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Summary

The aim of this thesis is to contribute to the understanding of spin-induced phe-

nomena in electron motion. These phenomena arise when electrons move through

a (partially) magnetic environment, in such a way that its magnetic moment (spin)

may interact with the surroundings. The pure quantum nature of the spin requires

transport models that deal with effects like quantum coherence, entanglement (cor-

relation) and quantum dissipation. On the meso- and macroscopic level it is not yet

clear under which circumstances these quantum effects may transpire. The purpose

of this work is, on the one hand, to derive novel spin transport models from basic

principles and, on the other hand, to develop numerical algorithms that allow for a

solution of these new and other existing model equations.

The thesis consists of four parts. The first part has introductory character; it

comprises an overview of fundamental spin-related concepts in electronic transport

such as the giant-magneto-resistance (GMR) effect, the spin-transfer torque in metal-

lic magnetic multilayers and the matrix-character of transport equations that take

spin-coherent electron states into account. Special emphasis is placed on the mod-

eling of the spin-transfer torque which represents the intersection of these concepts.

In particular, we consider the diffusive Zhang-Levy-Fert (ZLF) model, an exchange-

torque model that consists of the Landau-Lifshitz equation and a heuristic matrix

spin-diffusion equation. A finite difference scheme based on Strang operator split-

ting is developed that enables a numerical, self-consistent solution of this non-linear

system within multilayer structures. Finally, the model is tested by comparison of

numerical results to recent experimental data.

Parts two and three are the thematic core of this thesis. In part two we propose a

matrix-Boltzmann equation that allows for the description of spin-coherent electron

transport on a kinetic level. The novelty here is a linear collision operator in which

the transition rates from momentum k to momentum k′ are modeled by a 2 × 2

Hermitian matrix; hence the mean-free paths of spin-up and spin-down electrons are

represented by the eigenvalues of this scattering matrix. After a formal derivation

of the matrix-Vlasov equation as the semi-classical limit of the one-electron Wigner

equation, the ensuing kinetic equation is studied with regard to existence, uniqueness
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and positive semi-definiteness of a solution. Furthermore, the new collision operator

is investigated rigorously and the diffusion limit τc → 0 of the mean scattering time

is performed. The obtained matrix drift-diffusion equations are an improvement

over the heuristic spin-diffusive model treated in part one. The latter is obtained in

the limit of identical eigenvalues of the scattering matrix.

Part three is dedicated to a first step towards the derivation of the matrix collision

operator, introduced in part two, from first principles. For this, we augment the von

Neumann equation of a composite quantum system by a dissipative term that relaxes

the total state operator towards the Born approximation. Under the premise that the

relaxation is the dominant process we obtain a hierarchy of non-Markovian master

equations. The latter arises from an expansion of the total state operator in powers

of the relaxation time τr. In the Born-Markov limit τr → 0 the Lindblad master

equation is recovered. It has the same structure as the collision operator proposed

in part two heuristically . However, the Lindblad equation is still a microscopic

equation; thus the next step would be to carry out the semi-classical limit of the

result obtained.

In part four we perform a numerical study of a quantum-diffusive, two-component

spin model of the transport in a two-dimensional electron gas with Rashba spin-orbit

coupling. This model assumes the electrons to be in a quantum equilibrium state

in the form of a Maxwellian operator. We present two space-time discretizations

of the model which also comprise the Poisson equation. In a first step pure time

discretization is applied in order to prove the well-posedness of the two schemes,

both of which are based on a functional formalism to treat the non-local relations

between spin densities via the chemical potentials. We then use fully space-time

discrete schemes to simulate the dynamics in a typical transistor geometry. Finite

difference approximations applied in these schemes are first order in time and second

order in space. The discrete functionals introduced are minimized with the help of a

conjugate gradient-based algorithm in which the Newton method is applied to find

the desired line minima.

Keywords. Spintronics, spin-transfer torque, Landau-Lifshitz equation, spin-

diffusion, spin-coherent transport, Strang operator splitting, Wigner transform, semi-

classical limit, matrix-Boltzmann equation, spin-polarized electron conduction, ma-

trix collision operator, maximum principle, diffusion limit, matrix drift-diffusion,

composite quantum systems, Lindblad equation, non-Markovian quantum dynamics,

Rashba spin-orbit coupling, maximum entropy principle, finite difference, conjugate

gradient method.



Résumé

L’objectif de cette thèse est de contribuer à la compréhension des phénomènes de

mouvement de l’électron induits par le spin. Ces phénomènes aparaissent lorsqu’un

électron se déplace à travers un environnement (partiellement) magnétique, de telle

sorte que son moment magnétique (spin) peut interagir avec l’environnement. La na-

ture quantique pure du spin nécessite des modèles de transport qui traitent des effets

comme la cohérence quantique, l’intrication (corrélation) et la dissipation quantique.

Sur le niveau méso- et macroscopique, il n’est pas encore clair dans quelles circon-

stances ces effets quantiques du spin peut transpirer. Le but de ce travail est, d’une

part, de dériver des nouveaux modèles de transport de spin à partir des principes

de base et, d’autre part, de développer des algorithmes numériques qui permettent

de trouver une solution de ces modèles.

Cette thèse se compose de quatre parties. La première partie introductive con-

tient un aperçu des concepts fondamentaux liés au transport polarisé en spin, tels

que la magnéto-résistance géante (GMR), le couple de transfert de spin dans les

multi-couches magnétiques et le caractère matriciel des équations de transport qui

prennent en compte la cohérence de spin. L’accent est mis sur la modélisation

du couple de transfert de spin, qui représente l’intersection de ces concepts. En

particulier, nous considérons pour sa description le modèle diffusif de Zhang-Levy-

Fert (ZLF) qui se compose de l’équation de Landau-Lifshitz et d’une équation de

diffusion matricielle pour le spin. Un schéma de différences finies est développé

pour résoudre numériquement ce système non-linéaire dans des structures multi-

couches. Le modèle est testé par comparaison des résultats obtenus aux données

expérimentales récentes.

Les parties deux et trois forment le noyau thématique de cette thèse. Dans la

deuxième partie nous proposons une équation de Boltzmann matricielle qui permet

la description de la cohérence de spin sur le niveau cinétique. La nouveauté est un

opérateur de collision dans lequel les taux de transition de la quantité de mouvement

sont modélisés par une matrice 2× 2 hermitienne; par conséquent, les libre parcours

moyens des électrons spin-up et spin-down sont représentés par les valeurs propres

de cette matrice de scattering. Après une dérivation formelle de l’équation de Vlasov

9



10

matricielle à partir de l’équation de Wigner, l’équation cinétique qui suit est étudiée

en ce qui concerne l’existence, l’unicité et la positivé d’une solution. En outre, le

nouveau opérateur de collision est étudié rigoureusement et la limite de diffusion

τc → 0, correspondant á l’annulation de la moyenne de temps de scattering, est

effectué. Les équations de drift-diffusion matricielle qui sont obtenues représentent

une amélioration par rapport au modèle traité dans la première partie. Ce dernier

est obtenu dans la limite ou la différence entre les deux valeurs propres de la matrice

de scattering va disparâıtre.

La troisième partie est consacrée à l’obtention de l’opérateur de collision ma-

tricielle introduit auparavant, à partir des principes quantiques. Pour cela, nous

augmentons l’équation de von Neumann d’un système composite par un terme dis-

sipatif qui fait tendre l’opérateur de densité totale vers l’approximation de Born.

En vertu de la prémisse que la relaxation est le processus dominant, on obtient

une hiérarchie d’équations non-Markoviennes. Celles-ci découlent d’une expansion

de l’opérateur de densité en termes de τr, le temps de relaxation. Dans la limite

de Born-Markov, τr → 0, l’équation de Lindblad est récupérée. Elle a la même

structure que l’opérateur de collision proposé dans la deuxième partie. Cependant,

l’équation de Lindblad est encore une équation microscopique; donc la prochaine

étape serait de procéder à la limite semi-classique du résultat obtenu.

Dans la quatrième partie nous procédons à une étude numérique d’un modèle

quantique-diffusif de spin qui décrit le transport dans un gaz d’électrons bidimen-

sionnel avec un couplage spin-orbite de Rashba. Ce modèle suppose que les électrons

sont dans un état d’équilibre quantique sous la forme d’un opérateur de Maxwell.

Nous présentons deux discrétisations espace-temps du modèle couplé par l’équation

de Poisson. Dans une première étape on applique une discrétisation en temps et

on montre que les systèmes sont bien définis. Ceux-ci sont basés sur un formalisme

fonctionnel pour traiter les relations non-locales entre les densités de spin. Nous

prouvons ensuite á des discrétisations espace-temps pour simuler la dynamique dans

une géométrie typique d’un transistor. Les approximations différences finies sont du

premier ordre en temps et du second ordre en espace. Les fonctionnelles discrètes

sont minimisée à l’aide d’un algorithme du gradient conjugué et la méthode de New-

ton est appliquée afin de trouver les minima dans la direction désirée.
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Introductory Overview

In conventional nanoelectronics the charge and the magnetic moment (spin) of elec-

trons are used for different purposes; logical operations and fast (volatile) memory

elements are implemented via the control of charge transport by means of electric

fields, for instance in diodes, transistors or capacitors, whereas the magnetic proper-

ties are used mainly for the purpose of non-volatile, long-term data storage in hard

disk drives. The miniaturization of these devices is gradually reaching its physical

boundaries and, thus, considerable effort is put into the search for novel device con-

cepts. A promising approach is the combined usage of the electron’s charge- and

spin-degree of freedom in so-called spintronics applications [1, 2, 3]. In these devices

one uses either an electric field to control magnetic properties or a magnetic field

to control the properties of charge transport. This thesis is devoted to the model-

ing and the numerical simulation of some of the interesting phenomena arising in

spintronics applications. The emphasis is on the meso- and the macroscopic level of

description, which appears to be well suited for performing device-related numerical

studies. The goal is, on the one hand, to improve some of the state-of-the-art spin-

transport models and, on the other hand, to provide numerical data that enable a

sophisticated interpretation of recent experimental findings. The thesis consists of

four separate parts which are loosely related. These parts are sorted in chronological

order of their making and they are concerned with the following topics:

Part I : The first chapter of this part can be viewed as an introduction to

the field of spintronics. We revisit the basic ideas of spin-polarized electron con-

duction in the transition-metal ferromagnets Fe, Ni and Co, of the Giant-Magneto-

Resistance (GMR) effect and of the non-equilibrium spin accumulation at a non-

magnetic/ferromagnetic interface that is traversed by an electronic current. In

Chapter 2 we treat numerically the Zhang-Levy-Fert (ZLF) model [4] to describe

the spin-transfer torque and the ensuing magnetization dynamics in magnetic multi-

layers under high current densities. For this, we solve self-consistently the following

non-linear system of equations for the magnetization ~m : R×R+ → S2 and the spin

accumulation ~s : R× R+ → R3:

15
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Figure 1: Simulated magnetization dynamics in the thin ferromagnetic layer of a spin-
valve (trilayer system) with intial condition ~m(x, 0) = (0, 0, 1) in the respective domain.
Due to the spin-transfer torque exerted by the spin accumulation ~s, the magnetization
switches to the steady-state ~m(x,∞) = (0, 0,−1).

∂t ~m = −γµ0 ~m× ~Heff + α~m× ∂t ~m , ∂t~s = D∆~s− ~s

τ
− Jex

~
~s× ~m ,

where γ is the gyromagnetic ratio, µ0 stands for the magnetic constant, α denotes

the damping parameter, ~Heff is the effective field, D the diffusion constant, ∆ stands

for the Laplacian, τ is the spin-flip scattering time and Jex denotes the sd-exchange

constant. The effective field ~Heff depends on ~m (and spatial derivatives thereof)

and ~s in a local manner. The equation for ~m is the Landau-Lifshitz-Gilbert equation

(LLGE) and the equation for ~s is called the spin-diffusion equation (SDE). Initial

and boundary conditions are chosen to model the spin-transfer torque, which arises

due to the exchange coupling of strength Jex, in a trilayer system, where a non-

magnetic metallic spacer is sandwiched between a thick and a thin ferromagnet.

The algorithm is based on Strang operator splitting to treat the different time scales

and the strong non-linearities in the LLGE. A typical simulation result is depicted in

Fig. 1. It shows the time evolution of the magnetization in the thin ferromagnetic
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layer with the initial condition ~m(x, 0) = (0, 0, 1) in the respective domain. It

can can be seen that the magnetization switches in the course of time, ending its

motion in the steady-state ~m(x,∞) = (0, 0,−1). The developed algorithm is used

to reproduce and interpret recent experimental data by Krivorotov et al. [5]. It is

shown that the ZLF model is appropriately suited for describing the spin-transfer

torque in spin-valves. However, it is a simple model that has its limitations for

higher current densities (i.e. if the modulus of ~s becomes large) and it does not

describe each interface in the multilayer structure on an equal footing. Hence, it is

the aim of the second part of this thesis to find a more sophisticated macroscopic

model for describing the dynamics of the spin accumulation ~s.

Part II : In Chapter 3 we give an introduction to the Wigner-Weyl calculus for

matrix valued operator symbols in the phase space [6]. In the semi-classical scaling

the Weyl correspondence between the state operator ρ in an electron’s Hilbert space

and its symbol w in the phase space is given component-wise by

[ρφ]i(x) = εd
n∑
j=1

∫
dy

∫
dξ wij

(
x+ y

2
, εξ

)
φj(y)ei(x−y)·ξ ,

which defines the mapping Op : w 7→ ρ and its inverse Op−1(ρ) = w. Here, φ is

a vector-valued one-electron wavefunction with n components, ε denotes the semi-

classical parameter and ξ stands for the scaled momentum variable. Denoting the

Moyal product [7] of a Hermitian operator A in the electron Hilbert space with the

state operator ρ by Op−1
ε (Aρ) = a#εw

(ε), an expansion in orders of ε (formally)

results in

a#εw
(ε) = aw(ε) + i

ε

2
{a, w(ε)}(x,ξ) +O(ε2) ,

where {a, w(ε)}(x,ξ) stands for the Poisson bracket in the phase space Rd
x×Rd

ξ and a is

the symbol corresponding to A. The Moyal product enables us to perform the semi-

classical limit in the von Neumann equation for a single electron with spin. Under

the premise that the matrix-valued spin part hs of the symbol h of the Hamilton

operator scales with order ε, i.e.

h(x, ξ) = hc(x, ξ)1n + εhs(x, ξ) ∀(x, ξ) ∈ Rd
x × Rd

ξ ,

where hc denotes the scalar charge part of h, in the semi-classical limit ε → 0 one

obtains the matrix-Vlasov equation [8]. In Chapter 4 the latter appears as the left-

hand-side of the proposed matrix-Boltzmann equation, which is a kinetic equation
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for spin-coherent electron transport:

∂tF
(α) +

1

α

(
∇ξhc · ∇xF

(α) −∇xhc · ∇ξF
(α)
)

+ i[F (α),~h · ~σ]

=
1

α2
Qgl(F

(α)) +Qsf (F
(α)) .

Here, F (α) = w(0) stands for the Hermitian 2 × 2 distribution matrix describing

the spin-coherent electron(s) and we set hs = ~h · ~σ for the spin part of h, where ~σ

denotes the vector of the Pauli matrices. Moreover, we introduced the scaled mean

scattering time α2 � 1 and the two collision operators Qgl and Qsf . The latter

describes scattering events that flip the electron’s spin and, thus, relax the matrix

F (α) towards a scalar distribution function (σ0 stands for the 2× 2 unit matrix),

Qsf (F
(α)) :=

1

2
tr
(
F (α)

)
σ0 − F (α) .

The operator Qgl accounts for spin-polarized momentum scattering; it is the true

novelty in the present kinetic model. The subscripts g and l stand for “gain” and

“loss”, respectively,

Qgl(F
(α)) := Q+

g (F (α))−Q−l (F (α)) g, l ∈ {1, 2} ,

where we propose two different structures for the gain and the loss term, respectively:

Q+
1 (F (α)) :=

∫
Rd
ξ′

(
1

2
S ′F (α)(x, ξ′) +

1

2
F (α)(x, ξ′)S ′

)
dξ′ ,

Q+
2 (F (α)) :=

∫
Rd
ξ′

S ′1/2F (α)(x, ξ′)S ′1/2dξ′ ,

Q−1 (F (α)) :=
1

2
ΛF (α)(x, ξ) +

1

2
F (α)(x, ξ)Λ ,

Q−2 (F (α)) :=

∫
Rd
ξ′

S1/2F (α)(x, ξ)S1/2dξ′ .

Here, Λ =
∫
Sdξ′ and the eigenvalues of the Hermitian 2 × 2 scattering matrix S

account for the two different scattering probabilities (transition rates) of spin-up

and spin-down electrons, thus modeling spin-polarized electron resistances. The

matrix-Boltzmann equation is investigated regarding the existence, uniqueness and

positivity of a solution F (α) on the domain [0, T ] × Rd
x × Rd

ξ . Furthermore, the

Diffusion limit α → 0 is performed in case that Qgl = Q22 and for a scattering
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matrix of the form

S(t, x, ξ, ξ′) = s(t, x, ξ, ξ′)P (t, x) , P (t, x) = σ0 + p(t, x)~Ω(t, x) · ~σ ,

where s ∈ R+ denotes the mean scattering rate1 from ξ to ξ′ at (t, x) and P denotes

the polarization matrix which does not depend on ξ and ξ′. The spin-polarization

of the scattering rates is reflected by the polarization parameter 0 ≤ p(t, x) < 1.

In the limit α→ 0 we obtain a new matrix-drift-diffusion model for spin-polarized,

spin-coherent electron transport. This model features a novel coupling between the

charge- and the spin-degree of freedom of a single electron. Numerical simulations

show that this coupling could indeed be exploited in future spintronics applications.

The new model represents an improvement over the heuristic ZLF model treated in

Part I , since it inherently describes the creation of non-equilibrium spin accumula-

tion at each interface of a multilayer structure on an equal footing (this process is

described in detail in the introductive Chapter 1).

Part III : This part is concerned with the theory of open quantum systems [9].

It is the aim to derive, from first principles, the spin-coherent collision operators Qgl

proposed in Part II . For this, we consider a composite quantum system with the

Hilbert space H = HA⊗HB, where A and B denote the two subsystems. The most

general Hamiltonian of this system reads

H = HA ⊗ 1B + 1A ⊗HB +HI ,

where the operator subscript A(B) indicates an operator acting inHA (HB), 1A (1B)

denotes the respective identity and the operator HI accounts for the interactions

between A and B. The approach is to trace over the degrees of freedom B in the

dynamics of the composite system AB. The interaction Hamiltonian HI should then

lead to dissipative dynamics of the reduced state operator ρA := trB (ρ). Here, ρ

denotes the state operator of the composite system and trB (·) stands for the trace

over the degrees of freedom B. We start from a von Neumann equation that has

been augmented by a relaxation operator,

∂tρ = −i[H, ρ] +
1

τr
(trB (ρ)⊗ χB − ρ) ,

where χB is a predefined, time-independent state operator in HB, hence trB (χB) =

1. The dissipative term added to the von Neumann equation relaxes the state

operator ρ of the composite system towards the Born approximation trB (ρ) ⊗ χB
on a timescale τr. Our main result is that under the premise that this relaxation

1The mean value is taken with respect to spin-up and spin-down scattering rates.
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is the dominant process and that, furthermore, the interaction between A and B is

strong, in the limit τr → 0 one obtains the Lindblad master equation [10],

∂tρ
(0)
A = −i[H̃A, ρ

(0)
A ]− trB

(
[H̃I , [H̃I , ρ

(0)
A ⊗ χB]]

)
.

Here, we introduced the mean-field-corrected operators

H̃I := HI −Hmf
A ⊗ 1B ,

H̃A := HA +Hmf
A ,

where the mean-field operator Hmf
A in HA is defined by

Hmf
A := trB (HIχB) .

The Lindblad equation is a Markovian (local in time) master equation. The second

term on its right-hand side has the same matrix product structure as the collision

operator Q21. However, the Lindblad equation is still a microscopic equation. It is

thus the purpose of a forthcoming work to regard its semi-classical limit. For this

one could apply the scaled Wigner-Weyl calculus presented in Chapter 3. In this

work, we derive non-Markovian corrections to the Lindblad master equation in the

case that τr is small bot not zero. Denoting the scaled relaxation time by α � 1,

the state operator in subsystem A is written as ρA = ρ
(0)
A + αρ

(1)
A , where first-order

correction satisfies

∂tρ
(1)
A = −i[H̃A, ρ

(1)
A ]− trB

(
[H̃I , [H̃I , ρ

(1)
A ⊗ χB]]

)
+ S1 ,

which features the local source term

S1 =− trB

(
i[H̃I , ρ

(0)
A ⊗ [HB, χB]

)
+ trB

(
i[H̃I , [H̃I , [H̃I , ρ

(0)
A ⊗ χB]]]

)
.

Higher-order corrections are derived as-well, which permit the systematic treatment

of non-Markovian quantum dynamics in a perturbative manner.

Part IV : The last part of this thesis contains the numerical treatment of

a quantum-diffusive spin model, which was developed in [11] on the basis of the

maximum entropy principle [12, 13]. This model describes the time evolution of

the spin densities n1 and n2 of a two-dimensional electron gas subjected to Rashba

spin-orbit coupling in the case that the state operator ρ is a quantum Maxwellian,
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ρ = e−H , at all times. The basic equations to be solved for n1(t, x) and n2(t, x) read

∂tn1 +∇ · (n1∇(A1 − Vs))+
+ α(A1 − A2)Re(Dn21)− 2αRe(n21D(A2 − Vs))−

− 2α

ε
(A1 − A2) Im(Jx21 − iJ

y
21) = 0 ,

∂tn2 +∇ · (n2∇(A2 − Vs))+
+ α(A1 − A2)Re(Dn21) + 2αRe(n21D(A1 − Vs))+

+
2α

ε
(A1 − A2) Im(Jx21 − iJ

y
21) = 0 ,

where Vs denotes the self-consistent potential due to the electron-electron interac-

tion, computet from the Poisson equation,

−γ2∆Vs = n1 + n2 ,

and α, ε and γ are scaled natural constants. In the present model, a non-local

coupling between n1 and n2 arises from the chemical potential A = (A1, A2), which

consists of the Lagrange multipliers A1 and A2 used in the entropy maximization.

Hence the closure of the above system is ensured by the equilibrium expression for

the density matrix % and the current matrix J ,

% =
∑
l

e−λl

 |ψ1
l |2 ψ1

l ψ
2
l

ψ2
l ψ

1
l |ψ2

l |2

 =

(
n1 n21

n21 n2

)
,

J = −iε
2

∑
l

e−λl

 ψ1
l∇ψ1

l − ψ1
l∇ψ1

l ψ2
l∇ψ1

l − ψ1
l∇ψ2

l

ψ1
l∇ψ2

l − ψ2
l∇ψ1

l ψ2
l∇ψ2

l − ψ2
l∇ψ2

l

 =

(
J1 J21

J21 J2

)
.

The wavefunctions ψ1
l , ψ

2
l ∈ H2 and the numbers λl ∈ R are the components of eigen-

functions ψl ∈ (H2)2 and the eigenvalues, respectively, of the system Hamiltonian

H(A) in (H2)2,

H(A)ψl(A) = λl(A)ψl(A) ,

given by

H(A) =

(
− ε2

2
∆ + Vext,1 + A1 ε2α(∂x − i∂y)
−ε2α(∂x + i∂y) − ε2

2
∆ + Vext,2 + A2

)
.

The numerical solution of the present quantum-diffusive model is accomplished by

means of a functional formalism similar to the one which is well-established in the

spin-less case [14]. We investigate two different approaches, one that advances in

time the chemical potentials and another that advances the spin densities. The



former leads to a more implicit scheme and, thus, to a better numerical stability.

The used functionals depend on A1 and A2 (as well as on Vs in one case). They are

shown to be convex and to have a unique minimum, solution of the above system.

The developed finite difference algorithm is then applied to simulate the steady-state

spin distribution in a typical transistor geometry.
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Magnetic Multilayers
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Chapter 1

Spin-induced Phenomena in Metal-

lic Magnetic Multilayers under

Current

Overview. We summarize the basic physical concepts of spin-polarized electron

conduction in the transition-metal ferromagnets Fe, Ni and Co, of the giant magneto-

resistance (GMR) effect and of the non-equilibrium spin accumulation at a non-

magnetic/ferromagnetic interface that is traversed by an electronic current. These

very basics of the emerging field of spintronics will reappear throughout this thesis.

Furthermore, we review the dissipative character of the Landau-Lifshitz equation and

estimate the length scales occurring in the spin-diffusion equation in the transition

metal ferromagnets. As a next step the notion of spin-coherence is discussed in

detail on the quantum mechanical level. It is shown that only spin-coherent states

can contribute to the spin-transfer torque in metallic magnetic multilayers. In the

last chapter we present numerical, self-consistent solutions of the Landau-Lifshitz

equation and the spin diffusion equation in multilayer structures. The simulated

power spectra of the magnetic precessional states in thin ferromagnetic layers of spin-

valves are compared to recent experiments and a satisfactory agreement is found.

27
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1.1 Basic physical concepts

In 1935 Sir N.F. Mott predicted on the basis of quantum mechanical calculations

that the conductivity in the transition metal ferromagnets Fe, Ni and Co is different

for electrons whose magnetic moment is aligned with the magnetization (majority

electrons)1 and for electrons with anti-parallel magnetic moments (minority elec-

trons) [1]. Experimental evidence of this spin-polarized electron conduction in the

transition metal ferromagnets and in alloys thereof was found roughly 30 years later

[2, 3]. As argued by Mott, the reason for this effect lies in the shifted band structure

of majority and minority electrons, respectively, depicted in Fig. 1.1i for Co. The

shift, or the spin-splitting, arises from the exchange interaction which favors parallel

alignment of spins in partially filled atomic shells; an effect that may carry over to

the band structure of crystals. In Fe, Ni and Co the narrow 3d band features a

large exchange splitting and moreover crosses the Fermi energy only for the minor-

ity electrons [4, 5, 6]; it is thus responsible for the ferromagnetic character. On the

other hand, the transport in these materials is dominated by the delocalized elec-

trons in the much wider 4s band, which has a comparably small exchange splitting

and crosses the Fermi energy for both spin species. Nevertheless, the conductivity is

spin-polarized, because the main transition induced by scattering is 4s to 3d. Since

for minority electrons the density of states (DOS) of 3d electrons near the Fermi

energy is much larger than for majority electrons, such a transition is much more

likely for minority electrons (Fermi’s Golden rule). Moreover, in the case that spin-

flip scattering is negligible, the electron conduction can be viewed as a process that

happens in two parallel channels with different resistances, one for majority and one

for minority electrons, respectively [7].

It was not until the late 80’s that the two-current conduction in transition metal

ferromagnets would lead to a major advancement in the storage technology, when A.

Fert and P. Grünberg independently discovered the giant magneto-resistance (GMR)

effect in multilayer structures [8, 9]. Their underlying idea is sketched in Fig. 1.1ii.

A non-magnetic spacer layer is sandwiched between two ferromagnetic layers with

resistances R↑ for majority electrons and R↓ for minority electrons, respectively, and

R↑ < R↓. The magnetization of one of the ferromagnetic layers can be switched by

means of an applied magnetic field. According to the two-current model, the total

resistance in this structure is different for the parallel (P ) and anti-parallel (AP )

1We remark that the spin of majority electrons is anti-parallel to the magnetization, since it is
of opposite sign than the electron’s magnetic moment.
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configuration of the magnetizations:

RP =
2R↑R↓
R↑ +R ↓

, RAP =
R↑ +R↓

2
. (1.1.1)

Hence for the parallel alignment, majority electrons have a low resistance path

through the multilayer, whereas in the AP configuration the role of the electrons

changes in each layer and such a path is absent. From Eq. (1.1.1) we obtain

∆R

RP

=
RAP −RP

RP

=
(R↑ −R↓)2

4R↑R↓
> 0 (1.1.2)

for the relative change in resistance. The value of this relative change is usually

around 5% for a trilayer, but can be enhanced up to around 100% or higher for

multilayers consisting of a high number of periods, hence the name GMR. It is the

basic concept for a memory unit (“bit”) in state-of-the-art hard disk drives, which

is why its discoverers were granted the Nobel prize for Physics in 2007 [10, 11].

The spin-transfer torques (STTs) considered here are an approach towards a further

development of this technology with the aim to eliminate the magnetic field from the

switching process, which may lead to a considerable gain in areal memory density

because of the redundancy of the magnetic write head [12, 13].

In order to understand the mechanism of STTs we need to elaborate on the

effect of spin accumulation at the interface between a ferromagnet (F ) and a non-

magnet (NM) when a current flows through this interface. The situation is sketched

in Fig. 1.1iii. Due to the spin-polarization of the resistivity in the F -layer the

current densities jup and jdown of majority and minority electrons are very different

in the F -layer far away from the interface. In the NM layer, however, these current

densities are equal away from the interface. Hence, there is an interfacial region

where the spin-polarization of the current is gradually destroyed. We point out that

this polarization arises solely from the spin-polarized scattering probabilities in the

F -layer and not (!) from a difference in spin densities, since the 4s band responsible

for the current has a minor spin splitting. Thus, in order to accommodate the spin

polarization of the current in the NM -layer in the vicinity of the interface, the

density of spin-up electrons must be augmented. This is pictured by a difference in

the respective Fermi energy of spin-up and spin-down electrons, respectively. The

length over which such a non-equilibrium polarization of the spin densities, called

spin accumulation, is present around the interface is denoted as the spin diffusion

length Lsf . It may be far larger than the usual mean free path, reaching more

than 200 nm in some materials. We remark that the matrix-drift-diffusion model

derived in Chapter 4 is well-suited for describing spin accumulation in non-collinear
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(i) The electronic band structure and density
of states (DOS) of a) non-magnetic Cu, b) the
majority electrons in fcc Co, (c) the minor-
ity electrons in fcc Co. The large exchange
splitting between Co-majority electrons and Co-
minority electrons results in a considerable shift
of the respective density of states, which has
two main consequences: ferromagnetism and en-
hanced scattering probability for minority elec-
trons near the Fermi level. (Picture reprinted
from [11].)

(ii) Trilayer consisting of a non-magnetic spacer
layer (white) sandwiched between two ferromag-
netic layers with spin-polarized resistances R↑
and R↓ for the respective electron species. A
magnetic field is used to switch between paral-
lel (P ) and anti-parallel (AP ) alignment of the
magnetizations. The P configuration offers a
low resistance path for majority electrons. (Pic-
ture reprinted from [11].

(iii) a) The spin-polarization of the current den-
sity is destroyed in the zone of spin accumula-
tion, whose width is determined by the spin dif-
fusion lengths LF

sf and LNM
sf . b) Difference in

Fermi energies for spin-up and spin-down elec-
trons in the vicinity of the interface. c) Cur-
rent polarization across the interface. (Picture
reprinted from [5].)

Figure 1.1: Important properties of spin-polarized electron transport in transition
metal ferromagnets: (i) band structures, (ii) the GMR-effect and (iii) spin accumu-
lation at ferromagnetic/non-magnetic interfaces.



1.1. BASIC PHYSICAL CONCEPTS 31

magnetic multilayers, see for instance the Figs. 4.1, 4.2 and 4.3.

We shall now introduce the concepts of the STT effect in spin-valves. A spin-

valve basically consists of a thick F -layer (the “polarizing” or fixed layer), a thin

non-magnetic metal spacer and a thin F -layer (free layer). Both F -layers are con-

tacted by electrodes in order to pass a current through the structure which induces

magnetization dynamics in the free magnetic layer. Two common experimental

realizations of spin-valves, namely the point-contact geometry and the nanopillar

geometry, are depicted in Fig. 1.2i. The magnetization dynamics in the free layer

originate from a direct transfer of angular momentum from the spin-polarized current

to the magnetic moments of the 3d electrons in the thin layer [14, 15]. In particular,

electrons that enter the polarizing layer will quickly align their magnetic moments

with the magnetization of that layer and subsequently travel to the free layer. The

non-magnetic spacer layer is much thinner than the corresponding spin-diffusion

length. Hence, a considerable spin accumulation in the direction of the polarizing

layer will be present at the interface to the thin magnetic layer. In case that the

magnetizations in the two magnetic layers are neither parallel nor anti-parallel, the

perpendicular component of the angular momentum of the spin accumulation will

exert a torque on the magnetic moments in the free layer, resulting in magnetic

precession or even the switching of the magnetic direction. The mechanism along

with the usual device dimensions and the applied fields is sketched in Fig. 1.2ii.

Once the perpendicular component of the spin-angular momentum has decayed in

the thin layer, the conservation of angular momentum implies a total transfer of

this non-equilibrium spin to the thin layer, which is the origin of the magnetization

dynamics. The corresponding length scale of the decay is 1-4 nm, hence the STT

can be considered as an interface effect [16, 17, 4].

What makes the STT effect interesting is the possibility to switch between the P

state (logical ’1’) and the AP (logical ’0’) state in a memory unit solely by passing

a current through it, thereby eliminating the necessity of a magnetic write head.

There have been many successful experiments confirming magnetic switching and

magnetic precession in spin-valves under current [18, 19, 20, 21, 22, 23, 24]. However,

the needed current densities are still too high and the device dimensions too large

for industrial application. We shall briefly comment on the results of the insightful

experiments conducted by Krivorotov et al. [22], who were the first to perform time-

resolved measurements of the STT-induced magnetization dynamics. They used the

nanopillar geometry with permalloy Ni80Fe20 as ferromagnets and Cu as the spacer

layer. Figure 1.2iii shows the voltage drop over the device as a function of time for

different magnitudes of applied currents Ip. This voltage drop is due to the GMR

resistance, which varies as a function of the angle between the two magnetization
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directions in the trilayer and has a maximum modulus for the AP configuration. In

Fig. 1.2iii A)-C) it is transparent that the device switches from the AP alignment

to the P alignment within a switching time τS that depends on Ip. Moreover, the

switching is accompanied by oscillatory signals, which confirm a magnetic precession

during the process. Figure 1.2iii D) shows numerical simulations of the Landau-

Lifshitz equation (see the next section) which seem to fit quite well the experimental

observations. The STT effect also plays a major role in the understanding of the

current-induced domain wall motion, which is a growing topic of ongoing research

[25, 26, 27, 28]. The matrix-drift-diffusion model developed in Chapter 4, as well

as the algorithm presented in Chapter 2, enable a new route to investigate these

phenomena from a numerical point of view.

1.2 A diffusive exchange-torque model for current-

induced magnetization dynamics

In general, the treatment of dynamical processes in transition metal ferromagnets

is quite involved due to the sp-hybridization of the transport band and due to the

itinerant nature of the semi-localized electrons in the 3d band. When a voltage is

applied, a first simplifying assumption is often that the electric current originates

solely from the 4s electrons, while the magnetization is constituted by the local mo-

ments of the 3d electrons. This approach is called the sd-model. In what follows we

shall review a version of the sd-model proposed by Zhang et al. [29] which describes

the spin dynamics in ferromagnets under current at the macroscopic (diffusive) level.

Let Ω ⊂ Rd
x stand for the regular domain representing the (multilayer) device, where

d is the dimension of the position space, and let S2 denote the unit sphere in R3.

We search for the unknowns ~m : Ω × R+ → S2, which is the local magnetization

due to the 3d electrons, and ~s : Ω × R+ → R3, which is the spin accumulation due

to the 4s electrons. These quantities are determined from the following system of

equations: 

∂t ~m = −γ0 ~m× ~Heff + α~m× ∂t ~m ,

~m(x, 0) = ~m0(x) ,

∂t~s = D∆~s− ~s

τ
− Jex

~
~s× ~m ,

~s(x, 0) = ~s0(x) .

(1.2.1)

Here, γ0 = γµ0, where γ is the gyromagnetic ratio and µ0 stands for the magnetic

constant, α > 0 denotes the damping parameter, D stands for the spin diffusion

constant, τ is the spin-flip time, Jex denotes the exchange constant, ~ is the Planck



1.2. A DIFFUSIVE EXCHANGE-TORQUE MODEL 33

(i) A thick magnetic layer (fixed layer) and a
thin magnetic layer (free layer) are spaced by
a non-magnetic metallic layer, which is much
thinner than the spin-diffusion length. The
area over which the current is injected differs
considerably in the point-contact and in the
nanopillar setup.

(ii) Common values for the current density j,
the applied magnetic field Happ and the de-
vice dimensions in STT experiments in spin-
valves of the nanopillar geometry. The direct
transfer of angular momentum from the spin
accumulation induced by the polarizing layer
results in precession or even switching of the
magnetization in the thin magnetic layer.

(iii) Time-resolved magnetic precession and switching in nanopillar
spin-valves for different applied current densities Ip. The voltage drop
over the device depends on the angle between the magnetizations of the
two F -layers (GMR resistance), which allows to infer to the magnetic
dynamics. A)-C) show experimental results while D) shows a signal
simulated with a Landau-Lifshitz equation-based STT model. (Data
reprinted from [22].)

