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Abstract 
Stochastic System Actions and Effects in Engineered Timber Products and 
Structures 

Within the last decades and supported by progress made in adhesive technology high 
performing and versatile applicable engineered timber products have been developed. 
After classification and subsequent bonding of the raw material these products show high 
resistance in strength and stiffness and allow column-free overspan of large areas. The 
connection of these system products to structures is made by nodes which itself mostly 
consist of connectors arranged in groups. Thus the composition of elements to systems 
can be observed at least on three hierarchies: (1) within the hierarchical structure of wood 
and timber, (2) within engineered timber products and groups of connectors, and (3) 
within the bearing structure, consisting of primary, secondary and tertiary structural 
elements. Despite common aspects between these hierarchies in respect to arrangement 
and common action of elements a general consideration is currently not available. 
Engineered timber products or the group action of connectors are in particular described 
by empirical models which are mostly established by fitting test data. Thereby and due to 
partly pronounced variations in material characteristics of timber significant influences on 
the group action of elements within systems can be observed.  

In this thesis stochastic system actions and related effects of serial, parallel or serial-
parallel arranged elements are analysed and the most influencing parameters are captured. 
Based on a comprehensive survey of literature on the three most important stochastic 
material models for linear-elastic brittle (WEIBULL, 1939; DANIELS, 1945; a.o.) and 
ideally linear-elastic-plastic material behaviour it is the aim to derive general laws for the 
description of serial and parallel system behaviour with the help of stochastic simulations. 
Based on these investigations and completed by additionally elaborated material specific 
facts of wood and timber on several hierarchies these general laws together with proposed 
models are exemplarily applied to and explained on engineered timber products. Thereby 
the aim is to show the relevance of stochastic methods as part of material and structure 
modelling, and additionally to provide the engineer with simplified models for the 
estimation of system behaviour.  
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Zusammenfassung (in German) 
Stochastische Betrachtung von Systemprodukten und –strukturen aus Holz  

In den letzten Jahrzehnten kam es, unterstützt durch die Fortschritte in der 
Klebetechnologie, zur Entwicklung leistungsfähiger und vielseitig einsetzbarer 
Bauprodukte aus Holz. Diese ermöglichen, nach gezielter Klassifizierung des 
Grundmaterials und anschließender Fügung, das Abtragen hoher Lasten und das 
stützenfreie Überspannen weiter Flächen. Die Fügung dieser Systemprodukte zu 
Tragstrukturen erfolgt über Verbindungsknoten aus meist zu Gruppen angeordneten 
Stiften. Das Fügen von Elementen zu Systemen kann somit auf zumindest drei Ebenen 
beobachtet werden: (1) innerhalb der hierarchischen Materialstruktur Holz, (2) in 
Systemprodukten aus Holz bzw. in der Gruppenwirkung von Verbindungsmitteln, und (3) 
in der Tragstruktur, bestehend aus primären, sekundären und tertiären Tragelementen. 
Trotz Gemeinsamkeiten zwischen den Systemebenen hinsichtlich der Anordnung und des 
gemeinsamen Wirkens der Elemente ist gegenwärtig eine übergeordnete Betrachtung 
nicht gegeben. Insbesondere bei Systemprodukten aus Holz oder der Gruppenwirkung 
von Verbindungsmitteln wird in der Beschreibung auf empirische, meist an 
Versuchsdaten gefittete Modelle, zurückgegriffen. Hierbei kommt es, bedingt durch die 
zum Teil ausgeprägten Streuungen in den Materialkennwerten von Holz, zu erheblichen 
Beeinflussungen auf die beobachtbare Gruppenwirkung der Elemente in Systemen.  

Inhalt dieser Arbeit ist es die Anteile stochastischer Systemwirkungen seriell, parallel 
oder seriell-parallel gefügter Elemente allgemein zu studieren und wesentliche 
Einflussgrößen zu erfassen. Aufbauend auf einer umfangreichen Literaturrecherche 
betreffend die drei wesentlichen stochastischen Materialmodelle für linear-elastisch 
sprödes (WEIBULL, 1939; DANIELS, 1945; u.a.) und ideal linear-elastisch-plastisches 
Werkstoffverhalten gilt es mit Hilfe von stochastischen Simulationen allgemeine 
Gesetzmäßigkeiten aus seriellem sowie parallelem Systemverhalten abzuleiten. Darauf 
aufbauend und ergänzt durch erarbeitete spezifische Fakten zum Material Holz entlang 
seiner Hierarchiekette werden diese allgemein anwendbaren Gesetzmäßigkeiten und 
davon abgeleitete Modelle an ausgewählten Beispielen für Systemprodukte aus Holz 
angewendet und dargelegt. Hierbei ist es insbesondere das Ziel, einerseits die Relevanz 
der Stochastik in der Material- und Strukturmodellierung aufzuzeigen, und andererseits 
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dem Ingenieur vereinfachte Modelle zur Abschätzung des Systemverhaltens zur 
Verfügung zu stellen. 
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Preface 
Timber is a natural, sustainable raw material. It is optimised for load bearing, nutrients 
and water transport and storage in the living tree. It is also outstanding for a remarkable 
variety of applications as building material in engineered light-weight structures with 
exhaustive strength vs. density ratios. It has shown its outstanding abilities since 
thousands of years and has thereby remarkably influenced the evolution of mankind 
including also the industrial revolution and nowadays art in construction and living. 
Timber constitutes a high efficient, porous raw material. It is used for various applications 
utilising single tissues or just chemical constituents for e.g. medicine and food industry 
up to cellulose fibres for high efficient composites and many more. Nevertheless, the 
main application worldwide in regard to deployed volume, beside about 50% share for 
energy, lies in the building industry sector, especially for load bearing purposes. In that 
field timber remarkable constitutes a material enabling slender, sophisticated and 
architectural appealing structures and art. Current developments in production techniques 
widen the product range further from primary linear elements to two dimensional 
structural components like cross laminated timber (CLT). 

Nevertheless, in competition with building and construction materials like concrete and 
steel timber and timber products have to be on the edge of current and future 
requirements defined by the daily business and use. Generally spoken, building products 
have to be:  

 economically affordable and compatible in respect to 

 price per unit volume / mass; 

 costs during the erection; 

 costs during life time and disposal / recycling; 

 available in respect to time, quantity and quality; 

 multifunctional in structural application and over the whole life time; 

 reliable, safe and uniform and / or predictable in quality concerning its 
characteristics and behaviour in interaction with its environment. 
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Timber and timber products exhibit good and even best performance in nearly all 
categories listed above if the material is applied considering its natural characteristics. In 
the last decades and concerning the last three mentioned requirements the performance of 
timber was in particular pushed by the development of adhesive systems. These enable 
bonding of timber elements side-by-side, face-by-face or also lengthwise (cross-bonding) 
to linear, two- and three-dimensional system products which act as one unit and can be 
produced in practically every desired dimension. These developments together with 
advancements in quality assurance of timber in respect to grading or classification of the 
raw material enabled a revolution in the development of high efficient timber products for 
load bearing purposes characterised e.g. by  

 classified base material of a defined and standardised quality according 
international standards (e.g. EN 14081, EN 338);  

 internationally standardised material and product characteristics (e.g. EN 338, 
EN 1194, PREN 14080 and several technical approvals);  

 defined, regulated and limited product and material characteristics in respect to 
dimension, moisture content, surface and appearance. 

This revolution lead to product developments like finger jointed construction timber 
(FJCT), duo- and trio-beams, glued laminated timber (GLT), cross laminated timber 
(CLT), laminated veneer lumber (LVL) and oriented strand boards (OSB). All these 
products are characterisable as systems composed of elements and components like 
beams, boards, veneers or strands which are forced to interact within the product due to a 
rigid or quasi-rigid connection performed by bonding. Even the material itself act as a 
system composed of elements as representatives of lower hierarchical levels of the 
material structure. Through this interaction homogenisation effects are activated which 
reduce the variability of characteristic properties, e.g. physical properties like strength, 
stiffness and density. This enables firstly a higher reliability in compliance of product 
characteristics, and secondly an enhancement of performance especially of the bearing 
capacity. The last one follows from increasing design relevant properties on lower 
quantile levels (e.g. 5 %-quantiles). The development and advances in the field of 
engineered connection techniques (e.g. dowel-type fasteners for shearing, self-tapping 
full-threaded screws for withdrawl) enable efficient and high performing erection and 
establishment of timber constructions leading further to system interaction on the level of 
load bearing structures.  



Preface 

  13 

Beside all these essential impacts and developments consistent characterisation of raw, 
graded and classified material is lacking. There exists no consistent modelling of timber 
products for example with starting point at the performance of the base material. 
Nevertheless, this is required if the obvious interactions of positive and negative system 
effects are recognised as worthful for consideration.  

The main focus of this work is on one specific topic of all possible applications of timber. 
It concentrates on the load bearing behaviour of timber and timber products and tries to 
span the scientific work from bar-shaped linear members like trusses and beams, to two 
dimensional slab- and plate-like elements up to connection systems. It concentrates on the 
term “system”, characterised by the arrangement of elements and their interactions 
observable as system behaviour or “system action”, divided into “serial” and “parallel” 
actions and serial and parallel “system effects” as logical consequences, the output of the 
system action. Nevertheless, the more general work concerning parallel and serial system 
actions and effects is also applicable to other materials as well as familiar applications 
described in this manuscript. It has to be clarified that this manuscript focuses on the 
stochastic description of system behaviour. Nevertheless, the material behaviour and 
mechanics in respect to stresses and strains plays a major role and influence consequences 
of system action. As will be outlined in more detail afterwards perfect brittle failure 
characteristics in combination with perfect linear elastic material behaviour can be 
defined as the simplest case of material description. It can be modelled sufficiently by 
consideration of stochastic system effects under mechanical constraints. However, the 
system action itself will be always an interaction of mechanics and stochastics. In the 
opposite, perfect plastic material behaviour leads to a reduction of stochastic system 
effects on expectable values leading to a balancing of all effected and interacting 
elements in the system.  

More generally, the interaction of elements can be treated (i) as a function of system size, 
(ii) in respect to the element arrangement in the system in respect to its stresses and 
strains, (iii) and in dependency of the material behaviour in the elastic / plastic region.  

The present work supports the interested reader partially with simplified equations 
enabling considerations of treated system effects in standardised design procedures 
having in mind the theoretical background and descriptive boundary conditions of 
stochastics. The aim is to support the engineer with decisive and important information 
concerning system actions and effects and to provide to a certain degree the possibility to 
take into account the stochastics nature of materials.  
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A brief overview of the content: The thesis is subdivided in chapters which mirror the 
above mentioned aspects in a broader sense. The first chapter concentrates on the 
relevance of dispersion / statistical spread in general and discusses why it is impossible to 
neglect one of the main parameters for the decription of materials, material behaviour and 
natural phenomena in general. In addition some statements and general definitions are 
given. Chapter two gives a brief overview and introduction to statistics and probability 
theory and delivers tools concentrating on definitions of some selected probability 
distributions, statistical theories and general statistical models. The reader familiar with 
this topic may skip this chapter. Nevertheless and in the opinion of the author the 
importance of the presented theory dedicates this chapter to the general part of the work 
and not to the annex. The third chapter focuses on serial and parallel system actions and 
related effects. After a general overview both aspects – serial and parallel – are discussed 
in detail concentrating on stochastic effects. The results are applicable also for other 
materials as wood and even for serial and parallel systems in general. Chapter four gives 
some comments on scaling and hierarchical levels of wood and timber and its tissues at 
first time concentrating on the focused material timber. Some general thoughts on scaling 
and analogies between hierarchical levels are discussed. Chapter five exemplarily 
demonstrates the application of so far compiled work and gives information on modelling 
of various effects in timber and timber products with respect to its main characteristics 
strength, stiffness and density. Starting with an introductory section, a review of literature 
concerning spatial correlation as well as serial and parallel effects, this chapter provides 
the basis for the stochastic consideration of system effects in structural timber and system 
products. Chaper five may be seen as the most important chapter of the work presenting 
applications and equations relevant to practical aspects and standardisation. The 
manuscript finishes with a closing chapter six reflecting and displaying some general 
outcomes and conclusions of the work. 

Acknowledgments: The herein presented thesis would not have been possible without 
support by a number of persons to whom I owe gratidude for a diversity of reasons.  

First of all I would like to express my sincere gratidude to Univ.-Prof. Dipl.-Ing. 
Dr.techn. Gerhard Schickhofer for offering me an assistant professor position at the 
Institute of Timber Engineering and Wood Technology at Graz University of Technology 
as well as for the opportunity to lead and conduct numerous research projects within the 
last eight years mainly performed at or in collaboration with the competence centre 
holz.bau forschungs gmbh. His inspiring and motivating character which enthusiasticly 



Preface 

  15 

directed me to the field of science with focus on timber engineering, the time for 
discussions and for taking over the supervision have to be especially acknowledged. In 
this respect I would also like to express my sincere gratidude to Univ.-Prof. Dipl.-Ing. 
Dr.techn. Ernst Stadlober as co-supervisor, but in particular for inspiring me to deepen 
my knowledge in statistics and probability theory and to combine both research fields of 
timber engineering and stochastics with focus on stochastic material modelling. The 
numerous fruitful discussions, time and effort conducted for reading and reviewing my 
work and his enthusiasm during our meetings are highly appreciated. I want to express 
my general gratidude again to both for encouraging me to new perceptions and view on 
topics and scientific challenges. I would like to express my great thank to my colleague 
Dipl.-Ing. Dr.-techn. Alexandra Thiel for her willingness to spend time for discussions 
and for her support in programming as well as her patience when I was reporting on 
progress and latest findings of my work. 

The research performed would partly not have been done without the financial support in 
particular of research projects MMSM 2.2.1 stoch_mod and 2.2.3 sfem_mat of the K-
Project “timber.engineering” (01/2008 till 12/2012) conducted at the competence centre 
holz.bau forschungs gmbh and performed in collaboration with the Institute of Timber 
Engineering and Wood Technology at Graz Unversity of Technology and the industrial 
partners involved in these research projects. The research projects are fostered through 
the funds of the Federal Ministry of Economics, Family and Youth, the Federal Ministry 
of Transport, Innovation and Technology, the Styrian Business Promotion Agency 
Association and the Province of Styria (A14). 

Finally, I would like to express my sincere gratidude, my greatest thank to my closest 
relatives, my wife Martina, my parents and parents in law Maria, Gerhard, Elisabeth and 
Manfred and to all of mine and my wife’s family members who kept on encouraging me 
to conduct this work, who supported me in progress and regress just by understanding and 
just for being here and jointly went the way with me. Special thanks go to my love 
Martina. I thank you especially for your continuous motivation, understanding, patience 
and for listening to me when I was enthusiastically refering on my work or just destroyed 
after recognising mistakes or suffering from regress or too slow progress, for keeping me 
in contact with life in particular in periods of intensive focus on work. Thank you just for 
standing behind me and being on my side …  

 



Preface 

16 

 

 

 

 



Introduction 

  17 

 

Chapter 1 

1 Introduction 
The variability, dispersion or statistical spread of natural phenomena and in 
particular of natural materials defines a critical feature and the driving force 
of this work. This chapter concentrates on the general topic of varying 
properties and delivers some essential background in demonstrating the 
necessity of stochastics as an important part, in but least important as the 
mechanics for the description of materials and their structural behaviour. The 
chapter starts with a general introduction on motivation and relevance of this 
work for timber engineering and for primary as well as secondary timber 
industry. The general applicability of some outcomes is discussed also for 
other materials and system considerations. A subsequent section concentrates 
in more detail on the dispersion, the statistical spread or variability and how 
these uncertainties can be classified and eventually influenced as well. The 
last section is dedicated to a short and general discussion on systems and to 
impacts on their modelling. 

