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Introduction

Counting lattice points in bounded subsets of the Euclidean space
Rn is a problem that arises frequently in number theory and other
branches of mathematics. By a general principle, if the set S is “nice”
one expects a good estimate for the number of points of a lattice Λ in
S to be given by Vol(S)/ det Λ, the ratio between the volume of S and
the determinant of Λ. So, the problem is to find under what conditions
we have good upper bounds for

ES,Λ =

∣∣∣∣|S ∩ Λ| − Vol(S)

det Λ

∣∣∣∣ .

In the literature there are two different type of conditions for S.
The first, associated to Lipschitz, requires the boundary of S to be
parameterizable by finitely many maps satisfying a Lipschitz condi-
tion. The second dates back to Davenport and requires a bound on
the number of connected components of the intersections of S, and its
projections to coordinate subspaces, with lines. Moreover, the volumes
of such projections need to be controlled.

Of course, to have a meaningful result we want the error ES,Λ to
be small, but, regarding applications, it is also important that the
dependence on the lattice is explicit, and that the conditions on S are
not too restrictive and easily checkable.

Here and always in this thesis, a lattice in Rn is intended to be full
rank, i.e., the Z-span of n linearly independent vectors of Rn.

As already mentioned, there are two different principles appear-
ing in the literature. The older one dates back to Lipschitz and has
been developed by several authors: Lang [15], Spain [25], Schmidt [24],
Masser and Vaaler [16] and Widmer [29], who has the most refined
version we are going to state below, after the following definitions.

A subset S of Rn is said to be in Lip(n,M,L) if there are M maps
φ1, . . . , φM : [0, 1]n−1 → Rn satisfying the Lipschitz condition

|φi(x)− φi(y)| ≤ L|x− y| for x,y ∈ [0, 1]n−1,

such that S is covered by the images of the maps φi. Moreover, we
write λi = λi(Λ), for i = 1, . . . , n, for the successive minima of Λ with
respect to the zero-centered unit ball B0(1), i.e., for i = 1, ..., n,

λi = inf{λ : B0(λ) ∩ Λ contains i linearly independent vectors}.
ix
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Theorem 1 (Widmer, [29], Theorem 5.4). Let Λ be a lattice in Rn

with successive minima λ1, . . . , λn. Let S be a bounded set in Rn such
that the boundary ∂S of S is in Lip(n,M,L). Then S is measurable,
and, moreover,

∣∣∣∣|S ∩ Λ| − Vol(S)

det Λ

∣∣∣∣ ≤ c2(n)M max
0≤i<n

Li

λ1 . . . λi
.

For i = 0 the expression in the maximum is understood as 1. Further-
more one can choose c2(n) = n3n2/2.

The Lipschitz parameterizability of the boundary is a rather mild
condition and often easily checkable. However, if the volume of S is not
much larger than its diameter, it might be difficult to get non-trivial
estimates from the theorem above. Let us illustrate this phenomenon
with the following example.

Suppose we want to estimate the number of points with integer
coordinates in the set

(1) S(T ) =

{
(x1, x2, x3) ∈ [0,+∞)3 :

3∏

i=1

max{1, xi} ≤ T

}
,

where T is a positive real parameter. The volume of S(T ) has order
T (log T )2. The boundary of S(T ) is certainly Lipschitz parameterizable
by a fixed number of maps but it is not clear how to avoid L to be
of order T and thus the error term to be of order T 2. Therefore,
Theorem 1 does not give an asymptotic formula, but only an inequality
|S(T ) ∩ Zn| � T 2, which is far from being sharp since |S(T ) ∩ Zn| ∼
T (log T )2, as we are going to see later.

The second and more recent principle dates back to Davenport.

Theorem 2 (Davenport, [8]). Let n be a positive integer, and let
S be a compact set in Rn that satisfies the following conditions.

1. Any line parallel to one of the n coordinate axes intersects S in a
set of points, which, if not empty, consists of at most h intervals.

2. The same is true (with j in place of n) for any of the j dimensional
regions obtained by orthogonally projecting S on one of the coordi-
nate spaces defined by equating a selection of n−j of the coordinates
to zero, and this condition is satisfied for all j from 1 to n− 1.

Then

||S ∩ Zn| − Vol(S)| ≤
n−1∑

j=0

hn−jVj(S),

where Vj(S) is the sum of the j-dimensional volumes of the orthogonal
projections of S on the various coordinate spaces obtained by equating
any n− j coordinates to zero, and V0(S) = 1 by convention.
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The first drawback of this theorem is that it is stated only for the
standard lattice Zn and for compact sets but, as we are going to see
later, it is easy to deduce from it a more general counting theorem.
Moreover, finding a bound for the constant h can be difficult.

On the other hand, Theorem 2 yields non-trivial estimates also for
the set (1), despite the fact that its diameter is large. Indeed, the
volumes of the projections of S(T ) onto any coordinate subspace have
size at most T log T . Therefore, since S(T ) satisfies condition 1. and
2. with h = 1, Davenport’s theorem gives the asymptotic formula

|S(T ) ∩ Zn| = 1

2
T (log T )2 +O(T (log T )).

At this point, it may be worthwhile pointing out that the condi-
tions of these two counting principles are not totally unrelated. While
the Lipschitz condition certainly does not imply the existence of a fi-
nite Davenport’s h, the other implication might hold in some form, as
pointed out by Masser and Vaaler in [16]. In [30], Widmer investigated
this problem and proved results for convex sets and for sets in R2.

Theorem 2 has been generalized to arbitrary lattices by Thunder
[26]. Schmidt ([23], Lemma 1) also proves a variant of Theorem 2 for
arbitrary lattices in Rn, but he assumes that the set S is contained
in a zero centered ball of radius r, and gets an error term of order
rn−1. Hence, this result is also not directly applicable to get non-trivial
estimates in sets of the form (1).

In applications, in stead of a single set S, one often deals with a
parameterized family Z ⊆ Rm+n of subsets of Rn, with fibers

Zt = {x ∈ Rn : (t,x) ∈ Z} ,
for t ∈ Rm, and is interested in getting an asymptotic formula as the
parameters range through an unbounded set of Rm, as, for instance, in
example (1).

Let Z be a family with compact fibers. Using Minkowski’s second
Theorem, it is possible to deduce the following estimate from Thunder’s
work

∣∣∣∣|Zt ∩ Λ| − Vol(Zt)

det Λ

∣∣∣∣ ≤ cn

n−1∑

j=0

h′(Zt)
n−j V

′
j (Zt)

λ1 . . . λj
,(2)

where cn is an explicit constant depending only on n, V ′j (Zt) is the
supremum of the volumes of the orthogonal projections of Zt to the j-
dimensional linear subspaces, and h′ is what we get instead of h when
in Davenport’s conditions “line parallel to one of the n coordinate axes”
and “orthogonally projecting Zt on one of the coordinate spaces defined
by equating a selection of n− j of the coordinates to zero” are replaced
by “line” and “any projection of Zt on any j-dimensional subspace”.

Now, the quantity V ′j (Zt) is definitely not so nice to work with as
Vj(Zt). Moreover, proving the existence of a uniform upper bound
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for h′(Zt) (i.e., independent of t) is even more troublesome than for
Davenport’s h.

Therefore, it would be nice to have some general and mild conditions
on the family Z that allow us to replace h′(Zt) by a uniform constant
cZ and V ′j (Zt) by Vj(Zt).

Note that, even if the sets Zt are simply given by a finite number
of squares in R2, we cannot expect that V ′j (Zt) ≤ cVj(Zt), for some
constant c independent of t. Example 2.67 of [1] gives an example of
such phenomenon. Let C1 be the unit interval. Suppose Cn is defined
and is a finite union of intervals. Then Cn+1 is obtained by dividing
each of the intervals constituting Cn into 4 parts of the same length
and dropping the second and the third intervals. Then Cn × Cn is a
family of sets in R2, whose projection on one fixed line is constant,
while the volumes of the projections on the two axes tend to zero as
the parameter tends to infinity (see Figure 1).

Figure 1. C3 × C3

The latter example indicates that such an inequality would require
a rather strong hypothesis on the family Z. Also, to handle h′ we need
that the number of connected components of a projection of Zt when
intersected with a line is uniformly bounded. Such a tameness in the
topology of the family Z is delivered by o-minimality.
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The theory of o-minimal structures comes from model theory and
has been developed quite recently, starting from the ’80s. Lately, after
the work of Pila and Wilkie [18], o-minimality has given very important
and promising applications to number theory, diophantine geometry in
particular. For interesting and precise accounts on such applications
we refer to the survey papers by Scanlon [19], [20], and to the book of
Zannier [32].

Let us give the definition of an o-minimal structure.

Definition 1. An o-minimal structure is a sequence S = (Sn)n∈N
such that for each n:

1) Sn is a boolean algebra of subsets of Rn, that is, Sn is a collection
of subsets of Rn, ∅ ∈ Sn, and if A,B ∈ Sn then also A ∪ B ∈ Sn,
and Rn\A ∈ Sn.

2) If A ∈ Sn then R× A ∈ Sn+1 and A× R ∈ Sn+1.
3) {(x1, . . . , xn) : xi = xj} ∈ Sn for 1 ≤ i < j ≤ n.
4) If π : Rn+1 → Rn is the projection map on the first n coordinates

and A ∈ Sn+1 then π(A) ∈ Sn.
5) {r} ∈ S1 for any r ∈ R and {(x, y) ∈ R2 : x < y} ∈ S2.
6) The only sets in S1 are the finite unions of intervals and points.

(“Interval” always means “open interval” with infinite endpoints al-
lowed.)

Following the usual convention, we say that a set A ⊆ Rn is defin-
able (in S) if it lies in Sn. Moreover a function f : A→ Rm is said to
be definable if its graph Γ(f) ⊆ Rn+m is a definable set.

Note that axiom 6) completely characterizes S1, which is the same
for every o-minimal structure. Nonetheless, o-minimality is a rich and
broad setting and we hope to convince the reader of this with the
examples below, in which we follow the presentation of Scanlon in [19].

For each n ∈ N, let Fn be a collection of functions f : Rn → R that
we call distinguished functions. If g, h : Rn → R are built from the
coordinate functions, constant functions and distinguished functions
by appropriate composition, then we say that

{x ∈ Rn : g(x) < h(x)},
{x ∈ Rn : g(x) = h(x)}

are atomic sets. Now let us consider the smallest family of sets in Rn

(for various n) that contains all atomic sets, and is closed under finite
unions and complements, and images of the usual projection maps
π : Rn+1 → Rn onto the first n coordinates. For the following choices
of F =

⋃
n Fn, the resulting family consists precisely of the definable

sets in a particular o-minimal structure:

1. Falg = {polynomials defined over R},
2. Fan = Falg ∪ {restricted analytic functions},
3. Fexp = Falg ∪ {the exponential function exp : R→ R},
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4. Fan,exp = Fan ∪ Fexp.

By a restricted analytic function we mean a function f : Rn → R,
which is zero outside of [−1, 1]n, and is the restriction to [−1, 1]n of a
function, which is real analytic on an open neighborhood of [−1, 1]n.

For the first example note that by the Tarski-Seidenberg Theorem
every set in this family is a boolean combination of atomic sets, and
thus is semialgebraic. This implies 6) in Definition 1, and 1)-5) are
clear. The o-minimality of example 2. is due to Denef and van den
Dries [9], who realized that it follows from results of Gabrielov [12],
while 3. is due to Wilkie [31]. Van den Dries and Miller [11] proved
the o-minimality of the fourth example.

Note that if the function sinx, globally defined on R, is in F1 then
we do not have an o-minimal structure. In fact, the set {x ∈ R : sinx =
0} would be a definable set consisting of infinitely many isolated points,
violating axiom 6) of Definition 1. On the other hand the function
sin[a,b] x, which coincides with sinx on the interval [a, b] (for a, b ∈ R)
and is 0 elsewhere, is definable in the o-minimal structure corresponding
to the second example above.

Semialgebraic sets have been object of study for a long time and
much is known about them. Many of the results in real algebraic ge-
ometry have been an inspiration for generalizations to the o-minimal
setting. One of these results and probably the most important is the
Cell Decomposition Theorem, which says that each definable set can
be partitioned in a finite number of cells, particularly simple definable
sets. It is hard to overestimate the strength and the importance of
this result. In fact, in almost every proof of a non-trivial fact about
definable sets in an o-minimal structure this theorem is invoked repeat-
edly. For instance, suppose Z ∈ Rm+n is a definable set. We call Z a
definable family. Then the Cell Decomposition Theorem implies that
there exists a uniform bound on the number of connected components
of the fibers Zt.

The Cell Decomposition Theorem has many other consequences but
most of the times the structure needs to be rich enough. In other words,
many results require the structure to contain the semialgebraic sets. If
this is the case then, for instance, the derivative of a definable function
is definable and it is possible to prove an improved Cell Decomposition
Theorem in which the cells are defined by C1 functions. For details on
this and other results we refer to the fundamental book [10] by van den
Dries.

Let us go back to our setting. We fix an o-minimal structure con-
taining the semialgebraic sets. Recall the definition of h′ below (2).
Then, the uniform bound on the number of connected components
mentioned above implies that, if Z is a definable family, there exists a
natural number MZ , depending only on Z, such that h′(Zt) ≤ MZ for
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every t ∈ Rm. Therefore we can substitute the factor h′(Zt)
n−j in (2)

with a constant depending on Z but independent of t and Λ.
Using deeper results from o-minimality combined with tools from

geometric measure theory, it is also possible to prove the desired vol-
ume inequality and thus to substitute V ′j (Zt) with Vj(Zt) in (2). The
strategy to deduce the inequality is, roughly speaking, as follows. For
each 1 ≤ j ≤ n− 1 and any j-dimensional subspace Σ we construct a
j-dimensional definable subset of Zt that projects to Σ with maximal
volume. Locally, the volume of the projection to Σ can be bounded
by the sum of the volumes of the projections onto the j-dimensional
coordinate spaces, so globally we only have to worry about these pro-
jections being non-injective. However, o-minimality provides a bound
for the number of pre-images for each such projection, which is uniform
in t and Σ, and this is sufficient.

Therefore, we obtain the following theorem.

Theorem 3 ([5], Theorem 1.3). Let m and n be positive integers,
let Z ⊆ Rm+n be a definable family, and suppose the fibers Zt are
bounded. Then there exists a constant cZ ∈ R, depending only on the
family Z, such that

∣∣∣∣|Zt ∩ Λ| − Vol(Zt)

det Λ

∣∣∣∣ ≤ cZ

n−1∑

j=0

Vj(Zt)

λ1 . . . λj
,

where for j = 0 the term in the sum is to be understood as 1.

There are various advantages in using this theorem. First, the set-
ting of o-minimal structures is broad and general and includes many
classes of sets that appear in applications. Moreover, it is often easy
to prove that a given family is definable in an o-minimal structure.

In addition, opposed to what mentioned before about the other
counting theorems, Vol(Zt) needs not be much larger than the diameter
of Zt. For instance, recalling the example above, one can easily obtain
a non-trivial estimate for the number of points of an arbitrary lattice
in the sets S(T ) defined in (1).

Another feature of the theorem is the completely explicit depen-
dence of the error term on the lattice. This is very important in certain
applications as we are going to explain later.

We should also mention the fact that the error term is best-possible,
up to the constant cZ . To see this consider Λ = λ1e1Z + · · · +
λnenZ with 0 < λ1 ≤ · · · ≤ λn, where e1, . . . , en is the standard
basis of Rn, and the semialgebraic set Z, defined as the union of
Z(j) = {(t,x) ∈ R1+n : t ≥ 0,x ∈ ([0, t]j × {0}n−j + λjej)} taken over
j = 1, . . . , n− 1 > 0. Hence, for t ≥ 0 we get

∣∣∣∣|Zt ∩ Λ| − Vol(Zt)

det Λ

∣∣∣∣ =
n−1∑

j=1

j∏

p=1

([
t

λp

]
+ 1

)
≥ 2−n

n−1∑

j=0

Vj(Zt)

λ1 . . . λj
.
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In what follows, we will apply Theorem 3 to count certain algebraic
points of bounded height.

The simplest definition of the Weil height involves the Mahler mea-
sure of a polynomial. Let f = z0X

d + z1X
d−1 + · · · + zd ∈ C[X] be a

non-constant polynomial of degree d with roots α1, . . . , αd. The Mahler
measure of f is defined to be

M(f) = |z0|
d∏

i=1

max {1, |αi|} .

Moreover, for z ∈ C, we set M(z) = |z|.
Now, let α be an algebraic number. We can associate to it its

minimal polynomial a0X
d + · · · + ad ∈ Z[X], i.e., the non-zero poly-

nomial of smallest degree vanishing at α with coprime coefficients and
positive leading coefficient. Then the multiplicative Weil height of α,
H : Q→ [1,∞), is defined to be

H(α)d = M(a0X
d + · · ·+ ad).

There exists an equivalent definition of the Weil height in terms
absolute values of a number field which naturally extends to vectors.
Let k be a number field of degree m over Q and let Mk be the set of
places of k. For v ∈ Mk we indicate by kv the completion of k with
respect to v. We write Qv for the completion of Q with respect to the
unique place of Q that lies below v. Moreover, we set dv = [kv : Qv] to
be the local degree of k at v.

Any v ∈Mk corresponds either to a non-zero prime ideal pv of Ok,
the ring of integers of k, or to an embedding of k into C. In the first
case v is called a finite or non-archimedean place and we write v - ∞.
In the second case v is called an infinite or archimedean place and we
write v | ∞. We set, for v -∞,

|α|v = N(pv)
− ordpv (α)

dv ,

for every α ∈ k \ {0}, where N(pv) is the norm of pv from k to Q and
ordpv(α) is the power of pv in the factorization of the principal ideal
αOk. Furthermore, |0|v = 0. If v | ∞ corresponds to σv : k ↪→ C, we
set

|α|v = |σv(α)|,
for every α ∈ k, where | · | is the usual absolute value on C. The
multiplicative Weil height H : kn → [1,∞) is defined by

H(α1, . . . , αn) =
∏

v∈Mk

max{1, |α1|v, . . . , |αn|v}
dv
m .

Note that for α ∈ k \ {0}, |α|v 6= 1 for finitely many v so that the
above is actually a finite product.

This definition is independent of the field containing the coordinates
and therefore it can be extended to k

n
, where k is an algebraic closure
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of k. For properties of the Weil height we refer to the first chapter of
[6].

We set

k(n, e) =
{
α ∈ kn : [k(α) : k] = e

}
,

where k(α) is the field obtained by adjoining all the coordinates of
α to k. By Northcott’s Theorem [17], subsets of k(n, e) of uniformly
bounded height are finite. Therefore, for any subset A of k(n, e) and
H > 0, we may introduce the following counting function

N(A,H) = | {α ∈ A : H(α) ≤ H} |.
Various results about this counting function appeared in the litera-

ture. One of the earliest is a result of Schanuel [21] who gave an asymp-
totic formula for N(k(n, 1),H). Schmidt was the first to consider the
case e > 1. In [22], he found upper and lower bounds for N(k(n, e),H)
while in [23], he gave asymptotics for N(Q(n, 2),H). Shortly after-
wards, Gao [13] found the asymptotics for N(Q(n, e),H), provided
n > e. Later Masser and Vaaler [16] established an asymptotic es-
timate for N(k(1, e),H). Finally, Widmer [28] proved an asymptotic
formula for N(k(n, e),H), provided n > 5e/2 + 5 + 2/me. However, for
general n and e even the correct order of magnitude for N(k(n, e),H)
remains unknown.

In this thesis we investigate the asymptotics for certain sets of in-
tegral points.

Let Ok and Ok be, respectively, the ring of algebraic integers of k
and k. We introduce

Ok(n, e) = k(n, e) ∩ On
k

= {β ∈ On
k

: [k(β) : k] = e}.
Possibly, the first asymptotic result (besides the trivial casesOQ(n, 1) =
Zn) can be found in Lang’s book [14]. Lang states, without proof,

N(Ok(1, 1),H) = γkHm (logH)q +O
(
Hm (logH)q−1) ,

where m = [k : Q], q is the rank of the unit group of Ok, and γk is an
unspecified positive constant, depending on k. More recently, Widmer
[27] established the following asymptotic formula

N(Ok(n, e),H) =
t∑

i=0

DiHmen(logHmen)i +O(Hmen−1(logH)t),(3)

provided e = 1 or n > e + Ce,m, for some explicit Ce,m ≤ 7. Here
t = e(q+1)−1, and the constants Di = Di(k, n, e) are explicitly given.
Widmer’s result is fairly specific in the sense that he works only with
the absolute non-logarithmic Weil height H. On the other hand, the
methods used in [27] are quite general and powerful, and can probably
be applied to handle other heights (such as the heights used by Masser
and Vaaler in [16] to deduce their main result). As mentioned in [27]
this might lead to multiterm expansions as in (3) for N(Ok(1, e),H).
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However, for the moment, such generalizations of (3) are not avail-
able, and thus the work [27] does not provide any results in the case
n = 1 and e > 1.

But Chern and Vaaler in [7] proved an asymptotic formula for the
number of monic polynomials in Z[X] of given degree and bounded
Mahler measure. Theorem 6 of [7] immediately implies the following
result

N(OQ(1, e),H) = CeHe2

+O
(
He2−1

)
,

for some explicitly given positive real constant Ce.
Analogously, one can try to estimate N(Ok(1, e),H) by counting

monic irreducible polynomials of degree e in Ok[X], that take bounded
value under some function associated to the height of the roots. This is
similar to the strategy of [16], in which the asymptotics forN(k(1, e),H)
is derived from an estimate for the number of monic irreducible polyno-
mials f of degree e in k[X] with M0(f) ≤ H, where M0 is some function
k[X] → [0,∞) related to the Mahler Measure. Using this approach it
is possible to find an asymptotic formula for N(Ok(1, e),H).

For positive rational integers e we define

(4) CR,e = 2e−M
(

M∏

l=1

(
2l

2l + 1

)e−2l
)
eM

M !
,

with M = b e−1
2
c, and

(5) CC,e = πe ee

(e!)2 .

And, finally, let

C
(e)
k =

e2q+12semq

q!
(√
|∆k|

)eCr
R,eC

s
C,e,

where m = [k : Q], r is the number of real embeddings of k, s the
number of pairs of complex conjugate embeddings, q = r + s− 1, and
∆k denotes the discriminant of k.

For non-negative real functions f(X), g(X), h(X) and X0 ∈ R, we
write f(X) = g(X) + O(h(X)) as X ≥ X0 tends to infinity, if there is
C0 such that |f(X)− g(X)| ≤ C0h(X) for all X ≥ X0.

Theorem 4 ([3], Theorem 1.1). Let e be a positive integer, and
let k be a number field of degree m over Q. Then, as H ≥ 2 tends to
infinity, we have

N(Ok(1, e),H) = C
(e)
k Hme2

(logH)q

+

{
O
(
Hme2

(logH)q−1
)
, if q ≥ 1,

O
(
He(me−1)L

)
, if q = 0,
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where L = logH if (m, e) = (1, 2) and 1 otherwise. The implicit
constant in the error term depends only on m and e.

Let us mention two simple examples. The number of algebraic
integers α quadratic over Q(

√
2) with H(α) ≤ H is

32H8 logH +O(H8).

In case e = 3, we have

108
√

2H18 logH +O(H18)

algebraic integers α cubic over Q(
√

2) with H(α) ≤ H.
As mentioned above, the problem translates to counting the mini-

mal polynomials over k of the elements ofOk(1, e). We define a function

Mk : k[X] → [0,∞)

f 7→ ∏r+s
i=1 M(σi(f))

di
m ,

where the σi are the embeddings of k into C, acting on the coefficients
of f , indexed in the usual way, i.e., σ1, . . . , σr are the real embeddings
and σr+1, . . . , σr+2s are the complex ones, with σr+j = σr+s+j, for j =
1, . . . , s. Moreover, d1 = · · · = dr = 1 and dr+1 = · · · = dr+s = 2.

One can prove that, if α ∈ Ok(1, e) and f is its minimal polynomial

over k, then H(α)e = Mk(f). Therefore, if M̃k(e,H) is the the set
of monic irreducible f ∈ Ok[X] of degree e and Mk(f) ≤ H, we have

N (Ok(1, e),H) = e
∣∣∣M̃k(e,He)

∣∣∣. Now, after showing that the number

of reducible polynomials is negligible, the problem finally translates to
counting points of the lattice consisting of the embedding of (Ok)n into
Rmn inside

(6) Z(T ) =

{
(x1, . . . ,xr+s) ∈ (Rn)r ×

(
R2n
)s

:
r+s∏

i=1

M1(xi)
di ≤ T

}
,

where M1(x) is the Mahler measure of the monic polynomial with
the entries of x as coefficients. Note that the set S(T ) defined in (1)
coincides with Z(T ) if n = 1, r = 3 and s = 0.

Using results from [7] it is possible to calculate the volume of Z(T )
which has order T n(log T )r+s−1. Whereas the diameter of Z(T ) has
order T and, just as before for (1), a direct application of the Lipschitz
counting method or of the counting theorem in [23] yields an error term

of order T n(r+2s)−1 if r > 0 and T
2sn−1

2 if r = 0, exceeding the main
term, unless r + s = 1 or (n, r, s) = (1, 2, 0).

