a common data source. In contrast, Tang et al. [240] as well as For-

lines and Shen [81] demonstrated systems providing each user with tools for personalized

filtering of a single shared view.

In most of the above listed examples, collaboration support is guaranteed by using

special-purpose collaboration-aware software tools. Mostly, these groupware applications

are self-contained developments. In contrast, Isenberg et al. [119] showed that existing

visualization software can be “retro-fitted” for multi-user interaction – for instance by

rendering multiple color-coded mouse cursors within the application. Forlines et al. [79]

presented a wrapper for Google Earth to support multi-user input, viewport synchro-

nization across multiple instances, and annotations, without changing the application’s

core implementation. Yet, applications themselves must be modified for collaboration-

awareness. As a consequence, these applications cannot easily be combined with other

groupware applications for a fluid information exploration process.

An early vision of the field of CSCW was to use existing single-user applications in

collaboration-aware windowing systems instead of special-purpose groupware applications

[140]. First steps towards this vision have been undertaken by providing multi-input

support in conventional operating systems (e.g., multi-cursor window manager [254] or

multi-pointer X [115] – cf., Section 2.2.4). These solutions allow multiple input devices

to control distinct application windows concurrently. However, they cannot coordinate

multi-user input on a single application window if the application itself is not multi-pointer

aware.

Window management techniques tailored to collaborative information management

2.1. Visual Information Management 33

are scarce. The primary objective of window management techniques specifically designed

for multi-user interaction is to coordinate multi-user activities and to reduce interference.

Zanella and Greenberg aim to reduce interference in window interfaces by dynamically ap-

plying transparencies if an interface component raised by one user occludes active elements

by another user [268]. Shoemaker and Inkpen eliminate interference using single-display

privacyware [219] which separates the output channels for two users operating on the same

display. Therefore, they can super-impose personalized information, which cannot be seen

by the other user. Morris et al. [159] presented a set of automated multi-user coordination

policies for resolving conflicts on tabletop displays. Although the coordination policies

were discussed conceptually for arbitrary documents, they could be implemented by a

window manager. Hutterer and Thomas [115] allow users to lock individual application

windows to prevent other users from interacting with their content. On the public dis-

play of Dynamo [125], users can define private screen regions inaccessible to other users.

Tsandilas and Balakrishnan [244] categorize techniques for reducing spatial interference

on single-display groupware into three categories: shared screen but individually locked

elements, split screen with private screen regions per user, and layers on the z-axis, where

interference is reduced by transparency. Results of an experiment showed that the last

category achieved the best performance.

Other collaborative window manager or display space management techniques help

multiple users to arrange their shared information for easier comparison. In WeSpace

[264], users can lay out remote desktop windows on a shared display wall using a dedicated

layout manager or LivOlay [127], which overlays spatially registered windows for easier

comparison. WinCuts [238] allows users to “cut out” regions of windows and to freely

move these regions like separate, small windows. In this way, relevant information from

multiple sources and users can be arranged more efficiently.

2.1.4 Discussion

To summarize the related work and background of visual information management, a brief

discussion will outline the most important aspects with respect to this thesis: the con-

ceptual differences between multiple coordinated views and application windows, window

management beyond the box, and window management beyond the individual.

Multiple Coordinated Views vs. Application Windows

Multiple coordinated views and window managers are conceptually very similar: They

show information in separate areas of the screen and the user can manage the spatial

arrangement of these information containers. In both areas, information presentation

techniques have been introduced to minimize the screen real-estate problem. For instance,

the Perspective Wall [147] was an archetype for the window and task management system

Task Gallery [202], and similar to the windows attached to the virtual walls in the gallery,

34 Chapter 2. Background and Related Work

views are attached to the sides of the bucket in the multiple coordinated view system

Caleydo [142] (Figure 2.1).

In fact, considering the framework for a unifying presentation space of Carpendale and

Montagnese [54], the input for the presentation space is a texture-mapped surface. Both,

self-contained multiple coordinated view systems and window managers can handle their

individual views or windows, respectively, as texture-mapped surfaces. Until recently,

treating windows in such a generalized fashion was rather tedious (cf., [249]). However,

modern 3D compositing window managers (cf., Section 2.3.1) allow user interface designers

to access windows in such unified way: as textured quads in a 3D environment. Presen-

tation operations and interaction techniques can either be applied on selective windows

or views individually, or on the resulting desktop image or information space as a whole.

In this way, image-based presentation and interaction techniques, such as geometric de-

formations (e.g., fish-eye distortions [85]), appearance modifications (e.g., transparencies),

layout optimizations of individual elements, or visual cues rendered on top of the output

image, can be easily applied within the window manager – just like within a multiple

coordinated view system.

A limitation of window managers, compared to self-contained multiple coordinated

view systems, is the inability to access semantic information from the individual applica-

tions. Cue-based focus and context techniques (e.g., [61]) or dynamic queries (e.g., [228])

cannot be implemented without further semantic information from the applications. A

system infrastructure like Snap-Together Visualization [174] can serve as a foundation for

semantic information exchange.

Visual links across applications presented in this thesis (Section 8.1) lend ideas from

multiple coordinated view systems for advanced window management. A simple applica-

tion coordination mechanism (similar to Snap [174]) manages user selections in different

application windows (Section 7.2.1). The focus of this work lies in the visual coordination:

an explicit and unified highlighting mechanism visually connects related items contained

in different application windows on the desktop.

Window Management beyond the Box

With the access to window textures through the use of compositing window managers, we

cannot only apply geometric or image-based transformations, like fisheyes [85]. We can

also access and manipulate the visual window content by analyzing and modifying their

textures. But window management techniques operating on a pixel level are still scarce:

some transparency techniques (multiblending [22] and free-space transparency [123]) and

mnemonic rendering [31] are notable exceptions. Classic window manager tasks, such as

window switching interfaces or window layout techniques do not consider the visual window

content for determining important or unimportant window elements. Thereby, valuable

screen space is wasted for potentially unimportant information, while important elements

may be hidden behind application windows or cropped by the window boundaries.

2.1. Visual Information Management 35

In this thesis, examples for window management beyond the box to facilitate the dis-

covery of important information will be presented. Importance-driven compositing window

management (Section 7.4) is a novel window management approach explicitly exploiting

the windows’ textures for an optimized spatial window layout. It analyzes the visual

window content and uses visual saliency [124] to determine perceptually important win-

dow regions (Section 7.2.2). The window layout engine then calculates a spatial window

arrangement that aims to preserve these important window regions. See-through com-

positing (similar to free-space transparency [123]) is employed to reveal occluded content.

To illustrate the usefulness of the technique, we present a new window management tech-

nique to improve the access to occluded content (uncovering windows in Section 8.2).

Window Management beyond the Single User

Today’s window managers are designed for a single user interacting with one input device.

Even if the underlying operating system provides multiple input streams (for instance by

using multi-pointer X [115]), window managers have to fulfill two important requirements

to successfully support multiple concurrently interacting users on the same display: co-

ordinating multi-user input by applying access restrictions and coordinating the visual

information associated with different users. As some authors consider system-imposed

access coordination as too restrictive and argue that social protocols are sufficient to ne-

gotiate access control (e.g., [72, 90]), the second requirement can be considered as the

more relevant one.

Existing visual coordination techniques on window manager level, such as dynamic

transparencies of overlapping windows [268], channel separation techniques [219], or semi-

automatic layout of collaborators’ remote desktop windows [264] reduce interference but

do not support users in other mechanics of collaboration [95], such as workspace awareness

or gestural referencing. Systems supporting a rich set of communication and coordination

mechanics are usually embedded into special-purpose applications. This way, user-specific

selections can be synchronized or highlighted across multiple views, findings can be col-

lected and prepared in a consistent manner, and shared views can be individually filtered.

In this thesis, multi-user coordination techniques requiring no or very limited mod-

ifications of legacy applications on window manager level are presented. Collaborative

information linking facilitates user-specific visual links across applications to afford visual

coordination. Multiple single-user applications can contribute to a shared information

analysis task by providing user-specific visual feedback and a shared visual context on

public application windows (Section 8.1). Optical magic lenses are low-cost, tracking-less

magic lenses exploiting properties of polarized light to switch between two information

layers – completely transparent to the application. In this way, users can filter a shared

view with a passive magic lens without changing the application’s visual output (Section

8.4).

36 Chapter 2. Background and Related Work

2.2 Display Environments

There are numerous reasons why users prefer the usage of large displays or multiple displays

to a single small-scale display. In the following, a few of these reasons are listed:

Overcoming the screen real estate problem. The most obvious reason why users

prefer larger displays with a higher number of pixels is the fact that more information

can be displayed simultaneously if more pixels are available. Even though a larger

amount of physical navigation may be required to explore a large, high-resolution

information space, users can perform an information analysis task on a large display

faster than on a small display with panning and zooming [14]. In particular, if

users have to perform a cognitively demanding task, having a large display increases

performance [69] and subjective satisfaction [4].

Partitioning the information space. If a lot of display space is available, users do

not necessarily clutter all the available space with focus information. They rather

explicitly facilitate physical discontinuities for partitioning their information spaces.

A primary display is employed to show focus information, while a secondary display

shows supportive applications [91]. On a single large-scale display, users implicitly

create spaces for storage [215], windows or icons acting as reminders [113], clusters

and piles of windows [4], as well as focus and surrounding context regions [32].

Enabling multi-user interaction. A large, high-resolution workspace is required if a

lot of information in personalized visual encodings is displayed concurrently [120]. It

is also crucial for users to establish their personal territories and to coordinate their

activities [245]. However, multi-user interaction is not only restricted by the limited

visual output on a small-scale display, but also by the physical space in front of the

display. With large-scale displays, multiple users can view and operate a shared

information space simultaneously without major distractions. As different display

form factors enable different collaboration styles (cf., [74, 117, 152, 204]), multiple

displays of various form factors are often combined into a common interaction space.

However, large displays and multi-display environments also lead to new challenges in

terms of user interface and interaction design. Robertson et al. [200] and Czerwinski et al.

[68] list a number of usability issues arising from large monitor interaction, such as losing

track of the cursor, accessing distant information, window management problems (e.g.,

popping up windows at unexpected locations), multi-tasking problems, and insufficient

support for peripheral activities. Swaminathan and Sato [234] list the difficulty of locating

items of interest on a display scattered with information as one of the most important

challenges. In collaborative settings, typical problems on large, shared displays are the

inability to track other users’ cursors [264] and gesturing to distant display locations

[101, 119, 204].

2.2. Display Environments 37

In multi-display environments, having physical discontinuities across multiple displays,

such as size-resolution mismatches and large physical gaps, leads to additional problems.

These discontinuities cause navigation difficulties [18], segmentation of visual information

[146], and visual inconsistencies of displayed information [169]. For collaborative infor-

mation management, studies have shown that coordination of access to shared resources

is decreased [258] and workspace awareness is generally lower [152, 204] if activities are

distributed across multiple displays.

Another aspect of large displays and multi-display environments is the hardware and

software infrastructure. Many user interface prototypes for such display environments rely

on dummy applications or special-purpose tools. Large-scale displays are often created by

careful manual adjustment of the individual projectors, or by combining multiple monitors

to a large matrix. The latter approach introduces physical bezels that interfere with a

seamless information display.

In the following, evidence on the effects of display factors on interaction and collabo-

ration collected in related research will be presented (Section 2.2.1). Then, the design and

creation of large-scale displays will be discussed (Section 2.2.2), followed by a presentation

of multi-display environments (Section 2.2.3). The literature review will be concluded by

a section on middleware (Section 2.2.4) and a discussion (Section 2.2.5).

2.2.1 Effects of Display Factors on Interaction and Collaboration

With the wide-spread adoption of projectors, new display form factors and display arrange-

ments have emerged. In contrast to the rise of very small, handheld devices, projected

displays are usually stationary, larger than conventional monitors, and located at a dis-

tance from the user. In addition, the low cost of display hardware made a large number of

high-resolution monitors available to the end user, often employed in the same environment

as projected displays.

Several researchers have demonstrated a productivity benefit for users when working

on large, vertical displays. Czerwinski et al. [69] pointed out the strengths of large displays

for cognitively demanding tasks. Ball and North [14] observed that tiled, high-resolution

displays increased performance of users in a visualization task, compared to single moni-

tors where users had to pan and zoom to access all information. Bi and Balakrishnan [32]

demonstrated that users appreciated tiled, high-resolution projected displays with seam-

less imagery, although window management support proved to be sub-optimal for such

a display configuration. Andrews et al. [4] observed the usage of large display space as

external memory to support a sensemaking task. On the other hand, Forlines et al. [82]

showed that individuals had a better performance in a visual search task when using only

a single monitor. Adding complimentary views (identical but rotated views) to multiple

displays lead to a performance decrease while not improving the error rate.

In collaborative environments, display form factors diverging from the conventional

vertical screen are increasingly common. The physical affordances of a display – such

38 Chapter 2. Background and Related Work

as its accessibility, visibility, shareability, and directness of interaction [204], as well as

its location within the environment [177] – implicitly suggest a function and role. There

have been numerous observations of co-located collaboration around displays of various

form factors. For instance, it has been demonstrated that mixed-focus situations (cf.,

Section 2.1.3) are particularly well supported by tabletop displays [74, 215]. On the

other hand, tabletop displays suffer from representation ambiguities caused by the seating

arrangements of the users [263, 265].

Conversely, wall displays provide a convenient shared view for all participants. Re-

searchers suggested to employ wall displays for comparison tasks and presentations [74],

group information [152], overviews [117], and peripheral information [143]. When inter-

acting with vertical displays, a more asymmetrical group interaction emerges compared

to tabletop interaction [74, 152, 204]: Often, a single user takes control while the others

act as passive observers. However, others have shown that asymmetry can be overcome

by facilitating multiple concurrent input devices and sufficient space to establish personal

territories for uninterrupted work [41, 245, 246]. Another distinguishing aspect of wall

displays concerns the distance of the users: often, users are located farther away from

the display compared to tabletop displays. Observations have shown that users had more

problems resolving physical gestures towards the display when located far away from the

screen [101, 119, 204].

Several researchers recommended introducing smaller personal display spaces for in-

dividual work [74, 152, 214, 240]. Observations showed that multiple displays caused a

better coordination of distributed work [204] and a more equitable task workload [117].

However, when users do not have a shared (public) view, it becomes difficult to maintain

awareness of each other’s actions [94, 152, 204] and to discuss and share ideas [117]. Even

when sharing a common view on a large public display, an increased amount of coordi-

nation problems compared to single-display groupware [226] has been observed, due to

decreased awareness [258].

Multiple displays are not only advantageous for multi-user interaction. Grudin [91]

and Ringel [198] found that users explicitly facilitated the physical separation afforded

by multiple monitors to divide their tasks into focus activities and peripheral activities,

as well as for document comparisons. However, Hutchings and Stasko [113] pointed out

deficiencies of current window managers with respect to multi-display settings.

2.2.2 Large Displays

Large displays with a high resolution are often created by combining multiple monitors

to a large multi-monitor matrix (e.g., [13, 14]). However, such a multi-monitor matrix

suffers from a large number of bezels. Therefore, another approach is to use multiple

projectors to create a single seamless image. The discussion of large displays in this thesis

will focus on the creation of irregular and tiled projected displays, the content creation for

such displays, and a selection of interaction techniques for large displays.

2.2. Display Environments 39

Irregular and Tiled Projected Displays

Manually adjusting multiple projectors to create seamless imagery can be a tedious task.

Especially when building tiled displays in conventional office environments, the limited wall

and table space often restricts the usage of projected displays. The resulting images may

be distorted due to oblique projection angles. Overlap regions of non-uniform brightness

may result from improper projector alignments.

There are different solutions to calibrate projector-based displays to compensate for

keystoning effects and to provide uniform tiled displays automatically. Usually, one or

more cameras are employed to detect the display surface using structured light patterns.

There are different strategies of coded structured light, such as time-multiplexed codes

(e.g., binary gray codes), color encoding, or simple checkerboards [209]. The special class

of imperceptible structured light aims to make structured light patterns invisible to human

observers. In the Office of the Future [192], cameras synchronized with projectors capture

patterns projected at a single frame. In the subsequent frame, the projector displays the

complimentary image, so the light is effectively canceled for the human observer. More

recently, Cotting et al. [64] exploited mirror sequences of DLP projectors to embed binary

patterns into full-color images. Input color values are minimally adjusted to achieve the

desired mirror position (on or off) at a dedicated time frame, when the camera captures the

display. Another recent approach is to observe natural features in the projected imagery

in real-time for portable projectors [133]. With this approach, no specialized hardware or

hardware modification is required.

Based on the obtained camera images from the structured light process, two calibration

processes can be conducted [48]: geometric registration and photometric correction. In this

thesis, the photometric component will be neglected. An overview of existing techniques

can be found in [48].

A common approach to describe geometric registration for planar tiled displays is

to obtain camera-projector homographies – either using a single camera [191, 266] or

many [57]. In most cases, this homography-based approach is viewport-dependent, i.e.,

the geometric correction is applied from the camera’s perspective. In Pixelflex [266],

keystoning is compensated with respect to four fiducial markers manually placed on the

wall. Thus, the camera placement is more flexible.

If multiple projection images overlap, the recovered homography information can be

used to calculate regions where multiple projections overlap. To compensate for the in-

creased brightness in these overlap regions, intensity blending using linear ramps gradually

attenuates pixels in overlap regions to create a seamless imagery [191].

If the display surface is non-planar, there are two common approaches to geometric

compensation (cf., [40, 48]): In the stationary view-dependent case, a single camera –

ideally at the approximate viewer location – registers the imagery of a single projector

(or multiple projectors) on an irregular surface, and a per-pixel mapping or triangle mesh

(depending on the complexity of the surface) describes the individual pixels’ target loca-

40 Chapter 2. Background and Related Work

tions for an undistorted imagery (e.g., [39, 49]). In the dynamic view-dependent case, a

3D reconstruction of the projection surface is required, as well as (head-)tracking of the

viewer. In a two-pass rendering, the scene is first rendered from the user’s perspective and

then mapped onto the reconstruction of the projection surface using perspective texture

mapping with the projector’s projection matrix (e.g., [189]).

However, if multiple users want to view and interact with the projection concurrently,

such a view-dependent approach is not feasible. Raskar et al. [190] proposed the employ-

ment of the least squares conformal maps texture mapping technique [141] to achieve view-

independent projection on arbitrary surfaces. This technique provides a distortion-free

parameterization of developable surfaces with no angle-deformation and minimal stretch.

For non-developable surfaces, such as a projection spanning two perpendicular walls and

the floor, the algorithm aims at a minimal distortion. Displays thus appear like a wallpa-

per attached to the surface and are therefore particularly suitable for multi-user setups.

Johnson and Fuchs [134] combine view-independent and view-dependent elements on a

multi-planar cubicle setting.

Depending on the complexity of the surface, a fairly dense 3D mesh of the projection

surface is required. However, common indoor geometries usually consist of piecewise planar

surfaces, such as walls and tables. With a multi-planar representation of the surface,

corners can be modeled precisely while dramatically decreasing the density of the polygon

mesh. Quirk et al. [187] therefore fit planes into a fairly sparse point cloud reconstruction

of indoor walls. Ashdown et al. [6] describe piecewise planar projection surfaces by plane-

wise homographies.

Typical application areas for large projected displays are auditoriums or meeting rooms

(e.g., Princeton Scalable Display Wall [253], PixelFlex [266]). Irregular displays are often

employed for edutainment and entertainment (e.g., CAVE [66], Smart Projectors [39]),

but also for personal workspaces (e.g., The Office of the Future [192], Escritoire [8], or

Multi-Surface, Multi-Resolution Workspaces [134]).

Large Display Content Creation

Projector systems, such as described in the previous section, require the desired output im-

age to be corrected before being rendered. This may include geometric warping, blending

of overlap regions, and photometric correction. Most examples mentioned in the previous

sections use proprietary software for demonstrating their calibration results. They apply

the required image transformations directly onto a rendered 3D scene (e.g., [188]), use

designated fragment shaders (e.g., [40]), or employ a two-pass rendering approach (e.g.,

[189]). However, if arbitrary output from any application or the final desktop composition

needs to be corrected, the usual rendering pipeline has to be intercepted at some point to

acquire and modify the anticipated image.

One approach to acquire the desktop content as bitmap images in a separate application

is to facilitate tools like VNC [196] or Microsoft RDP. The primary purpose of these

2.2. Display Environments 41

applications is to send compressed desktop pixels from a server machine to a connected

remote computer. Thus, they are commonly used for tiled display setups in combination

with PC clusters, for instance in PixelFlex [266] or by Cotting et al. [64]. Whenever the

display is modified and a desktop repaint is necessary, image data needs to be transfered

from the graphics to the main memory, where warping and blending is applied by the

render application. This introduces a considerable overhead if the tiled display is operated

by a single machine, as for instance in the display bubbles infrastructure [65].

DeskAlign [255] uses a dual graphics pipeline infrastructure to render the unmodified

desktop on the first pipeline and then passes the pixels to the texture memory of the

second pipeline, where the image is warped. Thus, for running a two-projector display, a

quad graphics card is required.

Large Display Interaction Techniques

With the raise of large-scale displays, new user interaction challenges have to be addressed.

Robertson et al. [200], as well as Czerwinski et al. [69], list many of these challenges and

present new user interface prototypes to overcome these problems. Roughly summarized,

the identified problems evolve around window and task management (e.g., placement of

popping up windows, managing a large number of windows), information perception (e.g.,

tracking the cursor, perceiving distant information), interaction at a distance (e.g., ac-

cessing elements out of the arm’s reach), and the discontinuity emerging from combining

multiple monitors to a common interaction space. The issue of discontinuity will be dis-

cussed in more detail in the next section on multi-display environments (Section 2.2.3).

Task management techniques have been presented in combination with overlapping win-

dow management in Section 2.1.2. Window management techniques, which have been

designed in particular for large-scale displays (e.g., overlap avoidance [27] or occlusion-

aware interfaces [251]), were discussed in Section 2.1.2.

Research on perception showed that only a very small portion of the display is in the

active user’s visual field [260]. Thus, the user can easily miss important information on

the screen. A prominent example is that users cannot keep track of the cursor on a large

display [68, 200]. To better locate the cursor, motion trails have been added if the cursor

is moved very quickly [19], a spotlight metaphor was introduced, which dims the entire

display except for the area around the cursor [138], and cursors were visually anchored

to their “home” device when being redirected to an adjacent display [195]. Hoffmann et

al. [108] designed visual cues to guide the attention to the currently active window after

performing a window switching operation.

To facilitate the access and operation of information artifacts located at a distant

display location, several interaction techniques have been developed. They basically aim

to satisfy two requirements: being able to access items beyond arm’s reach when using

direct input devices and overcoming Fitts’ Law [78, 144]. Fitts’ Law predicts movement

times as function of the distance to a target and the target’s size. The index of difficulty

42 Chapter 2. Background and Related Work

(ID) describes targeting difficulty as logarithmic relation of the required travel distance

and the target width [144]:

ID = log2
2A

W
, (2.1)

where A is the movement distance (or amplitude, as inspired by Shannon and Weaver’s

theorem [216]) and W is the target width. For large displays, this index of difficulty implies

that acquiring targets generally requires an increased movement time due to the increased

number of pixels. Balakrishnan [12] investigated different interaction techniques aiming to

“beat” Fitts’ Law, by either reducing the distance to the target, expanding the (virtual)

width of the target, or applying a combination of both (i.e., dynamically changing the

control-display gain). Large display reaching techniques usually reduce the distance to

the target. Examples are Frisbee [137], a portal technique for interactive whiteboards,

drag-and-pop and drag-and-pick [17], which bring suitable proxies of distant icons close

to the cursor dragging an item, and Vacuum [30], which improved the drag-and-pop/pick

concept. The dollhouse metaphor [234] does not reduce the distance to a particular target

or screen region, but rather scales down the entire display to a small-scale navigation

space, where the user can control the large display. However, as the target size is reduced

together with the target distance, the index of difficulty remains effectively unchanged.

2.2.3 Multi-Display Environments

Multi-display environments (MDEs) combine multiple displays of various form factors into

a single interaction space. They may comprise conventional monitors, portable devices,

large wall displays, as well as tabletop projections. Examples of MDEs can be found in

control rooms (e.g., [241, 254]), meeting rooms (e.g., [129, 225]), or office environments

(e.g., [37, 192]). These application areas illustrate that MDEs are usually employed in

collaborative settings, often combining personal displays and large-scale public displays.

Only a few systems have been developed with single-user workspaces in mind (e.g., Kimura

[143]).

Mind that we consider discontinuity between the displays and heterogeneity of the

individual displays as criteria for an MDE, not only the combination of multiple display

devices into a common viewing and interaction space. Otherwise, conventional multi-

monitor settings, tiled displays (cf., Section 2.2.2), and focus+context screens (cf., Section

2.1.1) could be considered as MDEs as well.

Multi-Display Control and Input

By reviewing the literature on MDEs, four different viewing and interaction space ap-

proaches using multiple displays can be discovered:

Emulating a seamless interaction and viewing space. Systems of this category

aim to minimize the individual display factors by adjusting the viewing space to-

wards the user’s point of view. They aim to create the illusion of a seamless display

2.2. Display Environments 43

spanning across multiple surfaces, as, for instance, in a CAVE [66]. As an example,

E-Conic [169] perspectively corrects individual application windows to align with

the user’s field of view. Independent of the display the window is currently associ-

ated with, the window always appears to be floating in front of the user. As windows

are arranged on a virtual plane, they can also span multiple output devices, where

each device shows an oblique portion of the window. Conceptually, this category

aims to fulfill the same requirements as dynamic view-dependent projected displays

(cf., Section 2.2.2) – but additionally extends this concept to multiple discontinuous

displays.

Separate interaction and viewing spaces. These systems explicitly exploit individ-

ual display factors for showing appropriate information on distinct displays, as well

as providing suitable input techniques. For instance, in the iLAND system [230],

users can interact with a touch-sensitive table, a digital whiteboard, and tablet PCs

embedded into chairs. Tangible objects facilitate information exchange between

these displays.

Table-centric interaction spaces. Like in the previous example, visual information

is adapted to the individual display factors. However, input cannot be directly

issued at each display device and is rather provided from a central point. A tabletop

display serves as a hub to access information on the peripheral wall displays. Instead

of physically moving to the respective display, the user can remain seated at the

tabletop while controlling a remote display. For instance, Wigdor et al. [265] use a

central touch-sensitive table to control the entire environment. To access and transfer

information on other displays, miniature views of adjacent displays are shown at the

tabletop boundaries.

Personal device-centric interaction spaces. Similar to table-centric interaction

spaces, the user interacts with the entire environment using a single device – her in-

direct pointing device (such as the mouse) attached to her personal workspace (such

as a laptop or workstation PC). In contrast to table-centric interaction spaces, the

MDE infrastructure enables seamless interaction across all display devices without

physical movement of the user by facilitating indirect pointing devices. In contrast to

the first category, the viewing spaces are independent and separated. For instance,

in Augmented Surfaces [195], the users control a cursor “anchored” to the trackpad

of their notebooks. Moving the cursor beyond the notebook’s monitor edge extends

it to the underlying table and further to an adjacent wall display. Objects can be

relocated by “hyper-dragging” them across the display boundaries.

Table 2.1 shows a comparison of selected MDE systems with respect to the above

listed categorization. Example infrastructures are listed in chronological order, together

with their primary target application area and their input technique(s).

44 Chapter 2. Background and Related Work

Examples Application Area(s) Input Technique(s)

Seamless spaces E-Conic [169] not specified mouse [170]

Separated spaces CoLab [225] meeting room mouse (monitors), pen (wall)
iLAND [230] meeting room touch, pen (table, wall, tablets)
Kimura [143] single-user workspace mouse (monitor), pen (wall)
Interactive Workspaces [128] meeting room pen, touch (wall), mouse [129]
MultiSpace [74] meeting room touch (table, wall), mouse

Table-centric Table-centric spaces [265] meeting or control room touch (table)
WeSpace [264] meeting room touch (table)

Personal device-centric Courtyard [241] control room mouse
Augmented Surfaces [195] office mouse
multi-cursor X [254] control room mouse
Swordfish [96] not specified mouse
IMPROMPTU [37] office mouse
Deskotheque [181] office mouse

Table 2.1: Comparison of selected MDE systems.

As the MDE presented in this thesis (Deskotheque [181]) aims to extend personal

workspaces to a shared interaction space in an office environment, we do not discuss

the first three categories in more detail here. Also, as most other example systems in the

category of personal device-centric MDEs, we focused on mouse interaction as the primary

input technique. Therefore, alternative input techniques, such as touch-sensitive surfaces,

pen-based input, gesture-based input, speech-based input, or tangible user interfaces, will

not be discussed in this thesis. An overview on input techniques can be found in the

survey by Hinckley [106].

In our MDE, we treat the viewing space on multiple displays as discontinuous informa-

tion space. As in all of the MDE systems of the last three categories in Table 2.1, we employ

dedicated information sharing mechanisms to relocate information artifacts (e.g., applica-

tion windows) across displays. According to the taxonomy of multi-surface interaction and

visualization techniques by Shen et al. [217], this mode is called “independent”: Content

and user input is not coordinated across the surfaces, but content relocation across the

surfaces is possible. The other two modes presented in this taxonomy are “reflective” (all

surfaces show the same information) and “coordinated multi-view” (all surfaces share the

same data but with a different representation). The latter mode is especially interesting

for multiple coordinated views (cf., Section 2.1.1) operated in a multi-display environment.

As an example, Forlines and Lilien [80] employed multiple coordinated views of a protein

on a touch-sensitive table, two wall displays, and a tablet PC for fine-grained interaction.

As in a conventional multiple coordinated view system, changes in the point of view on

one view are propagated to the other views and displays, respectively. The appearance of

the views on the individual displays can be set independently.

Mouse Pointer Navigation in Multi-Display Environments

The most common approach to create a seamless interaction space in a personal device-

centric environment is to facilitate indirect pointing devices like the mouse. Mouse pointer

2.2. Display Environments 45

navigation techniques for MDEs thereby do not only need to assure efficient on-display

navigation, but also allow for redirection of input control across display boundaries. A

popular approach to achieve seamless cross-display mouse pointer navigation is derived

from conventional multi-monitor systems. Adjacent display edges are virtually connected

(or “stitched” [170]) to create static mouse pointer paths (e.g., Anchored Cursor [195],

PointRight [129], Swordfish’s bindings [96], or Synergy [212]). Whenever the mouse pointer

reaches a display edge, which is virtually connected to a remote display, input is redirected

to the associated target display.

MouseEther [18] additionally incorporates visual discontinuities introduced by monitor

bezels and display size-resolution mismatches into the device space. An experiment [18]

has shown that MouseEther decreased movement times if the size-resolution mismatch is

high. Perspective Cursor [170] extended this approach by evaluating mouse input events

from a tracked user’s perspective of the environment. Thereby, it additionally introduces

a non-uniform control/display (C/D) gain when navigating within a single display, caused

by perspective foreshortening, if the user is not sitting directly in front of the display.

The authors showed that a perspective control space could improve targeting tasks across

complex display arrangements, where an intuitive edge-to-edge mapping was not possible.

However, Nacenta et al. [168] later showed that warping the mouse across a physical

gap (i.e., redirecting the mouse directly to a target display when reaching a virtually

connected edge without virtual movement in display-less space) between two monitors

results in a higher performance compared to a MouseEther, if the physical distance between

the monitors is large. In addition, they showed that steering tasks in heterogeneous

MDEs using the Perspective Cursor require a perspectively corrected viewing space –

otherwise conventional stitching without C/D gain adjustments of the control space is

more appropriate [169].

An alternative to seamless mouse pointer navigation spaces is to invoke transitions

through an explicit trigger, for instance by pressing a dedicated button on mouse or

keyboard (e.g., as in M3 [28, 29]), by selecting the target display in a GUI list (e.g.,

Mighty Mouse [44]), or a miniature view of the environment (e.g., ARIS [33]). These

techniques are often referred to as pointer warping [29]. Investigations have shown that

pointer warping is beneficial when crossing multiple homogeneous monitors [28], accessing

displays with strong size-resolution mismatches [29], and when sitting at an inconvenient

location towards the display [257].

Another alternative to a seamless interaction space is to provide content redirection

(i.e., forwarding the visual content of a display) instead of input redirection (i.e., forward-

ing the input control to a remote display). An early example was Semantic Snarfing [164],

where users could indicate a region of interest on a remote screen by using a laser pointer.

This screen region was then transfered to their handheld personal device. Some MDE sys-

tems use content redirection as alternative control facility, in addition to input redirection.

In WeSpace [264], users can forward their laptop content to a shared display wall, and can

control the layout of multiple laptop views on this display (e.g., side-by-side comparison

46 Chapter 2. Background and Related Work

or overlaying [127]). Others use portals or world-in-miniature views to relocate content

or control the layout of information artifacts on remote displays. For example, the shared

display of IMPROMPTU [37] can be controlled by a world-in-miniature view, as well as by

redirecting the input. Wallace et al. [257] showed that content redirection is more efficient

than input redirection if the seating arrangement is non-optimal and the user has to turn

head and body to see the remote display. On the other hand, Hawkey et al. [101] showed

that content redirection is less suitable for co-located collaboration. Using a tablet PC to

provide direct input on shared display content lead to a loss of a shared visual reference

and, as a consequence, a loss of shared understanding.

Information Transfer across Displays

A similarly important task than forwarding the input to a remote display for remote

control of objects is to transfer information items (e.g., application windows, pictures, or

other multimedia elements) across discontinuous displays. Nacenta et al. [166] grouped

the sub-tasks for cross-display information movement into four categories: putting (moving

the object to a remote display), placing (positioning the object at a precise location on the

remote display), manipulation (moving the object within the remote display), and getting

(fetching an object from a remote display).

There are several techniques that rely upon direct pointing devices or auxiliary devices

for information transfer. Examples include Pick and Drop [193], which facilitates a pen

to pick up an item and drop it at a remote location; the passage mechanism [230], where

users can assign information to any physical object placed on a bridge located at each

display and release it at a remote bridge; or Touch Projector [45], where objects on a

public display can be selected on a mobile phone touch screen and dropped on a remote

display by pointing the phone towards the target display surface. However, as the primary

input mechanism of the Deskotheque project presented in this thesis relies on the standard

mouse device, the focus of this section will be on information transfer facilitating indirect

pointing devices, like the mouse.

Given a seamless mouse pointer navigation frame across displays, objects can be relo-

cated by simply dragging them across the display boundary to a remote display, following

the mouse pointer paths. A first example of this hyperdragging technique was presented

by Rekimoto et al. [195] for the Augmented Surfaces environment. Similar to hyperdrag-

ging, users can drag application windows across display boundaries in E-Conic [169]. As

E-Conic aims to compensate for any discontinuities across displays, the user performs

simple drag-and-drop operations on her “perspective image plane”, irrespective whether

the Perspective Cursor [170] is currently within a visible display region or in display-less

space and therefore invisible.

Hyperdragging and similar techniques can lead to considerable physical and mental ef-

fort for the user – especially if the travel distance is large (in the device space), the display

setup is rather complex, so no intuitive mouse pointer paths can be created, or multiple

2.2. Display Environments 47

objects need to be relocated. To overcome large distances, drag-and-drop techniques for

large displays (Section 2.2.2) can similarly be employed for drag-and-drop across discon-

tinuous displays. In addition, GUI-based techniques have been developed, which do not

necessitate the user to overcome the entire travel distance with the pointer. There are two

common GUI-based relocation techniques: lists, where individual displays are represented

as textual items or icons, and world-in-miniatures [227], where the entire environment is

represented in a scaled-down view, allowing the user to perform simple cross-display tasks.

In the iRoom [128], users could relocate websites by selecting a target display from a con-

text menu list embedded in the browser [130]. In ARIS [33], users can relocate windows

by invoking a miniature iconic view of the environment from the desired window’s title

bar. Windows can then be dragged and dropped across displays within the miniature

view, which is reflected on the windows in the real environment. SEAPort [35] extended

this concept by putting more emphasis on information discovery: instead of miniature

window textures, application icons were employed within the miniature view and users

could interactively request a non-occluded view of all windows on the selected display. In

the table-centric MDE of Wigdor et al. [265], lateral wall displays can only be operated

from the central tabletop display. To relocate objects to the wall displays, the user drags

objects from the center of the table to miniature views of the wall displays, located at the

closest boundaries of the table. IMPROMPTU [37] provides multiple interfaces to share

application windows. Docks of available collaborators and a single shared display provide

a list of shared remote application windows, which can be duplicated to the user’s local

machine. In addition, a miniature view of the shared display allows the users to re-position

remote windows.

A comparison of multi-display display reaching techniques for pen-based devices has

shown that radar views (a world-in-miniature technique) had superior performance for

cross-display object relocation [167]. Pick and drop [193] was found to be acceptable, if

the targets were located within hand’s reach [167]. For mouse-based interfaces, Biehl and

Bailey [34] compared a hyperdragging technique with ARIS [33] and a text-based interface

for an application relocation task. They showed that ARIS was more effective than the

text-based interface and had equal performance with hyperdragging. However, for simple

input redirection, seamless mouse pointer navigation was superior to ARIS.

In contrast to hyperdragging, GUI-based relocation techniques decouple the infor-

mation transfer task from input redirection. While advantageous in some situations,

fine-grained placing and manipulation on the remote display requires an additional in-

put redirection activity. In addition, users need to mentally map the textural or pictorial

representation of the environment onto the real world [166].

2.2.4 Middleware

Displaying information across multiple output devices often requires a PC cluster. Espe-

cially MDE systems for meeting rooms or office environments have to rely on a distributed

48 Chapter 2. Background and Related Work

system architecture to accommodate for the users’ private workstations, as well as shared

interaction spaces. Typically, two major tasks have to be accomplished by a middleware

for distributed display environments: information sharing and input redirection (often in

combination with multi-pointer support). In addition, the creation and management of

a spatial display model will be discussed, as this is a main distinguishing aspect of the

Deskotheque environment presented in this thesis.

There are numerous additional tasks a middleware for distributed display environments

may deal with, such as data and security management (cf., issues in ubiquitous computing

[262]). However, the focus of this thesis lies on visual information management. Therefore,

these aspects will be neglected throughout this thesis.

Information Sharing

Sharing information across multiple machines is often facilitated by specialized ubiquitous

computing middleware, such as Gaia [205], Roomware [186], or iRos [184]. Although some

of these environments aim to simplify legacy application support by keeping the amount

of required modifications to a minimum, unmodified applications cannot be operated in

such a specialized environment.

Other systems rely on VNC [196] for sharing individual application windows or en-

tire screens. The middleware [207] used for E-Conic [169] renders application windows

side-by-side on an application server machine. On each display client, a VNC client re-

ceives the remote desktop image, the respective application windows are cropped from

the image, and rendered as transformed textured quads in a fullscreen OpenGL applica-

tion. In WeSpace [264], the entire laptop screens of the collaborators are forwarded to a

shared display using VNC. By using VNC, legacy applications can be employed in a dis-

tributed MDE without modifications. However, when using a central application server,

the available software is restricted to installed applications on the server machine. Users

cannot facilitate specialized software on brought-in personal devices. When using VNC

to share the entire (private) screens, users are not restricted to pre-installed software, but

cannot control which application windows are shared among the collaborators, which may

interfere with privacy concerns.

Wallace et al. [254] used a more flexible approach to peer-to-peer window sharing:

They employed XMove [221] to dynamically change an X window’s server by exploiting

the inherent network transparency of the X Window System. The X Window System

allows any X application (X client) to be operated by an X server on a remote machine by

providing a fully network transparent interface. However, X does not allow applications to

change the X server at runtime. XMove operates as a so-called pseudoserver and thereby

enables an application window to be migrated to a remote host at application runtime.

The actual migration is transparent to the X server, as well as to the application itself.

The same approach for window migration was employed by the first prototype version

of our Deskotheque environment [181]. However, as XMove is limited to the X Window

2.2. Display Environments 49

System and has not been maintained for a long period of time, Wallace et al. [256] later

presented SharedAppVNC, which shares single application windows based on the VNC

protocol across platforms. For the X Window System, x11vnc‡ allows for sharing of a

particular X window instead of the entire desktop.

An alternative to sharing individual windows is to create a virtually large desktop

spanning multiple displays and machines, respectively, by facilitating multi-head support

for multiple machines. For the X Window System, Distributed Multihead X § (Xdmx)

distributes a single X session to multiple heads and machines, respectively, by employing

a proxy X server. Unfortunately, Xdmx turned out to be incompatible with the X Window

System’s Composite extension, which is required for compositing window management –

a core concept utilized for this thesis (cf., Section 2.3.1). Chromium [111] can be used

to operate existing OpenGL applications in a distributed system. The latter approach is

commonly employed for building seamlessly tiled displays (e.g., [220, 224]).

Recent advances of the X Window System, which facilitate the Composite extension, do

not fully overcome the problems of distributed interactive spaces, but indicate a promising

new direction. For instance, xpra¶ allows sharing of individual X windows and changing

window assignment at runtime. However, the work is still in progress and not stable yet.

Wayland‖ accomplishes compositing of individual application windows or entire X screens

in a more efficient way than the X Window System in combination with a compositing

window manager. As Wayland is meant to be light-weight, remote rendering is not (yet)

supported.

Input Redirection

Input redirection is concerned with the forwarding of input events to a remote machine.

Examples of commercial and freely available input redirection tools are x2x ∗∗ for the X

Window System, Desktop Rover [171] for Microsoft Windows, and Synergy [212] for cross-

platform input redirection. In the pioneer MDE system Courtyard [241], a centralized

user interface management system grabs input events from personal devices, translates

the mouse pointer position to the shared display’s coordinate system, and renders the

pointer on the shared display. PointRight [128] facilitates the event heap of iRos [184] to

forward pointer and keyboard events from a sender to a receiver in a peer-to-peer fashion.

Mighty Mouse [44] uses the VNC protocol and x2vnc††, respectively, for input redirection.

‡http://www.karlrunge.com/x11vnc/
§http://dmx.sourceforge.net/
¶http://code.google.com/p/partiwm/wiki/xpra
‖http://wayland.freedesktop.org/
∗∗https://github.com/dottedmag/x2x
††http://fredrik.hubbe.net/x2vnc.html

50 Chapter 2. Background and Related Work

Multi-Pointer Support

If multiple users want to interact on a single display and machine, respectively, a mid-

dleware is required to coordinate concurrent input from multiple input devices. Mostly,

multi-user interaction is coordinated within specialized groupware applications (see Sec-

tion 2.1.3 for examples), or “retro-fitted” and wrapped applications [79, 119].

When using single-user legacy applications (i.e., applications which cannot handle or

discriminate input events from multiple input devices) and standard desktop environments,

“floor control policies” assign control to multiple input devices attempting to interact

concurrently. Some input redirection tools presented in the previous section are simply

limited to a single input device for controlling the entire environment (e.g., Synergy [212]).

PointRight [129] and Mighty Mouse [44] support multiple input devices in the environment

but only allow one input device to operate one display and machine, respectively, at a

time. In Courtyard [241], input events on the shared display are sequentially handled,

irrespective of the pointer issuing the event.

The multi-cursor window manager [254] for the X Window System handles multiple

input devices on the window management layer. The window manager captures input

events from remote devices using x2x, generates X input events for the local X Window

System, and encodes an ID for the remote pointer into an unused status field of the X event.

Remote cursors are rendered as color-coded cursor shapes by the window manager, which

also handles focus window assignments. The multi-cursor window manager is running on a

shared Linux PC, while remote pointers can be contributed from different platforms using

x2x. Disadvantages of the approach are the limitation to eight pointers and the restriction

to the specialized window manager.

Multi-pointer X (MPX) [115] handles multiple local input devices on windowing system

level and is therefore not restricted to a specialized window manager. The original imple-

mentation of the X Window System is principally able to handle multiple input devices,

but merges all input events into a single event stream and pointer, respectively. MPX

assigns each input device a dedicated pointer on the screen and generates uniquely identi-

fiable XInput2 events, i.e., input events using a modified version of the X Input extension.

For compatibility with single-pointer legacy applications, each input device additionally

generates core input events, so single-pointer applications can receive the respective input

events but will not discriminate their origins. The multi-pointer window manager [115]

was developed to demonstrate personalized annotations and floor control capabilities of

MPX, but is not required for MPX operation. The device shuffler [115] enables a simple

version of input redirection to support multi-machine configurations. For more flexible

input redirection support and cross-platform configurations, Synergy [212] was extended

to support concurrent interaction on shared hosts by facilitating MPX on Linux machines

[71] (see Section 2.3.2 for more information).

2.2. Display Environments 51

Spatial Model Configuration

Both, information sharing and input redirection require a spatial description of the dis-

plays for proper operation in a spatially consistent manner. In addition, cross-display

visualizations, such as presented by Mackinlay and Heer [146] or OneSpace [200], need

information about the spatial display arrangement.

In the simple case of a co-planar multi-display setting, a 2D spatial description of the

environment is sufficient. For instance, to calibrate a dual-monitor setting for MouseEther

[18] or OneSpace [200], the user needs to manually align an image with an arrow across the

monitor bezels. Stitching [107] allows the user to establish a network connection across

two tablet PCs by drawing a stroke starting from one device to another using a pen. The

direction of the outgoing and incoming stroke infers the spatial relationship of the two

tablet devices, which can be facilitated to stretch images across adjacent devices or for

object relocation tasks.

More complex MDE setups cannot rely on such a simple 2D description. PointRight

[129] and Synergy [212] employ user-defined configuration files containing a textual de-

scription of exit and entry display edge intervals for input redirection. This way, pair-wise

2D relations between adjacent displays are established. Alternatively, a single 2D map-

ping of all displays can be produced (as, for instance, in the stitching condition of [170]).

However, in this case, complex display arrangements may lead to unintuitive transitions.

In Swordfish [96], users can establish these display-connecting edge intervals individually

at runtime. Thus, the system itself does not need to automatically create a spatial model

of the environment. As the perspective mouse pointer navigation frame of Perspective

Cursor [170] relies on the user’s location within the environment, a detailed 3D model

of the environment, as well as constant user tracking, is required. For this technique,

the location of the stationary displays were manually measured offline, while the user’s

head pose and location of mobile displays were determined with a 3-DOF tracking system

[165]. To create the 2D fold-out representation of the environment of ARIS [33], the user

is provided with a GUI tool to manually construct the world-in-miniature view [36].

For the automatic creation of the spatial model in the Deskotheque environment, we

rely on techniques that are mainly employed for geometric compensation of irregular and

tiled projected displays (cf., Section 2.2.2). Using a camera-assisted calibration technique,

we cannot only determine the displays’ positions within the environment, but also a de-

tailed geometric description of their projection surfaces. Thus, we are enabled to flexibly

combine monitors and irregular or tiled projected displays into a common interaction

space, with fast re-calibration facilities.

2.2.5 Discussion

In the following, a short discussion will summarize the most important aspects of related

work in display environments with respect to this thesis. It will start by reviewing the

(software) system design of MDEs, the importance of spatial awareness, and finally the

52 Chapter 2. Background and Related Work

design of window and information management in such environments.

System Design of Multi-Display Environments

In terms of system design, MDE infrastructures usually fall into two categories: They

either aim to support legacy applications (or minimally modified legacy applications) or

they put their focus on presenting entirely novel applications, tailored towards collabora-

tive interaction and visualization on multiple surfaces. Examples for the second category

are coordinated multi-view applications [217], which show multiple coordinated views of a

shared data set distributed to multiple displays (e.g., [79, 80]).

Satisfying the requirement to support legacy applications is important, if the primary

goal of the infrastructure is to engage a large audience. Users usually prefer their powerful

and well-known applications to specific collaboration-aware or multi-display aware counter-

parts [90, 140]. In addition, information analysis and management often requires a plethora

of information sources and supportive applications. A dedicated software infrastructure,

tailored to a specific environment and task, cannot easily fulfill these requirements.

However, today’s windowing systems and window managers were not designed for

emerging display environments and collaborative interaction. Important mechanics of

collaboration [95] and visual coordination techniques to support information management

on large displays, irregular displays, or multiple displays, need to be considered in current

systems.

The MDE design presented in this thesis (Chapter 3) takes these considerations into

account. The system design assures that legacy applications can be operated without any

modifications. Basic functions of an MDE, such as geometric compensation of projected

displays, seamless mouse pointer navigation, multi-pointer coordination, information shar-

ing, and fundamental visual coordination, are accomplished transparently to legacy ap-

plications. In addition, a light-weight API allows MDE-aware applications to query user

identities and to coordinate user selections across multiple views of the same application

or multiple applications.

Spatial Awareness in MDEs

As the user’s viewing and interaction space is expanded by the availability of multiple

large displays, spatial cognition is increasingly important. Ha et al. [97] discovered that the

spatial relationship towards the displays is the main consideration of users when organizing

their workspace. There is evidence that incorporating the spatial display arrangement into

the cross-display mouse pointer navigation frame increases performance [18, 34, 170].

Spatiality is not only an important aspect in terms of navigation. Scott et al. [215]

demonstrated how users facilitated space on tabletop displays to arrange information ar-

tifacts. Others showed that users explicitly facilitate focus and peripheral display regions

for primary and secondary information resources [32] and use display discontinuities for

2.2. Display Environments 53

task separation [91]. However, spatial awareness plays a minor role in the design of in-

formation presentation in MDEs. Usually, the user has to provide the spatial information

manually to enable certain capabilities, such as spatially consistent navigation. Apart

from the E-Conic prototype [169], window managers are usually unaware of spatial dis-

play configurations. As an example, see Figure 2.2: the window manager usually considers

the boundaries between adjacent displays, but neither reflects their physical size, their dis-

tance, nor their orientation.

(a) (b)

Figure 2.2: Spatial awareness in window managers: (a) Usually, the window manager treats
multiple output devices as one seamless rectangular screen. (b) The world-in-miniature view (using
[24]) shows that the right monitor is actually slightly smaller (although it has the same number of
pixels) and that the spatial arrangement is not planar.

The Deskotheque MDE infrastructure presented in this thesis automatically creates a

fine-grained 3D model of the environment as foundation for interaction and presentation

techniques (Chapter 4). The spatial information recovered from the calibration step is

used for providing undistorted (tiled) projected displays (Section 7.3.2), display-adaptive

window placement and size (Section 8.3), spatially consistent multi-display mouse pointer

navigation (Chapter 5), as well as visual links connecting related items across multiple

displays (Section 8.1).

Window Management for Large Displays and MDEs

As multi-monitor arrangements are becoming more common, there have already been

attempts towards more suitable multi-monitor window management. For instance, max-

imizing to the extent of a single output device (see also Figure 2.2(a)) or snapping a

dragged window at output device boundaries are now features of many common window

managers. However, these features are not feasible on very large, seamless displays, where

no pre-defined partitioning due to (visible) output device boundaries is given. Still, re-

searchers have shown that users manually apply a segmentation to their visual workspace,

such as keeping important portions of windows visible while avoiding strict tiling [113],

creating focus and context regions [32] or semantic clusters of windows [4]. Exploratory

studies have indicated that users prefer large displays to their smaller counterparts, even

though they invest considerably more time and effort in window management [4, 32].