1.1 General Introduction and Overview of the Work 

Wood and timber are fascinating natural materials designed by nature and designed as 
load bearing material, optimised on nano, micro and macro structural level. The material 
provides maximum resistance and multifunctionality in respect to mechanical 
characteristics, e.g. strength, stiffness, nutrients and water transport and storage with a 
minimum of mass. These features are consequences of an optimisation process provided 
by nature focusing on minimisation of used material (  resource prevention). Thereby 
parts and tissues like the shape of a tree, branches and cells are optimised in form and 
function. Some examples are the conical shape of the trunk, the inclusion of branches in 
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the structure of the trunk and the internal system able to react on externally applied 
stresses, by being generally pre-stressed (internal stresses) on the outside (MATTHECK 

AND BRELOER, 1994), and the generation of special tissues or cell types like reaction 
wood. These are only a few fascinating and inspiring characteristics relevant for and 
studied in the fields of wood technology, biomechanics and bionics. Due to its cellular, 
fragile material structure wood is often compared with bone. Nevertheless, whereas bone 
is able to react on externally applied stresses by restructuring and stiffening high stressed 
areas by more or less constant total volume (despite of growth of a human or animal) 
wood cells are once differentiated manifested in their structure and characteristics during 
the whole life until degradation, aside from the conversion from sap- to heartwood. In 
contrast to bone trees have the ability to react on external stresses in every next cell 
generation till the end of life.  

Growth and optimisation of the structure in the living tree is rather individually in respect 
to species, genetics, attitude, nutrients, social position within the forest, and other 
influencing parameters. This leads to a huge variety of individuals with a high statistical 
spread in their characteristics even if considering trees of the same species and from the 
same growth region, or even in particular timber elements taken from the same tree. 
Hence it is not surprising that wood and timber which is gained by harvesting and 
breakdown of the trees to logs and further to boards, scantlings, and beams show an 
distinctive statistical spread in their characteristics. This spread may be even increased 
due to conversion of the tree-internal optimised material structure with respect to the 
natural structure by arbitrarily choosen cutting patterns which are optimised primary 
according further applications and optical appearance, e.g. knots, knot clusters and decay. 
Only the breakdown process of logs to structural timber leads for example to about 20% 
reduction (loss) in bending and compression strength.  

Thus it is no surprise that structural timber (e.g. boards, scantlings, beams) exhibit large 
variability in their characteristics, especially in strengths. Last is due to the fact that 
physical characteristics required for the design of timber structures are strength, stiffness 
and density. Hereby the latter two characteristics are more or less of interest as averaged 
properties of timber in reference dimensions and thereby not significantly affected by 
localised changes. In contrast, strength itself is an absolutely locally defined 
characteristic. The weakest cross section or weakest layer in a specimen dominates and 
determines decisively the whole strength potential. Nevertheless, there are also more than 
one application examples where also local characteristics of density and stiffness are 
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required, e.g. if considering the influence of a locally placed fasteners in respect to their 
bearing capacity mainly influenced by local density, or stiffness in conjunction with 
stability e.g. in the half length of a hingh-supported column under compression. 

In general, design and erection of constructions require reliable and thereby homogenised 
products characterised by well predictable properties exhibiting low statistical spread 
enabling e.g. wide applicability, dood-natured failure behaviour, durability and 
affordability. In respect to timber some of these characteristics are fulfilled already 
naturally. Beside the natural ability to be used as structural, load bearing element, timber 
products are predominantely associated with “natural appearance”, “heat insulation” and 
other non-structural aspects. Maybe, as already stated by J. E. GORDON, “timber is too 
simple to be used”, meaning that the basic and oldest building material of mankind offers 
too less challenge to operate more intensively with timber in modern engineered 
structures. Other engineeres may be frightened of the statistical spread, the variety of 
characteristics and special features of timber and prefere nowadays common materials 
like steel, concrete and reinforced concrete, used to work with in daily business. For 
example timber shows in contrast to concrete material high performance in tension and 
compression in grain direction being additionally sustainable and durable if used 
correctly. Enforced by current discussions like the global CO2 problematic, timber 
experiencies some kind of renaissance, being more and more recognised as chance, as 
solution for some of our big environmental and economical challenges. Nevertheless, to 
increase further the attractiveness of timber to be used for engineering purposes it is 
necessary to decrease the statistical spread observable in characteristics, e.g. by the 
development of homogenised products. In timber homogenisation can be done on several 
ways, e.g.  

 homogenisation of swelling and shrinkage (e.g. by activating cross laminating 
effects); 

 homogenisation of quality, moisture, etc. by classification (grading) and quality 
assurance; 

 homogenisation of physical (mechanical) characteristics like strength, stiffness 
and density by activation and utilisation of system actions and related effects. 

The first way focuses on cross laminated products which show a reduction of swelling 
and shrinkage as consequence of activated cross laminating effects (locking effects) 
suffering from the negligible shrinkage rate in axial direction which is rougly about 1/100 
and 1/50 of tangential and radial direction, respectively. Furthermore, cross laminating 
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additionally balance properties and bearing capacities in longitudinal and transverse 
direction. Products which suffer already from these considerations are e.g. plywood, 
LVL, OSB and CLT in plane direction.  

The second way focuses on a certain homogenisation by quality assurance and 
classification (grading) of timber. Nevertheless, due to limited predictability or even 
impossible determination of some most important growth characteristics which decisively 
determine strength capacity (e.g. local and global grain deviation) decades of intensive 
international research shows only limited progress in strength grading. This leads to an 
insufficient and unreliable reduction of statistical spread and restricted predictability of 
strength classes (extractable from recent results published e.g. by RANTA-MAUNUS AND 

DENZLER, 2009; STAPEL ET AL., 2010). Thereby, grading only enables direct 
homogenisation in case of direct determinable characteristics. If a characteristic has to be 
classified by means of predictions and predictive parameters (e.g. strength estimated by 
means of eigenfrequency, density and knot share ratios) the possibilities in achieving 
reliable results and in particular for a reliable fulfilment of a certain degree of 
homogenisation itself are significantly affected by the degree of predictability. In general 
only a minor portion of indirect influence on a target homogenisation is realised. Even if 
grading would work perfectly the question is still open how to react on the grading result 
within industrial processes. Due to observable spatial correlation within specimens a 
repetitive grading result in every subsequent increment (e.g. defined by the knot cluster 
distance in softwoods with approximately 400 to 600 mm) has to be expected. Once the 
whole specimen is rejected a distinctive downgrading of the material and a high 
percentage of loss (reject) in raw material graded for a specific purpose has to be 
expected. Trimming every increment also leads to a high share of rejected specimen 
segments additionally being uneconomically due to high amount of required finger 
jointing. Nevertheless, fast and reliable on-line and on-site determination of density and 
stiffness (e.g. based on eigenfrequency measurements) enables the determination of also 
important global design characteristics.  

The third way of homogenisation allows for direct reduction of statistical spread by 
activation of system effects due to common actions of sufficiently connected sub-
elements, elements and components in systems. In contrast to grading (level two) 
enforced interaction between elements in parallel systems balances characteristics due to 
the fact that neighbouring elements can be assumed to be independent distributed in 
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respect to strength and stiffness. This leads to a maximum of homogenisation in physical 
properties.  

The focus of the present work is on modelling and quantification of these system actions 
and effects, of the common action of elements in a system in respect to their individual 
but expectable characteristics, their arrangement in the system (serial vs. parallel), the 
system size and the type of loading. Thereby, utilisation and activation of system action 
(common action) is a direct and reliable method for controlling the degree of 
homogenisation also in characteristics which cannot be classified (graded) non-
destructively (e.g. strength of natural materials). Thus system products are also simplier 
in production and handling considering the additionally required efforts in classification 
procedures. Nevertheless, a certain degree of secured quality and expectable 
characteristics of the base material is necessary and support a reliable production of 
system products and reliable activation of system effects. The influence of statistical 
spread of the base material is sharply reduced by homogenisation which leads to a 
balancing of base material characteristics and grading deficiencies. Some system products 
which benefit from these actions and effects are already available, in timber e.g. duo, trio, 
GLT, CLT, but also in other materials and environmental aspects, e.g computer systems, 
clusters and networks.  

Analysing the current design, product and test standards partly non consistent regulations 
of the base material (EN 338 vs. EN 1194 or PREN 14080), minor and if than often not 
explicit consideration of system effects as function of their main parameters, e.g. system 
size (technical approval of duo and trio beams e.g. Z-9.1-0623 and Z-9.1-0440 as well as 
PREN 14080), not conform regulations, e.g. of size effects in product and design 
standards (e.g. EN 384 vs. EN 1194 vs. EN 1995-1-1) are given. Furthermore, 
inconsistent determination of characteristic values by means of contradicting statistical 
methods or even so called statistical tools with unclear or minor statistical background or 
justification (e.g. EN 384 or EN 14080 vs. EN 14358) can be found. These facts, which 
for sure are not only valid for European standards and the material timber itself prevent 
any coherent modelling and design of products, system products and structures or any 
optimisation of already existent or newly invented products and structures. Perhaps it is 
simple to analyse and criticize above facts but for sure the ideal condition of an absolutely 
coherent system of standards is nearly impossible to reach beside the fact that consens is 
the driving force of codification in general.  
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The aim of this work is to elaborate additional background of system action and related 
effects as a result of homogenisation, the reduction of statistical spread in the main 
physical characteristics, e.g. strength, stiffness and density. Hereby, the systems are split 
into serial and parallel systems. These are further analysed separately for providing the 
basis for later examination and application of so far gained knowledge, especially for 
current timber system products and structures as well as for some improvements of 
existing products and design of new products by taken into account the necessity of 
combining stochastics and mechanics. The first one (stochastics) is for consideration of 
variability (statistical spread) and the second one (mechanics) is for consideration of 
stresses and strains and their mechanical contribution within an element, component, 
system or structure. The analysis of system effects in timber products is perhaps 
especially worthwhile due to remarkable amount of statistical spread in characteristics, in 
particular strength, delivering a huge potential for homogenisation. For example, 
considering the tensile strength of boards with an expectable coefficient of variation 
CoV(ft,0) = 30%. Due to the design of strength on the 5%-quantile only 59.1% of the 
average strength potential (mean value) is used as basis for design calculations assuming 
ft,0 ~ lognormal. If it is possible to reduce this spread to an amount of say CoV(ft,0) = 10%, 
without affecting the average in total 84.4% of mean potential can be realised on 5%-
quantile design level. This enables an increase in the utilisation ratio (performance) of 
ηsys / η1 = 42.9%. For quantification of these system effects analysis focuses on three 
system levels (Fig. 1.1),  

 Level I:  material;  

 Level II:  system products;  

 Level III:  system bearing structures.  

 

Fig. 1.1: Examples of systems on level I, II and III: structural material (I); system products (II); 
system structures (III); p ≡ parallel, s ≡ serial system action  

Level I concentrates on a simplified stochastic description of the base material structure, 
e.g. a board analysed as a series of discrete increments of zones with and without local 
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strength reducing growth characteristics. In the sense of stochastics the examinations 
concentrate on spatial correlation and distribution of local material characteristics by 
means of a stochastic process.  

Level II deals with the influence of serial and / or parallel system action by connecting 
elements and / or components in a way that they are forced to common (parallel) or at 
least simultaneous (serial) action under external load. These examinations are especially 
of interest for the design of system products and for the development of engineered 
“bearing models”. Hereby type and degree of connection (punctiform – continuous; loose 
– flexible – rigid) play a decisive role.  

Level III focus on quantification of system actions and effects in bearing structures 
composed of system products and material from level I and II, e.g. roof, floor and wall 
structures, bridge decks and frameworks.  

This thesis concentrates mainly on level II, in particular on (quasi) rigid connected 
systems deriving some essential basics on level I and showing some aspects for 
applications on level III. The variability (statistical spread), relationships and correlations 
between characteristics are essential. Together with the interaction of elements in systems 
they are the driving forces of the work. Beforehand a clarification of the term “system” is 
required. Therefore the next two introductory sections give some comments on the main 
aspects, variability and systems.  

1.2 The Nature of dispersing Properties 

Any material and any characteristic property exhibit a certain amount of variation in its 
manifested characteristics. This can be observed already in the variable and dynamic 
behaviour of electron’s position on discrete energy levels within atoms up to the (static 
and dynamic) behaviour of environment and universe as well.  

In particular natural materials like wood, timber and soil properties show partly large 
variabilities. Examples of variabilities expressed by the coefficients of variation (CoV) 
(see section 2.3.1) are given in Tab. 1.1. In fact variability is the key of evolution, of the 
adaptation of life and nature in general to new challenges of the environment by 
supporting a huge variety of specifications at any time. During the selection process, as 
inherent in life, the best adapted individuums in living nature, in respect to time and 
space, survive.  



Introduction 

24 

Tab. 1.1: Some examples of coefficients of variation (CoV)  

property CoV [%] 

structural steel: yield stress fy (JCSS:2001) 7% 

structural steel: tension strength fu (JCSS:2001) 4% 

timber: bending strength fm (JCSS:2006) 25% 

timber: E-modulus Em,0 (JCSS:2006) 13% 

timber: tensile strength parallel to grain ft,0 (JCSS:2006) 30% 

1.2.1 Typology of Uncertainties and Sources of Dispersion 

Uncertainties and thereby sources of dispersion can be classified as being in nature either 
aleatoric or epistemic (THOMA, 2004).  

Tab. 1.2: Overview and comparison of aleatoric and epistemic uncertainties / sources of spread 

aleatoric uncertainties epistemic uncertainties 

 natural inherent variability 
  can not be influenced 

 model uncertainties 
 statistical uncertainties 
 measurement uncertainties 
 human uncertainties 
  can be influenced and reduced 

Aleatoric uncertainties are dedicated to the randomness / the fortuity of events inherent in 
each physical phenomenon. It can be expressed as the non-influencable natural 
variability. The epistemic part classifies uncertainties which include model uncertainties, 
statistical uncertainties, measurement and human errors. It represents that part of 
variability which can be reduced to a certain (economically meaningful and technical 
possible) amount. This reduction can be done by improving models, progressing 
performance of quality assurance and / or repetition of tests and measurements, as well as 
intensified training, supervision and the implementation of controlling and regulating 
systems. Both, aleatoric and epistemic uncertainties should take part in stochastic models 
and both types of uncertainty are influenced by system action. An overview of aleatoric 
and epistemic uncertainties is given in Tab. 1.2. 
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1.2.2 Specifics on Timber Engineering and Comments on Mechanics vs. 
Stochastics 

In case of materials for engineering purposes variability in load bearing structures has to 
be considered especially in (i) judgement of reliability and (ii) in decision making 
processes concerning the safety of elements, components and consequently of the whole 
system structure as well. Up to now design procedures given in standards consider the 
variability of actions and resistances on different levels. Deterministic design codes base 
on allowed / accepted design values of actions and resistances by including safety factors 
which were established during decades or even hundreds of years by practical 
experiences of trials and errors. In contrast, probabilistic design enables in principle an 
individual design by direct consideration of the stochastic nature of actions and 
resistances in each specific case. It provides a more specific decision tool than possible by 
means of generally applicable approaches. Nevertheless, probabilistic design requires the 
knowledge of all specific characteristics relevant for design, in particular the full 
stochastic description of actions and resistances. It may be argued that knowledge of a 
general trend acceptable on average provides accurate and sufficient information relevant 
for decision making processes, e.g. the design of structures. However, there are several 
aspects and effects which can only occur due to the occurrence of dispersion, e.g. system 
effects as discussed within this work. These system effects show to be in magnitude 
dependent on e.g. the quantile level of interest. Furthermore, dispersion of action and 
resistance influences the failure probability and hence the reliability of structures 
significantly. This fact may be even more decisive if series productions of structures 
instead of single structure types are intended.  