On the other hand, one can prove that Vj(Z(T ))� T n(log T )r+s−2.
Therefore, Theorem 3 gives the desired estimate, provided the family
Z, with fibers Z(T ), is definable in an o-minimal structure. This is
ensured by the fact that Z is a semialgebraic family because the Mahler
measure is actually a semialgebraic function.
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It should be mentioned that the method developed in [27], which in-
vokes the Lipschitz principle, can probably be used to establish precise
estimates for the number of lattice points in (6), provided the lattice
satisfies a certain gap principle, cf. [27], Theorem 4.1. Indeed, the em-
bedding of (Ok)n satisfies the required gap principle , but the method
in [27] is rather technical and complicated. Thanks to Theorem 3 we
have a simpler and more straightforward approach, although to the
expense of getting a larger error term.

Note that the error term in the asymptotic formula of Theorem 4
depends only on e and the degree of k and not on the field itself. This
is possible because of the completely explicit dependence on the lattice
of the error term in Theorem 3.

Besides the work of Widmer [27] and Theorem 4, we are not aware
of any result that deals with other choices of (n, e), therefore, the gen-
eral problem of estimating N(Ok(n, e),H) remains open and not even
the correct order of magnitude is known.

A further natural problem that can be investigated is to some-
how generalize Theorem 4 in the direction of rings of S-integers. One
naturally tries to apply the same method as before, i.e., count monic
irreducible polynomials of fixed degree in OS[X]. Unfortunately, the
image of OS in R[k:Q] via the usual embedding is not a lattice, since it
is dense, and thus the result cannot be obtained by a straightforward
generalization of the strategy explained above. Nevertheless, it is pos-
sible to overcome these difficulties and finally obtain the desired result,
which we are going to state after introducing some notation.

As before, fix a number field k of degree m over Q. Let S be a
finite set of places of k containing the archimedean ones. Let OS be
the ring of S-integers of k. Fix an algebraic closure k of k and let S
be the set of places of k that lie above the places in S. Let OS be the
ring of S-integers of k. Given n and e positive integers, we put

OS(n, e) = k(n, e) ∩ On
S

=
{
α ∈ On

S
: [k(α) : k] = e

}
.

Let S∞ be the set of archimedean places in S. If we choose S = S∞,
then OS = Ok and clearly OS(n, e) = Ok(n, e).

Now, let Sfin be the set of non-archimedean places of S. Suppose
that v ∈ Sfin corresponds to the prime ideal pv of Ok. Recall that N(pv)
is the norm of pv. We indicate by N(S) the |Sfin|-tuple consisting of
the norms of the pv, for v ∈ Sfin. Let n be a positive integer, we put

B
(n)
k,S =

nr+s−12snm|S|−1

(|S| − 1)!
(√
|∆k|

)n
∏

v∈Sfin

(
1

logN(pv)

(
1− 1

N(pv)n

))
.
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As usual, the empty product is understood to be 1. Moreover, recall
the definitions (4) and (5) of CR,e and CC,e and set

C
(e)
k,S = e|S|Cr

R,eC
s
C,eB

(e)
k,S.

Theorem 5 ([2], Theorem 1.2). Let e be a positive integer and let
k be a number field of degree m over Q. Moreover, let S be a finite set
of places of k containing the archimedean ones. Then, as H ≥ 2 tends
to infinity,

N(OS(1, e),H) = C
(e)
k,SHme2

(logH)|S|−1

+

{
O
(
Hme2

(logH)|S|−2
)
, if |S| > 1,

O
(
He(me−1)L

)
, if |S| = 1,

where L = logH if (m, e) = (1, 2) and 1 otherwise. The implicit
constant in the error term depends on m, e and N(S).

Note that, for S consisting of the archimedean places only, this is
nothing but Theorem 4.

Theorem 5 is actually obtained from a more general result ([2],
Theorem 3.1) that gives an estimate for the cardinality of On

S(H), the
set of points a ∈ On

S with HN (1,a) ≤ H, where HN is some height
function on kn.

The proof of this more general result relies again on Theorem 3
but it is not a straightforward application of it because, as mentioned
above, OS is not a lattice in Rm. To overcome this problem one notices
that any S-integer is contained in a non-zero fractional ideal of the form∏

v∈Sfin
p−gvv , for some non-negative integers gv and that the embedding

of a non-zero fractional ideal is a lattice in Rm. One is therefore reduced
to estimate the number of points of a lattice defined by some fractional
ideal inside certain sets whose definition is similar to the one of Z(T )
in (6). This can be done using Theorem 3. Combining these estimates
together and using the Möbius inversion formula, one manages to prove
Theorem 3.1 of [2] and thus to derive Theorem 5.

At this point the importance of the shape of the error term of
Theorem 3 should be mentioned. In fact, that explicit dependence on
the lattice is essential for the combination of the estimates for different
fractional ideals.

As another corollary of Theorem 3.1 of [2], one can prove the fol-
lowing.

Theorem 6 ([2], Theorem 1.1). Let n be a positive integer and let
k be a number field of degree m over Q. Moreover, let S be a finite set
of places of k containing the archimedean ones. Then, as H ≥ 2 tends
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to infinity,

N(OS(n, 1),H) = (2rπs)nB
(n)
k,SHmn (logH)|S|−1

+

{
O
(
Hmn (logH)|S|−2

)
, if |S| > 1,

O (Hmn−1) , if |S| = 1.

The implicit constant in the error term depends on m, n and N(S).

Note that this is a generalization of the case e = 1 in (3), although
with one explicit term only.

Finally, let us mention a few simple examples for both theorems.
Fix a prime number p. One can see, as an easy exercise and as a special

case of both theorems, that the number of elements of Z
[

1
p

]
of height

at most H is
2

log p

(
1− 1

p

)
H logH +O(H).

Now, let d be a square-free positive integer with d ≡ 3 mod 4. Con-
sider k = Q[

√
d] and set S to consist of the place corresponding to

the prime ideal (2, 1 +
√
d), in addition to the two archimedean places.

Then

N(OS(n, 1),H) =
2n(2n − 1)

d
n
2 log 2

H2n (logH)2 +O
(
H2n logH

)
.

Now consider k = Q again and suppose the non-archimedean places in
S are associated to the primes 2 and 3. Then

N(OS(1, 2),H) =
32

3 log 2 log 3
H4 (logH)2 +O

(
H4 logH

)
.

We conclude this introduction with a summary of the four papers
that constitute this thesis.

Counting lattice points and o-minimal structures

The article [5] constitute the first chapter of this thesis. This joint
work with Martin Widmer has been accepted for publication by Inter-
national Mathematics Research Notices and appeared online.

Counting algebraic integers of fixed degree and bounded
height

The second chapter consists of [3], which is currently under review
by a journal.

Algebraic S-integers of fixed degree and bounded height

The article [2] is the third chapter. This is a preprint and is soon
going to be submitted to a journal.
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Additive unit representations in global fields - A survey

Although quite unrelated to the other papers, the survey article
[4] is included in this thesis as an appendix, since it has been written
during my Ph.D. studies. This is joint work with Christopher Frei and
Robert Tichy and offers an overview on the unit sum number problem.
Special attention is given to rings of integers of algebraic number fields
and matrix rings. This article is published in Publicationes Mathemat-
icae Debrecen.
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20. , Counting special points: logic, Diophantine geometry, and transcen-

dence theory, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 1, 51–71.
21. S. H. Schanuel, Heights in number fields, Bull. Soc. Math. France 107 (1979),

no. 4, 433–449.

xxv



xxvi BIBLIOGRAPHY

22. W. M. Schmidt, Northcott’s theorem on heights. I. A general estimate, Monatsh.
Math. 115 (1993), no. 1-2, 169–181.

23. , Northcott’s theorem on heights II. The quadratic case, Acta Arith.
LXX.4 (1995), 343–375.

24. , The distribution of sublattices of Zm, Monatsh. Math. 125 (1998),
no. 1, 37–81.

25. P. G. Spain, Lipschitz: a new version of an old principle, Bull. London Math.
Soc. 27 (1995), no. 6, 565–566.

26. J. L. Thunder, The number of solutions of bounded height to a system of linear
equations, J. Number Theory 43 (1993), no. 2, 228–250.

27. M. Widmer, Integral points of fixed degree and bounded height, submitted.
28. , Counting points of fixed degree and bounded height, Acta Arith. 140

(2009), no. 2, 145–168.
29. , Counting primitive points of bounded height, Trans. Amer. Math. Soc.

362 (2010), 4793–4829.
30. , Lipschitz class, narrow class, and counting lattice points, Proc. Amer.

Math. Soc. 140 (2012), no. 2, 677–689.
31. A. J. Wilkie, Model completeness results for expansions of the ordered field of

real numbers by restricted Pfaffian functions and the exponential function, J.
Amer. Math. Soc. 9 (1996), no. 4, 1051–1094.

32. U. Zannier, Some Problems of Unlikely Intersections in Arithmetic and Geome-
try, Annals of Mathematics Studies, vol. 181, Princeton University Press, 2012,
With appendixes by David Masser.



COUNTING LATTICE POINTS AND O-MINIMAL
STRUCTURES

FABRIZIO BARROERO AND MARTIN WIDMER

Abstract. Let Λ be a lattice in Rn, and let Z ⊆ Rm+n be a
definable family in an o-minimal structure over R. We give sharp
estimates for the number of lattice points in the fibers ZT = {x ∈
Rn : (T, x) ∈ Z}. Along the way we show that for any subspace
Σ ⊆ Rn of dimension j > 0 the j-volume of the orthogonal projec-
tion of ZT to Σ is, up to a constant depending only on the family Z,
bounded by the maximal j-dimensional volume of the orthogonal
projections to the j-dimensional coordinate subspaces.

1. Introduction

Let Λ be a lattice in Rn, and let Z be a subset of Rm+n. We consider
Z as a parameterized family of subsets ZT = {x ⊆ Rn : (T, x) ∈ Z}
of Rn. One is often led to the problem of estimating the cardinality
|Λ∩ZT | as the parameter T ranges over an infinite set. According to a
general principle one would expect that, if the sets ZT are reasonably
shaped, a good estimate for |Λ ∩ ZT | is given by Vol(ZT )/ det Λ. The
situation is relatively easy if ZT = TZ1 for some fixed subset Z1 of
Rn and as T ∈ R tends to infinity.1 However, in many situations the
family Z is more complicated, and typically described by inequalities
such as

f1(T1, . . . , Tm, x1, . . . , xn) ≤ 0, . . . , fN(T1, . . . , Tm, x1, . . . , xn) ≤ 0,
(1.1)

where the fi are certain real valued functions on Rm+n, e.g., polyno-
mials. Using the language of o-minimal structures from model theory
we prove for fairly general families Z an estimate for |Λ∩ZT |, which is

2010 Mathematics Subject Classification. Primary 11H06, 03C98, 03C64; Sec-
ondary 11P21, 28A75, 52C07.

Key words and phrases. Lattice points, counting, o-minimal structure, volumes
of projections, computational geometry.

F. Barroero is supported by the Austrian Science Foundation (FWF) project
W1230-N13.

M. Widmer was supported in part by the Austrian Science Foundation (FWF)
project M1222-N13 and ERC-Grant No. 267273.

1However, even if ZT = TZ1 is compact it is not necessarily true that |Λ∩ZT | =
Vol(Z1)Tn/ det Λ + O(Tn−1), e.g., take Λ = Zn, and Z1 = {0, 2−1, 2−2, 2−3, . . .} ×
[0, 1]n−1. The latter is a counterexample to the claim in the first paragraph of [7].
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2 FABRIZIO BARROERO AND MARTIN WIDMER

quite precise in terms of the geometry of the sets ZT , and the geometry
of the lattice Λ.

A classical result, although restricted to Λ = Zn, was proven by
Davenport [7, Theorem].

Theorem 1.1 (Davenport). Let n be a positive integer, and let ZT be
a compact set in Rn that satisfies the following conditions.

(1) Any line parallel to one of the n coordinate axes intersects ZT
in a set of points, which, if not empty, consists of at most h
intervals.

(2) The same is true (with j in place of n) for any of the j dimen-
sional regions obtained by orthogonally projecting ZT on one of
the coordinate spaces defined by equating a selection of n− j of
the coordinates to zero, and this condition is satisfied for all j
from 1 to n− 1.

Then

||ZT ∩ Zn| − Vol(ZT )| ≤
n−1∑

j=0

hn−jVj(ZT ),

where Vj(ZT ) is the sum of the j-dimensional volumes of the orthogonal
projections of ZT on the various coordinate spaces obtained by equating
any n− j coordinates to zero, and V0(ZT ) = 1 by convention.

A drawback of Davenport’s theorem is that the conditions (1) and
(2) are often difficult to verify. Various authors have given similar
estimates for general lattices with simpler, possibly milder, conditions
on the set; see [33] for a discussion on that. Classical results are known
for homogeneously expanding sets whose boundary is parameterizable
by certain Lipschitz maps, see, e.g., [17, Theorem 5.1, Chap. 3], or [28,
Theorem] for a refined version. Masser and Vaaler [18, Lemma 2] gave
a counting result for sets satisfying the above Lipschitz condition but
which are not necessarily homogeneously expanding, and moreover, the
dependence on the lattice was made explicit. Masser and Vaaler’s result
was refined by the second author [31, Theorem 5.4] to get a sharp error
term (for balls such sharp estimates have been obtained by Schmidt in
[26, Lemma 2]). However, all these results for general lattices have one
drawback in common: usually, a direct application yields nontrivial
estimates only if the volume is much larger than the diameter; e.g., if
T ∈ R tends to infinity we usually require diam(ZT )n−1 = o(Vol(ZT )).
We shall illustrate this problem more explicitly after we have stated
our theorem.

Of course, Davenport’s theorem can easily be generalized to arbitrary
lattices. With a bit care, using standard results from Geometry of
Numbers, one gets the error term (ignoring a factor depending only on
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n)

n−1∑

j=0

h′(ZT )n−j
V ′j (ZT )

λ1 · · ·λj
,(1.2)

where λ1, . . . , λn are the successive minima of Λ (with respect to the
zero-centered unit ball), V ′j (ZT ) is the supremum of the volumes of
the orthogonal projections of ZT to the j-dimensional linear subspaces,
and h′ is what we get instead of h when in Davenport’s conditions “line
parallel to one of the n coordinate axes” and “orthogonally projecting
ZT on one of the coordinate spaces defined by equating a selection of n−
j of the coordinates to zero” are replaced by “line” and “any projection
of ZT on any j-dimensional subspace”.

Now the quantity V ′j (ZT ) is definitely not so nice to work with as
Vj(ZT ). Moreover, proving the existence of uniform upper bounds
for h′(ZT ) (i.e., independent of T ) is often troublesome and awkward.
Therefore it would be nice to have some general but mild conditions
on the family Z that allow us to replace h′(ZT ) by a uniform constant
cZ and V ′j (ZT ) by Vj(ZT ).

At this point it might be worthwhile to emphasize that even if the
sets ZT are simply given by a finite number of squares in R2 we cannot
expect that V ′j (ZT ) ≤ cVj(ZT ) for some absolute constant c; consider
the sets Cn × Cn in [1, Example 2.67] for a simple counterexample.
The latter example indicates that such an inequality would require a
rather strong hypothesis on the family Z. Also, to handle h′ we need
that the number of connected components of a projection of ZT when
intersected with a line is uniformly bounded.

The setting of o-minimal structures delivers exactly the required
topological properties, and therefore seems to be the natural frame-
work suitable for our problem. Furthermore, it provides a rich and
flexible structure, including many of the relevant examples.

We are using the notation of [9] and [7]. We write N = {1, 2, 3, . . .}
for the set of positive integers.

Definition 1.2. An o-minimal structure is a sequence S = (Sn)n∈N of
families of subsets in Rn such that for each n:

(1) Sn is a boolean algebra of subsets of Rn, that is, Sn is a collection
of subsets of Rn, ∅ ∈ Sn, and if A,B ∈ Sn then also A∪B ∈ Sn,
and Rn\A ∈ Sn.

(2) If A ∈ Sn then R× A ∈ Sn+1 and A× R ∈ Sn+1.
(3) {(x1, . . . , xn) : xi = xj} ∈ Sn for 1 ≤ i < j ≤ n.
(4) If π : Rn+1 → Rn is the projection map on the first n coordinates

and A ∈ Sn+1 then π(A) ∈ Sn.
(5) {r} ∈ S1 for any r ∈ R and {(x, y) ∈ R2 : x < y} ∈ S2.
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(6) The only sets in S1 are the finite unions of intervals and points.
(“Interval” always means “open interval” with infinite endpoints
allowed.)

Following the usual convention, we say a set A is definable (in S) if
it lies in some Sn.

Next we give some important examples of o-minimal structures, fol-
lowing the presentation of Scanlon in [25]. For each n ∈ N let Fn be a
collection of functions f : Rn → R that we call distinguished functions.
If g, h : Rn → R are built from the coordinate functions, constant
functions and distinguished functions by composition (provided it is
defined), then we say

{x ∈ Rn : g(x) < h(x)},
{x ∈ Rn : g(x) = h(x)},

are atomic sets. Now let us consider the smallest family of sets in Rn

(for various n) that contains all atomic sets, and is closed under finite
unions and complements, and images of the usual projection maps
π : Rn+1 → Rn onto the first n coordinates. For the following choices
of F =

⋃
n Fn, the resulting family consists precisely of the definable

sets in a particular o-minimal structure:

(1) Falg = {polynomials defined over R},
(2) Fan = Falg ∪ {restricted analytic functions},
(3) Fexp = Falg ∪ {the exponential function exp : R→ R},
(4) Fan,exp = Fan ∪ Fexp.

By a restricted analytic function we mean a function f : Rn → R,
which is zero outside of [−1, 1]n, and is the restriction to [−1, 1]n of a
function, which is real analytic on an open neighborhood of [−1, 1]n.

For the first example note that by the Tarski-Seidenberg theorem
every set in this family is a boolean combination of atomic sets, and
thus is semialgebraic. This implies (6) in Definition 1.2, and (1)-(5) are
clear. The o-minimality of example (2) is due to Denef and van den
Dries [8], while (3) is due to Wilkie [34]. Van den Dries and Miller [11]
proved the o-minimality of the fourth example.

From now on, and for the rest of the paper, we suppose that our
o-minimal structure S contains the semialgebraic sets. Recall that a
set A is definable if it lies in some Sn. For a set Z ⊆ Rm+n we call
ZT = {x ∈ Rn : (T, x) ∈ Z} a fiber of Z. From this viewpoint
it is natural to call Z a family. In particular, we call Z a definable
family if Z is a definable set. We write λi = λi(Λ) for i = 1, . . . , n for
the successive minima of Λ with respect to the zero-centered unit ball
B0(1), i.e., for i = 1, ..., n

λi = inf{λ : B0(λ) ∩ Λ contains i linearly independent vectors}.
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Also recall that Vj(ZT ) is the sum of the j-dimensional volumes of
the orthogonal projections of ZT on every j-dimensional coordinate
subspace of Rn. We shall see that if Z is a definable family with
bounded fibers ZT then the j-dimensional volumes of the orthogonal
projections of ZT on any j-dimensional coordinate subspace of Rn exist
and are finite, and also the volume Vol(ZT ) exists and is finite.

Theorem 1.3. Let m and n be positive integers, let Z ⊆ Rm+n be a
definable family, and suppose the fibers ZT are bounded. Then there
exists a constant cZ ∈ R, depending only on the family Z, such that

∣∣∣∣|ZT ∩ Λ| − Vol(ZT )

det Λ

∣∣∣∣ ≤ cZ

n−1∑

j=0

Vj(ZT )

λ1 · · ·λj
,

where for j = 0 the term in the sum is to be understood as 1.

Up to the constant cZ , our estimate is best-possible. To see this
we take Λ = λ1e1Z + · · · + λnenZ with 0 < λ1 ≤ · · · ≤ λn, and the
semialgebraic set Z, defined as the union of Z(j) = {(T, x) ∈ R1+n :
T ≥ 0, x ∈ ([0, T ]j × {0}n−j + λjej)} taken over j = 1, . . . , n − 1 > 0.
Hence, for T ≥ 0 we get
∣∣∣∣|ZT ∩ Λ| − Vol(ZT )

det Λ

∣∣∣∣ =
n−1∑

j=1

j∏

p=1

([
T

λp

]
+ 1

)
≥ 2−n

n−1∑

j=0

Vj(ZT )

λ1 · · ·λj
.

Next let us consider a simple application. Suppose we want to count
lattice points in the fibers ZT of the family Z as defined in (1.1) by the
2n polynomial functions fI(T, x) =

∏
I x

2
i − T 2, where I runs over all

subsets of {1, 2, . . . , n}, n ≥ 2. This problem occurs if one counts alge-
braic integers in a totally real field k, and of bounded Weil height. Now
we have Vol(ZT ) = 2nT (log T )n−1 + O(T (log T )n−2), and moreover,
Vj(ZT ) = O(T (log T )n−2). Obviously, our family Z is a semialgebraic
set. Applying Theorem 1.3 we get an asymptotic formula.

Now suppose we want to derive a similar statement from the counting
results in [18] or [31] ([17] cannot be applied as ZT is not homogeneously
expanding). Then we require to parameterize the boundary of ZT by a
finite number of Lipschitz maps φ : [0, 1]n−1 → Rn. This can certainly
be done, even with a single map. But the diameter of ZT has size of
order T , and thus the Lipschitz constant L of this map is necessarily
of this size. This gives an error term of order T n−1 which exceeds the
“main term”, at least if n > 2. Possibly one can resolve this problem
by using many parameterizing maps instead of just one. But even in
this single case it is not obvious how to do this.

Now the aforementioned example of counting integers in k of bounded
height is covered by more general and precise results in [32]. But in a
subsequent paper [2] the first author will apply Theorem 1.3 to deduce
the asymptotics of algebraic integers of bounded height and of fixed
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degree over a given number field k. The special case k = Q follows
from a result of Chern and Vaaler [6] but the general result appears to
be new.

In an ongoing project we give a more elaborate application of The-
orem 1.3, which, in conjunction with previous results of the second
author, might lead to some new instances of Manin’s conjecture on the
number of k-rational points of bounded height on the symmetric square
of Pn, where k is an arbitrary number field. The special case k = Q fol-
lows easily from a theorem of Schmidt [27, Theorem 4a], which in turn
follows from his results on the number of quadratic points of bounded
height [27, Theorem 3a] and Davenport’s theorem.

In recent times o-minimal structures have successfully been used for
problems in number theory. Using ideas that date back to a paper by
Bombieri and Pila [4], and were further developed in various articles of
Pila, Pila and Wilkie [23] gave upper bounds for the number of rational
points of bounded height on the transcendental part of definable sets.
These results in turn have been applied to problems in Diophantine
geometry (see [24], [22], [19], [20] and [16]). However, to the best of
the authors’ knowledge, o-minimal structures have not been used so
far to establish asymptotic counting results.

The paper is organized as follows. In Section 2 we use Geometry of
Numbers, and follow arguments of Thunder [29] to generalize Daven-
port’s theorem to arbitrary lattices with an error term as in (1.2). In
Section 3 we collect some basic facts about o-minimal structures, as
well as some deeper results like the cell-decomposition Theorem, the
Reparametrization Lemma (originally due to Yomdin [36], [35], and
Gromov [15, p.232], and refined by Pila and Wilkie [23]), and the exis-
tence of definable Skolem functions. Then, in Section 4, we use the fact
that there are uniform upper bounds for the number of connected com-
ponents of fibers of definable sets, to establish a uniform upper bound
for our quantity h′. In Section 6 we establish a geometric inequality
that allows us to substitute V ′j (ZT ) of (1.2) with Vj(ZT ).

This is the core argument of the paper, and the strategy is, roughly
speaking, as follows. For each 1 ≤ j ≤ n − 1 and any j-dimensional
subspace Σ we construct a j-dimensional definable subset of ZT that
projects to Σ with maximal volume. Locally, the volume of the pro-
jection onto Σ can be bounded by the sum of the volumes of the pro-
jections onto the j-dimensional coordinate spaces, so globally we only
have to worry about these projections being non-injective. However,
o-minimality provides a bound for the number of pre-images for each
such projection, which is uniform in T and Σ, and this is sufficient.

To carry out the aforementioned strategy we require some concepts
and results from geometric measure theory such as rectifiability and
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Hausdorff measure/dimension, which we derive and recall in Section
5. The Reparametrization Lemma implies the required rectifiability
assumptions for bounded definable sets. Finally, in Section 7 we put
all together to prove Theorem 1.3.

Some of the potential users of our theorem may not be familiar with
o-minimality. Therefore, we have given definitions, and proofs or ref-
erences, even for the most basic concepts, and results. For the same
reason we also have restricted ourselves to the set-theoretic language
instead of the model-theoretic approach, although the latter often leads
to simpler and quicker proofs.

2. Geometry of numbers

By [5, Lemma 8 p.135] there exists a basis v1, . . . , vn of the lattice Λ
such that |vi| ≤ iλi for i = 1, . . . , n. We let Ψ be the automorphism of
Rn defined by Ψ(vi) = ei, where e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)
is the standard basis of Rn. Hence, we have Ψ(Λ) = Zn.

Lemma 2.1. Let D ⊆ Rn be a compact set such that Ψ(D) satisfies
the hypothesis (1) and (2) of Theorem 1.1. Then

∣∣∣∣|D ∩ Λ| − Vol(D)

det Λ

∣∣∣∣ ≤
n−1∑

j=0

hn−jVj(Ψ(D)),

Proof. Clearly, we have

|D ∩ Λ| = |Ψ(D) ∩ Zn|,
and Vol(Ψ(D)) = | det Ψ|Vol(D). The inverse of Ψ corresponds to the
matrix with columns v1, . . . , vn, and therefore | det Ψ|−1 = det Λ. As
D is compact also Ψ(D) is compact. Applying Theorem 1.1 yields the
claim. �

In the next two lemmas we simply reproduce arguments of Thunder
from [29] to obtain an error term as anticipated in (1.2).