54 Chapter 2. Background and Related Work

In addition to the lack of support for large, unpartitioned visual space, window man-

agers do not consider emerging display factors caused by the employment of projectors.

Examples are non-vertical displays, non-rectangular displays, and non-planar displays

(Section 1.1).

Therefore, one idea that will be explored in this thesis is display-adaptive window

management (Section 8.3). In this concept, the window manager is aware of the physical

display properties and dynamically adjusts window locations and size to the prevalent

display factors. The aim is to minimize manual window management overhead caused by

a large number of pixels, irregular display outlines, and physical discontinuities.

2.3 Enabling Technologies

This section will shortly introduce enabling technologies, which were facilitated for the

prototypes created for this thesis.

2.3.1 Compositing Window Managers

3D accelerated compositing window managers are available on most common platforms,

such as Quartz Extreme on Mac OS X, Microsoft Windows Vista’s Aero, and OpenGL-

based implementations for Linux OS. They provide compositing effects like window blend-

ing or rendering of the desktop onto an interactive 3D cube. In contrast to these merely

eye-catching window management techniques, Metisse [55] was developed with HCI re-

searchers in mind. Metisse facilitates three major X Window System extensions for

OpenGL window compositing: Composite (off-screen rendering of windows), Damage

(window region update notification), and Event Interception (input event interception

and transformation). Windows are rendered within an OpenGL scene and can be arbi-

trarily transformed. OpenGL picking and the event interception extension are employed

to transform registered cursor locations to the original window locations, which are re-

quested by the X Window System for event processing. A light-weight scripting language

allows for easy creation of window management functions, such as automatically rotated

windows or peeled back windows.

The well-known compositing window manager Compiz for Linux provides a plug-in

architecture to easily apply new windowing effects without changing the core implementa-

tion. All window manager extensions presented in this thesis were developed for Compiz

(version 0.8.4) or its predecessor Beryl. The reasons to prefer Compiz to Metisse were

mainly based on technological considerations: Compiz is now the default window manager

for the major Linux distribution Ubuntu and therefore heavily maintained. In contrast,

some features of Metisse are no longer supported on current versions of the X Window

System. For instance, the event interception extension used in Metisse has not been main-

tained for a long time and was finally removed from the X Window System when MPX

2.3. Enabling Technologies 55

was introduced ‡‡. In addition, the plug-in infrastructure of Compiz provides a richer

development platform for highly sophisticated window manager operations, compared to

Metisse’s light-weight scripting approach.

Similar to Metisse, Compiz uses the Composite extension of the X window sys-

tem to render application windows into an off-screen buffer on the graphics card. The

window manager can access these pixmaps as textures using the OpenGL extension

EXT_texture_from_pixmap – either directly via the NVIDIA driver or indirectly via the

Xgl implementation. Thus, 3D compositing window managers make effective use of avail-

able graphics hardware and provide efficient ways to manipulate desktop and window

geometries, as well as their textures.

In addition to conventional window manager tasks (such as moving or resizing win-

dows), more advanced operations on the window layer (cf., Figure 1.4), such as geometric

transformations or transparency effects, can be easily achieved by accessing and modifying

the window’s quad or texture, respectively. As an example, a novel window management

approach for increasing the visibility of important information on the screen is presented

in this thesis (Section 7.4). For operations on the screen layer, the Compiz window man-

ager enables us to access the final desktop composition in a plug-in and to render the

desktop image into a frame buffer object. The buffer content is then texture-mapped onto

custom geometry, which can be arbitrarily modified. As an example, we present warping

and blending for projector-based displays as window manager extension (Section 7.3.2).

Furthermore, Compiz allows us to render arbitrary information on top of the desktop. We

facilitate this for a cue-based focus and context technique to visually filter information on

a large display (Section 8.1).

2.3.2 Input Redirection and Multi-Pointer Support

For input redirection, we relied on the cross-platform mouse pointer sharing tool Synergy

[212]. In its original implementation, Synergy enables a single mouse and keyboard pair to

be shared across multiple machines. Display connections are described as connected edge

intervals, specified either in a configuration file or using a GUI tool. For spatially consistent

mouse pointer navigation in the Deskotheque environment, two major modifications were

required:

1. A navigation framework on top of Synergy applies input redirection triggers and

mouse pointer movement corrections based on the automatically created model of

the environment (Chapter 5).

2. Synergy+MPX [71] extends Synergy to be multi-pointer aware, using MPX [115]

(cf., Section 2.2.4). It allows for flexible client-server configurations so multiple

pointers can be dynamically redirected to a single machine and interact on the host

concurrently. The current implementation is limited to Linux servers and clients.

‡‡http://freedesktop.org/wiki/Software/XEvIE

56 Chapter 2. Background and Related Work

However, with minor protocol adjustments, single-pointer servers of different plat-

forms can contribute to multi-pointer Linux clients as well. Figure 2.3 illustrates the

differences between the original Synergy implementation and Synergy+MPX.

(a) (b)

Figure 2.3: (a) A configuration of the original Synergy implementation: shar-
ing a single mouse and keyboard pair across multiple machines and platforms
(http://code.google.com/p/synergy-plus/). (b) A possible configuration of Synergy+MPX
with multiple mouse and keyboard pairs shared across multiple Linux machines.

Part II

Multi-Display Framework

57

Chapter 3

System Infrastructure of the

Deskotheque Environment

In this chapter, the multi-display framework Deskotheque will be presented as a founda-

tion for further interaction and information presentation research on MDEs and irregular

displays. The aim of the Deskotheque environment is to extend personal workspaces in

conventional office environments to a shared interaction space. Unused wall and table

spaces in offices are turned into interactive surfaces by employing multiple projectors.

3.1 Requirements and Design Principles

To allow for a flexible usage in existing office spaces, a number of requirements were

formulated:

Collaboration transparency. The environment should allow multiple users to interact

concurrently on shared information spaces. At the same time, privacy of personal

workspaces has to be assured.

Application transparency. To support users in their everyday activities, the environ-

ment should not restrict the user to specific applications, tailored to multiple displays

or multiple users. Instead, the environment has to allow the operation of legacy ap-

plication windows on personal workspaces, as well as on shared information spaces.

Furthermore, the environment has to ensure that applications and control can be

transfered between the displays.

Distributed system. The environment should be able to incorporate all personal

workspaces available in the environment, as well as all shared projected displays,

into a common interaction space. Therefore, a distributed system infrastructure is

required. Supporting multiple platforms is desirable, but was not seen as a major

goal and was therefore not considered in the system design.

59

60 Chapter 3. System Infrastructure of the Deskotheque Environment

Commodity hardware. To allow for a wide-spread adoption, operation of the environ-

ment should not require special-purpose or extraordinarily expensive hardware in-

frastructure. Therefore, we refrained from employing rear-projection screens, touch-

sensitive surfaces, or tracking systems.

Spatial adaptivity. The environment should be able to deal with manifold spatial dis-

play arrangements, in particular irregular projection surfaces caused by physical

unevenness or unconventional aspect ratios. It has to be possible to flexibly arrange

multiple projectors, which can be discontinuous or overlapping, to create shared

interaction spaces, even in office spaces with limited space resources.

Based on this set of requirements, we derived the system design for the Deskotheque

multi-display framework. Deskotheque was designed as personal device-centric interaction

space (see Section 2.2.3). The user is assumed to control the entire environment from her

personal device, located in an office room (see Figure 1.1 as an example). Usually, this

personal device is a PC connected to one or multiple monitors, or a laptop. We assume

the user operates the personal device by mouse or touchpad, and a keyboard. Although

personal handheld devices with touch-sensitive input, like tablet PCs or smart phones,

are becoming more ubiquitous, we considered office workspaces to be primarily stationary

and limited input support to indirect pointing devices. Figure 3.1 shows an early sketch

of a meeting room MDE.

Figure 3.1: An early sketch of the anticipated MDE in a meeting room.

The core feature of the Deskotheque environment is a fine-grained description of its

spatial arrangements – i.e., the geometric and topological properties of the display en-

vironment. The model is created in an offline camera-assisted calibration step, which is

described in more detail in Chapter 4. At runtime, the spatial information is utilized

for spatially consistent cross-display navigation (Part III) and environment-aware window

management techniques (Part IV).

3.2. Distributed Software Infrastructure 61

The system infrastructure and user interface prototypes of the Deskotheque system pre-

sented in this thesis aim to support users in visual information management. Of course,

a fully functional MDE additionally requires distributed data management and security

management. These aspects will be disregarded in this thesis. For instance, when refer-

ring to information sharing, we only address sharing of the visual presentation, while the

underlying data remains on its original host. Also, we do not provide any mechanisms to

prevent users from modifying or deleting data associated with another user’s shared visual

presentation.

3.2 Distributed Software Infrastructure

Deskotheque is implemented on top of the X Window System for Linux. It is tightly

integrated into the windowing system and therefore allows for application- and network-

transparent operation.

Deskotheque employs a distributed system involving multiple computer nodes (“mod-

ules”) in a network. Modules may represent a single-user workstation consisting of a

monitor with mouse and keyboard input, a tiled projected display without any input ca-

pabilities, or a self-contained device, such as a laptop. Individual modules are coordinated

by a central master instance, which is responsible for configuring the individual modules

and to trigger certain components at runtime. It is also responsible to create and manage

the spatial model.

The framework is sub-divided into several components, which operate largely on win-

dowing system level. When designing these components, we obtained application trans-

parency by leveraging existing components of the Linux and X Window System soft-

ware infrastructure. Each component was extended to serve as client application to the

Deskotheque runtime communication, which uses the distributed object library Ice∗. For

communication between components of different modules, most components facilitate peer-

to-peer communication, which is instantiated on demand (e.g., input redirection or window

migration). Each component can be re-configured at runtime to react to changes in the

environment. If modules are added or removed, or if the user triggers a re-calibration

(e.g., after a display changed location), the master module updates the spatial model and

re-configures individual components.

Figure 3.2 illustrates the basic software infrastructure of the Deskotheque environment

with a single module. The three most important software components are shown: window

management, mouse pointer navigation, and window migration. In the following sub-

sections, these three components will be presented in more detail.

∗http://www.zeroc.com/

62 Chapter 3. System Infrastructure of the Deskotheque Environment

Figure 3.2: The central Deskotheque master and a single module with different software compo-
nents, as well as input / output resources. Applications do not require any modifications to be
operated in the Deskotheque environment.

3.2.1 Window Management

The window management component is operated by the Compiz window manager (Sec-

tion 2.3.1) and is extended by multiple plug-ins. Despite this integration in the window

manager, this component is not only responsible for window management, but also for

information presentation tasks on the entire desktop imagery, as a compositing window

manager provides convenient access to the resulting desktop imagery.

The four most important window manager extensions are illustrated in Figure 3.2.

Geometric compensation takes care that the resulting desktop image is undistorted and

uniformly blended when employing irregular or tiled projected displays (Section 7.3.2).

A rendering extension draws arbitrary information on top of the desktop. Examples

include structured light patterns (Section 4.1.1), visual navigation aids (Chapter 5), and

visual links (Section 8.1). The multi-pointer extension renders multiple color-coded mouse

cursors on the screen and provides fundamental multi-pointer support on the window

manager level (Section 7.1). Finally, the window compositing extension is responsible for

importance-driven compositing window management (Section 7.4) and all its associated

window manager functions (e.g., Uncovering Windows in Section 8.2 or Display-Adaptive

Window Management in Section 8.3).

A networking extension serves as a communication interface between all plug-ins and

the Deskotheque module and master, respectively. It establishes a connection with the

Deskotheque environment using the Ice internet communication engine. A C++ wrapper

of the Ice interface receives commands from the Deskotheque environment, translates the

commands into a simple, Compiz-internal message format, and forwards it to the respective

3.2. Distributed Software Infrastructure 63

plug-in(s).

The window management component is not dependent on any other component and

therefore allows for stand-alone settings without any input redirection or application re-

location support.

3.2.2 Input Redirection

Input redirection support is based on Synergy+MPX [71], which extends the open-source

mouse pointer sharing tool Synergy [212] by facilitating MPX [115] for multi-pointer

support (cf., Section 2.3.2). An earlier multi-pointer input redirection solution in the

Deskotheque environment used a custom multi-pointer control before MPX was available

in standard Linux distributions [181], but will not be discussed in this thesis.

In the Deskotheque environment, for each machine with at least one connected input

device (i.e., mouse), a Synergy server instance is launched at start-up. On each host

accessible for a respective pointer (see user and privacy management issues in Section 4.3),

a corresponding Synergy client is launched, so the locally attached mouse input can be

redirected to all accessible hosts. Each pointing device is assigned its individual navigation

framework, using its own navigation coordinate system and navigation parameters, as

described in Chapter 5.

At runtime, the pointer’s associated navigation framework is consulted for each reg-

istered movement event. In the case of input redirection, i.e., if the pointer is about to

be redirected to an adjacent display and host, respectively, we grab the input events de-

livered by the pointer’s associated master device (the software pointer rendered to the

screen) and forward these events to the new client host. At the client host, the input

events are received from the Synergy server, a new master device is created, and the input

events are forwarded to this master device using the XTest extension†. The initial mouse

pointer position is set according to the outcome position determined by the navigation

framework. If the pointer leaves the client host again, its newly created master device is

deleted.

Deskotheque keeps track of the individual pointers by tracking their master pointer

IDs on the individual hosts. If an input redirection occurs, the Synergy server informs the

Deskotheque master about the pointer’s current host and its remote master pointer ID.

Deskotheque then queries the uniquely assigned pointer’s color and forwards it to Compiz’

multi-pointer plug-in, which was introduced in the previous section. The mouse pointer

plug-in identifies the pointer based on its current master pointer ID and renders its cursor

with the correct color assigned. Figure 3.3 illustrates the involved components.

Mind that the XFixes extension‡, which is required to query a pointer’s currently

assigned cursor, is limited to a single core pointer. Thus, we can only reliably query the

current cursor image of one pointer, while all other pointers will be assigned the same

†http://www.xfree86.org/current/xtest.html
‡http://freedesktop.org/wiki/Software/FixesExt

64 Chapter 3. System Infrastructure of the Deskotheque Environment

Figure 3.3: The mouse pointer navigation server listens for input events and, if required, modifies
and redirects them to a remote client. Each redirection is forwarded to the master, which keeps
track of each pointer’s location in the environment. The multi-pointer plug-in is responsible to
render the individual pointers in the correct color.

cursor image. Therefore, we currently only support the conventional arrow cursor. Early

user feedback has indicated that a static cursor causes less confusion than a constantly

changing cursor.

Synergy+MPX is not only facilitated in a distributed MDE. Even if Deskotheque is

operated by a single machine, one Synergy server is launched which is responsible for

mouse pointer movement corrections and transitions to adjacent, discontinuous displays.

3.2.3 Window Migration

In an earlier version of Deskotheque [181], a window migration operation using XMove

[221] was initiated when the window manager detected a window drag across a display

border, or if a remote host was selected from a drop-down menu, integrated into the

window’s title bar. The input redirection component then determined the mouse pointer’s

outcome position on the remote display and informed the window migration component

about the window’s remote host and outcome position.

However, XMove was found to be unreliable and unstable and was therefore removed

from the Deskotheque framework. In the current version, window relocation is only pos-

sible within single-machine setups, where the window manager implicitly supports drag-

and-drop across display boundaries. In the future, novel approaches in the X Window

System (see Section 2.2.4) could solve the problem of window migration more reliably.

3.3. Discussion 65

3.2.4 Other Components

As these three core components are tightly integrated into the X Window system, legacy

applications can be operated in the environment without any modifications. However,

special-purpose applications or modified applications can also facilitate the existing net-

work interface. They can exploit the framework’s knowledge of the physical environment

(i.e., display arrangements and user locations), request user identities to received input

events, and instruct the framework to render information on top of the desktop. Two

examples are shown in Figure 3.4.

(a) (b)

Figure 3.4: Applications facilitating the Deskotheque interface: (a) The display control center
(right window) allows for interactive scaling and rotation of the desktop within the display out-
line. (b) The distributed world-in-miniature control requests all current desktop images and the
environment reconstruction to provide an interactive pointer control (Section 5.3.3).

3.3 Discussion

The Deskotheque infrastructure supports two common approaches of middleware support:

First, it allows for legacy application operation in the MDE. Fundamental operations, like

undistorted projected imagery, input redirection in a distributed system, and window mi-

gration to remote hosts or displays, are provided by the underlying framework, transparent

to any X-compatible application. Legacy application support increases applicability of the

MDE and encourages a wide-spread adoption. It has to be noted, however, that window

migration support using XMove [221] is limited to very basic applications and often fails

if recent X extensions are utilized by the application to be migrated.

Second, the infrastructure provides a networked API so special-purpose applications

can be tailored towards the environment. They can query information about the environ-

ment, such as display form factors or user arrangements, and request certain operations,

such as rendering information across display boundaries. Special-purpose applications can

co-exist with unmodified legacy applications in the same session.

The restriction of the multi-display framework to the X Window System has been a

careful design decision. Linux allows for easier access to low-level features compared to

66 Chapter 3. System Infrastructure of the Deskotheque Environment

other platforms. For instance, window migration solutions for Linux are not wide-spread

and far advanced, but basic implementations and research prototypes are available, in

contrast to other platforms (cf., Section 2.2.4). Another important aspect was the flexible

plug-in infrastructure of our employed compositing window manager (cf., Section 2.3.1),

which allowed for efficient access to individual window textures, or the entire desktop

image, as well as for easy modifications of the window rendering procedure or rendering of

additional information on top of the desktop imagery. Although most platforms now rely

on 3D compositing window managers, the access on other platforms is usually restricted

to very few API calls.

The Deskotheque infrastructure has never been considered as “finished” or close to

finished. As for most low-level software engineering, providing such a basic infrastructure

is facing the “moving target” problem [161], i.e., the underlying software infrastructure

fundamentally changes during development and makes certain components inoperable or

obsolete before even finishing a first research prototype. Therefore, and for the sake of

reduced maintenance, some of the interface prototypes and interaction techniques pre-

sented in this thesis do not operate in the distributed system, but are rather limited to

single-machine MDEs.

Chapter 4

Spatial Awareness in the

Deskotheque Environment

Spatial awareness of the display arrangements, individual display form factors, and user

locations towards the displays, is the most distinguishing aspect of the Deskotheque envi-

ronment compared to other MDE infrastructures. A fine-grained model of the environment

is acquired in an offline calibration process. The calibration process is based on a set of

standard algorithms for structured light and multi-view reconstruction. The environment

is observed by at least two cameras with known internal parameters to create a 3D model

of the displays.

The calibration procedure is separated into the following steps:

1. Internal camera calibration: the intrinsic parameters of the cameras used for

calibration have to be known a priori. The internal camera parameters can be

retrieved with standard tools, like the well-known camera calibration toolkit for

MATLAB by Bouguet [46] or OpenCV [47].

2. Spatial model creation: the spatial model of the display environment is created

using the internally calibrated cameras and sequential structured light patterns for

projectors and monitors. This process is explained in detail in Section 4.1.

3. Environment configuration: based on the spatial model, environment config-

urations, such as geometric compensation and blending of tiled projected displays,

user location estimation, and mouse pointer navigation frames, are estimated. These

configurations are discussed in sections 4.2, 4.3, and 4.4.

At runtime, the system will facilitate the environment configurations for spatially con-

sistent interaction and visually adjusted content (Parts III and IV). There will be no user

tracking or constant observation of display changes in the environment, as we assume an

office environment to be only partially dynamic. The system was designed to allow for

(partial) re-calibration on demand (e.g., if a user changed location of her laptop) and to

accommodate for late incomers.

67

68 Chapter 4. Spatial Awareness in the Deskotheque Environment

4.1 Spatial Model Creation

The spatial model creation step is an offline calibration procedure facilitating at least two

calibrated cameras and sequentially displayed structured light patterns (Section 4.1.1).

From the detected structured light feature points, a sparse point cloud reconstruction is

created (Section 4.1.2). As we assume that projected displays are limited to planar or

multi-planar surfaces, we derive a polygonal model from the point cloud per output device

(Section 4.1.3). Overlapping projections are automatically detected from the model. Each

projection surface reconstruction is then parameterized as a 2D surface (Section 4.1.4),

where the screen rectangle to be displayed is inscribed or circumscribed to derive a perfectly

rectangular projected imagery (Section 4.1.5).

4.1.1 Structured Light

Structured light patterns are generated upon calibration start-up based on some user

configuration for each output device. The user has to specify the type and parameters of

the calibration pattern in a configuration file for each output device individually. In its

first version, Deskotheque supported two different structured light patterns: checkerboards

(based on OpenCV [47]) and binary Gray codes in combination with phase shifting (cf.,

[209]).

(a) (b)

Figure 4.1: Checkerboard patterns for (a) an irregular projected display and (b) a monitor,
captured by the same camera.

While the checkerboard detector by OpenCV is very accurate and fast for simple

projector configurations, Gray code patterns can be employed to deal with non-planar or

partially occluded projection surfaces. However, in practice, there are MDE configurations

that cannot easily be handled with these standard procedures. As an MDE may be

composed of heterogeneous display devices, there may be considerable differences in display

illumination, size, and resolution (cf., Figure 4.1). Especially the low brightness and size of

monitors in comparison to the projectors was found to cause detection problems, and was

additionally impeded by oblique camera-monitor angles and the resulting brightness loss.

To overcome these situations, the user was required to manually set a camera exposure

4.1. Spatial Model Creation 69

that could handle displays of strong brightness differences and manually configure the

structured light parameters for the different display sizes in the camera image.

As a solution, an iterative structured light process, tailored to MDEs with multi-planar

projections and monitors, was introduced [160]. The structured light technique facilitates

two properties to overcome heterogeneity in multi-display configurations:

1. An increasing number of fiducials markers (based on ARToolKitPlus [252]) is it-

eratively displayed on each output device (Figure 4.2(a)). Starting with a single

(almost) screen-filling marker, one row or column of markers, respectively, is added

until some stop criteria is fulfilled (e.g., a given percentage of markers or all markers

were detected, or the maximum number of iterations was reached). For accurate sub-

pixel detection, markers are substituted with checkerboards in each iteration. This

step assures that size differences can be compensated while multi-planar projections

can still be detected in sufficient quality.

2. For each displayed pattern, images are taken with different exposure values and

composed into a high-dynamic range image with minimized noise (Figure 4.2(b)).

Producing high-dynamic range camera images leads to an increased calibration time,

but differences in brightness between displays can be effectively compensated.

(a) (b)

Figure 4.2: Iterative marker-based structured light process (from [160]): (a) sequence of projected
images and (b) sequence of captured camera images with different exposure, combined into a high-
dynamic range image.

4.1.2 Point Cloud Acquisition

Structured light patterns are displayed sequentially for each output device and are cap-

tured by each camera. The detectable structured light feature points in screen coordinates,

as well as the actually detected feature points in each camera’s coordinate system, are sent

to the master process. Detected pattern points deliver point correspondences between

camera images. From all available cameras, the two cameras with most common point

70 Chapter 4. Spatial Awareness in the Deskotheque Environment

correspondences (irrespective from which displays they were obtained), represent the base

stereo camera pair.

As first step, the relative camera poses of the base camera pair, i.e., the rotation

and translation of the two cameras towards each other, are estimated. Deskotheque uses

the computer vision library VRLib∗ for multi-view geometry operations. For relative

pose estimation, the Five-Point relative pose algorithm by Nistér [172] is used, which

estimates the essential matrix from five point correspondences using a RANSAC [76] ap-

proach (VROrientation::computeRobustOrientation). The results yield the rotation

R and translation t of the second camera towards the first camera. The first camera is

set to the center of the environment’s world coordinate system. As the external camera

parameters of the base camera pair are now known, as well as the internal camera matrices

Ki, the projection matrix of the two cameras can now be set to

P1 = K1[I|0]

and

P2 = K2[R|t].

As second step, a point cloud reconstruction of the feature points detected

by the base stereo pair is obtained by triangulation of each point correspondence

(VRTriangulatedPoint::reconstruct), resulting in a sparse model of each output de-

vice. The density of the point cloud depends on the employed structured light technique.

In an iterative procedure, the absolute poses of the remaining cameras are estimated

from the already reconstructed feature points. To estimate rotation R and translation t

for a calibrated camera from known world coordinates (absolute pose estimation), at least

three 2D-3D point correspondences are required. Again, the VRLib implementation uses

RANSAC for a robust estimation (VROrientation::computeRobustAbsolutePose). The

reconstruction is then updated for feature points detected by the newly added camera and

the cameras with already known projection matrix.

The final reconstruction is refined by a bundle adjustment routine, optimiz-

ing camera poses and 3D points, but leaving the internal parameters unmodified

(VRBundle::adjustStructureAndMotion).

4.1.3 Polygonal Model Creation

As Deskotheque is limited to planar or multi-planar displays, the established point cloud

can be approximated by a polygonal model. As depicted in Figure 4.3(a), the resulting

point cloud may consist of a large number of vertices (approximately 500 in this example)

and be subject to reconstruction noise, due to detection or reconstruction inaccuracies. In

contrast, fitting a polygonal model into the point cloud dramatically reduces the number

∗Developed by the VRVis “Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH” Vienna

(http://www.vrvis.at/)

4.1. Spatial Model Creation 71

of required vertices (6 in the example of Figure 4.3(b)), while the physical corners are

properly modeled.

(a) (b)

Figure 4.3: Reconstruction of a multi-planar projection surface: (a) The point cloud reconstruction
and (b) the approximated polygonal model .

Plane Fitting

An iterative RANSAC-based plane fitting algorithm is applied to each output device’s

obtained point cloud. The aim is to approximate piecewise planar display areas, as pro-

posed by Quirk et al. [187]. As illustrated in Figure 4.4, the algorithm iteratively finds

the plane containing the highest number of inliers (VRPlane::ransac) and proceeds with

the remaining outliers.

(a) (b)

Figure 4.4: Iterative plane-fitting procedure.

Polygon Outlines

The fitted planes are infinite and should be delimited by the physical output device bound-

ary. The device boundaries themselves are normally not captured, as structured light pat-

terns are often limited to the interior areas of the screen, while keeping a white boundary

(see Figure 4.1 or 4.2). To determine the vertices of the output device polygons, we need

72 Chapter 4. Spatial Awareness in the Deskotheque Environment

to determine the four corner vertices of the output device in world coordinates, as well as

the edge pixels of potential plane intersections in world and screen coordinates.

Each displayed structured light point can be associated with its 3D reconstruction in

world coordinates and a fitted plane i. Thus, for each fitted plane i, there is a screen�plane

homography Hπi relating the output device coordinates to the plane coordinates of plane

i. To find all possible world coordinates of the four output device corners, we map the

corners to all fitted planes, using the screen�plane homographies Hπi (Figure 4.5(a)).

Each polygon is now limited by the mapped output device corners. If only a single plane

has been fitted, the polygonal model is now fully defined.

(a)

(b) (c)

Figure 4.5: Polygonal model creation: (a) The output device outline is mapped to each world
plane and the two planes are intersected. (b,c) The intersection line is mapped to output device
coordinates and is used to refine the extents of the two output device polygons.

To find the pixels along physical corners, we intersect each fitted plane pair i and

j in world coordinates and map the resulting line to output device coordinates, using

the inverse screen�plane homographies H−1
πi and H−1

πj . For both polygons, the line is

intersected with each polygon edge (Figure 4.5(b) and (c)). In addition, the centroid

of structured light feature points associated with the fitted plane is projected onto each

polygon edge. If a valid intersection between the plane intersection line and a polygon edge

was found, the intersection point replaces the polygon vertex, which lies on the edge’s same

side with respect to the mapped centroid. For instance, on the top edge of the polygon

in Figure 4.5(b), the intersection point lies on the right side of the projected feature point

centroid and therefore replaces the right output device corner point. The obtained polygon

vertices can now be mapped back to world coordinates, and serve as new polygon outline

for any further plane intersection refinements, if necessary.

4.1. Spatial Model Creation 73

Detecting Overlapping Projections

From the individual polygons, overlapping projections can be automatically detected. For

each possible polygon pair, the polygons are checked for co-planarity and, if co-planar, for

edge intersections on the common plane. If two output devices’ polygons overlap, they are

treated as a continuous, tiled display.

As a result of the polygonal model creation step, all displays are approximated by a

single or multiple polygons and registered into a common, metric coordinate system. The

origin of this coordinate system is defined by the first camera of the initial stereo camera

pair, and is usually adjusted slightly by the bundle adjustment step (Section 4.1.2). Figure

4.6 shows an example polygonal model for an office environment.

Figure 4.6: The resulting polygonal model for an office environment: the colored dots corre-
spond to the detected structured light feature points (color-coded per output device). Overlapping
projections are treated as a single display (right wall display).

For monitors, the offline calibration procedure is finished with the polygonal model

creation step, as no geometric compensation and brightness adjustment is required. Using

the screen�plane homographies, each monitor pixel can be mapped to a 3D location in

the environment. For projected displays, some additional calibration steps are required,

to calculate geometric compensation and alpha blending of overlapping projections, as

discussed in the following sections.

4.1.4 Surface Parameterization

The aim of a geometric correction routine for projected displays is to map an existing

2D rectangle to a 3D polygon with minimal geometric distortion. In the case of the

Deskotheque environment, the 2D rectangle is represented by the X Window System’s

screen and the 3D polygon represents the reconstructed projection surface.

Different strategies to compensate for distortion, including view-dependent and view-

independent approaches, were discussed in the background chapter (Section 2.2.2). As

Deskotheque was designed with multiple users in mind, we rely on a view-independent

method, which aims for a wallpaper-like effect, where the image looks undistorted when

74 Chapter 4. Spatial Awareness in the Deskotheque Environment

viewed from a location perpendicular to the surface. Of course, wallpaper-like compen-

sation is only possible, if the projection surface is developable, i.e., the surface can be

“flattened” without any seams or deformations.

Parameterization Techniques

In the Deskotheque system, two surface parameterization methods are currently supported,

which differ in the way potential non-developable surfaces are handled:

Least squares conformal maps [141] were originally introduced as a texture map-

ping technique, but have been successfully employed for view-independent geometric com-

pensation for projector-based displays [190]. If the projection surface is non-developable,

the algorithm aims at minimal distortion, but leads to deformations (Figure 4.7(a) and

(d)).

The patch parameterizer maps individual polygons to a common 2D surface without

distortion, but instead introduces seams. It aims to preserve vertical display alignments,

therefore keeping vertical edges intact while introducing seams along horizontal edges,

if the surface is non-developable (Figure 4.7(b), (e)). As the seams introduce “holes”

within the projected imagery (Figure 4.7(f)), the runtime component has to take care

that window placement and mouse pointer navigation is seamlessly possible.

Alignment in Texture Space

Deskotheque aligns the parameterized surface in texture space, either along the averaged

vertical display outlines outlines (i.e., left-most and right-most polygon edges) or along

averaged physical vertical corners, if available. In the example of Figure 4.7, the display

is aligned along the single vertical edge. Polygon edges are assumed to be vertical, if the

mapping of the edge in screen space is approximately vertical (cf., Figure 4.7(c)). Deriving

a common world vertical for the entire environment from the world coordinate system,

defined by the first camera of the base stereo camera pair, is too unreliable, as cameras

are often mounted in a tilted fashion. For a reliable global world vertical, an additional

physical marker would be required (e.g., a printed fiducial marker).

Virtual Display Creation

In Deskotheque, multiple projected images can be composed to a seamlessly tiled dis-

play. As described in Section 4.1.3, projection overlaps are automatically detected and

all contributing output devices are treated as a common, continuous display. Each of

these virtual displays has its own display coordinate system, i.e., a rectangular coordinate

system ranging from (0, 0) to (Nhwidth,Nvheight), where Nh is the number of horizontal

output devices and Nv the number of vertical output devices, arranged in a rectangular

fashion. All output devices are assumed to have the same number of pixels, i.e., width

and height are equal across all projectors.

4.1. Spatial Model Creation 75

(a) (b)

(c) (d) (e)

(f)

Figure 4.7: Surface parameterization for non-developable surfaces: The 3D polygonal model with
virtual display outlines obtained from (a) LSCM and (b) the patch parameterizer. Mind that the
reconstruction and resulting polygonal model is imperfect, thus polygon corners do not perfectly
align in world coordinates. The polygonal model in 2D coordinates: (c) screen coordinates, (d)
LSCM parameterization, and (e) patch parameterization. (f) A screenshot of the geometrically
compensated display using the patch parameterizer. Portions of the desktop are invisible due to
the seams.

As displays are not necessarily composed of projectors connected to one single ma-

chine, Deskotheque has to determine Nv and Nh automatically to calculate the resulting

display rectangle. Deskotheque supports two modes to calculate the spatial display lay-

out: In the “manual” mode, each output device’s row and column within the display

rectangle is derived from its X Window System’s screen coordinates. Thus, each output

device’s screen coordinates (xs), as defined by the X Window System, are identical to

Deskotheque’s virtual display coordinates (xd). The user selects this mode if each contin-

uous display corresponds to one machine and the physical display topology corresponds

76 Chapter 4. Spatial Awareness in the Deskotheque Environment

to the X Window System’s screen layout.

In the automatic mode, the spatial relationship of output devices towards each other

is derived from the 2D mapping of the output devices in texture space. The row and

column of an output device is determined by comparing its center towards the diagonals

connecting the outer corners of the closest output device with already known row and

column. This way, displays with diverging X Window System coordinates (e.g., driven

by different machines) can be constructed. As we assume the same number of pixels per

output device, the relation between xs and xd can be described by a simple translation.

4.1.5 Display Rectification

The rectification step finally determines how the display rectangle is placed within the

texture space containing the parameterized projection surface. A popular approach is to

inscribe the rectangle within the potentially concave outline of the display [190]. This

assures that all image pixels are visible on the surface. However, if the display outline’s

aspect ratio strongly deviates from the image rectangle, or if it has strong concavities,

this approach leads to a significant minification of the displayed imagery and, as a result,

interpolation artifacts.

In the Deskotheque environment, we therefore provide the possibility to circumscribe

the display rectangle around the parameterized display outline (cf., Figure 4.7(d) and

(e)). This leads to a loss of information at the display boundaries, or along potential

seams (e.g., Figure 4.7(f)). However, display-aware content management at runtime (cf.,

display-adaptive window management introduced in 8.3) helps users to optimally use the

available space and explicitly makes use of irregularities introduced by non-rectangular and

non-planar projection surfaces. In addition, we allow the user to adjust the rectangle’s

placement and size interactively at runtime (cf., Figure 3.4(a)).

4.1.6 Results

The duration of the calibration process is mainly dependent on the chosen structured light

technique. While a simple checkerboard can be detected in a less than a second by two

cameras, iterative marker-based patterns in combination with HDR camera images [160]

may take up to several minutes for a single display to get detected, as a large number

of camera images needs to be captured. It has to be noted, though, that cameras and

display devices are not synchronized in the Deskotheque environment. Although we try

to estimate the capturing duration of the cameras in a pre-calibration step, this value is

only a rough estimate and not fully reliable.

The accuracy of the spatial model depends on several parameters:

� the accuracy of the internal camera calibration and camera lens distortion estimation,

� the stereo baseline (i.e., the distance between two cameras),

4.1. Spatial Model Creation 77

� the size of the environment and, as a result, the size of the individual displays in the

camera images,

� the viewing angle of the camera(s) towards a screen,

� the amount of lens distortion of the projectors, which is not compensated,

� and the sharpness of the projected imagery.

In addition, we observed that incorrect assignments of structured light feature points close

to a physical corner to a randomly set plane in the polygonal model creation step (Section

4.1.3) lead to slight inaccuracies. This problem was observed in particular if structured

light feature points were located very close to physical corners, such as in Figure 4.1(a).

The iterative marker-based approach of [160] helped to work around this limitation, as

fiducial markers are only detected when entirely located within a planar sub-region of the

screen, therefore keeping structured light feature points from being too close to physical

corners (Section 4.1.1).

Figure 4.8(a) shows the result of the surface parameterization and display rectification

steps for the model of Figure 4.6. The textured quads show the reconstructed output

device polygons and the color-coded outlines indicate the rectified virtual display. We

used the smallest circumscribed rectangle as rectification method. As the overlap between

the two projectors on the right wall display is large, this results in a significant loss of

pixels, mainly at the lateral screen regions. The dashed line along the estimated polygon

edge in screen coordinates in Figure 4.8(b) illustrates the accuracy of the plane fitting

result with respect to the real world.

(a) (b)

Figure 4.8: (a) Result of the surface parameterization and display rectification process on the
polygonal model of Figure 4.6. (b) The close-up to the multi-planar, tiled display shows a slight
inaccuracy of the polygon edge along the physical corner (display warped and blended).

In the example of Figure 4.8, each display is driven by its own host, i.e., the virtual

display coordinates correspond to the X Window System’s screen coordinates. Each com-

78 Chapter 4. Spatial Awareness in the Deskotheque Environment

pound X Window screen is visualized by a test image in the reconstruction of Figure

4.8(a). In contrast, Figure 4.9 shows a setup driven by a single machine, facilitating VGA

splitters†. In Figure 4.9(a), the six projectors correspond to the X Window System’s vir-

tual output device arrangement. However, in Figure 4.9(b), the single X Window screen

is distributed among the tiled projected display and the two discontinuous monitors. In

a configuration file, the user has to assign individual portions of the X Window screen to

the respective output devices, but the virtual display coordinates of the projected display

are detected automatically during the calibration process.

(a) (b) (c)

Figure 4.9: Tiled displays composed by single host machines: (a) six projectors and (b) three
projectors, in combination with two monitors. (c) The reconstruction result illustrates how the X
screen pixels are assigned to the individual displays.

Figure 4.10 illustrates an example of a developable surface, where both surface pa-

rameterization methods provided in the Deskotheque framework lead to an unsatisfactory

result. Due to the slightly suspended corners of the surround projection, the parameteri-

zation leads to a space-wasting mapping in texture space and the impression of a curved

image on the display (Figure 4.10(b)). Therefore, in an extension of the Deskotheque sys-

tem, which is not part of this thesis, Pirchheim et al. [180] map the surround projection

onto a centered, vertical cylinder, which is then unfolded into texture space.

(a) (b)

Figure 4.10: A developable surface with slightly tilted vertical edges: (a) From the developable
(simulation) point cloud, (b) the patch or LSCM parameterizers create a curved mapping in the
texture space.

†Matrox TripleHead2Go: http://www.matrox.com/graphics/en/products/gxm/th2go/

4.2. Compensation of Projected Displays 79

4.2 Compensation of Projected Displays

The creation of multi-projector displays in the Deskotheque environment allows for a

visually seamless presentation space across multiple, casually aligned projections. The

projector calibration step calculates geometric warping of projected images with respect

to a display rectangle, and blending of multiple overlapping projections to compensate for

uneven brightness. It does not apply any photometric correction, i.e., compensating for

color variances between multiple projectors contributing to the same display.

At runtime, geometric compensation and blending is applied by a window manager

extension (Section 7.3.2). Warping is only calculated for projected displays, blending for

tiled projected displays.

4.2.1 Warping

For geometric compensation (or warping) of projected imagery, Deskotheque relies on

an approach frequently employed for planar tiled displays (cf., Section 2.2.2): 2D ho-

mographies are used to perspectively correct each projector’s imagery with respect to a

rectification in a common 2D coordinate system (usually a camera image).

In contrast to planar displays, homographies in the Deskotheque environment are re-

quired for each planar sub-region of an output device. In addition, the planar coordinate

frame describing the perspectively distorted projections and projection overlaps, respec-

tively, is not defined by a camera image, but by the texture space describing the parame-

terization of the projection surface (Section 4.1.4), to ensure view-independence.

Each output device is described as at least one polygon, depending on the planarity

of the projection surface. Homographies for warping are defined for each polygon and are

composed from three different mappings:

� Hid maps the screen coordinates of a projector i = 1, .., N (Figure 4.11(b)) to their

corresponding virtual display coordinates (Figure 4.11(c)). If the display rectangle’s

topology corresponds to the projectors’ X Window System’s screen coordinates, this

matrix is identity. Otherwise, it describes a simple translation.

� Hdu maps the entire virtual display rectangle to its rectification in texture space

(Figure 4.11(d)). This mapping describes a translation and scaling.

� Huj , finally, maps each polygon j = i, ..,M (where M ≥ N) from texture space to

screen coordinates. This mapping is a perspective transformation in R2.

The resulting perspective transformation is composed by:

Hj = HujHduHid.

The warping function is applied for each polygon j and maps screen coordinates (xj) to

80 Chapter 4. Spatial Awareness in the Deskotheque Environment

undistorted screen coordinates (x′j):

x′j ∼ Hjxj.

(a) (b) (c) (d)

Figure 4.11: Coordinate systems for geometric compensation: (a) The world coordinate system
consisting of two projected displays with one display spanning across a physical edge, (b) the screen
coordinate systems of the two projectors, which are assumed to be operated by two PCs, (c) the
acquired display coordinate system, and (d) the mapping of the world coordinates to a 2D texture
space with inscribed display rectangle.

As described in more detail in Section 7.3.2, the runtime component renders each

texture-mapped polygon j in screen coordinates, and applies the associated geometric

transformation Hj .

4.2.2 Blending

To preserve approximately uniform image brightness across overlap regions of adjacent

projected images, intensity blending with linear ramps was proposed by Raskar et al.

[191]. An appropriate alpha blending value is calculated for each pixel in each projector’s

normalized (i.e., [0...1]) screen coordinate system. For each screen pixel x of a projector m,

the alpha value αm(x) (in the range [0...1]) is calculated as follows (adapted from [191]):

αm(x) =
dm(x)∑

i di(HujH
−1
uk x)

,

where dm(x) is the minimum distance of x from the output device border in projector

m and di the distance from the border in all other projectors i = 1, .., N . H−1
uk maps x

to the texture coordinates of its associated polygon k, while Huj maps it to the screen

coordinates of polygon j in projector i.

The resulting alpha values are stored in the alpha channel of a texture for each projec-

tor. As calculating the alpha value for each pixel is computationally expensive, the default

size of the texture is 512x512.

4.3. User Location Estimation 81

4.3 User Location Estimation

From the spatial model of the environment, we can estimate the location of the individual

users by exploiting some simple assumptions. First, we assume that each user operates the

environment with a single mouse and keyboard pair. We can furthermore assume a user’s

“home” display, connected to the same PC as the input devices. From the associated home

display, we can then estimate the user’s head location to be at a certain distance from the

home display’s center, with a viewing direction perpendicular to the display surface, as

illustrated in Figure 4.12.

Figure 4.12: The user’s head location is estimated from the associated home display.

Most likely, mouse and keyboard will be connected to a personal workstation with

one or two monitors, or a laptop. Using this assumption, we can also reasonably assign

pointing devices to single-machine environments. For instance, in the single-machine MDE

of Figure 4.9(b), the two mouse and keyboard pairs on the table are associated with the

two monitors. The projected display is automatically handled as public space without

explicitly associated input device.

The concept of home displays introduces an implicit level of privacy as comparably

small monitors facing away from co-workers ensure a certain intimacy. This privacy should

not be interrupted by “intruding” mouse pointers. By default, monitors with connected

mouse pointers are treated as private display spaces, accessible only for the host mouse

pointer. Projection walls are public displays open to any user.

These assumptions work well in personal device-centric environments, such as confer-

ence rooms and open-plan offices, where the user is assumed to operate the MDE with

her personal input devices and also has a personal home display. This approach does not

require the users to wear additional hardware to determine their location, allowing for

ad-hoc usage of the MDE and reducing overall cost. In addition, early experiences with

unobtrusive user tracking‡ in the Deskotheque environment [197, 231] have shown that

tracking accuracy is low and suffers from significant jitter. For a more reliable result, also

delivering information about the user’s viewing direction, more obtrusive and expensive

tracking equipment, such as 6-DOF infrared tracking§, would be required.

‡Ubisense Ultra-Wide-Band Tracking http://www.ubisense.net/en/
§e.g., http://www.ar-tracking.de/Products.8.0.html

82 Chapter 4. Spatial Awareness in the Deskotheque Environment

4.4 Multi-Display Coordinate Systems

For several components in the Deskotheque environment, a world coordinate system of

the environment is required. The 3D world coordinate system directly obtained from

the calibration procedure is not always sufficient. An exception is the world-in-miniature

control described in Section 5.3.3, which provides an interactive, live-textured 3D model

of the environment by simply rendering the polygonal model in a 3D scene.

For multi-display navigation using indirect pointing devices (Part III) or cross-display

visualizations (Section 8.1), we require a 2D mapping of the environment, so 2D paths

can be uniquely mapped onto the environment. For user interface elements rendering

and 2D input control, operating systems usually consider the individual output device’s

screen coordinate systems, defined by their number of pixels, and arrange them side-by-

side (Figure 4.13(a)), irrespective of their resolution (Figure 4.13(b)), distance (Figure

4.13(c)), or their 3D arrangements (Figure 4.13(d)).

(a) (b)

(c) (d)

Figure 4.13: Possible spatial 2D mappings of a simple dual monitor setting: (a) the operating
system’s side-by-side arrangement of the individual screens, (b) additionally taking into account
the resolution and (c) the distance between the monitors, or (d) the 3D reconstruction of the
monitors, mapped to the user’s perspective.

Nacenta et al. [166] group input models for MDEs into planar (Figure 4.13(a)-(c)) and

perspective (Figure 4.13(d)). As additional category in their taxonomy, literal techniques

require physical contact of direct pointing devices or adjacent displays (e.g., Pick and Drop

[193], Stitching [107], or Connectables [239]) to transfer information between displays.

These techniques do not require a pre-defined multi-display coordinate system.

In complex multi-display environments, simple planar arrangements, such as shown in

Figure 4.13 (a)-(c), cannot always appropriately capture all individual displays. Consider,

4.4. Multi-Display Coordinate Systems 83

for instance, Figure 4.14: As the reconstruction is not developable, there is no intuitive

2D mapping of the environment without introducing distortions to the individual displays

or irregular seams. In particular, the central wall display, the right wall display, and the

tabletop display cannot be aligned without distortions or disruption of physical edge-to-

edge alignments.

Figure 4.14: Example of a complex MDE without intuitive 2D mapping: the reconstruction is
not developable.

Deskotheque provides two environment mapping techniques for complex MDEs: pair-

wise planar mappings and perspective mappings. These two techniques will be described

in more detail below.

4.4.1 Pair-Wise Planar Mappings

In this approach, the environment is segmented into multiple display pairs, each of which

is mapped onto its own planar coordinate system, such as shown in Figure 4.13(b). As

can be seen in the figure, the pair-wise planar mapping considers the displays’ resolutions

and their physical alignment, but display-less space between the displays is not considered

in the mapping.

Display pairs are aligned along their closest (outer) edges, regarding their physical

display-less space. The closest edges are derived from the three-dimensional representation

of the workspace, for each possible display pair. Once the closest edges are found, the two

corner points of the edges are projected onto the complimentary edge on the adjacent

display, as illustrated in Figure 4.15(a). The respective edge interval, where the adjacent

display is aligned, corresponds to the overlap of the display’s edge and the projected

complimentary edge. The resulting edge intervals are visualized in gray in Figure 4.15(a).

If the resulting interval is empty or smaller than a given threshold, the candidate is

discarded. Otherwise, the normal distance of the edges at the midpoint of the edge interval

is used as a measure of proximity.

Overlapping edge intervals from different display pairs are prioritized according to

84 Chapter 4. Spatial Awareness in the Deskotheque Environment

(a) (b)

Figure 4.15: Finding pair-wise planar mappings: (a) The corner points of the closest edges of
monitor and central wall projection in Figure 4.14 are projected onto each other. (b) Overlapping
edge connections are prioritized according to their proximity score.

their proximities (Figure 4.15(b)). Edge intervals overlapped by intervals of higher prox-

imity scores are trimmed or removed, if the remaining size is below the minimal interval

threshold.

Proximity scores can be furthermore penalized, depending on the anticipated appli-

cation scenario. For instance, displays twisted relative to each other, i.e., connecting a

left/right edge with a top/bottom edge, can be penalized when used for cross-display nav-

igation. If possible, users may prefer traveling via an intermediate display. Also, penalties

are applied if normal vectors of two adjacent displays are facing away from each other.

Resulting edge connections between adjacent display pairs are managed in a graph data

structure. Connected edges of adjacent display pairs represent point-to-point mapping

areas between two displays. To find the shortest path between two arbitrary displays

in the environment, the graph data structure containing the individual displays needs to

be consulted. We use the A* search algorithm [100] to find the path with the lowest

cost through the graph of displays, given a start and a target display and, if available, a

specific pixel on the start and target display. The cost function of the algorithm for the

path through a node n is composed of two parts [100]:

f(n) = g(n) + h(n),

where g(n) is the cost for the optimal path from the start node to the current node n and

h(n) is an estimate of the cost from n to the target node. For a display n, g(n) is defined

by:

g(n) = g(n− 1) + dn,

where g(n − 1) is the cost of the previous display (or 0, if n is the start display), and dn
is the distance from display n to the previous display. The cost h(n) is estimated by the

world distance between display n and the anticipated target display. The result of the

4.4. Multi-Display Coordinate Systems 85

algorithm is a list of displays resulting in the shortest possible path with respect to the

real world.

Figure 4.16: Visualization of the shortest paths from a start display (left monitor) to all possible
target displays using pair-wise planar mappings and the A* search algorithm.

Figure 4.16 shows simple line connections from a single start display to all potential

target displays. In this case, lines are rendered through the centers of the edge intervals

of a display pair. This means that the length of the lines could be further optimized.

To calculate the optimal position on the edge interval for a line connecting a display n

and n + 1, we project the start point of the line on display n onto the connected edge.

Similarly, we project the end point of the line on display n+ 1 on the connected edge, and

map it to the corresponding edge position on display n (Figure 4.17(b)). The position on

the edge interval is determined by finding the midpoint between the two projection points

and clamping it within the edge mapping interval, if necessary. Figure 4.17 illustrates the

difference between the two approaches.

(a) (b)

Figure 4.17: Line connections between display pairs: (a) through the edge connection midpoint
or (b) the shortest possible path.

Pair-wise planar mappings can be employed in very complex environments, as the

resulting coordinate systems are very simple and work equally well from all locations

within the environment. They do not introduce any perspective distortions within the

displays.

86 Chapter 4. Spatial Awareness in the Deskotheque Environment

However, the possibilities of environment-aware cross-display visualizations are limited

to very simple path visualizations, as shown in Figure 4.16. Using this mapping, it is not

possible to create a seamless viewing space across more than two displays, as no unified

2D representation containing more than two displays is available. Another disadvantage

is that pairwise planar mapping sometimes simply fail. For instance, if the right projected

display was the only wall display in Figure 4.14, no connection with the monitors would be

established with the above described algorithm. To circumvent this problem, the algorithm

should detect display pairs that do not have a direct or indirect connection, and should

add artificial connections between these displays. However, this features has not been

implemented.