The relevance of stochastics and mechanics are often controversially discussed. 
Mechanics thereby is an important and physically based theory for derivation of stresses 
and strains within elements, components, systems and structures as reaction on externally 
applied actions. Nevertheless mechanics alone can not explain the differences between 
material properties on various hierarchical levels, e.g. from atomistic to engineering scale. 
Thereby stochastics, a mathematical theory, plays a dominating role in judgement and 
explanation of these differences, which are caused by the nature of scaling in 
characteristics, structures and randomness of occurence. The inclusion of stochastics in 
mechanical calculations enables higher order modelling under correct consideration of 
average relationships and trends as well as the consideration of variability as inherent part 
of characteristics. As every property needs to be characterised by at least expectation and 
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variance, modelling of materials and structures relies on mechanics and stochastics. This 
at least for judgement if a certain representative volume element (RVE) is large enough 
such that the variability of a property of interest is reduced to an acceptable residual 
amount for specific calculations in continuum mechanics.  

In the sense of this manuscript dealing with stochastic system actions and effects, the 
structure, arrangement of the elements and its interaction in the system define the focus of 
the work with special emphasis on the stochastic description of the system behaviour. 
This enables a quantitative registration in daily designing procedures of engineers and in 
the business of product design and decision finding processes. 

1.3 General Aspects of Systems 

The term „system“ (ancient greek: “systema”) in general characterises a structure, its 
composition as a collective of elements that interact with each other but appear and 
function externally as one unit (e.g. DUDEN, 2001 and MATTHIES, 2002). In the sense of 
ARISTOTLE (384-322 b.C.) “… the assembly is more than the sum of its components …” 
the number of single elements without any connection and interrelationship do not form a 
system; elsewise systems are not comparable if only the number, type and arrangement of 
its elements are consistent but the interrelationships are not.  

The system must be differentiated from its environment by the definition of system 
boundaries. This specification, the compilation of the system out of its environment, e.g. 
the universe of nature, is not trivial and has to be done in correspondence with the scope 
of examination, i.e. the scope of the modelling process. In general, the definition of 
system boundaries is a subjective process and depends on the observers’ perspective 
leading to generalisations and therefore to exemplary reproductions of natural processes. 
The approach to segment complex procedures and systems that may consist of sub-
systems or may be a sub-system of a higher-ranking complex is perhaps limited by 
restricted human intelligence. Systems described by humans are simplified models of 
natural processes which perhaps enable and support the understanding of these processes 
to a certain degree.  

However, it is difficult to entirely observe the structure of a system from the outside but it 
can be observed and ascertained by the effects, appearance and operation of the system 
resulting from the system action (e.g. MATTHIES, 2002). In that respect, the system 



Introduction 

  27 

structure, the functionality of a system which is defined by the arrangement of and 
relationships between elements and components (in contrast to aggregates or assemblies 
which are only arranged without structure) has to be differentiated from the system 
action which depends on the activity (in- or extrinsic) in respect to the system structure, 
e.g. the external impact on systems by forces leading to stresses in systems and perhaps to 
stress transfer between the elements in dependency of the elements which are arranged 
side by side or consecutive, defined by the interaction between elements. In that respect 
system action depends on the system structure, the in- or extrinsic activity, and on the 
interaction of elements and components within the system. The consequence of system 
action observed externally is herein defined as system effect.  

The artificially assembled system structures of engineered wood and timber products are 
specified, i.e. by the industrial production process, the design of products and by the 
system structure. Detection, identification and description of interactions and 
relationships, the system actions and related system effects, summarise the targets 
addressed in the present work. Thus, the focus lies on the external perception of a system 
which has been analysed by variation of system structure, the examined characteristic 
properties and the arrangement of elements within the system structure. The structuring of 
elements and their relationships within the system serves solely the aims of segmentation 
and demonstration of complex processes, the examination and the collection of 
knowledge about effects on macro-scale (system-level) and micro-scale (level of 
elements and their interactions) (see e.g. HUBRIG AND HERRMANN, 2005). 

In general, the representation of systems is accomplished by models. The evaluation of 
models is always a judgement about being more or less accurate but ever about wrong 
models. No model is able to mirror reality completely as it is a simplification of reality 
under certain constraints and assumptions. Hence, the explanatory power of a model is 
based on the simplification representing the core structure under realistic assumptions.  
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Chapter 2 

2 General Remarks concerning Probability 
Theory and Statistics 

This chapter is a brief summary of essential stochastic definitions and 
discusses some background knowledge and basics concerning statistics and 
probability theory. A general section on definitions and basics of probability 
theory and statistics is following a section which concentrates on statistical 
distribution models relevant for timber engineering. In that respect some 
comments concerning the definition of representative statistical distribution 
models (RSDMs) are included. The chapter ends with a section addressing 
regression and hierarchical models and gives an overview of stochastic 
processes, essential functions and transformations in stochastics as well. 

2.1 Some Definitions and Basics of Stochastics 

Within this section some general definitions with respect to probability theory and 
statistics are given. Readers who are familiar with these topics may skip this section.  

Stochastics or the “art of guessing” is a special field of mathematics and combines the 
two areas of probability theory and statistics (see Fig. 2.1). The term “stochastics” origin 
from old Greek language and means “random” the “fortune of actions”. The opposite 
behaviour would be deterministic (according BURY, 1975 corresponding to the boarder 
case of stochastics with variation ≡ 0), expressing that each individual outcome of 
processes, the action, can be directly calculated and foreseen, whereas the outcome of 
stochastic processes (development in time and / or space) can only be defined by 
judgements or predictions, so called expectations, with a certain probability of 
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occurrence. That means that each individual outcome can be predicted to occur with a 
certain probability but can not be foreseen explicitly.  

 

Fig. 2.1: Stochastics: visualisation of divisions 

The theory of statistics combines a doctrine of methods to operate with quantitative data 
in information. It contains the collection, analysis and interpretation (inference) as well as 
graphical procedures for densification and presentation of data. Statistics and its methods 
can be subdivided into (see for illustrative purposes also Fig. 2.2): 

 descriptive statistics (describing, empirical statistics for data preparation and data 
densification  data mining);  

 explorative statistics (hypotheses generating statistics);  

 inductive statistics (mathematical, conclusive, inference statistics).  

The probability theory decribes the probability of the occurrence of certain events, e.g. 
defined as A, Β, … The union of all possible (elementary) events of a certain experiment 
defines the event space Ω. Thereby the probability space consists of the event space Ω, 
the collection of subsets A and the measure P which is standardised on [0, 1]. The 
measure P assigns a probability to all events A, B, … (Œ Ω) within the system A. Thus 
probability theory analyses the behaviour and regularity of random variables X which is 
defined as projection of A #  (further definition see section 2.2 and e.g. STADLOBER, 
2011A).  

Fig. 2.2 shows an overview of statistical inference by illustrating the relationships 
between theoretical models and observations. The definitions of elements in the figure are 
given in the next sections.  
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Fig. 2.2: Statistical inference: relationship between samples, empirical distributions, statistics and 
random variables, theoretical distribution models and parameters (adapted; SCHUËLLER, 
1981) 

2.1.1 Definition of Probability 

The general definition of probability is given by the axioms of KOLMOGOROV. Let Ω be 
the event space and A the σ-Algebra over Ω. Then the probability function P: Ω # [0, 1] 
is defined as 

 0 ≤ P(A) ≤ 1, " A œ A (axiom of mass); 

 P(Ω) = 1; P(«) = 0 (axiom of normalisation); 

 for a sequence An of pairwise disjoint events in A (i.e. Ai … Aj = «) it follows  
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Thus a probability function P (.) has domain σ-Algebra and satisfies the axioms of 
KOLOMOGOROV, the axioms of probability (CASELLA AND BERGER, 2002). 

There are two important special cases of probability. The first one is the classical 
definition according LAPLACE or BERNOULLI (1713). Both defined probability as the ratio 
between favourable and possible cases, (2.1). This definition traces back to combinatorial 
statistics and gambling theory, assuming equal probabilities for occurrence of all 
elementary events,  

( )
N

NAP A= .  (2.1)

The second definition is a frequentistic one (according to R. VON MISES, 1919) and is 
given by the limiting value of the relative frequency of occurrence of a certain event after 
(in)finite independent experiments have been performed under constant conditions,  
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with H(A, N) as relative frequency, the occurrence of event A in N trials (e.g. CASELLA 

AND BERGER, 2002; ROHLING, 2007).  

Tab. 2.1: Combinatorics: some basic equations 
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To take into account the total number of possible events the arrangement of an 
experiment has to be differentiated into experiments “with” and “without” replacement of 
already occured events and in respect to required or not required knowledge of the order 
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of outcomes (“ordered” and “unordered”). Thus the number of possible arrangements of 
taking r from n possible events is given in Tab. 2.1 (e.g. CASELLA AND BERGER 2002, 
DURETT 1994). 

An additional definition of probability is given by the English priest and statistician 
THOMAS BAYES (e.g. cit. in CASELLA AND BERGER, 2002; STADLOBER, 2011A) who 
defined probability subjective as a degree of belief. His theorem was developed by means 
of conditional and total probability. The conditional probability as probability that event 
E given event A may occur is defined as 

( ) ( )
( )AP

EAPAEP ∩
=| , with ( ) 0>AP .  (2.3)

With P(A ' E) = P(A) · P(E | A) = P(E) · P(A | E), with P(A), P(E) > 0, it follows that  

( ) ( ) ( )
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=

|| , ( ) 0>EP .  (2.4)

Assuming pairwise disjoint events (Ei … Ej = «, " i ∫ j, with E1 » E2 » … » En = Ω, with 
i, j = 1, …, n, A Õ »i Ei, the theorem of total probability is given as  
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In the special case of Ω = A ( B  it follows (STADLOBER, 2011A)  

( ) ( ) ( ) ( ) ( )BAPBPBAPBPAP ⋅+⋅= . (2.6)

The theorem of BAYES follows from combining both theorems of conditional probability 
and of total probability, and is given as  
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with P(Ei) as prior probability, P(A | Ei) as likelihood, P(A) as normalising constant and 
P(Ei | A) as posterior probability (see e.g. CASELLA AND BERGER, 2002; THOMA, 2004; 
ROHLING, 2007). Thus BAYES’s formula provides updating on existing (prior) state of 
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knowledge of a relevant event or the “… guessing of prior probabilities in case of 
missing data” (BURY, 1975). 

2.1.2 Addititive Law of Probability for arbitrary Events 

In general, the probability of the union of events A and B is given by 
P(A » B) = P(A) + P(B) – P(A … B). In case of A, B being disjoint the calculation can be 
simplified to P(A » B) = P(A) + P(B) (e.g. DURRETT, 1994). 

2.1.3 Multiplicative Law of Probability 

The probability of the intersection between A and B given by P(A … B) can be calculated 
according to P(A … B) = P(A) · P(B | A). Due to the equality of (A … B) = (B … A) it 
follows that P(A) · P(B | A) = P(B) · P(A | B). In case of three events A, B and C the 
multiplicative law lead to P(A … B … C) = P(A) · P(B | A) · P(C | A … B). In case of n 
events the probability can be derived by (e.g. STADLOBER, 2005) 
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In case of statistically independent events A, B, … the probability of their intersection can 
be calculated by simple multiplication, P(A … B … …) = P(A) · P(B) · … (e.g. DURRETT, 
1994). Furthermore, the information concerning a dependency between the probabilities 
of certain events is essential for judgement of the usability of some probability theorems 
and calculation procedures. In general, independency is mostly assumed to simplify the 
calculation of probabilities. Statistical independence, defined by P(A … B) = P(A) · P(B), 
has to be proved. According CASELLA AND BERGER (2002) mutually independence of a 
certain collection of events A1, A2, …, An holds if any subcollection 

1iA , …, 
kiA  has 

probability 
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2.2 Definition of a Random Variable and its Distribution 

A random variable is defined as a function which assigns every elementary event ω 
from the event space Ω of a random experiment exactly one real number X(ω) (e.g. 
DURRETT, 1994; CASELLA AND BERGER, 2002). In other words, the projection X of 
elements in Ω in elements in  (X: Ω # ) is named a random variable. The probability 
measure PX is named the distribution of X (STADLOBER, 2011A). Possible values x of 
X = X(ω), ω œ Ω X are named as realisations of X.  

Generally, a probability distribution describes the character, the random occurence of 
data by means of parameters for location as center of probability mass and spread as well 
as the shape of the distribution of the data on a specific range. A differentiation according 
the type of data which has to be described is required, e.g. between discrete and 
continuous data. Discrete data can only take specific values whereas continuous data can 
take any value within a defined domain. Furthermore, the statistical distribution can be 
classified as bounded or unbounded distribution expressing the occurrence of a certain 
limit on one or both sides of the distribution domain ≠ (± ∞) or not (e.g. VAN 

HAUWERMEIREN AND VOSE, 2009). To simplify the representation of data’s statistical 
distribution various families of numerous statistical distribution models are available. 
Thus a sufficient description of a data set requires (i) the knowledge of the underlying 
statistical distribution model and (ii) its associated parameters. Additional information 
about the statistical uncertainties inherent in estimates of statistical parameters should be 
provided.  

A statistical cumulative distribution function (CDF) of a random variable X, defined as 
FX(x) = PX(X § x), " x is defined as right continuous function if following three 
conditions are fulfilled (e.g. CASELLA AND BERGER, 2002) 

 lim x → –¶ FX(x) = 0; lim x → +¶ FX(x) = 1; 

 FX(x) is a nondecreasing function of x; 

 FX(x) is right-continuous (  lim x ∞ x0 FX(x) = FX(x0), " x0). 

A probability mass function (PMF) describes the probability of occurrence of discrete 
random variables X, defined as pX(x) = P(X =x), " x. A probability density function 
(PDF) fX(x), " x describes continuous random variables X defined by  
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( ) ( ) dttfxF
x

XX ⋅= ∫
∞−

. (2.10)

Both, PMF and PDF have to fulfill the conditions 

 ( ) 0≥xpX  and ( ) 0≥xfX , " x; 

 PMF: ( )∑ =
x

X xp 1; PDF: ( ) 1=⋅∫
x

X dxxf . 

A random variable X is named a discrete random variable X if it can accept a finite or at 
least a countable infinite number of values. Its distribution is completely defined by 
pi = P(X = i), i = 0, 1, 2, …, with the step-wise function (e.g. STADLOBER, 2011A)  

( )
⎣ ⎦

∑
=

=
x

i
iX pxF

0
, with 1

0
=∑

∞

=i
ip .  (2.11)

A random variable X is named a continuous random variable X if there exists a function 
fX(x) ≥ 0 with (e.g. STADLOBER, 2011A)  

( ) ( ) dttfxF XX ⋅= ∫
∞

∞−

, with fX(x) as PDF of X.  (2.12)

Additionally, according CASELLA AND BERGER (2002)  

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

=⋅=
σ
μ

σ
σμ xzfxw Z

1,| 2  (2.13)

defines a PDF if and only if Z is a random variable with PDF fZ(z) and X = σ · Z + µ, 
E[Z] = 0 and Var[Z] = 12, with E[X] = σ · E[Z] + µ and Var[X] = σ2 · Var[Z].  