Let 1 ≤ j ≤ n − 1, let I be any subset of {1, . . . , n} of cardinality
j, and let I be its complement. Let ΣI and ΛI be respectively the
subspace of Rn and the sublattice of v1Z + · · ·+ vnZ generated by the
vectors vi, i ∈ I. For any set D ⊆ Rn we define

DI = {x ∈ ΣI : x+ y ∈ D for some y ∈ ΣI} .
This is nothing but the projection of D to ΣI with respect to ΣI .

Lemma 2.2. Suppose D ⊆ Rn is compact. Then, for every j =
1, . . . , n− 1,

Vj(Ψ(D)) ≤
∑

|I|=j

2j

Bj

Volj
(
DI
)

λ1 · · ·λj
,

where Bj is the volume of the j-dimensional unit-ball.
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Proof. The orthogonal projection of Ψ(D) to the coordinate subspace
spanned by ei, i ∈ I for some choice of I, corresponds to the projection
DI of D to ΣI with respect to ΣI . Therefore we have that

Vj(Ψ(D)) =
∑

|I|=j

Volj
(
DI
)

detΛI

.

As λi(ΛI) ≥ λi for 1 ≤ i ≤ j we deduce from Minkowski’s second
theorem

detΛI ≥
Bj

2j
λ1 · · ·λj,

and this proves the lemma. �
Definition 2.3. Suppose D ⊆ Rn is compact, and suppose 0 < j < n.
We define V ′j (D) to be the supremum of the volumes of the orthogonal
projections of D to any j-dimensional linear subspace of Rn, and we
set V ′0(D) = 1.

Lemma 2.4. Suppose D ⊆ Rn is compact. Then for any j = 1, . . . , n−
1 and any I ⊆ {1, . . . , n} with |I| = j there exists a constant c = c(n, j)
such that

Volj
(
DI
)
≤ cV ′j (D).

Proof. Let v′i be the vectors defined by

v′i =
v1 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vn

|v1 ∧ · · · ∧ vn|
=
v1 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vn

detΛ
.

Now let Σ⊥
I

be the linear subspace generated by v′i, i ∈ I (and thus

orthogonal to ΣI). Let D̂I be the orthogonal projection of D on Σ⊥
I

.
This means

D̂I =
{
x ∈ Σ⊥

I
: x+ y ∈ D for some y ∈ ΣI

}
.

There exists a linear transformation ϕ between ΣI and Σ⊥
I

that maps a

point of ΣI to its orthogonal projection on Σ⊥
I

. Note that ϕ(DI) ⊆ D̂I

because, for every x ∈ DI , x = z + y for some z ∈ D and y ∈ ΣI , and

ϕ(x) = x + y′ for some y′ ∈ ΣI , and thus ϕ(x) = z + (y + y′) ∈ D̂I .
Moreover, ϕ is an injective map. Indeed, suppose we had x, y ∈ ΣI

with the same image, then x − y ∈ ΣI ∩ ΣI , which means x = y.
Therefore we can see ϕ as an automorphism of Rj. We want to bound
the determinant of the inverse of ϕ. Let

x =
∑

i∈I
aivi ∈ ΣI .

Since x− ϕ(x) ∈ ΣI and by definition vp · v′q = δpq, we have, for every
i ∈ I, (x− ϕ(x)) · v′i = 0 and ai = x · v′i = ϕ(x) · v′i. Thus,

|x| ≤
∑

i∈I
|ai||vi| ≤

∑

i∈I
|ϕ(x)| |v′i| |vi|.
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The condition |vi| ≤ iλi, the definition of v′i and Minkowski’s second
Theorem imply that

|v′i||vi| ≤
∏

p |vp|
detΛ

≤
n!
∏

p λp

detΛ
≤ n!2n

Bn

.

Thus,

|x| ≤ j
n!2n

Bn

|ϕ(x)|,

and this implies

‖ϕ−1‖op ≤ j
n!2n

Bn

,

where ‖ · ‖op is the operator norm. Suppose ϕ−1 corresponds to the

matrix (apq)
j
p,q=1 then ‖ϕ−1‖op ≥ maxp,q {|apq|}. By Hadamard’s in-

equality

∣∣det
(
ϕ−1

)∣∣ ≤
j∏

p=1

(
j∑

q=1

a2
pq

)1/2

≤
(√

j‖ϕ−1‖op
)j
.

Finally, since DI ⊆ ϕ−1
(
D̂I
)

,

Volj
(
DI
)
≤ Volj

(
ϕ−1

(
D̂I
))
≤
(
j3/2n!2n

Bn

)j
Volj

(
D̂I
)

≤
(
j3/2n!2n

Bn

)j
V ′j (D).

�

3. O-minimal structures

In this section we state the basic properties used later on. Most of
the results are taken literally from [9].

We start with a list of simple facts that will be used in the sequel,
sometimes without explicitly referring to them.

Lemma 3.1.

i) A,B ∈ Sn ⇒ A ∩B ∈ Sn;
ii) A ∈ Sn, B ∈ Sm ⇒ A×B ∈ Sn+m;

iii) A ∈ Sn, 1 ≤ k ≤ n ⇒ {(x1, . . . , xk, x1, . . . , xn) : (x1, . . . , xn) ∈
A} ∈ Sk+n;

iv) A ∈ Sn, σ a permutation on n coordinates ⇒ σA ∈ Sn;
v) A ∈ Sn ⇒ πC(A) ∈ Sn, where C is a coordinate subspace in Rn

and πC is the orthogonal projection to C;
vi) S ∈ Sm+n, a ∈ Rm ⇒ Sa = {x ∈ Rn : (a, x) ∈ S} ∈ Sn.
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Proof. The statement i) is obvious from Definition 1.2. For ii) we use
that A × B = A × Rm ∩ Rn × B. Now iii) follows easily. For iv) we
note that σA is the projection to the first n coordinates of the definable
set ∩ni=1{(u, x) ∈ Rn × A : ui = xσ(i)}. Then, v) follows immediately.
Finally, for vi) we note that Sa = π(S ∩ {a} × Rn), where π projects
to the last n coordinates. �

Recall that a subset X of Rn is definable (in the o-minimal structure
S) if X ∈ Sn. Also recall that our o-minimal structure S contains the
semialgebraic sets.

Definition 3.2. Suppose X ⊆ Rn is definable then we say that f : X →
Rm is a definable function (in S) if its graph Γ(f) = {(x, f(x)) : x ∈ X}
is definable (in S). We say that f is bounded if its graph is a bounded
set.

Let ϕ be an endomorphism of Rn. Then we will identify ϕ with the
vector (ϕ(e1), . . . , ϕ(en)) ∈ Rn2

, where e1, . . . , en is the standard basis
of Rn. A set of the form{

(ϕ, x, y) ∈ Rn2+2n : y = ϕ(x)
}
,(3.1)

is defined by polynomial equalities, and hence is definable.
Now suppose X is a definable set, and let

C(X) = {f : X → R : f is definable and continuous},
and

C∞(X) = C(X) ∪ {−∞,∞}.
For f and g in C∞(X) we write f < g if f(x) < g(x) for all x ∈ X. In
this case we put

(f, g)X = {(x, r) ∈ X × R : f(x) < r < g(x)}.
It is not difficult to see that (f, g)X is a definable subset of Rn+1, e.g.,
(−∞, g)X is a projection of the definable set {(x, z, y, z) ∈ Γ(g)×R2 :
y < z}.

We now come to the definition of cells which are particularly simple
definable sets.

Definition 3.3. Let (i1, . . . , in) be a sequence of zeros and ones of
length n. A (i1, . . . , in)-cell is a definable subset of Rn obtained by
induction on n as follows:

(1) A (0)-cell is a one-element set {r} ⊆ R, a (1)-cell is a nonempty
interval (a, b) ⊆ R.

(2) Suppose (i1, . . . , in)-cells are already defined; then a (i1, . . . , in,
0)-cell is the graph Γ(f) of a function f ∈ C(X), where X is
a (i1, . . . , in)-cell; further, a (i1, . . . , in, 1)-cell is a set (f, g)X ,
where X is a (i1, . . . , in)-cell and f, g ∈ C∞(X) with f < g.



COUNTING LATTICE POINTS AND O-MINIMAL STRUCTURES 11

A cell in Rn is an (i1, . . . , in)-cell for some (necessarily unique) se-
quence (i1, . . . , in).

Lemma 3.4. Each cell is connected in the usual topological sense.

Proof. This follows from [9, Exercise 7, p.59] combined with [9, Ch.3,
(2.9) Proposition]. �

We need another definition.

Definition 3.5. A decomposition of Rn is a special kind of partition
into finitely many cells. Again the definition is by induction on n:
(1) a decomposition of R is a collection

{(−∞, a1), (a1, a2), . . . , (ak,∞), {a1}, . . . , {ak}},
where a1 < · · · < ak are points in R.
(2) a decomposition of Rn+1 is a finite partition of Rn+1 into cells A
such that the set of projections π(A) is a decomposition of Rn. (Here
π : Rn+1 → Rn is the usual projection map on the first n coordinates.)

A decomposition D of Rn is said to partition a set S ⊆ Rn if each
cell in D is either part of S or disjoint from S. We can now state
the following theorem, which is a special case of the cell decomposition
theorem ([9, Ch.3, (2.11)] or [12, 4.2]).

Theorem 3.6. Given a definable set S ⊆ Rn there is a decomposition
of Rn partitioning S.

Proof. This follows immediately from (In) in [9, Ch.3, (2.11)]. �
We recall the definition of dimension of a definable set from [9, Ch.4].

Definition 3.7. Let S ⊆ Rn be nonempty and definable. The dimen-
sion of S is defined as

dim S = max{i1 + · · ·+ in : S contains an (i1, . . . , in)− cell}.
To the empty set we assign the dimension −∞.

Note that a definable set of dimension zero is a finite collection of
points. Next we collect some basic facts about definable functions.
These will be used in the sequel, sometimes without further mention.

Lemma 3.8. Suppose f : A → B is a definable function and suppose
C is a nonempty definable subset of A. Then

i) A and f(A) are definable;
ii) The restriction f |C : C → B is definable;

iii) If f is bijective then f−1 : B → A is definable;
iv) If f is bijective then dim A = dim B.

Proof. The claim i) follows immediately from the definition, similarly
ii) by noting that Γ(f |C) = Γ(f) ∩ (C × f(A)), and iii) is obvious.
For iv) we refer to [9, Ch.4, (1.3) Proposition (ii)], �
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Definition 3.9. Let S ⊆ Rn be a definable set of dimension d > 0.
Let P be a finite set of definable functions φ : (0, 1)d → S such that⋃
φ∈P φ

(
(0, 1)d

)
= S. We call P a parametrization of S. Let α ∈ (N∪

{0})d be a multi index write |α| = ∑αi and, for φ = (φ1, . . . , φn) ∈ P,

φ(α) =

(
∂|α|φ1

∂α1x1 · · · ∂αdxd
, · · · , ∂|α|φn

∂α1x1 · · · ∂αdxd

)
.

We call P a p-parametrization if every φ ∈ P is of class C(p) and has
the property that φ(α) is bounded for each α ∈ (N ∪ {0})d with |α| ≤ p.

Theorem 3.10 (Pila, Wilkie). For any p ∈ N, and any bounded de-
finable set S of positive dimension, there exists a p-parametrization of
S.

Proof. This is a special case of [23, Theorem 2.3]. �
Let D ⊆ Rn be nonempty. We say f : D → Rm is a Lipschitz map

if there exists a real constant L such that

|f(x)− f(y)| ≤ L|x− y| for all x, y ∈ D.
Corollary 3.11. Let S ⊆ Rn be bounded and definable, and suppose
dim S = d > 0. Then S can be parameterized by a finite number of
Lipschitz maps φ : (0, 1)d → S.

Proof. By Theorem 3.10 any bounded definable set S of dimension d
can be parameterized by a finite number of maps φ : (0, 1)d → S with
uniformly bounded partial derivatives. This implies the claim (see also
[9, Ch.7, (2.8) Lemma]). �
Proposition 3.12. [9, Ch.3, (3.5) Proposition] Let π : Rm+n → Rm

be the projection on the first m coordinates. If C is a cell in Rm+n and
a ∈ π(C), then Ca is a cell in Rn. Moreover, if D is a decomposition
of Rm+n and a ∈ Rm then the collection

Da := {Ca : C ∈ D, a ∈ π(C)}
is a decomposition of Rn.

Corollary 3.13. Let S ⊆ Rm+n be a definable family. Then there
exists a number MS ∈ N such that for each a ∈ Rm the set Sa ⊆ Rn

can be partitioned into at most MS cells. In particular, each fiber Sa
has at most MS connected components.

Proof. By the cell decomposition theorem there exists a decomposition
D of Rm+n partitioning S. Then for each a ∈ Rm the decomposition
Da of Rn consists of at most |D| cells and partitions Sa. So we can take
MS = |D|. The last statement follows from Lemma 3.4. �

Another important property of o-minimal structures is the possibil-
ity of “lifting” projections. In model-theoretic terms this might be
rephrased as existence of definable Skolem functions.
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Proposition 3.14. [9, Ch.6, (1.2) Proposition] If S ⊆ Rm+n is defin-
able and π : Rm+n → Rm is the projection on the first m coordinates,
then there is a definable map f : π(S)→ Rn such that Γ(f) ⊆ S.

The proof of [9, Ch.6, (1.2) Proposition] actually shows that there is
an algorithmic way to construct the Skolem function f . The construc-
tion of f is of no importance for us but we will use the fact that this
choice of f is determined by S and π.

We write cl(A) and int(A) for the the topological closure and the
interior of the set A respectively. Also recall that bd(A) denotes the
topological boundary of A.

Lemma 3.15. Suppose Z ⊆ Rm+n is definable. Then {(T, x) : x ∈
int(ZT )}, {(T, x) : x ∈ cl(ZT )}, and {(T, x) : x ∈ bd(ZT )} are defin-
able.

Proof. The first statement is [9, Ch.1, (3.7) Exercise (ii)]. For the
second set note that x ∈ cl(ZT ) is equivalent to x /∈ int(Rn\ZT ), and,
moreover, Rn\ZT = (Rm+n\Z)T . Hence, {(T, x) : x ∈ cl(ZT )} =
Rm+n\{(T, x) : x ∈ int((Rm+n\Z)T )}, which is definable by our first
statement. Finally, as {(T, x) : x ∈ bd(ZT )} = {(T, x) : x ∈ cl(ZT )} \
{(T, x) : x ∈ int(ZT )} we get the last statement. �

4. The Davenport constant

If D ⊆ Rn satisfies the conditions (1) and (2) in Theorem 1.1 then
we say h is a Davenport constant for D. Of course, this has nothing to
do with the classical Davenport constant of a finite abelian group.

Lemma 4.1. Let Z ⊆ Rm+n be a definable family. There exists a
natural number M = MZ, depending only on Z, such that for every T ∈
Rm and every endomorphism Ψ of Rn the number M is a Davenport
constant for Ψ(ZT ).

Proof. Let I be a nonempty subset of {1, . . . , n} and let πCI
be the

orthogonal projection of Rn on the coordinate subspace CI generated
by the ei, i ∈ I. Recall the notation of (3.1) in Section 3 and let W be
the set

W =
{

(Ψ, T, x) ∈ Rn2+m+n : x ∈ Ψ(ZT )
}
.(4.1)

Note that, up to a coordinate permutation, W is the projection to the
first n2 +m+ n coordinates of the definable set{

(Ψ, x, T, y) ∈ Rn2+n+m+n : x = Ψ(y)
}
∩
(
Rn2+n × Z

)
.

By Lemma 3.1 and the fact that semialgebraic sets are definable, this
is a definable set. Moreover, note that

W(Ψ,T ) = Ψ(ZT ).
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Let us set some notation we need. We indicate by π′CI
the endomor-

phism of Rn2+m+n defined by (Ψ, T, x) 7→ (Ψ, T, πCI
(x)). A line in CI

parallel to ei0 is determined by |I| − 1 reals and therefore we indicate
it by (li)i∈I\{i0}.

Let I ⊆ {1, . . . , n} be nonempty and i0 ∈ I, we consider the sets

BI,(i0) =
{(

(li)i∈I\{i0},Ψ, T, x
)
∈ R|I|−1 × Rn2+m+n :

(Ψ, T, x) ∈ π′CI
(W ), li = xi for i ∈ I \ {i0}

}
.

Again by elementary properties mentioned in Section 3, these are defin-

able sets . A fiber B
I,(i0)
((li),Ψ,T ) is exactly the intersection of π′CI

(W )(Ψ,T ) =

πCI
(W(Ψ,T )) = πCI

(Ψ(ZT )) and the line (li)i∈I\{i0} parallel to ei0 in the
subspace CI .

Now we use Corollary 3.13 to find a uniform bound M I,(i0) for the

number of connected components of the fibers B
I,(i0)
((li),Ψ,T ) of BI,(i0). This

means that M I,(i0) is a bound on the number of connected components
of the intersection of πCI

(Ψ(ZT )) with any line of CI parallel to ei0 , for
any choice of Ψ and T . Finally, we can take M to be the maximum of
the M I,(i0) for all the possible choices of I and i0 ∈ I. �

5. Hausdorff measure and rectifiability

We also require the j-Hausdorff measure Hj. For the definition and
properties of the Hausdorff measure we refer to [14] or [21].

Lemma 5.1. Suppose 1 ≤ j ≤ n, A ⊆ Rn and suppose A is j-
Hausdorff measurable. Furthermore, let ϕ : Rn → Rn be an endomor-
phism. Then Hj(ϕ(A)) ≤ ‖ϕ‖jopHj(A). Moreover, if ϕ is an orthogonal

projection we have Hj(ϕ(A)) ≤ Hj(A). If ϕ is in the orthogonal group
On(R) then we have Hj(ϕ(A)) = Hj(A).

Proof. The first claim follows from [13, 2.4.1 Theorem 1]. If ϕ is in
On(R) or if ϕ is an orthogonal projection then ‖ϕ‖op = 1. If ϕ ∈
On(R) then also ϕ−1 ∈ On(R), and we apply the previous with ϕ−1

and ϕ(A). �
Proposition 5.2. Suppose A ⊆ Rn is nonempty and definable. Then
dim A coincides with the Hausdorff dimension. Moreover, if dim A = d
and A is bounded, then A is j-Hausdorff measurable for every j with
d ≤ j ≤ n. Finally, Hd(A) <∞ and Hj(A) = 0 for j > d.

Proof. See [10, last paragraph on p.177]. The last claim follows from
the definition of Hausdorff dimension. �

It is well known that on Rn the n-Hausdorff measure coincides with
the Lebesgue measure (see [21, 2.8. Corollary]). This, together with
Proposition 5.2, implies that a definable set in Rn of dimension < n has



COUNTING LATTICE POINTS AND O-MINIMAL STRUCTURES 15

volume zero. Also recall that any bounded set that is open or closed is
measurable and has finite volume.

Lemma 5.3. Let A ⊆ Rn be a bounded definable set. Then, Vol(bd(A))
= 0. In particular, A is measurable and Vol(int(A)) = Vol(A) =
Vol(cl(A)).

Proof. By [9, Ch.4, (1.10) Corollary] we have dim bd(A) < n. This,
combined with the previous observation yields Vol(bd(A)) = 0. �

Berarducci and Otero [3] have proven measurability results for more
general o-minimal structures expanding a field, not necessarily R. E.g.,
[3, 2.5 Theorem] implies that any bounded definable set is measurable.

Lemma 5.4. Let Z ⊆ Rm+n be a definable family and suppose the
fibers ZT are bounded. Then for 1 ≤ j ≤ n − 1 the j-dimensional
volumes of the orthogonal projections of ZT on every j-dimensional
coordinate subspace of Rn exist and are finite. Moreover, we have
Vj(ZT ) = Vj(cl(ZT )).

Proof. Let C be a coordinate space of dimension j, and let πC be
the orthogonal projection from Rn to C. Recall that the Lebesgue
measure on C is denoted by Volj. Using the continuity of πC we get
πC(cl(ZT )) = cl(πC(ZT )). In particular, πC(cl(ZT )) is measurable, and
Volj(πC(cl(ZT ))) = Volj(cl(πC(ZT ))). Next we apply Lemma 5.3 with
A = πC(ZT ) in the coordinate space C to get Volj(cl(πC(ZT ))) =
Volj(πC(ZT )), and this proves the claim. �

Next we recall the definition of j-rectifiability from [14, Ch.3, 3.2.14].

Definition 5.5. Let A ⊆ Rn and let j be a positive integer. We say A is
j-rectifiable if there exists a Lipschitz function mapping some bounded
subset of Rj onto A. Moreover, A is (Hj, j)-rectifiable if there ex-
ist countably many j-rectifiable sets whose union is Hj-almost A and
Hj(A) <∞.

Proposition 5.6. Let A ⊆ Rn be bounded and definable, and suppose
dim A = d > 0. Then A is (Hj, j)-rectifiable for every j such that
d ≤ j ≤ n.

Proof. By Corollary 3.11 we can cover A by the images of finitely many
Lipschitz maps φ : (0, 1)d → Rn whose domain can clearly be extended
to (0, 1)j for every j = d + 1, . . . , n without loosing the Lipschitz con-
dition. The finiteness of Hj(A) comes from Proposition 5.2. �

We fix an integer j ∈ {1, . . . , n− 1}. Let I be a subset of {1, . . . , n}
of cardinality j and let πI : Rn → Rj be the projection map such that
πI(x1, . . . , xn) = (xi)i∈I . For y ∈ Rj let

N(πI | A, y) = |{x ∈ A : πI(x) = y}| = |π−1
I (y) ∩ A|.(5.1)
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A priori, N(πI | A, y) could be infinite, even for every y ∈ πI(A). The
following theorem ([14, 3.2.27 Theorem]) tells us that if A is (Hj, j)-
rectifiable then we can integrate N(πI | A, y) and obtain a finite value.
Unless specified otherwise, the domain of integration is always Rj.

Theorem 5.7. [14, 3.2.27 Theorem] If 1 ≤ j ≤ n, and if A is a
(Hj, j)-rectifiable subset of Rn, then


∑

|I|=j
aI(A)2




1
2

≤ Hj(A) ≤
∑

|I|=j
aI(A),

where

aI(A) =

∫
N(πI | A, y)dLjy.

To conclude this section we apply Theorem 5.7 to fibers of definable
families.

Lemma 5.8. Let S ⊆ Rp+n be a definable family whose fibers Sa ⊆ Rn

are bounded and of dimension at most j ≥ 1. Then there exists a real
constant EI = EI(S) such that

Hj(Sa) ≤
∑

|I|=j
EIVolj (πI (Sa)) ,

for every a ∈ Rp.

Proof. If S = ∅, the claim is trivially true. For those a such that
Sa = ∅ or dim Sa = 0 we have from Proposition 5.2 that Hj (Sa) = 0,
and so in this case again the claim is trivially true. Therefore, we can
assume that dim Sa > 0, and so we get from Proposition 5.6 that Sa is
(Hj, j)-rectifiable. Hence, we can apply Theorem 5.7, and we get

Hj (Sa) ≤
∑

|I|=j

∫
N (πI | Sa, y) dLjy,

for every a ∈ Rp such that dim Sa > 0. Therefore, we are left to
prove that for any I ⊆ {1, . . . , n} of cardinality j there exists a real
EI = EI(S) such that

∫
N (πI | Sa, y) dLjy ≤ EIVolj (πI (Sa)) ,

for every a ∈ Rp.
Let R be the definable family

R =
{

(a, y, x) ∈ Rp+j+n : (a, x) ∈ S, y = πI(x)
}
.

Note that R(a,y) = π−1
I (y) ∩ Sa. Thus, for every (a, y) ∈ Rp+j we have

N (πI | Sa, y) = |R(a,y)|. Moreover, by Corollary 3.13 there is a uniform
upper bound EI for the number of connected components of the fibers
R(a,y). In particular, if dim R(a,y) = 0 we get |R(a,y)| ≤ EI .
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Now fix an a ∈ Rp. The restriction πI |Sa
: Sa → Rj is a definable

map. Thus, by [9, Ch. 4, (1.6) Corollary (ii)], we obtain

P =
{
y ∈ Rj : dim

(
π−1
I (y) ∩ Sa

)
≥ 1
}

is definable, and, moreover,

dim P ≤ dim Sa − 1 ≤ j − 1.

Hence P has measure zero in Rj. Let Q be its complement in πI(Sa),
i.e., Q = πI(Sa) \P =

{
y ∈ πI(Sa) : dim

(
π−1
I (y) ∩ Sa

)
= 0
}

. This set
is definable, and it is exactly the set of y such that R(a,y) has dimension
zero. Therefore∫

N (πI | Sa, y) dLjy =

∫

Q

|R(a,y)|dLjy

≤
∫

Q

EIdLjy = EIVolj (πI (Sa)) .

�

6. A geometric inequality

In this section we are going to prove the following proposition. Recall
the definition of V ′j (·) from Definition 2.3, and also that cl(ZT ) denotes
the topological closure of ZT .