Figure 1.2: Current-induced magnetization dynamics in spin-valves: (i) experimen-
tal device geometries, (ii) basic principle of the STT-effect and magnitudes of the
applied fields, (iii) experimental evidence of magnetic switching.
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constant divided by 2π and ~m0 and ~s0 denote the initial conditions. Furthermore,

the effective field ~Heff : Ω× R+ → R3 is given by

~Heff := − 1

µ0Ms

δE(~m)(δ ~m) , (1.2.2)

where Ms stands for the saturation magnetization, E(~m) denotes the energy func-

tional corresponding to the magnetization and we define the functional derivative

as

δE(~m)(δ ~m) = lim
ε→0

E(~m+ εδ ~m)− E(~m)

ε
(1.2.3)

for some variation δ ~m(x, t) which vanishes at the boundary ∂Ω of the domain Ω.

Usually, the energy functional E consists of five contributions [17],

E = E1 + E2 + E3 + E4 + E5 , (1.2.4)

given by the energy due to an externally applied magnetic field,

E1 = −µ0Ms

∫
Ω

~m · ~Happ dx , (1.2.5)

the magnetocrystalline and shape anisotropy energies,

E2 = −Ku

∫
Ω

(~u · ~m)2 dx+
µ0M

2
s

2

∫
Ω

(~w · ~m)2 dx , (1.2.6)

where Ku is the anisotropy constant and ~u, ~w ∈ S2 denote the magnetic easy axis

and the normal to the magnetic easy plane2, respectively; furthermore, the micro-

magnetic exchange energy,

E3 = Aex

∫
Ω

d∑
i=1

(∂xi ~m · ∂xi ~m) dx , (1.2.7)

where Aex stands for the exchange constant; the magnetostatic dipole-dipole inter-

action energy (only for d = 3),

E4 = −µ0M
2
s

8π

∫
Ω

∫
Ω

~m(x) · 3(~m(x′) · x)x− ~m(x′)|x|2

|x|5
dx′ dx , (1.2.8)

2The magnetic easy axis is a preferred axis for the magnetization arising from crystalline
anisotropy; the magnetic easy plane is a preferred plane for the magnetization arising from the
shape anisotropy, e.g. if the device has the shape of a thin disc.
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and finally the exchange energy due to the interaction with the spin accumulation,

E5 = −Jex
∫

Ω

~m · ~s dx , (1.2.9)

where Jex stands for the characteristic exchange energy between 4s and 3d electrons.

It is now straightforward to compute the effective field from (1.2.2),

~Heff = ~Happ +
2Ku

µ0Ms

(~u · ~m)~u−Ms(~w · ~m)~w +
2Aex
µ0Ms

∆~m

+
Ms

4π

∫
Ω

3(~m(x′) · x)x− ~m(x′)|x|2

|x|5
dx′ +

Jex
µ0Ms

~s .

(1.2.10)

The values of the natural constants and the material parameters appearing in Eqs.

(1.2.1) and (1.2.10) are given in Table 1.1 and Table 1.2, respectively. In (1.2.1) the

first equation is the Landau-Lifshitz-Gilbert equation (LLGE) for ~m and the second

equation is the spin-diffusion equation (SDE) for ~s. These equations are coupled

through the exchange terms whose strength is determined by Jex (appearing in

(1.2.10) in the LLGE). In Chapter 2 we develop a numerical algorithm that enables

the self-consistent solution of Eqs. (1.2.1) in one space dimension (d = 1, thus

neglecting the dipole-dipole interaction (1.2.8)). The strong non-linearity of the

LLGE as well as the different timescales of the dynamics for ~m and ~s make the

numerical treatment a challenging task.

The Landau-Lifshitz equation derived from the LLGE and damping

We shall show that the LLGE in (1.2.1) is dissipative due to the second (damping)

term on the right-hand-side. Employing the short notation δE = δE(~m)(δ ~m), we

start from

∂t ~m =
γ0

µ0Ms

~m× δE + α~m× ∂t ~m (1.2.11)

and take the vector product with ~m which results in

~m× ∂t ~m =
γ0

µ0Ms

~m(~m · δE)− γ0

µ0Ms

δE |~m|2 + α~m(~m · ∂t ~m)− α∂t ~m |~m|2 . (1.2.12)

We now perform the scalar multiplication of (1.2.12) with ∂t ~m and subsequently we

apply the relations ~m · ∂t ~m = 0 and |~m|2 = 1 to obtain

1

µ0Ms

δE · ∂t ~m = − α
γ0

|∂t ~m|2 . (1.2.13)
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From Eqs. (1.2.4) to (1.2.10) we deduce that

∂tE =
1

µ0Ms

∫
Ω

δE · ∂t ~mdx . (1.2.14)

Hence the integration over Ω in Eq. (1.2.13) makes the dissipation of energy in the

course of time,

∂tE = − α
γ0

∫
Ω

|∂t ~m|2 dx ≤ 0 , (1.2.15)

transparent. We shall furthermore derive from (1.2.1) a form of the LLGE that is

explicit in the time derivative ∂t ~m. Starting from

∂t ~m = −γ0 ~m× ~Heff + α~m× ∂t ~m , (1.2.16)

and performing the vector product of this equation with ~m leads to

~m× ∂t ~m = −γ0 ~m× (~m× ~Heff ) + α~m× (~m× ∂t ~m)

= −γ0 ~m× (~m× ~Heff ) + α~m(~m · ∂t ~m)− α∂t ~m |~m|2 .
(1.2.17)

Applying the relations ~m · ∂t ~m = 0 and |~m|2 = 1 and inserting Eq. (1.2.16) into the

left-hand-side of (1.2.17) results in

∂t ~m = − γ0

1 + α2
~m× ~Heff −

αγ0

1 + α2
~m× (~m× ~Heff ) , (1.2.18)

which is known as the Landau-Lifshitz equation (LLE). Both the LLGE and the LLE

describe the dynamics of the magnetization on an equal footing. However, it might

be desirable from a numerical point of view to discretize Eq. (1.2.18) rather than

Eq. (1.2.16) in order to obtain a linear system of equations that is norm-conserving.

Table 1.1: Natural constants.

Symbol Value Name

~ 1.05457163× 10−34 J·s reduced Planck constant
e 1.60217649× 10−19 C elementary charge
µ0 1.25663706× 10−6 N·A−2 magnetic constant
µB 9.27400915× 10−24 J·T−1 Bohr magneton
ge -2.00231930 electron g-factor
γ 1.76085978× 1011 rad·s−1·T−1 electron gyromagnetic ratio
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Table 1.2: Typical values of the saturation magnetization, the anisotropy constant,
the exchange constant and the damping parameter.

Ref. Material Ms [A·m−1] Ku [J·m−3] Aex [J·m−1] α

[4] Ni80Fe20 8.0×105 1.45×104 1.0×10−11 0.01
[4] Co/CoFe 1.5×106 1.3×10−11 0.006
[28] Ni80Fe20 8.0×105 1.0×10−11 0.02
[30] Ni80Fe20 8.0×105 5.0×102 1.3×10−11 0.1

Spin-coherent states, the SDE and its characteristic length scales

Let us make transparent the notion of spin coherence. In what follows we shall use

the notations from section 4.2. The spin of an electron is a quantum mechanical

degree of freedom with two possible realizations with respect to an arbitrarily cho-

sen quantization axis. For instance, at the point x in position space, let the local

magnetization ~m(x) in a ferromagnet define this axis. Consequently, when the spin

of a conduction electron is measured along ~m at point x, there are two possible

results: the spin is found to be either parallel or anti-parallel with respect to ~m.

However, the specific outcome of the experiment is not predetermined in the gen-

eral case; rather, there are probabilities related to each of the two possible results.

Indeed, these probabilities are given by the two eigenvalues of the diagonal element

%(x, x) ∈ H0,+
2 (C) of the density matrix describing the electron. For simplicity, we

consider a pure state, the generalization to mixed states is straightforward:

%(x, x) =

(
|ψ↑(x)|2 ψ↑(x)ψ↓(x)

ψ↓(x)ψ↑(x) |ψ↓(x)|2

)
. (1.2.19)

Here, ψ↑ and ψ↓ denote the spin-up and spin-down component, respectively, of the

spinor wave function ψ ∈ (L2)2 associated to the spin-1/2 electron and written in

the basis defined by the local magnetization ~m:

ψ(x) =

(
ψ↑(x)

ψ↓(x)

)
. (1.2.20)

We want to remind of the normalization condition∫
dx
(
|ψ↑(x)|2 + |ψ↓(x)|2

)
= 1 . (1.2.21)

A state (1.2.19) or (1.2.20), respectively, is spin-coherent with respect to ~m at point

x if both components ψ↑(x) and ψ↓(x) are non-zero and, thus, if the off-diagonal

elements of %(x, x) are non-zero. This means that the electron is neither entirely
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spin-up nor entirely spin-down; rather its state is a quantum superposition of these

two. On the other hand, for an incoherent state the matrix (1.2.19) is diagonal

and one of the two eigenvalues is zero3. Spin-coherent states play a crucial role

in the mechanism of spin-transfer torques; in fact, it is solely due to electrons in

spin-coherent states with respect to ~m(x) that a torque is exerted on this local

magnetization. This can be deduced with the help of the relations (4.2.11) and

(4.2.12). We write the density matrix (1.2.19) as well as the system Hamiltonian at

point x, denoted by H ∈ H2(C), in the Pauli basis, thereby omitting the position

arguments for the sake of an easier notation:

% = %0σ0 + ~% · ~σ , H = h0σ0 +
Jex
2
~m · ~σ . (1.2.22)

Using the textbook definition of the spin operator,

~S :=
~
2
~σ , (1.2.23)

one obtains from Eq. (4.2.12) that the mean value ~s of the spin of the electron in

the state % at position x is computed via

~s(x) := tr
(
%(x, x)~S

)
= ~~%(x, x) . (1.2.24)

We are now interested in the dynamics of ~s induced by the exchange coupling in the

Hamiltonian (1.2.22). Starting from the von Neumann equation, using the invariance

of the trace under cyclic permutation and, furthermore, applying the relations (4.2.3)

it is straightforward to arrive at

∂t~s
∣∣∣
ex

=
Jex
~
~m× ~s . (1.2.25)

Thus, a torque is exchanged if ~s = (s1, s2, s3) has a component perpendicular to ~m.

Indeed, this is the case solely for spin-coherent states. The crucial point is that, by

choosing ~m as the quantization axis, we made ~m the z-axis in spin space. Hence,

in Eq. (1.2.22) one has ~m = (0, 0, 1). Therefore, no torque is exchanged if and only

if s1 and s2 are zero, which is the case if the matrix (1.2.19) is diagonal, thus for

incoherent states.

Let us elaborate briefly on the characteristic length scales of the spin-diffusion

equation. The SDE is given by

∂t~s = D∆~s− ~s

τ
− Jex

~
~s× ~m . (1.2.26)

3In case of a mixed state both eigenvalues can be non-zero.
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This is a heuristic equation of motion for the spin accumulation generated at a non-

magnetic / ferromagnetic interface, as introduced in section 1.1 and sketched in Fig.

1.1iii. Its first term on the right-hand-side describes the diffusion from the interface

into the bulk. The second term accounts for spin-flip scattering and the third term

models the torque due the magnetization of a ferromagnet. The steady-state solution

of Eq. (1.2.26) satisfies

0 = D∆~s− ~s

τ
− Jex

~
~s× ~m . (1.2.27)

Assuming that ~m does not depend on x, we introduce the parallel and the perpendic-

ular component of the spin accumulation with respect to the constant magnetization

direction ~m:

s‖ := ~s · ~m , ~s⊥ := ~s− (~s · ~m)~m . (1.2.28)

In the steady state, these quantities obey

0 = D∆s‖ −
s‖
τ
, (1.2.29)

0 = D∆~s⊥ −
~s⊥
τ
− Jex

~
~s⊥ × ~m . (1.2.30)

From Eq (1.2.29) one obtains that the parallel component decays on the length scale

λsdl =
√
τD , (1.2.31)

which is commonly referred to as the spin-diffusion length. Let (~ei)
3
i=1 denote an

orthonormal basis in R3 with ~e3 = ~m. Hence, the perpendicular component ~s⊥ can

be mapped into the complex plane,

~s⊥ = s⊥,1~e1 + s⊥,2~e2 7→ z = s⊥,1 + is⊥,2 . (1.2.32)

For the vector product in Eq. (1.2.30) one obtains

~s⊥ × ~m =

∣∣∣∣∣∣∣
~e1 ~e2 ~e3

s⊥,1 s⊥,2 0

0 0 1

∣∣∣∣∣∣∣ = s⊥,2~e1 − s⊥,1~e2 7→ −iz . (1.2.33)

Therefore, Eq. (1.2.30) can be written as

0 = D∆z − z

τ
+ i

Jex
~
z , (1.2.34)

and one obtains the characteristic length scale of the decay of the perpendicular



component,

λ⊥ =

√
τ~D

|~− iJexτ |
. (1.2.35)

According to [29], typical parameter values in cobalt are τ ≈ 10−12 s, D ≈ 10−3 m2s−1

and Jex ≈ 0.2 eV. Thus, the length scales evaluate to

λsdl ≈ 100 nm , λ⊥ ≈ 5 nm , (1.2.36)

which shows that the action of the spin-transfer torque is concentrated in the vicinity

of the non-magnetic / ferromagnetic interface.
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Chapter 2

Spin-Transfer Torques:

self-consistent solution of the

Spin-Diffusion Equation and

the Landau-Lifshitz Equation
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Abstract. We present a numerical scheme that allows for the self-consistent treat-

ment of the Landau-Lifshitz equation and the spin-diffusion equation in one space

dimension. The scheme is used to simulate magnetic precessions in ferromagnet /

normal-metal multilayers that are traversed by strong currents and results are com-

pared to recent experimental observations. The good qualitative and quantitative

agreement shows that the diffusive exchange-torque model proposed by Zhang et al.

[1] is a legitimate alternative to the ballistic interface-torque model commonly used

to describe magnetization dynamics in spin valves.
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2.1 Introduction

It has been shown that a current injected perpendicular to the planes of a ferro-

magnet / normal-metal multilayer can lead to dynamical magnetic states in thin

soft-magnetic layers [2, 3]. Depending on the magnitude of the currrent, precession

or complete reversal of the magnetization is observed. The underlying effect, often

called spin-transfer-torque (STT), has been predicted theoretically by Berger [4] and

Slonczewski [5] in 1996 and is the topic of ongoing research.

In a macroscopic continuum approach, the dynamics of the direction of magne-

tization in a ferromagnet (FM) of volume Ω, ~m(x, t) : Ω×R+ → S2, is determined

by the Landau-Lifshitz equation [6],

∂t ~m = − γµ0

1 + α2
~m× ~Heff −

αγµ0

1 + α2
~m× (~m× ~Heff ) , (2.1.1)

where γ is the gyromagnetic ratio, µ0 stands for the magnetic constant, α denotes

the damping parameter and ~Heff is the effective field which is proportional to the

functional derivative of the free energy of the system with respect to ~m. For the

description of the STT in a thin magnetic layer of a FM/normal-metal (NM) multi-

layer structure (called spin-valve), usually one adds to (2.1.1) a torque-term of the

form

∂t ~m
∣∣∣
STT

= cj ~m× (~m× ~mF ) , (2.1.2)

where cj is proportional to the current-density traversing the structure perpendicular

to the layer planes and ~mF ∈ S2 is the magnetization direction of a polarizing thick

FM layer. Expression (2.1.2) is derived from ballistic transmission/reflection of spin-

coherent Fermi-surface-states at a NM/FM interface [5, 7]. The model (2.1.2) is well

established and has proven to be capable of explaining experimental observations,

at least qualitatively [8].

An alternative/complementary approach towards STT has been presented by

Zhang et. al [1], who assume that the exchange interaction between conduction

electrons and core electrons is responsible for the observed magnetization dynamics.

They state that one should treat self-consistently the evolution of the core mag-

netic moments, determined by (2.1.1), and the density of conduction-electron spins,

~s(x, t) : Ω× R+ → R3, determined, for example, by a diffusion equation,

∂t~s = D∆~s− ~s

τ
− Jex

~
~s× ~m , (2.1.3)

where D is the diffusion constant, ∆ denotes the Laplacian, τ stands for the spin-flip
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scattering time and Jex is the sd exchange constant. Naturally, due to the exchange

coupling Jex, the spin density ~s appears in the free energy of ~m and thus in the

effective field, which, in the one-dimensional case, we assume to be

~Heff = ~Happ +
2Ku

µ0Ms

(~m · ~u)~u−Ms(~m · ~w)~w+ (2.1.4)

+
2Aex
µ0Ms

∆~m+
Jex
µ0Ms

~s .

Here, ~Happ denotes the applied magnetic field, Ku the anisotropy constant, Ms the

saturation magnetization, Aex the exchange constant, ~u stands for the direction of

the magnetic easy axis and ~w is the normal of the easy plane in thin FM layers (the

~w-term is missing in thick layers).

Many experimental setups (e.g. in [3]) feature a 5-layer structure like Ne1 / FF

/ N / F / Ne2, where Ne1(2) denote NM-electrodes, FF is a thick polarising FM

layer, N is a NM spacer layer and F is the thin FM layer in which the interesting

dynamics take place. To simulate spin-injection into such a system, one can impose

a Dirichlet boundary condition ~sinj on equation (2.1.3) at the Ne1/FF interface,

regardless whether electrons flow from Ne1 to Ne2 or vice versa (it is the orientation

of ~sinj with respect to ~mF that changes with the sign of the current). The vector

~sinj, by the theory of spin injection through an NM/FM junction [9], reads

~sinj = −~mFβ

√
τ

D

j

q
, (2.1.5)

where β is a polarisation parameter which we choose to be 1 throughout this paper, j

denotes the current density and q the proton charge. Thus, for j > 0 (particle density

flow from Ne1 to Ne2), one obtains a vector ~sinj that is antiparallel to ~mF and vice

versa. At the other three interfaces of the five-layer structure one demands continuity

of ~s and the spin current, −D∂x~s, and at infinity one imposes the homogenous

Neumann condition ∂x~s(∞) = 0. Equation (2.1.3) with the boundary/interface

conditions mentioned above has been studied analytically in the case of constant ~m

[10, 11]. It is the purpose of this work to go beyond the case of ~m=const. in the

Zhang-Levy-Fert (ZLF) model [1] and solve the Landau-Lifshitz equation (2.1.1) and

the spin-diffusion equation (2.1.3) self-consistently. The goal is to show that, with

reasonable physical parameters, the diffusive ZLF-model is capable of reproducing

experimental findings, thereby emphasizing its status as an alternative to the ballistic

interface-torque picture, equation (2.1.2).

This paper is structured as follows: in section 2.2 we present a numerical scheme

that solves self-consistently the system (2.1.1), (2.1.3) in multilayered structures in
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one space dimension. In section 2.3 we apply this scheme to simulate magnetization

dynamics in spin-valves that were investigated in [3]. Power spectra of the various

oscillation regimes obtained (depending on applied current) are presented. Finally, in

section 3.1.3 we discuss our findings in comparison with experiments and macrospin

simulations of the Slonczewski model, equation (2.1.2).

2.2 Numerical scheme

Let ~g := γµ0
~Heff/(1 + α2), then the system (2.1.1), (2.1.3) can be written as

∂t

(
~m

~s

)
=

 −~m× ~g − α~m× (~m× ~g)

D∆~s− ~s

τ
− Jex

~
~s× ~m

 =: A(~m,~s) , (2.2.1)

where we defined the non-linear operator A. This operator is split into four parts,

A = A1 + A2 + A3 + A4, which read

A1(~m,~s) :=

 0

D∆~s− ~s

τ
− Jex

~
~s× ~m

 , (2.2.2)

A2(~m,~s) :=

(
−α~m× [~m× ~g]

0

)
, (2.2.3)

A3(~m,~s) :=

 −~m×
[
~g − 2γAex

Ms(1 + α2)
∆~m

]
0

 , (2.2.4)

A4(~m,~s) :=

 −~m×
[

2γAex
Ms(1 + α2)

∆~m

]
0

 . (2.2.5)

In our finite-difference scheme, let n∆t denote the discrete moments in time, ∆t

being the time step. Applying Strang operator splitting [12] to (2.2.2)-(2.2.5) we

obtain the expression

(~mn+1, ~sn+1) = A
1
2
1A

1
2
2A

1
2
3A

1
4A

1
2
3A

1
2
2A

1
2
1 (~mn, ~sn) . (2.2.6)

Here, Ali(~m
n, ~sn) denotes an advancement in time of (~mn, ~sn) by l∆t by solving a

discretized form of the equation ∂t(~m,~s) = Ai(~m,~s). The operator A1 is treated

with a Crank-Nicolson scheme that is second order in space. The appearing linear

system is solved by Gauss-Seidel iteration and we use the fact that the solution to
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the equation ~x+ ~x× ~a = ~y, where ~x,~a, ~y ∈ R3, is given by

~x =
~y + (~a · ~y)~a+ ~a× ~y

1 + |a|2
. (2.2.7)

The damping operator A2 is treated with a scheme developed in a work by E et al.

[13]. For the operator A3, denoting the expression in the square brackets in (2.2.4)

by f(~m,~s), we implement a norm-conserving Crank-Nicolson scheme,

~m∗∗ − ~m∗

l∆t
= − ~m

∗∗ + ~m∗

2
× f(~m∗, ~s∗) , (2.2.8)

which is linear in ~m∗∗ and is solved by Gauss-Seidel iteration using (2.2.7). In case

of the operator A4 we treat the Laplace term semi-implicitly and linearize as follows,

~m∗∗k − ~m∗k
l∆t

= − ~m
∗∗
k + ~m∗k

2
×
~m∗∗k+1 − 2~m∗∗k + ~m∗∗k−1

∆x2

= − ~m
∗∗
k + ~m∗k

2
×
~m∗∗k+1 + 2~m∗k + ~m∗∗k−1

∆x2
.

(2.2.9)

Here, k stands for the spatial index and ∆x denotes the grid spacing. The system

(2.2.9) is solved by Gauss-Seidel iteration using (2.2.7).

2.3 Simulation of spin-valve under current

We simulate the spin transfer-torque in a four layer structure that reflects the ex-

perimental setup of [3]. The layer thicknesses are 40 nm FM / 10 nm NM / 3 nm

FM / 3µm NM. Current flows in the x-direction, where x=0 denotes the interface

between an electrode and the 40 nm FM layer (FF ), and ~s(x=0, t) = ~sinj(t), i.e.,

the Dirichlet condition is allowed to change in time with the direction of ~mF , see eq.

(2.1.5). In this setup, the dynamics inflicted on the thick layer magnetization have

been found to be minor in the investigated parameter range. A time-independent

vector ~sinj does not account for a correct physical picture and changes the results

drastically, causing the dynamics of ~mF to dominate over those in the thin FM layer.

The number of grid points in the respective layers is: 32 / 16 / 16 / 64. Further

refinement did not cause a change in the results. The easy axis in the thick FM

layer is assumed to be in the z-direction and the one in the thin FM layer is chosen

to be tilted by 5◦ to that axis. In the FM layers, we use parameters associated to

Cobalt [3, 8], Ku = 2.41 × 104 Jm−3, Ms = 8 × 105 Am−1, Aex = 2 × 10−11 Jm−1,

τ = 10−12 s, α = 0.02, D = 10−3 m2s−1 and Jex = 0.1 eV [1]. In the NM layers we

use D = 10−3 m2s−1 and τ = 10−10 s. Homogenous Neumann conditions are applied

on boundaries for the Landau-Lifshitz equation in each FM layer. Considering the
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Figure 2.1: Simulated power spectra of magnetic oscillations in the investigated spin valve
for different current densities j. Pmax stands for the largest of all observed peaks.

spin-diffusion equation, the boundary/interface conditions discussed in section 2.1

are implemented.

In all simulations, a magnetic field | ~Happ| = 2 kOe was applied in the positive

z-direction. Thus, the intitial state of the spin valve is that the magnetizations of

both FM layers are almost parallel, ~mF being perfectly aligned with ~Happ and ~m of

the thin layer slightly tilted. We then inject a positive current, which, according to

equation (2.1.5), leads to an ~sinj that is antiparallel to ~mF . The spin density ~s will

thus have a small perpendicular component to ~m in the thin FM layer, inflicting the

so-called spin-transfer torque. At sufficiently large currents, one observes magnetic

oscillations in different regimes (see below) in the thin FM layer. Note that if the easy

axis of the thin FM layer would point in the z-direction too, no torque would occur

in the zero-temperature ZLF-model studied here. Besides, the intra-layer exchange

coupling in the thin FM layer is so strong that its magnetization distribution ~m(x, t)

stays almost uniform for all t. In the thick FM layer, ~mF (x, t) does not stay uniform

but shows only very small deviations from +~z (up to 3◦) in the course of a simulation.

In all simulations, a time step ∆t = 10−13 s was used, smaller time steps did not

lead to a change in the results.

In order to analyse our simulations, we assume that the deviation of the electri-

cal resistance in a spin valve from its value in the parallel configuration is ∆R =

∆Rmax(1− ~̂mF · ~̂m)/2 [8], where ~̂mF · ~̂m denotes the dot product of the spatial mean
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Figure 2.2: Simulated power spectra for current densities j ∈ [0.48, 1.34]× 1011 Am−2 in
the range of 0-16 Ghz.

values of the magnetizations in the two FM layers. Power spectra of the magnetic

oscillations in the thin layer are obtained by performing a discrete Fourier trans-

form of the simulated signals ∆R(t) (we use 5000 data points that are spaced by

∆t = 10−12 s) and by plotting the squared norm of the Fourier coefficients over the

frequency.

Figure 6.1 shows the power spectra for current densities in the interval j ∈
[0.48, 2.10] × 1011 Am−2. The dominant peaks are the ones corresponding to 2f0,

i.e., two times the actual oscillation frequency. They start to emerge at around

j = 0.6 × 1011 Am−2 at f ≈ 30 Ghz and shift down in frequency with increasing

current. At currents larger than j = 1.4 × 1011 Am−2, higher harmonics (4f0, 6f0)

emerge too. The power of the odd harmonics (f0, 3f0, etc.) is three to five orders

of magnitude smaller than the one of 2f0, as can be seen in Figure 6.2, where power

spectra in the intervals j ∈ [0.48, 1.34]×1011 Am−2 and f ∈ [0, 16] Ghz are depicted.

Oscillations start at a frequency f0 = 16 Ghz for j = 0.48 × 1011 Am−2, then f0

diminishes with increasing current before it emerges again at frequencies lower than

10 Ghz at about two orders of magnitude more powerful. During this transition, we

observe a low-frequency background.
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(i) j = 0.5× 1011 Am−2 (ii) j = 0.9× 1011 Am−2

(iii) j = 1.4× 1011 Am−2 (iv) j = 2.1× 1011 Am−2
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Figure 2.3: Obtained oscillation regimes of the mean value ~̂m(t) in the thin FM layer:
i) small angle precession, ii) large angle precession, iii) clamshell orbit, iv) out-of-plane
precession.
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We refer to [8] for a detailed interpretation of the obtained power spectra. The

main reason for the occurrence of different harmonics is that ~̂m moves along elliptical

trajectories that are not symmetric with respect to the z-axis, as can be seen in

Figure 6.3 where the different simulated oscillation regimes are depicted. We found

a) small angle precessions, b) large angle precessions, c) clamshell orbits and d)

out-of-plane precessions.

As derived by Zhang et al. [1], the effect of adding the ~s-term to the effective

field, equation (2.1.4), can be expressed in compact form by augmenting the Landau-

Lifshitz equation by two terms,

∂t ~m
∣∣∣
ZLF

= aj ~m× (~m× ~mF ) + bj ~m× ~mF . (2.3.1)

This expression differs from the Slonczewski torque term (2.1.2) by the second term

on the right-hand-side, the so-called effective field term. In our simulations, we

determined the coefficients aj(x, t) and bj(x, t) in the thin FM layer, integrated

them over the thin layer domain and then calculated the ratio of the time mean

of these integrals. Results are depicted in Figure 6.4 for different current densities,

along with the corresponding frequencies 2f0. The ratio aj/bj is found to be roughly

7 for small/large angle precessions and around 10 for out of plane precessions.

2.4 Discussion

As far as f0 is concerned (Figure 6.2), our results show good qualitative and

quantitative agreement with the experimental findings in [3]. However, the much

stronger peaks of 2f0 (Figure 6.1) were not reported there, which is quite surpris-

ing. The different oscillation regimes (Figure 6.3) have been reported in macrospin

simulations [6] with the Slonczewski spin-torque model (2.1.2). The similarity to

the ZLF-model is understood by looking at the ratio aj/bj (Figure 6.4), which is

between 6 and 10 in our simulations. An experimental value of 5.3 is reported by

Zimmler et al. [14] for a 3 nm Cobalt layer.

2.5 Conclusion

We showed that the diffusive exchange-torque model (ZLF model) proposed by

Zhang et al. [1] represents a legitimate alternative to the ballistic interface torque-

model usually used to describe magnetization dynamics in spin valves. For the

first time a numerical study of the coupled system Landau-Lifshitz equation / spin-

diffusion equation has been carried out using reasonable physical parameters in



order to enable comparison with experimental data. The obtained simulation results

encourage the study of the ZLF-model in greater detail, especially in 3D geometries.

Acknowledgment

The authors acknowledge support from the Marie Curie Early Stage Network

DEASE: MEST-CT-2005-021122 funded by the European Union and from the project

QUATRAIN funded by the french National agency for research (ANR 2007-2011).

References

[1] S. Zhang, P.M. Levy, and A. Fert. Mechanisms of spin-polarized current-driven

magnetization switching. Phys. Rev. Lett., 88(23):236601–1, 2002.

[2] M. Tsoi, A.G.M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, and

P. Wyder. Excitation of a magnetic multilayer by an electric current. Phys.

Rev. Lett., 80(19):4281, 1998.

[3] S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A.

Buhrman, and D.C. Ralph. Microwave oscillations of a nanomagnet driven by

a spin-polarised current. Nature, 425(380), 2003.

[4] L. Berger. Emission of spin waves by a magnetic multilayer traversed by a

current. Phys. Rev. B, 54(13):9353, 1996.

[5] J.C. Slonczewski. Current-driven excitation of magnetic multilayers. J. Magn.

Magn. Mater., 159:L1–L7, 1996.

[6] D.V. Berkov and J. Miltat. Spin-torque driven magnetization dynamics: Mi-

cromagnetic modeling. J. Magn. Magn. Mater., 320:1238–1259, 2008.

[7] M.D. Stiles and A. Zangwill. Anatomy of spin-transfer torque. Phys. Rev. B,

66(014407), 2002.

[8] D.V. Berkov and N.L. Gorn. Magnetization precession due to a spin-polarized

current in a thin nanoelement: Numerical simulation study. Phys. Rev. B,

72:094401, 2005.

52



REFERENCES 53

[9] I. Zutic, J. Fabian, and Das Sarma S. Spintronics: Fundamentals and applica-

tions. Rev. Mod. Phys., 76(2):323–410, 2004.

[10] A. Shpiro, P.M. Levy, and S. Zhang. Self-consistent treatment of nonequilibrium

spin torques in magnetic multilayers. Phys. Rev. B, 67:104430, 2003.

[11] J. Guo, M.B.A. Jalil, and S.G. Tan. Efficient spin transfer torque in pseudo-

spin-valve structure. J. Appl. Phys., 103:07A718, 2008.

[12] W. Hundsdorfer and J.G. Verwer. Numerical solution of time-dependent

advection-diffusion-reaction equations. Springer Verlag Berlin, 2003.

[13] W. E and Wang Xiao-Ping. Numerical methods for the landau-lifshitz equation.

SIAM J. Numer. Anal., 38(5):1647, 2000.

[14] M.A. Zimmler, Oezyilmaz B., W. Chen, and A.D. Kent. Current-induced ef-

fective magnetic fields in co/cu/co nanopillars. Phys. Rev. B, 70:184438, 2004.





Part II

Kinetic Modeling of

Spin-Coherent Electron Transport

55





Chapter 3

Quantum Mechanics in Phase Space

Overview. It is the aim of this chapter to formulate the basic concepts of quantum

mechanics in the phase space [1, 2]. This formulation has been particularly useful

for studying the transition from the quantum- to the kinetic or mesoscopic level in

transport theory [3, 4, 5]. The incorporation of spin-degrees of freedom is straight-

forward and will be of central interest in what follows [6, 7]. In a first step we shall

introduce the Wigner-Weyl correspondence between operators acting in the system’s

state space and symbols in the phase space. The strong similarities between these

symbols and observables in classical mechanics will be highlighted. Subsequently,

the semi-classical scaling of quantum mechanical expressions is discussed in detail

and we shall explicitly compute the first few terms of the Moyal product of opera-

tor symbols. The Moyal product will then be applied to perform the semi-classical

limit in the von Neumann equation for a single particle with spin. In the particular

case that the spin part of the system’s Hamiltonian is small compared to its scalar

part, the semi-classical limit results in the matrix-Vlasov equation. This equation

determines the time evolution of a distribution matrix which plays the role of the

distribution function in classical mechanics, with the difference that its matrix form

allows for coherence of spin basis states in a particle’s dynamics.
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3.1 Weyl quantization and Wigner transform

The following is a collection of basic notations and properties needed to formulate

quantum mechanics in the phase space. The state space of a single particle with

spin is (L2(Rd
x,C))n and it will be denoted simply by (L2)n. Here, d is the dimension

of the position space and n stands for the dimension of the spin space, e.g. n = 2

for spin-1/2 particles and n = 3 for spin-1 particles. For φ, ψ ∈ (L2)n, the definition

of the scalar product

(φ, ψ)(L2)n :=
n∑
i=1

∫
dxφi(x)ψi(x) (3.1.1)

makes (L2)n a Hilbert space with the norm

||φ||(L2)n :=
√

(φ, φ)(L2)n . (3.1.2)

The Fourier transform of φ ∈ (L2)n and its inverse are defined component-wise,

φ̂i(ξ) =
1

(2π)d/2

∫
dxφi(x)e−iξ·x , φi(x) =

1

(2π)d/2

∫
dξ φ̂i(ξ)e

ix·ξ , (3.1.3)

where ξ ∈ Rd
ξ plays the role of the conjugate variable to the position x. We note the

fundamental relations (in a weak sense)

1

(2π)d

∫
dξ e±ix·ξ = δ(x) ,

1

(2π)d

∫
dx e±ix·ξ = δ(ξ) , (3.1.4)

where δ(·) stands for the Dirac delta distribution. The action of an operator A

in (L2)n can be defined by means of the integral kernel A : R2d
x → Cn×n, given

component-wise by

[Aφ]i(x) =
n∑
j=1

∫
dyAij(x, y)φj(y). (3.1.5)

The corresponding adjoint operator A† in (L2)n is defined via the scalar product,

(Aφ, ψ)(L2)n =
n∑
i=1

∫
dx [Aφ]i(x)ψi(x)

=
n∑

i,j=1

∫
dx

∫
dyAij(x, y)φj(y)ψi(x)

: = (φ,A†ψ)(L2)n .

(3.1.6)
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We deduce from Eq. (3.1.6) that the integral kernel A† of the adjoint operator is

defined by

A†ij(x, y) := Aji(y, x) . (3.1.7)

In the framework of pseudo-differential calculus [8], each operator kernel A(x, y)

is assigned a symbol a : Rd
x × Rd

ξ → Cn×n in the phase space via the mapping

W : Aij 7→ aij, defined by

aij(x, ξ) =W [Aij](x, ξ) :=

∫
dyAij

(
x+

y

2
, x− y

2

)
e−iy·ξ. (3.1.8)

The mapping (3.1.8) of operator kernels to phase space symbols is called the Wigner

transform. It is easily verified that its inverse is given by

Aij(x, y) =W−1[aij](x, y) =
1

(2π)d

∫
dξ aij

(
x+ y

2
, ξ

)
ei(x−y)·ξ. (3.1.9)

Inserting the definition (3.1.7) into Eq. (3.1.8) results in

a†ij(x, ξ) = aji(x, ξ) (3.1.10)

for the symbol a†ij corresponding to the adjoint operator A†. Thus, in the case that

A = A† is a self-adjoint operator, the matrix a(x, ξ) defined component-wise in Eq.

(3.1.8) is Hermitian at every point (x, ξ) in the phase space. Inserting the inverse of

the Wigner transform (3.1.9) into Eq. (3.1.5) allows one to write the action of an

operator A in (L2)n by means of its phase space symbol a,

[Aφ]i(x) =
1

(2π)d

n∑
j=1

∫
dy

∫
dξ aij

(
x+ y

2
, ξ

)
φj(y)ei(x−y)·ξ. (3.1.11)

Equation (3.1.11) defines the mapping Op(a) = A. This mapping is called the Weyl

quantization rule; it provides a direct correspondence between functions in the phase

space and operators in (L2)n.

Before applying the Wigner-Weyl calculus to quantum mechanics, we shall briefly

discuss the basic physical units in which quantities will be displayed. The physical

unit of a quantity q will be denoted by [q]. Let us start the discussion with a general

wavefunction φ(x) ∈ (L2)n. It is clear that the unit of its components is

[φi] =
1

[x]1/2
, (3.1.12)

since |φi(x)|2 is interpreted as a probability distribution function in position space.

