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Abstract

In the present thesis a unified functional analytic approach to the treatment
of self-adjoint elliptic operators with Dirichlet, Neumann, Robin, and more
general self-adjoint boundary conditions on bounded and unbounded do-
mains is provided. Moreover, Schrödinger operators on couplings of exterior
and interior domains with transmission boundary conditions are considered.
In particular, Schrödinger operators with δ′-interactions on hypersurfaces
are rigorously introduced.

The key results in the thesis are Schatten-von Neumann estimates for
the resolvent power differences of self-adjoint elliptic operators correspond-
ing to the same differential expression and to distinct boundary conditions.
Schatten-von Neumann estimates for the resolvent power differences of ellip-
tic operators have a long history, starting in the middle of the 20th century
with the seminal contributions by Povzner and Birman, followed by Grubb.
In this thesis certain new estimates with faster convergence of singular val-
ues are obtained. The proofs of these estimates rely on Krein-type resolvent
formulas, asymptotics of eigenvalues of the Laplace-Beltrami operator on
the boundary and certain considerations of algebraic nature.

A question of special interest, in connection with scattering theory, is
the trace class property of the analyzed resolvent power differences, which
implies the existence and completeness of the wave operators. In the special
case, that the resolvent power differences are in the trace class, formulae for
their traces are given.



Zusammenfassung

In der vorliegenden Dissertation wird eine Methode zur Behandlung von
selbstadjungierten elliptischen Operatoren mit Dirichlet-, Neumann-, Robin-
und allgemeineren selbstadjungierten Randbedingungen auf beschränkten
und unbeschränkten Gebieten vorgeschlagen, die auf der Erweiterungsthe-
orie symmetrischer Operatoren basiert. Außerdem werden Schrödinger-
Operatoren auf äußeren und inneren Gebieten betrachtet, die durch Trans-
missionsbedingungen gekoppelt sind. Als Spezialfall werden Schrödinger-
Operatoren mit δ′-Interaktionen auf Hyperflächen rigoros eingeführt.

Die entscheidenden Resultate der Dissertation sind Schatten-von Neu-
mann Abschätzungen der Resolventpotenzdifferenzen von selbstadjungierten
elliptischen Operatoren, die mit einem Differentialausdruck und verschiede-
nen Randbedingungen assoziiert sind. Schatten-von Neumann Abschät-
zungen von Resolventpotenzdifferenzen elliptischer Operatoren haben eine
lange Geschichte, die in der Mitte des 20. Jahrhunderts mit den grundle-
genden Artikeln von Povzner, Birman und Grubb anfing. In dieser Dis-
sertation sind bestimmte neue Abschätzungen mit schnellerer Konvergenz
von Singulärwerten enthalten. Die Beweise dieser Abschätzungen basieren
auf der Kreinschen Resolventidentität, dem asymptotischen Verhalten der
Eigenwerten des Laplace-Beltrami Operators auf dem Rand und einigen al-
gebraischen Beobachtungen.

Eine Frage von speziellem Interesse, mit Verbindung zur Streutheorie,
ist die Spurklasseeigenschaft der analysierten Resolventenpotenzdifferenzen,
welche die Existenz und Vollständingkeit der Welleoperatoren impliziert.
In dem Spezialfall, dass die Resolventenpotenzdifferenzen in der Spurklasse
liegen, werden Formeln für ihre Spuren gegeben.
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Chapter 1

Introduction

Partial differential equations play a major role in natural sciences and pure
mathematics. The present thesis is concerned with the fields of operator
theory and analysis of partial differential equations, more particular, spec-
tral theory of elliptic differential operators. In many situations it is useful
and natural to associate linear operators with differential expressions, e.g.
in quantum mechanics, where the observables are often self-adjoint partial
differential operators in Hilbert spaces, and their spectral properties are
related to the behavior of the quantum mechanical systems.

The evolution of a quantum system is governed by the time-dependent
Schrödinger equation. The behavior for large times of the solutions of this
equation is the subject of analysis in scattering theory. From the functional
analytic point of view mathematical scattering theory can be considered as
perturbation theory of self-adjoint operators on the continuous spectrum.
The main objects are the wave operators and the corresponding scattering
operator, which relates “initial” and “final” characteristics of the process
directly, bypassing its consideration for finite times. The initial step in the
solution of a scattering problem usually consists in establishing the existence
and completeness of the wave operators. One possible way to show the
existence and completeness of the wave operators for a pair of self-adjoint
operators is to prove that the difference of some integer powers of their
resolvents belongs to the trace class ideal.

In the present thesis the author provides a unified approach to the treat-
ment of self-adjoint elliptic operators with Dirichlet, Neumann, Robin, and
more general self-adjoint boundary conditions on bounded and unbounded
domains. The key results in the thesis are Schatten-von Neumann estimates
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for the resolvent power differences of self-adjoint elliptic operators corre-
sponding to one differential expression and to distinct boundary conditions.
Schatten-von Neumann estimates for the resolvent power differences of ellip-
tic operators have a long history, starting in the middle of the 20th century
with the seminal contributions by Povzner [P53] and Birman [B62], followed
by Grubb [G84]. In the thesis certain new estimates with faster convergence
of singular values are presented. A question of special interest, in connection
with scattering theory, is the trace class property of the analyzed resolvent
power differences, which implies the existence and completeness of the wave
operators. In the special case that the resolvent power differences are in the
trace class, we provide formulae for their traces.

The main content of the thesis is divided into four chapters, namely:
Chapter 2 with preliminary material, Chapter 3 on elliptic operators on do-
mains with compact boundaries, Chapter 4 on Schrödinger operators with
couplings of interior and exterior domains, and Chapter 5 on Robin Lapla-
cians on a half-space. The introduction is further organized into three parts
corresponding to the material presented in Chapters 3-5.

The main results of the thesis are partially reflected in five publica-
tions [BLL+10, BLL12, BLL12a, BLL12b, LR12] jointly with Jussi Behrndt,
Matthias Langer, Igor Lobanov, Igor Popov, and Jonathan Rohleder.

1.1 Elliptic operators on domains with compact
boundaries

In Chapter 3 we deal with self-adjoint realizations of a symmetric elliptic
differential expression on a bounded or unbounded domain with a compact
smooth boundary subject to Dirichlet, Neumann, Robin and more general
boundary conditions. We explain the main results of Chapter 3 with the
help of the Laplace differential expression. In the body of the thesis the
statements are formulated and proved for a second-order uniformly elliptic
differential expression with certain assumptions on the coefficients.

Let Ω ⊂ Rn be a bounded or unbounded domain with a compact C∞-
smooth boundary ∂Ω. We denote by −∆D and −∆N the self-adjoint Dirich-
let and Neumann Laplacians on Ω. For a bounded self-adjoint operator B,
which acts in the Hilbert space L2(∂Ω), we define the operator −∆[B] as

−∆[B] := −∆f

dom
(
−∆[B]

)
:=
{
f ∈ H3/2(Ω): ∆f ∈ L2(Ω), Bf |∂Ω = ∂νf |∂Ω

}
,

(1.1.1)
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where H3/2(Ω) is the fractional Sobolev space on Ω of order 3/2, f |∂Ω is the
trace of f on the boundary and ∂νf |∂Ω is the trace of the normal derivative
of f with the normal pointing outwards. Using the second Green’s identity
it is not difficult to show that the operator −∆[B] is symmetric, whereas in
order to show self-adjointness of −∆[B] certain tools are required.

Our key tools are the notion of quasi boundary triples, and the associated
γ-fields and Weyl functions. This allows us to prove the Krein-type formula

(1.1.2) (−∆[B] − λ)−1 − (−∆N − λ)−1 = γ(λ)
(
I −BM(λ)

)−1
Bγ(λ)∗,

where λ ∈ ρ(−∆[B])∩ ρ(−∆N). In this formula, the γ-field γ(λ) : L2(∂Ω)→
L2(Ω) is the solution operator for the boundary value problem

(−∆− λ)f = 0, in Ω,

∂νf |∂Ω = ϕ, on ∂Ω,
(1.1.3)

and the Weyl function M(λ) : L2(∂Ω)→ L2(∂Ω) is the corresponding Neum-
ann-to-Dirichlet map, which maps ϕ into the Dirichlet trace of the solution
of the problem (1.1.3). As an intermediate step in the proof of formula
(1.1.2) we get self-adjointness of the operator −∆[B].

The main results of Chapter 3 are related to Schatten-von Neumann
estimates for resolvent power differences of the operators −∆D, −∆N and
−∆[B]. We recall that the singular values sk(T ) of a compact operator T are

the eigenvalues of the positive operator (T ∗T )1/2 arranged in non-increasing
order and counted with their multiplicities. If the singular values satisfy
sk(T ) = O(k−1/p) as k → ∞ with some p > 0, then we write T ∈ Sp,∞.
The class Sp,∞ is called the weak Schatten-von Neumann class of order p.
In particular, an operator T ∈ Sp,∞ with p ∈ (0, 1) belongs to the trace
class, which means that {sk(T )}∞k=1 ∈ `1(N).

According to the results, proved by Povzner [P53], Birman [B62] and
Grubb [G84, G84a], for all m ∈ N,

(1.1.4) (−∆D − λ)−m − (−∆N − λ)−m ∈ Sn−1
2m

,∞,

holds, and, moreover, this estimate is optimal. In the special case, that B
is a multiplication operator with a real-valued function β ∈ C∞(∂Ω), it was
also proved in [G84, G84a] that

(1.1.5) (−∆D − λ)−m − (−∆[β] − λ)−m ∈ Sn−1
2m

,∞,

and that this estimate is also optimal. In the thesis the estimates (1.1.4)
and (1.1.5) are generalized to the pairs {−∆[B],−∆N} and {−∆[B],−∆D}.
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We emphasize that for the pair {−∆[B],−∆N}, even in the case of a mul-
tiplication operator B, known results were not optimal. As it is shown in
Chapter 3, in this case singular values converge slightly faster, which in view
of the sharpness of the estimates (1.1.4) and (1.1.5) is a new phenomenon.
Namely, we prove that

(−∆[B] − λ)−m − (−∆N − λ)−m ∈ S n−1
2m+1

,∞,

(−∆[B] − λ)−m − (−∆D − λ)−m ∈ Sn−1
2m

,∞.
(1.1.6)

In this sense the operator −∆[B] is closer to −∆N. These estimates are
especially important in the case of exterior domains, for which scattering
problems make sense. Clearly, for a sufficiently large number m we get
n−1

2m+1 < 1 and n−1
2m < 1. Thus for such m the resolvent power differences in

(1.1.6) are trace class operators and by the Birman-Kato criterion [Y92] the
wave operators for the pairs {−∆[B],−∆N} and {−∆[B],−∆D} exist and
are complete, see Section 3.3 for the details.

Our proofs of the estimates in (1.1.6) rely on the formula (1.1.2), on
elliptic regularity theory and on the spectral asymptotics of the Laplace-
Beltrami operator on ∂Ω.

It is worth mentioning that for B1 and B2 such that B1 −B2 ∈ Sn−1
q
,∞

with some q > 0 we get even a better estimate

(1.1.7) (−∆[B2] − λ)−m − (−∆[B1] − λ)−m ∈ S n−1
2m+q+1

,∞.

In the special case, that the resolvent power differences in (1.1.6) and
(1.1.7) are in the trace class, we provide formulae for their traces extend-
ing the work of Carron [Ca02] to more general boundary conditions. In
particular, for the pair {−∆[B],−∆N} this formula has the form

tr
(
(−∆[B]−λ)−m−(−∆N−λ)−m

)
=tr

(
dm−1

dλm−1

((
I−BM(λ)

)−1
B
d

dλ
M(λ)

))
.

Note that on the left-hand side the trace of an operator in L2(Ω) appears,
whereas on the right-hand side the trace of an operator in L2(∂Ω) is com-
puted. In this sense we reduce the trace to the boundary. In Sturm-Lioville
theory an analogous reduction of perturbation determinants was given al-
ready sixty years ago by Jost and Pais in [JP51].

See Section 3.4 for further references and historical comments. The re-
sults of Chapter 3 are mainly contained in the works of the author [BLL+10,
BLL12, BLL12b].
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1.2 Schrödinger operators with δ and δ′-potentials
supported on compact hypersurfaces

In Chapter 4 we study self-adjoint realizations of the Schrödinger differen-
tial expression −∆ + V in the Hilbert space L2(Rn) with certain coupling
(transmission) boundary conditions on a compact C∞-smooth, closed hyper-
surface. In the introduction we present our results in the special important
case V ≡ 0.

We deal with a compact C∞-smooth closed hypersurface Σ ⊂ Rn which
separates the Euclidean space Rn, n ≥ 2, into an interior bounded domain Ωi

and an exterior unbounded domain Ωe. By −∆free we denote the usual self-
adjoint Laplacian in L2(Rn) with dom(−∆free) = H2(Rn) and by −∆N,i,e

we denote the direct sum of the self-adjoint Neumann Laplacians on the
domains Ωi and Ωe.

Usually the Schrödinger operator with a δ-interaction of a strength α ∈
L∞(Σ;R) supported on Σ is defined via the closed semi-bounded sesquilinear
form

tδ,α[f, g] := (∇f,∇g)L2(Rn;Cn) − (αf |Σ, g|Σ)L2(Σ), dom tδ,α := H1(Rn).

This way of definition is used in many papers. We refer the reader to
Brasche, Exner, Kuperin and Šeba [BEKS94] and the review paper [E08]
by Exner for more details and further references, see also Section 4.6 for
historical comments.

The definition via the sesquilinear form does not immediately lead to
an explicit characterization of the operator domain of the underlying self-
adjoint operator, whereas the regularity of the functions in the operator
domain plays an important role in many applications. In the thesis the
author suggests another way of definition of the Schrödinger operator with
a δ-interaction supported on Σ of strength α, where the action and the
domain are specified explicitly. Set

H
3/2
∆ (Rn \Σ):=

{
f = fi⊕fe ∈ H3/2(Ωi)⊕H3/2(Ωe) : ∆fj ∈ L2(Ωj), j = i, e

}
.

Then the operator −∆δ,α can be defined as

−∆δ,α := −∆fi ⊕∆fe,

dom(−∆δ,α) :=

{
f = fi ⊕ fe ∈ H3/2

∆ (Rn \ Σ):
fi|Σ = fe|Σ =: f |Σ

∂νefe|Σ + ∂νifi|Σ = αf |Σ

}
,

(1.2.1)
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where fi|Σ, fe|Σ are the traces of f = fi⊕fe from both sides of Σ and ∂νifi|Σ,
∂νefe|Σ are the traces of the normal derivatives of f from both sides of Σ with
the normals pointing outwards Ωi and Ωe, respectively. Roughly speaking,
the domain of the operator −∆δ,α consists of functions with coinciding traces
from both sides of Σ and with a jump of the normal derivative, which is
connected with the usual trace via the function α. It follows from the second
Green’s identity that the operator −∆δ,α is symmetric. For the proof of self-
adjointness we need certain tools.

Our key tools are similar as in the case of single domains in Chapter 3.
We introduce a γ-field γ̃, which is in this case the single-layer potential, and
the corresponding Weyl function M̃ , which is an analogue of the Neumann-
to-Dirichlet map. This allows us to prove the Krein-type formula

(1.2.2) (−∆δ,α − λ)−1 − (−∆free − λ)−1 = γ̃(λ)
(
I − αM̃(λ)

)−1
αγ̃(λ)∗.

As an intermediate step in the proof of this formula we get self-adjointness
of the operator −∆δ,α. We also prove in Chapter 4 that the operator −∆δ,α

and the operator corresponding to the form tδ,α coincide, which relates our
approach to the previously known one.

Furthermore, we obtain spectral estimates of the type (1.1.6) for the
pairs {−∆free,−∆δ,α} and {−∆N,i,e,−∆δ,α}. Namely, for all m ∈ N,

(−∆δ,α − λ)−m − (−∆free − λ)−m ∈ S n−1
2m+1

,∞,

(−∆δ,α − λ)−m − (−∆N,i,e − λ)−m ∈ Sn−1
2m

,∞.
(1.2.3)

In this sense the operator −∆δ,α is closer to the free Laplacian than to the
decoupled Neumann Laplacian. In particular, as a consequence of these
estimates the wave operators for the pair {−∆δ,α,−∆free} exist and are
complete in all space dimensions. Our proofs of Sp,∞-estimates in the case of
δ-interactions are similar to the proofs in the case of single domains without
coupling. We use the formula (1.2.2), elliptic regularity theory and the
asymptotics of Laplace-Beltrami operator on Σ.

As a certain addition we provide trace formulae in the case that the
resolvent power differences in (1.2.3) are in the trace class. In these formulae
the trace of the resolvent power difference acting in L2(Rn) is reduced to the
trace of a certain operator acting in L2(Σ). For a more general differential
expression −∆ + V we assume some smoothness of V in the neighborhood
of Σ in order to prove the estimates (1.2.3).

In the thesis also δ′-interactions on hypersurfaces are encompassed. Since
δ′-interactions are more singular, their treatment is more involved. Some
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particular results in the case of Σ being a sphere are known, see Antoine,
Gesztesy and Shabani [AGS87], Shabani [Sh88], where the separation of
variables is the main tool of analysis. Development of a general approach
to the treatment of Schrödinger operators with δ′-interactions supported on
hypersurfaces was posed by Pavel Exner as an unsolved problem in the re-
view paper [E08]. We provide two ways for the definition of these operators.
As we show, one can define for a boundedly invertible real-valued function
β : Σ→ R the Schrödinger operator with a δ′-interaction supported on Σ of
the strength β via the closed, semi-bounded sesquilinear form

tδ′,β[f, g] :=
(
∇fi,∇gi

)
L2(Ωi;Cn)

+
(
∇fe,∇ge

)
L2(Ωe;Cn)

−

−
(
β−1(fe|Σ − fi|Σ), ge|Σ − gi|Σ

)
L2(Σ)

dom tδ′,β := H1(Ωi)⊕H1(Ωe).

In this definition the domain of the underlying self-adjoint operator is not
easily visible. As the second way, we propose to define Schrödinger operator
with a δ′-interaction explicitly via its action and domain

−∆δ′,β := −∆fi ⊕∆fe

dom(−∆δ′,β) :=

{
f = fi ⊕ fe ∈ H3/2

∆ (Rn \ Σ):
fe|Σ − fi|Σ = β∂νefe|Σ
∂νefe|Σ + ∂νifi|Σ = 0

}
.

Roughly speaking, the domain of the operator −∆δ′,β consists of functions
with coinciding normal derivatives on Σ and with the jump of the usual
traces, which is connected with the normal derivative via the function β. In
order to see that the operator −∆δ′,β is self-adjoint, we follow our abstract
methods with γ-fields and Weyl functions. Furthermore, we connect the
two proposed definitions by showing that the self-adjoint operator −∆δ′,β

coincides with the self-adjoint operator corresponding to the form tδ′,β.

We obtain estimates of the type (1.2.3) also for the pairs {−∆free,−∆δ′,β}
and {−∆N,i,e,−∆δ′,β}. As we show, for all m ∈ N,

(−∆δ′,β − λ)−m − (−∆free − λ)−m ∈ Sn−1
2m

,∞,

(−∆δ′,β − λ)−m − (−∆N,i,e − λ)−m ∈ S n−1
2m+1

,∞.
(1.2.4)

In this sense the operator −∆δ′,β is closer to the decoupled Neumann Lapla-
cian than to the free Laplacian. In particular, as a consequence of these
results the wave operators for the pair {−∆δ′,β,−∆free} exist and are com-
plete in all space dimensions. For the trace class resolvent power differences
in (1.2.4) we provide corresponding trace formulae.
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See Section 4.6 for further references and historical comments. The re-
sults of Chapter 4 are mainly contained in the joint work of the author
[BLL12a].

1.3 Robin Laplacians on a half-space

In Chapter 5 we are concerned with the half-space

Rn+ := {(x, x′)T : x ∈ Rn−1, x′ ∈ R+

}
with the boundary ∂Rn+. Our main focus is the usual Robin Laplace operator
defined as

−∆[β] := −∆f,

dom(−∆[β]) :=
{
f ∈ H3/2(Rn+) : ∆f ∈ L2(Rn+), βf |∂Rn+ = ∂νf |∂Rn+

}
,

where f |∂Rn+ and ∂νf |∂Rn+ denote the trace of f on the boundary of the half-
space and the trace of the normal derivative of f with the normal pointing
outwards, respectively, which are connected by the real-valued function β ∈
L∞(∂Rn+). In order to show that the operator −∆[β] is self-adjoint in L2(Rn+)
we use our abstract approach with a modification in the arguments due to
the non-compactness of the boundary. As a particular case we also treat the
self-adjoint Neumann Laplacian −∆N on the half-space.

Let β1 and β2 be real-valued bounded functions on ∂Rn+. The resolvent
difference

(1.3.1) (−∆[β2] − λ)−1 − (−∆[β1] − λ)−1

is in general non-compact. Indeed, if we take two positive constants b1 6= b2
and assume that β1 ≡ b1 and β2 ≡ b2, then a simple calculation shows that
the essential spectra

σess(−∆[b1]) =
[
− b21,+∞

)
and σess(−∆[b2]) =

[
− b22,+∞

)
of the corresponding Robin Laplacians are distinct and thus the operator in
(1.3.1) is evidently non-compact.

The first result is concerned with the assumption on β2 − β1 sufficent
for the compactness of the resolvent difference in (1.3.1). Namely, if for all
ε > 0 the condition

µ
{
x ∈ ∂Rn+ :

∣∣β2(x)− β1(x)
∣∣ ≥ ε} <∞
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holds with µ being the standard Lebesgue measure, then the resolvent dif-
ference in (1.3.1) is compact. The proof of the compactness of the resolvent
difference in (1.3.1) relies on the compact embedding of H1(Ω) into L2(Ω)
for a domain Ω of finite measure with a smooth boundary. As a particular
case, we get the condition on β for compactness of the resolvent difference of
−∆[β] and −∆N. Using recent results by Malamud and Neidhardt [MN11]
we get that under this condition the absolutely continuous parts of the self-
adjoint operators −∆[β] and −∆N are unitarily equivalent.

Another question is to find sufficient conditions on β1 and β2 such that
for m ∈ N the resolvent power difference

(1.3.2) (−∆[β2] − λ)−m − (−∆[β1] − λ)−m

belongs to a Sp,∞-class of the same order as the first resolvent power dif-
ference in (1.1.6). It turns out to be sufficient to require boundedness of all
the partial derivatives of β1 and β2 up to order 2m− 1 and to assume that
β2 − β1 is compactly supported, or at least that n > 4m and

β2 − β1 ∈ L
n−1
2m+1 (∂Rn+).

Under these assumptions the resolvent power difference (1.3.2) belongs to
the class S n−1

2m+1
,∞. Here we rely on a result by Cwikel [Cw77] on Sp,∞-

estimates of integral operators. The cases of slower decaying β2−β1 are also
considered in Chapter 5. The results for high resolvent powers complement
papers by Birman [B62], Gorbachuk and Kutovoi [GorK82], Derkach and
Malamud [DM91], where only the first powers of resolvents were considered.
Moreover, for compactly supported β2 − β1 and for some non-compactly
supported β2−β1 we provide corresponding trace formulae for the resolvent
power difference in (1.3.2). The results of Chapter 5 are partially contained
in the work of the author [LR12].
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Chapter 2

Preliminaries

2.1 Classes of operator ideals

In this section we introduce the notion of classes of operator ideals. Fur-
ther we define singular values and related (weak) Schatten-von Neumann
classes of operator ideals. Two important technical lemmas are provided
for Schatten-von Neumann estimates of resolvent power differences of self-
adjoint operators. Throughout this section let H and K be separable Hilbert
spaces. Denote by S∞(H,K) the closed subspace of compact operators in
B(H,K); if H = K, we simply write S∞(H).

2.1.1 Abstract classes of operator ideals

We define classes of operator ideals along the lines of [Pi87].

Definition 2.1. Suppose that for every pair of Hilbert spaces H, K we are
given a subset A(H,K) of S∞(H,K). The set

A :=
⋃

H,K Hilbert spaces

A(H,K)

is said to be a class of operator ideals if the following conditions are satisfied:

(i) the rank-one operators x 7→ (x, u)v are in A(H,K) for all u ∈ H,
v ∈ K;

(ii) A+B ∈ A(H,K) for A,B ∈ A(H,K);

(iii) CAB ∈ A(H1,K1) for A ∈ A(H,K), B ∈ B(H1,H), C ∈ B(K,K1).
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Moreover, we write A(H) for A(H,H).

If A is a class of operator ideals, then the sets A(H,K) are two-sided
operator ideals for every pair H, K; for the latter notion see also, e.g. [GK69,
Pi80]. For two classes of operator ideals A, B we define the product

A ·B :=
{
T : there exist A ∈ A, B ∈ B so that T = AB

}
and the adjoint of A by

A∗ :=
{
A∗ : A ∈ A

}
.

These sets are again classes of operator ideals; see [Pi87].

Let H and K be linear operators in a separable Hilbert space H and
assume that ρ(H) ∩ ρ(K) 6= ∅. We are aiming to investigate operator ideal
properties of the difference of the m-th powers of the resolvents,

(H − λ)−m − (K − λ)−m, λ ∈ ρ(H) ∩ ρ(K), m ∈ N.

Recall that for two elements a and b of some non-commutative algebra the
following formula holds:

(2.1.1) am − bm =

m−1∑
k=0

am−k−1
(
a− b

)
bk.

Substituting a and b by the resolvents of H and K, respectively, and setting

(2.1.2) Tm,k(λ) := (H − λ)−(m−k−1)
(

(H − λ)−1 − (K − λ)−1
)

(K − λ)−k

for λ ∈ ρ(H) ∩ ρ(K), m ∈ N and k = 0, 1, . . . ,m − 1, we conclude from
(2.1.1) that

(2.1.3) (H − λ)−m − (K − λ)−m =

m−1∑
k=0

Tm,k(λ)

holds for all λ ∈ ρ(H) ∩ ρ(K) and m ∈ N. In the next lemma we show that
(H − λ)−m − (K − λ)−m belongs to the ideal A(H) for all λ ∈ ρ(H) ∩ ρ(K)
if all the operators Tm,0(λ0), Tm,1(λ0), . . . , Tm,m−1(λ0) belong to A(H) for
some λ0 ∈ ρ(H) ∩ ρ(K).
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Lemma 2.2. Let H and K be linear operators in H such that ρ(H)∩ρ(K) 6=
∅. Let m ∈ N and let Tm,k be as in (2.1.2). Assume that Tm,k(λ0) ∈ A(H)
for some λ0 ∈ ρ(H) ∩ ρ(K) and all k = 0, . . . ,m− 1. Then

(H − λ)−m − (K − λ)−m ∈ A(H)

holds for all λ ∈ ρ(H) ∩ ρ(K).

Proof. For λ ∈ ρ(H) ∩ ρ(K) define

(2.1.4) Eλ := I + (λ− λ0)(H − λ)−1 and Fλ := I + (λ− λ0)(K − λ)−1.

Clearly, Eλ commutes with (H − λ0)−1 and Fλ commutes with (K − λ0)−1.
The resolvent identity implies that

Eλ(H − λ0)−1 = (H − λ)−1 and (K − λ0)−1Fλ = (K − λ)−1,

and hence also

(2.1.5) Elλ(H − λ0)−l = (H − λ)−l and (K − λ0)−lF lλ = (K − λ)−l

for all l ∈ N. Set D1(λ) := (H − λ)−1 − (K − λ)−1, λ ∈ ρ(H) ∩ ρ(K).
Then (2.1.4) and (2.1.5) imply that

(2.1.6) EλD1(λ0)Fλ = (H − λ)−1Fλ − Eλ(K − λ)−1 = D1(λ).

For k = 0, 1, 2 . . . ,m− 1 we obtain from (2.1.5) and (2.1.6) that

Tm,k(λ) = (H − λ)−(m−k−1)EλD1(λ0)Fλ(K − λ)−k

= Em−k−1
λ (H − λ0)−(m−k−1)EλD1(λ0)Fλ(K − λ0)−kF kλ

= Em−kλ (H − λ0)−(m−k−1)D1(λ0)(K − λ0)−kF k+1
λ

= Em−kλ Tm,k(λ0)F k+1
λ

holds for all λ ∈ ρ(H)∩ ρ(K). By the assumption we have Tm,k(λ0) ∈ A(H)
and hence we conclude Tm,k(λ) ∈ A(H) for k = 0, . . . ,m− 1. This together
with (2.1.3) yields that

(H − λ)−m − (K − λ)−m =

m−1∑
k=0

Tm,k(λ) ∈ A(H), λ ∈ ρ(H) ∩ ρ(K).
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2.1.2 Singular values, Sp and Sp,∞-classes

Recall that the singular values (or s-numbers) sk(A), k = 1, 2, . . . , of a
compact operator A ∈ S∞(H,K) are defined as the eigenvalues λk(|A|)
of the non-negative compact operator |A| = (A∗A)

1
2 ∈ S∞(H), which are

enumerated in non-increasing order and with multiplicities taken into ac-
count. Note that for a non-negative operator A ∈ S∞(H) the eigenvalues
λk(A) and singular values sk(A), k = 1, 2, . . . , coincide. Let A ∈ S∞(H,K)
and assume that H and K are infinite-dimensional Hilbert spaces. Then
there exist orthonormal systems {ϕ1, ϕ2, . . . } and {ψ1, ψ2, . . . } in H and K,
respectively, such that A admits the Schmidt expansion

(2.1.7) A =

∞∑
k=1

sk(A)( · , ϕk)ψk.

It follows, for instance, from (2.1.7) and the corresponding expansion for
A∗ ∈ S∞(K,H) that the singular values of A and A∗ coincide: sk(A) =
sk(A

∗) for k = 1, 2, . . . ; see, e.g. [GK69, II.§2.2]. Moreover, if G and L are
separable Hilbert spaces, B ∈ B(G,H) and C ∈ B(K,L), then the estimates
(2.1.8)

sk(AB) ≤ ‖B‖sk(A) and sk(CA) ≤ ‖C‖sk(A), k = 1, 2, . . . ,

hold. If, in addition, B ∈ S∞(G,H) we have

(2.1.9) sm+n−1(AB) ≤ sm(A)sn(B), m, n = 1, 2 . . . .

The proofs of the inequalities (2.1.8) and (2.1.9) are the same as in [GK69,
II.§2.1 and §2.2], where these facts are shown for operators acting in the
same space.

Recall that the Schatten–von Neumann ideals Sp(H,K) are defined by

Sp(H,K) :=

{
A ∈ S∞(H,K) :

∞∑
k=1

(sk(A))p <∞
}
, p > 0.

Besides the standard Schatten–von Neumann ideals also the weak Schatten-
von Neumann ideals

Sp,∞(H,K) :=
{
A ∈ S∞(H,K) : sk(A) = O(k−1/p), k →∞

}
, p > 0,

will play an important role later on. The sets

Sp :=
⋃
H,K

Sp(H,K) and Sp,∞ :=
⋃
H,K

Sp,∞(H,K).
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are classes of operator ideals in the sense of Definition 2.1.

We refer the reader to [GK69, III.§7 and III.§14] and [Si05, Chapter 2]
for a detailed study of the classes Sp and Sp,∞. We list only some basic
and well-known properties, which will be useful for us. It follows from
sk(A) = sk(A

∗) that S∗p = Sp and S∗p,∞ = Sp,∞ hold.

Lemma 2.3. Let p, q, r, s, t > 0. Then the following statements are true:

(i) Sp,∞ ·Sq,∞ = Sr,∞ with p−1 + q−1 = r−1, or, equivalently
S 1

s
,∞ ·S 1

t
,∞ = S 1

s+t
,∞.

(ii) Sp ·Sq = Sr with p−1 + q−1 = r−1, or, equivalently S 1
s
·S 1

t
= S 1

s+t
;

(iii) Sp ⊂ Sp,∞ and Sp′,∞ ⊂ Sp for p′ < p.

Proof. In order to verify (i) let p, q > 0 and set r := pq
p+q . Let A ∈

Sp,∞(H,K) and B ∈ Sq,∞(G,H), that is, the inequalities sn(A) ≤ can
−1/p

and sn(B) ≤ cbn
−1/q, n ∈ N, hold with some constants ca, cb > 0. From

(2.1.9) we obtain

s2n(AB) ≤ s2n−1(AB) ≤ sn(A)sn(B) ≤ cacb
nr
≤ 2rcacb

(2n)r
≤ 2rcacb

(2n− 1)r
,

which impliesAB ∈ Sr,∞(G,K). In order to show equality, letA ∈ Sr,∞(H,K)
with Schmidt expansion

A =
∑
k

sk(A)( · , ϕk)ψk.