Proposition 6.1. Let Z ⊆ Rm+n be a definable family such that the
fibers ZT are bounded, and let j be an integer such that 0 ≤ j ≤ n− 1.
Then there exists a constant BZ, depending only on the family and on
j, such that

V ′j (cl(ZT )) ≤ BZVj(ZT ),

for every T ∈ Rm.

If Z = ∅ or j = 0 the inequality is trivially true. For the remainder
of this section we assume that Z is nonempty, and we fix an integer j
satisfying 1 ≤ j ≤ n− 1. By Lemma 5.4 we have Vj(ZT ) = Vj(cl(ZT )).
Hence, for the rest of this section we can and will also assume

cl(ZT ) = ZT .

Let On(R) be the orthogonal group. It embeds into Rn2
if we identify,

as already done before, a linear function ϕ with the image vector of
the standard basis. So On(R) is a semialgebraic set, as it is defined by
polynomial equalities.

Lemma 6.2. There exists a definable set Z ′ ⊆ Rn2+m+n depending
only on Z such that

dim Z ′(ϕ,T ) ≤ j,(6.1)

and

Z ′(ϕ,T ) ⊆ ZT ,(6.2)



18 FABRIZIO BARROERO AND MARTIN WIDMER

for every (ϕ, T ) ∈ Rn2+m, and

V ′j (ZT ) ≤ sup
ϕ∈On(R)

Hj
(
Z ′(ϕ,T )

)
,(6.3)

for every T ∈ Rm.

Proof. Let

S = {(ϕ, T, y) ∈ Rn2+m+n : ϕ ∈ On(R), y ∈ ϕ(ZT )}.
This set is nothing but the setW in (4.1) intersected withOn(R)×Rm+n

and is therefore definable. Note that

S(ϕ,T ) = ϕ(ZT ),(6.4)

for every (ϕ, T ) ∈ On(R) × Rm. Let π : Rn2+m+n → Rn2+m+j be
the projection that cancels the last n− j coordinates. We use the fact
that o-minimal structures have definable Skolem functions (Proposition
3.14, see also the observation after Proposition 3.14). There exists an
explicit construction of a definable function

f : π(S) ⊆ Rn2+m+j → Rn−j,

such that the graph of f

Γ(f) = {(ϕ, T, z, f(ϕ, T, z)) : (ϕ, T, z) ∈ π(S)} ⊆ π(S)× Rn−j,

is contained in S. Therefore

Γ(f)(ϕ,T ) ⊆ S(ϕ,T ),(6.5)

for every (ϕ, T ) ∈ Rn2+m. Moreover, since π(S) = π(Γ(f)) we have

π(S)(ϕ,T ) = π(Γ(f))(ϕ,T ),(6.6)

for every (ϕ, T ) ∈ Rn2+m. The function

F : π(S) → Γ(f)
(ϕ, T, z) 7→ (ϕ, T, z, f(ϕ, T, z))

is definable because its graph is the definable set

{(ϕ, T, z, ϕ, T, z, f(ϕ, T, z)) : (ϕ, T, z) ∈ π(S)} ⊆ π(S)× Γ(f).

Moreover, F is a bijection with inverse π|Γ(f). Now fix any (ϕ, T ), sup-
pose π(S)(ϕ,T ) is nonempty, and consider the bijection g : π(S)(ϕ,T ) →
Γ(f)(ϕ,T ) defined by g(z) = (z, f(ϕ, T, z)). Using the elementary prop-
erties we see that Γ(g) is definable. Hence, by Lemma 3.8, we conclude
that

dim π(S)(ϕ,T ) = dim Γ(f)(ϕ,T ),(6.7)

for every (ϕ, T ) ∈ Rn2+m. Note that π(S)(ϕ,T ) = ∅ implies Γ(f)(ϕ,T ) =
∅, and hence (6.7) remains true for π(S)(ϕ,T ) = ∅.

Again by the elementary properties, the set

Z ′ =
{

(ϕ, T, x) ∈ Rn2+m+n : ϕ ∈ On(R), ϕ(x) ∈ Γ(f)(ϕ,T )

}
,
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is definable. Note that

ϕ
(
Z ′(ϕ,T )

)
= Γ(f)(ϕ,T )(6.8)

for every (ϕ, T ) ∈ On(R)×Rm. Moreover, if ϕ ∈ Rn2 \On(R), we have
Z ′(ϕ,T ) = ∅ and (6.1), (6.2) are satisfied.

Now fix (ϕ, T ) ∈ On(R)× Rm. As ϕ ∈ On(R) we can apply Lemma
3.8 to get

dim Z ′(ϕ,T ) = dim Γ(f)(ϕ,T ).(6.9)

By (6.4), (6.5) and (6.8) we have that

ϕ
(
Z ′(ϕ,T )

)
= Γ(f)(ϕ,T ) ⊆ S(ϕ,T ) = ϕ(ZT ),

and this proves (6.2). Moreover, since π(S)(ϕ,T ) ⊆ Rj and by (6.7) and
(6.9), we have

j ≥ dim π(S)(ϕ,T ) = dim Z ′(ϕ,T ),

that is exactly (6.1).
We now prove the volume inequality (6.3). Let Σ be any j-dimen-

sional linear subspace of Rn. Fix an orthonormal basis {u1, . . . , uj} of
Σ. Suppose ϕ is in On(R) and such that ϕ(ui) = ei for i = 1, . . . , j. Let
πΣ be the orthogonal projection map from Rn to Σ and π̃ the projection
from Rn to the coordinate subspace spanned by e1, . . . , ej. Note that
ϕ ◦ πΣ and π̃ ◦ ϕ coincide on Σ and their kernel is the orthogonal
complement Σ⊥. Hence, ϕ ◦ πΣ = π̃ ◦ ϕ. Recalling that Hj = Volj on
Σ and ϕ(Σ), and using (6.4) and Lemma 5.1, we obtain

Volj (πΣ(ZT )) = Volj (ϕ (πΣ(ZT )))

= Volj (π̃ (ϕ (ZT ))) = Volj
(
π̃
(
S(ϕ,T )

))
.

Then

V ′j (ZT ) = sup
Σ

Volj(πΣ(ZT )) ≤ sup
ϕ∈On(R)

Volj
(
π̃
(
S(ϕ,T )

))
.(6.10)

Fix (ϕ, T ) ∈ On(R) × Rm. Note that for any set A ⊆ Rn2+m+n we
have π̃

(
A(ϕ,T )

)
= {(x1, . . . , xj, 0, . . . , 0) : (ϕ, T, x1, . . . , xn) ∈ A} and

π(A)(ϕ,T ) = {(x1, . . . , xj) : (ϕ, T, x1, . . . , xn) ∈ A}. The latter in con-
junction with (6.6) gives

π̃
(
S(ϕ,T )

)
= π̃

(
Γ(f)(ϕ,T )

)
.

By this and Lemma 5.1 we get

Volj
(
π̃
(
S(ϕ,T )

))
= Hj

(
π̃
(
S(ϕ,T )

))
≤ Hj

(
Γ(f)(ϕ,T )

)
.(6.11)

Again by (6.8) and Lemma 5.1 we have

Hj
(
Γ(f)(ϕ,T )

)
= Hj

(
Z ′(ϕ,T )

)
,(6.12)

for every (ϕ, T ) ∈ On(R) × Rm. Combining (6.10), (6.11) and (6.12)
proves (6.3), and thereby completes the proof of Lemma 6.2. �
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As in Section 5, I indicates a nonempty proper subset of {1, . . . , n}
and πI is the projection map such that πI(x1, . . . , xn) = (xi)i∈I .

Applying Lemma 5.8 to the family Z ′ we conclude that there exist
EI such that

Hj
(
Z ′(ϕ,T )

)
≤
∑

|I|=j
EIVolj

(
πI
(
Z ′(ϕ,T )

))
,

for every (ϕ, T ) ∈ Rn2+m.
Let πCI

be the orthogonal projection map from Rn to the coordinate
subspace CI spanned by ei, i ∈ I. We have

Volj
(
πI
(
Z ′(ϕ,T )

))
= Volj

(
πCI

(
Z ′(ϕ,T )

))
.

Therefore, recalling (6.2),

Hj
(
Z ′(ϕ,T )

)
≤
∑

|I|=j
EIVolj

(
πCI

(
Z ′(ϕ,T )

))
≤ BZVj

(
Z ′(ϕ,T )

)
≤ BZVj (ZT ) ,

where

BZ = max
j

(
n

j

)
max
I
EI .

Finally, combining this with (6.3) from Lemma 6.2, completes the proof
of Proposition 6.1.

7. Proof of Theorem 1.3

First we assume Z is such that ZT = cl(ZT ) for all T . By assumption
the fibers ZT are also bounded, and so they are compact. Thanks
to Lemma 4.1 we can apply Lemma 2.1 with a Davenport constant
h = MZ depending only on Z. Then we use Lemmas 2.2, 2.4, and
Proposition 6.1 to bound Vj(Ψ(ZT )), and this proves the estimate of
Theorem 1.3 when ZT = cl(ZT ). From this special case of the theorem
we will deduce the general case.

To this end we first note that

||Λ ∩ ZT | − |Λ ∩ cl(ZT )|| ≤ |Λ ∩ bd(ZT )|.
By Lemma 3.15 we see that C = C(Z) = {(T, x) : x ∈ cl(ZT )}

and B = B(Z) = {(T, x) : x ∈ bd(ZT )} are definable. Clearly, CT =
cl(ZT ), and BT = bd(ZT ), and these sets are closed and bounded as the
sets ZT are bounded. Hence, we can apply our theorem with Z = C
and then with Z = B. For C we obtain

∣∣∣∣|Λ ∩ cl(ZT )| − Vol(cl(ZT ))

det Λ

∣∣∣∣ ≤ cC

n−1∑

j=0

Vj(cl(ZT ))

λ1 · · ·λj
.

Note that the constant cC depends only on the family C, and thus only
on the family Z. Moreover, Vol(cl(ZT )) = Vol(ZT ) by Lemma 5.3 and
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Vj(cl(ZT )) = Vj(ZT ) by Lemma 5.4. Using also Vol(bd(ZT )) = 0 by
Lemma 5.3, and bd(ZT ) ⊆ cl(ZT ), we get similarly that

|Λ ∩ bd(ZT )| ≤ cB

n−1∑

j=0

Vj(ZT )

λ1 · · ·λj
,

again with a constant cB depending only on the family Z. Combining
these estimates concludes the proof of Theorem 1.3 in the general case.
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COUNTING ALGEBRAIC INTEGERS OF FIXED
DEGREE AND BOUNDED HEIGHT

FABRIZIO BARROERO

Abstract. Let k be a number field. For H → ∞, we give an
asymptotic formula for the number of algebraic integers of absolute
Weil height bounded by H and fixed degree over k.

1. Introduction

Let k be a number field of degree m over Q. We count the number of
algebraic integers β of degree e over k and bounded height. Here and
in the rest of the article, by height we mean the multiplicative height
H on the affine space Qn

(see [3], 1.5.6).
For positive rational integers n and e, and a fixed algebraic closure

k of k, let

k(n, e) = {β ∈ kn : [k(β) : k] = e},
where k(β) is the field obtained by adjoining all the coordinates of β
to k. By Northcott’s Theorem [10] any subset of k(n, e) of uniformly
bounded height is finite. Therefore, for any subset S of k(n, e) and
H > 0, we may introduce the following counting function

N(S,H) = | {β ∈ S : H(β) ≤ H} |.
The counting function N(k(n, e),H) has been investigated by various
people. The best known and one of the earliest is a result of Schanuel
[12] who gave an asymptotic formula for N(k(n, 1),H). The first who
dropped the restriction of the coordinates to lie in a fix number field was
Schmidt. In [13], he found upper and lower bounds for N(k(n, e),H)
and in [14] he gave an asymptotic formula for N(Q(n, 2),H). Shortly
afterwards, Gao [6] found the asymptotics for N(Q(n, e),H), provided
n > e. Later Masser and Vaaler [9] established an asymptotic estimate
for N(k(1, e),H). Finally, Widmer [16] proved an asymptotic formula
for N(k(n, e),H) for arbitrary number fields k, provided n > 5e/2 +
5 + 2/me. However, for general n and e even the correct order of
magnitude for N(k(n, e),H) remains unknown.
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In this article we are interested in counting integral points, i.e., points
β ∈ kn, whose coordinates are algebraic integers. Let Ok and Ok be,
respectively, the ring of algebraic integers in k and k. We introduce

Ok(n, e) = k(n, e) ∩ On
k

= {β ∈ On
k

: [k(β) : k] = e}.
Possibly, the first asymptotic result (besides the trivial casesOQ(n, 1) =
Zn) can be found in Lang’s book [7]. Lang states, without proof,

N(Ok(1, 1),H) = γkHm (logH)q +O
(
Hm (logH)q−1

)
,

where m = [k : Q], q is the rank of the unit group of the ring of integers
Ok, and γk is an unspecified positive constant, depending on k. More
recently, Widmer [15] established the following asymptotic formula

N(Ok(n, e),H) =
t∑

i=0

DiHmen (logHmen)i +O
(
Hmen−1(logH)t

)
,

(1.1)

provided e = 1 or n > e + Ce,m, for some explicit Ce,m ≤ 7. Here
t = e(q+1)−1, and the constants Di = Di(k, n, e) are explicitly given.
Widmer’s result is fairly specific in the sense that he works only with
the absolute non-logarithmic Weil height H. On the other hand, the
methods used in [15] are quite general and powerful, and can probably
be applied to handle other heights (such as the heights used by Masser
and Vaaler in [9] to deduce their main result). As mentioned in [15]
this might lead to multiterm expansions as in (1.1) for N(Ok(1, e),H).

However, for the moment, such generalizations of (1.1) are not avail-
able, and thus the work [15] does not provide any results in the case
n = 1 and e > 1.

But Chern and Vaaler in [4], proved an asymptotic formula for the
number of monic polynomials in Z[x] of given degree and bounded
Mahler measure. Theorem 6 of [4] immediately implies the following
result

N(OQ(1, e),H) = CeHe2 +O
(
He2−1

)
,(1.2)

for some explicitly given positive real constant Ce. Theorem 1.1 extends
Chern and Vaaler’s result to arbitrary ground fields k.

For positive rational integers e we define

CR,e = 2e−M
(

M∏

l=1

(
2l

2l + 1

)e−2l)
eM

M !
,

with M = b e−1
2
c, and

CC,e = πe
ee

(e!)2
.
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And, finally, let

C
(e)
k =

e2q+12semq

q!
(√
|∆k|

)eCr
R,eC

s
C,e,(1.3)

where m = [k : Q], r is the number of real embeddings of k, s the
number of pairs of complex conjugate embeddings, q = r + s− 1, and
∆k denotes the discriminant of k. As usual, here and in the rest of this
article, the empty product is understood to be 1.

For non-negative real functions f(X), g(X), h(X) and X0 ∈ R we
write f(X) = g(X) + O(h(X)) as X ≥ X0 tends to infinity if there is
C0 such that |f(X)− g(X)| ≤ C0h(X) for all X ≥ X0.

Theorem 1.1. Let e be a positive integer, and let k be a number field.
Then, as H ≥ 2 tends to infinity, we have

N(Ok(1, e),H) = C
(e)
k Hme2 (logH)q

+

{
O
(
Hme2 (logH)q−1

)
, if q ≥ 1,

O
(
He(me−1)L

)
, if q = 0,

where L = logH if (m, e) = (1, 2) and 1 otherwise. The implicit
constant in the error term depends only on m and e.

Let us mention two simple examples. The number of algebraic inte-
gers α quadratic over Q(

√
2) with H(α) ≤ H is

32H8 logH +O(H8).

In case e = 3, we have

108
√

2H18 logH +O(H18)

algebraic integers α cubic over Q(
√

2) with H(α) ≤ H.
Our approach is similar to the one used to obtain (1.2) above, because

we count monic polynomials in Ok[X], but this is not a straightforward
generalization of Theorem 6 of [4]. In fact, in [4] the estimate on the
number of monic polynomials in Z[x] is obtained from a counting lattice
points theorem, which is formulated only for the standard lattice Zn
([4], Lemma 24). Our proof relies on a new counting theorem for points
of an arbitrary lattice in definable sets in an o-minimal structure [1].
Moreover, our proof is fairly short, and more straightforward than the
approach of [15], but to the expense that we do not get a multiterm
expansion.

In [9], Masser and Vaaler observed that the limit for H →∞ of

N(k(1, e),H 1
e )

N(k(e, 1),H)
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is a rational number. Moreover, they asked if this can be extended to
some sort of reciprocity law, i.e., whether

lim
H→∞

N(k(n, e),H 1
e )

N(k(e, n),H 1
n )
∈ Q.

If we consider only the first term in (1.1), and combine it with Theorem
1.1 we see that

lim
H→∞

N(Ok(1, e),H
1
e )

N(Ok(e, 1),H)
= e

(
CR,e

2e

)r (
CC,e

πe

)s

is a rational number depending only on e, r and s. As Masser and
Vaaler did, one can ask again whether

lim
H→∞

N(Ok(n, e),H
1
e )

N(Ok(e, n),H 1
n )
∈ Q.

2. Counting monic polynomials

In this section we see how our problem translates to counting monic
polynomials of fixed degree that assume a uniformly bounded value
under a certain real valued function calledMk, defined using the Mahler
measure.

Recall we fixed a number field k of degree m over Q and Ok is its ring
of integers. Let σ1, . . . , σr be the real embeddings of k and σr+1, . . . , σm
be the strictly complex ones, indexed in such a way that σj = σj+s for
j = r+ 1, . . . , r+ s. Therefore, r and s are, respectively, the number of
real and pairs of conjugate complex embeddings of k and m = r + 2s.
We put di = 1 for i = 1, . . . , r and di = 2 for i = r+1, . . . , r+s and fix
a positive integer e. Let us recall the definition of the Mahler measure.

Definition 2.1. If f = z0X
d + z1X

d−1 + · · ·+ zd ∈ C[X] is a non-zero
polynomial of degree d with roots α1, . . . , αd, the Mahler measure of f
is defined to be

M(f) = |z0|
d∏

i=1

max {1, |αi|} .

Moreover, we set M(0) = 0.

We see M as a function C[X]→ [0,∞) and define

Mk : k[X] → [0,∞)

f 7→ ∏r+s
i=1 M(σi(f))

di
m ,

where σi acts on the coefficients of f . Note that, for every α ∈ Ok,

Mk(X − α) =
r+s∏

i=1

max {1, |σi(α)|}
di
m = H(α).(2.1)

In fact, if α ∈ Ok then |α|v ≤ 1 for every non-archimedean place v of
k.
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Moreover, the Mahler measure is multiplicative by definition, i.e.,

M(fg) = M(f)M(g),

and one can see that

Mk(fg) = Mk(f)Mk(g),

for every f, g ∈ k[X].
For some positive integer e and some H > 0, we define Mk(e,H) to

be the set of monic f ∈ Ok[X] of degree e and Mk(f) ≤ H. It is easy
to see that Mk(e,H) is finite for all H. The following theorem gives
an estimate for its cardinality.

Theorem 2.1. For every H0 > 1 there exists a D0 such that, for every
H ≥ H0,

∣∣∣∣∣
∣∣Mk(e,H)

∣∣− C
(e)
k

eq+1
Hme (logH)q

∣∣∣∣∣ ≤
{
D0Hme (logH)q−1 , if q ≥ 1,
D0Hme−1, if q = 0,

(2.2)

where q = r + s− 1. The constant D0 depends only on H0, m and e.

Note that our constant C
(e)
k defined in (1.3), is bounded if we fix m

and e and we let k vary among all number fields of degree m. This
implies that there exists a real constant C(m,e), depending only on m
and e, such that

∣∣Mk(e,H)
∣∣ is bounded from above by

C(m,e)Hme (logH + 1)q ,(2.3)

for every H ≥ 1.
We prove Theorem 2.1 later and for the rest of this section we derive

Theorem 1.1 from Theorem 2.1. We follow the line of Masser and
Vaaler [9].

Now we want to restrict to monic f irreducible over k. Let M̃k(e,H)
be the set of polynomials in Mk(e,H) that are irreducible over k.

Corollary 2.2. For every H0 > 1 there exists an F0 such that, for
every H ≥ H0,

∣∣∣∣∣
∣∣∣M̃k(e,H)

∣∣∣− C
(e)
k

eq+1
Hme (logH)q

∣∣∣∣∣ ≤
{
F0Hme (logH)q−1 , if q ≥ 1,
F0Hme−1L, if q = 0,

(2.4)

where L = logH if (m, e) = (1, 2) and 1 otherwise. The constant F0

depends again only on H0, m and e.

Proof. For e = 1 there is nothing to prove. Suppose e > 1. We show
that, up to a constant, the number of all monic reducible f ∈ Ok[X]
of degree e with Mk(f) ≤ H is not larger than the right hand side of
(2.2), except for the case (m, e) = (1, 2).
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Consider all f = gh ∈ Mk(e,H) with g, h ∈ Ok[X] monic of degree
a and b respectively, with 0 < a ≤ b < e and a + b = e. We have
1 ≤Mk(g),Mk(h) ≤ H because g and h are monic. Thus, there exists
a positive integer l such that 2l−1 ≤ Mk(g) < 2l. Note that l must
satisfy

1 ≤ l ≤ logH
log 2

+ 1 ≤ 2 logH + 1.(2.5)

Since Mk is multiplicative,

Mk(h) =
Mk(f)

Mk(g)
≤ 21−lH.

Using (2.3) and noting that 2l ≤ 2H, we can say that there are at most

C(m,a)
(
2l
)ma (

log 2l + 1
)q ≤ C(m,a)

(
2l
)ma

(logH + 2)q

possibilities for g and

C(m,b)
(
21−lH

)mb (
log
(
21−lH

)
+ 1
)q ≤ C(m,b)

(
21−lH

)mb
(logH + 2)q

possibilities for h. Therefore, we have at most

C ′Hmb2ml(a−b) (logH + 2)2q(2.6)

possibilities for gh with Mk(gh) ≤ H and 2l−1 ≤ Mk(g) < 2l, where
C ′ is a real constant. Since there are only finitely many choices for a
and b we can take C ′ to depend only on m and e.

If a = b = e
2

then (2.6) is

C ′Hm e
2 (logH + 2)2q .

Summing over all l, 1 ≤ l ≤ b2 logHc+ 1 (recall (2.5)), gives an extra
factor 2 logH + 1. Therefore, when a = b, there are at most

C ′Hme
2 (2 logH + 2)2q+1

possibilities for f = gh, with Mk(f) ≤ H. If (m, e) 6= (1, 2), this has
smaller order than the right hand side of (2.2), since me > 2 implies
me
2
< me− 1. In the case (m, e) = (1, 2) we get C ′H (2 logH + 2) and

we need an additional logarithm factor.
In the case a < b, summing 2ml(a−b) over all l, 1 ≤ l ≤ b2 logHc+1 =

L, we get
L∑

l=1

(
2m(a−b))l ≤

L∑

l=1

2−l ≤ 1.

Thus, recalling b ≤ e− 1, when a < b, there are at most

C ′′Hm(e−1) (logH + 2)2q

possibilities for f = gh, with Mk(f) ≤ H, where again C ′′ depends
only on m and e. This is again not larger than the right hand side of
(2.2). �
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For the last step of the proof we link such monic irreducible polyno-
mials with their roots.

Lemma 2.3. An algebraic integer β has degree e over k and H(β) ≤ H
if and only if it is a root of a monic irreducible polynomial f ∈ Ok[X]
of degree e with Mk(f) ≤ He

Proof. Suppose f ∈ Ok[X] is a monic irreducible polynomial of degree e
and β is one of its roots, i.e., β is an algebraic integer with [k(β) : k] = e
and minimal polynomial f over k. We claim that

Mk(f) = H(β)e.

The function Mk is independent of the field k and we can define an
absolute MQ over Q[X] that, restricted to any k[X], equals Mk. To see
this one can simply imitate the proof of the fact that the Weil height
is independent of the field containing the coordinates (see [3], Lemma
1.5.2).

Suppose f = (X−α1) · · · (X−αe). Since the αi are algebraic integers,
by (2.1), we have

MQ(X − αi) = MQ(αi)(X − αi) = H(αi),

and the αi have the same height because they are conjugate (see [3],
Proposition 1.5.17). Moreover, by the multiplicativity of Mk we can
see that

Mk(f) = MQ(f) =
e∏

i=1

MQ(X − αi) = H(αj)
e,

for any αj root of f . �

Lemma 2.3 implies that N(Ok(1, e),H) = e
∣∣∣M̃k(e,He)

∣∣∣ because

there are e different β with the same minimal polynomial f over k.
Therefore, by (2.4), we have that for every H0 > 1 there exists a C0,
depending only on H0, m and e, such that for every H ≥ H0,
∣∣∣N(Ok(1, e),H)− C(e)

k Hme2 (logH)q
∣∣∣

≤
{
C0Hme2 (logH)q−1 , if q ≥ 1,
C0He(me−1)L, if q = 0,

where L = logH if (m, e) = (1, 2) and 1 otherwise. We get Theorem
1.1 by choosing H0 = 2.

3. A counting principle

In this section we introduce the counting theorem that will be used
to prove Theorem 2.1. The principle dates back to Davenport [5] and
was developed by several authors. In a previous work [1] the author
and Widmer formulated a counting theorem that relies on Davenport’s
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result and uses o-minimal structures. The full generality of Theorem
1.3 of [1] is not needed here as we are going to count lattice points in
semialgebraic sets.