A particle’s momentum p is given by p = ~ξ, where ~ denotes the Planck constant
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divided by 2π, since

[~] = [xp] , [ξ] =
1

[x]
. (3.1.13)

In order for the modulus square of the Fourier transform of φi(x) to be interpreted

as a momentum distribution, one has to properly redefine the Fourier transform and

its inverse (3.1.3), respectively,

φ̃i(p) :=
1

(2π~)d/2

∫
dxφi(x)e−

i
~x·p ,

φi(x) :=
1

(2π~)d/2

∫
dp φ̃i(p)e

i
~x·p .

(3.1.14)

Using Eq. (3.1.12) and Eq. (3.1.13) it is clear that the definition (3.1.14) results in

[φ̃i] =
1

[p]1/2
, (3.1.15)

which is the desired result. Now let (φk)∞k=1 stand for an orthonormal basis set in

(L2)n, i.e.

||φk||2(L2)n = 1 , (φk, φl)(L2)n = δkl , ∀ l, k ∈ N , (3.1.16)

where δkl = 1 for k = l and zero otherwise. The components Aij of the intgral kernel

of a Hermitian operator A in (L2)n can be written as

Aij(x, y) =
∞∑

k,l=1

cklAφ
k
i (x)φlj(y) , (3.1.17)

with the coefficients cklA = clkA ∈ C. From Eq. (3.1.12) it follows that

[Aij] =
[cklA ]

[x]
. (3.1.18)

In particular, a single-particle quantum state (pure or mixed) is defined by its density

operator ρ : (L2)n → (L2)n. The corresponding operator kernel % is called the density

matrix; its components will be denoted by

%ij(x, y) =
∞∑
k=1

λkφ
k
i (x)φkj (y) . (3.1.19)

where λk ∈ R+ stands for the relative portion of the state φk ∈ (L2)n in the mixed
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state (3.1.19) and one has
∑

k λk = 1. Moreover,

[%ij] =
1

[x]
. (3.1.20)

The equivalents of (3.1.17) and (3.1.19) in the “physical” phase space Rd
x × Rd

p are

defined via the Wigner transform (3.1.8) in the following manner [9]:

aij(x, p) :=W [%ij]
(
x,
p

~

)
=

∫
dyAij

(
x+

y

2
, x− y

2

)
e−

i
~y·p , (3.1.21)

wij(x, p) :=
1

(2π~)d
W [%ij]

(
x,
p

~

)
=

1

(2π~)d

∫
dy %ij

(
x+

y

2
, x− y

2

)
e−

i
~y·p ,

(3.1.22)

which yields

[aij] = [cklA ] , [wij] =
1

[xp]
. (3.1.23)

The normalization factor (2π~)−d is present only in the Wigner transform of the

density matrix (3.1.22), but absent for all other operators. The reason for this will

become transparent in the last paragraph of this section. The inverse of (3.1.21)

and (3.1.22), respectively, is given by

Aij(x, y) =
1

(2π~)d

∫
dp aij

(
x+ y

2
, p

)
e
i
~ (x−y)·p . (3.1.24)

%ij(x, y) =

∫
dpwij

(
x+ y

2
, p

)
e
i
~ (x−y)·p . (3.1.25)

The phase space symbols (3.1.22) are the components of the Wigner matrix w =

(wij)
n
i,j=1, which is a Hermitian matrix since ρ is self-adjoint. In view of Eq. (3.1.19)

it will be useful to define the Wigner transform of two state vectors φ, ψ ∈ L2:

W [φ, ψ](x, p) :=
1

(2π~)d

∫
dy φ

(
x+

y

2

)
ψ
(
x− y

2

)
e−

i
~y·p . (3.1.26)

From Eq. (3.1.19) we obtain

wij =
∞∑
k=1

λkW(φki , φ
k
j ) . (3.1.27)

Working in the Wigner representation (3.1.22) respectively (3.1.27) displays many

analogies between quantum and classical systems. For instance, from Eq. (3.1.26)
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one immediately obtains ∫
dpW [φ, φ](x, p) = |φ(x)|2 . (3.1.28)

Moreover, inserting the inverse Fourier transform (3.1.14) into Eq. (3.1.26) yields

W [φ, ψ] =
1

(2π~)2d

∫
dy

∫
dq

∫
dq′ φ̃(q)ψ̃(q′)e

i
~ [(q+q′)/2−p]·ye

i
~ (q+q′)·x (3.1.29)

Performing now the variable transformation

q = u+
v

2
u =

q + q′

2

q′ = u− v

2
v = q − q′

(3.1.30)

and furthermore using the identity (3.1.4) results in

W [φ, ψ](x, p) :=
1

(2π~)d

∫
dv φ̃

(
p+

v

2

)
ψ̃
(
p− v

2

)
e
i
~v·x . (3.1.31)

Thus, one obtains ∫
dxW [φ, φ](x, p) = |φ̃(p)|2 , (3.1.32)

which is again analogous to a classical phase space distribution function. It can

be seen in Eq. (3.1.29) that the sign appearing in the exponential of the Fourier

transform of operator kernels is reversed for the second argument; thus one defines

%̃(p, q) :=
1

(2π~)d

∫
dx

∫
dy ρ(x, y)e−

i
~x·pe

i
~y·q ,

%(x, y) :=
1

(2π~)d

∫
dp

∫
dq ρ̃(p, q)e

i
~x·pe−

i
~y·q .

(3.1.33)

In the density matrix approach with physical units, the expectation value 〈A〉 of an

operator A is computed by

〈A〉 = tr (%A) =
∑
ij

∫
dx

∫
dz %ij(x, z)Aji(z, x). (3.1.34)

Inserting here the inverse Wigner transforms (3.1.24) and (3.1.25) results in

〈A〉 =
1

(2π~)d

∑
ij

∫
dxdzdpdq wij

(
x+ z

2
, p

)
e
i
~ (x−z)·paji

(
z + x

2
, q

)
e
i
~ (z−x)·q

(3.1.35)
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Performing now the variable transformation

y =
x+ z

2
x = y +

y′

2

y′ = x− z z = y − y′

2

(3.1.36)

and furthermore using the identity (3.1.4) leads to

〈A〉 =
∑
ij

∫
dx

∫
dpwij(x, p)aji(x, p) , (3.1.37)

which resembles the classical expectation value of the observable a in the phase

space, given the distribution matrix w. Finally, using Eq. (3.1.24) one can restate

the Weyl quantization (3.1.11) in physical units:

[Aφ]i(x) =
1

(2π~)d

n∑
j=1

∫
dy

∫
dp aij

(
x+ y

2
, p

)
φj(y)e

i
~ (x−y)·p. (3.1.38)

As a concluding remark we shall briefly elaborate on the normalization factor (2π~)−d

in Eq. (3.1.22), which is absent in Eq. (3.1.21) for operators other than the state

operator. Its presence led to the relations (3.1.28) and (3.1.32); these relations

together with Eq. (3.1.27) ensure the normalization of the state operator ρ:

tr (ρ) =
∑
i

∫
dx

∫
dpwii(x, p) = 1 , (3.1.39)

where tr (·) denotes the operator trace and we used the orthonormality of the basis

functions (3.1.16). The absence of (2π~)−d in Eq. (3.1.21) is explained by the

formulation of the Weyl quantization (3.1.38). The latter is obtained by inserting

the inverse Wigner transform (3.1.24) into Eq. (3.1.5). Because of the presence of the

normalization factor in the inverse Wigner transform one obtains the correspondence

p 7→ −i~∇x , (3.1.40)

which amounts to the usual definition of the momentum operator.

3.2 Semi-classical scaling

It is the aim of this section to make transparent the notion of the “semiclassical

scaling” in the phase-space formulation of quantum mechanics. Let us thus refor-

mulate the equations of the Wigner-Weyl calculus in a dimensionless form which
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allows one to tune the role of quantum effects within a physical system by means

of a small parameter ε. In general, these quantum effects are non-negligible if the

wave-nature of quantum states is prominent, leading to coherence, diffraction or

interference of states of the physical system. As in classical optics, these phenomena

occur when wave functions are delocalized and when the size of obstacles is on the

same scale as the wavelength attributed to state vectors. For instance, let `c stand

for a characteristic length scale of the system, e.g. the scale on which a given po-

tential varies considerably. Furthermore, let ξc denote a characteristic wave number

of state vectors of the system such that the characteristic wave length is the de

Broglie wave length λDB = 2π/ξc. The quantum and the classical regime can then

be characterized as follows:

quantum:
λDB
`c
≈ 1 , classical:

λDB
`c
� 1 . (3.2.1)

Associated to ξc is the characteristic momentum pc = ~ξc; thus we introduce the

semiclassical parameter ε as

ε =
~
`cpc

, (3.2.2)

which is also called the “scaled Planck constant”. According to Eq. (3.2.1), the

smaller ε becomes the more is the classical regime approached. Since `cpc is a

characteristic action of the system, one could also start from the characteristic energy

Ec and time τc, respectively, and define ε = ~/Ecτc. Indeed, for parabolic bands these

two approaches are equivalent. Let us now introduce the dimensionless variables

x′ =
x

`c
, p′ =

p

pc
, (3.2.3)

and let us furthermore rewrite the Wigner matrix (3.1.22) in these variables,

wij(x
′`c, p

′pc) =

(
`c

2π~

)d ∫
dy′ %ij

[(
x′ +

y′

2

)
`c,
(
x′ − y′

2

)
`c

]
e−

i`cpc
~ p′·y′ . (3.2.4)

Defining now the dimensionless quantities

%̊ij(x
′, y′) := (`c)

d%ij(x
′`c, y

′`c) , ẘij(x
′, y′) := (`cpc)

dwij(x
′`c, p

′pc) , (3.2.5)
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and furthermore using the definition of the semiclassical parameter (3.2.2), from Eq.

(3.2.4) one obtains the scaled version of the Wigner matrix (3.1.22) and its inverse:

ẘij(x
′, p′) =

1

(2πε)d

∫
dy′ %̊ij

(
x′ +

y′

2
, x′ − y′

2

)
e−

i
ε
p′·y′ , (3.2.6)

%̊ij(x
′, y′) =

∫
dp′ ẘij

(
x′ + y′

2
, p′
)
e
i
ε
(x′−y′)·p′ . (3.2.7)

For a general operator kernel Aij with characteristic magnitude Ac (in appropriate

physical units) one defines its dimensionless form and the corresponding Wigner

representation as

Åij(x′, y′) :=
(`c)

d

Ac
Aij(x′`c, y′`c) , åij(x

′, p′) :=
1

Ac
aij(x

′`c, p
′pc) . (3.2.8)

Then, inserting Eqs. (3.2.3) and (3.2.2) into Eqs. (3.1.21) and (3.1.24) results in

åij(x
′, p′) =

∫
dy′ Åij

(
x′ +

y′

2
, x′ − y′

2

)
e−

i
ε
p′·y′ , (3.2.9)

Åij(x′, y′) =
1

(2πε)d

∫
dp′ åij

(
x′ + y′

2
, p′
)
e
i
ε
(x′−y′)·p′ . (3.2.10)

Finally, with the scaled version of the operator A in (L2)n and the scaled version of

the state vector φ ∈ (L2)n, given by

Å :=
A

Ac
, φ̊(x′) := (`c)

d/2φ(x′`c) ,
˜̊
φ(p′) := (pc)

d/2φ̃(p′pc) , (3.2.11)

the Weyl quantization (3.1.38) transforms into

[Åφ̊]i(x
′) =

1

(2πε)d

n∑
j=1

∫
dy′

∫
dp′ åij

(
x′ + y′

2
, p′
)
φ̊j(y

′)e
i
ε
(x′−y′)·p′ . (3.2.12)

It should be noted that from Eq. (3.2.11) one obtains that the Fourier transform

and its inverse (3.1.14) can be written as

˜̊
φi(p

′) =
1

(2πε)d

∫
dx′ φ̊i(x

′)e−
i
ε
x′·p′ ,

φ̊i(x
′) =

∫
dp′

˜̊
φi(p

′)e
i
ε
x′·p′ .

(3.2.13)

Putting the factor 1/(2πε)d in front of the Fourier transform, and not its inverse, has

an important consequence: the Fourier transform of wavefunctions that are strongly

varying in position space, i.e. φ̊(x′) = φ̊(x′/ε), is scale invariant, which means that
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it does not depend on the magnitude of the parameter ε.

In summary, after easing the notation1, we have obtained here the following

scaled equations:

• Wigner transforms:

wij(x, ξ) =
1

(2π)d

∫
dy %ij

(
x+

εy

2
, x− εy

2

)
e−iy·ξ , (3.2.14a)

aij(x, ξ) = εd
∫

dyAij
(
x+

εy

2
, x− εy

2

)
e−iy·ξ . (3.2.14b)

• Inverse Wigner transforms:

%ij(x, y) = εd
∫

dξ wij

(
x+ y

2
, εξ

)
ei(x−y)·ξ , (3.2.15a)

Aij(x, y) =
1

(2π)d

∫
dξ aij

(
x+ y

2
, εξ

)
ei(x−y)·ξ . (3.2.15b)

• Weyl quantizations:

[ρφ]i(x) = εd
n∑
j=1

∫
dy

∫
dξ wij

(
x+ y

2
, εξ

)
φj(y)ei(x−y)·ξ , (3.2.16a)

[Aφ]i(x) =
1

(2π)d

n∑
j=1

∫
dy

∫
dξ aij

(
x+ y

2
, εξ

)
φj(y)ei(x−y)·ξ . (3.2.16b)

3.3 The Moyal product

It is the aim of this section to derive a power series expression in the semiclassical

parameter ε for the product of an arbitrary operator A in (L2)n with the state op-

erator ρ in (L2)n in the Wigner picture. This semiclassical expansion is commonly

referred to as the Moyal product [2]. It will serve as the basis for performing the

semiclassical limit of the von Neumann equation, as demonstrated in the next sec-

tion. At this point we assume that a ∈ C∞(Rd
x × Rd

ξ), where a denotes the symbol

of A in the phase space, while for the Wigner matrix we assume w ∈ H0(Rd
x × Rd

ξ).

Let us investigate the action of the operator C = Aρ on a state φ ∈ (L2)n. For this

we use Eq. (3.2.16) to obtain

ψj(y) = [ρφ]j(y) = εd
n∑
k=1

∫
dz

∫
dη wjk

(
y + z

2
, εη

)
φk(z)ei(y−z)·η , (3.3.1)

1We omit the primes and the circles and moreover write greek letters for scaled momenta.
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and furthermore to write

[Aψ]i(x) =
1

(2π)d

n∑
j=1

∫
dy

∫
dξ aij

(
x+ y

2
, εξ

)
ψj(y)ei(x−y)·ξ . (3.3.2)

Inserting Eq. (3.3.1) into Eq. (3.3.2) results in

[Aρφ]i(x) =
( ε

2π

)d n∑
j,k=1

∫
dydz

∫
dηdξ aij

(
x+ y

2
, εξ

)
wjk

(
y + z

2
, εη

)
φk(z)

× ei(y−z)·ηei(x−y)·ξ . (3.3.3)

which yields the following components of the integral kernel C of the operator C:

Cik(x, z) =
( ε

2π

)d n∑
j=1

∫
dy

∫
dηdξ aij

(
x+ y

2
, εξ

)
wjk

(
y + z

2
, εη

)
× ei(y−z)·ηei(x−y)·ξ . (3.3.4)

The symbol cij in the phase space corresponding to (3.3.4) is computed via the

transformation for the density matrix (3.2.14a) (this choice will become transparent

in the next section):

cik(x, θ) =
1

(2π)d

∫
dz Cik

(
x+

εz

2
, x− εz

2

)
e−iz·θ (3.3.5)

=
εd

(2π)2d

n∑
j=1

∫
dydz

∫
dηdξ aij

(
x+ y

2
+
εz

4
, εξ

)
wjk

(
x+ y

2
− εz

4
, εη

)
× e−i(x−y−

εz
2

)·ηei(x−y+ εz
2

)·ξe−iz·θ .

Let us now introduce the dummy variable v via

cik(x, θ) =
εd

(2π)2d

n∑
j=1

∫
dvdydz

∫
dηdξ aij

(
v + y

2
+
εz

4
, εξ

)
wjk

(
v + y

2
− εz

4
, εη

)
× δ(x− v)e−i(v−y−

εz
2

)·ηei(v−y+ εz
2

)·ξe−iz·θ . (3.3.6)

and let us furthermore perform the variable transformations

a =
v + y

2
v = a+

b

2

b = v − y y = a− b

2
,

(3.3.7)
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which results in

cik(x, θ) =
εd

(2π)2d

n∑
j=1

∫
dadbdz

∫
dηdξ aij

(
a+

εz

4
, εξ
)
wjk

(
a− εz

4
, εη
)

× δ
(
x− a− b

2

)
e−i(b−

εz
2

)·ηei(b+
εz
2

)·ξe−iz·θ . (3.3.8)

As a next step we write wjk in its Fourier representation,

wjk

(
a− εz

4
, εη
)

=
1

(2π)d

∫
dr

∫
dχ w̃jk(χ, r)e

−i(a− εz4 )·χe−iεη·r , (3.3.9)

where w̃jk denotes the Fourier transform of wjk. Inserting Eq. (3.3.9) into Eq.

(3.3.8) leads to

cik(x, θ) =
εd

(2π)3d

n∑
j=1

∫
dadbdrdz

∫
dηdξdχaij

(
a+

εz

4
, εξ
)
w̃jk(χ, r) (3.3.10)

× δ
(
x− a− b

2

)
e−i(a−

εz
4 )·χe−i(b−

εz
2

+εr)·ηei(b+
εz
2

)·ξe−iz·θ .

In what follows we shall use frequently the relations (3.1.4). Performing the integral

with respect to η and subsequently with respect to b leads to the transformation

b 7→ εz/2− εr, which results in

cik(x, θ) =
εd

(2π)2d

n∑
j=1

∫
dadrdz

∫
dξdχaij

(
a+

εz

4
, εξ
)
w̃jk(χ, r) (3.3.11)

× δ
(
x− a− εz

4
+
εr

2

)
e−i(a−

εz
4 )·χei(εz−εr)·ξe−iz·θ .

From the integral with respect to a we obtain a 7→ x− εz/4 + εr/2,

cik(x, θ) =
εd

(2π)2d

n∑
j=1

∫
drdz

∫
dξdχaij

(
x+

εr

2
, εξ
)
w̃jk(χ, r) (3.3.12)

× e−i(x−
εz
2

+ εr
2 )·χei(εz−εr)·ξe−iz·θ .

The integral with respect to z now yields a delta distribution,

cik(x, θ) =
εd

(2π)d

n∑
j=1

∫
dr

∫
dξdχaij

(
x+

εr

2
, εξ
)
w̃jk(χ, r) (3.3.13)

× δ
(εχ

2
+ εξ − θ

)
e−i(x+ εr

2 )·χe−iεr·ξ .
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The variable transformation ξ′ = εξ and the subsequent integration with respect to

ξ′ results in the transformation εξ 7→ θ − εχ/2,

cik(x, θ) =
1

(2π)d

n∑
j=1

∫
dr

∫
dχaij

(
x+

εr

2
, θ − εχ

2

)
w̃jk(χ, r)e

−ix·χe−iθ·r .

(3.3.14)

Equation (3.3.14) is referred to as the Moyal product. From here on we shall use

the following notation for the scaled Wigner transform (3.2.14a) and its inverse

(3.2.15a):

Wε(%) = w(ε) , W−1
ε (w(ε)) = % . (3.3.15)

Furthermore, the scaled version of the mapping Op(w) = ρ defined in Eq. (3.2.16a)

(or in (3.1.11), respectively) and its inverse will be denoted by

Opε(w
(ε)) = ρ , Op−1

ε (ρ) = w(ε) . (3.3.16)

Here, w(ε) denotes the scaled Wigner matrix with components (w
(ε)
ij )ni,j=1. The super-

script ε indicates that the semiclassical parameter is intended to go to zero. Hence,

we introduce the following notation for the Moyal product (3.3.14):

Op−1
ε (Aρ) = a#εw

(ε) . (3.3.17)

Inserting into Eq. (3.3.14) the Taylor series expansion

aij

(
x+

εr

2
, θ − εχ

2

)
= aij(x, θ) +

ε

2
[∇xaij(x, θ) · r −∇θaij(x, θ) · χ] +O(ε2)

and subsequently using the Fourier representation (3.3.9) results in the semiclassical

expansion of the Moyal product:

a#εw
(ε) = aw(ε) + i

ε

2
{a, w(ε)}(x,θ) +O(ε2) , (3.3.18)

where {·, ·}(x,θ) denotes the Poisson bracket in the phase space variables defined by

{a, w(ε)}(x,θ) := ∇xa · ∇θw
(ε) −∇θa · ∇xw

(ε) . (3.3.19)

It can be readily verified that for reversed order of the operators A and ρ, one obtains

[Op−1
ε (ρA)]ik =

1

(2π)d

n∑
j=1

∫
dr

∫
dχaij

(
x− εr

2
, θ +

εχ

2

)
w̃jk(χ, r)e

−ix·χe−iθ·r .

(3.3.20)



70 CHAPTER 3. QUANTUM MECHANICS IN PHASE SPACE

Therefore, the semiclassical expansion of the Moyal product (3.3.20) reads

w(ε)#εa = w(ε)a+ i
ε

2
{w(ε), a}(x,θ) +O(ε2) . (3.3.21)

3.4 The matrix-Vlasov equation

The scaled version of the Wigner-Weyl calculus in quantum mechanics introduced

in the course of the previous two sections allows for a transparent study of the

transition from quantum dynamics to classical dynamics in the phase space. Here,

in particular, we shall present a formal derivation of the matrix-Vlasov equation,

which is an extension of the usual Vlasov equation to incorporate the spin-degree of

freedom of particles on the mesoscopic level. This equation serves as a basis for the

work presented in Chapter 4. Let h : Rd
x × Rd

ξ → Cd×d stand for the phase space

symbol of the Hamilton operator H in (L2)n of a single particle with spin. On the

quantum level and in the semiclassical scaling, the dynamics of the state operator ρ

in (L2)n describing this particle are given by by the scaled von Neumann equation,

∂tρ+
i

ε
[H, ρ] = 0 , (3.4.1)

where [H, ρ] = Hρ−ρH denotes the commutator. By applying the operation Op−1
ε (·)

defined in Eq. (3.3.16) we can map Eq. (3.4.1) into the phase space,

∂tw
(ε) +

i

ε
(h#εw

(ε) − w(ε)#εh) = 0 . (3.4.2)

Using now the semiclassical expansion of the Moyal product, Eqs. (3.3.18) and

(3.3.21), results in

∂tw
(ε) +

i

ε
[h,w(ε)]− 1

2
{h,w(ε)}(x,ξ) +

1

2
{w(ε), h}(x,ξ) +O(ε) . (3.4.3)

For ε� 1 the commutator [h,w(ε)] is the dominant term. Hence in the limit ε→ 0

one obtains [h,w(ε)] = 0 ∀t which leads to a system of n coupled scalar equations

for the n possible spin states of the particle. A rigorous analysis of this case as well

as of the following matrix case for spin-1/2 particles can be found in [6, 10]. The

matrix form of w(ε) is retained in the limit ε→ 0 under the premiss that the symbol

h scales as follows:

h(x, ξ) = hc(x, ξ)1n + εhs(x, ξ) ∀(x, ξ) ∈ Rd
x × Rd

ξ . (3.4.4)



Here, 1n denotes the identity operator in Cd×d, hc(x, ξ) ∈ R∀(x, ξ) stands for the

scalar part (or charge part) of the symbol h and hs := h − hc1n denotes the spin

part. Inserting Eq. (3.4.4) into Eq. (3.4.3) and taking the limit ε→ 0 results in

∂tw
(0) + i[hs, w

(0)]− {hc, w(0)}(x,ξ) , (3.4.5)

which is referred to as the matrix-Vlasov equation. The latter is a mesoscopic

transport equation which allows for quantum superposition of different spin states

at each point (x, ξ) in the phase space. This “spin-coherence” is reflected by non-

vanishing off-diagonal elements in w(0). The notion of spin-coherence is described in

detail for spin-1/2 electrons in the sections 4.2 and 4.3 of chapter 4.

References

[1] E. Wigner. On the quantum correction for thermodynamic equilibrium. Physical

Review, 40(5):749, 1932.

[2] C. Zachos, D. Fairlie, and T. Curtright. Quantum mechanics in phase space:

an overview with selected papers, volume 34. World Scientific Pub Co Inc, 2005.

[3] P.L. Lions and T. Paul. Sur les mesures de wigner. Rev. Mat. Iberoamericana,

9(3):553–618, 1993.

[4] PA Markowich, NJ Mauser, and F. Poupaud. A wigner-function approach to

(semi) classical limits: Electrons in a periodic potential. Journal of Mathemat-

ical Physics, 35:1066, 1994.

[5] P. Bechouche, F. Poupaud, and J. Soler. Quantum transport and boltzmann

operators. Journal of statistical physics, 122(3):417–436, 2006.

[6] P. Gérard, P.A. Markowich, N.J. Mauser, and F. Poupaud. Homogenization

limits and wigner transforms. Communications on Pure and Applied Mathe-

matics, 50(4):323–379, 1997.

[7] R. El Hajj. Diffusion models for spin transport derived from the spinor Boltz-

mann equation. Comm. Math. Sci. (to appear).

71



72 REFERENCES
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Chapter 4

Diffusion Limit of a Generalized

Matrix-Boltzmann Equation for

Spin-Polarized Transport

S. Possanner and C. Negulescu,

published in Kinetic and Related Models, Vol. 4, p. 1159, 2011

Abstract. The aim of the present paper is the mathematical study of a linear

Boltzmann equation with different matrix collision operators, modelling the spin-

polarized, semi-classical electron transport in non-homogeneous ferromagnetic struc-

tures. In the collision kernel, the scattering rate is generalized to a hermitian,

positive-definite 2 × 2 matrix whose eigenvalues stand for the different scattering

rates of, for example, spin-up and spin-down electrons in spintronic applications.

We identify four possible structures of linear matrix collision operators that yield

existence and uniqueness of a weak solution of the Boltzmann equation for a general

Hamilton function. We are able to prove positive-(semi)definiteness of a solution for

an operator that features an anti-symmetric structure of the gain respectively the

loss term with respect to the occurring matrix products. Furthermore, in order to

obtain matrix drift-diffusion equations, we perform the diffusion limit with one of

the symmetric operators assuming parabolic spin bands with uniform band gap and

in the case that the precession frequency of the spin distribution vector around the

exchange field of the Hamiltonian scales with order ε2. Numerical simulations of the

here obtained macroscopic model were carried out in non-magnetic/ferromagnetic

multilayer structures and for a magnetic Bloch domain wall. The results show that

our model can be used to improve the understanding of spin-polarized transport in

spintronics applications.
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4.1 Introduction

The coupling between the spin- and the charge degree of freedom of an electron

system is a growing research topic in physics and mathematics. What is simply

called ’spintronics’ (spin-electronics) has become a vast field with many promising

applications and plenty of challenging problems to be solved. The field includes, for

example, quantum computing [1, 2] (qubits), spin-dependent transport in ferromag-

nets [3] (giant magneto-resistance effect or GMR effect), semiconductor spintronics

[4, 5] (spin field-effect transistors, magnetic resonant tunneling diodes) and spin-

transfer torques in ferromagnets [6, 7, 8] (current-induced magnetic switching and

domain wall motion). The benefits of spintronics lie in the fact that the magnetic

state of a system can be changed by manipulating charges with electric fields, which

can be handled rather easily and more precisely as compared to magnetic fields.

In most of the spintronic applications, spin-polarized electron transport in solids

plays a crucial role. By spin-polarized transport we mean that, in addition to the

charge distribution of an electron system, it is necessary to keep track of its spin

distribution to obtain a correct description. Magnetic impurities, a ferromagnetic

environment, strong spin-orbit coupling [9, 10] or an applied magnetic field often

require the spin-polarized treatment of transport in these systems.

The spin of an electron represents a two-state quantum system [11]. This means

that once a direction is chosen in real space, the electron spin can be determined to

be either parallel (spin-up) or anti-parallel (spin-down) to that direction. Prior to

the measurement, a general spin state (or spin-coherent state) is a quantum super-

position of the spin-up and spin-down basis states. The density matrix of a spin-

coherent state is a hermitian 2× 2 matrix, where the spin-coherence is represented

by non-vanishing off-diagonal elements. From a mathematical point of view, spin

systems resemble electron-hole systems in Graphene [12]. For such systems, there

exist various matrix transport models on the microscopic (von Neumann and Wigner

equation), the kinetic (Boltzmann equation [13, 14, 15, 16]) and the macroscopic level

(drift-diffusion and fluiddynamic equations [17, 18, 16, 19], quantum drift-diffusion

and quantum fluiddynamic equations [20, 21]). For the purpose of engineering spin-

tronic devices, macroscopic models are very appealing. On the one hand, they enable

efficient numerical simulations on the desired length scale (101 − 103 nm) and, on

the other hand, they incorporate the scattering of electrons from phonons (non-zero

temperature) and impurities (material imperfections). However, spin-coherent drift-

diffusion models occurring in literature are still mostly heuristic. Recently, El Hajj

and Ben Abdallah [22] introduced a spin-coherent collision operator in the linear
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BGK approximation to obtain a matrix Boltzmann equation. They performed rig-

orous diffusion limits in various scalings to derive a number of matrix drift-diffusion

models. The rigorous derivation of a spin-coherent collision operator from the mi-

croscopic scale is still an open problem.

In this work we address, at first, the kinetic level of spin-coherent transport. Our

goal is to set up a matrix Boltzmann equation that incorporates spin-dependent scat-

tering rates, or more precisely, that features a collision kernel with matrix-valued

transition probabilities from momentum ~k to ~k′. Such a kinetic equation can be

viewed as a generalization of the model in [22] to spin-dependent mean-free paths. In

[22], the scattering rates were scalar quantities (which yield one mean free path for

both spin species) whereas in our case they are fully occupied hermitian, positive-

definite 2 × 2 matrices. The eigenvalues of these matrices stand for the different

scattering rates of spin-up and spin-down electrons (yielding two distinct respective

mean free paths). The observation of spin-dependent electron resistances in ferro-

magnets [23, 24] was crucial for triggering the research on spintronics, therefore the

generalization of scalar scattering rates to matrix-valued scattering rates is a logical

step. The main problem, as compared to the scalar case, is to deal with the matrix

products that will occur in the newly defined collision operator.

The effects of spin-dependent mean free paths on non-coherent spin-polarized

transport (two-component models) have been studied comprehensively [25, 26, 27,

28, 29, 30]. However, to our knowledge, there exist no works on the consequences

of spin-dependent scattering for spin-coherent electron systems. Our approach is

to add, on the right-hand-side of the spin-coherent Vlasov equation, the four most

simple types of linear matrix collision operators which preserve the hermiticity of

the electron distribution matrix. We then apply the method of characteristics and a

fixed point argument to check existence and uniqueness of a weak solution of the re-

spective matrix Boltzmann equation. Additionally, using the maximum principle, we

check the positive-(semi)definiteness of the solution. We identify one collision oper-

ator that satisfies the maximum principle. This operator features an anti-symmetric

structure with respect to the matrix products in the gain and the loss term, re-

spectively. The anti-symmetric collision operator is mass- but not spin-conserving.

In the subsequent sections of the paper, we focus on a mass- and spin-conserving

collision operator, which has a symmetric structure of the gain respectively the loss

term. In contrast to the anti-symmetric operator, the symmetric collision operator

describes only spin-conserving momentum scattering, no spin-flip processes. The

spin-flip scattering is then described by a second collision operator. This strat-
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egy permits to treat spin-conserving respectively spin-flip scattering on different

timescales. However, the verification of the maximum principle for this two-operator

approach remains an open problem.

In the second part of this paper we perform the diffusion limit in a scaled form

of the matrix Boltzmann equation, using standard techniques [31] known from the

scalar case. The necessary physical assumptions for this step are Boltzmann statis-

tics and local thermal equilibrium (detailed balance) in each spin band. Additionally,

we make the strong assumption of parabolic spin bands with uniform band gap, a

model that is known in spintronic literature as the Stoner model [32, 33]. Relaxing

this assumption should clearly be the topic of following works. However, even in the

simple setting of the Stoner model, we obtain, in the macroscopic limit, a matrix

drift-diffusion model that features a coupling between the charge- and the spin de-

gree of freedom. The coupling we get is linear in the polarization p of the scattering

rates (0 ≤ p < 1).

The third part of this work contains some numerical studies of the derived

spin-coherent drift-diffusion model in one-dimensional multilayer structures and for

strongly varying magnetization on the scale of several nanometers (e.g. a magnetic

domain wall). We use a standard Crank-Nicolson finite difference scheme to solve

the four coupled drift-diffusion equations on a uniform grid. The results show that

our model provides a new means for studying spin-polarized transport in arbitrary

magnetic structures (e.g. non-collinear multilayers or strongly varying magnetiza-

tion).

4.2 Some notations and Lemmas

As a help for the better understanding of this work, we start by introducing some

relevant notations.

Definition 4.2.1 (Pauli matrices). By ~σ = (σ1, σ2, σ3) we denote the triple of the

three Pauli matrices,

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
. (4.2.1)

To be consistent, the 2× 2 unit matrix is denoted by

σ0 =

(
1 0

0 1

)
. (4.2.2)
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The Pauli matrices satisfy the following properties, for k, l,m ∈ {1, 2, 3},

[σk, σl] = 2i
∑
m

εklmσm (4.2.3)

[σk, σl]+ = 2δklσ0 (4.2.4)

σkσl = δklσ0 + i
∑
m

εklmσm. (4.2.5)

Here, [σk, σl] = σkσl − σlσk stands for the commutator of σk and σl, [σk, σl]+ =

σkσl + σlσk denotes the anti-commutator, δkm the Kronecker delta, εklm the Levi-

Civita symbol, defined by

εklm =

∣∣∣∣∣∣∣
δk1 δk2 δk3

δl1 δl2 δl3

δm1 δm2 δm3

∣∣∣∣∣∣∣ . (4.2.6)

From (4.2.3) one deduces, for ~a,~b ∈ R3,

(~a · ~σ)(~b · ~σ) = (~a ·~b)σ0 + i(~a×~b) · ~σ (4.2.7)

[~a · ~σ,~b · ~σ] = 2i(~a×~b) · ~σ. (4.2.8)

Definition 4.2.2 (Matrix spaces). Let H2(C) denote the vector space of hermi-

tian 2 × 2 matrices. Associated with the Frobenius scalar product 〈·, ·〉2 and the

corresponding norm || · ||2,

〈A,B〉2 := tr (AB) , ||A||2 :=
√

tr (A2) ∀A,B ∈ H2(C), (4.2.9)

the vector space H2(C) becomes a Hilbert space, where A = (aij) and B = (bij) with

i, j ∈ {1, 2} and

tr (AB) =
∑
ij

aijbji (4.2.10)

denotes the trace of AB. By H0,+
2 (C) we denote the subspace of H2(C) containing

positive semi-definite matrices and by H+
2 (C) we identify the subspace of positive

definite matrices.

The space H2(C) is spanned by the four matrices σ0, σ1, σ2 and σ3. In this basis,

the coefficients of a matrix A ∈ H2(C) are denoted by a0 ∈ R, ~a = (a1, a2, a3) ∈ R3.

We have the following isomorphism between H2(C) and R4,

A = a0σ0 + ~a · ~σ ∈ H2(C) ⇐⇒ Ã = (a0,~a) ∈ R4. (4.2.11)
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The coefficients of A in this Pauli basis are computed as follows,

a0 =
1

2
tr (A) ; ~a =

1

2
tr (~σA) . (4.2.12)

In the following, we call the space R3 of the coefficient vectors ~a of a matrix A ∈
H2(C) in the Pauli basis the spin space. Only vectors in spin space are written with

the overlined arrow symbol. The eigenvalues of A ∈ H2(C) are given by a+ = a0+|~a|
and a− = a0 − |~a|, respectively.

Lemma 4.2.3. Let A ∈ H+
2 (C) with components (a0,~a) in the Pauli basis, then

A1/2 =
1

2

(√
a0 + |~a|+

√
a0 − |~a|

)
σ0 +

1

2

(√
a0 + |~a| −

√
a0 − |~a|

) ~a

|~a|
· ~σ.

(4.2.13)

Lemma 4.2.4. Let A,B ∈ H2(C). Then we have AB + BA ∈ H2(C) and ABA ∈
H2(C). Moreover, in the Pauli basis,

1

2
AB +

1

2
BA = (a0b0 + ~a ·~b)σ0 + (a0

~b+ b0~a) · ~σ

and

A1/2BA1/2 = (a0b0 + ~a ·~b)σ0+

+

[
b0~a+

(
a0 −

√
a2

0 − |~a|2
)(

~b · ~a
|~a|

)
~a

|~a|
+~b
√
a2

0 − |~a|2
]
· ~σ.

Lemma 4.2.5. For A,B ∈ H0,+
2 (C) we have ABA ∈ H0,+

2 (C). However, AB +BA

is not necessarily in H0,+
2 (C).

Lemma 4.2.6 (Trace properties). We have

tr (AB) ≥ 0 ∀A,B ∈ H0,+
2 (C) (4.2.14)

tr
(
A2 +B2

)
≥ 2 |tr (AB)| ∀A,B ∈ H2(C) (4.2.15)

0 ≤ tr
(
(AB)2

)
≤ tr

(
A2B2

)
≤ 2tr

(
A2
)

tr
(
B2
)
∀A ∈ H2(C), B ∈ H0,+

2 (C).