As extensions to the concept, pair-wise planar mappings could additionally incorpo-

rate the display-less space between the connected edges (cf., Figure 4.13(c)). This repre-

sentation would correspond to seam-aware visualizations [146], OneSpace multi-monitor

imagery [200], or a MouseEther navigation coordinate system [18]. Mind that in their

original implementation, these techniques have only been considered for co-planar display

configurations. To create more meaningful edge intervals for a human observer, connected

edge intervals could be derived from a 2D perspective mapping, as described in the next

section.

4.4.2 Perspective Mappings

This mapping creates a perspective representation of the environment, as perceived from

the (estimated) user location. A simple example is shown in Figure 4.13(d). In contrast

to pair-wise planar mappings, this representation differs for each user or location in the

environment, respectively.

From the known user location and viewing angle in the environment, a projection

plane is constructed. Each displays’ reconstructed polygon corners are mapped onto this

projection plane. The screen coordinates of the individual polygons and their perspectively

mapped representations are related by 2D homographies.

Figure 4.18: Visualization of the shortest paths from a start display (left monitor) to all possible
target displays using a perspective mapping. Mind that the perspective plane corresponds to the
camera position.

4.4. Multi-Display Coordinate Systems 87

Figure 4.18 shows the same line visualizations as in Figure 4.16, but using a perspective

mapping instead. To find the individual line segments for each display, the start and end

point on the respective displays are first mapped onto the perspective representation.

There, all intersections with display edges are detected and converted to the respective

screen coordinate systems.

The perspective mapping leads to an intuitive 2D mapping of the environment, when

viewed from the user’s perspective. However, in a collaborative setting, a perspective view-

ing space may lead to confusion of observers in other locations. Also, if the user changes

location or turns the head, the perspective mapping needs to be updated. Detecting these

changes requires special sensing equipment, like head trackers, which is not only expensive,

but also intrusive for the users. Although in some situations (e.g., a static office setting)

a static perspective mapping might be sufficient, head trackers are indispensable if some

displays are located behind the user and can only be accessed if the user turns around.

In contrast to pair-wise planar mappings, visualizations can be rendered across an

arbitrary number of displays, as a single unified 2D space is created. As an example,

the E-Conic system [169, 207] used a similar perspective mapping to render application

windows in an MDE.

4.4.3 Other Mappings

There are, of course, other possibilities to map an MDE onto a planar representation.

The considerations below are purely conceptual and have not been integrated into the

Deskotheque environment.

A distortion-free, but unified 2D mapping could be achieved by using an approach

similar to the patch parameterizer introduced for mapping of non-developable surfaces

to a 2D texture space (Section 4.1.4), resulting in a “fold-out” view of the environment:

Pair-wise adjacent displays are determined similar as in the pair-wise planar mapping

technique, but additionally the distance between their closest edges is encoded in the planar

representation (as in Figure 4.13(c)). If the environment is non-developable, vertically

aligned displays (connecting left / right edges) are preserved, while “twisted” connections

along a lateral and top / bottom edge (usually involving a tabletop display) are potentially

sliced. Figure 4.19 shows a conceptual sketch of this approach. As a unified planar

mapping of the environment is available, cross-display visualizations are possible. This

representation can be compared with the fold-out view of the ARIS window relocator

[33]. However, in their implementation, the mapping had to be constructed manually [36].

One might also consider a perspective mapping onto a non-planar geometry, such as

a sphere or a cylinder. Examples are the cylindrical parameterization for the surround

display by Pirchheim et al. [180] or the spherical navigation frame of the Perspective

Cursor [170, 207].

88 Chapter 4. Spatial Awareness in the Deskotheque Environment

Figure 4.19: Conceptual sketch of a fold-out mapping of the environment in Figure 4.14, with
cross-display lines.

4.5 Discussion

The automatic display calibration process allows for a quick and easy creation of a multi-

planar model of the environment. Each displays’ pixel can be uniquely mapped to its

corresponding location in the 3D model of the environment, as well as any other 2D model

of the environment, which has been derived from the initial reconstruction. The calibration

process extends the approach for reconstruction of multi-planar displays presented by

Quirk et al. [187] to more flexible multi-planar display form factors. The model created

with the calibration procedure proposed by Quirk et al. was limited to displays with

vertical display edges.

Our spatial model approach furthermore supports the combination of monitors and

irregular, tiled projected displays into a common interaction space. This is especially useful

in office environments with limited wall and table spaces, where providing perfectly aligned

projections is hampered by architectural constraints. To our knowledge, Deskotheque

has been the first MDE to combine monitors and irregular projections in a common,

spatially aware interaction space. Wallace et al. [254] combined multiple single-monitor

workstations and a tiled projected display in a control room setting, but their environment

does not require any spatial awareness features: Input redirection and information transfer

is fixed between the top edge of each monitor and the bottom edge of the shared projected

display.

Our calibration process and description of the environment as polygonal model also

suffers from a few limitations. First, we do not synchronize the cameras used for calibration

with our display devices. This limitation is based on the design requirement for commodity

hardware and the support for flexible hardware configurations. Thus, the calibration

process is time-consuming and can only be conducted offline. Imperceptible structured

light approaches cannot be supported in such a configuration. As a result, changes to the

display environment cannot be detected at runtime and require the users to re-run the

4.5. Discussion 89

calibration process manually. However, updating the model based on real-time tracking of

display devices using displayed natural features, as proposed by Johnson and Fuchs [133],

could be a useful future extension to provide a hybrid offline-online calibration procedure.

Second, due to similar considerations about hardware cost and flexibility, we do not

support tracking of users and devices in the environment. According to our own infor-

mal and observational experiences, we concluded that real-time tracking of environment

resources is rarely required in office room scenarios. However, as handheld display devices

are becoming more and more ubiquitous and light-weight (e.g., tablet PCs), continuous

6-DOF tracking of certain display devices will be an important future issue. Natural fea-

ture tracking of displayed content, as mentioned above, could be a solution, but may be

too unreliable. For reliable 6-DOF tracking with sufficient accuracy, attaching tracking

targets to mobile devices, such as fiducial markers or infrared targets, will be inevitable.

Third, in its current implementation, the calibration process relies on calibrated multi-

view vision to create a reconstruction of the environment. With this configuration, most

environments can be reconstructed. However, in many situations, a 3D model could be

created much easier. For instance, when limited to a single planar display surface, as shown

in Figure 4.9(a), a single camera mounted perpendicular to the display surface would be

sufficient for an accurate reconstruction. Similarly, if monitors with known aspect ratio

and display diagonal are available in the environment, the 3D coordinates of the displayed

structured light points on the monitors can be calculated. From the point correspondences

of the captured structured light feature points in camera coordinates and the associated 3D

coordinates, the internal camera parameters can be estimated. If the radial and tangential

lens distortion is low, this estimate may be sufficient for a reconstruction. Especially if

there are no tiled displays, the reconstruction for creating a seamless interaction space can

be fairly coarse.

Fourth, the physical display arrangement of the Deskotheque environment is limited

to multi-planar displays. Projection on arbitrary, e.g., curved, surfaces is not supported

and will lead to unpredictable geometric compensation. In addition, Deskotheque assumes

that displays are discontinuous and that each individual display can be mapped to a 2D

representation. Closed, seamless surround projections are not considered in office spaces,

where architectural elements like doors, windows, or posters lead to a natural segmentation

of the available display regions.

Part III

Multi-Display Navigation

91

Chapter 5

Cross-Display Navigation Techniques

Cross-display navigation is a fundamental interaction technique to facilitate information

access in MDEs using indirect pointing devices, like a conventional computer mouse. Con-

sidering the mouse as primary input device in an MDE might seem “old-fashioned” for

some interaction designers, but has advantages for operating a personal device-centric

MDE, such as illustrated in Figure 5.1: Mouse and keyboard are the standard input de-

vices for personal computers – the ones considered to the central interaction hub of the user

– and can be similarly employed for operation on distant content on projected displays.

Users can access very close, and detailed content, as well as very distant items, without

physically moving to a remote display [33] or changing input device. On shared displays,

interference of multi-user input is kept to a minimum, as users do not occlude displayed

content when interacting on public display space – in contrast to direct input methods.

Finally, today’s legacy application operation is best supported by mouse and keyboard,

and input hardware has a very low cost, compared, for instance, to large touch-sensitive

surfaces.

Figure 5.1: Personal device-centric MDE operated by a mouse and keyboard pair.

93

94 Chapter 5. Cross-Display Navigation Techniques

However, providing a seamless navigation space across all discontinuous displays in

the environment poses interesting challenges. First, as there is a large amount of pixels

available in the environment, we are facing similar problems as continuous large displays:

users have problems keeping track of their cursors and moving the cursor across the envi-

ronment introduces considerable physical effort [68, 200]. To overcome these issues, visual

navigation aids for large displays and improvements of targeting performance have been

addressed (see Section 2.2.2).

Second, the environment is composed of multiple heterogeneous displays of different

resolution, size, orientation, and with considerable display-less gaps between the indi-

vidual displays. Previous research has shown that seamless mouse pointer navigation is

negatively influenced by a number of display factors, such as depth offsets between dis-

plays [237], adjacent displays at relative angles higher than 45◦ [233], physical distance

and size-resolution mismatches [18], as well as non-optimal seating arrangements [257]. In

these evaluations, standard mouse behavior was used for navigating across heterogeneous

displays: multiple output devices are mapped into a common planar coordinate system,

not considering resolution, distance, or orientation (cf., Figure 4.13(a)).

Cross-display navigation techniques therefore need to keep the user’s mental effort low

by additionally addressing the following issues: Providing intuitive transitions, where the

mouse pointer is relocated from one display to another, and compensating for heteroge-

neous mouse movement behavior caused by changing display factors.

5.1 Design Space

From reviewing the related work on cross-display navigation (Section 2.2.3), it is evident

that mouse pointer navigation in MDEs covers a large design space. We separate the design

of cross-display navigation techniques into two major areas: The fundamental requirement

is the creation of a multi-display coordinate system the navigation technique can refer to.

This corresponds to the display configuration established by Nacenta et al. [166], and

exemplary approaches are described in Section 4.4. The spatial model can be created in

an automated calibration step, modeled manually by the user, or interactively created by

the user.

Based on this coordinate system, the navigation technique can apply different nav-

igation parameters. We introduce four categories describing differences in navigation

techniques, which directly informed the system design of the multi-display navigation

infrastructure presented in Section 5.2:

Trigger. A cross-display navigation technique somehow needs to trigger a transition of

the pointing device from one display to another. On the one hand, this trigger might

be implicit as the user moves her pointer across a display edge (e.g., MouseEther [18],

Perspective Cursor [170]), or a specific interval on an edge (e.g., PointRight [129],

Swordfish [96]), and no additional activity is required. On the other hand, an explicit

5.1. Design Space 95

trigger requires the user to undertake some dedicated action to transfer the pointer

to a remote display. Examples are graphical representations of the environment

(e.g., ARIS [33]), textual lists of display names, or button presses on mouse or

keyboard (e.g., M3 [28, 29]). For some explicit triggers, no spatial representation of

the environment is required.

Cross-display movement. When transferring the pointer to a remote display, the

display-less space between source and target display needs to be bridged. The pointer

may either be warped across the gap, or may continuously move in display-less space,

i.e., within the ether [18, 170]. Continuous movement in display-less space is usu-

ally supported by an off-screen visualization technique, to indicate the approximate

location of the pointer. To decrease the amount of time spent in display-less space,

movement speed can be accelerated. To properly model movement in display-less

space, it needs to be encoded in the spatial representation of the environment. Tech-

niques facilitating an explicit trigger directly transfer the pointer to a remote display

and therefore do not create the illusion of a seamless navigation space. Thus, warp-

ing the pointer to the remote display is the standard approach for explicitly triggered

techniques.

Outcome. When arriving at the remote display, the navigation technique needs to set the

pointer to a reasonable initial position. Techniques using an implicit trigger usually

set the mouse to a display edge – either by evaluating point-to-point mappings of

pair-wise planar mappings [96, 129], by extrapolating a movement direction and in-

tersecting the resulting ray with a potential target display edge, or by simply setting

the pointer to the first known position after continuous movement in display-less

space [18, 170] (Figure 5.2). For techniques with explicit trigger, a straight-forward

approach is to set the pointer to the center of the remote display or some other

pre-defined location. Benko and Feiner [28, 29] presented some possible outcome

strategies for techniques with explicit triggers. Others let the user explicitly choose

the target location in a GUI preview of the display [33].

(a) (b) (c)

Figure 5.2: Potential outcome positions on the remote display’s edge after an implicitly trig-
gered transition: (a) point-to-point mapping along virtually connected edges, (b) extrapolating
the movement direction, or (c) entering the display after continuous movement in the display-less
“ether”.

96 Chapter 5. Cross-Display Navigation Techniques

C/D gain. The final category addresses movement within a display, as opposed to cross-

display movements. The C/D gain adjustment deals with the question how to com-

pensate for non-homogeneous movement across multiple displays. The standard C/D

gain applies the operating system’s default behavior, which does not take physical

display size, distance to the user, or viewing angles into account. Potential ways to

adjust the C/D gain in MDEs is to compensate for resolution differences of displays

[18] or to fully compensate for perspective mappings onto the user’s viewing plane

[170], which requires a perspective representation of the environment. To compen-

sate for inhomogeneities, each relative incoming mouse movement event needs to be

evaluated on the spatial model and corrected, if necessary. Mind that the C/D gain

adjustments considered here only affect the interaction space. Similar considerations

may be conducted for the viewing space (cf., E-Conic [169]).

Based on our multi-display coordinate systems (Section 4.4) and the above established

criteria, we developed a generalized technical infrastructure which covers most of the

design possibilities in a unified way. This infrastructure is introduced in the next section,

followed by some exemplary navigation techniques, implemented using this infrastructure.

5.2 Mouse Pointer Navigation Infrastructure

To support a wide range of cross-display navigation techniques, we implemented a navi-

gation infrastructure operating on three different layers (Figure 5.3):

� Optional external applications can be used to explicitly trigger input redirection

commands. Applications facilitate Deskotheque’s network interface to report in-

put redirection triggers. As examples, we provide an interactive world-in-miniature

control of the environment (Section 5.3.3) and a simple pointer warping technique

(Section 5.3.4), which allows the user to relocate the pointer to a dedicated target

display by pressing a keyboard shortcut. In addition, external applications can also

receive navigation events, for instance that an input redirection has occurred for a

specific pointer. For instance, in the Deskotheque environment, this information is

incorporated by the window manager to visualize the pointer outcome position on

the target display as an animated dot.

� The navigation framework receives motion events from a single pointing device,

performs implicit transitions to remote displays, receives explicit transition requests

from external applications, and applies C/D gain adjustments on demand.

� The base layer grabs input events from connected pointing devices. In our

Deskotheque environment, we use a middleware application taking care of input

redirection and multi-pointer coordination, as described in Section 3.2.2. For each

detected mouse pointer, one instance of the navigation framework is assigned. In

5.2. Mouse Pointer Navigation Infrastructure 97

this way, different pointers and users, respectively, can use distinct spatial represen-

tations of the environment or navigation parameters for their preferred cross-display

navigation behavior.

Figure 5.3: Deskotheque navigation infrastructure for a single pointer: The base input redirection
component grabs input events from connected pointing devices and consults the navigation frame-
work for each incoming input event. External applications can issue explicit redirection triggers.
The window manager is responsible to render color-coded pointers and navigation aids, triggered
by the input redirection component. If required, the window migration component is informed if
an input redirection was triggered for a pointer dragging a window.

The remainder of this section will deal with the middle layer, the navigation framework.

The primary purpose of the navigation framework is to compensate for inhomogeneities in

the navigation space (i.e., to apply C/D gain adjustments) and to perform transitions to

remote displays, which were implicitly triggered. It also provides an interface for external

applications to perform explicit triggers. The navigation framework can then choose an

appropriate target display and an outcome position, if not given. Explicitly triggered

transitions can co-exist with seamless mouse pointer navigation, triggering transitions

implicitly by moving the pointer across display boundaries.

5.2.1 Navigation Framework Configuration

The navigation framework is configured with a spatial description of the environment, as

well as parameters of the desired navigation behavior. The spatial model describes each

available display in screen coordinates, in combination with potential edge connections to

adjacent displays, and a representation of this display in a unified 2D representation, e.g.,

a perspective view or a fold-out view of the environment (Section 4.4). In our system, the

98 Chapter 5. Cross-Display Navigation Techniques

connected edge intervals and the 2D map of the environment are automatically retrieved

from a 3D model of the environment, created in an automated offline calibration process

(Chapter 4).

The desired navigation parameters were derived from the categorization of the design

space described in Section 5.1. For implicitly triggered navigation techniques, the user has

to specify an exit trigger. This might be if the mouse touches a connected edge interval

or if the user touches a display edge at any position.

In addition, a transition type has to be specified. The transition determines the tar-

get display and the respective outcome position. Currently, we support three types of

transitions: Connector transitions set the pointer to the complimentary interval on the

remote display, if the exit was triggered by a connected edge interval configuration. Map

transitions use the unified 2D map of the environment to determine target display and

outcome position – either by finding the remote display location closest to the current

mouse pointer location or by extrapolating the current pointer movement direction and

intersecting the resulting ray with the displays on the 2D map. Finally, sequential tran-

sitions hold a pre-defined sequence of displays and set the mouse pointer to the center of

the next display in the sequence. A transition type also has to be specified for externally

triggered transitions, in case the external application does not specify the target display.

Finally, the outcome parameter overwrites the outcome position specified by the tran-

sition type, and is usually desired for externally triggered transitions, such as pointer

relocations triggered by shortcuts. We support some simple strategies, as proposed by

Benko and Feiner [28, 29]: centering the mouse pointer on the remote display, setting it

to the same relative location, and setting it to the same location as previously on this

display.

In addition, the user can specify a chain of C/D gain adjustments. If no adjustment

is applied, the mouse will behave as usual when moved inside a display. In our implemen-

tation, the user can choose to compensate the C/D gain so movements are homogeneous

with respect to the underlying map representation (i.e., a non-linear distortion of the

interaction space, if displays in the map are perspectively distorted).

This approach offers a variety of configuration possibilities. For instance, setting con-

nected edges and connector transitions for implicitly triggered transitions, we can easily

model multi-monitor “stitching”, as proposed by PointRight [129] or Swordfish [96]. The

combination of edge exits and map-based transitions, together with map-based C/D gain

adjustments, creates similar effects as MouseEther [18] or Perspective Cursor [170]. Mind,

however, that our navigation framework always warps the mouse pointer across display-

less space. Movement in the display-less “ether” is not yet supported. In addition, we can

also create combinations of these techniques. For instance, we can restrict the exit regions

of a display to pre-defined connected edge intervals. If the pointer touches such a region,

a map-based transition extrapolates its movement direction and relocates the pointer to

the respective remote display edge intersection.

For explicitly triggered transitions, very simple standard pointer warping approaches

5.2. Mouse Pointer Navigation Infrastructure 99

can be easily constructed, for instance by combining sequence transitions with center

outcome (Figure 5.4(a)). In this case, the pointer will be re-set to the next display’s center

in the linear sequence by pressing a dedicated trigger. Also, more complex settings can be

constructed. For instance, the user may trigger a pointer warp with a single button press

and relocate the pointer to the closest edge of a display in its current movement direction

(map-based transition), as illustrated in Figure 5.4(b).

(a) (b)

Figure 5.4: Potential pointer warping strategies with a single button press: (a) sequential switch-
ing through displays and centered outcome position or (b) extrapolating the current mouse pointer
movement direction after explicitly triggering input redirection.

5.2.2 Runtime Operations

At runtime, the base layer constantly delivers movement events of a single input device to

the navigation framework. In our environment, the Synergy server grabs input events from

multiple input devices. For each input event, the navigation framework associated with

the particular pointing device is informed. If the navigation framework somehow modified

the incoming pointer location (e.g., by applying C/D gain adjustments) or requests a

transition to a remote display and host, respectively, the base layer is responsible to apply

these operations to the respective pointing device.

After receiving the latest motion event from the base layer, the navigation framework

first applies the C/D gain adjustment chain. Then, it checks whether the requested dis-

play exit criteria is fulfilled, i.e., whether the mouse pointer touches an edge or a virtually

connected edge interval of the display. If so, the user-specified transition method deter-

mines the target display and outcome position on the display. If specified by the user, the

outcome position is overwritten, e.g., to always re-set the mouse pointer to the center of

the display. Figure 5.5(a) illustrates this procedure.

When receiving external trigger requests from external applications, there are three

potential cases: First, the application already determined the respective target display and

the exact location on the target display. This is, for instance, the case when picking the

desired target location in a miniature view of the environment. In this case, the navigation

100 Chapter 5. Cross-Display Navigation Techniques

(a) (b)

Figure 5.5: Flow diagrams of runtime operations: (a) applying C/D gain adjustments and checking
for implicit input redirection triggers when receiving the current pointer location from the base
layer and (b) forwarding an input redirection request to the base layer after receiving an external
trigger.

framework just updates its internal pointer history and reports the change to the base

layer. Second, the application reports the target display, but does not report a specific

location. This is the case if the user selected the target display from a simple textual list

or by pressing a dedicated shortcut. The outcome position is then determined using the

outcome parameter set for explicitly triggered transitions. For instance, if the user chooses

a relative placement strategy [28], the mouse pointer will be set to the specified display to

the same relative position as on the origin display. Third, the application neither reports

the target display, nor any location. This is most likely if the user just presses a single

button to cycle the pointer sequentially through all displays. The navigation framework

then consults the transition method specified for external triggers and afterwards sets an

appropriate outcome position. Figure 5.5(b) shows the operation flow when receiving an

external redirection trigger.

5.3. Exemplary Navigation Techniques 101

5.3 Exemplary Navigation Techniques

Based on our design criteria for cross-display navigation and the established mouse pointer

navigation infrastructure, we built four different cross-display navigation techniques for

heterogeneous MDEs. Table 5.1 illustrates how these techniques fit into the design space.

Path Free WIM Pointer
Navigation Navigation Control Warping

Spatial pair-wise perspective 3D none
model planar

Trigger implicit implicit explicit explicit
(edge interval) (edge) (GUI) (key-press)

Outcome point-to-point ray-edge selected in display
edge-mapping intersection GUI center

C/D gain standard perspective standard standard

Table 5.1: Our developed techniques differ in which spatial model they use, how a transition is
triggered, the outcome position on the target display, and the C/D gain adjustment. All techniques
warp the mouse pointer across display-less space.

5.3.1 Path Navigation

Path navigation establishes mouse pointer transitions along virtually connected edge in-

tervals, derived from pair-wise planar mappings of the environment (Section 4.4.1). The

navigation framework triggers an implicit exit if the mouse pointer touches a connected

edge interval and transfers the pointer to the complimentary edge position on the remote

display, as illustrated in Figure 5.6. Movement within displays operates with standard

C/D gain, but could also be adjusted to compensate for perspective effects or resolution

differences, if the user desires. To support the users in path finding, we visualize connected

edge intervals by color-coded lines.

Figure 5.6: Path navigation warps the mouse pointer across virtually connected edge intervals in
pair-wise planar mappings.

102 Chapter 5. Cross-Display Navigation Techniques

Path navigation can be compared to conventional “stitching”, as provided by most

operating systems to handle multi-monitor settings, or input redirection tools like Syn-

ergy [212]. However, unless configured manually, these tools do not consider the spatial

arrangement of displays towards each other or resolution differences in display-connecting

paths. Path navigation allows for more flexible display arrangements, like multiple con-

nections along a single edge (cf., the bottom edge of the center wall display in Figure 5.6)

or twisted connected edges (cf., the connection between table and central wall display in

Figure 5.6).

5.3.2 Free Navigation

Free navigation works similar to MouseEther [18] or Perspective Cursor [170]. Each in-

coming relative mouse movement event is added to the last known pointer position on a

perspective representation of the environment, as seen from the user operating the mouse

(perspective C/D gain).

However, there are two major differences to MouseEther and Perspective Cursor: First,

free navigation does not consider the display-less space within the displays but rather warps

the pointer across the gap when transitioning to a remote display. Although an evaluation

of Perspective Cursor [170] showed that perspective navigation within MDEs is superior

to conventional stitching, a follow-up experiment [168] suggested that warping the pointer

across a large gap between displays performs better than navigation in the mouse “ether”.

As MDEs in offices or meeting rooms often include displays with considerable physical gaps

in between, we therefore refrained from navigation in display-less space. Instead, each time

the pointer touches a display edge, the current movement direction is extrapolated to a ray

and intersected with the other displays’ edges in the perspective map, as shown in Figure

5.7. If the ray intersects other displays’ edges, the intersection point closest to the current

Figure 5.7: Free navigation operates with a perspective C/D gain and warps the mouse pointer
across display gaps by extrapolating its movement direction on a perspective map of the environ-
ment.

5.3. Exemplary Navigation Techniques 103

position is converted to the target display’s device coordinates and input redirection is

triggered. If no intersection was found, the motion event is discarded, and the mouse

pointer remains on the originating display.

As a second difference to Perspective Cursor, free navigation uses a static description

of the environment, created in an offline calibration step with an estimated user location

(Section 4.4.2). This approach only allows operating the entire environment, if all displays

are within the user’s field of view. Otherwise, some displays may be impossible to reach

or the mapping needs to be changed as the user moves her head.

5.3.3 World-in-Miniature

A world-in-miniature (WIM) approach is a well-known concept for accessing and modify-

ing content in virtual environments [227], but has also been used for input and content

redirection in MDEs [33, 265] or large displays [234]. A WIM represents a down-scaled

view of the environment and thereby aids discovery, access, and manipulation of remote

content.

Our WIM control is an external 3D application based on Coin3D∗ to trigger input

redirection interactively on the 3D environmental model created in the offline calibration

process. Display models are textured with live desktop content, which is retrieved and

streamed by the window manager. The virtual camera location of the WIM control is

initiated from the estimated perspective of the user invoking the WIM control and can be

interactively modified. The WIM control is shown in a small window, which is invoked by

a shortcut and appears at the current mouse pointer location. Figure 5.8 shows the WIM

control window.

(a) (b)

Figure 5.8: (a) The world-in-miniature control window appears at the current mouse pointer
location and (b) allows the user to interactively select the pointer target location in the environment
(screenshot close-up).

To redirect the mouse pointer input, the user clicks the desired target location within

the miniature view. As a result, the navigation framework is informed about the an-

ticipated target display and location and initiates an input redirection to the associated

∗http://www.coin3d.org/

104 Chapter 5. Cross-Display Navigation Techniques

location in the physical environment.

5.3.4 Pointer Warping

Pointer warping triggers mouse pointer transitions by pressing a dedicated keyboard short-

cut. As sequential switching by pressing a single button becomes cumbersome with an

increasing number of displays, we allow the user to explicitly redirect the pointer to a

dedicated display. Each display in the environment is issued a unique ID, which can be

visualized on demand, as illustrated in Figure 5.9. A transition to a desired display is

achieved by pressing a modifier key in combination with the display ID. The outcome

position is set to the center of the display.

Figure 5.9: On-demand visualization of the display IDs used for pointer warping.

In contrast to the other exemplary navigation techniques, pointer warping does not

need to take the spatial display arrangement into account. The display is selected explicitly

based on a unique identifier and the outcome position is not influenced by the origin

location within the environment.

5.4 Cross-Display Information Sharing

Cross-display navigation techniques are not only useful to transfer input control to a re-

mote display, but can also be used to transfer pieces of information (e.g., application

windows) to a remote display. Navigation techniques using an implicit trigger can be

utilized for drag-and-drop of information items across display boundaries, just like win-

dows can be dragged across monitor bezels in conventional multi-monitor settings. In a

distributed setting, information sharing or application window migration has to be trig-

gered whenever the mouse pointer, which is currently dragging a window, is redirected to

a remote host (see Section 3.2 for a technical description). In a single-machine setting,

the dragged window simply has to follow the mouse pointer, even if it is warped by the

navigation framework.

Window migration can also be triggered explicitly. For instance, the world-in-miniature

control can be facilitated to additionally support drag and drop of application windows

5.5. Discussion 105

across display boundaries within the miniature view, as realized in a single-machine proto-

type for a compositing window manager [24] (cf., Figure 5.10). As another explicit window

migration trigger, we embedded a list of potential target display names into the context

menu of the window title bars in an earlier version of Deskotheque [181].

(a) (b) (c)

Figure 5.10: Window migration using the WIM control [24]: (a) the user can pick up a window
at any location, (b) drag it to a remote display within the miniature view, and (c) drop it on a
remote display. The window is resized to fit the display size. The window migration operation will
be reflected in the “real” environment.

5.5 Discussion

The presented mouse pointer navigation infrastructure is a modular approach to cross-

display navigation and therefore provides for flexible configurations. The infrastructure

separates low-level input event handling, like multi-pointer support and input redirection

in a distributed system, from high-level navigation control, as well as external applications

providing special features. The environment configuration is provided by an external

source, thus can be created by hand in a simple configuration file (e.g., as in PointRight

[129] or Synergy [212]), in a graphical editor (as proposed by Biehl and Bailey [36]),

interactively by the user (as in Swordfish [96]), or from an automated calibration process,

as described in Chapter 4.

In its current implementation, the navigation framework relies on a spatial model of the

environment, which has been created offline and is not changed at runtime. Modifications

to the model at runtime are required for instance when using a perspective mapping

in combination with a head-tracked user, if tracked mobile devices are available in the

environment, or static displays are added or removed at runtime. Conceptually, supporting

a dynamic spatial model is possible, but has not been required for our exemplary navigation

techniques.

The proposed design space currently only deals with indirect pointing devices. Al-

though the usage of indirect pointing devices as primary input control in a heterogeneous

MDE has already been motivated at the beginning of this chapter, the increasing amount

of self-contained devices with touch-sensitive input affords new possibilities in such an

environment. In the future, hybrid approaches may be possible, where a tablet PC or

106 Chapter 5. Cross-Display Navigation Techniques

another handheld device is facilitated to explicitly trigger a transition, while on-display

navigation is accomplished with the mouse, as usual.

Chapter 6

Evaluations of Multi-Display

Navigation

A key aspect of the cross-display navigation techniques presented in the previous chap-

ter (Section 5.3) is that they all facilitate a different spatial model of the environment.

In previous work, different aspects of spatial awareness in cross-display navigation tech-

niques have been evaluated. For instance, Baudisch et al. [18] showed that compensating

for the visual-device space mismatch in dual-monitor setups (discontinuities caused by

monitor bezels and size-resolution mismatches) increased targeting performance. Simi-

larly, Nacenta et al. [170] demonstrated a benefit of a perspective navigation space in

a heterogeneous MDE. Others have evaluated influencing display factors on navigation

performance, such as depth offsets [237], angles between displays [233], and seating ar-

rangements [257] – albeit without adapting the mouse pointer navigation to the spatial

display factors. What is missing is a thorough understanding of how different display

factors influence the cross-display navigation techniques with their diverse spatial models.

We started by rather informally comparing four navigation techniques introduced in

the previous chapter (Section 5.3) on a heterogeneous MDE with different transitions

across varying display factors (Section 6.1). Results of this experiment serve as foun-

dation for further, more focused investigations. In particular, we explored the influence

of physical display-less space on pointer warping (Section 6.2) and investigated whether

making pointer warping spatially aware can enhance pointing performance (Section 6.3).

6.1 Comparison of Cross-Display Navigation Techniques

We compared performance, user satisfaction, and usage frequencies of four cross-display

navigation techniques in a heterogeneous multi-display environment to receive quantitative

measurements for comparison of the techniques, but also to receive qualitative feedback

and exploratory evidence of navigation parameters and display factors influencing cross-

display navigation. The four evaluated cross-display navigation techniques are presented

107

108 Chapter 6. Evaluations of Multi-Display Navigation

in Section 5.3: path navigation (path), free navigation (free), world-in-miniature (WIM),

and pointer warping (warp).

Mind that the four navigation techniques not only differ in how they encode spatial

awareness of the environment, but also in other navigation parameters (refer to Table 5.1

in Section 5.3).

6.1.1 Participants

Twenty users (11 male, 9 female, aged 23 to 48) participated in the study. Twelve partici-

pants were using dual-monitor setups on a regular basis, one participant was working with

a three-monitor setup, and seven were using a single monitor. Half of the users ranked

their computer experience five on a 5-Point Likert scale. Six participants assessed their

knowledge level below four.

6.1.2 Setup

The experiment was conducted on a static setup consisting of six displays (Figure 6.1).

Two single-monitor workstations were placed on a table, where one monitor was private

and not accessible for the participant. Additionally, there was a tabletop projection sepa-

rating the two private workspaces and three wall projections. Each projected display had

1024x768 pixels, while the monitors had a higher number of pixels (1920x1200 pixels).

Size varied from 24” for the monitors to approximately 85” for the large, intermediate

projection wall. Each display was driven by a separate machine, connected via gigabit

network.

The users were seated in front of the left workstation monitor, with mouse and key-

Figure 6.1: Experimental setup with the nine transitions (T1-T9) evaluated in the experiment.
The user was sitting in front of the left monitor. The right monitor was inaccessible.

6.1. Comparison of Cross-Display Navigation Techniques 109

board placed in front of the monitor. There were no occlusions of displays from the user’s

point of view. Mind that the tabletop display is partially located outside the user’s field of

view, so the estimated user location employed for free navigation was corrected to include

all displays within the user mapping. The desktop content of the tabletop display was

oriented towards the table edge where the user was seated.

The setup and the evaluated transitions were chosen so that different display factors

were covered. Table 6.1 illustrates how the individual transitions are associated with dis-

play factors: Almost all transitions connect displays of different size (and resolution). Most

displays are not oriented at the same angle (co-planar), and some are located on different

depth levels. Three transitions require crossings of (at least) one intermediate display with

the path navigation technique, and in three transitions one display (the tabletop displays)

lies partially outside the user’s field of view. These transitions additionally differ from the

others, as non-opposite edges (e.g., bottom to left) are connected in the path navigation

technique. Of course, this setup does not cover all potential display factors. For instance,

(partially) occluded displays have not been included.

Transition Size change Orientation
change

Depth
change

Display
crossing

Outside
FOV

Non-
opposite
edge

T1 S>L

T2 L>S

T3 S<>L 1

T4 1 1

T5 S>L 1 C>D

T6 L>S 1 D>C

T7 S<>L 1 C<>D 1

T8 S>L 2 C>B T B>L

T9 L>S 2 B>D 1 S L>B

Table 6.1: Display factors influencing cross-display transitions T1-T9: whether the two displays
differ in their size (from small = S to large = L, large to small, or both ways for bi-directional
transitions), on how many axes the orientation of the two displays differ, whether the two displays
have a varying distance to the user (depth change between close = C, distant = D, or behind the
user = B), how many intermediate displays have to be crossed, whether one display (source = S
or target = T) lies partially outside the user’s field of view, and whether non-opposite edges are
connected for path navigation (left = L, right = R, bottom = B, top = T).

6.1.3 Task

For each of the four navigation techniques, users were asked to accomplish a target se-

lection task. Targets were small windows with a 225x178 pixels push-button appearing

sequentially at different display locations. The push-buttons were textured with a centered

cross-hair and alien space ships, which “invaded the desktop”. Users were instructed to

get rid of the aliens as quickly as possible and received scores for target selection time,

as well as penalty scores for inaccurate selection of the cross-hair center. In other words,

users were asked to select targets as quickly and centered as possible. Figure 6.2 shows

110 Chapter 6. Evaluations of Multi-Display Navigation

Figure 6.2: Alien ship target to be selected as quickly and centered as possible.

the experimental setup and an alien space ship target on one of the displays.

The system does not apply content size correction, thus physical target size varied

across displays. According to the target appearance sequence, we separated each run into

the nine cross-display transitions. In sum, twenty targets had to be selected per run,

including some duplicate transitions. We measured task completion times between two

successive target selections.

In retrospective, this task setup was not ideal as users did not get the chance to rest

between successive target selections and some – but not all – transitions had to be crossed

multiple times in order to get at least one measurement for each of the nine transitions

T1 to T9. Dedicated start and target buttons with performance measures only between

start and target button selection would have been more appropriate.

6.1.4 Design and Procedure

The study was conducted as single user experiment and employed a 4x9 within-subjects

factorial design with the following factors:

navigation technique: path, free, WIM, warp and

transition: T1-T9.

As dependent variable, we measured the time between two target selections for each

of the nine transitions. Additionally, we collected subjective questionnaire evaluations

(seven-point Likert scales) and qualitative feedback.

Every run was preceded by a short training phase where users could get familiar

with the navigation technique. The order of navigation techniques was counterbalanced

to minimize learning effects. The sequence and location of targets was pre-defined in

different sets, which were assigned to the four navigation techniques in a balanced fashion.

Users first had to finish twenty target selections for each navigation technique. Af-

ter finishing the four techniques, users were asked to accomplish a combined navigation

6.1. Comparison of Cross-Display Navigation Techniques 111

condition. They could choose between path navigation and free navigation as implicitly

triggered navigation technique and could invoke the WIM control and pointer warping at

any time additionally.

We collected task completion times for every consecutive target selection, continuous

mouse pointer logging data, and video-taped the session. At the end of the first four runs,

users were asked to fill out a questionnaire evaluating the four navigation techniques.

For the combined condition, we determined which navigation technique was used for the

individual transitions. An informal, semi-structured interview was conducted at the end

of the experiment.

6.1.5 Results

Measurements were collected for 20 participants in four navigation techniques with nine

tested transitions, resulting in 360 data points in total. We only considered the first

occurrence of each transition, i.e., for duplicate transitions subsequent measurements were

discarded. One user test was declared as outlier and not included in the performance

results.

Main effect and interaction analysis were performed at α = .05 and Bonferroni adjust-

ments were applied for post-hoc comparisons.

Task Completion Times

A 4 (navigation technique) x 9 (transition) repeated measures ANOVA on target selection

times showed main effects for navigation technique (F3,54 = 33.801, p < .001) and transi-

tion (F8,114 = 18.439, p < .001). There is also an interaction between navigation technique

and transition (F24,432 = 8.099, p < .001).

Post-hoc comparisons revealed that WIM was the slowest technique (average comple-

tion time across all transitions twim = 5.84s), followed by free navigation (tfree = 4.17s),

which was slower than both, path (tpath = 3.67s) and warp (twarp = 3.29s). Figure 6.3

shows the task completion times for each transition.

Compared to the other navigation techniques, pointer warping had the best perfor-

mance for navigation between the monitor and the projected wall displays, as well as for

navigation from and to the tabletop display. Both implicitly triggered navigation tech-

niques (path and free) were faster for navigation between the wall displays (T1-T4) than

WIM and warp. There was no performance difference between path and free for most

transitions between two adjacent wall displays (T1 and T3 – for T2 path was faster than

free) and the two outermost wall displays (T4), where the center display had to be crossed

additionally. However, performance of path and free differed when more complex tran-

sitions than traversing between wall displays had to be accomplished: Free was superior

compared to path for navigation between monitor and and the right wall display (T7),

as well as when navigating from the tabletop display to a wall display (T9). However, it

suffered from severe performance fallbacks when navigating to the tabletop display and

112 Chapter 6. Evaluations of Multi-Display Navigation

0

2

4

6

8

10

T1 T2 T3 T4 T5 T6 T7 T8 T9

Path Free WIM Warp

Figure 6.3: Task completion times in seconds of the four cross-display navigation techniques
(average and standard error) for the transitions T1 to T9.

subsequently selecting a target there (T8). The fastest technique to access the tabletop

was pointer warping. T8 was also the only transition, where the WIM control was not sig-

nificantly slower than path and free. WIM and warp had almost uniform task completion

times across all display crossings, thus did not seem to be strongly affected by changing

display factors, as compared to path and free.

Usage Frequencies

In the last run – the combined condition – we gave the users the choice between path and

free navigation and let them use WIM and warp additionally whenever pleased. When

having the choice, eleven out of twenty users decided for path navigation, nine for free

navigation as implicitly triggered technique.

For each transition, we logged whether it was performed with an implicit transition

technique (path or free), pointer warping, the WIM control, or combinations (e.g., pressing

an incorrect shortcut for pointer warping and completing the targeting task with implic-

itly triggered techniques). Overall, 64% of all display crossings were performed with path

or free, respectively, 27% with pointer warping, and 4% with the WIM control. Usage

of implicitly triggered transitions was high for navigation between wall displays (86% on

average for adjacent displays in T1-T3 and 75% for jumping between the outermost wall

displays in T4). Implicitly triggered transitions were also the main choice for navigation

between monitor and wall displays in T5-T7 (64%). However, pointer warping was em-

ployed more often than path or free whenever the tabletop display was involved, i.e., T8

and T9 (40% and 55%, respectively). Usage frequencies are visualized in Figure 6.4.

6.1. Comparison of Cross-Display Navigation Techniques 113

0

10

20

30

40

50

60

70

80

90

100

T1 T2 T3 T4 T5 T6 T7 T8 T9

U
sa

ge
 (%

)

Implicitly triggered Warp WIM Combination

Figure 6.4: Percentage of usage for the implicitly triggered technique (path or free navigation,
respectively), warp, WIM, and combinations in each transition.

Subjective Data

From the post-experiment questionnaire, we found no significant differences across pref-

erence scores using a one-way repeated measures ANOVA (F3,54 = 3.241, p = .461). On

average, pointer warping was rated highest, as illustrated in Figure 6.5. In the interview,

most users mentioned they preferred the combined condition.

1

2

3

4

5

6

7

Path Free WIM Warp

Figure 6.5: Subjective ranking of the four navigation techniques on a 7-point Likert scale.

In an interview at the end of the experiment, three users reported they preferred

path navigation over free navigation due to the given structure implied by the constraint,

visualized paths, while three other users assessed path navigation as “exhausting” caused

by the restrictive paths. Users mentioned too small paths and paths to distinct displays

being located too close together on the same display edge as design problems of path

navigation.

Feedback for free navigation was similarly diverse: seven users rated free navigation as

114 Chapter 6. Evaluations of Multi-Display Navigation

very intuitive while two users stated they did not understand the concept of free navigation

at all. The main point of criticism was the mouse mapping on the table, leading to

targeting difficulties on the tabletop display. Additionally, users criticized the “irregular

mouse pointer speed” across the displays, and five user mentioned that they lost their

mouse pointer frequently when using free navigation.

For the WIM control, users reported that the start-up latency was too high and that

“too many mental steps” were involved. Some users also indicated that the window place-

ment at the mouse pointer location was not appropriate. They argued that their focus was

already on the target display when the WIM window would appear at the current pointer

location, forcing them to look back and identify the target in the miniature view. Thus,

some suggested to open the WIM consistently at the home monitor or synchronously on

all displays.

Pointer warping was generally appreciated by the users as it was perceived as fast

option to change displays. Even the non-expert users in our experiment were familiar with

basic keyboard shortcuts. Six users reported that using keyboard shortcuts for redirecting

the mouse input was “intuitive”. Display IDs were assigned in a circular manner (cf.,

Figure 5.9), so users could easily remember the shortcut numbers. Users also reported

that pointer warping was convenient when loosing track of the mouse pointer, as it would

consistently warp the mouse back to a pre-defined location. Considering usage frequencies,

these reports are surprising, as pointer warping was less often employed than implicitly

triggered transitions. When asking participants for their strategy when to employ pointer

warping or the WIM control instead of implicitly triggered transitions, they mentioned

long distance travels, “not easily accessible” displays, and tabletop display and monitor

in particular.

Observational Data

To explain some of the differences in task completion times and usage frequencies, we

analyzed the video-taped sessions and also took field notes during the experiment. Addi-

tionally, we created movement plots on demand to better visualize the mouse movement

trails. This observational data has to be considered as exploratory and requires verification

in controlled experiments.

Path navigation was – on average – the fastest technique to move the mouse pointer

across the three wall displays. However, completion time measures indicate a decreased

performance whenever transitions are getting more complex in terms of depth change,

non-opposite edge connections, and to reach displays partially outside the user’s field

of view. We observed several navigation problems in these situations: First, paths to

adjacent displays were often located directly next to each other on a single display edge,

causing users to pick the wrong path. In the video, we observed that users therefore

frequently followed the mouse pointer with their gaze while finding the path to the target,

in contrast to free navigation. Second, performance of path navigation suffered most when

6.1. Comparison of Cross-Display Navigation Techniques 115

transitioning to and from the tabletop display (T7 and T9). We assume that this is caused

by the path connection between non-opposite edges – although an informal observation of

PointRight [129] indicated that non-opposite edge connections do not cause any targeting

difficulties. Third, varying distances between displays caused paths to have a small size on

the more distant display, for instance on the wall projection for T6. This is caused by the

global approach of pair-wise planar mapping, which does not take the user location into

account. Ha et al. [97] already demonstrated that users would change path placements

considerably depending on their location towards the displays.

Free navigation had better performance than path navigation when transitioning from

the monitor or tabletop display to a wall display (T7 and T9). On average, performance

was also higher for T5. What these transitions have in common is that source and target

displays are located at varying distance to the user. T7 and T9 additionally required a

crossing of one intermediate display. In contrast to path navigation, we rarely observed

extensive path-searching activities by the users in the video analysis of these transitions.

Users rather fluently moved the mouse towards the target. Targeting performance on the

wall displays (T1-T4) is slightly slower compared to path navigation – probably due to

the perspective C/D gain adjustment. Mouse pointer speed on the wall displays was com-

parably slow, so users sometimes were required to “clutch” the mouse for long traversals.

Targeting problems on the tabletop display most likely caused the low performance

of free navigation in T6 and T8. Although T6 did not involve transitioning to the table,

some users accidentally missed the monitor and reached the table instead. The number of

unwanted transitions, i.e., involuntary navigation to the wrong display, was much higher

than with path navigation. We speculate that loosing the pointer depends on the display-

less space between two displays in the perspective map, as the outcome position on a

distant display would vary significantly if the movement direction was slightly modified.

The low performance when steering on the tabletop display (T8) was probably caused

by the C/D gain adjustment on the static perspective map. On the table, the mouse

pointer navigation space was skewed and rotated approximately 90◦ compared to the other

techniques using standard C/D gain. This was helpful in some situations, for instance

when navigating away from the table (see performance of T9), but caused problems when

selecting a target on the table itself. Video analysis revealed that almost all users turned

head, body, and sometimes even the mouse itself when selecting a target on the table.

Thus, the perspective map did not match the field of view any more, which is known

to have a negative impact on navigation performance [265]. In addition, the viewing

space did not correspond to the navigation space in free navigation, as the content was

not compensated for the user’s estimated viewing plane. This effect is known to cause

steering difficulties [169]. Some users could accommodate for this situation easily, while

others discovered serious problems and did not understand how mouse movement was

interpreted by the system. This probably explains the high variance of task completion

times on the tabletop display.

The slow task completion times of the WIM are obvious in the results and were more

116 Chapter 6. Evaluations of Multi-Display Navigation

closely analyzed in the videos. We identified two reasons for latencies: First, system la-

tency is introduced, as the WIM control requires a window to be opened and desktop

images of all machines to be streamed via network. The start-up latency takes approxi-

mately one second. Even with system latency subtracted from the task completion times,

the WIM control was still the slowest technique. Second, subsequent to WIM window ap-

pearance, users required a short orientation phase. In the video, we could identify people

searching targets in the environment, then shifting attention back to the display where the

mouse pointer was located and the WIM would appear. This interaction pattern explains,

for instance, why the WIM was the only navigation technique performing worse for moving

from the table (T9) compared to transitioning to the table (T8), as vast head movements

were required between the left projection wall and the tabletop display. This behavior is

a bit surprising, as the WIM actually showed live desktop textures, thus the target was

visible in the miniature view. Nevertheless only a small number of users was looking for

targets appearing in the WIM.

Figure 6.6: Movement sequence in the warp condition of user 8: starting from the monitor, the
user selects a target on each wall display and then returns to the monitor. Movement trails between
centered outcome position and target are color-coding movement velocity.

Although pointer warping was the fastest technique overall, it was not faster for target

selection on the wall displays. Fitts’ Law would suggest a lower task completion time in

all transitions, as the effective travel distance in device space is higher using implicitly

triggered navigation techniques that require the user to move the mouse pointer across

all visible pixels. In the video analysis, we made the following observation: Even though

the keyboard shortcut to trigger pointer warping could be accomplished with a single

hand and most users (except for some non-expert users) did not look to the keyboard,

there was a short delay introduced by pressing the shortcut. Additionally, most users

6.1. Comparison of Cross-Display Navigation Techniques 117

tended to employ an initial movement away from the target if the target was located in

between the start position and the outcome position after the pointer warping operation.

From the video analysis, we presumed that this “overshooting” behavior is caused by two

factors: First, the initial mouse movement is continued in the direction of the pointer

warp. Second, the length and pointer speed of this initial movement is influenced by the

physical distance that has been warped. The larger this distance the more extensive the

overshooting behavior. Figure 6.6 shows movement plots recorded for one user during

the study, mapped onto the respective displays, which illustrate these observations. This

observation suggests that the spatial display factors do have an effect on the movement

quality and performance of pointer warping. To verify these observations, we conducted

a controlled follow-up experiment to isolate the display factors and navigation techniques

in question (Section 6.2).

6.1.6 Discussion

Subsequently, the findings and observations of the experiment, as well as implications and

future research directions, will be discussed with respect to the design space of navigation

techniques presented in Section 5.1.

Trigger

On the one hand, path navigation was rated as too restrictive by some users as the

display-connecting paths were perceived as too small. On the other hand, the ability to

leave the display at any display edge position was a major problem for free navigation,

as participants often lost their mouse pointer when they involuntarily touched the display

edge and thereby caused a transition to a remote display. The ideal solution would be to

predict whether the user is actually intending to leave the display by analyzing the motion

pattern. Thereby, we could preserve the display edges as valuable navigation aid when

selecting items located at the boundaries of the displays [5], such as menu bars, while

letting the user navigate quickly across display borders.

Our study suggests that triggering input redirection through pointer warping tech-

niques leads to increased performance and is appreciated by participants across all experi-

ence levels. However, it also indicates that users rarely employ pointer warping when they

have the choice. In fact, they choose pointer warping primarily to overcome subjectively

complex transitions where extensive movement planning, physical effort, or adaptations of

pointer movement directions (as for the tabletop) would be required when using seamless

navigation techniques. Previous investigations have shown that pointer warping is benefi-

cial when crossing multiple homogeneous monitors [28], accessing heterogeneous displays

with strong size-resolution mismatches [29], and when sitting at an inconvenient location

towards the displays [257]. From our results, we additionally speculate the pointer warping

is superior for accessing remote displays with depth offsets or orientation changes. Thus,

we recommend providing pointer warping techniques as additional option when building

118 Chapter 6. Evaluations of Multi-Display Navigation

mouse-controlled MDEs, so users can overcome complex display crossings and quickly

relocate their pointer to a known position.