Definition 3.1. Let N , Mi, for i = 1, . . . , N , be positive integers. A
semialgebraic subset of Rn is a set of the form

N⋃

i=1

Mi⋂

j=1

{x ∈ Rn : fi,j(x) ∗i,j 0},

where fi,j ∈ R[X1, . . . , Xn] and the ∗i,j are either < or =.

A very important feature of semialgebraic sets is the fact that this
collection of subsets of the Euclidean spaces is closed under projections.
This is the well known Tarski-Seidenberg principle.

Theorem 3.1 ([2], Theorem 1.5). Let A ∈ Rn+1 be a semialgebraic
set, then π(A) ∈ Rn is semialgebraic, where π : Rn+1 → Rn is the
projection map on the first n coordinates.

Let S ⊆ Rn+n′ , for a t ∈ Rn′ we call St = {x ∈ Rn : (x, t) ∈ S} the
fiber of S above t. Clearly, if S is semialgebraic also the fibers St are
semialgebraic. If so, we call S a semialgebraic family.

Let Λ be a lattice of Rn, i.e., the Z-span of n linearly independent
vectors of Rn. Let λi = λi(Λ) for i = 1, . . . , n be the successive minima
of Λ with respect to the zero centered unit ball B0(1), i.e., for i = 1, ..., n

λi = inf{λ : B0(λ) ∩ Λ contains i linearly independent vectors}.
The following theorem is a special case of Theorem 1.3 of [1].

Theorem 3.2. Let Z ⊂ Rn+n′ be a semialgebraic family and suppose
the fibers Zt are bounded. Then there exists a constant cZ ∈ R, de-
pending only on the family, such that, for every t ∈ Rn′,

∣∣∣∣|Zt ∩ Λ| − Vol(Zt)

det Λ

∣∣∣∣ ≤
n−1∑

j=0

cZ
Vj(Zt)

λ1 · · ·λj
,

where Vj(Zt) is the sum of the j-dimensional volumes of the orthogonal
projections of Zt on every j-dimensional coordinate subspace of Rn and
V0(Zt) = 1.

4. A semialgebraic family

In this section we introduce the family we want to apply Theorem
3.2 to.

We see the Mahler measure as a function of the coefficients of the
polynomial. We fix n > 0 and define M : Rn+1 or Cn+1 → [0,∞) such
that

M(z0, . . . , zn) = M(z0X
n + · · ·+ zn).
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These two functions satisfy the definition of bounded distance function
in the sense of the geometry of numbers, i.e.,

(1) M is continuous;
(2) M(z) = 0 if and only if z = 0;
(3) M(wz) = |w|M(z), for any scalar w ∈ R or C.

Properties (2) and (3) are obvious from the definition, while conti-
nuity was proved already by Mahler (see [8], Lemma 1).

Let M1 be the monic Mahler measure function, i.e., M1(z) = M(1, z)
for z ∈ Rn or Cn.

In the following we consider the complex monic Mahler measure as
a function M1

R2n → R
(x1, . . . , x2n) 7→ M (Xn + (x1 + ix2)X

n−1 + · · ·+ x2n−1 + ix2n) .

We fix positive integers n,m, r, s with m = r + 2s and d1, . . . dr+s
such that di = 1 for i = 1, . . . , r and di = 2 for i = r + 1, . . . , r + s.

We define

Z =

{
(x1, . . . ,xr+s, t) ∈ (Rn)r ×

(
R2n
)s × R :

r+s∏

i=1

M1(xi)
di ≤ t

}
.

(4.1)

Here xi ∈ Rdin and M1(xi) is the real or the complex monic Mahler
measure respectively if i = 1, . . . , r or i = r + 1, . . . , r + s.

We want to count lattice points in the fibers Zt ⊆ Rmn using Theorem
3.2, therefore we need to show that Z is a semialgebraic set and that
the fibers Zt are bounded.

Lemma 4.1. The set Z defined in (4.1) is semialgebraic.

Proof. Recall the definition of Z. To each xi ∈ Rdin corresponds a
monic polynomial fi of degree n with real (for i = 1, . . . r) or complex
(for i = r + 1, . . . r + s) coefficients. Let S be the set of points

(
x1, . . . ,xr+s, t, t1, . . . , tr+s,α

(1),β(1), . . . ,α(r+s),β(r+s)
)

in Rn(r+2s)+1+r+s+2n(r+s), with α(i),β(i) ∈ Rn, such that

• α(i) and β(i) are, respectively, the vectors of the real and the
imaginary parts of the n roots of fi, for every i = 1, . . . , r + s;

• ∏n
l=1 max

{
1,
(
α
(i)
l

)2
+
(
β
(i)
l

)2}
= t2i and ti ≥ 0, for every

i = 1, . . . , r + s;
• ∏r+s

i=1 t
di
i ≤ t.

It is clear that the set S is defined by polynomial equalities and in-
equalities. In fact, the first condition is enforced by the fact that the
coordinates of xi are the images of α(i) and β(i) under the appropri-
ate symmetric functions, which are polynomials. The second and the
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third conditions are also clearly obtained by polynomial equalities and
inequalities. Therefore, S is a semialgebraic set. The claim follows
after noting that Z is nothing but the projection of S on the first
n(r+ 2s) + 1 coordinates and applying the Tarski-Seidenberg principle
(Theorem 3.1). �

By Lemma 1.6.7 of [3], there exists a positive real constant γ ≤ 1
such that

γ|z|∞ ≤M(z), for every z ∈ Rn+1 or Cn+1,

where, if z = (z0, . . . , zn) ∈ Rn+1 or Cn+1, |z|∞ = max {|z0|, . . . , |zn|}
is the usual max norm. Clearly we have, for x ∈ Rn

N(x) := γ|(1,x)|∞ ≤M1(x)(4.2)

in the real case and, for the complex case,

N(x) := γ|(1,x)|∞ ≤ γ|(1, z)|∞ ≤M1(z) = M1(x),(4.3)

where x = (x1, . . . , x2n) ∈ R2n and z = (x1 + ix2, . . . , x2n−1 + ix2n).
Recall that, by the definition, the monic Mahler measure function

assumes values greater than or equal to 1, therefore, if (x1, . . . ,xr+s) ∈
Zt then M1(xi)

di ≤ t for every i. Thus, |xi|di∞ ≤ t
γdi

and this means

that Zt is bounded for every t ∈ R.
Now we can apply Theorem 3.2 to the family Z. If we set Z(T ) = ZT ,

we have
∣∣∣∣|Z(T ) ∩ Λ| − Vol(Z(T ))

det Λ

∣∣∣∣ ≤
mn−1∑

j=0

C
Vj(Z(T ))

λ1 · · ·λj
,(4.4)

for every T ∈ R, where Λ is a lattice in Rmn and C is a real constant
independent of Λ and T . Recall that Vj(Z(T )) is the sum of the j-
dimensional volumes of the orthogonal projections of Z(T ) on every
j-dimensional coordinate subspace of Rmn and V0(Z(T )) = 1.

5. Proof of Theorem 2.1

We fix a number field k of degree m over Q. The ring of integers
Ok of k, embedded into Rr+2s via σ = (σ1, . . . , σr+s), is a lattice of full
rank. We embed (Ok)n in Rmn via a 7→ (σ1(a), . . . , σr+s(a)), where the
σi are extended to kn. We want to count lattice points of Λ = (Ok)n
inside Z(T ).

Lemma 5.1. We have

det Λ =
(

2−s
√
|∆k|

)n
,

and its first successive minimum is λ1 ≥ 1.

Proof. This is a special case of Lemma 5 of [9]. �
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Now we need to calculate the volume of Z(T ). We do something more
general. Suppose we have r+ s continuous functions fi : Rni → [1,∞),
i = 1, . . . , r + s where 1 ≤ ni ≤ din for every i. We define

Zi(T ) = {x ∈ Rni : fi(x) ≤ T},(5.1)

for every i = 1, . . . , r + s. Suppose that, for every i, there exists a
polynomial pi(X) ∈ R[X] of degree ni such that the volume of Zi(T ) is
pi (T ) for every T ≥ 1. Let Ci be the leading coefficient of pi. Moreover,
let

Z̃(T ) =

{
(x1, . . . ,xr+s) ∈ R

∑
ni :

r+s∏

i=1

fi(xi)
di ≤ T

}
.

Note that, since fi(xi) ≥ 1 for every i, Z̃(T ) is bounded for every T .

Lemma 5.2. Let q = r+s−1. Under the hypotheses and the notation
from above, for every T ≥ 1, we have

Vol
(
Z̃(T )

)
= p̃

(
T

1
2 , log T

)
,

where p̃(X, Y ) ∈ R[X, Y ], degX p̃ ≤ 2n, degY p̃ ≤ q. In the case ni =
din for every i = 1, . . . , r + s, the coefficient of X2nY q is nq

q!

∏q+1
i=1 Ci.

If ni < din for some i then the monomial X2nY q does not appear in p̃.

Proof. We have

V (T ) := Vol
(
Z̃(T )

)
=

∫

Z̃(T )

dx1 . . . dxq+1.

We proceed by induction on q. If q = 0 there is nothing to prove.
Suppose q > 0 and let

Z̃(q)(T ) =

{
(x1, . . . ,xq) ∈ Rn1+···+nq :

q∏

i=1

fi(xi)
di ≤ T

}
.

Then

V (T ) =

∫

Zq+1

(
T

1
dq+1

)

(∫

Z̃(q)(Tfq+1(xq+1)
−dq+1)

dx1 . . . dxq

)
dxq+1.

By the inductive hypothesis there exists p̃q(X, Y ) ∈ R[X, Y ] such that
V (T ) equals

∫

Zq+1

(
T

1
dq+1

) p̃q

((
T

fq+1(xq+1)dq+1

) 1
2

, log

(
T

fq+1(xq+1)dq+1

))
dxq+1,

where p̃q(X, Y ) ∈ R[X, Y ], degX p̃q ≤ 2n, degY p̃q ≤ q − 1 and, if ni =

din for every i = 1, . . . , q, the coefficient of X2nY q−1 is nq−1

(q−1)!
∏q

i=1Ci.

If not, that monomial does not appear.
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By Ln, we indicate the Lebesgue measure on Rn. Since fq+1 is a
measurable function, we get

V (T ) =

∫
[
1,T

1
dq+1

] p̃q

((
T

Xdq+1

) 1
2

, log

(
T

Xdq+1

))
d
(
Lnq+1 ◦ f−1q+1

)
(X),

where we consider Lnq+1 ◦f−1q+1 as a measure on
[
1, T

1
dq+1

]
. In particular

for (u, v] ⊆
[
1, T

1
dq+1

]
,

(
Lnq+1 ◦ f−1q+1

)
((u, v]) = pq+1(v)− pq+1(u),

and
(
Lnq+1 ◦ f−1q+1

)
({1}) = pq+1(1). Using 1.29 Theorem of [11], we get

V (T ) =

∫
(
1,T

1
dq+1

] p̃q

((
T

Xdq+1

) 1
2

, log

(
T

Xdq+1

))
p′q+1(X)dL1(X)

+ p̃q

(
T

1
2 , log T

)
pq+1(1),

where p′q+1 is the derivative of pq+1.
For some integer c ≥ 0 we put L(X, c) = Xc in case c > 0 and

L(X, 0) = 1. Because of the linearity of the integral we are reduced to
calculate

I(a, b, c) =

∫ T
1

dq+1

1

Xa

(
T

Xdq+1

) b
2

L

(
log

T

Xdq+1
, c

)
dX

= T
b
2

∫ T
1

dq+1

1

Xa− b
2
dq+1L

(
log T − log

(
Xdq+1

)
, c
)

dX,

for some integers a, b, c, with 0 ≤ a ≤ nq+1 − 1, 0 ≤ b ≤ 2n and
0 ≤ c ≤ q − 1. We have three possibilities. If a− b

2
dq+1 = −1, then

I(a, b, c) = T
b
2

∫ T
1

dq+1

1

X−1L
(
log T − log

(
Xdq+1

)
, c
)

dX

=
1

(c+ 1)dq+1

T
b
2 (log T )c+1 .

If a− b
2
dq+1 6= −1 and c = 0,

I(a, b, 0) =
T

b
2

a− b
2
dq+1 + 1

(
T

a− b
2 dq+1+1

dq+1 − 1

)
=

T
a+1
dq+1 − T b

2

a− b
2
dq+1 + 1

.

If a− b
2
dq+1 6= −1 and c 6= 0, then

I(a, b, c) = − T
b
2 (log T )c

a− b
2
dq+1 + 1

+
cdq+1

a− b
2
dq+1 + 1

I(a, b, c− 1).
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Therefore, one can see that I(a, b, c) is a polynomial in T
1
2 and log T .

In particular I(a, b, c) = p̂(T
1
2 , log T ), where p̂(X, Y ) ∈ R[X, Y ], with

degX p̂ ≤ 2n and degY p̂ ≤ q. Note that in the case a = dq+1n − 1,
b = 2n and c = q − 1, the coefficient of X2nY q is 1

qdq+1
and 0 for any

other choice of a, b and c. Therefore, the monomial X2nY q does not
appear in p̂ if either nq+1 < dq+1n or X2nY q−1 does not appear in p̃q,
i.e., if ni < din for some i. To conclude, recall that, in the case ni = din
for every i = 1, . . . , r + s, p′q+1 has leading coefficient ndq+1Cq+1 and

the coefficient of X2nY q−1 in p̃q is nq−1

(q−1)!
∏q

i=1Ci, thus, the coefficient

in front of I(dq+1n− 1, 2n, q − 1) in V (T ) is nqdq+1

(q−1)!
∏q+1

i=1 Ci. �

The volumes of the sets

{(z1, . . . , zn) ∈ Rn : M(1, z1, . . . , zn) ≤ T}(5.2)

and

{(z1, . . . , zn) ∈ Cn : M(1, z1, . . . , zn)2 ≤ T}(5.3)

were computed by Chern and Vaaler in [4]. By (1.16) and (1.17) of [4],
these volumes are, for every T ≥ 1, polynomials pR(T ) and pC(T ) of
degree n and leading coefficients, respectively,

CR,n = 2n−M
(

M∏

l=1

(
2l

2l + 1

)n−2l)
nM

M !
, 1

with M = bn−1
2
c, and

CC,n = πn
nn

(n!)2
.

Suppose q = 0 and recall Lemma 5.1. In this case Z(T ) corresponds
to (5.2) if m = 1 or to (5.3) if m = 2. We have

Vol(Z(T ))

det Λ
=

2sn(√
|∆k|

)nCr
R,nC

s
C,nT

n +
P (T )(√
|∆k|

)n ,(5.4)

for every T > 1, where P (X) ∈ R[X] depends only on n, r and s and
has degree at most n− 1.

Corollary 5.3. Suppose q > 0. We have, for T > 1,

Vol(Z(T ))

det Λ
=

nq2sn

q!
(√
|∆k|

)nCr
R,nC

s
C,nT

n (log T )q +
P
(
T

1
2 , log T

)

(√
|∆k|

)n ,

(5.5)

where P (X, Y ) ∈ R[X, Y ] depends on n, r and s, degX P ≤ 2n,
degY P ≤ q and the coefficient of X2nY q is 0.

1There is a misprint in (1.16) of [4], 2−N should read 2−M .
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Proof. By Lemma 5.2 and the result of Chern and Vaaler about the
volumes of the sets defined in (5.2) and (5.3), the volume of Z(T ) is

p(T
1
2 , log T ) where p(X, Y ) ∈ R[X, Y ], degX p ≤ 2n, degY p ≤ q and

the coefficient of X2nY q is nq

q!
Cr

R,nC
s
C,n. �

Therefore, recalling |∆k| and λ1, . . . , λmn are greater than or equal
to 1, by (5.4) and Corollary 5.3, (4.4) becomes

(5.6)

∣∣∣∣∣∣
|Z(T ) ∩ Λ| − nq2sn

q!
(√
|∆k|

)nCr
R,nC

s
C,nT

n (log T )q

∣∣∣∣∣∣

≤
mn−1∑

j=0

CVj(Z(T )) +Q(T ),

for every T > 1, where Q(T ) is the function of T obtained from the
polynomial P of (5.4) or (5.5) substituting the coefficients with their
absolute values. Note that Q depends only on m and n.

Now we want to find a bound for Vj(Z(T )). Recall that in (4.2)
and (4.3) we have defined a function N(x) = γ|(1,x)|∞ such that
N(x) ≤M1(x). Let

Z ′(T ) =

{
(x1, . . . ,xr+s) ∈ Rmn :

r+s∏

i=1

N(xi)
di ≤ T

}
.

Each (x1, . . . ,xr+s) with
∏r+s

i=1 M1(xi)
di ≤ T satisfies

∏r+s
i=1 N(xi)

di ≤
T . Therefore, we have Z(T ) ⊆ Z ′(T ) and Vj(Z(T )) ≤ Vj(Z

′(T )).
Suppose q = 0. This means that k is either Q (m = 1) or an

imaginary quadratic field (m = 2). In any case any projection of Z ′(T )

to a j-dimensional coordinate subspace has volume
(

2
γ

)j
T

j
m if T ≥ γm,

for every j = 1, . . .mn− 1. Therefore we obtain

Vj(Z(T )) ≤ Vj (Z ′(T )) ≤ ET n−
1
m ,(5.7)

for some real constant E depending only on n and m. This holds for
every T > 1 since γ ≤ 1.

Now suppose q > 0.

Lemma 5.4. For every j = 1, . . . ,mn − 1, there exists a polynomial
Pj(X, Y ) ∈ R[X, Y ] whose coefficients depend only on m and n, with
degX Pj ≤ 2n, degY Pj ≤ q, and the coefficient of X2nY q is 0, such
that, for every T > 1, we have

Vj(Z
′(T )) = Pj

(
T

1
2 , log T

)
.

Proof. By definition, the projection of Z ′(T ) on a j-dimensional coor-
dinate subspace is just the intersection of Z ′(T ) with such subspace.
To each such subspace Σ we can associate integers n1, . . . , nr+s with
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0 ≤ ni ≤ din such that Σ is defined by setting din− ni coordinates of
each xi to 0. Therefore we are in the situation of Lemma 5.2 because,
after dividing by γ, we have, for every i such that ni > 0, a continuous
function fi : Rni → [1,∞), with

∑
ni = j. This gives rise to sets of

the form (5.1), whose volumes are 2niT ni . Since j < mn, not all ni
can be equal to din. Therefore, by Lemma 5.2, the volume of any such
projection equals a polynomial with the desired property and we have
the claim. �

Recall the definition ofMk(e,H) that was given in Section 2. Clearly∣∣Mk(e,H)
∣∣ is the number of a ∈ Oek with

∏r+s
i=1 M1 (σi(a))di ≤ Hm, i.e.,

|Z(Hm) ∩ Oek|.
By (5.6), (5.7) and Lemma 5.4 we have, for every H > 1,
∣∣∣∣∣∣
∣∣Mk(e,H)

∣∣− eqmq2se

q!
(√
|∆k|

)eCr
R,eC

s
C,eHme (logH)q

∣∣∣∣∣∣
≤ E(H),

with

E(H) =

{ ∑2e
i=0

∑q
j=0Ei,jH

mi
2 (logH)j, if q ≥ 1,∑me−1

i=0 EiHi, if q = 0,

where E2e,q = 0 and all the coefficients depend on m and e.
Finally, it is clear that for every H0 > 1 one can find a D0 such that,

for every H ≥ H0,

E(H) ≤
{
D0Hme (logH)q−1 , if q ≥ 1,
D0Hme−1, if q = 0,

and we derive the claim of Theorem 2.1.
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ALGEBRAIC S-INTEGERS OF FIXED DEGREE AND
BOUNDED HEIGHT

FABRIZIO BARROERO

Abstract. Let k be a number field of degree m over Q and S
a finite set of places of k containing the archimedean ones. We
count the number of algebraic points of bounded height whose
coordinates lie in the ring of S-integers of k. Moreover, we give
an asymptotic formula for the number of S-integers of bounded
height and fixed degree over k, where S is the set of places of k
lying above the ones in S.

1. Introduction

In this article we give asymptotic estimates for the cardinality of
certain subsets of Qn

of bounded height. Here and in the rest of the
article, by height we mean the multiplicative absolute Weil height H
on the affine space Qn

, that will be defined in Section 2.
Let k be a number field of degree m over Q and let n and e be

positive integers. We fix an algebraic closure k of k and set

k(n, e) =
{
α ∈ kn : [k(α) : k] = e

}
,

where k(α) is the field obtained by adjoining all the coordinates of
α to k. By Northcott’s Theorem [13], subsets of k(n, e) of uniformly
bounded height are finite. Therefore, for any subset A of k(n, e) and
H > 0, we may introduce the following counting function

N(A,H) = | {α ∈ A : H(α) ≤ H} |.
Various results about this counting function appeared in the literature.
One of the earliest is a result of Schanuel [14], who gave an asymptotic
formula for N(k(n, 1),H). Schmidt was the first to consider the case
e > 1. In [15], he found upper and lower bounds for N(k(n, e),H) while
in [16], he gave asymptotics for N(Q(n, 2),H). Shortly afterwards,
Gao [8] found the asymptotics for N(Q(n, e),H), provided n > e.
Later Masser and Vaaler [11] established an asymptotic estimate for
N(k(1, e),H). Finally, Widmer [18] proved an asymptotic formula for
N(k(n, e),H), provided n > 5e/2 + 5 + 2/me. However, for general n

2010 Mathematics Subject Classification. Primary 11G50, 11R04.
Key words and phrases. Heights, algebraic S-integers, counting.
F. Barroero is supported by the Austrian Science Foundation (FWF) project

W1230-N13.
41
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and e even the correct order of magnitude for N(k(n, e),H) remains
unknown.

In this article we are interested in counting algebraic S-integers. Let
S be a finite set of places of k containing the archimedean ones. Let
OS be the ring of S-integers of k. Let S be the set of places of k that
lie above the places in S. Let OS be the ring of S-integers of k. Given
n and e positive integers, we put

OS(n, e) = k(n, e) ∩ On
S

=
{
α ∈ On

S
: [k(α) : k] = e

}
.

Let S∞ be the set of archimedean places of k. If we choose S = S∞,
then OS = Ok is the ring of algebraic integers of k and we use the
notation Ok(n, e) with the obvious meaning. Besides the trivial cases
OQ(n, 1) = Zn, the first asymptotic result can probably be found in
Lang’s book [9]. Lang states, without proof,

N(Ok(1, 1),H) = γkHm (logH)q +O
(
Hm (logH)q−1) ,

where m = [k : Q], q is the rank of the unit group of Ok, and γk is an
unspecified positive constant, depending on k. More recently, Widmer
[17] established the following asymptotic formula

N(Ok(n, e),H) =
t∑

i=0

DiHmen(logHmen)i +O(Hmen−1(logH)t),

(1.1)

provided e = 1 or n > e + Ce,m, for some explicit Ce,m ≤ 7. Here
t = e(q + 1) − 1, and the constants Di = Di(k, n, e) are explicitly
given. Our Theorem 1.1 generalizes Widmer’s result in the case e =
1 to asymptotics for N(OS(n, 1),H). However, we do not obtain a
multiterm expansion as in (1.1).

Chern and Vaaler, in [6], proved an asymptotic formula for the num-
ber of monic polynomials in Z[x] of given degree and bounded Mahler
measure. Theorem 6 of [6] immediately implies the following estimate

N(OQ(1, e),H) = CeHe2 +O
(
He2−1

)
.

This was extended by the author in [1], where an asymptotic estimate
is given for N(Ok(1, e),H). Our Theorem 1.2 generalizes this result
and gives an asymptotic estimate for N(OS(1, e),H) for any finite set
of places S containing the archimedean ones.

We write Sfin for the set of non-archimedean places of S. Suppose
that Sfin = {v1, . . . , vL} and that vl corresponds to the prime ideal pl
of Ok. We indicate by N(A) the norm from k to Q of the fractional
ideal A and by N(S) the L-tuple (N(p1), . . . ,N(pL)). Let r and s
be, respectively, the number of real and pairs of conjugate complex
embeddings of k. Moreover, we indicate by ∆k the discriminant of k.
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Let n be a positive integer, we put

B
(n)
k,S =

nr+s−12snm|S|−1

(|S| − 1)!
(√
|∆k|

)n
L∏

l=1

(
1

logN(pl)

(
1− 1

N(pl)n

))
,(1.2)

and

CR,n = 2n−M
(

M∏

j=1

(
2j

2j + 1

)n−2j
)
nM

M !
,

with M = bn−1
2
c, and

CC,n = πn
nn

(n!)2 .

In this article, as usual, empty products are understood to be 1.
For non-negative real functions f(X), g(X), h(X) and X0 ∈ R, we

write f(X) = g(X) + O(h(X)) as X ≥ X0 tends to infinity, if there is
C0 such that |f(X)− g(X)| ≤ C0h(X) for all X ≥ X0.

Theorem 1.1. Let n be a positive integer and let k be a number field
of degree m over Q. Moreover, let S be a finite set of places of k
containing the archimedean ones. Then, as H ≥ 2 tends to infinity,

N(OS(n, 1),H) = (2rπs)nB
(n)
k,SHmn (logH)|S|−1

+

{
O
(
Hmn (logH)|S|−2

)
, if |S| > 1,

O (Hmn−1) , if |S| = 1.

The implicit constant in the error term depends on m, n and N(S).

We set
C

(e)
k,S = e|S|Cr

R,eC
s
C,eB

(e)
k,S.