(4.2.16)

Proof. Relation (4.2.15) follows from

0 ≤ tr
(
(A+B)2

)
= tr

(
A2 + 2AB +B2

)
=⇒ tr

(
A2 +B2

)
≥ −2tr (AB)

0 ≤ tr
(
(A−B)2

)
= tr

(
A2 − 2AB +B2

)
=⇒ tr

(
A2 +B2

)
≥ 2tr (AB) .

To prove (4.2.16), let A = (aij) and B = (bij), then āij stands for the complex
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conjugate of aij. Further, let θ be a unitary matrix, θθ̄t = σ0, such that θ̄tBθ is

diagonal. One has

tr
(
(AB)2

)
= tr

(
(θθ̄tAθθ̄tB)2

)
= tr

(
θ̄tAθθ̄tBθθ̄tAθθ̄tBθ

)
= tr

(
(A′B′D)2

)
.

Here, A′ = θ̄tAθ = (a′ij) with (a′ii) ∈ R, and B′D is a diagonal matrix with eigenvalues

(b′ii) ∈ R+. We obtain

tr
(
(AB)2

)
= tr

(
(A′B′D)2

)
=
∑
ik

a′ikb
′
kka
′
kib
′
ii =

∑
ik

|a′ik|2b′kkb′ii ≥ 0, (4.2.17)

which gives the first inequality in (4.2.16). The second inequality follows from

tr
(
(A′B′D)2

)
=
∑
ik

|a′ik|2b′kkb′ii ≤
∑
ik

|a′ik|2b
′2
ii = tr

(
A′2B

′2
D

)
(4.2.18)

The third inequality in (4.2.16) follows from the fact that A2 and B2 are positive

hermitian matrices.

4.3 Preliminaries

4.3.1 Spin-coherent semiclassical electrons

The state of a spin-coherent semi-classical electron system is characterized by the

distribution matrix F : R+×Rd
x×Rd

k → H
0,+
2 (C). Here, t denotes the time and x and

k are the respective variables for position and momentum (more precisely, k stands

for an electron’s wave vector and ~k for its crystal momentum). The phase space of

the electron system is Rd
x × Rd

k = R2d where d is the number of space dimensions.

In the Pauli basis the distribution matrix is written as F = (1
2
f0, ~f). The coefficient

f0(t, x, k) = tr (F ) is the scalar distribution function of the electrons ignoring the

spin. The vector ~f(t, x, k) = 1
2
tr (~σF ) represents the vector spin polarization of the

electron system and ~~f is the electron spin density at (t, x, k) ∈ R+×R2d. The two

eigenvalues of F , denoted by f± = 1
2
f0 ± |~f |, stand for the distribution functions of

electrons with spin in the direction +~f/|~f | and in the direction −~f/|~f |, respectively.

These directions, determined by the distribution matrix itself, define the z-axis of

a coordinate system in spin space in which F is diagonal. This coordinate frame

defined by ~f/|~f | depends on (t, x, k) ∈ R+×R2d. Since it is our purpose to describe

the spin-coherence of electrons with respect to a given field ~Ω(t, x, k) in spin space,

it is preferrable to work in a coordinate frame independent of (t, x, k) ∈ R+ × R2d

and to keep track of the direction ~f/|~f | therein.
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The energy density of the system in the state F is computed from the Hamilton

matrix H : R+ × R2d → H2(C). We write this matrix as H = Hb + Hso, where Hb

is called the band matrix and Hso denotes the spin-orbit matrix, given by

Hb(t, x, k) = h0(t, x, k)σ0 + λ(t, x, k)~Ω(t, x) · ~σ (4.3.1)

Hso(t, x, k) = ~hso(t, x, k) · ~σ. (4.3.2)

Here, h0 : R+ × R2d → R, λ : R+ × R2d → R, ~Ω : R+ × R2d → S2 (the unit sphere

in R3) and ~hso : R+ × R2d → R3. The eigenvalues of Hb read hb,↑ = h0 + |λ| and

hb,↓ = h0 − |λ|. For fixed t and x, they represent the two different transport bands

eligible for spin-coherent electrons. We refer to the band hb,↑ as the up-band and

to hb,↓ as the down-band, respectively. The band gap is given by 2|λ|. The unit

vector ~Ω shall play the role of the local direction of magnetization in a ferromagnet,

therefore it depends on t and x but not on the momentum k of the electrons. The

distribution functions f↑ and f↓ in the up- and in the down-band are given by the

orthogonal projection Π↑/↓ : H2(C) → R of F on the eigenspace associated to the

respective eigenvalue of Hb,

f↑ = Π↑(F ) =

〈
1

2
(σ0 + ~Ω · ~σ), F

〉
2

=
1

2
f0 + ~Ω · ~f (4.3.3)

f↓ = Π↓(F ) =

〈
1

2
(σ0 − ~Ω · ~σ), F

〉
2

=
1

2
f0 − ~Ω · ~f. (4.3.4)

A possible absence of spin-coherence is reflected by

±~f ‖ ~Ω ⇐⇒ [F,Hb] = 0. (4.3.5)

In this case, the equations (4.3.3) and (4.3.4) yield f↑ = 1
2
f0±|~f | and f↓ = 1

2
f0∓|~f |

where |~f | is the usual scalar spin polarization in two-component models.

The matrix Hso stands for contributions to the electron energy arising from the

spin-orbit coupling that electrons experience when moving through a crystal lattice.

The field ~hso may, for example, contain terms like the Elliott-Yafet, the D’yakonov-

Perel’ or the Rashba spin-orbit couplings [4]. The separation of H into Hb and Hso

was made in order to single out the field ~Ω, which plays a central role in the theory

developed in this work. The total Hamilton matrix reads

H = Hb +Hso = h0σ0 + ~h · ~σ, (4.3.6)

where ~h = (λ~Ω + ~hso) is called the pseudo-exchange field.

Given a distribution matrix F , the energy E : R+ × R2d → R of the system at
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(t, x, k) is obtained by

E(t, x, k) = 〈H,F 〉2 = h0(t, x, k)f0(t, x, k) + 2~h(t, x, k) · ~f(t, x, k). (4.3.7)

The ballistic dynamics of the spin-coherent semi-classical electron system is de-

scribed by the matrix Vlasov equation [34, ?],
∂tF +

1

~
(∇kh0 · ∇xF −∇xh0 · ∇kF ) +

i

~
[F,~h · ~σ] = 0

F (t = 0, x, k) = Fin(x, k)

Fin(x, k) ∈ H0,+
2 (C) ∀(x, k).

(4.3.8)

The commutator [F,~h · ~σ] describes the precession of the spin polarization ~f of the

electron system around the pseudo-exchange field ~h. Equation (4.3.8) is obtained by

passing to the limit ε→ 0 (where ε stands for the scaled Planck constant ~) in the

Schrödinger equation with the Hamiltonian (4.3.6), for the case where the modulus

|~h| of the pseudo-exchange field scales with order ε.1 Thus, equation (4.3.8) is merely

the correct semi-classical equation for electrons in a weak exchange field ~h. This is

the case, for example, if the band gap λ is small compared to the Fermi energy of the

electron system. To take into account scattering processes (non-ballistic transport),

we shall add collision terms at the right-hand-side of the matrix Vlasov equation

(4.3.8).

4.3.2 Spin-coherent collision operators

For a spin-polarized electron system, there are two kinds of possible collision

processes, namely the spin-conserving and the spin-flip collisions. Spin-conserving

collisions drive the velocity distribution of the electrons towards thermal equilibrium,

i.e., the Fermi-Dirac or the Maxwellian distribution, depending on the used statistics.

On the other hand, spin-flip collisions will relax the electron spin density towards its

thermal equilibrium field, which is, at each point x ∈ Rd
x, parallel to the local pseudo-

exchange field ~h defined in (4.3.6). In ferromagnets, the two processes happen at

very different timescales [17], spin-conserving collisions occurring at a much higher

frequency than spin-flip collisions.

In the present paper, we shall write seperate collision operators for each of the

1The fact that ~ still appears in (4.3.8) is due to rescaling to physical variables after the limiting
procedure.
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two processes. Spin-flip processes will be modeled by a relaxation term [22],

1

τsf
Qsf (F ) :=

1

τsf

(
1

2
tr (F )σ0 − F

)
, (4.3.9)

where τsf ∈ R+ is the average time between two subsequent spin-flip collisions.

The focus of this work is on spin-conserving momentum scattering of electrons with

(magnetic) impurities. The essential point is that impurity potentials may look

different for spin-up and spin-down electrons and that, additionally, the latter feature

different density of states in spin-polarized materials [35]. Both effects lead to spin-

dependent momentum scattering rates. Our goal is to construct a collision operator

that, on the one hand, describes the impurity scattering of spin-coherent electrons

and, on the other hand, takes into account spin-dependent collision rates. Moreover,

the new spin-coherent collision operator must satisfy the necessary mathematical

properties to yield a well-defined theory. We state four requirements on such an

operator:

1. incorporate spin-dependent scattering rates,

2. yield a two-component Boltzmann model if

[F (t, x, k), Hb(t, x, k)] = 0 ∀(t, x, k) ∈ R+ × R2d,

3. be a map with range in H2(C),

4. conserve the positive-(semi)definiteness of F ,

F (t = 0, x, k) ∈ H0,+
2 (C) =⇒ F (t, x, k) ∈ H0,+

2 (C) ∀(t, x, k) ∈ R+ × R2d.

Let S : R+ × R3d → H+
2 (C) denote the scattering matrix, in the Pauli basis written

as

S(t, x, k, k′) = s0(t, x, k, k′)σ0 + ~s(t, x, k, k′) · ~σ. (4.3.10)

This matrix shall describe the rate at which spin-coherent electrons scatter from k

to k′ due to collisions with (magnetic) impurities. The eigenvalues of S, denoted

by s↑ and s↓, shall stand for the respective (scaled) scattering rates of electrons in

the up-band and in the down-band. An electron distribution F consists only of

non-coherent spin-up and spin-down states if it commutes with the band matrix Hb,

c.f. (4.3.5). In this case, the eigenvalues of F should scatter at the rates s↑ and s↓,
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respectively. Therefore, it is necessary that

[S(t, x, k, k′), Hb(t, x, k)] = 0 ∀(t, x, k, k′) ∈ R+ × R3d. (4.3.11)

We construct a linear spin-coherent collision operator Qij(F ) as a sum of a gain

term Q+
i (F ) and a loss term Q−j (F ),

1

τc
Qij(F ) :=

1

τc
Q+
i (F )− 1

τc
Q−j (F ) i, j ∈ {1, 2}, (4.3.12)

where we defined τc ∈ R+, the time between two subsequent spin-conserving collision

processes. The two basic possible structures of the gain and loss term, respectively,

read

Q+
1 (F ) :=

∫
Rd
k′

(
1

2
S ′F ′ +

1

2
F ′S ′

)
dk′ (4.3.13)

Q+
2 (F ) :=

∫
Rd
k′

S ′1/2F ′S ′1/2dk′, (4.3.14)

Q−1 (F ) :=
1

2
ΛF +

1

2
FΛ (4.3.15)

Q−2 (F ) :=

∫
Rd
k′

S1/2FS1/2dk′, (4.3.16)

where we denoted F ′ = F (t, x, k′), S ′ = S(t, x, k′, k), and Λ =
∫
Sdk′. The gain

and loss terms are chosen such that they conserve the hermiticity of the electron

distribution function F . We stress that, according to (5.2.3), there are four possible

spin-coherent collision operators that fall into two categories, namely the symmetric

operators Q11 respectively Q22, and the anti-symmetric operators Q12 respectively

Q21. At first the different structures of gain and loss term in the anti-symmetric

operators may seem counter-intuitive or unphysical. However, in the theory of open

quantum systems [9], the well-known Lindblad equation features a product structure

similar to the operator Q21. It is easily seen that the symmetric operators Q11 and

Q22 are mass- and spin-conserving,∫
Rdk

Q11(F )dk =

∫
Rdk

Q22(F )dk = 0, (4.3.17)
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whereas the anti-symmetric operators Q21 and Q12 are just mass-conserving,∫
Rdk

Q12(F )dk = −
∫
Rdk

Q21(F )dk 6= 0 (4.3.18)∫
Rdk

tr (Q12(F )) dk =

∫
Rdk

tr (Q21(F )) dk = 0. (4.3.19)

Therefore, the anti-symmetric operators contribute to the spin-flip scattering on the

time scale τc, which contradicts our assumption that spin flip processes should hap-

pen on the timescale τsf .

4.4 The model

Adding the collision operators (4.3.9) and (5.2.3) on the right-hand side of (4.3.8),

one obtains the following generalized matrix Boltzmann equation,
∂tF +

1

~
(∇kh0 · ∇xF −∇xh0 · ∇kF ) +

i

~
[F,~h · ~σ] =

1

τc
Qij(F ) +

1

τsf
Qsf (F )

F (t = 0, x, k) = Fin(x, k)

Fin(x, k) ∈ H0,+
2 (C) ∀(x, k).

(4.4.1)

Here, h0 and ~h are the components of the Hamilton matrix (4.3.6). Equation (4.4.1)

has been investigated by el Hajj [22] for the case that S, occurring in Qij(F ) and

defined in (4.3.10), is a scalar, S = s0σ0. The case S ∈ H+
2 (C) is a new problem

which is the topic of this work.

4.4.1 Further assumptions

Let us summarize in this section the physical hypothesis we need for the further

development. Generalizations to these assumptions shall be treated in forthcoming

works.

Assumption 4.4.1 (Shifted parabolic bands). We treat the case of two parabolic

transport bands. Moreover, the band gap between the two spin bands does not depend

on the momentum k. Thus, in equation (4.3.1) for Hb, we assumeh0 =
~2|k|2

2m
+ V (t, x)

λ = λ(t, x),

(4.4.2)
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where m is the effective mass of the electrons, λ : R+×Rd
x → R is the k-independent

band gap and V : R+ × Rd
x → R is an external potential energy.

Assumption 4.4.1 is known in the physics literature as the Stoner model [36].

It is a crude simplification of the problem, since transport bands in ferromagnets

often do not have parabolic shape. However, the Stoner model is still a basic tool

used to understand electron properties in ferromagnets [32, 33]. In this paper, we

investigate the effects of spin-dependent scattering in the framework of the Stoner

model and leave the case of more complicated bandstructures open for future work.

Assumption 4.4.2 (Boltzmann statistics). In thermal equilibrium, the distribu-

tion matrix has the form Feq = c exp (−βHth) where c ∈ R+ is a normalization con-

stant, β = 1/kBT is the inverse of the thermal energy and Hth denotes the Hamilton

matrix (4.3.6) of the system without externally applied electric or magnetic fields.

From the assumptions 4.4.1 and 4.4.2 we deduce

Feq(x, k) = N(x)Mβ(k) with [N(x), Hth(x, k)] = 0 ∀(x, k) ∈ R2d, (4.4.3)

where N ∈ H2(C) is a hermitian matrix and Mβ stands for the scalar Maxwellian

at thermal energy β−1,

Mβ(k) =

(
β~2

2πm

)d/2
exp

(
−β~

2|k|2

2m

)
. (4.4.4)

Assumption 4.4.3 (Detailed balance). Let σ(A) denote the ordered spectrum of

A ∈ H2(C). We assume local thermal equilibrium in each band,

σ(SFeq) = σ(S ′F ′eq). (4.4.5)

This assumption implies that spin-conserving momentum scattering occurs at a much

faster timescale than spin-flip scattering, so that equilibrium is established in each

band separately before the whole system reaches equilibrium.

Under the assumption 4.4.3, from (4.4.3) one obtains

s↑(↓)Mβ = s′↑(↓)M′
β =⇒ s↑

s↓
=
s′↑
s′↓

∀k, k′. (4.4.6)

In (4.4.6) we see that the ratio of the scattering rates for spin-up and spin-down elec-

trons must not depend on k. We deduce s↑ = C(t, x)s↓ where C ∈ R+. Therefore,
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the scattering matrix S can be written as

S(t, x, k, k′) = α(t, x, k, k′)P (t, x) (4.4.7)

P (t, x) = σ0 + p(t, x)~Ω(t, x) · ~σ, (4.4.8)

where α ∈ R+ denotes the scattering rate from k to k′ at (t, x) and P : R+ ×Rd
x →

H2(C) is called the polarization matrix. Note that, because of (4.3.11), the direction

of P in spin space has to be ~Ω, the direction of the local magnetization. Moreover,

the parameter p, which satisfies 0 ≤ p(t, x) < 1, represents the spin-polarization of

the scattering rates, whose ratio C(t, x) is now given by

s↑ =
1 + |p(t, x)|
1− |p(t, x)|

s↓. (4.4.9)

Further, by inserting the eigenvalues of S written in (4.4.7) into (4.4.6), one can

define the function φ which is symmetric in k and k′ as

φ(t, x, k, k′) =
α(t, x, k, k′)

Mβ(k′)
=
α(t, x, k′, k)

Mβ(k)
= φ(t, x, k′, k). (4.4.10)

4.4.2 Symmetric collision operator for the Stoner model

In the present paper, we shall perform the diffusion limit with the symmetric

operator Q22 and denote it simply by Q(F ),

Q(F ) := Q22(F ). (4.4.11)

From (4.4.7), (4.4.8) and (4.4.10), one deduces the collision operator (4.4.11) in the

Stoner model,

Q(F ) = P 1/2K(F )P 1/2, (4.4.12)

where

K(F )(k) := K+(F )(k)−K−(F )(k) =Mβ

∫
Rd
k′

φF ′dk′ − Fλ. (4.4.13)

Here, λ =
∫
Rd
k′
φM′

βdk′ denotes the collision frequency.
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4.4.3 Scaled model

The next step is to scale (4.4.1) in a way suitable for performing the diffusion

limit. The main assumption is that the time scales τc and τsf are very different,

τc � τsf =⇒ ε :=

√
τc
τsf
� 1. (4.4.14)

Here ε is a small parameter intended to go to zero. Let v̄ = (βm)−1/2 denote the

thermal velocity of the electrons. The length scale l̄ we choose is the geometric

average of the two occurring mean free paths lc = τcv̄ and lsf = τsf v̄, respectively,

l̄ =
√
lclsf . (4.4.15)

The characteristic time, momentum and energy scales are chosen as

t̄ = τsf k̄ =
mv̄

~
Ē = β−1. (4.4.16)

Applying the scaling (4.4.15)-(4.4.16) to (4.4.1) with the collision operator Qij(F ) =

Q22(F ) = Q(F ), Q(F ) given by (4.4.12), then multiplying by τsf and subsequently

inserting (4.4.14) leads to the diffusion-scaled matrix Boltzmann equation (now in

dimensionless variables t, x and k). The scaling of the pseudo-exchange field ~h =

(λ~Ω +~hso) is crucial for performing the diffusion limit. In this work, we assume the

weak coupling λ/Ē = O(ε2) and |~hso|/Ē = O(ε2). Thus, under the hypothesis of

the Stoner model (4.4.2), the scaled Hamilton matrix (4.3.6) reads
Hε(t, x, k) =

(
|k|2

2
+ V̂ (t, x)

)
σ0 + ε2~̂h(t, x, k) · ~σ

~̂h(t, x, k) : = ~Ω(t, x) + ~̂hso(t, x, k),

(4.4.17)

where we defined V̂ := V/Ē and ~̂hso = ~hso/Ē. Using the scaled Hamilton matrix

(4.4.17) leads to the following scaled version of (4.4.1),
∂tF

ε +
1

ε
T (F ε) + i[F ε, ~̂h · ~σ] =

1

ε2
Q(F ε) +Qsf (F )

F (t = 0, x, k) = Fin(x, k)

Fin(x, k) ∈ H0,+
2 (C) ∀(x, k),

(4.4.18)

where the transport operator T (F ε) is defined by

T (F ε) = k · ∇xF
ε −∇xV̂ · ∇kF

ε (4.4.19)
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and the scaled collision operator Q(F ε) is given by (4.4.12) and (4.4.13) where Mβ

is to be replaced by the scaled Maxwellian,

M(k) =

(
1

2π

)d/2
exp

(
−|k|

2

2

)
. (4.4.20)

The aim of the present work is to go to the limit ε→ 0 in equation (4.4.18) in order

to obtain a macroscopic model, more suitable for numerical simulations. Therefore,

we shall make a Hilbert ansatz F ε = F 0 + εF 1 + ε2F 2 + . . . of the solution and sort

the appearing terms in powers of ε. The obtained equations read

Q(F 0) = 0 (4.4.21)

Q(F 1) = T (F 0) (4.4.22)

Q(F 2) = ∂tF
0 + T (F 1) + i[F 0, ~̂h · ~σ]−Qsf (F

0). (4.4.23)

Let us summarize now the main steps of this work.

4.4.4 Contents of the paper

Section 4.5 deals with the analysis of the generalized matrix Boltzmann equa-

tion (4.4.1). We prove existence and uniqueness of a weak solution. Moreover, it is

shown that the solution F satisfies the maximum principle when the anti-symmetric

collision operator Q21(F ) is used in the Boltzmann equation. Section 4.6 contains

the analysis of the collision operator Q(F ) appearing in (4.4.18) in a proper mathe-

matical framework. In section 4.7 we present the main theorem of this work, namely

the diffusion limit ε → 0 in (4.4.18). Section 6.5 contains some numerical results

of the macroscopic matrix drift-diffusion equations obtained in the diffusion limit.

Some implications for physical applications such as spin-transfer torque devices or

domain wall dynamics in ferromagnets are discussed briefly.

4.5 Existence, positive-definiteness and unique-

ness of a weak solution

Let us first start by studying the matrix Boltzmann equation (4.4.1), in particular

proving the existence, positive-(semi)definiteness and uniqueness of a weak solution.

Without loss of generality the constants ~ and τsf are set to one. Let us introduce

the following Hilbert space:
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Definition 4.5.1 (Hilbert space). By L2
M we denote the following space,

L2
M :=

{
F : R2d → H2(C)

∫
Rdx

∫
Rdk

||F ||22M−1dkdx <∞

}
(4.5.1)

associated with the scalar product and the corresponding norm

(F,G)L2
M

:=

∫
Rdx

∫
Rdk

〈F,G〉2M
−1dkdx ||F ||L2

M
=
√

(F, F )L2
M
, (4.5.2)

where M stands for the scaled Maxwellian (4.4.20).

Assumption 4.5.2. Let h0 ∈ L∞(0, T ;W 2,∞
loc (R2d)), ~h ∈ (L∞loc([0, T ) × R2d))3 and

let us define the transport operator Th0 : D(Th0)→ L2
M by

Th0(F ) := ∇kh0 · ∇xF −∇xh0 · ∇kF (4.5.3)

and where the definition domain and norm are given by

D(Th0) := {F ∈ L2
M Th0(F ) ∈ L2

M} (4.5.4)

||F ||2D(T ) := ||F ||2L2
M

+ ||Th0(F )||2L2
M
. (4.5.5)

Assumption 4.5.3. The scattering matrix S defined in (4.3.10) is chosen in such

a way that (5.2.3) is a well-defined linear operator, Qij : L2
M → L2

M, satisfying

∃ c > 0 s.t. ||Qij(F )||2L2
M
≤ c ||F ||2L2

M
∀F ∈ L2

M. (4.5.6)

An example is given in section 4.6.

Definition 4.5.4 (Weak solution). Let ~ = τsf = 1 and Fin ∈ L2
M. For a fixed

time T > 0, a function F ∈ L2(0, T ;L2
M) is called a weak solution of (4.4.1) if it

satisfies

−
∫ T

0

∫
dx

∫
dk 〈∂tΨ, F 〉2 dt−

∫ T

0

∫
dx

∫
dk 〈Th0(Ψ), F 〉2 dt+ (4.5.7)

+i

∫ T

0

∫
dx

∫
dk
〈

Ψ, [F,~h · ~σ]
〉

2
dt =

∫ T

0

∫
dx

∫
dk 〈Ψ, Qij(F )〉2 dt+

+

∫ T

0

∫
dx

∫
dk 〈Ψ, Qsf (F )〉2 dt+

∫
dx

∫
dk 〈Ψ, Fin〉2

for all test functions Ψ ∈ C1
c ([0, T )× R2d,H2(C)).

Proposition 4.5.5 (Existence/Uniqueness). Let T > 0 be fixed. Under the
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assumptions 4.5.2, 4.5.3 and with Fin ∈ L2
M, the matrix Boltzmann equation (4.4.1)

admits a unique weak solution F ∈ L∞(0, T ;L2
M).

Proof. Let us define the fixed point map

F : L2(0, T ;L2
M)→ L2(0, T ;L2

M) ; F old 7→ F new, (4.5.8)

where F new is a solution of
∂tF

new + Th0(F new) + i[F new,~h · ~σ]−
−Qsf (F

new) +Q−j (F new) = Q+
i (F old)

F new(t = 0, x, k) = Fin(x, k).

(4.5.9)

The first step is to show that F is well-defined. For this take F old ∈ L2(0, T ;L2
M)

and denote by Gi := Q+
i (F old) ∈ L2(0, T ;L2

M). Let us use the decomposition of each

matrix F ∈ H2(C) in the Pauli basis {σ0, σ1, σ2, σ3}, which means F = 1
2
f0 + ~f · ~σ

and where we denote the coefficients by F̃ = (1
2
f0, ~f). Using this decomposition,

system (4.5.9) now writes{
∂tF̃ + Th0(F̃ ) + (A + Dj)F̃ = G̃i

F̃ (t = 0, x, k) = F̃in(x, k).
(4.5.10)

Here, A ∈M4(R) is the 4×4 matrix representation of the operator i[F,~h·~σ]−Qsf (F ),

A =


0 0 0 0

0 −1 −2h3 2h2

0 2h3 −1 −2h1

0 −2h2 2h1 −1

 ,

and Dj ∈M4(R) is the matrix corresponding to the loss term Q−j , c.f. (4.3.15) and

(4.3.16), with Λ ∈ H2(C)⇔ Λ̃ = (λ0, ~λ),

D1 =


λ0 λ1 λ2 λ3

λ1 λ0 0 0

λ2 0 λ0 0

λ3 0 0 λ0

 ,

D2 =


λ0 λ1 λ2 λ3

λ1 r +
λ21
|~λ|2

(λ0 − r) λ1λ2
|~λ|2

(λ0 − r) λ1λ3
|~λ|2

(λ0 − r)
λ2

λ2λ1
|~λ|2

(λ0 − r) r +
λ22
|~λ|2

(λ0 − r) λ2λ3
|~λ|2

(λ0 − r)
λ3

λ3λ1
|~λ|2

(λ0 − r) λ3λ2
|~λ|2

(λ0 − r) r +
λ23
|~λ|2

(λ0 − r)

 ,
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where r = (λ2
0−|~λ|2)1/2. The matrix D2 is obtained straightforwardly from Lemmas

4.2.4 and 4.2.3. Now let Zt,x,k(s) = (X (s),K(s)) denote the characteristics in the

phase space of (4.5.10) starting at the point (x, k) ∈ R2d at time t. Its components

satisfy the following system of equations,
∂X (s)

∂s
= ∇kh0(s,X (s),K(s))

∂K(s)

∂s
= −∇xh0(s,X (s),K(s))

X (t) = x K(t) = k.

(4.5.11)

Defining now, for each fixed (x0, k0) ∈ R2d the function

g(t, x0, k0) := F̃ (t,Z0,x0,k0(t)) , ∀t ∈ [0, T ] ,

one gets the system
d
dt
g(t, x0, k0) =

= − (A + Dj) (t,Z0,x0,k0(t)) g(t, x0, k0) + G̃i(t,Z0,x0,k0(t))

g(0, x0, k0) = F̃in(x0, k0) .

(4.5.12)

Denoting the “evolution matrix” by R(·; s) : R+ → M4(C), which represents for

each 0 ≤ s ≤ T the unique solution of the following homogeneous system
d
dt
R(t; s) = − (A + Dj) (t,Z0,x0,k0(t))R(t; s) , ∀t ∈ [s, T ]

R(s; s) = Id ,

and which satisfies for 0 ≤ s ≤ t ≤ T

||R(t; s)|| ≤ exp

{∫ t

s

||(A + Dj)(τ,Z0,x0,k0(τ)|| dτ
}
≤ C , (4.5.13)

where C > 0 is a constant independent on s, t, x0, k0 and || · || is an operator norm

in L(C4), the solution of (4.5.12) can be written as

g(t, x0, k0) = R(t; 0) F̃in(x0, k0) +
∫ t

0
R(t; s) G̃i(s,Z0,x0,k0(s)) ds . (4.5.14)
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Remarking now that F̃ (t, x, k) = g(t,Zt,x,k(0)), one has the Duhamel formula

F̃ (t, x, k) = R(t; 0) F̃in(Zt,x,k(0))+

+

∫ t

0

R(t; s) G̃i(s,Zt,x,k(s)) ds , ∀(t, x, k) ∈ [0, T ]× R2d , (4.5.15)

which is a solution of (4.5.10) respectively (4.5.9) and therefore of (4.4.1). The goal

is now to prove that the fixed point map F is a contraction, admitting thus a unique

fixed point F ∈ L2([0, T ],L2
M). From equation (4.5.15) we know that a solution

F ∈ L∞(0, T,L2
M) satisfies the following estimate,

||F new(t, ·, ·)||L2
M
≤ C ||Fin||L2

M
+

+ C

∫ t

0

∣∣∣∣Q+
i (F old)(τ, ·, ·)

∣∣∣∣
L2
M

dτ ∀t ∈ [0, T ]. (4.5.16)

Squaring gives the following estimate in the L∞-norm,

||F new||2L∞(0,T ;L2
M) ≤ 2C ||Fin||2L2

M
+ 2TC||Q+

i (F old)||2L2(0,T ;L2
M),

yielding F new ∈ L2(0, T,L2
M). To prove that F is a contraction we introduce the

following norm in L2(0, T,L2
M),

||G||2δ :=

∫ T

0

e−δt ||G(t, ·, ·)||2L2
M

dt ∀G ∈ L2(0, T,L2
M),

where the parameter δ > 0 shall be specified later. We estimate

||F(F old
1 )−F(F old

2 )||2δ = ||F new
1 − F new

2 ||2δ

=

∫ T

0

e−δt ||F new
1 (t)− F new

2 (t)||2L2
M

dt

≤ 2C

∫ T

0

e−δt
∫ t

0

∣∣∣∣Q+
i (F old

1 )(s)−Q+
i (F old

2 )(s)
∣∣∣∣2
L2
M

dsdt

= 2C

∫ T

0

∫ T

s

e−δt
∣∣∣∣Q+

i (F old
1 )(s)−Q+

i (F old
2 )(s)

∣∣∣∣2
L2
M

dtds

≤ 2C

∫ T

0

∣∣∣∣F old
1 (s)− F old

2 (s)
∣∣∣∣2
L2
M

e−δs − e−δT

δ
ds

≤ 2C

δ
||F old

1 − F old
2 ||2δ ,

yielding that the parameter δ can be chosen in such a manner that F is a contraction.

Therefore F admits a unique fixed point in L2([0, T ],L2
M), solution of the matrix

Boltzmann equation (4.4.1).
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Proposition 4.5.6 (Positive-(semi)definiteness). Let T > 0 be fixed. Further

let φ ∈ L∞([0, T ]×R2d) and assume 4.5.2 and 4.5.3. The matrix Boltzmann equation

(4.4.1) with the collision operator Q21(F ) conserves the positive-(semi)definiteness

of a weak solution F ∈ L∞(0, T ;L2
M),

Fin(x, k) ∈ H0,+
2 (C)∀(x, k) ∈ R2d =⇒ F (t, x, k) ∈ H0,+

2 (C)∀(t, x, k) ∈ [0, T ]×R2d.

Proof. To prove this Proposition we shall show that for Fin ∈ H0,+
2 (C), the smallest

eigenvalue of F , denoted f− = 1
2
f0−|~f |, satisfies f−(t, x, k) ≥ 0∀ (t, x, k) ∈ R+×R2d.

For this, let us find the equation of motion satisfied by f−. Starting from

∂tF + Th0(F ) + i[F,~h · ~σ]−Qsf (F ) +Q−j (F ) = Gi (4.5.17)

where we defined Gi(t, x, k) := Q+
i (F old)(t, x, k), Gi(t, x, k) ∈ H2(C)∀(t, x, k) ∈

R+ × R2d, and taking the trace, we get

∂tf0 + Th0(f0) + tr
(
Q−j (F )

)
= tr (Gi) . (4.5.18)

For this we recall:

F =
1

2
f0σ0 + ~f · ~σ ; f0 = tr (F ) (4.5.19)

[F,~h · ~σ] = [~f · ~σ,~h · ~σ] = 2i(~f × ~h) · ~σ. (4.5.20)

Multiplying now equation (4.5.17) with 1
2
~σ, taking the trace and further taking the

scalar product with ~f/|~f | permits to get an equation for |~f |,

∂t|~f |+ Th0(|~f |) + |~f |+ 1

2
tr
(
~σQ−j (F )

)
·
~f

|~f |
=

1

2
tr (~σGi) ·

~f

|~f |
(4.5.21)

Subtracting (4.5.21) from (4.5.18) multiplied by 1
2

gives, for f− = 1
2
f0 − |~f |,

∂tf− + Th0(f−)− |~f |+ Π−(Q−j (F )) = Π−(Gi) (4.5.22)

where the operator Π− : H2(C)→ R is the projection on the smallest eigenvalue f−

of F ∈ H2(C). We shall now apply the maximum principle to (4.5.22). For this, we

rewrite the equation in the form{
∂tf− + Th0(f−) + ωijf− = γij

f−(t = 0, x, k) = f−,in(x, k),
(4.5.23)
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where the coefficients ωij = ωij(t, x, k) ∈ R and γij = γij(t, x, k) ∈ R ∀(t, x, k) ∈
R+ × R2d are computed in Appendix 4.A for i, j ∈ {1, 2}. Now let Zt,x,k(s) =

(X (s),K(s)) denote the characteristics in the phase space of (4.5.23) defined by

(4.5.11). Using the Duhamel formula, we get the following identity for f−

f−(t, x, k) = exp

(
−
∫ t

0

ωij(s,Zt,x,k(s))ds
)
f−,in(Zt,x,k(0))+ (4.5.24)

+

∫ t

0

exp

(
−
∫ t

τ

ωij(s,Zt,x,k(s))ds
)
γij(τ,Zt,x,k(τ))dτ.

We see that f−(t, x, k) ≥ 0∀(t, x, k) ∈ R×R2d is satisfied if γij(t, x, k) ≥ 0∀(t, x, k) ∈
R×R2d. The coefficients γij for the respective choice of the gain and the loss term are

written in (4.A.9)-(4.A.12). Lemma 4.2.5 yields F old ∈ H0,+
2 (C)⇒ G2 = Q+

2 (F old) ∈
H0,+

2 (C) and thus Π−(G2) ≥ 0. However, G1 = Q+
1 (F old) is not necessarily a positive-

(semi)definite matrix if F old ∈ H0,+
2 (C). Additionally, we observe that one needs an

estimate for the term Π−(G2) in (4.A.12) in order to check the maximum principle

for Q22. This shall be done in a forthcoming work. In conclusion, we have

F old(t, x, k) ∈ H0,+
2 (C) =⇒ γ21(t, x, k) ≥ 0 ∀(t, x, k) ∈ R× R2d, (4.5.25)

yielding that the collision operator Q21 guarantees that a solution F of (4.4.1) sat-

isfies the maximum principle.

4.6 Properties of the collision operator Q(F)

In this section we analyze the spin-coherent collision operator Q(F ) occurring in

the scaled Boltzmann equation (4.4.18). By ImQ and KerQ we denote the image

and the kernel of Q. The variables t and x shall be considered as parameters in this

section and will often be omitted.

Definition 4.6.1. By L2
M we denote the following Hilbert space,

L2
M :=

{
F : Rd

k → H2(C)

∫
Rdk

||F ||22M−1dk <∞

}
, (4.6.1)

equipped with the scalar product and the corresponding norm

(F,G)L2M
:=

∫
Rdk

〈F,G〉2M
−1dk ||F ||L2M =

√
(F, F )L2M

, (4.6.2)

where M stands for the scaled Maxwellian (4.4.20).
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Assumption 4.6.2. The polarization matrix P : R+×Rd
x → H+

2 (C), written in the

Pauli basis as P (t, x) = σ0 +p(t, x)~Ω(t, x) ·~σ, is a hermitian, positive-definite matrix

with |~Ω| = 1. Its eigenvalues are p↑ = 1+ |p| and p↓ = 1−|p| where 0 ≤ |p| < 1. The

scattering rate φ ∈ L∞(R2d) is symmetric in k and k′ and is bounded from above

and below,

0 < φ1 ≤ φ(k, k′) ≤ φ2 <∞ ∀k, k′. (4.6.3)

Proposition 4.6.3 (Spin-coherent collision operator). Under assumption 4.6.2,

the spin-coherent collision operator Q : L2
M → L2

M written in (4.4.12), with the

scaled Maxwellian (4.4.20), satisfies the following properties:

i) Q : L2
M → L2

M is a linear, self-adjoint, continuous and non-positive operator.

ii) Conservation of mass and spin:∫
Rdk

Q(F )dk = 0 ∀F ∈ L2
M. (4.6.4)

iii) The kernel of Q has the form

KerQ = {F ∈ L2
M ∃N ∈ H2(C) s.t. F = NM} (4.6.5)

and we have

(KerQ)⊥ =

{
F ∈ L2

M

∫
Rdk

Fdk =

(
0 0

0 0

)}
. (4.6.6)

iv) Let P : L2
M → KerQ be the orthogonal projection operator on KerQ. Then we

have the coercitivity relation

∃ d > 0 s.t. − (Q(F ), F )L2M
≥ d ||F − P(F )||L2M ∀F ∈ L2

M. (4.6.7)

v) The image of Q is closed and we have ImQ = (KerQ)⊥. Further, the equation

Q(F ) = G has a solution in L2
M if and only if G ∈ ImQ. The solution is moreover

unique in (KerQ)⊥.