Explicitly triggering a transition in a world-in-miniature view did not indicate any

improved performance as compared to a shortcut-triggered pointer warping. Also, it was

mostly slower than implicitly triggered input redirection. Biehl and Bailey [34] found

similar evidence when comparing their iconic miniature view to implicitly triggered input

redirection in an MDE. However, they demonstrated a benefit of the WIM when using it

for relocating application windows.

Cross-Display Movement

We cannot derive any implications or future research directions from quantitative results

of our experiment, as none of our navigation techniques allowed movement in display-less

space. However, based on some observational results, continuous movement in display-less

space may be a solution to decrease the frequency of pointer losses in free navigation.

Users sometimes unintentionally touched a display edge, which immediately caused a

transition to a remote display, which was placed at a potentially large distance from the

source display. The more distant the remote display was on the perspective map, the

more deviation a slight movement direction change would cause on the outcome position

when trying to move the cursor back. Continuous movement in display-less space has also

been found to increase targeting performance when traversing small display gaps [18, 170].

However, with increasing gap size, warping the pointer across display-less space was found

to improve performance [168].

Outcome Position

We observed that users sometimes had difficulties spotting the mouse pointer after per-

forming a transition. This was partly caused by a network delay when performing input

redirection. We did provide the users with an animated dot to signal the outcome position

on the remote display. However, when the target display was not in their field of view,

they did not have a visual cue about the current mouse pointer location. It is worth

investigating whether more sophisticated visual cues indicating the current mouse pointer

location (e.g., a technique like Anchored Cursor [195]) help the users finding their mouse

pointer more easily. However, it is also important to find out whether more obtrusive

visual cues interfere with collaborative work in a group.

An important aspect in this context that has not been covered by our experiment is

transitioning between overlapping displays. As an example, a monitor or tablet PC placed

on a tabletop projection would lead to an outcome position in the inner region of the table-

top display, i.e., not on the display edge. Similarly, a monitor partially occluding a wall

projection would lead to a non-peripheral outcome position on the wall display. Display

overlaps cannot be properly modeled with pair-wise planar mappings, where display con-

nections are limited to edge regions. Overlapping displays therefore in part explain why

6.2. Comparison of Pointer Warping and Seamless Navigation 119

perspective-based navigation had a much higher performance compared to conventional

stitching in an earlier study by Nacenta et al. [170].

C/D Gain

The perspective C/D gain adjustment applied by free navigation caused serious navigation

problems, such as targeting difficulties on the tabletop display, as well as low mouse pointer

speed on the wall displays. While it seems useful to have a perspective representation

of the environment to determine the outcome position on the remote display, having a

perspective C/D gain does not seem to bring any advantage. In contrast, users reported

that the mouse was too slow on large, distant displays and that navigation on the table

was unintuitive using a perspective C/D gain. Mind, however, that in our experiment,

the viewing space differed from the navigation space – a combination known to have a

negative impact on steering behavior [169]. In the future, we will therefore investigate

different combinations of navigation parameters, combining positive aspects of path and

free navigation.

6.2 Comparison of Pointer Warping and Seamless Navigation

In the previous experiment, we discovered evidence that pointer warping is overall the

most efficient technique for cross-display navigation. Its performance seems to be only

slightly influenced by emerging display factors in contrast to implicitly triggered, seamless

navigation techniques. However, detailed movement analysis suggests that pointer warping

suffers from different targeting problems, so the performance is lower in homogeneous

settings. To better understand these phenomenons, we analyzed the inherent differences

to standard cross-display mouse behavior, which may lead to differences in performance

results:

� Instead of moving the mouse pointer continuously across a display edge, the user is

required to explicitly trigger the pointer warping operation, for instance by pressing

a mouse button or keyboard shortcut. While this potentially minimizes the required

movement planning, pressing the trigger may introduce an additional mental and

physical overhead.

� Pointer warping usually minimizes the required pointer travel distance in device

space – and thereby the index of difficulty (ID) described in Fitts’ Law [144] (Equa-

tion 2.1) – at the expense of an increased visual-device space mismatch [29], i.e., the

disruption between the visually perceived path between start and target location

and the actual device space.

� The pointer warping operation can be initiated from any display location, leading to

a dynamically changing visual-device space mismatch, despite a static display setup.

120 Chapter 6. Evaluations of Multi-Display Navigation

� Depending on the outcome position on the target display, targets may lie in between

start and outcome position, necessitating the user to correct the pointer movement

direction after performing the warp. Alternative outcome placement strategies (e.g.,

[28, 29]) or facilitating additional information from head-tracking (e.g., [7, 28]) can

minimize this effect depending on the desired application.

The properties of pointer warping are also illustrated in Figure 6.7.

(a)

(b)

(c)

Figure 6.7: Properties of pointer warping: (a) it has to be explicitly triggered and reduces
the travel distance in device space, (b) the visual-device space mismatch dynamically changes,
depending on the trigger location, and (c) targets may lie in between start and outcome position.

In the previous experiment, we observed that users tended to make an initial movement

away from the target after warping the pointer in certain situations. According to our

observations, this movement was influenced by two factors:

1. the pointer warp direction, which influences the initial pointer movement direction

irrespective of the actual target location and

2. the distance of the warp, which influences the length of this initial movement.

6.2.1 Research Questions

Based on this analysis and our previous observations, we formulated two research questions

concerning the effect of spatial display arrangements on pointer warping behavior:

Q1: Does an increased visual distance affect pointer warping differently than standard

mouse behavior?

6.2. Comparison of Pointer Warping and Seamless Navigation 121

Nacenta et al. [168] showed that with a large physical distance between monitors, mini-

mizing the ID by warping the mouse pointer across the gap outweighs advantages of min-

imizing the visual-device space mismatch by using a mouse ether [18]. However, they also

discovered a slight performance loss for warping the mouse across the gap, which they ex-

plain with extended movement planning periods due to the visual-device space mismatch,

and target overshooting. According to our observations in the previous experiment, visual

distance also has an effect on the amount of overshooting with pointer warping. However,

as pointer warping does not require a continuous movement – and therefore less movement

planning – it may be expected that overshooting will be less distinct compared to standard

mouse behavior. We aim to evaluate the impact of visual-device space mismatch on pointer

warping by changing the physical distance between adjacent monitors and comparing the

effects with standard mouse behavior.

Q2: Are targets between start and outcome position harder to reach?

Pointer warping might relocate the mouse pointer “farther” than the anticipated target

location (Figure 6.7(c)). With respect to the direction of the pointer warp, users therefore

may have to re-adjust the pointer movement direction after performing the warp. To our

knowledge, this aspect has never been investigated before and has been observed when

warping the pointer in a heterogeneous MDE (Section 6.1). To evaluate this effect, we

compare task times of targets located before, on, and after the outcome position relative

to the start position, and evaluate overshooting characteristics.

6.2.2 Participants

Fifteen right-handed participants (13 male, 2 female, aged 25 to 37) attended the experi-

ment. All users, except for one, work with two or more monitors on a regular basis.

6.2.3 Navigation Techniques

As navigation techniques, we employed standard mouse behavior (mouse) and pointer

warping (warp). In the mouse technique, the inner monitor edges are connected in device

space (as illustrated in Figure 4.13(a)) and the mouse pointer is warped across display-less

space after implicitly triggering a transition. In the warp technique, a transition to the

adjacent display had to be explicitly triggered by pressing the space bar. The outcome

position was set to the center of the target display. Center placement is not necessarily

the most adequate placement strategy for many tasks [28, 29]. However, we chose this

placement for our experiment as it keeps the outcome position consistent and is there-

fore easier to compare across the experimental conditions. Furthermore, the fundamental

characteristics of pointer warping with respect to our research questions are not affected

by this simple outcome placement.

122 Chapter 6. Evaluations of Multi-Display Navigation

6.2.4 Setup

The experiment was conducted on a homogeneous dual-monitor setup consisting of two

identical 22” wide-screen monitors (1680x1050 pixels). The distance between the two

monitors was varied. In the near condition, the two monitors were placed directly next to

each other, separated only by a 3.5 cm monitor bezel. In the far condition, the display-

less space between the monitors (including bezels) was approximately the width of one

monitor. In both conditions, the user was sitting in front of the left monitor. Figure 6.8

illustrates the setup.

(a) (b)

Figure 6.8: The monitor setup in the experiment in the (a) near and (b) far condition.

Mind that changing the monitor distance only altered the physical setup. The device

spaces of mouse and warp were unaffected.

6.2.5 Task

Users were asked to press alternating 50x50 pixels start and target buttons. Start buttons

were always located on the left (source) display, target buttons on the right (target) display,

so the experiment was limited to one movement direction. Start and target buttons were

distributed to five locations on source and target display, respectively: left top (LT), left

bottom (LB), center (C), right top (RT), and right bottom (RB), resulting in possible 25

cross-display movements. Each target location was separately analyzed as movement path

(combined from five start locations), as illustrated for LT in Figure 6.9. Note that the

path to center (C) could be accomplished with warp without moving the mouse, as the

target C was located at the outcome position of the mouse cursor after the warp. The left

Figure 6.9: The five potential start locations and the target locations on the right display. For
each target location (as in this example LT) performance measures of the five start locations were
accumulated.

6.2. Comparison of Pointer Warping and Seamless Navigation 123

targets (LT and LB) were located in between the source display and the outcome position

after warping. LT, LB, RT, and RB have the same ID on the target display for warp (with

center placement).

6.2.6 Design and Procedure

The study followed a 2x2x5 within-subjects factorial design with the following factors:

navigation technique: mouse and warp,

monitor distance: near and far, and

path: LT, LB, C, RT, and RB.

Besides the task time between start and target button selections, we evaluated ac-

tivity measures, such as the time spent on the source display, which indicates extended

orientation or planning periods, as well as distance traveled for source and target display,

respectively. For an optimal target-selection task with pointer warping, the movement dis-

tance and time spent on the source display is 0. Furthermore, we analyzed the amount of

overshooting by defining a task axis [145] on the target display – from the first position the

mouse pointer appears on the target display to the center of the target. We discriminate

two overshooting measurements: classic target overshooting, and entry overshooting, i.e.,

the amount of pointer movement away from the target after warping the pointer (Figure

6.10).

Figure 6.10: Task axis connecting pointer outcome position and target position on the target
display with entry and target overshooting.

Mind that the aim of the experiment is not to directly compare the performance

of mouse and warp but rather to analyze the differences in performance and movement

characteristics implied by a varying visual-device space mismatch and movement paths.

Each participant had to accomplish four runs with 25 cross-display path sequences.

25 path sequences on the left monitor were added to prevent users from immediately

switching the monitor after clicking the start button, but were not evaluated. The order

of navigation technique and monitor distance, as well as path sequences, was balanced. At

the end of the experiment, users had to subjectively assess the two navigation techniques

for the two monitor distances. Afterwards, a semi-structured interview was conducted.

6.2.7 Results

Apart from performance measures (i.e., completion time between pressing start and target

button), we additionally logged all mouse movement and keyboard events. Data was logged

124 Chapter 6. Evaluations of Multi-Display Navigation

at a maximum frequency of 125 data points per second. Accuracy measures – like entry

overshooting, target overshooting, distance traveled, and time spent on display – were

extracted from these logs. All measures were evaluated using a 2 (navigation technique)

x 2 (monitor distance) x 5 (path) repeated measures ANOVA with α = .05 for main

effects and interactions and Bonferroni adjustments for post-hoc comparisons. Results are

summarized in Table 6.2.

df F
CT EO TO DT DS TS

N (1, 74) 23.033** – 44.6** 101.1** 208.7** 37.5**
D (1, 74) 118.745** 2.1 81.1** 118.9** 7.1** 38.2**
P (4, 269) 42.664** 56.3** 12.6** 82.5** 2.1 7.4**
N*D (1, 74) 11.151* – 78.2** 65.2** 17.8** 4.8*
N*P (4, 269) 23.953** – 52.7** 113.8** 1.5 14.5**
D*P (4, 269) 2.562* 0.6 26.2** 31.7** 0.5 2.8*
N*D*P (4, 269) 2.585* – 28.9** 33.4** 0.9 0.7

Table 6.2: ANOVA for (**p < .001, *p < .05) completion time (CT), entry overshooting (EO),
target overshooting (TO), distance traveled on target display (DT), distance traveled on source
display (DS), and time spent on source display (TS). Main effects for navigation technique (N),
distance (D), path (P) and interactions are shown.

Effect of Monitor Distance

Post-hoc comparisons of completion time (Figure 6.11) show that both, mouse and warp,

were significantly faster with monitors near than with monitors far (∆tm = 289.6 and

∆tw = 167.5). However, the effect on mouse by the changing physical gap seems to

be stronger: while mouse was faster than warp with monitors near (tm = 1435.1 and

tw = 1621.3), there is no statistically significant difference between mouse and warp with

monitors far (tm = 1724.6 and tw = 1788.8).

1200

1400

1600

1800

2000

LT LB C RT RB

Mouse near Mouse far Warp near Warp far

Figure 6.11: Average task completion times (ms) and standard error of mouse and warp in near
and far.

Participants did not like having the monitors spaced apart, as they had to turn their

head to see the target. But with increasing distance between the monitors, they started to

6.2. Comparison of Pointer Warping and Seamless Navigation 125

appreciate pointer warping: a two-factorial ANOVA of seven-point Likert scale ratings for

mouse and warp on near and far, respectively, revealed an interaction between navigation

technique and distance (F1,14 = 17.148, p = .001). Mouse was evaluated higher for mon-

itors near, but there was no difference in the ratings for monitors far. Users mentioned

that they felt like they “had to move the mouse farther” with monitors far and that “the

mouse was too slow”, whereas with pointer warping they “always knew where the mouse

was located” after the warp. One user stated: “as the monitors were no longer spatially

connected, the mouse pointer path was not intuitive”.

Effect of Target Location

As expected from Fitts’ Law, left targets (LT, LB) could be selected fastest with mouse

(tLT = 1459.2 and tLB = 1519.5) and center was selected fastest with warp (tC = 1470.0).

With warp, RT was selected significantly faster than LT (tRT = 1710.7 and tLT = 1803.0)

– despite equal ID. This difference partially confirms that targets located between start

and outcome position (i.e., LT and LB) are harder to reach with warp.

Overshooting

Target overshooting was significantly higher for mouse (57.2 px) than for warp (22.8 px).

For mouse, target overshooting was higher for the left targets (108.3 px). In contrast, for

warp, target overshooting was highest for the right targets (47.5 px). As also observed by

Nacenta et al. [168], target overshooting for mouse was higher with monitors far (94.6 px)

than with monitors near (19.8 px). For warp, there is no target overshooting difference

between near and far (22.1 px and 23.5 px, respectively).

We also measured entry overshooting for warp: For the left targets, there was signif-

icantly more entry overshooting (157.8 px) than for the right targets (2.1 px). However,

there was no main effect of entry overshooting for distance (89.2 px for near and 101.8

px for far, respectively). All users in our experiment were aware of entry overshooting in

warp and most could recall that the initial movement direction was towards the right. All

users stated that this movement was performed unconsciously and that it was somehow

annoying. Figure 6.12 shows a sample plot of one user’s movement trails to illustrate the

effect of entry overshooting.

Activity Measures

For mouse, there was more distance traveled on both, source and target display, than for

warp. This is not surprising, as the ID for warp was much lower in our experiment than

for mouse. However, the time spent on the source display was significantly higher for

warp (524.8 ms) than for mouse (448.3 ms) – although there was actually no movement

required on the source display for warp. For both navigation techniques, there was more

126 Chapter 6. Evaluations of Multi-Display Navigation

(a)

(b)

Figure 6.12: Example movement trail of user 5 for pointer warping with monitors near and path
RB-LT: (a) The red line shows the optimal route in device space. The user started on the left
monitor and first quickly steered towards the target before explicitly triggering input redirection.
On the target display, the pointer is set to the center of the display and the user initiates the
pointer movement in the warp direction before correcting the movement. (b) The red trail shows
the velocity (px/ms) over time (ms). The green line indicates the time of the warp trigger.

time spent on the source display in the far condition than with monitors near (∆tm = 109.3

and ∆tw = 61.1).

6.2.8 Discussion

We will discuss the implications of our experiment based on our research questions:

Q1: Does an increased visual distance affect pointer warping differently than standard

mouse behavior?

Increasing the physical gap between the monitors affected both, standard mouse behav-

ior and pointer warping. However, the increase in task completion time was higher for

standard mouse behavior (about 20%) than for pointer warping (about 10%). For both

techniques, we could observe an extended initial non-movement period with monitors far

compared to monitors near. This is an indication for the additional effort to turn the

head to the distant monitor and find the target there. For standard mouse behavior, we

additionally discovered increased target overshooting for the targets located near the left

display boundary – an effect also observed by Nacenta et al. [168]. This extended over-

shooting can explain the decreasing performance for mouse in contrast to warp. A longer

time spent on the source display despite a lower amount of pointer travel indicates that

6.2. Comparison of Pointer Warping and Seamless Navigation 127

pointer warping requires an extended planning period as compared to standard mouse

behavior – irrespective whether the monitors are far or near.

Benko and Feiner [28] demonstrated a benefit of pointer warping for bridging long

distances in the device space. Complementing their work, our experiment indicates an

advantage of pointer warping for bridging gaps in the visual space with unchanged device

space: If users do not perceive the visual space as continuous due to large physical gaps,

standard mouse behavior leads to increased targeting problems so pointer warping achieves

comparable performance and user acceptance.

Q1: Are targets between start and outcome position harder to reach?

Although pointer warping is not a continuous operation, the direction of the warp influ-

ences the subsequent pointer movements of the users: mouse pointer movement is first

initiated in the direction of the warp and is then corrected towards the actual target lo-

cation. This is reflected in the higher amount of target overshooting for the right targets

and entry overshooting for the left targets with a warp direction from the left to the right

monitor. Targets lying in between start and outcome location showed a slightly weaker

targeting performance than those lying on the right (i.e., the extension of the warp direc-

tion) or directly at the outcome position. The amount of this overshooting behavior is not

related to the distance of the warp.

Due to the noticeable performance decrease and subjective annoyance by the users,

situations where the user has to re-adjust the movement direction after the warp should

be avoided. Designers of MDEs should consider dynamic placement strategies taking into

account the start location of the warp and areas with high probability of user interaction on

the target display. By setting the warp outcome position between the intersecting display

boundary of the warp and the closest interaction area, important interaction regions can

be reached by continuing the warp movement direction, instead of causing a contrary

direction adjustment (illustrated in Figure 6.13). Alternatively, additional information

from head-tracking (e.g., [8, 28]) or eye-tracking can help to select the optimal outcome

position. However, tracking equipment can be rather obtrusive and is not always available.

Figure 6.13: Suggestion for reducing entry overshooting: reducing the need to adjust the move-
ment direction after the warp to reach important targets by taking screen content information into
account.

With these results, we can partially explain the performance differences between

pointer warping and implicitly triggered navigation techniques in the previous experiment

128 Chapter 6. Evaluations of Multi-Display Navigation

(Section 6.1): Displays located close together are perceived as continuous interaction space

for the user, resulting in a higher subjective preference and higher targeting performance

for implicitly triggered transitions. This explains the high usage frequencies and superior

performance of implicitly triggered navigation techniques for wall displays in the previous

experiment. However, increasing the visual-device space mismatch – in this experiment

by increasing the display-less space – leads to a disruption of the continuously perceived

interaction space. Users tend to increase target overshooting due to overestimation of

the device space distance – an effect which has previously been observed by Nacenta et

al. [168] – and show increased appreciation of pointer warping, which is less affected by

physical discontinuities.

The entry overshooting behavior initially observed in the previous experiment could be

replicated by analyzing the logged mouse events. However, the effect on pointer warping

performance could only be partially verified. The higher target completion times for

pointer warping rather stemmed from an increased planning period before initiating the

explicit warping trigger. Also, we could not verify the effect of an increased visual-device

space mismatch on the length of the entry overshooting movement.

6.3 Comparison of Outcome Positions for Pointer Warping

The previous experiments have shown that pointer warping is a highly efficient and also

appreciated alternative to spatially aware, implicitly triggered cross-display navigation

techniques. While implicitly triggered techniques are superior, in terms of performance,

usage frequencies, and user satisfaction, if the spatial display arrangement is “intuitive”,

more complex display arrangements (e.g., with large display-less space in between, depth

offsets, or orientation changes) are obviously easier to handle with explicitly triggered

pointer warping.

However, we showed that pointer warping is also affected by the spatial display ar-

rangement. While it is rather insensitive to an increased gap between adjacent displays,

the effectiveness of the movement on the target display depends on the movement direction

of the warp in visual space. The most straight-forward outcome position on the center

of the target display does not take this movement direction into account. Our research

question that motivated this experiment therefore is: Does incorporating the spatial dis-

play arrangement in the outcome position of pointer warping have an effect on targeting

performance?

We therefore designed an experiment to compare different outcome placement strate-

gies for pointer warping.

6.3.1 Participants

Fifteen right-handed users (13 males, 2 females, aged 21 to 33) participated in the exper-

iment. Twelve users are working with multi-monitor setups on a regular basis.

6.3. Comparison of Outcome Positions for Pointer Warping 129

6.3.2 Outcome Placement Strategies

We compared three different outcome placement strategies:

Center, which has been used for the previous experiments, places the mouse pointer to

the center of the adjacent display after triggering pointer warping. Thereby, it minimizes

the travel distance to all potential target locations in device space.

Frame-relative sets the mouse pointer to the same relative position on the target dis-

play as the location where pointer warping has been triggered on the source display. In

an experiment by Benko and Feiner [28], this placement was superior to center in a ho-

mogeneous multi-monitor setup. In contrast to center, mouse pointer movement on the

source display has an effect on the outcome position on the target display [28]. However,

it only takes the pointer travel in device space into account and disregards the spatial

display arrangement, affecting the visual pointer travel. As a result, a pointer movement

towards the target in visual space followed by the warping trigger may actually lead to

a movement away from the target in device space (e.g., moving the pointer towards the

right on the source display followed by the warping trigger in Figure 6.14).

Border sets the outcome position of the pointer on the target display to the closest edge

location from the starting point – with respect to the visual space. The entry overshooting

effect observed in the previous experiment is thereby effectively avoided, as any initial

movement in warping direction only moves the mouse pointer further along the visual path.

Border warping is conceptually similar to spatially aware implicitly triggered navigation

(especially free navigation) and only differs in the trigger parameter. Figure 6.14 shows

all three outcome placement strategies.

Figure 6.14: The three outcome placement strategies evaluated in the experiment: center, frame-
relative, and border. Start and target buttons are illustrated on source and target display, respec-
tively.

In a previous experiment, Benko and Feiner [29] also evaluated frame-memory place-

ment, which warps the pointer to the last known location of the target display. They

showed that frame-memory placement was superior to frame-relative placement and an

implicitly triggered control condition. However, as frame-memory placement does not

take the movement direction into account and has not been shown to be superior for

homogeneous MDEs, we decided that frame-relative placement is the better comparison.

130 Chapter 6. Evaluations of Multi-Display Navigation

6.3.3 Setup

We employed the same dual monitor setup as for the previous experiment. However,

all runs were conducted with monitors far apart – the distance where users felt equally

comfortable using pointer warping and conventional mouse-based navigation.

6.3.4 Task

We employed the same targeting task as for the previous experiment, but only provided

four targets (LT, LB, RT, RB) instead of five, as illustrated in Figure 6.14. This way,

we can avoid situations where the mouse pointer appears directly on the target in the

frame-relative and center conditions after warping. Mind that the average distance from

the outcome position to the target – and, as a consequence, the index of difficulty [144]

– varies for the three placement strategies: Center had the lowest average distance (351.9

px), followed by frame-relative (505.3 px). Border has an average distance to the left

targets with 582.5 pixels and 1156.0 pixels for the right, respectively. For calculating the

distance, we assumed the mouse pointer not to be moved on the source display and relied

on the start button locations to calculate the outcome positions for frame-relative and

border.

6.3.5 Design and Procedure

The study followed a 3x4 factorial design with the following two factors:

placement: center, border, relative, and

path: LT, LB, RT, RB.

The same performance and accuracy measures were used as for the previous experiment

(Section 6.2). To fully compare the performance of those three techniques, we added the

throughput measure [144], which relates the task completion time with the optimum travel

distance and the target width, which has not been varied in our experiment.

6.3.6 Results

All measures were evaluated using a 3 (placement) x 4 (path) repeated measures ANOVA,

with α = .05 for main effects and interactions and Bonferroni adjustments for post-hoc

comparisons.

Performance

Performance was measured by task completion time between start and target click, as well

as throughput. For both measures, all main effects and interactions are significant (c.f.

Table 6.3 and Figure 6.15).

Task completion time of center was significantly faster (tc = 1797.9ms) than both,

border (tb = 1870.3) and frame-relative (tr = 1924.3). Center was faster than border

6.3. Comparison of Outcome Positions for Pointer Warping 131

for the right targets, but slower than border for LB. However, post-hoc comparisons of

throughput showed that border had the highest throughput (tpb = 2.82), center the lowest

(tpc = 2.23).

df F
Completion time Throughput

Placement (2, 148) 6.5* 103.1**
Path (3, 222) 4.4* 15.9**
Placement*Path (6, 444) 7.0** 6.1**

Table 6.3: ANOVA for task completion time and throughput (**p < .001, *p < .05).

1600

1700

1800

1900

2000

2100

LT LB RT RB

center border relative

Figure 6.15: Average task completion times (ms) and standard error of the placement strategies
center, border, and frame-relative for the four paths.

Accuracy Measures

Results for accuracy measures are summarized in Table 6.4.

df F
EO TO PV DT DS TS

Placement (2, 148) 40.0** 24.5** 14.0** 103.0** 3.3* 5.6*
Path (3, 222) 30.7** 2.1 1.0 0.4 0.9 0.9
Place.*Path (6, 444) 17.8** 12.1** 1.0 15.9** 0.8 0.3

Table 6.4: ANOVA for accuracy measures (**p < .001, *p < .05) entry overshooting (EO),
target overshooting (TO), peak velocity (PV), distance traveled on target display (DT), distance
traveled on source display (DS), and time spent on source display (TS).

There is no statistically significant difference between entry overshooting for the center

and frame-relative placement (70.8 px and 57.8 px, respectively). Similar to the previous

experiment, there is more entry overshooting for the left targets than for the right targets

(110.7 px and 17.8 px, respectively) with frame-relative, as well as center.

There was significantly more target overshooting with border (67.9 px) than with

both, center and frame-relative (17.9 px and 20.9 px, respectively). Target overshooting

132 Chapter 6. Evaluations of Multi-Display Navigation

for border occurred primarily at the left targets (110.3 px), while there is no difference

between placements for the right targets (35.4 px, 25.5 px, and 25.9 px).

With border, users had significantly longer travel distances on the target display

(1165.3 px) compared to center (631.5 px) and relative (781.0 px). Border also had slightly

more travel on the source display (155.9 px vs. 113.4 px and 117.8 px). However, this dif-

ference is not statistically significant. The time spent on the source display was highest

with relative (492.6 ms), which is significant with respect to border (422.9 px). The peak

velocity reached was higher with border (1.25 px/ms) than with center (0.97 px/ms) or

frame-relative (0.93 px/ms). In 91% of all cases, the peak velocity was reached on the

target display.

Subjective Data

At the end of the experiment users were asked to evaluate the three placement strategies

on a seven-point Likert scale. A repeated measures ANOVA analysis did not show any

differences between ratings (F2,28 = .942, p = .402). On average, border was rated highest

(5.3), frame-relative lowest (4.5).

In a subsequent interview, seven users expressed a clear preference for border, as it

was more similar to conventional cross-display mouse interaction and necessity for pointer

searching on the target display was reduced. Three users clearly preferred center and two

users clearly preferred frame-relative over border, because of border’s long travel distances.

Three users were undecided about their favored placement strategy.

6.3.7 Discussion

We will discuss the implications of our experiment with respect to the research question

formulated above: Does incorporating the spatial display arrangement in the outcome

position of pointer warping have an effect on targeting performance?

We introduced a new pointer warping outcome placement strategy that incorporated

basic spatial knowledge of the environment to overcome targeting problems caused by

the visual-device space mismatch. The decrease of the visual-device space mismatch was

introduced with the cost of a longer travel distance in device space and, as a consequence,

a higher index of difficulty.

Our experiment showed that this spatial knowledge did not increase performance. In

contrast, the näıve center placement, which minimizes the index of difficulty in the device

space, outperformed both, border and relative placement in terms of task completion time.

However, center had the lowest throughput and border placement the highest.

Accuracy measures revealed that border warping caused similar navigation problems

as implicitly triggered navigation in our previous experiment: peak velocity was higher

than for the other placement strategies, which is probably responsible for the significantly

increased amount of target overshooting for the left targets. Although we cannot directly

compare implicitly triggered navigation with border warping, we can assume that border

6.4. Discussion 133

warping also suffered from inherent pointer warping problems, such as an increased non-

movement period before triggering the warp, which adds a constant overhead.

One additional aspect worth discussing is the diverging result from the experiment

of M3 [28], where frame-relative outperformed center placement. A difference may be

caused by placement of targets. In the experiment by Benko and Feiner [28], the target

was always located in between the outcome position of frame-relative and center to ensure

equal travel distances. If the start position was kept at the outermost display boundary,

as suggested by the experimental design description, the target could always be reached

by extending the warp direction in frame-relative, while a 180◦ movement correction was

required in center – most likely leading to our observed entry overshooting and thereby

limiting performance. We rather tried to evenly distribute the start and target locations,

leading to a clear advantage of center placement, which minimizes the travel distance to

all potential target locations. For a fair comparison, we therefore included the throughput

measure to relate task completion time with the index of difficulty. Indeed, frame-relative

also had a higher throughput than center in our experiment.

6.4 Discussion

Based on the results of our three multi-display navigation experiments, we can confirm

that incorporating knowledge of the environment for cross-display mouse pointer naviga-

tion techniques helps users to access information in “simple” MDE settings. Exploratory

evidence and subjective feedback suggests that users perceive cross-display navigation as

“complex” if intermediate displays have to be crossed, if a large display-less space has to

be bridged and therefore the displays seem to be “no longer spatially connected”, a smaller

display which is located closer to the user is targeted, and when steering towards a display

which is rotated along two axes compared to the source display. In these cases, perfor-

mance of implicitly triggered (and thus spatially aware) techniques significantly drops,

while performance of explicitly triggered techniques is hardly affected. We could verify

the effect of gaps between adjacent displays on the performance of implicitly and explic-

itly triggered techniques: pointer warping was hardly affected by an increasing display-less

space.

By analyzing the movement trajectories in targeting tasks, we could verify that the

spatial display arrangement does have an effect on the pointer movement – even when using

simple pointer warping with center placement. However, any attempt to compensate for

negative side effects, such as the observed entry overshooting for pointer warping, by

decreasing the visual-device space mismatch, increases the index of difficulty in device

space. Our spatially aware border warping strategy, that takes the warping movement in

visual space into account, lead to an increased throughput, but could not increase overall

targeting performance, compared to simple center placement with minimal ID.

From our observations, we could derive some implications for multi-display navigation

design and recommendations for practitioners:

134 Chapter 6. Evaluations of Multi-Display Navigation

Provide explicitly triggered input redirection as alternative.

Implicitly triggered input redirection can easily be provided as additionally available alter-

native to implicitly triggered cross-display navigation. Especially for frequent paths, for

instance navigation back to the home display (like in transition T6 of the first experiment),

an easy shortcut could be provided. It supports users in overcoming long and subjectively

complex paths and also helps them to visually re-acquire their pointer. Empirical evidence

has shown that pointer warping provides a benefit to overcome long distances in device

space [28] due to its decreased index of difficulty. We could additionally show that pointer

warping is beneficial to overcome long distances in visual space, despite short distances

in device space. However, pointer warping adds a constant overhead – probably caused

by the explicit trigger – which makes implicitly triggered and spatially consistent input

redirection the primary choice for many display configurations.

Compensating for visual-device space mismatches does not necessarily lead

to increased targeting performance.

Previous experiments have shown that minimizing the visual-device space mismatch by

compensating for discontinuities caused by monitor bezels and size-resolution mismatches

supported users in acquiring targets on a remote display [18, 170]. However, Nacenta et

al. [168] later showed that the advantage of visual-device space compensation by applying

continuous cross-display movement in the “ether” does not outweigh the increased ID

in device space, if the gap is large. We additionally showed that visual-device space

compensation by incorporating spatial knowledge into the outcome placement strategy of

pointer warping does not compensate for the increased ID, in terms of task completion

times. However, our results show a tendency towards a slightly higher user acceptance

and a better throughput.

So far, we have evaluated cross-display navigation techniques only in isolation. We

did not consider cross-display navigation for remote information access in a wider context,

i.e., embedded into more complex information management tasks in MDEs. In the future,

it will therefore be necessary to assess the suitability of different navigation techniques

in longitudinal experiments, where users have to accomplish more complex information

management activities.

Part IV

Window Management for Emerging

Display Environments

135

Chapter 7

Window Manager Extensions

When designing novel window management techniques for emerging display environments,

fundamental window manager functionality has to be enhanced. It is no longer sufficient

to consider the environment as simple rectangular screen, operated by a single user with

a single mouse. In addition, treating windows as rectangular screen entities furthermore

limits the potential window manager functionality.

In this chapter, extensions to the Compiz 3D compositing window manager (Section

2.3.1) to enhance the window manager for environment and window content awareness are

presented. In particular, four directions are being discussed:

� Basic multi-user functionality (Section 7.1),

� two different methods how to access window content in the window manager (Section

7.2),

� awareness of and adaptivity to irregularly shaped displays (Section 7.3), and

� importance-driven compositing window management, a new approach to composit-

ing window management facilitating knowledge of display form factors and window

content (Section 7.4).

7.1 Multi-User Interaction and Identification

Multi-pointer X (MPX) [115] provides multiple independent mouse pointers and keyboard

foci on windowing system level for the X Window System. Although MPX is already

available in the most recent X Window System releases, application support is still scarce

and most window managers do not reliably render or handle multiple pointers. We thus

extended the Compiz window manager with basic multi-pointer support for our purposes.

We implemented a plug-in that queries the XInput2 event loop (a new X event loop for

multi-pointer events) and renders each mouse pointer in its associated color.

137

138 Chapter 7. Window Manager Extensions

MPX allows multiple users to interact concurrently with distinct applications, but it

cannot resolve situations where multiple pointers attempt to access the same application

concurrently, if the application itself is not multi-pointer aware. In principle, resolving

multi-user input on application level is not the duty of a window manager. However,

adapting existing applications – but also newly created applications – to multi-user input

is challenging, as most GUI toolkits do not yet provide multi-pointer event notification.

Thus, making applications multi-pointer aware requires substantial modifications and by-

passing the GUI toolkit.

We therefore provide the possibility to query user identities based on events received

in the application, such as keystrokes or button presses. The window manager establishes

an interaction history for received input events (i.e., mouse motion, button press, and key

press and a corresponding time stamp). Applications connect to the window manager via

the Deskotheque network interface, which matches event reports by applications with the

plug-in’s interaction history and returns the ID of the pointing device.

This window manager extension is facilitated by the central application coordination

infrastructure presented in the next section (Section 7.2.1), but also by cross-display navi-

gation applications, such as the world-in-miniature control (Section 5.3.3), to identify the

user issuing an explicit input redirection trigger.

7.2 Accessing Window Content

Access to the window content is required whenever the window manager aims to provide

content-aware information presentation or interaction techniques. We will discuss two

approaches for accessing the content of the individual windows:

1. Applications are modified in a minimally invasive manner to communicate with a

central application coordination routine (Section 7.2.1).

2. Window textures are evaluated by using a bottom-up visual attention model to

identify “important” window regions (Section 7.2.2).

While the first approach is much more powerful, as applications can provide semantic

information, the second approach can be implemented directly in the window manager,

without modifying the applications. However, importance can only be estimated based on

visual content features.

7.2.1 Central Application Coordination

To coordinate multiple applications and their content, we use an approach similar to

Snap-Together Visualization [174], where multiple applications communicate via a light-

weight API based on COM. Snapped applications provide synchronized mechanisms, such

as “load”, “select” (synchronized highlighting), and synchronized scrolling. Windows are

coordinated pairwise based on a set of actions and join relationships.

7.2. Accessing Window Content 139

In contrast to Snap, our approach uses a central management application, which co-

ordinates user selections in multiple applications based on HTTP. The management ap-

plication is implemented as Tomcat Java application server. In this way, a wide vari-

ety of applications can directly communicate with the management application, like web

browsers, document editors, or visualization toolkits. As another distinguishing aspect to

Snap, our central application coordination approach currently only supports synchronized

highlighting. However, the concept can be easily extended to support more sophisticated

synchronized activities, such as loading of shared data sets, viewport synchronization, or

mechanisms to restore previous states of the application – as far as supported by the re-

spective applications. In the remainder of this section, synchronized highlighting will be

presented.

Synchronizing User Selections

Multiple client applications can register to the management process and report selection

identifiers upon local user selection. The registered applications themselves determine

how a user selection is triggered. Possible selection events are: hovering the mouse pointer

over an element, marking text, or entering a search string. The selection is sent to the

management application as character string – the selection ID.

After receiving a selection ID, the management application consults the window man-

ager’s interaction history (cf., Section 7.1) to determine the most recently active pointer

within the application window’s boundary – i.e., to find the user who triggered the se-

lection. The selection ID is then distributed to all registered applications. Each client

application evaluates the incoming selection ID individually. For instance, in text docu-

ments, these selection identifiers correspond directly to a substring of the document (e.g.,

single words), while in a spreadsheet application it may be mapped to a whole column of a

table with the selection identifier as column headline. To resolve more complex relations,

client applications are free to map the incoming selection ID to others. For instance, an

application may translate the incoming identifier string so it matches the language of the

displayed data set or can determine a suitable hierarchy level for mapping hierarchical data

structures. Once a client application determined entities matching the provided selection

ID, it reports their bounding rectangles in the application window, or alternatively, single

points, to the management application. Figure 7.1 illustrates these processes.

The current system infrastructure, as illustrated in Figure 7.1, is limited to a sin-

gle host. However, all inter-component communication facilitates network interfaces, so

extending the infrastructure to a distributed system is technically feasible.

We use the collected bounding rectangles as foundation for rendering selection high-

lights on top of application windows. For that purpose, the management application for-

wards the bounding rectangles to the window manager, which determines the appearance

of the highlights and renders them on top of the desktop content. As a strong highlighting

technique, we will present visual links across applications in Section 8.1.

140 Chapter 7. Window Manager Extensions

Figure 7.1: Central application coordination (on a single machine): (1) Application 1 reports a user
selection and delivers the corresponding bounding rectangles of occurrences within the application.
(2) The management application consults the multi-pointer extension of the window manager to
determine the identity of the user triggering the selection and (3) forwards the selection string to all
applications (accessible for this user). After all applications have reported the bounding rectangles
of selection occurrences, (4) they are sent to the rendering plug-in of the window manager, together
with the user’s pointer color.

Application Modifications

An application utilizing the application coordination API needs to support three basic

actions. First, the application has to register with the management application – either

automatically at start-up or by user request – and report the visible window region to the

manager. Second, it has to provide a user interface to trigger source selections, find other

matches for the local selection ID, and deliver both, the selection ID and the associated

bounding rectangles, to the manager. Third, it needs to be able to process incoming

selections from the manager. Similarly to source selections, it has to find matching entities

and send the bounding rectangles back to the manager. Additionally, a client application

needs to report changes in the window content (e.g., if the user scrolls the content) to

the manager. If an application reports a content change, the manager checks for users

currently having selections in the respective application, updates their selection rectangles,

and sends the updated rectangles to the window manager.

Applications can be modified to facilitate the central application coordination API in

three different manners:

Direct support: Software can be extended to directly utilize the interface provided

7.2. Accessing Window Content 141

by the manager. As an example, we extended the Caleydo [142] multi-view framework.

Whenever the user selects an element in one visualization view (e.g., by hovering the

mouse over a parallel coordinates poly-line), Caleydo reports the associated selection ID

to the manager. Incoming selection requests are subject to Caleydo’s internal ID mapping

system to resolve ID relations in the biomedical domain.

Mashup: A web mashup combines functionality from an existing API with the man-

agement interface. We created a single HTML page utilizing JavaScript and the Google

Maps API ∗ for an interactive map application. When receiving a selection ID, the Google

Maps API is queried for an associated geographic location. The location obtained from

the first search hit is then converted to screen coordinates and a small bounding rectangle

around this position is reported to the manager as selection region. The user can choose

whether the map should be centered and zoomed to the retrieved geographic location or

if the map should remain static. To trigger a geographical search, we provide a simple

textual search box.

Software extensions: If existing software supports extension mechanisms (e.g., via

plug-ins), the required functionality can be implemented in a minimally invasive manner.

We implemented an add-on for the popular cross-platform web browser Mozilla Firefox †.

The add-on has full access to the DOM (document object model) of the displayed HTML-

document. For each DOM element, the position in the browser window can be determined.

This feature is utilized to find occurrences of the given selection ID string within the

text passages of the document or labeled image elements. By temporarily enclosing the

matching strings of text passages with an HTML- tag, the position and size of

the selection regions within the browser window can be retrieved. Communication with

the management application to exchange selection IDs and selection region information

is based on the XMLHttpRequest feature supported by the Firefox web browser. User

selections are triggered by selecting text on the displayed website and pressing a button

embedded in the browser UI.

The last category allows for usage of a wide range of applications with minimal effort,

as many common web browsers and office applications provide extension interfaces. With

these applications, a variety of use cases can be covered, because information from the

web and common document formats are easily supported. However, when using such

applications, data access is often restricted to textual content. As a consequence, ID

mapping is limited to text parsing and string comparisons. In contrast, applications

such as visualization frameworks often provide advanced interaction techniques for item

selections and have ID mapping systems available – but often lack the extensibility required

for a minimally invasive integration.

As applying the necessary extensions to existing applications is not always possible

or feasible, we provide a light-weight version of synchronized highlighting for arbitrary,

unmodified applications.

∗http://code.google.com/apis/maps/
†http://www.mozilla.com/firefox/

142 Chapter 7. Window Manager Extensions

One-shot selections can be triggered from any unmodified application by selecting

(marking) the desired text and subsequently pressing a keyboard shortcut. The manage-

ment application then consults the operating system’s selection buffer for the selection

text and reports the selection string to all registered applications. However, using this

approach, we can only determine the selection ID but neither the location of the selection

region within the source window, nor additional occurrences of the selection ID in this ap-

plication. Also, content changes in the unregistered source window are not propagated to

the management application, so the location of the selection rectangle cannot be updated.

Therefore, the user’s selection ID will be re-set to the previous selection ID after a few

seconds.

7.2.2 Window Importance Maps

Window importance maps are extracted from each window’s content using a model of

saliency-based visual attention. In a compositing window manager, the window content is

represented as an image – more specifically as a texture, as we are relying on hardware-

accelerated window rendering.

To determine the importance of each window’s pixel, we rely on visual saliency.

Saliency is a measure of how much a location visually stands out from the surrounding

image regions [124, 156]. Typically used bottom-up saliency features are regions of high

changes in luminance, color opposition, orientation changes, and motion. For our win-

dow importance maps, we apply the conspicuity analysis proposed by Mendez et al. [156],

which extracts pixel-wise saliency values based on an analysis of lightness, red-green and

blue-yellow color opposition, to the (dynamic) textures of the windows. In addition, we

measure visual changes in windows and temporarily increase importance in regions where

content has changed. Visual changes caused by user interaction, such as scrolling the

window content, are ignored. The importance maps in Figure 7.2 show that user interface

elements and information content, such as text or images, are assigned high importance

values. In particular, the video in the window of Figure 7.2(b) is highly salient due to

additional motion. Homogeneous background regions have low importance – independent

of their background color.

Window importance maps are extracted from the individual windows’ textures by using

a GLSL implementation of Itti’s visual attention model [124] by Mendez et al. [156]. The

shader is applied each time the window is rendered by Compiz. Visual window changes in

windows are monitored through window damage events, i.e., notifications of window region

updates provided by the X Window System. These damage regions are then amplified in

the window’s importance map.

7.3. Display Adaptivity 143

(a) (b)

Figure 7.2: Examples for window importance maps: (a) a browser window showing primarily
text and (b) a website containing a video. Importance gray values were inverted for illustration
purposes. Insets show the unmodified window textures.

7.3 Display Adaptivity

Current window managers rely on a very simple spatial description of the available screen

space: individual output devices are treated as rectangles, defined by their number of

pixels. Spatial properties such as resolution, gaps between the displays, and orienta-

tion towards the user, are not considered. This unawareness is particularly problematic

when using irregular projected displays: The desktop image is perspectively distorted and

brightness is uneven when adjacent projections overlap, as visualized in Figure 7.3.

(a) (b)

Figure 7.3: A Linux desktop on an irregular display: (a) without any display adaptivity and (b)
with geometric compensation and edge blending.

To effectively adapt the outcome imagery to the prevalent display factors, the window

manager has do conduct two activities: First, adapting the window layout to the irregular

display shape and second, correcting the resulting imagery for projection inhomogeneities.

7.3.1 Display Importance Maps

When using projectors, the resulting display outline is rarely rectangular. Oblique projec-

tion angles and combinations of multiple overlapping projections result in possibly concave

144 Chapter 7. Window Manager Extensions

polyongal outlines. In addition, physical discontinuities, such as corners, further segment

the available screen space.

In contrast to most related research on tiled projected displays, Deskotheque circum-

scribes the window manager’s desktop rectangle around the 2D representation of the dis-

play (see Section 4.1 for more details). This leads to a loss of usable desktop pixels at

the peripheral display areas, but in turn we can use all available projector pixels for in-

formation display and do not need to shrink the desktop imagery to fit within the largest

inscribed rectangle. Instead, our idea is to explicitly exploit knowledge of the display

form factor to adapt the spatial window layout, so all projector pixels are optimally used.

This means that window placement in “invisible” desktop regions should be avoided. In

addition, we refrain from placing windows across physical discontinuities.

(a)

(b) (c)

Figure 7.4: Display importance map of an irregular, tiled display (2 projectors) around a 90◦

corner: (a) the reconstructed model, where the textured quads represent the projection area and
the red outline illustrates the circumscribed desktop rectangle. (b) From the display outline of the
two projectors mapped in texture space, (c) the display importance map extracts usable (black)
and unusable (white) pixels of the circumscribed desktop. Mind that the right projection spans
two planes.

The description of usable and unusable pixels (i.e., those cropped by the projection

outline or along physical corners) is automatically derived from the spatial display model.

For all co-planar polygons of a tiled projected display, the outlines of these polygons’

unions are derived. The individual outlines are stored as a texture in screen size, which

we refer to as display importance map. In this display importance map, usable pixels are

black and the regions outside the union outlines are white, as shown in Figure 7.4.

7.3. Display Adaptivity 145

The display importance map can furthermore encode user-defined regions, for instance

if the user wants to leave a certain region of the desktop uncovered by any windows to allow

for quick access to frequent desktop icons [113]. Alternatively, physical occlusions could be

dynamically added as unusable display regions, like proposed in occlusion-aware interfaces

[251]. Mind that such an approach would require constant capturing of the display, which

is not available in Deskotheque’s current implementation. Finally, the (estimated) user

location could be seen as a focus region, where windows are more likely to be placed

than in the peripheral areas [32]. To encode such focus and context regions, the usability

(i.e., encoded as gray value in the display importance map) of the display may gradually

decrease with increasing distance from the closest user location.

The display importance map is automatically generated during the offline calibration

process (Section 4.1). Alternatively, users can load manually created, static display im-

portance maps at window manager start-up. Display importance maps are facilitated by

importance-driven compositing (Section 7.4) to optimize the window layout for display-

adaptive window management (Section 8.3).

7.3.2 Warping and Blending of the Desktop

Given a perfectly managed screen with all windows located within the visible display

region, the window manager still has to ensure that the output image is undistorted and

compensated for irregular brightness when using tiled displays. As input, the window

manager receives the polygon outlines of all planar display regions for each output device,

together with their associated homographies (cf., Section 4.2). In the example of Figure

7.5, three polygons were delivered for the two projectors. In addition, the window manager

receives one texture for each output device, encoding alpha values for edge blending of

overlapping projection regions.

We extended the Compiz window manager to apply geometric compensation and blend-

ing by introducing an additional rendering pass. In the first pass, the X desktop is rendered

into a frame buffer object. Then, the polygons are individually texture-mapped with this

off-screen buffer content and warped with their associated homographies. For each output

device, the alpha blending texture is applied full-screen on top of the warped polygons

using an appropriate OpenGL blending function. Figure 7.5 shows the resulting output

for a casually aligned, multi-planar multi-projector display.

To refine the warping result, the users can interactively apply simple geometric trans-

formations to the desktop imagery – either by issuing keyboard shortcuts or by a simple

GUI interface (Figure 3.4(a)). Translations, rotations, and scalings are applied to the

screen’s texture matrix.

As the mouse pointer is rendered directly in hardware by default, the cursor remains

unaffected by desktop warping. This leads to an offset between the rendered desktop

content and the actual cursor interaction space. This problem is circumvented by our

multi-pointer extension of the window manager (Section 3.2 and Section 7.1), which ren-

146 Chapter 7. Window Manager Extensions

(a) (b)

(c)

Figure 7.5: (a) For geometric compensation of the multi-planar, tiled display in the back, (b) the
original desktop image is first rendered into an off-screen buffer. (c) Then, geometric compensation
of the individual polygons and per-screen alpha blending is applied.

ders the cursor representations as textured and colored OpenGL quads, while switching off

the X Window System’s hardware cursor rendering. The mouse cursors thus contribute

to the desktop content rendered into the off-screen buffer and are therefore subject to

warping.

Mind that geometric compensation on the window manager level is only possible if

the tiled display is driven by a single machine. If projectors are connected to different

machines, a middleware has to take care that application windows can be shared across

these machines and that a seamless navigation across the device boundaries is possible.

Input redirection and window migration techniques can be used to accomplish this. The

most challenging aspect, however, is the overlap region between adjacent projections: As

shown in Figure 7.5(c), portions of the desktop need to be duplicated in these regions, in

order to create a seamless image. However, duplicating windows to multiple machines on

windowing system level is non-trivial, especially in combination with compositing window

managers (cf., background in Section 2.2.4). Thus, when building distributed tiled dis-

plays, using a remote desktop solution like VNC [196] (cf., background in Section 2.2.2)

is more appropriate.

7.4. Importance-Driven Compositing Window Management 147

7.4 Importance-Driven Compositing Window Management

Importance-driven compositing uses window and display importance maps to determine

the importance of display and window regions. It uses this information for finding an

optimal spatial window layout – in terms of visibility of important content – potentially in

combination with see-through windows. Importance-driven compositing is the foundation

for two window management techniques presented in the next chapter: uncovering windows

(Section 8.2) and display-adaptive window management (Section 8.3).