Theorem 1.2. Let e be a positive integer and let k be a number field
of degree m over Q. Moreover, let S be a finite set of places of k
containing the archimedean ones. Then, as H ≥ 2 tends to infinity,

N(OS(1, e),H) = C
(e)
k,SHme2 (logH)|S|−1

+

{
O
(
Hme2 (logH)|S|−2

)
, if |S| > 1,

O
(
He(me−1)L

)
, if |S| = 1,

where L = logH if (m, e) = (1, 2) and 1 otherwise. The implicit
constant in the error term depends on m, e and N(S).

As mentioned before, if S = S∞, then Theorem 1.1 reduces to (1.1),
although with a larger error term, and Theorem 1.2 to the result in [1].
However, for the case S∞ 6= S the results appear to be new.

As in [1], our proof relies on a work of the author and Widmer [2]
about counting lattice points in definable sets in o-minimal structures.
Our approach is similar to the one in [1], but in the case S = S∞ the
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result is more straightforward, because the embedding of Ok in Rm is
a lattice. On the other hand, if S ) S∞, the embedding of OS is dense
in Rm, and a more elaborate proof is needed.

Let us apply our theorems in a few simple examples. Fix a prime
number p. One can see, as an easy exercise and as a special case of

both theorems, that the number of elements of Z
[

1
p

]
of height at most

H is
2

log p

(
1− 1

p

)
H logH +O(H).

Now, let d be a square-free positive integer with d ≡ 3 mod 4. Con-
sider k = Q[

√
d] and set S to consist of the place corresponding to

the prime ideal (2, 1 +
√
d), in addition to the two archimedean places.

Then

N(OS(n, 1),H) =
2n(2n − 1)

d
n
2 log 2

H2n (logH)2 +O
(
H2n logH

)
.

Now consider k = Q again and suppose the non-archimedean places in
S are associated to the primes 2 and 3. Then

N(OS(1, 2),H) =
32

3 log 2 log 3
H4 (logH)2 +O

(
H4 logH

)
.

In [11], Masser and Vaaler observed that the limit for H →∞ of

N(k(1, e),H 1
e )

N(k(e, 1),H)

is a rational number. Moreover, they asked if this can be extended to
some sort of reciprocity law, i.e., whether

lim
H→∞

N(k(n, e),H 1
e )

N(k(e, n),H 1
n )
∈ Q.

Analogously we notice that

lim
H→∞

N(OS(1, e),H 1
e )

N(OS(e, 1),H)
= e

(
CR,e

2e

)r (
CC,e

πe

)s

is a rational number depending only on e, r and s, as already pointed
out in [1] for the case S = S∞. As Masser and Vaaler did, one can ask
again whether

lim
H→∞

N(OS(n, e),H 1
e )

N(OS(e, n),H 1
n )
∈ Q.

2. Preliminaries

Let k be a number field of degree m over Q and let Mk be the set
of places of k. For v ∈Mk, we indicate by kv the completion of k with
respect to v. We write Qv for the completion of Q with respect to the
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unique place of Q that lies below v. Moreover, we set dv = [kv : Qv] to
be the local degree of k at v.

Any v ∈ Mk corresponds either to a non-zero prime ideal pv of Ok
or to an embedding of k into C. In the first case v is called a finite
or non-archimedean place and we write v -∞. In the second case v is
called an infinite or archimedean place and we write v | ∞. We set, for
v -∞,

|α|v = N(pv)
− ordpv (α)

dv ,

for every α ∈ k \ {0}, where ordpv(α) is the power of pv in the factor-
ization of the principal ideal αOk. Furthermore, |0|v = 0. If v | ∞
corresponds to σv : k ↪→ C, we set

|α|v = |σv(α)|,

for every α ∈ k, where | · | is the usual absolute value on C. The
absolute multiplicative Weil height H : kn → [1,∞) is defined by

H(α1, . . . , αn) =
∏

v∈Mk

max{1, |α1|v, . . . , |αn|v}
dv
m .(2.1)

Note that for α ∈ k \ {0}, |α|v 6= 1 for finitely many v. Therefore, the
product above is actually finite. Moreover, this definition is indepen-
dent of the field containing the coordinates, and therefore the height is
defined on Qn

. For properties of the Weil height we refer to the first
chapter of [4].

We conclude this section introducing semialgebraic sets and stating
The Tarski-Seidenberg principle.

Definition 2.1. Let N and Mi, for i = 1, . . . , N , be positive integers.
A semialgebraic subset of Rn is a set of the form

N⋃

i=1

Mi⋂

j=1

{x ∈ Rn : fi,j(x) ∗i,j 0},

where fi,j ∈ R[X1, . . . , Xn] and the ∗i,j are either < or =.
Let A ⊆ Rn be a semialgebraic set, a function f : A→ Rn′ is called

semialgebraic if its graph Γ(f) is a semialgebraic set of Rn+n′.

If we identify C with R2, then the definitions of semialgebraic set
and function are extended to subsets of Cn and to functions of complex
variables in a natural way. We are going to need the following theorem
which is usually known as the Tarski-Seidenberg principle.

Theorem 2.1 ([3], Theorem 1.5). Let A ∈ Rn+1 be a semialgebraic
set, then π(A) ∈ Rn is semialgebraic, where π : Rn+1 → Rn is the
projection map on the first n coordinates.
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3. A generalization

In this section we formulate a theorem which will be used later to
derive Theorems 1.1 and 1.2.

In the following definition we consider functions whose domain is
Rn+1 or Cn+1. We use the notation z to indicate a vector with entries
in a generic field, while x will be a vector with real coordinates. We
are often going to identify a function f : Cn → R with f : R2n → R,
where, if x = (x1, . . . , x2n) ∈ R2n, f(x) = f(x1 + ix2, . . . , x2n−1 + ix2n).

Definition 3.1. Let n be a positive integers. A semialgebraic distance
function (of dimension n) is a continuous function N from Rn+1 or
Cn+1 to the interval [0,∞) satisfying the following conditions:

i. N(z) = 0 if and only if z is the zero vector;
ii. N(wz) = |w|N(z) for any scalar w in R or in C;

iii. N is a semialgebraic function.

Let r and s be non-negative integers, not both zero. A system N of
r real and s complex semialgebraic distance functions (of dimension n)
is called (r, s)-system (of dimension n).

Let us fix a number field k with [k : Q] = m. Let r and s be, respec-
tively, the number of real and pairs of conjugate complex embeddings of
k. These induce r+s archimedean places of k, with respective comple-
tions R or C. Given an (r, s)-systemN of dimension n, we can associate
to every archimedean place v a semialgebraic distance function Nv on
kn+1
v . We will mostly use the alternative notation N1, . . . , Nr for the r

real distance functions and Nr+1, . . . , Nr+s for the s complex ones and
we put di = 1, for i = 1, . . . , r, and di = 2 for i = r + 1, . . . , r + s. For
the non-archimedean places we set

Nv(z) = max {|z0|v, . . . , |zn|v} ,
for z = (z0, . . . , zn) ∈ kn+1

v . Now we can define, for α ∈ kn+1, a height
function

HN (α)m =
∏

v∈Mk

Nv(σv(α))dv ,

where σv is the embedding of k into kv corresponding to v, extended
componentwise to kn+1.

Now let Ñv(z) = Nv(1, z) for z ∈ kv. Suppose that, for every

i = 1, . . . , r + s, Ñi(z) ≥ 1 for every z ∈ Rn or Cn and that the sets

Zi(T ) =
{
z : Ñi(z) ≤ T

}
(3.1)

have volume pi(T ) for every T ≥ 1, where pi(X) ∈ R[X] is a polynomial
of degree din and leading coefficient Ci. Let OnS(H) be the set of
a ∈ (OS)n with HN (1,a) ≤ H.

Theorem 3.1. Let N be a (r, s)-system of dimension n on k satisfying
the above hypothesis about the volumes of the sets Zi(T ). Moreover,



ALGEBRAIC S-INTEGERS OF FIXED DEGREE AND BOUNDED HEIGHT 47

suppose S is a finite set of places of k as fixed in Section 1. Then, for
every H0 > 1 there exists a positive C0 = C0(N ,N(S),H0), such that
for every H ≥ H0

∣∣∣|OnS(H)| − CN ,k,SHmn (logH)|S|−1
∣∣∣

≤
{
C0Hmn (logH)|S|−2 , if |S| > 1,
C0Hmn−1, if |S| = 1,

where

CN ,k,S =
nr+s−12snm|S|−1

(|S| − 1)!
(√
|∆k|

)n
r+s∏

i=1

Ci

L∏

l=1

(
1

logN(pl)

(
1− 1

N(pl)n

))
.

(3.2)

4. Proof of Theorems 1.1 and 1.2

In this section we apply Theorem 3.1 to prove Theorems 1.1 and 1.2.
Let us start with the first one. We choose our system N to consist of
the max norm

Nv(z) = |z|∞ = max {|z0|, . . . , |zn|} ,
for every archimedean place v of k. These Nv clearly satisfy the defini-
tion of semialgebraic distance function. The sets Zi(T ) defined in (3.1)
have volume (2T )n for i = 1, . . . , r and πnT 2n for i = r+1, . . . , r+s, for
every T ≥ 1. Therefore, the hypotheses of Theorem 3.1 are satisfied.

Note that, for every a ∈ kn,

HN (1,a) =
∏

v

Ñv(σv(a))
dv
m =

∏

v

max {1, |a1|v, . . . , |an|v}
dv
m = H(a).

Therefore HN is the usual absolute Weil height defined in (2.1). The
claim of Theorem 1.1 follows applying Theorem 3.1 with H0 = 2.

Now let us prove Theorem 1.2. We choose N to consist of the Mahler
measure function:

Nv(z0, . . . , zn) = M(z0X
n + z1X

n−1 + · · ·+ zn),

for every v | ∞. Let us recall its definition. If f = z0X
n + z1X

n−1 +
· · ·+ zn is a non-zero polynomial of degree n with complex coefficients
and roots α1, . . . αn, the Mahler measure of f is defined to be:

M(f) = |z0|
n∏

i=1

max {1, |αi|} .(4.1)

Moreover, we set M(0) = |0|.
Mahler ([10], Lemma 1) proved that M is continuous as a function

of the coefficients and it is easy to see that it satisfies conditions i. and
ii. of Definition 3.1. We now prove that it is a semialgebraic function.
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Lemma 4.1. The Mahler measure M , as a function of the coefficients
of a polynomial, is a semialgebraic function.

Proof. We start by proving the claim for the complex Mahler measure.
We need to prove that, for every positive integer n, the function

M : R2(n+1) → [0,∞)
(x0, . . . , x2n+1) 7→ M ((x0 + ix1)Xn + · · ·+ (x2n + ix2n+1))

is semialgebraic, i.e., its graph

Γn(M) =
{

(x0, . . . , x2n+1, t) ∈ R2(n+1)+1 : M (x0, . . . , x2n+1) = t
}

is a semialgebraic set.
We prove this by induction on n. For n = 1,

Γ1(M) =
{

(x0, x1, x2, x3, t) ∈ R5 : max
{
x2

0 + x2
1, x

2
2 + x2

3

}
= t2, t ≥ 0

}

is clearly semialgebraic. Now suppose n > 1. Let Γn(M) = A ∪ B,
where

A =
{

(x0, . . . , x2n+1, t) ∈ Γn(M) : x2
0 + x2

1 6= 0
}
,

and
B = {(x0, . . . , x2n+1, t) ∈ Γn(M) : x0 = x1 = 0} .

By the inductive hypothesis, B is semialgebraic since B = {(0, 0)} ×
Γn−1(M). Now let A′ be the set of points

(x0, . . . , x2n+1, t, α1, β1, . . . , αn, βn) ∈ R2(n+1)+1+2n

such that x2
0 + x2

1 6= 0, αh + iβh, for h = 1, . . . , n, are the roots of
(x0 + ix1)Xn + · · ·+ (x2n + ix2n+1) and

|x0 + ix1|
n∏

h=1

max {1, |αh + iβh|} = t.(4.2)

This set A′ is defined by the symmetric functions that link the coef-
ficients of a polynomial with its roots and by (4.2). It is therefore
semialgebraic. Since A is the projection of A′ on the first 2(n+ 1) + 1
coordinates, it is also semialgebraic by the Tarski-Seidenberg principle
(Theorem 2.1). We have the claim for the complex Mahler measure.

For the real one it is sufficient to note that its graph is nothing but
the projection that forgets the coordinates x1, x3, . . . , x2n−1, x2n+1 of

Γn(M) ∩ {(x0, . . . , x2n+1, t) : x2j+1 = 0 for j = 0, . . . , n}.
�

Since M satisfies the three conditions of Definition 3.1, it is a semi-
algebraic distance function. Moreover, in [6], Chern and Vaaler calcu-

lated the volume of the sets of the form (3.1), where Ñ is the real and
the complex monic Mahler measure.

Recall the notation of (3.1). By (1.16) and (1.17) of [6], for every
T ≥ 1 the volumes of the sets

{(z1, . . . , zn) ∈ Rn : M(1, z1, . . . , zn) ≤ T},



ALGEBRAIC S-INTEGERS OF FIXED DEGREE AND BOUNDED HEIGHT 49

and
{(z1, . . . , zn) ∈ Cn : M(1, z1, . . . , zn) ≤ T}

are, respectively, polynomials pR(T ) and pC(T ) of degree n and 2n and
leading coefficients

CR,n = 2n−M
(

M∏

j=1

(
2j

2j + 1

)n−2j
)
nM

M !
, 1

with M = bn−1
2
c, and

CC,n = πn
nn

(n!)2 .

We just showed that N satisfies the hypothesis of Theorem 3.1
and we have that for every H0 > 1 there exists a positive C0 =
C0(m,n,N(S),H0), such that for every H ≥ H0,

(4.3)
∣∣∣|OnS(H)| − Cr

R,nC
s
C,nB

(n)
k,SHmn (logH)|S|−1

∣∣∣

≤
{
C0Hmn (logH)|S|−2 , if |S| > 1,
C0Hmn−1, if |S| = 1,

where B
(n)
k,S is the constant defined in (1.2).

Let us reformulate these considerations in terms of polynomials. We
proceed in a similar way as done in Section 2 of [1]. For any positive
integer n we fix the system Nn of dimension n to consist of Mahler
measure distance functions and we define

Mk : k[X] → [0,∞)
a0X

n + a1X
n−1 + · · ·+ an 7→ HNn(a0, a1, . . . , an).

LetMk,S(n,H) be the set of of monic polynomials f ∈ OS[X] of degree
n with Mk(f) ≤ H. Clearly |OnS(H)| = |Mk,S(n,H)| and (4.3) is an
estimate for such cardinality. Fixing m and n and letting k vary among

number fields of degree m, B
(n)
k,S is bounded and therefore there exists

a constant G
(n)
m,N(S), depending on n, m and N(S), such that

|Mk,S(n,H)| ≤ G
(n)
m,N(S)Hmn (logH + 1)|S|−1 ,(4.4)

for every H ≥ 1.
Note that, for every α ∈ k,

Mk(X − α) =
∏

v∈Mk

max {1, |α|v}
dv
m = H(α).(4.5)

It is clear from the definition of Mahler measure (4.1) that

M(fg) = M(f)M(g),

and therefore, by Lemma 1.6.3 of [4], one can see that

Mk(fg) = Mk(f)Mk(g),

1There is a misprint in (1.16) of [6], 2−N should read 2−M .
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for every f, g ∈ k[X].

Now we restrict to monic f irreducible over k. Let M̃k,S(n,H) be
the set of monic irreducible polynomials f ∈ OS[X] of degree n with
Mk(f) ≤ H, i.e., the polynomials in Mk,S(n,H) that are irreducible
over k.

Corollary 4.2. For every H0 > 1 there exists a positive D0, depending
on n, m N(S) and H0, such that for every H ≥ H0 we have
∣∣∣|M̃k,S(n,H)| − Cr

R,nC
s
C,nB

(n)
k,SHmn (logH)|S|−1

∣∣∣

≤
{
D0Hmn (logH)|S|−2 , if |S| > 1,
D0Hmn−1L, if |S| = 1,

where L = logH if (m,n) = (1, 2) and 1 otherwise.

Proof. For n = 1, there is nothing to prove. Suppose n > 1. We show
that, up to a constant, the number of all monic reducible f ∈ OS[X]
of degree n with Mk(f) ≤ H is not larger than the right hand side of
(4.3), except for the case |S| = 1 and (m,n) = (1, 2).

Consider all f = gh ∈ Mk,S(n,H) with g, h ∈ OS[X] monic of
degree a and b respectively, with 0 < a ≤ b < n and a + b = n. We
have 1 ≤ Mk(g),Mk(h) ≤ H because g and h are monic. Thus, there
exists a positive integer d such that 2d−1 ≤ Mk(g) < 2d. Note that d
must satisfy

1 ≤ d ≤ logH
log 2

+ 1 ≤ 2 logH + 1.(4.6)

Since Mk is multiplicative,

Mk(h) =
Mk(f)

Mk(g)
≤ 21−dH.

Using (4.4) and noting that 2d ≤ 2H, we can say that there are at most

G
(a)
m,N(S)

(
2d
)ma (

log 2d + 1
)|S|−1 ≤ G

(a)
m,N(S)

(
2d
)ma

(logH + 2)|S|−1

possibilities for g and

G
(b)
m,N(S)

(
21−dH

)mb (
log
(
21−dH

)
+ 1
)|S|−1

≤ G
(b)
m,N(S)

(
21−dH

)mb
(logH + 2)|S|−1

possibilities for h. Therefore, we have at most

H
(n)
m,N(S)Hmb2md(a−b) (logH + 2)2(|S|−1)(4.7)

possibilities for gh with Mk(gh) ≤ H and 2d−1 ≤ Mk(g) < 2d, where

H
(n)
m,N(S) is a real constant depending on n, m and N(S).

If a = b = n
2
, then (4.7) is

H
(n)
m,N(S)Hmn

2 (logH + 2)2(|S|−1) .
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Summing over all d, 1 ≤ d ≤ b2 logHc+ 1 (recall (4.6)), gives an extra
factor 2 logH + 1. Therefore, when a = b, there are at most

H
(n)
m,N(S)H

mn
2 (2 logH + 2)2|S|−1

possibilities for f = gh, with Mk(f) ≤ H. If |S| > 1 or (m,n) 6= (1, 2),
this has smaller order than the right hand side of (4.3), since mn > 2
implies mn

2
< mn − 1. In the case |S| = 1 and (m,n) = (1, 2), we get

H
(n)
m,N(S)H (2 logH + 2) and we need an additional logarithm factor.

In the case a < b, summing 2md(a−b) over all d, 1 ≤ d ≤ b2 logHc +
1 =: D, we get

D∑

d=1

(
2m(a−b))d ≤

D∑

d=1

2−d ≤ 1.

Thus, recalling b ≤ n− 1, if a < b there are at most

H
(n)
m,N(S)Hm(n−1) (logH + 2)2(|S|−1)

possibilities for f = gh, with Mk(f) ≤ H. This is again not larger
than the right hand side of (4.3). �

The last step of the proof links such irreducible polynomials with
their roots and Mk with the height of these roots. Recall that S is the
set of places of k that extend the places in S.

Lemma 4.3. An algebraic number β ∈ OS has degree n over k and
H(β) ≤ H if and only if it is a root of a monic irreducible polynomial
f ∈ OS[X] of degree n with Mk(f) ≤ Hn.

Proof. If an algebraic number β ∈ OS has degree n over k, then it is
clearly a root of a monic irreducible polynomial f ∈ OS[X] of degree
n, and vice-versa. We claim

H(β)n = Mk(f).

We show that it is possible to define an absolute MQ : Q[X]→ [0,∞)

such that, if f ∈ k[X], then MQ(f) = Mk(f). In fact, let k′ be a
finite extension of k with [k′ : Q] = m′. Recall (see [12], Ch.II, (8.4)
Corollary) that for any w ∈Mk

∑

v∈Mk′
v|w

dv = dw[k′ : k] = dw
m′

m
.
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For any f = a0X
n+· · ·+an ∈ k′[X], we use the notationMv(f) = M(f)

for v | ∞ and Mv(f) = max{|a0|v, . . . , |an|v} for v -∞. We have

Mk′(f) =
∏

v∈Mk′

Mv(σv(f))
dv
m′ =

∏

w∈Mk

∏

v∈Mk′
v|w

Mv(σv(f))
dv
m′

=
∏

w∈Mk

Mw(σw(f))

∑
v∈Mk′
v|w

dv
m′

=
∏

w∈Mk

Mw(σw(f))
dw
m = Mk(f).

Suppose f = (X − α1) · · · (X − αn). By (4.5) we have

MQ(αi)(X − αi) = H(αi),

and the αi have the same height because they are conjugate (see [4],
Proposition 1.5.17). Moreover, by the multiplicativity of Mk we can
see that

Mk(f) = MQ(f) =
n∏

i=1

MQ(X − αi) = H(αj)
n,

for any αj root of f . �

This implies that |N(OS(1, n),H)| = n|M̃k,S(n,Hn)| because there
are n different β ∈ OS with the same minimal polynomial f over k.
We then have that, for every H0 > 1, there exists a positive E0 =
E0(m,n,N(S),H0) such that, for every H ≥ H0,

∣∣∣N (OS(1, n),H)− n|S|Cr
R,nC

s
C,nB

(n)
k,SHmn2

(logH)|S|−1
∣∣∣

≤
{
E0Hmn2

(logH)|S|−2 , if |S| > 1,
E0Hn(mn−1)L, if |S| = 1,

where L = logH if (m,n) = (1, 2) and 1 otherwise. We obtain Theorem
1.2 by choosing H0 = 2.

5. Counting lattice points

We start this section introducing the counting theorem that will
be used to prove Theorem 3.1. The principle dates back to Daven-
port [7] and was developed by several authors. In a previous work [2],
the author and Widmer formulated a counting theorem that relies on
Davenport’s Theorem and uses o-minimal structures. We do not need
Theorem 1.3 of [2] in its full generality as we count lattice points in
semialgebraic sets.

For a semialgebraic set Z ⊆ Rn+n′ , we call Zt = {x ∈ Rn : (x, t) ∈
Z} the fiber of Z lying above t ∈ Rn′ and Z a semialgebraic family.
It is clear that the fibers Zt are semialgebraic subsets of Rn. Let Λ be
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a lattice of Rn and let λi = λi(Λ), for i = 1, . . . , n, be the successive
minima of Λ with respect to the unit ball B0(1), i.e.,

λi = inf{λ : B0(λ) ∩ Λ contains i linearly independent vectors}.
The following theorem is a special case of Theorem 1.3 of [2].

Theorem 5.1. Let Z ⊂ Rn+n′ be a semialgebraic family and suppose
the fibers Zt are bounded. Then there exists a constant cZ ∈ R, de-
pending only on the family, such that

∣∣∣∣|Zt ∩ Λ| − Vol(Zt)

det Λ

∣∣∣∣ ≤
n−1∑

j=0

cZ
Vj(Zt)

λ1 · · ·λj
,

where Vj(Zt) is the sum of the j-dimensional volumes of the orthogonal
projections of Zt on every j-dimensional coordinate subspace of Rn and
V0(Zt) = 1.

Let us introduce the family we want to apply Theorem 5.1 to. We
fix an (r, s)-system N of dimension n consisting of r real and s com-

plex semialgebraic distance functions. Recall that we defined Ñi(z) =

Ni(1, z). Moreover, we see the complex Ñi as functions from R2n, i.e.,

Ñi(x1, x2, . . . , x2n−1, x2n) = Ñi(z1, . . . , zn),

for (x1, x2, . . . , x2n−1, x2n) = (<(z1),=(z1), . . . ,<(zn),=(zn)).
Recall that di = 1, for i = 1, . . . , r, and di = 2, for i = r+1, . . . , r+s,

and m = r + 2s. Let

Z =

{
(x1, . . . ,xr+s, t) ∈ Rn(r+2s)+1 :

r+s∏

i=1

Ñi(xi)
di ≤ t

}
,(5.1)

where xi ∈ Rdin.
We need to show that Z is a semialgebraic family and that the fibers

Zt are bounded for every t ∈ R.

Lemma 5.2. The set Z defined in (5.1) is semialgebraic.

