
Cryptographic Enhancements for Trusted
Computing Applications

<Kurt Dietrich>
<Kurt>.<Dietrich>@<iaik.tugraz.at>

Institute for Applied Information
Processing and Communications (IAIK)

Graz University of Technology
Inffeldgasse 16a

8010 Graz, Austria

<Doctor of Philosophy> Thesis

Supervisor: <Prof. Dr. Vincent Rijmen>
Assessor: <Dr. Liqun Chen>

<July>, <2012>

I hereby certify that the work presented in this thesis is my own work
and that to the best of my knowledge it is original except where indicated
by reference to other authors.

Ich bestätige hiermit, diese Arbeit selbständig verfasst zu haben. Teile
der Diplomarbeit, die auf Arbeiten anderer Autoren beruhen, sind durch
Angabe der entsprechenden Referenz gekennzeichnet.

<Kurt Dietrich>

i

Acknowledgements

Like any other work, this thesis would not exist without the help of many other people
besides the author. Vincent Rijmen deserves special thanks for taking time for supervising
this work and suggesting improvements. Discussions with my colleagues Dieter Bratko and
Harald Bratko their vast knowledge of public-key infrastructures. Special thanks also go
to Johannes Winter and Franz Röck who I have been working together with on topics of
Trusted Computing. Finally,I want to thank my wife Barbara for her support during the
writing of this thesis.

ii

Abstract

Nowadays, computers are used for many tasks of every-day life and the public is strongly
dependent on these services. However, the dependency on these services bears threats, for
example, to critical infrastructures but also to individuals. Consequently, securing these
systems is mandatory.

Trusted Computing offers an alternative approach to system security. The concept of
remote attestation that supports recording events that happened on a platform allows a
detailed picture of the current state and the history of a platform. With this information,
a reliable trust decision about the platform is possible. Nevertheless, improvements to this
mechanism concerning performance and data security are proposed and analysed in this
thesis.

Moreover, Trusted Computing has found its way to mobile platforms. However, the
different security mechanisms provided by mobile devices allow different design options.
Which options are possible and what requirements they have is discussed. Furthermore,
concrete design proposals are given.

Anonymity protection is a major concern for Trusted Computing platforms. While
anonymity protection on desktop platforms is a mandatory requirement, privacy protec-
tion on mobile hand-sets is still seen as optional by the TCG. However, especially these
devices require such a protection as their manifold external communication features allow
tracking of the devices and their users. Therefore, anonymity protection mechanisms for
mobile platforms are investigated and new models based on different cryptographic prim-
itives are introduced.

Keywords: Trusted Computing, Remote Attestation, TLS, DAA, mobile Trusted Com-
puting

iii

Kurzfassung

Computer werden heutzutage für viele Aspekte des täglichen Lebens verwendet und die
Öffentlichkeit ist in hohem Ausmaß abhängig von deren Diensten. Diese Abhängigkeit
birgt natürlich auch Gefahren, für kritische Infrastrukturen wie auch für einzelne Perso-
nen. Folglich ist es verpflichtend, die Sicherheit dieser Systeme zu gewährleisten. Trusted
Computing bietet einen alternativen Zugang zur Systemsicherheit. Das Konzept von remo-
te attestation das das Aufzeichnen von Vorgängen die auf einer Plattform stattgefunden
hat unterstützt, ermöglicht ein detailiertes Bild des derzeitigen Zustands und des Verlaufs
einer Plattform. Mit dieser Information ist es möglich, eine Entscheidung über den Sicher-
heitszustand einer Plattform zu treffen. Nichtsdestrotz werden Verbesserungen dieses Me-
chanismus betreffend Datensicherheit in dieser Dissertation vorgeschlagen und diskutiert.
Darüberhinaus hat Trusted Computing seinen Weg auf mobile Plattformen gefunden. Aber
die verschiedenen Sicherheitsmechanismen, die von den mobilen Geräten zur Verfügung
gestellt werden, erlauben verschiedene Möglichkeiten des Designs. Es werden verschiedene
Optionen und ihre Vorraussetzungen diskutiert und konkrete Vorschläge für Design ange-
geben. Die Bewahrung von Anonymität ist ein wichtiges Thema für Trusted Computing
Plattformen. Während die Bewahrung der Anonymität für Computer zwingend vorge-
schrieben ist, wird der Schutz der Privatsphäre auf moblilen Geräten von der TCG immer
noch als optional angesehen. Aber gerade diese Geräte brauchen diesen Schutz, da ihre
externe Kommunikation das tracking der Geräte und ihrer Besitzer ermöglicht. Deswegen
werden hier Anonymitäts bewahrende Mechanismen fr mobile Plattformen untersucht und
neue Modelle, basierend auf verschiedenen kryptographischen Grundlagen, vorgestellt.

Stichwörter: Trusted Computing, Remote Attestation, TLS, DAA, mobile Trusted Com-
puting

iv

Contents

1 Introduction 1
1.1 Use-cases for Trusted Computing . 3

1.1.1 Remote attestation . 3
1.1.2 Sealing . 3
1.1.3 Binding . 3
1.1.4 Key storage . 3
1.1.5 Anonymity protection . 4
1.1.6 Electronic voting . 4
1.1.7 Electronic payment . 4

1.2 Use-cases for Mobile Trusted Computing . 4
1.2.1 Mobile ticketing . 5
1.2.2 Anonymous authentication . 5
1.2.3 Remote-sensing . 5

1.3 Contributions . 6
1.3.1 Improvements on remote attestation 6
1.3.2 Mobile TPMs . 8
1.3.3 Mobile TPM design . 8
1.3.4 Mobile TPM security requirements 9
1.3.5 Analysis of anonymity protection mechanisms for mobile devices . . 10
1.3.6 Alternative anonymity protection mechanisms for mobile devices . . 11

2 Secure Platform Configuration Change Reporting 13
2.1 Introduction . 13

2.1.1 Related work . 15
2.1.2 Background . 16

2.2 Remote attestation and secure channels . 22
2.2.1 Assumptions . 22
2.2.2 Test setup . 23
2.2.3 Remote attestation performance results 24

2.3 Extending Remote Attestation for Secure and Efficient Configuration Change
Reporting . 27
2.3.1 The new model . 27
2.3.2 MAC calculation and MAC key derivation 28
2.3.3 TLS record verification . 29
2.3.4 Binding the TLS channel to the TPM 30
2.3.5 Session initialization . 30
2.3.6 Design and implementation of the prototype 30

v

2.3.7 TPM modifications . 31
2.3.8 Handling multiple TLS channels . 31
2.3.9 Impact on performance . 31

2.4 Alternative MAC Key Derivation . 33
2.4.1 Session parameter setup . 33
2.4.2 Binding TLS channels to different processes 34
2.4.3 TPM enhancements . 35
2.4.4 Observations . 36

2.5 Enhancements to Secure Platform Configuration Change Reporting 38
2.5.1 Event reporting . 38
2.5.2 TLS record verification and event reporting 41
2.5.3 Session parameter setup . 41
2.5.4 Security and performance considerations 41

2.6 General Considerations . 45
2.6.1 Impact on advanced TLS features 45
2.6.2 TLS client authentication with TPMs 45

2.7 Conclusion and Future Work . 49
2.7.1 Future work . 50

3 Architectures for Mobile Trusted Computing 52
3.1 Introduction . 52

3.1.1 Related work . 53
3.1.2 Background . 55

3.2 An Integrated Architecture for Trusted Computing enabled Embedded De-
vices . 57
3.2.1 Architecture overview . 57
3.2.2 The mobile trusted module . 58
3.2.3 The MTM abstraction layer . 60
3.2.4 The MTM command library . 60
3.2.5 The mobile trusted software stack 60
3.2.6 Deployment of the MTM . 61
3.2.7 Design and implementation of the prototype 62
3.2.8 The mobile trusted module on a secure element 63
3.2.9 Communication with the mobile trusted module 63
3.2.10 Other Applications . 64

3.3 Software-based versus Hardware-based Mobile Trusted Modules 65
3.3.1 Roots-of-Trust . 65
3.3.2 Validating integrity information . 66
3.3.3 Process separation . 67
3.3.4 The role of virtual machines . 67
3.3.5 Platform binding . 68
3.3.6 Security evaluations for embedded security mechanisms 69

3.4 Dynamic Command Loading for Security IC based MTMs 71
3.4.1 Design of the deployment architecture 72
3.4.2 Installing applets . 73
3.4.3 TPM command execution process 74
3.4.4 Security considerations . 75
3.4.5 Test environment . 76

vi

3.4.6 Command set loading via NFC . 76
3.5 Conclusion . 77

3.5.1 Future work . 78

4 PETs for Embedded Systems 79
4.1 Introduction . 79

4.1.1 Related Work . 82
4.1.2 Background on DAA . 84

4.2 Anonymous Client Authentication for Transport Layer Security 88
4.2.1 TLS Client Authentication . 88
4.2.2 Test setup . 89
4.2.3 Integration into the JCA Architecture 89
4.2.4 A Note on Specification Compliance 91
4.2.5 Performance evaluation . 91

4.3 The DAA Scheme on Mobile Platforms . 93
4.3.1 Parameter setup . 93
4.3.2 The Join Process . 94
4.3.3 Camenisch-Lysyanskaya Signatures 95
4.3.4 DAA signature creation . 96
4.3.5 DAA Signature Verification . 97
4.3.6 Implementation details and discussion 97
4.3.7 Modular arithmetic in BouncyCastle and IAIK JCE-ME 98
4.3.8 Random number generation on J2ME platforms 98
4.3.9 Hashing of bignumber objects . 98
4.3.10 Prime number generation . 99
4.3.11 Test environment . 99
4.3.12 Revocation . 100

4.4 Analysis of DAA on NFC enabled devices 102
4.4.1 An anonymous authentication scenario 103
4.4.2 Implementation aspects . 104
4.4.3 The pre-computation step . 105
4.4.4 The NFC authentication step . 106

4.5 Conclusion . 107
4.5.1 Future work and improvements . 107

5 109
5.1 Introduction . 109

5.1.1 Related work and Contribution . 111
5.2 Improvements for DAA signature creation on Java enables platforms 113

5.2.1 Long integer arithmetic . 114
5.2.2 Sliding window exponentiation . 114
5.2.3 Montgomery reduction . 115
5.2.4 Efficient squaring . 115
5.2.5 Results . 115
5.2.6 Java native calls . 118
5.2.7 Deployment of the native library . 119

5.3 Issuerless anonymity protection with TPMs 120
5.3.1 Highlevel Description of the approach 120

vii

5.3.2 Discussion . 121
5.3.3 Schnorr signature based approach 122
5.3.4 Obtaining a Vendor Credential . 126
5.3.5 Discussion . 127

5.4 RSA Signature Based Scheme . 128
5.4.1 Discussion . 129
5.4.2 Comparison of both Approaches . 129

5.5 Implementation Notes . 130
5.5.1 Signature Sizes . 130

5.6 RSA Signature Based Scheme . 132
5.6.1 Discussion . 133
5.6.2 Comparison of both Approaches . 133

5.7 An anonymous authentication scheme . 134
5.7.1 Requirements . 134
5.7.2 The scheme . 135
5.7.3 Model . 135

5.8 Prerequisites & Requirements . 135
5.8.1 Revocation . 137
5.8.2 Results . 139
5.8.3 Discussion . 140

5.9 Conclusion . 141

6 Conclusions 143
6.1 Further Work . 144

A Definitions 148
A.1 Abbreviations . 148
A.2 Used Symbols . 149

Bibliography 150

viii

List of Figures

2.1 TLS handshake protocol . 19
2.2 Key Derivation in the TLS Protocol . 20
2.3 TLS Fragment Encryption . 21
2.4 Test Application Setup . 23
2.5 Remote Attestation Performance with Periodic Requests (Time) 24
2.6 Remote Attestation Performance with Periodic Requests (Data) 25
2.7 Concept of the TPM enhanced HMAC Calculation 27
2.8 HMAC Key Derivation . 29
2.9 Alternative HMAC Key Derivation . 34
2.10 TLS Application Data Message Structure including Event Data 40
2.11 Comparison with encrypted and plain data throughput 43
2.12 TLS authentication via Endorsement Key 47

3.1 TrustZone Architecture Overview . 56
3.2 Architecture Overview . 58
3.3 Software architecture for a Smart Card based trusted mobile platform . . . 59
3.4 Prototype Design Overview . 62
3.5 3 Domain Separation for Security Evaluations 70
3.6 Design Overview . 72
3.7 Applet Isolation in the Secure Element . 74

4.1 The DAA Model . 84
4.2 Integration of the DAA library in the JCA Architecture 90
4.3 Architecture Overview for DAA on TrustZone enabled Devices 100
4.4 Connection of NFC Module, Secure Element and Mobile Platform 102
4.5 Authentication Protocol Sequence . 103
4.6 Architecture Overview . 104

5.1 Performance values for different windowsizes - single exponentiation 116
5.2 Performance values for different windowsizes - DAA sign 117
5.3 Pure Java and Java native code performance difference of DAA-sign (PC) . 119
5.4 Pure Java and Java native code performance difference of DAA-sign (ARM9)120
5.5 Schnorr Ring-Signature creation . 124
5.6 Schnorr Ring-Signature verification . 124
5.7 RSA ring-signature creation . 128
5.8 RSA ring-signature creation . 132

ix

List of Tables

2.1 Equipment overview . 23

4.1 Performance of the Join Protocol with Intel TPMs 92
4.2 Performance of DAA signature creation with Intel TPMs 92
4.3 Comparison of the DAA Performance of different TPMs 92
4.4 Proof Verification Timings (n=2048) . 94
4.5 Join process performance results (client side) 95
4.6 Camenisch-Lysyanskaya signature computation performance results 95
4.7 Performance comparison for creating DAA signatures 96
4.8 Performance comparison for verifying DAA signatures 97
4.9 Performance of a single modular operation 98
4.10 Rogue Tagging Test Devices . 100
4.11 Average Join Protocol Execution Time with empty Blacklist 101
4.12 Rogue Detection Execution Times with varying Black-list sizes (n=2048) . 101
4.13 Rogue Detection on the Nokia cell phone 101
4.14 Performance comparison of the DAA sign approaches 106
4.15 Performance of the authentication process 106
4.16 Parameter lengths in number of bits . 106

5.1 Performance of a single arithmetic operation 116
5.2 Performance of a single modular exponentiation 117
5.3 Average performance values of a single modular exponentiation with win-

dowsize 6 . 118
5.4 DAA Signature Times . 119
5.5 TPM DAA Sign Command Sequence . 125
5.6 TPM DAA Join Command Sequence . 125
5.7 TPM DAA Sign Command Measured Timings 127
5.8 Performance of the Join Protocol with Intel TPMs 139

x

Chapter 1

Introduction

Today, a world without computers is un-imaginable. They are used for many tasks of
every-day life. Some of their services are visible and directly usable by the common user
like e-banking services and mobile applications. Others like traffic control systems or
power-plant supervision facilities are doing their tasks transparently to the public. They
are present in our personal households and even in our clothing. Consequently, public is
strongly dependent on these services.

However, the dependency on these services bears major threats - cyber crimes are
imminent and incidents which menace individuals as well as groups of people are reported
on a frequent basis. The blackout of critical infrastructures like power plants not only costs
a large amount of money, in case of nuclear power plants, for example, people’s lives can
be at stake. The same is true for traffic control systems and services that are provided via
Internet. Large and small companies are depending on the availability of these services, a
drop out is adherent with the loss of money. There are countless examples of breakdowns
of IT services causing damage and loss. One thing that these IT services have in common
is that they are attractive targets for cyber criminals.

As a consequence, security enhancing technologies to protect and to prevent criminals
from disabling these services are required. One of these technologies is Trusted Computing
which is one of the most important security technologies emerging in this decade. Many
different platforms, ranging from server and desktop systems to embedded devices like
mobile phones and automotive systems are taking advantage of its security features.

Trusted Computing offers an alternative approach to system security. The concept of
recording events that happened on a platform allows a detailed picture of the current state
and the history of a platform. With this information, a reliable trust decision is possible.
However, not every computing platform is able to provide this information. In order to
transform a platform into a trusted platform the integration of several security features
is required. Trusted platforms are equipped with a set of security modules including
security hardware, special boot software, and a customized BIOS. Only with support and
interaction of these components according to the specifications of Trusted Computing, the
platform is a trusted platform.

The core component of a trusted platform is the trusted platform module (TPM) [112].
It is a passive device meaning that it responds to requests like a smart card. In combination
with a trusted software stack (TSS), the TPM is able to record events such as loading of
software modules that occur on the platform. It is able to store this information in internal
registers and assemble a cryptographic prove when requested. In addition, TPMs provide
various cryptographic-key related operations which provide features to backup, create,

1

CHAPTER 1. INTRODUCTION 2

delete or encrypt and decrypt keys. Signing operations are also possible. Therefore,
different types of keys are supported which provide different security assumptions. Some
keys may only be used inside a specific TPM were others may be transferred to another
TPM.

Symmetric ciphers are not part of the TPM specification [112] and are therefore not
mandatory for TPMs. Nevertheless, several use-cases exist where symmetric cryptography
can increase the efficiency of TPMs. Some of them are discussed in the context of this
thesis.

As an emerging technology, Trusted Computing is also an interesting area for cyber
criminals as well as security researchers. Consequently, Trusted Computing mechanisms
are under investigation. Most attacks are focused directly on the TPM, trying to cir-
cumvent its protection mechanisms like the attack discussed in [71]. For this reason, it
is important that the emphasis of research is laid on improving the security mechanisms
used in Trusted Computing.

Moreover, Trusted Computing is based on the principle that a platform behaves as
expected. Expected in this context means that a platform in a specific configuration also
has a specific behavior and that a remote platform can have trust that this platform does
not deviate from this behavior. This goal is achieved by measuring and reporting of the
exact configuration of a platform. However, this technique is often associated with the fear
of loss of control over the own platform. Users believe that they are not able to install the
software they want on a trusted platform so that the platform ends up with an untrusted
configuration.

This might be true for some applications. For example, digital rights management
that is often used for content protection for videos requires that the device is in a specific
configuration. Otherwise, the device is not able to decrypt and show the requested video.
This forces the user to have his device in a configuration that is defined by a third party.

This problem has been countered on desktop platforms by virtualization. Instead
of providing one single platform with one specific configuration, a desktop system may
support several virtualized platforms. One of these platforms may be used for personal
applications, another one for work and a third one for viewing videos. With the porting
of virtualization techniques to mobile platforms, a similar approach can be considered for
hand sets.

Moreover, with the rich set of services provided by cell-phones new threats come into
existence. The total traceability of individuals can be established by recoding their trans-
actions they did and locations they visited. With this information specific profiles about
people can be created. This overall traceability allows the intrusion into lives of indi-
viduals. While anonymity protection on desktop platforms is a major concern, privacy
protection on mobile hand-sets is still seen as optional. However, especially these devices
that we cannot imagine to live without today, require such a protection. Nevertheless,
anonymity protection is for mobile devices is a major research goal in many of the ongoing
research projects.

All the discussed issues in the previous paragraphs show that Trusted Computing -
although it is an established technology - still offers room for improvements in various
areas. Furthermore, the number of use-cases where Trusted Computing can be applied
may be greatly improved by investigating these improvements. Consequently, the goal of
this thesis is to identify and analyze such improvements and to provide discussions of their
impact on further applications of Trusted Computing.

CHAPTER 1. INTRODUCTION 3

1.1 Use-cases for Trusted Computing

TPMs and trusted platforms may be employed in different usage scenarios. Therefore, the
basic security mechanisms which also represent specific Trusted Computing use-cases are
introduced in the following subsections:

1.1.1 Remote attestation

One of the most important use-cases of Trusted Computing is Remote Attestation. It allows
platforms to get a trustworthy proof of the loaded software and current configuration of
certain remote platforms, thereby enabling them to make decisions about the remote
platforms’ trust status. Common concepts like Internet Protocol security or Transport
Layer Security make these decisions based on shared secrets or certificates issued by third
parties. Unlike remote attestation, these concepts do not take the current configuration
or currently loaded software of the platforms into account.

However, for establishing a trustworthy connection it is also important to have infor-
mation about the status of the connecting platforms. Otherwise, malicious software on one
of the platforms may threaten the security of the communication rendering the employed
security mechanisms of the protected channel useless. Remote attestation cannot prevent
a platform from being infected - it only allows a valid and trustworthy proof of the fact
that malicious software has been loaded on a platform.

1.1.2 Sealing

The recording of configuration information allows another very interesting application of
Trusted Computing - data sealing. With the sealing feature, it is possible to seal specific
data - typically a cryptographic-key - to a certain TPM and to a certain configuration.
The specific data is only released if the platform is in the configuration the data was
originally sealed. In addition, the data is bound to a specific TPM, un-sealing of the data
with another TPM is not possible.

1.1.3 Binding

A similar feature than sealing is data binding. In contrast to sealing, binding allows the
encryption of data for a specific state of configuration in which the platform will be in
the future. This means that a service may encrypt data which may be decrypted by a
TPM when the platform has reached a specific pre-defined state. Compared to sealing,
this data may now be used on multiple Trusted Computing platforms as it is not bound
to a specific TPM.

1.1.4 Key storage

A very widely used feature, even on non trusted computing systems, is the key storage
facility. TPMs do not store keys in their internal memory, they only have keys available
when generating new keys or when operating with keys. Nevertheless, they provide the
capability to encrypt asymmetric keys by other keys allowing them to be organized in a
key hierarchy and to be stored on the trusted platform. The initial key is the storage root
key which is stored inside the TPM and forms the basis for a key hierarchy.
Based on this basic use-cases, high-level use scenarios can be constructed. For example,

CHAPTER 1. INTRODUCTION 4

restricted access to keys provided by the sealing feature allows the integration of Digital
Rights Management (DRM) services on trusted platforms. Moreover, remote platforms
may use the features for authentication when connecting to a back service, thereby owning
a strong security mechanism which protects their keys.

1.1.5 Anonymity protection

One additional use-case stems from the capability of Trusted Computing platforms to pro-
tect their transactions in the sense of privacy. Support for privacy protection - especially
for mobile platforms - is becoming more and more important. In order to protect trans-
actions of trusted platforms the Trusted Computing Group (TCG) has defined different
mechanisms for privacy protection.

1.1.6 Electronic voting

A promising area for anonymous transactions is e-voting as they provide the enabling
building block for digital voting. TPMs may be used to protect electronic identities or
may be used as local watch dog that allows the voting service to monitor the platform and
to exclude manipulation attempts on the voting process.

In addition, the strong and secure anonymization techniques provided by TPMs allow
privacy for e-voting processed which is an absolute necessity for public acceptance of e-
voting.

1.1.7 Electronic payment

Electronic payment is on of the major concerns of the banking industry. Moreover, mobile
handset vendors want to spread and position their security products in this area aim-
ing at customers to use their mobiles for these services. However, banks and financial
credit services will only support payment services from devices that offer strong security
mechanisms. This is especially true for mobile phones.

Nevertheless, privacy is also of major concern for this use-case as transaction from
mobile devices can be traced and the anonymity of the individual user can be compromised.
In the following paragraphs, some of the most important use-cases of mobile Trusted
Computing and use-cases where privacy protection is mandatory are discussed in order to
substantiate the relevance of this work:

1.2 Use-cases for Mobile Trusted Computing

The previously discussed use-cases are also valid for mobile trusted computing. Never-
theless, additional use-cases have been created to take the specific proprieties of mobile
devices into account. In comparison to a desktop system that is solely controlled by the
owner, a mobile hand set has more than one stake holder. Beside the owner of the mobile,
the network provider is interested to have access to the device to do modifications of the
configuration of the platform. In some cases even the original equipment manufacture
(OEM) might have interest to access the device in order to execute maintenance tasks for
the mobile’s firmware.

Documents and reports published by the Trusted Computing Group provide an overview
of the use-cases for mobile trusted computing [50], [51], however, many more exist.

CHAPTER 1. INTRODUCTION 5

The most relevant ones that are also important for this thesis are discussed in the
following subsections:

1.2.1 Mobile ticketing

The possibility of using electronic tickets brings major advantages to both travelers and
providers of public transportation systems. Tickets can be bought on-the go without being
restrained to ticket kiosks and ticket counters. Accounting of tickets and their validation
is much easier and cost effective because it can be done automatically by gateways and via
the phone bill. However, security for both parties i.e. the customer who buys a ticket and
the transportation service provider has to be guaranteed. On the one hand the provider
wants to prevent to be cheated by customers and has to be sure that issued tickets are
used on in a single device for one single purpose and that they are invalidated after being
used . On the other hand, the traveler wants to be sure that he can use the bought service
without problems and that he has definite evidence of being in possession of a valid ticket
he has payed for.

While such services can be protected by TPM functionality, new threats like tracing
of travelers is not addressed at the moment.

1.2.2 Anonymous authentication

One of the emerging use-cases for mobile transactions is authentication. With the improve-
ments of their capabilities cell phones may now act as security tokens that, for example,
allow access to certain services or locations.

However, this comes at a price. The location of a phone and its user can easily
be determined. Applications like Google maps location allow to disseminate the user’s
location to the public. Every transaction done via the near-field-communication (NFC)
interface also allows to pinpoint and track the mobile’s position at a certain time.

Fortunately, there are technologies to counter these threats. Trusted Computing pro-
vides the feature of anonymous signatures for which one of the obvious use-cases is un-
doubtedly anonymous authentication.

However, detailed investigations of the feasibility and efficiency of anonymization tech-
nologies are missing. Consequently, use-cases dealing with anonymity protection on mo-
biles are also not investigated in great detail. In combination with new technologies like
NFC, anonymous authentication for access control and location privacy should be manda-
tory. Extensions to passport functionality is one of the current research areas. Anonymous
authentication and anonymous identities are a perfect addition in order to protect the
passport owner’s privacy.

1.2.3 Remote-sensing

Users personal devices are increasingly equipped with more and more features. These fea-
tures include, for example, meters to measure the gravitational acceleration of the device,
the environmental lightning and they come with GPS modules which allow to determine
the exact position of the device and it’s user. However, the devices may also be equipped
with additional environmental sensors that can be used for remote sensing. A concrete
example for remote sensing is the surveillance of air quality. Instead of a small set of
surveillance units that reside on a fixed location, mobile phones can be used to get mea-
surements on different locations at different times of the day. The handsets can be used to

CHAPTER 1. INTRODUCTION 6

form a kind of distributed network where each node (i.e. handset) in this network collects
information about the environment. In this scenario, the hand-sets are used to measure
the air-quality and report this information back to a back-end service. The information
sent back includes the measurement value as well as time and location when the measure-
ment was done.
It is obvious that this approach includes confidential and privacy threatening information.
For analysis of the collected data, it is not necessary to know the actual device and its
owner. It is sufficient that the entity processing the information knows that the informa-
tion stems from a trusted source and that it is authentic.
To achieve authenticity and privacy protection at the same time, anonymous signatures,
as used in the direct anonymous attestation (DAA) concept, are an ideal choice. A mobile
device equipped with a mobile TPM can produce such signatures However, w.r.t. to the
current mobile TPM specification, it depends on the manufacturer’s decision whether to
support DAA or not.

The use-cases discussed in this section are just a small portion of possible the use-cases.
Nevertheless, they show the versatility and multiple applicability of Trusted Computing.

1.3 Contributions

The contributions of this thesis are manifold. They cover the analysis of existing Trusted
Computing functions as well as proposals for improvements of Trusted computing security
features. In addition, new concepts are introduced, supporting the prevalence of Trusted
Computing on embedded systems.

1.3.1 Improvements on remote attestation

In the first Section of this thesis, the remote attestation process of Trusted Computing
enabled platforms is analyzed. Several tests were conducted in order to investigate the
advantages and disadvantages of this concept and to identify possible improvement op-
portunities.

A typical usage scenario of remote attestation is the application in secure connections.
In order to establish a secure connection, previously invented technologies just validated
the authenticity of the communication partners, usually done via public-key certificates.
However, these kind of authentication mechanism ignores the state - especially the loaded
software modules - of the platform.

The security of well established secure channel technologies like transport layer security
(TLS) or IP security (IPSec) can be significantly improved by emerging concepts like
Trusted Computing. How secure channel technologies can be adapted to use trusted
computing concepts is subject to current research. A major part of this research addresses
the integration of TLS into the remote attestation protocol. Combining remote attestation
and existing secure channel concepts can solve the long lasting problem of secure channels
that have to rely on insecure endpoints. Although this gap can now be closed by Trusted
Computing, one important problem remains unsolved: A platform’s configuration changes
every time new software is loaded. Consequently, a reliable and in-time method to provide
a proof for this configuration change - especially on multi-process machines - is required
to signal the platforms involved in the communication that a configuration change of the
respectively other platform has taken place.

CHAPTER 1. INTRODUCTION 7

With knowledge of the configuration, a remote platform can decide whether to open
a channel to another platform or not. In current approaches, the proof of the platform
configuration is processed before a secure channel is established. Currently, no satisfying
solution how the change of a platform’s configuration can be securely and reliably reported
to the remote platform whilst a channel is open, exists. In Chapter 2, a reliable method
to provide a proof of a configuration change is proposed.

Many research projects are working to find an answer to the question how TPMs and
Trusted Computing features could be integrated into secure channel technologies like TLS
or IPSec. In all these approaches, attestation information of a platform’s configuration is
presented to the remote platform and a secure channel is only established if the platform
accepts the attested configuration. However, this attestation information only contains
the configuration changes (i.e. software loaded) that have been recorded so far. Once the
secure channel is opened, it is hard to detect a change in the configuration of a platform
by a remote party. Detecting these changes is important as a platform that passed the
attestation process with a valid configuration could change into a configuration that is
not accepted by the host. This change into an invalid state could be triggered by loading
a virus or Trojan Horse that could do substantial damage to the platform before the
connection can be closed.

The common technique to detect such changes is to periodically read the configuration
from the platform configuration registers (PCRs) or to periodically perform a TPM Quote
operation [112]. However, executing a TPM Quote command and validating the informa-
tion is time consuming. Depending on the platform’s policy, each time a Quote is re-
quested, a new attestation identity key (AIK) has to be created. To worsen the situation,
a newly created AIK also has to be newly certified, which involves requesting an AIK
certificate from a privacy CA. For server platforms that have to handle hundred to thou-
sands of connections at the same time, this procedure without a doubt leads to a great
bottleneck and is, therefore, not reasonable on these platforms. The ongoing loading and
un-loading of AIKs also involves asymmetric cryptography.

These steps have to be performed for every newly established secure connection. When
considering the situation on a common platform where multiple processes are concurrently
running and opening channels to remote platforms, the situation is even worse. Multiple
concurrent TLS sessions are active on the same platform, and different AIKs might be
employed for each session. Consequently, each session has to load its own AIK(s) into the
TPM prior to performing a quote operation.

As a first step, the impact of the remote attestation mechanism proposed by the TCG
on secure channel technology - in detail transport layer security - is investigated and
improvements are proposed. While remote attestation closed the gap between a overall
security concept that includes the end-points into and the security properties offered by
TLS, it is still prone to the problem of time-of-check, time-of-use (ToCToU). Therefore, a
cryptographically secure solution is sought that binds the information of a configuration
change to the transporting protocol (i.e. TLS) by cryptographic means and which has the
property of reporting it actively at the time when the change occurs.

The research results discussed in this thesis show that a simple reporting mechanism
can be integrated into current Trusted Platform Modules and Transport Layer Security
implementations with a few additional Trusted Platform Modules commands and a few
extensions to the TLS protocol. This hypothesis is backed by experimental results and a
proof of concept protoype implementation which confirms that it is possible to implement
a proof mechanism with only a few additional TPM commands.

CHAPTER 1. INTRODUCTION 8

As a result of the investigation of the existing mechanism, the following hypothesis can be
constructed:

Hypothesis 1.1 A secure platform configuration report mechanism must provide a
secure proof and reporting of the platform configuration change at
the time when the change occurs.

This hypothesis basically means that the end-points of a transaction that rely on the actual
information transmitted have to know the condition under which the information has been
processed. This information may be shared when a change occurs. However, it does not
imply that the information must be shared between the platforms immediately, it rather
means that the configuration history may be also in some way bound to the processed data
so that the verifying platform can validate the configuration at a later point in time. Data
that is exchanged between two platforms should be flagged with respect to the current
and past configurations so that the respectively other platform is later always able to
determine the trust status of the specific data.

Note that the configuration information in the platform configuration registers does
not only include the current state of the platform. It also contains the entire configuration
history. Therefore, a remote verifier is able to track the different configuration setting of
the processing platform.

In combination with secure channel technology, this leads to the follow-up hypothesis:

Hypothesis 1.2 A secure platform configuration change reporting mechanism requires
a cryptographic binding between the channel transporting the infor-
mation, the sending platform and the actual information that is
transported in order to notify the remote platform about modifica-
tions of the configuration and the change of conditions under which
the information has been processed.

Remote-attestation, in its current specification does not provide such a binding. How such
an information labeling can be achieved is discussed in Chapter 2.

Nevertheless, one can also derive from these hypothesis that if data is sent over multiple
hubs, all the different configurations of these hubs have to be included in the marking of
the data. This offers interesting areas of research for information flow security.

1.3.2 Mobile TPMs

As discussed in the previous Section, a major building block for Trusted Computing are
TPMs. While it is exactly specified how TPMs for desktop systems have to look like and
which features they have to provides, a concrete design specification for mobile TPMs is
missing. The TCG-mobile phone working group (MPWG) is working on standardization
and use-cases for mobile trusted computing.

1.3.3 Mobile TPM design

However, the MPWG standard does not prescribe the actual design and implementation
of a mobile TPM. This is done on purpose as the manufacturers should not be dictated
how to implement their actual TPMs. The specification rather suggests a set of functions
or in terms of the TCG engines or roots-of-trust. How these engines and roots are realized
depends on the security features provided by the handset.

CHAPTER 1. INTRODUCTION 9

This approach leads to points of criticism which are discussed in this thesis as well
as new approaches for solving them are proposed. For example, the lax specification
allows TPM vendors to implement their mobile TPMs according to their specific designs,
however, this approach also bears the problem of incompatibilities of the implementations.

This leads to the following question about the security requirements that have to be
provided by the security mechanisms in order to host TPM functionality.

1.3.4 Mobile TPM security requirements

No specification exists at the moment how to deal with the different levels of security that
are provided by the different security features. For example, how can the level of security
of a security IC be compared to that of a non-certified TrustZone implementation? So,
first of all, is a mobile TPM based on a security IC more secure than a MTM based on
TrustZone? If so, how can this claim be satisfied?
It is obvious that there is a difference in the level of security that can be assured. While
secure elements are available with Common Criteria certification up to EAL 5+, TrustZone
platforms currently undergo a security evaluation aiming at EAL 3+. A lower security
certification does not mean that these devices must not be used for security relevant tasks.
Depending on the use-case, a lower rating might be sufficient. For example, for the DRM
use-case where primarily video content is decrypted a lower rating is sufficient while for
netbanking applications a high level certification is mandatory.

Dynamic command loading

High-level security evaluations are time and cost effective. The larger and feature richer the
device to evaluate is, the more complex is the evaluation processes. Therefore, high security
products are small, typically in the size of smart-cards. This comes with the constraint
of limited processing power and memory. At the same time, the number of applications
of the cards increases. For example, secure elements which are basically smart-cards that
are attached to mobile devices are used to host applications like the Google-Wallet [48]
and MIFARE functionality. With the raise of mobile TPMs, additional functionality has
to be hosted on the security device which stress the constraints of the device even more.

To counter this issue, dis-embedding functionality has become a common technique
used in security products. For example, the MultiMIFARE emulation developed by NXP
provides mechanisms to support MIFARE as well as DESFire functionality with the same
device. This is achieved by unloading the specific functionality depending on the current
requirements. The unloaded feature is stored on the mobile host and loaded into the
security device when the requirements change.

This concept can also be applied on mobile TPMs. Current mobile TPM implementa-
tions are monolithic blocks of software that either rely on security ICs or TrustZone-like
protected environments. However, they are hard to update and modify in contrast to
the versatility of modern smart-phones and their applications. Mobile TPMs do not take
the specific requirements of the target platforms into account. Moreover, they ignore the
requirements of modern trusted- execution environments (TEE) which are not fixed to
a single application, but rather share their resources among different stakeholders which
eventually requires a complex management unit.

Hence, an updating, loading and removing of TPM commands and their counterparts
in the software-stack is reasonable for efficient resource usage of the TEEs. In the common
sense, TEEs are either realized as TrustZone based solutions consisting of a high-security

CHAPTER 1. INTRODUCTION 10

operating system kernel that manages the life-cycle of the trusted applications inside the
TrustZone or they are realized as Security ICs that provide a virtualized execution environ-
ment - such as JavaCards. Both designs have in common that they share the same API for
their applications. This API is the global platform API specified by GlobalPlatform [45].

The question addressed in this thesis focuses on how a framework for TPMs that allows
a secure customization of functionality according to specific use-cases may look like. What
are the requirements of the security device and what are the requirements of the platform
that hosts this specific TPM functionality.

1.3.5 Analysis of anonymity protection mechanisms for mobile devices

Another contribution of the thesis addresses anonymous authentication. Privacy and
anonymity protection are major concerns in Trusted Computing. Therefore, novel concepts
like Direct Anonymous Attestation (DAA) were introduced. Consequently, this section
focuses on the practicability of existing schemes. As a first step, DAA and its integration
in secure channel technology and further in existing security frameworks is discussed.

Furthermore, the achievable performance of this technology is of interest. The variety
of different TPM vendors and with it the variety of the different TPMs produced show
interesting deviations not only in the performance of the DAA computations but also in
specification compliance.

However, DAA in the sense of the TCG is only required for desktop systems - for
mobile systems the TCG declares DAA as optional. Nevertheless, many use-cases where
anonymity protection for mobiles is required exist. The application scenarios go far beyond
the applications intended by the TCG. Modern smart-phones are used for different kinds
of transactions, for example mobile banking and mobile payment. With the extensions of
their capabilities and new technologies like RFID, their connectivity increases as well.

However, these new features bear new threats to the users of such devices. For example,
transactions executed via the NFC interface allow tracking of the device and its user. The
use-cases discussed so far are just a small set of applications where anonymity protection
is appreciated.

There are unanswered questions when bringing anonymity technologies like DAA to
mobile handsets. For example, which performance can be achieved on such platforms?
While current high-end devices are capable of high execution performance, low-end devices
might not provide sufficient computational resources. Complicating the situation even
more, nearly all devices are shipped with virtual machines. While J2ME, enabled devices
are the most widespread devices, Android phones are becoming more an more popular.
Devices where pure native implementations are possible are hard to get by. Therefore,
implementations have to be done either entirely in Java or in Java and native by support
of native interfaces. While the first ones have the advantage that applications can easily
be installed over-the-air, the latter one have the possibility to take advantage of native
execution.

Another question focuses on the protection mechanisms provided by these platforms.
How can DAA implementations for mobile handsets or embedded systems in general be
designed? As previously discussed, mobile TPMs may be designed in different ways.
These different design options also offer different design options for DAA functionality.
While secure elements and TrustZone enabled platforms basically allow two design options,
namely computing the signature either entirely in the secure environment or splitting the
computation between the secure environment and the host platform, a combination of

CHAPTER 1. INTRODUCTION 11

both allows many more design options. The combination of both security mechanisms is
a common approach in future mobile hand-sets.

But not only the signature creation is of interest. As modern phones may connect
among each other or join up in ad-hoc groups it is very likely that a mobile may take over
the role of a DAA issuer or DAA-signature verifier. These roles also include the check of
validation information. Hence, feasibility of processing revocation information on mobile
devices is investigated.

1.3.6 Alternative anonymity protection mechanisms for mobile devices

The final contribution deals with improvements of existing schemes and alternative ap-
proaches to anonymity protection.

The first section deals with the question how the performance of the DAA signature
creation process can be improved. On mobile phones J2ME and Android are the dominant
Java execution environments. Therefore, the question arises how this platform can be
employed for secure and efficient computations. Moreover, how can the computations be
improved? It is not always necessary to change entire implementations to gain performance
improvements. In some cases it is sufficient to parametrize the used algorithms accordingly.
Moreover, the performance gain from native coded execution is of interest. While most
Java virtual machines (VMs) provide an interface to access the native platform it is not
always the case that this native code execution is faster than the pure Java implementation.
Modern VMs are equipped with compilers that compile the Java code into native code
before execution. In addition, hardware based accelerators improve the performance of
Java byte code. The Jazelle processor extension [82] developed by ARM offers direct byte
code execution. Instead of interpreting the byte code by the VM, the byte code is sent
to the CPU which translates the code via an internal translation table into ARM thumb
code. This technique offers a profound execution performance gain. Although smart-
phone application processors are manufactured by different vendors, nearly all available
smart-phones are based on CPUs designed by ARM. Hence, all smart-phones offer Jazelle
byte code acceleration.

In contrast, when using the native interface the data that should be processed has to
be moved outside the environment of the VM and after processing returned to it which
produces some overhead.

The investigation of alternative anonymity protecting technologies includes schemes
based on ring-signatures. This kind of signatures allow the creation of signatures based
on public available information. i.e. public-keys. The size of the signature can be vari-
ably defined by the signer, thereby determining the level of anonymity provided by the
signature. However, how can TPMs be included in the creation process?

Finally, a ECC based anonymous authentication scheme is defined and analyzed. The
scheme is customized according to criteria that stem from industry requirements and use-
case specific requirements with focus on anonymous authentication. Most publications in
this area focus solely on the fast creation of the signature value on the client device. How-
ever, a full authentication step also includes the computation and validation of revocation
information. The revocation process, however, is very time consuming especially for large
revocation lists.

The introduced scheme also includes a modified revocation process that is based on
symmetric cryptography instead of asymmetric as in the original proposal. This mecha-
nism allows much faster revocation checks than with asymmetric designs and offers addi-

CHAPTER 1. INTRODUCTION 12

tional means of data protection.

Chapter 2

Secure Platform Configuration
Change Reporting

2.1 Introduction

In today’s computerized society, secure channels are a very important technology as they
allow electronic transactions to be performed in a secure way. In combination with mod-
ern concepts, like trusted computing, the security of such channels can be considerably
improved. Many attempts and proposals have been published to answer the question how
to integrate trusted platform modules (TPMs) into common secure channel technologies
like transport layer security (TLS) or IP security (IPSec). In principle, these proposals
describe how attestation information can be used to identify the previously and currently
loaded software on a platform and report this information to a remote entity by presenting
an attestation token of a platform’s configuration. A secure channel to this platform is
then only opened if the local platform accepts the attested configuration. Unfortunately,
the attestation information just contains the configuration changes recorded so far. Once
the secure channel is established, it is hard to detect a change in the configuration of the
remote platform.

A change in its configuration or event is triggered, for example, when new software
is loaded into the memory for execution. Therefore, one problem still remains: how
can a remote peer be securely and reliably informed that the local platform has loaded
new software and that the local configuration has changed - in the worst case, into a
configuration that is not accepted by the remote platform?

Keep in mind that remote attestation does not actively report such changes. Changes
are merely detected by continuously requesting new attestation information. Current
approaches periodically read the configuration from the platform configuration registers
(PCRs) or periodically perform a TPM Quote operation [112] in order to get this in-
formation. How it is actually processed and how frequently it is retrieved depends on
the implementation - the remote peer has little or no influence on these parameters. In
any case, executing a TPM Quote command is time consuming. Prior to executing this
command, a signing key has to be loaded into the TPM. Loading this key into the TPM
involves public-key cryptography and is a rather slow process. The situation is even worse
if concurrent sessions are active on the same platform, as fresh attestation tokens are re-
quired for each session. Moreover, if anonymity protection is mandatory, even different
signing keys are required for each session resulting in continuous loading and un-loading

13

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 14

of keys into and from the TPM. For server platforms that have to handle hundreds to
thousands of connections at the same time, this procedure - undoubtedly - leads to a great
bottleneck and is, therefore, not recommended for these platforms.

Remote attestation has several other problems than just the handling of AIKs, for
example, the problem of time-of-check time-of-use (TOCTOU). Remote attestation is
based on a request/response protocol where the requester sends a request - typically,
through a secure channel - to a remote platform in order to get a response containing
a reliable proof of the configuration of the platform. It is obvious that this proof only
provides information to the point in time where the proof was requested and processed
- it does not provide any reliable information about the platform after this time. With
respect to secure channels, the attestation information is only valid for information that
has been received until the request was processed.

Moreover, there is no guarantee that the information is delivered on time. This means
that a platform can load infested software shortly after a Quote request has been processed
and the remote platform cannot be informed of this new configuration early enough. In the
meantime, viruses or Trojans can operate and perform malicious tasks before the remote
platform is able to initiate counter measures or simply close the channel. The trust status
of the platform and with it the trust status of the data processed beyond that point cannot
reliably determined until the next request is processed. Consequently, it is not desirable
to use the TPM Quote command for a periodical reporting of a platform’s configuration.

Another problem results from the delay and blocking of the transmission channel ev-
ery time the TPM Quote command is executed. This blocking causes interrupts during
transmission resulting in a decrease of the actual data throughput.

In order to address all these problems, a concept that allows a reliable and secure
reporting of PCR changes is proposed in this chapter. Moreover, the concept is designed
in a way that it can easily be integrated into existing trusted computing enhanced TLS
implementations like the ones discussed in Subsection 2.1.1. In the proposed approach,
modifications of the TLS message authentication code (MAC) computation [27] are applied
- instead of computing the MAC in software on the platform’s CPU, the concept favors
computing the MAC within the TPM.

This procedure has three advantages: First, if the TPM recognizes a configuration
change (when a PCR is extended) it can directly incorporate this change into the MAC
calculation. The differently calculated MAC can thereafter be detected by the TLS imple-
mentation of the remote platform. The remote platform, therewith, has a reliable proof
of the configuration change. Second, there is no requirement to change the existing TLS
protocol. Structure and size of the TLS records and the calculated MACs remain unmod-
ified. Third, as the MAC is computed inside the TPM we have a reliable proof of the
current configuration (similar to the TPM Quote proof).