Define operators B : H → K and C : H → H by

B =
∑
k

(
sk(A)

) q
p+q ( · , ϕk)ψk, C =

∑
k

(
sk(A)

) p
p+q ( · , ϕk)ϕk.

The relations A = BC, B ∈ Sp,∞(H,K), C ∈ Sq,∞(H,H) show that A ∈
Sp,∞ · Sq,∞. The same arguments as in (i) can be used to show (ii). The
inclusions in (iii) are trivial.

The trace class of the class of nuclear operators S1 plays an important
role later on. The trace of a compact operator K ∈ S1(H) is defined as

trK :=
∞∑
k=1

λk(K),
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where λk(K) are the eigenvalues of K and the sum converges absolutely. It
is well-known (see, e.g. [GK69, §III.8]) that for K1,K2 ∈ S1(H)

(2.1.10) tr(K1 +K2) = trK1 + trK2

holds. Moreover, for K1 ∈ B(H,K) and K2 ∈ B(K,H) such that K1K2 ∈
S1(K) and K2K1 ∈ S1(H) one has

(2.1.11) tr(K1K2) = tr(K2K1).

The following two lemmas will be used in the next chapters to show that
certain resolvent power differences of elliptic operators are in some classes
Sp,∞ or Sp.

Lemma 2.4. Let H and G be some Hilbert spaces. Let H and K be linear
operators in H and assume that for some λ0 ∈ ρ(H) ∩ ρ(K) there exist
operators F1 ∈ B(G,H) and F2 ∈ B(H,G) such that

(2.1.12) (H − λ0)−1 − (K − λ0)−1 = F1F2.

Let a > 0 and b1, b2 ≥ 0 be such that a ≤ b1 + b2 and set b := b1 + b2 − a.
Moreover, let r ∈ N ∪ {∞} and assume that for k = 0, 1, . . . , r − 1

(2.1.13) (K − λ0)−kF1 ∈ S 1
ak+b1

,∞ and F2(K − λ0)−k ∈ S 1
ak+b2

,∞

holds. Then for l = 1, 2, . . . , r and all λ ∈ ρ(H) ∩ ρ(K)

(2.1.14) (H − λ)−l − (K − λ)−l ∈ S 1
al+b

,∞.

The statement of the lemma is true with Sp,∞-classes replaced by Sp-classes.

Proof. We prove the statement by induction with respect to l. Using the fac-
torization in (2.1.12), the assumptions in (2.1.13) with k = 0 and Lemma 2.3 (i)
we obtain that

(H − λ0)−1 − (K − λ0)−1 = F1F2 ∈ S 1
b1
,∞ ·S 1

b2
,∞ = S 1

b1+b2
,∞ = S 1

a+b
,∞.

Now Lemma 2.2 with m = 1 implies that

(H − λ)−1 − (K − λ)−1 ∈ S 1
a+b

for all λ ∈ ρ(H) ∩ ρ(K), i.e. (2.1.14) is true for l = 1.
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For the induction step fix m ∈ N, 2 ≤ m ≤ r, and assume that (2.1.14)
is satisfied for all l = 1, 2, . . . ,m − 1. Let Tm,k be as in (2.1.2), and define
for k = 0, 1, . . . ,m− 1

Dk := (H − λ0)−k − (K − λ0)−k.

Note that D0 = 0. Let us rewrite Tm,k(λ0) with k = 0, 1, . . . ,m− 1 as sums
of two operators

Tm,k(λ0) =(H − λ0)−(m−k−1)F1F2(K − λ0)−k

=Dm−k−1F1F2(K − λ0)−k + (K − λ0)−(m−k−1)F1F2(K − λ0)−k.

(2.1.15)

Note that the first summand is missing when k = m−1. By the assumption
(2.1.13) we have

F1 ∈ S 1
b1
,∞, F2(K − λ0)−k ∈ S 1

ak+b2
,∞,

(K − λ0)−(m−k−1)F1 ∈ S 1
a(m−k−1)+b1

,∞,

for k = 0, 1, . . . ,m− 1. By the induction assumption we also have

Dm−k−1 ∈ S 1
a(m−k−1)+b

,∞

for k = 0, 1, . . . ,m− 2 and and hence we obtain by Lemma 2.3 (i) that the
first summand in (2.1.15) is in the class

S 1
a(m−k−1)+b

,∞ ·S 1
b1
,∞ ·S 1

ak+b2
,∞ = S 1

am+2b
,∞ ⊂ S 1

am+b
,∞,

where we used that b ≥ 0. The second summand in (2.1.15) is in the class

S 1
a(m−k−1)+b1

,∞ ·S 1
ak+b2

,∞ = S 1
am+b

,∞.

Hence Tm,k(λ0) ∈ S 1
am+b

,∞ for all k = 0, 1, . . . ,m − 1. Now Lemma 2.2

implies the validity of (2.1.14) for l = m. The induction process yields that
the statement is true for every l = 1, 2, . . . , r. Similarly with the help of
Lemma 2.3 (ii) one can show the analogous result for Sp-classes.

Remark 2.5. In the proof of the last lemma we used the algebraic identity

am − bm =
m−1∑
k=0

(
(am−k−1 − bm−k−1)(a− b)bk + bm−k−1(a− b)bk

)
29



valid for any two elements a and b of a non-commutative algebra. In our case
a = (H − λ)−1 and b = (K − λ)−1. In applications to elliptic operators we
take for K a self-adjoint elliptic operator with known smoothing properties
of its resolvent, while smoothing properties of the resolvent of the operator
H can be unknown and they may be weaker, see Section 3.3 and Section 4.4.

Lemma 2.6. Let H and G be some Hilbert spaces. Let H, K and L be
linear operators in H. Assume that for some λ0 ∈ ρ(H)∩ ρ(K)∩ ρ(L) there
exist operators F1 ∈ B(G,H) and F2 ∈ B(H,G) such that

(2.1.16) (H − λ0)−1 − (K − λ0)−1 = F1F2.

Let a > 0 and b1, b2 ≥ 0 be such that a ≤ b1 + b2 and set b := b1 + b2 − a.
Let r ∈ N ∪ {∞} and assume also that for k = 0, 1, . . . , r − 1

(2.1.17) (L− λ0)−kF1 ∈ S 1
ak+b1

,∞ and F2(L− λ0)−k ∈ S 1
ak+b2

,∞.

Moreover, assume that for k = 1, 2, . . . , r − 1

(H − λ0)−k − (L− λ0)−k ∈ S 1
ak
,∞,

(K − λ0)−k − (L− λ0)−k ∈ S 1
ak
,∞.

(2.1.18)

Then for l = 1, 2, . . . , r and all λ ∈ ρ(H) ∩ ρ(K)

(2.1.19) (H − λ)−l − (K − λ)−l ∈ S 1
al+b

,∞.

The statement of the lemma is true with Sp,∞-classes replaced by Sp-classes.

Proof. By (2.1.16), (2.1.17) with k = 0, and the equality b = b1 + b2 − a we
get

(H − λ0)−1 − (K − λ0)−1 = F1F2 ∈ S 1
b1
,∞ ·S 1

b2
,∞ = S 1

a+b
,∞,

where we used Lemma 2.3 (i). Then by Lemma 2.2

(H − λ)−1 − (K − λ)−1 ∈ S 1
a+b

,∞

for all λ ∈ ρ(H) ∩ ρ(K). Thus the statement is true for l = 1.

Let us fix l ∈ N, 2 ≤ l ≤ r, and define for k = 0, 1, . . . , l−1 the differences
of k-th resolvent powers

Dk := (H − λ0)−k − (L− λ0)−k,

Gk := (K − λ0)−k − (L− λ0)−k.
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Note that D0 = G0 = 0. First we rewrite each of the operators Tl,0(λ0) and
Tl,l−1(λ0) in (2.1.2) as a sum of two operators

Tl,0(λ0) = S1 + S2 and Tl,l−1(λ0) = S3 + S4,

where S1 = Dl−1F1F2, S2 = (L − λ0)−(l−1)F1F2, S3 = F1F2Gl−1 and S4 =
F1F2(L − λ0)−(l−1). By the assumptions (2.1.17), (2.1.18), the equality
b = b1 + b2 − a and by Lemma 2.3 (i) we obtain that

S1 ∈ S 1
a(l−1)

,∞ ·S 1
b1
,∞ ·S 1

b2
,∞ = S 1

al+b
,∞.

S2 ∈ S 1
b1
,∞ ·S 1

a(l−1)+b2
,∞ = S 1

al+b
,∞,

S3 ∈ S 1
b1
,∞ ·S 1

b2
,∞ ·S 1

a(l−1)
,∞ = S 1

al+b
,∞,

S4 ∈ S 1
b1
,∞ ·S 1

a(l−1)+b2
,∞ = S 1

al+b
,∞.

We conclude that

(2.1.20) Tl,0(λ0), Tl,l−1(λ0) ∈ S 1
al+b

,∞.

Further we rewrite the operator Tl,k(λ0) in (2.1.2) with k ∈ N, 1 ≤ k ≤ l−2,
as a linear combination of four operators

Tl,k(λ0) := S5 + S6 + S7 − S8,

where

S5 = Dl−k−1F1F2Gk, S6 = (L− λ0)−(l−k−1)F1F2Gk,

S7 = Dl−k−1F1F2(L− λ0)−k, S8 = (L− λ0)−(l−k−1)F1F2(L− λ0)−k.

By assumptions (2.1.17), (2.1.18), the equality b = b1+b2−a and Lemma 2.3 (i)
we obtain that

S5 ∈ S 1
a(l−k−1)

,∞ ·S 1
b1
,∞ ·S 1

b2
,∞ ·S 1

ak
,∞ = S 1

al+b
,∞,

S6 ∈ S 1
a(l−k−1)+b1

,∞ ·S 1
b2
,∞ ·S 1

ak
,∞ = S 1

al+b
,∞,

S7 ∈ S 1
a(l−k−1)

,∞ ·S 1
b1
,∞ ·S 1

ak+b2
,∞ = S 1

al+b
,∞,

S8 ∈ S 1
a(l−k−1)+b1

,∞ ·S 1
ak+b2

,∞ = S 1
al+b

,∞.

Hence we conclude that

(2.1.21) Tl,k(λ0) ∈ S 1
al+b

,∞,
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for all k = 1, 2, . . . , l − 2. Thus, summarizing (2.1.20) and (2.1.21), we
obtain that Tl,k(λ0) ∈ S 1

al+b
,∞ for all k = 0, 1, . . . , l − 1. Now Lemma 2.2

implies the statement. Similarly with the help of Lemma 2.3 (ii) one can
show analogous statement for Sp-classes.

Remark 2.7. In the proof of the last lemma we used the algebraic identity
for m ≥ 2 and arbitrary elements a, b and c of a non-commutative algebra

am − bm =
(
f0 + h0

)
+
(
gm−1 + hm−1

)
+
m−2∑
k=1

(
ek + fk + gk − hk

)
,

where

ek =(am−k−1 − cm−k−1)(a− b)(bk − ck),

fk =(am−k−1 − cm−k−1)(a− b)ck,

gk =cm−k−1(a− b)(bk − ck),

hk =cm−k−1(a− b)ck.

In our case a = (H − λ)−1, b = (K − λ)−1 and c = (L − λ)−1. In applica-
tions to elliptic operators we take for L a self-adjoint elliptic operator with
known smoothing properties of its resolvent, while smoothing properties of
the resolvents of H and K can be unknown, and they may be weaker, see
Section 3.3.

2.2 Quasi boundary triples and their Weyl func-
tions

In this section we introduce the abstract concept of quasi boundary triples
and associated Weyl functions useful in extension theory. We provide com-
plete proofs of main statements related to this concept. One can find most
of these proofs in [BL07, BL11, BLL12] in a slightly different form. We
start with with basic statements and definitions of the key objects, further
we derive Krein’s formulae, study spectral relations of Birman-Schwinger
type and give sufficient conditions for self-adjointness of extensions. All this
material is intensively used throughout the further chapters.
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2.2.1 Definitions and basic properties

The concept of quasi boundary triples is a generalization of the notion of
(ordinary) boundary triples from [Bru76, DM91, GorGor91, Ko75]. Quasi
boundary triples are particularly useful when dealing with elliptic boundary
value problems from an operator and extension theoretic points of view.
Generalized boundary triples from [DHMS06, DM95] are a particular case
of quasi boundary triples. In this subsection we provide some general facts
on quasi boundary triples.

Definition 2.8. Let A be a closed, densely defined, symmetric operator in
a Hilbert space

(
H, (·, ·)H

)
. A triple {G,Γ0,Γ1} is called a quasi boundary

triple for A∗ if
(
G, (·, ·)G

)
is a Hilbert space and for some linear operator

T ⊂ A∗ with T = A∗ the following holds:

(i) Γ0,Γ1 : domT → G are linear mappings, and the mapping Γ :=
(

Γ0

Γ1

)
has dense range in G × G;

(ii) A0 := T � ker Γ0 is a self-adjoint operator in H;

(iii) for all f, g ∈ domT the abstract Green’s identity

(2.2.1) (Tf, g)H − (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

holds.

We remark that a quasi boundary triple for A∗ exists if and only if
the deficiency indices n±(A) = dim ker(A∗ ∓ i) of A coincide. Moreover, if
{G,Γ0,Γ1} is a quasi boundary triple for A∗, then A coincides with T � ker Γ
and the operator A1 := T � ker Γ1 is symmetric in H. We also mention
that a quasi boundary triple with the additional property ran Γ0 = G is a
generalized boundary triple in the sense of [DHMS06, DM95].

The proposition below contains a sufficient condition for a triple {G,Γ0,Γ1}
to be a quasi boundary triple. It can be found in [BL07, BL11].

Proposition 2.9. Let H and G be Hilbert spaces and let T be a linear
operator in H. Assume that Γ0,Γ1 : domT → G are linear mappings such
that the following conditions are satisfied:

(a) Γ =
(

Γ0

Γ1

)
: domT → G × G has dense range, and ker Γ is dense in H;

(b) The identity (2.2.1) holds for all f, g ∈ domT ;
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(c) T � ker Γ0 contains a self-adjoint operator A0.

Then A := T � ker Γ is a closed, densely defined, symmetric operator; the
operator A0 coincides with T � ker Γ0; the operator T is closable and T = A∗

holds. Finally, the triple {G,Γ0,Γ1} is a quasi boundary triple for A∗.

Proof. As the first preliminary step of the proof we verify that T ∗ ⊂ T . By
the abstract Green’s identity the operator T � ker Γ0 is symmetric. Since the
symmetric operator T � ker Γ0 contains the self-adjoint operator A0, these
operators coincide, and we have the following chain of inclusions

(2.2.2) T ∗ ⊂ A∗0 = A0 ⊂ T.

The abstract Green’s identity yields that A is symmetric. Let us show
that A = T ∗. We start with the inclusion

A ⊂ T ∗.

Let us take an arbitrary g ∈ domA and an arbitrary f ∈ domT . Since
g ∈ domA, we have Γg = 0. Thus we get

(Tf, g)H− (f,Ag)H = (Tf, g)H− (f, Tg)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G = 0.

This calculation implies that g ∈ domT ∗ and that T ∗g = Ag. Therefore the
inclusion A ⊂ T ∗ holds. Next we are aiming to show the opposite inclusion

T ∗ ⊂ A.

Let us now take an arbitrary g ∈ domT ∗ and an arbitrary f ∈ domT . Using
the inclusion T ∗ ⊂ T , which is shown in (2.2.2), we get

0 = (Tf, g)H−(f, T ∗g)H = (Tf, g)H−(f, Tg)H = (Γ1f,Γ0g)G+(Γ0f,−Γ1g)G .

This means that
(−Γ1g

Γ0g

)
is orthogonal to the range of the mapping Γ in

the Hilbert space G × G. By assumption (a) of the proposition the range
of Γ is dense in G × G, which implies that Γg = 0. We have shown that
g ∈ domA and that T ∗g = Tg = Ag, thus T ∗ ⊂ A. Altogether this yields
that A = T ∗. Employing, then, the density of ker Γ in H we obtain that T
is closable and that T = A∗. Now by Definition 2.8 the triple {G,Γ0,Γ1} is
a quasi boundary triple for A∗.
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Next we recall the definition of the γ-field and the Weyl function as-
sociated with the quasi boundary triple {G,Γ0,Γ1} for A∗. Note that the
decomposition

domT = domA0 +̇ ker(T − λ) = ker Γ0 +̇ ker(T − λ)

holds for all λ ∈ ρ(A0), so that Γ0 � ker(T −λ) is invertible for all λ ∈ ρ(A0).

Definition 2.10. Let A be a closed, densely defined, symmetric operator
in a Hilbert space H. Let {G,Γ0,Γ1} be a quasi boundary triple for A∗ with
T ⊂ A∗ and A0 = T � ker Γ0. Then the (operator-valued) functions γ and
M defined by

γ(λ) :=
(
Γ0 � ker(T − λ)

)−1
and M(λ) := Γ1γ(λ), λ ∈ ρ(A0),

are called the γ-field and the Weyl function corresponding to the quasi
boundary triple {G,Γ0,Γ1}.

These definitions coincide with the definitions of the γ-field and the
Weyl function in the case that {G,Γ0,Γ1} is an ordinary boundary triple,
see [DM91]. Note that for each λ ∈ ρ(A0) the operator γ(λ) maps ran Γ0

into H and M(λ) maps ran Γ0 into ran Γ1. Furthermore, as an immediate
consequence of the definition of M(λ) we obtain that

M(λ)Γ0fλ = Γ1fλ, fλ ∈ ker(T − λ), λ ∈ ρ(A0).(2.2.3)

In the next proposition we collect some properties of the γ-field and the
Weyl function; all the statements are proven in [BL07], but for completeness
of the thesis we provide these proofs. Recall that the space of bounded
everywhere defined linear operators from H into G is denoted by B(H,G).
We set B(G) := B(G,G).

Proposition 2.11. Let A be a closed, densely defined, symmetric operator
in a Hilbert space H. Let {G,Γ0,Γ1} be a quasi boundary triple for A∗ with
the γ-field γ and the Weyl function M . Then for λ, µ ∈ ρ(A0) the following
assertions hold.

(i) γ(λ) is a bounded, densely defined operator from G into H. The adjoint
of γ(λ) has the representation

γ(λ)∗ = Γ1(A0 − λ)−1 ∈ B(H,G).
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(ii) M(λ) is a densely defined (in general unbounded) operator in G and
for λ ∈ ρ(A0) the inclusion M(λ) ⊂M(λ)∗ holds, and

(2.2.4)
(
M(λ)−M(µ)

)
ϕ = (λ− µ)γ(µ)∗γ(λ)ϕ, ϕ ∈ ran Γ0.

In particular, if ran Γ0 = G, then M(λ) = M(λ)∗ and M(λ) ∈ B(G).

(iii) If A1 = T � ker Γ1 is a self-adjoint operator in H and λ ∈ ρ(A0) ∩
ρ(A1), then M(λ) maps ran Γ0 bijectively onto ran Γ1, and

M(λ)−1γ(λ)∗ ∈ B(H,G).

Proof. (i) Let us fix λ ∈ ρ(A0). Since dom γ(λ) = ran Γ0 and the set ran Γ0

is dense in G, the operator γ(λ) is densely defined. Let us take arbitrary
elements ϕ ∈ ran Γ0 and g ∈ H. Since λ ∈ ρ(A0), there exists h ∈ domA0

such that (A0 − λ)h = g. Further, applying the abstract Green’s identity
we get(
γ(λ)ϕ, g

)
H =

(
γ(λ)ϕ, (A0 − λ)h

)
H =

(
γ(λ)ϕ, Th

)
H −

(
Tγ(λ)ϕ, h

)
H =

=
(
Γ0γ(λ)ϕ,Γ1h

)
G −

(
Γ1γ(λ)ϕ,Γ0h

)
G =

(
ϕ,Γ1(A0 − λ)−1g

)
G ,

where we used that Γ0h = 0. Since ran Γ0 is dense in G, we get from the last
calculation that γ(λ)∗ = Γ1(A0−λ)−1. Note that the operator γ(λ)∗ is closed
and everywhere defined in H. Thus γ(λ)∗ ∈ B(H,G) and γ(λ) ⊂ γ(λ)∗∗ is
bounded.

(ii) Let us again fix some λ ∈ ρ(A0). By definition the operator M(λ)
maps ran Γ0 into ran Γ1. Since ran Γ0 is dense G, the operator M(λ) is
densely defined. Let us now take arbitrary fλ ∈ ker(T − λ) and gµ ∈
ker(T − µ). Applying the abstract Green identity (2.2.1) and using the
property (2.2.3) of the Weyl function M we obtain

(λ− µ)(fλ, gµ)H =(Tfλ, gµ)H − (fλ, T gµ)H

=(Γ1fλ,Γ0gµ)G − (Γ0fλ,Γ1gµ)G

=
(
M(λ)Γ0fλ,Γ0gµ

)
G −

(
Γ0fλ,M(µ)Γ0gµ

)
G .

(2.2.5)

This calculation with µ = λ implies that M(λ) ⊂ M(λ)∗. Within the
notation ϕ := Γ0fλ and ψ := Γ0gµ we can rewrite the formula (2.2.5) as

(λ− µ)(γ(λ)ϕ, γ(µ)ψ)H =
((
M(λ)−M(µ)

)
ϕ,ψ

)
G
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Since dom(γ(µ)∗) = H and ran Γ0 is dense in G, we get the identity (2.2.4).
If ran Γ0 = G, then M(λ) is everywhere defined. Thus M(λ) = M(λ)∗,
M(λ) is closed, and hence M(λ) ∈ B(G).

(iii) The first assertion of this item follows from the decomposition

domT = domA1 u ker(T − λ)

which is valid for all λ ∈ ρ(A1). Indeed, let us fix λ ∈ ρ(A1)∩ρ(A0) and take
an arbitrary ϕ ∈ ran Γ1. Then there exists f ∈ domT such that Γ1f = ϕ.
We can decompose f as f = f1+fλ, where f1 ∈ domA1 and fλ ∈ ker(T−λ).
Note that by definition of the Weyl function we get

M(λ)Γ0fλ = Γ1fλ = Γ1(f − f1) = Γ1f = ϕ,

and we conclude that ϕ ∈ ran(M(λ)).

For the second part of (iii) note that {G,Γ1,−Γ0} is also a quasi boundary
triple if A1 is self-adjoint. It is easy to see that in this case the corresponding
γ-field is γ̃(λ) = γ(λ)M(λ)−1. Since ran(γ(λ)∗) ⊂ ran Γ1 by item (i), the
operator M(λ)−1γ(λ)∗ is defined onH. Now the boundedness of γ̃(λ), which
follows from (i), and the relation M(λ) ⊂ M(λ)∗ imply that M(λ)−1γ(λ)∗

is bounded.

Throughout this thesis we shall often use product rules for holomorphic
operator-valued functions. Let Hi, i = 1, . . . , 4, be Hilbert spaces, U a
domain in C and let A : U → B(H3,H4), B : U → B(H2,H3), C : U →
B(H1,H2) be holomorphic operator-valued functions. Then

dm

dλm
(
A(λ)B(λ)

)
=

∑
p+q=m
p,q≥0

(
m

p

)
A(p)(λ)B(q)(λ),(2.2.6)

dm

dλm
(
A(λ)B(λ)C(λ)

)
=

∑
p+q+r=m
p,q,r≥0

m!

p! q! r!
A(p)(λ)B(q)(λ)C(r)(λ)(2.2.7)

for λ ∈ U . If A(λ)−1 is invertible for every λ ∈ U , then relation (2.2.6)
implies the following formula for the derivative of the inverse,

(2.2.8)
d

dλ

(
A(λ)−1

)
= −A(λ)−1A′(λ)A(λ)−1.

In the next lemma we consider higher derivatives of γ-field and Weyl
function associated with some quasi boundary triple.
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Lemma 2.12. For all λ ∈ ρ(A0) and all k ∈ N the following hold.

(i)
dk

dλk
γ(λ)∗ = k! γ(λ)∗(A0 − λ)−k;

(ii)
dk

dλk
γ(λ) = k!(A0 − λ)−kγ(λ);

(iii)
dk

dλk
M(λ) =

dk−1

dλk−1

(
γ(λ)∗γ(λ)

)
= k! γ(λ)∗(A0 − λ)−(k−1)γ(λ).

Proof. (i) We prove the statement by induction. For k = 1 we have

d

dλ
γ(λ)∗ = lim

µ→λ

1

µ− λ
(
γ(µ)∗ − γ(λ)∗

)
= lim

µ→λ

1

µ− λ
Γ1

(
(A0 − µ)−1 − (A0 − λ)−1

)
= lim

µ→λ
Γ1(A0 − µ)−1(A0 − λ)−1 = lim

µ→λ
γ(µ)∗(A0 − λ)−1

= γ(λ)∗(A0 − λ)−1,

where we used Proposition 2.11 (i). If we assume that the statement is true
for k ∈ N, then

dk+1

dλk+1
γ(λ)∗ = k!

d

dλ

(
γ(λ)∗(A0 − λ)−k

)
= k!

[( d
dλ
γ(λ)∗

)
(A0 − λ)−k + γ(λ)∗

d

dλ
(A0 − λ)−k

]
= k!

[
γ(λ)∗(A0 − λ)−1(A0 − λ)−k + γ(λ)∗k(A0 − λ)−k−1

]
= k!(1 + k)γ(λ)∗(A0 − λ)−(k+1),

which proves the statement in (i) by induction.

(ii) This assertion is obtained from (i) by taking adjoints.

(iii) It follows from Proposition 2.11 (ii) that, for ϕ ∈ domM(λ) =
ran Γ0,

d

dλ
M(λ)ϕ = lim

µ→λ

1

µ− λ
(
M(µ)−M(λ)

)
ϕ = lim

µ→λ
γ(λ)∗γ(µ)ϕ = γ(λ)∗γ(λ)ϕ.

38



By taking closures we obtain the claim for k = 1. For k ≥ 2 we use (2.2.6)
to get

dk

dλk
M(λ) =

dk−1

dλk−1

(
γ(λ)∗γ(λ)

)
=

∑
p+q=k−1
p,q≥0

(
k − 1

p

)(
dp

dλp
γ(λ)∗

)
dq

dλq
γ(λ)

=
∑

p+q=k−1
p,q≥0

(
k − 1

p

)
p! γ(λ)∗(A0 − λ)−pq! (A0 − λ)−q γ(λ)

=
∑

p+q=k−1
p,q≥0

(k − 1)!γ(λ)∗(A0 − λ)−(k−1)γ(λ) = k!γ(λ)∗(A0 − λ)−(k−1)γ(λ),

which finishes the proof.

2.2.2 Self-adjointness and Krein’s formulae

Throughout this subsection we assume that the following hypothesis holds.

Hypothesis 2.1. We assume that A is a closed, densely defined, symmetric
operator in a Hilbert space H, and {G,Γ0,Γ1} is a quasi boundary triple for
A∗ with T ⊂ A∗, Ai = T � ker Γi, i = 0, 1, γ-field γ and Weyl function M .

In the next theorem we show a connection between the point spectra of
the operator A1 and of the operator-valued function M(·), and we provide
a factorization for the resolvent difference of A0 and A1.

Theorem 2.13. Assume that Hypothesis 2.1 holds and that the operator A1

is self-adjoint. Then the following statements hold.

(i) For all λ ∈ R ∩ ρ(A0)

λ ∈ σp(A1) ⇐⇒ 0 ∈ σp(M(λ))

and the multiplicities of these eigenvalues coincide.

(ii) The formula

(2.2.9) (A0 − λ)−1 − (A1 − λ)−1 = γ(λ)M(λ)−1γ(λ)∗

holds for all λ ∈ ρ(A1) ∩ ρ(A0).
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Proof. (i) For the proof it is sufficient to show that γ(λ) maps kerM(λ)
onto ker(A1 − λ) bijectively. For this purpose, let us take an arbitrary
ϕ ∈ kerM(λ). Note that γ(λ)ϕ ∈ ker(T − λ) and that

Γ1γ(λ)ϕ = M(λ)ϕ = 0.

Thus γ(λ)ϕ ∈ ker(A1−λ) and, therefore, γ(λ) maps kerM(λ) into ker(A1−
λ). Let us now take an arbitrary fλ ∈ ker(A1 − λ). By the computation

M(λ)Γ0fλ = Γ1fλ = 0

we get that Γ0fλ ∈ kerM(λ). Since γ(λ)Γ0fλ = fλ, we conclude that γ(λ)
maps kerM(λ) onto ker(A1 − λ) surjectively, whereas injectivitity of this
mapping follows from its invertibility.

(ii) Let us fix λ ∈ ρ(A1)∩ρ(A0). By item (i) the operator M(λ) is invert-
ible. By Proposition 2.11 (iii) dom

(
M(λ)−1

)
= ran Γ1 and by item (i) of the

same proposition ran γ(λ)∗ ⊂ ran Γ1. Thus the operator γ(λ)M(λ)−1γ(λ)∗

is everywhere defined in H. For an arbitrary element g ∈ H we define

(2.2.10) f := (A0 − λ)−1g − γ(λ)M(λ)−1γ(λ)∗g ∈ domT.

By the calculation

Γ1f = Γ1(A0 − λ)−1g − Γ1γ(λ)M(λ)−1γ(λ)∗g =

= γ(λ)∗g −M(λ)M(λ)−1γ(λ)∗g = 0

we get that f ∈ domA1. Observe that

(A1 − λ)f = (T − λ)(A0 − λ)−1g − (T − λ)γ(λ)M(λ)−1γ(λ)∗g = g,

which implies f = (A1 − λ)−1g. Recall that g is an arbitrary element of H
and the formula (2.2.9) follows from (2.2.10).

Further we deal with extensions of A, which are restrictions of T cor-
responding to some abstract boundary condition. Usually [BL07, DM91,
DM95] restrictions of T and simultaneously extensions of A are defined for
a linear relation Θ ⊂ G × G as follows

(2.2.11) AΘf := Tf, domAΘ :=
{
f ∈ domT : Γf ∈ Θ

}
.

For our purposes it turns out to be more convenient to define for a linear
operator B in G the restriction A[B] of T

(2.2.12) A[B] := Tf, domA[B] :=
{
f ∈ domT : BΓ1f = Γ0f

}
.
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Comparing with definition (2.2.11) the operator A[B] corresponds to the
linear relation Θ = B−1. For the relation between the operator A[B] and
other operators considered in this section see Figure 2.1.

A0

⊂

A ⊂
⊂

⊂
A[B] ⊂ T ⊂ T = A∗.

A1

⊂

Figure 2.1: This figure shows how the operator A[B] is related to the other
operators introduced in this section.

In the next proposition we provide a connection between the point spec-
tra of the operator A[B] and of the operator-valued function I −BM(·).

Proposition 2.14. Assume that Hypothesis 2.1 holds. Let B be a bounded
self-adjoint operator in G and let A[B] be the operator corresponding to B
via (2.2.12). Then for all λ ∈ R ∩ ρ(A0)

λ ∈ σp(A[B]) ⇐⇒ 0 ∈ σp(I −BM(λ))

and the multiplicities of these eigenvalues coincide.

Proof. We use similar type arguments as in the proof of Theorem 2.13 (i).
We show that γ(λ) maps ker(I − BM(λ)) onto ker(A[B] − λ) bijectively.
Note that for any ϕ ∈ ker(I −BM(λ)) we get

BΓ1γ(λ)ϕ = BM(λ)ϕ = ϕ = Γ0γ(λ)ϕ.

Thus γ(λ)ϕ ∈ ker(A[B] − λ) and, hence, γ(λ) maps ker(I − BM(λ) into
ker(A[B] − λ). Let us take an arbitrary fλ ∈ ker(A[B] − λ). Note that

(I −BM(λ)Γ0fλ = Γ0fλ −BΓ1fλ = 0,

and hence Γ0fλ ∈ ker(I − BM(λ)). Since γ(λ)Γ0fλ = fλ, we get that γ(λ)
maps ker(I−BM(λ)) onto ker(A[B]−λ) surjectively. Whereas the injectivity
of this mapping follows from its invertibility.
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Theorem 2.15. Assume that Hypothesis 2.1 holds. Let B be a bounded
self-adjoint operator in G and let A[B] be the operator corresponding to B
via (2.2.12). Assume that λ ∈ ρ(A0)\σp(A[B]) or, equivalently, that ker(I−
BM(λ)) = {0}. Then the following assertions are true:

(i) g ∈ ran(A[B] − λ) if and only if Bγ(λ)∗g ∈ ran(I −BM(λ));

(ii) for all g ∈ ran(A[B] − λ) we have

(2.2.13) (A[B]−λ)−1g = (A0−λ)−1g+γ(λ)
(
I−BM(λ)

)−1
Bγ(λ)∗g.