Proof of Proposition 4.6.3. First we show that Q : L2
M → L2

M is a well defined

operator, i.e. F ∈ L2
M ⇒ Q(F ) ∈ L2

M. For this, we shall show

∃ c > 0 s.t. ||Q(F )||2L2M ≤ c ||F ||2L2M ∀F ∈ L2
M. (4.6.8)
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Using Lemma 4.2.6 and tr (P )2 < 1 one obtains

||Q(F )||2L2M =

∫
Rdk

tr
(
Q2(F )

)
M−1dk ≤

∫
Rdk

tr
(
P 2K2

)
M−1dk (4.6.9)

≤ 2

∫
Rdk

tr (P )2 tr (K)2M−1dk ≤ 2

∫
Rdk

tr (K)2M−1dk.

By using tr (K2) = tr ((K+ −K−)2) ≤ 2tr ((K+)2 + (K−)2), which follows from

(4.2.15), in (4.6.9), then applying the Cauchy-Schwartz inequality and Assumption

4.6.2, one obtains

||Q(F )||2L2M ≤ 4

∫
Rdk

Mtr

(∫
Rd
k′

φF ′dk′

)2
 dk + 4

∫
Rdk

λ2tr
(
F 2
)
M−1dk

≤ 4

∫
Rdk

Mtr

(∫
Rd
k′

φ
F ′√
M′

√
M′dk′

)2
 dk + 4φ2

2

∫
Rdk

tr
(
F 2
)
M−1dk

≤ 4

∫
Rdk

Mtr

(∫
Rd
k′

φ2F
′2

M′dk
′
∫
Rd
k′

M′dk′

)
dk + 4φ2

2

∫
Rdk

tr
(
F 2
)
M−1dk

≤ 4φ2
2

∫
Rd
k′

tr
(
F ′2
)
M′−1

dk′ + 4φ2
2

∫
Rdk

tr
(
F 2
)
M−1dk

= 8φ2
2 ||F ||

2
L2M

,

which proves (4.6.8). Let us continue with the proof of Proposition 4.6.3.

i) The linearity of Q : L2
M → L2

M is obvious. Since we already proved the in-

equality (4.6.8) we know that Q is a bounded operator and therefore continuous.

The self-adjointness follows from

(Q(F ), G)L2M
= tr

∫
Rdk

Q(F )
G

M
dk = tr

∫
Rdk

∫
Rd
k′

φP 1/2(MF ′ −M′F )P 1/2 G

M
dk′dk

= −1

2
tr

∫
Rdk

∫
Rd
k′

φMM′P 1/2

(
F ′

M′ −
F

M

)
P 1/2

(
G′

M′ −
G

M

)
dk′dk.

Lemma 4.2.6 gives the non-positivity of Q : L2
M → L2

M by regarding

(Q(F ), F )L2M
= −1

2

∫
Rdk

∫
Rd
k′

φMM′tr

((
P 1/2

(
F ′

M′ −
F

M

))2
)

dk′dk ≤ 0.

(4.6.10)
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ii) is trivial by integrating (4.4.13) over k.

iii) Assume that F lies in the Kernel of Q, F ∈ KerQ ⇒ Q(F ) = 0

⇒ (Q(F ), F )L2M
= 0. One obtains

(Q(F ), F )L2M
= −1

2

∫
Rdk

∫
Rd
k′

φMM′tr

((
P 1/2

(
F ′

M′ −
F

M

))2
)

dk′dk = 0

∀F ∈ KerQ.

From equation (4.2.17) we deduce that, for any F ∈ KerQ, the above expression is

zero if and only if F ′/M′ = F/M = 0 ∀k, k′, because P is strictly positive definite.

This condition is fulfilled if and only if F = NM with N ∈ H2(C) independent

of k and k′. Conversely, it is verified easily from (4.4.13) that F = NM implies

Q(F ) = 0⇒ F ∈ KerQ.

By definition (KerQ)⊥ =
{
F ∈ L2

M (F,G)L2M
= 0 ∀G ∈ KerQ

}
. This leads

to

(F,NM)L2M
= tr

(
N

∫
Rdk

Fdk

)
= 0 ∀N ∈ H2(C)

=⇒
∫
Rdk

Fdk =

(
0 0

0 0

)
∀F ∈ (KerQ)⊥.

iv) Since Q : L2
M → L2

M is linear and continuous, KerQ ⊂ L2
M is closed. It

follows the existence of an orthogonal projection P : L2
M → KerQ and further

L2
M = KerQ ⊕⊥ (KerQ)⊥ where ⊕⊥ denotes the direct orthogonal sum with re-

spect to (·, ·)L2M . We want to show that

∃ d > 0 s.t. − (Q(F ), F )L2M
≥ d ||F − P(F )||L2M ∀F ∈ L2

M. (4.6.11)

The case F ∈ KerQ is trivial because then Q(F ) = 0 and P(F ) = F . Let

F ∈ (KerQ)⊥. Then we have to show that − (Q(F ), F )L2M
≥ c ||F ||L2M . Equa-

tion (4.6.10) yields

− (Q(F ), F )L2M
=

1

2

∫
Rdk

∫
Rd
k′

φMM′tr

((
P 1/2

(
F ′

M′ −
F

M

))2
)

dk′dk. (4.6.12)

From equation (4.2.17) and the fact that the smallest eigenvalue of P reads p↓ =
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1− |p| (Assumption 4.6.2), we deduce

φtr

((
P 1/2

(
F ′

M′ −
F

M

))2
)
≥ φ1 (1− |p|) tr

((
F ′

M′ −
F

M

)2
)
.

Inserting this relation into (4.6.12) yields

− (Q(F ), F )L2M
≥ 1

2
φ1 (1− |p|) tr

∫
Rdk

∫
Rd
k′

MM′
(
F ′

M′ −
F

M

)2

dk′dk =

=
1

2
φ1 (1− |p|) tr

∫
Rdk

∫
Rd
k′

MM′
(
F ′2

M′2 −
F ′F

M′M
− FF ′

MM′ +
F 2

M2

)
dk′dk =

= φ1 (1− |p|) tr

∫
Rdk

F 2

M
dk,

where the last line follows from (4.6.6).

v) First we show that ImQ is closed. Let Gn := Q(Fn) be a sequence with Fn ∈ L2
M

and Gn ∈ ImQ so that Gn → G ∈ L2
M as n→∞. One has to show that G ∈ ImQ,

i.e. there exists F ∈ L2
M s.t. Q(F ) = G. To any sequence Fn ∈ L2

M one can

construct Hn := Fn − PFn with Q(Hn) = Q(Fn) = Gn. One has Hn ∈ (KerQ)⊥

and therefore the coercitivity relation (4.6.7) yields

− (Q(Hn −Hm), Hn −Hm)L2M
≥ c ||Hn −Hm||2L2M .

We also have

||Q(Hn)−Q(Hm)||L2M ||Hn −Hm||L2M ≥ − (Q(Hn −Hm), Hn −Hm)L2M

and therefore

1

c
||Gn −Gm||L2M ≥ ||Hn −Hm||L2M .

Since {Gn}n∈N is convergent (and thus a Cauchy sequence in L2
M) one obtains that

{Hn}n∈N is a Cauchy sequence in L2
M. But L2

M is complete and therefore Hn →
H ∈ L2

M as n → ∞. Because Q is continuous, Q(Hn) → Q(H) as n → ∞ and we

assumed that Q(Hn) = Gn → G ∈ L2
M. One obtains Q(H) = G with H ∈ L2

M.

We now prove that Q(F ) = G has a unique solution F ∈ (KerQ)⊥. It is clear

that for G ∈ ImQ there exists a solution F ∈ L2
M. Let F ∈ L2

M be such a solution,

then (F −PF ) ∈ (KerQ)⊥ is also a solution. Suppose that there are two solutions



100 CHAPTER 4. DIFFUSION LIMIT OF THE MATRIX-BOLTZMANN EQUATION

Fa, Fb ∈ (KerQ)⊥, Fa 6= Fb such that Q(Fa) = Q(Fb) = G. One obtains

Q(Fa − Fb) = 0 ⇒ Fa − Fb ∈ KerQ ∩ (KerQ)⊥ = {0} ⇒ Fa = Fb.

4.7 Diffusion limit

In this section we shall finally investigate the diffusion limit ε→ 0 of the matrix

Boltzmann equation (4.4.18) in order to obtain a macroscopic model, which is used

in the next section for some numerical experiments.

Theorem 4.7.1 (Diffusion limit). Let Td : H2(C)→ (H2(C))d denote the follow-

ing transport operator:

Td(N) := (−∇xV̂ (x)−∇x)N(x).

Under the assumption 4.6.2, in the limit ε→ 0, the solution F ε of the matrix Boltz-

mann equation (4.4.18) converges weakly to F 0 = N(t, x)M(k) where N(t, x) ∈
H0,+

2 (C) ∀(t, x) ∈ R+×Rd
x and M stands for the scalar Maxwellian (4.4.20). More-

over, N satisfies the following drift-diffusion equation,

∂tN +∇x · J + i
[
N, (~Ω + ~̂gso) · ~σ

]
− 1

2
tr (N)σ0 +N = 0. (4.7.1)

The current density J ∈ (H2(C))d reads

J = DA(N), (4.7.2)

where the diffusion matrix D ∈ Rd×d is given by

D =

∫
Rdk

k ⊗ θ(k)dk, (4.7.3)

with θ(k) ∈ Rd ∀k ∈ Rd
k being the unique solution of∫

Rd
k′

φ(Mθ′ −M′θ)dk′ = −kM (4.7.4)

that satisfies
∫
Rdk
θdk = 0. The matrix A(N)(t, x) ∈ (H2(C))d ∀(t, x) ∈ R+ × Rd

x is

given by

A(N) = P−1/2Td(N)P−1/2. (4.7.5)
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The term ~̂gso in the commutator of (4.7.1) stems from the spin-orbit contribution to

the pseudo-exchange field,

~̂gso(t, x) =

∫
Rdk

M(k)~̂hso(t, x, k)dk. (4.7.6)

Remark 4.7.2. By expressing J given in (4.7.2) in the Pauli basis, J =
(

1
2
j0,~j

)
with j0 ∈ Rd

x and ~j ∈ Rd
x×R3, one obtains a coupling between n0 ∈ R+ and ~n ∈ R3,

the charge- and the spin degree of freedom, respectively. Writing N =
(

1
2
n0, ~n

)
and

for simplicity assuming that ~̂gso = 0, the charge and spin currents read

j0 =
D

1− |p|2
[
Td(n0)− 2pTd(~n) · ~Ω

]
(4.7.7)

~j =
D

1− |p|2
[√

1− |p|2Td(~n) + (1−
√

1− |p|2)(Td(~n) · ~Ω)~Ω− p

2
Td(n0)~Ω

]
. (4.7.8)

The respective parallel and transverse components of the spin-current with respect to

the local magnetization ~Ω read

~j · ~Ω =
D

1− |p|2
[
Td(~n) · ~Ω− p

2
Td(n0)

]
(4.7.9)

~j − (~j · ~Ω)~Ω =
D
√

1− |p|2
1− |p|2

[
Td(~n)− (Td(~n) · ~Ω)~Ω

]
. (4.7.10)

4.7.1 Formal approach

Here, we present a formal proof of Theorem 4.7.1. We consider the equations

obtained from the Hilbert ansatz for F ε written in (4.4.21)-(4.4.23). Proposition

4.6.3 yields

Q(F 0) = 0 =⇒ F 0(t, x, k) = N(t, x)M(k) N : R+ × Rd
x → H2(C).

(4.7.11)

Moreover,∫
Rdk

T (F 0)dk = ∇xN ·
∫
Rdk

kMdk −N∇xV ·
∫
Rdk

∇kMdk = 0. (4.7.12)

Therefore T (F 0) ∈ (KerQ)⊥ = ImQ which gives the existence and uniqueness of

F 1 ∈ (KerQ)⊥ s.t. Q(F 1) = T (F 0). From (4.4.22) one obtains

Q(F 1) = T (F 0) = ∇xN · kM−N∇xV · ∇kM = −Td(N) · kM. (4.7.13)
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To solve (4.7.13) we make the Ansatz F 1 = A(t, x) · θ(k) with A(t, x) ∈ (H2(C))d

and θ(k) ∈ Rd for (t, x, k) ∈ R+ × R2d. We obtain

Q(A · θ) = P 1/2AP 1/2 ·
∫
Rd
k′

φ(Mθ′ −M′θ)dk′. (4.7.14)

From Proposition 4.6.3 we get that∫
Rd
k′

φ(Mθ′ −M′θ)dk′ = −kM (4.7.15)

has a unique solution θ ∈ (KerQ)⊥ that satisfies
∫
Rdk
θ(k)dk = 0. It follows that

F 1 = A · θ is the unique solution of Q(F 1) = −Td(N) · kM if the matrix A satisfies

P 1/2AP 1/2 = Td(N). (4.7.16)

Integration of equation (4.4.23) with respect to k now yields

∂tN +

∫
Rdk

T (A · θ)dk + i[N, (~Ω + ~̂gso) · ~σ]− 1

2
tr (N)σ0 +N = 0, (4.7.17)

where

~̂gso(t, x) =

∫
Rdk

M(k)~̂hso(t, x, k)dk. (4.7.18)

Now we shall define, for k ∈ Rd and θ ∈ Rd, the tensor product k ⊗ θ ∈ Rd×d as

(k ⊗ θ)ij := kiθj ; i, j ∈ {1, . . . , d}. (4.7.19)

Moreover, for A ∈ (H2(C))d, we define A := (A1, . . . , Ad) where the components

Ai ∈ H2(C) for i ∈ {1, . . . , d}. Then we shall use the following notation for the

gradient with respect to u ∈ Rd of A ∈ (H2(C))d, ∇u : (H2(C))d → (H2(C))d×d,

(∇uA)ij := ∂ujAi ; i, j ∈ {1, . . . , d}. (4.7.20)

Finally, for b ∈ Rd×d and C ∈ (H2(C))d×d, b : C ∈ H2(C) denotes the Frobenius

product

b : C =
∑
ij

bijCji ; i, j ∈ {1, . . . , d}. (4.7.21)
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With the preceeding definitions, the integral appearing in equation (4.7.17) can now

be written as ∫
Rdk

T (A · θ)dk =

∫
Rdk

[(k ⊗ θ) : ∇xA− A · ∇kθ∇xV̂ ]dk =

= ∇x ·

[(∫
Rdk

k ⊗ θdk

)
A

]
, (4.7.22)

where ∇kθ ∈ Rd×d is defined by (4.7.20). Equation (4.7.22) leads to the definition of

the diffusion matrix D ∈ Rd×d and the current density J ∈ (H2(C))d, respectively,

D :=

∫
Rdk

k ⊗ θdk (4.7.23)

J := DA, (4.7.24)

where we mean

Ji = (DA)i =
∑
j

DijAj ; i, j ∈ {1, . . . , d} (4.7.25)

for the components Ji ∈ H2(C) of J .

4.8 Numerical results

In this section we present some numerical solutions of the spin-coherent drift-

diffusion equations (4.7.1)-(4.7.6). We will consider the one-dimensional case, d =

1, for different multilayer structures. The multilayers consist of alternating non-

magnetic (N) and ferromagnetic (F ) layers, respectively. AnN -layer is characterized

by ~Ω = 0 (no magnetization) in its domain, thus having no spin polarization of

scattering rates, leading to P = σ0 in (4.7.5). By contrast, the F -layers feature non-

vanishing magnetization, ~Ω 6= 0, and non-vanishing spin polarization of scattering

rates, 0 < p < 1 in (4.4.8). In order to focus on the effects of p 6= 0 in ferromangets,

we do not take into account spin-orbit couplings and assume ~̂gso = 0. Moreover, to

solve for θ in (4.7.4), we assume that φ = 1/τc = const. is the same in every layer.

This leads to θ = τckM and from (4.7.3), after rescaling, one obtains the diffusion

coefficient

D =
τckBT

m
, (4.8.1)
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where T is the temperature of the electron system and kB stands for the Boltz-

mann constant. Therefore, the rescaled, one-dimensional version of (4.7.1)-(4.7.6)

we consider now reads
∂tN + D∂xA(N) + i

γ

~

[
N, ~Ω · ~σ

]
− 1

τsf

(
1

2
tr (N)σ0 −N

)
= 0

A(N) = P−1/2

(
−∂xV
kBT

N − ∂xN
)
P−1/2.

(4.8.2)

In the following let us denote η =
√

1− |p|2. Applying Remark 4.7.2 to (4.8.2), the

system of equations to be solved becomes

∂tn0 + ∂xj0 = 0

∂t~n+ ∂x~j −
2γ

~
~n× ~Ω +

1

τsf
~n = 0

j0 =
D
η2

[
−∂xV
kBT

n0 − ∂xn0 − 2p

(
−∂xV
kBT

~n− ∂x~n
)
· ~Ω
]

~j =
D
η2

{
η

(
−∂xV
kBT

~n− ∂x~n
)

+ (1− η)

[(
−∂xV
kBT

~n− ∂x~n
)
· ~Ω
]
~Ω−

− p

2

(
−∂xV
kBT

n0 − ∂xn0

)
~Ω

}
,

(4.8.3)

where n0 is the electron charge density and ~n is the non-equilibrium spin density.

Initial and boundary conditions are specified for each of the investigated problems

separately in the respective subsections. At interfaces between domains with differ-

ent sets of parameters we require continuity of the densities n0 respectively ~n and

of the currents j0 respectively ~j. We use a standard Crank-Nicolson finite difference

scheme to solve the system (4.8.3) in a three-layer and in a five-layer structure. In

addition, charge and spin transport through a magnetic domain wall, which is es-

sentially a rapid change of the direction of magnetization ~Ω over some nanometers,

is investigated. For all simulations, in the equations (4.8.3), we set D = 10−3 m2s−1,

kBT = 0.025 eV and τsf = 10−12 s. Moreover, we set 2γτsf/~ = 4.0 for the simula-

tions of the five-layer structure, c.f. section 4.8.2, and 2γτsf/~ = 20.0 for the domain

wall simulations, c.f. section 4.8.3. These parameter values are in the range of the

parameters cited in [17]. The injected charge density is always n0 = 1.0.

4.8.1 Three-layer system: N/F/N

The first system we investigate is composed of three layers, each of which has a

thickness of 400 nm, thus the total thickness is L = 1200 nm. The structure is non-
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metal/ferromagnet/non-metal where the interfaces are located at x1 = 400 nm and

x2 = 800 nm. In the three different domains, we choose the following parameters:

x ∈ (0, x1] : ~Ω(x) =

 0

0

0

 , p(x) = 0, (4.8.4)

x ∈ (x1, x2] : ~Ω(x) =

 0

0

1

 , p(x) = const., (4.8.5)

x ∈ (x2, L] : ~Ω(x) =

 0

0

0

 , p(x) = 0. (4.8.6)

We apply a constant electric field that is given by −∆V/L. The system (4.8.3) is

subjected to the following initial and boundary conditions:

n0(t = 0, x) = 1.0 ∀x ∈ (0, L]

~n(t = 0, x) = 0 ∀x ∈ (0, L]

n0(t, x = 0) = 1.0 ∀t
n0(t, x = L) = 1.0 ∀t

∂x~n(t, x)
∣∣∣
x=0

= 0 ∀t

∂x~n(t, x)
∣∣∣
x=L

= 0 ∀t.

(4.8.7)

The system (4.8.3), (4.8.7) is solved on an equally spaced grid with 50 points in

each layer. The time step was set to 0.005 τsf . Grid spacing and time step were

chosen such that further refinement did not change the results. We conducted two

series of simulations. The results, representing steady state solutions obtained after

running the system (4.8.3) for long enough time, are depicted in Figures 4.1 and 4.2,

respectively. In the first series, we set ∆V = −1.0 V and vary the parameter p of the

scattering polarization in the ferromagnet. The discontinuity of p (and ~Ω, respec-

tively) at the interfaces between the magnetic/non-magnetic layers acts as a source

of non-equilibrium spin-polarization in z-direction as soon as a voltage is applied.

This so-called ’spin injection’ is a well known property of magnetic/non-magnetic

multilayers [26]. In our new spin-coherent model, it arises from the particular form

of the charge current density j0 in (4.8.3). Consider the N/F interface at x = x1 in

Figure 4.1. Under an applied bias ∂xV < 0, when there is no initial spin polarization

of the current (~n = 0) and n0(x) = const. ∀x, the ’inflow’ j−0 (x1) into the interface

from x < x1 is smaller than the ’outflow’ j+
0 (x1) into x > x1 because η2 = 1−p2 < 1



106 CHAPTER 4. DIFFUSION LIMIT OF THE MATRIX-BOLTZMANN EQUATION

when p > 0. In steady state we have j−0 (x1) = j+
0 (x1), thus the discontinuity of η

has been compensated by a decrease of the charge density n0 in the ferromagnet,

which, by the equation for the spin current ~j in (4.8.3), leads to a non-equilibrium

spin polarization ~n at x = x1. This is a rather simplified yet intuitive explanation

of what happens at the interfaces, however, the actual coupling between n0 and ~n is

more complicated and is only obtained from the self-consistent solution of (4.8.3).

The broadening of the peaks of ~n = (0, 0, n3) at the interfaces is due to spin diffusion,

that is, the created spin density decreases exponentially away from the interfaces on

the scale of the spin diffusion length, which is of the order of 100 nm. The peaks at

the interfaces are asymmetric because the electric field drives the electrons carrying

the non-equilibrium spin polarization from left to right. Curves with higher peaks

of n3 correspond to larger values of p and steeper slopes of n0 at x = x1. Note that

in the domain x > x2, one finds a significant reduction of the charge density n0

for large scattering polarizations, 0.6 < p < 1. In the second series of simulations,

Figure 4.1: Simulated charge density n0−1 and non-equilibrium spin density ~n = (0, 0, n3)
in a three-layer structure (non-magnet/ferromagnet/non-magnet) with applied voltage
∆V = −1.0 V for different values of the scattering polarization parameter p in the fer-
romagnet. The magnetization in the F -layer is in the z-direction, ~Ω = (0, 0, 1).

depicted in Figure 4.2, we set p = 0.33 in the ferromagnetic domain and vary the

applied voltage ∆V . Again, curves with higher peaks of n3 correspond to larger

values of ∆V and steeper slopes of n0 at x = x1. With increasing applied bias,

the peaks become more and more asymmetric and the decay length (spin-diffusion

length) of n3 becomes larger.
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4.8.2 Five-layer system: N/F1/N/F2/N

The second system under consideration is a five-layer system with total thickness

L = 900 nm. Sandwiched between two non-magnetic contact layers (200 nm each),

we put two magnetic layers with a thickness of 200 nm and different directions of

magnetization ~Ω1 and ~Ω2, respectively, which are separated by a thin non-magnetic

spacer layer of 50 nm. We have interfaces at x1 = 200 nm, x2 = 400 nm, x3 = 450 nm

and x4 = 650 nm. The five domains have the following properties:

x ∈ (0, x1] : ~Ω(x) =

 0

0

0

 , p(x) = 0, (4.8.8)

x ∈ (x1, x2] : ~Ω1(x) =

 0

0

1

 , p1(x) = const., (4.8.9)

x ∈ (x2, x3] : ~Ω(x) =

 0

0

0

 , p(x) = 0, (4.8.10)

x ∈ (x3, x4] : ~Ω2(x) =

 0

1

0

 , p2(x) = const., (4.8.11)

x ∈ (x4, L] : ~Ω(x) =

 0

0

0

 , p(x) = 0. (4.8.12)

The system (4.8.3), (4.8.7) is solved on a grid with 30 points in the 200 nm layers

and 10 points in the 50 nm spacer layer. The time step was set to 0.01 τsf . Grid

spacing and time step were chosen such that further refinement did not change the

results. The applied voltage is ∆V = −1.0 V and the scattering polarization in

both magnetic layers is p = p1 = p2 = 0.33. The steady state of this system is

depicted in Figure 4.3. As in the three-layer case, c.f. section 4.8.1, the interfaces

x1-x4 act as sources of non-equilibrium spin polarization. In the 5-layer setup, the

F1-layer leads to a spin polarization in z-direction whereas the F2-layer causes a

spin polarization in y-direction. Moreover, the non-magnetic spacer layer is thin

enough such that a non-vanishing component of ~n perpendicular to ~Ω2 arrives at the

interface x3 = 450 nm. The perpendicular component then rotates around ~Ω2 and

decays on a length scale that is determined by the strength of the exchange coupling

2γτsf/~ which was set to 4.0 in this simulation.
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Figure 4.2: Simulated charge density n0−1 and non-equilibrium spin density ~n = (0, 0, n3)
in a three-layer structure (non-magnet/ferromagnet/non-magnet) for different applied
voltages ∆V . The scattering polarization in the ferromagnet is p = 0.33, the magne-
tization in the F -layer points in the z-direction, ~Ω = (0, 0, 1).

Figure 4.3: Simulated charge density n0 − 1 and non-equilibrium spin den-
sity ~n = (n1, n2, n3) in a five-layer structure (non-magnet/ferromagnet/non-
magnet/ferromagnet/non-magnet) with applied voltage ∆V = −1.0 V. The scattering
polarization in the two ferromagnetic layers is p = 0.33. In the F1-layer the magnetization
points in the z-direction, ~Ω1 = (0, 0, 1), whereas in the F2-layer the magnetization points
in the y-direction, ~Ω2 = (0, 1, 0).
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A perpendicular component of the spin density with respect to the local mag-

netization can lead to magnetization dynamics if the current density j0 is large

enough [37, 38, 39]. This so-called ’spin-transfer torque’ is the subject of ongo-

ing research in the field of microelectronics [6, 7]. The spin-coherent drift-diffusion

model developed in this work, when coupled to an equation of motion for ~Ω (e.g.

the Landau-Lifshitz equation [40]), is a possible approach towards a better under-

standing of these processes. As is demonstrated in Figure 4.3, our model has the

advantage that it accounts for creation of non-equilibrium spin polarization at each

interface in a multilayer structure.

Figure 4.4: Simulated charge density n0 − 1 and the parallel and perpendicular compo-
nents, n‖ and n⊥, respectively, of the non-equilibrium spin density ~n with respect to the

local magnetization ~Ω(x) for different values of the scattering polarization parameter p.
The respective magnetizations in the two F -domains are constant and anti-parallel and
a domain wall was realized in the FDW -domain, where ~Ω(x) is given by (4.8.14). The
applied voltage is ∆V = −0.2 V.

4.8.3 Magnetic domain wall

The third system we consider is a ferromagnet with a thickness L = 120 nm. At

x = 0, the magnetization ~Ω points in the +z-direction whereas at x = L it points

in the −z-direction. In the center of the ferromagnet, between x1 = 50 nm and

x2 = 70 nm, we place a small region FDW in which the magnetization ~Ω rotates from

+z to −z without acquiring an x−component, ~Ω1(x) = 0 ∀x ∈ (x1, x2]. The region
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FDW thus models a magnetic Bloch (domain) wall [8]. More precisely, we have:

x ∈ (0, x1] : ~Ω(x) =

 0

0

1

 , p(x) = const., (4.8.13)

x ∈ (x1, x2] : ~Ω(x) =


0

sin
[
π(x−x1)
x2−x1

]
cos
[
π(x−x1)
x2−x1

]
 , p(x) = const., (4.8.14)

x ∈ (x2, L] : ~Ω(x) =

 0

0

−1

 , p(x) = const. (4.8.15)

The scattering polarization is assumed to be the same in all domains. In this section,

we solve the system (4.8.3), (4.8.7) but associated with von Neumann conditions for

the charge density n0 at x = L,

∂xn0(t, x)
∣∣∣
x=L

= 0 ∀t. (4.8.16)

The von Neumann condition was chosen so that the electron charge density can

evolve freely at the right boundary of the domain. The grid has 40 points in each

layer and the time step was set to τsf ·10−5. Grid spacing and time step were chosen

such that further refinement did not change the results. We conducted two series of

simulations, the results being depicted in Figures 4.4 and 4.5, respectively. We plot

the respective parallel and perpendicular components of ~n with respect to the local

magnetization ~Ω, given by n‖ = ~n ·~Ω and n⊥ = |~n−(~n ·~Ω)~Ω|. Figure 4.4 displays the

case where ∆V = −0.2 V and the scattering polarization p is modulated between

0.1 and 0.7. For increasing p, one observes increasing n⊥ and stronger variations of

n‖ in the FDW domain. Moreover, large p leads to a significant difference between

the charge densities on the two sides of the domain wall.

In a second series, we set p = 0.2 and modulate the applied voltage ∆V between

−0.1 V and −1.0 V. The obtained results are displayed in Figure 4.5. Similar to

the previous case, larger applied voltages lead to larger values of n⊥ and stronger

variations of n‖ in the FDW domain. However, at ∆V ≈ −0.7 V, we observe a

saturation of the maximum value of the perpendicular component n⊥, hence it stops

increasing when the applied bias is increased further. In contrast, n‖ and the offset of

n0 between the left and the right side of the domain wall still increase, but at a lower

rate. This can be seen from the two curves for ∆V = −0.75 V and ∆V = −1.0 V. To

this point, we have not yet extracted the explanation for this behavior from (4.8.3).
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Figure 4.5: Simulated charge density n0 − 1 and the parallel and perpendicular compo-
nents, n‖ and n⊥, respectively, of the non-equilibrium spin density ~n with respect to the

local magnetization ~Ω(x) for different applied voltages ∆V . The respective magnetizations
in the two F -domains are constant and anti-parallel and a domain wall was realized in the
FDW -domain, where ~Ω(x) is given by (4.8.14). The scattering polarization is p = 0.2.

4.9 Conclusions

In the present work, the authors introduced four spin-coherent collision operators

that yield a mathematically well-posed matrix Boltzmann equation, describing the

spin-coherent electron transport in ferromagnetic structures and which incorporates

spin-dependent scattering rates. Existence and uniqueness of a weak solution to this

equation were shown in Proposition 4.5.5. Moreover, the maximum principle was

verified for the anti-symmetric collision operator Q21 in Proposition 4.5.6. Assuming

parabolic spin bands with momentum-independent band gap (Stoner model), further

assuming Boltzmann statistics and applying the condition of detailed balance, the

symmetric collision operator Q22 was investigated from a rigorous mathematical

point of view (Proposition 4.6.3). We then performed the diffusion limit in the

scaled matrix Boltzmann equation, the small parameter ε2 being the ratio of the

respective time scales of spin conserving and spin altering collision processes. The

obtained spin-coherent drift-diffusion equation (Theorem 4.7.1) contains a coupling

between the charge- and the spin degree of freedom of the electron system that is



112 CHAPTER 4. DIFFUSION LIMIT OF THE MATRIX-BOLTZMANN EQUATION

linear in the polarization p of the scattering rates. The new macroscopic model

was applied to simulate spin-polarized transport in three different one-dimensional

structures, namely a three- and a five-layer magnetic/non-magnetic multilayer and

a magnetic domain wall. The simulations show that our model can improve the

understanding of spin-polarized electron transport, which is important in spintronic

research fields such as spin-transfer torque devices and current-induced domain wall

motion.

4.A Computation of the coefficients ωij and γij

Here, we shall compute the coefficients ωij respectively γij, i, j ∈ {1, 2}, appear-

ing in equation (4.5.23) for the eigenvalue f− of the distribution matrix F . Starting

from (4.5.22) and looking at (4.5.18) and (4.5.21) we deduce

Π−(Q−j (F )) =
1

2
tr
(
Q−j (F )

)
− 1

2
tr
(
~σQ−j (F )

)
·
~f

|~f |
. (4.A.1)

The loss terms Q−j (F ) are defined in (4.3.15)-(4.3.16). We recall that Λ =
∫
Sdk′,

Λ = λ0σ0 + ~λ · ~σ and F = 1
2
f0σ0 + ~f · ~σ in the Pauli basis. From Lemma 4.2.4 we

deduce

1

2
tr
(
Q−1 (F )

)
=

1

2
tr
(
Q−2 (F )

)
=

1

2
λ0f0 + ~λ · ~f. (4.A.2)

Moreover, we have

1

2
tr
(
~σQ−1 (F )

)
·
~f

|~f |
= λ0|~f |+

1

2
f0
~λ ·

~f

|~f |
(4.A.3)

1

2
tr
(
~σQ−2 (F )

)
·
~f

|~f |
=

1

2
f0
~λ ·

~f

|~f |
+ |~f |

∫
Rd
k′

√
s2

0 − |~s|2dk′+ (4.A.4)

+ |~f |
∫
Rd
k′

(
s0 −

√
s2

0 − |~s|2
)( ~f

|~f |
· ~s
|~s|

)2

dk′.

Let us introduce the angle η between ~λ and ~f via

cos(η) =
~λ

|~λ|
·
~f

|~f |
=

~s

|~s|
·
~f

|~f |
, (4.A.5)

where the second equality is a consequence of (4.3.11), stating that the direction

~s/|~s| of S must not depend on k′. Then, inserting (4.A.2) and (4.A.3) respectively



(4.A.4) into (4.A.1), a straightforward calculation yields

Π−(Q−1 (F )) = f−

(
λ0 − |~λ| cos(η)

)
(4.A.6)

Π−(Q−2 (F )) = f−

(
λ0 − |~λ| cos(η)

)
+ |~f | sin2(η)

∫
Rd
k′

(
s0 −

√
s2

0 − |~s|2
)

dk′

(4.A.7)

Inserting (4.A.6) respectively (4.A.7) into (4.5.22) we obtain the coefficients ωij and

γij, i, j ∈ {1, 2}, defined in (4.5.23),

ω11 = ω12 = ω21 = ω22 =
1

τc

(
λ0 − |~λ| cos(η)

)
(4.A.8)

γ11 =
1

τc
Π−(G1) +

1

τsf
|~f | (4.A.9)

γ21 =
1

τc
Π−(G2) +

1

τsf
|~f | (4.A.10)

γ12 =
1

τc
Π−(G1) + |~f |

(
1

τsf
− 1

τc
sin2(η)

∫
Rd
k′

(
s0 −

√
s2

0 − |~s|2
)

dk′

)
(4.A.11)

γ22 =
1

τc
Π−(G2) + |~f |

(
1

τsf
− 1

τc
sin2(η)

∫
Rd
k′

(
s0 −

√
s2

0 − |~s|2
)

dk′

)
. (4.A.12)
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Chapter 5

Non-Markovian Quantum

Dynamics from Environmental

Relaxation

S. Possanner and B. A. Stickler,

published in Physical Review A, Vol. 85, Nr. 6, p. 062115, 2012

Abstract. We consider the dynamics of composite quantum systems in the partic-

ular case that the state operator relaxes towards the Born approximation. For this

we augment the von Neumann equation by a relaxation operator imposing a finite

relaxation time τr. Under the premise that the relaxation is the dominant process

we obtain a hierarchy of non-Markovian master equations. The latter arises from

an expansion of the total state operator in powers of the relaxation time τr. In the

Born-Markov limit τr → 0 the Lindblad master equation is recovered. Higher or-

der contributions enable a systematic treatment of correlations and non-Markovian

dynamics in a recursive manner.
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5.1 Introduction

The notion of quantum dissipation and decoherence arising from system-environment

coupling is becoming increasingly important in many branches of physics such as

quantum computation [1], quantum optics [2], or semiconductor spintronics [3]. The

progress in atomic and molecular interferometry made over the last decade [4, 5, 6]

enables the testing of these important concepts of the theory of open quantum sys-

tems [7, 8, 9]. The latter is the most prominent tool for tackling such fundamental

problems as the collapse of the wave function during measurement [10, 11] or the

transition between the micro- and the macroscopic world in general [12].

The peculiar nature of quantum states (coherent, delocalized, correlated, entan-

gled) makes the treatment of non-equilibrium processes considerably more compli-

cated than in the classical case. The usual approach is to start from a closed quantum

system consisting of interacting degrees of freedom A and B. The state operator ρ

of the composite system AB undergoes unitary (Hamiltonian) time evolution,

∂tρ = −i[H, ρ] , (5.1.1)

where H denotes the system’s Hamiltonian, the square brackets [·, ·] stand for the

commutator and we set the reduced Planck constant ~ = 1. In the composite state

space H = HA ⊗HB, the most general form of the Hamiltonian H reads

H = HA ⊗ 1B + 1A ⊗HB +HI , (5.1.2)

where the operator subscript A(B) indicates an operator acting inHA (HB), 1A (1B)

denotes the identity and the operator HI accounts for the interactions between A

and B. Taking the partial trace, trB (·), over the subsystem B in the von Neumann

equation (5.1.1) yields the exact equation of motion for the “relevant” degrees of

freedom A, i.e.