The proposed concept includes some minor modifications to the TPM specification,
i.e. a few additional commands and a key derivation function. These modifications are
necessary because the common idea behind trusted computing does not include support
for enhanced protocols like TLS per se. Experiments with the proof-of-concept (PoC)
implementation show that the modifications can be easily integrated in common TPM im-
plementations without major modifications or addition of new cryptographic algorithms.
Moreover, the concept can be applied to support multiple concurrent TLS connections.

The organization of this chapter is as follows: First, related work and background

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 15

information about remote attestation and the TLS protocols which are used as initial
point for the proposed concept are discussed in Section 2.1.1. This Section is followed by
a detailed discussion of the TCG’s proposed remote attestation protocol in Section 2.2
where experimental results for estimating the efficiency of the existing TCG approach are
gathered and analyzed. Based on these results, a new approach is proposed and inves-
tigated in Section 2.3 which additionally contains an explanation of the new model and
a discussion of the proof-of-concept implementation and the related TPM modifications.
Further extensions and modifications to the original proposal are discussed in the consec-
utive Section 2.4. The modified approach provides an even more sophisticated and secure
approach to event reporting via TLS by deriving and using the MAC-key inside the TPM.
The Section furthermore provides an analysis of the advantages and disadvantages of the
modified and the original design and provides a comparison of both approaches. Another
modification to the concept is proposed in Section 2.5. While the previous approaches
were only able to detect changes, the additional modifications of the third approach allow
the reporting of events through the TLS channel without the constraint of closing and
re-initiating the connection. In addition, experimental results are discussed that show the
efficiency advantage of the new approach in comparison to the TCG definition. Further-
more, a proof-of-concept prototype is discussion and how the design can be modified to
support TLS client authentication via TPMs. Finally, Section 2.7 summarizes the contri-
butions and concludes the chapter. In addition, impulses for further research on the topic
of remote attestation are provided.

2.1.1 Related work

In this section, some of the recently proposed secure channel enhancements are reviewed.
All enhancements are based on the integration of TPMs into these channels, therefore,
these channels are addressed as trusted channels for the remainder of the document.

Goldman et al. discuss several methods of linking server endpoint validation and
TCG’s remote attestation [47]. They address relay attacks, where a compromised server
might relay a remote attestation quote from a trusted server to a requesting platform.
Furthermore, they introduce a platform property certificate that links attestation identity
keys (AIKs) to platform endpoint properties. This approach focuses on virtualized en-
vironments and allows fast endpoint certificate revocation and creation with application
dependent security properties. However, Goldman et al. do not address the problem of
reliable configuration change reporting.

Another approach is proposed by the TCG. The trusted network connect (TNC) group
of the TCG is working on reference architectures that focus on policy enforcement and
authentication for granting network access. The architecture is rather generic and is based
on collecting and verifying integrity information of the communication partners. Which
integrity information is actually included is not discussed and is part of the policy, de-
pending on the invoked platforms. Like Goldman et al, they do not consider configuration
changes and reporting while trusted channels are open. Moreover, they do not address
the problem of linking the channels to certain platforms and TPMs. As the specified
framework focuses on policies, it doe not require a TPM to be involved in the connection
process.

The most comprehensive approach to trusted channels is discussed in [43]. The authors
propose an implementation that reliably determines the trustworthiness of the communica-
tion endpoints and they show how it can be combined with trusted computing technology.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 16

In contrast to other proposals, they try to address the problem of changing configurations.
In their approach, the session keys are stored in the trusted computing base, restricting
access to them. This means that access to these keys is only granted if the platform is
in a certain state. However, once the platform has reached the specific state and the key
is released, use of this key is not affected by further changes of the configuration. They
add an extra TLS message that notifies the remote peer about a configuration change.
Furthermore, they define an additional TLS extension (state change extension) that car-
ries the encrypted configuration information. This information is exchanged between the
communication partners in case the configuration changes. However, they require extra
messages and extra components for notification of configuration state changes through the
secure channel. Moreover, they do not create this proof inside the TPM and, therefore, do
not have an implicit proof of a change in the TLS protocol as in the proposed approach
of this thesis.
In [97], the authors present a concept that binds a Diffie-Hellman key to a specific plat-
form configuration. In their approach, they incorporate a public Diffie-Hellman key in the
TPM Quote as external data. However, their concept is susceptible to relay attacks as
this approach is not resistant to man-in-the-middle attacks during the remote attestation
process and the problem of configuration change reporting is not addressed.

Many research projects are committed to find an answer to the question how TPMs
and Trusted Computing features could be integrated into secure channel technologies like
transport layer security (TLS) or IP security (IPSec). One thing that these approaches
have in common is that attestation information of a platform’s configuration is presented
to the remote platform and a secure channel is only established if the platform accepts the
attested configuration. However, this attestation information only contains the configura-
tion changes (i.e. software loaded) that have been recorded so far. Once the secure channel
is opened, it is hard to detect a change in the configuration of a platform by a remote
party. Detecting these changes is important as a platform that passed the attestation
process with a valid configuration could change into a configuration that is not accepted
by the host. This change into an invalid state could be triggered by loading a virus or a
Trojan Horse that could do substantial damage to the platform before the connection can
be closed. All proposals ignore the problem of a reliable configuration change reporting
which means that although you may send event notification messages through a trusted
channel no cryptographic proof (like the Quote provides) of their validity is provided.

2.1.2 Background

In this Section, the basics of the remote attestation and the TLS protocol are introduced.
As the proposed concept relies on mechanisms provided by TLS, a brief overview of the
cryptographic components of the protocol is provided. Moreover, the key derivation pro-
cess is discussed as it plays a major role in the following discussions.

Although the newly proposed concept does not rely on TCG’s remote attestation, the
basics are explained in order to understand the differences between the TCG proposal and
the concept proposed in this thesis. Moreover, the analysis of the attestation protocol in
Section 2.2 requires basic knowledge of the remote attestation process which is covered by
the following subsection.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 17

Remote attestation

One of the most important security mechanisms of Trusted Computing is remote attes-
tation. The basic idea of remote attestation is to provide reliable information about the
current configuration of a trusted platform. The term configuration is not exactly defined,
a configuration may contain, for example, information about loaded software, informa-
tion about the configuration settings of specific software or the hardware components of
a platform - virtually any kind of information or event1 that influences the configuration
and status of a computing platform and that can be measured. Measure, in the context of
trusted platforms, is defined as the SHA-1 hash value of a specific event [112].

In typical remote attestation scenarios, information about the current software con-
figuration (i.e. the loaded software modules including the BIOS software) and hardware
configuration is used to generate the configuration information. During the load process
of the software, which is also addressed as event for the rest of the document, the SHA-1
fingerprint2 of the loaded software is created and written into special registers of the TPM.

Platform configuration registers

The TPM contains a specified number of such registers that hold configuration- or event
information, the so-called platform configuration registers (PCRs). The hash is not simply
written into the registers, but is rather extended which means that the current content
of the register is concatenated to the newly added configuration information and then
hashed into the PCR so that the new state (x) of the PCR is calculated as PCRx =
H(PCRx−1‖H(E)), where H denotes a hash function and E the measured configura-
tion/event item. This way, PCRs contain the fingerprint of the current configuration and
all measured events of the platform so far.

During the execution of the remote attestation protocol, a requester may now verify
the platform’s configuration by retrieving the PCR content which is also called ”Quote”.
To do so, the requester defines a set with the numbers of the PCRs of interest and,
along with a nonce, sends it to the proving platform which forwards the request to the
TPM. The TPM computes the hash of the content of the selected PCRs: PCR HASH =
H(PCRa‖PCRb‖...‖PCRn) and signs this value including the nonce, the pre-defined
string ”‘QUOT”’ and a predefined TPM version number. This structure is called a Quote.
Moreover, in the context of this thesis, a Quote or quote operation will also denote the
operation which instructs the TPM to generate the structure and the signature.

In addition, a database, the so-called storage measurement log file (SML) is created.
Although its structure and content is not specified, it typically contains a list of all events
on the platform e.g. the names of all load software modules, their hash values and a
description of the corresponding event. In combination with the signed Quote, a verifier
can now evaluate which software has been loaded and check the reported quote value
by re-calculating a reference quote from the hash values stemming from the SML and
comparing the result with the originally reported quote. More information on the Quote
operation and a discussion of practical results with this technology can be found in [33].

In addition to the Quote operation, remote attestation relies on mechanisms that allow
a platform to record the events and loaded software during the boot phase and up-time
of the platform. During this phase, the single software images that are loaded into the

1Basically, every change of the configuration may be called event.
2In the new TPM specification this will change allowing TPM vendors to select different algorithms.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 18

platform create a chain of trust. This chain is created by subsequent measurement of the
single software images e.g. the BIOS measures the boot loader, the boot loader measures
the operating system image and so on. The measured values are stored in the PCRs as
discussed in the previous paragraphs. Trusted platforms may either employ a secure boot
or an authenticated or trusted boot. While the first boot mechanism is typically used on
embedded devices [34], the second mechanism is used on desktop and server platforms.
The basic difference between both mechanisms is that in a secure boot scenario the boot
process is aborted if the loaded and measured software does not correlate to a predefined
value. This means that the loaded software must either match a pre-defined integrity value
or that after extending a certain PCR, the content of this PCR must match a pre-defined
value.

When using an authenticated boot, the events and the loaded software during boot
are just recorded in the PCRs. The consequences resulting from the different approaches
become effectively clear when recalling the measurement process of the loaded software.
During secure boot, if a software image was modified, further execution of the image
is immediately aborted. During authenticated boot, the boot process is continued and
the measurement of the modified image is just recorded. As a result, malicious software
infecting the platform can be noticed immediately in case of secure boot. In case of authen-
ticated boot, such a break is only detected after validation of a remote attestation request.

Anonymity protection

Remote attestation also supports mechanisms for anonymity protection of the TPM and
the platform. Basically, two approaches are defined by the TCG and a third one is proposed
in the context of this thesis. The first and simplest approach is to use one-time signing
keys. These specific keys are called attestation identity keys (AIKs). They may only
be used for computing Quotes and should be used only once as repeated use may allow
tracking of the transactions where these keys are involved. As a consequence, every Quote
requires a new key which is generated by the TPM and certified by a privacy certification
authority (PCA). The difference of a PCA to a common CA is that the PCA does not
encode specific information about the owner of the key into the issued certificate. All
certificates are uniform with exception of the public-key. Therewith, a verifier is not able
to identify the actual owner of the key and it is not possible to link two different public-keys
to a single platform.

The second approach uses local certification instead of remote certification avoiding
the need for a permanent online CA. The basic idea of the direct anonymous attestation
(DAA) protocol is to sign the AIK by the TPM with a group signature. Therefore,
the TPM has to be registered by a specific group and receive the corresponding group
credentials. When a new AIK is generated, the TPM signs or certifies the new key with
a DAA signature. The key is then used to sign the Quote information as discussed in
the previous paragraphs. With the Quote and the signed AIK, a verifier is then able to
check the Quote and to verify the validity of the AIK. As the AIK is certified with a group
signature, the verifier is not able to identify the specific signing platform. He can only
see that the signer is part of a specific group. As there is no third party, like the PCA,
involved for every single transactions, the protocol is called direct.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 19

The TLS protocol

The transport layer security protocol is the most widely used protocol for securing con-
nections in practice. It provides confidentiality, authenticity and integrity for protecting
information that is transported between two entities. While the protocol was designed
to satisfy these three security properties, it completely ignores the current state of the
endpoints. The following quote demonstrates the common opinion on TLS:

”TLS is like transporting a credit card between two homeless in an armored
vehicle”.

Consequently, integration of the state of the communication endpoints in the protocol flow
is essential for the security of the entire communication process.
The basic design of the protocol is as follows: The protocol consists of two phases, the
parameter negotiation phase and the actual data transmission phase. These phases are
further separated into five protocols:

1. Handshake protocol - during execution of the handshake-protocol, the authentication-
and session parameters are negotiated and exchanged between client and server. In
the typical use-case, the server authenticates against the client. The negotiation pa-
rameters include random numbers from client and server. In case of non-anonymous
key-agreement, the server sends its authentication information (i.e. a X.509 certifi-
cate) to the client. The client validates the certificate, generates a random number
(pre-master secret) and encrypts it with the public-key of the server. This way, client
and server get into the possession of a shared-secret. (Alternatively, Diffie-Hellman
key-agreement may be used). The data flow in the handshake phase is depicted in
Figure 2.1.

Figure 2.1 TLS handshake protocol

ClientHello

Certificate

ClientKeyExchange

CertificateVerify
(*)

ChangeCipherSpec

Finished

ServerHello

Certificate
(*)

ServerKeyExchange
(*)

CertificateRequest

ServerHelloDone

ChangeCipherSpec

Finished

Client Server

(*)

(*)

2. Change cipher spec. protocol - The change cipher spec protocol consists of only a
single message which informs the receiver to switch to the negotiated session param-
eters.

3. Alert protocol - the alert protocol supports various messages that are used to in-
form the opposite platform about state changes in the protocol. These changes are

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 20

triggered by errors (e.g. the authentication of record cannot be verified) or by the
communicating platforms (e.g. notification to close the channel or when invalid au-
thentication information was used). 24 different messages are specified. The alert
message is constructed from: AlertLevel (1 byte: warning = 1, fatal = 2), AlertDe-
scription (1 Byte: e.g. close notify = 0, no renegotiation = 100 etc.).

4. Record protocol - the record protocol is responsible for the actual data encryption
with symmetric algorithms and the application of authentication information. The
structure of a TLS record is basically as follows: 1 byte content-type, 1 byte
protocol-version, 2 bytes length of the data-block. Both, server and client
manage an outgoing and an incoming channel where they have to encrypt and de-
crypt TLS records as well as applying and checking integrity information.

After the handshake has finished, client and server can compute the master-secret
from the pre-master secret which is then used to derive the actual cryptographic keys (see
Figure 2.2).

Figure 2.2 Key Derivation in the TLS Protocol

Client

pre-master secret

master secret

Sessionkeys

MAC-keys

encrypt with PUBkey
 from server

decrypt with PRIVkey
 from server

IVs

generat random
pre-master secret

Server

master secret

pre-master secret

Sessionkeys

MAC-keys

IVs

In formulas, the master secret is computed as follows:

master secret = PRFpre master secret(”mastersecret”‖randomclient‖randomserver) (2.1)

where PRF is a pseudo random function based on the MD5 and SHA-1 algorithm. The
actual symmetric-keys are derived via:

key block = PRFmaster secret(”keyexpansion”‖randomclient‖randomserver) (2.2)

with

PRF = MD5(secretupper, label + seed)⊕ SHA− 1(secretlower, label + seed) (2.3)

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 21

where key block is split into (MACkeys‖encryptionkeys‖IV s). After the key derivation
process is finished, client and server possess the same encryption- and integrity check-keys
as well as - depending on the used cipher mode of operation - the same initial vectors
(IVs).
The MAC keys are used during the data transport phase the authenticate and integrity
protect single TLS data blocks (aka TLS fragments).

MAC = HMAC(MACkey,MessageFragment‖sequence counter) (2.4)

Figure 2.3 TLS Fragment Encryption

Message

Encrypted Fragment

Message Fragment Message FragmentMessage Fragment

MAC PadMessage Fragment MAC PadMessage Fragment MAC PadMessage Fragment

Encrypted Fragment Encrypted Fragment

The integrity value (=MAC) is computed by computing the HMAC of the specific
TLS fragment plus a sequence number [27]. In Figure 2.3, the basic steps for TLS record
encryption are shown. The message that will be sent is split into different blocks. From
these blocks, MAC is computed and attached to the message block. If necessary, the block
is padded and the resulting block consisting of message, MAC and padding is encrypted.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 22

2.2 Remote attestation and secure channels

In this section, the impact of the remote attestation protocol on the data throughput of
TLS channels is analyzed. It is evident that a higher frequency of attestation requests
allows a more detailed determination of the configuration and trust status of a platform.
However, how does an increased number requests affect the data transport capacity of a
TLS channel? In the following context, data denotes the part of transmitted information
that represents the application data part - without the overhead produced by the TLS
protocol messages and attestation messages.

For gathering practical measurement data, two measurement methods were defined -
both methods rely on the assumption that an application, or trusted service, periodically
requests fresh attestation information from the respective other platform.

In the first measurement method, attestation requests are sent on a regular basis,
meaning that the requester sends a request to the attester every n seconds. In the second
method, one request is sent after every m bytes of data that have been transported through
the channel.

2.2.1 Assumptions

In order to analyze the actual decrease of the data throughput, an idealized model of the
proposed approach and several assumptions are defined:

1. Prior to executing a quote operation, a signing-key has to be loaded into the TPM.
This operation is very time consuming as the key has to be loaded and decrypted
from external storage. In current TPMs, the key is RSA encrypted, hence, we assume
that a valid key has already been loaded. Consequently, each quote operation uses
the same, pre-loaded key.

2. We assume that only one PCR event is reported per request. As an arbitrary number
of events may occur in the period within the requests, the reported data (i.e. config-
uration changes recorded in the SML) might grow to a large amount. However, this
amount grows linear with the number of reported events. Consequently, the time
required to transport the information also grows with the number of events.

3. As the focus lies on the cryptographic operations of remote attestation, the reported
events are not validated. The validation does not involve a TPM, nevertheless, the
exact method for evaluating them is not defined. The simplest way would be for
the verifier to have a list of valid events (i.e. the hash of the event) and performs a
look-up of the reported events in a list. A different method might involve sending
the event records to a trusted third party for evaluation.

As a consequence, the measured results represent the upper limit of the actual data
throughput possible. Moreover, TLS connections consist of an outgoing and incoming
channel [86] allowing to send and receive data which may be used for mutual attestation
of two platforms. Nevertheless, the experiments focus on gathering data for a single TLS
channel and the attestation of a single platform.

Sending and receiving Attestation requests forces the channel to block as the requesting
platform has to wait for the response of the responding platform and the responding
platform has to compute the attestation Quote via the TPM. The following experimental
setup provides information about the effect of Quote requests and responses on the overall

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 23

TLS throughput. The test setup includes a desktop platform which can be configured to
use either a hardware TPM or a software TPM.

2.2.2 Test setup

For generating the measurement values, the test setup shown in Figure 2.4 was used. The
setup consists of a server and a client where the server platform can be configured to use
either a hardware TPM or a software TPM. The test server- and client applications were
developed in the Java programming language which used the JCE-crypto and ISASILK-
TLS library from IAIK [94]. For assembling the TPM commands the TPM/J library
from MIT [90] was used. The watchdog module was used to periodically issue attesta-
tion requests, either by waiting a certain amount of time or by counting the number of
transmitted bytes.

Figure 2.4 Test Application Setup

Test application/
TLS-server

TLS-connection

Crypto-lib

TPMSW-TPM

/dev/tpm

TPM
commandlib

TLS-lib

Test application/
TLS-client

Crypto-lib

TLS-lib

Watch-
dog

The connection to the TPM is established through the TPM-TIS (TPM interface
specification) driver and respectively the TPM emulator device driver. The TPMs on
the server were a ST-Micro 1.2 TPM with an average speed of 806ms and and the TPM
emulator from ETH Zuerich [96] with an average speed of 36ms for a single quote operation.

The measurement setup included the following equipment:

Hardware Operating system Virtual machine

Server Lenovo Thinkpad
X201, Intel Quad
Core 2,67 GHz, 6GB

Linux 3.1.9-1.4
x86 64

OpenJDK 1.6.0
64bit

Client Lenovo ThinkCen-
ter, Intel Core Dual
Core 2.33 GHz, 2GB

Linux 3.1.9-1.4
x86 64

OpenJDK 1.6.0 4bit

Table 2.1: Equipment overview

Both computers were connected directly via a 1 GBit/s Ethernet connection in order to
prevent the setup to be influenced by foreign network traffic. The Java code was compiled
into native code by the Java virtual machines prior to execution.

Request messages The requests are integrated directly into the TLS record-layer pro-
tocol, therefore, a new record layer message is introduced. With this message, it is possible

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 24

to signal attestation requests directly via the TLS record layer, completely transparent to
the application that uses the channel. The request message consists of the message type
(1 byte), a nonce (20 bytes) plus three bytes for the selected PCRs. The response contains
the Quote structure plus one event entry. The event entry consists of the PCR index that
was updated (1 byte), the hash value and the event description which is limited to 120
bytes (per definition) for the test setup.

2.2.3 Remote attestation performance results

Figures 2.5 and 2.6 show the impact of remote attestation requests on the data throughput.
The tests have been conducted with a genuine TPM as well as with a software emulated
TPM (see test setup in subsection 2.2.2). In both diagrams, the lines marked with Plain
denote the basic data throughput of the channel between the two test platforms without
any kind of encryption or protocol overhead. Encrypted denotes the performance of the
TLS channel (with AES 128 [26] in CBC-mode [5]) whereas TPM and SW-TPM denote
the throughput when attestation requests are sent through the TLS channel and are pro-
cessed by TPMs. The measured values represent only the net application databytes of the
of the TLS channel.

Figure 2.5 Remote Attestation Performance with Periodic Requests (Time)

In Figure 2.5, the x-axis shows the period between the requests in seconds. The test
values range from one request every 20 seconds to one request every second. The y-
axis shows the data throughput in y ∗ 103 bytes per second. The values range from the
slowest case 6453,2kilo bytes/second (genuine TPM with 1 request every second) to a
plain connection with 14903, 54kBytes/second. In case of the genuine TPM, it is clearly
visible that the throughput decreases rapidly with increased number of requests. In case
of the emulated TPM, the decrease is smaller, but nevertheless it is about 400kBytes/s
between requests that are issued every two seconds (11061,4kBytes/s) and every second
(10756,1kBytes/s).

In Figure 2.6, the x-axis shows the amount of data bytes transmitted between the
requests. The values range from 150000 bytes to 5000 bytes between two requests. The
y-axis shows the data throughput in y ∗ 103 bytes per second.

The values were generated by sending blocks of 2GBytes of data through the channel.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 25

Figure 2.6 Remote Attestation Performance with Periodic Requests (Data)

During the transmission of the data, attestation requests were injected on a periodical
basis resulting in 9 requests (every 20 seconds one request with a total of 182 seconds for
the transmission of all 2GB) up to 269 requests in case of the per-time-unit test for the
genuine TPM. In case of the per-data test, one request was sent every 150000kBytes down
to 5000kBytes of data.

As TLS cipher, the AES algorithm with 128 bits key length (cipher suite: TLS RSA
WITH AES 128 CBC SHA) was used. Each measurement value represents the average
value of twenty test runs.

Observations The decrease of information flow stems from two sources: First, the addi-
tional messages sent over the channel are not part of the actual application data messages
and have, therefore, to be removed from the net data flow throughput as they represent
and additional overhead. One can easily see that the data throughput decreases with
the increased number of requests. For the rate of two and one seconds between the re-
quests (Figure 2.5), the throughput drops about 26 percent which is a large amount of
data. The decrease in case of a software TPM is lower, nevertheless, the performance is re-
duced between 1400kBytes and 2300kBytes per second on average in relation to encrypted
transmission without remote attestation.

Second, sending and receiving attestation requests forces the channel to block as the
requesting platform has to wait for the response of the responding platform and the re-
sponding platform has to compute the attestation Quote via the TPM. In a different mode
of implementation, requests could be processed parallel to receiving data just by putting
the Quote operation and the data receive task into different threads. However, this would
affect the trust status in the received data and the responses. If the requester stops send-
ing data until he received the response of the attestation request, it has control over the
point in time when they are sent as he can refuse to send more data until the request
response arrives. Otherwise, the responder may reply the response at a time chosen by
him which may result in malicious data to be sent to the platform before the response is
submitted. Taking into account that in a period of five seconds more than 10000 ∗ 103

bytes have been sent, this is a serious amount of data which could be exploited to attack
the remote platform.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 26

Note that in the period between the requests or the amount of data passed, an arbitrary
number i of events Ei might have occurred - remote attestation is based on request/re-
sponse initiated by the requester and not by an actual configuration change. Consequently,
a mechanism that closes the gap is inevitable.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 27

2.3 Extending Remote Attestation for Secure and Efficient
Configuration Change Reporting

2.3.1 The new model

Remote attestation relies on requests and responses where a requester asks a prover for
fresh attestation information. In short, it is a passive protocol - a platform where config-
uration changes occur can not actively report these changes.

The new model is based on the idea that a secure channel is cryptographically bound
to the configuration of the platform and actively as well as securely and in a undeniable
way reports changes of the configuration to a remote platform.

In common TLS implementations, the data that is sent through the secure channel
is split into separated records (TLS records). For each of these records, an integrity
protection value - a hashed message authentication code (HMAC) [5] - is calculated using
the record data and a secret key - the MAC-key - as input (throughout the rest of the
document this HMAC value is referred to as MAC). The MAC-key is only known to the
local and the remote platform, which provides authentication and integrity protection for
the transmitted data records.

The new concept relies on calculating the MAC values of the TLS records and the
MAC-key (further referred to as TLSwrite mac

3) inside the TPM. Therefore, the TLS stack
sends each plain TLS record to the TPM, prior to encrypting and transmitting it to the
remote platform (see Figure 2.7).

Figure 2.7 Concept of the TPM enhanced HMAC Calculation

Every record that is processed inside the TPM triggers a re-calculation of the MAC
key. This key is derived from the current platform configuration and consequently changes
if the configuration of the platform changes. In case of a configuration change, a remote
platform will not be able to verify the HMAC values created with this key because it still
uses the key that was derived from the previous configuration. Furthermore, the derivation
function includes a shared secret (sν) that is only known to the communicating platforms.
How sν is created and exchanged between the platforms is discussed in Section 2.3.4.

3The notation stems from the fact that a TLS connection consists of an outgoing channel, the write
channel and an incoming channel, the read channel. Both channels use different MAC-keys for integrity
protection.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 28

A failed HMAC verification can mean three things. First, the transmitted records
have been modified during transmission. Second, the configuration of the remote platform
has changed since the last received record and third, the HMAC computation was done
outside of the TPM.

In all cases, the remote peer has to react to this event. A simple reaction would be to
send a TLS alert message and close the connection whereas a more previsional approach
would be to restart the handshake and renegotiate new session parameters. If the new
parameters and the new configuration are valid ones, the secure channel remains open,
otherwise the channels is closed.

The proposed approach focuses on minimal changes to existing technology and maximal
scalability and can be used with multiple TLS connections (see Section 2.3.8). A detailed
discussion how the MAC key is computed is given in the following section.

2.3.2 MAC calculation and MAC key derivation

TLS records are confidentiality and integrity protected [27]. This integrity protection is
achieved by applying a HMAC [5] with a given secret key on the application data. This
secret key is derived from a pre-master secret ; the procedure how the key is exactly derived
can be found in [86]. To be more detailed, TLS requires two different secret keys as it uses
a read and a write channel for one single connection. Consequently, TLS requires a read
mac key and a write mac key. How the read mac key is generated is discussed in the next
section. For now focus is laid on the further processing of the write mac key that is refer
to as TLSwrite mac from now on.

TLSwrite mac for the mac computation is not used directly - it is rather used as mate-
rial for generating a new key inside the TPM. For calculating the final TLS write mac key
(TLSwrite mac final) that serves for the actual integrity protection, the TPM computes a
hash from a set of PCR registers, the shared secret sν and the original TLSwrite mac. The
hash over the set of PCRs is computed via PCRhash = h(PCRx1 , PRCx2 , . . . , PCRxn)
where h denotes a hash function - preferable SHA-1 [78] as this algorithm is supported by
all TPMs. With PCRhash we can now calculate TLSwrite mac final via TLSwrite mac final =
h(TLSwrite mac

f
PCRhash

f
sν) (see Figure 2.8). Which PCRs are used for the key deriva-

tion has to be negotiated in the TLS handshake.
Two things can be achieved by including PCRhash and TLSwrite mac in the HMAC

calculation. First, the current TLS session is bound to the final key. Second, if a con-
figuration change is recorded in the TPM, the content of one PCR is extended with the
new measurement value (as defined in [112]). Consequently, the key changes when the
configuration is changed as it is derived from the PCRs. In order to have a proof that all
operations have been done inside the TPM, sν is also included in the MAC calculation.
How sν is applied for this purpose is discussed in Section 2.3.4.

So far, the key for the HMAC calculation was derived. The HMAC of the TLS records
can then be calculated from the sequence number the record type, version number, length
of the application data and the application data itself.
TLSHMAC(data) = HMAC(TLSwrite mac final, s

f
t
f
v

f
l
f
data) whereat s denotes the

sequence number, t the type, v the version, l the length and data the application data of
the TLS record. The TPM now returns TLSHMAC(data) to the TLS stack. The stack
puts data and HMAC(data) together to a TLS record, encrypts this record and sends it
to the remote platform.

How the remote peer verifies the HMAC and how it can detect configuration changes

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 29

Figure 2.8 HMAC Key Derivation

is discussed in the following section.

2.3.3 TLS record verification

Once the TLS records have been sent to the remote platform, the TLS stack of the platform
decrypts the incoming records and checks their integrity by verifying the HMAC over each
record [27]. For a positive verification of the HMAC, the remote platform requires three
things. First, TLSread mac that is equal to TLSwrite mac from the sending platform where
TLSread mac is calculated the same way as TLSwrite mac (a description of the process can
be found in [27]). Second, TLSread mac final is required. It is derived from TLSread mac
and the hash over a set of PCRs. Although the PCR values of the remote platform are
not available on this platform, the configuration information can be extracted from the
TPM QUOTE INFO structure [53]. This structure is created and exchanged before the
channel is established. The structure includes two constant parameters p1 = “1100“,
p2 = “QUOT ′′, the composite PCR hash p3 = hash and p4 = nonce. Third, the shared
secret sν that was created by the stack itself. With this information TLSread mac final =
h(TLSread mac

f
p3

f
sν) can be computed now. The integrity of the incoming TLS records

is then verified via TLS MAC
!

= HMAC(TLSread mac final, record)4

4It should be noted that these HMAC verification steps, in contrast to the HMAC creation steps, do
not necessarily have to be done inside the TPM - they can be processed by the TLS stack.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 30

2.3.4 Binding the TLS channel to the TPM

All calculations discussed so far can be done outside the TPM. Therefore, a reliable proof
that all computations are actually done inside are needed. Only if we can show that
all computations were done inside, we have the definite evidence that the configuration
changes are reported in a secure way. This proof can easily be achieved by inserting a
shared secret into the HMAC calculation (sν) that is only known to the communication
partners - on the attester’s side even only to its TPM. This way, the secure channel is
bound to the specified TPM. Consequently, sν has to be exchanged in a confidential way
before the channel is opened. Unfortunately, TPMs do not have the capability to decrypt
and load arbitrary data. Therefore, a mechanism to decrypt sν inside a TPM is required.
The most reasonable approach is to use AIKs. Currently, AIKs can only be used for
signing operations. In order to allow encryption operations for the proposed approach,
this usage limitation of AIKs is removed. A remote party is now able to use a public
AIK for encrypting sν whereas the local TPM is now allowed to decrypt sν . Using an
AIK for this task has three advantages: First, the required confidentiality is guaranteed as
public-key cryptography is involved. Second, the AIK certificate proves that the receiver
of sν is actually the addressed TPM. Third, the anonymity of the remote platform can
still be guaranteed.
The procedure for exchanging sν is the following: The TLS stack of the local platform
computes sν , encrypts it with a public AIK of the targeted TPM and sends it to the
remote platform. The remote platform passes the encrypted sν to its TPM that decrypts
and stores sν until the session is closed.

2.3.5 Session initialization

In this section, the required initialization and setup steps for the TPM and the TLS
stack are discussed. These components require different initialization values depending on
whether they are operating on the remote or the local platform. The local TPM requires
a TLSwrite mac which can be obtained from the TLS stack key derivation process. The
local TLS stack, however, requires the initial TPM QUOTE INFO structure and the AIK
certificate from the remote platform. The certificate is required to verify the authenticity
of the remote TPM by validating the AIK certificate whereas TPM QUOTE INFO con-
tains the current configuration. This configuration information is required by the stack to
compute TLSread mac final. For this calculation, the TLS stack also requires TLSread mac
which can also be obtained as described in [86]. Consequently, TPM QUOTE INFO and
the AIK certificate must be exchanged with the remote platform before TLSwrite mac final
and TLSread mac final can be computed. The TPM QUOTE INFO can be obtained from
the remote TPM by invoking a TPM Quote command (assuming that a certified attes-
tation identity key (AIK) is already available on the platform) with a given set of PCR
numbers. Moreover, the involved TPMs require a shared secret sν (for mutual attestation
actually two) that also have to be exchanged before the HMAC computation can start.

2.3.6 Design and implementation of the prototype

The restrictions of current TPMs require adaptions of the existing TPM implementa-
tion. For the proof-of-concept prototype the freely available TPM emulator [96] was
modified and additional commands and operations discussed in Section 2.3.7 were added.
Furthermore, for testing purposes the handshake procedure of the open source TLS im-

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 31

plementation gnuTLS [41] was modified which now supports an additional data structure
that includes attestation information. This attestation information is composed of a signed
TPM QUOTE INFO structure, the certificate of the signing AIK and the encrypted shared
secret. Other variants how this information can be integrated into TLS can be found in
Section 2.1.1.

Moreover, gnuTLS was modified in a way that the receiving platform can validate the
MACs of the TLS records according to the new concept. This validation includes the
derivation of TLSread mac final form the PCR hash value and the TLSread mac and the
modified validation process itself. Additionally, gnuTLS was modified to compute and
encrypt sν with a public AIK.

The TPM software stack TROUSERS [56] (TSS) was updated in order to support
the required additional commands. Moreover, the stack was integrated into the gnuTLS
library so that it is able to access the TPM functions.

2.3.7 TPM modifications

The proposed architecture requires some modifications of the current TPM specification.
In detail, the TPM has to support a few additional commands, the key derivation process
as discussed in Section 2.8 and the binding of the secure channel to the TPM (Section
2.3.4).
In order to implement the proposed concept, the TPM must support the TLSwrite mac final
key derivation process as discussed in Section 2.3.2. The process can easily be integrated
into existing TPM implementations as it only requires two additional hash calculations.
As hash algorithms are available on common TPMs, new cryptographic algorithms are
not required as long as the supported cipher suites are limited to cipher suites that use
SHA-1 for integrity protection.
Another modification includes the binding of the channel to the TPM. For this binding,
sν has to be imported into the TPM securely. Therefore, a modification of the AIK usage
constraints is required.

Although TPMs support message digest algorithms, they do not support message
authentication codes as required by TLS. Therefore, the proof-of-concept prototype was
extended to support the necessary HMAC functionality.

2.3.8 Handling multiple TLS channels

Typical scenarios that utilize trusted channels often involve multiple concurrent connec-
tions. They can occur if a browser opens different connections to different peers. For
security reasons, these connections should use different cryptographic parameters that
are, in this case, different keys for encryption and HMAC calculation. Therefore, it is
desirable to have an approach that also supports concurrent channels.

The newly proposed approach is able to handle multiple connections. Each connection
instance requires its own secret key (i.e. TLSwrite mac final). This can be guaranteed as
each key is re-calculated for each TLS record with the parameters provided by the content
of the PCRs and sν .

2.3.9 Impact on performance

In contrast to the original design this approach uses symmetric signatures to bind the
configuration information on the data. This results in a performance improvement attes-

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 32

tation requests and their handling can be avoided. The results are discussed in detail in
section 2.5.4

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 33

2.4 Alternative MAC Key Derivation

In the previously discussed approach, the MAC-key from the standard TLS key derivation
process was used to further derive the final MAC-key inside the TPM. A different approach
could be to perform the common key derivation directly inside the TPM instead of using
the output of the TLS stack key derivation. The TLS specification defines this derivation
process as

key = PRF (master secret, ”key expansion”, randomserver + randomclient). (2.5)

The mac-key is derived from a master secret (MS) which is derived from a pre-master
secret. Details about this process can be found in [28]. The session key and the mac-
key material are derived from the MS. The key material is computed as follows:key =
PRF (master secret, ”key expansion”, serverrandom+clientrandom) where the pseudo ran-
dom function (PRF) is defined as: PRF (secret,
label, seed) = MD5(Sl, label + seed) ⊕ SHA-1(Sr, label + seed). (where Sl denotes the
leftmost bits of the master secret and Sr denotes the rightmost bits of the master secret).

The TPM could then compute the mac-key via:

key =PRF (master secret, ”key expansion”, randomserver + randomclient,

h(PCRx1 ..PCRxn)).
(2.6)

In this case, the PRF must be modified in such a way that it includes the hash of the
PCR registers. This could be achieved in two ways: The hash of the PCR registers could
either be computed by

PRF (secret, label, seed, h(PCRs) =MD5(S1

n
label + seed

n
h(PCRs))⊕

SHA-1(S2

n
label + seed

n
h(PCRs)).

(2.7)

or

PRF (secret, label, seed, PCRs) =h(MD5(S1

n
label + seed)⊕

SHA− 1(S2

n
label + seed)

n
PCRx1 ...PCRxn

n
sν).

(2.8)

The first PRF requires the computation of an additional hash operation whereas in the
second PRF the content of the PCRs is hashed together with secret, label and seed. For
further analysis, the second approach is selected as it is the easiest one to implement and
requires only one hash calculation to be performed when a PCR is extended.

In contrast to the original approach discussed in Section 2.3, the session key is now
derived and stored inside the TPM. Storing the key obsoletes the requirement of sending
the MAC-key computed in the TLS stack to the TPM every time a new MAC value is
computed thereby reducing the communication overhead.

2.4.1 Session parameter setup

In this section, the required initialization and setup steps for the TPM and the TLS stack
with respect to the new key derivation approach are discussed. For the first approach,
the local TPM requires a TLSwrite mac which can be obtained from the TLS stack key
derivation process. The local TLS stack, however, requires the initial TPM QUOTE INFO

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 34

Figure 2.9 Alternative HMAC Key Derivation

PCR 1

PCR 2

.

.

PCR n

TLS record

TPM

hash

SHA1(S2||label+seed)

MAC value

TLS
mac key

Session parameters

s
v

TLS parameters

MD5(S1||label+seed)

PCR extend

trigger

Channel paramters

Seq. number generator

MAC engine

structure and the AIK certificate from the remote platform. The certificate is required
to verify the authenticity of the remote TPM by validating the AIK certificate, whereas
TPM QUOTE INFO contains the current configuration. This configuration information
is required by the stack to compute TLSread mac final. For this calculation, the TLS stack
also requires TLSread mac which can additionally be obtained as described in [86]. Conse-
quently, TPM QUOTE INFO and the AIK certificate must be exchanged with the remote
platform before TLSwrite mac final and TLSread mac final can be computed. Moreover,
both platforms require a shared secret sν that has to be exchanged before the HMAC
computation can start. This is also true for the second approach. Moreover, this second
approach has to initialize the TPM prior starting the TLS session. This requires the stack
to send the master secret, client and server random to the TPM, as well.

2.4.2 Binding TLS channels to different processes

The approaches discussed in the previous sections focus on single connections. On modern
platforms, concurrent connections are often used - not only on server systems but also on
desktop and embedded systems. Concurrent connections can be initiated by e.g. different
processes within a single machine with one single TPM or, in virtualized environments,
with many different virtual TPMs. In any case, an application must not be able to read or
use sν from a different process under the assumption that the process isolation mechanism
of the underlying operating system works flawlessly.

In order to achieve this access protection, the TPM must provide an authentication
mechanism that can be used by each TLS stack instance. Therefore, the approaches
and prototypes discussed in this section use the standard authentication mechanisms and
protocols e.g. OIAP, OSAP provided by the TPM specification.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 35

2.4.3 TPM enhancements

The proposed mac-key computation algorithms require modifications of the current TPM
specification. The TPM has to support a few additional commands which is the key
derivation process as discussed in Section 2.3 and Section 2.4.

In order to implement the original concept, the TPM has to support the TLSwrite mac final
key derivation process as discussed in Section 2.3. The process can easily be integrated
in existing TPM implementations as it only requires two additional hash calculations. As
hash algorithms are available on common TPMs, new cryptographic algorithms are not
required as long as the supported cipher suites are limited to cipher suites that use sha1 for
integrity protection. In order to implement the original concept, the TPM has to support
the TLSwrite mac final key derivation process (as discussed in Section 2.3). The process can
easily be integrated in existing TPM implementations as it only requires two additional
hash calculations. As hash algorithms are available on common TPMs, new cryptographic
algorithms are not required as long as the supported cipher suites are limited to cipher
suites that use SHA-1 for integrity protection.

For the proof-of-concept prototype, the following list of commands was implemented:

� TPM LoadSharedSecret(TPM KEY HANDLE aik key handle, UINT32 encrypted
shared secret size, BYTE[] encrypted shared secret). This command initializes a
new TLS session and downloads the encrypted secret sν from the remote platform
and the handle to the AIK it was encrypted with. The response of the command
is a shared secret of the type TPM KEY HANDLE, a handle to the shared secret
within the TPM.

� TPM ComputeMac(TPM KEY HANDLE shared secret handle, UINT32 keySize,
BYTE[] HMAC key, TPM PCR SELECTION pcrs, UINT32 dataSize, BYTE[] data).
This command instructs the TPM to compute the derived mac-key and mac-value
of the provided data, including the shared secret addressed by shared secret handle.
The result of this command is a TPM DIGEST mac-value. When a session is closed,
the shared secret is be deleted from the TPM, otherwise it is deleted after a defined
time-interval.

� TPM ClearSharedSecret(TPM KEY HANDLE shared secret handle) This command
forces the TPM to clear the shared secret addressed by shared secret handle.

For analysis reasons, these commands were implemented as authorized as well as unau-
thorized commands. However, for a maximum level of security, applications should use
the authorized set of commands.

For the second approach, the following commands were additionally implemented :

� TPM SetSessionParameters(UINT32 master secret size, BYTE[] master secret,
UINT32 client rnd size, BYTE[] client random, UINT32 server rnd size, BYTE[]
server random, UINT32 enc shared secret size, BYTE[] encrypted shared secret,
TPM PCR SELECTION pcrs). This command initialized a new TLS session by
loading the master secret, the shared secret sν , client and server random and the
PCR selection into the TPM. Moreover, this method resets the sequence counter.

� TPM ComputeMac(UINT32 dataSize, BYTE[] data). This method computes and
returns the MAC value for the provided data.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 36

2.4.4 Observations

Experiments with the proof-of-concept prototype showed that both approaches are fea-
sible. However, the approaches discussed in this section require some additional modi-
fications of the TPM in comparison with the original approach. Moreover, the second
approach requires more session specific data and additional algorithms to be stored inside
the TPM. To be more detailed, the differences are: The TPM has to receive additional
key derivation parameters i.e. master secret, client and server random and has to store it
in the TPM every time a new session is initialized. Moreover, the TPM has to support
the modified pseudo random function including the additional MD5 hash algorithm as
required by the TLS pseudo random function. Implementing additional hash algorithms
and a PRF into the TPM reduces the flexibility of the original approach, where most of
the algorithms are implemented in software. This software can easily be replaced in future
TLS implementations when new algorithms are defined in the specifications.

Nevertheless, due to the fewer data that has to be transferred to the TPM, the second
approach has a performance advantage over the first approach. Both approaches require
that - every time a new event is recorded - a new key is derived in order to reflect the
full event history in the integrity computation. Moreover, the session parameters or the
TLSread mac final key have to be stored inside the TPM requiring additional resources. The
total required amount of resources depends on the number of concurrent TLS connections
but is limited by the actual capabilities of the TPM. While this approach is unproblematic
in combination with software TPMs, it may be inefficient resulting from the memory
constraints of hardware based TPMs.

The efficiency of both approaches may also be increased by sending the hash of the
TLS record instead the entire record to the TPM. This method allows a more efficient
usage of the low-pin-count (LPC) bus5. However, this approach requires a modification of
the TLS MAC verification algorithm as the verifier also has to compute the hash of the
record after decrypting it and before checking its integrity.

From the security’s point of view, both approaches provide a high level of security.
All computations are done inside a tamper-resistant device. Moreover, manipulation of
the session parameters requires authentication which is employed by the TPMs internal
authentication mechanisms and protocols (i.e. OIAP). A modification of the platforms
software configuration results in a modification of one or more PCRs. The final session keys
are derived from the current stage of PCRs, hence, the configuration change is reflected in
the MAC of the TLS records. The TLS records are encrypted so that the content cannot
be modified. A possible attack could be to modify the encrypted data stream where an
adversary could flip certain bits of the data stream. The attack would result in a denial of
service as the receiving platform would have to reject the incoming packets and would have
to negotiate new session parameters. This attack is not special to the proposed approach
as it is also a threat to any other TLS connection.

The authentication keys are solely used and derived inside the TPM. Hence, an adver-
sary - even if he were able to take over the platform - is not able to read or manipulate the
keys. Depending on which mechanism the adversary used to take over the platform, the
event is either registered or not. For example, if the attacker used a trusted software that
was infected by a Virus or Trojan Horse, the event of loading this software is registered.
In addition, the PCRs where the event was recorded reflects that instead of the original

5The LPC bus is the interface used on common desktop systems to connect a TPM to the computing
platform.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 37

software the Virus infected version was loaded. Hence, the TLS MAC-keys will also reflect
this fact and a remote platform can undeniably identify that a malicious software was
loaded on the local platform.

However, if the adversary uses attack methods like buffer-overruns, it is possible to
circumvent the recording of that event. In this case, a remote platform would not be able
to detect the malicious events on the local platform. This kind of attack is a general threat
to Trusted Computing platforms and cannot be prevented by this technology. Therefore, a
detailed discussion of the implications of such attack methodologies on Trusted Computing
is out-of-scope of this thesis.