Proof. Fix some point λ ∈ ρ(A0), which is not an eigenvalue of A[B]. Then,
by Proposition 2.14, ker(I − BM(λ)) = {0} and the inverses (A[B] − λ)−1

and (I −BM(λ))−1 are the operators in H and G, respectively.

Let us take arbitrary g ∈ ran(A[B] − λ). We show that Bγ(λ)∗g ∈
ran(I −BM(λ)) and that the formula (2.2.13) holds. Set

f := (A[B] − λ)−1g − (A0 − λ)−1g ∈ domT.

Note that f ∈ ker(T − λ) and, in particular, by (2.2.3)

(2.2.14) M(λ)Γ0f = Γ1f.

The application of Γ0 and Γ1 to f gives us

Γ0f = Γ0(A[B] − λ)−1g and Γ1f = Γ1(A[B] − λ)−1g − γ(λ)∗g,

where we used Proposition 2.11 (i) in the second formula. Continuing com-
putations, we get

BM(λ)Γ0f = BΓ1f = BΓ1(A[B] − λ)−1g −Bγ(λ)∗g =

= Γ0(A[B] − λ)−1g −Bγ(λ)∗g = Γ0f −Bγ(λ)∗g,

and further (
I −BM(λ)

)
Γ0f = Bγ(λ)∗g.

Thus, it holds that Bγ(λ)∗g ∈ ran(I −BM(λ)) and that

Γ0f =
(
I −BM(λ)

)−1
Bγ(λ)∗g.

Applying then γ(λ) to both hand sides, we obtain

f = γ(λ)
(
I −BM(λ)

)−1
Bγ(λ)∗g.
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Since g is arbitrary element in ran(A[B] − λ), the formula (2.2.2) holds.

Next we show the converse implication in (i). Assume that

Bγ(λ)∗g ∈ ran(I −BM(λ)).

Since dom(I −BM(λ)) = dom γ(λ), we conclude that the element

(2.2.15) f := (A0 − λ)−1g + γ(λ)
(
I −BM(λ)

)−1
Bγ(λ)∗g ∈ domT

is well-defined. Computing, we get

BΓ1f = Bγ(λ)∗g +BM(λ)
(
I −BM(λ)

)−1
Bγ(λ)∗g

=
(
I −BM(λ)

)−1
Bγ(λ)∗g = Γ0f.

Thus f ∈ domA[B] and, moreover,

(A[B] − λ)f = (T − λ)f = (T − λ)(A0 − λ)−1g + 0 = g,

where we used formula (2.2.15). Hence, we get that g ∈ ran(A[B] − λ).

Corollary 2.16. Assume that Hypothesis 2.1 holds. Let B be a bounded
self-adjoint operator in G and let A[B] be the operator corresponding to B
via (2.2.12). Assume that A[B] is self-adjoint. Then the following formulae

(A[B] − λ)−1 − (A0 − λ)−1 = γ(λ)
(
I −BM(λ)

)−1
Bγ(λ)∗,

(A[B] − λ)−1 − (A0 − λ)−1 = γ(λ)B
(
I −M(λ)B

)−1
γ(λ)∗

(2.2.16)

hold for all λ ∈ ρ(A[B]) ∩ ρ(A0).

Proof. If the operator A[B] is self-adjoint, then for all λ ∈ ρ(A[B])∩ρ(A0) we
get that ran(A[B] − λ) = H and the first formula in (2.2.16) follows directly
from the formula in Theorem 2.15 (ii). The second formula in (2.2.16) follows
after certain straightforward transformations of the first formula, which we
omit.

In the next theorem we provide a factorization for the resolvent difference
of A[B1] and A[B2] assuming that A[B1] and A[B2] are both self-adjoint.

Theorem 2.17. Assume that Hypothesis 2.1 holds. Let B1 and B2 be
bounded self-adjoint operators in G. Let the operators A[B1] and A[B2] corre-
spond to B1 and B2 via (2.2.12), respectively. Assume that A[B1] and A[B2]

are self-adjoint. Then the formula

(A[B2] − λ)−1 − (A[B1] − λ)−1 =

γ(λ)
(
I −B2M(λ)

)−1
(B2 −B1)

(
I −M(λ)B1

)−1
γ(λ)∗
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holds for all λ ∈ ρ(A[B2]) ∩ ρ(A[B1]) ∩ ρ(A0).

Proof. We take the difference of the first factorization in Corollary 2.16
applied to A[B2] and A0 and the second factorization of the same corollary
applied to A[B1] and A0, and we get the formula

(A[B2] − λ)−1 − (A[B1] − λ)−1 =

γ(λ)
((
I −B2M(λ)

)−1
B2 −B1

(
I −M(λ)B1

)−1
)
γ(λ)∗.

The difference in the middle(
I −B2M(λ)

)−1
B2 −B1

(
I −M(λ)B1

)−1

can be further factorized as(
I −B2M(λ)

)−1
(B2 −B1)

(
I −M(λ)B1

)−1
,

which implies the statement.

The next two lemmas play a role in the proofs of sufficient conditions
for self-adjointness of A[B].

Lemma 2.18. Assume that Hypothesis 2.1 holds. Let B be a bounded self-
adjoint operator in G, and let A[B] be the operator corresponding to B via
(2.2.12). Then the operator A[B] is symmetric.

Proof. By the abstract Green’s identity we have for arbitrary f, g ∈ domA[B]

(A[B]f, g)H − (f,A[B]g)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G =

= (Γ1f,BΓ1g)G − (BΓ1f,Γ1g)G = 0,
(2.2.17)

where we used self-adjointness of B. This calculation shows that the oper-
ator A[B] is symmetric.

Lemma 2.19. Assume that Hypothesis 2.1 holds, that ran Γ0 = G and that
M(λ) ∈ S∞(G). Let B be a bounded self-adjoint operator in G. Then(

I −BM(λ)
)−1

,
(
I −M(λ)B

)−1 ∈ B(G)

holds for all λ ∈ C \ R.
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Proof. Let us fix λ ∈ C \ R, and suppose that there exists a non-trivial
element ϕ ∈ ker(I −BM(λ)). Then γ(λ)ϕ ∈ ker(T − λ) and

BΓ1γ(λ)ϕ = BM(λ)ϕ = ϕ = Γ0γ(λ)ϕ.

Thus γ(λ)ϕ is an eigenvector ofA[B] corresponding to the non-real eigenvalue
λ. This is a contradiction with the fact that A[B] is symmetric proven in
Lemma 2.18. Hence, I − BM(λ) is injective. By the assumptions on the
operators M(λ) and B we get that BM(λ) ∈ S∞(G) and thus I − BM(λ)
is also surjective. We immediately obtain that (I − BM(λ))−1 ∈ B(G).
Analogous arguments show that (I −M(λ)B)−1 ∈ B(G).

In the next theorem we prove that the operator A[B] is self-adjoint under
a certain assumption on the Weyl function and the operator B.

Theorem 2.20. Assume that Hypothesis 2.1 holds, that ran Γ0 = G and
that M(λ) ∈ S∞(G) for all λ ∈ ρ(A0). Let B be a bounded self-adjoint
operator in G and let A[B] be the operator corresponding to B via (2.2.12).
Then the operator A[B] is self-adjoint in the Hilbert space H.

Proof. By Lemma 2.18 the operator A[B] is symmetric, and by Lemma 2.19
the operator (I −BM(λ))−1 is bounded and everywhere defined in G for all
λ ∈ C \ R. Thus, according to Theorem 2.15 (i), ran(A[B] − λ) = H for all
such λ and therefore the operator A[B] is self-adjoint.

In the next theorem we show self-adjointness of A[B] under other assump-
tions on the Weyl function. We also prove that under these assumptions A[B]

is lower-semibounded and we estimate the corresponding lower bound.

Theorem 2.21. Assume that Hypothesis 2.1 holds, that A0 is semi-bounded,
that ran Γ0 = G and that∥∥M(λ)

∥∥→ 0 as λ→ −∞.

Let B be a bounded self-adjoint operator in G and let A[B] be the operator
corresponding to B via (2.2.12). Then the following statements hold.

(i) The operator A[B] is self-adjoint in the Hilbert space H.

(ii) There exists r ∈ R such that (−∞, r) ⊂ ρ(A0) and the condition

‖M(λ)‖ · ‖B‖ < 1

holds for all λ < r. For such r ∈ R the estimate A[B] ≥ rIH holds.
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Proof. According to the assumption on the operator A0 there exists r′ ∈ R
such that (−∞, r′) ⊂ ρ(A0), and by the assumption on the Weyl function the
exists r < r′ such that for all λ < r the condition ‖M(λ)‖·‖B‖ < 1 holds. In

this case we obtain that
(
I − BM(λ)

)−1 ∈ B(G) for all λ ∈ (−∞, r). Then
by Theorem 2.15 (i) we get that ran(A[B] − λ) = H for all λ ∈ (−∞, r).
Note that by Lemma 2.18 the operator A[B] is symmetric. Therefore, the
operator A[B] is self-adjoint and satisfies A[B] ≥ rIH.

2.3 Sobolev spaces

Throughout this thesis Sobolev spaces will play an important role. We pro-
vide some necessary notations and basic properties. For more details the
reader is referred to the monographs [AF03, G09, LM68, McL00]. Further-
more, in this section we derive some consequences of Schatten-von Neu-
mann properties of compact embeddings or compact weighted embeddings
between Sobolev spaces of distinct orders. More on this the reader can find
in [A90, G96, HT03, T78, Si05].

2.3.1 Notations and basic properties

Let Ω ⊆ Rn be one of the following open sets.

(i) The whole space Rn, n ≥ 1.

(ii) The half-space Rn+ :=
{

(x, x′)> : x ∈ Rn−1, x′ ∈ R+

}
, n ≥ 2, with the

boundary ∂Rn+ = Rn−1.

(iii) A bounded or an unbounded domain of dimension n ≥ 2 with a com-
pact C∞-boundary ∂Ω.

By Hs(Ω) and Hs(∂Ω), s ≥ 0, we denote the standard (L2-based)
Sobolev spaces of order s of functions in Ω and on ∂Ω, respectively. The
Sobolev spaces W k,∞(Ω) and W 1,∞(∂Ω) of L∞-functions are defined by

W k,∞(Ω) :=
{
f ∈ L∞(Ω): ∂αf ∈ L∞(Ω), |α| ≤ k

}
, k ∈ N0,

W 1,∞(∂Ω) :=
{
h ∈ L∞(∂Ω): ∇h ∈ L∞(∂Ω;Rn−1)

}
,

where α = (α1, α2, . . . , αn) ∈ Nn0 is a multi-index, |α| :=
∑n

i=1 αi. Observe
that the following implications hold:

f ∈ Hk(Ω), g ∈W k,∞(Ω) =⇒ fg ∈ Hk(Ω), k ∈ N0;

h ∈ H1(∂Ω), k ∈W 1,∞(∂Ω) =⇒ hk ∈ H1(∂Ω).
(2.3.1)
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For our studies we also need some non-standard spaces with mixed regularity.
We denote by Hs

∂Ω(Ω) with s ≥ 0 the subspace of L2(Ω), which consists of
functions that belong to Hs in a neighborhood of ∂Ω, i.e.,

Hs
∂Ω(Ω) :=

{
f ∈ L2(Ω): ∃ domain Ω′ ⊂ Ω such that

∂Ω′ ⊃ ∂Ω and f � Ω′ ∈ Hs(Ω′)
}
.

(2.3.2)

For k ∈ N0 we denote by W k,∞
∂Ω (Ω) the subspace of L∞(Ω) which consists of

functions that belong to W k,∞ in a neighborhood of ∂Ω, i.e.,

W k,∞
∂Ω (Ω) :=

{
f ∈ L∞(Ω): ∃ domain Ω′ ⊂ Ω such that

∂Ω′ ⊃ ∂Ω and f � Ω′ ∈W k,∞(Ω′)
}
.

(2.3.3)

Observe that for k ∈ N0 the implication

(2.3.4) f ∈ Hk
∂Ω(Ω), g ∈W k,∞

∂Ω (Ω) =⇒ fg ∈ Hk
∂Ω(Ω)

holds.

2.3.2 Estimates of singular values related to Sobolev spaces

The first lemma of this subsection turns out to be useful for Sp,∞-estimates
of resolvent power differences of elliptic operators in the case of domains
with compact boundaries.

Lemma 2.22. Let Σ be an (n− 1)-dimensional compact C∞-smooth man-
ifold without boundary, let K be a Hilbert space and B ∈ B(K, Hr1(Σ)) with
ranB ⊂ Hr2(Σ) where r2 > r1 ≥ 0. Then B is compact and its singular
values sk satisfy

sk(B) = O
(
k−

r2−r1
n−1

)
, k →∞.

In particular, B ∈ S n−1
r2−r1

,∞(K, Hr1(Σ)) and B ∈ Sp(K, Hr1(Σ)) for p >

n−1
r2−r1 .

Proof. Let Λr1,r2 := (I−∆Σ
LB)

r2−r1
2 , where ∆Σ

LB denotes the Laplace–Beltrami
operator on Σ. The operator Λr1,r2 is an isometric isomorphism from Hr2(Σ)
onto Hr1(Σ). From [A90, (5.39) and the text below] we obtain for the

asymptotics of the eigenvalues λk(I − ∆Σ
LB) ∼ Ck

2
n−1 with some constant

C. Hence,

sk(Λ
−1
r1,r2) = O

(
k−

r2−r1
n−1

)
, k →∞.
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We can write B in the form

(2.3.5) B = Λ−1
r1,r2(Λr1,r2B).

The operator B is closed as an operator from K into Hr1(Σ), hence also
closed as an operator from K into Hr2(Σ), which implies that it is bounded
from K into Hr2(Σ). Therefore the operator Λr1,r2B is bounded from K into
Hr1(Σ), and hence the assertions follow from (2.3.5).

For the next lemma we need some preparatory work. The following
condition on a bounded function α : Rn−1 → R with n ≥ 2 will play a role

µ
({
x ∈ Rn−1 : |α(x)| ≥ ε

})
<∞ for all ε > 0,(2.3.6)

here µ denotes the Lebesgue measure on Rn−1. We remark that condi-
tion (2.3.6) includes, e.g., the case that α belongs to Lq(Rn−1) for some
q ≥ 1, and the case that sup|x|≥r |α(x)| → 0 as r →∞.

Lemma 2.23. Let K be a Hilbert space and let K ∈ B(K, L2(Rn−1)) be
an operator with ranK ⊂ H1(Rn−1). If α ∈ L∞(Rn−1) satisfies condi-
tion (2.3.6), then αK ∈ S∞(K, L2(Rn−1)).

Proof. In view of the assumption on α there exists a sequence

Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωm ⊂ . . .

of smooth domains of finite measure whose union is all of Rn−1 such that
for each m ∈ N we have

sup
Rn−1\Ωm

|α(x)| < 1
m .

For each m ∈ N let χm be the characteristic function of the set Ωm. De-
note by Pm the canonical projection from L2(Rn−1) to L2(Ωm) and by Jm
the canonical embedding of L2(Ωm) into L2(Rn−1). Then ran(PmχmK) ⊂
H1(Ωm) and, by embedding statements, PmχmK : K → L2(Ωm) is compact;
see [EdEv75, Theorem 3.4 and Theorem 4.11] and [EdEv87, Chapter V].
Since αJm is bounded, it turns out that αχmK = αJmPmχmK is compact.
From the assumption (2.3.6) on α it follows easily that the sequence of op-
erators αχmK converges to αK in the operator-norm topology. Thus also
αK is compact, which is the assertion of this lemma.
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Remark 2.24. The condition in Lemma 2.23 can be slightly weakened using
the optimal prerequisites on a domain Ω which imply compactness of the
embedding of H1(Ω) into L2(Ω); see, e.g., [EdEv87, Chapter VIII]. To avoid
too inconvenient and technical assumptions, we restrict ourselves to the
condition (2.3.6).

The lemma below is the main ingredient in the proof of Schatten-von
Neumann properties for the resolvent power differences of elliptic operators
on the half-space.

Lemma 2.25. Let K be a Hilbert space and let K ∈ B(K, L2(Rn−1)) be
an operator with ranK ⊂ Hs(Rn−1) with s > 0. Let α ∈ L∞(Rn−1) be
real-valued.

(i) If α is compactly supported, or, if n−1
s > 2 and α ∈ L(n−1)/s(Rn), then

αK ∈ Sn−1
s
,∞(K, L2(Rn−1)).

(ii) If α ∈ Lp(Rn−1) with p ≥ 2 and p > n−1
s , then

αK ∈ Sp(K, L2(Rn−1)).

Let us recall that a function f is said to belong to the weak Lebesgue
space Lp,∞(Rn−1) for some p > 1, if the condition

sup
t>0

(
tpµ
(
{x ∈ Rn−1 : |f(x)| > t}

))
<∞

is satisfied, where µ again denotes the Lebesgue measure on Rn−1. This will
play a role in the following proof.

Proof of Lemma 2.25. Note that in the proof we speak about classes of op-
erator ideals and do not indicate Hilbert spaces K and L2(Rn−1). Let us as-
sume that α has a compact support and that Ω ⊂ Rn−1 is a bounded, smooth
domain with Ω ⊃ suppα. Let P be the canonical projection in L2(Rn−1)
onto L2(Ω), let J be the canonical embedding of L2(Ω) into L2(Rn−1), and
let α̃ := α|Ω. Since ran(PK) ⊂ Hs(Ω) and Ω is a bounded, smooth domain,
the embedding operator from Hs(Ω) into L2(Ω) is contained in the class
Sn−1

s
,∞, see [HT03, Theorem 7.8]. It follows PK ∈ Sn−1

s
,∞ as a mapping

from K into L2(Ω). Since Jα̃ is bounded, we obtain αK = Jα̃PK ∈ Sn−1
s
,∞.
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The proofs of the remaining statements make use of the spectral esti-
mates for the operator αD in L2(Rn−1) with

D = (I −∆Rn−1)−s/2 = g(−i∇), g(x) = (1 + |x|2)−s/2, x ∈ Rn−1,

(2.3.7)

where the formal notation g(−i∇) can be made precise with the help of
the Fourier transform. We remark that D, regarded as an operator from
L2(Rn−1) into Hs(Rn−1) is an isometric isomorphism. The function g be-
longs to L(n−1)/s,∞(Rn−1). In fact, one easily verifies that the set {x ∈
Rn−1 : |g(x)| > t} is contained in the ball of radius t−1/s centered at zero,
and the formula for the volume of a ball leads to the claim. Since n−1

s > 2

and α ∈ L(n−1)/s(Rn), the result by Cwikel in [Cw77] yields that

αD ∈ Sn−1
s
,∞;

see also [Si05, Theorem 4.2]. We conclude that

αK = αDD−1K ∈ Sn−1
s
,∞.

Thus we have proved (i).

In order to show (ii) let us assume that α ∈ Lp(Rn−1) with p ≥ 2 and
p > n−1

s . It is easy to check that g in (2.3.7) belongs to Lr(Rn−1) for each
r > n−1

s . Now we can conclude that α and g are both in Lp(Rn−1). Standard
result [Si05, Theorem 4.1] implies that

αD ∈ Sp.

It follows that

αK = αDD−1K ∈ Sp.

which is the assertion of (ii).

2.4 Elements of mathematical scattering theory

In this section we define the wave operators and the scattering operator,
and discuss some of their basic properties. The study of the wave operators
and of the scattering operator was motivated by needs of physics, especially,
of quantum mechanics. For a physical point of view we refer to [FM93].
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Scattering theory also has its independent mathematical value as a part of
perturbation theory of operators, see the monographs [K95, RS79-III, Y92].

Further let H be a Hilbert space, and let H0, H be self-adjoint operators
acting in H. In the following we denote by P ac

0 and P ac the orthogonal

projectors onto the absolutely continuous subspaces H(ac)
0 ⊂ H and H(ac) ⊂

H of the self-adjoint operators H0 and H, respectively. The absolutely
continuous parts of the operators H and H0 are specified as

Hac
0 := P ac

0 H0P
ac
0 and Hac := P acHP ac.

Definition 2.26. The wave operators W±(H,H0) are defined as

W±(H0, H) := s− lim
t→±∞

eitHe−itH0P ac
0 ,

provided that the corresponding strong limit exists. The wave operators
W±(H0, H) are called complete, if

ranW±(H0, H) = Hac(H).

Note that W±(H0, H) are isometric on the absolutely continuous sub-

space H(ac)
0 of the operator H0 and satisfy the intertwining property

W±(H0, H)H0f = HW±(H0, H)f for all f ∈ H(ac)
0 .

Provided that the wave operators for the pair {H0, H} exist and are com-
plete, the absolutely continuous parts Hac

0 and Hac are unitarily equivalent.
In the thesis we use Birman-Kato criterion for the existence and complete-
ness of the wave operators.

Theorem 2.27 (Birman-Kato). If for two self-adjoint operators H0 and H
in a Hilbert space H, some m ∈ N and an arbitrary λ0 ∈ ρ(H0) ∩ ρ(H) the
resolvent power difference satisfies

(H − λ0)−m − (H0 − λ)−m ∈ S1(H),

then the corresponding wave operators W±(H0, H) exist and are complete.

A typical application of the Birman-Kato criterion is the proof of the
existence and completeness of the wave operators for a pair of Schrödinger
operators

(2.4.1) H0 := −∆ + V0 and H = −∆ + V0 + V,
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acting in the Hilbert space L2(Rn). Under the assumption that real-valued
potentials V0 and V satisfy

V0 ∈ L∞(Rn) and V (x) ≤ C

(1 + |x|)ρ

with some constants C > 0 and ρ > n the wave operators for the pair
{H0, H} exist and are complete. For the proof of the Birman-Kato result,
further applications to Schrödinger operators and other criteria for existence
and completeness of wave operators the reader is addressed to the mono-
graphs [RS79-III, Y92]. It worth mentioning that some other criteria lead
to better results for particular classes of operators.

In applications the scattering operator plays an important role, see [Y10].

Definition 2.28. The scattering operator S is defined as

S(H0, H) := W+(H0, H)∗W−(H0, H),

provided that the wave operators W±(H0, H) from Definition 2.26 exist.

If the wave operators are complete, then the scattering operator S(H0, H)

is unitary in H(ac)
0 and it commutes with H0 in the sense

H0S(H0, H)f = S(H0, H)H0f for all f ∈ H(ac)
0 .

In Chapter 3 we prove in Corollaries 3.14 and 3.16 existence and com-
pleteness of the wave operators for pairs of self-adjoint elliptic operators on
an exterior domain subject to one elliptic differential expression and with
distinct boundary conditions. In Chapter 4 we prove in Corollaries 4.23
and 4.27 existence and completeness of the wave operators for pairs of
Schrödinger operators with a δ or δ′-interaction on a hypersurface and of
the free Schrödinger operators without singular perturbations. Finally, in
Chapter 5 we prove in Corollaries 5.16 and 5.18 existence and complete-
ness of the wave operators for pairs of self-adjoint Robin Laplacians on the
half-space. All these proofs use Schatten-von Neumann estimates of resol-
vent power differences and the Birman-Kato criterion. Our results cover all
space dimensions, although in some cases for higher dimensions we assume
more smoothness of the coefficients in the differential expressions or in the
boundary conditions.
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Chapter 3

Elliptic operators on domains
with compact boundaries

In this chapter we define self-adjoint realizations of a formally symmetric el-
liptic partial differential expression subject to Robin and more general non-
local self-adjoint boundary conditions on bounded interior and unbounded
exterior domains. We provide a modification of the Birman-Schwinger prin-
ciple for the characterization of the point spectra of these realizations and
we prove Krein’s formulae for their resolvent differences.

As the underlying problem of this chapter we study Schatten-von Neu-
mann properties of the resolvent power differences of self-adjoint elliptic
operators. This problem has a long history in analysis, see Section 3.4 for
historical remarks. Our results in this direction extend and complement
the works [B62, BS79, BS80, G84, G84a, G11, G11a, M10]. In particu-
lar, a new case is presented, where the singular values converge slightly
faster than for the well-studied case of the resolvent power difference of
Dirichlet and Neumann realizations. From these estimates we come to
the conclusions about the existence and completeness of the wave oper-
ators. Furthermore, for trace class resolvent power differences we pro-
vide formulae for their traces. Recently such a type of trace formulae at-
tracted attention [CGNZ12, Ca02, GZ12] in connection with the spectral
shift function. Most of the results of this chapter are contained in the works
[BLL+10, BLL12, BLL12b] of the author.
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3.1 Preliminaries

Let Ω ⊂ Rn, n ≥ 2, be a bounded or an unbounded domain with a compact
C∞-boundary ∂Ω. We denote by (·, ·) and (·, ·)∂Ω the inner products in the
Hilbert spaces L2(Ω) and L2(∂Ω), respectively.

Throughout this chapter we are concerned with the formally symmetric
elliptic partial differential expression

(3.1.1) (Lf)(x) := −
n∑

j,k=1

∂j
(
ajk∂kf

)
(x) + a(x)f(x), x ∈ Ω,

with bounded, real-valued coefficients ajk ∈ C∞(Ω) satisfying ajk(x) =
akj(x) for all x ∈ Ω and j, k = 1, . . . , n, and a bounded, real-valued coef-
ficient a ∈ C∞(Ω). We assume that all the first partial derivatives of the
coefficients ajk are bounded. Furthermore, L is assumed to be uniformly
elliptic, i.e. the condition

n∑
j,k=1

ajk(x)ξjξk ≥ C
n∑
k=1

ξ2
k

holds for some C > 0, all ξ = (ξ1, . . . , ξn)> ∈ Rn and x ∈ Ω.

For a function f ∈ C∞(Ω) we introduce the following trace

∂Lf |∂Ω :=
n∑

j,k=1

ajkνj∂kf
∣∣
∂Ω
,

with the normal vector field ~ν = (ν1, ν2, . . . , νn) pointing outwards Ω. For
s > 3/2 the trace mapping

(3.1.2) Hs(Ω) 3 f 7→
{
f |∂Ω, ∂Lf |∂Ω

}
∈ Hs−1/2(∂Ω)×Hs−3/2(∂Ω)

is the continuous extension of the trace mapping defined on C∞-functions
and the mapping in (3.1.2) is surjective onto Hs−1/2(∂Ω)×Hs−3/2(∂Ω).

Besides the Sobolev spaces Hs(Ω) defined in Section 2.3 the spaces

(3.1.3) Hs
L(Ω) :=

{
f ∈ Hs(Ω): Lf ∈ L2(Ω)

}
, s ≥ 0,

equipped with the scalar product (·, ·)s + (L·,L·) and the corresponding
norm will be useful.
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Observe that for s ≥ 2 the spaces Hs
L(Ω) and Hs(Ω) coincide. We also

note that Hs
L(Ω), s ∈ (0, 2), can be viewed as an interpolation space between

H2(Ω) an H0
L(Ω). The trace mapping can be extended to a continuous

mapping
(3.1.4)
Hs
L(Ω) 3 f 7→

{
f |∂Ω, ∂Lf |∂Ω

}
∈ Hs−1/2(∂Ω)×Hs−3/2(∂Ω), s ∈ [0, 2),

where each of the mappings

Hs
L(Ω) 3 f 7→ f |∂Ω ∈ Hs−1/2(∂Ω), s ∈ [0, 2),

Hs
L(Ω) 3 f 7→ ∂Lf |∂Ω ∈ Hs−3/2(∂Ω), s ∈ [0, 2),

is surjective, see [LM68, Chapter 2, §7.3].

We also recall from [F67, LM68] (see also [BLL12, Theorem 4.2]) that

the second Green’s identity holds for all f, g ∈ H3/2
L (Ω)

(3.1.5)
(
Lf, g

)
−
(
f,Lg

)
=
(
f |∂Ω, ∂Lg|∂Ω

)
∂Ω
−
(
∂Lf |∂Ω, g|∂Ω

)
∂Ω
.

In view of the assumptions on the coefficients in the expression L the
minimal symmetric operator

Af := Lf, domA := H2
0 (Ω),

is closed and densely defined in the Hilbert space L2(Ω), see, e.g., [ADN59,
Be65, Br60], cf. [M10, Section 3.1]. The minimal operator A has infinite
deficiency indices, and its adjoint operator has the form

A∗f = Lf, domA∗ =
{
f ∈ L2(Ω): Lf ∈ L2(Ω)

}
.

The self-adjoint extensions of A subject to Dirichlet and Neumann boundary
conditions

ADf := Lf, domAD :=
{
f ∈ H2(Ω): f |∂Ω = 0

}
,

ANf := Lf, domAN :=
{
f ∈ H2(Ω): ∂Lf |∂Ω = 0

}
,

(3.1.6)

will be important later. For the proofs of the self-adjointness of the operators
AD and AN we refer to [Br60, Theorem 5 (iii)] and [Be65, Theorem 7.1 (a)].

3.2 Elliptic operators with general self-adjoint bound-
ary conditions

In this section we use quasi boundary triples for a definition and study of self-
adjoint realizations A[B] of L subject to the non-local boundary condition
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of the form
Bf |∂Ω = ∂Lf |∂Ω

with a bounded self-adjoint operator B in L2(∂Ω).

3.2.1 A quasi boundary triple and its Weyl function

For a proper definition of a quasi boundary triple for A∗ we specify the
operator T as below

(3.2.1) Tf := Lf, domT := H
3/2
L (Ω),

where the spaceH
3/2
L (Ω) is defined as in (3.1.3), and we introduce the bound-

ary mappings

Γ0 : domT → L2(∂Ω), Γ0f := ∂Lf |∂Ω,

Γ1 : domT → L2(∂Ω), Γ1f := f |∂Ω.
(3.2.2)

In the first proposition of this section we prove that the triple {L2(∂Ω),Γ0,Γ1}
is a quasi boundary triple for A∗ and we show also some basic properties of
this quasi boundary triple.

Proposition 3.1. Let the self-adjoint operators AN and AD be as in (3.1.6).
Let the operator T be as in (3.2.1) and the mappings Γ0, Γ1 be as in (3.2.2).
Then the triple Π = {L2(∂Ω),Γ0,Γ1} is a quasi boundary triple for A∗. The
restrictions of T to the kernels of the boundary mappings are

T � ker Γ0 = AN and T � ker Γ1 = AD;

and the ranges of these mappings are

ran Γ0 = L2(∂Ω) and ran Γ1 = H1(∂Ω).

Proof. In order to show that the triple Π is a quasi boundary triple for A∗ we
employ Proposition 2.9. Let us check that the triple Π satisfies conditions
(a), (b) and (c) of that proposition. Since H2(Ω) ⊂ domT , by (3.1.2) we
have

H1/2(∂Ω)×H3/2(∂Ω) ⊂ ran

(
Γ0

Γ1

)
.

The set H1/2(∂Ω) ×H3/2(∂Ω) is, clearly, dense in L2(∂Ω) × L2(∂Ω). Note
that the set ker Γ0 ∩ ker Γ1 ⊃ C∞0 (Ω) is dense in L2(Ω). Therefore the
condition (a) is verified. The abstract Green’s identity(

Tf, g
)
−
(
f, Tg

)
=
(
Γ1f,Γ0g

)
∂Ω
−
(
Γ0f,Γ1g

)
∂Ω
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for all f, g ∈ domT is equivalent to (3.1.5). That is the condition (b) holds.
The operator T � ker Γ0 contains the self-adjoint elliptic operator AN subject
to the Neumann boundary condition on ∂Ω. Thus the condition (c) holds
for the triple Π, and by Proposition 2.9 the triple Π is a quasi boundary
triple for the adjoint of the closed, densely defined, symmetric operator
T � (ker Γ0 ∩ ker Γ1). It remains to show that T � (ker Γ0 ∩ ker Γ1) = A.
Indeed, the restriction T � ker Γ0 contains the self-adjoint operator AN and
the restriction T � ker Γ1 contains the self-adjoint operator AD. By the
abstract Green’s identity operators T � ker Γ0 and T � ker Γ1 are both
symmetric, thus T � ker Γ0 = AN and T � ker Γ1 = AD. As a consequence of
these considerations we get

T � (ker Γ0 ∩ ker Γ1) = (T � ker Γ0) ∩ (T � ker Γ1) = AN ∩AD = A.

Hence the triple Π is a quasi boundary triple for A∗.

The properties of the boundary mappings

ran Γ0 = L2(∂Ω) and ran Γ1 = H1(∂Ω),

follow from (3.1.4).

In the next proposition we clarify the basic properties of the γ-field
and the Weyl function associated with the quasi boundary triple Π from
Proposition 3.1. In the terminology of [G96, McL00] these operators turn out
to be the Poisson operator and the Neumann-to-Dirichlet map, respectively.