Importance-driven compositing window management is composed of four basic steps:

1. The creation of window and display importance maps containing image-based de-

scriptions of important regions (sections 7.2.2 and 7.3.1), which are accumulated

into a common desktop importance map,

2. a window layout routine, placing windows to minimize the overlap of important

content,

3. importance-driven see-through compositing, applying per-pixel transparencies to re-

veal important content of occluded windows, and

4. interaction techniques allowing the user to access and manipulate content in occluded

windows.

The optimal window layout can be determined for both, opaque windows (cf., Section

8.3 and Figure 7.6(a)) and semi-transparent windows using importance-driven see-through

compositing (cf., Section 8.2 and Figure 7.6(c)). When employing importance-driven

see-through compositing without optimizing the spatial window layout, content-aware

transparencies are applied to unimportant regions in occluder windows (Figure 7.6(b)),

similar to free-space transparency proposed by Ishak and Feiner [123]. If covering all four

steps, the algorithm aims to find the spatial window layout so the maximum amount

of important information can be displayed by facilitating pixel-wise transparencies, as

illustrated in Figure 7.6(c).

(a) (b) (c)

Figure 7.6: Importance-driven compositing facilities: (a) optimized spatial layout for opaque win-
dows, (b) see-through compositing to reveal occluded content, and (c) the combination: optimized
spatial layout for see-through windows.

148 Chapter 7. Window Manager Extensions

Importance-driven compositing is implemented as plug-in for the Compiz window man-

ager and facilitates advanced GPU languages – namely, the OpenGL Shading Language‡

(GLSL) and the Open Computing Language§ (OpenCL) – to support real-time interaction.

In the following, the above mentioned steps will be discussed in more detail.

7.4.1 Desktop Importance Map

We use importance maps as unified image-based representation of importance in win-

dowing systems. Display importance maps (Section 7.3.1) and window importance maps

(Section 7.2.2) are accumulated into a common desktop importance map, describing the

distribution of information on the entire display. In Figure 7.7, the desktop importance

map (0) is a combination of a single display importance map (1) and multiple window

importance maps (2) by the overlapping windows on the screen.

(0)

(1)

(2)

Figure 7.7: Window importance maps (2, blue) are created for each window individually and
accumulated with a display importance map (1, red) to a common desktop importance map (0,
green). Dark areas represent high importance.

7.4.2 Window Layout

The aim of the window layout routine is to spatially arrange windows so that important

regions of occluded windows are uncovered, if possible. Figure 7.8 shows the layout step for

a single window and the resulting desktop composition. The optimal window placement is

determined by considering three influencing factors described in the following (cf., Figure

7.8(4-6)).

Firstly, the information overlap of the window with the already existing information on

the desktop (Id) shall be kept low. For this information overlap measure, we distinguish

two cases. In the case of opaque windows, the information overlap describes the amount

‡http://www.opengl.org/documentation/glsl/
§http://www.khronos.org/opencl/

7.4. Importance-Driven Compositing Window Management 149

Figure 7.8: Overview of importance-based compositing for a single window: (1) from the window’s
texture, (2) the window importance map is created. (3) Given the desktop importance map, the
window layout routine finds the optimal placement considering (4) the information overlap, (5) the
distance to the original window location, and (6) the distance to the previous location. (7) The
combination of these factors gives an optimization problem with the solution marked as a green
dot (window center). (8) Finally, the window is rendered to the existing desktop content.

of information on the desktop, covered by the window rectangle:

Ji(p) =
∑

(x,y)∈Ωw

Id (p + (x, y)) , (7.1)

where (x, y) visit all discrete positions in the window rectangle Ωw, and p is the window

location. In the case of windows being rendered with see-through compositing, we addi-

tionally need to consider the information contained in the window (Iw). The information

overlap can be formulated as a cross-correlation of the two importance maps Iw and Id,

as illustrated in Figure 7.8(4):

Ji(p) =
∑

(x,y)∈Ωw

Iw(x, y) · Id (p + (x, y)) . (7.2)

Secondly, the location p should have little displacement from the original window loca-

tion po, which is defined by the location where the window has been mapped or manually

positioned by the user (Figure 7.8(5)). Thus, this term is responsible for maintaining a

certain degree of spatial stability.

Thirdly, the resulting window location p should vary minimally from the location in

the previous frame pp (Figure 7.8(6)). In other words, jitter should be minimized.

These requirements can be formulated as an optimization problem over all possible

window locations p (Figure 7.8(7)):

J(p) = ωiJi(p) + ωdD(po,p) + ωjD(pp,p), (7.3)

where J is the associated cost function to be minimized, composed by a weighted

150 Chapter 7. Window Manager Extensions

sum of the information overlap Ji, and the distance D to the original location (window

displacement) and previous position (jitter). The individual weights (ω) vary for the

emerging window manager techniques, such as presented in Sections 8.2 and 8.3.

To reduce the number of potential window locations (p), the search space can be

decreased by additional constraints. For instance, windows can be bound to certain screen

regions or to “parent” windows. In addition, we limit the maximal window movement over

time. This introduces smooth frame-to-frame animations and helps the user keep track

of window movements. Window content is never placed outside the screen boundaries.

This decreases the search space for large windows, while maximized windows will not be

re-positioned at all.

Our algorithm treats multiple windows sequentially in a greedy manner. For each

window, the best placement is determined by solving the optimization problem as stated

above. Subsequently, the window’s importance map is added to the desktop importance

map at the determined location. The modified desktop importance map then serves as an

input for the next window’s placement. Thus, windows being traversed first have more

freedom in finding a good placement. For our window management techniques (i.e., uncov-

ering windows in Section 8.2 and semi-automatic window coordination for display-adaptive

window management in Section 8.3.2), the inverse window stacking order – defined by the

windows’ recency of use, beginning with the window currently holding the input focus –

was used as traversal order. While this traversal order is appropriate for work on small-

scale displays, we found evidence that on large-scale displays different traversal sequences

might be more appropriate, such as defined by the proximity to the currently active win-

dow (cf., Section 9.4).

The evaluation of the window layout cost function is a computationally expensive

operation and is therefore implemented in OpenCL on the GPU. For each window being

rendered by Compiz, the OpenCL layout routine returns the optimal window translation,

which is then applied as transformation to the window’s quad, or is issued as window move

command to the X Window System via Xlib.

7.4.3 Compositing

The compositing step is responsible to correctly render the windows to the screen. In

contrast to conventional window management, we render the windows according to their

priority for the layout algorithm, which usually does not correspond to the conventional

rendering order – the stacking order defined by the recency of use. In the current imple-

mentation, we render windows front to back to ensure higher priorities for recently used

windows.

In the simplest case of opaque windows, the compositing step renders windows as if

traversed from back to front, as usual, by setting the current window pixel’s alpha value

7.4. Importance-Driven Compositing Window Management 151

αw(x, y) as:

αw(x, y) =

{
0, if αd(x, y) > 0.0

1, else,

where αd(x, y) > 0.0 indicates whether the desktop pixel at (x, y) is already occupied by

a higher level window.

For increasing the amount of visible information on the screen, importance-driven see-

through compositing reveals occluded content by applying pixel-wise transparencies. We

implemented two well-known compositing techniques from the field of technical illustra-

tions and volume rendering [250]: ghosting and cut-aways.

Ghosting determines each window pixel’s alpha value αw(x, y) by evaluating the im-

portance ratio of the window’s importance map Iw(x, y) and the desktop importance map

Id(x, y) at the respective pixel:

αw(x, y) =
Iw(x, y)

Iw(x, y) + Id(x, y)
.

Thereby, it ensures that the most important features of each window are visually preserved

(Figure 7.9(a)). However, if the window layout routine cannot spatially separate important

regions (for instance due to high information density), important features in overlapping

windows compete for visual prominence.

(a) (b)

Figure 7.9: See-through compositing: (a) Ghosting and (b) cut-aways.

Cut-aways put more emphasis on the windows’ stacking order: they ensure that the

most prominent features of the overlay windows are preserved. Only if the desktop’s

importance map value is below a certain threshold, the obscured window’s content is

revealed. Smooth blurring and desaturation of obscured window content provide subtle

depth cues, such as a slight blurring and de-saturation. This approach is similar to free-

space transparency [123], where transparency is only applied to white regions in overlay

windows. Our cut-away technique differs from free-space transparency, as we apply hard

boundaries between the foreground and the background and add shadows to visually

152 Chapter 7. Window Manager Extensions

indicate depth layers (Figure 7.9(b)).

The compositing step is implemented as GLSL fragment shader. It determines per-

pixel alpha values and evaluates each pixel’s neighborhood for blurring and shadowing,

according to the chosen compositing technique.

7.4.4 Interaction

Importance-driven compositing window management allows users to interact with visible

portions of occluded windows – even if located within the boundaries of an overlay window.

We rely on the simple assumption that the user aims to interact with the visually most

prominent window at the current mouse pointer location. We therefore set the input focus

according to the compositing result: the window with the overall highest contribution to

the pixel’s color below the mouse pointer is activated.

The most salient window to receive the input focus at the current cursor location is

determined in the GLSL compositing shader. The information is queried each time the

mouse was moved. To redirect the mouse input to the currently active window, we raise the

active window in the window manager’s stacking order, so input is reliably forwarded to the

respective window, even if located underneath a top-level window. Although modifications

to the window manager’s stacking order usually lead to a change of the rendering order,

we do not alter our traversal order for layout and compositing to keep the desktop visually

consistent.

Depending on the employed window management technique, window management us-

ing importance-driven compositing introduces a noticeable latency. On a Quad-Core 2.80

Ghz CPU and NVIDIA GeForce GTX 480, for a desktop resolution of 1280x1024, placing

and rendering a window of approximately 500x300 pixels requires 6ms. For a conventional

office scenario with five managed windows, we obtain an average frame rate of 20 fps.

However, as importance-driven compositing is usually only temporarily activated, these

frame rates are acceptable.

7.5 Discussion

In this chapter, more or less fundamental changes to conventional window management

have been described, which will act as foundation for the window management techniques

presented in the next chapter. For operation in emerging display environments, combi-

nations of these extensions will be facilitated by certain techniques. For instance, visual

links for multiple collaborators on a tiled display (Section 8.1) will facilitate the multi-user

extensions, warping and blending, as well as the central application coordination routine.

Display-adaptive window management (Section 8.3) uses warping in combination with

importance-driven compositing to optimize window placement according to the display

importance maps of irregular displays.

However, the techniques in the following chapter only partially exploit the possibilities

7.5. Discussion 153

provided by these extensions. Using some of our extensions, previously presented window

management techniques could have been implemented more efficiently, as a few of the

following examples will illustrate. The central application coordination mechanism could

be used to improve recognizability of automatically down-scaled windows in tiled window

managers, as proposed by Miah and Alty [157]. In their concept, important window ele-

ments remain at their original size or get highlighted. With our synchronized highlighting

mechanism, important elements can be determined by the user selection in a focus window,

while less important window elements are automatically shrunk by the window manager.

Similarly, important window elements may be automatically cut out of the surrounding

window, creating free-floating window cuts [238], snips [114], or clips [155]. In contrast,

previous work has relied on the user to manually cut out important regions [114, 155, 238].

As a semi-automatic approach to window region detection, the user may paint a stroke

on top of the anticipated window region. An image-based segmentation algorithm then

extracts the associated context region by analyzing the window importance maps (Figure

7.10).

Figure 7.10: Conceptual sketch of semi-automatic region segmentation: on an application win-
dow, the user paints a rough stroke to indicate the region of interest. The segmentation is con-
ducted on the window importance map. The duplicated window region can be treated as individual
application window, as proposed by Tan et al. [238].

Importance-driven compositing can also be used as alternative approach to user inter-

face holes, as presented by Stürzlinger et al. [232]. User interface holes are used to reveal

auxiliary GUI elements of windows underneath. With importance-driven compositing,

auxiliary applications (e.g., small widgets) or floating toolbars can be positioned relative

to a parent window and be made visible using see-through compositing. Figure 7.11 shows

two screenshots of floating windows acting as user interface holes.

Of course, our window manager extensions provide room for improvements. The cen-

tral application coordination mechanism relies on very simple identity relationships to

synchronize user selections across applications. Indeed, applications themselves can apply

some specialized ID mapping – as demonstrated in the extension of the Caleydo [142]

framework – but for applications extended in a minimally invasive manner, such as our

web browser add-on, this is not easily possible and definitely not feasible. Sophisticated

ID mapping therefore has to be taken care in the central management application itself. It

should be possible to load special task-related ontologies to resolve more complex relations

in a certain task domain.

Importance-driven compositing relies purely on image-based analysis of bottom-up

154 Chapter 7. Window Manager Extensions

(a) (b)

Figure 7.11: Floating (a) auxiliary applications and (b) toolbars are positioned automatically
within a main window with minimal information overlap. Mind how the floating toolbar in (b) is
re-positioned as the document is scrolled.

saliency features of window textures to derive “important” window regions. Although this

measure is more sophisticated than simply defining white pixels as unimportant and the

rest as important (as, for instance, in [123]), in many cases the window regions attracting

our visual attention are not necessarily the regions that are most important for an infor-

mation analysis task. As an example, an advertisment in a web browser window may be

much more salient (and therefore more important to our algorithm) than the actual infor-

mation the user is looking for – which may be “just” text. As another example, menu bars

in windows are highly salient but are not very important in secondary windows, where

the user is merely looking at the content but is not actively interacting. Stürzlinger et

al. [232] discussed how user interface elements, like menus or buttons, could be automati-

cally detected within the window manager by facilitating accessibility APIs. Incorporating

such a high-level knowledge into the concept of importance-driven compositing may im-

prove usability significantly. Also, increasing the importance of selection regions, collected

by the central application coordination instance, in the window importance maps may

help to decrease the importance of semantically unimportant, but visually salient window

elements.

Chapter 8

Window Management Techniques

In the previous chapter, extensions to the basic window manager functionality for op-

eration in emerging display environments have been presented. It has been shown how

window managers can be extended to incorporate knowledge of the environment (i.e.,

display form factors and users) and the window layer.

In this chapter, this functionality will be facilitated to create new window management

techniques to support users in discovering, accessing, managing, and sharing information in

emerging display environments. Table 8.1 shows an overview of the window management

techniques. The comparison lines out whether the individual techniques (or a special mode

of the techniques) are particularly suitable for certain display or user configurations.

Visual links Uncovering Display-adaptive Polarization-based
windows window management interfaces

Primary purpose information discovery,
information filtering,
information sharing

information discovery,
information access

window management,
information discovery

information sharing,
information comparison,
information filtering

Levels W, E W, S W, S, E (S), E

Small displays – x – –

Large displays x – x x

Irregular displays – – x –

Multi-display x – – –

Multi-user x – – x

Sections 8.1 8.2 8.3 8.4

Table 8.1: Comparison of window management techniques: the primary purpose(s) of the tech-
nique, the level from which the technique derives knowledge from (W = window, S = screen, E =
environment), whether it was specifically designed for different display or user configurations (x:
yes, –: no), and the respective sections in this chapter.

8.1 Visual Links

With increasing display space, users tend to have a larger amount of open application

windows [112]. With the increased amount of space, they can arrange multiple appli-

cation windows containing diverse information next to each other with no or only very

155

156 Chapter 8. Window Management Techniques

little overlap. As a result, a large amount of information from different sources can be

visualized simultaneously, which supports the user in a complex information analysis task

by decreasing the amount of explicit window switching operations.

However, visually locating items of interest on a large display scattered with informa-

tion is one of the greatest challenges when working with very large displays [234]. Items

of interest for a particular task may be distributed to multiple application windows and

available in diverse visual represenations – like text, graphs, images, or maps. Informa-

tion may be partially outside the user’s field of view – in peripheral display regions or

on discontinuous display locations. Guiding the attention to peripheral items or showing

relationships between information across application windows thus requires strong visual

cues to guide the user’s attention to locations of interest and to show relationships and

patterns explicitly.

Visual links across applications facilitate our centralized approach to synchronized

highlighting in the window manager (Section 7.2.1) and visualize related entities contained

in multiple application windows using strong visual cues: connection lines.

8.1.1 Visual Links Highlighting Technique

Supportive information located at the periphery of the display is likely to be overlooked,

even when visually highlighted. Typical highlighting techniques are rendering the items

of interest in distinct colors or surrounded by frames. Other highlighting techniques draw

the user’s attention to items of interest by reducing the visibility of the surrounding in-

formation. Common methods are to decrease saturation [270], brightness [138, 270], or

sharpness [139]. All of these cue-based focus and context techniques [59] either apply

image-based modifications to the background image or render additional information on

top of the output imagery. Thus, they can be easily applied in a compositing window

manager, where full access to the individual window textures and the final desktop com-

position, respectively, is available.

In an experiment by Hoffmann et al. [108], users committed more errors and were more

annoyed with a technique darkening the context regions, compared to techniques highlight-

ing the focus object with frames or trails. The also found that for targets appearing at a

large distance from the focus window, trails to the target location performed better than

highlighting the target with a colored frame. They identified curved, asymmetric trails to

be more easily detectable, as they are more distinguishable from the merely rectangular

screen content.

Routing

Following the guidelines by Hoffmann et al. [108], we indicate related regions by rendering

frames around the selection regions, as well as by connection lines from the user’s cur-

rent interaction window to the selection regions. If multiple selection regions are reported

8.1. Visual Links 157

in a single application window, connection lines are bundled [110] to reduce visual clut-

ter. Bundling also clearly indicates relatedness of selection regions with regard to their

application window.

We distinguish two window types: The source window is the application window

where the user selection has been registered. As the user focus is currently on this window,

all visual links to related information emerge from this spot. If multiple selection regions

are located in the source window, each region is highlighted and connected to a bundling

point in the center of gravity of all regions (cf., Figure 8.1 A), where the connections to

the target windows emerge.

Target windows are all registered application windows where no user interaction is

taking place and at least one selection region was reported. The main purpose of visual

links is to lead the user’s focus to these windows and to express the relationship of relevant

items with respect to the source window. Each target window reporting selection regions

is linked with the source window by a single connection line. This connection line bundles

the connections to all selection regions in the target window. In contrast to the source

window, the bundling point is set to the intersection point of the line connecting source

and target window with the target window’s boundary. From this bundling point, the

individual connection lines to all selection regions emerge (see Figure 8.1 C-D).

Figure 8.1: Visual links emerging from a source window (A) to three target windows (B-D).
Target windows B and D contain hidden items, indicated by an arrow. Mind the connection lines
in window A and C avoiding selection region obstacles.

To avoid occlusion of potentially valuable information, rendering connection lines

across selection regions is avoided. If a connection line would intersect a selection region,

the corner point of the intersected region leading to the shortest non-intersecting path is

added to the connection line. This results in the connection being “curved” around the

region (Figure 8.1 A and C).

Off-Screen Visualization

If an application reports selection regions outside the visible window region, arrows at the

window boundaries give a visual cue about invisible related information (see Figure 8.1

B and D, as well as Figure 8.3(c)). Contrary to some off-screen visualization techniques

158 Chapter 8. Window Management Techniques

encoding the exact location of off-screen items, like Halos [23] or Wedges [92], we group

invisible regions into four off-window directions (up / down / left / right), according to

the four scroll directions of textual documents. The width of the arrows is static, while

the length encodes the number of hidden selection regions in this direction, giving the user

a cue about the amount of invisible information in each direction. If a target window has

no visible, but only hidden selection regions, visual links are drawn only to the window

border (cf., Figure 8.1 B).

Rendering

Connection lines are rendered as Bézier surfaces, emerging from the window’s bundling

point with a given line width and expanding to the selection region border up to a given

maximum width. Links are rendered by the window manager on top of the existing desktop

content, as shown in Figure 8.2. In its current implementation, we do not incorporate

knowledge from the screen layer (i.e., window arrangements) and therefore do not consider

(partially) occluded application windows. Thus, highlight regions for occluded items are

always rendered on top of the top-level window. In the future, we plan to combine visual

links with importance-driven compositing (Section 7.4) to guarantee visibility of otherwise

occluded selection regions using see-through compositing.

Figure 8.2: Using visual links to relate textual information on web pages with a geographic
location: looking up Harvard University.

Connections are rendered half-transparently, so underlying data can still be identified.

“Shadows” surrounding the connections help to discriminate visual links from the desktop

content. Figure 8.3(a) and (b) shows highlight regions and their associated connection

line for highlighting text and a map location.

8.1. Visual Links 159

(a) (b) (c)

Figure 8.3: Close-ups on single connection lines and selection regions highlighting (a) text and
(b) a map location. Hidden items on a website are indicated by an arrow (c).

User Interaction

A new set of visual links is created each time the user selects an item in a registered

application window. Connection lines, selection region highlights, and arrows are displayed

until a new selection by the owner, a change in window size or location, or a change in

window content (e.g., by scrolling) is registered. Links are rendered in high opacity after

the user has initiated a selection but fade to a low alpha value after a few seconds. The

rectangular highlight regions around the reported selection occurrences remain at full

opacity. In this way, readability of content is improved. By moving the mouse over one

of her selection highlights, the user can set back the links to their initial alpha value. For

fading the links to a lower alpha level manually or switching them off entirely, users can

employ simple keyboard shortcuts.

8.1.2 Collaborative Information Linking

Information analysis is often a collaborative task. Examples range from families planning

a holiday trip to medical experts discussing the treatments of their patients. What these

examples have in common is the need to extract relevant information from multiple sources

– from web sites and maps to patient records and biomedical visualizations – and to share

these pieces of information with the collaborators to find consensus. With the raise of

large-scale displays and multi-input support, these collaborators can facilitate a shared

platform for co-located collaborative information work.

However, sufficient display space to arrange personalized information and concurrent

input support alone does not ensure a successful collaboration. Common problems of

co-located collaborative information management – such as the inability to follow other

users’ cursors [264], problems resolving deictic references [101, 119, 204], and distractions

caused by other users’ cursor movements [258] or changes to the spatial display layout [72]

– cannot be easily resolved in such collaboration-transparent environments [140]. Basic

mechanics of collaboration [95, 179] for smooth teamwork need to be supported by the

system.

Collaborative information linking extends the concept of visual links across applications

to multiple concurrently operating collaborators. Each user in the environment is uniquely

160 Chapter 8. Window Management Techniques

associated with a pointing device and a distinct color, also used for cursor rendering

(Section 4.3). As the user selects an item in an application window, the management

application retrieves the user’s identity from the window manager, retrieves the associated

selection rectangles from all other applications, and sends the collected rectangles to the

window manager for routing and rendering (cf., Section 7.2.1). Visual links are rendered

in the user’s associated color and emerge from the window for which the user selection has

been reported. Figure 8.4 shows an example workspace operated by two users conducting

a biomedical analysis.

Figure 8.4: Screenshot of a shared workspace: color-coded sets of visual links connect text selected
in two protected browser windows with matching occurrences in a shared overview chart.

Protected and Shared Workspaces

Visual links by collaborators may potentially lead to interference for other users, as links

are automatically created upon a user’s selection. As a result, newly created sets of visual

links may unintentionally intrude into other users’ personal territories and interrupt their

current work. In contrast, accessing another user’s workspace with the mouse pointer

(input conflicts) is a conscious activity, and can therefore be mediated socially much more

easily.

We therefore provide the possibility to protect workspace areas from other users’ links.

These areas may be dedicated private displays or single application windows on shared

displays. The user can protect any window in the workspace, which is not already locked

by another user, by moving the mouse cursor to the desired window and pressing a short-

cut. With the same procedure, a protected window is released. Protected windows are

visualized by color-coded boundaries in the users’ assigned colors (see lateral browser win-

8.1. Visual Links 161

dows in Figure 8.4). Private displays are locked for other users’ links by default. The user

can release this lock in a GUI.

Protection is coordinated in the window manager. Window (un)lock events are propa-

gated to the management application, which controls access restrictions between users and

applications. If a window is locked by a user or located on a user’s private display, incom-

ing selection IDs by another collaborator are not forwarded to this particular application

associated with the window.

Selection Hijacking

Users can test whether others’ selections occur in their private workspace by temporarily

releasing window protection or by “hijacking” a specific collaborator’s selection. To hijack

a selection, the user moves the cursor over one of the collaborator’s selection rectangles on

a shared window. The user’s links are then temporarily replaced with the collaborator’s

selection, while the previous highlight regions remain visible to explicitly show the rela-

tionship between the two selections (Figure 8.5). Hijacking is active as long as the user

keeps the cursor within the selection region, with a minimum display time of one second.

Figure 8.5: Selection hijacking: the red user moved the cursor on top of the other user’s (yellow)
selection on a shared window. The connection lines for the current selection “Tampa” are substi-
tuted with the yellow user’s selection “Marineland”, but the highlight regions of “Tampa” remain
for easier comparison.

Selection Storage and Management

We provide a “bookmark list” as a central storage tool, where users can store their current

selections for later investigation. In addition, users can employ it as a global search tool

by entering arbitrary selection strings and testing whether this selection is available in any

registered application window. The bookmark list displays each user’s current selection

string together with a bookmark button. By pressing this button, a new bookmark appears

as button labeled with the selected text (Figure 8.6). By pressing such a bookmark button,

162 Chapter 8. Window Management Techniques

links to the currently visible application content are created. In this way, users can quickly

store findings as selection strings and test them later on new window content.

Figure 8.6: The yellow user selected a bookmarked item (“Portugal”) from the bookmark list.

This is a different bookmarking concept than provided by conventional web browsers,

which store an application state or content rather than a user’s search string. Our im-

plemented selection bookmarking does not allow users to restore the applications’ states

at the time of bookmarking their selection. To provide such an environment-wide book-

marking, registered applications additionally would have to provide additional context

information with every user selection report – such as their current URL, document, or

visualization view – and the possibility to restore these states upon bookmark selection.

Alternatively, a system-wide time-centric information management approach (similar to

[194]) could restore the entire system’s previous (visual) state by storing screen-shots of the

window content at the time of bookmarking. However, restoring a previous system state

can lead to interference for collaborators. Thus, privacy mechanisms – such as restricting

reconstitution to unprotected application windows – would be required. In addition, the

visual presentation of the windows’ previous states has to be well-designed, in particular

if the window layout has changed in meantime.

8.1.3 Cross-Display Information Linking

Collaborative information linking is particularly interesting for multi-display environ-

ments. As a motivating scenario, consider the collaborative information visualization

scenario by Streit et al. [229] (Figure 8.7): Multiple expert users from different domains

(e.g., histopathologists, oncologists, surgeons) are undertaking a collaborative analysis of

a patient’s gene data, histological data, and data obtained from external databases. In-

formation is scattered across multiple displays within the environment – partially outside

the user’s field of view. To discover these peripheral pieces of information, visual links

across display boundaries can lead the user’s gaze even to very distant locations of the en-

vironment. They indicate the existence of relevant information despite physical occlusion,

8.1. Visual Links 163

outside the user’s field of view, and even though the information is too distant and thus

too small to be perceived by the user.

Figure 8.7: Mockup of a shared multi-display workspace for diagnosis in a clinical setting [229].

Visual links connecting items located on distinct displays do not only need to bridge

display space potentially covered by other applications. They also need to bridge display-

less space between discontinuous displays. Cross-display links therefore require a spatial

description of the environment to calculate which displays have to be crossed and at

which display locations the start and end point of the visual link fragment has to be set.

We provide two multi-display coordinate systems for rendering cross-display visual links:

pair-wise planar mappings of the environment and a perspective representation of the

environment, as perceived from the owner’s estimated field of view (Section 4.4).

Using pair-wise planar mappings, links to adjacent displays are always crossing through

a spatially limited interval on a particular display edge – or even through a fixed entry and

exit point, as illustrated in Figure 4.17. Links using this mapping are highly predictable

and work equally well from every perspective.

Using a perspective mapping, links are routed as seen from the estimated owner’s

perspective, as shown in Figure 8.8. The resulting links seem less complex from the

user’s point of view, as the link direction is more consistent across the individual displays.

Perspectively mapped links and links using a pair-wise planar mapping have not been

compared in a controlled experiment. However, informal user feedback from the setup in

Figure 8.8 indicates that perspective links are much easier to understand and follow. Mind

that perspectively mapped links with a non-tracked user have a limited application area.

In the example mock-up of Figure 8.7, displays located behind the user cannot be included

in the user’s perspective map and are therefore unreachable for cross-display links.

164 Chapter 8. Window Management Techniques

(a) (b)

Figure 8.8: Cross-display links using a perspective mapping, as seen from the left (a) and right
(b) user’s perspective. Even though the link colors are similar (yellow and green), the links can be
discriminated based on their origin direction on the respective home display.

8.2 Uncovering Windows

Information analysis tasks mostly require multiple sources of information to complete a

single task. In addition, users are often involved in multiple tasks at the same time, re-

quiring a frequent switch between their active information sets – or, more particularly,

application window sets. Floating menus and multiple windows per application addition-

ally contribute to the large amount of windows cluttering the standard desktop screen.

Even if the display size increases, users just tend to keep more application windows open

[112], leading to overlaps between windows and little uncovered desktop space.

As a consequence, researchers [87, 112] found that window switching (i.e., bringing oc-

cluded windows to the front) is a frequent activity in today’s window managers. Hutchings

et al. [112] also showed that most windows are activated only for a very short time period

– typically less than four seconds. This indicates that users often only need to skim the

content of a secondary window to resume their primary task, such as reading a bit of doc-

umentation, checking if a new e-mail has arrived, or retrieving the result of a calculation.

With sequential window switching techniques, the user has to perform multiple operations:

initiate the window switch, identify and select the window of interest, perform the actual

operation, and repeat the window switching step to return to the previous window. Not

surprisingly, “the need to Alt-Tab” has been described as tedious [91].

To reduce the number of necessary activities to quickly access occluded content, we use

importance-driven compositing (Section 7.4) to uncover information in occluded windows

on demand. By pressing a keyboard combination, automatic spatial window layout and

cut-away compositing is applied to all (partially) occluded desktop windows, which are

currently not minimized (cf., Figure 8.9).

We apply a low penalty on window displacement (ωd in Equation 7.3) on the layout

algorithm to give more emphasis on minimizing the information overlap than a stabilized

window layout. Thus, on a large display or a display containing a few number of windows

8.2. Uncovering Windows 165

Figure 8.9: Uncovering windows on an SXGA display: unimportant window regions are temporarily
cut away and occluded windows are spatially arranged to reveal obscured content. The user directly
interacts with the otherwise invisible document content uncovered below the browser window.

(as shown in Figure 8.10), occluded windows are rather moved towards empty desktop

regions than being placed below unimportant window regions of overlay windows.

Figure 8.10: Uncovering windows with a small number of windows: windows are rather moved to
empty desktop regions and are only rendered within occluder window boundaries, if the information
overlap cannot be further minimized.

We discard the window title bars from occluded windows, as they have a high visual

saliency but little benefit for user interaction in this situation. In addition, we use subtle

dynamic transparency [93], which increases an occluded window’s overall alpha value if the

166 Chapter 8. Window Management Techniques

pointer moves closer or if the window currently holds the input focus. As input is redirected

to the most salient window at the cursor location, simple operations in occluded windows –

such as pressing a button – can be accomplished while exposing occluded content without

actually bringing the window to the front. To signal which window currently holds the

input focus, we increase the active window’s overall alpha value and show its title at the

left upper window corner (as for the document editor in Figure 8.9). When releasing the

key combination, the active window under the pointer is brought to the front and the

other occluded windows return to their original locations.

8.3 Display-Adaptive Window Management

Previous research has shown that window management on very large displays is a men-

tally demanding task for the user. Considering that the number of application windows

increases on large displays [112], Bi and Balakrishnan [32] observed that users spend

significantly more time on window management on large displays than on conventional

monitors. In particular, users spend much more time moving and resizing windows. On

conventional monitors, minimizing and maximizing windows is a more frequent activity.

Researchers have investigated how users organize their windows on large displays.

Findings from these observations indicate why users invest this increased amount of win-

dow management on large displays. For instance, Grudin [91] showed that users rarely

span application windows across multi-monitor bezels. Instead, the “first” (usually larger)

monitor mostly contains windows for the primary task and the second monitor contains

secondary resources and communication channels. Although this aspect has never been in-

vestigated, we assume that users will also avoid window placement across physical corners

on irregular projected displays.

Hutchings and Stasko [113] observed that users are “carefully coordinating” their win-

dows on large displays to keep a small portion of occluded windows visible for direct

access. This window arrangement alleviates the need for explicit window switching. How-

ever, manually arranging the windows is rather time-consuming and keeping important

elements visible for easy window identification requires frequent re-adjustment as other

windows are moved.

Bi and Balakrishnan [32] found that users employ a focus and context separation when

provided with a large, seamless display without any physical separation. In the peripheral

context region, windows provide awareness of particular background information. Snipped

windows [114] address this issue by showing only window regions relevant for the primary

task in context windows.

Current window managers exploit little knowledge of the environment to support the

users in manual window management. One of the most sophisticated operations with

respect to display adaptivity is the maximize operation: With the click of a single button

embedded into the window’s title bar, the window is automatically resized to the extent of

the output device the window is currently residing on. However, the maximize operation is

8.3. Display-Adaptive Window Management 167

rarely used when working with very large displays [32, 113]. In addition, it is not suitable

for irregular projected displays, where the display boundaries and physical irregularities

hardly correspond to the rectangular extents of the output devices (Figure 8.11).

Figure 8.11: Conceptual sketch of a maximized window on an irregular, tiled display: (a) without
display-adaptivity, the window is maximized to the extent of one output device while the boundaries
are cropped at the irregular display outline; (b) display-adaptive maximize optimizes the window
size to the irregular outlines and avoids spanning the window across physical discontinuities. Due
to the irregular display outline, oddly shaped display regions remain uncovered by the maximized
windows.

Display-adaptive window management is based on the concept of importance-driven

compositing (Section 7.4) and automatically created display importance maps (Section

7.3.1) to support users in managing windows on large, irregular displays. Display-adaptive

window management supports the user in the following activities:

Display-geometry snapping: as the user moves a window, it automatically snaps

within usable display regions, to avoid cropping of window content at display bound-

aries or placement of windows across physical discontinuities.

Semi-automatic window coordination supports the user in maintaining a “carefully

coordinated” window layout [113]: as the user moves a window, overlap with other

windows’ important content is avoided. If important elements are occluded, either

the dragged window or the occluded windows are displaced to keep important window

content visible.

Display-adaptive maximize: the user can quickly resize a window, so it covers the

maximum visible and continuous display space (see the conceptual sketch in Figure

8.11(b)).

Desktop widgets: desktop widgets, like application launchers, clocks, or notifiers, are

automatically moved towards otherwise unused display regions to waste as little

space as possible.

These features will be discussed in more detail in the subsequent sections.

168 Chapter 8. Window Management Techniques

8.3.1 Display-Geometry Snapping

Snapping windows to output device boundaries or adjacent windows while moving is al-

ready a quite common window management feature. When moving a window, window and

output device boundaries act as sticky edges, perfectly aligning the window along the edge

if it was released within a certain distance threshold. However, current window managers

only manage rectangular screen elements. When working with irregular displays, display

boundaries and edges are rarely strictly rectangular. In contrast, the display outline is

rather polygonal, possibly concave, and physical edges are only approximately aligned

along the screen’s horizontal or vertical. As an example, consider the display importance

map in Figure 7.4.

Display-geometry snapping is activated when the user releases a dragged window. The

window layout routine of importance-driven compositing finds the optimal window loca-

tion with respect to the display importance map. The constraint on maximum window

displacement from its original location determines the distance threshold used for snap-

ping. Within this maximum displacement value, the window is re-positioned to be entirely

contained within a planar display region and displayable pixels, respectively, if possible

(Figure 8.12(a)). As the drag window is automatically re-positioned, the cursor position

is also adjusted, so it remains at the same location relative to the drag window.

Figure 8.12: Screenshots of the resulting desktop importance map when moving a snap window
to a small, irregularly shaped display region (display importance map of Figure 7.4): (a) as long
as the window fits within the region, it snaps along the irregular display boundaries, (b) if the
window becomes too large, the window is placed along the physical edge, so only little important
information is located directly on top of the edge.

The user can choose whether window snapping is applied to the window as a whole

(or “black box”) or whether the visual content should be considered when snapping a

window. In the first case, the information overlap is minimized according to Equation 7.1,

so the window is placed to entirely fit within a suitable display region, if possible. In the

latter case, information overlap is evaluated using Equation 7.2. The algorithm aims to

avoid placement of important window elements along physical discontinuities, even if the

8.3. Display-Adaptive Window Management 169

window cannot be repositioned within a suitable region as a whole (Figure 8.12(b)).

User-defined information in the display importance map can furthermore influence the

resulting layout. For instance, users could define desktop regions where window placement

should be avoided to keep frequently used desktop icons visible [113].

8.3.2 Semi-Automatic Window Coordination

Semi-automatic window coordination should support users in maintaining a “carefully

coordinated” window layout [113]. Conceptually, it works similar to overlap-avoiding

dragging [27]: As the user releases a dragged window, either the underlying windows

are re-positioned or the position of the dragged window is adjusted to avoid information

overlap. In contrast to Bell and Feiner’s overlap avoidance [27], the window layout routine

of importance-driven compositing does not treat windows as full-space rectangles (or black

boxes) but rather considers the desktop importance map as rich information map. Thus,

windows will only be re-positioned, if crucial information is about to be covered (Figure

8.13). As a result, important elements of underlying windows remain visible, so the user

can easily identify the window and bring it to the front by simply clicking within its

boundaries. In contrast to the previously proposed window uncovering technique (Section

8.2), the applied window layout persists and no see-through compositing is applied.

Figure 8.13: Semi-automatic window coordination: (left) the user drags a window towards the
left, which causes an overlap with another window. The window layout persists as long as the
amount of covered information is low. (right) If more information is occluded, the obscured window
is re-positioned to leave the most important window content uncovered. (Window trails were added
for illustration purposes.)

We distinguish two operation modes of semi-automatic window coordination: dragged

windows can either have high or low priority. In the high-priority mode, the dragged

window is added as first window to the desktop importance map and is thus only subject

to display-geometry snapping, as described in the previous section. All other windows are

subsequently visited and slightly adjust their position, if the released drag window, or any

other higher prioritized window, covers important content, as illustrated in Figure 8.14.

The penalty for information overlap (ωi in Equation 7.3) is higher for the drag window

than for the other windows, so display-geometry snapping of the dragged window is more

aggressive than overlap avoidance of lower level windows.

In the low-priority mode, the dragged window is treated as last window in the window

170 Chapter 8. Window Management Techniques

(a) (b)

Figure 8.14: Moving a high-priority drag window to a small, irregularly shaped display region
(display importance map of Figure 7.4): (a) as the underlying window does not have any important
content at the drop region, it is not necessary to re-arrange it, (b) if the underlying window shows
salient content, it is re-positioned to keep important areas visible. Note how the physical edge is
aligned along an area not containing any text content. The top row shows the screen shots, while
the bottom row shows the corresponding desktop importance map with the red channel encoding
the saliency used for calculating the information overlap for window placement. The green and
blue channels encode information for blending and input assignment for see-through compositing,
and are not used for display-adaptive window management.

layout routine. Thus, the window layout of the other windows is stable, while the location

of the drag window may be adjusted when important content in other windows is about

to be covered.

In both operation modes, the top-level drag window is treated as black box, as no see-

through compositing is used to reveal occluded content. In the high-priority mode, this

implies that lower level windows are re-positioned whenever important content is covered

– irrespective whether the window region of the drag window is highly salient or not. In

the low-priority mode, the drag window is re-positioned whenever any part of it covers

important content in lower level windows.

8.3. Display-Adaptive Window Management 171

Treating the drag window with different priorities modifies the rendering order of

windows. However, the compositing step of importance-driven compositing takes care

that the drag window is always rendered on top of the window stack (Section 7.4.3). To

keep the window layout as persistent as possible, penalties for window displacement and

jitter (ωd and ωj of Equation 7.3) are high.

8.3.3 Display-Adaptive Maximize

So far, importance-driven compositing has only been used to optimize the window loca-

tions. However, resizing windows is similarly important on large displays, where windows

are rarely maximized [32, 113]. Finding the optimal trade-off between the amount of

cropped information at the window’s boundary and the amount of occluded information

in other windows can be a tedious task. In particular on irregular displays, maximize

is no longer feasible, as current window managers are neither aware of irregular display

outlines, nor of physical discontinuities.

We therefore created a first prototype of display-adaptive maximize, which takes the

physical display properties, but also other windows on the display, into account when

finding the optimal window size. As the user issues the command to initiate display-

adaptive maximize, the window size is incrementally enlarged in all four directions. For

each window size increment step, we retrieve the amount of covered information according

to Equation 7.1. This information overlap value is then normalized according to the current

window size. If the increase in information overlap, caused by the window size increase,

exceeds a given threshold, the window is no longer extended in the given direction. The

procedure is repeated until the window cannot be extended in any of the four directions

any more, or if all screen boundaries (i.e., the edges of the desktop importance map) have

been reached.

Again, we discriminate between high and low prioritized windows by adjusting their

rank in the window layout routine. Windows with high priority are only evaluated against

the display importance map and will therefore only be limited by physical display bound-

aries. Lower level windows are either covered or, if their penalty on information overlap is

reasonably high, slightly re-positioned to reveal important content. Windows to be max-

imized with low priority are evaluated against the entire desktop content and thus avoid

overlap of other windows, as illustrated in Figure 8.15.

The incremental resizing process is currently implemented as CPU prototype. Each

resizing step is performed as Xlib function call. After each resizing operation, a re-paint is

triggered to retrieve the current information overlap value by the window layout routine

(Equation 7.1), implemented in OpenCL. Thus, the maximize process can take up to

several seconds, depending on the display size and chosen step size. The current display-

adaptive maximize functionality, as described above, could be entirely ported to OpenCL,

so no delay would be noticeable for the user.

The advantage of the CPU approach facilitating Xlib resizing is that we can assess

172 Chapter 8. Window Management Techniques

Figure 8.15: Screenshots of the resulting desktop importance map when maximizing a low-prioirty
window in an irregularly shaped display region (display importance map of Figure 7.4): (a) the
window layout before the maximize process, (b) and the resulting window layout, where the window
to be maximized is squeezed between the calculator and the physical room corner.

the amount of revealed information when the window is actually enlarged (as opposed

to simple texture-based scaling on the GPU). Conceptually, this information could be

used to assess the amount of information revealed in the previous resizing step. In this

way, display-adaptive maximize could be extended to content-adaptive maximize, which

additionally evaluates whether it is actually useful to further enlarge the window, even

though there is still enough display space available. Figure 8.16 illustrates this concept.

Figure 8.16: Conceptual sketch of content-adaptive maximize: (a) display-adaptive maximize
finds the maximum window size with respect to the display outline; (b) adding content-adaptivity
would furthermore restrict the window size if no more important information can be revealed when
the window is enlarged.

However, simply determining the visual saliency in the window to be maximized by∑
(x,y)∈Ωw

Iw(x, y) was found to be a poor measure to assess the overall amount of im-

portant information. We observed that GUI elements, such as menu bars, contribute a

high saliency, while adding simple content, like text, is hardly measurable. In the future,

alternatives to assess the overall window importance are therefore necessary. It may be

sufficient to automatically determine a window’s content pane and to apply the window

8.3. Display-Adaptive Window Management 173

importance evaluation solely on this window region. It has to be noted, though, that

automatically determining the content pane is only possible based on an image-based seg-

mentation of the window texture on window manager level. In the X Window System,

only a few windows consist of a hierarchy of X windows that can be accessed by the

window manager – depending on the employed GUI toolkit. A truly reliable measure is

probably not possible by image-based analysis of window textures and requires additional

information provided by the applications themselves – like the zoom function of OS X,

which toggles between a user-defined window size and a standard state, defined as the

optimal window size by the applications.

8.3.4 Desktop Widget Layout

When using irregular displays, the display outline is no longer rectangular. In contrast,

a complex polygonal outline with strong concavities may arise. These non-rectangular

outlines make it difficult to place common desktop elements, like window lists, application

launchers, or notifiers. In current windowing systems, these elements are usually arranged

in menus along the display boundaries and therefore will be partially lost when cropping

the screen along its irregular outline (Figure 8.17). In contrast, the concave regions at a

display’s boundary remain mainly unused by conventional desktop elements, like windows

or menus, which are simply too large to be displayed within such as small area (cf.,

conceptual sketch of Figure 8.11(b)).

Figure 8.17: Conventional desktop widgets (menus, icons) on an irregular display: (a) without
geometric compensation, all icons and menus are visible but (b) our geometric compensation
approach crops peripheral display areas, so these desktop elements are almost entirely lost.

As an alternative, we are using free-floating desktop widgets, which are increasingly

popular in conventional windowing systems, to substitute the desktop menus along the

screen boundaries. Prominent examples for desktop widgets are analogue watches or small

calendars. On a conventional display, maximized windows typically cover such desktop

widgets. As an alternative, the user may keep them on top of application windows,

thereby occluding potentially important window content. With display-adaptive window

management on irregular displays, desktop widgets are subject to semi-automatic window

coordination. Thus, the small low-priority widgets are gradually moved towards very small

display areas where no other desktop content is likely to be positioned (cf., Figure 8.18).

174 Chapter 8. Window Management Techniques

Figure 8.18: Desktop widgets on an irregular display are subject to semi-automatic window
coordination and will therefore be moved to peripheral areas where no larger items can be reasonably
placed.

8.4 Polarization-Based Interfaces

Large displays afford the visualization of a vast amount of data and multiple interacting

users, as there is usually enough display space and physical space in front of the display

to coordinate multi-user activities. Visualization of complex datasets is often addressed

with multiple coordinated views on such a large display space, so multiple users can view

the data in their preferred visual encoding while maintaining awareness of the other user’s

visual representation. A large display offers ample space for arranging multiple views

side-by-side. However, such a spatial separation of visualization views requires the user to

mentally merge corresponding elements from multiple views, or requires dedicated visual

linking techniques (see, for instance, Section 8.1).

An alternative to cue-based linking techniques to visually highlight related elements

across multiple instances is to use magic lenses [38] as an in-place display for information

filtering. A magic lens is a user-controlled widget which provides a filtered view of the

content underneath. Of particular interest for large displays and multi-user operation

are tangible magic lenses which allow the user to change the magic lens region on the

underlying data by physical movement of the lens device. Mind that this approach is the

only concept presented in this thesis deviating from a strict WIMP approach, as interaction

does not rely on pointing devices but uses the rich capabilities of a tangible user interface

instead. We will show (conceptually) that this interaction technique can be employed in

combination with conventional WIMP interfaces.

However, there are several limitations that make the employment of tangible magic

lenses unfeasible. First, both passive and active magic lens devices suffer from disadvan-

tages in operation (cf., Section 2.1.1): Passive magic lenses alter the underlying imagery

and thereby potentially interfere with collaborators’ activities. Ideally, each user would be

equipped with an active magic lens (e.g., in form of a tablet PC) to unobtrusively filter

the displayed visualization with personalized information. However, such a kind of active

8.4. Polarization-Based Interfaces 175

magic lens is quite cost-intensive and also requires a sophisticated distributed software

infrastructure.

Second, both categories of tangible magic lenses require accurate 6-DOF tracking to

reliably determine the filtered viewpoint on the shared dataset. Accurate 6-DOF tracking

is again very cost-intensive.

Finally, conceptually, magic lenses alter a shared view on a display and provide per-

sonalized in-place filtering of this view. In some situation, the opposite approach may be

desirable: The user sees a personalized view and can use the magic lens to locally display

a shared view.

Polarization-based interfaces are a low-cost alternative to active magic lenses for col-

laborative information management. By exploiting properties of polarized light, users can

choose between two personalized views of the environment. A purely optical and tracking-

less magic lens can be used to locally filter the personalized view. The optical magic lens

approach thereby eliminates common problems of passive or active tangible magic lenses.

8.4.1 System Description

The hardware setup consists of two commodity projectors as used for a conventional

passive stereo projection system. In such a system, two projectors create superimposed

images on a polarization-preserving screen. The projectors receive two different output

images (the two stereo views) and are equipped with a horizontal or a vertical polarization

filter (HP and VP), respectively. The viewer wears inexpensive glasses fitted with an HP

filter for the left eye and a VP filter for the right eye, to obtain proper channel separation

for the two eyes.

In contrast to such a standard passive stereo setup, viewers of our system either wear

HP or VP filter glasses, so under normal viewing conditions, only one of the two projector

images is visible. In this way, we can separate two content channels: the primary view,

which the user sees through her glasses, and the secondary view, which is blocked.

This setup results in a single display privacyware [219], where private information

can be visualized in the dedicated channels only, while shared information is displayed

in both channels. In its original implementation, single display privacyware [219] relied

on an active stereo approach to separate the channels: It used active shutter glasses and

frame-interleaved display of the two privacy channels. By opening both glasses with the

synchronized display of one channel and closing the glasses with the subsequent one, the

second channels is effectively blocked for the user. Theoretically, more than two channels

can be separated with this approach, but with an increasing number of users flickering

will be perceivable. Our use of a passive stereo system strictly limits our system to two

channels only. In addition, users have to look relatively straight towards the display surface

and may not tilt their head much in order to preserve the linear polarization.

The main reason we employ a passive stereo setup for channel separation is the pos-

sibility to employ optical magic lenses for inexpensive tangible filtering. Optical magic

176 Chapter 8. Window Management Techniques

lenses exploit the unique property of liquid crystal display (LCD) panels: Without power

applied, they are designed to retard linearly polarized light by 90◦. In conventional LCD

monitors, this property is used in combination with a polarization filter to control light

flow through the panel by applying power selectively to portions of the LCD panel to make

selective pixels either transparent or opaque.

By using passive unpowered LCD panels as 90◦ retarders, the channel separation is

effectively inverted through the panel in a polarization-based projection setup. Polarized

light from a projector passing through a retarder changes from HP to VP, or vice versa.

Figure 8.19 illustrates this approach.

Figure 8.19: System sketch of polarized interfaces and optical magic lenses: Linear polarization
filters (HP for projector A and VP for projector B) create polarized super-imposed images on a
polarization-preserving projection screen. Both users are wearing HP filter glasses and therefore see
projector A’s image as primary view. User 1 uses an optical magic lens to filter the image. Thus,
projector B’s image changes to HP within the lens and therefore passes the HP glasses instead.

A similar effect can be obtained with cellophane [116], but our experiences have shown

that retardation is typically below 90◦, leading to ghosting effects. The degree of rotation

of polarized light depends on the wavelength. Thus, polarization rotation varies with

different colors and results in a color shift, depending on the used retarder material. When

using the LCD lens, this effect is hardly perceivable. Figure 8.20 shows a cellophane magic

lens filtering a map display. Mind that the lens is not tracked and that the shared view is

not altered by this operation.

For properly aligning the two superimposed projection images, we applied a simple

manual calibration routine in our prototype implementation. However, correct superim-

position can be easily created automatically by the display environment, using a similar

calibration approach as presented in Section 4.1.

8.4.2 Application Areas

Our prototype software implementation relied on a simple image viewer, showing two

different images on the respective output devices. Therefore, the subsequent discussion

has to be seen as purely conceptual.