Hardware attacks on TPMs are not considered in the discussion as they are not part
of the TCG’s threat model.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 38

2.5 Enhancements to Secure Platform Configuration Change
Reporting

The approaches discussed so-far focus on trusted systems were a more or less static config-
uration is assumed. This means that changes of the platform configuration i.e. loading and
unloading of software modules occurs sporadically. This raises the question of how this
approach can be adapted for platforms that have continuous or very frequently changing
configurations.
The challenge in this case lies in the on-time reportage and validation of the configuration
change without losing the cryptographic bond between PCRs and TLS channel. This
means that - instead of sending a Quote for every PCR change reported - concrete PCR
change information has to be sent along with meta- and status data of the TLS channel.
Putting the previously discussed approaches into a scenario with a high PCR change fre-
quency one problem becomes imminent: congestion.
Continuously triggering of new PCR change reporting might lead to a congestion of the
network instead of transmitting application data and the TLS channel is busy with exe-
cution handshake protocols and transporting PCR change information.
The instant of time when this congestion occurs depends on different factors like network
band-width, platform workload and platform performance etc. Although the congestion
may vanish after a certain amount of time, scenarios where this behavior is not desired
exist. Applications like video broadcast or which have real-time demands and which re-
quire a constant flow of data would lose much of their performance and would eventually
become unusable.

In order to avoid this kind of congestion, modifications of the reporting mechanism
have to be applied.

2.5.1 Event reporting

Until now, only the secure notification of PCR change events was cryptographically in-
tegrated into the integrity check of the TLS channel. In order to derive the MAC-key
and to verify the integrity value, the remote platform also requires the measurement val-
ues that were extended into the PCRs. Therefore, a method to efficiently transport this
information to the platform is required.

TLS record layer modifications

TLS is specified as a set of different protocols and layers [86]. In order to improve the
configuration change reporting mechanism, one of these layers - concrete the record layer -
has to be modified. The record layer is responsible for splitting the record layer messages
and application data into fragments and on the receiver side to re-assemble the transported
data into records of at maximum 214 bytes of length and for providing encryption and
integrity checks on these data records.

In order to send and receive data, TLS packs the data into a record layer structure.
Listing 2.1

Listing 2.1: TLS Record Layer Structures

s t r u c t {
uint8 major , minor ;

} Protoco lVers ion ;

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 39

enum {
change c iphe r spec (20) , a l e r t (21) , handshake (22) ,
a p p l i c a t i o n d a t a (23) , (255)

} ContentType ;

s t r u c t {
ContentType type ;
Protoco lVers ion v e r s i o n ;
u int16 l ength ;
opaque fragment [TLSPlaintext . l ength] ;

} TLSPlaintext ;

A TLS data record (TLSPLaintext) consists of a structure that includes the record
type, the protocol version, the plain data length and the plain data field as the payload. In
general, the content of the plain data field (opaque fragment field) is application specific
data and is transparently handed over to the application - it is not interpreted by the TLS
layer in any way.

In order to signal the PCR change as well as the newly added configuration infor-
mation, advantage can be taken of the fact that the opaque fragment filed may contain
arbitrary data, hence, it may also carry another constructed structure. The record layer
is modified simply by adding an additional message type. In addition to the messages
change cipher spec, alert etc. the new message type PCR extend(24) (similar to the TPM
command) is introduced. This message informs the remote platform that: first, a change
has occurred, second, which value has been extended and third, which software module
has been loaded. In addition, the message carries a quantum of application data, all stored
together in the opaque fragment field of the TLSPlaintextstructure. The difference to the
standard TLS record layer protocol is that the information in the plaintextfield is now
context specific and therefore interpreted by the receiver of the record message.

The modified opaque fragment field is defined as:

Listing 2.2: TLS PCR extend Message

s t r u c t {
uint32 PCR num;
extend hash va lue [sha1 . l ength] ;
u int32 t s s e v e n t t y p e ;
u int32 e v e n t d e s c r i p t i o n l e n g t h
e v e n t d e s c r i p t i o n [e v e n t d e s c r i p t i o n l e n g t h]
u int16 l ength ;
opaque fragment [l ength] ;

} event f ragment ;

The new fragment structure now contains the PCR number of the PCR that has
been extended, the hash value that was extended into the PCR, the type of event that
occurred, and the description of the event. The final field element is the opaque fragment
that contains the application data as defined in the original structure. Figure 2.10 shows
the layout of the new message with respect to the existing record layer messages.

While the application data transported within the opaque fragment is still handed over
to the application un-interpreted, the other entries of the field are now validated by the
receiver side. The receiver side has to re-calculate the macnew based on the PCR hash
values sent in along with the new fragment. However, this is a delicate situation as the
information received is at the moment - due to the new PCR values - signed with a new,

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 40

Figure 2.10 TLS Application Data Message Structure including Event Data

T LV Enc Mac
PCR

Num

Extend

Hash Value

TSS

Event Type

Event Descr.

Length

Event

Descr.

Data

Length
DataLength

and not yet validatedmacnew key. In the moment the PCR value is extended, the MAC-key
key of the signer is changed, hence, the verifier cannot correctly verify the TLS records
until he has re-calculated his MAC-key with then new PCR values. To overcome this
situation, the verifier reads the event description information, validates it, recomputes its
MAC verification key and validates the integrity of the received TLS fragment. To validate
the information means that the verifier checks the entries of the event description field
which is typically the name of the software that has been loaded. Only after successful
validation of this entry and the TLS fragment, the fragment is either accepted or the TLS
channels is closed.

Alternatively, it would also be possible to modify the original TLSPaintextstructure
field instead of adding a new message. However, the proposed approach only requires
minor modifications, i.e. an additional message. Moreover, integration with legacy TLS
implementations is simple as the basic is not changed and TLS messages, other than the
new one, still can be processed.

Every TLS fragment sent has to reflect the current configuration of the PCRs at the
time it was sent. In addition, the receiving platform has to be informed of every event
that occurred in the sending platform. This is of special interest if the secure channel is
not transmitting data for a time when PCR changes occur.

There are two approaches to solve this situation: Firstly, the platform immediately
sends an empty packet that contains only the newly computed PCR values and PCR
event fragment structures when a PCR event takes place, thereby transmitting the event
information and triggering the update process of the MAC-key and PCR value list on the
receiver side. Secondly, the platform gathers and stores all PCR changes and puts them
into a single fragment triggering the recomputing when the next packet of data is sent.

While the second approach takes advantage of the fact that all required information
is stored in the SML file and therefore only the changes between now and the time when
the last packets we sent have to be used for re re-computation, the first approach requires
a notification mechanism between TSS and the record layer. It is required that the TSS
not only sends a command to the TPM to extend the content of a certain PCR, it must
also notify the TLS implementation that a change has occurred in order to trigger the
transmission of the new PCR values immediately.

However, storing the event information and putting it into a single fragment may
exceed the fragments size limit requiring a split of the events into different fragments. In
this case, the sender is required to send a set of fragments.

For case one and for compatibility reasons, a new record layer message is introduced
(PCR change) that signals the the PCR change event to the receiving platform and that
contains the PCR event structure.

Another case when information can not be broadcast over the network is network
congestion. In this case, the sending platform is not able to send the accumulated event
fragments. Therefore, the fragments may be stored on a sending platform until the required
network capacity is available again.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 41

2.5.2 TLS record verification and event reporting

As in the previously discussed approaches, the TLS stack of the remote platform decrypts
the incoming records and checks their integrity by verifying the MAC value over each
record. However, instead of closing the connection the verifying platform is now able to
re-calculate the MAC-key based on the reported PCR events.

For a positive verification of the MAC value, the remote platform still requires three
things. First, TLSread mac that is equal to TLSwrite mac from the sending platform where
TLSread mac is calculated the same way as TLSwrite mac. Second, TLSread mac final is
required which is derived from TLSread mac and the hash over the set of known PCR values
and reported PCRs that are extracted from the PCR event messages. Third, the shared
secret sν that was created by the stack itself. With this information TLSread mac final =
h(TLSread mac

f
p

f
sν) can be computed. Where p = h(PCR1

f
...

f
PCRm) is the hash

of the reported PCR value changes. The integrity of the incoming TLS records is then

verified via TLS MAC
!

= HMAC(TLSread mac final, record)
This modified procedure for deriving the MAC-key has the following consequences:

In case of a configuration change, a remote platform will not be able to verify the MAC
values unless it recomputes the key with the newly reported events. This is especially true
for the record that carries the PCR events. As a consequence, the remote platform has to
validate the reported events prior to MAC-key derivation and it may only derive and use
the new key if the events are considered valid and trustworthy.

2.5.3 Session parameter setup

At the start of the session, the local TPM requires a TLSwrite mac which can be obtained
from the TLS stack key derivation process. In addition, the local TLS stack requires an
initial TPM QUOTE INFO structure plus the content of the PCRs and the AIK certificate
from the remote platform. The certificate is required to verify the authenticity of the
remote TPM by validating the AIK certificate, whereas TPM QUOTE INFO contains the
current configuration. This configuration information is required by the stack to compute
TLSread mac final. For this calculation, the TLS stack also requires sν . Consequently,
TPM QUOTE INFO, the AIK certificate and sν must be exchanged between the platforms
before TLSwrite mac final and TLSread mac final can be computed.

2.5.4 Security and performance considerations

In contrast to the model discussed in the previous sections 2.3, 2.4, this model does not
rely on the asymmetric Quote operation in order to signal events. The configuration
change events are rather integrated into the data stream instead of sending an explicit
event reporting message. A Quote is only reported once, at the begin of the session to
establish a common event reporting starting point.

As a result, a continuous stream of application data can be guaranteed and channel
congestion by prevalent Quote operations can be prevented. The security of this design
relies on the security of the secure channel, of the TPM - all relevant computations on the
attester’s side are executed inside the trusted TPM - and the chain-of-trust provided by
the trusted attester platform.
An adversary might try to execute the following attack vectors:

1. Modifications of the TLS record. If an adversary succeeds in modifying the
reported PCR events during transmission, for example by modifying single bits of

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 42

the encrypted fragment, the derived MAC-key would be different to the original
TLSwrite mac final. As a consequence, the verifying platform would detect this mod-
ification during integrity check. Other modifications of the record are also detected
during integrity value validation.

2. Report of false or faked events. Malicious software might be able to modify
the reported PCR events that are transmitted via the TLS record messages. As the
events are recorded in the PCRs and TLSwrite mac final is derived from the content
of these registers, the verifier is not able to derive the correct TLSread mac final.
Consequently, the MAC validation would fail.

3. Attack during network congestion. In case of network congestion, the single
TLS record fragments have to be temporarily stored on the sender’s side. Neverthe-
less, integrity and confidentiality of the fragments can be guaranteed. Although ma-
licious software might be able to extract the encryption key and decrypt the record,
it would not be able to extract the integrity MAC-key from the TPM. Therefore,
when the package is sent, the remote platform is informed of the presence of this
malicious software.

4. Resend previously sent records. An adversary could try to resend a TLS frag-
ment recorded from an earlier session. This attack would fail on different occasions.
First, for every new TLS session new session parameters are used. Hence, decryption
and integrity validation would fail. Second, every TLS record has its own sequence
number. Even if he manages to inject the false record at the correct position, the
verifier would detect the false record as the sequence number is use during computa-
tion of the integrity value. Assuming that an adversary is able to successfully attack
the verifier platform and is able to get into possession of TLSread mac final, the en-
cryption key and sν he would be able to intercept and modify the transmitted data.
Neither Trusted Computing, TLS or the newly proposed approaches are able to pre-
vent this attack. Consequently, for real trustworthy connections also the integrity
of the target platform must be taken into account. Therefore, mutual attestation is
the suggested method.

Loading malicious software into the system causes reporting of this event to the TPM.
Consequently, the PCR values and the TLSwrite mac final for the next record are changed.
The malicious software is only able to manipulate the TLSwrite mac key and the transported
data including the reported PCR event. However, the remote platform that derives the
MAC-key for verification from the reported PCR events and sν can detect these changes
as it is not able to validate the MAC value of the record. This is also true for TLS records
generated in a previous session if they are re-sent to the platform. Furthermore, the
computation of the MAC is done inside the TPM and can therefore not be manipulated
from the outside.

Integrity information (MAC values) generated for a different, valid record cannot be
applied to authenticate a malicious record as the record and the integrity value are cryp-
tographically connected by the MAC computation.

Resources of the TPM are very limited, hence, they must be carefully used by limiting
the amount of additional data that is stored in the TPM. In this approach, the TPM only
has to store sν (which is 20bytes) for every open connection.

The MAC-keys (TLSwrite mac final and TLSread mac final) should not be re-used for
two different TLS session. This can be guaranteed by either using a new sν or by using

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 43

a different TLSwrite mac respectively TLSread mac for every new session. As the values sν
and TLSread mac are controlled by the verifier, the verifier has control over these values.

The initial remote attestation step allows the requester to check if the attester actually
executed an authenticated boot and allows it to determine the initial state of the platform.

In order to obtain reference values, a proof-of-concept prototype was implemented.
The basis for this prototype is the proof-of-concept implementation introduced in 2.3.6
with additional modifications to the TLS record layer on the sender and the receiver side.
While the sender constructs the packet with the new structure containing the PCR event

message, the receiver has to dis-assemble the structure in the record layer and recalculate
the PCR content as well as validate the content of the structure.

The comparison with plain- and encrypted data flow of the TLS channel shows that
the new approach only marginally reduces the data throughput. The sending of the record
data, the TLSwrite mac-key as well as the derivation and computation of the MAC-data
is executed in the TPM within 2ms on the test platform. As a result, the performance
of the approach (13101,69kByte/s) nearly reaches the performance of the encrypted chan-
nel (13116,6kByte/s) and is much faster than the original remote attestation mechanism
defined by TCG with genuine and software based TPMs.

Figure 2.11 Comparison with encrypted and plain data throughput

Plain

Encrypted

New approach

0 2000 4000 6000 8000 10000 12000 14000 16000

For genuine TPMs that rely on the slow LPC bus to transport the information, this
procedure can even be more enhanced by sending the hash of the record data instead of
the full record. Consequently, the verifier has to modify the validation step according to
TLSmac = HMAC(TLSread key final, H(TLSrecord)).

Summing up, the new approach has the following advantages over the original TCG
remote-attestation design:

1. Changes can be detected immediately, thereby omitting the gap between two attesta-
tion requests where no reliable information of the platform configuration is available
for the requesting platform.

2. The data transported through the channel is tagged with configuration of the plat-
form at the time it was sent. With this tagging, the receiving platform is able to
determine the exact configuration of the platform when the data was sent at any -
even later - point in time.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 44

3. The time required for computing the configuration proofs (i.e. quote) is lower as
symmetric cryptography is employed. Therefore, the reduction of data throughput
through the TLS channels is minimal. Keep in mind that the values presented in
diagrams 2.5 and 2.6 represent the results of one channel in one direction. In case
of mutual attestation where two channels are used, the throughput decreases even
further.

4. The fact that the MAC computation is done inside the TPM provides a secure proof
that the reported events were not manipulated.

Moreover, event messages are handled by the record layer and are therefore transparent
to the application. Further processing of this data may be handed over to the operating
system or a trusted service.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 45

2.6 General Considerations

In this Section, a general discussion of the influence on different components and mech-
anisms of TLS and Trusted Computing is given. Moreover, the relation of the proposed
mechanisms to mobile trusted computing is investigated and mechanisms that allow to
use TPMs in common authentication algorithms are proposed.

2.6.1 Impact on advanced TLS features

Impact on Session-resume TLS supports two kinds of session resume mechanisms.
In the first mechanism, client and server independently store their specific session infor-
mation. The session information includes items like the session keys or the master secret.
In the second mechanism, the session information - including the items from the server -
are stored on the client in order to save space on the server side [89]. The server, therefore,
sends the encrypted information to the client in form of a ticket. The client is henceforward
able to resume interrupted sessions by presenting the ticket to the server.

The proposed algorithms for configuration change reporting are not applicable to the
session-resume mechanism. After presenting the ticket, client and server have to exchange
a Quote as new PCR reporting starting point and negotiate new session parameters for
deriving the keys making the resume mechanism obsolete.

However, modifications to the resume process where e.g. the client receives the events
that occurred from disconnection to session resume, enabling him to re-calculate the keys,
can solve this problem.

Impact on truncated HMACs TLS provides an optional mechanism to save network
bandwidth which is called truncated HMAC [25]. This mechanism simply transmits only
the first 80 bits of the TLS record HMAC and skips the remaining. While this kind of
check is sufficient for integrity check in common TLS connections, it can not be used for
signaling configuration changes. Because a configuration change could affect the bits in
the skipped part (the last 40 bits) of the HMAC the change cannot be detected. Therefore,
truncated HMACs can not be used with this configuration report approach.

2.6.2 TLS client authentication with TPMs

In common client authentication scenarios, the client credentials allowing access, for ex-
ample to a company’s VPN, are stored on the platform’s disk where they are subject to
manipulation or theft. The protection of these credentials solely relies on the security
services and protection mechanisms provided by the platform. Having a security element
like a TPM on the platform, it seems reasonable to use the protection mechanism provided
by TPMs. A simple approach could be to use the bind mechanism of the TPM to bind the
credentials to a certain platform state. However, that does not fully guarantee the nondis-
closure of these credentials as they are decrypted and used in plain for the authentication
process - TPMs provide shielded locations and protected capabilities which can provide
a much better protection. Consequently, it is reasonable to store and use the credentials
inside the TPM.

Basically, client authentication in TLS works as follows: During the handshake, the
server requests a certificate from the client. The client sends a Certificate Verify message
including the signature on the hash of the handshake messages sent so far. The server
is then able to verify the signature with the previously sent certificate and by comparing

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 46

the hash value of the client messages recorded by the client with the hash value of the
messages received by the client, thereby authenticating the client.

Instead of creating the signature within the TLS stack, the signature could be created
inside the TPM, therewith providing a strong protection of the signature key. Although
this method can also be achieved with common smart cards, the TPM and its DRM
capabilities offer features for managing these credentials, which is hard to achieve with
smart cards. Assuming a running trusted platform, network administrators could remotely
distribute or delete the client credentials among their managed platforms. Furthermore,
the use of the client credentials could be limited to a certain amount of uses simply by
locking them to a monotonic counter. Moreover, authorization to use the credentials could
be bound to a certain platform configuration, thereby preventing a successful connection
with invalid configured platforms.

A proof-of-concept implementation of the client authentication commands for TPMs
is discussed in the following paragraph.

Extension to TPM authentication

In some scenarios, the TPM has to authenticate itself to a service before using the spe-
cific service. Prior the the authentication, however, the TPM has to be registered as, for
example in the DAA case, a valid member which is allowed to join a group and receive
DAA credentials. In the DAA scenario, parameters for the DAA protocol are encrypted
via the public-EKnd decrypted inside the TPM for further use. As a result, the source or
sender of the parameters can be sure that only the addressed TPM can decrypt the pro-
vided information thereby authenticating the TPM via its public-EK. A similar approach
can be used to improve TLS authentication. When recalling the TLS client authentica-
tion mechanisms, one can see that the server identifies the client according to its client
certificate. The private part of this certificate is used to sign the incoming and outgoing
messages that are sent during the handshake. The signing-key itself may be stored inside
a TPM or another security device. However, this approach requires two sets of certificates
namely the EK certificate and the signing certificate (and of course all certificates required
to validate these certificates). A more efficient approach would involve only one of these
certificates and the corresponding certificate hierarchies. As the EK-certificate is already
available on the TPM it is reasonable to go for this certificate.

In order to involve the EK-certificate and the decryption operation of the EK, the
client authentication mechanisms must be modified in the following manner:
Instead of computing a signature on the handshake messages to authenticate the client
certificate, the client and the server each compute a part of the random pre-master se-
cret6. The client submits its part encrypted via the server public-key as defined in the
original specification. However, the server encrypts his part of the pre-master secret with
the public-EK of the client. Both exchange the encrypted values and assemble the pre-
master secret pms = H(pmsserver‖pmsclient). The further computations of the master
secret and eventually the cryptographic keys are unchanged, except the handshake phase
which is modified. The client does now not require to authenticate itself explicitly as the
authentication was already established via the encrypted pms value. The authentication
is established by the fact that only the TPM which is in possession of the private-key that
corresponds to the public-kec encoded in the EK-certificate is able to decrypt the pms

6The signature on the messages is still generated as it is used to check the integrity of the messages
exchanged during the handshake phase.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 47

from the server and further compute the correct pre-master secret and session keys. If
a malicious host sends an EK-credential from another host, the encrypted pms can not
be decrypted by the TPM. Additionally, a fraud certificate would never be accepted by
the server as these certificates are issued by the TPM (see discussion in Subsection 2.6.2.
The fact that both partners contribute to the master secret computation lowers the risk of
weak random numbers if one of the partners has a manipulated or malfunctioning random
number generator. This approach may also be extended on the server side. An alternative
authentication model could include a TPM on the server side. In this case, the certificate
sent by the server is the EK-credential. Instead of decrypting the client random by the
(server) host, it is decrypted by the (server) TPM. Hence, both sides - client and server -
can take advantage of the benefits of a secure computing environment.

Figure 2.12 displays the modified handshake protocol:

Figure 2.12 TLS authentication via Endorsement Key

Client ServerTPM

ClientHello

ServerHello

request client certificate

Validate server certificate

Server certificate

Generate client random
EK-certificate, enc(client_random)

Request random number

Validate client certificate

enc(server_random)

Generate server random

Server random

Signed hash over all messages

Check signature

Calculate master secret

Change cipherspec

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 48

TLS Client Authentication Commands

For the TPM supported TLS client authentication prototype, the following commands
were added to the TPM emulator:

� TPM LoadClientAuthKey(TPM KEY HANDLE parent key handle, TPM KEY
tls aut key). This method loads the specified key into the TPM and returns a TPM
KEY HANDLE structure.

� TPM UpdateClientMsg(UINT32 client message size, BYTE[] client message). This
command sends a single hash of a handshake message to the TPM. Consequently,
this command is subsequently invoked for every message sent by the client.

� TPM SignClientMsg(TPM KEY HANDLE tls auth key handle). This command
instructs the TPM to compute the signature over the handshake messages with the
given key addressed by the key handle.

In order to use these commands, the TLS stack has to establish an authenticated
session with the TPM. Furthermore, this approach does not require any modifications of
the verification module of the TLS stack which is responsible for verifying the signature.

The benefit of the approach is the reduction of the number of certificates involved
for establishing the session. Validating a public-key certificate is bound to a lot of effort
in terms of certificate management, memory consumption and requirements on time for
searching, downloading and validating certificates and revocation lists. Hence, reducing
the numbers of certificates to validate is highly desirable.

A note on Endorsement Certificates In the previously discussed scenarios, it is
assumed that TPMs are equipped with an endorsement credential. However, in practice
this is not always the case. In reality only the TPMs from Infineon Technologies are
shipped with such a credential. This fact is problematic as during communications with
previously unknown trusted platforms or platforms from other certification hierarchies, it
is not possible to determine the genuinity of the TPM.

The situation is even worse when taking the other certificates of a trusted platform
into account.

Relation to Mobile TPMs The concept of advanced configuration change reporting
is also applicable to mobile TPMs. The major difference between common TPMs and
mobile trusted modules (MTMs) is that, depending on the security features provided by
the mobile platform, MTMs can be implemented only in software [35]. This property
makes them an ideal basis for this approach as the software based TPM implementations
are easy to adapt.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 49

2.7 Conclusion and Future Work

This chapter provides a multitude of contributions. First, a detailed analysis of the remote
attestation process in combination with secure channel technology is provided. The analy-
sis includes the investigation of the impact of attestation requests on the data throughput
of TLS channels and demonstrates the performance decrease when hardware and software-
based TPMs are used.

Second, based on the results of the performance analysis, a new attestation model
is proposed that allows a consistent reporting of PCR events without the issues of the
original approach. In the new design, the platform does not passively wait for requests to
come. Rather it actively reports configuration changes by integrating them into the TLS
data stream. In contrast to other schemes that report changes through the channel, this
scheme additionally provides a reliable and secure proof that a change happened and that
it was correctly recorded and processed in a genuine TPM.

Third, modifications of the new model are discussed allowing a more efficient use on
specific platforms. The modifications allow secure processing of TLS channel credentials
inside TPMs and greatly add to including the endpoints of a secure connection into con-
sideration when investigating security aspects of trusted channels.

The newly presented method allows reporting of platform configuration changes in a
reliable way. The proposal also shows how the mechanism for protecting TLS records can
be used to provide a proof for configuration changes by calculating the MAC for protecting
TLS records inside the TPM. The benefit from this method are different signature values
on the TLS records depending on the configuration. These different signature values allow
a remote platform to detect changes in the local platform configuration. Basically, config-
uration changes are encoded in the cryptographic keys that are responsible for computing
the MAC values.

To back the proposed model and the corresponding hypothesis a proof of concept pro-
totype was implemented to demonstrate the advantages of the new model. The TPM
specification does not include the required features for this approach. Consequently, suit-
able TPM implementations had to be found and modified and additional commands had
to be added. The implementation of choice was a pure software implementation, hence,
the proof-of-concept implementation is currently only available as software emulation.

Nevertheless, it provides a valuable addition to all software based TPM implemen-
tations. Such implementations include virtual TPMs, like the one used in virtualization
techniques like XEN [116] or para-virtualization technologies and mobile TPMs [111].

As, virtualization is more and more common, software based TPMs are widely used
on server systems in the form of virtual TPMs. Virtualization and para-virtualization
technologies take advantage of multiple software TPMs instead of relying on one singe
hardware TPM. As a consequence, server systems are an ideal platform for the new ap-
proach.

The analysis of the new approach also showed that no additional cryptographic al-
gorithms are required if the set of allowed cipher suites is limited to commonly used
algorithms e.g. SHA-1. This limitation allows an efficient use of the constrained resources
of TPMs.

In contrast to other published approaches (see Section 2.1.1), this model allows to bind
a TLS channel to a TPM respectively to a trusted platform.

To enhance the proposed model even more, modifications to the key derivation process
are discussed in this chapter. In contrast to the original approach which is rather easy

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 50

to integrate into common TPMs, the second one is more complex but shows a better
runtime performance. The performance advantage stems from an alternate key derivation
algorithm that reduces the communication overhead between CPU and TPM. Although
the new design is faster, is comes at the cost of storing more information in the TPM.

Due to the fact that authentication keys are created and used inside a tamper-resistant
TPM, the security of the trusted channel is even more increased. As the keys do not leave
the TPM they are not available in plain on the platform.

Moreover, the proposed approach assumes that the secure channel and the configura-
tion is bound to a certain state that is changed if any kind of software is loaded. This
causes either that the channel is closed or new session parameters are negotiated - even
if the loaded software is a trusted one. This issue was solved by introducing a new TLS
record-layer message. This new message allows to use an open connection without closing
and re-establishing the channel when PCR changes occur.

Moreover, a method was proposed how a TPM could be used for TLS client authenti-
cation, thereby providing stronger protection of the client credentials as similar software
implementations and without the requirement of additional hardware like smart cards.

Furthermore, the detailed analysis shows that the proposed approach only marginally
affects the data throughput of a TLS channel - in contrast to the original approach.

Third, detailed information of how the existing TPM specification should be updated
in order to support the proposed scheme are provided. In addition, a proof-of-concept
implementation for generating reference measurement values was implemented.

2.7.1 Future work

The reference design of the proposed approach focuses on secure socket layers (SSL) and
TLS channels. Further research may include adaption of the proposed model to other
secure channel technologies like IPSec.
A further aspect that is of interest is anonymity protection. In the proposed design, PCR
values are sent in plain in order to prove the platform’s configuration. Although this
information does not reveal the actual identity of a platform, it could be used to track
platforms by means of configuration fingerprinting. Therefore, investigations how to inte-
grate anonymity protection in the new scheme is of interest.
The new approach is also of interest for research areas like information-flow security. The
property of this approach that allows data to be tagged according to the configuration of
the processing platform, allows to ascertain trust estimations about the actual data.
Another interesting field of research is the application of the new approach to different
modes of cipher operations. Tests were conducted with the RC4 and AES cipher in CBC
mode, however, other interesting modes of operation exist. The Galois/Counter Mode
(GCM) [88] supports enhanced crypto algorithms allowing to compute encryption and au-
thentication information in a single step in contrast to common systems that compute the
MAC and the encrypt the data block resulting from data payload and MAC. Moreover,
the application of the new scheme in the TLS 1.2 standard [107] that supports hash algo-
rithm agility and therewith the usage of different key derivation algorithms is of interest
for further research.
The general impact and possible applications of this approach on existing virtualization
techniques like XEN [116] are also subject to further research. Moreover, the proof-
of-concept implementation and the proposed design are valuable additions for mobile
TPMs [111] which may be implemented exclusively in software in some environments.

CHAPTER 2. SECURE PLATFORM CONFIGURATION CHANGE REPORTING 51

The current prototype only supports the creation of authentication keys inside the
TPM. Future versions could include the installation of externally created authentication
credentials. Moreover, a more sophisticated authentication management than the existing
one could be integrated.

Chapter 3

Architectures for Trusted
Computing Enhanced Mobile
Platforms

3.1 Introduction

Nowadays, trusted platform modules are available for nearly every PC platform, ranging
from desktop machines to notebooks. These TPMs provide the basic building blocks for
Trusted Computing enabled services like authenticated boot or authenticated reporting of
integrity values. Yet, these platforms are not the only ones that can host TPMs. Mobile
and embedded platforms, like cell phones, can also host TPMs but may have different
requirements and different use-case scenarios.

Common desktop TPMs are produced in high numbers which allows TPM manufac-
turers to keep the prices low. Unfortunately, these common TPMs are deprecated for
mobile and embedded applications. From a certain point of view, it seems simple to put
a micro controller based TPM like the ones used on desktop machines on a mobile plat-
form. However, each new chip on a phone’s mother board increases the cost of this device,
not to mention the additional power consumption of the extra chip. Consequently, it is
reasonable to search for alternatives - alternatives, for example that are primarily based
on features and mechanisms that embedded devices already carry as part of their base
configuration.

In order to keep the costs for mobile TPMs low, the TPMs might also be implemented
only in software, raising questions about the security assumptions for these kinds of TPMs
and the platforms they are used with.

A specialized working group within the TCG is dedicated to defining, extending and
maintaining the specifications concerning mobile trusted computing. This group has pub-
lished a specification that defines how mobile TPMs could be designed and which features
they could provide [52]. Intentionally, this specification is written in a rather relaxed
style which allows manufacturer to implement their mobile TPMs in different ways. In
particular, concrete instructions how to implement a TPM on a mobile device are not
provided.

Unfortunately, this relaxed way of defining the mobile TPM specification bears the
problem of lacking concrete guidelines for implementers. In contrast to common TPMs,
TPMs for mobile platforms do not need to be implemented as micro controllers, leading

52

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 53

to different security assumptions. Therefore, two questions arise when designing mobile
TPMs. First, how can MTMs be designed in an secure and efficient way by employing em-
bedded security system solutions? And second, how can the security assumption of these
MTMs be compared to those of TPMs? Without having clear definitions of conformance
and compliance of mobile TPMs, these questions are hard to answer. Nevertheless, both
questions are discussed in this chapter.

Before deploying any security related service that relies on a protected execution en-
vironment, such as creating a signature or the direct anonymous attestation protocol, the
question of how trusted computing technologies - in detail - mobile trusted modules can
be securely and efficiently be implemented, has to be answered. A secure basis for hosting
cryptographic functionality has to be found, that does not only meet the requirements
of state-of-the art cryptographic algorithms, but also allows to fulfill the standards of
high-level security evaluations. Therefore, concepts for enhancing mobile and embedded
devices with trusted computing (TC) technology are discussed in this chapter. In par-
ticular, two designs for providing TC building blocks on embedded devices are discussed
and compared. Both building blocks rely on security mechanisms already provided by the
embedded devices.

The first approach focuses on a software emulated mobile TPM that uses processor
extensions to achieve protection from access by arbitrary applications. A discussion of
this question is especially important as at the moment it is not clear whether the installed
security features provide a sufficient level of security and which level can actually be
achieved. This approach is based on the ARM TrustZone, which is basically a processor
extension that separates the device into secure and non-secure domain (see Section 3.1.2).

The second approach (see Section 3.2), makes use of onboard smart cards. Many new
mobile phones are equipped with an additional smart card (besides the SIM card) which
can store and operate secret data like keys or certificates. These smart cards, or secure
elements (SE) in the sense of the TCG, can be addressed by the mobile phone as well as
from external devices via near-field communication which offers new perspectives of secure
device communication. Both approaches aim to be as close to the TCG’s published mobile
TPM specification as possible.

Special focus is also laid on resource conserving designs of mobile TPMs. As memory
is limited in TPMs, efficient use of it is one of the major design goals. Hence, approaches
how to preserve and economical use of TPM resources are also part of this chapter.

This Chapter is separated into 5 Sections. In Section 3.1, an overview and explanation
of the differences of the two kinds of mobile TPMs i.e. mobile-remote-owner-trusted-
modules (MRTMs) and mobile-local-owner-trusted-modules (MLTM) is given. Further-
more, related background information on ARMs TrustZone architecture are provided. In
Section 3.2, a mobile Trusted Computing reference architecture is proposed. A comparison
of this new mobile TPM design and the ARM TrustZone approach is given in Section 3.3,
followed by Section 3.4 which deals with efficient architectures that employ dynamic func-
tion sets for mobile trusted modules. Finally, Section 3.5 briefly concludes the chapter.

3.1.1 Related work

Different approaches how to implement MTMs are pursued by various research groups.
The most important ones are introduced in the following paragraphs:

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 54

In [118], an idea to extend a SELinux based kernel in order to provide a generic domain
isolation at the kernel level is proposed by Xinwen Zhang, Onur Aciicmez and Jean-Pierre
Seifert. With this design, the research group proposes a strong and convenient mechanism
to satisfy the security requirements of trusted mobile phones on isolation of engines and
integrity assurance.

One of the leading mobile phone manufacturers - NOKIA - also conducts research
on implementation aspects of MTMs. Jan-Erik Ekberg and Markku Kylänpää published
a paper [65] that provides an introduction into the concept of MTMs from the device
manufacturer’s point of view. Furthermore, their work presents an implementation of an
MTM that is based on the well-known TPM emulator from Mario Strasser [96].

Also from Ekberg et al. [39, 68] a proposal for a mechanism for securely executing
small programs in trusted environments is introduced. Their approach is designed around
a size constrained secure execution environment present on their target processor and
platform architecture. Inside this secure environment, small security critical programs
can be executed on a trusted byte-code interpreter. The byte-code interpreter used in [39]
is built upon a simplified version of the Lua 4.01 virtual machine. In order to provide
secure storage, the approach in [39] resorts to cryptographic methods. Based on secure
storage facilities, the authors of [39] propose mechanisms for securely swapping programs
and data in and out of their secure environment.

A similar approach to small trusted execution environments is presented by Costan
et al. in [24]. The authors of [24] describe a “Trusted Execution Module” (TEM) which
trustworthily executes secure closures. The TEM itself is a byte-code interpreter for a small
special-purpose programming language. This interpreter is realized as a JavaCard applet,
hosted inside a JavaCard enabled smart-card. Costan et al. propose to equip the TEM
with a public key similar to a TPMs endorsement key. In the case of the TEM, this key is
used to protect secret data of the closures submitted to the TEM for execution. Similar
to [39], secure storage is realized outside the smart-card, using cryptographic methods.

The main difference between Costan’s [24] and Ekkberg’s approach is the location
where trusted computations are executed on the platform.

The authors of [40] investigate the idea of a programmable TPM designed around a
normal TPM with secure binding to a programmable smart-card. In their paper, they
discuss a number of potential enhancements to sealing and binding, which can be im-
plemented with their architecture. Furthermore the authors of [40] elaborate on count
limited objects, as an alternative solution to the monotonic counters available in a normal
TPMs. According to the authors, the architecture described in [40] has several limitations,
caused by the fact that the TPM and the smart-card are separate devices. Particularly,
the types of functionality which can be implemented with that architecture are limited by
the TPM’s policies.

In contrast to the approaches discussed in these publications discussed in the previous
paragraphs, the concept focused on in this thesis uses security hardware, provided by
mobile devices themselves to host MTM functionality. Such hardware is, for example, the
SIM card every mobile is equipped with.

Schellekens et. al. [70] propose to dis-embed the TPM’s firmware and store it on the
host platform. They aim at reducing the complexity of current TPM implementation, al-
lowing simplified hardware architectures for TPMs by introducing the concept of µTPMs.
This approach is similar to the idea proposed in Section 3.4. However, Scheleken’s ap-

1see http://www.lua.org/

http://www.lua.org/

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 55

proach focuses on monolithic blocks of firmware (of TPMs) meaning that changes of the
functionality of a TPM affect the entire TPM or sets of features. In contrast, the proposed
approach allows to modify specific commands of a MTM. Moreover, the concept allows to
modify the trusted software stack in order to synchronize the command set of the MTM
with the command set of the software stack by employing newly added security features.

3.1.2 Background

The core of every trusted platform is the trusted platform module (TPM). In case of
mobile or embedded platforms, we speak of a mobile trusted module (MTM). Although an
MTM has similar features as a common TPM, there are some differences, as characterized
in [111].

The Mobile Trusted Module specification defines two types of MTMs: the Mobile
Remote-owner Trusted Module (MRTM) and the Mobile Local-owner Trusted Module
(MLTM)2. The difference between these two types of MTMs is that the MRTM must
support mobile-specific commands defined in the MTM specification as well as a subset
of the TPM v1.2 commands, whereas the MLTM only supports a subset of the TPM 1.2
commands [111]. Typically, phone manufactures and network service providers use an
MRTM. These parties only have remote access to the MTM whereas the MLTM is used
by the user who has physical access to the device and its applications. The first one is
used as a secure entry point to the phone in order to perform updates etc. whereas the
second one is used like a common TPM.

The different parties - called stakeholders - have different requirements on the MTM.
Depending on the stakeholder, the MTMs are applied in areas such as platform integrity,
device authentication, SIMLock/device personalization, secure software download, mobile
ticketing and payment, user data protection and privacy, and more [115]. How these
different kinds of MTMs are implemented is not defined. A discussion of how a possible
realization could look like is given in section 3.2.

Another possible way for designing an MTM is as software module. The TrustZone
security extension [8] offers an ideal basis for such an approach. The very concept of ARM
TrustZone is the introduction of a secure world and a non-secure world operating mode
on ARM11 and Cortex-Ax based processor cores. The split into a secure world and a
non-secure world mode can be seen as extension to the privileged/unprivileged mode split
that can be found on pre-TrustZone ARM cores. The design allows a secure/non-secure
world boundary to create two separate domains. Unlike in MicroKernel architectures,
the separation is hardware enforced meaning that for each domain, an extra set of CPU
registers exists. From a general point of view, the TrustZone design implements two
independent, strongly isolated worlds with a well defined strictly controlled interface in
between. Isolation between these two worlds is provided by the protection features of
the TrustZone processor extensions. Hence, in each of the domains, a different operating
system is running. In the non-secure world, a standard operating system or RichOS like
Windows, Linux or Android is executed, whereas a more specialized one is used for the
secure world.

Figure 3.1 gives an overview of the TrustZone architecture. The communication be-
tween the two worlds is established via a special Secure Monitor Mode together with a
Secure Monitor Call instruction that allows to exchange data between the two domains.
Interrupts can be handled in a secure and deterministic way on TrustZone cores. Apart

2The term MTM refers to both, the MRTM and the MLTM

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 56

Figure 3.1 TrustZone Architecture Overview

from the extensions to the processor core itself, the SoC buses in TrustZone enabled sys-
tems carry extra signals to indicate the originating world for any bus cycles. Whenever
a bus cycle is started by the core, the secure/non-secure world state is recorded and en-
coded into these extra signals. SoC peripherals can interpret the TrustZone extra signals
to implement a low-level access control based on the secure/non-secure world distinction.

On the secure world side, a specialized stripped down Linux kernel is used to provide
the necessary small runtime environment for security and safety critical tasks and for the
components required to handle the non-secure world side. The secure world environment
can be stripped down to the bare minimum of software components. In typical systems,
this is a high security OS kernel which is in addition evaluated according to specific security
and safety requirements [6].

The hardware supported boundary to the non-secure world environment is used to
provide a sufficient protective shielding against any potentially malicious piece of code
running on the non-secure side. There is no direct way for non-secure world code to access
secure world data or memory areas without explicit permissions.

In addition, TrustZone provides a small amount - depending on the vendor - of non-
volatile memory. This memory may be used to store secret material. The material may
only be accessed by applications executed inside the TrustZone environment.

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 57

3.2 An Integrated Architecture for Trusted Computing en-
abled Embedded Devices

In this Section, an overall discussion of an MTM design based on secure elements is given.
The proposed architecture describes one approach for defining a mobile TPM solution for
embedded systems based on security mechanisms provided by the platform. Moreover, it
demonstrates the interaction between the different components of the design especially of
the MTM with the mobile device and its applications.

Moreover, a proof-of-concept implementation was made for gathering and analyzing
experimental data and for defining a reference design for mobile trusted modules. The
PoC consists of an MTM reference implementation, a command library that provides TCG
compatible commands to applications and a communication interface module that handles
communication between the command library and the MTM. Based on these experimental
results, a discussion is provided of the feasibility and the system requirements of this
approach with respect to state-of-the art mobile equipment. The details of the proposed
architecture are discussed in the following section.

3.2.1 Architecture overview

Various kinds of mobile Java platforms depending on the phones’ capabilities exist. Nev-
ertheless, the core component of all these Java platforms is the Java 2 MicroEdition
(J2ME) [100] specification - published by SUN - that was especially designed for resource
constraint devices. The specification includes two core architectures: the J2ME Connected,
Limited Device Configuration (CLDC) [99] and the J2ME Connected Device Configura-
tion (CDC) [3]. An overview of the differences between these two configurations is given
in [29]. The CLDC’s target devices are very resource constrained mobile phones, whereas
the CDC is intended to run on more sophisticated devices like smart phones or PDAs.
Nevertheless, the most widespread configuration nowadays is the CLDC allowing to ad-
dress a much broader range of devices. Furthermore, the security system is more enhanced
and much more restrictive than the one of the CDC [77]. The architecture proposed in
this Section addresses both, the CDC and CLDC platform.

As outlined in the previous paragraph, the concept discussed in this Section focuses
on Trusted Computing (TC) services for Java enabled phone platforms. Therefore, most
of the components outlined here are designed to be implemented in Java. However, there
are a variety of functions that cannot be addressed by Java . For this reason, features of
TC outside of the scope of the proposed architecture are discussed in the following lines.
Such features are e.g. secure boot and authenticated boot. It is assumed that the addressed
target platforms are already equipped with a trusted boot-loader and a trusted operating
system. Moreover, the measurement processes from the boot of the machine up to the
measurement of the Java virtual machine (JVM) is supposed to be performed prior to the
start-up of the JVM.

Figure 3.2 shows the different modules that are discussed in greater depth in the
following sub-sections.

Number (5) in Figure 3.2 shows the TC enabled application that makes use of TC
services. Such services might be remote attestation (i.e. integrity reporting and integrity
verification), or sealing and binding. The next component (No. (4)) is the TSS library.
The library consists of a provider for cryptographic operations and a provider for TC
services. No. (3) is the command library that is primarily used by the TSS to send

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 58

Figure 3.2 Architecture Overview

Mobile Device

Operating System

TC enabled J2ME Application

MTM Abstraction LayerMIDP/FP/PDAP

J2ME - CLDC/CDC

2

25

TPM Command Library

Mobile TSS

MTM

1

3

4

and receive commands from the MTM. Nevertheless, an application might require to
access the MTM directly, so the low-level command library also offers an API to the top
level. Communication between the command library and the MTM is carried out by the
abstraction layer (No. (2)).

The concept focuses on the user and user installable applications. Therefore, the used
MTM (Figure 3.2 No. (1)) has to provide the functionality of a MLTM. A more detailed
discussion of each layer component (1)(2)(3)(4) is given in the following sections.

3.2.2 The mobile trusted module

When investigating mobile phones and other embedded systems, the question how to
implement an MTM (see Figure arises 3.2, number (1)). The MTM specification [111]
does not answer this question - it only describes the required features for compatible MTM
implementations in order to give the designers more flexibility for their implementations.
When thinking about implementing an MTM on a mobile phone the fact that every extra
piece of hardware raises the cost for the whole device has to be considered. For this
reason, using already existing hard- and software components in a mobile phone sounds
reasonable. One way could be to implement the MTM in software. However, such a
solution would require that the underlying operating system or hardware provides process
isolation or the typical sandbox model protecting the MTM application and providing
shielded locations and protected capabilities as required by the specification. Nevertheless,
a detailed investigation of the isolation mechanisms is required in both cases.

Another option involving a special dedicated silicon chip like on desktop systems would
provide protected capabilities and shielded locations as requested for TPMs, however, extra
hardware components occupy space within the device and drain power from the battery.

At first glance, the most logical piece of hardware in a mobile phone to host a TPM
is undoubtedly the SIM (resp. USIM) card. The Subscriber Identity Module (SIM) is
an integral component of a mobile phone. It provides identification of the user as well
as support for cryptographic operations. Moreover, SIM cards meet the requirements for
shielded locations and protected capabilities. Being equipped with these features, the SIM
card appears to be a good basis for providing MTM functionality. However, the SIM card

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 59

Figure 3.3 Software architecture for a Smart Card based trusted mobile platform

Operating System

Smart Card

TC enabled Application

APDUs

MRTM Applet

MLTM Applet

Card OS

APDU forwarding

MTM Abstraction Layer

is not fixed to the device. A user can easily remove the card.
This is also true for any other removable security device such as SD-cards. Although

they provide a high level of security and are used in many security related applications,
they can hardly be applied to host MTM functionality.

Another drawback of using the SIM card are the stakeholder requirements. SIM cards
are under the sole control of the network providers. Other stakeholders are hardly allowed
to install and execute arbitrary applications on these cards. Fortunately, other devices
are equipped with on-board smart cards (e.g. Nokia 6131 NFC) which were used in the
proposed approach to host the MTM [30] as they provide the required access mechanisms
without restrictions. In contrast to a SIM card, the onboard secure element cannot be
removed, from the device. All data that is stored on the secure element, remains on the
platform and cannot be transferred to another device by just moving the card.