Proposition 3.2. Let the self-adjoint operators AD and AN be as in (3.1.6)
Let Π be the quasi boundary triple from Proposition 3.1. Let γ and M be
the γ-field and the Weyl function associated with the quasi boundary triple
Π as in Definition 2.10.

(i) The γ-field γ is defined for all λ ∈ ρ(AN) and

γ(λ) : L2(∂Ω)→ L2(Ω), γ(λ)ϕ := fλ(ϕ),

where fλ(ϕ) is the unique solution in the space H
3/2
L (Ω) of the problem

(L − λ)f = 0, in Ω,

∂Lf |∂Ω = ϕ, on ∂Ω.
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(ii) The Weyl function M is defined for all λ ∈ ρ(AN) and

M(λ) : L2(∂Ω)→ L2(∂Ω), M(λ)ϕ = fλ(ϕ)|∂Ω,

where fλ(ϕ) = γ(λ)ϕ. For all λ ∈ ρ(AN)
(
λ ∈ ρ(AN) ∩ ρ(AD)

)
the

operator M(λ) maps L2(∂Ω) into (onto) H1(∂Ω). The operator M(λ)
is compact for all λ ∈ ρ(AN).

Proof. (i) The mapping properties of the γ-field γ follow from (3.2.1), (3.2.2)
and Definition 2.10.

(ii) The mapping properties of the Weyl function M follow from (3.2.2),
Definition 2.10, Proposition 2.11 (iii) and Proposition 3.1. The compactness
of the operator M(λ) follows from the compactness of the embedding of
H1(∂Ω) into L2(∂Ω), cf. Lemma 2.22.

3.2.2 Self-adjointness and Krein’s formulae

In the next theorem we establish a relation between the point spectra of the
self-adjoint operator AD and of the operator-valued function M(·). More-
over, we provide a factorization (Krein’s formula) for the resolvent difference
of AN and AD.

Theorem 3.3. Let AN and AD be the self-adjoint operators as in (3.1.6).
Let γ and M be the γ-field and the Weyl function from Proposition 3.2.
Then the following statements hold.

(i) For all λ ∈ R ∩ ρ(AN)

λ ∈ σp(AD) ⇐⇒ 0 ∈ σp

(
M(λ)

)
and the multiplicities of the eigenvalues coincide.

(ii) The formula

(3.2.3) (AN − λ)−1 − (AD − λ)−1 = γ(λ)M(λ)−1γ(λ)∗

holds for all λ ∈ ρ(AD) ∩ ρ(AN).

Proof. (i) The equivalence between the point spectra follows from Theo-
rem 2.13 (i) with the self-adjoint operator A1 = AD.

(ii) Krein’s formula follows from Theorem 2.13 (ii) with A0 = AN and
A1 = AD.
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As in (2.2.12) we introduce a family of restrictions of T parametrized by
an operator acting on the boundary.

Definition 3.4. We define for a bounded self-adjoint operator B in L2(∂Ω)
the restriction A[B] of T as below

(3.2.4) A[B] := T � ker(BΓ1 − Γ0),

which is equivalent to

A[B]f := Lf, domA[B] :=
{
f ∈ H3/2

L (Ω): Bf |∂Ω = ∂Lf |∂Ω

}
.

If B is a multiplication operator with a real-valued function β ∈ L∞(∂Ω),
then we write A[β] instead of A[B]. For the relation between the operator
A[B] and the other operators considered in this section see Figure 3.1. In the

AN

⊂

A ⊂
⊂

⊂
A[B] ⊂ T ⊂ T = A∗.

AD

⊂

Figure 3.1: This figure shows how the operator A[B] is related to the other
operators introduced in this chapter. The operators AN, AD and A[B] are
self-adjoint in L2(Ω), cf. Theorem 3.5.

next theorem we show that A[B] is self-adjoint. We establish a characteri-
zation of the point spectrum of A[B] in terms of the point spectrum of the
operator-valued function I − BM(·). This characterization can be viewed
as an analogue of the Birman-Schwinger principle. Moreover, we provide a
factorization (Krein’s formula) for the resolvent difference of A[B] and AN.

Theorem 3.5. Let AN be the self-adjoint operator as in (3.1.6). Let γ and
M be the γ-field and the Weyl function from Proposition 3.2. Let B be a
bounded self-adjoint operator in L2(∂Ω). Let A[B] be the operator corre-
sponding to B via (3.2.4). Then the following statements hold.

(i) The operator A[B] is self-adjoint in the Hilbert space L2(Ω).
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(ii) For all λ ∈ ρ(AN) ∩ R

λ ∈ σp(A[B]) ⇐⇒ 0 ∈ σp(I −BM(λ))

and the multiplicities of these eigenvalues coincide.

(iii) The formulae

(A[B] − λ)−1 − (AN − λ)−1 = γ(λ)
(
I −BM(λ)

)−1
Bγ(λ)∗,

(A[B] − λ)−1 − (AN − λ)−1 = γ(λ)B
(
I −M(λ)B

)−1
γ(λ)∗

hold for all λ ∈ ρ(A[B]) ∩ ρ(AN).

Proof. (i) By Proposition 3.1 the range of the boundary mapping Γ0 coin-
cides with L2(∂Ω). According to Proposition 3.2 (ii) the values of the Weyl
function M are compact operators. By the assumptions the operator B is
bounded and self-adjoint in L2(∂Ω) and the statement follows from Theo-
rem 2.20.

(ii) The equivalence between the point spectra follows from Proposi-
tion 2.14.

(iii) Krein’s formulae follow from self-adjointness of A[B] and Corol-
lary 2.16 with A0 = AN.

In the next theorem we obtain a factorization (Krein’s formula) for the
resolvent difference of A[B1] and A[B2].

Theorem 3.6. Let AN be the self-adjoint operator in (3.1.6). Let γ and
M be the γ-field and the Weyl function from Proposition 3.2. Let B1 and
B2 be bounded self-adjoint operators in L2(∂Ω). Let A[B1] and A[B2] be the
self-adjoint operators corresponding via (3.2.4) to B1 and B2, respectively.
Then the formula

(A[B2] − λ)−1 − (A[B1] − λ)−1 =

γ(λ)
(
I −B2M(λ)

)−1
(B2 −B1)

(
I −M(λ)B1

)−1
γ(λ)∗

holds for all λ ∈ ρ(A[B2])∩ρ(A[B1])∩ρ(AN). In this formula the middle terms
on the right-hand side satisfy (I−B2M(λ))−1, (I−M(λ)B1)−1 ∈ B

(
L2(∂Ω)

)
.

Proof. Since the operators A[B1] and A[B2] are both self-adjoint by Theo-
rem 3.5 (i), Krein’s formula follows from Theorem 2.17. The properties of
the middle terms are a consequence of Lemma 2.19.

60



It follows from Definition 3.4 that domA[B] ⊂ H3/2(Ω). It is also ex-
pected that certain smoothing properties of the operator B in the boundary
condition lead to the inclusion domA[B] ⊂ H2(Ω). In the next theorem
we clarify these smoothing properties. This result is also proved in [G11a,
Proposition 2.3 (i)] and [Be65, Theorem 7.1 (a)] by other methods.

Theorem 3.7. Let B be a bounded self-adjoint operator in L2(∂Ω). Let
A[B] be the operator corresponding to B via (3.2.4). Assume that

f ∈ H1(∂Ω) =⇒ Bf ∈ H1/2(∂Ω).

Then the inclusion domA[B] ⊂ H2(Ω) holds.

Proof. Let f be an arbitrary function from domA[B] ⊂ domT . Let us fix
λ ∈ C \ R. In view of the decomposition

(3.2.5) domT = domAN u ker(T − λ)

we write f as f = fN + fλ with fN ∈ domAN and fλ ∈ ker(T − λ). Observe
that by (3.1.6) the component fN ∈ H2(Ω). It remains to show that also
fλ ∈ H2(Ω). Indeed, Proposition 3.1 implies that Γ1fλ ∈ H1(∂Ω), and the
assumption of the theorem yields that

Γ0fλ = BΓ1fλ ∈ H1/2(∂Ω).

In view of the decomposition (3.2.5) and the trace theorem (3.1.2) the map-
ping Γ0 is a bijection between the spaces ker(T −λ)∩H2(Ω) and H1/2(∂Ω).
Thus Γ0fλ ∈ H1/2(∂Ω) implies that fλ ∈ H2(Ω). Since fN and fλ both be-
long to H2(Ω), we clearly get that f ∈ H2(Ω) and the claim is proven.

As a consequence of the last theorem we provide assumptions on the
function β for H2-regularity of the operator domain of A[β]

Corollary 3.8. Assume that a real-valued β satisfies β ∈W 1,∞(∂Ω). Then
the inclusion domA[β] ⊂ H2(Ω) holds.

Proof. By (2.3.1) the operator of multiplication with β satisfies the impli-
cation

f ∈ H1(∂Ω) =⇒ βf ∈ H1(∂Ω) ⊂ H1/2(∂Ω),

and the claim follows from the last theorem.
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3.3 Operator ideal properties of resolvent power
differences and trace formulae

The main results of this section are Sp,∞-estimates for the resolvent power
differences of self-adjoint elliptic operators. As a consequence of these es-
timates we get the existence and completeness of the wave operators for
the scattering pairs formed by two self-adjoint elliptic operators on exterior
domains. In the case of trace class resolvent power differences we provide
trace formulae, where the trace of the resolvent power difference is reduced
to the trace of an operator acting on the boundary.

3.3.1 Elliptic regularity and related Sp,∞-estimates

In this subsection we provide estimates of the singular values of the γ-field
and the Weyl function from Proposition 3.2, their derivatives and some re-
lated compact operators. For this purpose we use properties of the compact
embeddings between Sobolev spaces, given in Lemma 2.22, and elliptic reg-
ularity theory.

Furthermore, we make use of the local Sobolev spaces Hs
∂Ω(Ω) defined

in Subsection 2.3.1. Note that for all s ≥ 0 and λ ∈ ρ(AN) the implication

(3.3.1) f ∈ Hs
∂Ω(Ω) =⇒ (AN − λ)−1f ∈ Hs+2

∂Ω (Ω)

holds, see [McL00, Theorem 4.18], where this property is formulated in the
language of regularity of the solutions for boundary value problems.

In the next lemma we show certain smoothing properties of the γ-field γ
and the Weyl function M from Proposition 3.2. This lemma is used in the
proof of Theorem 3.12 in the next subsection.

Lemma 3.9. Let γ and M be the γ-field and the Weyl function from Propo-
sition 3.2. For all s ≥ 0 the following holds:

(i) ran
(
γ(λ) � Hs(∂Ω)

)
⊂ Hs+ 3

2
∂Ω (Ω) for all λ ∈ ρ(AN);

(ii) ran
(
γ(λ)∗ � Hs

∂Ω(Ω)
)
⊂ Hs+ 3

2 (∂Ω) for all λ ∈ ρ(AN);

(iii) ran
(
M(λ) � Hs(∂Ω)

)
⊂ Hs+1(∂Ω) for all λ ∈ ρ(AN);

(iv) ran
(
M(λ) � Hs(∂Ω)

)
= Hs+1(∂Ω) for all λ ∈ ρ(AD) ∩ ρ(AN).

62



Proof. It follows from the decomposition domT = domAN u ker(T − λ),
λ ∈ ρ(AN), and the properties of the Neumann trace [LM68, Chapter 2,
§7.3] that the restriction of the mapping Γ0 to

ker(T − λ) ∩Hs+ 3
2

∂Ω (Ω)

is a bijection onto Hs(∂Ω). Hence, by the definition of the γ-field, we obtain

ran
(
γ(λ) � Hs(∂Ω)

)
= ker(T − λ) ∩Hs+ 3

2
∂Ω (Ω) ⊂ Hs+ 3

2
∂Ω (Ω).

Thus the claim (i) is shown.

According to Proposition 2.11 (i) and the definition of Γ1 we have

γ(λ)∗ = Γ1(AN − λ)−1.

The properties of the Dirichlet trace [LM68, Chapter 2, §7.3] and the smooth-
ing property (3.3.1) yield the inclusion

ran
(
γ(λ)∗ � Hs

∂Ω(Ω)
)
⊂ Hs+ 3

2 (∂Ω)

for all s ≥ 0. Thus we have shown assertion (ii).

Assertion (iii) follows from the definition of M(λ), item (i), the fact that
Γ1 is the trace operator and properties of the latter.

To verify (iv) let ψ ∈ Hs+1(∂Ω). Since λ ∈ ρ(AD), we have the decom-
position domT = domAD u ker(T − λ) and there exists a unique function

fλ ∈ ker(T − λ) ∩Hs+ 3
2

∂Ω (Ω) such that fλ|∂Ω = ψ. Hence

Γ0fλ = ϕ ∈ Hs(∂Ω) and M(λ)ϕ = ψ,

that is, Hs+1(∂Ω) ⊂ ran
(
M(λ) � Hs(∂Ω)

)
, and (iii) implies the assertion.

Another application of the smoothing property (3.3.1) gives the following
proposition, in which we provide certain preliminary Sp,∞-estimates that are
useful in the proofs of the main results in the next subsection.

Proposition 3.10. Let AN be the self-adjoint operator from (3.1.6), and let
γ be the γ-field from Proposition 3.2. Then for λ, µ ∈ ρ(AN) and k ∈ N0 the
following statements hold:

(a) γ(µ)∗(AN − λ)−k ∈ S n−1
2k+3/2

,∞
(
L2(Ω), L2(∂Ω)

)
;
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(b) (AN − λ)−kγ(µ) ∈ S n−1
2k+3/2

,∞
(
L2(∂Ω), L2(Ω)

)
;

(c) γ(µ)∗(AN − λ)−k ∈ S n−1
2k+1/2

,∞
(
L2(Ω), H1(∂Ω)

)
.

Proof. As ran(AN − λ)−1 = domAN ⊂ H2
∂Ω(Ω) we conclude from (3.3.1)

that the inclusion

ran
(

(AN − µ)−1(AN − λ)−k
)
⊂ H2k+2

∂Ω (Ω)

holds for all k ∈ N0. Moreover, by Proposition 3.1 we have AN = T � ker Γ0,
and Proposition 2.11 (i) implies

γ(µ)∗(AN − λ)−k = Γ1(AN − µ)−1(AN − λ)−k

and hence

(3.3.2) ran
(
γ(µ)∗(AN − λ)−k

)
⊂ H2k+3/2(∂Ω)

by the properties of the trace map Γ1, cf. (3.1.2). Now the estimate (a)
follows from (3.3.2) and Lemma 2.22 with K = L2(Ω), Σ = ∂Ω, r1 = 0
and r2 = 2k + 3

2 . The estimate (b) follows from the estimate (a) by taking
the adjoint. The estimate (c) follows from (3.3.2) and Lemma 2.22 with
K = L2(Ω), Σ = ∂Ω, r1 = 1 and r2 = 2k + 3

2 .

In the proofs of the trace formulae we use estimates of singular values
for the derivatives of the γ-field γ and the Weyl function M associated with
the quasi boundary triple from Proposition 3.1.

Proposition 3.11. Let γ and M be the γ-field γ and the Weyl function
from Proposition 3.2. Then for all λ ∈ ρ(AN) the following holds:

(i) for k ∈ N0

dk

dλk
γ(λ) ∈ S n−1

2k+3/2
,∞
(
L2(∂Ω), L2(Ω)

)
,

dk

dλk
γ(λ)∗ ∈ S n−1

2k+3/2
,∞
(
L2(Ω), L2(∂Ω)

)
;

(ii) for k ∈ N0

dk

dλk
M(λ) ∈ S n−1

2k+1
,∞
(
L2(∂Ω)

)
.
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Proof. The claim (i) follows from Lemma 2.12 (i), (ii) and Proposition 3.10 (a), (b).
By Lemma 2.12 (iii)

dk

dλk
M(λ) = k! γ(λ)∗(AN − λ)−(k−1)γ(λ).

Then Proposition 3.10 (a) gives us

dk

dλk
M(λ) ∈ S n−1

2(k−1)+3/2
,∞ ·Sn−1

3/2
,∞ = S n−1

2k+1
,∞,

where the last equality follows from Lemma 2.3 (i). That is the claim (ii).

3.3.2 Resolvent power differences in Sp,∞-classes and trace
formulae

In the next theorem we prove Sp,∞-properties for the resolvent power differ-
ence of the self-adjoint elliptic operators AD and AN. In the case, that the
resolvent power difference is in the trace class, we provide the corresponding
trace formula.

Theorem 3.12. Let AD and AN be the self-adjoint operators defined in (3.1.6).
Then the following statements hold.

(i) For all λ ∈ ρ(AN) ∩ ρ(AD) and all m ∈ N

(3.3.3) (AN − λ)−m − (AD − λ)−m ∈ Sn−1
2m

,∞
(
L2(Ω)

)
.

(ii) If m > n−1
2 , then the resolvent power difference in (3.3.3) is in the

trace class, and for all λ ∈ ρ(AN) ∩ ρ(AD)

tr
(

(AN − λ)−m − (AD − λ)−m
)

=
1

(m− 1)!
tr

(
dm−1

dλm−1

(
M(λ)−1M ′(λ)

))
.

(3.3.4)

Proof. (i) We prove this item by applying Lemma 2.4. Fix an arbitrary
λ0 ∈ C \ R and let γ and M be as in Proposition 3.2. By Theorem 3.3 (ii)
the resolvent difference of AD and AN at the point λ0 can be written in the
form

(AD − λ0)−1 − (AN − λ0)−1 = −γ(λ0)M(λ0)−1γ(λ0)∗.
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Furthermore, by Proposition 3.2 (ii) the operator M(λ0) is bijective and
closed as an operator from L2(∂Ω) onto H1(∂Ω). Hence, dom

(
M(λ0)−1

)
=

H1(∂Ω) and, since M(λ0)−1 is closed as an operator from H1(∂Ω) onto
L2(∂Ω), we conclude that M(λ0)−1 ∈ B

(
H1(∂Ω), L2(∂Ω)

)
. Set

H := AD, K := AN, F1 := −γ(λ0), F2 := M(λ0)−1γ(λ0)∗.

Then Proposition 3.10 (b) and (c) imply that the assumptions in Lemma 2.4
are satisfied with

a =
2

n− 1
, b1 =

3/2

n− 1
, b2 =

1/2

n− 1
, r = +∞.

Since b = b1 + b2 − a = 0, Lemma 2.4 implies that

(AD − λ)−m − (AN − λ)−m ∈ Sn−1
2m

,∞
(
L2(Ω)

)
for all λ ∈ ρ(AN) ∩ ρ(AD) and all m ∈ N.

(ii) The proof of this item is split into three steps.

Step 1. Let us introduce the operator-valued function

S(λ) := M(λ)−1γ(λ)∗, λ ∈ ρ(AN) ∩ ρ(AD).

Note that the product is well defined since

ran(γ(λ)∗) ⊂ H1(∂Ω) = dom(M(λ)−1).

Since AD is self-adjoint, it follows from Proposition 2.11 (iii) that S(λ) is a
bounded operator from L2(Ω) to L2(∂Ω) for all λ ∈ ρ(AN) ∩ ρ(AD). We
prove the following smoothing property for the derivatives of S:

(3.3.5) u ∈ Hs
∂Ω(Ω) ⇒ S(k)(λ)u ∈ Hs+2k+1/2(∂Ω), s ≥ 0, k ∈ N0,

by induction. Since γ(λ)∗ maps Hs
∂Ω(Ω) into Hs+3/2(∂Ω) for s ≥ 0 by

Lemma 3.9 (ii) and M(λ)−1 maps Hs+3/2(∂Ω) into Hs+1/2(∂Ω) by Lem-
ma 3.9 (iv), relation (3.3.5) is true for k = 0. Now let l ∈ N0 and as-
sume that (3.3.5) is true for every k = 0, 1, . . . , l. By (2.2.6), (2.2.8) and
Lemma 2.12 (i), (iii) we have

S′(λ)u =
d

dλ

(
M(λ)−1

)
γ(λ)∗u+M(λ)−1 d

dλ
γ(λ)∗u

= −M(λ)−1M ′(λ)M(λ)−1γ(λ)∗u+M(λ)−1γ(λ)∗(AN − λ)−1u

= −M(λ)−1γ(λ)∗γ(λ)M(λ)−1γ(λ)∗u+ S(λ)(AN − λ)−1u

= S(λ)(AN − λ)−1u− S(λ)γ(λ)S(λ)u
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for all u ∈ L2(Ω). Hence, with the help of (2.2.6), (2.2.7) and Lemma 2.12 (ii),
we obtain

S(l+1)(λ) =
dl

dλl

(
S(λ)(AN − λ)−1 − S(λ)γ(λ)S(λ)

)
=
∑
p+q=l
p,q≥0

(
l

p

)
S(p)(λ)

dq

dλq
(AN − λ)−1

−
∑

p+q+r=l
p,q,r≥0

l!

p! q! r!
S(p)(λ)γ(q)(λ)S(r)(λ)

=
∑
p+q=l
p,q≥0

l!

p!
S(p)(λ)(AN − λ)−(q+1)(3.3.6)

−
∑

p+q+r=l
p,q,r≥0

l!

p! r!
S(p)(λ)(AN − λ)−qγ(λ)S(r)(λ).

By the induction hypothesis, smoothing property (3.3.1) and Lemma 3.9 (i),
we have, for s ≥ 0 and p, q ≥ 0, p+ q = l,

u ∈ Hs
∂Ω(Ω)

=⇒ (AN − λ)−(q+1)u ∈ Hs+2q+2
∂Ω (Ω)

=⇒ S(p)(λ)(AN − λ)−(q+1)u ∈ Hs+2q+2+2p+1/2(∂Ω) = Hs+2(l+1)+1/2(∂Ω)

and for s ≥ 0 and p, q, r ≥ 0, p+ q + r = l,

u ∈ Hs
∂Ω(Ω)

=⇒ S(r)(λ)u ∈ Hs+2r+1/2(∂Ω)

=⇒ γ(λ)S(r)(λ)u ∈ Hs+2r+1/2+3/2
∂Ω (Ω)

=⇒ (AN − λ)−qγ(λ)S(r)(λ)u ∈ Hs+2r+2+2q
∂Ω (Ω)

=⇒ S(p)(λ)(AN − λ)−qγ(λ)S(r)(λ)u ∈ Hs+2r+2+2q+2p+1/2(∂Ω)

= Hs+2(l+1)+1/2(∂Ω),

which, together with (3.3.6), shows (3.3.5) for k = l + 1 and hence, by
induction, for all k ∈ N0. Therefore, an application of Lemma 2.22 yields
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that
(3.3.7)
S(k)(λ) ∈ S n−1

2k+1/2
,∞
(
L2(Ω), L2(∂Ω)

)
, k ∈ N0, λ ∈ ρ(AN) ∩ ρ(AD).

Step 2. Using Krein’s formula from Theorem 3.3 (ii) and (2.2.6) we can
write, for m ∈ N and λ ∈ ρ(AN) ∩ ρ(AD),

(AN − λ)−m − (AD − λ)−m =
1

(m− 1)!
· d

m−1

dλm−1

(
(AN − λ)−1 − (AD − λ)−1

)
=

1

(m− 1)!
· d

m−1

dλm−1

(
γ(λ)S(λ)

)
=

1

(m− 1)!

∑
p+q=m−1
p,q≥0

(
m− 1

p

)
γ(p)(λ)S(q)(λ).(3.3.8)

By Proposition 3.11 (i), (3.3.7) and Lemma 2.3 (i)

(3.3.9) γ(p)(λ)S(q)(λ) ∈ S n−1
2p+3/2

,∞ ·S n−1
2q+1/2

,∞ = S n−1
2(p+q)+2

,∞ = Sn−1
2m

,∞

for p, q with p+ q = m− 1.

Step 3. If m > n−1
2 , then n−1

2m < 1 and, by Lemma 2.3 (iii) and (3.3.9),
each term in the sum in (3.3.8) is a trace class operator and, by a simi-
lar argument, also S(q)(λ)γ(p)(λ). Hence the resolvent power difference in
(3.3.3) is a trace class operator, and we can apply the trace to (3.3.8) and
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use (2.1.10), (2.1.11) and Lemma 2.12 (iii) to obtain

(m− 1)! tr
(

(AN − λ)−m − (AD − λ)−m
)

= tr

( ∑
p+q=m−1
p,q≥0

(
m− 1

p

)
γ(p)(λ)S(q)(λ)

)

=
∑

p+q=m−1
p,q≥0

(
m− 1

p

)
tr
(
γ(p)(λ)S(q)(λ)

)

=
∑

p+q=m−1
p,q≥0

(
m− 1

p

)
tr
(
S(q)(λ)γ(p)(λ)

)

= tr

( ∑
p+q=m−1
p,q≥0

(
m− 1

p

)
S(q)(λ)γ(p)(λ)

)
= tr

(
dm−1

dλm−1

(
S(λ)γ(λ)

))

= tr

(
dm−1

dλm−1

(
M(λ)−1γ(λ)∗γ(λ)

))
= tr

(
dm−1

dλm−1

(
M(λ)−1M ′(λ)

))
,

which finishes the proof.

Remark 3.13. As the reader might note the proof of item (ii) in Theorem 3.12
includes also an alternative of item (i), which is slightly more complicated
in the author’s opinion.

The previous theorem has a direct application in the mathematical scat-
tering theory. We consider the pair {AD, AN} of self-adjoint operators as
a scattering system. The next corollary shows that the wave operators for
the scattering system {AD, AN} exist in any space dimension. The trace
formula is also provided.

Corollary 3.14. Let AD and AN be the self-adjoint operators defined in
(3.1.6). The wave operators W±(AD, AN) for the scattering pair {AD, AN}
exist and are complete, and hence the absolutely continuous parts of AD and
AN are untarily equivalent.

Proof. By Theorem 3.12 for integer m > n−1
2 the m-th powers difference of

the resolvents of AD and AN is in the trace class and the claim follows from
Theorem 2.27.
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Further we provide Sp,∞-estimates for the resolvent power difference of
A[B] and AN. In this case we observe faster convergence of singular values
than in Theorem 3.12. Note that A[B] can also be the usual Robin Laplacian
with a real-valued bounded coefficient in the boundary condition.

Theorem 3.15. Let AN be the self-adjoint operator as in (3.1.6). Let B
be a bounded self-adjoint operator in L2(∂Ω) and let A[B] be the self-adjoint
operator corresponding to B via (3.2.4). Then the following statements hold.

(i) For all λ ∈ ρ(A[B]) ∩ ρ(AN) and all m ∈ N

(3.3.10) (A[B] − λ)−m − (AN − λ)−m ∈ S n−1
2m+1

,∞
(
L2(Ω)

)
.

(ii) If m > n
2 − 1, then the resolvent power difference in (3.3.10) is in the

trace class and, for all λ ∈ ρ(A[B]) ∩ ρ(AN)

tr
(

(A[B] − λ)−m − (AN − λ)−m
)

=
1

(m− 1)!
tr

(
dm−1

dλm−1

((
I −BM(λ)

)−1
BM ′(λ)

))
.

Proof. (i) We prove this item by applying Lemma 2.4. Fix an arbitrary
λ0 ∈ C \ R and let γ, M be as in Proposition 3.2. By Theorem 3.5 the
resolvent difference of A[B] and AN can be written in the form

(A[B] − λ0)−1 − (AN − λ0)−1 = γ(λ0)
(
I −BM(λ0)

)−1
Bγ(λ0)∗,

where (I−BM(λ0))−1B ∈ B
(
L2(∂Ω)

)
. By Proposition 3.10 (a) and (b) the

assumptions in Lemma 2.4 are satisfied with

H = A[B], K = AN, F1 = γ(λ0), F2 =
(
I −BM(λ0)

)−1
Bγ(λ0)∗,

and with

a =
2

n− 1
, b1 = b2 =

3/2

n− 1
, r = +∞.

Since b = b1 + b2 − a = 1
n−1 , Lemma 2.1.14 implies the statement.

(ii) The formula in this item is proved in a more general form in Theo-
rem 3.17 further, where one should set B2 = B and B1 = 0.

Corollary 3.16. Let AN be the self-adjoint operator as in (3.1.6). Let
B be a bounded self-adjoint operator in L2(∂Ω) and let A[B] be the self-
adjoint operator corresponding to B via (3.2.4). Then the wave operators
W±(A[B], AN) for the scattering pair {A[B], AN} exist and are complete, and
hence the absolutely continuous parts of A[B] and AN are unitarily equivalent.

70



In the next theorem we prove Sp,∞-properties of the resolvent power
differences for the self-adjoint operators A[B1] and A[B2]. It turns out that
the singular values in this case also converge faster than in Theorem 3.12
and, under some conditions, faster than in Theorem 3.15. Furthermore, we
provide the corresponding trace formulae, where the trace of the resolvent
power difference of A[B1] and A[B2] is expressed in terms of the Weyl function,
its derivative and the operators B1 and B2, cf. [BMN08, CGNZ12, GZ12] for
one-dimensional Schrödinger operators and other finite-rank situations. We
also mention that the special case of classical Robin boundary conditions,
whereB1 andB2 are multiplication operators with real-valued L∞-functions,
is contained in Theorem 3.17.

Theorem 3.17. Let the self-adjoint operator AN be as in (3.1.6). Let B1

and B2 be bounded self-adjoint operators in L2(∂Ω). Set

t :=

{
n−1
q , if B1 −B2 ∈ Sq,∞, q > 0,

0, otherwise.

Let A[B1] and A[B2] be the self-adjoint operators in L2(Ω) corresponding via
(3.2.4) to B1 and B2, respectively. Then the following statements hold.

(i) For all λ ∈ ρ(A[B1]) ∩ ρ(A[B2]) and all m ∈ N

(3.3.11) (A[B2] − λ)−m − (A[B1] − λ)−m ∈ S n−1
2m+t+1

,∞
(
L2(Ω)

)
.

(ii) If m > n−t
2 − 1, then the resolvent power difference in (3.3.11) is a

trace class operator and, for all λ ∈ ρ(A[B1]) ∩ ρ(A[B2]) ∩ ρ(AN),

tr
(

(A[B2] − λ)−m − (A[B1] − λ)−m
)

=
1

(m− 1)!
tr

(
dm−1

dλm−1

(
U(λ)M ′(λ)

))
,

(3.3.12)

where U(λ) :=
(
I −B2M(λ)

)−1
(B2 −B1)

(
I −M(λ)B1

)−1
.

Proof. (i) Let us fix λ0 ∈ C \ R and let γ and M be as in Proposition 3.2.
By Theorem 3.6 for all λ ∈ ρ(A[B2]) ∩ ρ(A[B1]) ∩ ρ(AN)

(A[B2] − λ0)−1 − (A[B1] − λ0)−1

= γ(λ0)
(
I −B2M(λ0)

)−1
(B2 −B1)

(
I −M(λ0)B1

)−1
γ(λ0)∗,
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where the operators (I − B2M(λ0))−1 and (I −M(λ0)B1)−1 are bounded
and closed in L2(∂Ω). Now Proposition 3.10 (a), (b) and Theorem 3.15
imply that the assumptions in Lemma 2.6 are satisfied with

H = A[B2], K = A[B1], L = AN,

F1 = γ(λ0)
(
I −B2M(λ0)

)−1
, F2 = (B2 −B1)

(
I −M(λ0)B1

)−1
γ(λ0)∗,

and with

a =
2

n− 1
, b1 =

3/2

n− 1
, b2 =

3/2 + t

n− 1
, r = +∞.

Lemma 2.6 yields the statement for all λ ∈ ρ(A[B2]) ∩ ρ(A[B1]) ∩ ρ(AN) and
the points in the discrete set ρ(A[B1])∩ρ(A[B2])∩σ(AN) can be included via
contour integrals.

(ii) In order to shorten notation and to avoid the distinction of several
cases, we set

Ar :=

Sn−1
r
,∞
(
L2(∂Ω)

)
if r > 0,

B
(
L2(∂Ω)

)
if r = 0.

It follows from Lemma 2.3 (i) and the fact that Sp,∞(L2(∂Ω)), p > 0 is an
ideal in B(L2(∂Ω)) that

(3.3.13) Ar1 · Ar2 = Ar1+r2 , r1, r2 ≥ 0.

The assumption on the difference of B1 and B2 yields

(3.3.14) B2 −B1 ∈ At.

The proof of item (ii) is divided into four steps.

Step 1. Let B be a bounded self-adjoint operator in L2(∂Ω) and set

T (λ) :=
(
I −BM(λ)

)−1
, λ ∈ ρ(A[B]) ∩ ρ(AN),

where T (λ) ∈ B(L2(∂Ω)) by Lemma 2.19. We show that

(3.3.15) T (k)(λ) ∈ A2k+1, k ∈ N,

by induction. Relation (2.2.8) implies that

(3.3.16) T ′(λ) = T (λ)BM ′(λ)T (λ),
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which is in A3 by Proposition 3.11 (ii). Let l ∈ N and assume that (3.3.15)
is true for every k = 1, . . . , l, which implies in particular that

(3.3.17) T (k)(λ) ∈ A2k, k = 0, . . . , l.