Bi- or multivariate models involve more than one random variable. The joint PMF 
exemplarily for two variables X and Y is given as (see e.g. STADLOBER, 2011A) 

( ) ( ) ==== jYiXPyxpij ,,  

 ( ) ( ) ( ) ( )jYPjYiXPiXPiXjYP =⋅====⋅=== || .  
(2.14)

The joint PDF exemplarily for two variables X and Y is given as  
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( ) ( ) ( ) ( ) ( )yfyxfxfxyfyxf YYXXXYYX ⋅=⋅= ||, ||, .  (2.15)

The joint CDFs for discrete and continuous variables X, Y are given as  

( )
⎣ ⎦⎣ ⎦

∑ ∑
≤ ≤

=
xi yj

ijYX pyxF ,, , with ( )jYiXPpij === ,   … if X, Y are discrete; 

( ) ( )∫ ∫
∞− ∞−

⋅⋅=
x y

YXYX dudvvufyxF ,, ,,   … if X, Y are continuous.  
(2.16)

The marginal PMFs are given as  

( ) ( ) ( ) ( )jYPjYiXPjYiXPiXP
yy

=⋅======= ∑∑ |, ;  

( ) ( ) ( ) ( )iXPiXjYPjYiXPjYP
xx

=⋅======= ∑∑ |, .  
(2.17)

In case of (X, Y) being stochastically independent it follows that  

( ) ( ) ( )jYPiXPjYiXP =⋅==== , , " i, j … if X, Y are discrete; 

( ) ( ) ( )yfxfyxf YXYX ⋅=,,   … if X, Y are continuous.  
(2.18)

The marginal PDFs are given as  

( ) ( ) dyyxfxf YXX ⋅= ∫
∞

∞−

,, ; ( ) ( ) dxyxfyf YXY ⋅= ∫
∞

∞−

,, .  (2.19)

The conditional PDF of Y given that X = x is defined by 

( ) ( )
( )xf

yxf
xyf

X

YX
XY

,
| ,

| = , with ( ) 0>xf X , (2.20)

2.3 Characteristics of Statistical Distributions  

The distribution of random variables is sufficiently represented by the distribution model 
and its parameters. The parameters or characteristic figures can be classified as (e.g. VAN 

HAUWERMEIREN AND VOSE, 2009) 
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 location parameters:  

They give information about the position of the center of the probability mass or 
density function. They have a direct influence on statistics like mean and mode. 

 scale parameters:  

They contain information about the spread of the probability mass or density 
function. If squared, this set of parameters constitutes a part of the variance of the 
describing variable.  

 shape parameters:  

These parameters deliver information about the shape, e.g. the skewness or 
kurtosis of the probability mass or density function. This class of parameters 
shows a nonlinear influence on the variable and is usually defined as a coefficient 
of the variable. 

Let X be a random variable with X: (Ω, A) Ø (, B), with B as Borel σ-Algebra, and g a 
real function g:  Ø , with g –1 (–∞, y] œ B, then Y = g(X) is also a random variable.  

2.3.1 The Expected Value  

In general, the expected value of a random variable defines an average value, a measure 
of the center (the center of gravity) of the distribution of random variables. The expected 
value E[g(X)] of the function Y = g(X) is given by 

( )[ ] ( ) ( )∑
∈

⋅=
χx

X xpxgXgE , if X is discrete;  

( )[ ] ( ) ( )∫
∞

∞−

⋅⋅= dxxfxgXgE X , if X is continuous.  
(2.21)

There are some special cases for Y = g(X) which are discussed briefly. Let g(X) = Xk. The 
expected value E[Xk] is named the kth moment of the random variable X with CDF 
FX(x) and given as  

[ ]k
k XE=μ .  (2.22)

In case of k = 1, g(X) = X it follows the expected value of the random variable X given 
as  
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[ ]XE== μμ1 .  (2.23)

For example, the expected value E[X] can be calculated by  

[ ] ( )∑
=

⋅=
n

i
iXi xpxXE

1
, if X is discrete,  

[ ] ( ) dxxfxXE X ⋅⋅= ∫
∞

∞−

, if X is continuous. 
(2.24)

Due to linearity of E[X] the expected value of function g(X) = a · X + b, with a, b as 
constant (deterministic) values, is given by E[g(X)] = a · E[X] + b. For 
g(X, Y) = a · X + b · Y the expected value is thus E[g(X, Y)] = a · E[X] + b · E[Y]. In 
particular in case of a multiplication of independent variables Xi with 
g(Xi) = X1 · X2 · … · Xn, i = 1, …, n, the expectation can be easily derived by calculating 
the product of all expectations,  

[ ] [ ]∏
=

=⋅⋅
n

i
ini XEXXE

1
... .  (2.25)

Let g(X) = (X – μ)k. The expected value E[(X – μ)k] is named the kth central moment of 
the random variable X with CDF FX(x) and given as  

( )[ ]k
k XE μα −= .  (2.26)

In case of k = 2 it follows the variance of the random variable X given as  

[ ] [ ] 22
2 σμα ==−= XVarXE .  (2.27)

The variance σ2 of the random variable X constitutes a measure of the degree of 
dispersion of the distribution of X around μ, the probability of values occurring around the 
expected value. The moment of inertia of the corresponding distribution of a unit mass 
around its center of gravity can be seen as analogical description as known from 
mechanics (e.g. SCHUËLLER 1981).  

In case of the continuous random variable X the variance Var[X] can be calculated as  
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[ ] [ ] ( ) ( ) 222
μμ −⋅⋅=⋅⋅−= ∫∫

∞

∞−

∞

∞−

dxxfxdxxfxXVar XX . (2.28)

The variance Var[g(X)] with g(X) = a · X + b, with a, b as constants, is given by 
Var[g(X)] = a2 · Var[X]. According the Theorem of BIENAYMÉ the variance of the sum of 
independent random variables Xi is given by the sum of the variances of Xi,  
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i
i
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11
, with i = 1, …, n.  (2.29)

An alternative calculation of Var[X] is given by STEINER’s displacement law, defined as 
(e.g. STADLOBER, 2011A)  

[ ] [ ] [ ]XEXEXVar 22 −= .  (2.30)

The square root of variance is named standard deviation σ. 

The variance of a sum of variables Xi with constant factors ci is given by 
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, . (2.31)

The variance of a linear function of two random variables X and Y with two constants a, b 
is therefore given by 

[ ] [ ] [ ] [ ]YXCoVarbaYVarbXVaraYbXaVar ,222 ⋅⋅⋅+⋅+⋅=⋅+⋅ . (2.32)

A relative measure of dispersion is given by the coefficient of variation CoV defined as  

[ ]
μ
σ

=XCoV .  (2.33)

The skewness γ1 [X] = skew [X] is as measure of symmetry or asymmetry of the 
distribution of the random variable X and given as  
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[ ] [ ]
( )

[ ][ ]
3
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1 σ
αμ
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⎡ −

==
XVar

XE
XskewX .  (2.34)

In case of skew [X] = 0 the distribution is symmetric, in case of skew [X] < 0 and 
skew [X] > 0 the distribution of X is named left- and right-skewed, respectively.  

The kurtosis γ2 [X] = kurt [X] is as measure of the shape in the center and at the tails of 
the distribution of the random variable X and herein given as  

[ ] [ ]
( )

[ ][ ]
4
4

2

4

2 σ
αμ

γ =
⎥⎦
⎤
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⎡ −

==
XVar

XE
XkurtX .  (2.35)

2.3.2 The Mode 

The mode of a random variable X, abbreviated mode[X], is the value which is most 
likely to occur (e.g. VAN HAUWERMEIREN AND VOSE, 2009). This means that the mode 
of a given variable corresponds to the value at the maximum of the probability mass or 
density function of discrete or continuous variables, respectively. In case of 
mean[X] = mode[X] the variable shows symmetrical distribution, whereas in case of 
mode[X] < mean[X] and mode[X] > mean[X] the variable X is right- and left-skewed, 
respectively.  

2.3.3 The Moment Generating Function (MGF) 

Let X be a random variable with CDF FX(x), than the moment generating function MX(t) 
of X (MGF) is given as (CASELLA AND BERGER, 2002)  

( ) [ ]Xt
X eEtM ⋅= ,  (2.36)

if the expected value exists near 0.  

MX(t) represents the LAPLACE-transform of fX(x). MX(t) can be calculated by  
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( ) ( ) dxxfetM X
xt

X ⋅⋅= ∫
∞

∞−

⋅ , if X is contiuous,  

( ) ( )∑ =⋅= ⋅

x

xt
X xXPetM , if X is discrete.  

(2.37)

The kth moment of X can be easily derived by means of MX(t) with  

[ ] ( )0k
X

k MXE = , with ( ) ( )
0

0
=

=
tXk

k
k
X tM

dt
dM .  (2.38)

Thus the kth moment is equal to the kth derivative of MX(t) at t = 0.  

2.3.4 The Characteristic Function 

The characteristic function fX(t) is given as  

( ) [ ]Xti
X eEt ⋅⋅=φ , with 1−=i  as the imaginary number.  (2.39)

It is unique for every CDF and does always exist even if MGF does not. It completely 
determines the distribution of random variables.  

2.3.5 Characteristics of Conditional Distributions  

Let g(Y) be a function of Y given that X = x. The variance of Y given that X = x is given as 
(e.g. DURRETT, 1994)  

[ ] [ ]{ } [ ] [ ]xXYExXYExXxXYEYExXYVar =−==⎥
⎦

⎤
⎢
⎣

⎡
==−== ||||| 22

2
, (2.40)

whereby the variance Var[Y] is defined as 

[ ] [ ][ ] [ ][ ]xXYEVarxXYVarEYVar =+== || . (2.41)

The expected value and variance in case of conditional PDF under consideration of g(Y) 
as function of Y given that X = x can be derived by  
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[ ] ( ) dyxyfygxXYgE XY ⋅⋅== ∫
∞

∞−

|)(|)( | , (2.42)

and 

[ ] [ ] [ ]xXYExXYExXYVar =−=== ||| 22 . (2.43)

In case of a conditional PMF the variance Var[X] can be calculated as  

[ ] [ ][ ] [ ][ ]yYXEVaryYXVarEXVar =+== || . (2.44)

2.3.6 The Covariance 

The covariance of two random variables X and Y is given by 

[ ] ( ) ( )[ ] [ ] YXYX YXEYXEYXCoVar μμμμ ⋅−⋅=−⋅−=, . (2.45)

2.3.7 The Correlation Coefficient according Pearson 

The correlation coefficient ρXY(x,y) = ρXY according PEARSON is a direct and normalised 
measure of the strongness of a linear relationship between X and Y and defined as  

( ) [ ]
[ ] [ ]

[ ]
YX

XYXY
YXCoVar

YVarXVar

YXCoVarxy
σσ

ρρ
⋅

=
⋅

==
,, , with –1 ≤ ρXY ≤ 1.  (2.46)

2.4 Representatives of Univariate Statistical Distribution 
Models of Continuous Variables 

In general a statistical distribution constitutes a model representing the main features and 
characteristics, a property or an aggregate of properties of interest. In that respect the 
statistical distribution constitutes a simplification, an abstraction in respect to the nature 
of the underlying variety and randomness of a certain variable. For characterisation of a 
property or natural phenomenon the statistical distribution model has to be chosen with 
caution and in respect to the scope of the model. Within this work statistical distribution 
models which representatively characterise the distribution of a property or action in 
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respect to the scope of the model are called representative statistical distribution 
models (RSDMs). The accurate choice of an RSDM demands on the definition of the 
scope of the model. Thus it demands on the decision of representing the whole range of a 
variable or only a part of it. Aspects like (i) how scaling and changes in actions can be 
considered and incorporated in further modelling processes, (ii) the analysis of the 
asymptotic behaviour of the distribution model, as well as (iii) the incorporation of 
physical constraints and boarder conditions in respect to the underlying physical 
phenomena and the nature of the property or action have to be considered to enable 
representative and accurate modelling. As mentioned, it is not always necessary to 
represent the statistical nature, especially with focus on the location and the distribution 
characteristics, over the whole range of possible outcomes. In particular in case of 
reliability analysis it can be sufficient to represent the nature of resistance in the lower 
quantile range and that of action within the upper quantile range. In contrast, modelling of 
system effects or actions generally requires the best and physical compatible knowledge 
of a representative statistical distribution model over the whole range due to given 
interactions between model variables along the whole distributions.  

The necessity for modelling of stochastic nature by statistical distribution models 
consequences from the in general insufficient available knowledge about the behaviour of 
the total population. Only finite test series and data as random outcomes are available. 
Representing the whole empirical distribution is practically impossible and theoretically 
questionable because only each specific random sample used for inference may be 
represented accurately. Considering the nature of phenomena, representatives and 
inference based on data should be sufficient and accurate in respect to the scope of the 
model. Hereby the quantity of key figures or distribution parameters should be also 
choosen carefully. They should be physically justifiable and empirically as well as 
practically manageable. In particular, information about statistical uncertainties of the 
parameters enables performance of parameter studies analysing their influence on the 
outcomes. Thus best possible reduction of uncertainties is due to cumulative errors for 
sure more important in case of stochastic processes or modelling of large systems than in 
case of representation of single outcomes.  

According SCHUËLLER (1981) continuous statistical distribution models follow from the 
examination of boarder constraints of the relationship between the random variable which 
describes the physical phenomenon and its singular mechanisms, whereby their singular 
contribution on total dispersion of the variable cannot be determined definitely. By 
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knowledge of how singular mechanisms or constituted, statements regarding the 
distribution of variables are possible. Thus three main cases are given: 

 additive acting singular mechanisms; 

 multiplicative acting singular mechanisms; 

 behaviour of their extreme values (minima, maxima). 

The first two cases are often associated and represented by normal and lognormal 
distribution models, respectively, and will be discussed within the next sections 2.4.1 and 
2.4.2. The third case is in particular the topic of extreme value theory (see section 2.6.2). 
Concerning strengths of brittle materials this case is often associated with the WEIBULL 
distribution model (WD) as presented in sections 2.4.3 and 3.2.1.  

In general, stochastic modelling concentrates on eliminating outliers. This is perhaps 
sufficient for modelling the average behaviour of a variable. Nevertheless, the outliers 
can in particular support the analysis and the predictive quality of models because they 
often contribute an added value for the explanation of the underlying phenomena, even 
more than the mass of averages can do. Therefore rejecting outliers from data should be 
done with caution and never without a careful and comprehensive proof beforehand. 

2.4.1 The Normal (Gauss) Distribution Model (ND) 

The normal distribution (ND) constitutes the most famous and widest applied statistical 
distribution model. It follows directly from the Central Limit Theorem (see section 2.6.1) 
and from the arithmetic series. It specifies the distribution model for characterisation of 
sums of independent but not necessarily identical distributed variables. In that sense ND 
is especially applicable for modelling of arithmetic, additive processes (e.g. LIMPERT, 
2001; SCHUËLLER, 1981).  

A variable X with X ~ ND (X | θ) and θ = (μ, σ2) as parameter vector is known as being 
normally distributed, if it has the density function  
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πσ
xxfX , X œ . (2.47)

Through standardisation of ND variables by 
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σ
μ−

=
XZ  (2.48)

it leads to the standard normal distribution (SND) of Z, with Z ~ SND (Z | θ) and 
θ = (0, 12), with PDF 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⋅

⋅
==

2
exp

2
1|
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and CDF  

( ) [ ] ( ) ( )∫
∞−

⋅==≤=
z

Z duuzzZPzF φΦθ| , with ( ) ( )zz −−= ΦΦ 1 . (2.50)

On the basis of (2.47), (2.48), (2.49) and (2.50) the PDF and CDF of normally distributed 
variables can also be written as  

( ) ( )zxfX φ
σ
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1| ; ( ) [ ] ( )zxxXPxFX Φ
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=≤=| . (2.51)

The parameters of ND correspond to expected value E[.] = μ and the variance Var[.] = σ2, 
with E[.] and Var[.] as the expectation and variance operator, respectively. Thus ND 
constitutes a statistical distribution model whereby the distribution parameters coincide 
with the first and second central moments E[.] and Var[.].  

The distribution parameters can be estimated from empirical data sets by calculating the 
empirical arithmetic mean X and standard deviation S or variance S2 as  
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1  and 2SS = ,  (2.52)

or by means of likelihood estimators as well as on the basis of empirical determined 
quantiles Qp, e.g. the median with 

[ ]XmedQ =50.0
ˆ .  (2.53)

In case of parameters estimated by means of maximum likelihood the variance-
covariance matrix [Vij] of the parameters X  and SL, with  
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is given as (BURY, 1975) 
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with [Vij] as the inverse of the information matrix [Iij] given by 

[ ] [ ] 1−= ijij IV . (2.56)

The information matrix corresponds to the expectation of the 2nd partial derivative of the 
log-likelihood function ln(L) and is given as  
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The log-likelihood function ln(L) is defined as  
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with fX(x| θ) from (2.51). The maximum likelihood estimates θ̂  are obtained as solution 
of  

( )[ ] ( )[ ]θθ
θ

LL lnmaxˆln = . (2.59)

Thus the variance of X  is given by Var[ X ] = σ2 / n and that of SL is given by 
Var[SL] = σ2 / (2 · n). 