8.4. Polarization-Based Interfaces 177

Figure 8.20: A satellite map view is locally filtered for a street map view.

Application areas of polarized interfaces in combination with optical magic lenses are

manifold. As a prominent example, all spatially aligned dual-view coordinated visual-

izations can benefit from this interaction technique to support direct visual comparison.

Examples are superimposed map views, as shown in Figure 8.20 or XRay vision, as il-

lustrated in Figure 8.21. In practice, we support the same visualization types as other

systems superimposing spatially aligned images for direct comparison, such as LivOlay

[127].

Figure 8.21: XRay vision using the optical magic lens: (a) the superimposed channels without
polarization filter, (b) the first and (c) the second user’s primary view, and (d) the first user’s view
filtered using an LCD magic lens. (3D model by 3D studio max)

Our system can also be employed to add details on demand by selectively adding a more

detailed secondary view. For instance, the secondary view may show an annotated version

of the primary view. The magic lens is then employed to locally add the annotations.

When using our polarization-based interfaces and magic lenses, window management

178 Chapter 8. Window Management Techniques

has to be substantially changed to adapt the content to this situation. Using our system

infrastructure, the window manager deals with two equally sized output devices, which

correspond to the two super-imposed projectors and output channels, respectively. When

used as single-display privacyware, as proposed by Shoemaker and Inkpen [219], the win-

dow manager needs to differentiate between shared and protected application windows.

Shared windows are duplicated to each output device, while protected windows are dis-

played on the respective user’s channel only. Private screen information, such as the user’s

cursor or personalized visual links (cf., Section 8.1), is also limited to a single channel.

To make private information apparent to the other user, the personalized information can

either be shared on software level (i.e., the window manager duplicates the information

to the second output device) or the collaborator uses the magic lens to switch to the

secondary view.

Applications aware of the privacyware setup can create window duplicates for them-

selves, containing alternative views of their displayed content. Examples for maps and

XRay vision visualizations are given in Figures 8.20 and 8.21. Instead of rendering the

window twice, the window manager then manages the secondary window provided by the

application as window duplicate, which is spatially arranged according to the primary

window. Figure 8.22 shows a mock-up of the window manager concept for single-display

privacyware with two output channels.

(a) (b)

Figure 8.22: Screen mock-up of window management for single-display privacyware [219] window
management: The window manager controls two output devices, one for each projector (a and
b). The browser window is a render duplicate, while the map window is a coordinated window
duplicate by the map application itself, so each user can use the preferred visualization type. The
chat window in (a) is protected for user 1. The individual channels can be furthermore enhanced
with personalized cursors and visual links.

8.5. Discussion 179

8.5 Discussion

The presented window management techniques are first steps towards supporting the

users in information management in emerging display environments. Summarizing, the

challenges the user faces in emerging display environments, as compared to conventional

desktop computing, are:

� an increased amount of display space and number of pixels to operate,

� an increased amount of visible information, as more application windows can be

arranged side-by-side,

� still a considerable amount of occlusion due to an increased number of open appli-

cation windows,

� the possibility to conduct shared information management due to increased display

space and physical space in front of the display, and

� irregular displays containing merely rectangular user interface elements.

With conventional window managers, these properties lead to an increased window man-

agement and coordination effort for the user.

The proposed window management techniques are designed to assist users in discover-

ing information on large, cluttered displays (visual links), to discover and access potentially

occluded information (uncovered windows), to manage a large amount of windows on a

large, irregular display space (display-adaptive window management), and to share in-

formation among collaborators with little interference (polarization-based interfaces and

collaborative information linking). However, there is a much larger design space to explore

in the context of window management. Our techniques relied on additional information

rendered on top of application windows, modifications to the spatial window layout, and

modifications to the window textures’ appearances (e.g., transparencies). Aspects that

could be furthermore explored are geometric deformations (e.g., context-sensitive scal-

ings, similar to [9]) and further appearance adjustments, like color or shading effects.

Our presented techniques bridge information gaps between windows by visually con-

necting related items and soften the rectangular window layout by allowing context-

sensitive “holes” in windows. However, we did not completely “break out of the box”. In

the future, information chunks may be automatically cut out from their application and

“window” managers may treat these chunks as more or less independent screen entities,

which may or may not be semantically connected to other entities – irrespective of their

parent applications. With such an approach, screen real estate can be facilitated much

more efficiently, reserving visible space only for items of current importance. However,

major changes to current application development and window management approaches

are necessary, to allow for a rich central application coordination and sufficiently reliable

classification of content importance.

180 Chapter 8. Window Management Techniques

Regarding display form factors, we illustrated how display-adaptive window manage-

ment could enhance management of conventional, rectangular application windows on tiled

and irregular displays. However, display-adaptive window management only covers a small

aspect of potentially emerging display form factors. For instance, window management for

very small devices or displays with ambiguous orientation (e.g., tabletop displays) are still

open issues. Window management for those displays again needs substantial extensions

to the underlying windowing system to support basic operation. For instance, the com-

positing window manager itself can easily apply arbitrary transformations to a window,

which is treated as simple textured quad in a 3D scene. Thus, rotating a window on a

tabletop display is an easy task from the window manager’s point of view (Figure 8.23).

However, the underlying windowing system, which is responsible to handle input events,

is restricted to upright oriented, rectangular windows. Any deviation of the rendered win-

dow from this simple internal model leads to an offset between viewing and interaction

space. Thus, we do not only need flexible window managers. For the creation of truly

innovative window manager techniques, the underlying windowing system approach needs

to be fundamentally changed. Until then, window manager techniques will build upon

work-arounds (or one might even call them “hacks”), such as presented in Chapter 7.

Figure 8.23: Rotated windows on a tabletop display: adapting the viewing space in the window
manager is easy, but the interaction space of the windowing system still relies on upright oriented
windows.

In the context of multi-display environments, an additional aspect is worth investigat-

ing: migration of windows between heterogeneous displays. As an example, the user may

move a window from her smart phone display to a very large wall display, and subsequently

to a tabletop display. How does the visual representation of the window change as it is

migrated between the different devices?

Currently, window managers coordinate window content as textures, which are mapped

onto 2D quads. In addition, the above mentioned restrictions by the windowing system

to upright oriented windows apply. As a result, the only operations a window manager

8.5. Discussion 181

can reliably support are: moving and resizing, as well as image-based operations on the

individual windows or the entire desktop. However, these operations will not be sufficient

in such a complex environment. Heterogeneous display form factors require substantially

different representation of the content – differing in the (semantic) zoom level of the

displayed content, the layout of the window’s content, and the amount of content that has

to be cropped due to screen size limitations.

With current windowing systems, these operations go far beyond window manager

capabilities and instead require adaptivity of the applications themselves. To provide

application developers with a rich variety of possibilities and information about the en-

vironment, Myers et al. [161] requested extended support for ubiquitous computing envi-

ronments in GUI toolkits already more than ten years ago. GUI toolkits could provide

API calls to request information about the environment (e.g., display form factors and

user arrangements), multi-user event notification, and provide pre-defined sets of basic UI

elements that automatically adapt their appearance as the associated display form factors,

the users’ viewing arrangements, or the interacting user changes. Several concepts and

implementations of such adaptive user interfaces have been presented in the past. For

instance, SUPPLE [86] generates user interfaces by evaluating an optimization problem

which satisfies device constraints (e.g., size) and minimizes the estimated user effort. With

such a foundation, application developers can easily develop fully environment-adaptive

applications, while windowing systems take care about the actual window migration, win-

dow layout management, and multi-user input support.

Chapter 9

Evaluations of Window Management

Techniques

The window management techniques presented in the previous chapter all incorporate

knowledge from the environment layer or the window layer – or both. According to the

hypothesis of this thesis, awareness of the physical environment and window content will

support users in their information management activities. The purpose of the subsequent

experiments is to evaluate the proposed techniques with respect to this hypothesis.

The first experiment (Section 9.1) was an exploratory, observational analysis of a com-

plex information analysis task. Users were provided visual links across applications (Sec-

tion 8.1) to solve the task. The aim of the experiment was to initially asses whether visual

links across applications supported users in information discovery.

The second experiment (Section 9.2) was an exploratory, observational analysis of a

complex information analysis task, conducted by a team of two users. Users were free to

use personalized visual links across applications and supportive features (e.g., the selection

bookmarking tool) to support the analysis task (Section 8.1.2). This experiment was

conducted to get some preliminary experiences with visual links for information sharing.

We also gathered observational experiences with co-located collaboration on single-display

groupware settings.

The third experiment (Section 9.3) compared three window management techniques

to discover and access occluded window content. We compared task performance of three

interfaces: conventional Alt+tab window switching, free-space transparency [123], which

applies content-aware transparencies to occluder windows but does not optimize the spatial

window layout, and our window uncovering technique (Section 8.2).

Finally, the fourth experiment (Section 9.4) was an exploratory study comparing win-

dow management on an irregularly shaped projected display with simple display-adaptivity

features to purely “manual” window management, which is unaware of the physical display

form factor.

183

184 Chapter 9. Evaluations of Window Management Techniques

9.1 Exploratory Evaluation of Visual Links across Applications

We conducted an informal user evaluation to assess the subjective user acceptance and

the benefit of visual links across applications (Section 8.1) for information discovery with

complex information sources.

9.1.1 Participants

Seven participants (aged 25 to 39, 2 female) participated in the study. They were recruited

from a local university and a software development company. Five users are working with

a single-monitor setup, one uses a dual-monitor setting, one user is working with three

monitors on a regular basis. Except for one user, all participants use monitors with

1680x1050 pixels or more on a regular basis.

9.1.2 Setup, Task, and Procedure

Users had to conduct a complex information analysis task on a 26” monitor with 1920x1200

pixels. Information was spread to four different application windows, as shown in Figure

9.1. The map application on the left was showing a static view of the African continent.

On the right, we placed a Caleydo [142] window, showing demographic and economic

statistics of 190 countries in a parallel coordinates view. In between, an HTML-page in a

web browser listed all African countries exporting oil, while a second web browser window

below listed all African countries. Prior to the actual task, users were trained on parallel

coordinates and how to invoke visual links from the respective applications.

Figure 9.1: Window arrangement for the user evaluation of visual links across applications: a map
application fixed to Africa, two websites with a list of countries, and a parallel coordinates view
of demographic and economic statistics of 190 countries. Visual links visualize correspondences
between the individual windows.

The task was to find all African countries north of the equator, which export oil

and have a birth rate (i.e., number of childbirths per 1000 people per year) higher than

30. The birth rate data was plotted on the first axis in the parallel coordinates view.

Countries fulfilling these requirements had to be marked on the HTML-page containing

9.1. Exploratory Evaluation of Visual Links across Applications 185

the list of all African countries. We chose the example of Africa, as demographic and

economic statistics were strongly diverse across the countries and we expected our users

to be relatively unfamiliar with the exact geographic locations of African countries. We

measured the task completion time, recorded observations, and collected user comments

in an interview.

9.1.3 Results

Except for the task completion time, we did not gather any quantitative measurements.

Obtaining quantitative results with such a complex task is quite difficult, as performance

measurements greatly differ among participants. We will therefore report on observational

evidence and user feedback.

Observations

All but two users could successfully complete the task with no errors. They required 1:40

to 4:30 minutes to complete the task.

One user did not succeed as she missed the small country Equatorial Guinea, which

is actually located north of the equator but hard to identify on the map with the applied

zoom level. Two other users had to zoom the map to determine the exact location of the

country. One user mentioned that selection regions are not optimally placed in the map

application. As the Google Maps API only delivers the geographical location of the center

of the country and corresponding screen coordinates, we do not have control over label

size and do not have the possibilities to highlight the actual country outline. Instead, we

use a small bounding rectangle of fixed size to visualize the geographic location. As a

consequence, the size of the region does not indicate the size of the country. Additionally,

connection lines often cover the label of the country, which is – despite transparencies –

hard to read.

One user quit the task after four minutes without finding any country fulfilling the

requirements. Contrary to all other users, she mainly employed the parallel coordinates

view to invoke visual links. However, as the parallel coordinates contained data from 190

countries, it was tedious to find the polylines for the required African countries. All other

participants used the browser window with the list of oil-exporting African countries as

source window for visual links, as the information was already strongly filtered with only 17

potential countries. From this window, they simply had to follow the link to the parallel

coordinates and check the birth rate and the link to the map to see the geographical

location. Finally, they followed the link to the browser window containing the list of all

African countries to mark the result. The fastest participant could correctly solve the task

in one minute and 40 seconds using this strategy.

We generally observed difficulties when users employed the parallel coordinates view

as source window. Apart from the one user not finishing the task, we noticed four other

users moving the mouse pointer to the parallel coordinates after selecting the country in

186 Chapter 9. Evaluations of Window Management Techniques

the browser window. As selection was triggered by mouse-over in the parallel coordinates,

their previous selection was lost when the mouse pointer was accidentally moved across a

different polyline and they had difficulties finding the polyline for the previously selected

country again.

Subjective Feedback

User feedback was consistently positive, and was also helpful in terms of identifying user

interface problems. Users described working with visual links as “It just works and it is

efficient” and “It is fun”. All users agreed that having coordinated windows with visual

links is helpful for such a task. They stated that it was clear what visual links visualize and

how items were related. Distraction caused by the large amount of visible information was

reduced as “it shows only the most essential information”. One user noted that “otherwise

[without visual links], the task would take ten times longer”. Except for the one user not

being able to find any countries, all users agreed that task completion was very efficient

using visual links. One user explained he was fast as he would simply trust the visual

links and would not check whether the correct items were connected. Another user said

he always double-checked the connections. Surprisingly, this participant completed the

task fastest. However, some users doubted whether visual links are useful for every-day

work (for software engineers).

Several users commented on the interaction techniques provided by the respective

applications. As we could also observe during the task, accurate selection in the paral-

lel coordinates view was tedious – in particular with this large amount of information

available. Invoking visual links by moving the mouse pointer across a densely populated

parallel coordinates view helps to get a quick impression of the data but is not suitable

when accurate selections are required. Two users also noted that selecting text in the

browser window is complicated, especially if multiple words need to be selected. One

user suggested employing an “auto-invocation”, which automatically triggers visual links

shortly after a word has been selected.

Another user demanded multi-selections, so he could select multiple countries in the

browser and see the respective connections to the visualization software and the map appli-

cation. With multi-selection, users could have selected all oil-exporting African countries

in the first browser window, where each of these selections would have received their own

visual links. This feature would reduce the required user intervention, as invoking visual

links is required only once. However, it is subject to further research whether the addi-

tional line connections introduce so much visual clutter that extracting related information

becomes more tedious.

9.1.4 Discussion

This initial and informal user observation and feedback encourages our approach of using

visual links across applications to support users in information discovery. Users reported

9.2. Exploratory Evaluation of Collaborative Information Linking 187

that they were subjectively fast and could more easily distinguish important from unim-

portant information. Swaminathan and Satoh [234] reported that distinguishing important

from unimportant information is one of the greatest challenges in user interaction on very

large displays, where a lot of information is visible simultaneously.

In the future, it will be important to evaluate the benefit of the visual links’ form

factor for information discovery. For that purpose, a formal user experience comparing

simple frame-based highlighting with visual links and an advanced form of visual linking∗

for a visual search task on complex visualizations and images will be conducted.

As also noted by our users, visual links are not supposed to be a permanent feature of

the window manager. Instead, we envision visual links to be an on-demand feature that

can easily be switched on for information analysis and comparison tasks.

Users also raised some ideas for improvements and commented on several deficiencies

of the interaction with visual links. Indeed, visual links provide a consistent visualization

across multiple applications, but as the user interaction technique to trigger a selection is

provided by the applications themselves, there is no consistent way to create links. Ac-

cording to the user feedback, it is important to provide an explicit technique to trigger

links (as opposed to the parallel coordinate view, where links were created on mouse-over),

which is consistent across all applications, such as a keyboard shortcut. Technically, this

could be easily solved on window manager level: as the user selects an item, she presses

the keyboard shortcut, which is captured by the window manager. The window manager

determines the active window and the management routine contacts the associated appli-

cation to trigger a user selection. If no application is associated with the active window,

the selection is treated as one-shot selection (see Section 7.2.1 for more implementation

details).

9.2 Exploratory Evaluation of Collaborative Information Linking

We conducted an exploratory evaluation of co-located collaborative information analysis

on a single-display groupware [226] setup. Users were cooperating on a large projected

wall display, where each user was equipped with a separate mouse and keyboard pair. To

solve a complex analysis task, users could use personalized visual links across applications

and collaborative storage facilities utilizing the central application coordination routine

(Section 8.1.2).

We decided to gather observational evidence as an initial evaluation step, as there is

no clear baseline condition for a formal, comparative experiment. We believe evaluating

collaborative information linking against a system without personalized visual coordina-

tion would not have been a fair comparison. In addition, obtaining quantitative results

∗This work on Context-Preserving Visual Links was conducted by Markus Steinberger, Manuela Wald-
ner, Marc Streit, Alexander Lex, and Dieter Schmalstieg and has not been published yet. The advanced
form of visual linking aims to preserve visual context by avoiding occlusion of perceptually important
image content using a similar principle as importance-driven compositing presented in Section 7.4.

188 Chapter 9. Evaluations of Window Management Techniques

for a complex analysis task is difficult, as task completion times and correctness of the

results can be influenced by a lot of different factors.

9.2.1 Research Questions

The aim of the experiment was to initially assess the following research questions:

Q1 How does a pair of users coordinate information access and manipulation on a

shared wall display using multi-input support and conventional single-user applications?

There is a large body of related work assessing co-located collaborative interaction on

single-display groupware. An overview can be found in Section 2.2.1. Generally, inter-

action on a shared vertical display may result in asymmetric interaction [74, 152, 204],

unless each user is equipped with a personal input device [41, 245, 246]. The large available

screen space is usually spatially separated to create personal territories [215, 240, 245],

where access restrictions are socially coordinated. This social coordination can be sup-

ported by system-imposed access restrictions [159, 178]. Our system did not impose any

access restrictions on input devices, but application windows could be locked from other

users’ links. Normally, these observations are conducted using specialized groupware ap-

plications or pen-and-paper prototypes. The core emphasis of this research questions is to

assess the nature of multi-user coordination when working with conventional single-user

applications and normal WIMP interfaces.

Q2 How does collaborative information linking support (or impede) users in informa-

tion discovery and information sharing?

Our previous experiment indicates that visual links support single users in information dis-

covery. However, it is unclear whether information discovery is still efficient when multiple

sets of links are rendered on the screen and how much interference individual information

discovery supported by visual links causes for the collaborators. Related research reported

that users were even distracted by other users’ cursors [258], so a certain amount of dis-

traction can be expected. On the other hand, we assume that visual links support users

in resolving deictic references (and thereby in sharing their information), which has been

reported as problematic on shared wall displays [119, 204].

Q3 How does the central application coordination approach and selection storage sup-

port users in information sharing?

Previous research suggests that synthesis of individual results from different collaborators

into a compact format is an important aspect of collaborative sensemaking [102]. It has

been observed that groups with parallel input support generated much more structured

reports than those having to take turns [185]. Prante et al. [185] speculate that these

detailed reports are necessary to synchronize activities when a lot of parallel work is con-

ducted. Similarly, Mark and Kobsa [153] discovered that users “retraced” their analysis

steps when validating their answers collaboratively. Ellis et al. [72] also observed that users

produced outlines summarizing the individual contributions at the end of a collaborative

session. In some cases, users prefer pen and paper or a simple text editor to sophisticated

9.2. Exploratory Evaluation of Collaborative Information Linking 189

annotations tools built into a groupware application [3]. In our experiment, users were free

how to share and manage their findings. They were provided with a simple text editor,

our selection bookmarking tool (see Section 8.1.2), as well as pens and paper. The most

interesting aspect in contrast to previous work was to investigate how central application

coordination helped to generate reports or outlines, and how collaborative information

linking supported users in presenting these reports to their collaborator.

9.2.2 Participants

We recruited eighteen participants (16 males, 2 females, aged 23 to 38) from a local

university institute. Only four participants stated to conduct collaborative information

analysis on a regular basis, such as investigations on a particular topic, literature research,

or research in general, as well as teaching. Half of the users are working with a dual-monitor

setup regularly, three with three monitors, and four with a single monitor. All participants

indicated to use monitors with 1600x1200 pixels or more (as their primary monitor).

Users had to work in pairs on the information analysis task. As participants were

recruited from a single institute, most of them knew each other or were even regularly

working together.

9.2.3 Setup

The experiment was conducted on a front-projected display driven by six XGA projectors,

resulting in a resolution of 3072x1536 pixels. Projectors were operated by a commodity

PC running Linux Ubuntu 9.10 with a dual-head graphics card and two graphics splitters†.

Each participant had a mouse and keyboard pair to operate the display. Figure 9.2(a)

shows the setup.

(a) (b)

Figure 9.2: User study setup for collaborative information linking: (a) the shared projected
display with two separate mouse and keyboard pairs and (b) screenshot of the shared display with
the prepared application windows and user-specific visual links.

†http://www.matrox.com/graphics/en/products/gxm/th2go/

190 Chapter 9. Evaluations of Window Management Techniques

We used multi-pointer X [115] in combination with our multi-pointer window manager

extensions (Section 7.1) to support concurrent multi-user interaction. Mind, however, that

concurrent input on a single application window is possible, but not coordinated, using

this approach.

9.2.4 Task

The task was to analyze migration from Africa to Europe by evaluating different sources

of information. As information resources, we used content freely available on the internet,

which was only slightly adapted to reduce the task complexity. Participants were presented

a table showing numbers of migrants from African countries to European OECD countries

in 2006‡, a map, and several articles on the topic§. They were asked to answer three

questions on African migration to Europe, where each of the questions were divided into

focused and open-ended sub-questions. A few questions could be answered by evaluating

solely the table (for instance: “From which African countries do most of the European

migrants come from and where are they going?”), while others required support of the map

and background information from the articles (for instance: “Which African countries are

used as hub for migration to Europe? Where are the typical routes?”).

As application resources, we provided two modified applications, as described in Section

7.2.1: a Firefox web browser and a Google maps mash-up. In addition, a bookmark window

and a simple, unmodified text editor (gedit) were available to organize findings. The table

and the map were horizontally centered on the shared display. The articles were presented

in two browser windows – one for each participant – and located on the respective closest

display locations to the users. The two browser windows were protected from the other

user’s links. The bookmark window was placed on the left, and the text editor on the

right display half. Figure 9.2(b) shows the window arrangement.

9.2.5 Procedure

Prior to the task, participants had an approximately 10 minutes warm-up period where

they could get familiar with the system and the collaborative information linking tech-

nique. They were instructed how to make selections (from the specific applications and

one-shot selections), switch off their links, and how to protect and release windows. Task

time was limited to 30 minutes.

Groups could decide for themselves how to organize their findings and were free whether

to use visual links. We employed system logging, video-taped the session, handed out

questionnaires, and conducted a semi-structured interview at the end of the experiment.

‡simplified from http://stats.oecd.org
§shortened from http://news.bbc.co.uk/, http://www.migrationinformation.org/, and

http://www.wikipedia.org/

9.2. Exploratory Evaluation of Collaborative Information Linking 191

9.2.6 Results

We will report on observations during the experiment and video analysis of the sessions, as

well as selected questionnaire results (7-point Likert scale), interview feedback, and logging

numbers. For each pair, we obtained about thirty minutes of video material and two pages

of field notes taken during the experiment. Based on the field notes and video material,

we established coding categories for information linking, such as whether participants

were linking for individual information retrieval or whether bookmarks were selected for

individual information query or for collaborative discussion.

Collaborative Information Linking

Information linking was used 9-84 times (for different selections) per group. The me-

dian number of selections was 32 per group. Information linking usage varied with the

group’s configuration and work style (cf., Figure 9.3): We observed that users working in

a mixed-focus collaboration style [94] (i.e., often switching between individual and tightly

coupled work) used collaborative information linking most frequently. Groups working

either tightly together all the time or where a single user took control while the other one

was merely passive, used information linking least.activity

0
10
20
30
40
50
60
70
80
90

4 3 7 5 2 1 9 6 8

overall selections selections from editor selections from bookmarks

mixed individual tight single

Page 1

Figure 9.3: Recorded activities for each group sorted by work styles and frequency of information
linking: mixed-focus collaboration, individual task-solving, tight collaboration, and a single inter-
acting person (view coupling [240]) were observed work styles. The overall number of selections
for information linking, and selections from text editor and bookmark list, respectively, are listed.

When working individually, information linking was mainly employed to locate occur-

rences of a certain country and to quickly look up its geographic location and associated

migration numbers in the table (cf., Figure 9.4(a)). In the post-test questionnaire, the

median rating for having visual links across application windows on a 7-point Likert scale

was 6. Having links within application windows was rated 5, as well as having arrows to

indicate items outside the visible window boundary. Linking was not actively used when

reading articles or scanning the table individually. Links often remained faded during

these activities, but were rarely completely disabled. Visual clutter introduced by linking

and by the amount of visible application windows was both rated 3.

In seven groups, we could observe situations when users silently watched their partner’s

192 Chapter 9. Evaluations of Window Management Techniques

activities while linking. Being able to see links by the partner had a median rating of 6.

Users largely agreed that individual links were easy to identify (median score 5). The

main distinguishing aspect was the unique color-coding (6), while the direction of the

links played a minor role (4). Two groups mentioned that links were hard to distinguish

when faded. One user explained he did not actively distinguish his links from his partner’s

but rather followed his own links from the current window to the relevant target windows

– color did not matter for him.

The median score for I was often distracted by my partner’s actions was 2.5. In the

interview, users mentioned that interference and distraction was mainly caused by changes

to the window layout caused by the other person, as well as concurrent interaction on

shared application windows. Only one user mentioned that he was “a bit annoyed” by his

partner’s links. The ability to protect windows from other users’ links was rated fairly low

(median score of 4.5). It has to be noted that the browser windows containing the articles

were protected when the experiment started. Only two users switched window protection

off during the task, but no user locked one of the initially unprotected windows.

(a) (b)

Figure 9.4: Video stills from the experiment: (a) individual information retrieval supported by
personalized links and (b) tightly coupled collaboration using a single set of links.

When working in a tightly coupled fashion, one participant usually contributed linking

while the other set of links was either faded or switched off (as shown in Figure 9.4(b)).

In three groups, one user summarized findings by linking selective countries to map and

table. Linking was also employed to clarify unknown items, e.g., the exact location of a

country, especially if the country’s label was not visible on the map due to a coarse zoom

level.

Storing and sharing findings

The bookmark list was actively used by four groups (cf., Figure 9.3). However, usage of

the bookmark list was usually only temporary – all but one group used the text editor

to gather and structure all findings. Users complained that the bookmark list was too

9.2. Exploratory Evaluation of Collaborative Information Linking 193

restrictive. While it seemed to be sufficient to gather first findings (as also indicated

by the higher usage by groups working mainly individually), users stated that crucial

collaboration features, like sorting or being able to add meta-information, were missing.

Both, bookmark list and text editor, were used to “replay” previous findings by step-

ping through the individual items to invoke (one shot-)linking. In four groups, the list

in the text editor or bookmark list – created either by a single user or by both partic-

ipants – was replayed by one participant to link to the map and the table. The group

then discussed and verified the individual items and decided on the most suitable candi-

dates collaboratively. Conversely, several group members consulted the list created in a

collaborative session to identify relevant locations in their articles for further reading.

Interaction with single-user applications

Although we observed that most groups could resolve input conflicts on shared application

windows by social protocols, the majority of users reported that occasional input conflicts

were very annoying. Conflicts were observed when panning the map or selecting text by

dragging the mouse while the other user was moving the cursor across the window or when

attempting to drag concurrently. Apart from input conflicts, three groups complained

about having to share a single bookmark or text editor window. One user mentioned

that “sharing windows is fine as long as you are mainly viewing. Like on the map or

the table. But it’s exhausting if both have to interact”. In practice, they agreed at some

point to switch storage window ownership and moved it to the other side of the display

or were alternatingly adding items on the original window location. This was perceived

as awkward, as one user put it: “windows on the left side of the display felt like [user B’s]

area”. Obviously, users silently agreed on window ownership based on the initial window

layout. This is reflected in logging data, where 96% of registered interaction with the

bookmark list (i.e., bookmarking or selecting a bookmark for linking) was contributed by

the user sitting on the left side of the display. Similarly, 75% of linking activities from the

text editor were recorded by the user sitting on the right.

Some users reported problems when accessing distant shared content. For instance,

one user argued that the numbers in the table were hard to read for him. However, he

“did not dare to pull the table down as I did not want to disturb [user B]”. Indeed, three

users reported that window re-stacking or moving by the other user caused distraction for

them when working individually.

9.2.7 Discussion

We will discuss the results of the experiment with regard to the research questions in this

experiment.

Q1 How does a pair of users coordinate information access and manipulation on a

shared wall display using multi-input support and conventional single-user applications?

As observed by previous work, facilitating multiple concurrent input devices and sufficient

194 Chapter 9. Evaluations of Window Management Techniques

physical space lead to an increased amount of individual work [41, 245, 246]. Indeed, we

saw a lot of individual work, primarily during information retrieval phase. Users generally

seemed to coordinate their activities during periods of independent work without major

effort. Similar to previous observations on territoriality in single-display groupware [215,

240, 245], we saw that users mainly interacted with windows located on their physically

closer side of the display without explicitly negotiating personal areas. The assignment

of personal windows thereby was derived from the pre-defined window layout, which was

rarely changed. Consistently with previous research [72], users reported that changes to

the existing window layout were perceived as distraction and therefore avoided. The main

causes of distraction mentioned by the users were occasional input conflicts when users

attempted to access detailed information in a shared application window.

Window managers can support users in decreasing the amount of distractions by impos-

ing access restrictions (e.g., private screen regions [125, 244] or locked windows [115, 244]).

However, such system-imposed access regulations are often considered as too restrictive

[72, 90], but well-designed automatic protocols have recently been demonstrated to be pre-

ferred over pure social protocols by users [178]. In addition, systems should make it easier

for users to re-arrange the window layout without distracting the other users, for instance

by employing semi-transparent overlapping windows [268], duplicated window regions for

closer inspection [238], or personalized views in dedicated projected channels [219].

Q2 How does collaborative information linking support (or impede) users in informa-

tion discovery and information sharing?

The most extensive usage of collaborative information linking was for groups working in

a mixed-focus collaboration style. Usually, these groups started by a joint task clarifica-

tion and division step, followed by individual reading and gathering of information, and

concluded with jointly discussing, clarifying, and verifying their findings. As the task was

to answer three independent questions, this pattern was re-occurring. These observed

collaboration patterns correspond to observations of previous research on collaborative

information work (e.g., [153, 176]). Individual information retrieval periods were usually

supported by visual links to discover related information in shared application windows.

Since previous research reported that cursor movements were perceived as distracting on

a shared display [258], we were surprised to find that users hardly felt distracted by the

other user’s visual links. However, our experiment was limited to a pair of users. A more

thorough evaluation of visual coordination techniques and the resulting visual clutter for

a larger number of users is subject to future work.

We also observed that collaborative information linking reduced the need to interact

with shared window content – in some situations. It seems to be useful for mere overview

applications, where users are rarely required to interact – such as the map application in

our experiment, where the need to zoom into the map was often mitigated. However, it

could not help users to read highlighted, but small, textual labels (as in the migration

table) located at a far distance. In contrast to previous observations reporting difficulties

in gesturing on large displays (e.g., [119, 204]), we did not observe any communication

9.3. Comparison of Techniques to Discover and Access Occluded Windows 195

problems when pointing to a specific display location using visual links.

In the future, it is worth investigating whether visual links can be used as interaction

technique to enhance collaboration-supporting window manager techniques. As an exam-

ple, users could “drag” an existing link to create a window region duplicate, like WinCuts

[238], close to their personal interaction area.

Q3 How does the central application coordination approach and selection storage sup-

port users in information sharing?

Collaborative information linking and the provided storage facilities were often employed

when transitioning from individual information retrieval to joint discussions. Users “re-

played” selected findings gathered in the bookmark list of text editor to their partner for

focused discussion and verification. Mark and Kobasa [153] discovered a similar “retrac-

ing” step when users validated answers collaboratively. Conversely, some users replayed

findings discussed in the team to get an entry point for new information sources when

returning to individual information retrieval.

However, the tools we provided for information storage were described as too inflexible.

Users had a strong desire to properly collect and structure their findings when working in

a mixed-focus collaboration style. Based on the observations in our experiment, we found

that a centralized information storage tool should provide similar features as powerful

application-specific interaction histories [105], but should additionally enable the users to

merge multiple personalized instances and to easily invocate personalized visual highlight-

ing to diverse applications. As the information provided in the experiment was filtered

(and therefore window content was rarely changing, except for the personal browser win-

dows), a simple selection storage mechanism was sufficient to revisit previous information

occurrences. We expect that with a growing amount of information, mechanisms to restore

previous application states (as discussed in Section 8.1.2) will be required.

9.3 Comparison of Techniques to Discover and Access Occluded

Windows

We conducted a controlled user experiment to initially judge the usability of the window

uncovering technique (Section 8.2) for discovering and accessing content in occluded win-

dows. For that purpose, we compared it with two other window management techniques

for three different tasks. The tasks were designed to simulate real information work sit-

uations, where users have to skim through information in occluded windows or quickly

interact with obscured content before resuming the main task.

9.3.1 Research Questions

We formulated two research questions that were tested in the course of the experiment.

Q1 Which technique supports the user best in quickly looking at information in occluded

windows?

196 Chapter 9. Evaluations of Window Management Techniques

We expect uncovering windows to be advantageous for discovering information in occluded

windows, as the number of necessary steps to reveal occluded content is reduced.

Q2 Which technique supports the user best in simple interaction tasks in occluded

windows?

We expect a performance benefit of uncovering windows for simple access to information

in occluded windows, as we provide the facility to directly interact with user interface

elements in occluded windows. In this way, information access and discovery are no longer

two separated activities.

9.3.2 Participants

We recruited 15 participants (4 female, aged 15 to 32) from a local high school and

university. All participants were experienced computer users and tested for color-blindness.

Nine participants are using Microsoft Windows as a primary operating system, three

employ Linux and three use Mac OS X. Twelve of the participants use Alt+Tab “often”

to “very often” to switch windows, followed by the window list in the task bar, which

is employed frequently by eleven participants. None of the participants stated using one

window switching technique exclusively.

9.3.3 Window Management Techniques

We compared the following three window management techniques for revealing occluded

window content:

(a) (b) (c)

Figure 9.5: The three window management techniques and the three task types in our experiment:
(a) overlapping windows with the Alt+Tab menu for the interact task, (b) free-space transparency
[123] with the count task, and (c) importance-driven compositing (Section 8.2) with the read task.

Alt+tab (AT) in combination with conventional overlapping windows is a standard

window switching technique provided by all major operating systems and served as a

control condition. The employed Alt+Tab switcher by the Compiz window manager shows

small previews of all windows when activated by the Alt+Tab sequence (Figure 9.5(a)),

and allows for sequential window selection by pressing the tab key.

9.3. Comparison of Techniques to Discover and Access Occluded Windows 197

Free-space transparency (FST), proposed by Ishak and Feiner [123], applies trans-

parency to unimportant window regions of overlay windows using a smooth gradient

between transparent and opaque regions. We simulated FST using importance-driven

compositing without the layout routine (Figure 9.5(b)). Instead of the original notion of

unimportant window content (white pixels), we used our importance maps to define trans-

parency values. FST does not allow users to directly interact with the occluded content.

Therefore, we provided the “pie menu” proposed by the authors, which shows a circular

menu of all the windows lying underneath the current pointer location, to bring occluded

windows to the front. Participants had to press Start+tab to retrieve this menu and then

click on a window preview to bring the desired window to the front.

Importance-driven compositing (IC) was employed to uncover occluded windows

on demand, as described in Section 8.2. To initiate IC, participants had to press the key

combination Start+w. As long as the keys were pressed, occluded windows were spatially

arranged, cut-aways were applied and interactivity for the most salient window underneath

the pointer was ensured (Figure 9.5(c)).

9.3.4 Setup

The study was conducted on a PC running Linux Ubuntu 10.04 with a 1280x1024 17”

monitor. Users operated the PC with a conventional mouse and keyboard pair.

9.3.5 Task

Participants were asked to solve variants of a visual search task on application windows.

The task involved a series of questions in textual format. The question was presented in a

maximized main window in the foreground. Users were asked to identify specific items in

five small object windows, occluded behind the main window. The object windows were

arranged in a cascaded fashion – a typical window layout strategy of conventional window

managers. The object windows always contained an image of a 2D geometric primitive and

– depending on the task type – a small textual label and a button. In the main window,

users were presented with a list of answers below the question (in two task types), where

the user had to select the correct answer. In one task type, the correct answer had to be

directly selected in one of the object windows.

The following three task types had to be solved:

Count: Participants were asked to look for a certain 2D geometric primitive (e.g.,

square) in the five object windows, count its occurrences, and select the number of occur-

rences from the list of solutions in the main window (cf., Figure 9.5(b)). This represents

a scenario where users have to get an overview of all the windows and sequentially scan

them [135] for a strong visual feature, which is also clearly visible in a scaled window

representation.

Read: Participants had to find the only object window containing a textual label

(e.g., “This is a yellow triangle”) that matched the associated picture of a geometric

198 Chapter 9. Evaluations of Window Management Techniques

primitive (cf., Figure 9.5(c)). Subsequently, they had to select the same label from the

list in the main window. This represents a scenario where the user has to switch to a

window containing information required for the main task. Note that the text labels were

too small to be readable in the FST pie menu and AT preview menu.

Interact: The task was similar to the read task, except that the validation of the

matching label was selected by a push button directly in the object window (cf., Figure

9.5(a)). The task was designed to represent situations where the user has to shortly

interact with an occluded window before resuming the main task.

The tasks were very simplistic on purpose, so no prior knowledge was required and

users could solve the task without major mental effort. In this way, differences in task

performance can be directly linked to the employed user interface. Bly and Rosenberg

[43] employed a similar task when comparing a tiled window manager with overlapping

windows: Users had to match graphics objects with brief paragraphs describing them.

Our initial window layout was chosen to simulate a display cluttered with windows.

As our primary goal was to assess the discovery and access of information in occluded

information, we employed only a single fully visible window, obscuring information in

multiple secondary windows.

9.3.6 Design and Procedure

The study followed a 3x3 within-subjects factorial design with the following factors:

technique: AT, FST, and IC, and

task: count, read, and interact.

We measured the completion times (time between appearance of a question and se-

lecting an answer) and error rates for each task item. Participants were also handed out

a preference questionnaire at the end of the experiment. A semi-structured interview

was conducted to collect subjective feedback. For each technique, participants had a short

practice session (6 questions). The order of the techniques and tasks was counter-balanced.

Each user had to complete four repetitions for each task in every technique. Results from

these repetitions were accumulated. For the interact task and read task, the stacking

position of the window containing the correct label was balanced across the repetitions.

9.3.7 Results

We conducted a 3 (Technique: AT, FST, IC) x 3 (Task: Count, Read, Interact) re-

peated measures ANOVA (α = .05) to evaluate completion times. Bonferroni adjust-

ments were applied for post-hoc comparisons. We found a main effect for Technique

(F2,28 = 82.231, p < .001) and Task (F2,28 = 18.182, p < .001), as well as a borderline

significant interaction between the two factors (F4,56 = 2.601, p = .046). Post-hoc com-

parisons showed that IC (6.2s) was significantly faster than both, FST and AT (13.9s

and 8.4s). AT was also faster than FST. However, IC was only faster than AT for the

read and interact tasks. For the count task, there is no significant difference between IC

9.3. Comparison of Techniques to Discover and Access Occluded Windows 199

and AT, but both techniques were performing better than FST. Figure 9.6 illustrates the

completion time results.

0

2

4

6

8

10

12

14

16

18

AT FST IC

COUNT READ INTERACT

Figure 9.6: Completion times (seconds) for the three conditions (AT, FST, and IC).

Participants generally committed few errors with 97% of the questions being answered

correctly. The highest error rates were collected for FST in the count and read tasks

(10.0% and 6.7%, respectively).

Participants were asked to rank the three techniques on a seven-point Likert scale. A

Friedman non-parametric test revealed a significant difference between user preferences

(χ2(2) = 23.414, p < .001). Post-hoc comparisons using Wilcoxon Signed Rank tests

with Bonferroni adjustments showed that IC (6.33) was rated significantly higher than

AT (4.73), and that both techniques were evaluated higher than FST (2.47). Preference

scores are illustrated in Figure 9.7.

1

2

3

4

5

6

7

AT FST IC

Figure 9.7: Preference scores for the three conditions (AT, FST, and IC) on a 7-point Likert scale.

In the interview, participants mentioned the readability of small text and the ability to

interact with obscured user interface elements as main reasons to rank IC higher than FST

and AT. FST was primarily disliked for the pie menu to access occluded windows, which

was described as hard to use, because only the windows located underneath the pointer

were shown. Due to the initial cascaded window layout, only the top-most object window

200 Chapter 9. Evaluations of Window Management Techniques

was fully visible (cf., Figure 9.5b). Therefore, several users commented that they did

not know which windows were located beneath the mouse pointer and, as a consequence,

which windows were included in the menu. One user summarized interaction with FST as:

“Transparency and not being able to interact [with occluded content] is very exhausting”.

We also asked the participants which technique they preferred for the three tasks. For

the interact task and read task, IC was chosen by the majority (15 and 12 participants

out of 15, respectively). In the interview, most participants stated that IC was most

appropriate for the read task as the text in obscured windows was readable, in contrast to

the small menus of AT or FST. For the interact task, participants mentioned the ability

to directly interact with occluded content without explicitly selecting the corresponding

window as exceptionally useful. For the count task, AT was the most preferred technique

(selected by 8). Participants commented that the menu of AT provided a good overview,

so they could immediately see which images were available.

9.3.8 Discussion

The results of our experiment indicate that importance-driven compositing supports users

in skimming through information in occluded application windows, thereby helping them

to discover and access occluded information. We will discuss the results and implications

with respect to the research questions.

Q1 Which technique supports the user best in quickly looking at information in oc-

cluded windows?

The uncovering windows technique using importance-driven compositing was shown to

indeed provide an advantage for discovering content in occluded windows. However, com-

pared to conventional Alt+tab window switching, the performance advantage is only signif-

icant for accessing fine-grained information. This is expressed in the superior performance

of users in the read task for IC, while Alt+tab had a comparable performance when looking

at coarse and easily identifiable window content. Most participants appreciated that they

could read the text in the obscured windows, in contrast to the small menu of Alt+Tab

or the pie menu of free-space transparency. In these cases, they first had to switch to the

anticipated object window to read the text and then back to the main window to select

the correct answer. Two participants therefore described our technique as “more fluid”,

as only one activity was necessary to extract information from a hidden window.

Q2 Which technique supports the user best in simple interaction tasks in occluded win-

dows?

The benefit of the uncovering windows technique for simple interaction in occluded win-

dows was confirmed by the results of the interact task. The ability to directly interact with

content of occluded windows without explicitly selecting the window in a separated user

interface is a distinguishing aspect of our technique compared to other window switching

interfaces. Being able to see occluded content without the ability to access the information

with the pointer using the free-space transparency technique was strongly criticized by our

9.4. Exploratory Evaluation of Window Management on Irregular Displays 201

users.

There are several interface aspects that have not been captured in the course of this

experiment. For instance, as windows were re-loaded after each question, users were not re-

quired to re-visit previous windows. However, window re-visitation is a frequent activity in

conventional desktop computing [236]. Tak et al. [236] showed that spatial stability of the

window switching interface is a core requirement for quick re-visitation. As importance-

driven compositing prioritizes windows in the layout routine based on their stacking or-

der, windows are possibly uncovered in a different spatial layout when re-initializing after

changing the window stacking order. One user noticed the spatial instability of uncovered

windows even in our experiment, where re-visitation was not required to solve the task.

In addition, we cannot fully assess the effect of the dense information display of our

uncovered window interface on focused attention, as the number of application windows

was limited. One user expressed a certain dislike for the resulting visual clutter and

requested a more “tidy” window arrangement with neatly arranged window boundaries,

similar to the well-known Exposé interface.

Alignment of window boundaries and displacement from the previously calculated

window location could be added as additional penalties of the window layout optimization

problem of importance-driven compositing (cf., Section 7.4) to address these user requests.

9.4 Exploratory Evaluation of Window Management on Irregular

Displays

To initially evaluate selective features of display-adaptive window management (Section

8.3) and to assess the future directions for window management on irregular displays,

we conducted an exploratory experiment. On an irregularly shaped display, users were

asked to solve an information analysis task involving multiple application windows with

two window management techniques: conventional window management without spatial

awareness and window management with selected display-adaptivity features.

9.4.1 Research Questions

The aim of the experiment was to assess three research questions:

Q1 How do users manage their windows on an irregularly shaped, non-planar display?

Although window management strategies have been explored for very large displays [4, 32]

and multi-monitor settings [91, 112, 113], there has been so far been no attempt to observe

window management behaviors on irregularly shaped displays – to our knowledge. Indeed,

it might seem inappropriate to use interaction and presentation techniques designed for

usage on limited screen space with clearly defined, strictly rectangular outlines on an

irregular display. However, we intent to informally observe and question users to initially

assess the basic suitability of such displays for conventional window management, and to

furthermore discover emerging interaction patterns to cope with the situation.

202 Chapter 9. Evaluations of Window Management Techniques

Q2 Does display-geometry snapping support users in managing windows?

Previous research has shown that users attempt to partition their workspace, for instance

by explicitly exploiting multiple discontinuous monitors [91]. Similarly, we hypothesize

that users will facilitate separations afforded by physical discontinuities, such as corners,

on projected displays. We furthermore hypothesize that our display-geometry snapping

technique (Section 8.3.1) supports users in exploiting these separations. In addition, we

speculate that snapping will help users to quickly arrange windows within the usable

display regions – especially if the outline of the projected display is not visible.

Q3 Does semi-automatic window coordination support users in managing windows?

For large-scale displays, it has been demonstrated that window management overhead for

the user increases – especially for basic operations, like moving and resizing windows [32].

This management overhead is caused by an increased number of open application windows

[112], the attempt to make most of this information visible and directly selectable [113],

as well as an increased amount of spatial organization [4, 32]. Thus, we hypothesize that

automating some of these activities by providing semi-automatic window coordination

(Section 8.3.2) will decrease the amount of manual window management operations and

thereby increase the user’s performance in an information analysis task.

9.4.2 Participants

We recruited 8 experienced computer users from a local institute (1 female, aged 27 to

33). Five users were primarily using Microsoft Windows as operating system, two Linux,

and one Mac OS X. All users stated to work with a dual-monitor setup on a regular basis,

where the size of the larger monitor was given as 22” by one user and 24” for the others.

Despite this considerable amount of available pixels, half of the participants indicated to

usually maximize their windows to the monitors.

9.4.3 Window Management Techniques

To accomplish the information analysis task, we limited the set of available window inter-

action techniques to a single activity: window moving. Resizing, maximizing, minimizing,

or closing of windows was not supported, so we could evaluate this single aspect in full

detail. Also, we did not support any window switching techniques like Alt+tab or the

Exposé. We solely allowed users to move windows by dragging them along the title bar.

Users had to accomplish the task with two window management techniques:

Manual window management (M) was limited to the ability to drag a window

and to change the stacking order by directly clicking within the window’s boundary.

Display-adaptive window management (DA) additionally snapped the windows

to be entirely contained within a planar, fully visible display area, if dragged outside or

if the dragged window was released on top of a physical corner. In addition, it supported

semi-automatic window coordination on demand. In a pilot study, we discovered that

constant semi-automatic coordination was perceived as too “patronizing”. Therefore, we

9.4. Exploratory Evaluation of Window Management on Irregular Displays 203

provided it as an optional feature: if pressing the Start key while releasing a dragged

window, underlying windows were subject to semi-automatic coordination. Conventional

dragging of windows did not influence the spatial window layout of underlying windows.

For both techniques, we enabled warping and blending to compensate for projection

discontinuities.

9.4.4 Setup

The experiment was conducted on an irregular, tiled display driven by two XGA projectors,

connected to a PC running Ubuntu 10.04. The display spanned two planar display regions,

where the left region was larger and also contained the overlap region between the two

projectors. Due to the strongly oblique projection angles, some parts of the display suffered

from noticeable interpolation artifacts when applying warping and blending – in particular

the right half of the left display area. The user was sitting on a table facing the left display

area, approximately centered. The windows were controlled by a conventional mouse and

keyboard pair. Figure 9.8 shows the employed display setup.

(a) (b)

Figure 9.8: Irregular display setup for evaluation of display-adaptive window management: (a)
the two projectors (on the left) driving the irregularly shaped display and (b) the resulting display
with invisible outlines during the study.

Clearly, this setup is not considered as an optimal solution, especially due to the

interpolation artifacts. However, our aim was to simulate office environments where space

restrictions often require non-optimal projector setups, resulting in similar irregularities.

Also, it would have been desirable to increase the resolution by using more projectors and

keeping the size of the display approximately constant. As we used very small application

windows in our task (Figure 9.8(b)), we could simulate this effect even on a low-resolution

display.

204 Chapter 9. Evaluations of Window Management Techniques

9.4.5 Task

Users were presented with eight to ten small content windows containing a picture of a

car, its name, and other attributes, such as price, power, and mileage. Additionally, a

sightly larger main window contained instructions for the task. For each task, a new set of

windows was loaded – initially in a cascaded arrangement, with the main window placed

on top of the cascaded window stack. Using these windows, the users had to solve three

task types:

Sort: Users were asked to sort the content windows according to some attribute (e.g.,

the price of the cars) in a linear sequence. We did not explicitly instruct the users how

the resulting arrangement should look like. They were only told to make the ordering

clearly visible and understandable. As this task was assessed purely visually by the study

supervisor, we did not quantitatively evaluate the correctness. This task should represent

task environment setup activities [135].

Count: To simulate a sequential scanning task [135], we asked our users to count all

cars of a given brand. Thus, they had to sequentially visit all windows and count the

number of occurrences. The number then had to be entered in the main window.

Compare: As a complex comparison task [135], we asked the users to find the most

suitable car by evaluating three given parameters (e.g., the cheapest car with at least

10 km/l mileage and at least 5 seats). Thus, they had to sequentially scan all content

windows to filter those cars violating the given constraints. Subsequently, they had to

scan the remaining windows for the most appropriate parameters. The most suitable

candidate then had to be selected by directly clicking a button in the content window.

9.4.6 Procedure

For each window management technique, users had a warm-up period with one repetition

for each task type. Users were encouraged to “think aloud”, to explain their window man-

agement strategies, to mention what they liked and what they disliked about the physical

environment or the current interaction technique. Subsequently, the users had to accom-

plish two repetitions of each task type in an actual trial, where we logged task completion

times and correctness. Additionally, the experimenter took notes during the thinking-

aloud warm-up period, as well as during the actual trials. After each run, users had to fill

out a questionnaire. After both runs had been accomplished, users were asked to assess the

two window management techniques, indicate how much they used the display-adaptivity

features, and how they liked the display setup overall. A semi-structured interview was

conducted at the end of the experiment. Overall, participation lasted approximately one

hour.