∂tρA = −i[HA, ρA]− trB (i[HI , ρ]) , (5.1.3)

where we introduced the reduced state operator ρA via

ρA := trB (ρ) . (5.1.4)

In general, the reduced equation of motion (5.1.3) is an integro-differential equation,

featuring memory effects in B that cause the second term on the right-hand-side to

be non-local in time. It describes the subsystem A as an open quantum system that

exchanges energy with the environment B. In the special case of Markovian time
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evolution, memory effects become negligible and equation (5.1.3) takes on the form

∂tρA = LρA . (5.1.5)

Here, the operator L is the infinitesimal generator of a dynamical semigroup [13, 14,

15]. In its most general form L is given by [16]

LρA = −i[Heff
A , ρA]

+
K−1∑
k=0

Γk

(
L†kρALk −

1

2
L†kLkρA −

1

2
ρAL

†
kLk

)
.

(5.1.6)

where Heff
A is an effective Hamiltonian, Γk ≥ 0 are transition rates (channels) and

Lk is an operator basis in the K-dimensional space 1 of hermitian operators in HA.

Equation (5.1.5) is commonly referred to as a master equation of Lindblad form, or

Lindblad master equation. The second term on the right hand side of the generator

(5.1.6) may account for quantum decoherence as well as dissipation in A due to

interactions with its environment B. Master equations of the Lindblad form (5.1.5)

are frequently encountered in various fields of quantum physics, in particular in the

context of quantum Brownian motion or quantum optics [18, 19, 20, 21, 22, 23, 24,

25, 26].

The Lindblad master equation is obtained by performing Markovian approxima-

tions to the exact dynamics (5.1.3). This usually means that a typical parameter

α of the composite system such as the correlation time, mass ratio or timescale

ratio, tends towards zero or infinity [7, 8, 9]. The dynamics (5.1.5) are, therefore,

only exact in the respective limiting case, which might not necessarily be a good

approximation of the physical system considered. It is, thus, desirable to study the

corrections to the Markovian case (5.1.5) which arise when the limiting parameter

mentioned above is small, but not zero (or large, but still finite). One expects to

obtain non-Markovian corrections which account for correlations between system

A and environment B. The enhanced model will be more difficult to treat, but it

should still be much less involved than a full treatment of the composite system AB.

Over the last decade, considerable effort has been put into the derivation of

non-Markovian corrections to the Lindblad master equation (5.1.5) [27, 28, 29, 30,

31, 32, 33, 34]. Two well-established approaches proved to be particularly fruitful,

i.e. the projection operator technique and the time-convolutionless projection op-

erator method. The projection operator technique results in the Nakajima-Zwanzig

equation [35, 36, 37] which is an exact equation for open quantum systems and its

1To the knowledge of the authors, rigorous proofs for the existence of (5.1.6) in the case K =∞
and for unbounded Hamiltonians H are still lacking.
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solution is comparably difficult to the solution of Eq. (5.1.1). A series expansion

of the Nakajima-Zwanzig integral kernel yields non-Markovian evolution equations

which are non-local in time [7]. This drawback is remedied by elimination of the

non-locality in time with the help of a back propagator as developed by Shibata et

al. [38, 39]. The resulting equation is referred to as the time-convolutionless master

equation and it provides the means for the derivation of time-local, non-Markovian

contributions to Eq. (5.1.5) in ascending orders of the coupling strength between

degrees of freedom A and B.

It might be interesting to note that the projection techniques described above

have been motivated by a technical point of view. The aim is to eliminate from the

von Neumann equation the irrelevant degrees of freedom B without employing any

further assumptions on the dynamics of the physical system. Subsystem B is usually

described by an arbitrary reference state χB, which is why a physical interpretation

of the results obtained appears to be difficult. Nevertheless, these methods are exact,

but difficult to treat in the general case.

In this work we present an alternative approach towards non-Markovian contri-

butions to Eq. (5.1.5). This approach is based on a particular physical picture and

is closely related to the diffusion limit of the linear Boltzmann equation in classical

kinetic theory [40, 41, 42]. In our approach, the non-Markovianity arises from the

relaxation of parts of the environment towards an equilibrium state χB on a finite

timescale τr. By explicitly accounting for this relaxation process by means of a re-

laxation operator Q in Eq. (5.1.1), we use a Hilbert expansion technique to derive

a hierarchy of master equations for subsystem A. In the limit τr → 0, we retrieve

the Lindblad master equation (5.1.5). It has to be emphasized that by introduc-

ing the operator Q we depart from the exact description of the system’s dynamics.

However, this approach as well as the resulting equations of motion follow a clear

physical picture and, therefore, allow for an easy interpretation.

The paper is organized as follows. In section 6.2 we specify the physical picture of

our approach. Moreover, we introduce the relaxation operator Q and a scaled version

of the resulting equation of motion for the state operator ρ of the composite system

AB. In section 5.3 we employ a Hilbert expansion of ρ and derive a hierarchy of

master equations for the reduced state operator ρA. Section 5.4 contains a discussion

of the results obtained. The paper is summarized in section 5.5 and a short outlook

for possible future work is presented. A mathematical analysis of the relaxation

operator Q as well as the proof of existence and uniqueness of solutions of the

equation of motion for ρ can be found in the appendices 5.A and 5.B, respectively.

In App. C we explicitly compute the second order contribution to the hierarchy of

master equations obtained.
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5.2 Physical model and scaling

A common approximation to the state operator ρ of a composite system AB in

which subsystem A obeys Markovian dynamics is

ρ(t) = ρA(t)⊗ χB , (5.2.1)

where ρA(t) is the solution of Eq. (5.1.5) and χB is some reference state in the

environment B. This approximation is known as the Born approximation. It clearly

depends on the physical system whether or not the state (5.2.1) represents a good

approximation to the exact solution of Eq. (5.1.1). For systems where this is not

the case, it might be desirable to have corrections to the Born approximation that

can be expanded in orders of a typical parameter α which is zero in the Markovian

limit. In order to achieve this, let us regard the Born approximation as a sort of

equilibrium state of the composite system AB and let τr denote the corresponding

relaxation time. We shall explicitly account for the relaxation of ρ towards the Born

approximation by rewriting the equation of motion (5.1.1) as

∂tρ = −i[H, ρ] +
1

τr
Q(ρ) . (5.2.2)

Here we introduced the relaxation operator Q as

Q(ρ) := trB (ρ)⊗ χB − ρ , (5.2.3)

where trB (χB) = 1 and we remark that

trB (Q(ρ)) = 0 ∀ ρ . (5.2.4)

In what follows the limit τr → 0 in Eq. (5.2.2) will be denoted as the Born-Markov

limit. Hence, taking in Eq. (5.2.2) the partial traces over degrees of freedom A and

B, respectively, yields

∂tρA = −i[HA, ρA]− trB (i[HI , ρ]) , (5.2.5)

∂tρB = −i[HB, ρB]− trA (i[HI , ρ]) +
χB − ρB

τr
, (5.2.6)

where trA (ρ) = ρB is the reduced state operator of the environment B. Although

Eqs. (5.1.3) and (5.2.5) might seem to be identical on a first glance, the total state

operator ρ will be different in these two equations, because of the introduction of the

relaxation operator Q in Eq. (5.2.2). It depends on the particular situation whether
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Figure 5.1: (Color online) Schematic representation of an observed “System” A that
interacts with an “Environment” that consists of two parts B and C, respectively.
Subsystem B interacts with A on a time scale τI . Moreover, on a timescale τr,
B may exchange energy (information) with subsystem C, which is assumed to be
completely isolated from the observed system A.

the Hamiltonian HB contains interactions within the environment B or whether

these interactions have been absorbed into the relaxation term Eq. (5.2.6).

We point out that Eq. (5.2.2) does not conserve the total energy of the composite

system AB, which is, consequently, not a closed quantum system. Eq. (5.2.2) rather

resembles a configuration in which subsystem B is coupled to a third subsystem C,

which can be regarded as isolated from A. This situation is sketched in Figure 5.1.

Hence, the environment of A is a composite system BC. In this case Eq. (5.2.2)

results from tracing out the degrees of freedom C from the total equation of motion

for the composite system ABC.

The remaining effect of subsystem C is that it relaxes the state operator ρB

to a particular equilibrium state χB on a timescale τr. In the case that C is a

reservoir, i.e. features an infinite number of degrees of freedom, χB could be the

minimizer of a certain entropy functional in B. For instance, system A could contain

the conduction band electrons in a semiconductor, whereas system B describes the

lattice phonons coupled to an external heat bath C. On the other hand, one could

imagine that a probe C prepares the state χB with a mean frequency 1/τr. Such

a scenario could be realized by two interacting spins, where one of the two spins

is constantly monitored and prepared to be in state χB. Another possible scenario

could be a composite quantum system, where subsystem A interacts solely with a

part of the total environment due to short range iteractions.

If the state χB is a pure state the corresponding state of the composite system

AB must be uncorrelated [43], i.e. of the form (5.2.1). In writing Eq. (5.2.2),

we presuppose that even for a mixed state χB, the coupling of C to B leads to

decorrelations in AB. Thus, correlations between A and B due to the interaction

HI are gradually destroyed on a timescale τr by the coupling of B to C.
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The aim of the following sections is to find approximate solutions to Eq. (5.2.2)

in cases where the time scale τr is small compared to all other relevant timescales

of the system. For technical reasons which will become clear in the next section, let

us introduce the mean-field operator Hmf
A acting in HA,

Hmf
A := trB (HIχB) . (5.2.7)

We define furthermore,

H̃I := HI −Hmf
A ⊗ 1B ,

H̃A := HA +Hmf
A ,

H̃AB := H̃A ⊗ 1B + 1A ⊗HB ,

(5.2.8)

and rewrite Eq. (5.2.2) with the help of the definitions (5.2.8):

∂tρ = −i[H̃AB, ρ]− i[H̃I , ρ] +
1

τr
Q(ρ) . (5.2.9)

As a next step we present a scaled version of Eq. (5.2.9) which is appropriately

suited for the Born-Markov limit. For this suppose one can define a timescale τAB

induced by H̃AB as well as a timescale τI induced by H̃I . The former timescale is

a characteristic for the evolution of the isolated, mean-field-corrected subsystems A

and B, respectively, whereas the latter is a characteristic for the mean-field-corrected

interaction between A and B. The introduction of a typical parameter α� 1 via

τI
τAB

= O(α) ,
τr
τAB

= O(α2) , (5.2.10)

and of the timescale τAB to describe the dynamics,

t′ =
t

τAB
, (5.2.11)

yields

∂t′ρ = −i[H̃AB, ρ]− i

α
[H̃I , ρ] +

1

α2
Q(ρ) . (5.2.12)

Equation (5.2.12) corresponds to the equation of motion (5.2.9) for the composite

system AB in the Born-Markov scaling. We remark that since α� 1, Eq. (5.2.12)

implies strong interactions between system A and environment B while the relax-

ation towards the Born approximation is the dominant process.
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5.3 Derivation of master equations

5.3.1 Hilbert expansion of the state operator

It is the aim of this section to search for an approximate solution ρ(α)(t′) of Eq.

(5.2.12) with initial condition ρ(α)(0) = ρ
(α)
i . For small values of α this approximate

solution is supposed to be close to the exact solution ρ. In what follows we write

t instead of t′ for the scaled time (5.2.11). Thus, we consider the following initial

value problem,

∂tρ
(α) = −i[H̃AB, ρ

(α)]− i

α
[H̃I , ρ

(α)] +
1

α2
Q(ρ(α)) ,

ρ(α)(0) = ρ
(α)
i . (5.3.1)

The first question of interest is whether or not the initial value problem (5.3.1) has

a unique solution. The proof of existence and uniqueness of a solution ρ(α)(t) on a

finite time interval [0, T ] to the initial value problem (5.3.1) is given in App. 5.B.

Let us proceed with the approximate solution of Eq. (5.3.1). We shall employ

a series expansion of the solution in powers of α, thus assuming ρ(α) to be analytic

in α within a certain radius around α = 0. By inserting the Hilbert expansion into

Eq. (5.3.1),

ρ(α) =
∞∑
n=0

αnρn , (5.3.2)

subsequently multiplying by α2 and sorting the terms in orders of α, one obtains

the following system of equations

Q(ρ0) = 0 , (5.3.3a)

Q(ρ1) = i[H̃I , ρ0] , (5.3.3b)

Q(ρ2) = ∂tρ0 + i[H̃AB, ρ0] + i[H̃I , ρ1] , (5.3.3c)

Q(ρ3) = ∂tρ1 + i[H̃AB, ρ1] + i[H̃I , ρ2] , (5.3.3d)

Q(ρn) = ∂tρn−2 + i[H̃AB, ρn−2] + i[H̃I , ρn−1] , (5.3.3e)

for n ≥ 4 .

We remark that even though Eqs. (5.3.3c) and (5.3.3d) are of the general form

(5.3.3e), they have been written explicitly for the purpose of a better understanding

of the concepts elaborated in this section.

Regarding Eqs. (5.3.3), the question immediately arises whether or not the

system is well-posed, i.e. whether or not the right-hand-sides of Eqs. (5.3.3) lie in
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the image of the operator Q, such that a solution ρ(α) of the form (5.3.2) can be

obtained, at least in principle. It is therefore necessary to investigate the operator

Q, defined in Eq. (5.2.3), in more detail. We note in passing that Q is very similar to

one of the projection operators used in the projection operator techniques mentioned

in the introduction [35, 36, 38, 39]. However, strictly speaking it is not a projection

operator since Q2 = −Q.

For the subsequent analysis, let us introduce the following notations:

• H : space of hermitian operators in H.

• HA,B: space of hermitian operators in HA,B.

Moreover, let D(Q) ⊂ H stand for the domain of Q, thus the operator Q is a

mapping

Q : D(Q)→H . (5.3.4)

We assume that D(Q) is a linear space (a detailed analysis of the operator Q can

be found in App. 5.A). Here, we briefly repeat the main results of App. 5.A needed

in what follows:

(i) Let KerQ denote the kernel of Q. One has

D(Q) = KerQ⊕ (KerQ)⊥ , (5.3.5)

where (KerQ)⊥ denotes the space orthogonal to the kernel of Q. Hence any

X ∈ D(Q) can be decomposed into

X = XKer +X⊥ , (5.3.6)

where XKer ∈ KerQ and X⊥ ∈ (KerQ)⊥.

(ii) For XKer ∈ KerQ one has

XKer = XA ⊗ χB , XA ∈HA. (5.3.7)

(iii) For X⊥ ∈ (KerQ)⊥ one has

trB
(
X⊥
)

= 0 . (5.3.8)

(iv) Let ImQ denote the image of Q. One has

ImQ = (KerQ)⊥ . (5.3.9)
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(v) The equation Q(X) = Y is well-posed (and thus has a solution) if Y ∈
(KerQ)⊥. Moreover, it has a unique solution in (KerQ)⊥ denoted X⊥. It

follows immediately from Eq. (5.3.8) that this solution is given by

X⊥ = −Y . (5.3.10)

We begin now with the investigation of well-posedness of Eqs. (5.3.3). We use

Eqs. (5.3.6) and (5.3.7) to decompose each term ρn of the Hilbert expansion,

ρn = ρ
(n)
A ⊗ χB + ρ⊥n . (5.3.11)

Moreover, we note the important property

trB

(
i[H̃I , ρ

(n)
A ⊗ χB]

)
= 0 ∀ ρ(n)

A ∈HA , (5.3.12)

which is a consequence of the introduction of the mean-field operator, c.f. Eq.

(5.2.8). Let us take the trace over the degrees of freedom B in Eqs. (5.3.3) and let

us, furthermore, use the property (5.3.12) to obtain

0 = trB

(
i[H̃I , ρ

⊥
0 ]
)
, (5.3.13a)

0 = ∂tρ
(0)
A + i[H̃A, ρ

(0)
A ] + trB

(
i[H̃I , ρ

⊥
1 ]
)
, (5.3.13b)

0 = ∂tρ
(1)
A + i[H̃A, ρ

(1)
A ] + trB

(
i[H̃I , ρ

⊥
2 ]
)
, (5.3.13c)

0 = ∂tρ
(n−2)
A + i[H̃A, ρ

(n−2)
A ] + trB

(
i[H̃I , ρ

⊥
n−1]

)
,

for n ≥ 4 , (5.3.13d)

where we omitted the result 0 = 0 obtained from Eq. (5.3.3a). From property (v) of

the relaxation operator Q it is clear that the system (5.3.3) is well-posed if and only

if Eqs. (5.3.13) are fulfilled. In what follows we shall present an inductive proof that

this can be indeed achieved. Furthermore, we shall prove that a system consisting

of the first N ∈ N equations (5.3.13) is closed and that its solution can be computed

recursively from Eqs. (5.3.3).

We know a priori that Eq. (5.3.3a) is well-posed and that its solution is obtained

as

ρ0 = ρ
(0)
A ⊗ χB , ρ⊥0 = 0 . (5.3.14)

Assuming Eqs. (5.3.3b) to (5.3.3e) are also well-posed, we can employ Eq. (5.3.10)
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to determine their unique solutions ρ⊥n ∈ (KerQ)⊥ as

ρ⊥1 = −i[H̃I , ρ0] , (5.3.15a)

ρ⊥2 = −∂tρ0 − i[H̃AB, ρ0]− i[H̃I , ρ1] , (5.3.15b)

ρ⊥3 = −∂tρ1 − i[H̃AB, ρ1]− i[H̃I , ρ2] , (5.3.15c)

ρ⊥n = −∂tρn−2 − i[H̃AB, ρn−2]− i[H̃I , ρn−1] , (5.3.15d)

for n ≥ 4 .

From Eq. (5.3.14) we deduce that Eq. (5.3.13a) is fulfilled trivially and, thus,

Eq. (5.3.3b) is well-posed. This enables us to insert the result (5.3.15a) into Eq.

(5.3.13b) to obtain

∂tρ
(0)
A = −i[H̃A, ρ

(0)
A ]− trB

(
[H̃I , [H̃I , ρ

(0)
A ⊗ χB]]

)
. (5.3.16)

Equation (5.3.16) is a master equation of Lindblad form, as will be elaborated later

in more detail in subsection 5.3.2. The second term on the right-hand-side of Eq.

(5.3.16) is the dissipative part; thus, let us define the “dissipator” D : D(D) ⊂
HA →HA,

D(XA) := −trB

(
[H̃I , [H̃I , XA ⊗ χB]]

)
. (5.3.17)

Since XA ⊗ χB = XKer ∈ KerQ, the operator D can also be viewed as a mapping

from KerQ to HA. Using the short notation (5.3.17), equation (5.3.16) reads

∂tρ
(0)
A = −i[H̃A, ρ

(0)
A ] +D(ρ

(0)
A ) . (5.3.18)

For now we suppose the Lindblad master equation (5.3.18) to have a unique solution.

This assumption is sufficient for completing the inductive proof of well-posedness of

Eqs. (5.3.3), as will become transparent in the remainder of this subsection.

A first consequence of well-posedness of the Lindblad equation (5.3.18) is that

Eq. (5.3.3c) is also well-posed and, thus, that its unique solution ρ⊥2 ∈ (KerQ)⊥

given in Eq. (5.3.15b) is valid. Inserting this into Eq. (5.3.13c) results in

∂tρ
(1)
A =− i[H̃A, ρ

(1)
A ] (5.3.19)

+ trB

(
i[H̃I , ∂tρ0 + i[H̃AB, ρ0] + i[H̃I , ρ1]]

)
.

This equation can be simplified by use of Eq. (5.3.14), the property (5.3.12), and

the result (5.3.15a) which yields

∂tρ
(1)
A = −i[H̃A, ρ

(1)
A ] +D(ρ

(1)
A ) + S1 , (5.3.20)
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with
S1 =− trB

(
i[H̃I , ρ

(0)
A ⊗ [HB, χB]

)
+ trB

(
i[H̃I , [H̃I , [H̃I , ρ

(0)
A ⊗ χB]]]

)
.

(5.3.21)

We remark that the first two terms on the right-hand-side of Eq. (5.3.20) form

exactly the Lindblad generator from equation (5.3.18). The additional term S1 does

not depend on ρ
(1)
A and, thus, can be viewed as a well-defined, local source term.

Hence, Eq. (5.3.20) has a unique solution. We deduce that Eq. (5.3.3d) is well-

posed and its unique solution ρ⊥3 ∈ (KerQ)⊥ given in Eq. (5.3.15c) is valid. One

can already see the evolving pattern that will result in the well-posedness of the

entire system (5.3.3). In order to complete the proof we shall proceed by induction.

Therefore, suppose that Eqs. (5.3.3e) are well-posed up to order n−1. The solution

to the (n− 1)-th order equation is then written as

ρn−1 = ρ
(n−1)
A ⊗ χB + ρ⊥n−1 . (5.3.22)

Due to Eq. (5.3.15d), ρ⊥n−1 is given by

ρ⊥n−1 = −∂tρn−3 − i[H̃AB, ρn−3]− i[H̃I , ρn−2] . (5.3.23)

The aim is now to specify under which condition the n-th order Eq. (5.3.3e) is also

well-posed. From Eq. (5.3.13d) one deduces that this condition reads

∂tρ
(n−2)
A = −i[H̃A, ρ

(n−2)
A ]− trB

(
i[H̃I , ρ

⊥
n−1]

)
. (5.3.24)

Inserting Eq. (5.3.23) into Eq. (5.3.24) yields

∂tρ
(n−2)
A =− i[H̃A, ρ

(n−2)
A ] + trB

(
i[H̃I , ∂tρn−3]

)
− trB

(
[H̃I , [H̃AB, ρn−3]]

)
(5.3.25)

− trB

(
[H̃I , [H̃I , ρn−2]]

)
.

Again we employ the decompositions

ρn−2 = ρ
(n−2)
A ⊗ χB + ρ⊥n−2 , (5.3.26)

ρn−3 = ρ
(n−3)
A ⊗ χB + ρ⊥n−3 , (5.3.27)

and profit from the fact that ρ⊥n−2 ∈ (KerQ)⊥ is uniquely defined by Eq. (5.3.10),
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with the result

ρ⊥n−2 = −∂tρn−4 − i[H̃AB, ρn−4]− i[H̃I , ρn−3] . (5.3.28)

We note that we were able to obtain Eqs. (5.3.23), (5.3.26) and (5.3.27) because we

supposed Eq. (5.3.3e) to be well-posed up to order n− 1. Moreover,

∂tρn−3 = ∂tρ
(n−3)
A ⊗ χB + ∂tρ

⊥
n−3 , (5.3.29)

and thus property (5.3.12) yields

trB

(
i[H̃I , ∂tρn−3]

)
= trB

(
i[H̃I , ∂tρ

⊥
n−3]

)
. (5.3.30)

The decompositions (5.3.26) and (5.3.27) are applied to Eq. (5.3.25) and one obtains,

also using Eq. (5.3.30),

∂tρ
(n−2)
A =− i[H̃A, ρ

(n−2)
A ] + trB

(
i[H̃I , ∂tρ

⊥
n−3]

)
− trB

(
[H̃I , [H̃AB, ρ

(n−3)
A ⊗ χB + ρ⊥n−3]]

)
− trB

(
[H̃I , [H̃I , ρ

⊥
n−2]]

)
(5.3.31)

− trB

(
[H̃I , [H̃I , ρ

(n−2)
A ⊗ χB]]

)
.

In the last term on the right-hand-side one can introduce the definition (5.3.17) of

the dissipator D in order to obtain, finally

∂tρ
(n−2)
A = −i[H̃A, ρ

(n−2)
A ] +D(ρ

(n−2)
A ) + Sn−2 , (5.3.32)

where Sn−2, n ≥ 4, is given by

Sn−2 =trB

(
i[H̃I , ∂tρ

⊥
n−3]

)
−trB

(
[H̃I , ρ

(n−3)
A ⊗ [HB, χB]]

)
−trB

(
[H̃I , [H̃AB, ρ

⊥
n−3]]

)
+trB

(
[H̃I , [H̃I , ∂tρn−4]]

)
+trB

(
i[H̃I , [H̃I , [H̃AB, ρn−4]]]

)
+trB

(
i[H̃I , [H̃I , [H̃I , ρn−3]]]

)
.

(5.3.33)

Here ρ⊥n−2 was expressed with the help of Eq. (5.3.28). Equation (5.3.32) is called

the (n−2)-th order master equation for n ≥ 4. It arises solely from the requirement
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that Eq. (5.3.3e) of order n is well-posed. Besides the Lindblad generator, which

has already been found in the zeroth and first order master equations (5.3.18) and

(5.3.20), respectively, Eq. (5.3.32) comprises the additional source term Sn−2. This

term depends solely on operators ρk obtained from Eqs. (5.3.3e) of order k < n− 2.

Therefore, under the premise that the Lindblad master equation (5.3.18) yields

sufficiently well-behaved solutions, Eqs. (5.3.32) are solvable up to arbitrary order

n, which proves the well-posedness of Eqs. (5.3.3). It follows, moreover, from the

particular form of the source term Sn−2 that the first n− 2 equations (5.3.32) form

a closed system of equations, in which solutions can be computed recursively. For

n = 4, the source term (5.3.33) is evaluated in App. 5.C.

5.3.2 Lindblad master equation

We shall briefly elaborate on the Lindblad master equation (5.3.18). This equa-

tion will also be called zeroth order master equation. Recalling that H̃I = HI −
Hmf
A ⊗1B, a straightforward calculation results in the following form of the dissipa-

tor (5.3.17),

D(ρ
(0)
A ) = trB

(
2HIρ0HI −H2

I ρ0 − ρ0H
2
I

)
−2Hmf

A ρ
(0)
A Hmf

A +
(
Hmf
A

)2

ρ
(0)
A + ρ

(0)
A

(
Hmf
A

)2

.
(5.3.34)

We note that the interaction Hamiltonian HI can be written in the form [7]

HI =
∑
i

Ai ⊗Bi , (5.3.35)

where Ai ∈HA and Bi ∈HB. Therefore, the mean-field operator reads

Hmf
A =

∑
i

AitrB (BiχB) . (5.3.36)

By inserting relations (5.3.35) and (5.3.36) into Eq. (5.3.34), one obtains

D(ρ
(0)
A ) =

∑
ij

Γij

(
2Ajρ

(0)
A Ai − AiAjρ(0)

A − ρ
(0)
A AiAj

)
, (5.3.37)

where the coefficients Γij are defined as

Γij = 〈BiBj〉χB − 〈Bi〉χB〈Bj〉χB . (5.3.38)

Here we made use of the standard definition of correlation functions

〈BiBj〉χB = trB (BiBjχB) , (5.3.39)
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and expectation values,

〈Bi〉χB = trB (BiχB) . (5.3.40)

In fact, the coefficients (5.3.38) stand for the covariance of Bi and Bj in the state

χB. In summary, the zeroth order master equation for the reduced system A can be

written as

∂tρ
(0)
A =− i

[
HA, ρ

(0)
A

]
− i
∑
i

〈Bi〉χB
[
Ai, ρ

(0)
A

]
(5.3.41)

+
∑
ij

Γij

(
2Ajρ

(0)
A Ai − AiAjρ(0)

A − ρ
(0)
A AiAj

)
.

This equation can be transformed into the Lindblad form (5.1.5) by expanding the

operators Ai, Aj in an appropriate basis Lk ∈ HA. The second term on the right-

hand-side of Eq. (5.3.41) represents an energy shift induced by the mean-field ap-

proximation of the interaction between system A and environment B. We emphasize

that this energy shift has to occur in the zeroth order equation of the reduced system,

because otherwise the Hilbert expansion (5.3.2) would result in an ill-posed equation

(5.3.3b). For the same reason the coefficients (5.3.38) stand for the covariance of Bi

and Bj, rather than their correlation.

5.4 Discussion

Let us briefly summarize what has been accomplished so far. The goal of the

present work was to find approximate solutions ρ(α) to Eq. (5.3.1) in the case that

the parameter α is small but not zero. For this, we invoked a Hilbert expansion of

the form

ρ(α) =
∞∑
n=0

αn
(
ρ

(n)
A ⊗ χB + ρ⊥n

)
, (5.4.1)

where ρ
(n)
A ⊗ χB ∈ KerQ and ρ⊥n ∈ (KerQ)⊥. We note that in this representation,

the reduced state operator reads

trB
(
ρ(α)
)

:= ρ
(α)
A =

∞∑
n=0

αnρ
(n)
A . (5.4.2)

After inserting the ansatz (5.4.1) into Eq. (5.3.1) we required equality of the left-

and the right-hand-side of the equation in each power αn. The further requirement of

well-posedness of the resulting equations (5.3.3) gave rise to the following hierarchy
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of master equations for the ρ
(n)
A :

∂tρ
(0)
A = Lρ(0)

A , (5.4.3a)

∂tρ
(1)
A = Lρ(1)

A + S1 , (5.4.3b)

∂tρ
(n−2)
A = Lρ(n−2)

A + Sn−2 for n ≥ 4 . (5.4.3c)

Here, L is the generator of a dynamical semigroup of the Lindblad form (5.1.6),

specified in Eq. (5.3.41). The source terms S1 to Sn−2 are given by Eqs. (5.3.21)

and (5.3.33), respectively. Under the initial conditions

ρ
(0)
A (0) = ρ

(0)
A,i ∈HA , (5.4.4a)

ρ
(1)
A (0) = ρ

(1)
A,i ∈HA , (5.4.4b)

ρ
(n−2)
A (0) = ρ

(n−2)
A,i ∈HA for n ≥ 4 , (5.4.4c)

the formal solution of Eqs. (5.4.3) can be obtained via Duhamel’s formula

ρ
(0)
A (t) = eLtρ

(0)
A,i , (5.4.5a)

ρ
(1)
A (t) = eLtρ

(1)
A,i +

∫ t

0

ds eL(t−s)S1(s) , (5.4.5b)

ρ
(n−2)
A (t) = eLtρ

(n−2)
A,i +

∫ t

0

ds eL(t−s)Sn−2(s)

for n ≥ 4 , (5.4.5c)

where eLt with t ≥ 0 denotes the dynamical semigroup generated by L. Under the

assumption that the power series (5.4.2) converges for all t ≥ 0 (which is reasonable

for small α), one can perform the sum in the results (5.4.5) in order to obtain

ρ
(α)
A (t) = eLtρ

(α)
A,i +

∫ t

0

ds eL(t−s)S(α)(s) . (5.4.6)

Here we defined the initial values ρ
(α)
A,i and the operator S(α) as

ρ
(α)
A,i :=

∞∑
n=0

αnρ
(n)
A,i , (5.4.7)

S(α) :=
∞∑
n=1

αnSn , (5.4.8)

where we made use of S0 = 0. The integral on the right-hand-side of Eq. (5.4.6)

makes the non-Markovianity of the time evolution of the reduced state (5.4.2) trans-
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parent, since S(α) depends on ρ
(α)
A in a rather complicated way. In the Born-Markov

limit α → 0, the term S(α) vanishes and one recovers the Markovian dynamics for

the reduced system induced by the Lindblad generator L.

In writing the formal solution (5.4.6), we note that the total state operator ρ(α)

of the composite system has been determined entirely. This follows from the fact

that the terms ρ⊥n in Eq. (5.4.1) are uniquely defined by Eqs. (5.3.15). Therefore, if

the power series (5.4.1) is convergent for all t ≥ 0 (which is reasonable for small α),

it represents the unique solution of the initial value problem (5.3.1). Let us focus

briefly on the “orthogonal” terms ρ⊥n . With the definition

ρ⊥ :=
∞∑
n=1

αnρ⊥n , (5.4.9)

where we used that ρ⊥0 = 0, we point out that the contribution (5.4.9) to the solution

(5.4.1) is traceless,

tr
(
ρ⊥
)

= 0 . (5.4.10)

Therefore, it solely describes correlations between system A and environment B.

Moreover, it is obvious that the power series (5.4.9) vanishes in the Born-Markov

limit α → 0, thereby confirming the absence of correlations in the Markovian time

evolution.

At first glance it might seem that nothing has been gained because the evaluation

of Eqs. (5.4.2) and (5.4.9) requires the calculation of an infinite number of terms.

However, provided that these power series converge, their benefits can be found in

the fact that one can successively approach the exact solution ρ(α) of Eq. (5.3.1) until

a desired accuracy has been reached. For instance, truncating the series (5.4.1) after

two terms appears to be a valid approximation in the case that α � 1. In general,

once the Lindblad master equation (5.3.41) has been solved for ρ
(0)
A , the source terms

Sn and thus the higher order corrections ρ
(n)
A and ρ⊥n can be computed recursively

in order to achieve the desired accuracy. In this way, correlations between system A

and environment B can be incorporated rather easily in the reduced dynamics for

A.

5.5 Conclusion

In this work we employed a Hilbert expansion in order to obtain approximate

solutions of a von Neumann equation which was augmented by a relaxation opera-

tor Q. This operator relaxes the state operator of a composite quantum system AB

towards the Born approximation on a timescale τr. This approach resulted in the
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hierarchy of master equations (5.4.3) for the reduced state operator ρA. In zeroth

order, which accounts for the exact dynamics in the Born-Markov limit τr → 0, a

master equation of Lindblad form was recovered. The transition rates derived are

exactly the covariance functions between different components of the environmen-

tal part of the interaction Hamiltonian HI in the reference state χB. Moreover,

the discussed approach allows to systematically incorporate correlations and non-

Markovian effects in the reduced system dynamics. These effects can be calculated

recursively from the solution to the Lindblad master equation, as was achieved in

Eqs. (5.4.5). Such an approach might be advantageous in physical systems for which

the Born approximation is nearly justified or for which a full treatment on the basis

of projection techniques is far to complex.

We point out that the non-Markovian quantum dynamics derived here follow

from a transparent physical picture, namely the relaxation of the total state operator

towards the Born approximation. This appears to be a reasonable scenario, for

instance, if the environment contains degrees of freedom that are completely isolated

from the observed system, c.f. Fig. 5.1. Nevertheless, the results obtained are merely

valid under three assumptions:

• the coupling of different degrees of freedom (B and C) of the environment

diminish correlations between observed system and environment,

• the Born relaxation is by far the fastest process in the composite system,

• strong system-environment interaction (singular coupling scaling).

The derived model could be enhanced rather easily by replacing the relaxation op-

erator Q, introduced in Eq. (5.2.3), by a more sophisticated dissipative term for

subsystem B; for instance by a Lindblad dissipator. However, this would result in

minor changes only, because the hierarchy (5.3.13) is a general result which does not

depend on the particular form of the relaxation operator Q. This hierarchy is a mere

consequence of the complete isolation of the observed system A from the environ-

mental reservoir (or probe) C, which manifests itself in the relation trB (Q(ρ)) = 0.

Note added in proof. We are thankful to A. Arnold for pointing out that the

proof in Appendix 5.B of existence and uniqueness of a solution to the initial value

problem (5.3.1) is achieved by Theorem 1.1 of Chapter 3 in [44].

5.A Analysis of the operator Q

Defining for X, Y ∈H the scalar product

(X, Y ) := tr
(
χ−1/2Xχ−1/2Y

)
, (5.A.1)
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where χ ∈H satisfies

χ = χA ⊗ χB , tr (χ) = 1 , (χv, v)H > 0 ∀v ∈ H \ {0} , (5.A.2)

the space H becomes a Hilbert space 2 with the associated norm

||X|| =
√

(X,X) ∀X ∈H . (5.A.3)

In (5.A.2), (·, ·)H denotes the scalar product in H. Note that

(X, Y ) = (Y,X) ,

(X,X) ≥ 0 ,
(5.A.4)

∀X, Y ∈H . The positive-definiteness of (5.A.1) follows from

(X,X) = tr
(
χ−1/4Xχ−1/4χ−1/4Xχ−1/4

)
= tr

(
Y 2
)
≥ 0 ,

(5.A.5)

where Y = χ−1/4Xχ−1/4 ∈ H . Moreover, (5.A.1) is linear in both arguments. We

shall further define a scalar product in HA,

(XA, YA)A := trA

(
χ
−1/2
A XAχ

−1/2
A YA

)
, (5.A.6)

and denote the corresponding norm by

||XA||A =
√

(XA, XA)A , (5.A.7)

∀XA ∈HA
3. For the operator Q defined in Eq. (5.2.3),

Q(X) = trB (X)⊗ χB −X , X ∈ D(Q) ⊂H , (5.A.8)

one has the following properties:

(i) Q is linear, bounded, self-adjoint and non-positive.

(ii) For X ∈ KerQ (the kernel of Q) we have

X = XA ⊗ χB , XA ∈HA. (5.A.9)

2In what follows we denote by H the space of Hermitian operators in H for which ||X|| <∞.
3We denote by HA the space of Hermitian operators in HA for which ||X||A <∞.
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Moreover, we have

(KerQ)⊥ = {X ∈ D(Q) | trB (X) = 0} . (5.A.10)

(iii) Let P : H → KerQ denote the orthogonal projection operator onto KerQ.

Then there exists d > 0 such that

−(Q(X), X) ≥ d||X − P(X)||2 (5.A.11)

∀X ∈ D(Q).