The mode of ND variables or the value representing the argument of the maximum of the 
density, is given by  
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The inflexion points of the distribution are well known at µ ± σ. Herein defined 
probabilities within a span of k-times the standard deviation are given e.g. by  

k = 1: µ ± 1 · σ  ( ) ( ) ( ) ( ) 11211 −⋅=−−=+≤≤− ΦΦΦσμσμ XP = 68.3 %; 

k = 2: µ ± 2 · σ  ( ) ( ) ( ) ( ) 1222222 −⋅=−−=⋅+≤≤⋅− ΦΦΦσμσμ XP = 95.5 %; 

k = 3: µ ± 3 · σ  ( ) ( ) ( ) ( ) 1323333 −⋅=−−=⋅+≤≤⋅− ΦΦΦσμσμ XP = 99.7 %. 

The ND is invariant in folding procedures. Thus sums of independent ND variates are 
also normally distributed, see 
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According CRAMÉR this relationship holds also for the inverse situation. In case of 
normally distributed sums the summands are also normally distributed. 

The skewness skew[X] of ND variables equals 0 (  symmetrical distribution model) 
whereas the kurtosis kurt[X] equals 3.0 (BURY, 1975).  

The ratio of two independent SND-variables X and Y, with U = X / Y follows a Cauchy 
distribution (CASELLA AND BERGER, 2002) with 
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1
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π

, with –∞ < u < ∞ and non-existing moments.  (2.62)

Beside univariate ND also bi- and multivariate ND models are available. In the general 
case of two dependent (correlated) ND-variables the bivariate ND-model is defined as  
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with ρ = ρXY as (PEARSON) correlation coefficient and CoVar[X1, X2] = ρ · σ1   σ2. In case 
of independent variables (ρ = 0) the bivariate ND simplifies to  
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with joint PDF  
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for " x1, x2 œ . 

Independent SND variables Z1, Z2 can be easily transformed to  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
1

1
,

0
0

~
2

1

ρ
ρ

SND
Y
Y

, by ⎥
⎦

⎤
⎢
⎣

⎡

⋅−+⋅
=⎥

⎦

⎤
⎢
⎣

⎡

2
2

1

1

2

1

1 ZZ
Z

Y
Y

ρρ
  (2.66)

and hence to  
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In case of n-dimensional normally distributed variables the multivariate normal PDF is 
given by  
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with |Σ| as determinant of the covariance matrix Σ = CoVar, with elements CoVar[Xi, Xj].  

2.4.2 The Logarithmic Normal Distribution Model (LND) 

The basis of the logarithmic normal distribution (lognormal, LND) traces back to works 
of GIBRAT (1930, 1931) who derived the distribution function by means of theoretically 
qualitative assumptions which are well known under the name of “law of proportionate 
effect”. In short, the law states that the product of proportional identical changes, which 
are assumed to be normally distributed, tends with increasing changes to LND, 
independent of the starting point. KOLMOGOROFF derived the LND model in 1941 on 
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basis of the description of the distribution of particle sizes, whereby the particles are 
independently subdivided which leads to two independent sized parts each. LIMPERT ET 

AL. (2001) described in general, that additive and multiplicative actions and effects on 
continuous variables tend to be normal and lognormally distributed, respectively. 
Additionally, SCHUËLLER (1981) stressed the appropriateness of LND to describe the 
stochastic nature of multiplicative processes. He reports about frequent use for 
representation of the microscopic behaviour of fatigue mechanisms in raw materials. 
Especially in the fields of physics, natural, social and engineering sciences the relevance 
of LND is seen similar to the ND model (JOHNSON ET AL., 1994). The advantage of the 
approximation of empirical data by a two-parametric LND (2pLND) is beside the 
theoretical background of “the theory of proportionate effects” in particular given by the 
constraint of only positive values which can be observed in many physical aspects and 
properties like strengths and stiffness. In case of low dispersion within the values of about 
CoV[Y] ≈ (15 ÷ 20)% the difference in shape between ND and LND may appear 
negligible especially if expectations are far away from zero thresholds. Nevertheless, the 
extreme values in the upper distribution area, e.g. the 95%-quantiles, are clearly different 
(e.g. AHRENS, 1954). 

In general, a variable Y is defined as being lognormally distributed (Y ~ LND) if its 
logarithm X = ln(Y) is normally distributed (X ~ ND). The density of 2pLND is given by 
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The distribution parameters can be estimated from empirical data by the method of 
moments on the basis of the empirical arithmetic mean and the empirical variance (e.g. 
ZUPAN AND TURK, 2004; THOMOPOULOS AND JOHNSON, 2004; SCHUËLLER, 1981), see  
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as well as by means of the maximum likelihood method. In case of parameter estimations 
based on log-likelihood the variance-covariance matrix of the estimates Xμ̂  and Xσ̂  is 
given as (BURY, 1975) 
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Thus the variances of Xμ̂  and Xσ̂ are given respectively by Var[ Xμ̂ ] = σX
2 / n and 

Var[ Xσ̂ ] = σX
2 / (2 · n). 

The expectation E[Y] and variance Var[Y] are given as 
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[ ] ( ) ( )[ ] [ ] ( )[ ]1exp1exp2exp 22222 −⋅=−⋅+⋅== XXXXY YEYVar σσσμσ . (2.73)

By means of the transformation  
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THOMA (2004) states that the CDF of lognormals can be expressed by means of the 
normal distribution operator, with FY(y) = P [Y ≤ y] = Φ(w). Further characteristic values 
of LND, e.g. median med[Y], coefficient of variation CoV[Y], skewness skew[Y] and 
kurtosis kurt[Y] can be derived as (see AITCHISON AND BROWN, 1981) 

[ ] ( )XYYmed μexp~
== , (2.75)

[ ] ( ) 1exp 2 −== X
Y

YYCoV σ
μ
σ , (2.76)

[ ] [ ] [ ]YCoVYCoVYskew ⋅+= 33 , (2.77)

[ ] [ ] [ ] [ ] [ ]YCoVYCoVYCoVYCoVYkurt 2468 16156 ⋅+⋅+⋅+= . (2.78)

Hereby skew[Y] and kurt[Y] are both positive and increase with increasing variance 
Var[Y]. Concerning the location parameters it can be proved that 
mod[Y] ≤ med[Y] ≤ E[Y], whereby according to CROW AND SHIMIZU (1988) the mode 
mod[Y] can be derived by  
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[ ] ( )2expmod XXY σμ −= . (2.79)

The quantiles of LND variables can be derived by means of parameter zp corresponding 
to the pth-quantile of a SND variable, see 

( )XpXp zy σμ ⋅+= exp . (2.80)

In case of p = 5% the required 5%-quantile is given by z05 = Φ-1(0.05) = –1.645, with Φ-

1(p) being the inverse standard normal distribution operator. Consequently in the limiting 
case with σX → 0 quantiles yp and other statistics tend to → exp (µX) = med[Y] 
corresponding to the expected value E[Y], with σX = 0. 

If the 5 %-quantile y05 and CoV[Y] are known the distribution parameter µY can be 
derived as  
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The product of independent (ind.) distributed LND variables can be seen in analogy to the 
sum of independent ND variables (SHARPE, 2004; CROW AND SHIMIZU, 1988). The 
distribution of the product of independent 2pLND variables follows also a lognormal 
distribution, with 
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In case of iid LND variables (2.82) simplifies to  
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A more general case of products of iid 2pLND variables is given in CROW AND SHIMIZU 

(1988). For Yi, with i = 1, …, n and the constant values bi and c > 0 (e.g. c = exp(a)); 
a > 0 it follows  
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Consequently, also 1 / Y and Y1 / Y2 are lognormally distributed, with  
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In case of iid Yi with i = 1, …, n the geometric mean of Yi is also lognormally distributed, 
with (AITCHINSON AND BROWN, 1981) 
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In case of dependent (correlated) bivariate 2pLND variables Y1 and Y2 with LND (μ, Σ) 
the expectation vector μ and variance-covariance matrix Σ are given by (LAW AND 

KELTON, 2000) 

[ ] T
XX 2,1, ,μμμ = ; 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅⋅

⋅⋅
= 2

2,2,;1,2,1,

2,;1,2,1,
2

1,

XXXXX

XXXXX

σρσσ
ρσσσ

Σ , (2.87)

with covariance 
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and correlation coefficient  
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The covariance of corresponding bivariate ND-variables is given by (LAW AND KELTON, 
2000) 
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The distribution of the product of two 2pLND variables is given by 
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whereas the distribution of the quotient follows 
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In that sense the central limit theorem can also be applied for products of independent 
positive variables Yi, with both existing central moments E[ln(Yi)] = μX and 
Var[ln(Yi)] = σX

2, given as  
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which implies that the geometric mean follows asymptotically a LND according (2.86).  

2.4.3 The Weibull Distribution Model (WD) 

In 1939 WEIBULL derived the statistical distribution called two- or three-parameter 
WEIBULL distribution (2pWD, 3pWD). These models are based on physically driven 
assumptions in combination with stochastics and especially rank statistics, including the 
extreme value theory of minima. In short, he modelled (brittle) materials as aggregates of 
a large number of elements with assumed iid strengths. Thereby the strength of the 
aggregate reduces with increasing size due to the assumption that a failure of the weakest 
element initiates a sudden failure of the whole aggregate. This led to the well known 
“weakest link theory” according WEIBULL (WLT) although he was not the first who 
published the principle idea behind WLT. Further details on this theory are given in 
section 3.2.1. In contrast to ND and LND the WD provides a statistical distribution model 
in analytical closed form but requires additional efforts in determining the WD 
distribution parameters. The WD is the only statistical distribution model which stays in 
principle the same in limiting cases, e.g. in investigations concerning the minima and 
maxima of iid variables. 

The PDF of the three parameter WEIBULL distribution (3pWD) is given by 
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with location parameter x0 within 0 ≤ x0 ≤ x < ∞ and scale and shape parameters α, β > 0. 
The CDF follows from integration and is given by 
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Equ. (2.94) and (2.95) simplify in case of x0 = 0 to the 2pWD, with PDF and CDF given 
as  
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The expectation E[X] and variance Var[X] can be calculated as  
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and 
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with location parameter x0 ≥ x ≥ 0, scale and shape parameters α, β > 0, respectively, and 
Γ(.) expressing the complete gamma function defined by 
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The variance-covariance matrix of parameter estimates α̂  and β̂  based on maximum 
likelihood method is given by (BURY, 1975) 
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with Var[α̂ ] = 1.10866 · α2 / (n · β2) and Var[ β̂ ] = 0.60793 · β2 / n. As given in 
equ. (2.100) the estimates of α and β are not independent. The coefficient of variation 
CoV[X] can be derived as  
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(2.101)

Thus in case of 2pWD the coefficient of variation CoV[X] only depends on the WEIBULL 
module or shape parameter β and not on the scale parameter α. The WEIBULL module is 
also well known for the characterisation of failure rates according the bath-tube-curve, 
with β < 1 representing early (infant) failures, β = 1 representing random failures and 
β > 1 wear-out failures (WILKER, 2004). 

Quantiles of 2pWD variables can be derived from (2.95) as  
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The mode is given by 
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As shown in (2.101) CoV[X] of 2pWD only depends on the WEIBULL module β, and vice 
versa. A short study of CoV[X] as function of β in the range of CoV[X] = (1, 100)% leads 
to a well approximating equation (see Fig. 2.3, left) given as  

[ ] 93.0−
≈ βXCoVest , for 127.5 ≥ β ≥ 1.0. (2.104)
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Fig. 2.3: WEIBULL shape parameter β vs. coefficient of variation CoV[X], comparison of 
approximations: (left) CoV[X], CoV[X]est vs. β; (right) β, βest vs. CoV[X]; grey region 
mark common ranges of CoV[X] and β in material science 

The estimation of β given a known or estimated CoV[X] is perhaps a bit tricky leading to 
unrealistic approximations especially at CoV[X] < 10%. Roughly spoken β can be 
estimated by calculating the inverse formulation of equ. (2.104) given by 

type I: [ ] 078.1−
≈ XCoVestβ , for 10% ≤ CoV[X] ≤ 100% (2.105)

with a maximum squared error ε2 = (βest – β)2 of ε2 = 3.83% and 10% ≤ CoV[X] ≤ 100% 
(see Fig. 2.3, right). An improved estimation of β is given by the function 

type II: [ ] [ ] 3317.12447.31104.0 −−

⋅⎟
⎠
⎞

⎜
⎝
⎛≈ XCoVXCoVest Γβ ,  (2.106)

for 1% ≤ CoV[X] ≤ 100%, with a maximum squared error ε2 = (βest – β)2 of ε2 = 0.51% 
with ε in the range of ε = (–7.12%, +6.14%), for 1% ≤ CoV[X] ≤ 100% corresponding to 
1.0 ≤ β ≤ 127.5. In case of failure definition δ = (βest – β) / β the failure range is given by 
δ = (–0.38%, +2.92%) (see Fig. 2.3, right). 

Based on the above estimation of β the second distribution parameter α can be estimated 
by means of βest and estimation of med[X] in case of a given sample. Thus the error in βest 
is even reduced in calculating αest. The procedure for predicting α has the advantage that 
rank statistics are more robust against outliers than empirical mean and variance. 
Nevertheless CoV[X] has to be estimated first and therefore also arithmetic mean and 
empirical variance are required. As mentioned in previous sections the knowledge on 
expectable ranges of CoV[X] provides further analysis in respect to parameter studies 
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supporting judgement of accuracy in prediction. For comparison, HITCHON AND PHILLIPS 

(1978) proposed that the relationship can be approximated by β ≈ 1.20 / CoV[X] 
(type III) (see Fig. 2.3, right).  

2.5 Order Statistics 

Let (X1, …, Xn) be a sample vector with identical and independent distributed (iid) Xi and 
CDF FX(x). Than the order statistics are the statistics of ordered events with defined order 
of occurence, denoted by X(i), with X(1) ≤ X(2) ≤ … ≤ X(n), with max [X(i)] = X(n) and 
min [X(i)] = X(1). Thus the range R is given by R = X(n) – X(1). The order statistics of 
realisations of random variable Xi are given as x(i) = x(1), …, x(n).  

Assuming a iid random variable Xi with density fX(x) and CDF FX(x) than the probability 
density function fk(x) as well as the cumulative distribution function Fk(x) of X(k) at the 
position k are given as (e.g. ROHLING, 2007) 
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(2.107)

The PDF and CDF of extreme values, the minima and maxima, are given as  

minima:  ( ) ( )[ ] ( )xfxFnxf
n

⋅−⋅=
−1

1 1  and ( ) ( )[ ] n
xFxF −−= 111 , 

maxima:  ( ) ( ) ( )xfxFnxf
n

n ⋅⋅=
−1

 and ( ) ( ) n
n xFxF = . 

(2.108)

Note: The types of statistical distributions and equations for calculation of some key 
distribution characteristics of extremes in the limiting case with n Ø ¶ are discussed in 
more detail in section 2.6.2.  

The pth quantile xp of a random variable represents a value which divides the probability 
mass in two parts where P(X ≤ xp) = p (e.g. STADLOBER, 2008). In case of continuous 
random variables it follows  
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( ) ( ) ( ) ( )pFxdxxfpxXPxF Xp

x

XppX

p
1−

∞−

=→⋅==≤= ∫ . (2.109)

The theoretical quantile xp can be estimated by empirical quantiles Qp which are functions 
of order statistics X(k). There are numerous possibilities how to estimate the theoretical 
quantiles xp by Qp. Three common possibilities, as given in STADLOBER (2011B) are 
presented briefly. 