This fact has interesting consequences. On the one hand, all data that is bound to a
removable SIM card cannot be unbound unless the correct card is reinserted again. On the
other hand, data that is stored inside or bound to a secure element cannot be transferred
to a new device. Moreover, if the data is fixed to a certain platform configuration, the
new device could be forced to have a specific configuration in order to get access to the
stored data.

As a consequence, the proposed architecture focuses on devices that are fixed to the
embedded platform like secure elements or secure CPU core extensions [9]. In contrast
to SEs, CPU core extensions are part of the CPU. They provide a secure execution envi-
ronment inside the CPU. Compared to TrustZone, they are not just a CPU extension a
separated controller providing a smart card like environment for applications.

JavaCards can host different applications, called applets [101]. Typical applications use
such applets to store and manage authorized access e.g. digital purses or authentication
credentials. However, the card can also be used to host applets with MTM functionality.

Figure 3.3 shows the basic design of the prototype. The smart card (or secure element)
hosts the MTM. The MTM itself is implemented as a Java Card applet that supports the
processing of TCG compatible commands [112]. Common TPM functionality also includes
cryptographic operations, e.g. the current MTM specification defines RSA operations to
be used for asymmetric cryptography. Typically, smart cards are equipped with hardware

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 60

based cryptographic support. This hardware support enables smart card applications to
perform fast cryptographic operations. Fortunately, this support is also available for Java
Card applets which enables them to support all required operations [52].

The communication between the host application and the smart card is done by TCG
conformant commands that are split to fit into application programming data units (AP-
DUs) as defined in [62]. However, current available cards are subject to strong restrictions
concerning available memory (EEPROM and RAM). The free available memory on the
reference prototype is about 76 kilo bytes of nonvolatile memory and 8 kilo bytes of RAM.
Furthermore, the processing of Java byte code is rather slow, which demands efficient
command handling and parsing.

Many cards can host more than one applet. This fact allows the installation of multiple
MTM applets and therefore allows to install an MRTM and an MLTM on the same card,
providing functionality of both kinds of MTMs.

A major advantage when using smart cards for hosting MTM functionality is that all
security properties of a certain smart card can be reused when assessing the security level
of the smart card based TPM. Smart cards are well investigated in the sense of security
evaluations - various security evaluations and protection profiles [98] exist.

3.2.3 The MTM abstraction layer

An MTM can be implemented in a number of ways, as the TCG only defines requirements
and features for the MTM but does not regulate how to implement it. Depending on
the implementation and vendor, the communication with the MTM can be realized in
many different ways. Hence, the proposed architecture includes an interface called MTM
abstraction layer as shown in Figure 3.2, No. (2).

Similar to the TCG Device Driver Library (TDDL), the abstraction layer provides a
common interface for the command library to the underlying MTM implementation. That
means that the abstraction layer receives the encoded commands from the command li-
brary and converts them into a format required by the TPM. Furthermore, the abstraction
layer handles the sending and receiving of these MTM commands. The implementation
of this layer is of course vendor and MTM specific and has to be adapted for any different
kind of MTM. Therefore, depending on the type of MTM, the abstraction layer might also
require access to the operating system and native libraries.

3.2.4 The MTM command library

An MTM supports a variety of commands and data structures as defined in [111]. Many
of these commands stem from the original TPM1.2 specification [53, 112]. The command
library provides the MTM related commands and authentication protocols an an API for
applications. However, depending on the intended purpose of the MTM, it might not be
necessary to implement all commands. Considering a set of commonly used services, it
could be reasonable to define a subset of commands required for particular operations.

3.2.5 The mobile trusted software stack

TC services are primarily provided for the applications by the trusted software stack
(TSS). The TSS’s main components are the TSS Core Service, a crypto service provider
and a TSS service provider [113]. All these services and providers can also be part of the
mobile TSS.

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 61

However, a TSS implementation might become very large so a discussion of specifying
a slim mobile TSS might be of interest.

3.2.6 Deployment of the MTM

As the focus of the concept lies on software for mobile devices, the question arises how
that software required by the architecture could actually be installed on the device. The
term software refers to the mobile TSS, the command library and the abstraction layer.
In the rest of the Section, these components are referred to as TC software or TC software
components. The application may be installed over-the-air (OTA) via wireless link or
could be pre-installed by the network provider. Therefore, a discussion of how these
components can be efficiently and securely delivered to the mobile device is given in the
following paragraphs.

Why is the question how the components can be installed so important? Although
Java is seen as a highly portable development environment, mobile Java applications are
developed for a specific environment. This environment consists of the virtual machine
plus its’ boot libraries. In addition, optional libraries can be added to the environment by
the mobile equipment manufacturer. As a consequence, the developer has to know exactly
which environment he can expect on the mobile device and if the TC software is already
installed on the platform or if it has to be delivered with the application.

Current J2ME implementations assume that all required libraries are installed and
uninstalled along with their owning application. This fact forces the developer of the
application to include all software components. Consequently, if an application wants to
use this architecture, it has to include: the low-level command library, the TSS and the
abstraction layer. However, a TSS implementation in Java can have a size of 500 kilo
bytes or more [66] Ḟor this reason, it would be reasonable to find a solution to share
code among applications. This problem could be solved by the upcoming J2ME/MIDP
3.0 specification [85]. This specification allows mobile Java applications to share code in
form of libraries. Other options could be to integrate a TSS into the device platform
allowing the Java virtual machine access to it or shipping the stack with the JVM as an a
optional package in form of a Java library. A mobile TSS API could then provide access
for applications to the MTM for both solutions.

Three ways how to provide the TC software components can be identified:

- The TC components are installed along with the J2ME application. Application and
TC components are installed together in one package. The drawback here is that all
applications have to include the TC components. Remember, a TSS implementation
might become very large so sharing the TSS’s code is mandatory. On the contrary,
a developer might only include components that exactly match the requirements of
the application and remove unused TC features and services.

- The TC components are included within the Java environment. This could be re-
alized by either integrating the software within the Java base classes or by adding
an optional package. The idea would include moving the TSS and/or the low level
commands into the Java runtime environment. This step has the advantage that the
stack and its components do not have to be installed together with the application
as previously discussed. However, for integrating the software into the base classes,
the J2ME platform specification would have to be redefined, which is very unlikely
to happen.

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 62

- The TC components are installed on the platform and come as part of the operating
system. In this solution the TSS runs as a service. Consequently, the Java runtime
environment has to provide an interface to the application.

All these solutions have in common that no standardized API exists at the moment.
Therefore, defining an API is a first logical step.

3.2.7 Design and implementation of the prototype

The prototype implementation of the architecture covers the ownership operations (TPM TakeOwnership
etc.), the authorization protocols OIAP and OSAP and the endorsement key (EK) oper-
ations for creating and reading the EK.

The generation and parsing of the MTM commands are implemented on both sides -
on the MTM as well as on the J2ME platform. Optional commands are omitted whereas
commands for both, for the MRTM and the MLTM, have been implemented in the same
MTM prototype for testing purposes. Despite the already implemented features and
commands, the primary objective of the implementation is support for attestation and
secure boot.

Figure 3.4 Prototype Design Overview

Native Applications

Mobile Device
APDUs

Operating System

Smart Card

TC enabled J2ME Application

MTM Abstraction Layer

Mobile TSS

TPM Command Library

SATSA

MIDP/PDAP

APDUs

J2ME - CLDC

1

2

Figure 3.4 shows the prototype implementation of the architecture. The low level
commands in the library are implemented in an object oriented fashion, meaning that
every command is represented as a Java object. Each of these objects is able to generate
incoming MTM commands - these are the commands that are sent to the MTM - as well
as to parse outgoing commands3. Although implementations for generating and parsing
TPM commands in Java already exist, [90] [113] none of them was designed to meet the
requirements of the J2ME/CLDC platform. The prototype closes this gap and provides a
J2ME/CLDC compatible command library.

3Incoming and outgoing is meant from the point of view of the TPM chip

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 63

3.2.8 The mobile trusted module on a secure element

The MTM in this prototype is implemented as a JavaCard applet (see Figure 3.4 number
(1)). This applet can be installed on a SIM or a on a device internal smart card.

An important question for TPM vendors is the byte order of the host system. Com-
mands sent to the TPM have to be sent in the according order either with most significant
byte (MSB) first or with least significant byte first (LSB). The same applies to the single
bits in the bytes. If the byte order of the host is different to the one used for the TPM, a
byte conversion has to be performed. However, there is no conversion required for the pro-
posed architecture. SIM cards shipped today are in fact JavaCards (JC) [101]. JavaCards
provide a very small Java runtime environment, supporting only a subset of the standard
Java API. The JavaCard runtime environment (JCRE) is a Java platform. This fact is
especially important as all Java platforms use the network byte order [74]. The bytes are
presented to the application in this order - no matter which order is used by the host
platform. As a matter of fact, there is no byte or bit conversion required when exchanging
data between card applet and a J2ME application. Moreover, a boot loader or arbitrary
native device application that is able to transmit APDUs to the applet could also make
use of this MTM implementation.

Nevertheless, implementing the MTM on a smart card has some drawbacks. For ex-
ample, the TPM Init command is not a TPM command at all but is rather a physical
signal sent over the LPC bus4 to inform the TPM [112] about a system’s reboot. This
function is not available on a SIM card or SE. Note that this missing feature also affects
the TPM Startup command as it is always preceded by TPM Init.

3.2.9 Communication with the mobile trusted module

Microcontroller are usually connected and addressed via a bus or equivalent system. Access
via low level programming as done with assembler or C can easily be achieved on common
platforms. On the contrary, access to system components via a high-level programming
language like Java is a difficult task. Java desktop or enterprise platforms offer an interface
called Java Native Interface (JNI) [103] to access operating system functions or shared
libraries of the host platform. However, this feature is not available on the J2ME/CLDC
platform. The J2ME/CLDC [99] specification does not provide access to native functions
for applications. Nevertheless, access can be provided by the Security and Trust Services
API (SATSA) (Figure 3.4 No. (2)) which provides a set of Java classes that provide a
standardized API for security relevant operations. Among support for cryptographic and
PKI operations, SATSA provides an interface for exchanging APDU commands with the
installed SIM or smart card.

As discussed in the previous chapter, the used MTM in this prototype is a JavaCard ap-
plet installed on a JavaCard compliant smart card. Communication between applications
and smart cards or SIM cards is done by exchanging APDUs. Consequently, the prototype
uses the APDU transmission mechanism provided by SATSA for the data exchange with
the MTM applet.

The SATSA package is delivered along with the Java VM, but it is declared as an
optional package which means, its presence depends on the mobile phone manufacturer.
Hence, the usage of this interface is limited to devices supporting this API.

4on the desktop platform

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 64

3.2.10 Other Applications

The presented approach also has other interesting fields of application: As SIM cards are
conceptually the same as common smart cards the JavaCard application implementing
the TPM may not only be installed on a SIM. It can also be installed on any smart card
supporting the JavaCard specification. A banking card could also be used to attest a pay
terminal as proposed in [81]. In this way, the cash card could provide feedback of the
status of the terminal to the user. The user could then determine whether the terminal
was manipulated or not. However, this idea can not work without modification of the
MTM or the smart card. The smart card must have a way to present the reported status
back to the user. This could be achieved by some kind of indicator on the card like an LCD
display or simply an LED. Furthermore, the MTM has to be extended with an attestation
application that receives the attestation information from the terminal respectively. In
this case, the MTM would not only receive commands, but would in fact receive and
process attestation blobs adopting the functionality of a remote attestation application.

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 65

3.3 Software-based versus Hardware-based Mobile Trusted
Modules

In this Section, the different advantages and disadvantages of the SE and TrustZone ap-
proaches are discussed. Both approaches are able to provide MTM features and function-
ality as defined by the TCG mobile phone specification [52]. All required commands, for
MRTMs and MLTMs, can be provided.

On the one hand, software-based MTMs are a very flexible solution and can easily
be adapted to certain use-case requirements. However, it is hard to determine whether
a pure software or TrustZone enhanced implementation can provide shielded locations
and protected capabilities that form the core requirements of TPMs as required by the
TCG [54].

On the other hand, shielded locations are supported by secure elements per se. The
design of current TPMs and MTMs originally stems from the designs of smart cards
which makes it easy to prove that the requirement for shielded locations and protected
capabilities can be achieved by secure elements. Moreover, protected capabilities can be
established by implementing the required command and authorization handling services
as software components on the card.

Trusted computing platforms have many other security properties especially when tak-
ing the properties of MTMs into account. Remember that an MTM may be implemented
in a different way. Therefore, the set of security properties and capabilities are defined in
an abstract way. For example, the mechanism how a TPM is connected to the rest of the
platform may either be by physical connection in form of a data bus or by cryptographic
binding of the TPM software module to the specific device.

These security properties and features of MTMs are discussed in the following Sections:

3.3.1 Roots-of-Trust

One important building block of trusted computing enabled platforms are the roots of
trust. These roots form the basis for any higher level service. The roots are defined for
desktop and mobile platforms. Their specification is abstract so that specific implemen-
tations vary and depend on the manufacturers characteristics. Not all of these roots are
provided by the MTM, they can be provided by the BIOS or a piece of software that does
verification operations, for example. Therefore, it is reasonable to investigate possible
impacts on these roots by the proposed design and the TrustZone approach.

The following roots are defined:

� Root-of-Trust for Measurement (RTM). This functionality is provided by a runtime
agent, typically a software module that is responsible to measure events on a platform
an report them to a MTM.

� Root-of-Trust for Reporting (RTR). The RTR provides a secure proof of the configu-
ration of the platform. This mechanism is realized in the remote attestation protocol
by the digital signature applied on the PCR values by the MTM. Hence, this service
is located in the MTM.

� Root-of-Trust for Storage (RTS). This root defines the capability to securely store
configuration information which is located inside the MTM.

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 66

� Root-of-Trust for Verification (RTV). Like the RTM, the RTV is a piece of software.
It is responsible to validate the integrity of the software images that are loaded on
the embedded platform.

� Root-verification authority identifier (RVAI). This identifier is used to validate the
creator of the boot integrity protection. In the simplest case, this identifier is a hash
of the public-key of the signer of the boot loader of the platform.

It is obvious to see that the SE based approach provides a root-of-trust-for-storage
(RTS) and root-of-trust-for-reporting (RTR) per se. All measurement values are stored
inside a protected area and all required operations for reporting this values (i.e. quote and
identity operations) can be performed in the same protected area. Therefore, it can be
assumed that the card provides RTR and RTS. However, can these roots also be applied
on the TrustZone approach?

Basically, all these features can be implemented inside the TrustZone execution area.
Therefore, the discussion of the security of this approach can be reduced to discussion of
the isolation and protection mechanisms of TrustZone. A discussion of the security level
of TrustZone is given in section 3.3.6.

In contrast to an SE, critical operations may be executed in the secure environment of
the TrustZone. When investigating the SE approach, one can see that the trusted system
is constructed from a RichOS application processor component and a small, resource
constrained security device. The validation of the software image is done by components
of the RichOS. Although it is generally protected by the boot process, manipulations and
exploits during runtime cannot be excluded. Hence, software like the measurement or
verification agent forming the RTV and RTM may be affected.

On a TrustZone system, these agents may be executed inside TrustZone. The software
images that are loaded for execution may be sent to TrustZone and then validated by the
agent that is executed inside the protected environment. Consequently, manipulations of
these agents are much harder to employ. Due to resource constraints, this approach is not
effective with the SE approach.

3.3.2 Validating integrity information

The integrity verification process involves reference integrity measurement (RIM) certifi-
cates which contain integrity information of certain software images and information of
expected integrity metrics [52]. When loading a software image on a trusted embedded
platform, the reference values of the certificate are used to validate the integrity of the
software image - either when loading or after extending the hash of the image into a PCR
so that they meet an expected configuration. If the result of the image validation fails,
further execution of the image is aborted.

The integrity of these certificates themselves are checked by using asymmetric cryp-
tography which can be rather time consuming and slow on mobile devices. In order to
address this problem, the MPWG has introduced the concept of binding a RIM certifi-
cate to a certain MTM involving just symmetric cryptography with a key that is only
known to the MTM. Using secure elements could improve this process greatly. Instead
of binding the certificate to the MTM, the certificate could be stored within the MTM.
Assuming that only authorized entities can update or store certificates within the element,
the certificate’s integrity can be seen as assured.

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 67

The benefit of this approach is that a verifier only has to create a hash of the RIM
certificate and of the image and send it to the secure element. The secure element could
then simply compare the hash certificate with the hash of the stored certificate to verify
its integrity.

Moreover, the card could compare the corresponding PCR selection values stored in
the certificate with the current content of the PCRs detecting aberrations between the
expected and the actual platform configuration before extending the PCR, as defined
in [52]

The same assumptions and methods apply to the TrustZone approach unless the Trust-
Zone is equipped with a sufficient amount of non-volatile memory in order to store the
hash values of the certificates or other material used for integrity protection.

3.3.3 Process separation

Process separation is especially important for isolating security relevant operations. How-
ever, mobile handsets and smart cards are highly sophisticated multiprocessing machines
allowing different tasks to be executed concurrently. In the proposed architecture different
types of MTMs are used on the same device. (see Figure 3.3). Therefore, process isolation
between e.g. a MRTM and a MLTM process is essential in order to prevent unauthorized
access to data.

In the JavaCard MTM implementation, the processor executing the MTM code is a
physically distinct entity to the processor running application code. The interface between
the MTM and the application is constrained by the ISO7816 [62] smart-card interface of
the secure element. Data exchange between the MTM and the application is limited to
an APDU based protocol, there is no mechanism for directly sharing memory between
the MTM and other applications on the device. The nature of this smartcard interface
automatically forces the MTM and any other applets running inside the secure element
into a passive role, with respect to the application processor.

With a TrustZone system, the separation mechanism is created by the duplication of
CPU registers and memory protection mechanisms for the two security domains. Com-
munication and data transfers is established through secure monitors.

3.3.4 The role of virtual machines

Virtual machines play a key role in both of the designs discussed in this Chapter.
In the secure element based design, the primitives provided by the JavaCard framework

and the Java language are used to realize protected capabilities and shielded locations
for the MTM applet. Within the context of the Java environment running on the secure
element, applet security and isolation is provided by the design of the JavaCard framework
[105].

The JavaCard framework is designed to be usable in environments with extreme con-
straints on resources like memory and computational power. Today smart cards are often
based on very simple 8bit micro controllers such as 8051-derivatives. These controllers
mostly lack support for features like memory protection, virtual memory or a distinction
between privileged and unprivileged processor modes.

Providing process isolation for applications running natively on such a limited processor
becomes next to impossible. The JavaCard VM provides a powerful yet simple solution to
remedy this undesirable situation. Instead of allowing applet writers to use the potentially
dangerous native instruction set of the smart card processor, it provides a safe virtual

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 68

machine instruction set. The virtual machine instruction set of the JavaCard VM (cf. [105],
[74]) is designed to not expose any direct means for raw pointer or memory operations. In
addition the Java virtual machine specification enforces a number of restrictions on valid
programs to allow bytecode verification. In the context of current JavaCards, bytecode
verification is mostly done outside the card. Since special keys are required to load applets
onto the card, it is still possible to guarantee that only verified applets are installed.
Once the applets are installed, the card can be locked, disallowing any further applet
installations.

Based on bytecode verification and the virtual machine instruction set design of the
JavaCard VM, it is possible to overcome the limitations of the underlying native processor
with respect to applet isolation. Under the assumption that the virtual machine imple-
mentation is correct and secure, JavaCard VMs allow powerful software-isolation without
the need for equally powerful underlying hardware isolation.

A separation is also required to protect software based roots-of-trust or other secu-
rity services based on these roots. Such services that can be used by applications are
called trusted-engines. They include different services such as remote attestation tasks or
key-storage facilities. When discussing the TrustZone based prototype design, the possi-
bility of implementing trusted engines as user-space processes, running in the secure world
environment of the TrustZone based platform has already been mentioned. The ARM
processors used in the TrustZone based design do not suffer from the same limitations
with respect to memory protection and privileged instructions.

Nevertheless, trusted engines implemented as native processes can pose a threat to
the entire secure world environment, especially if they have to process input from un-
trusted sources. Incorrectly implemented native trusted engines can give an adversary the
capability of directly executing code in secure world user-space. While this does not nec-
essarily lead to an immediate break of the platform security, it can be a highly significant
advantage to an adversary.

A virtual machine based approach to trusted engines offers mechanisms to tightly
restrict the low-level operations which can be carried out by software running inside the
trusted engine. For example, potentially unsafe low-level operations like direct raw pointer
manipulation can be ruled out by appropriate byte code design. Depending on the trade-
off between performance and security requirements, virtual machines can implement a
significant amount of run-time checks and byte code verification steps.

Examples for candidate VMs include the Java VM (J2ME, JavaCard) or the Lua VM.
Especially the latter case of the Lua scripting language appears to be a quite attractive
candidate due to the small size and high flexibility of the Lua programming language. It
should be pointed out that Lua has already been used in designs with a similar problem
setting, as demonstrated in [39].

3.3.5 Platform binding

The TCG specification defines that an essential requirement of TPMs is platform bind-
ing. On desktop systems, this binding is achieved simply by attaching the TPM to the
motherboard of the PC. However, on mobile devices the situation is different. While SEs
are attached to the mobile’s board similar to desktop TPMs, MTMs on SIM/SD cards or
software based MTMs can be removed.

If no binding is established, a malicious user may execute the following attack: He

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 69

might boot the device into a trusted state and attach the SIM card to another device that
is not in a trusted state. This way, he would be able to pretend the device to be in a
specific configuration providing applications and external services with false attestation
information. Therefore, binding mechanisms must be in place for software based MTMs
and MTMs based in removable security devices.

But how can this binding be established? The basic requirement for such a binding is
another security mechanism on the device. For example, a simple binding could involve
a Diffie-Hellman key-sharing protocol where a key is shared between MTM and mobile
device. The MTM functionality is then only available to the device if it can authenticate
itself to the MTM.

However, if the authentication information is stored on the device it is prone to theft
and manipulation. Therefore, an additional security component that controls the authen-
tication information on the mobile side is required. Such a component could either be
an on-board smart card like a SE or the TrustZone security mechanism. In case of the
SE solutions, the authentication information is stored inside the security device and the
MTM is only activated if the device can be authenticated.

Security enhanced embedded systems such the ARM Cortex devices are equipped with
a hardware device unique key (HUK). This key is a symmetric key and is unique to each
device, therefore, the MTM software module for the TrustZone solution may be encrypted
with this key. Typically, the module is stored on a mass storage device such as a SD
card or the main memory of the device. Consequently, before loading the MTM software
image into the TrustZone execution environment, it is decrypted. If an attacker manages
to copy the module to a different platform, he will be unable to execute it as the target
device will not possess the HUK from the original device. During execution, the MTM is
protected by the security functions of TrustZone preventing an malicious attacker to copy
the software module from the platform.

Another approach might involve only integrity protection of the module. This means
that during install the module is signed by device with a key derived from the HUK.
Consequently, the MTM is not bound to specific device and may be transferred to another
device.

Yet unanswered is the question how the MTM credentials such as the EK or DAA
parameters are stored. The preferred approach when storing credentials on memory con-
strained embedded systems is to store the data outside of the protected environment.
This requires cryptographic protection. Therefore, the typical concept is to derive a key
based e.g. via a key derivation function defined in [63] on the HUK and encrypt the data
with this key. Only the salt used during the key derivation process is then stored in the
non-volatile memory.

A more secure approach is the combination with a SE, where the TZ executes the
MTM and the credentials are stored in the SE. A detailed analysis of this approach in
coherence with a concrete use- example is given in Chapter 4.

3.3.6 Security evaluations for embedded security mechanisms

Security evaluations are a wide spread method to estimate and harmonize the levels of
security that can be assured by security modules. They are also used to evaluate secure
elements, however, on TrustZone like devices, they can only be applied with limitations.
The problems when evaluating a TrustZone device are multifaceted. First, the designer of
the security extension is typically not the device manufacturer. The exact mechanisms and

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 70

techniques employed for manufacturing the device are not known to the designer. Hence,
an evaluation of the full system cannot be conducted by the original designer. Second,
embedded systems like ARM processors are designed to be extended by the manufacturer.
Consequently, the original designer is again not in the position to conduct an evaluation
as it is not know to him which components are added to the platform. Third, the power
drain of the rather powerful TrustZone processors is hard to control. Hence, they are more
prone to side channel attacks than common smart cards.

The challenges for security evaluators are to find a cost and time effective way in order
to keep the time to market delay of new devices at a minimum. Hence, a full evaluation
of every new embedded device that appears on the market is out of question. Therefore,
new methods are required in order to solve this gap. In contrast, a secure element can
be evaluated by existing methods. In fact, as SEs typically originate from other security
devices that already have security evaluations. Consequently, SEs are rather easy to
evaluate - if it is necessary at all.

To overcome this situation, different approaches are subject to research at the moment.
The concept proposed in this thesis is to use TrustZone and SEs in combination, thereby
separating the device into three domains:

1 Un-trusted domain - in this domain, all user related application that are potentially
seen as un-trusted are executed. No confidential material is stored here.

2 Trusted domain - this is the environment protected by TrustZone. In this domain,
security related applications that need protection from the untrusted domain are
executed. Secret information is not stored here.

3 High security domain - this is the environment provided by the SE. The primary use
is to store credentials and key-material in a well protected device.

Figure 3.5 illustrates the principle of the architecture. The benefits of this three-domain
separation is that the evaluation may be conducted separately according to different assur-
ance levels. Assuming that the SE is already evaluated, only the TrustZone architecture
remains to be evaluated.

Figure 3.5 3 Domain Separation for Security Evaluations

un-trusted domain trusted domain

high-security

domain

trust-

boundaries

As secret material is only stored in the SE, the level of evaluation for TrustZone may
be lower as if keys were stored in it.

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 71

3.4 Dynamic Command Loading for Security IC based MTMs

Trusted platform modules are typically monolithic software modules that provide a set of
functions and commands following a defined specification. Specifications, however, are not
static - they undergo updates and modification over time, thereby changing the defined
set of features. Such modification might also include the addition of new commands.

However, once they are deployed in the field it is very hard to update their firmware
as the required amount of memory to verify a firmware block inside the TPM in a secure
way exceeds the memory of current TPMs.

This raises the question what can be done in order to modify a set of provided MTM
commands in a deployed MTM without the requirement of changing the entire firmware.
Moreover, how can the supported commands be composed according to the requirements
of the current use-case thereby using the resources of TPMs efficiently? How can the TPM
be updated accordingly and in a secure way?

To solve this question, the design and implementation of a concrete concept for dy-
namic command loading for mobile trusted modules is discussed in this Section. Based
on the idea of [70], a specific approach is introduced which allows to build flexible and
reconfigurable MTMs. The concept may be realized on dedicated micro controllers as well
as software based MTMs. The proposed approach takes advantage of security features
that are available on many mobile phones i.e. Secure Elements [30].

The new concept aims at achieving different things:

1. First, overcome resource limitations like the memory constraints of the Secure Ele-
ment’s EEPROM by limiting the provided functionality to the requirements of the
current application.

2. Second, achieve algorithm flexibility. Current designs are nailed down to certain
algorithms e.g. SHA-1 or discrete logarithm based Direct Anonymous Attestation
schemes (DAA). By dynamically loading and updating the set of commands sup-
ported by an MTM, a higher level of algorithm-flexibility can be achieved. Moreover,
the provided functions of an MTM can be switched either to support mobile-local-
owner-trusted module (MLTM) features or mobile-remote-owner-trusted (MRTM)
modules features.

3. Third, the MTM specification differentiates between optional and mandatory com-
mands [111]. With dynamic command-loading, optional commands can be supported
and installed on MTMs even if they have already been deployed in the field. More-
over, field-updates as defined in the TPM specification can be done securely and
in a simple way by using the code authentication frameworks provided by the Java
environment.

The proposed architecture is compatible with the current MTM specification from
TCG and relies on security features provided by security ICs available on modern mobile
platforms. The architecture neither requires modifications of the TSS specification, nor
does it need extra hardware.

As previously discussed , mobile trusted modules may also be realized as smart-card
applications [30], if the mobile platform is equipped with an adequate device. Such devices
can be for example Secure Elements (SEs) as discussed in [30] and applications which are
installed on the phone. Hence, from a certain point of view, a TPM may be seen as trusted

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 72

execution environment (TEE). Instead of providing a fixed set of functions, a TEE can
execute arbitrary code.

This approach allows to dissembed functionality of the TPM and let only the function
required for specific operations remain in the TPM.

3.4.1 Design of the deployment architecture

The basic architecture of the introduced deployment mechanism works as follows: The
application has to select the applet it wants to exchange APDUs with by the applet’s
application identifier (AID) which is unique for each applet. When this task was suc-
cessful, the application may send commands to the card that are received by the SE’s
operating system and forwarded to the selected applet. The SE supports the installation
of different applications (applets) which can support different features. For example, one
applet may support integrity reporting functions, i.e. quote and the corresponding com-
mands and another applet might support sealing or binding functionality. Each applet
contains a set of TPM commands. For the experiments, the categorization defined by
the TCG that separates the TPM commands in administrative functions, authorization
functions, configuration reporting functions etc. was used. However, this categorization
may vary depending on the use-case the MTM is applied. Therefore, the detailed grouping
of commands is left to authorized third parties e.g. the MTM vendor.

Figure 3.6 Design Overview

Figure 3.6 gives an overview of the proposed design. In addition, a module that
manages the communication of the mobile applications with the SE is required. In the
proposed approach, this is done by the Capability Manager (CAP). The CAP is responsible
for communicating with the CM to instruct the CM to load and delete applets. Moreover,
it is responsible for selecting the applet with the requested TPM functionality (a specific
functionality can be requested by an application that wants to use the MTM, see discussion
in subsection 3.4.3). The CAP has to manage three repositories: first, the repositories
that contain the applets that can be installed in the SE. The CAP has to know in which
storage it can find (externally or internally) applets with specific features. Second, the
repositories that contain the validation information for the applets. And third the SE that

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 73

executes the applets as the CAP has to keep hold of which applet, providing a specific
functionality is currently loaded in the SE/MTM.

The design (see Figure 3.7) is based on a master applet (MA) for each MTM instance.
The MA is pre-installed and provides different services to the other applets on the card.
It offers, for example, TPM command handling, like integrity check or parsing of the
commands and command authorization functions that may be used by other applets be-
longing to the same MTM. Basically, any common function that is required by other MTM
commands.

Moreover, the MA controls access and usage of the endorsement-key (EK) and EK
certificate. The actual processing of the TPM command is handled by the specific applet.
However, special care has to be taken when sharing cryptographic objects. A cryptographic
object can be an instance of e.g. a java.security.MessageDigest or javax.crypto.Cipher
class. Such objects may be initialized by one applet and then shared with another one.
Hence, data that has been handed over to the object, e.g. data that should be encrypted,
is now available to the other applet as well as it is stored in the cipher object. Typical
scenarios require a single MLTM and a single MRTM. All applets that are related to
these MTMs are assumed to be allowed to share data. More sophisticated application
scenarios might require two or more MTM instances. In this case, care has to be taken
when sharing such critical objects among applets and either delete the data stored in the
objects or return a new instance of the corresponding object.

In addition, Figure 3.7 shows the layout of the MTM applets. A single MTM contains
several applets that are merged into a single applet context. The applet firewall, which
is a feature of the JavaCard runtime-environment, provides isolation for the contexts and
prevents access from applets of one MTM to objects of another applet.

The JavaCard runtime environment provides a strong isolation between the different
applets which means that an applet can not access the Java objects or fields from another
applet. This isolation is required as the applet entry points are public and other applets
might be able to get an object reference which could be used to gain access to protected
information. Although the firewall provides an isolated execution environment for each
applet, there has been a mechanism for sharing objects between applets since JavaCard
version 2.1. of the JavaCard specification. The JC 2.1 environment provides a shareable
interface where an applet can define a set of methods that are available to other applets.
An applet can implement an arbitrary number of shareable interfaces and can extend other
applets that implement shareable interfaces. Only the methods defined in the shareable
interface can be accessed by other applets. The applets that provide shared objects are
server applets and the applets that use the shared interface are client applets. Hence, the
master applet is a server applet.

3.4.2 Installing applets

Using a virtualized environment like a JavaCard, has the advantage that applications on
the card can be removed from the card and applets with new or different functions can
be downloaded. Moreover, the virtualized environment provides isolation between applets
allowing them to run in different (card) contexts. The proposed idea of the TPM Execution
context ideally fits the concept of the (card) context.

The installation process (in the SE) is managed by the card-manager applet. This
applet is pre-installed by the card manufacturer and handles the downloading and in-
stallation process of the applet. Before the card-manager accepts installation requests, it

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 74

Figure 3.7 Applet Isolation in the Secure Element

validates authentication information from the requester. Typically, the authorization is
done via shared keys. One single authorization key allows to unlock the card and grants
access to it. Hence, the instance that is in possession of the authorization key is able to
install applets, thereby modifying the SE which is actually a root-of-trust. In future spec-
ifications like JavaCard 3.0 it is possible to use different authorization keys for different
applications [75]. On the JavaCard of the experimental platform, the card manager (CM)
is not able to verify the integrity and authenticity of the applets that are installed. Hence,
this task has to be done on mobile platforms by the capability manager. More sophisti-
cated cards support Data Authentication Patterns [46] which enable the card-manger to
verify RSA signatures that are put on the applets.

The main task of the card manager is to install and delete applets. When an applet is
loaded into the SE by the CM, it is stored in the card’s EEPROM memory and the CM
creates an instance of the applet, initializing the fields and objects used in the applet.

One requirement is that applets that can be unloaded (i.e. all applets except the
MA) do not store permanent information. When unloading a card applet, all data
stored in the space of the applet is deleted. Consequently, permanent data structures
like TPM Permanent Data etc. must only be stored by the MA.

3.4.3 TPM command execution process

For the prototype design, the following procedure for using the SE based MTM function-
ality is defined: When an application on the mobile phone wants to send TPM commands
to the MTM, it contacts the capability manager. The CAP manages the installation and
removal of applets and knows which applet (i.e. TPM functionality) is currently installed
in the SE. The CAP is also able to request new functionality (i.e. applets) from a trusted
source and is able to install applets on demand depending on the resources of the SE.
Sources for applets can either be external, remote repositories or SD cards or an internal
storage e.g. the phones memory. However, it is important that the CAP or the CM can
verify the integrity of the applets before loading it into the card. Hence, the applets have
to be signed by a trusted third party. The CAP selects the corresponding applet and re-
turns a session handle to the requesting application which can now send TPM commands
to the MTM via session handle and CAP.

The TPM commands that are sent from the application and forwarded by the CAP are
received by the applet that was selected by the CAP. The applet processes this request and

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 75

returns the result. For processing the request, it may access the TPM command handling
functionality that is provided by the master applet via the shareable interface.

In the experimental implementation, the communication with the CAP is established
via a socket connection. The CM is a Java 2 Micro Edition application that embeds the
incoming requests into smart-card APDUs and forwards them to the SE. A requirement
that the application is allowed to do that is that it is signed with a Verisign or Thawte
code signing certificate. Otherwise, the security policy of the device’s on-board Java virtual
machine prohibits communication between the application and the SE.

Storage and Protection of the Authentication keys Each time an application
requires a new command set (i.e. applet) that is not in the SE, the CAP has to fetch the
corresponding applet from one of its storage,s validate its authenticity and write it into
the card. The current smart-card standard requires authentication before software images
containing such applets may be downloaded to the card. In case of the JavaCard, this
is achieved with a single authentication key. Hence, the entity which is in possession of
the keys may modify the SE and with it a core-root-of-trust. As a consequence, special
protection of the keys is required. The keys may be stored locally or in a remote storage.
In both cases, the keys have to be bound to the MTM with the TCG’s bind feature. Hence,
the keys may only be decrypted if the device is in a specific configuration. The binding
of the applet has to be done by the instance that publishes the applets for download.
This approach has the consequence that for measuring and reporting the configuration of
the platform, MTM functionality has to be provided prior to unbinding the keys. This
requires an applet that provides integrity measuring, reporting and un-binding functions,
to be already installed in the SE. Moreover, this approach requires the secure boot [34]
feature that is going to be discussed in the following paragraphs.

3.4.4 Security considerations

The SE based MTM is executed in a separated smart-card like environment. Consequently,
no further protection of the MTM processes from other programs is required. Access to
the MTM is controlled by the master applet. Remember that, although the single applets
receive the TPM commands directly, the incoming commands are handed over to the MA
that performs the parsing of the commands and the integrity checking. Therefore, shielded
locations and protected capabilities as required in [112] can be guaranteed.

The most critical task is the downloading of the applets into the SE. The proposed
approach assumes that the smart-card is not locked (i.e. modification of its memory from
outside is forbidden). Smart cards have a feature that allows the conservation of the card
and preserving of the current content by preventing updates of the internal state from out-
side. In smart-cards that are not locked, every entity that knows the cards authorization
keys is able to download its own applets. The introduced design requires a software module
(the CAP) that handles loading, deleting and communication of the applets. Therefore,
the CAP requires authorization keys to unlock the SE. As a consequence, the platform
has to be in a trusted state before the CAP can unbind the keys and unlock the SE. This
requirement can be achieved by a secure boot of the mobile device. Only if the device is
in a trusted state, the CAP may unbind the authorization keys in combination with the
minimal applet that provides the unbind and configuration measurement functionality.
Otherwise, a malicious application may try to get access to the authorization key and
modify the SE which results in a compromisation of the root-of-trust. After a new applet

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 76

or set of applets has been downloaded to the SE, the CAP locks the SE with the keys and
deletes it from its memory.

3.4.5 Test environment

For experimental purpose, a Nokia 6131 NFC mobile phone which has a Giesecke & De-
vrient smart-card on board that plays the role of the SE was used. The G&D smart-card
is a Smart@Cafe Expert 3.1 smart-card that can be programmed with the JCOP tools.
It provides about 65 kilo bytes of memory for JavaCard applets and is compliant to the
Global Platform 2.1.1 [46] specification and Java Card 2.2.1 [101] specification. The SE on
the Nokia phone has to be un-locked before it can be used. Therefore, Nokia has published
an un-locking service. With this service the authentication keys can be reset to default
values and allow developers to install their own applets and un-locking keys. The base
size of the MTM command execution applet in our system requires about 12 kilo bytes of
memory and contains the MTM constant definitions, permanent data, methods for storing
and extending PCR values, AIK loading an activation functionality and command han-
dling and parsing. A size estimation of a single MTM command is hard to give as the
size varies according to the command’s complexity. However, in order to provide a size
estimation, the size of an applet that provides DAA functionality is provided. The applet
contains the required DAA commands which are TPM DAA Sign and TPM DAA Join.
The total size of the applet on the card is about 14 kilo bytes. As the DAA command is
one of the most complex commands this can be considered as the upper bound for MTM
command sizes.

3.4.6 Command set loading via NFC

The Nokia NFC phone provides another interesting feature - the NFC module. While
this module is typically used to exchange small amounts of information at short ranges,
it is also possible to directly communicate with the SE. A server could, e.g., send TPM
commands to the phones SE via a NFC terminal when the phone is in range, bypassing the
mobile application processor. This allows for another interesting application as command
sets (i.e. applets) could be loaded via the NFC module instead via the CAP. This idea
could allow a user to download new command sets from trusted access points, fitting the
current requirements. Furthermore, it would avoid the critical un-locking of the SE by an
application that is executed on the mobile platform itself.

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 77

3.5 Conclusion

In this Chapter, two approaches for building mobile trusted modules based on existing
embedded platform features are discussed and compared according to their supported
security infrastructure and the security requirements of mobile trusted modules. One
design is based on ARM TrustZone and the other one on Secure Elements.

The ARM TrustZone approach, covered in subsection 3.1.2, focuses on using special
capabilities of the platform and its main processor for implementing trusted comput-
ing building blocks in software. Apart from the requirement for a sufficient processor
core with TrustZone support, this approach avoids dependencies on additional dedicated
trusted computing hardware. In comparison to the second design approach introduced in
this Chapter, the TrustZone approach can not rely on the same security properties and
security assumptions which are inherited from smart card environments. Nevertheless it
can be argued that it has the potential for matching the security properties of a dedicated
hardware based MTM implementation closer than a software MTM implementation on a
general purpose processor. Based on the additional memory and process isolation features
offered through TrustZone, it can be concluded that the TrustZone approach allows a
larger set of possible trust boundaries and domains than the solely use of an integrated
smart card. Moreover, it can be concluded that software MTMs running in a secure world
environment and exclusively using secure world memory can provide protected capabili-
ties and shielded locations which are potentially stronger than their counterparts in the
general purpose processor without TrustZone features.

The second approach discussed in this Chapter is based on a dedicated microcontroller
also known as secure element. As mentioned at the beginning of Section 3.2, such secure
elements are already deployed in a number of mobile phone platforms. this JavaCard
oriented approach again focuses on reusing the existing secure element for hosting trusted
computing building blocks, without creating the need for additional special purpose hard-
ware. In this approach, mobile trusted module functionality is implemented in a dedicated
smart card environment, sharing some similarity with the TPM modules available in many
desktop PC systems. This MTM implementation approach inherits the security properties
established by the JavaCard framework and its smart card nature.

It can be concluded that protected capabilities and shielded locations of the smart card
based MTM implementation approach closely match their counterparts found in existing
TPM modules. A definitive and exhaustive statement on the difference between the secu-
rity properties of the JavaCard MTM and the TrustZone-based software MTM cannot be
given at the moment as detailed security investigations of TrustZone are not available to
the public. Properties of ARM TrustZone suggest that the software MTM implementation
can achieve characteristics close to the JavaCard MTM’s security properties at least for
a subset of these properties. The precise limits of the security properties of the Trust-
Zone design Section are part of ongoing research. To ease matters, ARM has initiated the
TrustZone Ready Certification Program to support equipment manufacturers that want
to evaluate their TrustZone based products [7].

Nevertheless, a reference design for estimating and setting boundaries for security as-
surance is introduced. This design takes advantage of the fact that secure elements have
undergone detailed security evaluations. Moreover, the design is based on domain split-
ting which allows to assign different security assumption to the different domains of a
mobile handset. These different domains have further impact on the security assump-
tions of MTM and other applications executed on the device. The combination of ARM

CHAPTER 3. ARCHITECTURES FOR MOBILE TRUSTED COMPUTING 78

TrustZone and secure elements allows the introduction of a semitrusted environment.
This results in a segmentation of security environments into environments with different
security assumptions. Therefore, applications may rely on an un-trusted environment
supporting a RichOS, a semi-trusted environment providing and a high-security environ-
ment. Depending on the application or algorithm, this design allows to split computations
between the semi-trusted and high security environment. A concrete use-case that takes
advantage from this architectural design facility is discussed in Chapter 4.

Another contribution of this Section is the introduction of a dynamic command load-
ing concept for mobile TPMs that overcomes the resource limitations arising from the
security facilities of embedded microcontrollers. The introduced architecture focuses on
secure element based MTMs which implement the MTM functionality in applets, small
Java applications that can be downloaded into the smart-card like trusted execution en-
vironment. The functionality of the MTM may be changed, depending on the functions
provided by the applets that are downloaded. With this approach, it is possible to re-
duce the memory requirements of the underlying security architecture. Furthermore, a
high level of flexibility can be provided when defining the actual functions that should be
supported by an MTM.

3.5.1 Future work

Currently available smart cards are typically based on an 8 or 16 bit micro controller.
Cryptographic operations are executed on co-processors, allowing a high performance when
using symmetric or asymmetric cryptography. Future developments in smart-card technol-
ogy will dramatically change the way smart-cards are used. For example, the specification
defines that the cards may host servlets that are embedded in a web service container,
allowing TPM functionality to by accessed via HTTP requests instead of APDUs. Such an
environment allows applications to access the smart card’s services via the HTTP protocol.
TPM commands could then be set off via HTTP requests to the smart-card.

Moreover, security evaluations are getting more and more important. Especially, com-
panies that are involved in security reliable products require estimations of the achievable
security level of their products.Therefore, more extensive investigation and research on ef-
ficient methods for evaluating modern security mechanisms are sought. In addition, with
the raise of privacy concerns and support of privacy protection in mobile handsets, the
question arises how anonymity protecting products can be evaluated in order to provide
reliable statements about the actual protective capability.

Chapter 4

Privacy Enhancing Technologies
for Embedded Systems

4.1 Introduction

From the very beginnings of Trusted Computing, research on anonymity and privacy en-
hancing technologies has been a major issue. The protection of the privacy and anonymity
of a trusted platform and its user is especially important when conducting transactions
over the Internet or when performing authentication operations that allow to track and
identify a specific platform. For example, if two platforms perform a remote attestation
as specified by the TCG they require a proof of their current platform configuration. This
proof is established by cryptographic means, in detail a digital signature is applied to the
values stored in the PCR registers of the TPM.

However, using a Trusted Platform Module and its unique credential - the Endorse-
ment Key (EK) - allows malicious entities to track the activities of specific platforms
and eventually identify the owner of this trusted platform. Hence, the EK unambiguously
identifies a certain trusted platform and, using this unique key, violates the anonymity of a
platform to a great extent. Therefore, the use of the EK must be avoided and technologies
protecting the TPM’s and the platform’s anonymity are required.

In general, using common digital signature schemes for attestation requires complex
public-key infrastructures which create a major management effort. In addition, it does
not protect the signer platforms’ identity as its transactions can be tracked and identified
via the signing platform’s public-key. Therefore, other solutions have to be researched and
applied.

A first approach to tackle this problem is to use a new key for every attestation
request. However, using a newly created key alone is not enough - a proof that the involved
TPM is genuine and that the key was solely used in this TPM also has to be provided.
Consequently, the first approach introduced by the TCG, in order to address this problem,
was the concept of the PrivacyCA (PCA). For every single transaction, a new asymmetric-
key, in detail attestation identity key (AIK), is used. Every newly created AIK [112] is
then sent to and certified by a PCA. Each AIK is then issued an AIK-certificate. The
AIK has the property that it is non-migratable from one TPM to another and that it is
created, used and destroyed in a specific TPM. Consequently, the verifier has confidence
that the used AIK stems from a genuine TPM and that the associated platform has the
properties attested by the PCA.