Then

T (l+1)(λ) =
dl

dλl

(
T (λ)BM ′(λ)T (λ)

)
=

∑
p+q+r=l
p,q,r≥0

l!

p! q! r!
T (p)(λ)BM (q+1)(λ)T (r)(λ)

by (3.3.16) and (2.2.7). Relation (3.3.17), the boundedness of B, Proposi-
tion 3.11 (ii) and (3.3.13) imply that

T (p)(λ)BM (q+1)(λ)T (r)(λ) ∈ A2p · A2(q+1)+1 · A2r = A2(l+1)+1

since p+q+r = l. This shows (3.3.15) for k = l+1 and hence, by induction,
for all k ∈ N. Since T (λ) ∈ B(L2(∂Ω)), we have

(3.3.18) T (k)(λ) ∈ A2k, k ∈ N0, λ ∈ ρ(AN),

and by similar considerations also

(3.3.19)
dk

dλk
(
I −M(λ)B

)−1 ∈ A2k, k ∈ N0, λ ∈ ρ(AN).

Step 2. With B1, B2 as in the statement of the theorem set

T1(λ) :=
(
I −M(λ)B1

)−1
and T2(λ) :=

(
I −B2M(λ)

)−1

for λ ∈ ρ(A[B1])∩ρ(A[B2])∩ρ(AN). We can write U(λ) = T2(λ)(B2−B1)T1(λ)
and hence

U (k)(λ) =
dk

dλk

(
T2(λ)(B2−B1)T1(λ)

)
=
∑
p+q=k
p,q≥0

(
k

p

)
T

(p)
2 (λ)(B2−B1)T

(q)
1 (λ).

By (3.3.18), (3.3.19) and (3.3.14), each term in the sum satisfies

T
(p)
2 (λ)(B2 −B1)T

(q)
1 (λ) ∈ A2p · At · A2q = A2k+t,

and hence

(3.3.20) U (k)(λ) ∈ A2k+t, k ∈ N0, λ ∈ ρ(AN).
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Step 3. By applying Theorem 3.6 to A[B1] and A[B2] we obtain that, for
λ ∈ ρ(A[B1]) ∩ ρ(A[B2]) ∩ ρ(AN),

(A[B2] − λ)−1 − (A[B1] − λ)−1

= γ(λ)
[(
I −B2M(λ)

)−1
(B2 −B1)

(
I −M(λ)B1

)−1
]
γ(λ)∗ = γ(λ)U(λ)γ(λ)∗.

Taking derivatives we get, for m ∈ N,

(A[B2] − λ)−m − (A[B1] − λ)−m

=
1

(m− 1)!
· d

m−1

dλm−1

(
(A[B2] − λ)−1 − (A[B1] − λ)−1

)
=

1

(m− 1)!
· d

m−1

dλm−1

(
γ(λ)U(λ)γ(λ)∗

)
=

1

(m− 1)!

∑
p+q+r=m−1

p,q,r≥0

(m− 1)!

p! q! r!
γ(p)(λ)U (q)(λ)

dr

dλr
γ(λ)∗.(3.3.21)

By Proposition 3.11 (i) and (3.3.20), each term in the sum satisfies
(3.3.22)

γ(p)(λ)U (q)(λ)
dr

dλr
γ(λ)∗ ∈ S n−1

2p+3/2
,∞ ·S n−1

2q+t
,∞ ·S n−1

2r+3/2
,∞ = S n−1

2m+t+1
,∞.

Step 4. If m > n−t
2 − 1, then n−1

2m+t+1 < 1 and, by Lemma 2.3 (iii) and
(3.3.22), all the terms in the sum in (3.3.21) are trace class operators, and
the same is true if we change the order in the product in (3.3.22). Hence we
can apply the trace to the expression in (3.3.21) and use (2.1.10), (2.1.11)
and Lemma 2.12 (iii) to obtain

(m− 1)! tr
(

(A[B2] − λ)−m − (A[B1] − λ)−m
)

= tr

( ∑
p+q+r=m−1

p,q,r≥0

(m− 1)!

p! q! r!
γ(p)(λ)U (q)(λ)

dr

dλr
γ(λ)∗

)

=
∑

p+q+r=m−1
p,q,r≥0

(m− 1)!

p! q! r!
tr
(
γ(p)(λ)U (q)(λ)

dr

dλr
γ(λ)∗

)

=
∑

p+q+r=m−1
p,q,r≥0

(m− 1)!

p! q! r!
tr

(
U (q)(λ)

( dr
dλr

γ(λ)∗
)
γ(p)(λ)

)
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= tr

( ∑
p+q+r=m−1

p,q,r≥0

(m− 1)!

p! q! r!
U (q)(λ)

( dr
dλr

γ(λ)∗
)
γ(p)(λ)

)

= tr

(
dm−1

dλm−1

(
U(λ)γ(λ)∗γ(λ)

))
= tr

(
dm−1

dλm−1

(
U(λ)M ′(λ)

))
,

which shows (3.3.12).

Remark 3.18. As the reader might note the proof of item (ii) of Theorem 3.17
contains also an alternative proof of item (i) of the same theorem.

In the next corollary we provide results for the pair of A[B] and AD.

Corollary 3.19. Let the assumptions be as in Theorem 3.15 and let AD be
the self-adjoint operator as in (3.1.6). Then the following holds.

(i) For all λ ∈ ρ(A[B]) ∩ ρ(AD) and all m ∈ N.

(3.3.23) (AD − λ)−m − (A[B] − λ)−m ∈ Sn−1
2m

,∞
(
L2(Ω)

)
.

(ii) If m > n−1
2 , then the resolvent power difference in (3.3.23) is a trace

class operator, and, for all λ ∈ ρ(A[B]) ∩ ρ(AD) ∩ ρ(AN),
(3.3.24)

tr
(

(A[B]−λ)−m−(AD−λ)−m
)

=
1

(m− 1)!
tr

(
dm−1

dλm−1

(
V (λ)M ′(λ)

))
where V (λ) :=

(
I −M(λ)B

)−1
M(λ)−1.

Proof. (i) By Theorem 3.12 and Theorem 3.15

X1(λ) := (AN − λ)−m − (AD − λ)−m ∈ Sn−1
2m

,∞
(
L2(Ω)

)
X2(λ) := (A[B] − λ)−m − (AN − λ)−m ∈ S n−1

2m+1
,∞
(
L2(Ω)

)
.

(3.3.25)

hold for all λ ∈ ρ(A[B]) ∩ ρ(AD) ∩ ρ(AN). Note that S n−1
2m+1

,∞ ⊂ Sn−1
2m

,∞.

Taking the difference we get the statement for all λ ∈ ρ(A[B])∩ρ(AD)∩ρ(AN)
and the points in the discrete set ρ(A[B]) ∩ ρ(AD) ∩ σ(AN) can be included
via contour integrals.

(ii) If m > n−1
2 , then n−1

2m < 1 and hence, by item (i) and Lemma 2.3 (iii),
the operator in (3.3.23) is a trace class operator. Using Theorem 3.12 (ii)
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and Theorem 3.15 (ii) we obtain

tr
(

(A[B] − λ)−m − (AD − λ)−m
)

= tr
(
X1(λ) +X2(λ)

)
=

1

(m− 1)!
tr

(
dm−1

dλm−1

[(
M(λ)−1 +

(
I −BM(λ)

)−1
B
)
M ′(λ)

])
.

Since

M(λ)−1 +
(
I −BM(λ)

)−1
B

=
(
I −BM(λ)

)−1
[(
I −BM(λ)

)
+BM(λ)

]
M(λ)−1 = V (λ),

this implies (3.3.24).

3.4 Comments

The realizations of elliptic differential expressions with differential operators
of appropriate orders in the boundary conditions have already been studied
up to the end of 50s, see, e.g., Agmon, Douglis and Nirenberg [ADN59] and
as well as the comments in [LM68, Section 2.10]. These boundary conditions
are called local, because it is possible to define their meaning in a neighbor-
hood of a point. Results on elliptic differential operators and solvability of
elliptic boundary value problems with more general non-local boundary con-
ditions go back to the seminal paper by Vishik [V52] and then were followed
by the works of Bade and Freeman [BF62], Freeman [F62] and Beals [Be65].
In particular, in [BF62, F62, Be65] certain subfamilies of closed realizations
were parametrized. This progress was accompanied by the development
of the abstract extension theory due to Calkin [C39], Krein [K47], Vishik
[V52] and Birman [B56] and by the results in the theory of elliptic boundary
value problems published by Lions and Magenes in the works from 1960 to
1963 and collected in [LM68]. Using these two theories Grubb [G68] pa-
rameterized all closed realizations of a given elliptic differential expression
via operators acting on the boundary and solved the converse problem of
finding the boundary operator for a given closed realization.

In the recent past the Weyl function for elliptic differential operators
was introduced, which is a generalization of the Titchmarsh-Weyl coefficient
well-known in Sturm-Liouville theory. This notion and the corresponding
new operator-theoretical methods gave a new impulse for the investigation of
elliptic differential operators with general boundary conditions. Amrein and
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Pearson [AP04] introduced an analogue of the Titchmarsh-Weyl function for
Schrödinger operators on three-dimensional exterior domains. Soon after
that there appeared the works on symmetric elliptic differential expressions
on general smooth domains by Behrndt and Langer [BL07], Post [Po07],
Ryzhov [R07] and Alpay and Behrndt [AB09], where the Weyl function was
defined as the well-known Neumann-to-Dirichlet or Dirichlet-to-Neumann
maps and used together with Krein’s formula for spectral analysis. Using
the approach of [BL07], Behrndt and Rohleder extended in [BR12] some
results of the classical Titchmarsh-Weyl theory to the case of Schrödinger
operators on exterior domains.

Recently also an analogue of the Weyl function was introduced for non-
symmetric differential expressions and a corresponding Krein-type formula
was provided, see Brown, Marletta, Naboko, and Wood [BMNW08], Brown,
Grubb and Wood [BGW09] and Malamud [M10]. Note that Weyl functions
in the non-symmetric case were introduced earlier in the abstract setting by
Malamud and Mogilevskii in [MM02]. Weyl functions and Krein’s formu-
lae in the case of non-smooth domains were given by Gesztesy and Mitrea
[GM08, GM08a, GM11], Grubb [G08], Posilicano and Raimondi [PR09], and
Abels, Grubb, and Wood [AGW10].

Schatten-von Neumann estimates for resolvent power differences of el-
liptic differential operators have a long history in spectral theory. The es-
timates in Theorem 3.12 (i) and Corollary 3.19 (i) in the case that L is a
Schrödinger differential expression −∆ + q with a real-valued, possibly un-
bounded potential q on an exterior domain Ω ⊂ R3 go back to the pioneering
paper by Povzner [P53]. In that paper the operator in the boundary condi-
tion was a multiplication operator with a real-valued bounded function β.
Povzner proved in [P53, Theorem 1.4] that

(A[β] − λ)−1 − (AD − λ)−1 ∈ S2(L2(Ω)).

His proof heavily depends on the space dimension and on the special form
of the differential expression.

Using variational methods, Birman [B62] improved and extended the
result of Povzner to arbitrary space dimensions, general elliptic differential
expressions and also to mixed Robin-Dirichlet boundary conditions. The
estimates in Theorem 3.12 (i) and Corollary 3.19 are encompassed by [B62,
Theorem 2.3] in the case of m = 1. It was shown by Birman and Solomyak in
[BS80, Theorem 3], see also [BS79], that the singular values for the resolvent
difference (m = 1) in Theorem 3.12 (i) have an asymptotic behavior such
that this resolvent difference can not belong to a better class in the scale of
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weak Schatten-von Neumann classes.

In the case that B1 and B2 are multiplication operators or more gen-
eral pseudo-differential operators of certain orders the estimate in Theo-
rem 3.17 (i) follows from the spectral theory of singular Green operators
developed by Grubb in [G84, G12]. Using this theory she obtained in [G84,
Theorem 5.1], see also [G74, G84a], the asymptotic behavior of singular val-
ues for the resolvent power difference in Theorem 3.12 (i). Later in [G11a,
Theorem 3.5] and [G12a] the asymptotic behavior of singular values for the
resolvent power difference in Theorem 3.17 (i) was provided in the case of
multiplication operators B1 and B2 with additional smoothness of the coef-
ficients. Schatten-von Neumann estimates in the case of non-local boundary
conditions are also contained in [M10] by Malamud. In particular, the esti-
mate in Corollary 3.19 (ii) is partially covered by [M10, Proposition 4.9].

Already sixty years ago a reduction formula of the type given in Sub-
section 3.3.2 appeared in the paper [JP51] by Jost and Pais, where the
perturbation determinant for a Schrödinger operator on an interval was re-
duced to the boundary. A multi-dimensional Jost-Pais formula was proved
recently by Gesztesy, Mitrea and Zinchenko in [GMZ07]. The trace for-
mula in Theorem 3.12 (ii) is contained in the paper [Ca02, Théorème 2.2]
by Carron in a slightly different context. The trace formulae in Theo-
rems 3.15, 3.17 and Corollary 3.19 are new to the best of the author’s knowl-
edge. Their analogues for one-dimensional operators were shown recently,
see [CGNZ12, GZ12].

The results on Sp-estimates of resolvent differences contained in the
works of the author [BLL+10, BLL12] were applied by Mugnolo and Nittka
in [MN12, Theorem 4.3] to convergence of semigroups in Sp-norms.
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Chapter 4

Schrödinger operators with
δ and δ′-potentials supported
on hypersurfaces

In this chapter self-adjoint Schrödinger operators with δ and δ′-interactions
supported on compact smooth hypersurfaces are defined explicitly via their
action and domain and also implicitly via sesquilinear forms. We show
that both ways of definition lead to the same self-adjoint operators. It is
worth mentioning that our definitions of surface δ and δ′-interactions are
also compatible with the definitions of point δ and δ′-interactions in the
one-dimensional case [AGHH05, AK00].

In the case of δ-interactions the sesquilinear form approach was already
known [BEKS94] and has been used in many papers, e.g., [EK03, EY02,
EY04, KV07], while the explicit way of definition is new. In the case of
δ′-interactions for general hypersurfaces no rigorous approach has been de-
veloped until now, see [E08, Open Problem 7.2].

The main advantage of the definition via action and domain is that the
regularity of the functions in the operator domain is given explicitly, which is
important in many applications. Whereas in the definition via sesquilinear
forms this regularity is hidden in the form. In particular, we provide a
sufficient condition for H2-regularity of the operator domains.

As the main problem of this chapter we study Schatten-von Neumann
properties of the resolvent power differences of the free Schrödinger opera-
tor and Schrödinger operators with surface interactions. We prove better
convergence of the singular values in some cases. As a direct consequence
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of Schatten-von Neumann estimates for resolvent power differences we get
the existence and completeness of the wave operators for the correspond-
ing scattering pairs. At the end of this chapter we also prove finiteness of
the negative spectra for the Schrödinger operators with surface δ and δ′-
interactions. Most of the results of this chapter are contained in the work
of the author [BLL12a].

4.1 Preliminaries

Let Σ ⊂ Rn, n ≥ 2, be a compact connected C∞-smooth hypersurface,
which separates the Euclidean space Rn into a bounded interior domain
Ωi and an unbounded exterior domain Ωe. In particular, the hypersurface
Σ coincides with the boundaries ∂Ωi and ∂Ωe of the interior and exterior
domains. We often decompose a function f ∈ L2(Rn) = L2(Ωi) ⊕ L2(Ωe)
in the form f = fi ⊕ fe, where fi = f � Ωi and fe = f � Ωe. We agree
to denote by (·, ·), (·, ·)i, (·, ·)e and (·, ·)Σ the inner products in the Hilbert
spaces L2(Rn), L2(Ωi), L

2(Ωe) and L2(Σ), respectively. When it is clear from
the context, we denote the inner products in the Hilbert spaces L2(Rn;Cn),
L2(Ωi;Cn), and L2(Ωe;Cn) of vector-valued functions also by (·, ·), (·, ·)i and
(·, ·)e, respectively.

Throughout this chapter we deal with the Schrödinger differential ex-
pression

(4.1.1) L := −∆ + V,

where V : Rn → R is a bounded potential. By Li and Le we denote the
restrictions of the differential expression L onto Ωi and Ωe, respectively.
With the notation Vi := V � Ωi and Ve :=� Ωe we can clarify that Li acts on
Ωi as −∆ + Vi and that Le acts on Ωe as −∆ + Ve.

It is convenient to deal with the spaces

Hs
∆(Ωi) :=

{
fi ∈ Hs(Ωi) : ∆fi ∈ L2(Ωi)

}
, s ≥ 0,

Hs
∆(Ωe) :=

{
fe ∈ Hs(Ωe) : ∆fe ∈ L2(Ωe)

}
, s ≥ 0.

For s ≥ 0 we use short notations

(4.1.2) Hs(Rn\Σ) := Hs(Ωi)⊕Hs(Ωe), Hs
∆(Rn\Σ) := Hs

∆(Ωi)⊕Hs
∆(Ωe).

For a function f ∈ Hs
∆(Rn \Σ) with s ≥ 0 we denote by fi|Σ and fe|Σ its

traces from both sides of Σ and we denote by ∂νifi|Σ and ∂νefe|Σ its traces
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of normal derivatives from both sides of Σ with normals pointing outwards
Ωi and Ωe, respectively. For s > 3/2 the mapping

(4.1.3) Hs(Rn \ Σ) 3 f 7→
{
fi|Σ, fe|Σ, ∂νifi|Σ, ∂νefe|Σ

}
is well-defined and surjective onto (Hs−1/2(Σ))2 × (Hs−3/2(Σ))2, and for
s ∈ [0, 2) the mapping

(4.1.4) Hs
∆(Rn \ Σ) 3 f 7→

{
fi|Σ, fe|Σ, ∂νifi|Σ, ∂νefe|Σ

}
is also well-defined as the mapping into (Hs−1/2(Σ))2 × (Hs−3/2(Σ)2. Sep-
arately, the mappings

Hs
∆(Rn \ Σ) 3 f 7→ {fi|Σ, fe|Σ},

Hs
∆(Rn \ Σ) 3 f 7→ {∂νifi|Σ, ∂νefe|Σ}

are surjective onto (Hs−1/2(Σ))2 and onto (Hs−3/2(Σ))2, respectively.

We denote by Hs
Σ(Ωi) and Hs

Σ(Ωe) with s ≥ 0 the subspaces of L2(Ωi)
and L2(Ωe), respectively, defined as in (2.3.2) with ∂Ω = Σ, and Ω = Ωi

or Ω = Ωe, respectively. Then we define certain mixed regularity spaces
consisting of L2-functions on Rn, which belong to Hs in a neighborhood of
Σ or both one-sided neighborhoods of Σ, respectively, i.e.,

Hs
Σ(Rn) :=

{
f ∈ L2(Rn) : ∃ domain Ω′ ⊂ Rn such that

Ω′ ⊃ Σ and f � Ω′ ∈ Hs(Ω′)
}
,

Hs
Σ(Rn \ Σ) := Hs

Σ(Ωi)⊕Hs
Σ(Ωe).

(4.1.5)

It is worth mentioning that Hs
Σ(Rn) ( Hs

Σ(Rn \ Σ) for s > 0.

For k ∈ N0 we denote by W k,∞
Σ (Ωi) and W k,∞

Σ (Ωe), respectively, the
subspaces of L∞(Ωi) and L∞(Ωe), defined as in (2.3.3) with ∂Ω = Σ and
Ω = Ωi or Ω = Ωe. We also make use of certain mixed regularity spaces
consisting of L∞-functions on Rn which belong to W k,∞ in a neighborhood
of Σ or both one-sided neighborhoods of Σ. Namely,

W k,∞
Σ (Rn) :=

{
f ∈ L∞(Rn) : ∃ domain Ω′ ⊂ Rn such that

Ω′ ⊃ Σ and f � Ω′ ∈W k,∞(Ω′)
}
,

W k,∞
Σ (Rn \ Σ) := W k,∞

Σ (Ωi)×W k,∞
Σ (Ωe).

(4.1.6)
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It is worth mentioning that W k,∞
Σ (Rn) (W k,∞

Σ (Rn \ Σ) for k ∈ N.

For f, g ∈ H
3/2
∆ (Rn \ Σ) and h ∈ H1(Rn \ Σ) the following first and

second Green’s identities hold:

(4.1.7)
(
Lf, h

)
=
(
∇f,∇h

)
+
(
V f, h

)
−
(
∂νifi|Σ, gi|Σ

)
Σ
−
(
∂νefe|Σ, ge|Σ

)
Σ

and (
Lf, g

)
−
(
f,Lg

)
=
((
fi|Σ, ∂νigi|Σ

)
Σ
−
(
∂νif |Σ, g|Σ

)
Σ

)
+
((
fe|Σ, ∂νege|Σ

)
Σ
−
(
∂νef |Σ, ge|Σ

)
Σ

)
.

(4.1.8)

The minimal operators associated with the differential expressions Li

and Le are defined by

Aifi := Lifi, domAi := H2
0 (Ωi),

Aefe := Lefe, domAe := H2
0 (Ωe).

The operators Ai and Ae are densely defined, closed and symmetric with
infinite deficiency indices, acting in the Hilbert spaces L2(Ωi) and L2(Ωe),
respectively, with the adjoints of the form

A∗i fi := Lifi, domA∗i := H0
∆(Ωi),

A∗efe := Lefe, domA∗e := H0
∆(Ωe).

The direct sum of Ai and Ae

(4.1.9) Ai,e := Ai ⊕Ae, domAi,e := H2
0 (Ωi)⊕H2

0 (Ωe),

is a densely defined, closed, symmetric operator with infinite deficiency in-
dices in the Hilbert space L2(Rn) = L2(Ωi) ⊕ L2(Ωe) and with the adjoint
of the form

A∗i,e = Lf, domA∗i,e = H0
∆(Rn \ Σ).

Furthermore, we introduce the operators

Tifi := Lifi, domTi := H
3/2
∆ (Ωi),

Tefe := Lefe, domTe := H
3/2
∆ (Ωe),

and their direct sum

Ti,e := Ti ⊕ Te, domTi,e = H
3/2
∆ (Rn \ Σ).
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It can be shown that A∗i = T i, A
∗
e = T e, and hence A∗i,e = T i,e.

Next we define usual self-adjoint Dirichlet and Neumann realizations of
the differential expressions Li and Le in L2(Ωi) and L2(Ωe), respectively:

AD,ifi := Lifi, domAD,i :=
{
fi ∈ H2(Ωi) : fi|Σ = 0

}
,

AD,efe := Lefe, domAD,e :=
{
fe ∈ H2(Ωe) : fe|Σ = 0

}
,

AN,ifi := Lifi, domAN,i :=
{
fi ∈ H2(Ωi) : ∂νifi|Σ = 0

}
,

AN,efe := Lefe, domAN,e :=
{
fe ∈ H2(Ωe) : ∂νefe|Σ = 0

}
.

Further, we define direct sums

AD,i,e := AD,i ⊕AD,e,

domAD,i,e :=
{
f ∈ H2(Rn \ Σ) : fi|Σ = fe|Σ = 0

}
,

(4.1.10)

and

AN,i,e := AN,i ⊕AN,e,

domAN,i,e :=
{
f ∈ H2(Rn \ Σ) : ∂νifi|Σ = ∂νefe|Σ = 0

}
,

(4.1.11)

which are self-adjoint operators in L2(Rn). Finally, we denote the usual
self-adjoint (free) realization of L in L2(Rn) by

(4.1.12) Afreef := Lf, domAfree := H2(Rn).

One can associate quasi boundary triples Πi and Πe with the adjoints A∗i
and A∗e as in Proposition 3.1. Denote the corresponding Weyl functions as in
Proposition 3.2 by Mi and Me. These functions are well-defined on ρ(AN,i)
and ρ(AN,e), respectively. For ϕ ∈ L2(Σ) and λ ∈ ρ(AN,j) with j = i, e the
boundary value problem

(Lj − λ)fj = 0, in Ωj,

∂νjfj|Σ = ϕ, on Σ,

is uniquely solvable in H
3/2
∆ (Ωj). Denote its unique solution by fλ,j, then

(4.1.13) Mj(λ)ϕ = fλ,j|Σ, j = i, e.

The operators Mi(λ) and Me(λ) are, in fact, the Neumann-to-Dirichlet maps
associated with the differential expressions Li − λ and Le − λ, respectively.
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4.2 Schrödinger operators with δ-potentials on hy-
persurfaces

In this section we use quasi boundary triples to define and study the Schrödinger
operator Aδ,α formally corresponding to the differential expression

Lδ,α = −∆ + V − α〈δΣ, · 〉 δΣ,

where δΣ is the δ-distribution supported on Σ.

4.2.1 A quasi boundary triple and its Weyl function

It is convenient to define a quasi boundary triple not for A∗i,e itself, but for
the adjoint of a symmetric intermediate extension of Ai,e. The method of
intermediate extensions is inspired by the general considerations for ordinary
boundary triples in [DHMS00, Section 4]. We define the extension

(4.2.1) Ã := Afree ∩AD,i,e = L �
{
f ∈ H2(Rn) : fi|Σ = fe|Σ = 0

}
of the orthogonal sum Ai,e in (4.1.9) as the underlying symmetric operator
for the quasi boundary triple. Furthermore, we define the operator

(4.2.2) T̃ := Ti,e �
{
fi ⊕ fe ∈ H3/2

∆ (Rn \ Σ): fi|Σ = fe|Σ
}
,

and we specify the following two boundary mappings from dom T̃ into L2(Σ)

Γ̃0 : dom T̃ → L2(Σ), Γ̃0f := ∂νifi|Σ + ∂νefe|Σ,

Γ̃1 : dom T̃ → L2(Σ), Γ̃1f := fi|Σ = fe|Σ.
(4.2.3)

Note that the mappings Γ̃0, Γ̃1 are well defined because of the properties of
the trace mappings (4.1.4).

In the first proposition of this section we prove that {L2(Σ), Γ̃0, Γ̃1} is a
quasi boundary triple for Ã∗ and we show basic properties of this triple.

Proposition 4.1. Let the operators AD,i,e and Afree be as in (4.1.10) and

(4.1.12), respectively. Let the operators Ã and T̃ and the mappings Γ̃0,Γ̃1

be, respectively, as in (4.2.1), (4.2.2) and (4.2.3). Then the triple Π̃ =
{L2(Σ), Γ̃0, Γ̃1} is a quasi boundary triple for Ã∗. The restrictions of T̃ to
the kernels of the boundary mappings are

T̃ � ker Γ̃0 = Afree and T̃ � ker Γ̃1 = AD,i,e;
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and the ranges of these mappings are

ran Γ̃0 = L2(Σ) and ran Γ̃1 = H1(Σ).

Proof. We show that the triple Π̃ satisfies the conditions (a), (b) and (c) in
Proposition 2.9. For the condition (a), let ϕ ∈ H1/2(Σ) and ψ ∈ H3/2(Σ)
be arbitrary. By (3.1.2) there exist fi ∈ H2(Ωi) and fe ∈ H2(Ωe) such that

∂νifi|Σ = ϕ, fi|Σ = ψ, ∂νefe|Σ = 0, fe|Σ = ψ.

Since H2(Rn\Σ) ⊂ H3/2
∆ (Rn\Σ), we have f := fi⊕fe ∈ dom T̃ and Γ̃0f = ϕ,

Γ̃1f = ψ. Hence, we get

H1/2(Σ)×H3/2(Σ) ⊂ ran

(
Γ̃0

Γ̃1

)
.

The set H1/2(Σ) × H3/2(Σ) is, clearly, dense in L2(Σ) × L2(Σ); note that
also the set ker Γ̃0 ∩ ker Γ̃1 is dense in L2(Rn), which implies together that
(a) of Proposition 2.9 is satisfied. Next let f = fi⊕fe and g = gi⊕ge be two
arbitrary functions in dom T̃ . Since the functions f and g in dom T̃ satisfy
the boundary conditions fi|Σ = fe|Σ = f |Σ and gi|Σ = ge|Σ = g|Σ, we have
by Green’s identity (4.1.8)
(4.2.4)(
T̃ f, g

)
−
(
f, T̃ g

)
=
(
f |Σ, ∂νigi|Σ + ∂νege|Σ

)
Σ
−
(
∂νifi|Σ + ∂νefe|Σ, g|Σ

)
Σ
,

which shows that condition (b) of Proposition 2.9 is fulfilled. Since T̃ � ker Γ̃0

contains the self-adjoint operator Afree, also the condition (c) is satisfied.
Hence we can apply Proposition 2.9, which implies that T̃ � (ker Γ̃0∩ker Γ̃1)
is a densely defined closed symmetric operator and that the triple Π̃ =
{L2(Σ), Γ̃0, Γ̃1} is a quasi boundary triple for its adjoint. Note that the
operators and that T̃ � ker Γ̃0 and T̃ � ker Γ̃1 are symmetric by (4.2.4), and
they contain self-adjoint operators Afree and AD,i,e, respectively. Therefore

T̃ � ker Γ̃0 = Afree and T̃ � ker Γ̃1 = AD,i,e. Hence we get

T̃ � (ker Γ̃0 ∩ ker Γ̃1) =
(
T̃ � ker Γ̃0

)
∩
(
T̃ � ker Γ̃1

)
= Afree ∩AD,i,e = Ã.

Since, for j = i and j = e, the mapping fj 7→ fj|Σ is surjective from

H
3/2
∆ (Ωj) onto H1(Σ) and the mapping fj 7→ ∂νjfj|Σ is surjective from

H
3/2
∆ (Ωj) onto L2(Σ), it follows easily that ran Γ̃1 = H1(Σ) and ran Γ̃0 ⊂

L2(Σ). In order to see that Γ̃0 maps surjectively onto L2(Σ), let us fix an

85



arbitrary χ ∈ C∞0 (Rn) such that χ ≡ 1 on an open neighbourhood of Ωi. Let
SL be the single-layer potential associated with the hypersurface Σ and the
differential expression −∆+1; see, e.g. [McL00, Chapter 6] for the definition
and properties of single-layer potentials. By [McL00, Theorem 6.11, Theo-
rem 6.12 (i)], for an arbitrary ϕ ∈ L2(Σ), the function f := χSLϕ belongs
to dom T̃ and satisfies the condition

∂νefe|Σ + ∂νifi|Σ = ϕ,

hence Γ̃0f = ϕ, and thus ran Γ̃0 = L2(Σ).

In the next proposition we clarify the basic properties of the γ-field
and the Weyl function associated with the quasi boundary triple Π̃ from
Proposition 4.1. In the terminology of [McL00] the γ-field turns out to
be the single layer potential associated with the hypersurface Σ and the
differential expression L − λ, see also Remark 4.3 after the proposition.

Proposition 4.2. Let the self-adjoint operators AD,i,e and Afree be as in

(4.1.10) and (4.1.12), respectively. Let Π̃ be the quasi boundary triple from

Proposition 4.1. Let γ̃ and M̃ be the γ-field and the Weyl function associated
with the quasi boundary triple Π̃ as in Definition 2.10. Let Mi and Me be
the Weyl functions defined in (4.1.13). Then the following statements hold.

(i) The γ-field γ̃ is defined for all λ ∈ ρ(Afree) and

γ̃(λ) : L2(Σ)→ L2(Rn), γ̃(λ)ϕ = fλ(ϕ),

where fλ(ϕ) is the unique solution in H
3/2
∆ (Rn \ Σ) of the problem

−∆f + V f − λf = 0, in Rn \ Σ,

fi|Σ = fe|Σ = 0, on Σ,

∂νifi|Σ + ∂νefe|Σ = ϕ, on Σ.

(ii) The Weyl function M̃ is defined for all λ ∈ ρ(Afree) and

M̃(λ) : L2(Σ)→ L2(Σ), M̃(λ)ϕ = fλ(ϕ)|Σ,

where fλ(ϕ) = γ̃(λ)ϕ. For all λ ∈ ρ(Afree) (λ ∈ ρ(Afree) ∩ ρ(AD,i,e) )

the operator M̃(λ) maps L2(Σ) into (onto) H1(Σ). The operator M̃(λ)
is compact for all λ ∈ ρ(Afree). Moreover, the identity

(4.2.5) M̃(λ) =
(
Mi(λ)−1 +Me(λ)−1

)−1

holds for all λ ∈ ρ(Afree) ∩ ρ(AD,i,e) ∩ ρ(AN,i,e).

86



Proof. (i) The mapping properties of the γ-field γ̃ follow from (4.2.2), (4.2.3)
and Definition 2.10.