The sequence of window management techniques was counter-balanced across the par-

ticipants. Additionally, the task sequence and the initial window stacking order was ran-

domized.

As we collected a considerable amount of observations and user feedback, we issued the

9.4. Exploratory Evaluation of Window Management on Irregular Displays 205

users a follow-up questionnaire after the experiment. The questionnaire contained infor-

mal observations and statements by users about the display arrangement, their employed

window management strategies on the irregular display, and suggestions how to improve

window management in such an environment. Users were asked to indicate how much

they agree with the statements. From the initial eight participants, seven users returned

the questionnaire, as well as one pilot user. We used these agreement values for evaluation

of research question Q1, concerning general window management strategies on irregular

displays. Also, suggestions for window management techniques by our participants can be

seen as indications for future research directions.

9.4.7 Results

We will discuss the results of this experiment by presenting observational evidence and

informal user feedback. In addition, we will report on task completion times (measured

in ms), questionnaire results (7-point Likert scale), and results from the follow-up ques-

tionnaire, expressing the agreement of the users with certain observations, feedback, and

suggestions for future directions (7-point Likert scale), summarized in Table 9.1.

Display Arrangement and Emerging Window Management Strategies

In the manual window management condition – in particular in the thinking-aloud warm-

up period – we observed emerging window management strategies of our users to deal with

the irregularities of our display setup. Overall, users assessed the display arrangement with

4.25 on a 7-point Likert scale. They mentioned several reasons why they would not want

to have such a display in their offices, where the most agreed point of criticism was the

blur in some areas, which lead to readability problems. Interestingly, the physical corner

was judged as rather useful by most participants, and some users mentioned they “ex-

plicitly used” the physical separation to create meaningful spatial window arrangements.

Although we observed that users occasionally placed their windows across the physical

corner (for six participants), users largely denied that they did not care about the window

placement with respect to the physical corner. Users mentioned the reduced readability

and “awkward interaction” as reasons not to span windows across the corner. Also, the ir-

regular display outline was not particularly disliked, although participants largely agreed

that having the outline visible would have been an advantage. However, users did not

invest much effort to keep windows within the visible display area. One user explained it

as: “I kept the important windows in the inner part of the display, and for the others, I

did not care if they were cropped”.

All users employed some sort of “piling” to manage their windows – a well-known strat-

egy of knowledge workers with physical paper [149, 150] and with windows on large-scale

displays [4]. The number and spatial arrangement of piles differed among participants and

task types. The most common type of pile was a “dump” pile, where irrelevant windows

were casually stacked on top of each other. Four out of the eight participants established

206 Chapter 9. Evaluations of Window Management Techniques

Display arrangement

I disliked the separation of the display caused by the physical corner. 1.88 0.48
I disliked that the display was not rectangular. 3.50 0.78
I disliked that the display outline was not visible. 5.13 0.64
I disliked that some parts of the display were blurry and therefore hard to read. 6.25 0.31
I disliked the low resolution. 3.63 0.63
I disliked that the display was so large. 2.00 0.50
I disliked that the display was so high. 3.50 0.73
I disliked that I was sitting so far away from the display. 2.50 0.38

Window management strategies

I used the right area as “deposit area” or (recoverable) “trash can”. 6.00 0.60
I used the right display area to show persistent background information. 4.38 0.86
I used the right area for both: depositing items and displaying background information. 5.25 0.73
I did not have a clear strategy how to use the two display areas. 1.88 0.40
I would not have used the right display area if I had had the option to close or minimize windows. 1.88 0.40
I did not care whether windows were spanning across the physical corner. 2.38 0.63
I did not care whether windows were partially located outside the visible display outline. 3.88 0.74
I never moved my windows so far outside that they were cropped by the display outline. 3.38 0.82

Window management techniques for “context areas”.

I would like to “throw” windows to distant display areas with a short mouse gesture. 6.13 0.30
I would like to have a button in my window title bar to move my window to a distant display area. 3.00 0.57
I would like windows to be smaller (scaled or somehow cropped) at distant areas. 4.00 0.65
Windows located at distant display areas should be easily recognizable. 5.88 0.44
Windows located at distant display areas should be easy to move back to a closer area. 6.38 0.26
Information on distant windows has to be readable. 4.38 0.56

Window management techniques for “focus areas”.

I would like an “explode” feature to arrange my windows in a (messy) non-overlapping fashion. 4.63 0.46
I would like a “grid” feature to arrange my windows in a regular grid. 4.63 0.73
I would like a “snap” feature to quickly align windows next to each other. 6.00 0.38
I would like to manually group windows into common containers and move them together. 5.88 0.35
I would like to move an existing “pile” of windows together. 5.75 0.45
I would like to have only one maximized window on each display area. 3.00 0.46
I like to have empty space available (e.g. as a “buffer zone”). 5.63 0.46

Table 9.1: Results from the follow-up questionnaire: the recorded statement and how much the
users agreed with this statement (mean and standard error on a 7-point Likert scale).

their dump pile on the right display area, as illustrated in Figure 9.9(a). Windows iden-

tified as irrelevant were quickly dragged to the right display half – usually without even

looking. Two users created dump piles by dragging windows partially outside the visible

display outline (Figure 9.9(b)). Two participants employed both strategies, depending on

the task type. Three users also created piles for “usable” candidate windows – especially

for the compare task, where windows had to be visited multiple times. In contrast to the

dump piles, these piles were located centered on the left display half (Figure 9.9(b)). As

these piles were usually re-visited, the established pile structure was subsequently resolved,

so information could be compared side-by-side with reduced occlusion. Others arranged

usable candidate windows in a linear row (Figure 9.9(a)), in a regular grid, or kept a single,

most suitable candidate in a prominent location and placed one window after the other

next to it for pair-wise comparison.

Users agreed that they established an explicit strategy how to facilitate the right

display area. Apart from using the area to pile up irrelevant windows, users also reported

9.4. Exploratory Evaluation of Window Management on Irregular Displays 207

(a) (b)

Figure 9.9: Exemplary window piling strategies observed during the experiment, illustrated on
the 2D display importance map of the employed display setup: (a) from the original, cascaded
stack on the left, useful candidates were linearly aligned in the focus region. The main window
was carefully placed in the context region, next to casually piled up irrelevant windows. (b) Others
arranged relevant candidates in a pile and placed irrelevant windows partially outside the visible
display outline on purpose.

that they facilitated the area for placing persistent background information which did

not require any further intervention, such as the main window. This information was

carefully positioned and was kept uncovered during the entire task, so they could quickly

access the information by just turning their head. Interestingly, most users agreed that

the right area would have been useful even if the option to minimize or close windows had

been available. One user explained this opinion by “It would have cost more time to click

the close button. Moving the window to the right was faster.” Another user mentioned

the ability to quickly re-acquire the information as more appropriate compared to closing

the window. This corresponds to the observed tendency to keep more windows open if

sufficient display space is available [112].

It has to be noted that our windows were rather small and the number of pixels was

low in our setup. In fact, the overall number of pixels (2560x1024) was lower than in

all of our participants’ everyday work environment. Assuming a similar control/display

gain of the mouse, the display could be traversed with comparably little mouse movement.

Still, some users mentioned that dragging the windows to the right display area caused

a lot of effort “because the display is so large” and suggested simple mouse gestures or

buttons in the window title bar to quickly relocate windows to distant areas. Especially

the suggestions of having a “throw” gesture (e.g., as proposed by Geißler [88]) was well

received by the users (Table 9.1). Also, having the possibility to move multiple windows

concurrently (either manually grouped or existing piles) was suggested to decrease window

management operations (cf., snapping windows [25] or storage bins [213]).

Display-Adaptive Window Management

Contrary to our expectations, our display-adaptivity features could not enhance the users’

performance. Task completion times for the three task types were almost equal, with

display-adaptive window management being even slightly slower than manual window

208 Chapter 9. Evaluations of Window Management Techniques

management (sort: t7 = −.460, p = .660; count: t7 = −1.611, p = .151; compare: t7 =

−.172, p = .868; using paired t-tests). Correctness values were not evaluated separately,

as only three questions were answered incorrectly in sum (all in the compare tasks).

However, we found some differences in subjective assessments by evaluating the ques-

tionnaires using Wilcoxon Signed-Rank tests. Managing the windows in general was as-

sessed as easier with display-adaptive window management compared to manual window

management (Z = −2.11, p = .035). Users indicated that they had a better overview

(Z = −2.060, p = .039) and that they could more easily sort (Z = −2.047, p = .041)

and browse (Z = −2.232, p = .026) their windows. Comparison across multiple windows

(Z = −1.414, p = 1.57) and re-visitation of windows (Z = −1.134, p = .257) was assessed

as equally demanding. Users also indicated that they spent more time moving windows

around in the manual condition (Z = −1.983, p = .047). However, the time spent looking

for windows was assessed similarly (Z = −1.000, p = .317). Questionnaire results are

visualized in Figure 9.10.

1

2

3

4

5

6

7

Window
management

*

Overview * Sorting * Browsing
through

windows *

Comparing Re-visitation Time spent
moving

windows *

Time spent
looking for
windows

Mental
demand

M DA

Figure 9.10: Questionnaire results for comparison of manual window management (M) and
display-adaptive window management (DA) on an irregular display (mean and standard error on a
7-point Likert scale). Significances (p < .05) are indicated by *.

Overall, users ranked display-adaptive window management slightly higher than man-

ual window management (rda = 5.0 and rm = 3.375), which is borderline significant

(Z = −1.930, p = .054).

User feedback indicates that display-adaptivity subjectively supported users in the sort

task, i.e., when setting up their environment. Also, the increased amount of subjective

overview and productivity gain while browsing the windows may have helped users during

task execution – both sequential scanning (represented by the count task) and complex

comparisons. Indeed, display-adaptive was chosen as the more suitable technique for the

sort task (87.5%) and for the compare task (62.5%), while preferences for the count task

were balanced.

In the post-study questionnaire, users had to indicate whether they explicitly employed

display snapping or semi-automatic window layout (from “not at all” to “very often” on

a 7-point Likert scale). Display snapping usage was rated low with 2.63 on average, while

subjective usage of semi-automatic window layout was higher with 5.38. Indeed, we also

9.4. Exploratory Evaluation of Window Management on Irregular Displays 209

observed that display snapping was facilitated rarely. Most users never placed windows

close to the display boundary and if so, only irrelevant windows where the placement was

not considered as important. For some participants, display snapping even interfered with

their intentions. Two users mentioned that they intentionally wanted to place windows

partially outside the visible region to create a “dump pile” (Figure 9.9(b)), but the system

would automatically move their windows back in. As a result, valuable display space was

covered with irrelevant information. No user complained in the interview that windows

could not be spanned across the corner – even though we observed occasional window

placements around the corner in the manual condition for six users. In contrary, one

user claimed that “snapping at the edge is important”. Another user explained that edge

snapping would be “even more important if the displays were slightly discontinuous”. One

user mentioned that display-geometry snapping would be useful in combination with a

“throwing” gesture [88].

The semi-automatic window layout feature was facilitated by most users. We observed

three usage types: Users employed it as an “explode” tool to resolve the initial cascading

window arrangement at the beginning of the task. Users commented that this was a fast

way to get a quick overview. However, one user demanded more control about the “force”

of the tool and another one wanted it to be generally “more aggressive”.

The second usage type for semi-automatic window layout was to “squeeze in” windows

into an existing spatial layout – usually towards the end of the task. This was a common

approach to solve the sort task.

Finally, some users facilitated semi-automatic window layout to “explode” manually

created piles in the middle of the task. Usually, they did some coarse presorting (Figure

9.9(b)), followed by an explosion of the pile. Subsequently, they visually scanned the

individual windows for a more detailed comparison. Thereby, some users expressed the

wish for a more “tidy” arrangement, such as a regular grid, for easier visual comparison.

User feedback also helped to identify conceptual problems of existing display-adaptive

window management features. Display snapping was sometimes considered as unintuitive

as it aimed to find the closest location of a dropped window within the visible display

boundary with respect to the drop location, while not taking the movement direction

into account. As the display outline was not rectangular, the window did not only snap

vertically and horizontally, but according to the angle of the (invisible) boundary. Users

also complained that the semi-automatic layout feature sometimes led to an unintuitive

window layout or destroyed a previously established spatial layout. Indeed, we observed

that our initial approach to prioritize windows for the layout algorithm according to their

stacking order (i.e., their recency of use), as described in Section 7.4, may lead to unpre-

dictable results on a large display. A more appropriate priority queue would lay out the

windows according to their proximity to the drag window, so windows gradually move

away from the drag window.

210 Chapter 9. Evaluations of Window Management Techniques

9.4.8 Discussion

Results of our experiment show that users established unconventional window management

strategies to cope with the size and irregularities of the display. As diverse patterns

emerged among the participants, our display-adaptivity features did not support all the

users as much as initially expected. However, from our observations and user feedback,

we could identify user interface problems of our features and establish future research

directions to support users in their emerging window management strategies.

Research Questions Revisited

Q1 How do users manage their windows on an irregularly shaped, non-planar display?

Irregular display are not the most obvious choice for conventional information work. A

common goal in related research therefore has been to visually compensate for irregularities

in projected displays (e.g., [40, 169, 189]). However, our exploration indicates that users

do not necessarily dislike certain irregularities, such as physical corners or non-rectangular

projection outlines. In contrast, they explicitly facilitated physical discontinuities to sepa-

rate their workspace into focus areas, where their primary windows were located and most

interaction took place, and context areas, where irrelevant windows were casually piled up

and persistent background information was placed.

Q2 Does display-geometry snapping support users in managing windows?

Contrary to our expectations, users rarely made use of the display snapping facility. We

observed that most windows were never located close to any display boundary. If windows

were dragged close to the border – or partially outside – they were usually not relevant,

so users either did not care about their placement, or intentionally wanted to make them

partially disappear to decrease the amount of occupied display space. In the latter case,

display-geometry snapping was even perceived as annoying rather than useful. In contrast,

users commented positively on snapping to the physical edge.

According to these observations and informal user feedback, we found several opportu-

nities to improve display-geometry snapping. In the future, snapping will be less aggressive

at the boundaries compared to physical edges. This can easily be achieved by applying

lower importance values to the cropped areas in the display importance maps. In addition,

snapping was currently considering windows to be opaque and thus moved them back into

the visible display region entirely – irrespective of the window content. Content-awareness

may allow the user the hide irrelevant window areas along the boundary while keeping

important portions visible for easy recognition. As described in Section 8.3.1, this feature

is available, but was disabled for the experiment.

Q3 Does semi-automatic window coordination support users in managing windows?

In contrast to display-geometry snapping, semi-automatic window layout was frequently

employed by most participants – mainly to “explode” piled up windows or to “squeeze in”

windows into an existing spatial layout without manually adjusting the remaining windows.

While the main purpose of the “explosion” of existing piles was to increase visibility for

9.4. Exploratory Evaluation of Window Management on Irregular Displays 211

visual comparison and “to get a better overview”, users disagreed about their anticipated

exploded window layout: about half of the user tended towards a messy layout, while the

other half clearly preferred a regular grid layout. As piling is a well-known strategy for

management of paper on the desk [149, 150] or windows on large displays [4], interaction

techniques to resolve piled documents on desktops have been researched and implemented

in the past [1, 150].

In the future, we require a better prioritization criterion than the currently used re-

versed window stacking order to improve the quality of the resulting window layout. Sort-

ing the windows according to their proximity to the drag window for the layout algorithm

(described in Section 7.4) seems to be a promising measure. Furthermore, users suggested

to show a preview of the resulting window layout and the opportunity to interactively

control the “force” of the semi-automatic coordination – in other words: the penalty of

the window displacement on the layout algorithm.

Future Directions

We observed a clear tendency of the participants to divide the display into a close focus

area and a distant context area. In contrast to planar displays, where the transition

from focus to context is rather blurred [32], users facilitated the physical corner as hard

boundary.

When asked, some users indicated that windows in context areas should be smaller

(e.g., showing only a thumbnail or cropped version of the window). The most important

properties of windows in context areas are that they can be easily moved back to the focus

area and they are easily recognizable, according to our users. Content readability was

judged as less important. The concept of scaled-down [201] or cropped [114, 155] context

windows has already been suggested in previous work for planar large displays and could

be similarly employed for context areas of irregular displays.

According to user feedback, we identified two types of windows in context areas of

irregular displays: First, background windows hold valuable context information, which

requires frequent visual access but little interaction. Background windows are conven-

tionally dragged into a context region and manually positioned by the user. Important

information should remain uncovered by adjusting the existing windows’ positions, if pos-

sible, so quick visual scanning is supported.

Second, dump windows are (temporarily) irrelevant windows, which are moved to a

distant location to keep valuable focus areas unoccupied. As irregular displays obviously

increase the subjectively perceived mouse navigation effort, simple mouse gestures (like

throwing [88]) should support the user in easily relocating the window to the context area.

After the throw-gesture, windows should snap to a suitable region – neither occluding any

background information window, nor spanning across a physical corner or cropped display

outline. Dump windows should be scaled down so recognizability is supported, while

keeping the amount of occupied space to a minimum. This concept is similar to montages

212 Chapter 9. Evaluations of Window Management Techniques

in the Kimuara system [143], where windows of suspended tasks are scaled down, grouped

into piles, and presented on a peripheral display.

In order for our display-adaptive window management concept to better support the

user in dealing with irregular displays, we need to incorporate an increased amount of high-

level information. Physical discontinuities – either introduced by irregularities in projected

displays or by employing discontinuous displays – need to be analyzed with respect to the

users’ seating arrangements, so they can be automatically segmented into physically close

focus and more distant or less conveniently oriented context areas. Interaction techniques,

like the variant of throwing [88], described above, and multi-window operations, support

the user in quickly moving windows between these focus and context regions. Display-

adaptive window management based on importance-driven compositing, as described in

this thesis, is then responsible to locally adjust the window layout according to some

given high-level information. For instance, it ensures that windows do not span physical

discontinuities, do not cover background windows, and acts as foundation to explode

window piles on demand.

9.5 Discussion

In two exploratory studies (Section 9.1 and Section 9.2), we observed that users could ef-

ficiently discover related pieces of information contained in multiple application windows,

using visual links across applications to visually filter a large amount of visible informa-

tion. In addition, we could show a benefit of importance-driven window compositing for

discovering content in occluded windows (Section 9.3).

We could furthermore show a benefit of importance-driven window compositing to

quickly access information contained in occluded application windows by either facilitating

a dedicated uncovering technique (Section 9.3) or by automatically resolving occlusions

of piled up windows (Section 9.4). In contrast to more conventional window switching

techniques, our window uncovering technique combines information discovery and access

by not only visually revealing occluded information, but also letting the users interact with

this revealed content. This feature was very much appreciated by our users, who mostly

disliked the free-space transparency technique [123] because of its disability to interact

with occluded content, albeit being visible.

In contrast, the lack of support for convenient information access was a major drawback

of visual links, especially when working on a large, shared display. We observed that users

had difficulties accessing distant content highlighted by visual links, as any window layout

change would lead to distraction of the team partner.

Our exploratory study on display-adaptive window management (Section 9.4) showed

that irregular displays do not constrain the user in information manipulation by spa-

tially arranging individual windows on the screen. In contrary, users explicitly facilitated

physical discontinuities for spatially laying out windows when solving a complex informa-

tion analysis task. On-demand semi-automatic window layout subjectively supported the

9.5. Discussion 213

users in establishing a meaningful spatial layout for visual comparisons (by “exploding”

manually piled up windows) and for setting up their task environment (by automatically

“squeezing in” windows into an existing layout). However, we discovered that even more

powerful window management techniques – aware of both, the environment and the win-

dow content – were expected, to adequately support information manipulation activities

by the user.

With respect to information sharing, we observed that users working in a mixed-focus

collaboration style facilitated central storage facilities and collaborative information link-

ing to individually collect findings and to subsequently “replay” these findings to their

partner (Section 9.1). However, central storage facilities should be much more sophisti-

cated, as we observed that users have a strong desire to properly prepare and structure

their findings before discussing with their partner.

From these first experiences, we can formulate some implications for designers of future

window managers of emerging display environments:

Provide users with combined information discovery and access.

We observed that users appreciate the combination of a visualization technique to discover

information with an interaction technique to quickly access the discovered item. In the

future, it will be worth investigating novel window manager techniques combining infor-

mation discovery and access for large displays or multi-display environments. Off-screen

visualization techniques may lead the user’s gaze to distant display locations outside the

field of view and can be combined with interaction techniques to quickly teleport the

pointer to the respective location (similar to hopping [118] on small displays) or, con-

versely, to move the remote object (or a copy of the object, similar to WinCuts [238] or

drag-and-pop [17]) closer to the user.

Provide users with unified cross-application visualization and interaction.

User feedback for visual links across applications indicates that users appreciate a con-

sistent visualization technique across multiple applications. At the same time, they also

expect a consistent interaction technique to initiate or furthermore manipulate the visual-

ization on the desktop. A central application coordination approach as proposed in Section

7.2.1 therefore needs to support bidirectional communication: It is not sufficient that ap-

plications report selections and selection occurrences. Instead, user selections should be

captured centrally in a consistent manner – for instance by the window manager – and

only content parsing should be conducted by the applications themselves.

Provide users with display discontinuities to enable meaningful spatial win-

dow arrangements.

Creating spatial window arrangements can be considered as schematizing [4, 182] to sup-

port sensemaking tasks. As shown by previous research, users facilitate multiple monitors

for partitioning their information space [91]. We could demonstrate that this observation

is also true for irregular projected displays, where non-rectangular outlines and physical

discontinuities restrict the user in their potential spatial arrangements. Users explicitly fa-

cilitated these irregularities to spatially separate currently important focus windows from

214 Chapter 9. Evaluations of Window Management Techniques

temporarily irrelevant windows, or background windows providing persistent context in-

formation. Our provided display-adaptivity features (Section 8.3) supported users in some

situations but were probably not powerful enough. We speculate that increased spatial

awareness and content awareness of the window manager can support the user even better

in these spatial information organization tasks.

Provide users with sensemaking tools to collect and share information from

multiple sources.

Today’s window managers mainly support users in information foraging, while leaving

sensemaking to more specialized applications, such as visualization software. Due to the

lack of a central application coordination mechanism, certain stages of the sensemak-

ing loop (Figure 1.5) cannot be supported in WIMP environments, such as “shoebox”,

“evidence file”, “schema”, or “presentation”. For our collaborative information analysis

experiment, we provided users with a very simple bookmarking tool to quickly gather

findings from different sources in a consistent format. Unfortunately, this tool turned

out to be too inflexible. Bookmarked elements were too abstracted to be considered as a

“shoebox” or as a “schema”, which is why users ended up carefully structuring text files –

from an initial, individual “shoebox”, to an individual, more filtered “evidence file”, to a

collaboratively discussed “schema”. With a more powerful sensemaking tool, users would

be able to collect larger chunks of information (e.g., paragraphs around a selected word,

map views, table columns, or pre-selected visualizations) into a shoebox. Afterwards, they

could manually filter this information into an evidence file, which would be presented to

the partner. Together, they could now merge their evidence files to a combined schema

and subsequently to a presentation.

As extension of our series of experiments, it would be interesting to perform longitudi-

nal observations of window management techniques for complex information management

activities. As most of our techniques are implemented as plugins for the popular Compiz

window manager, we can reach a large user base for long-term logging-based studies or

informal feedback. We therefore aim to make our extensions publicly available to the

community.

Part V

Summary

215

Chapter 10

Discussion and Future Directions

The research hypothesis of this thesis is formulated as follows: Incorporating knowledge

of the physical environment and window content in WIMP interfaces will support users

in discovering, accessing, manipulating, and sharing information. Various research pro-

totypes have been designed and developed, and evaluations have been conducted to test

this hypothesis. In the following, these research prototypes will be discussed with respect

to the hypothesis and suggestions for future research directions will be presented.

10.1 Information Discovery

In this thesis, two window management techniques for information discovery have been

presented: visual links and window uncovering.

Visual links across applications (Section 8.1) are a cue-based focus and context

technique supporting the user to distinguish important from unimportant information in

a display environment cluttered with information. The technique derives knowledge from

two layers: the window layer to determine which regions of a window are relevant with

respect to the user’s current selection and the environment layer by distinguishing input

by different users and spatially aware links routing across discontinuous displays. Visual

links are then rendered as line connections on top of the screen content and important

content in the windows is visually highlighted.

The purpose of visual links is to support the user in filtering a large amount of visible

information in the environment, as well as to discover invisible information. According to

the taxonomy of invisible information presented in Chapter 1, visual links thereby cover

multiple aspects (cf., Table 1.1): They visualize diminished information on the window

level (e.g., a location on a map despite a coarse zoom level) and on the environment

level (the existence of information at a far distance, where the user cannot identify the

information any more). In a large display environment, they furthermore indicate the

existence of relevant information outside the user’s field of view and hidden behind physical

objects. In combination with the arrow-based off-screen visualization, they also help to

217

218 Chapter 10. Discussion and Future Directions

Window Screen Environment

Occluded – uncovering windows visual links

Cropped off-screen arrow – visual links

Diminished visual links – visual links

Table 10.1: Overview how our proposed window management techniques help to reveal invisible
information, according to our taxonomy in Table 1.1. Mind that the primary purpose of visual
links is to filter visible information.

discover information cropped at the window level, e.g., text in a long document which

requires the user to scroll, or a map location outside the current map view.

Results from two exploratory evaluations (Section 9.1 and Section 9.2) indicate that

visual links supported our users in filtering a large amount of visible information on the

screen. In a collaborative setting, visual links also reduced the necessity to modify shared

window content, as diminished information on the window level – caused by a coarse zoom

level – could be discovered without changing the visualization view.

In their current implementation, visual links do not support discovery of content oc-

cluded on the window or screen level (i.e., information hidden behind tabs or top level

windows). However, using importance-driven compositing window management in combi-

nation with links to occluded content would resolve this issue: Linked items are assigned

a very high importance in the window importance map and are therefore most likely to

be revealed using importance-driven compositing. Also, the current visual links routing

mechanism does not consider minimized windows, even though minimized applications re-

port user selections to the management application and the window state can be inferred

from the window manager. Thus, adding an additional highlighting technique for guiding

the user’s attention to invisible information on the screen level, would be a desirable future

extension for visual linking, as illustrated in Figure 10.1.

In contrast to visual links, window uncovering (Section 8.2) derives knowledge from

Figure 10.1: Conceptual sketch of extended visual links on a single display: in addition to the
connection lines between highlighted window regions and windows with cropped elements (indicated
by off-screen arrows), visual links could also infer knowledge of the window states and indicate the
existence of highlighted elements in minimized windows.

10.1. Information Discovery 219

the window and the screen level: On the window level, important window regions are

determined based on the analysis of image-based window importance maps, while window

occlusions are detected by the window manager on the screen level. Window uncover-

ing then optimizes the spatial window layout on the screen level and applies pixel-wise

transparencies to the individual windows to reveal occluded content.

Uncovering windows supports information discovery by temporarily increasing the

amount of visible information on the screen, which the user has to filter mentally, i.e.,

by sequentially scanning the entire display. It thereby supports the user in discovering

occluded screen content (cf., Table 10.1).

Results from a comparative experiment (Section 9.3) show that users were indeed

faster to find occluded window content, compared to sequential Alt+tab switching or

free-space transparency [123], which also applies content-aware transparencies to occluder

windows but does not optimize the spatial window layout on the screen level. However,

this advantage has only been observed for discovering fine-grained content, such as text,

that was not readable in the scaled window thumbnails of the Alt+tab menu. To detect

clearly visible and easily recognizable content, such as images, uncovering windows did

not significantly improve user performance.

Window uncovering was evaluated on a small monitor, where screen size restrictions

limit the amount of simultaneously visible information and thereby lead to an increased

amount of occluded content. However, in large display environments, the more challenging

aspect is filtering a large amount of visible information [234]. The above mentioned com-

bination with visual links could help to guide the user’s attention to relevant uncovered

items.

In the future, the concept of visual links should not only be used for synchronized high-

lighting of user-selected data, but could also be employed to enhance window switching

Figure 10.2: Conceptual sketch of visual links to windows on remote displays: on the user’s home
display, window icons are aligned along the display boundary. Visual links connect these icons to
the respective remote windows. Pulling an icon towards the home display center relocates the
associated remote window to the home display. Clicking on an icon teleports the pointer to the
remote window.

220 Chapter 10. Discussion and Future Directions

techniques on large or discontinuous displays. As illustrated in Figure 10.2, cross-display

links could help the user to discover remote windows – similar to the trail-based focus

window visualizations by Hoffmann et al. [108]. However, these links to remote windows

should not only serve as visualization, but should also be coupled to an interaction tech-

nique to quickly access content in remote windows.

10.2 Information Access

As stated in the previous section, window uncovering facilitates knowledge from the

window and screen level to support discovery of occluded information. Window uncov-

ering also enables information access, as it not only visually reveals occluded content, but

also allows the user to interact with this revealed content.

In an experiment (Section 9.3), users were faster conducting simple interaction tasks

in initially occluded windows, compared to conventional Alt+tab window switching, as

well as free-space transparency [123], which only visually revealed occluded content but

required explicit window switching to let users access the content. This ability for com-

bined information discovery and access was one of the most appreciated aspects of window

uncovering, according to informal user feedback.

However, information access requires the user to move the pointer to the respective

window – like in most other window occlusion management techniques. In large display

environments, access to distant information in remote windows is more physically and

mentally demanding – an aspect that has not been addressed by the window uncovering

technique.

We therefore developed and evaluated different cross-display navigation tech-

niques (Chapter 5) to access remote items in a large, discontinuous display environment.

All but one of these techniques facilitate knowledge from the environment layer to en-

sure spatially consistent navigation across display boundaries. Hypothetically, this spatial

awareness should cognitively support the user when accessing information on a remote

display using the mouse pointer.

According to our experiments (Chapter 6), spatial awareness seems to be only required

in very compact and straight-forward settings. In more complex settings, users do not

perceive the environment as spatially continuous any more. In this case, they subjectively

prefer more “discrete” interaction techniques to forward input control across displays.

Currently, our navigation techniques only consider information from the environment

layer. However, information from the screen or window layer could be similarly incor-

porated for mouse pointer navigation. Consider the conceptual sketch in Figure 6.13:

combining spatial knowledge of the environment (i.e., the visual navigation space) and

knowledge of window locations on the screen may be used to determine optimal outcome

positions when warping the pointer across display-less space. Window content awareness

could furthermore enhance on-display pointing performance when considering important

window regions in the device space. Based on window importance maps or synchronized

10.3. Information Manipulation 221

highlight regions, selective window regions can be made “sticky” by dynamically adjusting

the C/D gain, such as proposed for Semantic Pointing [42] or Sticky Widgets [151].

In the future, it will be important to also consider cross-display window relocation

to improve information access. In particular, remote getting [166], i.e., relocating distant

content to physically closer display areas for more convenient information access, has to

be considered in this context. According to informal user feedback in an exploratory

evaluation (Section 9.4), being able to quickly move windows back from a “context area”

to a closer display location was assessed as one of the most important future window

management techniques for large, irregular displays. As mentioned before, techniques to

access remote content should be coupled with information discovery support. For instance,

the concept to use visual links for discovering windows on remote displays, illustrated in

Figure 10.2, could be extended to allow the user to quickly relocate a remote window to

a convenient display space by simply “pulling” the cross-display link to the local display.

Conversely, the user may wish to keep the window layout unchanged (for instance to keep

interference with collaborators to a minimum) and rather wants to “teleport” the pointer

to the remote window by clicking on the local window icon. Similarly, a world-in-miniature

technique could allow the user to zoom into a remote display to discover occluded windows

there and to subsequently relocate the discovered remote window to the local display with

a simple button press or short mouse gesture – similarly as implemented in SEAPort [35]

or the world-in-miniature for Compiz by Bayer [24].

10.3 Information Manipulation

Display-adaptive window management (Section 8.3) incorporates knowledge from all

three layers to support information manipulation on large, irregular displays: Information

about the physical display form factors is derived from the environment layer, while the

screen layer provides window occlusion information, and the window layer informs about

the importance of the window content. Display-adaptive window management facilitates

this information to optimize the spatial window layout to increase the amount of important

information on the screen and to minimize the amount of content located at inconvenient

display locations. In contrast to window uncovering, it does not conduct any window-level

operations (i.e., see-through compositing) to increase content visibility.

Results from an initial exploratory evaluation (Section 9.4) showed that most users

appreciated the ability to automatically resolve occlusions on demand. However, automat-

ically snapping the windows to usable display areas was perceived as either unnecessary

or even disturbing, when users explicitly facilitated the irregular display boundaries to

arrange irrelevant information.

Informal user feedback and observations of this experiment lead to the conclusion that

display-adaptive window management needs to be much more powerful than originally

anticipated. As users explicitly facilitated the physical discontinuities of the display to

sort and arrange their information, incorporating knowledge of the display environment

222 Chapter 10. Discussion and Future Directions

to automate certain window manager operations seems to be indeed a suitable approach.

However, users demanded extended support for remote putting [166], i.e., for easily placing

windows in remote areas. They suggested two different approaches for efficient window

relocation: The more accepted suggestion was to throw [88] windows to remote display

areas with a simple mouse gesture. Spatial awareness of the environment is necessary to

determine the suitable target display region and display-geometry snapping would ensure

that the window is placed within a suitable display location (illustrated in Figure 10.3(a)).

An alternative suggestion was to embed a relocation button into the window title bar.

Again, awareness of the spatial display and user arrangement could help to categorize

suitable display locations. Users could then choose their anticipated relocation purpose,

such as handing off the window to a collaborator, depositing the window at a context

region, or publishing it for joint discussion (inspired by basic mechanics of collaboration

[179]). The system would then analyze the environment (e.g., visibility for the users, size,

and resolution of the potential target display) and the screen layer (e.g., whether someone

is currently interacting and if important windows would be occluded) to detect the most

suitable target display candidate. Figure 10.3(b) illustrates potential relocation targets

for depositing and publishing. However, users commented that pressing a button would

have caused more effort than dragging the window – at least with respect to the rather

small device space in our experiment.

(a) (b)

Figure 10.3: Conceptual sketches for window relocation in emerging display environments: (a)
“throwing” windows to a remote display and (b) explicitly triggered relocation techniques.

Display-adaptive window management is only a first step towards more suitable window

management for emerging display environments. It supports information manipulation on

irregularly projected, vertical displays and could serve as foundation for window manage-

ment in discontinuous MDEs, such as sketched in Figure 10.3. However, other emerging

display factors, such as horizontal displays or small mobile devices, have not been ad-

dressed. Apart from technical challenges (as shortly discussed at the end of Chapter 8),

window management for tabletop displays probably needs to be significantly different from

the window management concepts we know today. Interaction problems, such as targeting

difficulties with the mouse pointer observed in previous research (e.g., [83]) and in one of

10.4. Information Sharing 223

our experiments (Section 6.1), and challenges for information presentation, such as read-

ability aspects [263], indicate that conventional WIMP interfaces cannot easily be adapted

for tabletop displays. We therefore need to find alternative ways to window management,

but also window content manipulation, on tabletop displays. Simple touch-sensitive sur-

faces where captured input events are simply mapped to conventional pointer movements

and clicks (e.g., as the unified software architecture for tabletop displays based on Compiz

by Cheng et al. [58]), are already an improvement to mouse-based interaction, according to

our initial experiences. However, for tabletop displays we probably need to move further

away from conventional WIMP interfaces to truly meet the users’ needs. A promising

direction are tangible user interfaces for window management, as proposed by Holman et

al. [109], where the technical feasibility for integration in the Compiz window manager

has already been demonstrated [267].

The next logical step would be not only to adjust the window’s placement, size, ro-

tation, or opacity on the screen, but to actually adjust the window’s content to the new

display and viewing arrangements. In related research, examples for context-sensitive in-

formation visualization have been demonstrated in smart environments [84]. This topic

goes beyond the WIMP interface layer and was therefore not handled in the scope of this

thesis.

10.4 Information Sharing

Collaborative information linking (Section 8.1.2) facilitates personalized sets of vi-

sual links across applications to synchronize individual user selections across application

boundaries. Like conventional visual links, it derives knowledge from the window layer

(synchronized highlight regions) and the environment layer (distinguishing multi-user

input and analyzing the spatial display arrangement for cross-display links routing).

In a collaborative setting, the purpose of links is not solely to support information

discovery. It also helps users to maintain awareness of other users’ activities by visu-

alizing their current selections on shared application windows. It furthermore supports

users in comparing their individual selections on a shared view, which may trigger further

discussions.

In an exploratory evaluation (Section 9.2), groups conducting information analysis in

a mixed-focus collaboration style [94] facilitated information linking for individual infor-

mation discovery, and subsequently used links to replay their investigation steps to the

partner for joint discussion. The foundation for this replay activity was enabled by a sim-

ple selection bookmarking tool or a manually constructed text document summarizing the

individually collected findings in some sort of “shoebox” (cf., Figure 1.5). User feedback

suggests that tools for storing selections and findings are indeed useful but need to be

much more powerful.

In contrast to collaborative information linking, polarization-based interfaces in

combination with optical magic lenses (Section 8.4) provide personalized views on a phys-

224 Chapter 10. Discussion and Future Directions

ically shared display without altering the shared view. In contrast to all other interaction

and presentation techniques presented in this thesis, polarization-based interfaces facil-

itate only passive knowledge from the environment layer by exploiting purely optical

properties of polarized light. As a result, information filtering techniques normally re-

quiring constant tracking of users and handheld lens devices can be provided without any

software modifications of legacy applications. With this light-weight infrastructure, in-

teraction with shared display content does not cause interference with the collaborators.

Conceptually, we also proposed the incorporation of the screen layer to extend our concept

to single-display privacyware [219], differentiating between shared and private windows,

and to provide personalized highlighting, like visual links.

Co-located collaboration has not been investigated deeply in this thesis, although it is

a very wide research area with countless facets. Co-located collaboration has been kept in

mind for our presented software infrastructure and (most of) our research prototypes, but

we only touched upon collaboration by facilitating personalized visual links across appli-

cations and polarization-based interfaces for collaborative information analysis tasks. Our

findings in terms of co-located collaboration therefore should be seen as purely exploratory.

In the future, window relocation facilities exploiting spatial knowledge of the environ-

ment, as presented in the previous section (cf., Figure 10.3), may furthermore support in-

formation sharing activities using conventional WIMP interfaces by enabling spontaneous

discussions and flexible information exchange. Similarly, being able to quickly collect di-

verse window content into a consistent form to share the findings with the partner at a

later stage was seen as useful – even though users expect much more powerful tools. A

particularly important aspect is that window manager operations on shared display spaces

should be very subtle to decrease interference.

Finally, information sharing should go beyond WIMP interfaces and should be explic-

itly supported by the applications themselves. As a next step, applications could adapt

their representation and displayed data items to the active user. Streit et al. [229] ad-

dressed this issue theoretically for information visualization, where multi-level interaction

allows to seamlessly switch between representations of different application levels, which

is triggered by a change of owner. A system infrastructure using polarization-based in-

terfaces is particularly useful to support such personalized views, where a switch between

the views could be simply triggered by facilitating the tangible magic lens.

Chapter 11

Conclusion

The research prototypes for window-based information management in this thesis have

shown that boundaries of conventional WIMP interfaces can be successfully pushed to-

wards many varieties of emerging display environments. It has been demonstrated that

future WIMP interfaces can incorporate more knowledge than just the screen’s virtual

outline, described as simple rectangle, the location of a single pointer, and the location

and size of rectangular, opaque windows and other desktop elements, like menus or icons.

We summarized this type of knowledge as screen layer, as it only contains basic knowledge

of simple screen elements, without further information about the display’s properties in

the environment or the screen elements’ content.

In this thesis, we have extended WIMP interfaces to incorporate knowledge from two

additional layers:

environment: information about the display form factors, the spatial arrangement of

displays in the environment, and users operating them, and

windows: information about the individual windows’ content.

To retrieve this information, we designed and developed adequate system infrastruc-

ture to build low-cost spatially aware (multi-)display environments (Part II). In addition,

infrastructure for multi-user mouse pointer interaction incorporating this spatial knowl-

edge (Chapter 5) and window management incorporating spatial knowledge, but also

information about the window content, has been presented (Chapter 7). Based on this

infrastructure, mouse pointer navigation techniques have been developed (Chapter 5) and

novel window management techniques have been designed and implemented (Chapter 8).

These techniques have been evaluated to address different aspects of the research hypoth-

esis of this thesis:

Incorporating knowledge of the physical environment and window content in WIMP

interfaces will support users in discovering, accessing, manipulating, and sharing infor-

mation.

We could show that incorporating knowledge of the environment – in particular

of the spatial display arrangement – can have a positive impact on the performance of

225

226 Chapter 11. Conclusion

pointing tasks for remote information access in discontinuous MDEs. However, it seems

that with a certain degree of complexity concerning the display arrangement, the users

did not perceive the navigation space as spatially continuous any more. In these cases,

spatial awareness of the navigation technique did not provide any advantage. In contrast,

compensating for an increased visual-device space mismatch (with the cost of a larger

travel distance) by incorporating spatial knowledge decreased the performance.

We could furthermore demonstrate that facilitating knowledge of the window content

in the window manager can support users to discover information, access occluded

window content, and to share findings among collaborators. While visual links across

applications are suitable to visually filter a large amount of visible information on large

displays, window uncovering supports the user in discovering occluded content on con-

ventionally sized monitors. Users particularly appreciated window uncovering as a unified

interface to reveal occluded information, which also allows for direct access to the oth-

erwise occluded information. For groups working in a mixed-focus collaboration style

[94], we could furthermore observe that visual links in combination with storage mecha-

nisms support users in sharing (or “replaying”) individual findings with their partner in

a co-located collaborative setting.

Finally, incorporating knowledge of the environment – more specifically, the physical

display form factor – in the window manager seems to be a promising direction to facil-

itate information manipulation on irregularly shaped projected displays. Users invested

a significant amount of time to establish spatial window layouts supporting direct visual

comparisons, for sorting, and for categorizing individual windows – activities that have

been identified as some sort of schematizing in the sensemaking process [4, 182]. Users

thereby explicitly facilitated the physical irregularities of the display to create meaning-

ful layouts. Display-adaptivity features helped users to avoid window placement across

physical discontinuities and to resolve occlusions. However, users indicated that display-

adaptivity needs to be much more powerful to fully exploit the display form factors for

their sensemaking activities.

For future designers and developers of WIMP interfaces, our findings imply that it

is indeed feasible to extend conventional WIMP interfaces to support information man-

agement in emerging display environments. We could also demonstrate that maintaining

spatial awareness of the environment is possible without special sensory equipment or

high-end display hardware in many display configurations, such as illustrated in Figure

11.1. Dynamic spatial awareness facilitating tracking hardware will be necessary if mo-

bile devices are employed, or if the users frequently change location. We also discussed

different window manager extensions to access information about the window content in

WIMP interfaces. Our presented window management techniques illustrate that power-

ful interaction and information presentation techniques can build upon non-invasive and

minimally invasive content-awareness approaches.

In the future, information about the environment layer may not only be facilitated by

WIMP interfaces, but also by custom applications. Our Deskotheque environment provides

227

(a) (b)

Figure 11.1: Examples for multi-display environments which are suitable for a static environmental
model: personal-device centric operation with (a) a single shared display and (b) displays of
different form factors arranged in front of the users.

an API to access information about the environment (e.g., users triggering an input event

and geometric properties of the displays) for custom application development. Future ap-

plications running in such an extended WIMP environment should consider adjusting their

information representation dynamically to the interacting user(s) and the display factors.

Using such an infrastructure, special-purpose software dynamically adapted to the environ-

ment can co-exist with unmodified applications that benefit from application-transparent

and environment-aware pointer navigation and window management. Information about

the environment should also be facilitated by GUI toolkits to support the creation of adap-

tive user interfaces, as proposed, for instance, by Myers et al. [161] or Gajos and Weld

[86].

Furthermore, easy-to-access interfaces to synchronize user activities across window

(and application) boundaries are necessary to make content-aware visualization and inter-

action techniques widely available. Having such an infrastructure and applications making

use of it, content-awareness cannot only be facilitated for information filtering and occlu-

sion management, such as presented in this thesis, but could also improve the support for

(collaborative) sensemaking.

228

Bibliography

[1] Anand Agarawala and Ravin Balakrishnan. Keepin’ it real: pushing the desktop

metaphor with physics, piles and the pen. In Proc. CHI 2006, pages 1283–1292.

ACM, 2006.

[2] Christopher Ahlberg. Spotfire: an information exploration environment. SIGMOD

Rec., 25:25–29, December 1996.

[3] Saleema Amershi and Meredith Ringel Morris. Cosearch: a system for co-located

collaborative web search. In Proc. CHI 2008, pages 1647–1656. ACM, 2008.

[4] Christopher Andrews, Alex Endert, and Chris North. Space to think: large high-

resolution displays for sensemaking. In Proc. CHI 2010, pages 55–64. ACM, 2010.

[5] Caroline Appert, Olivier Chapuis, and Michel Beaudouin-Lafon. Evaluation of point-

ing performance on screen edges. In Proc. AVI 2008, pages 119–126. ACM, 2008.

[6] Mark Ashdown, Matthew Flagg, Rahul Sukthankar, and James M. Rehg. A Flexible

Projector-Camera System for Multi-Planar Displays. In Proc. CVPR 2004, volume 2,

pages 165–172. IEEE Computer Society, 2004.

[7] Mark Ashdown, Kenji Oka, and Yoichi Sato. Combining head tracking and mouse

input for a gui on multiple monitors. In Proc. CHI 2005, pages 1188–1191. ACM,

2005.

[8] Mark Ashdown and Peter Robinson. Escritoire: A personal projected display. IEEE

MultiMedia, 12(1):34–42, 2005.

[9] Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing. ACM

Trans. Graph., 26, July 2007.

[10] Greg J. Badros, Jeffrey Nichols, and Alan Borning. Scwm: An extensible constraint-

enabled window manager. In Proc. USENIX 2001, pages 225–234. USENIX Associ-

ation, 2001.

[11] Ronald M. Baecker. Readings in human-computer interaction: toward the year 2000.

Morgan Kaufmann, 1995.

[12] Ravin Balakrishnan. ”beating” fitts’ law: virtual enhancements for pointing facili-

tation. Int. J. Hum.-Comput. Stud., 61(6):857–874, 2004.

[13] Robert Ball and Chris North. An analysis of user behavior on high-resolution tiled

displays. In In Proc. INTERACT 2005, pages 350–363. Springer, 2005.

BIBLIOGRAPHY 229

[14] Robert Ball and Chris North. Effects of tiled high-resolution display on basic visual-

ization and navigation tasks. In Ext. Abstracts CHI 2005, pages 1196–1199. ACM,

2005.

[15] Liam Bannon, Allen Cypher, Steven Greenspan, and Melissa L. Monty. Evaluation

and analysis of users’ activity organization. In Proc. CHI 1983, pages 54–57. ACM,

1983.

[16] Aaron Barsky, Tamara Munzner, Jennifer Gardy, and Robert Kincaid. Cerebral:

Visualizing multiple experimental conditions on a graph with biological context.

IEEE TVCG, 14:1253–1260, November 2008.

[17] Patrick Baudisch, Edward Cutrell, Mary Czerwinski, Daniel C. Robbins, Peter Tan-

dler, Benjamin B. Bederson, and A. Zierlinger. Drag-and-pop and drag-and-pick:

Techniques for accessing remote screen content on touch- and pen-operated systems.

In Proc. INTERACT 2003, pages 57–64, 2003.

[18] Patrick Baudisch, Edward Cutrell, Ken Hinckley, and Robert Gruen. Mouse ether:

accelerating the acquisition of targets across multi-monitor displays. In Ext. Ab-

stracts CHI 2004, pages 1379–1382. ACM, 2004.

[19] Patrick Baudisch, Edward Cutrell, and George G. Robertson. High-density cursor:

a visualization technique that helps users keep track of fast-moving mouse cursors.

In Proc. INTERACT 2003, pages 236–243, 2003.

[20] Patrick Baudisch, Nathaniel Good, Victoria Bellotti, and Pamela Schraedley. Keep-

ing things in context: a comparative evaluation of focus plus context screens,

overviews, and zooming. In Proc. CHI 2002, pages 259–266. ACM, 2002.

[21] Patrick Baudisch, Nathaniel Good, and Paul Stewart. Focus plus context screens:

combining display technology with visualization techniques. In Proc. UIST 2001,

pages 31–40. ACM, 2001.

[22] Patrick Baudisch and Carl Gutwin. Multiblending: displaying overlapping windows

simultaneously without the drawbacks of alpha blending. In Proc. CHI 2004, pages

367–374. ACM, 2004.

[23] Patrick Baudisch and Ruth Rosenholtz. Halo: a technique for visualizing off-screen

objects. In Proc. CHI 2003, pages 481–488. ACM, 2003.

[24] Joris Jan Bayer. A world-in-miniature for multi-display environments: Implementa-

tion of a compiz-based window relocator. Bachelor’s thesis, Institute for Computer

Graphics and Vision, Graz University of Technology, 2011.

[25] Michel Beaudouin-Lafon. Novel interaction techniques for overlapping windows. In

Proc. UIST 2001, pages 153–154. ACM, 2001.

230

[26] Benjamin B. Bederson and James D. Hollan. Pad++: a zooming graphical interface

for exploring alternate interface physics. In Proc. UIST 1994, pages 17–26. ACM,

1994.

[27] Blaine A. Bell and Steven K. Feiner. Dynamic space management for user interfaces.

In Proc. UIST 2000, pages 239–248. ACM, 2000.

[28] Hrvoje Benko and Steven Feiner. Multi-monitor mouse. In Ext. Abstracts CHI 2005,

pages 1208–1211. ACM, 2005.

[29] Hrvoje Benko and Steven Feiner. Pointer warping in heterogeneous multi-monitor

environments. In Proc. GI 2007, pages 111–117. ACM, 2007.

[30] Anastasia Bezerianos and Ravin Balakrishnan. The vacuum: facilitating the manip-

ulation of distant objects. In Proc. CHI 2005, pages 361–370. ACM, 2005.

[31] Anastasia Bezerianos, Pierre Dragicevic, and Ravin Balakrishnan. Mnemonic ren-

dering: an image-based approach for exposing hidden changes in dynamic displays.

In Proc. UIST 2006, pages 159–168. ACM, 2006.

[32] Xiaojun Bi and Ravin Balakrishnan. Comparing usage of a large high-resolution

display to single or dual desktop displays for daily work. In Proc. CHI 2009, pages

1005–1014. ACM, 2009.