79

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 80

However, sending a new AIK to a PCA for certification creates the problem that the
PCA has to be highly available. Once the PCA is off-line or unreachable, no new AIKs can
be certified and the scheme fails or the platform re-uses an AIK, thereby risking to reveal
the platform’s identity. Moreover, it is unclear how often a new key should be created.
How often the same AIK should be used e.g. for one secure channel connection or for a
certain period of time such as one day or one week - is not specified, yet. Also unanswered
is the question who should host such a PCA. It may be hosted by a company providing
anonymity protection for the company’s employees or it may be hosted by a third-party
outside of a company’s domain.

However, for the latter case the question arises how the trust relations to the PCA are
defined. Which platforms are allowed to receive certificates form this PCA and basically
what is testified by a certificate from this specific PCA? From a certain point of view,
the PCA represents a certain group of platforms and with it a certain set of properties of
these platforms.

Moreover, the security assumptions of the PCA have to be investigated. Basically,
a PCA may either record the issuance of every requested certificate or it may delete all
evidence of this process. As a consequence, the PCA is either available to identify the
requesting platform by combining the request and the issued certificate or it may simply
have no indication of this relation. The consequences are manifold, on the one hand the
PCA is a single point of interest for adversaries and the disclosure of the certification
issuance information may compromise the privacy of single platforms. On the other hand,
revocation of the issued AIK-certificates is virtually impossible.

The validity period of AIKs also proves to be an open issue. The basic question that
has to be addressed is how long should the validity period of AIK-certificates be defined?
Shorter periods may reduce the need for an efficient revocation mechanism while longer
periods might require revocation.

In addition, revocation of issued AIK-certificates may become a complex task especially
in cases where the trust relation to the used TPM is broken. This can be the case if a flaw
in this specific TPM or set of TPMs has been found. As a consequence, if a certificate
of an affected TPM is revoked the platform may choose a different one from a different
PCA to hide its identity until all concerned PCAs are informed and all corresponding
certificates are revoked.

A more efficient approach would be to certify the keys locally - namely on the plat-
form. The signing key of the PCA could simply be distributed among a set of trusted
platforms and the TPM could care for the protection of these keys. However, if one TPM
is compromised, all platforms sharing the same signing key are compromised, as well.

In order to overcome the problems that arise from using PCAs or from supplying plat-
forms with shared keys, the TCG introduced the Direct Anonymous Attestation (DAA)
scheme [13]. It allows TPMs to sign AIKs on behalf of a group of trusted platforms,
each platform being equipped with a unique key. Although, the (DAA) scheme eliminates
the requirement of a remote authority, it includes complex mathematical computations.
Therefore, the question arises how this protocol can be employed efficiently on modern
computing platforms. The term platforms here refers to signing platform as well as veri-
fying platforms.

Even though the TCG states DAA to be optional in their mobile TPM specification,
there is a high demand for anonymity on mobile and embedded devices. Modern cell
phones are able to join up in ad-hoc groups, they exchange data via Bluetooth or near-field-
communication (NFC) or support the same or similar applications as desktop platforms do.

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 81

Therefore, they are prone to location tracking and behavioral profiling, thereby threatening
their owner’s privacy. While it is obvious that the network provider is able to identify a
certain mobile handset, it does not mean that other cell phones or providers of online
services should be able to reveal a certain platform’s identity. Consequently, support
for anonymity protecting capabilities should be considered mandatory on future mobile
platforms designs.

However, DAA has strong protection assumptions on the used private credentials. If
an adversary manages to steal these credentials from the platform he is able to create DAA
signatures on behalf of the group without ever officially entering the group and without
validating its true identity. Therefore, strong protection mechanisms have to be applied
in order to support this scheme in a secure way.

While on desktop systems this part is covered by the TPM, mobile devices lack such a
device. Yet, it is not clear how architectures look like that employ secure implementations
of DAA mechanisms on modern embedded systems and which performance can be achieved
so that real-world use-cases can be developed. Fortunately, approaches for hosting private
credentials such as DAA credentials securely have been introduced. The designs introduced
in Chapter 3 form an ideal basis for hosting and processing such credentials.

As a result of the discussions in the previous Chapters, this Chapter focuses on the
question how embedded security architectures can be used in order to host DAA function-
ality on embedded systems. Moreover, it focuses on which performance can be achieved
on desktop platforms and mobile devices when creating and verifying DAA signatures.
In order to provide a comparison of different platforms, focus is laid on investigations
on Java enabled devices as Java provides a high level of portability. The targeted plat-
forms are the Java 2 Standard Edition (J2SE) which is the common virtual machine for
desktop platforms and the Java 2 MicroEdition/Connected Limited Device Configuration
J2ME/CLDC [84] which is the most widespread virtual machine on mobile phones, nowa-
days. The investigation focuses on related publications to the DAA scheme defined by
Brickell, Camenisch and Chen which is also known under the abbreviation BCC scheme.
As the scheme was published in 2004, it is also referred to as BCC04.

In the proposed approach, the idea from Chapter 3 is extended where TPM func-
tionality is integrated into an on-board smart-card, the Secure Element (SE). With the
basic Trusted Computing functionalities, namely shielded locations and protected capabil-
ities ([35], [112]) they form a major building block for secure execution environments.
Moreover, the supported cryptographic features of these elements provide an ideal basis
for implementing the required cryptographic algorithms.

As the required computations for performing DAA tasks are the same for TPMs and
mobile TPMs (MTMs), throughout this Chapter the terms TPM and MTM refer to a
trusted module that provides the required DAA functionality .

Furthermore, this Chapter focuses on the basic DAA functions that are DAA signature
creation, verification and the join process that allows new clients to enter a group. In order
to generate significant measurement values, a reference setup was implemented including
a crypto library that provides these basic DAA functions. The implementation relies on
the discussion on DAA given in [76] by Brickell, Camenisch and Chen and is the first one
addressing this scheme. The library was designed to work on different embedded platforms
as well as on desktop systems and is the first implementation of a DAA scheme on a mobile
phone. In order to achieve portability, the Java programing language was selected which
is also a perfect tool for rapid-prototyping.

The Chapter also includes an investigation of a real-word DAA use-case. For this

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 82

investigation, the TLS client authentication mechanism discussed in Chapter 2 was cho-
sen. The gathered results offer valuable clues about the practical application of the DAA
technology.

Another contribution of this Chapter is the investigation of the DAA scheme for con-
tactless, anonymous authentication mechanisms used in NFC enabled devices, with respect
to secure storage and authorized access to the DAA credentials and sufficient performance.
It is demonstrated how the DAA protocol has to be extended in order to realize a system
which is able to compute authentication information with a reasonable performance that
can be applied in real-world scenarios. In addition, off-the-shelf devices are used in order
to generate experimental results and to support this statement. The approach can be used
to enable privacy protecting technologies on low-cost devices which were previously only
available on cost-intensive, high-end devices.

The remainder of this Chapter is organized as follows. An investigation of existing
publications and related work on DAA is given in Section 4.1.1 which is followed by an
introduction into the DAA scheme and background information on privacy enhancing
technologies on trusted platforms in Section 4.1.2.

An analysis of the DAA scheme for TLS client authentication is provided in Section
4.2. This Section is followed by an analysis of the DAA scheme on current smart phone
platforms in Section 4.3 as well as a discussion of the use of DAA for NFC authentication
in Section 4.4. Furthermore, the reference designs and implementations as well as the
integration in common cryptographic frameworks is examined. The different test setups
and test devices for the DAA performance measurements are described and a discussion
of the measured results including performance values is given. Moreover, implementation
details of the DAA library are discussed and finally, the results are summarized and future
directions for investigations and improvements are proposed in Section 4.5.

4.1.1 Related Work

Several ideas for integrating anonymous authentication and Trusted Computing technology
in TLS have been published. Latze et. al. propose to use the TPM for identity distribution,
authentication and session key distribution and have defined an Extensible Authentication
Protocol (EAP) extension in order to integrate the Trusted Computing and TPM related
information [15]. Although the protocol supports anonymous authentication, it is based on
the PCA scheme and not on DAA. Moreover, this document is currently work-in-progress
and is tagged to be in an ”experimental” status.

The approach from Cesena et. al [38] aims at providing anonymous authentication for
trusted platforms and trusted applications in the sense of Trusted Computing. In their
work, they define a set of extensions for TLS for transporting DAA related information
and propose a design for integrating it into OpenSSL. They use the DAA scheme as defined
in the Trusted Software Stack specification [113] which requires them to use a full blown
Trusted Software Stack (TSS) [56]. They also provide support for a pairing based crypto
variant of the DAA scheme in their architecture which is not supported by existing TPMs.
In contrast, the proposal discussed in this Chapter focuses on the integration of existing
TPM v1.2 into TLS with all their advantages and disadvantages. Moreover, the proposed
modifications are designed following a light-weight design principle so that they can be
employed on embedded systems with consideration of memory constraints.

Another interesting publication that is not directly related to this work, but may have
interesting implications on further applications, is discussed in [10]. Bichsel et. al. propose

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 83

an implementation of DAA on a JavaCard. Using this approach, it might be possible to
use the anonymous authentication mechanism in combination with smart cards instead
of TPMs. This approach could increase the flexibility and area of application of the
anonymous TLS authentication as the anonymous credentials can be bound to a specific
user instead to a specific TPM and platform.

Furthermore, different approaches have been published to integrate DAA functionality
on smart-cards: The basic idea of splitting the computations between a resource limited
micro-controller and a powerful host has first been discussed by Brands in [12]. Bichsel
et. al. [11] and Sterckx et. al. [93] analyzed implementations of variations of the DAA
signature protocol on JavaCards. Both publications give performance results of their
implementations which show that a practical use of the DAA scheme requires a powerful
host to execute the host side computations of the protocol. This statement is supported by
Balasch [64] who implemented a DAA scheme on an AVR micro controller. He concludes
that the DAA scheme can only be practically used in combination with a resourceful host.
As shown in [11], the computation of an entire signature takes about 16,55 seconds with a
modulus length of 1984 bits on a JCOP v2.2/41 JavaCard. Balasch requires 133.5 seconds
on an 8 bit micro-controller (with 1024 bit modulus) and Bichsel 450 seconds [11], however,
Bichsel and Balasch only take the computations located inside the TPM into account.

In [76] by C. Mitchell, Trusted Computing in general is discussed, but the publication
also provides a chapter about the history of DAA. This history includes a discussion of
several different approaches and algorithms for anonymous attestation schemes like the
Group Signatures with Revocation Evidence (GSRE) scheme or the Boneh, Brickell and
Shaham (BSS) scheme. Moreover, it describes a modified variant of the DAA scheme
which requires less parameters and - consequently - less modular exponentiations, thereby
increasing the performance and reducing the complexity of the scheme [76] (pp. 143-174).

One contribution of this Section is the investigation of anonymous signatures on mo-
biles using the managed environments for execution of the DAA computations and taking
advantage of the protected environments discussed in Chapter 3. The ARM TrustZone
CPU extension [8] which supports the separated execution of trusted and un-trusted code
in a secure and a non-secure world and secure elements can be used as a building block
for hosting TPM functionality [117] and for storing and using DAA credentials in a se-
cure environment as well. The benefit of this approach is that the software running in
the protected world can take advantage of the computing power of the main CPU so
that anonymous signatures can be computed in sufficient and user acceptable time [32].
However, this special CPU extension is currently only available on some high-end smart
phones using ARM-11 and ARM-Cortex CPUs. For cheaper, low-cost phones, which typ-
ically employ ARM-9 or ARM-7 CPUs this technology is not available. Fortunately, these
devices may fall back on secure elements which are either attached to their main boards
or added in form of external SD-cards.

Furthermore, most of the publications mentioned above omit rogue tagging. Rogue
tagging is a mechanism to detect malicious TPMs and is, therefore, an important fea-
ture when using anonymous credentials. Nevertheless, it has a significant impact on the
performance of the entire protocol and mechanisms for pre-computing DAA signatures.

In one of the latest publications, a DAA scheme based on elliptic curve cryptography
(ECC) and bilinear maps [14] is proposed. It builds on the Camenisch-Lysyanskaya sig-
nature scheme and takes advantage of the much shorter key lengths provided by ECC.
However, ECC is not supported by currently deployed TPMs.

The most important publication addressing DAA is [13] in which the general concept of

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 84

DAA is introduced. Moreover, in this paper, the scheme and the algorithms on which the
DAA features of existing trusted computing enabled platforms are based on, are described.

4.1.2 Background on DAA

The model

In the DAA scheme, a platform basically hides in a group of other platforms. Figure
4.1 shows the three different parties involved in the DAA scheme: First, the issuer or
group manager that creates and issues the group parameters and the group’s public key.
Second, a trusted platform that wants to create DAA signatures. This platform may be
a Trusted Computing enabled desktop PC or a trusted mobile platform. Third, a verifier
that verifies the DAA signatures created by the signer and which is in possession of the
group’s public key. The DAA scheme is based on group signatures, therefore, a platform
has to obtain the group parameters and credentials for its private DAA keys from the
issuer before it is able to compute DAA signatures. This step is called join process as
discussed in Section 4.1.2. The signing platform can then compute proofs that it is in
possession of the private DAA key and the credentials from the issuer. In context of
Trusted Computing, the messages to be signed are AIKs - instead of sending them to a
PCA, they are signed on the platform with the platform’s unique DAA key. The verifier
can then verify the signature and, therewith, the authenticity of the AIK with the group’s
public-key.

Figure 4.1 The DAA Model

Verifier

Group Key

Signer

Signer

Signer

Signer

Signer

sign(m) or sign(AIK)

nonce, bsn

The DAA relies on three protocols: the join, the sign and the verify protocol. However,
prior to executing these protocols, the parameters for the group have to be set up by the
group manager (see Appendix 6.1). The result of this operation is the private-key (p′, q′)
and the public-key (n, S, Z,R0, R1, γ,Γ, ρ) .

In addition, the group-key may have a proof that the parameters of the key were
generated correctly. This proof can be used to verify that Z,R0, R1 ∈ 〈S〉 and S ∈ QRn
mod n are properly constructed (see Appendix 6.1).

Join protocol

Before a platform may create a DAA signature on behalf a group it has to join the group
and obtain special group credentials.

The required steps for the join-process are briefly discussed in the following paragraph.
Note that for the hash computations, the SHA-1 algorithm is used.

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 85

1. The TPM computes f from a seed and the long term issuer key and splits f into f0

and f1, each 104 bits of size. Moreover, the TPM computes a random ν ′ with length
ln + lφ and the commitment U = Rf0

0 R
f1
1 S

ν′ mod n that is forwarded to the issuer

2. Next, the TPM proves the knowledge of f0, f1 and ν ′ to the issuer. It computes
random numbers rf0 , rf1 of size lf + lφ + lH bits and rν′ with length ln + 2lφ + lH .

Moreover, it computes Ũ = R
rf0
0 R

rf1
1 Srν′ mod n.

3. The host computes ch = H(n‖R0‖R1‖S‖Ũ‖ni) where ni is a nonce from the issuer
with length lH .

4. The final hash is computed inside the TPM via c = H(ch‖nt) where nt is a nonce
chosen by the TPM. Furthermore, the TPM computes sf0 = rf0 + c ∗ f0, sf1 =
rf1 + c ∗ f1 and sν′ = rν′ + c ∗ ν ′ which are forwarded to the host and to the issuer.

5. The issuer verifies that Û = U−cR
sf0
0 R

sf1
1 Ssν′ mod n and that

c == H(H(n‖R0‖R1‖S‖U‖Û‖ni)‖nt) and that sf0 and sf1 ∈ {0, 1}lf+lφ+lH+1 and
sν′ lie in {0, 1}ln+2lφ+lH+1

6. The issuer now computes the Camenisch-Lysyanskaya credential (A, e, ν ′′) and com-

putes a random ν̂ of length lν − 1, a prime e with 2le−1 <e <2le−1 + 2l
′
e−1 and

ν
′′

= ν̂ + 2le−1

7. For the Camenisch-Lysyanskaya credential, the issuer must also compute the inverse
of e: d = 1

e via the modulo inverse

8. compute φ = (p− 1)(q − 1) and

9. finally compute d = e−1 mod φ(n).

10. Next, the issuer convinces the host that it computed A = (
Z

USν′′
)
e−1

mod n cor-

rectly.

11. The issuer computes Ã = (
Z

USν′′
)
re

mod n and c
′

= H(n‖Z‖S‖U‖ν ′′‖A‖Ã‖

nh) and se = re − c
′
d mod p′q′ with re ∈ [0, p′q′]

12. The host can now verify the proof by computing Â = Ac
′
(

Z

USν′′
)
se

mod n and

verifying that e is prime and that 2le−1 <e <2le−1 + 2l
′
e−1 holds. Moreover, the host

verifies that c
′

= H(n‖Z‖S‖U‖ν ′′‖A‖Â‖nh)

13. (A, e, ν
′′
) are stored on the host while ν

′′
is sent to the TPM, where it computes and

stores ν = ν
′′

+ ν
′

After the execution of these steps, the host and the TPM possess the correct parameters
to create DAA signatures which can be verified with the issuer’s public key. Moreover,
the client has obtained a secret key f , ν (stored in the TPM) and the credentials (A, e, ν ′′)
stored on the host platform.

One very important building-block for DAA is the Camenisch-Lysyanskaya (CL) signa-
ture scheme. CL-signatures provide the basis for efficient proofs of possession of a certain
credential. A detailed discussion of this scheme and CL-credentials is given in [16].

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 86

Sign protocol

In the reference implementations, the computation of the DAA signature is done according
to the more efficient BCC05 scheme algorithm [76] which works as follows:

1. If revocation is enabled and the verifier requests rogue tagging, the verifier sends
basename to the host which computes ζ = H(basename)(Γ−1)/ρ mod Γ which is
sent to the TPM.

2. The host part of the signature class computes: T = ASw0
0 Sw1

1 mod n with w0,1 ∈
{0, 1}ln+lφ

3. The TPM computes NV = ζf0+f1∗2104
mod Γ. Host and TPM can now compute

the “signature of knowledge“:

4. The TPM computes: T̃t = R
rf0
0 R

rf1
1 S

rν0
0 S

rν1
1 mod n with rf0 , rf1 of size lf + lφ + lH

bits and rν(0,1)
with length ln + lφ + lH . ÑV = ζ r̃f mod Γ

5. T̃t and ÑV are returned to the host which computes: T̃ = T̃tT
reS

rν̄0
0 S

rν̄1
1 mod n

where T̃t is the input from the computation process that was performed in the

TPM. The random parameter re is of size {0, 1}l
′
e+lφ+lH whereas rν̄0 and rν̄1 are of

size {0, 1}(le+ln+2lφ+lH+1)/2 bits.

6. Moreover, the host part computes: ch = H((n‖R0‖R1‖S0‖S1‖Z‖γ‖Γ‖ρ)‖ς‖
T‖NV ‖T̃‖ÑV)‖nv)

7. The TPM selects a random nt ∈ {0, 1}lφ , computes c = H(H(ch‖nt)‖b‖m) and
sν0 = rν0 + c ∗ ν0, sν1 = rν1 + c ∗ ν1, sf0 = rf0 + c ∗ f0 and sf1 = rf1 + c ∗ f1 where b
is a parameter that defines whether the authenticated data is a key that was loaded
into the TPM or some arbitrary data.

8. The host part computes se = re + c ∗ (e − 2le−1) and sν̄0 = sν0 + rν̄0 − cw0e,
sν̄1 = sν1 + rν̄1 − cw1e

9. Finally, the host assembles the signature σ = (ζ, T,Nv, c, nt, (sν̄0 , sν̄1 , sf0 , sf1 ,
sfe)). The signature σ can now be verified by the public key PKI = (n,R0, R1,
Z, γ,Γ, ρ).

Note that the parameter S is separated into S0 = S and S1 = S2t and ν = ν0+ν1∗2l as
the crypto co-processor of the TPM cannot compute the modular exponentiations whether
the exponent is larger than the modulus n. The join protocol discussed in the previous
section can be used with the BCC04 and BCC05 versions of DAA. BCC05 does not have
its own version of a join protocol. The computation of the signature is separated between
host and TPM, prohibiting that the credentials (A, e, ν ′′) that are stored on the platform
can be copied and used on a different platform.

Verify protocol

For verification of a DAA signature, the verifier performs the following steps (also based
on BCC05):

1. Compute:
T̃ = Z−cT se+c2

le−1
R
sf0
0 R

sf1
1 Ssν̂ mod n

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 87

2. Check that c == H(H(H(n‖R0‖R1‖S‖Z‖T‖T̂‖nν)‖nt)‖m) where nν is the nonce,
previously sent by the verifier to the signer and nt the nonce generated from the
signer’s TPM.

3. Moreover, the verifier checks that sf0 , sf1 ∈ {0, 1}lf+lφ+lH+1 and

se ∈ {0, 1}l
′
e+lφ+lH+1

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 88

4.2 Anonymous Client Authentication for Transport Layer
Security

In this Section, a concrete use-case for for anonymous authentication on desktop systems
is investigated. The use-case is based on anonymous authentication for secure channel
technology, in detail, focus is laid on anonymous authentication of clients using TLS client
authentication as discussed in Chapter 2.1.

Instead of using a full-blown Trusted Software Stack (TSS) which is typically used for
trusted applications to access TPM features a simple design for integrating anonymous
signatures in existing security frameworks like the Java Cryptography Architecture (JCA)
is proposed and used for further investigations. In addition, the design allows easy in-
tegration in other widespread embedded security environments like the Global Platform
API [23] or the JavaCard API [105].

The changes required in the TLS protocol are also reduced to a minimum. The
proposed light-weight approach allows the application on embedded systems and mobile
phones which are going to be equipped with TPMs in the near future [111]. The software
stack and the modified TLS protocol are combined in a library with focus on portability,
size efficiency and simple usability.

This minimal library also contains an implementation of the DAA protocol. The used
DAA protocol is based on the DAA scheme which we will address as BCC05 [76], named
after its authors (Brickel, Camenish, Chen) and its year of publication.
In contrast to the DAA scheme defined by the TCG (BCC04) in the TPM 1.2 specification,
we use the BCC05 scheme which is a performance optimized scheme that requires less
parameters and less computations than the BCC04 scheme, however, both can use the
DAA features from TPMs without any modifications of the TPM. A discussion about the
differences between BCC04 and BCC05 and the security of the BCC05 scheme can be
found in [76].

Furthermore, performance measurement values demonstrating the performance that
can be achieved using this technique in combination with currently available TPMs are
provided. The DAA test library is developed in the Java programming language and is
designed to fit into the Java Cryptography Architecture (JCA) [102], allowing easy use of
the DAA functions.

4.2.1 TLS Client Authentication

TLS client authentication allows a server to request authentication information from clients
that want to connect to it. Figure 2.1 in Section 2.1.2 shows the basic flow of a TLS
handshake. The messages marked with (1) are required for client authentication which
works as follows: The server sends the client a list with certificate authorities (CAs), which
it accepts. The client selects a CA and returns a Certificate message that contains the
client’s certificate, which then certifies its authentication key. The CertificateV erify
message contains a signature on the hash of the handshake messages sent so far. By
verifying the signature - the hash can be computed by the server as it knows all messages
that have been exchanged with the client - and by verifying the client’s certificate plus
the corresponding certificate chain, the server can validate the client’s authentication
information [107].

Instead of sending an X.509 certificate containing an standardized public-key like RSA,
ECC, DH etc. the client may now send a certificate that contains the DAA group-key.

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 89

Moreover, the hash of the in- and outgoing messages - as required for client authentication
- is now signed with an anonymous DAA signature. This may be done in two ways,
either the DAA signature is applied directly on the hash data or a temporary key which is
typically a RSA or ECC key is used to create the signature. The public RSA key is then
certified by the DAA signature and the RSA signature is thereafter applied on the hash
values. The RSA or ECC key-pair is used only once.

4.2.2 Test setup

In order to obtain performance results, a test setup was created. The setup uses the fea-
tures of the library discussed in the previous section. Furthermore, a library that provides
the required cryptographic operations for the BBC05 scheme and the DAA commands as
defined in [112] has been added.

In addition to TPM specific commands for key management and authorization, the
library supports the following minimum set of TPM commands required for DAA opera-
tions:

1. TPM DAA Sign

2. TPM DAA Join

3. TPM FlushSpecific

4. TPM OIAP

5. TPM Terminate Handle

and the following structures: TPM DAA ISSUER, TPM NONCE.
Support for the modular arithmetic operations, the RSA-OAEP encryption scheme

required for loading DAA credentials into the TPM and the DAA protocol operations
is provided by the IAIK-JCE-MicroEdition. Details of the implementation of the cryp-
tographic functions and the BCC05 scheme can be found in [31]. In addition, the RSA
key-pair generator was modified in order to compute the special prime numbers required
for the DAA parameters [13].

The DAA scheme is basically a signature scheme like RSA or ECDSA. Consequently,
it can be integrated into existing security or cryptographic software frameworks like the
Java Cryptographic Architecture. The development of a JCA provider for the DAA library
allows to abstract the complex API definitions in the TSS [113] specification and makes
it accessible to developers that are not familiar with Trusted Computing.

Access to the different TPMs is provided by the Linux kernel module drivers from the
specific vendors. The TPM is mapped into the userspace via the /dev/tpm device alias.
This device can then be accessed by a Java java.io.RandomAccessFile object in order
to send and receive TPM commands.

4.2.3 Integration into the JCA Architecture

The TCG has specified an API for using the DAA features on trusted platforms. However,
this specification is rather complex and is - even for developers that are familiar with
Trusted Computing - hardly accessible. As mentioned before, the DAA scheme is basically
a signature scheme, hence, it is well suited for integration in the JCA. The advantage of
using such a common framework is that for creating signatures, the same API, independent

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 90

from the signature scheme can be used. Consequently, DAA schemes based on different
cryptographic primitives (e.g. discrete logarithm or pairings) can be used with the same
commands.

Figure 4.2 shows how our DAA implementation is integrated into the JCA frame-
work. The application uses the iSaSiLk library [94] in order to provide secure channel
mechanisms.

Figure 4.2 Integration of the DAA library in the JCA Architecture

Application

RSAECCDAA

TPM_Command
Library

RSA

TPM

Signature API

SSL/TLS Library

TPM

JCA Framework

Cryptoalgorithm
implementations

Algorithm Provider 1 Algorithm Provider 2

The library uses the JCA framework to request a certain algorithm implementation
according to the TLS session parameters that have been negotiated during the TLS hand-
shake. The algorithm implementation can be either a software implementation of the
algorithm or an interface to some hardware device. The provided DAA signature imple-
mentation consists of two parts: the host module and the TPM module. Both modules are
abstracted by the signature class API. The host module performs the DAA computations
that can be done in software while the TPM module handles the communication with the
TPM. For using the DAA sign function of the TPM, the TPM DAA Sign [113] command
is sent several times in sequence with different parameters to the TPM. From the appli-
cation’s point of view, the algorithm can be initialized via the common Signature API by
defining the algorithm and algorithm parameters. The same approach can be applied to
use the RSA implementation in the TPM (TPMRSA in Figure 4.2). Moreover, the JCA
framework allows different DAA schemes to be used with the same API. For example, the
BBC04 scheme could be added to the framework as an alternative to BCC05.

The following listing gives an overview of how a signature object using the DAA algo-
rithm can be initiated and used. Prior to creating a DAA signature, the signature object
has to be initialized with several parameters (via the signature.setParams(...) method).
Some of the parameters are acquired during the Join phase and are encrypted with the
TPM’s endorsement key. These parameters include: TPM authentication information, the
public part of the EK, issuer parameters, the encrypted values encEK(ν0), encEK(ν1), the
encrypted DAA keys encEK(daaBlobKey) (i.e. group specific credentials that are bound

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 91

to a specific TPM) and the basename and a nonce nv from the verifier.

Signature s i g n a t u r e = Signature . g e t In s tance (”DAA/BCC05” ,
” Provider ”) ;
s i g n a t u r e . i n i t S i g n () ;
s i g n a t u r e . setParams (daaParams) ;
s i g n a t u r e . update (”Message to be s igned ” . getBytes ()) ;
byte [] s igVa lue = s i g n a t u r e . s i gn () ;

[Listing 1. Example Code]

The result of the sign() method is a DAA signature σ on the message m.
The verification process is handled in a similar way by the same class. However, the

signature object is initialized in verification mode and the task does not involve a TPM.
The resulting implementation consisting of TPM commands, DAA implementation (Join
and Sign protocols) and other cryptographic algorithms (RSA and RSA with OAEP,
SHA1-HMAC) is about 150 kilobytes of size. In addition, the TLS implementation is
about 120 kilobytes resulting in total of 270 kilobytes which allows efficient usage on
mobile platforms. Performance results of our implementation on mobile devices can be
found in Section 4.3.

4.2.4 A Note on Specification Compliance

In the TPM specification [112], the commands and structures for using the DAA func-
tions of TPMs are defined. However, the experiments revealed that the TPM vendors
have different interpretations of this specification. The library was tested with TPMs
from Infineon, Atmel, Winbond, Intel, ST Micro and with the TPM emulator. Each of
them has some deviations from the original specification, which result in different DAA
implementations for the specific TPMs. For example, the TPM emulator stays close to the
specification and uses the definition from the specification which says that parameters can
be encoded as parameter length plus parameter. The Infineon TPM, however, requires
parameter sizes strictly to be 256 bytes long unless otherwise specified. Moreover, the
emulator does not correctly check parameter sizes of the commands. Although that does
not appear to be a big problem, the emulator, respectively its code basis, is used in many
implementations such as mobile TPMs or virtual TPMs for XEN [116]. Furthermore, the
emulator does not close the join session after it has finished. The corresponding session
parameters and reserved resources inside the TPM have to be flushed from the TPM man-
ually by invoking a TPM FlushSpecific command. According to the specification, the Join
session and associated resources must be freed after execution of the command. A special
case are TPMs from Atmel and Winbond. During execution of the experiments, it was not
possible to invoke the DAA functions as these TPMs seem to deviate from the standard
when it comes to verifying the issuer settings during the Join process. There are many
more deviations that have to be taken into account when working with TPMs, especially
when using the DAA functionality. Unfortunately, a continuative detailed discussion is
out of scope of this document.

4.2.5 Performance evaluation

The DAA scheme involves complex mathematical computations, hence, it is of interest
which performance can be achieved with currently deployed TPMs. Table 5.8 shows the

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 92

DAA Join Host TPM Host+TPM Issuer

TPM 1.2INF 144,8 ms 56,7 s 56,8 s 712 ms

Emulator 144,8 ms 372,8 ms 517,6 ms 712 ms

Table 4.1: Performance of the Join Protocol with Intel TPMs

DAA Sign Host TPM Host + TPM

TPM 1.2INF 300 ms 37,7 s 38,0 s

Emulator 300 ms 67 ms 367 ms

Table 4.2: Performance of DAA signature creation with Intel TPMs

performance of the Join protocol as discussed in Section 4.1.2 on a Intel PC that is equipped
with an Infineon TPM 1.2 (rev. 1.2.3.16). The performance values were measured on a HP
Compaq dc7900 platform with an Intel Pentium Dual Core CPU E5200 2,5 GHz, a SUN
1.6 Java virtual machine (64 bit) and a Debian Linux operating system with a 2.6.30-1
Kernel (64 bit).

A verification of a DAA signature takes about half the time required for signature
creation and does not require a TPM. All results presented in this Section represent
the average measurement values of 100 executions of the Join and the Sign protocol.
Performed tests have also been conducted with TPMs from ST Micro and Intel. The
results are shown in Table 4.3 which clearly demonstrate the performance advantage of
the Intel TPM. This advantage results from the different hardware used to host the TPM
functionality. While the ST Micro TPM is basically a common smart card controller that
is attached to the PC’s motherboard via the LPC bus [60], the Intel TPM is located
in the Intel motherboard chip-set (i.e. the Intel 82801JDO Controller Hub (ICH10DO))
itself [61].

Most of the time is consumed by the modular exponentiations and the parameter
handling. As the TPM implementors want to save as much TPM resources as possible,
the parameters obtained during the Join protocol are stored - encrypted with the EK -
outside the TPM. For example, the DAA keys f0, f1, ν0 and ν1 have to be loaded into
the TPM for each single DAA signature operation which takes about 1.5 seconds for each
parameter on the ST Micro TPM. Each modular exponentiation requires about 2 to 8
seconds. The exact sequence of operations can be found in [112].

TPM ST Micro 1.2 (rev 3.11) Intel 1.2 (rev 5.2)

DAA Join 44.55 s 7.64 s

DAA Sign 33.38 s 4.66 s

Eval. Board Intel DQ965GF Intel DQ45CB

Operating System Ubuntu v2.6.31-19 32 bit Ubuntu v2.6.31.12-0.1 64 bit

Table 4.3: Comparison of the DAA Performance of different TPMs

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 93

4.3 The DAA Scheme on Mobile Platforms

In this Section, the efficiency and feasibility of the DAA scheme on state-of-the-art mobile
handsets is investigated. Therefore, every single operation focusing on the sign, verify and
join process is investigated and the performance results for each step of the DAA scheme
is analyzed. The setup phase, which includes the computation of the issuer parameters
and keys is excluded from the discussion. Before a client can execute the join process, the
issuer has to compute and publish its public-key. Furthermore, the client has to obtain the
key and a proof of the correct computation of the key as falsely computed key parameters
could compromise the client’s identity. For further investigations, it is assumed that a
client can obtain a DAA issuer public-key and the group parameters from a trusted-third-
party, which also performs the proof of correctness of these parameters. The parameters
may be distributed via an X.509 certificate where the third party thereby guarantees the
correctness of the parameters. A discussion of the issuer’s keys and how they can be
obtained by clients is given in Section 4.3.2.

For gathering experimental results, off-the-shelf devices, i.e. a Nokia 6131 (6131), a
Nokia N96 (N96), a Nokia (E72), a Nokia 5800 and a Sony Ericsson P910 (P910) cell
phone as well as an Lenovo T61 (PC) and Sony VAIO Notebook were used. The set of
test platforms represents a profile of current mobile devices, ranging from low-cost entry
level models to high-end smart phone systems. More details can be found in Sections
4.3.11 and 4.3.1.

The tests were conducted with two different cryptographic providers - the BouncyCas-
tle crypto library [108] (BC) and the IAIK JCE MicroEdition [95] (IAIK). Both are free
to use for research and educational purposes. Moreover, both libraries support the J2ME
CLDC Java platform which is a typical and widespread embedded Java platform. A dis-
cussion of the differences between these two providers and their tremendous performance
differences is given in Section 4.3.7.

4.3.1 Parameter setup

All parameters used for evaluation purpose use the parameter sizes suggested in [76],
nevertheless, the tests were executed with moduli sizes of 2048 and 1024 bits which also
have influence on the parameters (e.g. issuer key-pair) generated during the setup phase.
The first step in the setup phase is the key-pair generation for the issuer.

The DAA issuer’s public-key consists of the parameters n, S, Z,R0, R1 that have at
maximum the size of the RSA modulus n which is in the test scenario 1024 or 2048 bits.
Note that the parameters R0 and R1 could either be combined to a single but larger
parameter R or distributed into smaller parameters R0 to Rn, depending on the hardware
used for computation. This re-distribution of the parameters also effects the private key
parameters f0 and f1, which would then be smaller or larger. Discovering the optimum
size for these parameters in order to get the most efficient computation performance for
certain platforms and implementations, is subject to future investigations. The parameters
R0 and R1 belong to the group of quadratic residues modulo n (QRn) and are computed
by the issuer as follows:

1. choose a random generator g ∈ QRn

2. generate ramdom values x0, x1, xs ∈ [1, p′q′]

3. obtain the generator S: S = gxs mod n

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 94

4. finally, compute R0 = Sx0 mod n and R1 = Sx1 mod n

The second part of the issuer’s key-pair is the issuer’s private-key. This key is used to
sign the client’s DAA signing key-that is stored inside the TPM. The DAA Issuer’s private
key consists of the parameters p, q, p’, q’, p” where p and q are safe primes as suggested
in [76], which have the property that p = 2p′ + 1 and q = 2q′ + 1.

The issuer computes the private- and public DAA key parameters as well as a proof
that the public key parameters R0, R1, Z, S were computed correctly. For mobile clients,
it is assumed that the clients do not verify the proofs computed by the issuer themselves.
Typical mobile clients are considered to possess not enough computing power to do the
complex computations required for verifying this proof. They rather delegate this task to
a trusted third party (TTP) which verifies the proof and signs the key, thereby proving the
correctness, authenticity and group affiliation of the key. Checking the group affiliation of
the key is important as the issuer could generate a unique key for each device and put each
device in a single group, therewith revealing the device’s identity. This can be prevented
by using a TTP which proves the identity and authenticity of the issuer’s key. In order to
test whether a client is a member of a certain group or not, the client could take a message
m and create a signature σ(m) with its private DAA signing key. By verifying σ(m) with
the issuer’s public key, the client is able to prove whether it belongs to the group identified
by the issuer’s public key or not.

As previously discussed, a proof that the parameters of the issuer’s public key are gen-
erated correctly, should be generated by the issuer according to the protocol specification
of DAA. phones has enough computing power to perform these computations, efficiently.
The feature was tested on the the mobile phone and a PC and the results are shown in
Table 4.4.

Validating this proof is very time consuming and has to be done for a key only once.
The typical scenario is to delegate the validation of this proof to a trusted-third party
(TTP) which issues a certificate on the key after successfully validation.

In order to prove that Z,R0, R1 ∈ 〈S〉 are correct 3x160 calculations are required.
Each of these calculations has a modular exponentiation with the power ∈ [1, p′q′] and
also a multiplication (if ci is 1).

The results in Table 4.4 show that the validation timings of this proof on a Nokia 5800
XpressMusic device is equipped with a AEM11 CPU running at 434 Mhz and a Sony Vaio
notebook with a Intel Core 2 Duo T7250 CPU running at 2GHz on Windows and SUN
Java 1.6.

The performance might be acceptable on a common notebook.

Device Nokia 5800 Sony Vaio

Timing 2399.237s 99.406 s

Table 4.4: Proof Verification Timings (n=2048)

However, the performance of the Nokia smart phone clearly puts the validation by a
TTP into favor.

4.3.2 The Join Process

Although DAA allows a client to create a signature on behalf of a group, the client must
join the group prior to creating signatures on behalf of that certain group. Within this join

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 95

phase, all required parameters for the client are created and negotiated with the issuer.
This also includes the credentials that are issued by the issuer for the keys in the TPM
and the credentials that are stored on the host.

Furthermore, the client and its TPM have to be authenticated in order to prevent
arbitrary clients to enter the group without permission. A method to authenticate a TPM
during the join phase is given in [76] (p. 143-177).

In order to simplify the operations, the rogue tagging parameters and computations
were removed from the implementation. Nevertheless, the implementation is implemented
in accordance with the BCC05 protocol as discussed in subsection 4.1.2.

Note that the measurements were made with both crypto libraries where the abbrevi-
ation (BC) marks the result obtained from the BouncyCastle library and (IAIK) marks
the results from the IAIK JCE-ME library.

Join 6131 (BC) P910 (BC) PC (BC) 6131 (IAIK) PC (IAIK)

n=2048 363.32 s 149.55 s 0.67 s 158.614 s 0.24 s

n=1024 82.48 s 34.07 s 0.18 s 30.57 s 0.05 s

Table 4.5: Join process performance results (client side)

The join step includes very computational intensive modular exponentiations. The
results in Table 4.5 show the average computational effort for the clients. The issuer
performance is not included in this table as it is assumed that the issuer side computations
are executed on a powerful server machine. Nevertheless, the server side computation takes
several milliseconds where the creation of the Camenisch-Lysyanskaya signatures proved
to be the most time consuming part. A discussion of creating Camenisch-Lysyanskaya
signatures is addressed in Section 4.3.3. The tests were not influenced by effects of network
latency as, for the tests, issuer and host components were executed on the same platform
and only the host specific operations were measured.

4.3.3 Camenisch-Lysyanskaya Signatures

As discussed in the previous section, the issuer computes a blind signature on the private
key of the DAA client. For efficiency reasons, this signature is a Camenisch-Lysyanskaya
signature and is created during the join process. The performance results for a single CL
signature computation can be taken from Table 4.6.

CL Signature 6131∗ P910∗ PC PC N96∗ E72∗

(BC) (BC) (BC) (IAIK) (IAIK) (IAIK)

n=2048 62.29 s - 81.60 s 31.67 s 0.35 s 0.17 s 7.53 s 3.10 s

n=1024 34.23 s 8.21 s 0.14 s 0.07 s - -

Table 4.6: Camenisch-Lysyanskaya signature computation performance results

This particular table shows the average performance values on different platforms.
However, these values vary strongly - this is due to the fact that for each signature, a
new prime e of 368 bits length has to be found. Depending on how fast this prime can be
found, the CL signature is computed faster or slower. The values marked with ∗ are the
performance values obtained on the mobile devices. These values are added to the table

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 96

for the interested reader, as the computation of the CL signature is usually done on the
serverside and, therefore, only the PC performance is of interest for typical application
scenarios of the DAA scheme.

4.3.4 DAA signature creation

The DAA signature computation, compared to an RSA or ECC signature, is a more
complex signature. In [76], the authors of the original DAA scheme [13] propose a modified
version which reduces the computational efforts on the host side. This sign algorithm also
differs from the one discussed in Section 4.1.2.

The computation of the DAA signature in the implementation of the modified signing
algorithm works as follows:

1. The host computes: T = A ∗ Sw with w ∈ {0, 1}ln+lφ

Host and TPM compute the “signature of knowledge“:

2. The TPM computes: T̃t = R
rf0
0 R

rf1
1 Srν mod n with rf0 , rf1 of size lf + lφ + lH bits

and rν with length ln + lφ + lH .

3. The host computes: T̃ = T̃tT
reSrν̄ where T̃t is the input from the computation pro-

cess that was performed in the TPM. The random parameter re is of size {0, 1}l
′
e+lφ+lH

whereas rν̄ is of size {0, 1}le+ln+2lφ+lH+1 bits.

4. Moreover, the host computes: ch = H(n‖R0‖R1‖S‖Z‖‖T‖T̃‖nν)

5. The TPM selects a random nt ∈ {0, 1}lφ , computes c = H(H(ch‖nt)‖m) and sν =
rν + c ∗ ν, sf0 = rf0 + c ∗ f0 and sf1 = rf1 + c ∗ f1

6. The host computes se = re + c ∗ (e− 2le−1) and sν̄ = sν + rν̄ − cwe

7. Finally, the host assembles the signature σ = (T, c, nt, sν̂ , sf0 , sf1 , sfe)

The computation of the signature is separated between host and TPM and includes
three modular exponentiations in the TPM and three plus one multiplications on the host
side. In addition, the TPM has to compute sν , sf0 , sf1 , which includes three additions and
multiplications plus the proofs of the host credentials se and sν̄ .

Table 4.7 shows the average performance results of the implementation when creating
DAA signatures.

DAA sign 6131 P910 Desktop 6131 P910 PC N96 E72
(BC) (BC) (BC) (IAIK) (IAIK) (IAIK) (IAIK) (IAIK)

n=2048 239.80 s 81.50 s 0.34 s 130.42 s 52.08 s 0.23 s 6.56 s 3.10 s

n=1024 68.22 s 24.68 s 0.11 s 26.60 s 16.81 s 0.07 s - -

Table 4.7: Performance comparison for creating DAA signatures

The computations on the host side in this scheme differ from the original scheme. In
BCC’04, the host computes:

1. T1 = Ahw mod n and T2 = gwhe(g′)r mod n with w, r integers ∈ {0, 1}ln+lφ where
g, g′, h are parameters from the public key.

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 97

2. The host picks the random numbers:
re ∈R {0, 1}l

′
e+lφ+lH , rw, rr ∈R {0, 1}ln+2lφ+lH ree ∈R {0, 1}2le+lφ+lH+1, rew, rer ∈R

{0, 1}le+ln+2lφ+lh+1

3. and computes: T̃1 = T̃1tT
re
1 h−rew mod n, T̃2 = grwhreg′rr mod n T̃ ′2 = T−re2 grewhreeg′rer

mod n where T̃1t is computed in the TPM. Note that the computations done in the
TPM are the same in BCC’04 as in BCC’05.

4. Moreover, the host has to compute:
se = re + c ∗ (e− 2le−1), see = ree + c ∗ e2, sw = rw + c ∗ w
sew = rew + c ∗ w ∗ e, sr = rr + c ∗ r, ser = rer + c ∗ e ∗ r

As a result, the signatures of BCC’04 and BCC’05 differ:
σBCC′04 = ((T1, T2), c, nt, sν̂ , sf0 , sf1 , sfe) and σBCC′05 = (T, c, nt, sν̂ , sf0 , sf1 , sfe)

When comparing the two schemes, one can easily see that BCC’05 is the faster scheme.
While in BCC’04, the host has to compute T̃1, T̃2 and T̃ ′2, in BCC’05 the host is only
required to compute T̃ = T̃tT

reSrν̂ which is a reduction of seven modular exponentiations.

4.3.5 DAA Signature Verification

In this section, the basic steps for verifying DAA signatures are discussed. The verification
process includes five modular exponentiations plus reductions (including one inversion)
and the hashing of several parameters. It can be performed without the involvement of a
TPM.

DAA verify 6131 P910 PC 6131 P910 PC N96 E72
(BC) (BC) (BC) (IAIK) (IAIK) (IAIK) (IAIK) (IAIK)

n=2048 97.03 s 38.23 s 0.18 s 64.27 s 22.10 s 0.11 s 4.29 s 1.99 s

n=1024 24.91 s 11.72 s 0.05 s 16.96 s 8.24 s 0.04 s - -

Table 4.8: Performance comparison for verifying DAA signatures

Table 4.8 gives an overview of the obtained performance results. Special notice should
be given to the DAA verification on the desktop platform. The measured 113 ms are not
detectable by a human user but could be of interest on server platforms that have to deal
with many concurrent verification processes.