(ii) The mapping properties of the Weyl function M̃ follow from (4.2.3),
Definition 2.10, Proposition 2.11 (iii) and Proposition 4.1. The compactness

of the operator M̃(λ) follows from the compactness of the embedding of
H1(Σ) into L2(Σ), cf. Lemma 2.22.

In order to prove the identity (4.2.5), let λ ∈ ρ(Afree)∩ρ(AD,i,e)∩ρ(AN,i,e).

For such λ the operator M̃(λ) is invertible, and the same holds true for Mi(λ)

and Me(λ); cf. Proposition 3.2 and Theorem 2.13 (i). If M̃(λ)ϕ = ψ for some
ϕ ∈ L2(Σ) and ψ ∈ H1(Σ), then there exists an f = fi ⊕ fe ∈ ker(T̃ − λ)
such that

Γ̃0f = ϕ and Γ̃1f = ψ.

As fi ∈ ker(Ti − λ) and fe ∈ ker(Te − λ), we have

∂νifi|Σ = Mi(λ)−1(fi|Σ) = Mi(λ)−1ψ,

∂νefe|Σ = Me(λ)−1(fe|Σ) = Me(λ)−1ψ,

and hence

M̃(λ)−1ψ = ϕ = ∂νifi|Σ + ∂νefe|Σ = Mi(λ)−1ψ +Me(λ)−1ψ.

Since this is true for arbitrary ψ ∈ H1(Σ), relation (4.2.5) follows.

We remark that the quasi boundary triple from Proposition 4.1 and the
Weyl function above appear also implicitly in [AP04] and [R09, Section 4]
in a different context.

Remark 4.3. Assume for simplicity that the potential V in the differential
expression L in (4.1.1) is identically equal to zero. In this case the γ-field γ̃

and the Weyl function M̃ are, roughly speaking, extensions of the acoustic
single-layer potential for the Helmholtz equation. In fact, if Gλ, λ ∈ C \ R,
is the integral kernel of the resolvent of Afree, then for all ϕ ∈ C∞(Σ) we
have (

γ̃(λ)ϕ
)
(x) =

∫
Σ

Gλ(x, y)ϕ(y)dσy, x ∈ Rn \ Σ,

and (
M̃(λ)ϕ

)
(x) =

∫
Σ

Gλ(x, y)ϕ(y)dσy, x ∈ Σ,

where σy is the natural Lebesgue measure on Σ. For more details we refer
the reader to [McL00, Chapter 6]; see also [CK83, Co88].
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4.2.2 Self-adjointness and Krein’s formulae

In the first theorem of this subsection we establish a correspondence between
the point spectra of the self-adjoint operator AD,i,e and of the operator-

valued function M̃(·). Moreover, we provide a factorization (Krein’s for-
mula) for the resolvent difference of Afree and AD,i,e.

Theorem 4.4. Let the self-adjoint operators AD,i,e and Afree be as in (4.1.10)

and (4.1.12). Let γ̃ and M̃ be the γ-field and the Weyl function from Propo-
sition 4.2. Then the following statements hold.

(i) For all λ ∈ R ∩ ρ(Afree)

λ ∈ σp(AD,i,e) ⇐⇒ 0 ∈ σp(M̃(λ))

and the multiplicities of these eigenvalues coincide.

(ii) The formula

(Afree − λ)−1 − (AD,i,e − λ)−1 = γ̃(λ)M̃(λ)−1γ̃(λ)∗

holds for all λ ∈ ρ(AD,i,e) ∩ ρ(Afree).

Proof. The equivalence between the point spectra in item (i) and Krein’s
formula in item (ii) follow from the corresponding items of Theorem 2.13
with self-adjoint A0 = Afree and A1 = AD,i,e.

We introduce a family of restrictions on the operator T̃ parameterized
by a bounded real-valued function on Σ.

Definition 4.5. For a real-valued function α ∈ L∞(Σ) the Schrödinger
operator with δ-potential on the hypersurface Σ and strength α is defined
as follows:

Aδ,α := T̃ � ker(αΓ̃1 − Γ̃0),

which is equivalent to

Aδ,αf = −∆f + V f,

domAδ,α =

{
f ∈ H3/2

∆ (Rn \ Σ):
fi|Σ = fe|Σ = f |Σ

∂νefe|Σ + ∂νifi|Σ = αf |Σ

}
.

(4.2.6)
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The definition of Aδ,α is compatible with the definition of a point δ-
interaction in the one-dimensional case [AGHH05, Section I.3], [AK00] and
the definitions of the operators with δ-potentials on hypersurfaces given
in [AGS87, Sh88] and in [BEKS94]; see also Proposition 4.30. Note also
that the domain of Aδ,α is contained in H1(Rn); cf. Proposition 4.30.

Afree

⊂

Ai,e ⊂ Ã ⊂
⊂

⊂

Aδ,α ⊂ T̃ ⊂ Ti,e

AD,i,e

⊂

T̃ = Ã∗

T i,e = A∗i,e

Figure 4.1: This figure shows how the operator Aδ,α is related to the other
operators introduced in this section. The operators Afree, Aδ,α and AD,i,e

are self-adjoint in L2(Rn); cf. Theorem 4.6.

The next theorem contains the proof of self-adjointness of Aδ,α and pro-
vides a factorization (Krein’s formula) for the resolvent difference of Aδ,α
and Afree, cf. [BEKS94, Lemma 2.3 (iii)]. Item (ii) in Theorem 4.6 can be
viewed as a variant of the Birman–Schwinger principle; it coincides with the
one in [BEKS94].

Theorem 4.6. Let Aδ,α be as above and let Afree be the self-adjoint operator

defined in (4.1.12). Let γ̃ and M̃ be the γ-field and the Weyl function from
Proposition 4.2. Then the following statements hold.

(i) The operator Aδ,α is self-adjoint in the Hilbert space L2(Rn).

(ii) For all λ ∈ R ∩ ρ(Afree)

λ ∈ σp(Aδ,α) ⇐⇒ 0 ∈ σp

(
I − αM̃(λ)

)
and the multiplicities of these eigenvalues coincide.

(iii) The formula

(Aδ,α − λ)−1 − (Afree − λ)−1 = γ̃(λ)
(
I − αM̃(λ)

)−1
α γ̃(λ)∗.
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holds for all λ ∈ ρ(Aδ,α) ∩ ρ(Afree). In this formula the middle term

on the right-hand side satisfies (I − αM̃(λ))−1 ∈ B(L2(Σ)).

Proof. (i) By Proposition 4.1 the range of the boundary mapping Γ̃0 co-
incides with L2(Σ). According to Proposition 4.2 the values of the Weyl

function M̃ are compact operators. By the assumptions on the function α
the operator of multiplication with α is bounded and self-adjoint in L2(Σ)
and the statement follows from Theorem 2.20.

(ii) The spectral equivalence follows from Proposition 2.14.

(iii) Krein’s formula follows from self-adjointness of Aδ,α and Corol-
lary 2.16 with A0 = AN and A[B] = Aδ,α. The property of the middle
term follows from Lemma 2.19.

Recall that the spaces H
3/2
∆ (Rn \ Σ) and H2(Rn \ Σ) are defined as in

Section 4.1 and the space W 1,∞(Σ) is defined as in Section 2.3. It follows

from Definition 4.5 that domAδ,α ⊂ H
3/2
∆ (Rn\Σ). As in the previous chapter

additional smoothness of the coefficient in the boundary condition leads to
domAδ,α ⊂ H2(Rn \ Σ). In the next theorem we clarify this property.

Theorem 4.7. Assume that a real-valued function α satisfies α ∈W 1,∞(Σ).
Let the self-adjoint operator Aδ,α be as in Definition 4.5. Then the inclusion
domAδ,α ⊂ H2(Rn \ Σ) holds.

Proof. For any function f ∈ domAδ,α we have f ∈ dom T̃ ⊂ H
3/2
∆ (Rn \ Σ).

Then by Proposition 4.1 (i)

Γ̃1f ∈ H1(Σ).

The definition of the operator Aδ,α, the assumptions on the smoothness of
α and the property (2.3.1) imply that

(4.2.7) Γ̃0f = αΓ̃1f ∈ H1(Σ).

Let us fix λ ∈ C \ R. By the decomposition

(4.2.8) dom T̃ = domAfree u ker(T̃ − λ)

the function f ∈ domAδ,α can be represented as f = ffree + fλ with ffree ∈
domAfree and fλ ∈ ker(T̃ −λ). It is clear that ffree ∈ H2(Rn) ⊂ H2(Rn \Σ).
The relation (4.2.7) and Afree = T̃ � ker Γ̃0 yield

(4.2.9) Γ̃0fλ = Γ̃0f ∈ H1(Σ) ⊂ H1/2(Σ).
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The properties of the trace map in (4.1.3) show that Γ̃0 maps dom T̃ ∩
H2(Rn \ Σ) onto H1/2(Σ), and hence (4.2.8) implies that Γ̃0 maps

ker(T̃ − λ) ∩H2(Rn \ Σ)

bijectively onto H1/2(Σ). The last observation and (4.2.9) show that fλ ∈
H2(Rn \ Σ), and therefore f = ffree + fλ ∈ H2(Rn \ Σ).

4.3 Schrödinger operators with δ′-potentials on hy-
persurfaces

In this section we use quasi boundary triples to define and study the Schrödinger
operator Aδ′,β formally corresponding to the differential expression

Lδ′,β = −∆ + V − β〈δ′Σ, · 〉 δ′Σ,

where δ′Σ is the normal derivative of the δ-distribution supported on Σ.

4.3.1 A quasi boundary triple and its Weyl function

Again it is convenient to define a quasi boundary triple not for A∗i,e itself,
but for the adjoint of a symmetric intermediate extension of Ai,e. We define
an extension

(4.3.1) Â := Afree ∩AN,i,e = L �
{
f ∈ H2(Rn) : ∂νifi|Σ = ∂νefe|Σ = 0

}
of the orthogonal sum Ai,e in (4.1.9) as the underlying symmetric operator
for the quasi boundary triple. Furthermore, we define the operator

(4.3.2) T̂ := Ti,e �
{
fi ⊕ fe ∈ H3/2

∆ (Rn \ Σ): ∂νefe|Σ + ∂νifi|Σ = 0
}
,

and specify the following two boundary mappings from dom T̂ into L2(Σ)

Γ̂0 : dom T̂ → L2(Σ), Γ̂0f := ∂νefe|Σ

Γ̂1 : dom T̂ → L2(Σ), Γ̂1f := fe|Σ − fi|Σ.
(4.3.3)

Note that the mappings Γ̂0, Γ̂1 are well defined because of the properties of
the trace mappings (4.1.4).

In the first proposition of this section we prove that {L2(Σ), Γ̂0, Γ̂1} is a
quasi boundary triple for Â∗ and we show basic properties of this triple.
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Proposition 4.8. Let the operators AN,i,e and Afree be as in (4.1.11) and

(4.1.12), respectively. Let the operators Â and T̂ and the mappings Γ̂0,Γ̂1

be as in (4.3.1), (4.3.2) and (4.2.3), respectively. Then the triple Π̂ =
{L2(Σ), Γ̂0, Γ̂1} is a quasi boundary triple for Â∗. The restrictions of T̂
to the kernels of the boundary mappings are

T̂ � ker Γ̂0 = AN,i,e and T̂ � ker Γ̂1 = Afree;

and the ranges of these mappings are

ran Γ̂0 = L2(Σ) and ran Γ̂1 = H1(Σ).

Proof. One can see that Π̂ is a quasi boundary triple for Â∗ in a similar
way as in the proof of Proposition 4.1. The abstract Green’s identity is a
consequence of (4.1.8). Basically, the same argumentation as before yields
that T̂ � ker Γ̂0 = AN,i,e, T̂ � ker Γ̂1 = Afree and that ran Γ̂0 = L2(Σ),

ran Γ̂1 ⊂ H1(Σ). Further we show surjectivity of Γ̂1 onto H1(Σ). Fix a
function χ ∈ C∞0 (Rn) as in the proof of Proposition 4.1, i.e. such that χ ≡ 1
on an open neighbourhood of Ωi. Let DL be the double-layer potential
associated with the hypersurface Σ and the differential expression −∆ + 1;
see, e.g. [McL00, Section 6] for the discussion of double-layer potentials. By
[McL00, Theorem 6.11, Theorem 6.12 (ii)] for an arbitrary ϕ ∈ H1(Σ) the
function f := χDLϕ belongs to dom T̂ and satisfies the condition

fe|Σ − fi|Σ = ϕ,

hence Γ̂1f = ϕ, and thus ran Γ̂1 = H1(Σ).

In the next proposition we clarify the basic properties of the γ-field
and the Weyl function associated with the quasi boundary triple Π̂ from
Proposition 4.8.

Proposition 4.9. Let the self-adjoint operators AN,i,e and Afree be as in

(4.1.11) and (4.1.12), respectively. Let Π̂ be the quasi boundary triple from

Proposition 4.8. Let γ̂ and M̂ be the γ-field and the Weyl function associated
with the quasi boundary triple Π̂ as in Definition 2.10. Let Mi and Me be
the Weyl functions defined in (4.1.13). Then the following statements hold.

(i) The γ-field γ̂ is defined for all λ ∈ ρ(AN,i,e) and

γ̂(λ) : L2(Σ)→ L2(Rn), γ̂(λ)ϕ = fλ(ϕ),
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where fλ(ϕ) is the unique solution in H
3/2
∆ (Rn \ Σ) of the problem

−∆f + V f − λf = 0, in Rn \ Σ,

∂νefe|Σ = −∂νifi|Σ = ϕ, on Σ.

(ii) The Weyl function M̂ is defined for all λ ∈ ρ(AN,i,e) and

M̂(λ) : L2(Σ)→ L2(Σ), M̂(λ)ϕ = fλ,e(ϕ)|Σ − fλ,i(ϕ)|Σ,

where fλ(ϕ) = γ̂(λ)ϕ. For all λ ∈ ρ(AN,i,e) (λ ∈ ρ(AN,i,e) ∩ ρ(Afree) )

the operator M̂(λ) maps L2(Σ) into (onto) H1(Σ). The operator M̂(λ)
is compact for all λ ∈ ρ(AN,i,e). Moreover, the identity

(4.3.4) M̂(λ) = Mi(λ) +Me(λ)

holds for all λ ∈ ρ(AN,i,e).

Proof. (i) The mapping properties of the γ-field γ̂ follow from (4.3.3), (4.3.2)
and Definition 2.10.

(ii) The mapping properties of the Weyl function M̂ follow from (4.3.3),
Definition 2.10, Proposition 2.11 (iii) and Proposition 4.8. The compactness

of the operator M̂(λ) follows from the compactness of the embedding of
H1(Σ) into L2(Σ), cf. Lemma 2.22.

Let us verify the identity (4.3.4). For this let λ ∈ ρ(AN,i,e), so that

the operators Mi(λ), Me(λ) and M̂(λ) all exist. If M̂(λ)ϕ = ψ for some
ϕ ∈ L2(Σ) and ψ ∈ H1(Σ), then there exists f = fi ⊕ fe ∈ ker(T̂ − λ) such
that

Γ̂0f = ϕ and Γ̂1f = ψ.

As fi ∈ ker(Ti − λ) and fe ∈ ker(Te − λ), we have

fi|Σ = Mi(λ)(∂νifi|Σ) = −Mi(λ)ϕ,

fe|Σ = Me(λ)(∂νefe|Σ) = Me(λ)ϕ,

and hence

M̂(λ)ϕ = fe|Σ − fi|Σ = Me(λ)ϕ+Mi(λ)ϕ.

Since this is true for arbitrary ϕ ∈ L2(Σ), relation (4.3.4) follows.
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Remark 4.10. Assume for simplicity that the potential V in the differential
expression L in (4.1.1) is identically equal to zero. Note that the problem
in Proposition 4.9 (i) is decoupled into an interior and an exterior problem.
Let, as in Remark 4.3, Gλ be the integral kernel of the resolvent of Afree.
Then for all ψ ∈ C∞(Σ)(

γ̂(λ)ψ
)
(x) =

∫
Σ

[
∂νi(y)Gλ(x, y)

]
(M̂(λ)ψ)(y)dσy, x ∈ Rn \ Σ,

and (
M̂(λ)−1ψ

)
(x) = −∂νi(x)

∫
Σ

[
∂νi(y)Gλ(x, y)

]
ψ(y)dσy, x ∈ Σ,

where ∂νi(x) and ∂νi(y) are the normal derivatives with respect to the first and
second arguments with normals pointing outwards of Ωi, and σy is the nat-
ural Lebesgue measure on Σ. Note that the operator γ̂(λ) is, roughly speak-
ing, an extension of the acoustic double-layer potential for the Helmholtz
equation multiplied with M̂(λ) and M̂(λ)−1 is a hypersingular operator, see,

e.g. [McL00, Chapter 6] and [CK83, Co88]. The representation of M̂(λ)−1,
given above, appears also in [R09] in a slightly different context.

4.3.2 Self-adjointness and Krein’s formulae

In the first theorem of this subsection we establish a correspondence between
the point spectra of the self-adjoint operator Afree and of the operator-valued
function M̂(·). Moreover, we provide a factorization (Krein’s formula) for
the resolvent difference of Afree and AN,i,e.

Theorem 4.11. Let the self-adjoint operators AN,i,e and Afree be as in

(4.1.11) and (4.1.12), respectively. Let γ̂ and M̂ be the γ-field and the Weyl
function from Proposition 4.9. Then the following statements hold.

(i) For all λ ∈ R ∩ ρ(AN,i,e)

λ ∈ σp(Afree) ⇐⇒ 0 ∈ σp(M̂(λ))

and the multiplicities of these eigenvalues coincide.

(ii) The formula

(AN,i,e − λ)−1 − (Afree − λ)−1 = γ̂(λ)M̂(λ)−1γ̂(λ)∗

holds for all λ ∈ ρ(AN,i,e) ∩ ρ(Afree).
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Proof. The equivalence between the point spectra in item (i) and Krein’s
formula in item (ii) follow from the corresponding items of Theorem 2.13
with self-adjoint A0 = AN,i,e ans A1 = Afree.

We introduce a family of restrictions on the operator T̂ parameterized
by a boundedly invertible real-valued function on Σ.

Definition 4.12. For a real-valued function β such that 1/β ∈ L∞(Σ) the
Schrödinger operator with δ′-potential on the hypersurface Σ and strength
β is defined as follows:

Aδ′,β := T̂ � ker(Γ̂1 − βΓ̂0),

which is equivalent to

Aδ′,βf = −∆f + V f,

domAδ′,β =

{
f ∈ H3/2

∆ (Rn \ Σ):
∂νifi|Σ = −∂νefe|Σ

fe|Σ − fi|Σ = β∂νefe|Σ

}
.

(4.3.5)

The definition of Aδ′,β is compatible with the definition of a point δ′-
interaction in the one-dimensional case [AGHH05, Section I.4], [AK00] and
the definition of the operator with δ′-potentials on spheres given in [AGS87,
Sh88]. Note that, in contrast to the domain of Aδ,α, the domain of Aδ′,β is
not contained in H1(Rn).

AN,i,e

⊂

Ai,e ⊂ Â ⊂

⊂

⊂

Aδ′,β ⊂ T̂ ⊂ Ti,e

Afree

⊂

T̂ = Â∗

T i,e = A∗i,e

Figure 4.2: This figure shows how the operator Aδ′,β is related to the other
operators introduced in this chapter. The operators AN,i,e, Aδ′,β and Afree

are self-adjoint in L2(Rn), cf. Theorem 4.13.

The next theorem is the counterpart of Theorem 4.6 and can be proved
in the same way. Theorem 4.13 shows self-adjointness of Aδ′,β, provides
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a factorization for the resolvent difference of Aδ′,β and AN,i,e via Krein’s
formula and a variant of the Birman–Schwinger principle.

Theorem 4.13. Let Aδ′,β be as above and let AN,i,e be the self-adjoint oper-

ator defined in (4.1.11). Let γ̂ and M̂ be the γ-field and the Weyl function
from Proposition 4.9. Then the following statements hold.

(i) The operator Aδ′,β is self-adjoint in the Hilbert space L2(Rn).

(ii) For all λ ∈ R ∩ ρ(AN,i,e)

λ ∈ σp(Aδ′,β) ⇐⇒ 0 ∈ σp

(
I − β−1M̂(λ)

)
and the multiplicities of these eigenvalues coincide.

(iii) The factorization (Krein’s formula)

(Aδ′,β − λ)−1 − (AN,i,e − λ)−1 = γ̂(λ)
(
I − β−1M̂(λ)

)−1
β−1 γ̂(λ)∗

holds for all λ ∈ ρ(Aδ′,β) ∩ ρ(AN,i,e). In this formula the middle term

on the right-hand side satisfies (I − β−1M̂(λ))−1 ∈ B(L2(Σ)).

Recall that the spaces H
3/2
∆ (Rn\Σ) and H2(Rn\Σ) are defined as in Sec-

tion 4.1 and the space W 1,∞(Σ) is defined as in Section 2.3. It follows from

Definition 4.12 that domAδ′,β ⊂ H
3/2
∆ (Rn \ Σ). As in the previous chapter

additional smoothness of the coefficient in the boundary condition leads to
domAδ′,β ⊂ H2(Rn \ Σ). In the next theorem we clarify this property.

Theorem 4.14. Assume that a real-valued function β is such that 1/β ∈
W 1,∞(Σ). Let the self-adjoint operator Aδ′,β be as in Definition 4.12. Then
the inclusion domAδ′,β ⊂ H2(Rn \ Σ) holds.

Proof. The proof is analogous to the proof of Theorem 4.7 with Aδ,α, Afree,

T̃ , Γ̃0, Γ̃1 and α replaced by Aδ′,β, AN,i,e, T̂ , Γ̂0, Γ̂1 and 1/β, respectively.
Instead of the decomposition (4.2.8) one can use the decomposition

dom T̂ = domAN,i,e u ker(T̂ − λ), λ ∈ C \ R.
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4.4 Operator ideal properties of resolvent power
differences and trace formulae

In this section we obtain Sp,∞-estimates for the resolvent power differences
of the self-adjoint Schrödinger operators with distinct couplings on the hy-
persurface Σ. As a consequence of these estimates we get sufficient condi-
tions for the existence and completeness of the wave operators for the scat-
tering pairs formed by the free Schrödinger operator Afree and one of the
Schrödinger operators Aδ,α, Aδ′,β, AN,i,e and AD,i,e with certain couplings.
In the case of trace class resolvent power difference we provide formulae,
where the trace of the resolvent power difference, acting in Rn, is reduced
to the trace of a certain operator acting on Σ.

4.4.1 Elliptic regularity and some preliminary Sp,∞-estimates

In this subsection we first provide a typical regularity result for the functions
(Afree − λ)−1f and (AN,i,e − λ)−1f if f and V satisfy some additional local
smoothness assumptions. This fact is then used to obtain estimates for the
singular values of certain compact operators arising in the representations of
the resolvent power differences of the self-adjoint operators Aδ,α, Aδ′,β, Afree,
AN,i,e and AD,i,e. In the next lemma we make use of the local Sobolev spaces

W k,∞
Σ (Rn), W k,∞

Σ (Rn \ Σ) and Hk
Σ(Rn), Hk

Σ(Rn \ Σ) defined in Section 4.1.

Lemma 4.15. Let AN,i,e and Afree be the self-adjoint operators from and
(4.1.11) and (4.1.12), respectively, and let m ∈ N0. Then the following
assertions hold.

(i) If V ∈Wm,∞
Σ (Rn), then for all λ ∈ ρ(Afree) and k = 0, 1, . . . ,m,

f ∈ Hk
Σ(Rn) =⇒ (Afree − λ)−1f ∈ Hk+2

Σ (Rn).

(ii) If V ∈Wm,∞
Σ (Rn \ Σ), then for all λ ∈ ρ(AN,i,e) and k = 0, 1, . . . ,m,

f ∈ Hk
Σ(Rn \ Σ) =⇒ (AN,i,e − λ)−1f ∈ Hk+2

Σ (Rn \ Σ).

Proof. We verify only assertion (i); the proof of (ii) is similar. We proceed
by induction with respect to k. For k = 0 the statement is an immediate
consequence of H0

Σ(Rn) = L2(Rn) and domAfree = H2(Rn). Suppose now
that the implication in (i) is true for some fixed k < m and let f ∈ Hk+1

Σ (Rn).
Then, in particular, f ∈ Hk

Σ(Rn) and hence

u := (Afree − λ)−1f ∈ Hk+2
Σ (Rn) ⊂ Hk+1

Σ (Rn)
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by assumption. As k + 1 ≤ m and V ∈ Wm,∞
Σ (Rn), it follows from (2.3.4)

that V u ∈ Hk+1
Σ (Rn). Therefore f−V u ∈ Hk+1

Σ (Rn), and since the function
u satisfies the partial differential equation

−∆u− λu = f − V u, in Rn,

standard results on elliptic regularity yield that u ∈ Hk+3
Σ (Rn); see, e.g.

[McL00, Theorem 4.18].

An application of the previous lemma gives the following proposition, in
which we provide certain preliminary Sp,∞-estimates that are useful in the
proofs of our main results in the next subsection.

Proposition 4.16. Let AN,i,e and Afree be the self-adjoint operators from
(4.1.11) and (4.1.12), respectively, and let γ̃ and γ̂ be the γ-fields from Propo-
sitions 4.2 and 4.9, respectively. Then for a fixed m ∈ N0 the following
statements hold.

(i) If V ∈W 2m,∞
Σ (Rn), then, for all λ, µ ∈ ρ(Afree) and k = 0, 1, . . . ,m,

(a) γ̃(µ)∗(Afree − λ)−k ∈ S n−1
2k+3/2

,∞
(
L2(Rn), L2(Σ)

)
,

(b) γ̃(µ)∗(Afree − λ)−k ∈ S n−1
2k+1/2

,∞
(
L2(Rn), H1(Σ)

)
,

(c) (Afree − λ)−kγ̃(µ) ∈ S n−1
2k+3/2

,∞
(
L2(Σ), L2(Rn)

)
.

(ii) If V ∈W 2m,∞
Σ (Rn\Σ), then, for all λ, µ ∈ ρ(AN,i,e) and k = 0, 1, . . . ,m,

(a) γ̂(µ)∗(AN,i,e − λ)−k ∈ S n−1
2k+3/2

,∞
(
L2(Rn), L2(Σ)

)
,

(b) γ̂(µ)∗(AN,i,e − λ)−k ∈ S n−1
2k+1/2

,∞
(
L2(Rn), H1(Σ)

)
,

(c) (AN,i,e − λ)−kγ̂(µ) ∈ S n−1
2k+3/2

,∞
(
L2(Σ), L2(Rn)

)
.

Proof. We prove assertion (i); the proof of (ii) is analogous. As

ran(Afree − λ)−1 = domAfree = H2(Rn) ⊂ H2
Σ(Rn)

we conclude from Lemma 4.15 (i) that the inclusion

ran
(
(Afree − µ)−1(Afree − λ)−k

)
⊂ H2k+2

Σ (Rn)
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holds for all k = 0, 1, . . . ,m. Moreover, since by Proposition 3.1 we have
Afree = T̃ � ker Γ̃0, Proposition 2.11 (ii) implies that

γ̃(µ)∗(Afree − λ)−k = Γ̃1(Afree − µ)−1(Afree − λ)−k

and hence

(4.4.1) ran
(
γ̃(µ)∗(Afree − λ)−k

)
⊂ H2k+3/2(Σ)

by the properties of the trace map Γ̃1, cf. (4.1.3). Now the estimates in (a)
and (b) follow from (4.4.1) and Lemma 2.22 with K = L2(Rn), r2 = 2k + 3

2
and with r1 = 0 for (a) and r1 = 1 for (b), respectively. The estimate in (c)
follows from (a) by taking the adjoint. Note that in the proof of item (ii)
one needs Lemma 4.15 (ii).

4.4.2 Resolvent power differences in Sp,∞-classes

In the next two theorems we obtain Sp,∞-estimates for the resolvent power
differences of the self-adjoint free and decoupled Schrödinger operators Afree

and AN,i,e, AD,i,e with certain local smoothness assumptions on the potential
V in the differential expression.

Theorem 4.17. Let AD,i,e and Afree be the self-adjoint operators defined

in (4.1.10) and (4.1.12), respectively. Let M̃ be the Weyl function from
Proposition 4.2. Assume that for some m ∈ N the potential V satisfies
V ∈W 2m−2,∞

Σ (Rn). Then the following statements hold.

(i) For all l = 1, 2, . . . ,m and all λ ∈ ρ(Afree) ∩ ρ(AN,i,e)

(4.4.2) (Afree − λ)−l − (AD,i,e − λ)−l ∈ Sn−1
2l

,∞
(
L2(Rn)

)
.

(ii) If m > n−1
2 , then for all l ∈ N such that n−1

2 < l ≤ m, and all
λ ∈ ρ(Afree)∩ρ(AD,i,e) the resolvent power difference in (4.4.2) belongs
to the trace class, and the formula

tr
(
(Afree − λ)−l − (AD,i,e − λ)−l

)
=

1

(l − 1)!
tr

(
dl−1

dλl−1

(
M̃(λ)−1M̃ ′(λ)

))(4.4.3)

holds.
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Proof. (i) Fix an arbitrary λ0 ∈ C \ R and let γ̃ be the γ-field as in Propo-
sition 4.2. By Theorem 4.4 (ii) the resolvent difference of Afree and AD,i,e at
the point λ0 can be written in the form

(Afree − λ0)−1 − (AD,i,e − λ0)−1 = γ̃(λ0)M̃(λ0)−1γ̃(λ0)∗.

Furthermore, by Proposition 4.2 (ii) the operator M̃(λ0) is bijective and

closed as an operator from L2(Σ) onto H1(Σ). Hence, dom
(
M̃(λ0)−1

)
=

H1(Σ) and since, M̃(λ0)−1 is closed as an operator from H1(Σ) into L2(Σ),

we conclude that M̃(λ0)−1 ∈ B
(
H1(Σ), L2(Σ)

)
. Set

H := AD,i,e, K := Afree, F1 := γ̃(λ0), F2 := M(λ0)−1γ̃(λ0)∗.

Then Proposition 4.16 (i) implies that the assumptions in Lemma 2.4 are
satisfied with

a =
2

n− 1
, b1 =

3/2

n− 1
, b2 =

1/2

n− 1
, r = m.

Since b = b1 + b2 − a = 0, Lemma 2.4 implies

(Afree − λ)−l − (AD,i,e − λ)−l ∈ Sn−1
2l

,∞
(
L2(Rn)

)
for all λ ∈ ρ(AN,i,e) ∩ ρ(Afree).

(ii) For all l ∈ N such that n−1
2 < l ≤ m, the operator in (4.4.2) belongs

to the trace class by item (i). The trace formula can be proved as in The-

orem 3.12 (ii) with AD, AN, M and γ replaced by AD,i,e, Afree, M̃ and γ̃,
respectively.

Theorem 4.18. Let AN,i,e and Afree be the self-adjoint operators defined

in (4.1.11) and (4.1.12), respectively. Let M̂ be the Weyl function from
Proposition 4.9. Assume that for some m ∈ N the potential V satisfies
V ∈W 2m−2,∞

Σ (Rn \ Σ). Then the following statements hold.

(i) For all l = 1, 2, . . . ,m and all λ ∈ ρ(Afree) ∩ ρ(AN,i,e)

(4.4.4) (AN,i,e − λ)−l − (Afree − λ)−l ∈ Sn−1
2l

,∞
(
L2(Rn)

)
.

(ii) If m > n−1
2 , then for all l ∈ N such that n−1

2 < l ≤ m, and all
λ ∈ ρ(Afree)∩ρ(AN,i,e) the resolvent power difference in (4.4.4) belongs
to the trace class, and the formula

tr
(
(AN,i,e − λ)−l − (Afree − λ)−l

)
=

1

(l − 1)!
tr

(
dl−1

dλl−1

(
M̂(λ)−1M̂ ′(λ)

))(4.4.5)

100



holds.

Proof. (i) We fix an arbitrary λ0 ∈ C \ R and let γ̂ be the γ-field from
Proposition 4.9. By Theorem 4.11 (ii) the resolvent difference of Afree and
AN,i,e at the point λ0 can be written in the form

(AN,i,e − λ0)−1 − (Afree − λ0)−1 = γ̂(λ0)M̂(λ0)−1γ̂(λ0)∗.

Furthermore, by Proposition 4.9 (ii) the operator M̂(λ0) is bijective and

closed as an operator from L2(Σ) onto H1(Σ). Hence, dom
(
M̂(λ0)−1

)
=

H1(Σ) and since, M̂(λ0)−1 is closed as an operator from H1(Σ) into L2(Σ),

we conclude M̂(λ0)−1 ∈ B
(
H1(Σ), L2(Σ)

)
. Set

H := Afree, K := AN,i,e, F1 := γ̂(λ0), F2 := M̂(λ0)−1γ̂(λ0)∗.