Type I: Qp based on the inverse of the empirical distribution function 

In type I xp is estimated by Qp by means of the inverse of the empirical distribution 
function (empD). Thereby Qp is a discrete estimator and given as  

( ) ( )[ ]12
1

+⋅⋅ +⋅= pnpnp XXQ  , if (n ÿ p) is an integer, 

⎣ ⎦( )1+⋅= pnp XQ  , if (n ÿ p) is not an integer.  
(2.110)

Type II: Estimator Qp as implemented in statistical software packages e.g. SPSS, MiniTab 

In type II the continuous estimator Qp is given as  

( )1XQp =  , k = 1, 

( ) ( ) ( )kkp XaXaQ ⋅−+⋅= − 11  , 2 ≤ k ≤ n,  

( )np XQ =  , k = n + 1,  

(2.111)

with  

( )⎣ ⎦ 1/1 ++= pnk , ( ) pnka ⋅+−= 1 .   (2.112)

Type III: Estimator Qp as implemented in R (2009) as type 7 (default) 

In type III the continuous estimator Qp with good smooting is given as  

( ) ( )⎣ ⎦( ) ( )⎣ ⎦( )21111 +⋅−+⋅− ⋅+⋅−= pnpnp xgxgQ ,   (2.113)

with  



General Remarks concerning Probability Theory and Statistics 

60 

( ) ( )⎣ ⎦pnpng ⋅−−⋅−= 11 .  (2.114)

The median x50 = med(X) as parameter of location halves the probability of events and is 
defined by 

( )[ ]2/1)( += nXXmed  , if n is odd, 

( ) ( )[ ] 2/)( 12/2/ ++= nn XXXmed  , if n is even. 
(2.115)

2.6 Some Theorems, Theories and Statistical Models 

Following sections present additional stochastic background and discusses the Central 
Limit Theorem, major aspects of extreme value theory, regression and correlation 
analysis, hierarchical models, stochastic processes and time series as well as some 
functions and transformations helpful for further applications.  

2.6.1 The Central Limit Theorem 

The Central Limit Theorem states that in case of an iid sequence of random variables 
X1, X2, …, with E[Xi] = µ, Var[Xi] = σ2 > 0 and the definition of the sample mean given by  

∑
=

⋅=
n

i
in X

n
X

1

1 , (2.116)

the CDF Zn given as  
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XnZ ,  (2.117)

converges in the limiting case  
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, (2.118)

to the standard normal distribution (SND). The normality follows herein from the sum of 
in respect to finite variance, small and independent disturbances. In general equ. (2.118) 
is a very usefull approximation also for finite but sufficient large number of summands. 
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Even if the number of variables is small, in the range of about 10 to 20, and even if the 
distribution of the variables is far away from normality (e.g. uniform distributed) the 
distribution of the sum converges relatively fast to the normal distribution. The judgement 
whether or not the approximation is sufficiently accurate has to be done individually and 
in dependency of the type of the parent distribution(s) (CASELLA AND BERGER, 2002).  

2.6.2 The Extreme Value Statistics and its Distribution Models 

The extreme value theory (EVT) concentrates on the stochastic description and modelling 
of the behaviour of extreme values (e.g. maxima, minima) with focus on iid variables and 
processes. The extreme value distributions describe limiting distribution functions with 
system size n → ∞. As generally known (see (2.107)), if X1, X2, …, Xn are iid random 
variables with CDF FX(x) the distribution of extremes for minima constitutes as 

X(1) ≤ X(2) ≤ … ≤ X(n)  ( ) ( ) ( )[ ] n
XXX xFxFxF −−== 11

)1(min, , 

or inversely ( ) ( )[ ] n
XX xFxF

/1
min,11 −−= , 

(2.119)

and for maxima as 

X(n) ≥ … ≥ X(2) ≥ X(1)  ( ) ( ) ( )[ ] n
XXX xFxFxF

n
==

)(max, , 

or inversely ( ) ( )[ ] n
XX xFxF

/1
max,= .  

(2.120)

Tab. 2.2: Limiting distributions vs. parent distributions (KOTZ AND NADARAJAH, 2000) 

limiting distribution for extremes type of parent distribution 

maxima minima 

Xi ~ exponential (x | θ) type I type III 

Xi ~ gamma (x | θ) type I type III 

Xi ~ normal (x | θ) type I type I 

Xi ~ lognormal (x | θ) type I type I 

Xi ~ uniform (x | θ) type III type III 

Xi ~ pareto (x | θ) type II type III 

Xi ~ cauchy (x | θ) type II type II 
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According GRIFITH’s theory differences between the calculated strength of materials by 
means of classical strength theory and the observed strength can be traced back to 
strength reducing flaws in the material body.  

PEIRCE (1926) was probably the first who connected the specimen strength with extreme 
value theory. Based on these previous works WEIBULL (1939) defined his well known 
stochastic strength theory on the basis of weakest link theory for brittle materials. A 
comprehensive and recommended summary of the developments regarding extreme value 
theory is given in KOTZ AND NADARAJAH (2000).  

FISHER AND TIPETT (1928) showed that there are exactly three types of limiting extreme 
value distributions (KOTZ AND NADARAJAH, 2000). For maxima they are given by 
equ. (2.121) to (2.123), with θ = (μ, σ, ξ)T as parameter vector with σ, ξ > 0, µ œ  as 
location parameter, σ as scaling parameter and ξ as shape parameter. The corresponding 
distributions for minima are derived by substitution of x by (–x).  

Type I is often treated as reference extreme value distribution (EVD). Variables 
distributed according type II or type III can be easily transformed to type I. If X ~ type II 
with FX(x | 0, σ, ξ), substituting X by ln(X) leads to type I with FX(x | 0, ln(σ), 1 / ξ). If 
X ~ type III with FX(x | 0, σ, ξ), substituting X by ln(X) leads to type I with FX(x | 0, –
ln(σ), 1 / ξ).  

Tab. 2.2 gives the limiting distributions in dependency of the parent distribution of X.  

Type I (Gumbel-type):  
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 with x œ (– ∞, + ∞) 
 exponential decrease of upper distribution tail (e.g. SCHUËLLER, 1981); 

(2.121)

Type II (Fréchet-type):  
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 with x œ [μ – σ / ξ, + ∞), ξ > 0 
 polynomial decrease of upper distribution tail (e.g. SCHUËLLER, 1981); 

(2.122)
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Type III (reversed Weibull-type):  
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 with x œ (– ∞, μ – σ / ξ], ξ < 0 
 for modelling of materials life time stressed in fatigue (e.g. SCHUËLLER, 1981). 

(2.123)

All three types can be traced back to the generalised extreme value distribution (GEVD) 
with same domains of X with CDF  
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and PDF  
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The three types of EVD can be derived from GEVD with ξ = 0  type I, ξ > 0  type II 
and ξ < 0  type III, whereby ξ is predominantly influenced by the functional form of the 
tail as already indicated in equ. (2.121) to (2.123). Hence ξ = 0 corresponds to an 
exponential decreasing function, ξ > 0 to a polynomial decreasing functional behaviour, 
in general expectable in case of long-tailed parent distributions, and ξ < 0 characterises 
distributions with short tails given in case of a finite upper limit. In the evaluation of ξ 
some problems may occur if ξ < (– 1 / 2) and ξ > 1 / 2 due to not existing likelihoods or 
not existent second and higher moments. Nevertheless, environmental data and data sets 
gained from natural processes show that parameter ξ is in general within the range of [–
 1 / 2 < ξ < 1 / 2] (KOTZ AND NADARAJAH, 2000). 
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The central moments and some more figures of GEVD, case ρ ≠ 0, can be derived by  
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with κk = Γ (1 – k ÿ ξ), for k = 1, 2, … 

By means of order statistics the probability distribution function of the rth order statistics 
X(r) of iid random variables with –∞ < x < ∞ is given by  
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The kth moment is given by 
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(2.132)

Here it has to be remarked that ordered realisations are due to ranking not independent 
even if the realisations itself represent independent outcomes (BURY, 1975).  

Some more Comments on Type I EVD 

The EVD type I is perhaps the most common and preferably studied type of the EVD 
models and is also known as double-exponential or GUMBEL model. As given in Tab. 2.2 
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type I EVD is also the limiting distribution of variables with ND or 2pLND as parent 
distribution, for minima and maxima. The right-skewed PDF is given by 
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If standardised by  

σ
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XY ,  (2.134)

the PDFs simplify to  

( ) ( )[ ]yyyfY −−−= expexp|θ , for maxima,  

( ) ( )[ ]yyyfY expexp| −=θ , for minima,  
(2.135)

with θ = (μ, σ)T as parameter vector. The CDFs are given as  
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(2.136)

By taking twice the logarithm of equ. (2.121) it follows 

( )( )[ ]
σ
μθ −

=−−
xxFX |lnln  (maxima); ( )( )[ ]

σ
μθ −

=−−
xxFX |1lnln  (minima). (2.137)

If the left side of equations in (2.137) (y-axis) is plotted against the right side of (2.137) 
(x-axis) a linear function with gradient (1 / σ) and intersection with the x-axis at x = μ is 
given. This graph represents a probability paper which enables a quick qualitative 
judgement of a set of realisations of a specific variable whether or not being represented 
by type I. It is recommended to compute the empirical distribution empD by values 
empDi = (i – 0.5) / n, with i = 1, …, n. 
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The first two central moments of EVD type I are given by 

[ ] γσμ ⋅+=XE  (maxima); [ ] γσμ ⋅−=XE  (minima),  (2.138)

with γ = 0.5772156… as the EULER-MASCHERONI constant, and  

[ ] 222 64493.1
6
1 σσπ ⋅≈⋅⋅=XVar  (for maxima and minima). (2.139)

The skewness skew[X] = 1.1396 is independent of the distribution parameters μ and σ 
(SCHUËLLER, 1981). The location parameter μ conforms to mode[X]. The inflexion points 
are at  
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The quantiles xp, with FX(xp) = p can be calculated simply as  
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On the basis of the empirical mean X and standard deviation S the distribution parameters 
can be estimated by the method of moments given in LOWERY AND NASH (1970) as well 
as LANDWEHR ET AL. (1979) by 

σγμ ˆˆ ⋅−= X  (for maxima); σγμ ˆˆ ⋅+= X  (for minima) and S⋅=
π

σ 6ˆ . (2.142)

According to TIAGO DE OLIVEIRA (1963) the variance of these estimated parameters can 
be evaluated with skew (X ) = ◊β1 (X) ≈ ◊1.29857 = 1.1396 and kurt (X) = β2 (X) ≈ 5.4 
by 
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By means of maximum likelihood estimation technique (MLE) the distribution 
parameters can be derived by 
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solving first the estimate for σ iteratively and than the equation for estimating μ. 

Following BURY (1975) the variance-covariance matrix of MLE is given by  
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with Var[ μ̂ ] = 1.10866 · σ2 / n and Var[σ̂ ] = 0.60793 · σ2 / n. Furthermore, BURY (1975) 
comments that samples of size n taken from an extreme value phenomenon following 
type I EVD show that the largest observation X(n) also follows type I EVD but with 
shifted location parameter μ(X(n)) = σX · ln(n) + μX and standard deviation σ(X(n)) = σX. 

2.6.3 Regression and Correlation Analysis 

General regression analysis provides the description of a random variable (the dependent 
variable) by means of a functional relationship to expectation and variance of a (set) of 
values of the explaining random variable(s) (e.g. SCHUËLLER, 1981). Regression and 
correlation analysis enable a systematic examination of relationships but not necessary 
insight into the physics behind the phenomena. Thus extrapolations have to be done with 
caution (e.g. SCHUËLLER, 1981). BURY (1975) states that statistical dependencies are 
essentially symmetrical but due to physical considerations some asymmetry may occur 
due to the fact that statistical dependency does not automatically indicate a causal 
connection between two or more random variables.  

The Simple Linear Regression Model and its Boarder Conditions 

In general, the “classic linear models” given by the analysis of variance (ANOVA) and 
the simple linear regression model are based on an underlying linear model with ND 
errors (CASELLA AND BERGER, 2002).  
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According STADLOBER AND SCHAUER (2007) the simple linear regression model gives a 
first order relationship between two variables. The formulation is given by 

iii xYxY εβαεβα ++⋅=→++⋅= , with i = 1, …, n,  (2.147)

with Y as the dependent variable in relation to a fixed variable X = x and parameters α and 
β. The stochastics, the randomness of a specific Yi given xi is considered by the random 
error εi. It is assumed that  
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hence  

[ ] iii xxXYE ⋅+== βα|  and [ ] [ ]iiii xXYVarxXVar ==== || 2σε ,  (2.149)

with constant variance σ2 (homoscedasticity). Minimisation of the sum of squared errors 
given as 
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with ei as the observeable residuum, is done by means of least square method (LSM). The 
parameters and its estimators are given by 
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and 

[ ] [ ] xYXEYE XY ⋅−=→⋅−=⋅−= βαμβμβα ˆˆ . (2.152)

The degree of dependence of Y on X can be expressed by the PEARSON correlation 
coefficient ρX,Y(x, y) = ρX,Y defined by 
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The components of total squared sum SST of the observed values can be identified as 
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with SSR as sum of squared deviations from regression estimates iŷ and y and SSE as the 

sum of squared deviations between data yi and the regression estimates for iŷ defined as 

residuum iii yye −= . Thus the coefficient of determination, in case of a simple linear 
regression model defined by BX,Y = ρ2

X,Y, expresses the fraction of variance of data which 
can be explained by the regression model and is defined by 

SST
SSR

SST
SSEB YX =−=1, . (2.155)

By means of the transformation ti = xi – x  the regression model becomes 

Y = β1 + β2 · t + ε, β1 = E[Y] and β2 = β, with independent regression parameters 1̂β  and 

2β̂  (CoVar[ 1̂β , 2β̂ ] = 0) and distributions  
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2.6.4 Hierarchical Models 

Hierarchical models enable a sequential examination of complex processes by splitting 
the process into hierarchically simplier models (CASELLA AND BERGER, 2002). The 
simplest hierarchical model is given by a second order hierarchy, for example by splitting 
into X | Y ~ DM (X | Y) and Y ~DM (Y) for computing the DM of X knowing that 
E[X | y] Ø f (y). The consequently computed “mixture distributions” are a sign of an 
underlying hierarchical structure.  

An example is discussed in HOHENBICHLER AND RACKWITZ (1981). They analysed a 
uniform correlation independent of the distance (time, space) between two or more events 
known as equicorrelation. In general, equicorrelation follows if all elements in a system 
depend on a common parameter Z whereby Z itself is defined as a random variable 
modelled by means of a hierarchical model, i.e. in case of a second order hierarchical 
model given by 

ii YZX ⋅= , (2.158)

with RN = RN(X1, …, XN) expressed by RN = RN(Z ÿ Y1, …, Z ÿ YN), with Yi iid and 
(Z ÿ Y1, …, Z ÿ YN) being independent distributed.  

With (X1, …, XN) and (Z, Y1, …, YN) as i.e. equicorrelated lognormal random vectors and 
E[Xi] = μ, Var[Xi] = σ2 (  Xi iid LND-variables) and ρ[Xi, Xj] = ρ it follows that (JONES 

AND MILLER, 1966)  

[ ] γμ += 1/iYE , [ ] ( ) 22 1/1 γρσ +−⋅=iYVar ,  

[ ] γ+= 1ZE , [ ] ( )γγ +⋅= 1ZVar ,  
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(2.159)

The CDF of Yi becomes 
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2.6.5 Stochastic Processes 

A stochastic process constitutes the dynamic part of probability theory (e.g. SCHUËLLER, 
1981). In other words, a stochastic process is a model for random processes, random e.g. 
in time or space, especially relevant if dependency on time or space is given (e.g. 
WINKLER, 2000). According GRÜN (2009) stochastic processes act as counterpart to 
empirical time series and constitute the basis for modelling of these. For comparison, a 
similar relationship between empirical data sets and random variables in classical 
statistics is given. Whereas in classical statistics the analysis of iid random variables is the 
core topic, stochastic processes focus on the description of discrete or continuous 
observations of random processes and therefore on modelling of dependent structures 
(STEINEBACH, 2006). The sequence of outcomes and occurrence of random variables is in 
general decisive in stochastic processes. According ROHLING (2007) stochastic processes 
do not concentrate on singulary iid variables with emphasis on the arithmetic mean, but 
concentrate on a range of variables with the aim to model time or space dependent 
dynamical aspects with focus on dependencies between variables with distances in time 
or space, expressed by their (spatial) correlation structure.   