(iv) The image of Q, denoted by ImQ, is closed and we have

ImQ = (KerQ)⊥ . (5.A.12)

Further, the equation Q(X) = Y has a solution in D(Q) if and only if Y ∈
ImQ. The solution is moreover unique in (KerQ)⊥.

In the following we denote,

XA := trB (X) , (5.A.13)

and

QA(X) = trB (Q(X)) = 0 , ∀X ∈ D(Q) . (5.A.14)

Moreover, in what follows we shall frequently make use of the identity

(XA ⊗ χB, Y ) = (XA, YA)A . (5.A.15)

We shall now prove the above statements.

(i) The linearity of Q is obvious. Let us show that Q is a well-defined, bounded

operator. For this one needs a constant c > 0 such that

||Q(X)||2 ≤ c||X||2 , ∀X ∈ D(Q) . (5.A.16)

Using the identities (5.A.14) and (5.A.15) one obtains

||Q(X)||2 = (Q(X), Q(X))

= (XA ⊗ χB, Q(X))− (X,Q(X))

= (XA, QA(X))A − (X,Q(X))

= −(X,XA ⊗ χB) + (X,X)

= −||XA||2A + ||X||2

≤ ||X||2 ,

(5.A.17)
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which proves (5.A.16). Therefore Q is bounded (and thus also continous). The

self-adjointness follows from

(Q(X), Y ) = (XA ⊗ χB, Y )− (X, Y )

= (XA, YA)A − (X, Y )

= (YA, XA)A − (Y,X)

= (Q(Y ), X)

= (X,Q(Y )) .

(5.A.18)

In order to prove the non-positivity of Q we estimate the term ||XA||2A using Eq.

(5.A.15) together with the Cauchy-Schwarz inequality,

||XA||2A = (X,XA ⊗ χB)

≤ ||X|| ||XA ⊗ χ||
= ||X|| ||XA||A
≤ ||X||2 .

(5.A.19)

It follows the non-positivity of Q,

(Q(X), X) = ||XA||2A − ||X||2 ≤ ||X||2 − ||X||2 = 0 . (5.A.20)

We remark that Eq. (5.A.19) implies

X ∈H ⇒ trB (X) ∈HA . (5.A.21)

(ii) For X ∈ KerQ we have (Q(X), X) = 0 which can be written as

0 = ||XA||2A − ||X||2

= (X,XA ⊗ χB)− (X,X) .
(5.A.22)

The solutions of Eq. (5.A.22) are given by X = XA ⊗ χB, XA ∈ HA arbitrary.

Conversely,

Q(XA ⊗ χB) = XA ⊗ χB −XA ⊗ χB = 0 . (5.A.23)

Moreover, for Y ∈ (KerQ)⊥, we have (X, Y ) = 0 for X ∈ KerQ and thus

(XA ⊗ χB, Y ) = (XA, YA) = 0 ∀XA ∈HA . (5.A.24)
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Since Eq. (5.A.24) must hold for arbitrary XA ∈HA we conclude

YA = trB (Y ) = 0 ∀Y ∈ (KerQ)⊥ . (5.A.25)

(iii) We now prove the coercitivity relation (5.A.11). For X ∈ KerQ this relation

is fulfilled trivially because Q(X) = 0 and P(X) = X. Now suppose X ∈ (KerQ)⊥.

Then, according to Eq. (5.A.25),

−(Q(X), X) = −||XA||2A + ||X||2 = ||X||2 , (5.A.26)

which completes the coercitivity proof.

(iv) First we show that the image of Q is closed. Let Xn be a sequence in D(Q)

and let Jn be a sequence in ImQ such that Q(Xn) = Jn. Moreover, let Jn → J as

n→∞. We have to prove that J ∈ ImQ, i.e. that there exists X ∈ D(Q) such that

Q(X) = J . To any sequence Xn ∈ D(Q) one can construct a corresponding sequence

Yn ∈ (KerQ)⊥ by setting Yn = Xn − P(Xn) and one has Q(Xn) = Q(Yn) = Jn.

The coercitivity relation then yields

−(Q(Yn − Ym), Yn − Ym) ≥ d||Yn − Ym||2 ∀n,m ∈ N . (5.A.27)

In addition, from the Cauchy-Schwarz inequality we have

||Q(Yn)−Q(Ym)|| ||Yn − Ym|| ≥ −(Q(Yn − Ym), Yn − Ym) , (5.A.28)

and consequently

1

d
||Q(Yn)−Q(Ym)|| = 1

d
||Jn − Jm|| ≥ ||Yn − Ym|| . (5.A.29)

Since Jn is a Cauchy sequence in ImQ we obtain that Yn is a Cauchy sequence

in D(Q). By assumption D(Q) is complete and therefore Yn → Y ∈ D(Q). We

already proved that Q is continuous, i.e. Q(Yn) → Q(Y ). One obtains Q(Y ) = J

with Y ∈ D(Q). Thus, the image of Q is closed and we have ImQ = (KerQ)⊥.

We finally prove that the equation Q(X) = Y has a unique solution X ∈
(KerQ)⊥. It is obvious that there exists a solution if Y ∈ ImQ. Let X be such a

solution, then X −P(X) ∈ (KerQ)⊥ is also a solution. Assume that there are two

solutions X1, X2 ∈ (KerQ)⊥ such that Q(X1) = Q(X2) = Y . Then

Q(X1)−Q(X2) = Q(X1 −X2) = 0 . (5.A.30)

It follows that X1 −X2 ∈ KerQ ∩ (KerQ)⊥ = {0} and therefore X1 = X2.



5.B. EXISTENCE AND UNIQUENESS 141

5.B Existence and uniqueness

In this section we demonstrate the existence and uniqueness of a solution to the

initial value problem (5.3.1) on the basis of a fixed point argument. Let 0 < T <∞
and α = 1 for convenience (the proof holds for α > 0). The following proposition

holds:

• Let Q denote the operator defined in Eq. (5.2.3). Furthermore, let H ∈ H

such that the Liouville operator L(·) = −i[H, ·] in H is the infinitesimal

generator of a bounded one-parameter semigroup eLt in H , i.e. one has C > 0

such that

||eLtρ||2H ≤ C||ρ||2H ∀ρ ∈H , t ∈ [0, T ] , (5.B.1)

where || · ||H denotes the norm (5.A.3). Then, the intial value problem{
∂tρ− L(ρ) = Q(ρ)

ρ(0) = ρi ∈H
(5.B.2)

admits a unique solution ρ ∈ L2([0, T ],H ).

In order to prove this claim we denote the norm and the corresponding scalar product

in L2([0, T ],H ) by

||ρ||L2 =

∫ T

0

dt ||ρ(t)||H , (5.B.3)

and

(ρ, σ)L2 =

∫ T

0

dt (ρ(t), σ(t))H , (5.B.4)

respectively. Let us now define the following fixed point map,

F : L2([0, T ],H )→ L2([0, T ],H ) , σ 7→ ρ , (5.B.5)

where ρ is the solution of{
∂tρ− L(ρ) + ρ = trB (σ)⊗ χB
ρ(0) = ρi ∈H .

(5.B.6)

In the following, we denote Sσ(t) = trB (σ(t))⊗ χB. The formal solution of (5.B.6)

reads

F(σ)(t) = ρ(t) = eT tρ(0) +

∫ t

0

ds eT (t−s)Sσ(s) , (5.B.7)

where T := L− 1. The proof is performed in two steps. First we demonstrate that

the mapping (5.B.5)-(5.B.7) is well-defined and we prove then that the mapping is a
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contraction, possessing thus a unique fixed point, solution of equation (5.B.2). From

Eq. (5.B.1) it follows that

||eT tρ||2H = e−2t||eLtρ||2H ≤ C||ρ||2H ∀t ∈ [0, T ] . (5.B.8)

Therefore, Eq. (5.B.7) yields

||ρ(t)||H ≤
√
C||ρ(0)||H +

√
C

∫ t

0

ds ||Sσ(s)||H ,

≤
√
C||ρ(0)||H +

√
C

∫ T

0

ds ||Sσ(s)||H ,

≤
√
C||ρ(0)||H +

√
C

∫ T

0

ds ||σ(s)||H ,

(5.B.9)

where the last inequality follows from Eq. (5.A.19),

||Sσ(s)||H = ||σA(s)||A ≤ ||σ(s)||H . (5.B.10)

Integration of (5.B.9) over t results in

||ρ||L2 ≤ T
√
C||ρ(0)||H + T

√
C||σ||L2 , (5.B.11)

which proves that the fixed point map (5.B.5) is well-defined.

In order to show that (5.B.7) is a contraction we introduce the following norm

in L2([0, T ],H ),

||ρ||2δ :=

∫ T

0

dt e−δt||ρ(t)||2H . (5.B.12)

For F to be contractive it is required that

||F(σ1)−F(σ2)||2δ ≤ k||σ1 − σ2||2δ , k < 1 . (5.B.13)

One obtains

||F(σ1)−F(σ2)||2δ =

=

∫ T

0

dt e−δt
∫ t

0

ds ||eT (t−s)[Sσ1(s)− Sσ2(s)]||2H

≤ C

∫ T

0

dt e−δt
∫ t

0

ds ||Sσ1(s)− Sσ2(s)||2H

= C

∫ T

0

ds

∫ T

s

dt e−δt||Sσ1(s)− Sσ2(s)||2H

≤ C

δ

∫ T

0

ds e−δs||Sσ1(s)− Sσ2(s)||2H .

(5.B.14)
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Due to the inequality (5.A.19) one has

||Sσ1(s)− Sσ2(s)||2H = ||trB (σ1(s)− σ2(s))⊗ χB||2H
= ||trB (σ1(s)− σ2(s)) ||2A
≤ ||σ1(s)− σ2(s)||2H ,

(5.B.15)

and this results in

||F(σ1)−F(σ2)||2δ ≤
C

δ
||σ1 − σ2||2δ . (5.B.16)

Here, δ can be chosen in such a way that relation (5.B.13) is fulfilled. Thus F is a

contraction, its unique fixed point is the solution of Eq. (5.B.2).

5.C Second-order contribution

We compute the source term (5.3.33) for n = 4. For this, we need the solutions

of Eqs. (5.3.3a) and (5.3.3b), namely ρ0 and ρ⊥1 , given by (5.3.14) and (5.3.15a),

respectively. It follows that

∂tρ0 = ∂tρ
(0)
A ⊗ χB (5.C.1)

= −i[H̃A, ρ
(0)
A ]⊗ χB +D(ρ

(0)
A )⊗ χB ,

and

∂tρ
⊥
1 = −i[H̃I , ∂tρ0] (5.C.2)

= −[H̃I , [H̃A, ρ
(0)
A ]⊗ χB]− i[H̃I ,D(ρ

(0)
A )⊗ χB] .

We now compute all the terms appearing on the right-hand side of Eq. (5.3.33).

Whenever possible, we make use of definition (5.3.17) of the operator D in order to

simplify the notation.

1. With the help of Eq. (5.C.2) the first term on the right-hand-side of Eq.

(5.3.33)

trB

(
i[H̃I , ∂tρ

⊥
1 ]
)

= −trB

(
[H̃I , [H̃I , i[H̃A, ρ

(0)
A ]⊗ χB]]

)
+ trB

(
[H̃I , [H̃I ,D(ρ

(0)
A )⊗ χB]]

)
= D(i[H̃A, ρ

(0)
A ])−D2(ρ

(0)
A ) ,

(5.C.3)

where D2(·) = D(D(·)).
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2. The second term results in

− trB

(
[H̃I , [H̃AB, ρ

⊥
1 ]]
)

= trB

(
i[H̃I , [H̃AB, [H̃I , ρ0]]]

)
. (5.C.4)

3. In the third term we set ρ
(n−3)
A → ρ

(1)
A .

4. Equation (5.C.1) helps in evaluating term four to

trB

(
[H̃I , [H̃I , ∂tρ0]]

)
=

= −trB

(
[H̃I , [H̃I , i[H̃A, ρ

(0)
A ]⊗ χB]]

)
+ trB

(
[H̃I , [H̃I ,D(ρ

(0)
A )⊗ χB]]

)
= D(i[H̃A, ρ

(0)
A ])−D2(ρ

(0)
A ) .

(5.C.5)

5. We get for term five

trB

(
i[H̃I , [H̃I , [H̃AB, ρ0]]]

)
=

= trB

(
[H̃I , [H̃I , i[H̃A, ρ

(0)
A ]⊗ χB]]

)
+ trB

(
i[H̃I , [H̃I , ρ

(0)
A ⊗ [HB, χB]]]

)
= −D(i[H̃A, ρ

(0)
A ])

+ trB

(
i[H̃I , [H̃I , ρ

(0)
A ⊗ [HB, χB]]]

)
.

(5.C.6)

6. Finally, term six becomes

trB

(
i[H̃I , [H̃I , [H̃I , ρ1]]]

)
=

= trB

(
[H̃I , [H̃I , [H̃I , [H̃I , ρ

(0)
A ⊗ χB]]]]

)
+ trB

(
i[H̃I , [H̃I , [H̃I , ρ

(1)
A ⊗ χB]]]

)
.

(5.C.7)



Adding the results of Eqs. (5.C.3)-(5.C.7) gives the desired result for S2:

S2 =− 2D2(ρ
(0)
A ) +D(i[H̃A, ρ

(0)
A ])

+ trB

(
i[H̃I , [H̃AB, [H̃I , ρ

(0)
A ⊗ χB]]]

)
− trB

(
[H̃I , ρ

(1)
A ⊗ [HB, χB]

)
+ trB

(
i[H̃I , [H̃I , ρ

(0)
A ⊗ [HB, χB]]]

)
+ trB

(
[H̃I , [H̃I , [H̃I , [H̃I , ρ

(0)
A ⊗ χB]]]]

)
+ trB

(
i[H̃I , [H̃I , [H̃I , ρ

(1)
A ⊗ χB]]]

)
.

(5.C.8)
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Chapter 6

Numerical Study of a Quantum-

Diffusive Spin Model for

Two-Dimensional Electron Gases

S. Possanner, L. Barletti, F. Méhats and C. Negulescu,

draft version, 2012

Abstract. We investigate the time evolution of spin densities in a two-dimensional

electron gas subjected to Rashba spin-orbit coupling on the basis of the quantum

drift-diffusive model derived in Ref. [1]. This model assumes the electrons to be in

a quantum equilibrium state in the form of a Maxwellian operator. The resulting

quantum drift-diffusion equations for spin-up and spin-down densities are coupled

in a non-local manner via two spin chemical potentials (Lagrange multipliers) and

via off-diagonal elements of the equilibrium spin density and spin current matrices,

respectively. We present two space-time discretizations of the model which comprise

also the Poisson equation in order to account for electron-electron interactions. In

a first step pure time discretization is applied in order to prove the well-posedness

of the two schemes, both of which are based on a functional formalism to treat

the non-local relations between spin densities. We then use the fully space-time

discrete schemes to simulate the time evolution of a Rashba electron gas in a typical

transistor geometry. Finite difference approximations are first order in time and

second order in space. The discrete functionals introduced are minimized with the

help of a conjugate gradient-based algorithm, where the Newton method is applied

in order to find the respective line minima.
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6.1 Introduction

The purpose of this paper is the numerical study of the quantum diffusive model for

a spin-orbit system introduced in Ref. [1]. The derivation of this model is based on

the quantum maximum entropy principle [3, 4] applied to a spin-orbit Hamiltonian

of Rashba type [2]:

H =

(
−~2

2
∆ + V α~(∂x − i∂y)

−α~(∂x + i∂y) −~2
2

∆ + V

)
. (6.1.1)

Here, (x, y) are the spatial coordinates of the 2-dimensional region where the elec-

trons are assumed to be confined, α is the Rashba constant and V is a potential

term which may consist of an “external” part (representing e.g. a gate or an ap-

plied potential) and a self-consistent part, accounting for Coulomb interactions in

the mean-field approximation.

The Rashba effect [2, 10] is a spin-orbit interaction undergone by electrons that

are confined in an asymmetric 2-dimensional well (here, perpendicular to the z di-

rection). The spin vector has a precession around a direction in the plane (x, y),

perpendicular to the electron momentum p = (px, py), the precession speed being

α|p|. Since it does not involve built-in magnetic fields, and hence may be imple-

mented by means of standard silicon technologies, the Rashba effect is expected to

be a fundamental ingredient for the realization of the so-called S-FET (Spin Field

Effect Transistor) [10], a “spintronic” device in which the information is carried by

the electron spin rather than by the electronic current (as in the usual electronic

devices). The use of the electron spin, as an additional degree of freedom, may lead

to electronic devices of higher speed and lower power consumption. The purpose of

this work shall be to contribute to the understanding of how the Rashba effect can

be employed in order to control the spin transport in these devices.

In standard electronic device modeling, fluid models and quantum fluid models

are expected to be a very useful tool for designers. As compared to kinetic models,

they are much more treatable and flexible from the numerical point of view. It is

therefore desirable to extend the fluid description to the spinorial case. The existing

drift-diffusive models for spin systems can be classified into two categories: the two-

component drift-diffusion models and the spin-polarized or matrix based models.

Both models have been used in practice, however their mathematical derivation is

still at the very beginning (see Refs. [8, 9] for the classical approach and Ref. [1] for

the quantum and semi-classical cases) .

In Ref. [1], in particular, a two-component quantum diffusive model for a 2-

dimensional population of electrons with Rashba interaction is derived. Let us
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summarize briefly the derivation of this model, which will be considered from the

numerical point of view in the present work.

The starting point is the von Neumann equation (i.e. the Schrödinger equation

for mixed states) for the Hamiltonian (6.1.1), endowed with a collisional term of

BGK type

i~∂t%(t) = [H, %(t)] +
i

τ
(%eq − %(t)) ,

where %(t) = (%ij(t)) is the 2× 2 density operator, representing the time-dependent

mixed state of the system, and τ is the relaxation time. According to the theory

developed in Refs. [3, 4] , the local equilibrium state %eq is chosen as the maximizer of

a free energy-like functional, subject to the constraint of sharing with %(t) the local

moments we are interested in, here the spin-up and spin-down (with respect to the

z direction) electron densities n1, n2 (or, equivalently, the total electronic density

n1 + n2 and the polarization n1 − n2). Then, the maximizer, which has the form of

a Maxwellian operator, contains as many Lagrange multipliers (chemical potentials)

as the chosen moments. These multipliers furnish the degrees of freedom necessary

to satisfy the constraint equations. In our case, therefore, the local equilibrium state

contains two chemical potential, A1 and A2, which depend on n1 and n2 through the

constraint equations. The rigorous proof of relizability of the quantum Maxwellian

associated to a given density and current has been obtained in Refs. [5, 6] for a scalar

(i.e. non spinorial) Hamiltonian. By assuming τ � 1 and applying the Chapman-

Enskog method, the von Neumann equation leads in the limit to the “quantum

drift-diffusive” system (6.2.1) for the unknown densities n1 and n2. Apart from the

chemical potentials A1 and A2, which depend on n1 and n2 through the constraint,

the system also contains some extra moments, namely the off-diagonal density n21

and currents Jx21, Jy21, which are computed via the equilibrium state and which

depend on n1 and n2 as well. Note that, with respect to the original Hamiltonian

(6.1.1), we shall work with a scaled version (see the Hamiltonian (6.2.4), which

contains also the chemical potential) in which ε is the scaled Planck constant and

α is rescaled as εα. This is, therefore, a semiclassical scaling with the additional

assumption of small Rashba constant. Of course, the parameter ε is unimportant

as long as we are not interested in the semiclassical behavior but becomes relevant

when we look for some semiclassical approximation for small ε.

In summary, the diffusive equations (6.2.1), coupled to Eqs. (6.2.3)–(6.2.7) which

represent the equilibrium state and the constraints, and associated with the Poisson

equation (6.2.2) for the self-consistent potential, constitute the quantum diffusive

model we are going to analyze numerically in this work. Needless to say, the model

(6.2.1)–(6.2.7) is rather implicit and involved, and requires a very careful numerical

treatment. The aim of the present paper is thus to present two discrete versions of
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(6.2.1)–(6.2.7) suitable for time-resolved simulation of the spin populations n1 and

n2 in a spatially confined, two-dimensional electron gas. In both schemes the finite-

difference approximations of the occurring derivatives are first order in time and

second order in space. At the core of the numerical study of the present model is the

minimization of a functional that either maps from R3P to R (in the first scheme) or

from R2P to R (in the second scheme), where P is the number of points on the space

grid. We present an algorithm that uses a combination of the conjugate gradient

method and the Newton method in order to find the minimum of the respective

functional at each time step. The developed numerical schemes are used to compute

the equilibrium spin densities in a common transistor geometry which features a

spin-dependent potential barrier.

The paper is organized as follows. In Section 6.2, the continuous model is in-

troduced and is endowed with suitable initial and boundary conditions. In Sec. 6.3

we perform two different time discretizations of the continuous model and prove

the well-posedness of each of the two schemes. Then, in Sec. 6.4 two fully discrete

schemes (i.e. both in time and space) are introduced and analyzed as well. Finally,

Sec. 6.5 is devoted to numerical experiments.

6.2 The quantum spin drift-diffusion model

Let us start with the formulation of the quantum diffusive model introduced in

section 6.1. The model describes the evolution of the spin-up and the spin-down

densities n1 and n2, respectively, of a two-dimensional electron gas by means of the

following quantum drift-diffusion equations:

∂tn1 +∇ · (n1∇(A1 − Vs))+
+ α(A1 − A2)Re(Dn21)− 2αRe(n21D(A2 − Vs))−

− 2α

ε
(A1 − A2) Im(Jx21 − iJ

y
21) = 0 ,

∂tn2 +∇ · (n2∇(A2 − Vs))+
+ α(A1 − A2)Re(Dn21) + 2αRe(n21D(A1 − Vs))+

+
2α

ε
(A1 − A2) Im(Jx21 − iJ

y
21) = 0 .

(6.2.1)

Here, ∇ = (∂x, ∂y), D = ∂x − i∂y, A1 and A2 denote the two chemical potentials

(Lagrange multipliers), Vs stands for the self-consistent potential arising from the

electron-electron interaction and n21, Jx21 and Jy21 are off-diagonal elements of the

spin-density matrix and the spin-current matrix written in (6.2.6) and (6.2.7), re-

spectively. The parameter α > 0 denotes the scaled Rashba constant and ε > 0
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stands for the scaled Planck constant (for details regarding the scaling we refer to

[1]). We use the following notations for the unknowns in (6.2.1),

N =

(
n1 n21

n21 n2

)
, J21 =

(
Jx21

Jy21

)
, A =

(
A1

A2

)
, Vs .

The self-consistent potential Vs is determined by the Poisson equation,

−γ2∆Vs = n1 + n2 , (6.2.2)

where γ > 0 is proportional to the occurring Debye length. The system (6.2.1)-

(6.2.2) is closed through the fact that the electrons are assumed to be in a quantum

local equilibrium state at all times. This constraint allows one to relate the chemical

potential A to the spin densities n1 and n2 as well as to the spin-mixing quantities

n21 and J21, respectively. More precisely, if H(A) denotes the system Hamiltonian,

the equilibrium state operator is given by

%eq = exp(−H(A)), (6.2.3)

where exp(·) here denotes the operator exponential. In the present case, the Hamil-

tonian is given by

H(A) : D(H) ⊂ (L2(Ω))2 → (L2(Ω))2 , D(H) ⊂ (H2(Ω))2 ,

H(A) =

(
− ε2

2
∆ + Vext,1 + A1 ε2α(∂x − i∂y)
−ε2α(∂x + i∂y) − ε2

2
∆ + Vext,2 + A2

)
, (6.2.4)

where Ω ⊂ R2 denotes the bounded domain where the electrons are assumed to

be confined. Moreover, we introduced two external, time-independent potentials

Vext,1(x) and Vext,2(x) for the spin-up and the spin-down electrons, respectively.

Assuming that H(A) has a purely eigenvalue spectrum, the eigenvalues and the

eigenvectors of H(A), denoted by λl(A) and ψl(A) = (ψ1
l (A), ψ2

l (A)), respectively,

and solutions of

H(A)ψl(A) = λl(A)ψl(A) , (6.2.5)
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link the chemical potentials to the spin-density matrix N and to the spin-current

matrix J ,

N =
∑
l

e−λl

 |ψ1
l |2 ψ1

l ψ
2
l

ψ2
l ψ

1
l |ψ2

l |2

 =

(
n1 n21

n21 n2

)
, (6.2.6)

J = −iε
2

∑
l

e−λl

 ψ1
l∇ψ1

l − ψ1
l∇ψ1

l ψ2
l∇ψ1

l − ψ1
l∇ψ2

l

ψ1
l∇ψ2

l − ψ2
l∇ψ1

l ψ2
l∇ψ2

l − ψ2
l∇ψ2

l

 (6.2.7)

=

(
J1 J21

J21 J2

)
.

The formulas (6.2.6) and (6.2.7) are the standard textbook expressions for the spin-

density and the spin-current, respectively, corresponding to the density operator

(6.2.3). The system (6.2.1)-(6.2.2) is now closed through the non-local relations

N(A) and J(A), given by Eqs. (6.2.4)-(6.2.7). It is not yet clear whether these rela-

tions are invertible, i.e. if it is possible to compute A(n1, n2). Hence, the equations

(6.2.1) can be viewed as evolution equations for the chemical potentials A1 and A2

rather than for the spin densities n1 and n2. Indeed, the two time-discretizations

of the system (6.2.1)-(6.2.7), which will be developed in section 6.3, represent these

two possible viewpoints regarding the evolution equations (6.2.1).

Let Ω ⊂ R2 be a bounded regular domain with boundary ∂Ω. All the unknowns

N , J21, A and Vs of the system (6.2.1)-(6.2.7) are defined on the domain [0, T ]×Ω.

The index of the eigenvalues and the eigenvectors of H(A) is l ∈ N. We shall impose

Dirichlet boundary conditions for the eigenvectors ψl,

ψl(x) = 0 for x ∈ ∂Ω ,

hence the current across the domain boundary ∂Ω is zero. As we will briefly show

at the end of this section, the Hamiltonian (6.2.4) is not hermitian in (L2(Ω))2 when

imposing Neumann conditions on the wavefunctions ψ ∈ (H2(Ω))2. The study of

this problem as well as the implementation of transparent boundary conditions will

be the topic of a forthcoming work. The self-consistent potential Vs is supplemented

with Dirichlet conditions too,

Vs(x) = 0 for x ∈ ∂Ω .

The chemical potentials A1 and A2 are allowed to move freely at the boundary,
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therefore we take Neumann conditions,

∇(A1(x)− Vs(x)) · ν(x) = 0 for x ∈ ∂Ω ,

∇(A2(x)− Vs(x)) · ν(x) = 0 for x ∈ ∂Ω .

Here, ν(x) denotes the outward normal to the boundary ∂Ω at x. Considering the

initial conditions, one has two choices depending on the point of view of the evolution

equations (6.2.1). Since we do not know whether or not (6.2.6) is invertible, the safe

approach is to provide initial data for the chemical potentials. However, from the

viewpoint of device modeling, it is more appealing to start from initial spin densities.

We shall take the latter approach and assume that n1(0, x) and n2(0, x) are smooth

and bounded.

In summary, we have the following quantum spin-drift-diffusion model,

∂tn1 +∇ · (n1∇(A1 − Vs)) + α(A1 − A2)Re(Dn21) (6.2.8)

− 2αRe(n21D(A2 − Vs))−
2α

ε
(A1 − A2) Im(Jx21 − iJ

y
21) = 0 ,

∂tn2 +∇ · (n2∇(A2 − Vs)) + α(A1 − A2)Re(Dn21) (6.2.9)

+ 2αRe(n21D(A1 − Vs)) +
2α

ε
(A1 − A2) Im(Jx21 − iJ

y
21) = 0 ,

−γ2∆Vs = n1 + n2 , (6.2.10)

H(A)ψl(A) = λl(A)ψl(A) , (6.2.11)

N =
∑
l

e−λl(A)

 |ψ1
l (A)|2 ψ1

l (A)ψ2
l (A)

ψ2
l (A)ψ1

l (A) |ψ2
l (A)|2

 , (6.2.12)

J21 = −iε
2

∑
l

e−λl(A)
(
ψ1
l (A)∇ψ2

l (A)− ψ2
l (A)∇ψ1

l (A)
)
, (6.2.13)

where the Hamiltonian H(A) is given by (6.2.4), and supplemented with the follow-
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ing initial- and boundary conditions,

n1(t = 0, x) = n0
1(x) , n2(t = 0, x) = n0

2(x) for x ∈ Ω ,

Vs(x) = 0 for x ∈ ∂Ω ,

ψl(x) = 0 for x ∈ ∂Ω , (6.2.14)

∇(A1(x)− Vs(x)) · ν(x) = 0 for x ∈ ∂Ω ,

∇(A2(x)− Vs(x)) · ν(x) = 0 for x ∈ ∂Ω .

6.2.1 Hermiticity of the Hamiltonian

We briefly show that the Hamiltonian (6.2.4) is not hermitian in (L2(Ω))2 when

imposing Neumann boundary conditions on the wave functions ψ ∈ (H2(Ω))2. Let

us start with

(H(A)ψ, χ)(L2(Ω))2 =

∫
Ω

(χ1, χ2)

(
− ε2

2
∆ψ1 + (Vext,1 + A1)ψ1 + ε2αDψ2

− ε2

2
∆ψ2 + (Vext,2 + A2)ψ2 − ε2αDψ1

)
dx .

where (·, ·)(L2(Ω))2 denotes the scalar product in (L2(Ω))2. Specifically, let us look at

the Rashba coupling terms,∫
Ω

(χ1Dψ2 − χ2Dψ1) dx = −
∫

Ω

(ψ2Dχ1 − ψ1Dχ2) dx+

+

∫
∂Ω

χ1ψ2(1,−i) · ν(x) dσ −
∫
∂Ω

χ2ψ1(1,−i) · ν(x) dσ

(6.2.15)

Here, the boundary terms do not vanish when imposing Neumann conditions. How-

ever, if we considered the problem in the whole space Ω = R2, the boundary terms

would vanish and the Hamiltonian would be hermitian. Considering the problem

in the whole R2 means, from the numerical point of view, imposing transparent

boundary conditions for ψ. This would be the topic of a future paper.

6.3 Semi-discretization in time

In this section we take a first step towards a full space-time discretization of the

system (6.2.8)-(6.2.14) by discretizing the time domain. The purpose of the semi-

discretization is two-fold. Firstly, since the space discretization of the present two-

dimensional spin model is quite involved, the functional formalism which will be

applied in this work becomes much more transparent in the semi-discrete case than

in the fully discrete case. Secondly, in contrast to the continuous case given by Eqs.
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(6.2.8)-(6.2.14), existence and uniqueness of solutions of the semi-discrete system

can be proven. Two different semi-discretizations will be presented. The first one

was studied in [7] for a scalar quantum diffusive model (without the Rashba spin-

orbit coupling). We shall use some of the techniques elaborated in [7] and apply

them to the present spin model. The second semi-discrete scheme is an explicit one

which relies heavily on the ability to invert the relation (6.2.12). Its benefits lie in

the fact that, when passing to the full discretization, its treatment is far less involved

as compared to the first scheme.

We remark here that the following identities applied in Eqs. (6.2.8)-(6.2.9) will

be helpful in the subsequent analysis,

(A1 − A2)Dnk21 − 2nk21D(A2) = D(nk21(A1 − A2))− nk21D(A1 + A2) ,

(A1 − A2)Dnk21 + 2nk21D(A1) = D(nk21(A1 − A2)) + nk21D(A1 + A2) .
(6.3.1)

6.3.1 A first semi-discrete system

Suppose T > 0 and let t ∈ [0, T ] with the discretization

tk = k∆t , k ∈ {0, 1, . . . , K} , ∆t :=
T

K
.

Then, inspired by [7], we choose the following time-discretization of the continuous

problem (6.2.8)-(6.2.13),

n1(Ak+1)− nk1
∆t

+∇ · (nk1∇(Ak+1
1 − V k+1

s )) + αRe[D(nk21(Ak+1
1 − Ak+1

2 ))]

− αRe[nk21D(Ak+1
1 + Ak+1

2 − 2V k+1
s )] (6.3.2)

− 2α

ε
(Ak+1

1 − Ak+1
2 ) Im(J21,k

x − iJ21,k
y ) = 0 ,

n2(Ak+1)− nk2
∆t

+∇ · (nk2∇(Ak+1
2 − V k+1

s )) + αRe[D(nk21(Ak+1
1 − Ak+1

2 ))]

+ αRe[nk21D(Ak+1
1 + Ak+1

2 − 2V k+1
s )] (6.3.3)

+
2α

ε
(Ak+1

1 − Ak+1
2 ) Im(J21,k

x − iJ21,k
y ) = 0 ,

−γ2∆V k+1
s = n1(Ak+1) + n2(Ak+1) , (6.3.4)

H(Ak+1)ψk+1
l = λk+1

l ψk+1
l , (6.3.5)
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n1(Ak+1) =
∑
l

e−λ
k+1
l |ψ1,k+1

l |2 , n2(Ak+1) =
∑
l

e−λ
k+1
l |ψ2,k+1

l |2 . (6.3.6)

In this scheme one searches for the unknowns (Ak+1, V k+1
s ), given (Nk, Jk21). The

main difficulty concerning the solution of this system are the non-local relations

(6.3.5)-(6.3.6). We shall thus construct a mapping (A, Vs) ∈ (H1(Ω,R))3 7→ F(A, Vs) ∈
R whose unique minimum (Ak+1, V k+1

s ) is the solution of Eqs. (6.3.2)-(6.3.6). Once

Ak+1 and the eigenvalues λk+1
l respectively eigenvectors ψk+1

l are known, Eqs. (6.2.12)-

(6.2.13) can be used to compute (Nk+1, Jk+1
21 ) and the process can be repeated. Let

us thus introduce the two functionals

G : (L2(Ω,R))2 → R , F : (H1(Ω,R))3 → R ,

defined by

G(A) :=
∑
l

e−λl(A) , A ∈ (L2(Ω,R))2 , (6.3.7)

where λl(A) are the eigenvalues of the Hamiltonian (6.2.4), and

F(A, Vs) = G(A) + F1(A, Vs) + F2(A, Vs) + F3(A, Vs) + F4(A) , (6.3.8)

where

F1(A, Vs) :=
∆t

2

∫
Ω

nk1|∇(A1 − Vs)|2 dx+
∆t

2

∫
Ω

nk2|∇(A2 − Vs)|2 dx , (6.3.9)

F2(A, Vs) :=
γ2

2

∫
Ω

|∇Vs|2 dx+ (nk1, A1 − Vs) + (nk2, A2 − Vs) , (6.3.10)

F3(A, Vs) := α∆tRe

{∫
Ω

nk21(A1 − A2)D(A1 + A2 − 2Vs) dx

}
, (6.3.11)

F4(A) :=
α∆t

ε
Im

{∫
Ω

(A1 − A2)2(J21,k
x − iJ21,k

y ) dx

}
. (6.3.12)

The first and second Gateaux derivative of the functionals (6.3.7)-(6.3.12) can be

found in appendix 6.B and 6.C, respectively. One can immediately see that a solution

(Ak+1, V k+1
s ) of the semi-discrete system (6.3.2)-(6.3.6) satisfies

dF(Ak+1, V k+1
s )(δA, δVs) = 0 ∀ (δA, δVs) ∈ (H1(Ω,R))3 ,

and inversely. Thus, it remains to show that F has a unique extremum (minimum).

This can be achieved in two steps and is detailed in appendix 6.C. First we show

that F is strictly convex. Then it is sufficient to show that F is coercive to obtain

the existence and uniqueness of the extremum (Ak+1, V k+1
s ), solution of the system

(6.3.2)-(6.3.6).
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6.3.2 A second semi-discrete system

We suggest here an alternative way to discretize in time the quantum drift-

diffusion model (6.2.8)-(6.2.14). It is based on the point of view that one advances

the spin densities in time, rather than the chemical potentials. We shall implement

an explicit forward Euler scheme:

nk+1
1 − nk1

∆t
+∇ · (nk1∇(Ak1 − V k

s )) + αRe{D(nk21(Ak1 − Ak2))} (6.3.13)

− αRe(nk21D(Ak1 + Ak2 − 2V k
s ))− 2α

ε
(Ak1 − Ak2) Im(Jx,k21 − iJ

y,k
21 )

= 0 ,

nk+1
2 − nk2

∆t
+∇ · (nk2∇(Ak2 − V k

s )) + αRe{D[nk21(Ak1 − Ak2)]} (6.3.14)

+ αRe[nk21D(Ak1 + Ak2 − 2V k
s )] +

2α

ε
(Ak1 − Ak2) Im(Jx,k21 − iJ

y,k
21 )

= 0 ,

−γ2∆V k
s = nk1 + nk2 , (6.3.15)

H(Ak)ψkl = λkl ψ
k
l , (6.3.16)

N =
∑
l

e−λ
k
l

 |ψ1,k
l |2 ψ1,k

l ψ2,k
l

ψ2,k
l ψ1,k

l |ψ2,k
l |2

 , (6.3.17)

Jk21 = −iε
2

∑
l

e−λ
k
l

(
ψ1,k
l ∇ψ

2,k
l − ψ

2,k
l ∇ψ

1,k
l

)
. (6.3.18)

In this case, given the spin-densities (nk1, n
k
2), one first uses the Poisson equation

(6.3.15) to get V k
s , then inverts the formulas (6.3.16)-(6.3.17) in order to get the

chemical potentials (Ak1, A
k
2). Finally one advances in time, using the drift-diffusion

equations (6.3.13)-(6.3.14) in order to get the new spin densities (nk+1
1 , nk+1

2 ) and

one repeats the steps. The inversion of the non-local relation (6.3.16)-(6.3.17) can

be achieved by minimizing the functional Gn : (L2(Ω,R))2 → R, defined by

Gn(A) := G(A) +

∫
Ω

nk1A1 dx+

∫
Ω

nk2A2 dx (6.3.19)
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Indeed, the first derivative of this functional reads

dGn(A)(δA) =−
∑
l

e−λl(A)

∫
Ω

(
|ψ1
l (A)|2δA1 + |ψ2

l (A)|2δA2

)
dx

+

∫
Ω

nk1δA1 dx+

∫
Ω

nk2δA2 dx .