Then Proposition 4.16 (ii) (b) and (c) imply that the assumptions in Lemma 2.4
are satisfied with

a =
2

n− 1
, b1 =

3/2

n− 1
, b2 =

1/2

n− 1
, r = m.

Since b = b1 + b2 − a = 0, Lemma 2.4 implies

(AN,i,e − λ)−l − (Afree − λ)−l ∈ Sn−1
2l

,∞
(
L2(Rn)

)
for all λ ∈ ρ(AN,i,e) ∩ ρ(Afree).

(ii) For all l ∈ N such that n−1
2 < l ≤ m, the operator in (4.4.4) belongs

to the trace class by item (i). The trace formula can be proved as in The-

orem 3.12 (ii) with AD, AN, M and γ replaced by Afree, AN,i,e, M̂ and γ̂,
respectively.

As a consequence of Theorems 4.17 and 4.18 we derive sufficient condi-
tion for the existence and completeness of the wave operators of the scat-
tering pairs {Afree, AD,i,e} and {Afree, AN,i,e}.

Corollary 4.19. Let AD,i,e, AN,i,e and Afree be the self-adjoint operators
defined in (4.1.10),(4.1.11) and (4.1.12), respectively. Assume that the po-

tential V satisfies V ∈ W k,∞
Σ (Rn) with k > n − 3. Then the following

statements hold.

(i) The wave operators W±(Afree, AD,i,e) for the scattering pair {Afree, AD,i,e}
exist and are complete, and hence the absolutely continuous parts of
AD,i,e and Afree are unitarily equivalent.
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(ii) The wave operators W±(Afree, AN,i,e) for the scattering pair {Afree, AN,i,e}
exist and are complete, and hence the absolutely continuous parts of
AN,i,e and Afree are unitarily equivalent.

Remark 4.20. In particular, if V ≡ 0, then the wave operators for the scat-
tering pairs {Afree, AD,i,e} and {Afree, AN,i,e} exist and are complete for all
space dimensions n ≥ 2 and σac(AD,e) = σac(AN,e) =

[
0,∞

)
.

Remark 4.21. Note that for the pair {Afree, AN,i,e} the assumption in Corol-
lary 4.19 on the smoothness of the potential V can be slightly weakened, cf.
Theorem 4.18.

In the next theorem we obtain Sp,∞-estimates for the resolvent power
difference of the self-adjoint operators Aδ,α and Afree. One can observe that
the singular values may converge faster than in Theorems 4.17 and 4.18.

Theorem 4.22. Let α ∈ L∞(Σ) be a real-valued function on Σ, and let
Aδ,α and Afree be the self-adjoint operators defined in (4.2.6) and (4.1.12),

respectively. Let M̃ be the Weyl function from Proposition 4.2. Assume
that the potential V satisfies V ∈W 2m−2,∞

Σ (Rn) for some m ∈ N. Then the
following statements hold.

(i) For all l = 1, 2, . . . ,m and all λ ∈ ρ(Aδ,α) ∩ ρ(Afree)

(4.4.6) (Aδ,α − λ)−l − (Afree − λ)−l ∈ S n−1
2l+1

,∞
(
L2(Rn)

)
.

(ii) If m > n
2 − 1, then for all l ∈ N such that n

2 − 1 < l ≤ m, the resolvent
power difference in (4.4.6) belongs to the trace class, and the formula

tr
(
(Aδ,α − λ)−l − (Afree − λ)−l

)
=

1

(l − 1)!
tr

(
dl−1

dλl−1

(
Ũ(λ)M̃ ′(λ)

))

holds, where Ũ(λ) :=
(
I − αM̃(λ)

)−1
α.

Proof. (i) We prove item (i) by applying Lemma 2.4. Fix an arbitrary
λ0 ∈ C\R, and let γ̃ be as in Proposition 4.2. By Theorem 4.6 the resolvent
difference of Aδ,α and Afree at the point λ0 can be written in the form

(Aδ,α − λ0)−1 − (Afree − λ0)−1 = γ̃(λ0)
(
I − αM̃(λ0)

)−1
αγ̃(λ0)∗,
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where (I − αM̃(λ0))−1α ∈ B(L2(Σ)). Proposition 4.16 (i) (a) and (c) imply
that the assumptions in Lemma 2.4 are satisfied with

H = Aδ,α, K = Afree, F1 = γ̃(λ0), F2 =
(
I − αM̃(λ0)

)−1
αγ̃(λ0)∗,

a =
2

n− 1
, b1 = b2 =

3/2

n− 1
, r = m.

Since b = b1 +b2−a = 1
n−1 , Lemma 2.4 implies the assertion of the theorem.

(ii) By item (i) the operator in (4.4.6) belongs to the trace class for
all l ∈ N such that n

2 − 1 < l ≤ m. The trace formula can be proved as
in Theorem 3.17 (ii) with A[B1], A[B2], M , γ, B1 and B2 replaced by Aδ,α,

Afree, M̃ , γ̃, α and 0, respectively.

The next corollary shows that for sufficiently smooth potentials V the
wave operators of the scattering system {Aδ,α, Afree} exist in any space di-
mension.

Corollary 4.23. Let the assumptions be as in Theorem 4.22. If, for some
k > n− 4, the potential V satisfies V ∈W k,∞

Σ (Rn), then the wave operators
W±(Aδ,α, Afree) exist and are complete, and hence the absolutely continuous
parts of Aδ,α and Afree are unitarily equivalent.

Remark 4.24. In particular, if V ≡ 0, then W±(Aδ,α, Afree) exist and are
complete in any space dimension n ≥ 2. Furthermore, we obtain that
σac(Aδ,α) = [0,∞).

In the next theorem we obtain Sp,∞-estimates for the resolvent power
differences of the self-adjoint operators Aδ′,β and AN,i,e. One can notice the
same faster convergence of the singular values as in Theorem 4.22.

Theorem 4.25. Let β be a real-valued function on Σ such that 1/β ∈
L∞(Σ), and let Aδ′,β and AN,i,e be the self-adjoint operators defined in (4.3.5)

and (4.1.11), respectively. Let M̂ be the Weyl function from Proposition 4.9.
Assume that the potential V satisfies V ∈W 2m−2,∞

Σ (Rn\Σ) for some m ∈ N.
Then the following statements hold.

(i) For all l = 1, 2, . . . ,m and all λ ∈ ρ(Aδ′,β) ∩ ρ(Afree)

(4.4.7) (Aδ′,β − λ)−l − (AN,i,e − λ)−l ∈ S n−1
2l+1

,∞
(
L2(Rn)

)
.
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(ii) If m > n
2 − 1, then for all l ∈ N such that n

2 − 1 < l ≤ m, the resolvent
power difference in (4.4.7) belongs to the trace class, and the formula

tr
(
(Aδ′,β − λ)−l − (AN,i,e − λ)−l

)
=

1

(l − 1)!
tr

(
dl−1

dλl−1

(
Û(λ)M̂ ′(λ)

))

holds, where Û(λ) :=
(
I − β−1M̂(λ)

)−1
β−1.

Proof. (i) Fix an arbitrary λ0 ∈ C \ R and let γ̂ be the γ-field from Propo-
sition 4.9. By Theorem 4.13 the resolvent difference of Aδ′,β and AN,i,e at
the point λ0 can be written in the form

(Aδ′,β − λ0)−1 − (AN,i,e − λ0)−1 = γ̂(λ0)
(
I − β−1M̂(λ0)

)−1
β−1γ̂(λ0)∗,

where (I − β−1M̂(λ0))−1β−1 ∈ B(L2(Σ)). Proposition 4.16 (i) (a) and (c)
imply that the assumptions in Lemma 2.4 are satisfied with

H = Aδ′,β, K = Afree, F1 = γ̂(λ0), F2 =
(
I − β−1M̂(λ0)

)−1
β−1γ̂(λ0)∗,

a =
2

n− 1
, b1 = b2 =

3/2

n− 1
, r = m.

Since b = b1 +b2−a = 1
n−1 , Lemma 2.4 implies the assertion of the theorem.

(ii) By item (i) the operator in (4.4.7) belongs to the trace class for all
l ∈ N such that n

2 − 1 < l ≤ m. The trace formula can be proved as in
Theorem 3.17 (ii) with A[B2], A[B1], M , γ, B2 and B1 replaced by Aδ′,β,

AN,i,e, M̂ , γ̂, 1/β and 0, respectively.

In next theorem we get Sp,∞-properties of the resolvent power difference
of Aδ′,β and Afree.

Theorem 4.26. Let β be a real-valued function on Σ such that 1/β ∈
L∞(Σ), and let Aδ′,β, AN,i,e and Afree be the self-adjoint operators defined

in (4.3.5), (4.1.11) and (4.1.12), respectively. Let M̂ be the Weyl function
from Proposition 4.9. Assume that the potential V satisfies V ∈W 2m−2,∞

Σ (Rn\
Σ) for some m ∈ N. Then the following statements hold.

(i) For all l = 1, 2, . . . ,m and all λ ∈ ρ(Aδ′,β) ∩ ρ(Afree)

(4.4.8) (Aδ′,β − λ)−l − (Afree − λ)−l ∈ Sn−1
2l

,∞
(
L2(Rn)

)
.
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(ii) If m > n−1
2 , then, for all l ∈ N such that n−1

2 < l ≤ m, the resolvent
power difference in (4.4.8) belongs to the trace class, and the formula

tr
(
(Aδ′,β − λ)−l − (Afree − λ)−l

)
=

1

(l − 1)!
tr

(
dl−1

dλl−1

(
V̂ (λ)M̂ ′(λ)

))

holds, where V̂ (λ) :=
(
I − M̂(λ)β−1

)−1
M̂(λ)−1.

Proof. (i) Let us fix λ0 ∈ ρ(Aδ′,β)∩ρ(Afree)∩ρ(AN,i,e). By Theorem 4.18 (i)

(4.4.9) (Afree − λ0)−l − (AN,i,e − λ0)−l ∈ Sn−1
2l

,∞
(
L2(Rn)

)
.

By Theorem 4.25 (i)

(4.4.10) (Aδ′,β − λ0)−l − (AN,i,e − λ0)−l ∈ S n−1
2l+1

,∞
(
L2(Rn)

)
.

Taking the difference of (4.4.9) and (4.4.10) we get the claim for all λ ∈
ρ(Aδ′,β) ∩ ρ(Afree) ∩ ρ(AN,i,e). In order to include the points in the discrete
set ρ(Aδ′,β) ∩ ρ(Afree) ∩ σ(AN,i,e) we argue with contour integrals.

(ii) By item (i) the operator in (4.4.8) belongs to the trace class for all
l ∈ N such that n−1

2 < l ≤ m. The trace formula can be proved as in
Corollary 3.19 (ii) with A[B], AD, AN, M and B replaced by Aδ′,β, Afree,

AN,i,e, M̂ and β−1, respectively.

The following corollary is the counterpart of Corollary 4.23 for the scat-
tering system {Aδ′,β, Afree}.

Corollary 4.27. Let the assumptions be as in Theorem 4.25. If the potential
V satisfies V ∈ W k,∞

Σ (Rn \ Σ) with k > n − 3, then the wave operators
W±(Aδ′,β, Afree) exist and are complete, and hence the absolutely continuous
parts of Aδ′,β and Afree are unitarily equivalent.

Remark 4.28. In particular, if V ≡ 0, then W±(Aδ′,β, Afree) exist and are
complete in any space dimension n ≥ 2. Furthermore, we obtain that
σac(Aδ′,β) = [0,∞).

Remark 4.29. In Chapter 3 trace formulae were proven for C∞-smooth co-
efficients, whereas in this chapter we formulate trace formulae for rough
potentials and say that the proof is analogous. In the complete proofs of
Theorem 4.17 (ii), Theorem 4.18 (ii), Theorem 4.22 (ii), Theorem 4.25 (ii)
and Theorem 4.26 (ii) one should tackle the smoothness of the potential V
carefully, using Lemma 4.15.
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4.5 Sesquilinear forms approach

Another rigorous way to define self-adjoint Schrödinger operators with sur-
face interactions uses closed semi-bounded sesquilinear forms and the first
representation theorem. We show below that both approaches lead to the
same operators. The sesquilinear form in the δ-case is well-known, see e.g.
[BEKS94], while the form in the δ′-case is new to the best of the author’s
knowledge.

Throughout this section we always assume that V ≡ 0 and we write
−∆δ,α and −∆δ′,β instead of Aδ,α and Aδ′,β, respectively. Using sesquilinear
forms we also prove finiteness of the negative spectra of −∆δ,α and −∆δ′,β.

4.5.1 Definitions via sesquilinear forms

In the first proposition of this subsection we provide a closed semi-bounded
sesquilinear form such that the self-adjoint operator −∆δ,α corresponds to
this form by the first representation theorem.

Proposition 4.30. The sesquilinear form

tδ,α[f, g] :=
(
∇f,∇g

)
−
(
αf |Σ, g|Σ

)
Σ

defined for f, g ∈ H1(Rn) is symmetric, closed and semi-bounded from below.
The self-adjoint operator corresponding to tδ,α is −∆δ,α, i.e.,

(−∆δ,αf, g) = tδ,α[f, g]

holds for all f ∈ dom(−∆δ,α) and g ∈ H1(Rn).

Proof. Since α is a real-valued function, it follows that the form tδ,α is sym-
metric. In order to show that this form is closed and semi-bounded, we
consider the forms

t[f, g] := (∇f,∇g) and t′[f, g] := −
(
αf |Σ, g|Σ

)
Σ

on H1(Rn), so that tδ,α = t+t′ holds. Note that t is closed and non-negative.
Let t ∈ (1

2 , 1) be fixed. Since the trace map is continuous, there exists ct > 0
such that ‖f |Σ‖Ht−1/2(Σ) ≤ ct‖fi‖Ht(Ωi) is valid for all f = fi⊕ fe ∈ Ht(Rn).
Hence it follows from Ehrling’s lemma that for every ε > 0 there exists a
constant Ci(ε) such that

(4.5.1) ‖f |Σ‖Σ ≤ ct‖fi‖Ht(Ωi) ≤ ε‖fi‖H1(Ωi) + Ci(ε)‖fi‖L2(Ωi)
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holds for all f = fi ⊕ fe ∈ H1(Rn). Since ‖f‖H1(Rn) ≥ ‖fi‖H1(Ωi) and
‖f‖L2(Rn) ≥ ‖fi‖L2(Ωi), the estimate (4.5.1) implies

(4.5.2) ‖f |Σ‖Σ ≤ ε‖f‖H1(Rn) + Ci(ε)‖f‖L2(Rn)

The estimate (4.5.2) yields that the form t′ is bounded with respect to t with
form bound < 1, and hence tδ,α = t+ t′ is closed and semi-bounded by [K95,
Theorem VI.1.33]. Thus by the first representation theorem [K95, Theorem
VI.2.1] the self-adjoint operator −∆̃δ,α corresponds to the form tδ,α.

It remains to show that −∆̃δ,α = −∆δ,α. First we show the inclusion
dom(−∆δ,α) ⊂ dom tδ,α. For this let f = fi ⊕ fe ∈ dom(−∆δ,α). According
to (4.2.6) we have, in particular,

fi ∈ H3/2(Ωi) ⊂ H1(Ωi), fe ∈ H3/2(Ωe) ⊂ H1(Ωe), and fi|Σ = fe|Σ.

Making use of [AF03, Theorems 5.24 and 5.29] a standard extension argu-
ment implies that f ∈ H1(Rn) and hence dom(−∆δ,α) ⊂ dom tδ,α.

Next let f = fi ⊕ fe ∈ dom(−∆δ,α) and g = gi ⊕ ge ∈ dom tδ,α. Then
tδ,α[f, g] is well defined. By the first Green’s identity (4.1.7) we have

(∇fi,∇fi)i − (∂νifi|Σ, gi|Σ)Σ = (−∆fi, gi)i,

(∇fe,∇ge)e − (∂νefe|Σ, ge|Σ)Σ = (−∆fe, ge)e.

Using this and the relation αf |Σ = ∂νefe|Σ + ∂νifi|Σ we obtain

tδ,α[f, g] = (∇f,∇g)−
(
αf |Σ, g|Σ

)
Σ

= (∇fi,∇gi)i + (∇fe,∇ge)e −
(
∂νifi|Σ, gi|Σ

)
Σ
−
(
∂νefe|Σ, ge|Σ

)
Σ

= (−∆fi, gi)i + (−∆fe, ge)e =
(
−∆f, g

)
.

Now the first representation theorem (see [K95, Theorem VI.2.1]) implies
that f ∈ dom(−∆̃δ,α) and −∆̃δ,αf = −∆f ; thus −∆δ,α ⊂ −∆̃δ,α. Since

both operators −∆δ,α and −∆̃δ,α are self-adjoint, we conclude that −∆δ,α =

−∆̃δ,α.

In the second proposition of this subsection we provide a symmetric
closed semi-bounded sesquilinear form such that the self-adjoint operator
−∆δ′,β corresponds to this form by the first representation theorem.

107



Proposition 4.31. The sesquilinear form

tδ′,β[f, g] :=
(
∇f,∇g

)
−
(
β−1(fe|Σ − fi|Σ), ge|Σ − gi|Σ

)
Σ

defined for f, g ∈ H1(Rn \ Σ) is symmetric, closed and semi-bounded from
below. The self-adjoint operator corresponding to tδ′,β is −∆δ′,β, i.e.,

(−∆δ′,βf, g) = tδ′,β[f, g]

holds for all f ∈ dom(−∆δ′,β) and g ∈ H1(Rn \ Σ).

Proof. Since β is a real-valued function, it follows that the form tδ′,β is
symmetric. In order to show that it is closed and semi-bounded, we consider
the forms

t[f, g] := (∇f,∇g) and t′[f, g] := −
(
β−1(fe|Σ − fi|Σ), ge|Σ − gi|Σ

)
Σ

on H1(Rn \ Σ), so that tδ′,β = t + t′ holds. Note that t is closed and
non-negative. Let t ∈ (1

2 , 1) be fixed. Since the trace map is continuous,
there exists ct > 0 such that ‖fi|Σ‖Ht−1/2(Σ) ≤ ct‖fi‖Ht(Ωi) is valid for all

fi ∈ Ht(Ωi). Hence it follows from Ehrling’s lemma that for every ε > 0
there exists a constant Ci(ε) such that

(4.5.3) ‖fi|Σ‖Σ ≤ ct‖fi‖Ht(Ωi) ≤ ε‖fi‖H1(Ωi) + Ci(ε)‖fi‖L2(Ωi)

holds for all fi ∈ H1(Ωi). We decompose the exterior domain in the form
Ωe = Ωe,1 ∪ Ωe,2, where Ωe,1 is bounded, Ωe,2 is unbounded, and the C∞-
boundary of Ωe,1 is the disjoint union of Σ and ∂Ωe,2. The restriction of a
function fe to Ωe,1 is denoted by fe,1. Then again the continuity of the trace
map and Ehrling’s lemma show that for every ε > 0 there exists a constant
Ce(ε) such that

‖fe|Σ‖Σ = ‖fe,1|Σ‖Σ ≤ ‖fe,1|∂Ωe,1‖L2(∂Ωe,1)

≤ ε‖fe,1‖H1(Ωe,1) + Ce(ε)‖fe,1‖L2(Ωe,1)

≤ ε‖fe‖H1(Ωe) + Ce(ε)‖fe‖L2(Ωe)

(4.5.4)

holds for all fe ∈ H1(Ωe). The estimates (4.5.3) and (4.5.4) yield that the
form t′ is bounded with respect to t with form bound < 1, and hence tδ′,β =
t+ t′ is closed and semi-bounded by [K95, Theorem VI.1.33]. The remaining
statement follows from [K95, Theorem VI.2.1] and similar arguments as in
the proof of Proposition 4.30.
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4.5.2 Finiteness of negative spectra

In this subsection we show that the negative spectra of the self-adjoint op-
erators −∆δ,α and −∆δ′,β are finite. We recall some preparatory facts on
semi-bounded quadratic forms first.

Definition 4.32. For a (not necessarily closed or semi-bounded) quadratic
form q in a Hilbert space H we define the number of negative squares κ−(q)
by

κ−(q) := sup
{

dimF : F linear subspace of dom q ,

such that ∀ f ∈ F \ {0} : q[f ] < 0
}
.

Assume that A is a (not necessarily semi-bounded) self-adjoint operator
in a Hilbert space H with the corresponding spectral measure EA(·). Define
the possibly non-closed quadratic form sA by

sA[f ] := (Af, f)H, dom sA := domA.

If, in addition, A is semi-bounded, then by [K95, Theorem VI.1.27] the form
sA is closable, and we denote its closure by sA. According to the spectral
theorem for self-adjoint operators and [BS87, 10.2 Theorem 3]

(4.5.5) dim ranEA(−∞, 0) = κ−(sA) = κ−(sA).

In particular, if κ−(sA) is finite, then the self-adjoint operator A has finitely
many negative eigenvalues with finite multiplicities.

Now we are ready to formulate and prove the main results of this sub-
section. We mention that finiteness of the negative spectrum in the case of
δ-potentials on hypersurfaces was also shown in [BEKS94] by other methods.

Theorem 4.33. Let α, β : Σ→ R be such that α, 1/β ∈ L∞(Σ) and let the
self-adjoint operators −∆δ,α and −∆δ′,β be as above. Then the following
statements hold.

(i) σess(−∆δ,α) = σess(−∆δ′,β) = [0,∞).

(ii) The self-adjoint operators −∆δ,α and −∆δ′,β have finitely many nega-
tive eigenvalues with finite multiplicities.
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Proof. (i) According to Theorem 4.22 (i) the resolvent difference of the self-
adjoint operators −∆δ,α and −∆free is compact; thus

σess(−∆δ,α) = σess(−∆free) = [0,∞).

Analogously, according to Theorem 4.26 (i) the resolvent difference of the
self-adjoint operators −∆δ′,β and −∆free is also compact. Hence

σess(−∆δ′,β) = σess(−∆free) = [0,∞).

(ii) Let us introduce the (in general non-closed) quadratic forms

s−∆δ,α
[f ] :=

(
−∆δ,αf, f

)
, dom(s−∆δ,α

) := dom(−∆δ,α),

s−∆δ′,β [f ] :=
(
−∆δ′,βf, f

)
, dom(s−∆δ′,β ) := dom(−∆δ′,β).

Applying the first Green’s identity (4.1.7) to these expressions and taking
the definitions (4.2.6), (4.3.5) of the domains of the operators −∆δ,α, −∆δ′,β

into account we obtain

s−∆δ,α
[f ] =

(
−∆fi, fi

)
i
+
(
−∆fe, fe

)
e

=
(
∇fi,∇fi

)
i
−
(
∂νifi|Σ, fi|Σ

)
Σ

+
(
∇fe,∇fe

)
e
−
(
∂νefe|Σ, fe|Σ

)
Σ

=
(
∇f,∇f

)
−
(
αf |Σ, f |Σ

)
Σ

and

s−∆δ′,β [f ] =
(
−∆fi, fi

)
i
+
(
−∆fe, fe

)
e

=
(
∇fi,∇fi

)
i
−
(
∂νifi|Σ, fi|Σ

)
Σ

+
(
∇fe,∇fe

)
e
−
(
∂νefe|Σ, fe|Σ

)
Σ

=(∇f,∇f) +
(
β−1(fe|Σ−fi|Σ), fi|Σ

)
Σ
−
(
β−1(fe|Σ−fi|Σ), fe|Σ

)
Σ

=
(
∇f,∇f

)
−
(
β−1(fe|Σ − fi|Σ), fe|Σ − fi|Σ

)
Σ
.

For a bounded function σ : Σ→ R define the quadratic form qσ

qσ[f ] :=
(
∇f,∇f

)
−
(
σfi|Σ, fi|Σ

)
Σ
−
(
σfe|Σ, fe|Σ

)
Σ
, dom qσ := H1(Rn\Σ).

It follows from [B62, Theorem 6.9] (cf. the proof of Proposition 4.31 above)
that the form qσ is closed and semi-bounded, and the self-adjoint operator
corresponding to qσ has finitely many negative eigenvalues with finite mul-
tiplicities. Thus, by (4.5.5), we have κ−(qσ) < ∞. It can easily be checked
that

dom(s−∆δ,α
) ⊂ dom(q|α|/2) and ∀ f ∈ dom(s−∆δ,α

) : s−∆δ,α
[f ] ≥ q|α|/2[f ].
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Using the inequality |a − b|2 ≤ 2(|a|2 + |b|2) for complex numbers a, b we
obtain

dom(s−∆δ′,β ) ⊂ dom(q2/|β|) and ∀ f ∈ dom(s−∆δ′,β ) : s−∆δ′,β [f ] ≥ q2/|β|[f ].

These observations yield that

κ−(s−∆δ,α
) ≤ κ−(q|α|/2) <∞ and κ−(s−∆δ′,β ) ≤ κ−(q2/|β|) <∞.

From this and (4.5.5) it follows that the negative spectra of −∆δ,α and
−∆δ′,β are finite.

4.6 Comments

Schrödinger operators with point δ-interactions in the simplest one-dimen-
sional case appeared already more than eighty years ago in the paper [KP31]
by Kronig and Penney, where they were used in the quantum mechanical
model of a charged free particle in a one-dimensional lattice. It took thirty
years, until a model of a point δ-interaction in the three-dimensional case
based on the operator extension theory was proposed by Berezin and Fad-
deev in [BF61]. An approach to point interactions in arbitrary space dimen-
sions based on Pontryagin spaces was developed by Shondin [Sho88]. For
more details on point interactions see the monographs [AGHH05, AK00] and
the references therein.

Schrödinger operators with δ and δ′-potentials on hypersurfaces were in-
vestigated systematically first only in the late 80s under additional symmetry
assumptions in [AGS87, Sh88] by Antoine, Gesztesy and Shabani. In these
papers the main tool of analysis is the reduction to Sturm-Liouville opera-
tors via separation of variables. A rigorous approach to the definition and
the spectral analysis of Schrödinger operators with δ-interactions on gen-
eral hypersurfaces is provided in [BEKS94] by Brasche, Exner, Kuperin and
Šeba. In particular, Krein’s formula and a variant of the Birman-Schwinger
principle in Theorem 4.6 are already contained in [BEKS94, Corollary 2.1
and Corollary 2.3], which are derived from the corresponding sesquilinear
form, cf. Proposition 4.30.

The development of an approach to δ′-interactions on general hyper-
surfaces has been posed as an open problem in [E08, Open problem 7.2].
The treatment of these potentials is more involved because they are more
singular. In the thesis a solution of this open problem is presented.

111



Schatten-von Neumann estimates for the resolvent power differences of
the free operator Afree and the decoupled operators AD,i,e and AN,i,e were
investigated by Deift and Simon [DS75, Lemma 3], Jensen and Kato [JK78],
Bardos, Guillot, and Ralston [BGR82], Grubb [G84a] and more recently by
Carron in [Ca02, Théorème 1.1] and by Alpay and Behrndt in [AB09, Theo-
rem 4.4 (iii)]. It seems that analogous estimates for δ and δ′-couplings, given
in Theorems 4.22, 4.25 and 4.26, were not obtained before. The trace for-
mulae in Subsection 4.4.2 extend the corresponding trace formula in [Ca02,
Théorème 2.2] to the case of δ and δ′-couplings.

The proof of finiteness of the negative spectra for the operators −∆δ,α

and −∆δ′,β in Theorem 4.33 is reduced to a result by Birman [B62, Theo-
rem 6.9], which states finiteness of negative spectra of Robin Laplacians on
exterior domains. In the case of δ-interactions finiteness of negative spec-
tra can also be deduced from the spectral estimates in [BEKS94, Theorem
4.2 (iii)]. The operator −∆δ′,β with β having unbounded inverse can be
treated as in Marletta and Rosenblum [MR09], and in this case the number
of negative eigenvalues can be infinite.

Finally, we mention some of the recent significant papers in the area
of interactions supported on hypersurfaces: Brown, Eastham, and Wood
[BEW09], Exner [E03, E05], Exner and Fraas [EF09], Exner and Ichinose
[EI01], Exner and Kondej [EK02, EK03], Exner and Yoshitomi [EY02], Kon-
dej and Veselic [KV07] for studies of eigenvalues; Birman, Shterenberg, and
Suslina [BSS00], Exner and Fraas [EF07], Exner and Yoshitomi [EY01],
Suslina and Shterenberg [SuSh01] for results on the absolutely continuous
spectrum; Exner and his co-authors [EK05, EN03, EY02a, EY04] for re-
lated problems on Schrödinger operators with δ-interactions. The contents
of these papers are partially reviewed in [E08], see also the references in this
review paper.
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Chapter 5

Robin Laplacians on a
half-space

In this chapter we define self-adjoint Laplace operators on a half-space sub-
ject to Robin and more general non-local self-adjoint boundary conditions.
We provide an analogue of the Birman-Schwinger principle for the character-
ization of the point spectra and Krein’s formula for the resolvent differences.

Furthermore, we give a sufficient condition for H2-regularity of the op-
erator domains. As the underlying problem of this chapter we study com-
pactness of the resolvent differences and Schatten-von Neumann properties
of the resolvent power differences of self-adjoint Robin Laplacians. The
non-compactness of the boundary leads to serious changes in the proofs in
comparison with the previous chapters. The Schatten-von Neumann esti-
mates in this chapter complement the works [B62, GorK82, DM91]. The
material of this chapter is partially contained in the work of the author
[LR12].

5.1 Preliminaries

Let Rn+, n ≥ 2, be the half-space
{

(x′, xn)> : x′ ∈ Rn−1, xn ∈ R+

}
with the

boundary ∂Rn+. We denote by (·, ·) and (·, ·)∂Rn+ the inner products in the

Hilbert spaces L2(Rn+) and L2(∂Rn+), respectively. Throughout this chapter
we deal with the Laplace differential expression on Rn+. For a function
f ∈ C∞(Rn+) we introduce the following trace

∂νf |∂Rn+ := −∂xnf |∂Rn+ .
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For s > 3/2 the trace mapping

(5.1.1) Hs(Rn+) 3 f 7→
{
f |∂Rn+ , ∂νf |∂Rn+

}
∈ Hs−1/2(∂Rn+)×Hs−3/2(∂Rn+)

is the extension by continuity of the trace mapping defined on C∞-functions
and the mapping in (5.1.1) is surjective onto Hs−1/2(∂Rn+)×Hs−3/2(∂Rn+).
Besides the Sobolev spaces Hs(Rn+) defined in Section 2.3 we also actively
employ the spaces

(5.1.2) Hs
∆(Rn+) :=

{
f ∈ Hs(Rn+) : ∆f ∈ L2(Rn+)

}
, s ≥ 0.

Observe that for s ≥ 2 the spaces Hs
∆(Rn+) and Hs(Rn+) coincide. We also

note that for s ∈ (0, 2) the space Hs
∆(Rn+) can be viewed as an interpolation

space between H2(Rn+) and H0
∆(Rn+). By [F67] the trace mapping admits

an extension by continuity to the mapping

(5.1.3) Hs
∆(Rn+) 3 f 7→

{
f |∂Rn+ , ∂νf |∂Rn+

}
∈ Hs−1/2(∂Rn+)×Hs−3/2(∂Rn+),

with s ∈ [0, 2), where the mappings

Hs
∆(Rn+) 3 f 7→ f |∂Rn+ ∈ H

s−1/2(∂Rn+), s ∈ [0, 2),

Hs
∆(Rn+) 3 f 7→ ∂νf |∂Rn+ ∈ H

s−3/2(∂Rn+), s ∈ [0, 2),
(5.1.4)

are surjective onto Hs−1/2(∂Rn+) and onto Hs−3/2(∂Rn+), respectively. We

also recall that for f, g ∈ H3/2
∆ (Rn+) the second Green’s identity

(5.1.5)
(
−∆f, g

)
−
(
f,−∆g

)
=
(
f |∂Rn+ , ∂νg|∂Rn+

)
∂Rn+
−
(
g|∂Rn+ , ∂νf |∂Rn+

)
∂Rn+

holds.

The minimal symmetric operator

Af := −∆f, domA := H2
0 (Rn+),

is closed and densely defined in L2(Rn+) with the adjoint of the form

A∗f = −∆f, domA∗ = H0
∆(Rn+).