[33] Jacob T. Biehl and Brian P. Bailey. ARIS: An Interface for Application Relocation in

an Interactive Space. In Proc. GI 2004, pages 107–116. Canadian Human-Computer

Communications Society, 2004.

[34] Jacob T. Biehl and Brian P. Bailey. Comparing an iconic interface to a text-based

and virtual paths interface for effective interaction in an interactive workspace. In

Proc. ED-MEDIA 2006, pages 581–586, 2006.

[35] Jacob T. Biehl and Brian P. Bailey. Improving scalability and awareness in iconic

interfaces for multiple-device environments. In Proc. AVI 2006, pages 91–94. ACM,

2006.

[36] Jacob T. Biehl and Brian P. Bailey. Interfaces for managing applications and input

in multi-device environments. In CHI Workshop on Information Visualization and

Interaction Techniques for Collaboration across Multiple Displays, 2006.

[37] Jacob T. Biehl, William T. Baker, Brian P. Bailey, Desney S. Tan, Kori M. Inkpen,

and Mary Czerwinski. IMPROMPTU: A New Interaction Framework for Supporting

Collaboration in Multiple Display Environments and Its Field Evaluation for Co-

located Software Development. In Proc. CHI 2008, pages 939–948. ACM, 2008.

BIBLIOGRAPHY 231

[38] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D. DeRose.

Toolglass and magic lenses: the see-through interface. In Proc. SIGGRAPH 1993,

pages 73–80. ACM, 1993.

[39] Oliver Bimber, Andreas Emmerling, and Thomas Klemmer. Embedded entertain-

ment with smart projectors. Computer, 38:48–55, January 2005.

[40] Oliver Bimber, Gordon Wetzstein, Andreas Emmerling, and Christian Nitschke.

Enabling view-dependent stereoscopic projection in real environments. In Proc.

ISMAR 2005, pages 14–23. IEEE Computer Society, 2005.

[41] Jeremy P. Birnholtz, Tovi Grossman, Clarissa Mak, and Ravin Balakrishnan. An

exploratory study of input configuration and group process in a negotiation task

using a large display. In Proc. CHI 2007, pages 91–100. ACM, 2007.

[42] Renaud Blanch, Yves Guiard, and Michel Beaudouin-Lafon. Semantic pointing:

improving target acquisition with control-display ratio adaptation. In Proc. CHI

2004, pages 519–526. ACM, 2004.

[43] Sara A. Bly and Jarrett K. Rosenberg. A comparison of tiled and overlapping

windows. SIGCHI Bull., 17(4):101–106, 1986.

[44] Kellogg S. Booth, Brian D. Fisher, Chi Jui Raymond Lin, and Ritchie Argue. The

”mighty mouse” multi-screen collaboration tool. In Proc. UIST 2002, pages 209–212.

ACM, 2002.

[45] Sebastian Boring, Dominikus Baur, Andreas Butz, Sean Gustafson, and Patrick

Baudisch. Touch projector: mobile interaction through video. In Proc. CHI 2010,

pages 2287–2296. ACM, 2010.

[46] Jean-Yves Bouguet. Camera calibration toolbox for matlab. URL:

http://www.vision.caltech.edu/bouguetj/calib doc/, Last access: December 2010.

[47] Gary Bradski and Adrian Kaehler. Learning OpenCV: computer vision with the

OpenCV library. O’Reilly Media, Inc., 2008.

[48] Michael S. Brown, Aditi Majumder, and Ruigang Yang. Camera-Based Calibration

Techniques for Seamless Multiprojector Displays. IEEE TVCG, 11(2):193–206, 2005.

[49] Michael S. Brown and W. Brent Seales. A practical and flexible tiled display system.

In Proc. Pacific Graphics 2002, pages 194–203, 2002.

[50] Kevin F. Bury and Michael J. Darnell. Window management in interactive computer

systems. SIGCHI Bull., 18:65–66, October 1986.

232

[51] S. K. Card, M. Pavel, and J. E. Farrell. Human-computer interaction. chapter

Window-based computer dialogues, pages 456–460. Morgan Kaufmann Publishers

Inc., 1987.

[52] Stuart K. Card and Austin Henderson, Jr. A multiple, virtual-workspace interface

to support user task switching. In Proc. CHI 1987, pages 53–59. ACM, 1987.

[53] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings in information

visualization: using vision to think. Morgan Kaufmann, 1999.

[54] M. Sheelagh T. Carpendale and Catherine Montagnese. A framework for unifying

presentation space. In Proc. UIST 2001, pages 61–70. ACM, 2001.

[55] Olivier Chapuis and Nicolas Roussel. Metisse is not a 3D Desktop! In Proc. UIST

2005, pages 13–22. ACM, 2005.

[56] Olivier Chapuis and Nicolas Roussel. Copy-and-paste between overlapping windows.

In Proc. CHI 2007, pages 201–210. ACM, 2007.

[57] Han Chen, Rahul Sukthankar, Grant Wallace, and Tat-Jen Cham. Calibrating scal-

able multi-projector displays using camera homography trees. In Proc. CVPR 2001,

pages 9–14. IEEE Computer Society, 2001.

[58] Kelvin Cheng, Benjamin Itzstein, Paul Sztajer, and Markus Rittenbruch. A unified

multi-touch & multi-pointer software architecture for supporting collocated work on

the desktop. Technical Report ATP-2247, NICTA, Sydney, Australia, 2010.

[59] Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. A review of

overview+detail, zooming, and focus+context interfaces. ACM Comput. Surv.,

41:2:1–2:31, January 2009.

[60] Ellis S. Cohen, Edward T. Smith, and Lee A. Iverson. Constraint-based tile windows.

IEEE Comput. Graph. Appl., 6(5):35–45, 1986.

[61] Christopher Collins and Sheelagh Carpendale. Vislink: Revealing relationships

amongst visualizations. IEEE TVCG, 13:1192–1199, November 2007.

[62] Gregorio Convertino, Jian Chen, Beth Yost, Young-Sam Ryu, and Chris North.

Exploring context switching and cognition in dual-view coordinated visualizations.

In Proc. CMV 2003, pages 55–60. IEEE Computer Society, 2003.

[63] Gregorio Convertino, Craig H. Ganoe, Wendy A. Schafer, Beth Yost, and John M.

Carroll. A multiple view approach to support common ground in distributed and

synchronous geo-collaboration. In Proc. CMV 2005, pages 121–132. IEEE Computer

Society, 2005.

BIBLIOGRAPHY 233

[64] Daniel Cotting, Henry Fuchs, Remo Ziegler, and Markus H. Gross. Adaptive In-

stant Displays: Continuously Calibrated Projections Using Per-Pixel Light Control.

Computer Graphics Forum, 24(3):705–714, 2005.

[65] Daniel Cotting and Markus Gross. Interactive Environment-Aware Display Bubbles.

In Proc. UIST 2006, pages 245–254. ACM, 2006.

[66] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. DeFanti. Surround-screen

projection-based virtual reality: the design and implementation of the cave. In Proc.

SIGGRAPH 1993, pages 135–142. ACM Press, 1993.

[67] Mary Czerwinski, Eric Horvitz, and Susan Wilhite. A diary study of task switching

and interruptions. In Proc. CHI 2004, pages 175–182. ACM, 2004.

[68] Mary Czerwinski, George Robertson, Brian Meyers, Greg Smith, Daniel Robbins,

and Desney Tan. Large Display Research Overview. In Ext. Abstracts CHI 2006,

pages 69–74. ACM, 2006.

[69] Mary Czerwinski, Greg Smith, Tim Regan, and Brian Meyers. Toward characterizing

the productivity benefits of very large displays. In Proc. INTERACT 2003, pages

9–16. IOS Press, 2003.

[70] Jr. D. Austin Henderson and Stuart Card. Rooms: the use of multiple virtual

workspaces to reduce space contention in a window-based graphical user interface.

ACM Trans. Graph., 5(3):211–243, 1986.

[71] Mark Dokter. Synergy+mpx: Towards multi-user interaction in multi-display en-

vironments. Bachelor thesis, Institute for Computer Graphics and Vision, Graz

University of Technology, Austria, 2010.

[72] Clarence A. Ellis, Simon J. Gibbs, and Gail Rein. Groupware: some issues and

experiences. Commun. ACM, 34(1):39–58, 1991.

[73] Niklas Elmqvist and Philippas Tsigas. A taxonomy of 3d occlusion management for

visualization. IEEE TVCG, 14:1095–1109, September 2008.

[74] Katherine Everitt, Chia Shen, Kathy Ryall, and Clifton Forlines. Multispace: En-

abling electronic document micro-mobility in table-centric, multi-device environ-

ments. In Proc. TABLETOP 2006, pages 27–34. IEEE Computer Society, 2006.

[75] Guillaume Faure, Olivier Chapuis, and Nicolas Roussel. Power tools for copying and

moving: useful stuff for your desktop. In Proc. CHI 2009, pages 1675–1678. ACM,

2009.

[76] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated cartography.

Commun. ACM, 24:381–395, June 1981.

234

[77] Ken Fishkin and Maureen C. Stone. Enhanced dynamic queries via movable filters.

In Proc. CHI 1995, pages 415–420. ACM Press/Addison-Wesley Publishing Co.,

1995.

[78] Paul M. Fitts. The information capacity of the human motor system in controlling

the amplitude of movement. J Exp Psychol, 47(6):381–391, June 1954.

[79] Clifton Forlines, Alan Esenther, Chia Shen, Daniel Wigdor, and Kathy Ryall. Multi-

user, multi-display interaction with a single-user, single-display geospatial applica-

tion. In Proc. UIST 2006, pages 273–276. ACM, 2006.

[80] Clifton Forlines and Ryan Lilien. Adapting a single-user, single-display molecular

visualization application for use in a multi-user, multi-display environment. In Proc.

AVI 2008, pages 367–371. ACM, 2008.

[81] Clifton Forlines and Chia Shen. Dtlens: multi-user tabletop spatial data exploration.

In Proc. UIST 2005, pages 119–122. ACM, 2005.

[82] Clifton Forlines, Chia Shen, Daniel Wigdor, and Ravin Balakrishnan. Exploring the

effects of group size and display configuration on visual search. In Proc. CSCW

2006, pages 11–20. ACM, 2006.

[83] Clifton Forlines, Daniel Wigdor, Chia Shen, and Ravin Balakrishnan. Direct-touch

vs. mouse input for tabletop displays. In Proc. CHI 2007, pages 647–656. ACM,

2007.

[84] Georg Fuchs, Conrad Thiede, Mike Sips, and Heidrun Schumann. Device-based

adaptation of visualizations in smart environments. In Proc. CoVIS Workshop,

IEEE VisWeek 2009, 2009.

[85] George W. Furnas. Generalized fisheye views. In Proc. CHI 1986, pages 16–23.

ACM, 1986.

[86] Krzysztof Gajos and Daniel S. Weld. Supple: automatically generating user inter-

faces. In Proc. IUI 2004, pages 93–100. ACM, 2004.

[87] K. B. Gaylin. How are windows used? some notes on creating an empirically-based

windowing benchmark task. In Proc. CHI 1986, pages 96–100. ACM, 1986.

[88] Jörg Geißler. Shuffle, throw or take it! working efficiently with an interactive wall.

In Proc. CHI 1998, pages 265–266. ACM, 1998.

[89] Adele Goldberg and David Robson. Smalltalk-80: the language and its implemen-

tation. Addison-Wesley Longman Publishing Co., Inc., 1983.

[90] Saul Greenberg. Sharing views and interactions with single-user applications. In

Proc. COCS 1990, pages 227–237. ACM, 1990.

BIBLIOGRAPHY 235

[91] Jonathan Grudin. Partitioning digital worlds: focal and peripheral awareness in

multiple monitor use. In Proc. CHI 2001, pages 458–465. ACM, 2001.

[92] Sean Gustafson, Patrick Baudisch, Carl Gutwin, and Pourang Irani. Wedge: clutter-

free visualization of off-screen locations. In Proc. CHI 2008, pages 787–796. ACM,

2008.

[93] Carl Gutwin, Jeff Dyck, and Chris Fedak. The effects of dynamic transparency on

targeting performance. In Proc. GI 2003, pages 105–112, 2003.

[94] Carl Gutwin and Saul Greenberg. Design for individuals, design for groups: tradeoffs

between power and workspace awareness. In Proc. CSCW 1998, pages 207–216.

ACM, 1998.

[95] Carl Gutwin and Saul Greenberg. The mechanics of collaboration: Developing low

cost usability evaluation methods for shared workspaces. In Proc. WETICE 2000,

pages 98–103. IEEE Computer Society, 2000.

[96] Vicki Ha, Kori Inkpen, Jim Wallace, and Ryder Ziola. Swordfish: User Tailored

Workspaces in Multi-Display Environments. In Ext. Abstracts CHI 2006, pages

1487–1492. ACM, 2006.

[97] Vicki Ha, Jim Wallace, Ryder Ziola, and Kori Inkpen. My mde: configuring virtual

workspaces in multi-display environments. In Ext. Abstracts CHI 2006, pages 1481–

1486. ACM, 2006.

[98] Beverly L. Harrison, Hiroshi Ishii, Kim J. Vicente, and William A. S. Buxton. Trans-

parent layered user interfaces: an evaluation of a display design to enhance focused

and divided attention. In Proc. CHI 1995, pages 317–324. ACM, 1995.

[99] Beverly L. Harrison, Gordon Kurtenbach, and Kim J. Vicente. An experimental

evaluation of transparent user interface tools and information content. In Proc.

UIST 1995, pages 81–90. ACM, 1995.

[100] Peter Hart, Nils Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2):100–107, February 1968.

[101] Kirstie Hawkey, Melanie Kellar, Derek Reilly, Tara Whalen, and Kori M. Inkpen.

The proximity factor: impact of distance on co-located collaboration. In Proc.

GROUP 2005, pages 31–40. ACM, 2005.

[102] Jeffrey Heer and Maneesh Agrawala. Design considerations for collaborative visual

analytics. Information Visualization, 7(1):49–62, 2008.

236

[103] Jeffrey Heer, Stuart K. Card, and James A. Landay. prefuse: a toolkit for interactive

information visualization. In Proc. CHI 2005, pages 421–430. ACM, 2005.

[104] Jeffrey Heer, Frank Ham, Sheelagh Carpendale, Chris Weaver, and Petra Isenberg.

Information visualization. chapter Creation and Collaboration: Engaging New Au-

diences for Information Visualization, pages 92–133. Springer-Verlag, 2008.

[105] Jeffrey Heer, Jock Mackinlay, Chris Stolte, and Maneesh Agrawala. Graphical his-

tories for visualization: Supporting analysis, communication, and evaluation. IEEE

TVCG, 14:1189–1196, November 2008.

[106] Ken Hinckley. The human-computer interaction handbook. chapter Input technolo-

gies and techniques, pages 151–168. L. Erlbaum Associates Inc., Hillsdale, NJ, USA,

2003.

[107] Ken Hinckley, Gonzalo Ramos, Francois Guimbretiere, Patrick Baudisch, and Marc

Smith. Stitching: pen gestures that span multiple displays. In Proc. AVI 2004, pages

23–31. ACM, 2004.

[108] Raphael Hoffmann, Patrick Baudisch, and Daniel S. Weld. Evaluating visual cues

for window switching on large screens. In Proc. CHI 2008, pages 929–938. ACM,

2008.

[109] David Holman, Roel Vertegaal, Mark Altosaar, Nikolaus Troje, and Derek Johns.

Paper windows: interaction techniques for digital paper. In Proc. CHI 2005, pages

591–599. ACM, 2005.

[110] Danny Holten and Jarke J. van Wijk. Force-directed edge bundling for graph visu-

alization. In Proc. EuroVis 2009, pages 983 – 990, 2009.

[111] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D.

Kirchner, and James T. Klosowski. Chromium: a stream-processing framework for

interactive rendering on clusters. In Proc. SIGGRAPH 2002, pages 693–702. ACM,

2002.

[112] Dugald Ralph Hutchings, Greg Smith, Brian Meyers, Mary Czerwinski, and George

Robertson. Display space usage and window management operation comparisons

between single monitor and multiple monitor users. In Proc. AVI 2004, pages 32–39.

ACM, 2004.

[113] Dugald Ralph Hutchings and John Stasko. Revisiting display space management:

understanding current practice to inform next-generation design. In Proc. GI 2004,

pages 127–134. Canadian Human-Computer Communications Society, 2004.

[114] Dugald Ralph Hutchings and John Stasko. Shrinking window operations for expand-

ing display space. In Proc. AVI 2004, pages 350–353. ACM, 2004.

BIBLIOGRAPHY 237

[115] Peter Hutterer and Bruce H. Thomas. Groupware Support in the Windowing Sys-

tem. In Proc. AUIC 2007, pages 39–46. Australian Computer Society, Inc., 2007.

[116] Keigo Iizuka. Cellophane as a half-wave plate and its use for converting a laptop

computer screen into a three-dimensional display. Review of Scientific Instruments,

74(8):3636–3639, 2003.

[117] Kori Inkpen, Kirstie Hawkey, Melanie Kellar, Regan M, Karen Parker, Derek Reilly,

Stacey Scott, and Tara Whalen. Exploring display factors that influence co-located

collaboration: angle, size, number, and user arrangement. In In Proc. HCI Interna-

tional 2005, 2005.

[118] Pourang Irani, Carl Gutwin, and Xing Dong Yang. Improving selection of off-screen

targets with hopping. In Proc. CHI 2006, pages 299–308. ACM, 2006.

[119] Petra Isenberg, Anastasia Bezerianos, Nathalie Henry, Sheelagh Carpendale, and

Jean-Daniel Fekete. Coconuttrix: Collaborative retrofitting for information visu-

alization. Computer Graphics and Applications: Special Issue on Collaborative

Visualization, 29(5):44–57, September/October 2009.

[120] Petra Isenberg and Sheelagh Carpendale. Interactive tree comparison for co-located

collaborative information visualization. IEEE TVCG, 13(6):1232–1239, November

2007.

[121] Petra Isenberg and Danyel Fisher. Collaborative brushing and linking for co-located

visual analytics of document collections. In Proc. EuroVis 2009, volume 28, pages

1031–1038, June 2009.

[122] Petra Isenberg, Anthony Tang, and Sheelagh Carpendale. An exploratory study of

visual information analysis. In Proc. CHI 2008, pages 1217–1226. ACM, 2008.

[123] Edward W. Ishak and Steven K. Feiner. Interacting with hidden content using

content-aware free-space transparency. In Proc. UIST 2004, pages 189–192. ACM,

2004.

[124] Laurent Itti, Cristof Koch, and Ernst Niebur. A model of saliency-based visual

attention for rapid scene analysis. PAMI, 20(11):1254–1259, 1998.

[125] Shahram Izadi, Harry Brignull, Tom Rodden, Yvonne Rogers, and Mia Underwood.

Dynamo: a public interactive surface supporting the cooperative sharing and ex-

change of media. In Proc. UIST 2003, pages 159–168. ACM, 2003.

[126] Allan S. Jacobson, Andrew L. Berkin, and Martin N. Orton. Linkwinds: interactive

scientific data analysis and visualization. Commun. ACM, 37:42–52, April 1994.

238

[127] Hao Jiang, Daniel Wigdor, Clifton Forlines, Michelle Borkin, Jens Kauffmann, and

Chia Shen. Livolay: interactive ad-hoc registration and overlapping of applications

for collaborative visual exploration. In Proc. CHI 2008, pages 1357–1360. ACM,

2008.

[128] Brad Johanson, Armando Fox, and Terry Winograd. The Interactive Workspaces

Project: Experiences with Ubiquitous Computing Rooms. IEEE Pervasive Comput-

ing, 1(2):67–74, 2002.

[129] Brad Johanson, Greg Hutchins, Terry Winograd, and Maureen Stone. PointRight:

Experience with Flexible Input Redirection in Interactive Workspaces. In Proc.

UIST 2002, pages 227–234. ACM, 2002.

[130] Brad Johanson, Shankar Ponnekanti, Caesar Sengupta, and Armando Fox. Multi-

browsing: Moving web content across multiple displays. In Proc. UbiComp 2001,

pages 346–353. Springer-Verlag, 2001.

[131] Brian Johnson and Ben Shneiderman. Tree-maps: a space-filling approach to the

visualization of hierarchical information structures. In Proc. VIS 1991, pages 284–

291. IEEE Computer Society Press, 1991.

[132] Jeff Johnson, Teresa L. Roberts, William Verplank, David C. Smith, Charles H.

Irby, Marian Beard, and Kevin Mackey. The xerox star: A retrospective. Computer,

22:11–26, 28–29, September 1989.

[133] Tyler Johnson and Henry Fuchs. Real-time projector tracking on complex geometry

using ordinary imagery. In Proc. CVPR 2007, page 1. IEEE Computer Society, 2007.

[134] Tyler Johnson and Henry Fuchs. A unified multi-surface, multi-resolution workspace

with camera-based scanning and projector-based illumination. In Proc. IPT-EGVE

2007, 2007.

[135] Eser Kandogan and Ben Shneiderman. Elastic windows: evaluation of multi-window

operations. In Proc. CHI 1997, pages 250–257. ACM, 1997.

[136] Daniel A. Keim. Information visualization and visual data mining. IEEE TVCG,

8:1–8, January 2002.

[137] Azam Khan, George Fitzmaurice, Don Almeida, Nicolas Burtnyk, and Gordon

Kurtenbach. A remote control interface for large displays. In Proc. UIST 2004,

pages 127–136. ACM, 2004.

[138] Azam Khan, Justin Matejka, George Fitzmaurice, and Gordon Kurtenbach. Spot-

light: directing users’ attention on large displays. In Proc. CHI 2005, pages 791–798.

ACM, 2005.

BIBLIOGRAPHY 239

[139] Robert Kosara, Silvia Miksch, and Helwig Hauser. Focus+Context taken literally.

IEEE Computer Graphics and Applications, 22(1):22–29, 2002.

[140] J. Chris Lauwers and Keith A. Lantz. Collaboration awareness in support of col-

laboration transparency: requirements for the next generation of shared window

systems. In Proc. CHI 1990, pages 303–311. ACM, 1990.

[141] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least squares

conformal maps for automatic texture atlas generation. In Proc. SIGGRAPH 2002,

pages 362–371, 2002.

[142] Alexander Lex, Marc Streit, Ernst Kruijff, and Dieter Schmalstieg. Caleydo: Design

and evaluation of a visual analysis framework for gene expression data in its biological

context. In Proc. PacificVis 2010. IEEE Computer Society, 2010.

[143] Blair MacIntyre, Elizabeth D. Mynatt, Stephen Voida, Klaus M. Hansen, Joe Tullio,

and Gregory M. Corso. Support For Multitasking and Background Awareness Using

Interactive Peripheral Displays. In Proc. UIST 2001, pages 41–50, 2001.

[144] I. Scott MacKenzie. Fitts’ law as a research and design tool in human-computer

interaction. Hum.-Comput. Interact., 7(1):91–139, 1992.

[145] I. Scott MacKenzie, Tatu Kauppinen, and Miika Silfverberg. Accuracy measures for

evaluating computer pointing devices. In Proc. CHI 2001, pages 9–16. ACM, 2001.

[146] Jock D. Mackinlay and Jeffrey Heer. Wideband displays: mitigating multiple mon-

itor seams. In Ext. Abstracts CHI 2004, pages 1521–1524. ACM, 2004.

[147] Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. The perspective wall:

detail and context smoothly integrated. In Proc. CHI 1991, pages 173–176. ACM,

1991.

[148] Jock D. Mackinlay, George G. Robertson, and Robert DeLine. Developing calendar

visualizers for the information visualizer. In Proc. UIST 1994, pages 109–118. ACM,

1994.

[149] Thomas W. Malone. How do people organize their desks?: Implications for the

design of office information systems. ACM Trans. Inf. Syst., 1:99–112, January

1983.

[150] Richard Mander, Gitta Salomon, and Yin Yin Wong. A “pile” metaphor for sup-

porting casual organization of information. In Proc. CHI 1992, pages 627–634. ACM,

1992.

[151] Regan L. Mandryk, Malcolm E. Rodgers, and Kori M. Inkpen. Sticky widgets:

pseudo-haptic widget enhancements for multi-monitor displays. In Ext. Abstracts

CHI 2005, pages 1621–1624. ACM, 2005.

240

[152] Regan L. Mandryk, Stacey D. Scott, and Kori M. Inkpen. Display factors influencing

co-located collaboration. In Proc. CSCW 2002. ACM, 2002.

[153] Gloria Mark and Alfred Kobsa. The effects of collaboration and system transparency

on cive usage: an empirical study and model. Presence: Teleoper. Virtual Environ.,

14(1):60–80, 2005.

[154] Allen R. Martin and Matthew O. Ward. High dimensional brushing for interactive

exploration of multivariate data. In Proc. VIS 1995, page 271. IEEE Computer

Society Press, 1995.

[155] Tara Matthews, Mary Czerwinski, George Robertson, and Desney Tan. Clipping lists

and change borders: improving multitasking efficiency with peripheral information

design. In Proc. CHI 2006, pages 989–998. ACM, 2006.

[156] Erick Mendez, Steven K. Feiner, and Dieter Schmalstieg. Focus and context in mixed

reality by modulating first order salient features. In Proc. SG 2010, pages 232–243.

Springer-Verlag, 2010.

[157] Tunu Miah and James L. Alty. Visual recognition of windows: effects of size variation

and presentation styles. In Proc. OzCHI 1998, pages 72 –79. IEEE Computer Society,

1998.

[158] Meredith Ringel Morris, Andreas Paepcke, and Terry Winograd. Teamsearch: Com-

paring techniques for co-present collaborative search of digital media. In Proc.

TABLETOP 2006, pages 97–104. IEEE Computer Society, 2006.

[159] Meredith Ringel Morris, Kathy Ryall, Chia Shen, Clifton Forlines, and Frederic

Vernier. Beyond ”social protocols”: multi-user coordination policies for co-located

groupware. In Proc. CSCW 2004, pages 262–265. ACM, 2004.

[160] Markus Murschitz. Deskotheque: Marker based structured light and high dynamic

range imaging for 3d reconstruction. Seminar project, Institute for Computer Graph-

ics and Vision, Graz University of Technology, 2009.

[161] Brad Myers, Scott E. Hudson, and Randy Pausch. Past, present, and future of user

interface software tools. ACM Trans. Comput.-Hum. Interact., 7:3–28, March 2000.

[162] Brad A. Myers. A taxonomy of window manager user interfaces. IEEE Comput.

Graph. Appl., 8(5):65–84, 1988.

[163] Brad A. Myers. User interface software tools. ACM Trans. Comput.-Hum. Interact.,

2:64–103, March 1995.

[164] Brad A. Myers, Choon Hong Peck, Jeffrey Nichols, Dave Kong, and Robert Miller.

Interacting at a distance using semantic snarfing. In Proc. UbiComp 2001, pages

305–314. Springer-Verlag, 2001.

BIBLIOGRAPHY 241

[165] Miguel Nacenta. Computer vision approaches to solve the screen pose acquisition

problem for perspective cursor. Technical Report HCI-TR-06-01, 2006.

[166] Miguel Nacenta, Carl Gutwin, Dzmitry Aliakseyeu, and Sriram Subramanian. There

and back again: Cross-display object movement in multi-display environments. Jour-

nal of Human-Computer Interaction, 24(1):170–229, 2009.

[167] Miguel A. Nacenta, Dzmitry Aliakseyeu, Sriram Subramanian, and Carl Gutwin. A

Comparison of Techniques for Multi-Display Reaching. In Proc. CHI 2005, pages

371–380. ACM, 2005.

[168] Miguel A. Nacenta, Regan L. Mandryk, and Carl Gutwin. Targeting across display-

less space. In Proc. CHI 2008, pages 777–786. ACM, 2008.

[169] Miguel A. Nacenta, Satoshi Sakurai, Tokuo Yamaguchi, Yohei Miki, Yuichi

Itoh, Yoshifumi Kitamura, Sriram Subramanian, and Carl Gutwin. E-conic: a

Perspective-Aware Interface for Multi-Display Environments. In Proc. UIST 2007,

pages 279–288. ACM, 2007.

[170] Miguel A. Nacenta, Samer Sallam, Bernard Champoux, Sriram Subramanian, and

Carl Gutwin. Perspective Cursor: Perspective-Based Interaction for Multi-Display

Environments. In Proc. CHI 2006, pages 289–298. ACM, 2006.

[171] Neslo Software. Desktop rover. URL: http://www.neslosoftware.com/desktopRover.html,

Last access: September 2009.

[172] David Nistér. An efficient solution to the five-point relative pose problem. IEEE

Trans. Pattern Anal. Mach. Intell., 26:756–777, June 2004.

[173] Chris North and Ben Shneiderman. A taxonomy of multiple window coordinations.

Technical report, Univ. of Maryland, College Park, Computer Science Dept., 1997.

[174] Chris North and Ben Shneiderman. Snap-together visualization: a user interface

for coordinating visualizations via relational schemata. In Proc. AVI 2000, pages

128–135. ACM, 2000.

[175] Nuria Oliver, Greg Smith, Chintan Thakkar, and Arun C. Surendran. Swish: se-

mantic analysis of window titles and switching history. In Proc. IUI 2006, pages

194–201. ACM, 2006.

[176] Kyoung S. Park, Abhinav Kapoor, and Jason Leigh. Lessons learned from employing

multiple perspectives in a collaborative virtual environment for visualizing scientific

data. In Proc. CVE 2000, pages 73–82. ACM, 2000.

[177] Mark Perry and Kenton O’Hara. Display-based activity in the workplace. In Proc.

INTERACT 2003, pages 591–598, 2003.

242

[178] David Pinelle, Mutasem Barjawi, Miguel Nacenta, and Regan Mandryk. An eval-

uation of coordination techniques for protecting objects and territories in tabletop

groupware. In Proc. CHI 2009, pages 2129–2138. ACM, 2009.

[179] David Pinelle, Carl Gutwin, and Saul Greenberg. Task analysis for groupware us-

ability evaluation: Modeling shared-workspace tasks with the mechanics of collabo-

ration. ACM Trans. Comput.-Hum. Interact., 10(4):281–311, 2003.

[180] Christian Pirchheim, Markus Murschitz, Manuela Waldner, and Dieter Schmalstieg.

Deskotheque display system. In: The Trend is Your Friend, Sylvia Eckermann and

Gerald Nestler, MedienKunstLabor Kunsthaus Graz, September 2009.

[181] Christian Pirchheim, Manuela Waldner, and Dieter Schmalstieg. Deskotheque: Im-

proved spatial awareness in multi-display environments. In Proc. VR 2009, pages

123–126, 2009.

[182] Peter Pirolli and Stuart Card. The sensemaking process and leverage points for an-

alyst technology as identified through cognitive task analysis. In 2005 International

Conference on Intelligence Analysis, pages 1–6, 2005.

[183] Matthew D. Plumlee and Colin Ware. Zooming versus multiple window interfaces:

Cognitive costs of visual comparisons. ACM Trans. Comput.-Hum. Interact., 13:179–

209, June 2006.

[184] Shankar R. Ponnekanti, Brad Johanson, Emre Kiciman, and Armando Fox. Porta-

bility, extensibility and robustness in iros. In Proc. PERCOM 2003, page 11. IEEE

Computer Society, 2003.

[185] Thorsten Prante, Carsten Magerkurth, and Norbert Streitz. Developing cscw tools

for idea finding -: empirical results and implications for design. In Proc. CSCW

2002, pages 106–115. ACM, 2002.

[186] Thorsten Prante, Norbert Streitz, and Peter Tandler. Roomware: Computers Dis-

appear and Interaction Evolves. Computer, 37(12):47–54, 2004.

[187] Patrick Quirk, Tyler Johnson, Rick Skarbez, Herman Towles, Florian Gyarfas, and

Henry Fuchs. Ransac-assisted display model reconstruction for projective display.

In Proc. VR 2006, pages 318–321. IEEE Computer Society, 2006.

[188] Ramesh Raskar and Paul Beardsley. A self-correcting projector. Computer Vision

and Pattern Recognition, IEEE Computer Society Conference on, 2:504, 2001.

[189] Ramesh Raskar, Michael S. Brown, Ruigang Yang, Wei-Chao Chen, Greg Welch,

Herman Towles, Brent Seales, and Henry Fuchs. Multi-Projector Displays Using

Camera-Based Registration. In Proc. Vis 1999. IEEE Computer Society, 1999.

BIBLIOGRAPHY 243

[190] Ramesh Raskar, Jeroen van Baar, Paul Beardsley, Thomas Willwacher, Srinivas Rao,

and Clifton Forlines. iLamps: geometrically aware and self-configuring projectors.

ACM Transactions on Graphics, 22(3):809–818, 2003.

[191] Ramesh Raskar, Jeroen van Baar, and Jin Xiang Chai. A Low-Cost Projector Mosaic

with Fast Registration. In Proc. ACCV 2002, pages 114–119, 2002.

[192] Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake, Lev Stesin, and Henry Fuchs.

The Office of the Future: A Unified Approach to Image-Based Modeling and Spa-

tially Immersive Displays. In Proc. SIGGRAPH 1998, pages 179–188. ACM, 1998.

[193] Jun Rekimoto. Pick-and-drop: a direct manipulation technique for multiple com-

puter environments. In Proc. UIST 1997, pages 31–39. ACM, 1997.

[194] Jun Rekimoto. Time-machine computing: a time-centric approach for the informa-

tion environment. In Proc. UIST 1999, pages 45–54. ACM, 1999.

[195] Jun Rekimoto and Masanori Saitoh. Augmented Surfaces: A Spatially Continuous

Workspace for Hybrid Computing Environments. In Proc. CHI 1999, pages 378–385,

1999.

[196] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy Hopper.

Virtual Network Computing. IEEE Internet Computing, 02(1):33–38, 1998.

[197] Peter Riegler. Spatial registration of tracking targets and screens in a multi-display

environment. Bachelor’s thesis, Graz University of Technology, 2009.

[198] Meredith Ringel. When one isn’t enough: an analysis of virtual desktop usage

strategies and their implications for design. In Ext. Abstracts CHI 2003, pages

762–763. ACM, 2003.

[199] Jonathan C. Roberts. State of the art: Coordinated & multiple views in exploratory

visualization. In Proc. CMV 2007, pages 61–71. IEEE Computer Society, 2007.

[200] George Robertson, Mary Czerwinski, Patrick Baudisch, Brian Meyers, Daniel Rob-

bins, Greg Smith, and Desney Tan. The Large-Display User Experience. IEEE

Computer Graphics and Applications, 25(4):44–51, 2005.

[201] George Robertson, Eric Horvitz, Mary Czerwinski, Patrick Baudisch, Dugald Ralph

Hutchings, Brian Meyers, Daniel Robbins, and Greg Smith. Scalable fabric: flexible

task management. In Proc. AVI 2004, pages 85–89. ACM, 2004.

[202] George Robertson, Maarten van Dantzich, Daniel Robbins, Mary Czerwinski, Ken

Hinckley, Kirsten Risden, David Thiel, and Vadim Gorokhovsky. The Task Gallery:

A 3D Window Manager. In Proc. CHI 2000, pages 494–501. ACM, 2000.

244

[203] George G. Robertson and Jock D. Mackinlay. The document lens. In Proc. UIST

1993, pages 101–108. ACM, 1993.

[204] Yvonne Rogers and Sian E. Lindley. Collaborating around vertical and horizon-

tal large interactive displays: which way is best? Interacting with Computers,

16(6):1133–1152, 2004.

[205] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ranganathan, Roy H.

Campbell, and Klara Nahrstedt. Gaia: a middleware platform for active spaces.

SIGMOBILE Mob. Comput. Commun. Rev., 6(4):65–67, 2002.

[206] Daniel M. Russell, Mark J. Stefik, Peter Pirolli, and Stuart K. Card. The cost

structure of sensemaking. In Proc. CHI 1993, pages 269–276. ACM, 1993.

[207] Satoshi Sakurai, Yuichi Itoh, Yoshifumi Kitamura, Miguel A. Nacenta, Tokuo Ya-

maguchi, Sriram Subramanian, and Fumio Kishino. Interactive systems. design,

specification, and verification. chapter A Middleware for Seamless Use of Multiple

Displays, pages 252–266. Springer-Verlag, Berlin, Heidelberg, 2008.

[208] Tony Salvador, Jean Scholtz, and James Larson. The denver model for groupware

design. SIGCHI Bull., 28:52–58, January 1996.

[209] Joaquim Salvi, Jordi Pagès, and Joan Batlle. Pattern codification strategies in

structured light systems. Pattern Recognition, 37:827–849, 2004.

[210] Johan Sanneblad and Lars Erik Holmquist. Ubiquitous graphics: combining hand-

held and wall-size displays to interact with large images. In Proc. AVI 2006, pages

373–377. ACM, 2006.

[211] Robert W. Scheifler and Jim Gettys. The x window system. ACM Trans. Graph.,

5:79–109, April 1986.

[212] Chris Schoeneman, Ryan Breen, Guido Poschta, Bertrand Landry Hetu, Tom Chad-

wick, and Brent Priddy. Synergy. URL: http://synergy2.sourceforge.net/, Last ac-

cess: September 2009.

[213] Stacey D. Scott, M. Sheelagh T. Carpendale, and Stefan Habelski. Storage bins:

Mobile storage for collaborative tabletop displays. IEEE Comput. Graph. Appl.,

25:58–65, July 2005.

[214] Stacey D. Scott, Karen D. Grant, and Regan L. Mandryk. System guidelines for

co-located, collaborative work on a tabletop display. In Proc. ECSCW 2003, pages

159–178. Kluwer Academic Publishers, 2003.

[215] Stacey D. Scott, M. Sheelagh, T. Carpendale, and Kori M. Inkpen. Territoriality

in collaborative tabletop workspaces. In Proc. CSCW 2004, pages 294–303. ACM,

2004.

BIBLIOGRAPHY 245

[216] CE Shannon and W Weaver. The Mathematical Theory of Communication. Uni-

versity of Illinois Press, Urbana, Illinois, 1949.

[217] Chia Shen, Alan Esenther, Clifton Forlines, and Kathy Ryall. Three modes of multi-

surface interaction and visualization. In Information Visualization and Interaction

Techniques for Collaboration across Multiple Displays Workshop associated with

CHI’06 International Conference, 2006.

[218] Ben Shneiderman and Aleks Aris. Network visualization by semantic substrates.

IEEE TVCG, 12(5):733–740, 2006.

[219] Garth B. D. Shoemaker and Kori M. Inkpen. Single display privacyware: augmenting

public displays with private information. In Proc. CHI 2001, pages 522–529. ACM,

2001.

[220] Lauren Shupp, Robert Ball, Beth Yost, John Booker, and Chris North. Evaluation

of viewport size and curvature of large, high-resolution displays. In Proc. GI 2006,

pages 123–130. Canadian Information Processing Society, 2006.

[221] Ethan Solomita, James Kempf, and Dan Duchamp. XMOVE: A Pseudoserver for

X Window Movement. The X Resource, 11:143–170, 1994.

[222] Martin Spindler, Sophie Stellmach, and Raimund Dachselt. Paperlens: advanced

magic lens interaction above the tabletop. In Proc. ITS 2009, pages 69–76. ACM,

2009.

[223] Martin Spindler, Christian Tominski, Heidrun Schumann, and Raimund Dachselt.

Tangible views for information visualization. In Proc. ITS 2010. ACM Press, 2010.

[224] Oliver G. Staadt, Benjamin A. Ahlborn, Oliver Kreylos, and Bernd Hamann. A

foveal inset for large display environments. In Proc. VRCAI 2006, pages 281–288.

ACM, 2006.

[225] Mark Stefik, Gregg Foster, Daniel G. Bobrow, Kenneth Kahn, Stan Lanning, and

Lucy Suchman. Beyond the chalkboard: computer support for collaboration and

problem solving in meetings. Commun. ACM, 30(1):32–47, 1987.

[226] Jason Stewart, Benjamin B. Bederson, and Allison Druin. Single display groupware:

a model for co-present collaboration. In Proc. CHI 1999, pages 286–293. ACM, 1999.

[227] Richard Stoakley, Matthew J. Conway, and Randy Pausch. Virtual reality on a

wim: interactive worlds in miniature. In Proc. CHI 1995, pages 265–272. ACM

Press/Addison-Wesley Publishing Co., 1995.

[228] Maureen C. Stone, Ken Fishkin, and Eric A. Bier. The movable filter as a user

interface tool. In Proc. CHI 1994, pages 306–312. ACM, 1994.

246

[229] Marc Streit, Hans-Jörg Schulz, Dieter Schmalstieg, and Heidrun Schumann. Towards

multi-user multi-level interaction. In Proc. CoVIS Workshop 2009, 2009.

[230] Norbert A. Streitz, Jörg Geissler, Torsten Holmer, Shin’ichi Konomi, Christian

Müller-Tomfelde, Wolfgang Reischl, Petra Rexroth, Peter Seitz, and Ralf Stein-

metz. i-LAND: An interactive Landscape for Creativity and Innovation. In Proc.

CHI 1999, pages 120–127. ACM, 1999.

[231] Stefan Stumpfl. Single user projected displays. Bachelor’s thesis, Graz University

of Technology, 2009.

[232] Wolfgang Stürzlinger, Olivier Chapuis, Dusty Phillips, and Nicolas Roussel. User

Interface Façades: Towards Fully Adaptable User Interfaces. In Proc. UIST 2006,

pages 309–318, 2006.

[233] Ramona Su and Brian P. Bailey. Put them where? towards guidelines for positioning

large displays in interactive workspaces. In Proc. INTERACT 2005, pages 337–349,

2005.

[234] Kishore Swaminathan and Steve Sato. Interaction design for large displays. Inter-

actions, 4(1):15–24, 1997.

[235] Susanne Tak and Andy Cockburn. Improved window switching interfaces. In Ext.

Abstracts CHI 2010, pages 2915–2918. ACM, 2010.

[236] Susanne Tak, Andy Cockburn, Keith Humm, David Ahlström, Carl Gutwin, and

Joey Scarr. Improving window switching interfaces. In Proc. INTERACT 2009,

pages 187–200, 2009.

[237] Desney S. Tan and Mary Czerwinski. Effects of visual separation and physical

discontinuities when distributing information across multiple displays. In Proc. IN-

TERACT 2003, pages 252–255, 2003.

[238] Desney S. Tan, Brian Meyers, and Mary Czerwinski. Wincuts: manipulating arbi-

trary window regions for more effective use of screen space. In Ext. Abstracts CHI

2004, pages 1525–1528. ACM, 2004.

[239] Peter Tandler, Thorsten Prante, Christian Müller-Tomfelde, Norbert Streitz, and

Ralf Steinmetz. Connectables: dynamic coupling of displays for the flexible creation

of shared workspaces. In Proc. UIST 2001, pages 11–20. ACM, 2001.

[240] Anthony Tang, Melanie Tory, Barry Po, Petra Neumann, and Sheelagh Carpendale.

Collaborative coupling over tabletop displays. In Proc. CHI 2006, pages 1181–1190.

ACM, 2006.

BIBLIOGRAPHY 247

[241] Masayuki Tani, Masato Horita, Kimiya Yamaashi, Koichiro Tanikoshi, and

Masayasu Futakawa. Courtyard: integrating shared overview on a large screen and

per-user detail on individual screens. In Proc. CHI 1994, pages 44–50. ACM, 1994.

[242] Craig Tashman. Windowscape: a task oriented window manager. In Proc. UIST

2006, pages 77–80. ACM, 2006.

[243] Matthew Tobiasz, Petra Isenberg, and Sheelagh Carpendale. Lark: Coordinating co-

located collaboration with information visualization. IEEE TVCG, 15(6):1065–1072,

2009.

[244] Theophanis Tsandilas and Ravin Balakrishnan. An evaluation of techniques for

reducing spatial interference in single display groupware. In Proc. ECSCW 2005,

pages 225–245. Springer-Verlag New York, Inc., 2005.

[245] Edward Tse, Jonathan Histon, Stacey D. Scott, and Saul Greenberg. Avoiding

interference: how people use spatial separation and partitioning in sdg workspaces.

In Proc. CSCW 2004, pages 252–261. ACM, 2004.

[246] Philip Tuddenham, Ian Davies, and Peter Robinson. Websurface: an interface for

co-located collaborative information gathering. In Proc. ITS 2009, pages 181–188.

ACM, 2009.

[247] Brygg Ullmer and Hiroshi Ishii. The metadesk: models and prototypes for tangible

user interfaces. In Proc. UIST 1997, pages 223–232. ACM, 1997.

[248] Andries van Dam. Post-wimp user interfaces. Commun. ACM, 40:63–67, February

1997.

[249] Maarten van Dantzich, Vadim Gorokhovsky, and George Robertson. Application

Redirection: Hosting Windows Applications in 3D. In Proceedings of the 1999

workshop on new paradigms in information visualization and manipulation, pages

87–91, 1999.

[250] Ivan Viola, Armin Kanitsar, and Meister Eduard Groller. Importance-driven volume

rendering. In Proc. VIS 2004, pages 139–146. IEEE Computer Society, 2004.

[251] Daniel Vogel and Ravin Balakrishnan. Occlusion-aware interfaces. In Proc. CHI

2010, pages 263–272. ACM, 2010.

[252] Daniel Wagner and Dieter Schmalstieg. Artoolkitplus for pose tracking on mobile

devices. In Proc. CVWW 2007, 2007.

[253] Grant Wallace, Otto J. Anshus, Peng Bi, Han Chen, Yuqun Chen, Douglas Clark,

Perry Cook, Adam Finkelstein, Thomas Funkhouser, Anoop Gupta, Matthew Hibbs,

Kai Li, Zhiyan Liu, Rudrajit Samanta, Rahul Sukthankar, and Olga Troyanskaya.

248

Tools and Applications for Large-Scale Display Walls. IEEE Computer Graphics

and Applications, 25:24–33, 2005.

[254] Grant Wallace, Peng Bi, Kai Li, and Otto Anshus. A Multi-Cursor X Window

Manager Supporting Control Room Collaboration. Technical Report TR-707-04,

Computer Science, Princeton University, 2004.

[255] Grant Wallace, Han Cheny, and Kai Li. Automatic alignment of tiled displays for a

desktop environment. Journal of Software, 15(12):1776–1786, December 2004.

[256] Grant Wallace and Kai Li. Virtually shared displays and user input devices. In

Proc. USENIX 2007, pages 1–6, 2007.

[257] James R. Wallace, Regan L. Mandryk, and Kori M. Inkpen. Comparing content and

input redirection in mdes. In Proc. CSCW 2008, pages 157–166. ACM, 2008.

[258] James R. Wallace, Stacey D. Scott, Taryn Stutz, Tricia Enns, and Kori Inkpen. In-

vestigating teamwork and taskwork in single- and multi-display groupware systems.

Personal Ubiquitous Comput., 13(8):569–581, 2009.

[259] Michelle Q. Wang Baldonado, Allison Woodruff, and Allan Kuchinsky. Guidelines

for using multiple views in information visualization. In Proc. AVI 2000, pages

110–119. ACM, 2000.

[260] Colin Ware. Information visualization: perception for design. Morgan Kaufmann,

2000.

[261] Chris Weaver. Building highly-coordinated visualizations in improvise. In Proc.

InfoVIS 2004, pages 159–166. IEEE Computer Society, 2004.

[262] Mark Weiser. Some computer science issues in ubiquitous computing. Commun.

ACM, 36:75–84, July 1993.

[263] Daniel Wigdor and Ravin Balakrishnan. Empirical investigation into the effect of

orientation on text readability in tabletop displays. In Proc. ECSCW 2005, pages

205–224. Springer-Verlag New York, Inc., 2005.

[264] Daniel Wigdor, Hao Jiang, Clifton Forlines, Michelle Borkin, and Chia Shen. Wes-

pace: the design development and deployment of a walk-up and share multi-surface

visual collaboration system. In Proc. CHI 2009, pages 1237–1246. ACM, 2009.

[265] Daniel Wigdor, Chia Shen, Clifton Forlines, and Ravin Balakrishnan. Table-centric

interactive spaces for real-time collaboration. In Proc. AVI 2006, pages 103–107.

ACM, 2006.

BIBLIOGRAPHY 249

[266] Ruigang Yang, David Gotz, Justin Hensley, Herman Towles, and Michael S. Brown.

PixelFlex: A Reconfigurable Multi-Projector Display System. In Proc. VIS 2001,

pages 167–174. IEEE Computer Society, 2001.

[267] Jǐŕı Zahrádka. Augmented user interface. Technical report, Graz University of

Technology, Brno University of Technology, 2011.

[268] Ana Zanella and Saul Greenberg. Avoiding interference through translucent interface

components in single display groupware. In Proc. CHI 2001, pages 375–376. ACM,

2001.

[269] Polle T. Zellweger, Jock D. Mackinlay, Lance Good, Mark Stefik, and Patrick Baud-

isch. City lights: contextual views in minimal space. In Ext. Abstracts CHI 2003,

pages 838–839. ACM, 2003.

[270] Shumin Zhai, Julie Wright, Ted Selker, and Sabra-Anne Kelin. Graphical means of

directing user’s attention in the visual interface. In Proc. INTERACT 1997, pages

59–66. Chapman & Hall, 1997.

	I Overview
	Introduction
	Emerging Display Factors
	WIMP Interfaces
	Information Management
	Research Hypothesis
	Contribution
	Collaboration Statement

	Background and Related Work
	Visual Information Management
	Display Environments
	Enabling Technologies

	II Multi-Display Framework
	System Infrastructure of the Deskotheque Environment
	Requirements and Design Principles
	Distributed Software Infrastructure
	Discussion

	Spatial Awareness in the Deskotheque Environment
	Spatial Model Creation
	Compensation of Projected Displays
	User Location Estimation
	Multi-Display Coordinate Systems
	Discussion

	III Multi-Display Navigation
	Cross-Display Navigation Techniques
	Design Space
	Mouse Pointer Navigation Infrastructure
	Exemplary Navigation Techniques
	Cross-Display Information Sharing
	Discussion

	Evaluations of Multi-Display Navigation
	Comparison of Cross-Display Navigation Techniques
	Comparison of Pointer Warping and Seamless Navigation
	Comparison of Outcome Positions for Pointer Warping
	Discussion

	IV Window Management for Emerging Display Environments
	Window Manager Extensions
	Multi-User Interaction and Identification
	Accessing Window Content
	Display Adaptivity
	Importance-Driven Compositing Window Management
	Discussion

	Window Management Techniques
	Visual Links
	Uncovering Windows
	Display-Adaptive Window Management
	Polarization-Based Interfaces
	Discussion

	Evaluations of Window Management Techniques
	Exploratory Evaluation of Visual Links across Applications
	Exploratory Evaluation of Collaborative Information Linking
	Comparison of Techniques to Discover and Access Occluded Windows
	Exploratory Evaluation of Window Management on Irregular Displays
	Discussion

	V Summary
	Discussion and Future Directions
	Information Discovery
	Information Access
	Information Manipulation
	Information Sharing

	Conclusion
	Bibliography