(6.3.20)

As shown in appendix 6.B, the functional Gn is strictly convex and coercive.

Remark 6.3.1. The two semi-discrete systems presented in this section conserve

the total mass (n1 + n2) because of the particular choice of Dirichlet boundary con-

ditions for the eigenvectors ψl of the Hamiltonian (6.2.4). This can be obtained by

integrating the sum of the semi-discrete drift-diffusion equations for n1 and n2, Eqs.

(6.3.2)-(6.3.3) or (6.3.13)-(6.3.14), respectively, over the domain Ω. The remaining

boundary term is of the form∫
∂Ω

n21(A1 − A2)(1,−i) · ν(x) dσ ,

which does not vanish for Neumann boundary conditions. This is in accordance with

the result obtained in subsection 6.2.1, where we showed that Neumann conditions

for ψl lead to a non-hermitian Hamiltonian (6.2.4) in (L2(Ω))2.

6.4 Fully discrete system

This section is devoted to the full discretization of the continuous spin QDD model

(6.2.8)-(6.2.14). The time discretization was done in the previous section, now we

focus on the space discretization. Let x ∈ Ω = [0, 1]× [0, 1] with the discretization

xij = ( (j − 1)∆x , (i− 1)∆y ) , j ∈ {1, 2, . . . ,M} , i ∈ {1, 2, . . . , N} ,

∆x :=
1

M − 1
, ∆y :=

1

N − 1
.

For functions f(x) on Ω we write f(xij) = fij. A function f(x) that is subjected to

homogenous Dirichlet boundary conditions on ∂Ω satisfies

f1j = fNj = 0 ∀ j ∈ {1, 2, . . . ,M} , fi1 = fiM = 0 ∀ i ∈ {1, 2, . . . , N} .

We introduce the following index transformation,

(i, j) 7→ p ∀ i ∈ {2, . . . , N − 1} , j ∈ {2, . . . ,M − 1} ,
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defined by

p = (N − 2)(j − 2) + i− 1 , p = 1, . . . , P , P := (N − 2)(M − 2) .

For discrete functions (fij)
N−1,M−1
i,j=2 in Ω the following vector notation will be imple-

mented:

f̂ := (fp)
P
p=1 ∈ KP , (6.4.1)

where K = R or K = C. The corresponding euclidean scalar product is denoted by

(f̂ , ĝ)P = ∆x∆y
∑
p

fpgp = ∆x∆y
N−1∑
i=2

M−1∑
j=2

fijgij .

6.4.1 A first fully discrete system (scheme 1)

The discretization matrices used in the following are defined in Appendix 6.D. In

view of the boundary conditions (6.2.14), we choose the following space discretization

of the semi-discrete system (6.3.2)-(6.3.6),

n̂1(Âk+1
1 , Âk+1

2 )− n̂k1
∆t

− 2α

ε
(Âk+1

1 − Âk+1
2 ) ◦ Im(Ĵ21,k

x − iĴ21,k
y ) (6.4.2)

− 1

2
(D+

x )T [n̂k1 ◦D+
x (Âk+1

1 − V̂ k+1
s )]− 1

2
(D−x )T [n̂k1 ◦D−x (Âk+1

1 − V̂ k+1
s )]

− 1

2
(D+

y )T [n̂k1 ◦D+
y (Âk+1

1 − V̂ k+1
s )]− 1

2
(D−y )T [n̂k1 ◦D−y (Âk+1

1 − V̂ k+1
s )]

− αRe
{
D̃T
x [n̂k21 ◦ (Âk+1

1 − Âk+1
2 )]

}
+ αRe

{
iD̃T

y [n̂k21 ◦ (Âk+1
1 − Âk+1

2 )]
}

− αRe
{
n̂k21 ◦ [D̃x(Â

k+1
1 + Âk+1

2 − 2V̂ k+1
s )]

}
+ αRe

{
in̂k21 ◦ [D̃y(Â

k+1
1 + Âk+1

2 − 2V̂ k+1
s )]

}
= 0 ,
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n̂2(Âk+1
1 , Âk+1

2 )− n̂k2
∆t

+
2α

ε
(Âk+1

1 − Âk+1
2 ) ◦ Im(Ĵ21,k

x − iĴ21,k
y ) (6.4.3)

− 1

2
(D+

x )T [n̂k2 ◦D+
x (Âk+1

2 − V̂ k+1
s )]− 1

2
(D−x )T [n̂k2 ◦D−x (Âk+1

2 − V̂ k+1
s )]

− 1

2
(D+

y )T [n̂k2 ◦D+
y (Âk+1

2 − V̂ k+1
s )]− 1

2
(D−y )T [n̂k2 ◦D−y (Âk+1

2 − V̂ k+1
s )]

− αRe
{
D̃T
x [n̂k21 ◦ (Âk+1

1 − Âk+1
2 )]

}
+ αRe

{
iD̃T

y [n̂k21 ◦ (Âk+1
1 − Âk+1

2 )]
}

+ αRe
{
n̂k21 ◦ [D̃x(Â

k+1
1 + Âk+1

2 − 2V̂ k+1
s )]

}
− αRe

{
in̂k21 ◦ [D̃y(Â

k+1
1 + Âk+1

2 − 2V̂ k+1
s )]

}
= 0 ,

−γ2∆dirV̂
k+1
s = n̂1(Âk+1

1 , Âk+1
2 ) + n̂2(Âk+1

1 , Âk+1
2 ) , (6.4.4)

H(Âk+1
1 , Âk+1

2 )

(
ψ̂1,k+1
l

ψ̂2,k+1
l

)
= λk+1

l

(
ψ̂1,k+1
l

ψ̂2,k+1
l

)
, (6.4.5)

n̂1(Âk+1
1 , Âk+1

2 ) =
∑
l

e−λ
k+1
l ψ̂1,k+1

l ◦ ψ̂1,k+1
l , (6.4.6)

n̂2(Âk+1
1 , Âk+1

2 ) =
∑
l

e−λ
k+1
l ψ̂2,k+1

l ◦ ψ̂2,k+1
l , (6.4.7)

n̂k21 =
∑
l

e−λ
k
l ψ̂2,k

l ◦ ψ̂
1,k
l , (6.4.8)

Ĵx,k21 = −iε
2

∑
l

e−λ
k
l

[
Dx(ψ̂

2,k
l ) ◦ ψ̂1,k

l − ψ̂
2,k
l ◦Dx(ψ̂

1,k
l )
]
, (6.4.9)

Ĵy,k21 = −iε
2

∑
l

e−λ
k
l

[
Dy(ψ̂

2,k
l ) ◦ ψ̂1,k

l − ψ̂
2,k
l ◦Dy(ψ̂

1,k
l )
]
. (6.4.10)
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Here, the operator ◦ symbolizes the component by component multiplication of two

vectors and the Hamiltonian H(Âk+1) is given by

H(Âk+1
1 , Âk+1

2 ) =

=

 − ε2

2
∆dir + dg(V̂ext,1 + Âk+1

1 ) ε2α(Dx − iDy)

−ε2α(Dx + iDy) − ε2

2
∆dir + dg(V̂ext,2 + Âk+1

2 )

 ,

where dg(f̂) stands for a diagonal P ×P matrix where the diagonal elements are the

components fp of f̂ . The scheme (6.4.2)-(6.4.10) is consistent with the continuous

model (6.2.8)-(6.2.14). It is of first order in time and of second order in space. Due

to its rather implicit nature, the scheme (6.4.2)-(6.4.10) is not subjected to any

stability condition. The solution (Âk+1
1 , Âk+1

2 , V̂ k+1
s ) of the system (6.4.2)-(6.4.10) is

the minimizer of the following discrete functional F̂(Â1, Â2, V̂s) : R3P → R,

F̂(Â1, Â2, V̂s) : = Ĝ(Â1, Â2) + F̂1(Â1, Â2, V̂s)+

+ F̂2(Â1, Â2, V̂s) + F̂3(Â1, Â2, V̂s) + F̂4(Â1, Â2) ,
(6.4.11)

where

Ĝ(Â1, Â2) :=
2P∑
l=1

e−λl(Â1,Â2) , (6.4.12)

F̂1(Â1, Â2, V̂s) :=
∆t

4

[
(n̂k1 ◦D+

x (Â1 − V̂s), D+
x (Â1 − V̂s))P

+(n̂k1 ◦D−x (Â1 − V̂s), D−x (Â1 − V̂s))P + (n̂k1 ◦D+
y (Â1 − V̂s), D+

y (Â1 − V̂s))P
+(n̂k1 ◦D−y (Â1 − V̂s), D−y (Â1 − V̂s))P + (n̂k2 ◦D+

x (Â2 − V̂s), D+
x (Â2 − V̂s))P

+(n̂k2 ◦D−x (Â2 − V̂s), D−x (Â2 − V̂s))P + (n̂k2 ◦D+
y (Â2 − V̂s), D+

y (Â2 − V̂s))P

+(n̂k2 ◦D−y (Â2 − V̂s), D−y (Â2 − V̂s))P
]
, (6.4.13)

F̂2(Â1, Â2, V̂s) : = (n̂k1, Â1 − V̂s)P + (n̂k2, Â2 − V̂s)P

+
γ2

2

[
(Db

xV̂s, D
b
xV̂s)P + (Db

yV̂s, D
b
yV̂s)P

]
+

∆y

∆x

N∑
i=1

V 2
s,iM +

∆x

∆y

M∑
j=1

V 2
s,Nj

(6.4.14)
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F̂3(Â1, Â2, V̂s) := α∆tRe
[(
n̂k21 ◦ (Â1 − Â2), D̃x(Â1 + Â2 − 2V̂s)

)
P

−i
(
n̂k21 ◦ (Â1 − Â2), D̃y(Â1 + Â2 − 2V̂s)

)
P

] (6.4.15)

F̂4(Â1, Â2) :=
α∆t

ε
Im

[(
(Â1 − Â2) ◦ (Â1 − Â2), Ĵ21,k

x − iĴ21,k
y

)
P

]
. (6.4.16)

Using the relation

−(V̂s,∆dirV̂s)P = (Db
xV̂s, D

b
xV̂s)P + (Db

yV̂s, D
b
yV̂s)P

+
∆y

∆x

N∑
i=1

V 2
s,iM +

∆x

∆y

M∑
j=1

V 2
s,Nj ,

(6.4.17)

it can be readily verified that a solution (Âk+1
1 , Âk+1

2 , V̂ k+1
s ) of (6.4.2)-(6.4.10) satisfies

dF̂(Âk+1
1 , Âk+1

2 , V̂ k+1
s )(δÂ, δV̂s) = 0 ∀ (δÂ1, δÂ2, δV̂s) ∈ R3P .

6.4.2 A second fully discrete system (scheme 2)

We chose the following space discretization of the forward Euler scheme (6.3.13)-

(6.3.18):

n̂k+1
1 − n̂k1

∆t
− 2α

ε
(Âk1 − Âk2) ◦ Im(Ĵ21,k

x − iĴ21,k
y )

− 1

2
(D+

x )T [n̂k1 ◦D+
x (Âk1 − V̂ k

s )]− 1

2
(D−x )T [n̂k1 ◦D−x (Âk1 − V̂ k

s )]

− 1

2
(D+

y )T [n̂k1 ◦D+
y (Âk1 − V̂ k

s )]− 1

2
(D−y )T [n̂k1 ◦D−y (Âk1 − V̂ k

s )]

− αRe
{
D̃T
x [n̂k21 ◦ (Âk1 − Âk2)]

}
+ αRe

{
iD̃T

y [n̂k21 ◦ (Âk1 − Âk2)]
}

− αRe
{
n̂k21 ◦ [D̃x(Â

k
1 + Âk2 − 2V̂ k

s )]
}

+ αRe
{
in̂k21 ◦ [D̃y(Â

k
1 + Âk2 − 2V̂ k

s )]
}

= 0 , (6.4.18)
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n̂k+1
2 − n̂k2

∆t
+

2α

ε
(Âk1 − Âk2) ◦ Im(Ĵ21,k

x − iĴ21,k
y )

− 1

2
(D+

x )T [n̂k2 ◦D+
x (Âk2 − V̂ k

s )]− 1

2
(D−x )T [n̂k2 ◦D−x (Âk2 − V̂ k

s )]

− 1

2
(D+

y )T [n̂k2 ◦D+
y (Âk2 − V̂ k

s )]− 1

2
(D−y )T [n̂k2 ◦D−y (Âk2 − V̂ k

s )]

− αRe
{
D̃T
x [n̂k21 ◦ (Âk1 − Âk2)]

}
+ αRe

{
iD̃T

y [n̂k21 ◦ (Âk1 − Âk2)]
}

+ αRe
{
n̂k21 ◦ [D̃x(Â

k
1 + Âk2 − 2V̂ k

s )]
}
− αRe

{
in̂k21 ◦ [D̃y(Â

k
1 + Âk2 − 2V̂ k

s )]
}

= 0 , (6.4.19)

−γ2∆dirV̂
k
s = n̂k1 + n̂k2 , (6.4.20)

H(Âk1, Â
k
2)

(
ψ̂1,k
l

ψ̂2,k
l

)
= λkl

(
ψ̂1,k
l

ψ̂2,k
l

)
, (6.4.21)

n̂k1 =
∑
l

e−λ
k
l ψ̂1,k

l ◦ ψ̂
1,k
l , n̂k2 =

∑
l

e−λ
k
l ψ̂2,k

l ◦ ψ̂
2,k
l , (6.4.22)

n̂k21 =
∑
l

e−λ
k
l ψ̂2,k

l ◦ ψ̂
1,k
l , (6.4.23)

Ĵx,k21 = −iε
2

∑
l

e−λ
k
l

[
Dx(ψ̂

2,k
l ) ◦ ψ̂1,k

l − ψ̂
2,k
l ◦Dx(ψ̂

1,k
l )
]
, (6.4.24)

Ĵy,k21 = −iε
2

∑
l

e−λ
k
l

[
Dy(ψ̂

2,k
l ) ◦ ψ̂1,k

l − ψ̂
2,k
l ◦Dy(ψ̂

1,k
l )
]
. (6.4.25)

Here, the HamiltonianH is the same discrete Hamiltonian as in the first fully discrete

system. Clearly, the scheme (6.4.18)-(6.4.25) is consistent with the continuous model

(6.2.8)-(6.2.14). It is of first order in time and of second order in space. A drawback

of the explicit nature of the forward Euler scheme (6.3.13)-(6.3.18) is that its full

discretization is not unconditionally stable, as compared to the implicit scheme
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presented in the previous subsection. Rather, the space-time grid must be chosen in

such a way that a CFL condition is fulfilled.

The solution of this scheme requires the inversion of the non-local relation (6.4.21)-

(6.4.22) at each time step. For this let us define the discrete version Ĝn : R2P → R
of (6.3.19),

Ĝn(Â1, Â2) := Ĝ(Â1, Â2) + (n̂k1, Â1)P + (n̂k2, Â2)P . (6.4.26)

Indeed, the first derivative of this functional is given by

dĜn(Â1, Â2)(δÂ1, δÂ2) =

(
−
∑
l

e−λ
k
l ψ̂1,k

l ◦ ψ̂
1,k
l + n̂k1, δÂ1

)
P

+

(
−
∑
l

e−λ
k
l ψ̂2,k

l ◦ ψ̂
2,k
l + n̂k2, δÂ2

)
P

.

(6.4.27)

It should be noted that numerical tests conducted in Sec. 6.5 proved that the

scheme presented in this subsection was better suited for a numerical solution of

the spin QDD model than a Lax-Friedrichs scheme. This was attributed to the

sparse space discretization of the domain Ω, which led to a considerable loss of

mass in the Lax-Friedrichs scheme. A more refined grid would thus make a Lax-

Friedrichs discretization of Eqs. (6.3.13)-(6.3.18) an interesting alternative to Eqs.

(6.4.18)-(6.4.25); however this was beyond the capacity of the accessible computa-

tional resources.

6.4.3 Initialization of scheme 1

As was briefly mentioned in Sec. 6.2, a natural way to initialize the system

(6.4.2)-(6.4.10) would be to start from given initial chemical potentials Â0
1 and Â0

2,

compute the corresponding spin- and current densities and subsequently begin the

iteration. However, from an experimental point of view it is more appealing to start

from the initial spin densities n̂0
1 and n̂0

2. The problem in the latter approach is the

lack of information about the initial spin-mixing quantities n̂0
21, Ĵx,021 and Ĵy,021 , which

are not directly related to the spin densities. At t = t0 it is thus necessary to do a

half step of scheme 2, which means to minimize the functional (6.4.26) in order to

obtain the chemical potentials corresponding to the initial spin densities n̂0
1 and n̂0

2.

One can then proceed according to scheme 1.
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6.5 Numerical results

This section deals with the numerical study of the two fully discrete schemes which

were introduced in the previous section. The developed algorithms were imple-

mented in the Fortran 90 language. Eigenvalue problems were solved using the

routine ’zheev.f90’ from the Lapack library. The solution of scheme 1, equations

(6.4.2)-(6.4.10), was achieved by minimizing the discrete functional (6.4.11) at each

time step tk, k > 0. At t0 the system was initialized as detailed in Subsec. 6.4.3.

Each minimization problem was solved by a conjugate gradient method in the pa-

rameter space R3P (or R2P for scheme 2, respectively). We denote vectors in the

parameter space by capital letters X ∈ R3P , X = (Â1, Â1, V̂s), and by ∇X we denote

the gradient in the parameter space. In what follows the dot ’·’ stands for the usual

euclidean scalar product in R3P . In order to find the line minimum of ∇XF̂ · Yn,

where Yn denotes the search direction (|Yn| = 1) during the n-th step of the conju-

gate gradient scheme, a Newton method was employed. The derivative of ∇XF̂ · Yn
in the direction Yn was computed numerically with a forward discretization and the

small step size εNT = 10−3,

(∇XF̂(X) · Yn)′ ≈ ∇XF̂(X + εNTYn) · Yn −∇XF̂(X) · Yn
εNT

.

The same method was applied to the functional Ĝn in scheme 2. The Newton

method was considered converged when |∇XF̂(X) · Yn| < 10−10. We established

two convergence criteria for the conjugate gradient method. On the one hand, we

demanded that the total mass was conserved up to a factor 10−4. On the other

hand, using the notations X = (xi)
3P
i=1 and ∇XF̂ = (∂xiF̂)3P

i=1, we demanded that

max
i
|∂xiF̂ | < 10−3 .

Again, the same criteria were applied for the functional Ĝn in scheme 2. The time

evolution was assumed to be converged if |nk+1
1(2) − nk1(2)|/∆t was less than 10−1 at

each grid point.

Our aim is to test the developed numerical schemes in a typical transistor ge-

ometry, depicted in Fig. 6.1. We expect to obtain equilibrium charge- and spin-

distributions for such a device. The source electrode of the transistor is located in

the upper left corner of the domain, being held at a fixed potential-value Vext,S = 0.

The drain electrode is opposite to the source in the upper right corner with a

fixed potential-value Vext,D = −2.0. The gate electrode, held at the fixed potential

Vext,G = −3.0, is centered at x = 0.5 at the upper boundary of the domain. The tran-
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sistor environment described above manifests itself in the two spin-up respectively

spin-down external potentials Vext,1 and Vext,2. Prior to starting our simulations,

these potentials were computed from the Laplace equation using a Gauss-Seidel

scheme, where the fixed values Vext,S, Vext,D, Vext,G entered as Dirichlet boundary

conditions (Neumann conditions were used at non-electrode portions of the domain

boundary). On top of that we added a potential barrier of height 2.0 and thickness

0.1, which is centered at x = 0.5, and which exists only for spin-up electrons (in-

dex ’1’). The barrier was thus added to Vext,1 only. The potentials Vext,1 + Vs and

Vext,2 + Vs at the starting time t0 are depicted in Fig. 6.1.

Figure 6.1: Schematic of the transistor geometry used in the simulations and the
initial potentials V1 = Vext,1 + Vs and V2 = Vext,2 + Vs in that geometry at t = t0.

Once the starting potentials Vext,1 and Vext,2 have been determined, we are inter-

ested in the evolution of given initial spin distributions n0
1 and n0

2 in the prescribed

transistor environment. For the initial spin densities we choose two Gaussians cen-

tered at (x, y) = (0.5, 0.5),

n0
1(x, y) =

1

0.12π
(1.0 + pol) exp

(
−(x− 0.5)2

0.06
− (y − 0.5)2

0.06

)
,

n0
2(x, y) =

1

0.12π
(1.0− pol) exp

(
−(x− 0.5)2

0.06
− (y − 0.5)2

0.06

)
.

(6.5.1)
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Here, pol denotes the parameter of the initial spin polarization which was set to pol =

0.5. The initial data for n1 and n2 were discretized according to the conventions

at the beginning of section 6.4. The initial total mass of the system was 1.0. The

parameters of the space-discretization (for scheme 1 and for scheme 2) were chosen

as

N = 21 , M = 21 , ∆x = 0.05 , ∆y = 0.05 .

Employing the initial conditions (6.5.1), the numerical solution of scheme 1 and

scheme 2, respectively, was carried out for values

α = 0.1 , ε = 0.1 , (6.5.2)

of the scaled Rashba constant α and the semiclassical parameter ε, respectively. The

respective time steps were

scheme 1 : ∆t = 1.0× 10−2 , scheme 2 : ∆t = 0.5× 10−4 . (6.5.3)

We note that in scheme 2 the CFL condition imposed a rather small increment on

the time discretization.

The simulated time evolution of the spin density n = n1+n2, the spin polarization

npol = n1−n2, the chemical potential A1 and the chemical potential A2 are depicted

in Figs. 6.2-6.5 (all plotted data was interpolated to a grid of 128×128 points using

the Matlab routine “interp2.m”). In each of these Figures the results obtained

from scheme 1 are compared with those obtained from scheme 2 during a time span

of 8.0 × 10−2. Let us briefly explain what is observed, starting with the evolution

of the electron density n depicted in Fig. 6.2. At k = 0 one identifies the initial

Gaussians, given by (6.5.1), which, as time evolves, are gradually split into two

parts because of the potential barrier located at the center of the transistor, c.f.

Figure 6.1. In the steady-state (at k = 8) the electron density has its maximum

in the vicinity of the gate and the drain electrode, which is the region where the

electron potential Vext + Vs has its lowest value. The region where the potential

barrier is located shows a reduced electron density. This can be attributed to the

positive barrier height “seen” by spin-up electrons, which impedes these electrons

from entering (crossing) this region. Spin-down electrons are much less affected by

the barrier, which becomes more transparent when regarding Figs. 6.4 and 6.5 for

the respective chemical potentials. One clearly observes the barrier in the chemical

potential A1, while in A2 it is completely absent. In both cases, however, gradients

in A are gradually reduced when approaching the steady-state (at k = 8). Last but

not least we turn to an interpretation of the obtained spin polarization npol, depicted

in Fig. 6.3. A pattern similar to the one for the spin density evolves; however, npol
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(i) Scheme 1: ∆t = 1.0× 10−2.

(ii) Scheme 2: ∆t = 0.5× 10−4.

Figure 6.2: Time evolution of the electron density n = n1 + n2 in the transistor
geometry depicted in Fig. 6.1.
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(i) Scheme 1: ∆t = 1.0× 10−2.

(ii) Scheme 2: ∆t = 0.5× 10−4.

Figure 6.3: Time evolution of the spin polarization npol = n1 − n2 in the transistor
geometry depicted in Fig. 6.1.
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(i) Scheme 1: ∆t = 1.0× 10−2.

(ii) Scheme 2: ∆t = 0.5× 10−4.

Figure 6.4: Time evolution of the chemical potential A1 in the transistor geometry
depicted in Fig. 6.1.
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(i) Scheme 1: ∆t = 1.0× 10−2.

(ii) Scheme 2: ∆t = 0.5× 10−4.

Figure 6.5: Time evolution of the chemical potential A2 in the transistor geometry
depicted in Fig. 6.1.



176 CHAPTER 6. NUMERICAL STUDY OF A QUANTUM-DIFFUSIVE SPIN MODEL

becomes negative in the region where the potential barrier is located. This is again

due to the positive barrier height, which leads to n2 > n1 in the respective region.

6.6 Conclusion

In this work we proved the existence and uniqueness of a solution of two time

discrete versions of the quantum drift-diffusion model (6.2.8)-(6.2.14) on the basis

of a functional argument. Furthermore, finite difference approximations of space

derivatives resulted in two fully discrete schemes which were later applied to simulate

the time evolution of a Rashba electron gas confined to a bounded domain and under

the influence of a prescribed external potential. The first scheme is implicit and

advances in time the spin chemical potentials, whereas the second scheme is forward

Euler and advances in time the spin-up and spin-down densities, respectively. The

second scheme is subjected to a CFL stability condition, which results in the use of a

considerably smaller time step as compared to the implicit scheme. Our results prove

that the quantum drift-diffusion model considered can be applied for the numerical

study of spin-polarized effects due to Rashba spin-orbit coupling and, thus, appears

to benefit the design of novel spintronics applications.

6.A Perturbed eigenvalue problem

This section is devoted to the computation of the derivatives dλl(A)(δA) and dψl(A)(δA)

of the eigenvalues and eigenfunctions, respectively, of the Hamiltonian (6.2.4), when

a small perturbation δA of the chemical potential A is applied. Let us define

δH =

 δA1 0

0 δA2

 , (6.A.1)

and start from

(H + δH)(ψl + dψl) = (λl + dλl)(ψl + dψl) (6.A.2)

where H denotes the Hamiltonian (6.2.4). Using Hψl = λlψl one obtains, up to first

order in the variations,

Hdψl + δHψl = λldψl + dλlψl . (6.A.3)

Taking now the scalar product with ψk and using the orthonormalitiy of the eigen-

functions,

(ψk, ψl)L2 =

∫
Ω

(ψ1
kψ

1
l + ψ2

kψ
2
l ) dx = δkl , (6.A.4)
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one obtains

(ψk, Hdψl)L2 + (ψk, δHψl)L2 = λl(ψk, dψl)L2 + dλlδkl . (6.A.5)

Since H is hermitian we have

(ψk, Hdψl)L2 = (Hψk, dψl)L2 = λk(ψk, dψl)L2 , (6.A.6)

and (6.A.5) can be written as

(ψk, δHψl)L2 = (λl − λk)(ψk, dψl)L2 + dλlδkl . (6.A.7)

For l = k we obtain

dλl(A)(δA) = (ψl, δHψl)L2 =

∫
Ω

(
|ψ1
l (A)|2δA1 + |ψ2

l (A)|2δA2

)
dx , (6.A.8)

and for l 6= k, assuming that the spectrum of H is non-degenerate, i.e. λl 6= λk ∀l 6=
k, one obtains

(ψk, dψl)L2 =
(ψk, δHψl)L2

λl − λk
. (6.A.9)

Since (6.A.9) is the projection of dψl on the k-th basis vector of the eigenbasis of H

we may write

dψl(A)(δA) =
∑
k 6=l

ψk
λl − λk

(ψk, δHψl)L2 = (6.A.10)

=
∑
k 6=l

ψk(A)

λl(A)− λk(A)

∫
Ω

(
ψ1
k(A)ψ1

l (A)δA1 + ψ2
k(A)ψ2

l (A)δA2

)
dx .

6.B The maps G(A) and Gn(A)

The map G : (H1(Ω,R))2 → R introduced in (6.3.7) is Gateaux-derivable and its

first and second derivative, respectively, in the direction δA read

dG(A)(δA) = −
∑
l

e−λl(A)

∫
Ω

(
|ψ1
l (A)|2δA1 + |ψ2

l (A)|2δA2

)
dx ,

d2G(A)(δA) = −
∑
l,k

e−λl − e−λk
λl − λk

(∫
Ω

ψ1
kψ

1
l δA1 dx+

∫
Ω

ψ2
kψ

2
l δA2 dx

)2

.
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The maps G and Gn (which was introduced in (6.3.19)) are thus strictly convex. We

obtain formally,

Gn(A) =
∑
l

e−λl(A) +

∫
Ω

nk1A1 dx+

∫
Ω

nk2A2 dx

≥ e−λ1(A) +

∫
Ω

nk1A1 dx+

∫
Ω

nk2A2 dx −−−−−−−−−−−−→
||A1||L2+||A2||L2→∞

∞ ,

(6.B.1)

which means that Gn is even coercive. Here, λ1(A) stands for the smallest eigenvalue

of the Hamiltonian H(A),

λ1(A) = min
φ∈(H1(Ω))2

(H(A)φ, φ) , ||φ||(L2(Ω))2 = 1 . (6.B.2)

In what follows we present a detailed computation of the second derivative of the

functional G(A). We have

d2G(A)(δA) =− 2
∑
l

e−λl
∫

Ω

Re
(
ψ1
l dψ

1
l δA1 + ψ2

l dψ
2
l δA2

)
dx

+
∑
l

e−λldλl

∫
Ω

(
|ψ1
l |2δA1 + |ψ2

l |2δA2

)
dx .

(6.B.3)

Let us define the following integrals,

Ikl1 :=

∫
Ω

ψ1
kψ

1
l δA1 dx Ikl2 :=

∫
Ω

ψ2
kψ

2
l δA2 dx . (6.B.4)

Remark that from (6.A.8) one deduces

dλl = I ll1 + I ll2 . (6.B.5)

Thus, the second line in (6.B.3) can be written as∑
l

e−λl
(
I ll1 + I ll2

)2
. (6.B.6)

Moreover, from (6.A.10) one obtains

dψ1
l =

∑
k 6=l

ψ1
k

λl − λk
(
Ikl1 + Ikl2

)
,

dψ2
l =

∑
k 6=l

ψ2
k

λl − λk
(
Ikl1 + Ikl2

)
,

(6.B.7)
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and therefore we have∫
Ω

(
ψ1
l dψ

1
l δA1 + ψ2

l dψ
2
l δA2

)
dx =

∑
k 6=l

1

λl − λk
(
Ikl1 + Ikl2

)2
. (6.B.8)

The right-hand-side of the first line in (6.B.3) can now be written as

−2
∑
l

∑
k 6=l

e−λl

λl − λk
(
Ikl1 + Ikl2

)2
= −

∑
l,k,l 6=k

e−λl − e−λk
λl − λk

(
Ikl1 + Ikl2

)2
. (6.B.9)

Adding (6.B.6) and (6.B.9) together and making the convention

l = k :
e−λl − e−λk
λl − λk

= −e−λl , (6.B.10)

the second derivative of G(A) becomes

d2G(A)(δA) = −
∑
l,k

e−λl − e−λk
λl − λk

(
Ikl1 + Ikl2

)2
. (6.B.11)

6.C Gateaux derivatives of F1-F4

The first and second Gateaux derivative, respectively, of the functionals (6.3.9)-

(6.3.12) is given by

dF1(A, Vs)(δA, δVs) =−∆t

∫
Ω

∇ · (nk1∇(A1 − Vs))(δA1 − δVs) dx

−∆t

∫
Ω

∇ · (nk2∇(A2 − Vs))(δA2 − δVs) dx ,

d2F1(A, Vs)(δA, δVs) =−∆t

∫
Ω

∇ · [nk1∇(δA1 − δVs)](δA1 − δVs) dx

−∆t

∫
Ω

∇ · [nk2∇(δA2 − δVs)](δA2 − δVs) dx

=∆t

∫
Ω

nk1|∇(δA1 − δVs)|2 dx+ ∆t

∫
Ω

nk2|∇(δA2 − δVs)|2 dx ,

dF2(A, Vs)(δA, δVs) =− γ2

∫
Ω

∆VsδVs dx−
∫

Ω

(nk1 + nk2)δVs dx

+

∫
Ω

nk1δA1 dx+

∫
Ω

nk2δA2 dx ,
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d2F2(A, Vs)(δA, δVs) = −γ2

∫
Ω

(∆δVs)δVs dx = γ2

∫
Ω

|∇δVs|2 dx ,

dF3(A, Vs)(δA, δVs) =− α∆tRe

{∫
Ω

D[nk21(A1 − A2)](δA1 + δA2 − 2δVs) dx

}
+ α∆tRe

{∫
Ω

nk21D(A1 + A2 − 2Vs)(δA1 − δA2) dx

}
,

d2F3(A, Vs)(δA, δVs) = 2α∆tRe

{∫
Ω

nk21D(δA1 + δA2 − 2δVs)(δA1 − δA2) dx

}
,

dF4(A)(δA) =
2α∆t

ε
Im

{∫
Ω

(A1 − A2)(δA1 − δA2)(J21,k
x − iJ21,k

y ) dx

}
,

d2F4(A)(δA) =
2α∆t

ε
Im

{∫
Ω

(δA1 − δA2)2(J21,k
x − iJ21,k

y ) dx

}
.

To show that F is strictly convex, it is sufficient to show that

d2F(A, Vs)(δA, δVs) ≥ 0 , ∀δA, δVs .

One can see immediatly that the terms corresponding to G, F1 and F2 are positive.

Nevertheless, nothing can be said about the sign of the terms corresponding to F3

and F4. Assuming on the other hand that ε is a small parameter, which is a physical

hypothesis, one can incorporate these latter terms in the former ones. Inspired by a

formal prove in [1], in this work we assume, for some constant c > 0,

nk21 = O(ε2) , Im(J21,k
x − iJ21,k

y ) = 2cεα
e−A

k
1 − e−Ak2

Ak2 − Ak1
+O(ε3) .

Remark then that the dominant term in d2F4

4cα2∆t

{∫
Ω

(δA1 − δA2)2 e
−Ak1 − e−Ak2
Ak2 − Ak1

dx

}
.

is positive.

Concerning the coercivity, it is enough to show that

|F(A, Vs)| −−−−−−−−−−−−→
||A||H1+||Vs||H1→∞

∞ .
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In [7] this property has been shown for the first terms X := G+F1 +F2, by proving

that if |X (A, Vs)| < c1 for some constant c1 > 0, than there exists a constant c2 > 0

such that ||A||H1 + ||Vs||H1 < c2. We can adapt this result in the present case, by

assuming again that ε is a small parameter. Indeed, one can again incorporate the

new terms F3 + F4 in X , by proving the existence of some constant C > 0, such

that

C|X (A, Vs)| ≤ |F(A, Vs)| ,

which finishes the coercivity proof. Thus, the functional F , being strictly convexe

and coercive, admits a unique minimum.

6.D Discretization matrices

Let 1 stands for the (N − 2)× (N − 2) identity matrix. Then we have the following

discretization matrices:

D+
x =

1

∆x



−1 1

0 −1 1

. . . . . . . . .

0 −1 1

0 0


∈ RP×P ,

D−x =
1

∆x



0 0

−1 1 0

. . . . . . . . .

−1 1 0

−1 1


∈ RP×P ,

D+
y =

1

∆y

 d+
y

. . .

d+
y

 , D−y =
1

∆y

 d−y
. . .

d−y

 ,

D+
y , D

−
y ∈ RP×P ,
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d+
y =



−1 1

0 −1 1

. . . . . . . . .

0 −1 1

0 0


∈ R(N−2)×(N−2) ,

d−y =



0 0

−1 1 0

. . . . . . . . .

−1 1 0

−1 1


∈ R(N−2)×(N−2) ,

D̃x =
D+
x +D−x

2
, D̃y =

D+
y +D−y

2
,

∆dir = ∆x + ∆y ∈ RP×P ,

∆x =
1

(∆x)2



−21 1

1 −21 1

. . . . . . . . .

1 −21 1

1 −21


∈ RP×P .

∆y :=
1

(∆y)2


ly

. . .

ly

 ∈ RP×P .
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ly =



−2 1

1 −2 1

. . . . . . . . .

1 −2 1

1 −2


∈ R(N−2)×(N−2) ,

Dx =
1

2∆x



0 1

−1 0 1

. . . . . . . . .

−1 0 1

−1 0


∈ RP×P ,

Dy :=
1

2∆y


dy

. . .

dy

 ∈ RP×P .

dy =



0 1

−1 0 1

. . . . . . . . .

−1 0 1

−1 0


∈ R(N−2)×(N−2) ,

Db
x =

1

∆x



1 0

−1 1 0

. . . . . . . . .

−1 1 0

−1 1


∈ RP×P .



Db
y =

1

∆y

 dby
. . .

dby

 ∈ RP×P ,

dby =



1 0

−1 1 0

. . . . . . . . .

−1 1 0

−1 1


∈ R(N−2)×(N−2) ,
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