4.3.6 Implementation details and discussion

The DAA scheme makes heavy use of modular exponentiations [19]. These modular expo-
nentiations can be reduced to modular multiplications, reductions and squarings, hence,
the overall performance depends on the number of executed multiplications, reductions
and squarings . In order to determine the average number of operations and their per-
formance, a detailed analysis of a single exponentiation was done. Table 5.1 shows the
average number of operations required for calculating Srν , where rν has the size of 2737
bits, with respect to the proposed parameters in the DAA scheme [76]. This value was
chosen because it is the largest coefficient involved in computing a DAA signature - all
other exponentiations use smaller values.

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 98

meantime PC meantime P910 operations

multiply 0.16 ms 19 ms 389
square 0.12 ms 15 ms 2737

Table 4.9: Performance of a single modular operation

With 389 multiplications and 2737 squarings, the overall time for this specific modular
exponentiation is about 40 seconds on the P910 device. Still, the single modular operations
are over hundred times slower compared to the desktop platform. Hence, improving the
performance of these operations is required. A possible improvement could be achieved by
moving these basic operations to the native platform, a detailed analysis of this approach
is, however, out of scope of this document and is left to future investigations.

The performance was measured with the IAIK-JCE library which is faster than the BC
library. Reasons for this are given in the following section. The modular multiplications,
reductions and the squaring were implemented according to the algorithm specifications
in [5].

4.3.7 Modular arithmetic in BouncyCastle and IAIK JCE-ME

For the analysis, two cryptographic libraries that support the Java 2 MicroEdition plat-
form were used. This Java platform is the most widely spread platform amongst mobile
phones. However, there is a tremendous difference according to the performance of mod-
ular arithmetic between the two libraries. The speed advantage of the IAIK-JCE library
stems from the different implementation of the modular exponentiation. The IAIK library
uses the sliding windows technique which involves precomputation of certain values used
in the multiply and square operations of the modular exponentiation. This technique
provides a performance advantage over the basic approach that is used in the BC library
where multiply, square and reduce are performed without precomputations [18].

4.3.8 Random number generation on J2ME platforms

The DAA scheme requires a great amount of random numbers for every executed zero-
knowledge proof. While generating random numbers on desktop platforms is not a great
challenge, generating random numbers or an appropriate seed in a J2ME/CLDC environ-
ment is problematic. Desktop platforms have various sources of entropy e.g. user input,
disk movements or hardware based true random number generators. The J2ME/CLDC
environment does not allow applications to execute native code or access platform features
for generating entropy. A common way to seed the random number generator is to use
the current date and time. However, this proceedure should be investigated for exploiting
attacks on the DAA implementation. The DAA implementation uses a pseudo random
function based on SHA-1 to generate the random numbers.

4.3.9 Hashing of bignumber objects

Bignumber types and bignumber objects are used to represent the large (prime) numbers
used in cryptography e.g. for RSA primes and ECC curve parameters. They can be
found as methods in programming languages like C (see Openssl library) or classes in
Java (java.math.BigInteger). Basically, they are an abstraction of a byte array, containing
the value of such a long integer. The DAA scheme depends on calculating hashes of a high

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 99

number of such bignumbers. Consequently, an efficient and standardized way for hashing
bignumbers should be used in order to avoid bottlenecks and provide interoperability.
For this reason, the implementation supports the bignumber hashfunction as defined in
P1363 [57] which converts a biginteger into a fixed size output bit-string in big-endian
order.

4.3.10 Prime number generation

The Camenisch-Lysyanskaya signature scheme requires prime numbers e that lie in [2le−1,

2le−1 + 2l
′
e−1] for each signature operation. The DAA scheme does not specify which

prime number generator to use. For the tests, the prime number generator defined in [79]
was used. This generator is based on a sieve technique that requires a random starting
point. Based on the selection of this starting point, the computation time varies strongly.
Consequently, the computation time of the CL-signatures varies.

4.3.11 Test environment

In this section, the basic setup of the test environment and test tools is discussed. In order
to answer the question whether anonymous credentials as proposed in the DAA scheme can
be efficiently used on Java platforms or not, a library that provides all required features
(i.e. parameter setup, join operations on host and server, sign and verify modules) for
working with DAA credentials was developed.

In the test setup, issuer and host are running on the same device. This setup eliminates
measurement derivations from network latency but has the drawback that no precise
statement about the memory consumption of the implementation can be given. For the
tests, a TPM/MTM software emulation that provides the required DAA features with
respect to the BCC05 scheme was used. Because of the modifications, it differers from
the DAA protocol specified by the TCG. However, this only affects the host side of the
protocol so that existing TPMs can be used. The design of the implementation allows
the use of different kinds of TPMs. The TPM may be a dedicated micro controller, a
software process running in an L4 compartment or isolated TrustZone environment or
a smart card based secure element. For the tests, software TPMs and platforms where
mobile TPMs may be implemented solely in software as discussed in [111] and [110] were
used. Protection of the DAA keys depends on the platform. On the low-cost test devices
(e.g. Nokia 6131), protection can only be guaranteed by the security properties of the
Java virtual machine (i.e. process isolation, sand-box execution) and the Nokia operating
system. On the high-end test devices, protection is achieved by the ARM TrustZone
processor extension [6] as discussed in [35]. In this specific case, issuer and DAA host
computations are executed in the non-secure world and the TPM-DAA computations are
executed in the secure world. To be more precise, they are executed on a Java VM which
is executed inside the ARM TrustZone protected environment. For further details, refer
to [35].

The results show the average computational effort for host (plus TPM emulation) and
issuer. The single join, sign and verify processes were executed ten times in sequence on
each platform in order to eliminate class loading and thread scheduling effects arising from
the Java environment.

Figure 4.3 shows the principle design how the TrustZone (TZ) security extension may
be used for protecting DAA keys. While the secret keys are stored and processed inside the

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 100

TZ, other DAA credentials may be used for computation in the non-secure world. Both,
the TZ and the mobile host compute the signature of knowledge. This split basically
represents the TPM and PC platform split on desktop systems.

Figure 4.3 Architecture Overview for DAA on TrustZone enabled Devices

Normal World

public-
 credentials:

Secure World

Verify nonce &
signature proofsSecure

element
Compute
„Signature of
Knowledge“,
proofs &
sig(m)

Monitor

Other designs could include a secure element. As a consequence, five different imple-
mentations are feasible. First, computations are split between TrustZone and non-secure
world as depicted in Figure 4.3. Second, all computations may be done inside the Trust-
Zone environment. Third, computations are split between SE and TZ. Fourth, computa-
tions are done solely in the SE and fifth, the computations are split between non-secure
world.

4.3.12 Revocation

The revocation mechanism is a crucial part to remove rogue TPMs or MTMs. A revocation
check is performed at two stages of the protocol, first during the join protocol in order to
prevent revoked platforms to obtain DAA credentials and second during signature creation
and verification. The issuer or group manager has a black-list of all revoked devices. As
the revocation check depends linear on the number of revoked devices (i.e devices on the
list) test were conducted with different black-list sizes.

Test setup

The test setup includes a Vaio VGN-NR11Z/S notebook as group manager and a Nokia
5800 Express Music cell phone as client. Table 4.10 shows the properties of the test devices.

Device CPU Freq. RAM OS

Client Nokia 5800 ARM 11 434 MHz 512 MB Symbian 60v5

Issuer Sony Vaio VGN-NR11Z/S Core 2 Duo T7250 2.0 GHz 3GB Windows XP

Table 4.10: Rogue Tagging Test Devices

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 101

Rogue Detection Performance Results

The join protocol was executed via a wireless data link, hence, the performance values
in Table 4.11 include the network communication overhead. However, as the majority of
time is used for computation, the network delay only contributes a minimum to the overall
time.

Modulus length n [bit] 1024 1536 2048

Join time [s] 10.85 19.56 32.52

Table 4.11: Average Join Protocol Execution Time with empty Blacklist

These results were gained when performing joining with an empty blacklist.
Table 4.12 shows the timing results with various black-list sizes.

Rouge TPMs 100 1000 2000 5000 10000

Time [s] 33.57 46.67 59.76 103.35 187.20

Table 4.12: Rogue Detection Execution Times with varying Black-list sizes (n=2048)

In cases where the mobile takes over the role of the group manager, for example, when
defining ad-hoc groups or when simply verifying DAA signatures, the mobile has to do
the computations for revocation checking.

Table 4.13 shows the rogue detection performance on the Nokia 5800 device.

Rouge TPMs 200 500 1000 2000

Time 79.95s 179.47s 352.11s 699.06s

Table 4.13: Rogue Detection on the Nokia cell phone

The impact of the revocation check on the overall signature verification time is very
high especially with larger lists. The total verification time for n = 2048 and 200 rogue
TPMs on the list requires 10.314 for signature validation plus 79.95 for revocation checks
makes a total of 90.26.

A definite suggestion is to delegate the work of rogue detection to a third-party. A sim-
ple solution could be to modify the widely used online certificate status protocol (OCSP).
Instead of sending the serial number(s) of X.509 certificates, the protocol could be used
to transport the revocation check information of the TPMs.

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 102

4.4 Analysis of DAA on NFC enabled devices

The design of NFC enabled devices typically includes a secure element that is connected
to the mobile host platform as well as to an NFC communication element (see Figure 4.4).

Figure 4.4 Connection of NFC Module, Secure Element and Mobile Platform

However, all existing approaches ([11], [93], [64]) clearly show that current smart-
cards do not provide sufficient performance for computing discrete logarithm based DAA
signatures for use in real-world scenarios. Hence, it is inevitable to include a host that
contributes the computation of such a signature. This can either be done by providing
a host with adequate processing capabilities or by providing a host that controls and
manages the pre-computation of such signatures. Idle phases of the host or the SE can be
used to generate RSA key-pairs - which are addressed as ephemeral authentication keys
(EAKs) from now on - that can then be certified by a DAA signature. Mobile phones,
equipped with either SIM-cards or secure elements provide the ideal platform for such an
approach.

In this Section, two approaches how anonymous signatures can be computed on mo-
bile devices that are equipped with secure elements (SEs) are investigated. In the first
approach, the signature is computed entirely in the SE. In this case, the application on the
host initiates the pre-computation of the keys and the signature creation. The algorithm
listed in subsection 4.3.4 is executed entirely inside the SE. The pre-computation of the
ephemeral key-pairs can be executed on the card without further involvement of the host.
In the second approach, the signature computation is partially computed inside the TPM
and partially on the host. Details of the implementation and performance results can be
found in Section 4.4.2.

In addition, the host may be used to store specific DAA group credentials. Similar
to the DAA scheme on desktop system where the PC platform is used to store DAA
credentials, these credentials may be loaded and un-loaded from the SE and stored on the
mobile host.

However, in both approaches, the rogue tagging value cannot be computed in advance
as it depends on a basevalue created by the verifier. Moreover, when looking at the DAA
sign algorithm, it is obvious that the computation of the signature relies on the computa-
tion of the pseudonym ÑV which is used for the computation of c The consequences of this
dependency are that in case of no revocation, the EAKs can be computed and certified
in advance. In case of revocation, the EAKs can be computed but the certification may
only be pre-processed to the computation of c which further required that all temporary

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 103

values of the algorithm must be stored until the final computation of the signature.
Although a DAA signature, according to the specification [112], contains the actual sig-

nature and the computed rogue tagging value, both computations are rather independent
cryptographic operations (only the computed hash c - see 4.1.2, step 6 of the algorithm ,
contains the rogue parameters). Hence, they can be computed separately.

4.4.1 An anonymous authentication scenario

Figure 4.5 shows the application of the approach in a basic authentication scenario.
The mobile platform pre-computes a set of n EAK key-pairs (steps 1-3), certifies the

public parts with DAA signatures1 and stores the private parts of the keys either in the
EEPROM of the SE or encrypts it and un-loads it to the host device. The public-keys and
their credentials (i.e. the DAA signatures) are stored on the mobile platform. The same
is true for the DAA credentials (f, ν0 and ν1, R0, S0, S1). By loading different credentials,
the TPM may create DAA signatures on behalf of different groups it has joined before.

Figure 4.5 Authentication Protocol Sequence

Mobile Host

5. Request

7. (rn, base)

6. generate

base, rn

10. (sign(rn), DAASig(k), k)

MTM

8. (rn)

4. load-/

select key

9. sign(rn)

11. verify signature

on rn with k and

verify DAAsig on k
13. (base)

15. (psd) 16. (psd)

NFC Terminal

17. check rogue

information

1. generate

RSA key

2. sign key

3. un-load

key & cre-

dentials

18. accept/reject

repeat n

times

14. compute

rogue tagging

pseudonym

12. accept/reject

A user can now use these keys and the NFC module on the phone to prove his autho-
rization against an NFC terminal without revealing his identity. Before sending a request
to the terminal, the mobile loads a certified EAK key into the TPM, either from the EEP-
ROM or from the mobile device (steps 4-5). The terminal computes and sends a nonce

1In Trusted Computing enabled application scenarios, the standard exponent 65537 is used. Hence,
only the RSA modulus is signed and transmitted when required.

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 104

rn and base for rogue detection to the mobile (steps 6-7). The mobile forwards rn to the
TPM which signs rn with the previously loaded EAK key. The mobile device forwards
the signature sign(rn) on rn, the public EAK key k and the DAA signature DAASig(k)
on this key to the terminal (step 10). The terminal verifies DAASig(k) with the issuer’s
public-key (step 11) and continues the protocol if the verification succeeds. In steps 13-15,
the TPM computes the pseudonym psd = H(base)Γ−1/ρ mod Γ which is verified by the
terminal as discussed in [76].

If all verifications succeed, the terminal has the information that the requestor is a
member of a certain group - namely the group represented by a certain issuer and its
public-key - and that the used TPM is not on a list of compromised TPMs. However, the
terminal has no information about the identity of the platform or its owner.

4.4.2 Implementation aspects

For the experiments, a Nokia 6212 NFC mobile phone was used. This phone is equipped
with a Giesecke & Devrient SmartCafe smart-card as SE. The secure element based TPM
uses this smart-card which provides a JCOP41 v2.2.1 runtime environment. The TPM
commands and the DAA computations are handled by a JavaCard applet that is installed
on the smart-card. Figure 4.6 shows the concept. The host application uses a TPM
command library to issue commands which are sent to the SE via application protocol
data units (APDUs).

Figure 4.6 Architecture Overview

Mobile Device Hardware

Operating System

Secure Element

J2ME-DAA Application

TPM Abstraction Layer

TPM Command Library

SATSA

APDUs

J2ME - CLDC

DAA Crypto Provider

Operating System

TPM Command Handler

DAA Func-
tions

TPM Func-
tions

TPM Applet

The host part is implemented as a Java2MicroEdition (J2ME) [84] application that
allows the installation of mobile applications on the phone. Moreover, it is taken advan-
tage of the Security and Trust Service API (SATSA) [104] respectively of JSR 257 the
Contactless Communication API [83] which allows the application to communicate with
the card applet via APDUs. This approach, however, requires that the J22ME application
is signed with a code signing certificate from Versign or Thawte.

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 105

For the DAA support in the TPM, several TPM commands and structures as defined
in [112] as well as support for different algorithms are required. The JavaCard 2.2.1
environment does not provide support for implementing cryptographic protocols. The
ideas from [93] and [11] concerning algorithm implementations on JavaCard are followed.
For example, the modular exponentiation can be computed via the RSA cipher algorithm
and modular multiplication via transformation into a binomial form, ((a ∗ b) mod n =
(a+b)2−a2−b2

2 modn), the hmac algorithm has to be implemented in Java, reducing the
overall performance when computing the integrity check of incoming TPM commands.

The minimum implementation of the DAA scheme requires the following TPM com-
mands and TPM structures on the host and TPM side:

1. a protocol for authorization: TPM OIAP plus session handling,

2. the TPM DAA Join() command

3. the TPM DAA Sign() and TPM DAA Sign Init() commands

4. TPM FlushSpecific() and TPM Terminate handle commands for aborting the com-
putation during one of the stages and freeing the resources inside the TPM.

5. TPM DAA Issuer Struct. This structure holds the issuer parameters.

6. two containers for symmetric keys

For unloading the RSA key-pairs, the corresponding DAA signature and the DAA
credentials, the TPM generates two symmetric keys k0, k1, one for encrypting the data and
one for computing an integrity check on it. The TCG specification allows to use symmetric
or asymmetric encryption for this purpose. In the approach, symmetric cryptography
for encryption and - this is different to the TCG specification - a symmetric key for
integrity protection to detect modifications of the encrypted authentication keys and DAA
parameters when they are stored on the device is used.

4.4.3 The pre-computation step

The TCG specifies two commands TPM DAA Join and TPM DAA Sign which are exe-
cuted repeatedly in different stages [112]. For simplicity reasons, these stages are reduced
to one single stage.

Table 4.14 shows the measured performance values. The first row shows the values
when the computation is split between host and TPM. The first column shows the required
time for command handling which includes the computation and verification of hmac
integrity checks on the command data and its transmission to the TPM. The second
column shows the time consumed for computing the host part and the third column shows
the time required for computing the TPM part inside the SE. The last column shows the
overall result of all single operations.

Table 4.14 shows a slight performance advantage when computing the entire DAA
signature in the TPM2. For the first approach, the JavaCard applet that includes the
TPM command handler, the cryptographic algorithms and the DAA functionality, requires
about 5284 bytes in the EEPROM of the card.

2For the interested reader, a DAA signature computation on an Infineon 1.2 TPM requires approxi-
mately 38 seconds.

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 106

Command handling Host Secure Element Total

1,1 s 23,8 s 4,8 s 29,7 s

1,4 s - 26,0 s 27,4 s

Table 4.14: Performance comparison of the DAA sign approaches

Note that all performance measurements are average values that were estimated by
100 executions of the single operations.

4.4.4 The NFC authentication step

For the actual authentication via the NFC channel, the certified EAK-keys from the pre-
computation step can be used. As shown in Figure 4.5, the terminal sends a nonce to the
mobile/TPM which basically applies an RSA signature according to PKCS#1.5 [73] on
the nonce which takes approximately 1 second.

Command Handling Nonce singing Rogue Tagging Total

1,0 s 1,3 s 1,1 s 3.4 s

Table 4.15: Performance of the authentication process

Moreover, the TPM computes the rogue tagging parameter which is basically a single
modular exponentiation which also takes approximately 1 second. Hence, the total time
required for authentication is 3,4 seconds.

Parameter lengths In the prototype implementation, the following parameter lengths
are used:

ln ls le lf lν
2048 bits 1024 bits 368 bits 160 bits 2536 bits

lφ lrw lrν lrf lΓ
80 bits 2128 bits 2228 bits 400 bits 2048 bits

Table 4.16: Parameter lengths in number of bits

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 107

4.5 Conclusion

This Chapter focuses on the investigation of the DAA scheme on different platforms -
especially on mobile platforms with specific security devices. It further investigates how
Trusted Computing based technologies and embedded security mechanisms can be used
for anonymous authentication for NFC and RFID applications.

Two approaches, the first splitting the computation of such DAA signatures between a
resource constrained TPM and a more powerful host platform and the second, using solely
the MTM located in a security device to compute the entire DAA signature are analyzed.

In addition, the TLS client authentication use-case was investigated to measure the
performance that can be achieved with currently available TPMs. Although the perfor-
mance of TPMs like the ST Micro or the Infineon TPM is rather slow, the fast Intel TPM
allows the use of anonymous credentials in an efficient way.

Fourth, a concrete scheme is provided how an anonymous credential systems based on
TPMs can be integrated into the Java cryptography architecture architecture and how
they can be used for anonymous authentication. Moreover, a design was proposed that
allows the use of the DAA protocol on mobile phones, taking advantage of state-of-the-art
security components.

For generating experimental results, off-the-shelf mobile phones were used that are
equipped with secure elements to host the TPM/MTM functionality and which are con-
nected to NFC modules, allowing a practical implementation of the proposed architecture.

The current implementation of the library shows that anonymous credentials can be
efficiently implemented and used for the Java desktop platform. However, when used on
mobile platforms, a pure Java implementation is only reasonable if the Java execution
acceleration is supported. This could either be done in hardware, like in the case of the
ARM processor extension Jazelle [82] or in software via Just-in-Time (JIT) compilers.

Another solution could be to provide native code support - the J2ME/CDC platform
allows native calls from Java applications. Thus, the modular arithmetic operations, which
are a great bottleneck to cryptography when computed in pure Java could be accelerated.
Moreover, hashing of bignumber objects is done in great numbers as discussed in Section
4.3.9. These hash operations could also be moved to the native operating system and
native device to speed up the DAA operations. Therefore, future investigations should
include native support for modular arithmetic.

A different way to improve the performance could be to delegate the computation
to a dedicated crypto device, for example, the sim card or secure elements like the one
discussed in [30].

The performance of the DAA protocol could also be improved by using other crypto-
graphic primitives like a DAA scheme based on elliptic curves or pairing based cryptog-
raphy as discussed in [14].

Hardware based acceleration, especially for embedded devices, could also be imple-
mented by extending a CPU’s core. Extensions to the instruction set as discussed in [49]
support fast computation of long numbers, i.e. modular addition, modular exponentiation
and multiplication operations.

4.5.1 Future work and improvements

Future investigations should include DAA schemes based on elliptic curves or pairing based
cryptography as discussed in ([72], [21]). ECC based schemes clearly show a performance

CHAPTER 4. PETS FOR EMBEDDED SYSTEMS 108

advantage over the RSA based variant. Although support for ECC is provided by JavaCard
vendors, adequate support for developing complex DAA protocols based on ECC is not yet
available on current JavaCard platforms. Another interesting aspect for mobile devices is
power consumption. How much power is drained from a device’s battery depends strongly
on the executed operations. Consequently, an analysis of the power consumption when
computing DAA signatures is of great interest for future investigations.

Also of interest are secure implementations of DAA algorithms which are robust against
interferences like attacks with laser light from adversaries outside the security devices.
While the basic cryptographic operation of addition and multiplication can be imple-
mented in a secure and robust way the question is still unanswered whether this can be
done for entire DAA algorithms.

Chapter 5

Improvements and Alternative
Approaches for establishing
Anonymity Protection for Trusted
Platforms

5.1 Introduction

In the previous Chapter 4, a discussion of existing privacy enhancing technologies (PETs)
was given. In this Chapter, attention is turned to improvements and alternative approaches
how anonymity protection can be established.

One of these improvements addresses the Java based DAA cryptosystem implementa-
tion which is bound to the constraints of embedded processors. DAA is based on discrete
logarithm operations that involve numerous modular exponentiations. The most popular
algorithm for modular exponentiation is the Montgomery exponentiation based on slid-
ing window technology. This technology offers several configuration options in order to
get the best trade-off between the amount of pre-computations and multiplications that
are required for different exponentiation operands. Consequently, the optimum config-
uration and best parameters for receiving the highest performance gain are of interest.
Therefore, different approaches for improving the performance of modular exponentiation
with respect to the DAA scheme on Java enabled platforms are of interest. In particular,
the optimal parameter setting for the Montgomery exponentiation has to be identified
and furthermore it has to investigated how natively executed modular multiplications and
modular reductions, with respect to a minimum of native code involved, can be integrated
to improve the performance of mobile Java applications. Experimental results show that
the optimal setup of the Montgomery algorithm for a single modular exponentiation differs
from the optimal setup used for the combination of all operations and operands used in
the Direct Anonymous Attestation scheme.

Modern virtual machines (VMs) move time critical operations to the native part of the
host platform. Therefore, it is interesting to know which performance improvement can be
gained with native code execution support. In commercial VMs, operations like modular
exponentiation used, for example, in the RSA cryptosystem are executed natively which is
entirely transparent to the Java application. Unfortunately, these RSA implementations
can not be used to compute exponentiations as the apply paddings per default. A ”‘raw”’

109

CHAPTER 5. 110

mode where only a modular exponentiation/reduction without padding is executed are
virtually non-existent on commercial phone-VMs. As a consequence, the test implemen-
tations in this Chapter take advantage of the Java Native Interface (JNI). However, a
performance gain is not possible for any cases where data is processed natively. In some
cases the overhead of shifting the data in and out of the VMs outweighs the performance
gain especially when VMs are used that employ Just-in-Time (JIT) or Dynamic-Ahead-
Compilers (DAHC) compilers. As there are many parameters to shift in DAA, it is of
interest to know whether there is a performance gain or not.

Another topic in this Chapter is the design of alternative anonymisation algorithms.
Two different anonymisation schemes for Trusted Computing platforms have been pro-
posed by the Trusted Computing Group - the PrivacyCA scheme and the Direct Anony-
mous Attestation scheme. These schemes rely on trusted third parties that issue either
temporary one-time certificates or group credentials to trusted platforms which enable
these platforms to create anonymous signatures on behalf of a group. Moreover, the
schemes require trust in these third parties and the platforms have to be part of their
groups.

Although it is possible for the TPM vendor to play the role of the DAA issuer, it
is practically not possible to do so without providing extra services (i.e. a DAA infras-
tructure). Such an infrastructure would include the issuer component where the clients
can obtain their credentials. Theoretically, it might be possible to ship TPMs with pre-
installed credentials, however, in practice this is not the case. Furthermore, a revocation
facility and a trusted-third-party service that checks and signs the issuer parameters is
required - remember, before loading the signed issuer parameters into the TPM, their
integrity and authenticity has to be checked which is done partly by the TPM and partly
by the host platform. The signing party which signs the DAA parameters could also be
the vendor, however, at the cost of an extra service and additional processing steps on the
platform required for validating the parameters.

However, the approaches proposed so-far (i.e. DAA and both approaches rely on a
trusted third party which is either a PCA or an issuer or group manager. This idea is
acceptable as long as the interacting platforms are part of such a group. The group and
the corresponding services could be established by a company or an official government
institution. However, if you think of your private PC at home, which of these services
would provide protection for your home platform? A company’s anonymization service
will unlikely provide such a protection for the company’s employees’ private computers
in order to protect their transactions in their spare-time. A private computing platform
would have to rely on either paid anonymization services which would add extra cost to
the platform’s owner in order to receive anonymity protection or it would have to rely on
free and open anonymization services where a platform and its user have to trust that the
information sent to the service is dealt with correctly. However, the platform owner has
no influence and no hold on the correct treatment of the information and the availability
of the service. This raises the general question of how two platforms that are not part
of one of such groups can establish a connection and stay anonymous at the same time.
Hence, it would be reasonable to have an anonymization scheme that does not rely on
such a trusted third party like a PCA or DAA issuer and that does not produce extra
costs for clients.

However, there are certain use-cases where group affiliation is either not preferred or
cannot be established. Hence, these existing schemes cannot be used in all situations
where anonymity is needed and a new scheme without a trusted third party would be

CHAPTER 5. 111

required. In order to overcome these problems, an anonymity preserving approach that
allows trusted platforms to protect their anonymity without involvement of a trusted
third party is presented. The scheme can be used with existing Trusted Platform Modules
version 1.2 and a detailed discussion of a proof-of-concept prototype implementation is
provided.

For example, the approach proposed by Chen et al. [22] could use this approach as basis
for computing the ring-signature. Moreover, whistle-blowers that disclose information to
Wikileaks could use this scheme to authenticate the disclosed data without revealing their
identity.

In order to address this problem, attention in this paper is turned to ring-signatures
which have been introduced by Rivest et al in the year 2001 [87]. This kind of signatures
allow a signer to create a signature with respect to a set of public-keys. This way, a verifier
who can successfully verify the signature, can be convinced that a private-key correspond-
ing to one of the public-keys in the set was used to create the signature. However, which
private/public key-pair was used is not disclosed. Moreover, these signatures provide an-
other interesting property: the ring-signatures are based on ad-hoc formed groups or lists
of public-keys which can be chosen arbitrarily by the signer and they do not, in contrast
to the PCA scheme or DAA scheme, rely on a third party. This last property is the most
interesting one as we want to exploit this property for our purpose.

Nevertheless, such signatures can become large, depending on the number of contribut-
ing public-keys. Efficient ring-signature schemes have been proposed in [36] and [20].
Unfortunately, these schemes can not be applied for our purpose as we depend on the
involvement of a TPM which we require to compute commitments and proofs for our
approach.

A more advanced approach is discussed in Section 5.7. In this section, group signature
scheme based on elliptic-curve cryptography (ECC) is discussed.

The Chapter is organized as follows, the Java improvements are analyzed in Section
5.2 followed by the introduction of the ring-signature based approach discussed in Section
5.3. Finally, in Section 5.7 a ECC based anonymous authentication scheme is introduced.

5.1.1 Related work and Contribution

Several publications address the topic of using ring-signatures for Trusted Computing
systems: Chen et al proposed to use ring-signatures for hiding platform configurations [22].
Their approach aims at configuration anonymity which means that the signer proves that
his platform’s configuration is one out-of-n valid configurations. A verifier can check
if the signer’s configuration is a valid one, but the true configuration is not revealed.
However, their paper does not focus on platform anonymity. In order to achieve platform
anonymity, in addition to configuration anonymity, their approach still requires an extra
anonymization scheme like PCA or DAA.

Tsang et al [114] discuss the application of ring-signatures in Trusted Computing. They
investigate how this type of signature could be used to implement a DAA scheme based on
linkable ring-signatures. However, they do not provide a detailed discussion of their idea.
Moreover, they rely on group managers that set up the scheme and its parameters, thereby
reversing the advantage of the ring-signatures which allows to neglect third-parties.

In contrast to these two publications, a scheme for platform anonymization in which
trusted platforms do not require one of the above mentioned third-parties is proposed
in this Chapter. Furthermore, a detailed discussion of how ring-signatures based on the

CHAPTER 5. 112

Schnorr signature algorithm [91] can be created using the TPM DAA commands is given.
Therefore, we show how the Schnorr ring-signing scheme can be modified in order to meet
the requirements of the TPM’s DAA functionality. Moreover, a protocol is defined that
allows a TPM to obtain a credential from a TPM vendor which is further used in the
proposed approach.

–

CHAPTER 5. 113

5.2 Improvements for DAA signature creation on Java en-
ables platforms

Today, nearly every mobile phone is equipped with a Java virtual machine which allows
the device owner to install and run different applications over-the-air [80]. However, Java
bytecode has the drawback that it runs slower than optimized C or Assembler code. As
many important algorithms used for public-key cryptography such as RSA or DAA rely
on computation-intensive arithmetic operations such as modular exponentiations, this
drawback has enormous effects on the execution speed. The modular exponentiations
required for these operations involve very long integers, typically ranging from 512 to
2048 bits. A modular exponentiation is generally realized through a sequence of modular
multiplications and consumes the majority of the execution time in inner loops. Improving
the performance of these loop operations, therefore, has a significant impact on the total
execution time of public-key cryptosystems.

The most prominent representative of a public-key cryptosystem used in Trusted Com-
puting is the DAA scheme introduced in section 4. This scheme involves many modular
exponentiations, for example, creating a DAA signature requires the host to compute:

Thost = Ttpm ∗ (A ∗ Sw)r1 ∗ Srν̄ mod N (5.1)

which involves three modular exponentiations and three multiplication with bases typically
ranging up to 2048 bits and exponents ranging from 344 to 2737 bits [[76]]. In addition,
the TPM has to compute:

Ttpm = R
rf0
0 ∗Rrf11 ∗ Srν mod N (5.2)

while on general Trusted Computing (TC) enabled platforms, these computations (5.2)
are executed inside the TPM, in case of virtual TPMs or mobile trusted modules (MTMs)
[[111]], [[35]] these exponentiations are done solely in software and are, therefore, per-
formed on the platforms main CPU. According to (5.1) and (5.2), the host has to compute
six modular exponentiations in total. Consequently, the most efficient implementation and
parameter setting of the long integer modular arithmetic is crucial for the overall compu-
tation speed.

The performance of these computations can be improved in different ways. In this
chapter, we discuss two of them: the first method addresses the used exponentiation
algorithm. Many of these algorithms use windowing techniques that involve pre-computing
values that are later required for the actual multiplications. Therefore, it is essential
to find the optimal distribution between the number of pre-computated values and the
number of modular multiplications in order to get the maximum overall performance.
This distribution depends on the used window size - a larger window means more pre-
computed values and lesser multiplications. However, the optimal window size depends on
the operands and their lengths used for the modular exponentiation and, therefore, varies
for different crypto-systems. To be more exact, the window size varies for different modular
exponentiations, depending on their operands, which is also the case when creating DAA
signatures.

A discussion of the results from the search of finding the optimal parameters for the
DAA scheme is given in Section 5.2.5.

The second method addressed focuses on the Java architecture: Java offers the option
of Just-in-Time (JIT) compilation [69] or Dynamic-Ahead-Compilation (DAC). However,

CHAPTER 5. 114

these options are not available on many embedded virtual machines [84]. Moreover, spe-
cialized operations like modular arithmetics have a significant performance advantage when
implemented specifically for a certain platform instead of compiled by a JIT compiler. In
order to take advantage of these performance gains with respect to the portability of Java
applications, only the crucial parts of the arithmetic computations are moved to the native
platform. These operations include the modular multiplication, modular reduction and
squaring operations. The required modifications to the algorithm implementations and
the different options for platform access from Java are discussed in Section 5.2.6.

5.2.1 Long integer arithmetic

Many important public-key cryptosystems, such as RSA or Diffie-Hellman, rely on modular
exponentiation, for example, operations of the form c = me mod n where m, e and n are
long integer values [5]. Although a variety of algorithms for modular exponentiation in
literature exist, all of them can be reduced to modular multiplications, reductions and
squarings. Hence, reducing the number of multiplications and reductions is desirable.
The modular multiplication can be achieved in different ways. One method for achieving
efficient reduction is discussed in the following Sections.

5.2.2 Sliding window exponentiation

Many exponentiation algorithms use a sliding window technique as discussed by Kaya
Koc [18].

Algorithm 1 Sliding Window Exponentiation

Require: g, e = (etet−1...e1e0)2 with et = 1, and an integer k ≥ 1.
Ensure: ge

1: Precomputation
2: g1 ⇐ g, g2 ⇐ g2

3: for i = 1 to (2k−1 − 1) do
4: g2i+1 ⇐ g2i−1 ∗ g2

5: end for
6: end Precomputation
7: A⇐ 1, i⇐ t
8: while i ≥ 0 do
9: if ei = 0 then

10: A⇐ A2,i⇐ i− 1
11: else
12: find the longest bitstring eiei−1...el such that i− l+ 1 ≤ k and el = 1, and do the

following:
13: A⇐ A2i−l+1 ∗ g(eiei−1...el)2

, i⇐ l − 1
14: end if
15: end while
16: Return (A)

This technique reduces the average number of multiplications required for exponentia-
tion. It is based on repeated squarings and multiplications but also includes a precompu-
tation step. The number of these precomputations depends on the factor k. This factor
denotes the size of our window - the larger the size of k the more precomputation have to

CHAPTER 5. 115

be done and the possibility of fewer multiplications excluding precomputations is given.
However, precomputing values is time consuming and might exceed the performance gain
achieved by reducing the number of multiplications. Consequently, experimenting with k
in order to find the optimal value for certain exponent lengths is recommended.

We have chosen an algorithm with a fixed window size as this kind of algorithms is
one of the most widely used. Moreover, it is one of the fasted algorithm for modular
exponentiation, it is easy to implement and provides a good trade-off between codesize
and performance [19]. A comparison with algorithms that use variable window sizes is out
of scope of this chapter.

5.2.3 Montgomery reduction

The Montgomery Reduction is a very efficient algorithm used for reduction in large modu-
lar multiplications. As shown in Algorithm 2, the reduction is done by calculating TR−1.
By choosing the so called Montgomery residual factor R = bn = 2n, this can be done
very efficiently. Before doing modular multiplications, the factors have to be initialized by
multiplying them with R, so that in the end, after multiplying the final result with R−1,
the Montgomery residual factor cancels out. The Montgomery Reduction also prohibits
the intermediate values arising from multiplications and squarings to be large.

Algorithm 2 Montgomery reduction

Input: integers m = (mn−1...m1m0)b with gcd(m, b) = 1, R = bn,m′ = −m−1 mod b,
and T = (t2n−1...t1t0)b < mR.

Output: TR−1 mod m
1: A⇐ T (Notation: A = (a2n−1...a1a0)b)
2: for i = 0 to (n− 1) do
3: ui ⇐ aim

′ mod b
4: A⇐ A+ uimb

i

5: end for
6: A⇐ A/bn

7: if A ≥ m then
8: A⇐ A−m
9: end if

10: Return(A)

5.2.4 Efficient squaring

For the squaring operations, we have chosen the separated operand scanning method as
recommended in [[18]]. Although building the square of a long integer has an performance
advantage over multiplying the value by itself, it can never be more than twice as fast as
a multiplication [[5]].

5.2.5 Results

In this section, an analysis of the performance results of the exponentiation process is
given. A first investigation of a single modular exponentiation revealed the average time
for performing one single modular multiplication and one single squaring operation, as
shown in Table 5.1. The results stem from the observation of the modular exponentiation

CHAPTER 5. 116

Algorithm 3 Multiple-precision squaring

Input: positive integer x = (xt−1xt−2...x1x0)b
Output: x ∗ x = x2 in radix b representation

1: for i = 0 to (2t− 1) do
2: wi ⇐ 0
3: end for
4: for i = 0 to (t− 1) do
5: (uv)b ⇐ w2i + xi ∗ xi, w2i ⇐ v, c⇐ u
6: for j = (i+ 1) to (t− 1) do
7: (uv)b ⇐ wi+j + 2xj ∗ xi + c, wi+j ⇐ v, c⇐ u
8: end for
9: wi+t ⇐ u

10: end for
11: Return((w2t−1w2t−2...w1w0)b)

with varying exponents of the coefficient Srν̄ : This exponentiation which requires an
exponent (rν̄) of size 2737 bits and a base (S) of a size up to 2048 bits is therefore one of
the largest coefficients in Formula (5.1). The parameters where chosen according to the
proposed values in the DAA scheme [76].

multiply square

operations 389 2737
meantime PC 0.17 ms 0.12 ms

meantime ARM9 19 ms 15 ms

Table 5.1: Performance of a single arithmetic operation

The values in Table 5.1 represent the average results when using a window size of 6. By
varying the window size, the average performance values change according to Figure 5.1.
The best performance is given at a windowsize of 7 that are 27 = 128 precomputations
which requires a total time of 625 ms to complete on the ARM9 platform and about 8.02
ms on the PC platform. (Note that all performance values were created with a modulus
length of 2048 bits.)

Figure 5.1 Performance values for different windowsizes - single exponentiation

Combining the pre-computation, the modular multiplications, reductions and squar-

CHAPTER 5. 117

ings together, we get the total time required for one single modular exponention as shown
in Table 5.2.

PC ARM9

modExp 0.41 s 50.14 s

Table 5.2: Performance of a single modular exponentiation

However, the measured values are only valid for this specific modular exponentiation
with the given parameters. A sequence of modular exponentiations as used in DAA for
creating a signature (5.1) (5.2) that involves operands with different base lengths and
different exponent lengths show a different behavior and therefore require, a different
average window size.

Figure 5.2 shows the computation speed in relation to the window size for a complete
DAA signature. For creating a DAA signature, an optimum average windowsize of 6 is
the best choice for the modular exponentiations. This setting results in 64 precomputated
values per modular exponentiation.

Figure 5.2 Performance values for different windowsizes - DAA sign

Keep in mind that a complete DAA signature also includes the computation of sn =
rn + c ∗ X for the private parameters X. These private parameters include the pri-
vate keys f0, f1, ν and credential parameters e, ν̄ as well as the computation of the hash
c = H(H(H(n‖R0‖R1‖S‖Z‖‖T‖T̃‖nν)‖nt)‖m) of the system and signature parameters
as well as the the message m. Nevertheless, our investigation revealed that although these
computations have an influence on the overall computation time, they are neglible when
selecting the optimal window size for the exponentiations.

Testequipment

For the experiments, an ARM9 based micro processor platform was used as it is installed
in common mobile phones and a standard PC with a 2.00 GHz Semptorm CPU. The
Java Virtual machines used for our investigations were a SUN Java 1.6 on the PC and a
proprietary VM from SonyEricsson.

CHAPTER 5. 118

5.2.6 Java native calls

A major performance improvement can be achieved by executing the critical operations
natively on the platform. Java applications are running in a sand-box and, therefore, can
not execute native code a priori. However, different methods to overcome this constraint
exist. In order to access platform specific functions and equipment, Java offers an inter-
face, the Java native interface (JNI) [[103]] that allows to leave the virtual machine’s
sandbox, execute native code and return to original execution path of the Java applica-
tion. Moreover, the interface provides a mechanism to transfer data to and from the Java
application to the native code for processing.

The calls to the native world are associated with a small amount of time overhead
for the native function call itself and the amount of data being transferred. Finding out
how large the costs for native calls exactly are, is rather difficult, as it depends on the
implementation of the JNI in the underlaying virtual machine. A native function call itself
is estimated to be two to three times slower than a pure Java function call on a typical
virtual machine [[67]]. Moreover, the transfer overhead depends on how the transfer
is done, as various possibilities how to achieve that exist. A good advice is to avoid
memcopies. Instead of doing a complete copy of the parameters from the Java heap to the
C heap, the native function can also get direct access to the data inside the Java object
heap, which results in an substantial performance-boost compared to a native call that uses
memcopy for data transfer [[67]] (Chapter 9.2.6). Because of these costs, it is reasonable
to reduce the number of native calls as this overhead could lead to a performance loss.
However, in case of complex arithmetic operations, the time required for the computations
outweighs the time required for data transfer.

Another mechanism to allow Java applications execute native code is to integrate the
code directly into the virtual machine [[106]] where the VM offers an interface to the
native code for applications executed by itself. This technique is used on many mobile
JVMs as it is more lightweight than the JNI framework and easily portable to different
platforms. However, the integration of the native code has to be provided by the VM
manufacturer or the platform vendor.

As discussed in Section 5.2.1, modular exponentiations can be reduced to modular
multiplications, reductions and squarings. These operations are the most time consuming
ones when taking the whole exponentiation computation into account. Speeding up these
computations results in a remarkable improvement of the whole operation. In our ap-
proach, we move these computations to the platform’s execution environment. In detail,
we now perform multiplications, squarings and reductions on the native platform. Al-
though the overall number of these operations executed, of course, stays the same as when
executed in pure Java, the performance gain is tremendous. Table 5.4 gives an overview
of the achieved results.

Java ARM9 native ARM9 JIT Java PC native PC

mult. 19 ms 4 ms 0.165 ms 0.057 ms
Secure channel technologies - like Transport Layer Security (TLS) - are crucial components of many today’s security concepts. This technolog squ. 15 ms 3 ms 0.128 ms 0.044 ms

Table 5.3: Average performance values of a single modular exponentiation with windowsize
6

The speed of a single multiplication or a single squaring executed in native code is
about 3 times faster compared to the same code executed in Java on the PC platform. On

CHAPTER 5. 119

the ARM9 platform, the performance gain is about 5 times. Note that all multiplications
and squarings already include the Montgomery reduction step. Keeping in mind that Java
on the PC platform uses JIT compilation, the arithmetic operations done in native code
even outrun the native code generated by the JIT compiler.

Java ARM9 native ARM9 JIT Java PC native PC

Sign 162.63 s 40.36 s 1.34 s 0.47 s
Verify 80.40 s 21.07 s 0.66 s 0.24 s

Table 5.4: DAA Signature Times

Figure 5.3 Pure Java and Java native code performance difference of DAA-sign (PC)

5.2.7 Deployment of the native library

The Java virtualization model allows mobile applications to be downloaded and executed
more or less independent of the operating system and platform configuration. However, the
involvement of specific platform code violates this assumption and a method for deploying
our native code optimizations is required.

Using the JNI interface, the platform dependent code can be distributed by a sim-
ple mechanism. Java applications are typically deployed by packing the compiled Java
classfiles together in a single archive file, which is then delivered to the target platform.
This archive file can also contain the native code library. When starting the application,
the library can be extracted and copied to the native filesystem on the target platform
where the JVM is searching for dynamic libraries. After the library has been stored on
the platform, the application gives a command to the JVM to load the library. For the
k-native interface, the situation is different. As the native code is already on the platform
- to be more exact, it resides inside the JVM, the application is not required to carry the
native code by itself. The here is that this option is only available on specific JVMs. The
native optimisations have to be integrated either by the platform integrator or the JVM
vendor. In this case, it is reasonable that the application also carries the required arith-
metic implementation in pure java and checks the presence of the native speedups before
execution. If they are not present, the application has to use the arithmetic implemented
in pure Java.

CHAPTER 5. 120

Figure 5.4 Pure Java and Java native code performance difference of DAA-sign (ARM9)

5.3 Issuerless anonymity protection with TPMs

As discussed in the previous Chapter, the two different anonymisation schemes for Trusted
Computing platforms have been proposed by the Trusted Computing Group - the Priva-
cyCA scheme and the Direct Anonymous Attestation scheme. These schemes rely on
trusted third parties that issue either temporary one-time certificates or group creden-
tials to trusted platforms which enable these platforms to create anonymous signatures
on behalf of a group. Moreover, the schemes require trust in these third parties and the
platforms have to be part of their groups. However, there are certain use-cases where
group affiliation is either not preferred or cannot be established. Hence, these existing
schemes cannot be used in all situations where anonymity is needed and a new scheme
without a trusted third party would be required. In order to overcome these problems, an
anonymity preserving approach that allows trusted platforms to protect their anonymity
without involvement of a trusted third party is presented. This new scheme can be used
with existing Trusted Platform Modules version 1.2 which is demonstrated by a detailed
discussion of a proof-of-concept prototype implementation.

5.3.1 Highlevel Description of the approach

In this section, a high level discussion of the proposed issuer-less approach is given. Fur-
thermore, the following assumptions and definitions are introduced:

1. All TPMs are shipped with a unique RSA key-pair, the endorsement-key EK.

2. Moreover, it is assumed that the vendors of the TPMs have issued an endorsement
certificate to the TPM’s endorsement keys in order to prove the genuineness of the
TPM.