Self-adjoint extensions of A subject to Dirichlet and Neumann boundary
conditions

ADf := −∆f, domAD :=
{
f ∈ H2(Rn+) : f |∂Rn+ = 0

}
,

ANf := −∆f, domAN :=
{
f ∈ H2(Rn+) : ∂νf |∂Rn+ = 0

}(5.1.6)

will be actively used further. For the proof of their self-adjointness we refer
to [G09, Chapter 9].
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5.2 Half-space Laplacians with general self-adjoint
boundary conditions

In this section we make use of quasi boundary triples for a proper definition
and study of self-adjoint realizations A[B] of −∆ subject to a non-local
boundary condition

Bf |∂Rn+ = ∂νf |∂Rn+
with a bounded self-adjoint operator B in L2(∂Rn+).

5.2.1 A quasi boundary triple and its Weyl function

For a definition of a quasi boundary triple for A∗ we specify the operator T
as below

(5.2.1) Tf := −∆f, domT := H
3/2
∆ (Rn+),

where the spaceH
3/2
∆ (Rn+) is defined in (5.1.2). We require also the boundary

mappings

Γ0 : domT → L2(∂Rn+), Γ0f := ∂νf |∂Rn+ ,

Γ1 : domT → L2(∂Rn+), Γ1f := f |∂Rn+ .
(5.2.2)

In the first proposition of this section we prove that {L2(∂Rn+),Γ0,Γ1} is
a quasi boundary for A∗ and we show some basic properties of this quasi
boundary triple.

Proposition 5.1. Let the self-adjoint operators AN and AD be as in (5.1.6).
Let the operator T be as in (5.2.1) and the mappings Γ0,Γ1 be as in (5.2.2).
Then the triple Π = {L2(∂Rn+),Γ0,Γ1} is a quasi boundary triple for A∗.
The restrictions of T to the kernels of the boundary mappings are

T � ker Γ0 = AN and T � ker Γ1 = AD;

and the ranges of these mappings are

ran Γ0 = L2(∂Rn+) and ran Γ1 = H1(∂Rn+).

Proof. In order to show that the triple Π is a quasi boundary triple for A∗

we use Proposition 2.9. Let us check that the triple Π satisfies the conditions
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(a), (b) and (c) of that proposition. Since H2(Rn+) ⊂ domT , by (5.1.1) we
have

H1/2(∂Rn+)×H3/2(∂Rn+) ⊂ ran

(
Γ0

Γ1

)
.

The set H1/2(∂Rn+) × H3/2(∂Rn+) is clearly dense in L2(∂Rn+) × L2(∂Rn+).
Note that also the set ker Γ0 ∩ ker Γ1 ⊃ C∞0 (Rn+) is dense in L2(Rn+). Thus
the condition (a) is verified. The abstract Green’s identity(

Tf, g
)
−
(
f, Tg

)
=
(
Γ1f,Γ0g

)
∂Rn+
−
(
Γ0f,Γ1g

)
∂Rn+

for all f, g ∈ domT is equivalent to (5.1.5). The condition (b) is also checked.
The operator T � ker Γ0 contains the self-adjoint Laplacian AN subject to
Neumann boundary condition on ∂Rn+. Thus the condition (c) holds for the
triple Π. Therefore, by Proposition 2.9 the triple Π is a quasi boundary
triple for the adjoint of the closed symmetric operator T �

(
ker Γ0 ∩ker Γ1

)
.

It remains to show that T �
(

ker Γ0 ∩ ker Γ1

)
= A. The operator T �

ker Γ0 contains the self-adjoint operator AN and the operator T � ker Γ1

contains the self-adjoint operator AD. By the abstract Green’s identity the
operators T � ker Γ0 and T � ker Γ1 are both symmetric, thus T � ker Γ0 =
AN and T � ker Γ1 = AD. As a consequence

T �
(

ker Γ0 ∩ ker Γ1) =
(
T � ker Γ0) ∩

(
T � ker Γ1

)
= AN ∩AD = A.

Hence the triple Π is a quasi boundary triple for A∗.

The properties of the boundary mappings

ran Γ0 = L2(∂Rn+) and ran Γ1 = H1(∂Rn+)

follow from (5.1.4)

In the next proposition we clarify the basic properties of the γ-field
and the Weyl function associated with the quasi boundary triple Π from
Proposition 5.1. In the terminology of [G09], these operators turn out to be
the Poisson operator and the Neumann-to-Dirichlet map, respectively.

Proposition 5.2. Let the self-adjoint operators AD and AN be as in (5.1.6).
Let Π be the quasi boundary triple from Proposition 5.1. Let γ and M
be, respectively, the γ-field and the Weyl function associated with the quasi
boundary triple Π. Then the following statements hold.
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(i) The γ-field γ is defined for all λ ∈ C \ R+ and

γ(λ) : L2(∂Rn+)→ L2(Rn+), γ(λ)f = fλ(ϕ),

where fλ(ϕ) is the unique solution in the space H
3/2
∆ (Rn+) of the prob-

lem

(−∆− λ)f = 0, in Rn+,
∂νf |∂Rn+ = ϕ, on ∂Rn+.

(ii) The Weyl function M is defined for all λ ∈ C \ R+ and

M(λ) : L2(∂Rn+)→ L2(∂Rn+), M(λ)ϕ = fλ(ϕ)|∂Rn+ ,

where fλ(ϕ) = γ(λ)ϕ. The operator M(λ) maps L2(∂Rn+) onto H1(∂Rn+).
For λ < 0 it holds that ‖M(λ)‖ ≤ 1√

−λ , and, in particular, the limit
property

lim
λ→−∞

∥∥M(λ)
∥∥ = 0

holds.

Proof. As a preliminary step, note that σ(AD) = σ(AN) = R+ and thus
C \ R+ = ρ(AD) ∩ ρ(AN).

(i) The mapping properties of the γ-field γ follow from (5.2.1), (5.2.2)
and Definition 2.10.

(ii) The mapping properties of the Weyl function follow from (5.2.2),
Definition 2.10, Proposition 2.11 (iii), and Proposition 5.1.

For λ < 0 the Weyl function M can be represented as

M(λ) = (−∆Rn−1 − λ)−1/2,

where −∆Rn−1 is the standard self-adjoint Laplace operator in L2(Rn−1)
with the usual domain H2(Rn−1), see, e.g., [G09, Chapter 9]. As a conse-
quence of this representation we obtain

∥∥M(λ)
∥∥ ≤ 1√

−λ
,

and the limit property follows automatically.
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5.2.2 Self-adjointness and Krein’s formulae

In the next theorem we provide a factorization (Krein’s formula) for the
resolvent difference of the self-adjoint operators AN and AD.

Theorem 5.3. Let AN and AD be the self-adjoint operators as in (5.1.6).
Let γ and M be the γ-field and the Weyl function from Proposition 5.2.
Then the formula

(AN − λ)−1 − (AD − λ)−1 = γ(λ)M(λ)−1γ(λ)∗

holds for all λ ∈ C \ R+.

Proof. Krein’s formula follows from Theorem 2.13 (ii) with A0 = AN and
A1 = AD.

Further, we define Laplace operators on the half-space with non-local
boundary conditions.

Definition 5.4. For a bounded self-adjoint operator B in L2(∂Rn+) we define
the restriction A[B] of T as below

(5.2.3) A[B] := T � ker(BΓ1 − Γ0),

which is equivalent to

A[B] = −∆f, domA[B] =
{
f ∈ H3/2

∆ (Rn+) : Bf |∂Rn+ = ∂νf |∂Rn+
}
.

AN

⊂

A ⊂
⊂

⊂
A[B] ⊂ T ⊂ T = A∗.

AD

⊂

Figure 5.1: This figure shows how the operator A[B] is related to the other
operators introduced in this chapter. The operators AN, AD and A[B] are
self-adjoint in L2(Rn+), cf. Theorem 5.5.

In the next theorem we show that the operator A[B] is self-adjoint. More-
over, we establish a characterization of the point spectrum of A[B] in terms
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of the point spectrum of the operator-valued function I − BM(·) and we
provide a factorization for the resolvent difference of A[B] and AN.

Theorem 5.5. Let AN be the self-adjoint operator as in (5.1.6). Let γ
and M be the γ-field and the Weyl function from Proposition 5.2. Let B
be a bounded self-adjoint operator in L2(∂Rn+). Let A[B] be the operator
corresponding to B via (5.2.3). Then the following statements hold.

(i) The operator A[B] is self-adjoint in the Hilbert space L2(Rn+) and

A[B] ≥ −‖B‖2.

(ii) For all λ ∈ R−

λ ∈ σp(A[B]) ⇐⇒ 0 ∈ σp

(
I −BM(λ)

)
,

and the multiplicities of these eigenvalues coincide.

(iii) The formula

(A[B] − λ)−1 − (AN − λ)−1 = γ(λ)
(
I −BM(λ)

)−1
Bγ(λ)∗

holds for all λ ∈ ρ(A[B]) ∩ ρ(AN).

Proof. (i) By Proposition 5.1 the range of the boundary mapping Γ0 coin-
cides with the auxiliary Hilbert space L2(∂Rn+). By assumptions the opera-
tor B is bounded and self-adjoint in L2(∂Rn+). Hence, by Proposition 5.2 (ii)
for all λ < −‖B‖2 the condition

‖M(λ)‖ · ‖B‖ < 1,

holds, and Theorem 2.21 implies the statement.

(ii) The equivalence between the point spectra is a consequence of Propo-
sition 2.14.

(iii) Krein’s formula follows from Corollary 2.16 in view of the self-
adjointness of A[B].

In the next theorem we obtain a factorization (Krein’s formula) for the
resolvent difference of A[B1] and A[B2].
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Theorem 5.6. Let AN be the self-adjoint operator from (5.1.6), and let
γ and M be the γ-field and the Weyl function from Proposition 5.2. Let
B1 and B2 be bounded self-adjoint operators in L2(∂Rn+), and let A[B1] and
A[B2] be the self-adjoint operators corresponding via (5.2.3) to B1 and B2,
respectively. Then the formula

(A[B2] − λ)−1 − (A[B1] − λ)−1 =

γ(λ)
(
I −B2M(λ)

)−1
(B2 −B1)

(
I −M(λ)B1

)−1
γ(λ)∗

holds for all λ ∈ ρ(A[B2]) ∩ ρ(A[B1]) ∩ ρ(AN). In this formula the middle
terms satisfy

(I −B2M(λ))−1, (I −M(λ)B1)−1 ∈ B(L2(∂Rn+))

for all λ ≤ −max{‖B1‖2, ‖B2‖2}.

Proof. Krein’s formula follows from Theorem 2.17, and self-adjointness of
A[B1] and A[B2]. According to Proposition 4.2 (ii) we immediately get for
all λ < −max{‖B1‖2, ‖B2‖2} the inequalities ‖BiM(λ)‖ < 1 with i = 1, 2,
which imply the properties of the middle terms.

Furthermore, we formulate an analogue of Theorem 3.7 for the half-space
case with analogous proof which is omitted.

Theorem 5.7. Let B be a bounded self-adjoint operator in L2(∂Rn+), and
let A[B] be the operator corresponding to B via (5.2.3). Assume that

f ∈ H1(∂Rn+) =⇒ Bf ∈ H1/2(∂Rn+).

Then the inclusion domA[B] ⊂ H2(Rn+) holds.

If B is an operator of multiplication with a real-valued bounded function
β, then we agree to write A[β] instead of A[B].

Corollary 5.8. Assume that β ∈W 1,∞(∂Rn+). Then the inclusion domA[β] ⊂
H2(Rn+) holds.

5.3 Operator ideal properties of resolvent power
differences and trace formulae

Throughout this section we focus only on self-adjoint extensions with local
Robin boundary conditions, namely

(5.3.1) A[β]f := −∆f, domA[β] :=
{
f ∈ H3/2

∆ (Rn+) : βf |∂Rn+ = ∂νf |∂Rn+
}
,

120



where β is a real-valued L∞-function. We obtain sufficient conditions on
β2−β1 ensuring compactness or certain Schatten-von Neumann properties of
the resolvent differences or the resolvent power differences of the self-adjoint
operators A[β1] and A[β2]. For the trace class resolvent power differences we
provide the corresponding trace formulae.

5.3.1 Compactness of resolvent differences

In this subsection we give a sufficient condition on β2−β1 for compactness of
the resolvent difference of A[β1] and A[β2]. This condition includes the case
of uniformly vanishing β2 − β1 with respect to all directions and also more
general situations. In the particular case β1 ≡ 0, i.e. A[β1] = AN, we pass to
the conclusions about the absolutely continuous parts of the operators using
recent results of the work [MN11].

Let us recall condition (2.3.6) on a function α ∈ L∞(∂Rn+), which is
given first in Subsection 2.3.2, namely

µ
({
x ∈ ∂Rn+ : |α(x)| ≥ ε

})
<∞, for all ε > 0,(5.3.2)

here µ denotes the Lebesgue measure on ∂Rn+.

Theorem 5.9. Let real-valued β1, β2 ∈ L∞(∂Rn+) be such that β := β2 − β1

satisfies condition (5.3.2), and let A[β1] and A[β2] be the self-adjoint Robin
Laplacians on the half-space corresponding via (5.3.1) to β1 and β2, respec-
tively. Then the following property

(A[β2] − λ)−1 − (A[β1] − λ)−1 ∈ S∞(L2(Rn+))

holds for all λ ∈ ρ(A[β2]) ∩ ρ(A[β1]).

Proof. Let us fix λ0 < −max{‖β1‖2∞, ‖β2‖2∞}. Let γ and M be the γ-field
and the Weyl function from Proposition 5.2. Theorem 5.6 claims, among
other, that

(5.3.3)
(
I − β2M(λ0)

)−1
,
(
I −M(λ0)β1

)−1 ∈ B
(
L2(∂Rn+)

)
.

Note that the mapping Γ0 is surjective onto L2(∂Rn+), hence, by Proposi-
tion 2.11 (i)

(5.3.4) γ(λ0) ∈ B
(
L2(∂Rn+), L2(Rn+)

)
,

and the adjoint of γ(λ0) can be represented as

γ(λ0)∗ = Γ1(AN − λ0)−1.
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Note that ran((AN−λ0)−1) ⊂ H2(Rn+) and that Γ1 is the usual trace. Thus,
by (5.1.1) it holds that

(5.3.5) ran(γ(λ0)∗) ⊂ H3/2(∂Rn+) ⊂ H1(∂Rn+).

According to Proposition 5.2 (ii), we get

(5.3.6) ranM(λ0) = H1(∂Rn+).

Note that in view of (5.3.3) for an arbitrary ψ ∈ L2(∂Rn+) the element

ϕ :=
(
I −M(λ0)β1

)−1
γ(λ0)∗ψ

is well-defined. Applying the operator I −M(λ0)β1 to both hand sides in
the last equation, we obtain using (5.3.5) and (5.3.6) that

ϕ = γ(λ0)∗ψ +M(λ0)β1ϕ ∈ H1(∂Rn+).

Now Lemma 2.23 and the assumptions on β yield

(5.3.7) β
(
I −M(λ0)β1

)−1
γ(λ0)∗ ∈ S∞

(
L2(Rn+), L2(∂Rn+)

)
.

According to the factorization from Theorem 5.6 with B1 = β1 and B2 = β2

(A[β2] − λ0)−1 − (A[β1] − λ0)−1

= γ(λ)
(
I − β2M(λ0)

)−1
β
(
I −M(λ0)β1

)−1
γ(λ0)∗,

and using (5.3.3), (5.3.4) and (5.3.7) we get the claim for the point λ = λ0.
Finally, applying Lemma 2.2 with m = 1 and A = S∞ we get the statement
for all λ ∈ ρ(A[β2]) ∩ ρ(A[β1]).

The corollary below follows from the theorem above and [MN11, Propo-
sition 5.11 (v) and (vii)]

Corollary 5.10. Let the self-adjoint operator AN be as in (5.1.6). Let a
real-valued β ∈ L∞(∂Rn) satisfy the condition (5.3.2), and let A[β] be the
self-adjoint Robin Laplacian on the half-space corresponding to β via (5.3.1).
Then the operator AN and the absolutely continuous part of the operator A[β]

are unitarily equivalent.
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5.3.2 Elliptic regularity and related Sp and Sp,∞-estimates

In this subsection we obtain regularity of the functions (A[β] − λ)−1f under
certain assumptions on the smoothness of f and β. These results are then
used to obtain estimates of singular values for certain compact operators
appearing in the representation of resolvent power differences of the self-
adjoint operators A[β2] and A[β1].

In the next lemma we show smoothing properties of the γ-field γ and
the Weyl function M from Proposition 5.2.

Lemma 5.11. Let the self-adjoint operator AN be as in (5.1.6). Let γ and
M be the γ-field and the Weyl function from Proposition 5.2. Then the
following smoothing properties

ran
(
γ(λ) � Hs(∂Rn+)

)
⊂ Hs+3/2(Rn+),

ran
(
M(λ) � Hs(∂Rn+)

)
⊂ Hs+1(∂Rn+),

hold for all λ ∈ C \ R+ and all s ≥ 0.

Proof. Let us fix λ ∈ C \ R+. According to the decomposition

domT = domAN u ker(T − λ),

and, in view of (5.1.1) and (5.1.4), the mapping Γ0 is a bijection from
Hs+3/2(Rn+) ∩ ker(T − λ) onto Hs(∂Rn+). Hence we conclude from Defini-
tion 2.10 that the first smoothing property holds. Since M(λ) = Γ1γ(λ) and
Γ1 is the usual trace, we get the second smoothing property from (5.1.1).

Let the spaces W k,∞(∂Rn), k ∈ N0, be defined as in Section 2.3. In the
next lemma we prove a more involved smoothing property. This smoothing
property plays an important role in the further considerations.

Lemma 5.12. Let γ and M be the γ-field and the Weyl function from
Proposition 5.2. Let β ∈ Wm,∞(∂Rn) be real-valued with m ∈ N. Then the
smoothing property

ran
(
(I −M(λ)β

)−1
γ(λ)∗ � Hs(Rn+)

)
⊂ Hs+3/2(∂Rn+)

holds for all λ < −‖β‖2∞ and all s ∈
[
0,m− 1

2

]
.

Proof. Let us fix λ0 < −‖β‖2∞, and let us take an arbitrary ψ ∈ Hs(Rn+).
Recall that AN is the realization of the Laplace differential expression on
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the half-space subject to the Neumann boundary condition, and thus λ0 ∈
ρ(AN). Elliptic regularity of the Neumann Laplacian on the half-space, see,
e.g. [W87, Lemma 13.1], yields

(5.3.8) (AN − λ0)−1ψ ∈ Hs+2(Rn+).

By Proposition 2.11 (i) with A0 = AN we can express γ(λ0)∗ as

γ(λ0)∗ = Γ1(AN − λ0)−1.

In view of the last expression, the property of the trace (5.1.1) and the
smoothing property (5.3.8) we get

(5.3.9) γ(λ0)∗ψ ∈ Hs+3/2(∂Rn+).

According to our choice of λ0 we obtain by Theorem 5.6 that the operator
(I −M(λ0)β)−1 ∈ B(L2(∂Rn+)), and thus the element

ϕ :=
(
I −M(λ0)β

)−1
γ(λ0)∗ψ

is well-defined. Applying the operator I−M(λ0)β to both hand sides of the
last equation we get

(5.3.10) ϕ = γ(λ0)∗ψ +M(λ0)βϕ.

Suppose that ϕ ∈ H l(∂Rn+) with some l ∈ [0,m] ∩ N0. According to
the assumptions on β we conclude that βϕ ∈ H l(∂Rn+). Furthermore, by
Lemma 5.11

(5.3.11) M(λ)βϕ ∈ H l+1(∂Rn+).

Finally, the equation (5.3.10) and the smoothing properties (5.3.9) and
(5.3.11) give the following rule:

ϕ ∈ H l(∂Rn+) =⇒ ϕ ∈ Hmin{l+1,s+3/2}(∂Rn+),

which is true for all l = 0, 1, 2, . . . ,m. Note that s + 3/2 ≤ m + 1. We
start from l = 0, and, following the rule above, we get in the end that
ϕ ∈ Hs+3/2(∂Rn+), which is equivalent to our claim.

In the next lemma we prove smoothing property for the Robin Laplacian
A[β] under some assumptions on the coefficient β in the boundary condition.
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Lemma 5.13. Let β ∈Wm,∞(∂Rn+) be real-valued with m ∈ N , and let A[β]

be the self-adjoint Robin Laplacian corresponding to β via (5.3.1). Then the
smoothing property

ran
(
(A[β] − λ)−1 � Hs(Rn+)

)
⊂ Hs+2(∂Rn+)

holds for all λ < −‖β‖2∞ and all s ∈
[
0,m− 1

2

]
.

Proof. Let γ and M be the γ-field and the Weyl function from Proposi-
tion 5.2. Let us fix λ0 < −‖β‖2∞, and let us take an arbitrary ψ ∈ Hs(Rn+).
By Theorem 5.5 (i) the operator A[β] is self-adjoint in L2(Rn+) and, in addi-
tion, it holds that λ0 ∈ ρ(A[β]) ∩ ρ(AN). By Lemma 4.15, with the assump-
tion on β taken into account, we observe that(

I −M(λ0)β
)−1

γ(λ0)∗ψ ∈ Hs+3/2(∂Rn+).

Since s + 1/2 ≤ m, the last observation, the assumption on β and (2.3.1)
yield

β
(
I −M(λ0)β

)−1
γ(λ0)∗ψ ∈ Hs+1/2(∂Rn+).

Applying the γ-field, we get by Lemma 5.12

γ(λ0)β
(
I −M(λ0)β

)−1
γ(λ0)∗ψ ∈ Hs+2(Rn+).

Note that (AN− λ0)−1ψ ∈ Hs+2(Rn+) as well. By Krein’s formula, provided
in Theorem 5.6, with B1 = β and B2 = 0 we get

(A[β] − λ0)−1ψ =

= (AN − λ0)−1ψ︸ ︷︷ ︸
∈Hs+2(Rn+)

+ γ(λ0)β
(
I −M(λ0)β

)−1
γ(λ0)∗ψ︸ ︷︷ ︸

∈Hs+2(Rn+)

∈ Hs+2(Rn+),

which is equivalent to the claim because ψ ∈ Hs(Rn+) is arbitrary.

The proposition below is the key result of this subsection and it plays a
prominent role in the proof of the main results in this chapter.

Proposition 5.14. Let the self-adjoint operator AN be as in (5.1.6). Let
γ and M be the γ-field and the Weyl function from Proposition 5.2. Let
β ∈ W 2m−1,∞(∂Rn+) with m ∈ N and α ∈ L∞(∂Rn+) be real-valued, and
let A[β] be the self-adjoint Robin Laplacian corresponding to β via (5.3.1).
Then for k = 0, 1, 2, . . . ,m− 1 and λ < −‖β‖2∞ the following holds.
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(i) If α is compactly supported, or at least α ∈ L
n−1

2k+3/2 (∂Rn+) with n−1
2k+3/2 >

2, then

α
(
I −M(λ)β

)−1
γ(λ)∗(A[β] − λ)−k ∈ S n−1

2k+3/2
,∞
(
L2(Rn+), L2(∂Rn+)

)
,

(A[β] − λ)−kγ(λ)
(
I − βM(λ)

)−1
α ∈ S n−1

2k+3/2
,∞
(
L2(∂Rn+), L2(Rn+)

)
.

(ii) If α ∈ Lp(∂Rn+) with p ≥ 2 such that p > n−1
2k+3/2 , then

α
(
I −M(λ)β

)−1
γ(λ)∗(A[β] − λ)−k ∈ Sp

(
L2(Rn+), L2(∂Rn+)

)
,

(A[β] − λ)−kγ(λ)
(
I − βM(λ)

)−1
α ∈ Sp

(
L2(∂Rn+), L2(Rn+)

)
.

Proof. Let us fix λ0 < −‖β‖2∞. Lemma 5.13 and the assumption on β imply
that for k = 0, 1, 2, . . . ,m− 1

ran
(
(A[β] − λ0)−k

)
⊂ H2k(Rn+).

Further, we apply Lemma 4.15 and get

ran
((
I −M(λ0)β

)−1
γ(λ0)∗(A[β] − λ0)−k

)
⊂ H2k+3/2(∂Rn+).

The items of this proposition follow from the corresponding items of Lemma 2.25
with s = 2k + 3/2.

5.3.3 Resolvent power differences in Sp and Sp,∞-classes and
trace formulae

In the following two main theorems of this chapter we provide Sp and Sp,∞-
properties of the resolvent power differences of the self-adjoint Robin Lapla-
cians A[β1] and A[β2] on the half-space. For these results smoothness of β1

and β2, and decay of β1 − β2 are important. In the proofs the key idea
consists in factorizing |β| in a proper way.

Theorem 5.15. Let β1, β2 ∈ W 2m−1,∞(∂Rn+) be real-valued, and denote
β := β2−β1. Let A[β1] and A[β2] be the self-adjoint Robin Laplacians on the
half-space corresponding via (5.3.1) to β1 and β2, respectively. Assume that
l ∈ [1,m] ∩ N is arbitrary.

(i) If at least one of these two conditions:

(a) β is compactly supported;
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(b) n > 4l and β ∈ L
n−1
2l+1 (∂Rn+);

holds, then

(5.3.12) (A[β2] − λ)−l − (A[β1] − λ)−l ∈ S n−1
2l+1

,∞
(
L2(Rn+)

)
for all λ ∈ ρ(A[β1]) ∩ ρ(A[β2]).

(ii) If m > n
2 − 1, l ∈ N such that n

2 − 1 < l ≤ m, and at least one of
the conditions (a) or (b) in item (i) holds, then for all λ ∈ ρ(A[β1]) ∩
ρ(A[β2]) the operator in (5.3.12) belongs to the trace class, and the
following formula

tr
(

(A[β2] − λ)−l − (A[β1] − λ)−l
)

=
1

(l − 1)!
tr

(
dl−1

dλl−1

(
U(λ)M ′(λ)

))

holds, where U(λ) := (I − β2M(λ)
)−1

β
(
I −M(λ)β1

)−1
.

Proof. (i) Let us fix λ0 < −max{‖β1‖2∞, ‖β2‖2∞}. By Theorem 5.5 the resol-
vent difference of the self-adjoint operators A[β1] and A[β2] can be expressed
as

(A[β2] − λ0)−1 − (A[β1] − λ0)−1

= γ(λ0)
(
I − β2M(λ0)

)−1
β
(
I −M(λ0)β1

)−1
γ(λ0)∗.

(5.3.13)

For all s ∈ [0, 1], we define the operators

Fs(λ0) :=γ(λ0)
(
I − β2M(λ0)

)−1|β|s,

Gs(λ0) := sign(β)|β|s
(
I −M(λ0)β1

)−1
γ(λ0)∗.

Observe that for each s ∈ [0, 1] the resolvent difference in (5.3.13) can be
rewritten

(A[β2] − λ0)−1 − (A[β1] − λ0)−1 = F1−s(λ0)Gs(λ0).

Denote s(k) := 2k+3/2
2l+1 for k = 0, 1, 2, . . . , l−1. Hence, the operators Tl,k(λ0)

as in (2.1.2) with H = A[β1] and K = A[β2] can be represented as

Tl,k(λ0) = (A[β2] − λ0)−(l−k−1)F1−s(k)λ0) ·Gs(k)(λ0)(A[β1] − λ0)−k.
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If β is compactly supported (condition (a) holds), then also |β|1−s(k) and
sign(β)|β|s(k) are compactly supported. Hence Proposition 5.14 (i) and Lem-
ma 2.3 yield

(A[β2] − λ0)−(l−k−1)F1−s(k)(λ0) ∈ S n−1
2l−2k−1/2

,∞,

Gs(k)(λ0)(A[β1] − λ0)−k ∈ S n−1
2k+3/2

,∞.
(5.3.14)

If β is such that condition (b) holds, then for all k = 0, 1, 2 . . . , l − 1 we
obtain

|β|1−s(k) ∈ L
n−1

2l−2k−1/2 (∂Rn+) and sign(β)|β|s(k) ∈ L
n−1

2k+3/2 (∂Rn+).

Note that under assumption n > 4l we have

n− 1

2l − 2k − 1/2
> 2 and

n− 1

2k + 3/2
> 2

for all k = 0, 1, 2, . . . , l − 1. Proposition 5.14 (i) and Lemma 2.3 yield

(A[β2] − λ0)−(l−k−1)F1−s(k)(λ0) ∈ S n−1
2l−2k−1/2

,∞,

Gs(k)(λ0)(A[β1] − λ0)−k ∈ S n−1
2k+3/2

,∞.
(5.3.15)

Now we can conclude from (5.3.14) in the case, that condition (a) holds,
and from (5.3.15) in the case, that condition (b) holds, that

Tl,k(λ0) ∈ S n−1
2l−2k−1/2

,∞ ·S n−1
2k+3/2

,∞ = S n−1
2l+1

,∞.

for all k = 0, 1, 2, . . . , l − 1. Finally, Lemma 2.4 implies the statement.

(ii) The trace formula can be proved as in Theorem 3.17 (ii) with certain
modifications, which are not explained in order to avoid repetitions.

Corollary 5.16. If, under the assumptions of the last theorem, β is com-
pactly supported and m > n

2 − 1, then the wave operators W±(A[β1], A[β2])
for the scattering pair {A[β1], A[β2]} exist and are complete. Hence, the ab-
solutely continuous parts of A[β1] and A[β2] are unitarily equivalent.

In the next theorem we consider the special case of an integrable differ-
ence of the Robin coefficients.
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Theorem 5.17. Assume that n = 2 or n = 3 holds. Let β1, β2 ∈W 1,∞(∂Rn+)
be real-valued, and assume that β := β2−β1 ∈ L1(∂Rn+) holds. Let A[β1] and
A[β2] be the self-adjoint Robin Laplacians on the half-space corresponding via
(5.3.1) to β1 and β2, respectively. Then the property

(5.3.16) (A[β2] − λ)−1 − (A[β1] − λ)−1 ∈ S1

(
L2(Rn+)

)
holds for all λ ∈ ρ(A[β1])∩ ρ(A[β2]), and the trace of the resolvent difference
in (5.3.16) can be expressed as

tr
(

(A[β2] − λ)−1 − (A[β1] − λ)−1
)

= tr
(
U(λ)M ′(λ)

)
,

where U(λ) :=
(
I − β2M(λ)

)−1
β
(
I −M(λ)β1

)−1
.

Proof. Let us fix λ0 < −max{‖β1‖2∞, ‖β2‖2∞}. Observe that√
|β|,

√
|β| sign(β) ∈ L2(Rn−1).

Note that for n = 2 or n = 3 the inequality 2(n−1)
3 < 2 holds. Hence, by

Proposition 5.14 (ii)√
|β|
(
I −M(λ0)β1

)−1
γ(λ0)∗ ∈ S2,

γ(λ0)
(
I − β2M(λ0)

)−1√|β| sign(β) ∈ S2.
(5.3.17)

By Theorem 5.5 the resolvent difference of self-adjoint operators A[β1] and
A[β2] can be expressed as

(A[β2]−λ0)−1−(A[β1]−λ0)−1 = γ(λ0)
(
I−β2M(λ0)

)−1
β
(
I−M(λ0)β1

)−1
γ(λ0)∗.

In view of this factorization and of (5.3.17) we get

(A[β2] − λ0)−1 − (A[β1] − λ0)−1 ∈ S2 ·S2 = S1.

Using Lemma 2.4 we conclude that

(A[β2] − λ)−1 − (A[β1] − λ)−1 ∈ S1

for all λ ∈ ρ(A[β1]) ∩ ρ(A[β2]).

The trace formula can be proven as in Theorem 3.17 (ii).

Corollary 5.18. Under the assumptions of the last theorem, the wave op-
erators W±(A[β1], A[β2]) for the scattering pair {A[β1], A[β2]} exist and are
complete. Hence, the absolutely continuous parts of A[β1] and A[β2] are uni-
tarily equivalent.
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[H89] J. Herczyński, On Schrödinger operators with distributional poten-
tials, J. Operator Theory 21 (1989), 273–295.

[JK78] A. Jensen and T. Kato, Asymptotic behavior of the scattering phase
for exterior domains, Comm. Partial Differential Equations 3 (1978),
1165–1195.

[JP51] R. Jost and A. Pais, On the scattering of a particle by a static
potential, Physical Rev. 82 (1951), 840–851.

138



[FM93] L. Faddeev and S. Merkuriev, Quantum scattering theory for sev-
eral particle systems., Kluwer Academic Publishers Group, Dordrecht,
1993.

[K67] T. Kato, Scattering theory with two Hilbert spaces, J. Funct. Anal.
1 (1967), 342–369.

[K95] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag,
Berlin, 1995.

[Ko75] A. N. Kochubei, Extensions of symmetric operators and symmetric
binary relations, Math. Zametki 17 (1975), 41–48 (in Russian); trans-
lated in: Math. Notes 17 (1975), 25–28.
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