A stochastic process X(t) = {Xt(ω), t œ T} is defined as a family of random variables 
mapping X: Ω ä τ Ø  which constitutes a real function xt for each fixed ω œ Ω and 
describes the random process of a sequence of random variables along t, e.g. time (e.g. 
HASSLER, 2002), space or objectively abstract (e.g. VOß ET AL., 2004). τ and E constitute 
the parameter domain and the event space, respectively. Especially the relationship of 
neighbouring random variables becomes important. In case of fixed elementary events 
ω = ω0 realisations of the stochastic process X(t), also known as trajectories or pattern 
functions, can be observed. The sum of all possible trajectories defines the population of 
a stochastic process (e.g. VOß ET AL., 2004). In case of fixed t = t0 the random variables 
X(t0) shows realisations  

( ) ( ) ( )nttt XXX ωωω
000

...,,, 21 .  (2.161)

The expected value function of X(t) is given by mt = E[Xt] = E[Xt(ω)] = μ(t), t œ τ and 
called trend or trend function (e.g. STADLOBER, 2005; ROHLING, 2007). It expresses the 
mean function, the average development of the stochastic process X(t) over time or space. 
For characterisation of the relationship between random variables of a trend-free 



General Remarks concerning Probability Theory and Statistics 

72 

stochastic process the auto covariance function of X(t) is defined by (e.g. STADLOBER, 
2005) 

( ) [ ] ( ) ( )[ ] [ ] ststssttstXX mmXXEmXmXEXXCoVarstK ⋅−=−⋅−== ,,, , (2.162)

with s, t œ τ. This is a symmetrical function in s and t with KXX(s, t) = KXX(t, s). In case of 
KXX(t, t) it is equal to the variance of the stochastic process given by  

( ) [ ] [ ] ( )tXVarXXCoVarttK tttXX
2,, σ=== , t œ τ. (2.163)

The auto correlation function (ACF) of X(t) is given by 
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The characteristics of ACF are as following: 

 average power of the process 

 ( ) ( ) [ ] 2220 XXmXXXX XEm μσρρ +==≤ ; 

 real, even function 
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 convergence for non-periodic processes 
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In case of a sufficient large value of |t – s| it can be expected that Xs and Xt are only 
weakly correlated, with 

( ) ( ) 0,lim,lim ==
∞→−∞→−

tstsK
stst

ρ . (2.165)

In case of Zt(ω) = [Xt(ω), Yt(ω)] being a two-dimensional random variable of a stochastic 
process the cross covariance function as well as the cross correlation function (CCF) 
are given by 
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( ) [ ]stXY YXCoVarstK ,, = , s, t œ τ, ( ) ( )tsKstK XYXY ,, = , (2.166)

and 
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For an m-dimensional random variable  

( ) ( ) ( )[ ]ωωω
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=   (2.168)

of a stochastic process following notations are given: 

mean function (vector):  ( ) ( ) ( )[ ]ttt mμμμ ,...,1= ,  (2.169)

variance function (matrix): ( ) ( ) ( )[ ]′−⋅−= tttt XXEt μμσ 2 ,  (2.170)

covariance function (matrix): ( ) ( ) ( )[ ]′−⋅−= 2,2,1,1,21, tttt XXEttK μμ . (2.171)

Stationarity of Stochastic Processes 

In case of strong stationarity the CDF shows invariance against time shifts, denoted by 
X(t) = {Xt, t œ T} " n œ : " t, t1, …, tn œ T  

( ) ( )[ ]( ) ( ) ( )[ ]( )ntXtXntXtX xxFxxF
nn

,...,,..., 1,...,1,..., 11 ττ ++= . (2.172)

Consequently, E[Xt] = mt =μ = m and Var[Xt] = σ2. Both are constant and independent of 
t. Also the covariance function only depends on the difference τ = t – s, with 
K(s, t) = E[Xs, Xt] – m2 = K(0, τ) = K(τ) = CoVar[Xs, Xτ+s] = K(–τ), K(0) = CoVar[Xs, Xs] = 
= Var[Xs], ρ(τ) = ρ(s, t) = K(τ) / K(0), lim|τ|Ø∞ K(τ) = 0, and the smoothing- or trend-fitting 
function aligns parallel to time axis (e.g. STADLOBER, 2005; ROHLING, 2007).  

Weak stationarity is defined by E[Xt] = mt =μ = m, " t, Var[Xt] = σ2 = constant 
(homoscedasticity) and K(τ) = K(s, s + τ), " s œ τ, s + τ œ τ (STADLOBER, 2005). In case 
of weak stationary stochastic processes ρXX(t, s) satisfies 
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A stochastic process εt is defined as “white noise” (pure random process) if expectation 
E[εt] = 0 and variance Var[εt] = σε2, for " t œ t, with CoVar [εt,1, εt,2] = 0, " t1 ∫ t2. 
Consequently, all random variables are independent with a common and constant 
expectation μ = 0 (or standardised for μ = 0) and with constant variance. Sometimes the 
stronger condition εt ~ iid (0, σ2) is assumed. The cummulative process of “white noise” is 
known as “random walk”.  

Ergodic Stochastic Processes 

Ergodicity is an additional requirement on stationarity. It enables the derivation of a 
sufficient statistic based on only one trajectory instead of a band (number) of trajectories 
as it would be necessary in case of general or stationary stochastic processes. The 
assumption is that all ensemble average values E[Xt] of X(t) are identical and sufficient 
represented by each realised trajectory x(t) expressed by 
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with E[X(ti)] as mean value (expectation) of the band corresponding to the average time 
value (ROHLING, 2007). Therefore and in case of weak stationary and ergodic processes 
KXX(t, s) is given by 
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The power of this stochastic process is given by ρXX(0) = ρXX(0) + ρYY(0) + 2 · ρXY(0). In 
case of time discrete, stationary and ergodic stochastic processes it follows  
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A discrete stochastic process can for example be described by means of a Poisson process 
or of Markov chains, whereas continuous stochastic processes follow e.g. a Gauss process 
(e.g. SCHUËLLER, 1981). The first two mentioned processes are further briefly discussed. 
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The Poisson Process 

The Poisson process is one well known special case of stochastic processes and 
developed by theoretical analysis for modelling queueing and arrival processes 
(ROHLING, 2007; STADLOBER, 2005). Thereby random variable Zn describes the time lag 
(difference or distance) between arrivals n and (n – 1) which are assumed to be iid. The 
number of arrivals up to time point t = t0 with time interval [0, t0], denoted by N(t) = n, is 
called counting process. The arrival process is assumed to be ergodic with (mean) arrival 
rate λ = nA / t0, with nA = N(t0). The probability of k arrivals within time interval [0, t0] is 
assumed to be Poisson distributed,  
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tktNP
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⋅−⋅

⋅
== λ

λ , N(t0) ~ Poi (λ · t0), (2.177)

with E[N(t0)] = Var[N(t0)] = λ · t0. The distribution of the time-lag Zn between two arrivals 
is assumed to be iid and expontially distributed with CDF and PDF 

( ) ( ) ( )ttZPtF nZn
⋅−−=≤= λexp1 , with t ≥ 0, Zn ~ Exp (λ),  

( ) ( )ttf nZ ⋅−⋅= λλ exp , 
(2.178)

with E[Z] = 1 / λ and Var[Z] = 1 / λ2.  

Markov Chains 

The Markov characteristic is defined by the lack of memory, the Markov-property. Thus 
future values only depend on the current value but being independent of past values, see 
(e.g. ROHLING, 2007) 

( ) ( )tttttttt iXjXPiXiXiXjXP ======= +−−+ |,...,,| 100111 , " (i0, …, it). (2.179)

The main characteristics are: 

 the conditional probability pij (t, t + 1) = pi | j (t, t + 1) = P(Xt+1 = j | Xt = i) is 
defined as single-step transition probability from i to j; 

 Markov chains are homogenous if single-step transition probabilities are 
independent from the time of observation t, pij (t, t + 1) = pij, corresponding to 
Markov chains with stationary transition probabilities. 
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WINKLER (2000) report that processes with events which only depend on their last state 
are very common in physical processes. The description of such a process starts with an 
arbitrary choosen initial state gained from a pre-defined initial distribution and develops 
according the defined transition probabilities. The last distributions describe the 
probability of occurrence of event j at time t in case of occurrence of event i at time  
(t – 1). These one-step dependencies of stochastic processes can also be modelled by 1st 
order autoregressive models, abbreviated by AR(1).  

2.6.6 Time Series 

According HARTUNG ET AL. (2002), SCHERRER (2009) and GRÜN (2009) time series are 
defined as temporary (finite) sequences of quantitative, in respect to time ranked 
outcomes (measured values) of a specific event. These are performed (1) to gain 
knowledge about the event within a system, (2) to examine changes (trends), (3) to 
extract key figures, and (4) used for forecasting of probabilities that future events may 
occur. Hereby the observation of a time series, the data acquisition, is in general made in 
equidistant time steps. Thereby, the time steps shall be choosen short enough to enable 
the observation of all relevant phenomena in respect to the scope of the model (  
representative time step or time increment). The components Y(t) of a time series can in 
general be split into three main components: 

 flat time series component G(t), as cyclical, wave-shaped component (trend 
component  estimation by means of least squares method (LSM) in case of 
robust (linear) trends; (weighted) moving average (MA) in case of lack of robust 
(linear) trends (  illustration of intermediate-term developments); 

 seasonal component S(t) as periodical, wave-shaped component (  estimation by 
filtering, smoothing, assuming an additive time series model with constant 
seasonal trend;  de-trendend)  e.g. moving averages (MA); 

 random, irregular component R(t) as sequence of short-time irregular changes 
with random fluctuation σ around μ = 0. 

Consequently, additive (classical) time series models are given as  

( ) ( ) ( ) ( )tRtStGtY ++= .  (2.180)
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According GRÜN (2009) also multiplicative segmentation of time series as defined in 
(2.181) is possible. They can be transformed by logarithmising into additive time series 
given by (2.180). 

( ) ( ) ( ) ( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ]tRtStGtYtRtStGtY lnlnlnln ++=→⋅⋅= .  (2.181)

The characteristics like autocovariance, autocorrelation and partial autocorrelation are 
important statistics of time series y1, …, yn. They describe interrelationships between 
observations in determined distances between discrete time steps. Therefore lag(k) 
defines the relationship between yt and yt+k, for t = k, …, (n – k). The empirical 
autocovariance at lag(k) is given by 
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1 , for k = 0, 1, …, n – 1,  (2.182)

whereby the standardisation with 1 / (n – k) is sometimes replaced by 1 / n. Thus the 
empirical autocovariance at lag(k) is equal with c(k) = c(0) of empirical time series 
variance. The empirical auto covariance serves as predictor for the population 
autocovariance K(k).  

The empirical autocorrelation r(k) as predictor of ρ(k) can be computed by standardising 
the empirical autocovariance by the empirical variance at lag(k) as shown in (2.183). 
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, with r(k=0) = r(0) = 1 (2.183)

2.6.7 Functions and Transformations of Variables and their Distributions 

In general, if X is a random variable with CDF given as FX(x) than any function of X, e.g. 
g(X) is also a random variable, e.g. Y = g(X) (CASELLA AND BERGER, 2002). Let c be a 
domain defined by c = {x: fX(x) > 0} and g be a domain defined by g = {y: y = g(X), for 
some x œ c} then if X defines a continuous random variable the CDF of Y = g(X) given as 
FY(y) is given by 
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(2.184)

In case of a discrete random variable X the same holds by changing the integral by the 
sum operator. The PDF in case of a partly monotone function g(x) is given by 
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with g1(x), …, gk(x), i = 1, …, k, defined on A1, …, Ak as monotone regions of g(x) and 
subspaces of the sample space (CASELLA AND BERGER, 2002; ROHLING, 2007). In case of 
a monotone function g(x) over the whole domain of X the PDF simplifies to 

( ) ( )[ ] ( )yh
dy
dyhfyf XY ⋅= , (2.186)

with Y = g(x) and h(y) = g-1(y) =X  dx / dy = dh(y) / dy.  

For example, if two random variables X and Y with joint PDF fX,Y(x, y) are transformed 
according u = g1(x, y) and v = g2(x, y) the joint PDF of U and V is  given by (CASELLA 

AND BERGER, 2002) 

( ) ( ) ( )[ ] Jvuhvuhfvuf YXVU ⋅= ,,,, 21,, , (2.187)

with |J| as the absolute value of the Jacobian determinand which is defined by 

v
x

u
y

v
y

u
x

v
y

u
y

v
x

u
x

J
∂
∂
⋅

∂
∂

−
∂
∂
⋅

∂
∂

=

∂
∂

∂
∂

∂
∂

∂
∂

= , 

with ( )
u

vuh
u
x

∂
∂

=
∂
∂ ,1 , ( )

v
vuh

v
x

∂
∂

=
∂
∂ ,1 , ( )

u
vuh

u
y

∂
∂

=
∂
∂ ,2 , ( )

v
vuh

v
y

∂
∂

=
∂
∂ ,2 . 

(2.188)
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Comments on Sums of Variables  

The PDF of a sum of mutually independent random variables can be derived by means of 
calculating the product of existing MGFs (see section 2.3.3) given as (CASELLA AND 

BERGER, 2002) 
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,  (2.189)

with Xi as random variables and ai, bi as constants. 

Another possibility of deriving the PDF of a sum of independent random variables is 
given by calculating the convolution of the PDFs. Assuming two independent random 
variables X and Y with PDF or PMF fX(x) or pX(x) and fY(y) or pY(y) than the PDF of 
Z = X + Y is given by (DURRETT, 1994) 

( ) ( ) ( ) ( ) ( )ypxpxzYPxXPzf YX
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Z *=−=⋅==∑ , if Z is discrete; 
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∞

∞−

, if Z is continuous. 
(2.190)

Fourier transformation (FT) transforms the PDFs of variables X and Y into their spectrum 
FT [fX(x)] and FT [fY(y)]. The spectrum of the PDF of Z is thus given by the product of 
the spectrums of the PDFs of X and Y, see  

( ) ( ) ( ) ( )[ ] ( )[ ] ( )[ ]yfFTxfFTzfFTyfxfzf YXZ
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YXZ ⋅=→= * . (2.191)

In probability theory the same calculation procedure can be performed by means of the 
characteristic function fX(t) (ROHLING, 2007; section 2.3.4).  

In case of Z = X1 + X2 + … the PDF of Z is given by 
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and in case of Xi ~ iid by 
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The backwards transformation is given by 
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, with fZ(0) = 1.  (2.194)

Comments on Products of Variables  

In case of dependent random variables X and Y with existing moments for calculating E[.] 
and Var[.] the expected value and the variance of the ratio Z = X / Y can be approximated 
by (CASELLA AND BERGER, 2002) 
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Chapter 3 

3 Serial and parallel System Actions and related 
Effects with Focus on Strength 

This chapter presents some general notes concerning serial and parallel 
system actions and effects. After a brief introduction a comprehensive 
literature review about the state-of-the-art of current stochastic material 
(strength) models is given. In particular Weibull’s weakest link theory, theory 
of plasticity and Daniels’s fibre bundle theory are introduced followed by a 
section presenting latest developments gained by combining these theories to 
more realistic and broader applicable material and structure models. 
Thereafter serial and parallel stochastic effects are discussed in more detail, 
both theoretically and under support of comprehensive stochastic simulations 
relevant for finite system sizes. This chapter provides theoretical and general 
applicable background information concerning systems and gives the basis 
for further examinations relevant to timber system products and structures 
investigated in chapters 4 and 5. The focus is rather on a general description 
of material behaviour in systems composed of elements or components which 
form itself a system of elements.  