3. Both the signing platform H and the verifying platform V have to trust the TPM
and the TPM vendor.

4. An endorsement-key or EK denotes the endorsement key-pair (public and private
part).

5. A public-endorsement-key or public-EK denotes the public part of an endorsement-
key-pair.

CHAPTER 5. 121

6. An endorsement-key-certificate or EK certificate denotes a certificate that contains
the public part of an endorsement key-pair.

7. A schnorr-key or SK denotes a schnorr key-pair (public and private part).

8. A public-schnorr-key or public-SK denotes the public part of a Schnorr-key-pair.

9. A schnorr-key-certificate or SK-certificate denotes a certificate that contains the
public part of a Schnorr key-pair.

The proposed approach takes advantage of the fact that each TPM is part of a certain
group right from the time of its production, namely the group that is formed from all
TPMs of a certain manufacturer.

The approach is based on a ring-signature scheme where the ring is formed by a set
of public-SKs and closed inside the TPM of the signer. Therefore, the prover has to
show a verifier that the public-SK of the signing platform is an element of a group of
public-SKs and that the ring was formed inside a genuine TPM. If he can successfully
verify the signature, the verifier can trust that the signature was created inside a TPM.
An introduction to ring-signatures can be found in [87] and [4] which is used as a basis
for the trusted-third-party (TTP) less anonymization scheme.

For creating a signature, the signer chooses a set S = (SK0, .., SKn−1) of n public-SKs,
that contribute to the signature. He computes the signature according to the algorithm
discussed in Figure 5.5.

The ring is finally formed by computing the closing element inside the TPM. In typical
Trusted Computing scenarios where remote attestation is used to provide a proof of the
platform’s configuration state, the signer generates an attestation-identity-key (AIK) with
the TPM. This AIK is an ephemeral-key and can only be used inside the TPM for identity
operations. In this scenario, the AIK is signed with the ring-signature which results in the
signature σ on the AIK. Nevertheless, it is possible to sign any arbitrary message m with
this approach.

The verifier can now validate the signature and knows that the real signer’s public-SK
is an element of the set S. As a consequence, the verifier knows that the signer was a
trusted platform and that the ring was formed inside a TPM. However, the verifier can
not reveal the real identity of the signer. How this is achieved in this approach is discussed
in Section 5.3.3.

5.3.2 Discussion

A Signer H and verifier V have to trust the TPM and its vendor. The verifier V validates
the public certificates of SK0, ..., SKn−1. If all certificates were issued by TPM vendors,
the verifier knows that the signer platform is equipped with a genuine TPM from a certain
vendor. Otherwise, he rejects the signature.
In contrast to the EKs which are pre-installed in the TPMs and certified by the vendors,
SK are created dynamically in the TPM. Consequently, they have to be certified before
they can be used for signature creation. How this is achieved and how SKs prove the
genuineness of a TPM is discussed in Section 5.3.4.

The endorsement certificate and the SK-certificate cannot be linked to the TPM it
belongs to, as it only provides information about the vendor of the TPM. This is true
as long as the EK or the EK-certificate is not transmitted from a certain platform e.g.
when used in a PrivacyCA or DAA scheme.

CHAPTER 5. 122

A typical Infineon EK-credential contains the following standard entries: the public-
EK of the TPM, a serial number, the signature algorithm, the issuer (which is an Infineon
intermediate CA), a validity period (typically 10 years), RSA-OAEP parameters and a
basic constraint extension [55]. The subject field is left empty. For experimental purpose,
SK-test-certificates with according entries were created.

The design of the TPM restricts the usage of the EK which can only be used for
decryption and limits its usage to the two aforementioned scenarios. In these schemes, the
EK-certificate could be used to track certain TPMs as the PCA might store certification
requests and the corresponding TPMs. If the PCA is compromised, an adversary is able
to identify which TPM created certain signatures. This is not possible in our scheme,
as rings are formed ad-hoc and no requirement for sending the EK from the platform it
belongs to, exist.

An SK-certificate might be revoked for some reason. In this case, the signer must
realize this fact before creating a signature. Otherwise, the signer could create a signature,
including invalid SKs. Assuming that the signer uses a valid SK to create his signature,
the verifier would be able to distinguish between valid (the signers) SK and invalid SKs.
Consequently, the signer’s identity could be narrowed down or in case all other SKs are
revoked, clearly revealed.

A time stamp could be used to define the time of signature creation. The validating
platform could then check if the certificate was revoked before or after the time of signing.
However, this idea requires the signer to use Universal Time Code (UTC) format in order
to eliminate the time zone information which could also be used to narrow down the
identity of the signer.

One advantage of this approach is that the SKsmay be collected from different sources.
However, in order to keep the effort for collecting the SKs and managing the repositories
low, a centralized location for distributing the SK-certificates could be reasonable. Such
a location might be the TPM vendor’s website but it is not limited to this location.

The scheme can be applied in various use-cases where it is important to form ad-hoc
groups with no dedicated issuer. Aside non-commercial and private usage scenarios, such
groups, for example, often occur in peer-to-peer systems. Moreover, the scheme can be
used according to Rivest’s idea for whistle blowing [87].

5.3.3 Schnorr signature based approach

In this section, the Schnorr signature based approach which is based on a publication
by Abe et al. is discussed, who proposed to construct ring-signatures based on Schnorr
signatures [4] in order to reduce the size of the overall signature. In contrast to the
approach from Rivest [87], the idea of Abe et al does not require a symmetric encryption
algorithm for the signature creation and uses a hash function instead. This idea can be
used for the approach with a few modifications of the sign and verify protocol. A major
advantage of this approach is that it can be used with existing TPM 1.2 functionality
to compute this kind of signatures. In order to do so, the DAA Sign and Join protocol
implementation of the TPMs v1.2 can be exploited.

Signature Generation. Let n be the number of public-SKs contributing to the ring-
signature and H a hash function H : {0, 1}∗ ⇒ Zn. j is the index of the signer’s public-key
SKj consisting of yj , the modulus Nj and gj with Nj = pjqj and pj , qj are prime numbers.

CHAPTER 5. 123

A signer Sj with j ∈ (0, ..., n − 1) has the private-key fj ∈ {0, 1}lH and the public-key

yj = g
fj
j mod Nj .

The signer can now create a ring-signature on the message m by computing:

1. Compute r ∈ ZNj and cj+1 = Hj+1(SK0, ...SKn−1,m, g
r
j mod Nj)

2. For i=j+1..n− 1 and 0..j − 1.

3. Compute si ∈ ZNi and ci+1 = Hi+1(SK0...SKn−1,m, g
si
i y

ci
i mod Ni), if i + 1 = n

then set c0 = cn.

4. Finally, calculate sj = r − fjcj mod Nj to close the ring.

The result is a ring of Schnorr signatures σ = (SK0...SKn−1, c0, s0, ..., sn−1) on the
message m where each challenge is taken from the previous step.

Using a TPM 1.2 to Compute Schnorr Signatures

In the proposed scheme, the TPM of the signer is involved in signature generation in order
to close the ring by exploiting the TPM’s DAA commands. A detailed explanation of the
DAA commands and their stages can be found in the following Paragraphs of this Section.

Although the DAA scheme is based on Schnorr signatures, the TPM is not able to
compute Schnorr Signatures a-priori. However, the TPM DAA Sign and TPM DAA Join
commands can be used to compute Schnorr signatures for our purpose. Therefore, the
algorithm description with the stages that have to be gone through during the execution
of the TPM commands has to be extended:

A signature on the message m can be computed as follows: Let (g,N) be public
system parameters, y = gf mod N the public-key and f the private-key (Note that for
computational efficiency, f is split into f0 and f1 inside a TPM). For simplicity reasons,
a common modulus N is used and a fixed base g for all contributing platform’s in the
further discussions. M is 20 byte long nonce required for computing a DAA signature
inside a TPM.

Computing the Schnorr Ring-Signature. In order to compute a Schnorr signature,
the TPM DAA Sign command can be exploited. Therefore, the protocol can be started
in order to execute stages 0 to 11 as defined in [112], however, for the ring-signature
computation, only stages 2 to 5 and 9 to 11 are of interest.

Table 5.5 shows the steps for running the DAA Sign protocol with a TPM. The
TPM DA
A Sign command is executed in 16 stages by sub-sequent execution of the command.

It is not required to finish the Sign protocol and the DAA session can be terminated
at stage 11 and leave out stages 12 to 15. Stages 6 to 8 have to be executed but the results
can be ignored.

In order to use this approach, the Schnorr signature generation and verification scheme
had to be modified: The TPM DAA Sign command requires a nonce from the verifier to
get a proof for the freshness of the signature and computes H(nonce||MTj) where MTj

is a random number generated inside the TPM. This proof is not required in the scheme
and cin = H(g||N ||y0||..||yn−1||e) (with e = gr0y

cj−1

j mod N) can be set. However, the
resulting value MTj has to be recorded as it is required to verify the signature. As a result,
the TPM computes cj = H(H(cin)||MTj)||1or0||morAIK).

CHAPTER 5. 124

Figure 5.5 Schnorr Ring-Signature creation

1. Let L = yi with (i = 0..n − 1) be a list of n public-keys including the signer’s key that
contribute to the signature and let j be the index of the signer’s public-key yj .

2. Execute TPM DAA Sign to stage 5 and retrieve T = gr0 mod N from the TPM (see Table
5.5 for the DAA Sign command steps).

3. Compute a random MTi and cj+1 = Hj+1(H(H(g||n||y0||..||yn−1||T))||MTi)||1or0||m or
AIK)

4. For i = j + 1..n− 1 and 0..j − 1.

Compute a random MTi , si.

Compute ci+1 = Hi+1(H(H(g||n||y0||..||yn−1||ei))||MTi)||1or0||m or AIK) with ei =
gsiycii mod N .

5. To close the ring, continue to execute the TPM DAA Sign command protocol:

Continue to stage 9 and send cin = H(g||n||y0||..||yn−1||e) with e = T ∗ yci to the TPM
which computes c = H(cin||MTj) and outputs MTj .

Continue to stage 10 and send either:

b = 1, m is the modulus of a previously loaded AIK

b = 0,m = H(message) to compute c = H(c||b||m/AIK) (where cj = c)

Continue at stage 11 and compute sj = r0 + cjf0 via the TPM

6. Abort the DAA protocol with the TPM and output the signature σ =
(c0, s0, .., sn−1,MT0 , ...,MTn−1)

The rest of the stages may be ignored and the session can be closed by issuing a
TPM Flush Specific command to the TPM. The resulting signature is σ = (c0, s0, ..sn−1,
MT0 , ..MTn−1) plus the list of public-SKs {SK0...SKn−1}. The parameter b = 0 instructs
the TPM either to sign the message m that is sent to the TPM or if b = 1 to sign the
modulus of an AIK which was previously loaded into the TPM. In this case, m contains
the handle to this key which is returned when the key is loaded by a TPM LoadKey2
command [112]. The latter case is the typical approach for creating AIKs that may be
used for remote attestation.

Verifying the Schnorr Ring-Signature. The signature σ = (c0, s0, .., sn−1,MT0 , ...,MTn−1)
can now be verified as follows in Figure 5.3.3: The verification of the signature does not

Figure 5.6 Schnorr Ring-Signature verification

1. For i=0..n-1

2. Compute ei = gsiycii mod N and ci+1 = H(H(H(g||N ||y0||..||yn−1||ei))||MTi)||1 or 0||
morAIK).

3. Accept if c0 = H0(H(H(g||N ||y0||..||yn−1||en−1)||MT0)||1or0||m or AIK)

involve a TPM.

Parameter Setup. Before executing the Join protocol, the DAA parameters i.e. issuer
public-key, issuer long-term public-key [112] have to be generated which are required

CHAPTER 5. 125

Stage Input0 Input1 Operation Output

0 DAA issuerSettings - init DAA session
handle

1 enc(DAA param) - init -
2 R0 = g n P1 = Rr00 mod N -
3 R1 = 1 n P2 = P1 ∗Rr11 mod N -

4 S0 = 1 n P3 = P2 ∗ S
rν1
0 mod N -

5 S1 = 1 n T = P3 ∗ S
rν2
1 mod N T

.

.
9 cin - c′ = H(cin||MT) MTj

10 b m or AIK
handle

cj = H(c′||b||m) cj

11 - - s0 = r0 + cjf0 s0

Table 5.5: TPM DAA Sign Command Sequence

during the execution of the protocol to load the signature settings into the TPM. In order
to compute the platform’s public and private Schnorr key, first a commitment to a value
f0 by computing y = gf0 mod N has to be established. This can be done executing the
TPM DAA Join command: with the parameters: R0 = g,R1 = 1, S0 = 1, S1 = 1, a
composite modulus N = p ∗ q where g is a group generator g ∈ Zn and p, q prime values.

Stage Input0 Input1 Operation Output

0 DAA count=0
(repeat stage 1)

- init session DAA session
handle

1 n sig(issuer set-
tings)

verify sig(issuer settings) -

.

4 R0 = g n P1 = Rf00 mod N -

5 R1 = 1 n P2 = P1 ∗Rf11 mod N -

6 S0 = 1 n P3 = P2 ∗ S
sν0
0 mod N -

7 S1 = 1 n y = P3 ∗ S
sν1
1 mod N y

.
24 - - E=enc(DAA param) E

Table 5.6: TPM DAA Join Command Sequence

After finishing the protocol, the public Schnorr key y and the secret-key f0 which is
stored inside the TPM have been obtained.

The DAA commands (as shown in Table 5.6) are executed in 25 stages by sub-sequently
executing the command with different input parameters (Input0, Input1). Each stage may
return a result (Output). Parameters that are marked with “-” are either empty input
parameters or the operation does not return a result. Column Stage shows the stage,
Input0, Input1 the input data, column Operation the operation that is executed inside the
TPM and Output shows the result of the operation.

In stage 7 the public-key y = gf0 mod N can be obtained. Although they do not
contribute to the public-key generation, the rest of the stages have to be run through in
order to finish the Join protocol and to activate the keys inside the TPM.

The DAA issuerSettings structure contains hashes of the system parameters (i.e. R0, R1,
S0, S1, N) so that the TPM is able to prove whether the parameters that are used for the

CHAPTER 5. 126

signing protocol are the same as the ones used during the Join protocol. A discussion how
the issuer settings are generated is given in Section 5.5.

Security Parameter Sizes. The following list contains a suggestion of sizes for the
required parameters:

1. lh = 160 bits, length of the output of the hashfunction H.

2. ln = 2048 bits, a public modulus.

3. lf = 160 bits, size of the secret key in the TPM.

4. lr ∈ {0, 1}lf+lh bits, random integers.

5. lg < 2048 bits, public base g ∈ Zn with order n.

5.3.4 Obtaining a Vendor Credential

One issue remains open: while all TPMs are shipped with an endorsement-key and an
according vendor certificate, our Schnorr key does not have such a credential. Hence, one
can

1. assume that TPM vendors will provide Schnorr credentials and integrated them into
TPMs right in the factory.

2. obtain a credential by exploiting the DAA Join protocol.

While the first solution is unlikely to happen, the second one can be achieved with TPMs
1.2. For this approach, one has to use the public RSA-EK and the DAA Join protocol
from the TPM.

The credential issuing protocol runs as follows:

1. The TPM vendor receives a request from the trusted client to issue a new vendor
credential

2. The vendor computes a nonce and encrypts it with the client’s public-EK
EN = enc(nonceI)EK

3. The client runs the Join protocol to stage 7 and sends EN to the TPM (see Table
5.6)

4. The TPM decrypts the nonce and computes E = H(y||nonceI) and returns E

5. The client sends (E, y,N, g) to the vendor who checks if (E, y) is correct.

6. The vendor issues a credential on the public Schnorr key y.

By validating the EK-certificate, the vendor sees that the requesting platform is indeed
one of its own genuine TPMs. Moreover, the encrypted nonce can only be decrypted inside
the TPM which computes a hash from y and nonceI , therefore, the issuer has proof that
U was computed inside the TPM which he issues a certificate to.

CHAPTER 5. 127

5.3.5 Discussion

Experimental results show that the computation of a single sign operation involving a
single public-key of the ring signature takes about 27 ms (on average) which is in total
27*(n-1) ms + sigTPM . sigTPM is the signing time of the TPM for the complete signature
and n is the number of contributing keys. When computing a ring-signature with 100
public-keys, the overall time is about 3 seconds on average, making this approach feasible
for desktop platforms. As a Java implementation was used for the tests, optimized C
implementations (e.g. based on OpenSSL [109]) could increase this performance by a few
factors. The verification of a ring signature takes about the same time as the signature
creation. For details on the implementation see Section 5.5.

For the sake of completeness, the performance values of test TPMs are provided,
demonstrating the time required for a full DAA-Join command and the stages 0-11 of the
DAA-sign command (see Table 5.7).

Operation Infineon ST Micro Intel

DAA Join: 49,7 s 41,9 s 7,6 s
DAA Sign

Stages 0-11: 32,8 s 27,2 s 3,9 s

Table 5.7: TPM DAA Sign Command Measured Timings

For the DAA Sign operation, the stages 0-11 are of interest (see Figure 5.5), hence the
computation can be aborted after stage 11. All measurement results are averaged values
from 10 test runs. The Intel TPM is a more sophisticated micro controller than the ST
Micro and Infineon TPMs and is integrated into the Intel motherboard chips which results
in a tremendous performance advantage [61]. Details of the evaluation environment can
be found in Section 5.5.

The slower performance of the Infineon TPM can be related to hard- and software
side-channel countermeasures integrated in the microcontroller. These countermeasures
are required to obtain a high-level Common Criteria certification such as the Infineon
TPM has obtained 1.

The TPMs do not perform a detailed check of the input0 and input1 parameters,
they only check the parameter’s size which must be 256 bytes where the trailing bytes
maybe be zero. Hence, it is possible to reduce the computation of the commitment from
U = Rf0

0 R
f1
1 S

ν0
0 S

ν1
1 mod N to U = Rf0

0 mod N where f0 is the private signing-key by
setting R0 = g and R1 = S0 = S1 = 1.

A similar approach is used for the signing process. In stages 2 and 11 from Table 5.5
the signature (c, s) on the message m is computed. The message may be a hash of an
arbitrary message or the hash of the modulus nAIK of an AIK that was loaded into the
TPM previously.

If a signer includes a certificate other than a SK certificate in his ring, the verifier
recognized this when verifying the credentials. If the signer closes the ring with a decrypt
operation outside the TPM, the signature cannot be validated as he obviously did not
use a valid SK and the assumption that only valid SKs may contribute to a signature is
violated.

The originality of the TPM can be proven by the Schnorr SK-credential as the TPM
vendor only issues certificates to keys that were created in genuine TPMs manufactured by

1http://www.trustedcomputinggroup.org/media room/news/95

CHAPTER 5. 128

himself. This is proven during the execution of the DAA Join protocol where the vendor
sends a nonce to the TPM which he encrypted with the original public-EK.

One could argue that obtaining a new vendor credential for the public part Schnorr
key is just another form of joining a group like in the DAA scheme. But remember that
all TPMs are part of the group formed by the TPMs of a certain vendor right from the
time of manufacturing. Consequently, it is not required and not even possible to join the
group again. Hence, our modified join protocol is a way of obtaining a credential for the
Schnorr key.

5.4 RSA Signature Based Scheme

This approach is based on the assumption that every TPM is equipped with an endorse-
ment key and that the vendor has issued a corresponding EK-credential to the EK. A con-
crete example, therefore, are the Infineon TPMs which are equipped with an EK-credential
and which can be validated with information from the Infineon public-key infrastructure
(PKI). Moreover, Infineon has obtained a certificate from Verisign to certify their TPM
Vendor CA allowing Infineon EKs to be validated up to a commonly trusted root 2.

A drawback of this approach is, however, that the reverse operation of a signature
with the EK inside the TPM in order to form the ring has to be computed. Existing
TPMs do not support this feature the way the scheme requires it. The TPM can decrypt
data that was previously encrypted with the public EK. This operation is based on the
RSA-OAEP [73] encryption scheme which requires an OAEP padding of the encrypted
data. However, a decryption operation is required that does not apply a padding in order
to form the ring.

Creating the Signature. Our scheme uses the RSA-EK credentials of the TPMs to
create a ring-signatures. A signer can create a ring-signature as follows:

Figure 5.7 RSA ring-signature creation

Let n be a public RSA modulus.

1. Fetch l endorsement key certificates.

2. Compute rk ∈ {0, 1}ln and ck+1 = Hk+1(EKi, ..EKl−1,m, rk)

3. Compute si ∈ {0, 1}ln and ci+1 = Hi+1(EKi, ..EKl−1,m, (ci + si)
ei mod n) for i= k+1,..n,

l-1 and i = 0..k-1.

4. Send ck to the TPM.

5. Compute sk = (rk − ck)dEKR mod n inside the TPM

6. Output the signature σ = (EK0, .., EKl−1, c0, s0, .., sl−1)

To compute a ring-signature, the TPM would require a functionality to compute a
RSA decryption operation for computing sk = (rk − ck)dk mod n. Unfortunately, it is
not possible to do so inside common TPMs. Although the EK can be used for decryption
operations, it can not be used for arbitrary decryption operations because the EK is a
RSA-OAEP key which applies a special padding on the data before encryption [73]. It is

2See http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab692060011a
for further details

CHAPTER 5. 129

1. For i = 0,.., n-1

2. Compute ri = (ci + si)
ei mod n (where ei is the public EK)

3. Compute ci+1 = Hi+1(EK0, .., EKn−1,m, ri)

4. Check if c0 = H0(EK0..EKn−1,m, rn−1) and accept if true

5. Verify that EKi for i = 0..n− 1 are valid TPM endorsement credentials.

not possible to perform a raw decryption operation which would be required to close the
ring.

In order to overcome this problem, an additional TPM command is introduced which
was added, for testing purposes, to the TPM emulator [96]. The TPM Ring Close com-
mand allows to apply this decryption operation and to form the ring. The exact definition
of the command can be found in the Appendix 6.1.

Verifying the Signature The signature σ = (EK0..EKn−1, c0, s0, .., sn−1) on m can
now be verified via:

A single signature operation with this approach takes 8 ms. Real-world performance
values for the TPM operation cannot be provided as the TPM emulator was used. How-
ever, assuming that a typical RSA operation (e.g. the TPM Sign command) takes about
1.5 seconds and which is the same operation that is required to close the ring, we get an
overall result of 1500+8*n ms where n denotes the number of public-keys involved.

5.4.1 Discussion

This approach works with the endorsement credentials that are shipped together with the
TPMs and which are issued by the TPM vendors.

The TPM is assumed to be trusted by host H and verifier V . For platform authenti-
cation, the anonymization scheme has to make sure that the verifier cannot be cheated by
the signer and it must prevent the verifier from identifying the signer platform.

If a signer includes a certificate other than a EK certificate in his ring, the verifier
recognized this when verifying the credentials. If the signer closes the ring with a decrypt
operation outside the TPM, the signature cannot be validated as he obviously did not use
a valid EK and the assumption that only valid EKs may contribute to a signature is
violated.

It is not required that the list of EK credentials is transmitted along with the signature.
The signer could, e.g., publish the list with a web-service and send only the URL pointing
to the certificates

5.4.2 Comparison of both Approaches

In this Section, we give a short comparison of both approaches. While the RSA-based
approach is faster and has smaller signatures than the Schnorr-based approach, the latter
is the more interesting one. It does not involve the real EKs directly in the computations,
but rather uses a revokable and renewable certificate issued by the vendor, thereby pro-
viding more flexibility as one single TPM may obtain more than one of these certificates.

CHAPTER 5. 130

Although they can be replaced by other certificates, they provide a proof of the originality
of the TPM.

The poor performance of the DAA feature in many TPMs is vendor dependent (see
Table 5.7) and might improve when the DAA feature receives greater attention.

The RSA-based scheme and the Schnorr-based scheme could be used in a “mixed”
mode, allowing trusted platforms to use these different kinds of credentials to contribute
to a single signature. However, we do not elaborate this idea in detail here and leave it
open for further investigations.

5.5 Implementation Notes

In order to obtain experimental results, a Java library was implemented exposing the re-
quired set of TPM commands to use the TPM’s DAA feature (TPM DAA Sign, TPM DAA Join,
TPM FlushSpecific, TPM OIAP). On top of these primitives we provide Schnorr ring-
signatures. The implementation was done in Java 1.6 as the runtime environment supports
the required cryptographic operations like RSA-OAEP encryption that is used for the EK
operations and modular exponentiations [5] which are required for computing the Schnorr
signatures. The OAEP encryption is required for EK operations which encrypt the DAA
parameters that are created and unloaded from the TPM during the Join protocol. The
parameters are loaded into the TPM and again decrypted during the Sign protocol. Note
that before executing the Join protocol, the public-EK of the TPM has to be extracted
from the TPM for example by using the TPM tools from [56].
Our test platforms (Intel DQ965GF, Intel DQ45CB and HP dc7900) were equipped with
2.6 GHz Intel Core 2 Duo CPUs running a 64bit Linux v2.6.31 kernel and a SUN 1.6 Java
virtual machine. Communication with the TPM is established directly via the file-system
interface exposed by the Linux kernel’s TPM driver. Our tests were performed with v1.2
TPMs from ST Micro (rev. 3.11), Intel (rev. 5.2) and Infineon (rev. 1.2.3.16).

5.5.1 Signature Sizes

In a straight forward implementation the size of Schnorr ring signatures can grow relatively
large. For self-contained Schnorr ring-signatures which do not require any online interac-
tions on behalf of the verifier, the overall signature size can be given as lh+(lSK+lMT

+ls)∗n
with n being the number of public keys in the ring.
We assume that a verifier demands to see the entire SK-certificates instead of just the
SK- public-key. Assuming approximately 1.3 kilobyte per SK-certificate 3 and the secu-
rity parameters given at the end of Section 5.3.3 this yields an overall signature size of
20 + (1300 + 20 + 256) ∗ n = 20 + 1576 ∗ n bytes.
The relatively large signature size can be reduced if the burden of fetching the SK-
certificates is shifted to the verifier. We have investigated two simple strategies which
can reduce the effective signature size to reasonable values, assuming that the verifier has
online access to a SK-certificate repository.
An obvious size optimization is to embed unique SK-certificate labels, like certificate
hashes, instead of the SK-certificates themselves into the ring signature. When using 20-
byte certificate hashes as SK-certificate labels, the overall signature size can be reduced
to 20 + (20 + 20 + 256) ∗n = 20 + 296 ∗n bytes. The downside of this optimization is that

3This is the size of a typical ASN.1 [37] encoded EK-certificate from Infineon which we used as a
template.

CHAPTER 5. 131

the verifier has to fetch all SK-certificates individually when verifying a signature.
Further reduction of the signature size is possible by embedding a label representing the
ring itself instead of its underlying SK-certificates in the signature. When using this strat-
egy, the signature size can be reduced to 20 + (20 + 256) ∗ n+ llabel = 20 + 276 ∗ n+ llabel
bytes where llabel denotes the size of the label.

CHAPTER 5. 132

5.6 RSA Signature Based Scheme

The approach discussed in this section is based on the assumption that every TPM is
equipped with an endorsement key and that the vendor has issued a corresponding EK-
credential to the EK. A concrete example, therefore, are the Infineon TPMs which are
equipped with an EK-credential and which can be validated with information from the
Infineon public-key infrastructure (PKI). Moreover, Infineon has obtained a certificate
from Verisign to certify their TPM Vendor CA allowing EKs certified by Infineon to be
validated up to a commonly trusted root CA 4.

A drawback of this approach is, however, that the reverse operation of a signature
with the EK inside the TPM is required in order to form the ring. Existing TPMs do
not support this feature the way it is required for this approach. The TPM can decrypt
data that was previously encrypted with the public EK. This operation is based on the
RSA-OAEP [73] encryption scheme which requires an OAEP padding of the encrypted
data. However, in order to form the ring a decryption operation that does not apply or
remove a padding is required.

Creating the Signature. The proposed scheme uses the RSA-EK credentials of the
TPMs to create a ring-signatures. A signer can create a ring-signature as follows:

Figure 5.8 RSA ring-signature creation

Let n be a public RSA modulus.

1. Fetch l endorsement key certificates.

2. Compute rk ∈ {0, 1}ln and ck+1 = Hk+1(EKi, ..EKl−1,m, rk)

3. Compute si ∈ {0, 1}ln and ci+1 = Hi+1(EKi, ..EKl−1,m, (ci + si)
ei mod n) for i= k+1,..n,

l-1 and i = 0..k-1.

4. Send ck to the TPM.

5. Compute sk = (rk − ck)dEKR mod n inside the TPM

6. Output the signature σ = (EK0, .., EKl−1, c0, s0, .., sl−1)

To compute a ring-signature, the TPM would require a functionality to compute a
RSA decryption operation for computing sk = (rk − ck)dk mod n. Unfortunately, it is
not possible to do so inside common TPMs. Although the EK can be used for decryption
operations, it can not be used for arbitrary decryption operations because the EK is a
RSA-OAEP key which applies a special padding on the data before encryption [73]. It is
not possible to perform a raw decryption operation which we would require to close the
ring.

In order to overcome this problem, an additional TPM command is proposed which was
added, for testing purposes, to the TPM emulator [96]. The TPM Ring Close command
allows us to apply this decryption operation and to form the ring. The exact definition of
the command can be found in the Appendix 6.1.

4See http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab692060011a
for further details

CHAPTER 5. 133

1. For i = 0,.., n-1

2. Compute ri = (ci + si)
ei mod n (where ei is the public EK)leave it

3. Compute ci+1 = Hi+1(EK0, .., EKn−1,m, ri)

4. Check if c0 = H0(EK0..EKn−1,m, rn−1) and accept if true

5. Verify that EKi for i = 0..n− 1 are valid TPM endorsement credentials.

Verifying the Signature The signature σ = (EK0..EKn−1, c0, s0, .., sn−1) on m can
now be verified via:

A single signature operation with this approach takes 8 ms. Real-world performance
values for the TPM operation cannot be provided as the TPM emulator was used. How-
ever, assuming that a typical RSA operation (e.g. the TPM Sign command) takes about
1.5 seconds and which is the same operation that we require to close the ring, we get an
overall result of 1500+8*n ms where n denotes the number of public-keys involved.

5.6.1 Discussion

This approach works with the endorsement credentials that are shipped together with the
TPMs and which are issued by the TPM vendors.

The TPM is assumed to be trusted by host H and verifier V . For platform authenti-
cation, the anonymization scheme has to make sure that the verifier cannot be cheated by
the signer and it must prevent the verifier from identifying the signer platform.

If a signer includes a certificate other than a EK certificate in his ring, the verifier
recognized this when verifying the credentials. If the signer closes the ring with a decrypt
operation outside the TPM, the signature cannot be validated as he obviously did not use
a valid EK and the assumption that only valid EKs may contribute to a signature is
violated.

It is not required that the list of EK credentials is transmitted along with the signature.
The signer could, e.g., publish the list with a web-service and send only the URL pointing
to the certificates

5.6.2 Comparison of both Approaches

In this Section, we give a short comparison of both approaches. While the RSA-based
approach is faster and has smaller signatures than the Schnorr-based approach, the latter
is the more interesting one. It does not involve the real EKs directly in the computations.
It rather uses a revocable and renewable certificate issued by the vendor thereby providing
more flexibility as one single TPM may obtain more than one of these certificates. Al-
though they can be replaced by other certificates, they provide a proof of the originality
of the TPM.

The slow performance of the DAA feature in many TPM’s is vendor dependent (see
Table 5.7) and might improve when the DAA feature receives greater attention.

The RSA-based scheme and the Schnorr-based scheme could be used in a “mixed”
mode, allowing trusted platforms to use these different kinds of credentials to contribute
to a single signature. However, this idea is not elaborated on in detail here and is left
open for further investigations.

CHAPTER 5. 134

5.7 An anonymous authentication scheme

Anonymous authentication schemes have been proposed in various forms and based on
different cryptographic primitives. Nevertheless, this section focuses on a special use-case
where location based privacy is required. The use-case includes a set of requirements which
stem from different sources like support of cryptographic functions on mobile devices or
constrains of the verifying platform.

When investigation anonymous authentication scenarios for mobile devices like cell
phones one can easily see the different requirements to scenarios involving, for example,
smart-cards. While in the smart-card scenario the typical set-up includes a resource
constraint client and a - at least - equally powerful verifier, in the mobile handset scenario
the situation is different. On the smart-card the challenge lies on the signers side to
compute the authentication information in acceptable time. Acceptable means that the
human user has the subjective feeling that the authentication transaction is executed
within acceptable time limits for him. Typically, this values lies between 300..800ms. The
industry defines acceptable so that a single mobile transaction shall not exceed 300ms,
for example, in the transportation sector. While a smart-card is resource constraint, the
verifier is considered to have unlimited computational powers which is not true for every
use-case.

Modern mobiles are equipped with powerful application processors which may have
up to four CPU cores with a clock frequency of 1.6 GHz and giga bytes of memory, the
coming generation will even employ 64 bit CPUs. The verifier side typically consists
of a contactless card terminal with a 8 or 16 bit CPU and limited memory support.
Consequently, the challenge lies not in gaining performance for creating the authentication
information but in gaining performance for the verification step which also includes a
revocation check.

The scheme is based on the publication of HeGe et al. [44].

5.7.1 Requirements

The basic use-case investigated in this section focuses on location based privacy. A user
(i.e. the owner of a mobile device) wants to authenticate himself in order to pass a specific
gate without the drawback of being traced.

The system requirements include:

1. a mobile hand-set that is capable of NFC-connectivity. The handset generates the
authentication information and transmits it via the RFID interface to a RFID ter-
minal.

2. a reader which acts as communication module for the gate lock. The reader may
either have a constant connection to a back-end service available or it may have
periodical connections to update locally stored information.

3. certificate validity check. In order to prevent revocation lists to grow indefinitely,
the authentication credentials should be bound to a expiry date.

4. cryptographic support on the device. Therefore, focus is laid on ECC based algo-
rithms for several reasons: First, industry requirements. Although, industry has put
much effort in developing and publishing ECC based products support for ECC based
algorithms is still not broadly available at the moment. Support for pairing-based

CHAPTER 5. 135

cryptography is virtually impossible to find in commercial products. Second, matu-
rity of the used cryptographic primitives. While pairing based approaches provide
shorter, more elegant and more compact algorithms [72], the E-Crypt II report states
this technology as not widely deployed and ”‘not mature”’ [58] or standadisation is
in progress [59].

5. a fast revocation mechanism. The reader shall be able to locally verify authentication
information. This information also includes revocation data.

6. the credentials must be non-transferable i.e. they are issued to specific device and
may not be transferred to another one.

7. access to the credentials and their use has to be authenticated.

8. unforgeability. An adversary must not be able to forge the private-key f or the
certificate U on f in order to create a valid signature.

9. selectable linkability. The user should be able to select whether his authentication
operations are linkable or not.

5.7.2 The scheme

In this Section, the ECC based anonymous authentication scheme is introduced and dis-
cussed. The scheme is designed to meet the requirements from subsection 5.7.1.

5.7.3 Model

The model of our scheme includes three parties, the issuer (I) who constructs the do-
main parameters for the group he manages, the prover (P) who computes the anonymous
signature and the verifier V .

5.8 Prerequisites & Requirements

- A collision resistant hash function H : {0, 1}∗ → {0, 1}lh
- A prime number generator according to P-1363 - A random number generator according
to P-1363 - ECC domain parameters for specific curves, targeted curves are listed in NIST
Suite-B - All computations must be done in sufficient time inside a secure environment -
no computations must be done outside of this environment. A secure environment may
be a dedicated secure element or TrustZone protected environment.

Parameter setup

In the setup protocol, the group-public-key and all required parameters for setting up the
domain parameters for executing the join protocol are generated on by the issuer.

Issuer setup The Issuer Computes the following parameters:

1. a random private-key ι ∈ 0, 1lι

2. ΨI = ι · Ψg where Ψg(∈< G >)) is a group generator and point on the elliptic curve and ι
is the issuer’s private-key.

CHAPTER 5. 136

As a result, the following domain parameters are published by the issuer: Ψg, n, r,Ψi, Psig,
the elliptic curve EC, and the generators G1..Ga plus the system parameters X,Y . (where
r is the cardinality of the underlying prime field).

Client Setup The client computes a private key f and executes the following steps:

1. generate random f ∈ 0, 1ln

2. compute random w̃ ∈ 0, 1lc

3. compute Ỹ = ŵ ·ΨI

4. compute w̃ = f · ŵ mod n

f is the clients private-key and is stored in a secure environment while Ỹ and w̃ are
sent to the issuer.

Join protocol During the Join protocol, the client receives a credential U for his private
key f . The protocol is based on the publication from Camenish et al. [17].

Before the Join protocol is executed, the client has to establish a secure and authen-
ticated connection to the issuer. How this connection is established is not discussed here
as many different mechanisms can be applied. A mechanism with a fixed authentication
key (e.g. the EK) is used for authenticating TPM in a DAA scenario.

1. the client sends ω̃, Ỹ to the issuer

2. the issuer computes: r̂ ∈ 0, 1l and U = ω̃−1(ι−1 + r̂)Ỹ + ΨI and P = r̂ ·ΨI

3. and the proof: c = H(ΨI‖Ψg‖rI ·Ψg‖U) and s = rI + c · ι with rI ∈ 0, 1lrI

4. the issuer returns (c, s) and U,P to the client

5. the client verifies the proof by computing: c′ = H(ΨI‖Ψg‖s ·Ψg − c ·ΨI‖U) and accepts U
if c! = c′ and f · U ≡ Ψg

If the Join protocol was finished successfully, the client has the secret key f and the
group credential U . Moreover, the issuer knows the authentication information (e.g. the
EK) and the issued credential from the client (EK,U). The parameter r̂ ensures the U
differs in every join process even if the client re-uses Ỹ and w̃.

Sign protocol The signing protocol is executed in the secure environment of the client.
There is no such splitting of computations as used in the DAA scheme

For generating a signature on the message m, the client executes the following steps:

1. compute random r, r′, r′′ ∈ {0, 1}l.

2. compute Υ = r · U,Φ = r ·Ψg,Γ = r′ ·Υ,∆ = r′′ ·Ψg,

3. compute P ′ = r · P , r = r · f ,

4. compute c = H(ΨI‖Ψg‖Υ‖Φ‖Γ‖∆‖P ′‖m) where m is the data to be signed

5. compute ν′ = r′ + c · (f −X) mod n, ν′′ = r′′ + c · (r − Y) mod n

6. assemble signature: σ = (c, ν′, ν′′, r,Υ,Φ, P ′)

CHAPTER 5. 137

Verify Protocol

1. the verifier computes: c′ = H(ΨI‖Ψg‖(ν′+cX)·Υ−c·Φ−c·r·ΨI−c·P ′‖(ν′′+cY)·Ψg−c·Φ‖m)

and checks if c
!
= c′

2. check if ν′ ∈ ±0, 1α(lf+lc)+1 and ν′′ ± 0, 1α(lr+lc)+1 range.

The protocol allows basic authentication of the device. In order to add information
into the signature, i.e. which gates may be entered and the validity period of U , the
scheme has to be modified.

Join protocol with attributes The issuer validates the attributes and computes x =
H(x1 ·G1‖...‖xa ·Ga)are the indices of the attributes. The issuer computes U = ω̃−1(ι−1 +
x · r̂) · Ỹ + ΨI and P = r̂ ·ΨI

Sign protocol with attributes

1. compute r, r′, r′′ ∈ {0, 1}lr .

2. compute Υ = r · U,Φ = r ·Ψg,Γ = r′ ·Υ,∆ = r′′ ·Ψg,

3. compute x̃show = H(xa ·Gb‖xb ·Gb‖...‖xg ·Gg) with all attributes that should be shown.

4. compute P ′ = r · x · x̃−1show) · P , r = r · f mod n,

5. compute ν′ = r′ + c · (f −X) mod n, ν′′ = r′′ + c · (r − Y) mod n

6. compute: c = H(ΨI‖Ψg‖Υ‖ΦΓ‖∆‖P ′| m).

7. assemble signature: σ = (c, ν′, ν′′,Υ,Φ, P ′, r, SET (xi∈show))

The resulting signature now additionally contains the set of attributes that should be
presented to the verifier.

The signature can then be verified via:

Verify Protocol

1. compute x̃show = H(xa · Gb‖xb · Gb‖...‖xg · Gg) where a, b, ..g are the indices of the shown
attributes.

2. the verifier computes: c′ = H(ΨI‖Ψg‖Υ‖Φ‖(ν′+cX) ·Υ−c ·Φ−c ·r ·ΨI−c · x̃show ·P ′‖(ν′′+
cY) ·Ψg − c · Φ‖P ′‖m) and checks if c

!
= c′

3. check if ν′ ∈ ±0, 1α(lf+lc)+1 and ν′′ ± 0, 1α(lr+lc)+1 range.

4. V verifies all presented attributes x ∈ show.

5.8.1 Revocation

A second topic that receives attention in this Section is revocation. An efficient revoca-
tion mechanisms is required in order to manage large infrastructures with many different
clients. Only if it is possible to remove clients and members of a certain group which have
compromised devices or expired credentials this technology will obtain broad acceptance
by industry and public.

However, efficient mechanisms are missing. Most publications and research in this are
focus on fast execution of the signature creation on embedded devices or smart-cards and
often neglect the revocation mechanism. Nevertheless, a positive authentication is only

CHAPTER 5. 138

then finished when also the revocation check is finished, therefore the entire protocol has
to be taken into account when providing performance estimations.

Traditional revocation is based on the idea that f becomes public and the
We assume that it is more likely that it becomes publicly known which platform and

witjit which TPM has been compromised it is more reasonable to build revocation infor-
mation based on the certificate issued to the TPM and its EK (i.e. on the pair (U,EK)
as this relation is known to the issuer.

In our scenario, we employ verifier-local-revocation (VLR) i.e. all verifying entities
hold a list with revoked credentials.

In the following paragraph, we discuss different revocation mechanisms that can be
used with our scheme. Nevertheless, we put the revocation mechanism based on symmetric
cryptography into favor.

T raditional revocation: The traditional approach to compute a pseudonym pn from a
generator Ψg

Symmetric rogue tagging For computing the revocation information, the prover P
may compute a symmetric signature with f on U .

1. A verifier (V) sends rV which is a randomly generated number to P

2. P computes rP and PSNP = HMAC(f, U‖rP ‖rV) and sends both values to V

3. V computes PSNV (i) = HMAC(fi, Ui‖rP ‖rV) with i = 0..n − 1 for all entries on the
revocation list RL and checks if PSNP ∈ PSNV (i).

rP allows the prover to control the likability parameter by including a random value
into every new revocation check. If rP = {} the check and with it the signature is linkable
as the only other randomizing parameter is rV .

An additional benefit of this approach is that this approach may be extended with
respect to backward secrecy. Instead of publishing the actual signing keys and credentials
fi, Ui, only the hashes H(fi), H(Ui) of these parameters would have to be published. When
producing a revocation list RL, the issuer computes H(U) resp. H(f), and puts these
values on RL and signs it.

The modified protocol works as follows:

1. the verifier sends: rV to P

2. P computes: PSN = HMAC(H(f), H(U)||rV ||rP)

3. P sends PSN and rP to verifier

4. V checks if PSN ∈ HMAC(H(fi), H(Ui)||rV ||rP) with i = 1..n. for all fi, Ui on the
revocation list RL.

The benefit of publishing H(U) and H(f) instead of U and f is the following: If an
adversary manages to read a revocation list and gets a (revoked) pair [f, U] that were
newly added to a revocation list, before a certain verifier is able to get the updated list,
he could manage to compute fake authorization information and exploit the delay in time
that stems from the deployment of new lists. He could deceive the verifier as the verifier
would still believe that the authorization information is valid (as he does not have the
updated revocation list yet).

CHAPTER 5. 139

Setup Join Sign

Montgomery auth. only 0,872s 0,854 s 4,279 s

Comba auth. only 0,194s 0,181s 0,894s

Montgomery w. attributes 0,869 s 0,856 s 5,267s

Comba w. attributes 144,8 ms 372,8 ms 517,6 ms

Table 5.8: Performance of the Join Protocol with Intel TPMs

Simple mechanism A more simpler approach may involve just the credential U . As
the issuer knows which U belongs to which platform, he may employ revocation based on
the credential U instead of f which is not known to him. This might be the case when
it is publicly known that a certain platform acts rogue without that f is known. This
approach is more like the approach used in common PKI systems.

So, alternatively, one could also check U only for revocation and exchange the HMAC
against a hash function H.

1. V sends rV to P

2. P computes: PSN = H(H(U)||rV ||rP) and sends PSN, rP to the verifier

3. V computes and checks if H(H(Ui)||rV ||rP)! = PSN with i = 1..n for all Ui on the
revocation table.

Connection to the signature Still, the revocation parameter PSN has to be con-
nected to the signature so that a client may not send the verifier a signature and non-
related PSN from valid verification check. Therefore, the signature creation process must
be modified and the pseudonym PSN must be included in the computation of c:

The verification process is updated accordingly:
c′ = H(ΨI‖Ψg‖Υ‖Φ‖(ν ′ + cX) ·Υ− c ·Φ− c · r ·ΨI − c · x̃show · P ′‖(ν ′′ + cY) ·Ψg − c ·

Φ‖P ′‖PSN‖m)
With σ and PSN the verifier is now able to verify the authentication information,

perform a revocation check and validate the provided attributes.

5.8.2 Results

The experiments were conducted on a MCB2130 MCU evaluation board [1] which was
equipped with an ARM7TDMI microcontroller, The CPU clock was set to a frequency
of 60 MHz. Furthermore, the board is equipped with an on-Chip RAM of 32kB and
flash ROM with 512kB of memory. Connectivity is provided by Two serial ports and a
JTAG Connector. Cryptographic operations are provided by the Miracl library [92] which
provides MONTGOMERY modular arithmetic and COMBA multiplication. The system
parameters include the elliptic curve P-192 standardized by NIST.

Note, the experimental implementation does neither take any implementation counter-
measures like encrypted key storage or randomized byte array coping into account nor are
any side.channel countermeasures applied. Such security features add an additional over-
head to the overall performance of the algorithms. In addition, the used MCB 2130 board
does not provide security mechanisms like crypto co-processors or encrypted memory.