Proof. First note that, since the Ni are semialgebraic functions, also

the Ñi are semialgebraic. In fact, one can get Γ
(
Ñi

)
by intersecting

Γ(Ni) with an appropriate affine subspace. Let us define the following
sets:

S(i) =
{

(x1, . . . ,xr+s, t, t1, . . . , tr+s) ∈ Rmn × R1+r+s : Ñi(xi) = ti

}
,

for i = 1, . . . , r + s, and

A =

{
(x1, . . . ,xr+s, t, t1, . . . , tr+s) ∈ Rmn × R1+r+s :

r+s∏

i=1

tdii ≤ t

}
.
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All these sets are clearly semialgebraic. Let π be the projection map of
Rmn+1+r+s to the first mn + 1 coordinates. By the Tarski-Seidenberg
principle (Theorem 2.1) the set

B = π

(⋂

i

S(i) ∩ A
)

is semialgebraic. A point (x1, . . . ,xr+s, t) belongs to B, if and only if

there are t1, . . . , tr+s such that Ñi(xi) = ti for every i and
∏r+s

i=1 t
di
i ≤ t,

i.e.,
∏r+s

i=1 Ñi(xi)
di ≤ t. Therefore B = Z, and we proved the claim. �

Since the Ni are bounded distance functions, there exist positive real
constants δi such that

δi|z|∞ ≤ Ni(z),

for every z in Rn+1 or Cn+1 (see [5], Lemma 2, p. 108). We define
γi = max{δi : δi|z|∞ ≤ Ni(z)} and N ′i(z) = γi|z|∞. As before, we use

the notation Ñ ′i(z) for N ′i(1, z).
Let N ′ be the (r, s)-system consisting of N ′i(z) = γi|z|∞ for every

i = 1, . . . , r + s. Each (x1, . . . ,xr+s, t) such that
∏r+s

i=1 Ñi(xi)
di ≤ t

satisfies
∏r+s

i=1 Ñ
′
i(xi)

di ≤ t. Therefore, if

Z ′ =

{
(x1, . . . ,xr+s, t) ∈ Rmn+1 :

r+s∏

i=1

Ñ ′i(xi)
di ≤ t

}
,

we have Z ⊆ Z ′. For every x ∈ Rdin we have, by definition, Ñ ′i(x) ≥ γi
and therefore, for every (x1, . . . ,xr+s) ∈ Z ′t,

Ñ ′i(xi)
di ≤ t

∏
j 6=i γ

dj
j

holds. This implies

|xi|di∞ ≤
t

∏
j γ

dj
j

,

for every i = 1, . . . , r + s. We have just showed that the fibers Z ′t, and
therefore Zt, are bounded.

From now on we use the notation Z(T ) for ZT . Recall that Vj(Z(T ))
is the sum of the j-dimensional volumes of the orthogonal projec-
tions of Z(T ) on every j-dimensional coordinate subspace of Rn and
V0(Z(T )) = 1.

Since Z ⊆ Z ′, we have Vj(Z(T )) ≤ Vj(Z
′(T )). By Theorem 5.1 there

exists a constant cZ , depending only on Z, such that
∣∣∣∣|Z(T ) ∩ Λ| − Vol(Z(T ))

det Λ

∣∣∣∣ ≤
mn−1∑

j=0

cZ
Vj(Z

′(T ))

λ1 · · ·λj
,(5.2)

for every T ∈ R.
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We have to calculate Vol(Z(T )) and we need upper bounds for
Vj(Z

′(T )).

Recall we supposed that, for every i = 1, . . . , r + s, Ñi(x) ≥ 1 and
the volume of the set Zi(T ) defined in (3.1) is pi(T ) for every T ≥ 1,
where pi is a polynomial of degree din and leading coefficient Ci.

Lemma 5.3. Let q = r + s − 1. Under the hypotheses above we have
that, for every T ≥ 1,

Vol (Z(T )) = Q
(
T

1
2 , log T

)
,

where Q(X, Y ) ∈ R[X, Y ], degX Q = 2n, degY Q = q and the coeffi-
cient of X2nY q is nq

q!

∏q+1
i=1 Ci.

Proof. This is a special case of Lemma 5.2 of [1]. �
The Vj(Z

′(T )) were already computed in [1].

Lemma 5.4. For each j = 1, . . . ,mn − 1, there exists a polynomial
Pj(X, Y ) in R[X, Y ], with degX Pj ≤ 2n, degY Pj ≤ q, and the coeffi-
cient of X2nY q is 0, such that, for every T ≥ 1, we have

Vj(Z
′(T )) = Pj

(
T

1
2 , log T

)
.

Proof. See [1], Lemma 5.4. �
For an integer u, we will use the notation

X(u) =

{
Xu, for u > 0,
1, for u ≤ 0,

in order to avoid possible appearances of 00, for instance in the following
proposition, where we must consider (log T )q for T ≥ 1 and q can be 0.

Proposition 5.5. Let N be a (r, s)-system of dimension n that satisfies
the above hypotheses on the volumes of the sets Zi(T ) and Λ a lattice.
There exist two positive real constants E and E ′, depending only on N ,
such that, for every T ≥ 1,
∣∣∣∣∣|Z(T ) ∩ Λ| − nq

q!

(
q+1∏

i=1

Ci

)
T n (log T )(q)

det Λ

∣∣∣∣∣

≤
{

D(Λ)
(
ET n (log T )(q−1) + E ′

)
, if q ≥ 1,

D(Λ)ET n−
1
m , if q = 0,

where D(Λ) =
∑mn−1

j=0
1

λ1...λj
+ 1

det Λ
. Moreover, if T < 1, then Z(T ) = ∅.

Proof. For T < 1, Z(T ) = ∅ since we supposed Ñi(x) ≥ 1 for every x.
Suppose T ≥ 1.

We start with the case q = 0. In this case, our system N consists
only of one function N1 that can be either real (d1 = m = 1) or
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complex (d1 = m = 2). In any case, the volume of the set Z(T ) ⊆ Rmn

equals p1

(
T

1
m

)
for every T ≥ 1, where p1 has degree mn and leading

coefficient C1.
Fix a j, 1 ≤ j ≤ mn−1. Any projection of Z ′(T ) to a j-dimensional

coordinate subspace has volume at most FjT
j
m , for some positive real

constant Fj. Therefore, there exists an E ′′ such that

Vj(Z
′(T )) ≤ E ′′T n−

1
m ,

for every T ≥ 1, and, recalling (5.2), we have the claim if q = 0.
Suppose q > 0. By (5.2), Lemma 5.3 and Lemma 5.4, we have the

following inequality, for every T ≥ 1,
∣∣∣∣∣|Z(T ) ∩ Λ| − nq

q!

q+1∏

i=1

Ci
T n (log T )(q)

det Λ

∣∣∣∣∣ ≤ D(Λ)P
(
T

1
2 , log T

)
,

for some polynomial P (X, Y ) ∈ R[X, Y ] with degX P ≤ 2n, degY P ≤
q, whose coefficients depend on N and the coefficient of X2nY q is 0.
Since P satisfies such conditions, there exists a positive E such that

P
(
T

1
2 , log T

)
≤ ET n (log T )(q−1) ,

for every T ≥ 3. For T ∈ [1, 3], the function of T given by P
(
T

1
2 , log T

)

is bounded, say by E ′. Then

P
(
T

1
2 , log T

)
≤ ET n (log T )(q−1) + E ′,

for every T ≥ 1. Clearly, E and E ′ depend only on the coefficients of
P and therefore only on N . �

6. Proof of Theorem 3.1

Recall that we fixed a number field k of degree m over Q. Recall
that σ1, . . . , σr+s are the real and complex embeddings of k indexed
in the usual way. Moreover, di = 1, for i = 1, . . . , r, and di = 2, for
i = r + 1, . . . , r + s. Let A be a non-zero fractional ideal of k. The
image of A via the embedding σ : a ↪→ (σ1(a), . . . , σr+s(a)) is a lattice
in Rm and we call the cartesian product of n copies of it ΛA = σ(A)n.
Recall that with N(A) we denote the norm of A.

Lemma 6.1. We have

det ΛA =
(

2−sN(A)
√
|∆k|

)n
,

and its first successive minimum with respect to the Euclidean distance
is λ1 ≥ N(A)

1
m .

Proof. In [11] this Lemma is stated for integral ideals ([11], Lemma 5).
The same arguments work also for non-zero fractional ideals. �
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Now, recall that we fixed a finite set of places S of k containing the
archimedean ones and OS is the ring of S-integers of k. As in Section 1,
we call Sfin the set of non-archimedean places in S. To prove Theorem
3.1 we need an estimate for the cardinality of OnS(H), i.e., the set of
points a ∈ OnS such that HN (1,a) ≤ H.

First suppose Sfin = ∅, then OS = Ok and |S| = q + 1 = r + s. Note
that, in this case,

HN (1,a) =
r+s∏

i=1

Ñi(σi(a))
di
m ,

because a is a vector with integer coordinates whose non-archimedean
absolute values are smaller than or equal to 1. Therefore, the number
of a ∈ Onk such that HN (1,a) ≤ H is the number of lattice points of

ΛOk = σ(Ok)n in Z(Hm). By Lemma 6.1, det ΛOk =
(

2−s
√
|∆k|

)n
and

λ1 ≥ 1. Thus, D(Λ) ≤ mn + 2sn. Moreover, for every H0 > 1 there
exists a C0 = C0(N ,H0) such that

(mn+ 2sn)
(
EHmn (logHm)(q−1) + E ′

)
≤ C0Hmn (logH)(q−1) ,

for every H ≥ H0, in case q ≥ 1 and (mn+ 2sn)E ≤ C0 in case q = 0.
The claim of Theorem 3.1 follows applying Proposition 5.5.

Now, suppose Sfin = {v1, . . . , vL}, with L > 0 and recall that vl
corresponds to the prime ideal pl of Ok. Let IS be the set of non-zero
integral ideals A in Ok which are products of the prime ideals we fixed,
i.e., A = pg11 . . . pgLL for some non-negative integers g1, . . . , gL. An a ∈
kn is inOnS if and only if there exists an ideal A ∈ IS such that au ∈ A−1

for every u = 1, . . . , n, i.e., σ(a) = (σ1(a), . . . , σr+s(a)) ∈ ΛA−1 .
From now on we put

Vk,N =
nq2sn

q!
(√
|∆k|

)n
q+1∏

i=1

Ci.

For a non-zero integral ideal A, by Z(A, T ) we indicate the set of a ∈ kn
such that σ(a) ∈ ΛA−1 ∩ Z(Tm).

Lemma 6.2. There exist two positive constants F and F ′, depending
only on N such that, for T ≥ 1 and every non-zero integral ideal A,
we have
∣∣∣|Z(A, T )| − Vk,NN(A)nTmn (log Tm)(q)

∣∣∣

≤
{

N(A)n
(
FTmn (log Tm)(q−1) + F ′

)
, if q ≥ 1,

N(A)nFTmn−1, if q = 0.

Moreover, if T < 1, Z(A, T ) = ∅.
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Proof. Note that, by Lemma 6.1, the first successive minimum of ΛA−1

is greater than or equal to N(A)−
1
m . Since N(A) is a positive integer,

we have
j∏

i=1

λi ≥ N(A)−
j
m ≥ N(A)−

mn−1
m = N(A)−n+ 1

m ≥ N(A)−n,

for every j = 1, . . . ,mn − 1. Moreover, |∆k| ≥ 1. The claim follows
from Proposition 5.5 and Lemma 6.1, after noting that

D (ΛA−1) ≤ mnN(A)n +
2snN(A)n(√
|∆k|

)n ≤ N(A)n (mn+ 2sn) .

�
We fix a T ≥ 1. For a non-zero integral ideal A, let Z∗(A, T ) be

the subset of Z(A, T ) consisting of the points a such that, for every
B strictly dividing A, there is a u ∈ {1, . . . , n} such that au 6∈ B−1.
In other words, a corresponds to a lattice point of ΛA−1 that is not
contained in any sublattice of the form ΛB−1 where B is a strict divisor
of A. We have

|Z(A, T )| =
∑

B|A
|Z∗(B, T )|.

If µk is the Möbius function of k, the Möbius inversion formula implies
that

|Z∗(A, T )| =
∑

B|A
µk(B)|Z(AB−1, T )|.

Lemma 6.2 gives us an estimate for |Z∗(A, T )|, for every T ≥ 1,∣∣∣∣∣∣
|Z∗(A, T )| − Vk,N

∑

B|A
µk(B)N(AB−1)nTmn (log Tm)(q)

∣∣∣∣∣∣
(6.1)

≤
{ ∑

B|A |µk(B)|N(AB−1)n
(
FTmn (log Tm)(q−1) + F ′

)
, if q ≥ 1,

F
∑

B|A |µk(B)|N(AB−1)nTmn−1, if q = 0.

Recall that OnS(H) is the set of points a ∈ OnS with HN (1,a) ≤ H.

Lemma 6.3. We have

|OnS(H)| =
∑

A∈IS ,
N(A)−1Hm≥1

∣∣∣Z∗(A,N(A)−
1
mH)

∣∣∣ .(6.2)

Proof. Let A = pg11 . . . pgLL and recall dvl = [kvl : Qvl ]. Every point

a ∈ Z∗(A, T ) is such that maxu |au|dvlvl = N (pl)
gl , for every l = 1, . . . , L,

and maxu |au|v ≤ 1 for all v 6∈ S. This means that every a ∈ Z∗(A, T )
satisfies ∏

v-∞
max
u
{1, |au|v}dv = N(A),
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and thus

HN (1,a) = N(A)
1
m

r+s∏

i=1

Ñi(σi(a))
di
m ≤ N(A)

1
mT.

Therefore, a ∈ OnS(H) if and only if there exists an A ∈ IS such that

a ∈ Z∗(A,N(A)−
1
mH). Since such an A is unique and recalling that,

if T < 1, then Z(A, T ), and therefore Z∗(A, T ), are empty, we obtain
the claim. �

Let IS(T ) be the set of ideals in IS with norm not exceeding T and
recall that the norm is multiplicative. Combining (6.2) with (6.1), we
have that
∣∣∣∣∣∣
|OnS(H)| − Vk,N

∑

A∈IS(Hm)

∑

B|A

µk(B)

N(B)n
Hmn

(
log
(
N(A)−1Hm

))(q)

∣∣∣∣∣∣

is smaller than or equal to

∑

A∈IS(Hm)

∑

B|A

|µk(B)|
N(B)n

(
FHmn

(
log

( Hm

N(A)

))(q−1)

+ F ′N(A)n

)

if q ≥ 1 and

F
∑

A∈IS(Hm)

∑

B|A

|µk(B)|
N(B)n

N(A)
1
mHmn−1

if q = 0, for every H ≥ 1.

Now, let Ψ(1)(A) =
∑

B|A
µk(B)
N(B)n

and Ψ(2)(A) =
∑

B|A
|µk(B)|
N(B)n

. The left

hand side becomes
∣∣∣∣∣∣
|OS(H)| − Vk,NHmn

∑

A∈IS(Hm)

Ψ(1)(A)
(
log
(
N(A)−1Hm

))(q)

∣∣∣∣∣∣
,(6.3)

while the right hand side is





∑
A∈IS(Hm) Ψ(2)(A)

(
FHmn

(
log
(
Hm
N(A)

))(q−1)

+ F ′N(A)n
)
, if q ≥ 1,

FHmn−1
∑

A∈IS(Hm) Ψ(2)(A)N(A)
1
m , if q = 0.

(6.4)

Let K be a non-negative integer, we put

L(h)
S (H, K) =

∑

A∈IS(Hm)

Ψ(h)(A)
(
log
(
N(A)−1Hm

))(K)
,

for h = 1, 2. Recall that we defined N(S) = (N(p1), . . . ,N(pL)).
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Lemma 6.4. For every non-negative integer K and for h = 1, 2, there

exist positive constants U
(1)
K,N(S) and U

(2)
K,N(S), depending only on K and

N(S), such that

∣∣∣∣∣L
(h)
S (H, K)−

(
L∏

l=1

F
(h)
l

)(
K+L∏

i=K+1

1

i

)
(logHm)(K+L)

∣∣∣∣∣

≤ U
(h)
K,N(S) (logHm + 1)(K+L−1) ,

for every H ≥ 1, where

F
(h)
l =

Ψ(h)(pl)

logN (pl)
.

Proof. We proceed by induction on the cardinality of Sfin. Clearly, we

can define L(h)
S′ (H, K) and IS′ for S ′ = S \ {vL}. If Sfin is empty, i.e.,

L = 0, then IS(Hm) = {Ok} and L(h)
S (H, K) = (logHm)(K), for every

H ≥ 1.
Now suppose Sfin has cardinality L > 0. The sum over all A ∈
IS(Hm) can be viewed as two sums: the first over all B ∈ IS′(Hm),
and the second over all non-negative integers gL, with

N (pgLL ) ≤ HmN(B)−1.

For typographical convenience we set

A(B) =

⌊
log (HmN(B)−1)

logN (pL)

⌋
,

and

R = IS′(Hm).

We have

L(h)
S (H, K) =

∑

B∈R

A(B)∑

gL=0

Ψ(h) (BpgLL )
(
log
(
HmN(B)−1

)
− gL logN (pL)

)(K)

=
∑

B∈R

A(B)∑

gL=1

Ψ(h) (BpgLL )
K∑

i=0

(−1)i
(
K

i

)
(logN (pL))igiL

(
log
(
HmN(B)−1

))(K−i)

+L(h)
S′ (H, K).

Using the definitions of Ψ(h), it is easy to see that 1/2 ≤ Ψ(h)(pl) ≤ 3/2
for every l and, if gL ≥ 1,

Ψ(h)(BpgLL ) = Ψ(h)(BpL) = Ψ(h)(B)Ψ(h)(pL) > 0.(6.5)
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Therefore, (
L(h)
S (H, K)− L(h)

S′ (H, K)
) (

Ψ(h)(pL)
)−1

(6.6)

=
K∑

i=0

(−1)i
(
K

i

)
(logN (pL))i

∑

B∈R
Ψ(h)(B)

(
log
(
HmN(B)−1

))(K−i)
A(B)∑

gL=1

giL.

Using Faulhaber’s formula, for every i = 0, . . . , K, we get

A(B)∑

gL=1

giL −
1

i+ 1

⌊
log (HmN(B)−1)

logN (pL)

⌋i+1

= Qi

(⌊
log (HmN(B)−1)

logN (pL)

⌋)
,

where Qi is a polynomial of degree i whose coefficients depend only on
i. Then∣∣∣∣∣∣

A(B)∑

gL=1

giL −
1

i+ 1

(
log (HmN(B)−1)

logN (pL)

)i+1

∣∣∣∣∣∣
≤ Q′i

(
log
(
HmN(B)−1

))
,

where Q′i is a polynomial of degree at most i, whose coefficients depend
on i and N (pL). Finally, after noting that

K∑

i=0

(−1)i
(
K

i

)
1

i+ 1
=

1

K + 1
,

by (6.6), we can derive the following inequality:
∣∣∣∣∣
(
L(h)
S (H, K)− L(h)

S′ (H, K)
)
− F

(h)
L

K + 1

∑

B∈R
Ψ(B)

(
log
(
HmN(B)−1

))(K+1)

∣∣∣∣∣

≤
∑

B∈R
Ψ(B)Q

(
log
(
HmN(B)−1

))
,

where Q is a polynomial of degree at most K whose coefficient depend
only on K and N (pL). Therefore, we have

∣∣∣∣∣LS(H, K)− F
(h)
L

K + 1
LS′(H, K + 1)

∣∣∣∣∣ ≤
K∑

i=0

biLS′(H, i),

where the bi are real coefficients again depending on K and N (pL).
Now, by the inductive hypothesis, there exist UK+1,N(S′) and U ′i,N(S′),
for i = 0, . . . , K, such that
∣∣∣∣∣LS′(H, K + 1)−

(
L−1∏

l=1

F
(h)
l

)(
K+L∏

i=K+2

1

i

)
(logHm)(K+L)

∣∣∣∣∣

≤ UK+1,N(S′) (logHm + 1)(K+L−1) ,

and
LS′(H, i) ≤ U ′i,N(S′) (logHm + 1)(i+L−1) ,

for every i = 0, . . . , K. The claim follows easily. �
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Lemma 6.5. There exists a real constant VN(S), depending only on
N(S), such that

∑

A∈IS(Hm)

Ψ(2)(A)N(A)
1
m ≤ VN(S)H (logH + 1)(L−1) ,

for every H ≥ 1.

Proof. We proceed by induction on the cardinality of Sfin as before. If
Sfin is empty, then

∑
A∈IS(Hm) Ψ(2)(A)N(A)

1
m = 1 and the claim holds.

Now suppose Sfin = {v1, . . . , vL}, with L > 0, and again p1, . . . , pL are
the prime associated to the places in Sfin. Let S ′ = S \ {vL} and again

A(B) =

⌊
log (HmN(B)−1)

logN(pL)

⌋
.

Note that Ψ(2)(pL) ≤ 2 and then, by (6.5), Ψ(2)(BpgLL ) ≤ 2Ψ(2)(B).
Then

∑

A∈IS(Hm)

Ψ(2)(A)N(A)
1
m ≤

∑

B∈IS′ (Hm)

2Ψ(2)(B)N(B)
1
m

A(B)∑

gL=0

N(pL)
gL
m

= 2
∑

B∈IS′ (Hm)

Ψ(2)(B)N(B)
1
m
N(pL)

1
m

(A(B)+1) − 1

N(pL)
1
m − 1

≤ 2

N(pL)
1
m − 1

∑

B∈IS′ (Hm)

Ψ(2)(B)N(B)
1
mN(pL)

1
m

(A(B)+1)

≤ 2

N(pL)
1
m − 1

∑

B∈IS′ (Hm)

Ψ(2)(B)N(B)
1
m

(
N(pL)N(pL)

log(HmN(B)−1)
logN(pL)

) 1
m

=
2N(pL)

1
m

N(pL)
1
m − 1

∑

B∈IS′ (Hm)

Ψ(2)(B)N(B)
1
m

(
HmN(B)−1

) 1
m

= 4HL(2)
S′ (H, 0).

The claim follows applying Lemma 6.4. �

Now we are ready prove Theorem 3.1.
We already dealt with the case Sfin = ∅. Suppose Sfin 6= ∅. By (6.3)

and (6.4), we have

∣∣∣|OnS(H)| − Vk,NHmnL(1)
S (H, q)

∣∣∣

≤
{
FHmnL(2)

S (H, q − 1) + F ′HmnL(2)
S (H, 0), if q ≥ 1,

FHmn−1
∑

A∈IS(Hm) Ψ(2)(A)N(A)
1
m , if q = 0.
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Note that, L ≤ |S| − 1 and if q ≥ 1, then L ≤ |S| − 2. Moreover,

F
(1)
l =

Ψ(1)(pl)

logN (pl)
=

1

logN (pl)

(
1− 1

N (pl)
n

)
.

We apply Lemmas 6.4 and 6.5 and we can conclude that there exists a
positive G = G(N ,N(S)) such that

∣∣∣|OnS(H)| − CN ,k,SHmn (logH)|S|−1
∣∣∣ ≤ GHmn (logH + 1)|S|−2 ,

for every H ≥ 1, where CN ,k,S was defined in (3.2).
Now, for every H0 > 1, there exists a positive C0, clearly depending

on N , N(S) and H0 such that

GHmn (logH + 1)|S|−2 ≤ C0Hmn (logH)|S|−2 ,

and we have the claim of Theorem 3.1
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ADDITIVE UNIT REPRESENTATIONS IN GLOBAL
FIELDS – A SURVEY

FABRIZIO BARROERO, CHRISTOPHER FREI, AND ROBERT F. TICHY

Dedicated to Kálmán Győry, Attila Pethő, János Pintz and András Sarközy.

Abstract. We give an overview on recent results concerning addi-
tive unit representations. Furthermore the solutions of some open
questions are included. The central problem is whether and how
certain rings are (additively) generated by their units. This has
been investigated for several types of rings related to global fields,
most importantly rings of algebraic integers. We also state some
open problems and conjectures which we consider to be important
in this field.

1. The unit sum number

In 1954, Zelinsky [37] proved that every endomorphism of a vector
space V over a division ring D is a sum of two automorphisms, except
if D = Z/2Z and dimV = 1. This was motivated by investigations of
Dieudonné on Galois theory of simple and semisimple rings [6] and was
probably the first result about the additive unit structure of a ring.

Using the terminology of Vámos [34], we say that an element r of
a ring R (with unity 1) is k-good if r is a sum of exactly k units of
R. If every element of R has this property then we call R k-good. By
Zelinsky’s result, the endomorphism ring of a vector space with more
than two elements is 2-good. Clearly, if R is k-good then it is also
l-good for every integer l > k. Indeed, we can write any element of R
as

r = (r − (l − k) · 1) + (l − k) · 1,
and expressing r− (l− k) · 1 as a sum of k units gives a representation
of r as a sum of l units.

Goldsmith, Pabst and Scott [17] defined the unit sum number u(R)
of a ring R to be the minimal integer k such that R is k-good, if such
an integer exists. If R is not k-good for any k then we put u(R) := ω
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Key words and phrases. global fields, sums of units, unit sum number, additive

unit representations.
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if every element of R is a sum of units, and u(R) :=∞ if not. We use
the convention k < ω <∞ for all integers k.

Clearly, u(R) ≤ ω if and only if R is generated by its units. Here are
some easy examples from [17]:

• u(Z) = ω,
• u(K[X]) =∞, for any field K,
• u(K) = 2, for any field K with more than 2 elements, and
• u(Z/2Z) = ω.

Goldsmith, Pabst and Scott [17] were mainly interested in endomor-
phism rings of modules. For example, they proved independently from
Zelinsky that the endomorphism ring of a vector space with more than
two elements has unit sum number 2, though they mentioned that this
result can hardly be new.

Henriksen [21] proved that the ring Mn(R) of n×n-matrices (n ≥ 2)
over any ring R is 3-good.

Herwig and Ziegler [22] proved that for every integer n ≥ 2 there
exists a factorial domain R such that every element of R is a sum of
at most n units, but there is an element of R that is no sum of n − 1
units.

The introductory section of [34] contains a historical overview of the
subject with some references. We also mention the survey article [31]
by Srivastava.

In the following sections, we are going to focus on rings of (S−)in-
tegers in global fields.

2. Rings of integers

The central result regarding rings of integers in number fields, or
more generally, rings of S-integers in global fields (S 6= ∅ finite), is that
they are not k-good for any k, thus their unit sum number is ω or ∞.
This was first proved by Ashrafi and Vámos [2] for rings of integers of
quadratic and complex cubic number fields, and of cyclotomic number
fields generated by a primitive 2n-th root of unity. They conjectured,
however, that it holds true for the rings of integers of all algebraic
number fields (finite extensions of Q). The proof of an even stronger
version of this was given by Jarden and Narkiewicz [24] for a much
more general class of rings:

Theorem 1. [24, Theorem 1] If R is a finitely generated integral do-
main of zero characteristic then there is no integer n such that every
element of R is a sum of at most n units.