CHAPTER 5. 140

The performance values were generated with a reference implementation done by
Michael Kapfenberger. The show the execution speed of the authentication step plus
two attributes.

5.8.3 Discussion

The presented scheme in this Section is designed to work with NIST or SECG defined
elliptic curves. Although it is not as performant as the pairing based approaches it is
faster than the discrete logarithm based counterparts. Nevertheless, one important thing
demonstrated here is the computation of the pseudonym based on a hash function instead
of a multiplication. Although the effect of performance gain on the client side is not that
big as - in the best case - only a single multiplication for pseudonym computation can
be spared the performance gain on the server side is tremendous. Especially for large
revocation lists, the pseudonym computation via hashing is much more efficient than via
multiplications. In addition, similar pseudonym computations based on hash functions
has been used in the Austrian e-Government for years. The ”bereichsspezifisches Per-
sonenkennzeichen” (bPK) or the ”‘ wirtschaftsbereichsspezifisches Personenkennzeichen”’
(wbPK) are used for identification and authentication in the governmental and commercial
sector.

Furthermore, the client has an additional mean to influence the pseudonym computa-
tion and eventually its traceability. By including the random value RS in the revocation
computation, the client can actively prevent the signer from re-using the same computation
values for different authentication processes.

CHAPTER 5. 141

5.9 Conclusion

In this Chapter, two different approaches for optimizing and increasing the performance
of the DAA scheme on Java enabled platforms are analyzed. The first approach addressed
improvements of the modular exponentiation by finding the optimal window size for sliding
window exponentiation algorithms with a fixed windows size.

The investigation has shown that the optimal window size, for the used sliding window
technology, is six for the combination of all modular exponentiations in the DAA signature
and seven for a single modular exponentiation. Although it would be possible to estimate
the optimal window size for each single modular exponentiation of (5.1), the management-
overhead would increase because one would have to keep track of which exponentiation
operation is currently executed. Consequently, the suggestion is to use the obtained mean-
value.

The second approach addressed special features provided by Java. Moving the critical
operations of a modular exponentiation i.e. modular multiplications, squarings and reduc-
tions to native functions, results in a performance-gain, thereby providing a good balance
between native code and pure Java code.

With a factor of three on the PC and a factor of four on an ARM9 processor, a
major performance improvement could be achieved. However, the ARM9 is relatively
slow compared to the PC, so, the factor of four brings us from 80 seconds for a verification
down to approximately 20 seconds on this platform, which is already close for a possible
practical use.

Unfortunately, this benefit is limited to platforms and JVMs with native support. The
40 seconds, which are required for a signature on an ARM9 with native functions, are still
far away from practical use although they are already much better than the 160 seconds
required for a signature computed in pure Java. The advantages of the native functions
can not only be used for the DAA-signature, but all cryptography algorithms based on
large number exponentiation should be able to reach a remarkable performance-gain when
using native functions for their math operations.

Performance improvements could also be achieved by using dedicated security hardware
for the computations which is typically much faster than software implementations. There
are different approaches to investigate because the security hardware could be the SIM
card that is attached to every mobile phone, it could be specific instruction set extensions
[[49]] that are integrated in the main CPU or it could be Secure elements either fix
attached to the device or removable as part of an SD card.

Another idea could be to change the cryptographic primitives of the DAA scheme
towards pairing-based cryptography as suggested in [[42]].

Consequently, further research in the area of performance improvements for DAA
should focus on the integration of dedicated cryptographic micro controllers and improved
cryptographic algorithms.

In this section, an anonymization scheme was proposed for trusted platforms that
does not rely on specialized trusted third parties. The approach is based on Schnorr ring-
signatures which can be used with existing TPMs v1.2 without modifications of the TPM
by well-thought exploitation of the TPM’s DAA functionality.
The proposed theme is feasible for desktop platforms and that even large signatures can
be created and verified in acceptable time. The performance is only limited by the per-
formance of available TPM technology which differs strongly between the various TPM
vendors.

CHAPTER 5. 142

Future investigations could include approaches using the ECC based variants of the Schnorr
algorithm. This will be of interest as soon as TPMs support elliptic curve cryptography.
Moreover, an investigation of the approach whether it is feasible for mobile platforms or
not could be done in the future.

Chapter 6

Conclusions

In this thesis, different aspects of Trusted Computing were investigated. This endeavor is
of special significance, as Trusted Computing is one of the most important security tech-
nologies employed nowadays. The new security paradigms introduced by Trusted Com-
puting not only provide novel security mechanisms, but also allow major improvements
of existing security concepts. In particular, Trusted Computing has caught attention in
the embedded domain. Modern applications for digital computing are shifting more and
more computational tasks to resource constrained devices like smart-cards, smart-phones,
or RFID tags. With the potential advantages and risks of such a shift, the inclusion of
sound and strong security measures becomes imperative. With the variety of new devices
like smart meters, sensor nodes and smart cams the need for security support has risen.
This is particularly true for devices that are managed remotely and which are exposed to
a hostile environment. As a response to this strong demand from industry, the TCG has
installed two major groups namely the mobile phone working group and the embedded
systems working group which are exclusively focusing to deal with security matters in
the embedded area. Nevertheless, input from science is required to further improve the
security mechanisms and to explore new techniques.

The work presented here has focused on different security concepts used in Trusted
Computing. The first concept analyzed was remote attestation, which as one of the new
key concepts has earned much attention. The basic idea of reporting a platform’s config-
uration allows a dynamic trust decision based on the actual state of a machine instead of
a static third-party certification as done in conventional systems. The remote attestation
concept has been investigated and possible improvements proposed. The binding of con-
figuration change information to a TLS channel and the transported data allows active
reporting of configuration changes. Furthermore, the gap between a configuration change
and the notification of the remote platform can be closed.

The second part of the thesis addresses mobile Trusted Computing. While Trusted
Computing is widely supported on desktop systems, mobile and embedded systems are
still missing support. As different security extensions are available for embedded systems
an analysis of these extensions has to be done. The different extensions also allow different
design options for mobile TPMs which have been investigated according to their security
requirements.

Moreover, the handling of mobile TPM implementations on resource constrained se-
curity devices has been investigated. Small embedded security devices suffer not only
from limited processing powers, but also from memory constraints. To complicate these
resources have to be shared among different stakeholders, consequently, functionality has

143

CHAPTER 6. CONCLUSIONS 144

to be sourced out. Embedded TPM functionality may be customized to a certain set of
features defined by the use-cases they are currently applied in. In addition, updates can be
applied much easier as not the entire firmware of the TPM has to be replaced. Embedded
platforms offer an ideal basis for this approach as the out sourced functionality can be
stored on the host platform like the the platform’s non-volatile memory. A concept for
achieving this goal in a secure way has been introduced and analyzed.

In the third part, anonymization techniques, in detail the Direct Anonymous At-
testation protocol has been examined. Due to the versatility of modern smart phones,
anonymity protection has become an asset that has to be protected. The used cell phones
are typical representatives of available devices and are equipped with state-of-the art
security mechanisms. These different security mechanisms allow different methods of im-
plementing DAA. Furthermore, the impact and feasibility of anonymous authentication
in combination with the raising RFID technology has been examined and problem areas
identified.

Finally, the last chapter deals with improvements to anonymous authentication schemes.
Optimizations to the DAA protocol have been proposed. As Java - with the help of An-
droid - has become the dominant platform in the mobile phone sector, focus on this specific
environment has been laid for improvements of the DAA signature creation process. In
addition, different alternative models to the DAA scheme have been presented and in-
vestigated. One of those schemes is based on ring-signatures. The model shows how
trusted platforms with the involvement of TPMs can be used to compute this kind of sig-
nature. Moreover, an ECC based anonymous authentication scheme has been introduced
which is designed to meet the requirements of a specific mobile use-case. Furthermore,
the proposed revocation mechanism is designed to cope with the limitations of resource
constrained devices and to vastly improve the overall authentication procedure. In any
case, Trusted Computing and its concepts have earned great attention by researchers as
well as hackers. This fact makes it imperative to constantly investigate and improve the
security protocols and security architectures employed. Moreover, existing security so-
lutions should be reassessed according to the new possibilities introduced by inventions
like remote attestation or DAA. Although Trusted Computing features are already widely
deployed and supported by various platforms, it is foreseeable that this technology will get
even larger attention. This is supported by the exploitation of new areas of application
which go beyond the scope intended by the TCG. Especially, anonymization technologies
are in the focus of research and industry as they are key enablers for new use- and business
cases.

6.1 Further Work

Although thoroughly investigated, remote attestation still offers areas for research and
improvement. For example, it still suffers from the complexity that stems from the rich
amount of different configurations which makes the configuration check a costly task. As
the load of validating is shifted to the verifier, he is responsible for checking the reported
configurations. It is important to find new and more efficient methods for improving this
tasks in order to increase the acceptance of Trusted Computing and to further spread
this technology. In case of embedded systems, the situation is somewhat different. As
the number of configurations a device - especially, mobile handsets - is able to manage,
the actual work load of the verifier when validating the configuration is kept in limits.
Consequently, at the current stage this technology is well suited for embedded systems -

CHAPTER 6. CONCLUSIONS 145

better than for desktop systems.
Mobile TPMs are still not widely available. Although the lax specification offers many

implementation options, these options also lead to different trust assumptions. Which
trust assumption can be brought to a TrustZone based solution or to a secure element
based solution? Although investigations have been done in this direction, a definite answer
cannot be given at the moment. Also important to mention here is that TPMs are required
to have a Common Criteria certification of at least EAL4. The best know TrustZone
certification is aiming at EAL3+ and it is still work in progress. In contrast, secure
elements are available with EAL5+ certifications - EAL6+ evaluated products are soon
to come which definitely puts this solution into favor.

Nevertheless, there are many application scenarios where mobile TPMs of any kind
can improve security. There is a is great request by industry, for example, to protect
critical infrastructures, improve security of smart meters or to prevent manipulation of
mileage meters in cars. However, desktop TPMs are equipped with a rich set of features
and functions. This comes with the price of high complexity. It has to be reassessed if
this complexity is really required for the embedded domain and its use-cases.

Finding efficient anonymizing technologies is one of the great challenges of the coming
decade. With the growth of control and monitoring means, protection of privacy has
become an important issue. Integration and application of these technologies into smart-
cards and passports is one of the future areas of research. Furthermore, the possible
impact on in these areas for other upcoming technologies like RFID has to be explored.
Moreover, as RFID devices are often battery powered or supplied with energy from an
energy field, especially the power consumption when computing anonymous signatures is
of interest.

However, efficient revocation mechanisms are still missing. Fast revocation mechanisms
are essential, especially for use in applications with a large number of clients and members,
e.g. in the public sector where many citizens are involved. For this reason, integrating
the proposed revocation mechanism from this thesis in other anonymous authentication
algorithms could be a future path for research. Another important step is standardization.
For broader acceptance and deployment by industry, these technologies need to undergo
a standardization processes.

Summing up all the open issues discussed in the previous paragraphs, it can be con-
cluded+ that Trusted Computing still offers a wide range of future research areas.

CHAPTER 6. CONCLUSIONS 146

Issuer key generation

1. The issuer chooses a modulus n with length ln and primes p, q, p′, q′ such that:

n = pq, p = 2p′ + 1, q = 2q′ + 1

2. Next, the issuer chooses random integers x0, x1, xz ∈ [1, p′q′] and x ∈ [1, n] which
will be used to generate the proof and computes

S = x2 mod n Z = Sxz mod n R0 = Sx0 mod n R1 = Sx1 mod n

3. The issuer produces a non interactive proof that S,Z,R0 and R1 are computed
correctly.

4. It generates rouge tagging parameters by choosing random primes ρ,Γ and γ′ ∈R Z∗Γ,
satisfying Γ = rρ+ 1 such that r is an integer, ρ - r, 2lΓ−1 < Γ < 2lΓ , 2lρ−1 < ρ < 2lρ

and γ′(Γ−1)/ρ 6≡ 1mod(Γ). Furthermore, the issuer calculates

γ = γ′(Γ−1)/ρmod(Γ)

5. The private-key of the issuer is (p′, q′), and the public-key is (n, S, Z,R0, R1, γ,Γ, ρ).

Issuer-Key Proof Generation

1. The issuer generates random values

x̃(z,1), . . . , x̃(z,lH), x̃(0,1), ..., x̃(0,lH), x̃(1,1), ..., x̃(1,lH) ∈R [1, p′q′]

and for each x̃(z,i), x̃(0,i), x̃(0,i) computes

Z̃(z,i) = Sx̃(z,i) R̃0(0,i) = Sx̃(0,i) R̃1(1,i) = Sx̃(1,i)

2. The issuer then computes the hash value

c = H(n, S, Z,R0, R1, Z̃(z,1), ..., Z̃(z,lH), R̃(0,1), ..., R̃(0,lH), R̃(1,1), ..., R̃(1,lH))

3. Furthermore, for each bit ci of c where i ∈ [1, lH] it computes

x̃(z,1) = x̃(z,1) − cixz mod p′q′

x̃(0,1) = x̃(0,1) − cix0 mod p′q′

x̃(1,1) = x̃(1,1) − cix1 mod p′q′

4. Finally, the issuer publishes the proof

(c,X, x̃(z,1), ..., x̃(z,lH), x̃(0,1), ..., x̃(0,lH), x̃(1,1), ..., x̃(1,lH))

Issuer-Key Proof Verification In order to prove that the Z,R0, R1 ∈ 〈S〉 and that S
∈ QRn mod n, the verifier (which in our case is the TTP) has to obtain the proof data
structure, which contains:

(c,X, x̃(z,1), ..., x̃(z,lH), x̃(0,1), ..., x̃(0,lH), x̃(1,1), ..., x̃(1,lH))

To verify the proof we also require the public-key parameters (n, S, Z, R0, R1, γ, Γ, ρ).
Proof verification proceeds as follows:

CHAPTER 6. CONCLUSIONS 147

1. First, the verifier checks if S is QRn mod n simply by asserting

S = X2 mod n

2. Then for each bit ci of c where i ∈ [1, lH] the verifier computes:

Z̃(z,i) = ZciSx̃(z,i) R̃0(0,i) = Rci0 S
x̃(0,i) R̃1(1,i) = Rci1 S

x̃(1,i)

3. Finally it computes the hash c′ as:

c′ = H
(
n, S, Z,R0, R1, Z̃(z,1), ..., Z̃(z,lH), R̃(0,1), ..., R̃(0,lH), R̃(1,1), ..., R̃(1,lH)

)
4. Verification of the proof succeeds if c′ = c holds.

Appendix A

Definitions

A.1 Abbreviations

AES Advanced Encryption Standard
AIK Attestation Identity Key
CRHF Collision Resistant Hash Function
DAA Direct Anonymous Attestation
DRM Digital Rights Management
ECC Elliptic Curve Cryptography
GPS Global Positioning System
HMAC Hashed Message Authentication Code
HTTP Hyper Text Transfer Protocol
HUK Hardware Unique-Key
IPSec Internet Protocol Security
JCA Java Cryptographic Architecture
JIT Just-in-Time
LPC Low-Pin-Count
MAC Message Authentication Code
ME Mobile Equipment
MH Mobile Handset
MLTM Mobile Local-Owner Trusted Module
MRTM Mobile Remote-Owner Trusted Module
MTM Mobile Trusted Module
NFC Near-Field-Communication
OCSP Online Certificate Status Protocol
OTA Over-the-Air
OWHF One Way Hash Function
PCA Privacy Certification Authority
PCR Platform Configuration Register
PET Privacy Enhancing Technology
PKI Public-key Infrastructure
PNG Portable Network Graphic
PRF Pseudo Random Function
PS Post Script
RA Remote Attestation
RIM Reference Integrity Measurement

148

APPENDIX A. DEFINITIONS 149

RTE Root-of-Trust-for-Enforcement
RTM Root-of-Trust-for-Measurement
RTR Root-of-Trust-for-Reporting
RTS Root-of-Trust-for-Storage
RTV Root-of-Trust-for-Verification
SATSA Security and Trust Services API
SE Secure Element
TC Trusted Computing
TCG Trusted Computing Group
TEE Trusted Execution Environment
TIS TPM interface specification
TLS Transport Layer Security
TPM Trusted Platform Module
TSS Trusted Software Stack

A.2 Used Symbols

GND Common Ground Identifier
VDD Supply Voltage Identifier

Bibliography

[1] MCB2130 Evaluation Board - Technical Specifications, 2012.

[2] Comprehensive TEX Archive Network (CTAN). http://www.ctan.org/.

[3] J. C. P. .-J. 218. Connected Device Configuration (CDC) 1.1. Specification available
at: http://jcp.org/en/jsr/detail?id=218, 19 August 2005.

[4] M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys.
In ASIACRYPT ’02: Proceedings of the 8th International Conference on the Theory
and Application of Cryptology and Information Security, pages 415–432, London,
UK, 2002. Springer-Verlag.

[5] S. Alfred J. Menezes, Paul C. Van Oorschot. Handbook of applied cryptography. CRC
Press series on discrete mathematics and its applications. CRC Press, Boca Raton,
c1997. Includes bibliographical references (p. 703-754) and index.

[6] T. Alves and D. Felton. TrustZone: Integrated Hardware and Software Security
- Enabling Trusted Computing in Embedded Systems. Available online at: http:

//www.arm.com/pdfs/TZ_Whitepaper.pdf, July 2004.

[7] ARM. TrustZone Ready Program. http://cc.arm.com/products/

secure-services/trustzone-ready/index.php, February 2012.

[8] ARM Ltd. TrustZone Technology Overview. Introduction available at: http://www.
arm.com/products/esd/trustzone_home.html.

[9] ARM Ltd. SecurCore SC200. Overview available at: http://www.arm.com/

products/CPUs/SecurCore_SC200.html, 19 August 2005.

[10] P. Bichsel, J. Camenisch, T. Groß, and V. Shoup. Anonymous credentials on a stan-
dard java card. In CCS ’09: Proceedings of the 16th ACM conference on Computer
and communications security, pages 600–610, New York, NY, USA, 2009. ACM.

[11] P. Bichsel, J. Camenisch, T. Groß, and V. Shoup. Anonymous credentials on a stan-
dard java card. In CCS ’09: Proceedings of the 16th ACM conference on Computer
and communications security, pages 600–610, New York, NY, USA, 2009. ACM.

[12] S. A. Brands. Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press, Cambridge, MA, USA, 2000.

[13] E. Brickell, J. Camenisch, and L. Chen. Direct Anonymous Attestation. In CCS ’04:
Proceedings of the 11th ACM conference on Computer and communications security,
pages 132–145, New York, NY, USA, 2004. ACM.

150

http://www.ctan.org/
http://jcp.org/en/jsr/detail?id=218
http://www.arm.com/pdfs/TZ_Whitepaper.pdf
http://www.arm.com/pdfs/TZ_Whitepaper.pdf
http://cc.arm.com/products/secure-services/trustzone-ready/index.php
http://cc.arm.com/products/secure-services/trustzone-ready/index.php
http://www.arm.com/products/esd/trustzone_home.html
http://www.arm.com/products/esd/trustzone_home.html
http://www.arm.com/products/CPUs/SecurCore_SC200.html
http://www.arm.com/products/CPUs/SecurCore_SC200.html

BIBLIOGRAPHY 151

[14] E. Brickell, L. Chen, and J. Li. A New Direct Anonymous Attestation Scheme from
Bilinear Maps. In TRUST, pages p. 166–178, 2008.

[15] F. B. C. Latze, U. Ultes-Nitsche. Extensible Authentication Protocol Method for
Trusted Computing Groups (TCG) Trusted Platform Modules. Internet-Draft, July
2009.

[16] J. Camenisch and A. Lysyanskaya. A Signature Scheme with Efficient Protocols. In
In SCN 2002, volume 2576 of LNCS, pages p. 268–289. Springer, 2002.

[17] J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the
product of two safe primes, 1998.

[18] Çetin Kaya Koc. Analysis of Sliding Window Techniques for Exponentiation. Com-
puters and Mathematics with Applications, vol. 30:p. 17–24, 1995.

[19] Çetin Kaya Koc and T. Acar. Analyzing and Comparing Montgomery Multiplication
Algorithms. IEEE Micro, vol. 16:26–33, 1996.

[20] N. Ch, J. Groth, and A. Sahai. Ring signatures of sub-linear size without random
oracles. In In ICALP07, LNCS. Springer, 2007.

[21] L. Chen. A daa scheme requiring less tpm resources. Cryptology ePrint Archive,
Report 2010/008, 2010. http://eprint.iacr.org/.

[22] L. Chen, H. Löhr, M. Manulis, and A.-R. Sadeghi. Property-based attestation with-
out a trusted third party. In ISC ’08: Proceedings of the 11th international conference
on Information Security, pages 31–46, Berlin, Heidelberg, 2008. Springer-Verlag.

[23] G. Consortium. GlobalPlatform Card Specification. GlobalPlatform Card Specifica-
tion v2.2.1, January 2011.

[24] V. Costan, L. F. Sarmenta, M. Dijk, and S. Devadas. The trusted execution module:
Commodity general-purpose trusted computing. In CARDIS ’08: Proceedings of
the 8th IFIP WG 8.8/11.2 international conference on Smart Card Research and
Advanced Applications, pages 133–148, Berlin, Heidelberg, 2008. Springer-Verlag.

[25] H. D. Eastlake. Transport Layer Security (TLS) Extensions: Extension Definitions.
RFC 6066, jan 2011.

[26] J. Daemen and V. Rijmen. The Block Cipher Rijndael. In Proceedings of the The
International Conference on Smart Card Research and Applications, pages 277–284,
London, UK, 2000. Springer-Verlag.

[27] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed
Standard), jan 1999. Obsoleted by RFC 4346, updated by RFC 3546.

[28] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.1. RFC 4346 (Proposed Standard), April 2006.

[29] K. Dietrich. Secure Signature Creation using the Java 2 Micro Edition on Mobile
Devices. Master’s thesis, Institute for Applied Information Processing and Commu-
nications, Technical University Graz, Austria, Inffeldgasse 16a, 8010 Graz, Austria,
October 2003.

http://eprint.iacr.org/

BIBLIOGRAPHY 152

[30] K. Dietrich. An integrated architecture for trusted computing for java enabled em-
bedded devices. In STC ’07: Proceedings of the 2007 ACM workshop on Scalable
trusted computing, pages 2–6, New York, NY, USA, 2007. ACM.

[31] K. Dietrich. Anonymous credentials for java enabled platforms. In L. Chen and
M. Yung, editors, INTRUST 2009, pages p. 101 –p. 116, 2009.

[32] K. Dietrich. Anonymous Credentials for Java Enabled Platforms. In M. Y. L. Chen,
editor, Proceedings of the International Conference on Trusted Systems (INTRUST
2009), Heidelberg, 2010. Springer LNCS.

[33] K. Dietrich, M. Pirker, T. Vejda, R. Toegl, T. Winkler, and P. Lipp. A practical
approach for establishing trust relationships between remote platforms using trusted
computing. In G. Barthe and C. Fournet, editors, Trustworthy Global Computing,
volume 4912 of Lecture Notes in Computer Science, pages 156–168. Springer Berlin
/ Heidelberg, 2008. 10.1007/978-3-540-78663-4-12.

[34] K. Dietrich and J. Winter. Secure boot revisited. In ICYCS ’08: Proceedings of
the 2008 The 9th International Conference for Young Computer Scientists, pages
2360–2365, Washington, DC, USA, 2008. IEEE Computer Society.

[35] K. Dietrich and J. Winter. Implementation aspects of mobile and embedded trusted
computing. In L. Chen, C. J. Mitchell, and A. Martin, editors, TRUST, volume
5471 of Lecture Notes in Computer Science, pages p. 29–44. Springer, 2009.

[36] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in ad
hoc groups. In IN EUROCRYPT 2004, VOLUME 3027 OF LNCS, pages 609–626.
Springer-Verlag, 2004.

[37] O. Dubuisson and P. Fouquart. ASN.1: communication between heterogeneous sys-
tems. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[38] D. V. E. Cesena, G. Ramunno. D03c.3 ssl/tls daa-enhancement specification. Tech-
nical report, Politecnico Di Torino, May 2009.

[39] J.-E. Ekberg, N. Asokan, K. Kostiainen, and A. Rantala. Scheduling execution of
credentials in constrained secure environments. In STC ’08: Proceedings of the 3rd
ACM workshop on Scalable trusted computing, pages 61–70, New York, NY, USA,
2008. ACM.

[40] P. England and T. Tariq. Towards a programmable tpm. In TRUST, pages 1–13,
2009.

[41] F. S. Foundation. The GNU Transport Layer Security Library.

[42] S. D. Galbraith and K. G. Paterson, editors. Pairing-Based Cryptography - Pairing
2008, Second International Conference, Egham, UK, September 1-3, 2008. Proceed-
ings, volume 5209 of Lecture Notes in Computer Science. Springer, 2008.

[43] Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, and N. Asokan. Beyond secure
channels. In STC ’07: Proceedings of the 2007 ACM workshop on Scalable trusted
computing, pages 30–40, New York, NY, USA, 2007. ACM.

BIBLIOGRAPHY 153

[44] H. Ge and S. R. Tate. A direct anonymous attestation scheme for embedded devices.
In Proceedings of the 10th international conference on Practice and theory in public-
key cryptography, PKC’07, pages 16–30, Berlin, Heidelberg, 2007. Springer-Verlag.

[45] GlobalPlatform. Trusted Execution Environment (TEE) Specifications.

[46] GlobalPlatform. GlobalPlatform Card Specification v2.2, March 2006.

[47] K. Goldman, R. Perez, and R. Sailer. Linking remote attestation to secure tunnel
endpoints. In STC ’06: Proceedings of the first ACM workshop on Scalable trusted
computing, pages 21–24, New York, NY, USA, 2006. ACM.

[48] Google. Googlet Wallet.

[49] J. Grosschadl, S. Tillich, and A. Szekely. Performance Evaluation of Instruction
Set Extensions for Long Integer Modular Arithmetic on a SPARC V8 Processor.
Euromicro Symposium on Digital Systems Design, pages p. 680–689, 2007.

[50] M. P. W. Group. Selected Use Case Analyses v1.0, Sept. 2009.

[51] M. P. W. Group. Mobile Trusted Module 2.0 Use Cases v1.0, March 2011.

[52] T. C. G. .-M. W. Group. TCG Mobile Trusted Module Sepecification Version 1
rev. 7.02. Specification available online at: https://www.trustedcomputinggroup.
org/specs/mobilephone/tcg-mobile-trusted-module-1.0.pdf, 29 April 2010.

[53] T. C. G. .-T. W. Group. TPM Main Part 2 Structures. Specification
available at: http://www.trustedcomputinggroup.org/files/resource_files/

8D3D6571-1D09-3519-AD22EA2911D4E9D0/mainP2Structrev103.pdf, 9 July 2007.
Specification version 1.2 Level 2 Revision 103.

[54] T. C. G. .-T. W. Group. TPM Main Part 1 Design Principles. Specification
available online at: http://www.trustedcomputinggroup.org/files/resource_

files/ACD19914-1D09-3519-ADA64741A1A15795/mainP1DPrev103.zip, 1 March
2011 2011. Specification version 1.2 Level 2 Revision 116.

[55] R. Housley, R. Laboratories, W. Polk, NIST, W. Ford, VeriSign, D. Solo, and Citi-
group. Internet x.509 public key infrastructure certificate and certificate revocation
list (crl) profile - rfc 3280, April 2002.

[56] IBM. TrouSerS The opensource TCG Software Stack, 2 November 2007.

[57] IEEE. Ieee standard specifications for public-key cryptography, 2000.

[58] E. II. ECRYPT II Yearly Report on Algorithms and Keysizes (2009-2010), March
2010.

[59] E. II. ECRYPT II Yearly Report on Algorithms and Keysizes (2010-2011), June
2011.

[60] Intel. Intel Desktop Board DQ965GF Technical Product Specification. Specification
available at: downloadmirror.intel.com/15033/eng/DQ965GF_TechProdSpec.

pdf, September 2006.

https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-trusted-module-1.0.pdf
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-trusted-module-1.0.pdf
http://www.trustedcomputinggroup.org/files/resource_files/8D3D6571-1D09-3519-AD22EA2911D4E9D0/mainP2Structrev103.pdf
http://www.trustedcomputinggroup.org/files/resource_files/8D3D6571-1D09-3519-AD22EA2911D4E9D0/mainP2Structrev103.pdf
http://www.trustedcomputinggroup.org/files/resource_files/ACD19914-1D09-3519-ADA64741A1A15795/mainP1DPrev103.zip
http://www.trustedcomputinggroup.org/files/resource_files/ACD19914-1D09-3519-ADA64741A1A15795/mainP1DPrev103.zip
downloadmirror.intel.com/15033/eng/DQ965GF_TechProdSpec.pdf
downloadmirror.intel.com/15033/eng/DQ965GF_TechProdSpec.pdf

BIBLIOGRAPHY 154

[61] Intel. Intel Desktop Board DQ45CB Technical Product Specification. Spec-
ification available at: http://downloadmirror.intel.com/16958/eng/DQ45CB_

TechProdSpec.pdf, September 2008.

[62] International Organisation for Standardisation. ISO/IEC 7816-4, 2005. Part 4:
Interindustry commands for interchange.

[63] International Organisation for Standardisation. ISO/IEC Standard 18033-2, Infor-
mation technology – Security techniques – Encryption algorithms, 2006. Part 2:
Asymmetric ciphers.

[64] J. M. Balasch Masoliver. Smart Card Implementation of Anonymous Credentials.
Master’s thesis, K.U.Leuven, Belgium, 2008.

[65] M. K. Jan-Erik Ekberg. Mobile Trusted Module (MTM) - an introduction. Available
online at:
http://research.nokia.com/files/NRCTR2007015.pdf, November 14 2007.

[66] Trusted Computing for Java. Available online at: http://trustedjava.

sourceforge.net/.

[67] S. J. Kesselman. Java Platform Performance: Strategies and Tactics. Addison
Wesley, 2000.

[68] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala. On-board credentials
with open provisioning. In ASIACCS ’09: Proceedings of the 4th International
Symposium on Information, Computer, and Communications Security, pages 104–
115, New York, NY, USA, 2009. ACM.

[69] A. Krall. Efficient JavaVM Just-in-Time Compilation. In International Conference
on Parallel Architectures and Compilation Techniques, pages 205–212, 1998.

[70] K. Kursawe and D. Schellekens. Flexible µTPMs through disembedding. In ASIACCS
’09, pages 116–124, New York, NY, USA, 2009. ACM.

[71] K. Kursawe, D. Schellekens, and B. Preneel. Analyzing trusted platform communi-
cation. In In: ECRYPT Workshop, CRASH - CRyptographic Advances in Secure
Hardware, page 8, 2005.

[72] D. P. L. Chen and N. Smart. On the design and implementation of an efficient daa
scheme. Cryptology ePrint Archive, Report 2009/598, 2009. http://eprint.iacr.
org/.

[73] R. Labs. PKCS1 v2.1: RSA Cryptography Standard, 2001.

[74] Y. F. Lindholm Tim. The Java Virtual Machine Specification Second Edition. Avail-
able online at: http://java.sun.com/docs/books/jvms/second_edition/html/

VMSpecTOC.doc.html.

[75] S. Microsystems. Java Card 3.0.1 Platform Specification. Overview available at:
http://java.sun.com/javacard/3.0.1/specs.jsp.

http://downloadmirror.intel.com/16958/eng/DQ45CB_TechProdSpec.pdf
http://downloadmirror.intel.com/16958/eng/DQ45CB_TechProdSpec.pdf
http://research.nokia.com/files/NRCTR2007015.pdf
http://trustedjava.sourceforge.net/
http://trustedjava.sourceforge.net/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html
http://java.sun.com/javacard/3.0.1/specs.jsp

BIBLIOGRAPHY 155

[76] C. Mitchell. Direct Anonymous Attestation in Context. In Trusted Computing (Pro-
fessional Applications of Computing), pages p. 143–p. 174, Piscataway, NJ, USA,
2005. IEEE Press.

[77] M. S. C. T. Mourad Debbabi and S. Zhioua. Security Evaluation of J2ME CLDC
Embedded Java Platform. Journal of Object Technlogy, 5(2):125-154, March-April
2006.

[78] National Institute of Standards and Technology. Secure Hash Stan-
dard. available online at: http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2withchangenotice.pdf, 1 August 2002.

[79] National Institute of Standards and Technology - NIST. Digital Signature Standard
(DSS) FIPS-186-3. Technical report, National Institute of Standards and Technol-
ogy (NIST), June 2009.

[80] E. C. Ortiz. Introduction to OTA Application Provisioning. Technical report, SUN
Developer Network, November 2002. Article available at: http://developers.sun.
com/mobility/midp/articles/ota/.

[81] S. Pearson. Trusted Computing Platforms, the Next Security Solution. Technical
report, Trusted E-Services Laboratory, HP Laboratories Bristol HPL-2002-221, 5
November 2002.

[82] C. Porthouse. High performance Java on embedded devices. Technical report, ARM
Ltd., October 2005.

[83] S. C. process. Java Specification Request (JSR-257): Contactless Communication
API. Specification available at: http://jcp.org/en/jsr/detail?id=257, October
2004.

[84] S. C. process JSR 139. J2ME(TM) Connected Limited Device Configuration
(CLDC) Specification 1.1 Final Release. Specification available at: http://jcp.

org/aboutJava/communityprocess/final/jsr139/index.html, 4 March 2004.

[85] S. C. process JSR 271. J2ME(TM) Mobile Information Device Profile (MIDP)
3.0. Draft available at: http://www.jcp.org/en/jsr/detail?id=271. Work in
progress.

[86] E. Rescorla. SSL and TLS: designing and building secure systems. Addison-Wesley,
Boston, c2001. Includes bibliographical references (p. 465-474) and index.

[87] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In ASIACRYPT ’01:
Proceedings of the 7th International Conference on the Theory and Application of
Cryptology and Information Security, pages 552–565, London, UK, 2001. Springer-
Verlag.

[88] J. Salowey, A. Choudhury, and D. McGrew. AES Galois Counter Mode (GCM)
Cipher Suites for TLS. RFC 5288 (Proposed Standard), August 2008.

[89] J. Salowey, H. Zhou, C. Systems, P. Eronen, Nokia, H. Tschofenig, and N. S. Net-
works. Transport Layer Security (TLS) Session Resumption without Server-Side
State. RFC 5077 (Proposed Standard), jan 2008. Obsoletes RFC 4507.

http://developers.sun.com/mobility/midp/articles/ota/
http://developers.sun.com/mobility/midp/articles/ota/
http://jcp.org/en/jsr/detail?id=257
http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html
http://www.jcp.org/en/jsr/detail?id=271

BIBLIOGRAPHY 156

[90] M. T. Sarmenta L., Rhodes J. TPM/J Java-based API for the Trusted Platform
Module (TPM). Available online at: http://projects.csail.mit.edu/tc/tpmj/,
Arpil 2007.

[91] C. P. Schnorr. Efficient identification and signatures for smart cards. In CRYPTO
’89: Proceedings on Advances in cryptology, pages 239–252, New York, NY, USA,
1989. Springer-Verlag New York, Inc.

[92] M. Scott. Miracl library. http://www.shamus.ie/, 2011.

[93] M. Sterckx, B. Gierlichs, B. Preneel, and I. Verbauwhede. Efficient Implementation
of Anonymous Credentials on Java Card Smart Cards. In 1st IEEE International
Workshop on Information Forensics and Security (WIFS 2009), pages 106–110, Lon-
don,UK, 2009. IEEE.

[94] Stiftung SIC. The IAIK JCE iSaSiLk v4.4 TLS Library. Specification available
at: http://jce.iaik.tugraz.at/index.php/sic/Products/Communication-Messaging-
Security/iSaSiLk.

[95] Stiftung SIC. The IAIK JCE MicroEdition Crypto Library - J2ME SDK v3.04.
http://jce.iaik.tugraz.at/sic/products/core crypto toolkits/jce me/version.

[96] M. Strasser. TPM Emulator. Software package available at: http://tpm-emulator.
berlios.de/.

[97] F. Stumpf, O. Tafreschi, P. Röder, and C. Eckert. A robust integrity reporting proto-
col for remote attestation. In Second Workshop on Advances in Trusted Computing
(WATC ’06 Fall), Tokyo, Japan, November 2006.

[98] SUN. Javacard protection profile, May 2006.

[99] SUN Community process - JSR 139. J2ME(TM) Connected Limited Device Config-
uration (CLDC) Specification 1.1 Final Release. Specification available at: http:

//jcp.org/aboutJava/communityprocess/final/jsr139/index.html, 4 March
2004.

[100] SUN Developer Network. Java ME at a Glance. Specifications and Articles avail-
ablbe at: http://java.sun.com/javame/index.jsp.

[101] Sun Microsystems. Java Card Technology. Overview available at: http://java.

sun.com/products/javacard/.

[102] SUN Microsystems. Java Cryptography Architecture (JCA) Reference Guide for
JavaTM Platform Standard Edition 6. Specification available at: http://java.sun.
com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html.

[103] SUN Microsystems. Java Native Interface Specification. Available online at: http:
//java.sun.com/j2se/1.5.0/docs/guide/jni/spec/jniTOC.html.

[104] SUN Microsystems. JSR 177: Securtiy and Trust Services API. Specification avail-
able at: http://java.sun.com/products/satsa/.

[105] SUN Microsystems. Java Card Platform Specification 2.2.2. Specification available
at: http://java.sun.com/products/javacard/specs.html, March 2006.

http://projects.csail.mit.edu/tc/tpmj/
http://tpm-emulator.berlios.de/
http://tpm-emulator.berlios.de/
http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html
http://java.sun.com/javame/index.jsp
 http://java.sun.com/products/javacard/
 http://java.sun.com/products/javacard/
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://java.sun.com/j2se/1.5.0/docs/guide/jni /spec/jniTOC.html
http://java.sun.com/j2se/1.5.0/docs/guide/jni /spec/jniTOC.html
http://java.sun.com/products/satsa/
http://java.sun.com/products/javacard/specs.html

BIBLIOGRAPHY 157

[106] I. Sun Microsystems. K native interface (kni). Technical report, 4150 Network Circle
Santa Clara, California 95054, December 2002.

[107] R. I. T. Dierks, E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008.

[108] The Legion of BouncyCastle. Bouncy Castle Crypto APIs for Java -
Lightweightcrypto j2me 1.43. http://www.bouncycastle.org/java.html.

[109] The OpenSSL Project. OpenSSL. Programa de computador, December 1998.

[110] Trusted Computing Group - Mobile Phone Working Group. TCG Mobile Reference
Architecture. Specification available online at:
https://www.trustedcomputinggroup.org/specs/mobilephone/

tcg-mobile-reference-architecture-1.0.pdf, 12 June 2007. Specification
version 1.0 Revision 1.

[111] Trusted Computing Group - Mobile Phone Working Group. TCG Mo-
bile Trusted Module Sepecification Version 1 rev. 1.0. Specification avail-
able online at: https://www.trustedcomputinggroup.org/specs/mobilephone/

tcg-mobile-trusted-module-1.0.pdf, 12 June 2007.

[112] Trusted Computing Group - TPM Working Group. TPM Main Part 3 Com-
mands. Specification available online at: http://www.trustedcomputinggroup.

org/files/static_page_files/72C33D71-1A4B-B294-D02C7DF86630BE7C/TPM%

20Main-Part%203%20Commands_v1.2_rev116_01032011.pdf, 1 March 2011.
Specification version 1.2 Level 2 Revision 116.

[113] Trusted-Computing-Group-TSS-Working-Group. TCG Software Stack
(TSS) Specification Version 1.2 Level 1. Specification available online at:
https://www.trustedcomputinggroup.org/specs/TSS/TSS_Version_1.2_

Level_1_FINAL.pdf, 6 January 2006. Part1: Commands and Structures.

[114] P. P. Tsang and V. K. Wei. Short linkable ring signatures for e-voting, e-cash and
attestation. In In ISPEC 2005, volume 3439 of LNCS, pages 48–60. Springer, 2004.

[115] J. Uusilehto. How to establish mobile security. Available online at:
http://www.mobilehandsetdesignline.com/showArticle.jhtml?

printableArticle=true&articleId=196701831, 24 December 2006.

[116] D. E. Williams and J. R. Garcia. Virtualization with Xen: including XenEnterprise,
XenServer, and XenExpress. Syngress, Burlington, MA, c2007. Includes index.

[117] J. Winter. Trusted computing building blocks for embedded linux-based arm trust-
zone platforms. In STC ’08: Proceedings of the 3rd ACM workshop on Scalable
trusted computing, pages 21–30, New York, NY, USA, 2008. ACM.

[118] X. Zhang, O. Aciicmez, and J.-P. Seifert. A trusted mobile phone reference archi-
tecturevia secure kernel. In STC ’07: Proceedings of the 2007 ACM workshop on
Scalable trusted computing, pages 7–14, New York, NY, USA, 2007. ACM.

https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-reference-architecture-1.0.pdf
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-reference-architecture-1.0.pdf
 https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-trusted-modul e-1.0.pdf
 https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-trusted-modul e-1.0.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C33D71-1A4B-B294-D02C7DF86630BE7C/TPM%20Main-Part%203%20Commands_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C33D71-1A4B-B294-D02C7DF86630BE7C/TPM%20Main-Part%203%20Commands_v1.2_rev116_01032011.pdf
http://www.trustedcomputinggroup.org/files/static_page_files/72C33D71-1A4B-B294-D02C7DF86630BE7C/TPM%20Main-Part%203%20Commands_v1.2_rev116_01032011.pdf
 https://www.trustedcomputinggroup.org/specs/TSS/TSS_Version_1.2_Level_1_FINAL.pd f
 https://www.trustedcomputinggroup.org/specs/TSS/TSS_Version_1.2_Level_1_FINAL.pd f
 http://www.mobilehandsetdesignline.com/showArticle.jhtml?printableArticle=true&a rticleId=196701831
 http://www.mobilehandsetdesignline.com/showArticle.jhtml?printableArticle=true&a rticleId=196701831

	Introduction
	Use-cases for Trusted Computing
	Remote attestation
	Sealing
	Binding
	Key storage
	Anonymity protection
	Electronic voting
	Electronic payment

	Use-cases for Mobile Trusted Computing
	Mobile ticketing
	Anonymous authentication
	Remote-sensing

	Contributions
	Improvements on remote attestation
	Mobile TPMs
	Mobile TPM design
	Mobile TPM security requirements
	Analysis of anonymity protection mechanisms for mobile devices
	Alternative anonymity protection mechanisms for mobile devices

	Secure Platform Configuration Change Reporting
	Introduction
	Related work
	Background

	Remote attestation and secure channels
	Assumptions
	Test setup
	Remote attestation performance results

	Extending Remote Attestation for Secure and Efficient Configuration Change Reporting
	The new model
	MAC calculation and MAC key derivation
	TLS record verification
	Binding the TLS channel to the TPM
	Session initialization
	Design and implementation of the prototype
	TPM modifications
	Handling multiple TLS channels
	Impact on performance

	Alternative MAC Key Derivation
	Session parameter setup
	Binding TLS channels to different processes
	TPM enhancements
	Observations

	Enhancements to Secure Platform Configuration Change Reporting
	Event reporting
	TLS record verification and event reporting
	Session parameter setup
	Security and performance considerations

	General Considerations
	Impact on advanced TLS features
	TLS client authentication with TPMs

	Conclusion and Future Work
	Future work

	Architectures for Mobile Trusted Computing
	Introduction
	Related work
	Background

	An Integrated Architecture for Trusted Computing enabled Embedded Devices
	Architecture overview
	The mobile trusted module
	The MTM abstraction layer
	The MTM command library
	The mobile trusted software stack
	Deployment of the MTM
	Design and implementation of the prototype
	The mobile trusted module on a secure element
	Communication with the mobile trusted module
	Other Applications

	Software-based versus Hardware-based Mobile Trusted Modules
	Roots-of-Trust
	Validating integrity information
	Process separation
	The role of virtual machines
	Platform binding
	Security evaluations for embedded security mechanisms

	Dynamic Command Loading for Security IC based MTMs
	Design of the deployment architecture
	Installing applets
	TPM command execution process
	Security considerations
	Test environment
	Command set loading via NFC

	Conclusion
	Future work

	PETs for Embedded Systems
	Introduction
	Related Work
	Background on DAA

	Anonymous Client Authentication for Transport Layer Security
	TLS Client Authentication
	Test setup
	Integration into the JCA Architecture
	A Note on Specification Compliance
	Performance evaluation

	The DAA Scheme on Mobile Platforms
	Parameter setup
	The Join Process
	Camenisch-Lysyanskaya Signatures
	DAA signature creation
	DAA Signature Verification
	Implementation details and discussion
	Modular arithmetic in BouncyCastle and IAIK JCE-ME
	Random number generation on J2ME platforms
	Hashing of bignumber objects
	Prime number generation
	Test environment
	Revocation

	Analysis of DAA on NFC enabled devices
	An anonymous authentication scenario
	Implementation aspects
	The pre-computation step
	The NFC authentication step

	Conclusion
	Future work and improvements

	
	Introduction
	Related work and Contribution

	Improvements for DAA signature creation on Java enables platforms
	Long integer arithmetic
	Sliding window exponentiation
	Montgomery reduction
	Efficient squaring
	Results
	Java native calls
	Deployment of the native library

	Issuerless anonymity protection with TPMs
	Highlevel Description of the approach
	Discussion
	Schnorr signature based approach
	Obtaining a Vendor Credential
	Discussion

	RSA Signature Based Scheme
	Discussion
	Comparison of both Approaches

	Implementation Notes
	Signature Sizes

	RSA Signature Based Scheme
	Discussion
	Comparison of both Approaches

	An anonymous authentication scheme
	Requirements
	The scheme
	Model

	Prerequisites & Requirements
	Revocation
	Results
	Discussion

	Conclusion

	Conclusions
	Further Work

	Definitions
	Abbreviations
	Used Symbols

	Bibliography