In particular, we have u(R) ≥ ω, for any ring R of integers of an
algebraic number field.

This theorem is an immediate consequence of the following lemma,
which Jarden and Narkiewicz proved by means of Evertse and Győry’s
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[10] bound on the number of solutions of S-unit equations combined
with van der Waerden’s theorem [36] on arithmetic progressions.

Lemma 2. [24, Lemma 4] If R is a finitely generated integral domain of
zero characteristic and n ≥ 1 is an integer then there exists a constant
An(R) such that every arithmetic progression in R having more than
An(R) elements contains an element which is not a sum of n units.

Lemma 2 is a special case of a theorem independently found by Ha-
jdu [20]. Hajdu’s result provides a bound for the length of arithmetic
progressions in linear combinations of elements from a finitely gener-
ated multiplicative subgroup of a field of zero characteristic. Here the
linear combinations are of fixed length and only a given finite set of
coefficient-tuples is allowed. Hajdu used his result to negatively an-
swer the following question by Pohst: Is it true that every prime can
be written in the form 2u ± 3v, with non-negative integers u, v?

Using results by Mason [27, 28] on S-unit equations in function fields,
Frei [14] proved the function field analogue of Theorem 1. It holds in
zero characteristic as well as in positive characteristic.

Theorem 3. Let R be the ring of S-integers of an algebraic function
field in one variable over a perfect field, where S 6= ∅ is a finite set of
places. Then, for each positive integer n, there exists an element of R
that can not be written as a sum of at most n units of R. In particular,
we have u(R) ≥ ω.

We will later discuss criteria which show that in the number field
case as well as in the function field case, both possibilities u(R) = ω
and u(R) =∞ occur.

3. The qualitative problem

Problem A. [24, Problem A] Give a criterion for an algebraic exten-
sion K of the rationals to have the property that its ring of integers R
has unit sum number u(R) ≤ ω.

Jarden and Narkiewicz provided some easy examples of infinite ex-
tensions of Q with u(R) ≤ ω: By the Kronecker-Weber theorem, the
maximal Abelian extension of Q has this property. Further examples
are the fields of all algebraic numbers and all real algebraic numbers.

More criteria are known for algebraic number fields of small degree.
Here, the only possibilities for u(R) are ω and ∞, by Theorem 1. For
quadratic number fields, Belcher [3], and later Ashrafi and Vámos [2],
proved the following result:

Theorem 4. [3, Lemma 1][2, Theorems 7, 8] Let Q(
√
d), d ∈ Z

squarefree, be a quadratic number field with ring of integers R. Then
u(R) = ω if and only if

1. d ∈ {−1,−3}, or
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2. d > 0, d 6≡ 1 mod 4, and d+ 1 or d− 1 is a perfect square, or
3. d > 0, d ≡ 1 mod 4, and d+ 4 or d− 4 is a perfect square.

A similar result for purely cubic fields was found by Tichy and Ziegler
[33].

Theorem 5. [33, Theorem 2] Let d be a cubefree integer and R the

ring of integers of the purely cubic field Q( 3
√
d). Then u(R) = ω if and

only if

1. d is squarefree, d 6≡ ±1 mod 9, and d+ 1 or d− 1 is a perfect cube,
or

2. d = 28.

Filipin, Tichy and Ziegler used similar methods to handle purely
quartic complex fields Q( 4

√
d). Their criterion [11, Theorem 1.1] states

that u(R) = ω if and only if d is contained in one of six explicitly given
sets.

As a first guess, one could hope to get information about the unit
sum number of the ring of integers of a number field K by comparing
the regulator and the discriminant of K. In personal communication
with the authors, Martin Widmer pointed out the following sufficient
criterion for the simple case of complex cubic fields:

Proposition 6. (Widmer) If R is the ring of integers of a complex
cubic number field K then u(R) = ω whenever the inequality

(1) |∆K | > (e
3
4
RK + e−

3
4
RK )4

holds. Here, ∆K is the discriminant and RK is the regulator of K.

Proof. Regard K as a subfield of the reals, and let η > 1 be a fun-
damental unit, so RK = log η. Since K contains no roots of unity
except ±1, the ring of integers R is generated by its units if and only
if R = Z[η]. By the standard embedding K → R × C ' R3, we can
regard R and Z[η] as lattices in R3 and compare their determinants.
Let η′ = x+iy be one of the non-real conjugates of η. We get u(R) = ω
if and only if

2−1
√
|∆K | =

∣∣∣∣∣∣
det




1 η η2

1 x x2 − y2
0 y 2xy



∣∣∣∣∣∣
.

Since the right-hand side of the above equality is always a multiple of
the left-hand side, we have u(R) = ω if and only if

√
|∆K | >

∣∣∣∣∣∣
det




1 η η2

1 x x2 − y2
0 y 2xy



∣∣∣∣∣∣
.

Clearly, η−1 = η′η′ = x2 + y2, whence |x|, |y| ≤ η−1/2. With this in
mind, a simple computation shows that the right-hand side of the above
inequality is at most η−3/2 + 2 +η3/2, so (1) implies that u(R) = ω. �
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To see that condition (1) is satisfied in infinitely many cases, we
consider the complex cubic fields KN = Q(αN), where αN is a root of
the polynomial

(2) fN = X3 +NX + 1,

with a positive integer N such that 4N3 + 27 is squarefree. By [7],
infinitely many such N exist. We may assume that αN ∈ R. From (2),
we get

N2

N3 + 1
< −αN =

1

α2
N +N

< 1/N .

Since −1/αN is a unit of the ring of integers of KN , and N < −1/αN <
N +1/N2, we have RK ≤ log(N +1/N2). The discriminant −4N3−27
of fN is squarefree by hypothesis, so |∆K | = 4N3 + 27. Now we see by
a simple computation that (1) holds.

In the function field case, Frei [14] investigated quadratic extensions
of rational global function fields.

Theorem 7. [14, Theorem 2] Let K be a finite field, and F a quadratic
extension field of the rational function field K(x) over K. Denote the
integral closure of K[x] in F by R. Then the following two statements
are equivalent.

1. u(R) = ω
2. The function field F |K has full constant field K and genus 0, and

the infinite place of K(x) splits into two places of F |K.

This criterion can also be phrased in terms of an element generating
F over K(x). If, for example, K is the full constant field of F and of
odd characteristic then we can write F = K(x, y), where y2 = f(x) for
some separable polynomial f ∈ K[x] \ K. Then we get u(R) = ω if
and only if f is of degree 2 and its leading coefficient is a square in K
([14, Corollary 1]).

Theorem 7 holds in fact for arbitrary perfect base fields K. An
alternative proof given at the end of [14] implies the following stronger
version:

Theorem 8. Let F |K be an algebraic function field in one variable
over a perfect field K. Let S be a set of two places of F |K of degree
one, and denote by R the ring of S-integers of F |K. Then u(R) = ω
if and only if F |K is rational.

All of the rings R investigated above have in common that their
unit groups are of rank at most one. Currently, there are no known
nontrivial criteria for families of number fields (or function fields) whose
rings of integers have unit groups of higher rank. We consider it an
important direction to find such criteria.

Pethő and Ziegler investigated a modified version of Problem A,
where one asks whether a ring of integers has a power basis consisting
of units [39, 29]. For example, Ziegler proved the following:
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Theorem 9. [39, Theorem 1] Let m > 1 be an integer which is not a
square. Then the order Z[ 4

√
m] admits a power basis consisting of units

if and only if m = a4 ± 1, for some integer a.

Since analogous results are already known for negative m [40] and
for the rings Z[ d

√
m], d < 4 [3, 33], Theorem 9 motivates the following

conjecture:

Conjecture. [39, Conjecture 1] Let d ≥ 2 be an integer and m ∈
Z\{0}, and assume that d

√
m is an algebraic number of degree d. Then

Z[ d
√
m] admits a power basis consisting of units if and only if m = ad±1,

for some integer a.

For rings R with u(R) = ω, Ashrafi [1] investigated the stronger
property that every element of R can be written as a sum of k units
for all sufficiently large integers k. Ashrafi proved that this is the case
if and only if R does not have Z/2Z as a factor, and applied this result
to rings of integers of quadratic and complex cubic number fields.

Let R be an order in a quadratic number field. Ziegler [38] found
various results about representations of elements of R as sums of S-
units in R, where S is a finite set of places containing all Archimedean
places.

Another variant of Problem A asks for representations of algebraic
integers as sums of distinct units. Jacobson [23] proved that in the
rings of integers of the number fields Q(

√
2) and Q(

√
5), every ele-

ment is a sum of distinct units. His conjecture that these are the only
quadratic number fields with that property was proved by Śliwa [30].
Belcher [3, 4] investigated cubic and quartic number fields. A recent
article by Thuswaldner and Ziegler [32] puts these results into a more
general framework: they apply methods from the theory of arithmetic
dynamical systems to additive unit representations.

4. The extension problem

Problem B. [24, Problem B] Is it true that each number field has a
finite extension L such that the ring of integers of L is generated by its
units?

If K is an Abelian number field, that is, K|Q is a Galois extension
with Abelian Galois group, then we know by the Kronecker-Weber
theorem that K is contained in a cyclotomic number field Q(ζ), where
ζ is a primitive root of unity. The ring of integers of Q(ζ) is Z[ζ], which
is obviously generated by its units. Problem B was completely solved
by Frei [13]:

Theorem 10. [13, Theorem 1] For any number field K, there exists
a number field L containing K, such that the ring of integers of L is
generated by its units.
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The proof relies on finding elements of the ring of integers of K with
certain properties via asymptotic counting arguments, and then using
these properties to generate easily manageable quadratic extensions of
K in which those elements are sums of units of the respective rings
of integers. The field L is then taken as the compositum of all these
quadratic extensions.

Prior to this, with an easier but conceptually similar argument, Frei
[15] answered the function field version of Problem B:

Theorem 11. [15, Theorem 2] Let F |K be an algebraic function field
over a perfect field K, and R the ring of S-integers of F , for some
finite set S 6= ∅ of places. Then there exists a finite extension field F ′

of F such that the integral closure of R in F ′ is generated by its units.

5. The quantitative problem

Problem C. [24, Problem C] Let K be an algebraic number field.
Obtain an asymptotical bound for the number Nk(x) of positive rational
integers n ≤ x which are sums of at most k units of the ring of integers
of K.

As Jarden and Narkiewicz noticed, Lemma 2 and Szemerédi’s theo-
rem (see [19]) imply that

lim
x→∞

Nk(x)

x
= 0,

for any fixed k. Aside from this, the problem still remains open.
A similar question has been investigated by Filipin, Fuchs, Tichy,

and Ziegler [11, 12, 16]. We state here the most general result [16]. Let
R be the ring of S-integers of a number field K, where S is a finite
set of places containing all Archimedean places. Two S-integers α, β
are associated, if there exists a unit ε of R such that α = βε. For any
α ∈ R, we write

N(α) :=
∏

ν∈S
|α|ν .

Fuchs, Tichy and Ziegler investigated the counting function uK,S(n, x)
which denotes the number of all classes [α] of associated elements α of
R with N(α) ≤ x such that α can be written as a sum

α =
n∑

i=1

εi,

where the εi are units of R and no subsum of ε1 + · · · + εn vanishes.
The proof uses ideas of Everest [8], see also Everest and Shparlinski
[9].
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Theorem 12. [16, Theorem 1] Let ε > 0. Then

uK,S(n, x) =
cn−1,s
n!

(
ωK(log x)s

RegK,S

)n−1
+ o((log x)(n−1)s−1+ε),

as x → ∞. Here, ωK is the number of roots of unity of K, RegK,S is
the S-regulator of K, and s = |S| − 1. The constant cn,s is the volume
of the polyhedron

{(x11, . . . , xns) ∈ Rns | g(x11, . . . , xns) < 1},
with

g(x11, . . . , xns) =
s∑

i=1

max{0, x1i, . . . , xni}

+ max

{
0,−

s∑

i=1

x1i, . . . ,−
s∑

i=1

xni

}
.

The values of the constant cn,s are known in special cases from [16]:

n
s 1 2 3 4 5
1 2 3 4 5 6
2 3 15/4 7/2 45/16
3 10/3 7/3 55/54
4 35/12 275/32
5 21/10

Furthermore, cn,1 = n+ 1 and c1,s = 1
s!

(
2s
s

)
.

In the following we calculate the constant cn,s for n > 1 and s = 2.
This constant is the volume of the polyhedron

V = {(x, y) ∈ Rn × Rn : g(x, y) < 1} ,
with

g(x, y) = max
i
{0, xi}+ max

i
{0, yi}+ max

i
{0,−xi − yi} ,

where x = (x1, . . . , xn), y = (y1, . . . , yn).
For any K, L, M ∈ {1, . . . , n} we consider the sets

VK,L,M =
{

(x, y) ∈ R2n : xi ≤ xK , yi ≤ yL,

xM + yM ≤ xi + yi, g(x, y) < 1
}
.

Clearly the union of these sets is V and the intersection of any two of
them has volume zero. Thus

cn,2 =
n∑

K=1

n∑

L=1

n∑

M=1

IK,L,M ,

where IK,L,M is the volume of VK,L,M . For the values of IK,L,M we
distinguish three cases:

(i) K,L,M are pairwise distinct;
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(ii) exactly two of the indices K,L,M are equal;
(iii) K = L = M .

The third case is simple. Since xi ≤ xK , yi ≤ yK implies xi + yi ≤
xK + yK we obtain xi + yi = xK + yK . Thus VK,K,K has volume zero.

We only have to consider the remaining cases (i) and (ii). Clearly,

cn,2 = n(n− 1)(n− 2)I1,2,3 + 3n(n− 1)I1,1,2.

5.i. Calculation of I1,2,3. This case can only happen if n ≥ 3. The
inequalities x3 + y3 ≤ xi + yi give us lower bounds for xi and yi and we
always have the upper bounds xi ≤ x1 and yi ≤ y2. Hence we have

x3 + y3 − xi ≤ yi ≤ y2

and

xi ≤ x1.

Note that

g(x, y) = max {0, x1}+ max {0, y2}+ max {0,−x3 − y3} .
We integrate with respect to the yi’s, i 6= 2, 3 and obtain

I1,2,3 =

∫
· · ·
∫

x3+y3−xi≤yi≤y2
xi≤x1, g(x,y)<1

dxdy =

∫
· · ·
∫

x3+y3≤x2+y2
x3+y3−y2≤xi≤x1
y3≤y2, g(x,y)<1

∏

j 6=2,3

(y2−x3−y3+xj)dxdy2dy3.

Next we integrate over the xi’s, i 6= 1, 2, 3 and obtain

I1,2,3 =

∫
· · ·
∫

x2,x3≤x1, y3≤y2
x3+y3≤x2+y2
g(x,y)<1

1

2n−3
(y2 − x3 − y3 + x1)

2n−5 dx1dx2dx3dy2dy3.

For the values of g(x, y) we consider the following cases depending
on the signs of x1, y2 and −x3 − y3:

r x1 y2 −x3 − y3 g(x, y)
1 ≥ 0 < 0 < 0 x1
2 < 0 ≥ 0 < 0 y2
3 < 0 < 0 ≥ 0 −x3 − y3
4 ≥ 0 ≥ 0 < 0 x1 + y2
5 ≥ 0 < 0 ≥ 0 x1 − x3 − y3
6 < 0 ≥ 0 ≥ 0 y2 − x3 − y3
7 ≥ 0 ≥ 0 ≥ 0 x1 + y2 − x3 − y3

According to the table we split the integral into seven parts:

I1,2,3 =
7∑

r=1

I
(r)
1,2,3.
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One can calculate these integrals with the help of a computer algebra
system. We just give the final expressions:

I
(1)
1,2,3 = I

(2)
1,2,3 = I

(3)
1,2,3 =

2

n(2n− 1)(n− 1)2n
,

I
(4)
1,2,3 = I

(5)
1,2,3 = I

(6)
1,2,3 =

2

n(n− 1)2n
,

I
(7)
1,2,3 =

2

n2n
.

In conclusion we have

I1,2,3 =
2(n+ 1)(2n+ 1)

n(2n− 1)(n− 1)2n
.

5.ii. Calculation of I1,1,2. We proceed in the same way as in the other
case. We have the same bounds

x2 + y2 − xi ≤ yi ≤ y1

and
xi ≤ x1.

We integrate first with respect to the yi’s and then with respect to the
xi’s, i 6= 1, 2, and obtain

I1,1,2 =

∫
· · ·
∫

x2+y2−y1≤xi≤x1
y2≤y1, g(x,y)<1

∏

j 6=1,2

(y1 − x2 − y2 + xj)dxdy1dy2

=

∫
· · ·
∫

x2≤x1, y2≤y1
g(x,y)<1

1

2n−2
(y1 − x2 − y2 + x1)

2n−4 dx1dx2dy1dy2.

Proceeding as in the previous section we again split the integral into

seven parts I
(r)
1,1,2, r = 1, . . . , 7, and obtain:

I
(1)
1,1,2 = I

(2)
1,1,2 = I

(3)
1,1,2 =

1

n(2n− 1)(n− 1)2n
,

I
(4)
1,1,2 = I

(5)
1,1,2 = I

(6)
1,1,2 =

1

n(n− 1)2n
,

I
(7)
1,1,2 =

1

n2n
.

Hence

I1,1,2 =
(n+ 1)(2n+ 1)

n(2n− 1)(n− 1)2n
.

Conclusion. The value of cn,2 is

(n+ 1)(2n+ 1)

2n
.
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Remark. The computation of cn,s for s > 2 seems to be more difficult
and might be considered later.

6. Matrix rings

6.1. Matrix rings over arbitrary rings. Let R be any ring with 1.
We say that two elements a, b ∈ R are equivalent (a ∼ b) if there exist
two units u, v ∈ R× such that b = uav. Vámos [34, Lemma 1] already
noticed the following simple fact.

Lemma 13. Let R be a ring and a, b ∈ R. If a ∼ b then, for all k ≥ 1,
a is k-good if and only if b is k-good.

We consider the ring Mn(R) of n× n matrices, with n ≥ 2, over an
arbitrary ring R with 1. As usual GLn(R) denotes the group of units
of Mn(R).

For a ∈ R the matrix En(a, i, j), i, j ∈ {1, . . . , n}, i 6= j, is the n×n
matrix with 1 entries on the main diagonal, a as the entry at position
(i, j) and 0 elsewhere. We call this kind of matrices elementary matrices
and denote by En(R) the subgroup of GLn(R) generated by elementary
matrices, permutation matrices and −I, where I is the identity matrix
of Mn(R).

Let us consider a more specific kind of k-goodness introduced by
Vámos [34].

Definition. A square matrix of size n over R is strongly k-good if it
can be written as a sum of k elements of En(R). The ring Mn(R) is
strongly k-good if every element is strongly k-good.

The following lemma is Lemma 1 from [21] and Lemma 5 from [34].

Lemma 14. Let R be a ring and n ≥ 2. Then any diagonal matrix in
Mn(R) is strongly 2-good.

A ring R is called an elementary divisor ring (see [25]) if every matrix
in Mn(R), n ≥ 2, can be diagonalized. Lemma 14 implies that, in this
case, Mn(R) is 2-good. In particular, if any matrix in Mn(R) can
be diagonalized using only matrices in En(R) then Mn(R) is strongly
2-good.

The following two remarks can be deduced without much effort from
the proof of Lemma 14 that is given in [34].

Remark. If R is an elementary divisor ring and 1 6= −1 then the
representation of a matrix in Mn(R) as a sum of two units is never
unique.

Remark. If R is an elementary divisor ring and 1 6= −1 then every
element of Mn(R) has a representation as a sum of two distinct units.

As we have already mentioned, Henriksen [21] proved that Mn(R),
where R is any ring, is 3-good. Henriksen’s result was generalized by
Vámos [34] to arbitrary dimension:
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Theorem 15. [34, Theorem 11] Let R be a ring and let F be a free
R-module of rank α, where α ≥ 2 is a cardinal number. Then the ring
of endomorphisms E of F is 3-good.

If α is finite and R is 2-good or an elementary divisor ring then E is
2-good. If R is any one of the rings Z[X], K[X, Y ], K〈X, Y 〉, where K
is a field, then u(E) = 3. Here K〈X, Y 〉 is the free associative algebra
generated by X, Y over K.

To prove that a matrix ring over a certain ring has unit sum number
3, Vámos used the following proposition.

Proposition 16. [34, Proposition 10] Let R be a ring, n ≥ 2 an integer
and let L = Ra1 + · · ·+Ran be the left ideal generated by the elements
a1, . . . , an ∈ R. Let A be the n × n matrix whose entries are all zero
except for the first column which is (a1, . . . , an)T . Suppose that

1. L cannot be generated by fewer than n elements, and
2. zero is the only 2-good element in L.

Then A is not 2-good.

We now apply Lemma 14 to a special case. Let R be a ring and
suppose there exists a function

f : R \ {0} → Z≥0,
with the following property: for every a, b ∈ R, b 6= 0, there exist
q1, q2, r1, r2 ∈ R such that

a = q1b+ r1, where r1 = 0 or f(r1) < f(b),

a = bq2 + r2, where r2 = 0 or f(r2) < f(b).

Then we say that R has left and right Euclidean division.
The next theorem is a generalization of the well known fact that

every square matrix over a Euclidean domain is diagonalizable. The
proof strictly follows the line of the one in the commutative case (see
Section 3.5 of [18]), hence it is omitted.

Theorem 17. Let R be a ring with left and right Euclidean division and
n ≥ 2. For every A ∈ Mn(R) there exist two matrices U, V ∈ En(R)
such that

UAV = D,

where D is a diagonal matrix.

Corollary. Let R be a ring with left and right Euclidean division and
n ≥ 2. Then Mn(R) is strongly 2-good.

We apply the previous result to the special case of quaternions. Con-
sider the quaternion algebra

Q =
{
a+ bi+ cj + dk | a, b, c,

d ∈ Q, i2 = −1, j2 = −1, k = ij = −ji
}

.
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Definition. The ring of Hurwitz quaternions is defined as the set

H =

{
a+ bi+ cj + dk ∈ Q | a, b, c, d ∈ Z or a, b, c, d ∈ Z +

1

2

}
.

For basic properties about Hurwitz quaternions see [5, Chapter 5].
In Q the ring of Hurwitz quaternions plays a similar role as maximal

orders in number fields.
The units of H are the 24 elements ±1, ±i, ±j, ±k and (±1 ± i ±

j ± k)/2, so u(H) = ω.
It is well known that H has left and right Euclidean division. There-

fore, we get the following corollary.

Corollary. For n ≥ 2, Mn(H) is strongly 2-good.

6.2. Matrix rings over Dedekind domains. Let R be a ring and
A an r × c matrix. The type of A is the pair (r, c) and the size of A
is max(r, c). Let A1 and A2 be matrices of type (r1, c1) and (r2, c2),
respectively. The block diagonal sum of A1 and A2 is the block diagonal
matrix

diag(A1, A2) =

[
A1 0
0 A2

]
,

of type (r1+r2, c1+c2). A matrix of positive size is indecomposable if it
is not equivalent to the block diagonal sum of two matrices of positive
size.

In 1972 Levy [26] proved that, for a Dedekind domain R, the class
number, when it is finite, is an upper bound to the number of rows and
columns in every indecomposable matrix over R. Vámos and Wiegand
[35] generalized Levy’s result to Prüfer domains (under some technical
conditions) and applied it to the unit sum problem.

Theorem 18. (see [35, Theorem 4.7]) Let R be a Dedekind domain
with finite class number c. For every n ≥ 2c, Mn(R) is 2-good.

Unfortunately we do not know a criterion. The only sufficient condi-
tion we know for a matrix not to be 2-good is given by Proposition 16.
For rings R of algebraic integers this proposition is of limited use. Since
ideals in Dedekind domains need at most 2 generators, condition (1)
can be fulfilled only for n = 2. Concerning condition (2) it is not hard
to see that, if the unit group is infinite, there is a nonzero sum of two
units in every nonzero ideal in a ring of algebraic integers. Therefore
we can apply Proposition 16 only to the non-PID complex quadratic
case.

Corollary. [35, Example 4.11] Let R be the ring of integers of Q(
√
−d),

where d > 0 is squarefree and R has class number c > 1. Then
u(M2(R)) = 3 and u(Mn(R)) = 2 for every integer n ≥ 2c.

Question A. [35, Example 4.11] With the hypotheses of the previous
corollary, what is the value of u(Mn(R)) for 3 ≤ n < 2c?
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Question B. [35, Question 4.12] If R is any ring of algebraic integers
with class number c, what is the value of u(Mn(R)) for 2 ≤ n < 2c?
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30. J. Śliwa, Sums of distinct units, Bull. Acad. Pol. Sci. 22 (1974), 11–13.
31. A. K. Srivastava, A survey of rings generated by units, Ann. Fac. Sci. Toulouse

Math. (6) 19 (2010).
32. J. Thuswaldner and V. Ziegler, On linear combinations of units with bounded

coefficients, preprint.
33. R. F. Tichy and V. Ziegler, Units generating the ring of integers of complex

cubic fields, Colloq. Math. 109 (2007), no. 1, 71–83.
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