3.1 General Overview and some Definitions 

As already discussed in section 1.3 systems are defined by the arrangement and 
interaction of system elements and components whereby the system itself can even 
constitute a sub-system of higher-ranking systems. There are two main features which 
characterise and determine a system: firstly the quantity of interacting elements, herein 
expressed by N and M in case of parallel and serial arranged elements, respectively, and 
secondly the type of interaction between the elements in respect to their arrangement 
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relative to system exposure. The system action or reaction as a consequence of exposure 
in contrast to action and effects observable in single elements are called “system effects” 
which in agreement with the specific notation of system size by N, M and N ÿ M for 
parallel, serial and a combination of serial and parallel acting elements, respectively, are 
also differentiated into parallel, serial and parallel-serial system effects. Whereas relative 
to loading direction serial arranged elements automatically incorporate serial system 
action, in systems composed of parallel arranged elements serial and parallel actions can 
be observed. The observable effects are in dependency of several facts which are 
discussed in more detail within the next sections.  

In the following some general statements on probability theory theorems are introduced, 
basic features of serial and parallel system actions are compared and the state-of-the-art 
of stochastic strength theories dealing with serial and parallel system action under 
randomness of element characteristics are discussed, namely the “perfect brittle material 
model” according to WEIBULL (1939), the “perfect plastic material model” as well as the 
“fibre bundle model” according to DANIELS (1945). After that recent developments in 
stochastic modelling of system behaviour under more general assumptions are presented. 
A general graphical visualisation of serial and parallel acting systems is shown in Fig. 3.1 
left (a) and right (b), respectively. 

 

Fig. 3.1: Schematic illustration of systems: (a) serial acting system, (b) parallel acting system; F 
as external applied load, θi as parameter vector of random element characteristics (e.g. 
strength fi, E-modulus Ei and strain εi) with i = 1, …, N, M, with N and M as parallel and 
serial system size, respectively 

Let Ei be the failure event of the ith element. Then the failure event of a serial system is 
given by (e.g. THOMA, 2004) 

inserial EEEEE ∪=∪∪= ...21 , (3.1)

and in case of an ideal parallel system by 
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inparallel EEEEE ∩=∩∩= ...21 . (3.2)

Consequently, a series of parallel systems reads 

ijparallelserial EE ∩∪=_ , (3.3)

and a parallel arrangement of serial systems leads to 

ijserialparallel EE ∪∩=_ . (3.4)

In that respect the failure of one (the first) element in a serial system initiates immediately 
the failure of the whole system whereas in ideal parallel systems a collaps is given only if 
all elements fail. Let Ri be the event that the ith element Ki is intact and Rs the event that 
the whole system is intact with probabilities pi = P(Ri) and ps = P(Rs). If independent 
failure of the elements occurs with probability qi = 1 – pi then the following statements 
concerning the reliability of systems can be made (e.g. STADLOBER, 2005; SCHUËLLER, 
1981): The probability of survival or reliability of a serial system of M elements is given 
by 
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Thus the reliability of a serial system is always smaller than the reliability of the weakest 
element in the system.  

The probability of survival or reliability of a parallel system of N elements is given by 
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with  
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Here the reliability of an ideal parallel system is always larger than the reliability of the 
strongest element in the system.  

Consequently, the failure probabilities P(Rf) of perfect serial and parallel systems 
assuming independency between the elements are given by 

( ) ( )∏
=

−−=
M

i
iserialf qRP

1
, 11  and ( ) ( )∏

=
=

N

i
iparallelf qRP

1
, .  (3.9)

 

Fig. 3.2: Changes in PDF and CDF of ideal serial (left) and ideal parallel (right) acting iid 
elements assuming X1 ~ 2pLND; variation of CoV[X1]; E[X1] = 30, with X1 as 
characteristic at M, N = 1 
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In the special case of iid elements the reliabilities P(Rs) and failure probabilities P(Rf) 
tend in the limiting case with M, N Ø ¶ to the corresponding statistical models of 
extreme value theory (see section 2.6.2).  

Reliabilities and failure probabilities of perfect serial and parallel systems provide bounds 
for calculation and judgement of probabilities of more complex systems which can only 
be estimated by simulations and / or under certain constraints. Nevertheless, these trivial 
bounds are very inefficient for most practical calculations enabling strict restricted 
evidence in reliability calculations. Improved bounds are for example discussed and given 
in GOLLWITZER (1986) with references on RACKWITZ (1978), DITLEVSEN (1979A,B), 
HOHENBICHLER (1980), GOLLWITZER AND RACKWITZ (1983) and others. It has to be 
noted that the requirement of iid variables fails already if for example reliabilities are 
calculated based on stochastic modelled action and resistance variables (GOLLWITZER, 
1986). Some examples of changes in PDF and CDF of ideal serial and parallel systems of 
iid elements with X ~ 2pLND are given in Fig. 3.2.  

 

Fig. 3.3: Safety index β in dependency of system type, system size and magnitude of 
equicorrelation between interacting system elements based on reliability calculations by 
means of second order reliability method (SORM); adopted from GOLLWITZER (1986) 
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The comparison between the distribution of element characteristics and that of systems 
not only changes in location and shape. There is also a decrease in statistical spread and a 
distinctive influence on the reliability of these systems given. Therefore Fig. 3.3 provides 
a comparison of reliabilities by comparing safety index β of given systems depending on 
the system action, system size and the magnitude of equicorrelation between interacting 
elements (see GOLLWITZER, 1986). As already discussed in GOLLWITZER (1986) it can be 
observed that serial system actions show only minor influence in case of a certain 
dependency, roughly only above ρ ≈ 0.70 and larger system sizes. In contrast, parallel 
acting systems show distinctive dependency on system size and correlation. Thus 
comprehensive knowledge of RSDM and correlation structure of elements is in particular 
decisive for accurate modelling of parallel system action.  

In the following a general comparison of some principle differences and limiting 
conditions of serial and parallel system action are discussed: 

Actions of Elements within the System  

In serial systems each element has to carry the complete applied load. In contrast, parallel 
arranged elements in an ideal case of equal (uniform) load sharing on average only carry 
an equal share of load given by 1 / N.  

Whereas in serial acting systems the elements act more or less individually as being 
arranged intentionally in a row in respect to the loading direction, elements in parallel 
systems act intentionally as elements side by side and parallel in respect to the loading 
direction. Thus parallel acting systems suffer from balancing effects or homogenisation in 
characteristics of all involved elements by common activation of “averaging” effects due 
to balancing of differences between the characteristics, at least between the neighbouring 
elements. Consequently, the possibility and the amount of homogenisation is a function 
of statistical spread which is inherent in every characteristic.  

The strength of serial acting systems is in general given by the weakest element according 
the “weakest link theory” often mentioned in conjunction to WEIBULL (1939). As the 
system size M increases the expected strength of the system decreases, in the limiting 
case lim M Ø ¶ E[fsys,M] → 0 or tends to a certain limit value defined by the strength 
distribution of the element (e.g. a treshhold value). Additionally to the shift of statistical 
strength distribution to minimum values also the variance Var[fsys,M] decreases, in the 
limiting case lim M Ø ¶ Var[fsys,M] → 0. Parallel system action, as discussed in more detail 
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afterwards, can be modelled by considering a bundle of elements. These elements are 
with or without interlinkages and constraint to work as one unit. The first major work on 
this topic can be traced back to the “fibre bundle theory” established by DANIELS (1945). 
Due to the common action of elements and homogenisation the expected system strength 
E[fsys,N] tends with N Ø ∞ to a certain boundary value > 0. The variance tends to 
lim N Ø ¶ Var[fsys,N] → 0. 

Arrangement Dimensions  

Serial and parallel systems also differ in respect to the possibilities how the elements can 
be arranged relative to the loading direction. Whereas serial arrangement only involves 
one dimension (1D), parallel arrangement can be done even two-dimensionally (1D, 2D).  

Engineering Aspects 

Statically determined structures in general and statically indetermined tower-like 
structures composed of brittle or ductile behaving elements can be described as serial 
systems. In case of serial systems of strongly correlated elements the upper boundary 
distribution is defined by the maximum of element’s failure probability. In contrast 
statically indetermined, redundant structures can be modelled as parallel systems. In case 
of statically indetermined systems composed of ductile behaving elements the limiting 
case (system collaps) is perhaps already reached after subsequent failure of a few 
elements at the same time (avalanche) (e.g. SCHUËLLER, 1981). If robustness is 
considered it is generally adviseable to create redundant statically indetermined structures 
whenever load redistribution is in principle possible as in case of plastic material 
behaviour. In case of brittle material behaviour the erection of statically determined 
structures is adviced to confine the extension of damage in case of partial (element) 
failure.  

Fig. 3.4 conceptionally shows possible arrangements of elements denoted as 
representative volume elements (RVEs) characterised by orthotropic material behaviour 
and characteristics with differentiation in longitudinal (long), radial (rad) and tangential 
(tan) direction. It discusses system actions on strengths (f) due to parallel (p) and / or 
serial (s) arrangement of elements relative to load direction and in respect to the main 
material structure (longitudinal / transversal) denoted by 0 / 90. Whereas three 
illustrations of possible 1D arrangements on the left show some possibilities for 
individual theoretical studies on system behaviour, the example on the right includes 
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parallel and serial arrangements and actions in all structural directions. This makes clear 
that within a real material structure a certain share of serial and parallel acting elements is 
always present.  

 

Fig. 3.4: Schematic illustration of various types of systems in respect to element arrangement and 
system action in parallel (p), serial (s) or serial-parallel (s+p), considering an orthotropic 
material with differing properties in radial (rad), tangential (tan) and longitudinal (long) 
direction 

3.2 Material Modelling: Inclusion of Stochastics vs. 
Classical Mechanical Models 

EPSTEIN (1948) states that stochastic models take GRIFFITH’s theory as a starting point. 
According to this theory the differences between theoretical (calculated) and practically 
observeable material strength comes from the fact that in real material flaws exist which 
weaken the material structure whereby the worst flaws determine the strength. Thus 
extreme value theory (EVT) plays a major role in development of material strength 
models considering the limiting case of infinite system dimension. The first researchers 
who recognised the connection between strength of materials and EVT were PEIRCE 

(1926) and WEIBULL (1939). Whereas the interest of fracture and serial systems 
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concentrates on the weakest link failure in parallel systems (e.g. DANIELS’s theory) the 
focus lies on the problem of load redistribution after partial failures occurred. It is noted 
that in some cases of EVT it may be easier to reformulate the problem by means of the 
distribution of maxima instead of concentration on minima. The limitation to iid elements 
in EVT has to be mentioned too. Furthermore, the quantity of size effects not only 
depends on the volume under stress, the stress distribution and the coefficient of variation 
but also on the type of the underlying statistical distribution model.  

As generally well known but perhaps often neglected characteristics of natural but also 
technical materials require at least two parameters for a sufficient description, one for 
expressing the expectation and one for expressing the spread inherent in each 
characteristic. In that respect derivation of a model for an individual characteristic needs 
an appropriate representative statistical distribution model (RSDM) and associated 
distribution parameters. The RSDM and its parameters can be derived on basis of 
representative test data with or without the support of simulation results. The next step 
can be a model which expresses the description of a characteristic in dependency of 
explanatory variables, e.g. a regression model. These descriptive models have already 
been discussed in more detail in chapter 2.  

Nevertheless, the biggest challenges in material modelling are given by (i) modelling the 
strength of materials on various hierarchical levels due to scaling effects, (ii) by 
modelling the strength capacities of materials of geometries and dimensions deviating 
from standardised test configurations, (iii) structures under arbitrary stress, or (iv) 
strength of systems exhibiting system effects. The last one requires a model dependent on 
size, arrangement, interconnection and relationships of elements in the system relative to 
externally applied loads. For an appropriate strength model the material behaviour along 
the whole stress-strain-relationship as well as the fracture behaviour becomes important 
and decisive. Three main theories in respect to system action can be differentiated: 

 Strength Model for Perfect Brittle Material; 

 Strength Model for Perfect Plastic Material; 

 Strength Model for Fibre Bundles. 

As mentioned above materials can be characterised on various hierarchical levels. For 
modelling the expected material behaviour on a certain hierarchical level the required 
accuracy has to be defined beforehand to provide the user with a handsome, sufficient 
accurate, reliable and tangible model for “daily business”. The focus of the present work 
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is to support the engineer with some simplified definitions for some specific applications 
as later discussed in chapter 5. Nevertheless, to enable a sufficient description of material 
behaviour on a certain hierarchical level the model has to start at one level before. In 
addition it requires at least the knowledge of the material behaviour of one further 
hierarchical level.  

Most literature denotes the three following material strength models as “classical” 
models. However, for avoiding any confusion with classical mechanics this term is not 
used in the following description and only the general name of each theory is mentioned.  

3.2.1 Stochastic Strength Model for Perfect Brittle Materials: Weibull’s 
Weakest Link Theory 

In case of perfect brittle material a uniform stressed volume (system) fails with 
achievement of the strength of the weakest sub-volume element. This failure behaviour 
corresponds to perfect serial systems. The system can be modelled as a chain of M serial 
acting elements under uniform tensile stress. After the “weakest link theory” of WEIBULL 

(1939A,B) this chain fails immediately after overloading of the weakest link, the weakest 
element. WEIBULL derived his theory empirically (WEIBULL, 1951) on the basis of 
several important assumptions which are discussed briefly within this section.  

 

Fig. 3.5: Illustration of main assumptions and basics of “weakest link theory” according 
WEIBULL (1939) 
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WEIBULL assumed that all system elements are iid and uniform stressed, small but finite 
elements of volume dV and of isotropic material with risk of rupture given by  

( ) ( ) dVndVSdB ⋅=⋅−−= σ01ln ,  (3.10)

with n(σ) as specific material function and S0 as probability of failure of a reference 
volume element (RVE). In case of statistically isotropic material n(σ) is independent of 
the position of finite volume element dV and of the direction of action of stress σ. In 
statistically anisotropic material n(σ) constitutes a function of the position of dV and the 
direction of the stress σ. The material function n(σ) derived on the basis of GRIFFITH’s 
theory and SMEKAL’s terminology assumes perfect brittle material behaviour and the 
occurrence of n small but finite sized flaws (e.g. checks, cracks, flaws in the atomic 
structure of the material, etc.) within a volume V. These flaws are characterised as 
potential failure inducing characteristics in a volume V under stress σ. The isotropic and 
orthotropic cases require that flaws are small but finite in relation to a representative 
volume element (RVE). Consequently, the discrete occurrence of flaws can be smeared 
and considered as being continuously distributed. The probability of failure is assumed as 
being proportional to the stressed volume or system size with B º V. If n flaws in a RVE 
are concentrated on dV stress σ also concentrates on dV with probability of failure  

dVndS ⋅= .  (3.11)

In case of p-elements (p-RVEs) with volume dV and probability of failure dS the 
probability of failure of the system according the probability theory of perfect serial 
systems is given by (see also equ. (2.119) and (3.9)) 

( ) p
dVnS ⋅−−= 11 . (3.12)

Considering the whole volume V under stress σ with V = p · dV and dV = V / p than (3.12) 
becomes 

( ) ( )VnVnp

p
VnS

⋅⋅⋅
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⎞
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⎛
⋅−−=

/

11 . (3.13)

In the limiting case with p → ∞ and dV → 0 so that volume V = constant the boundary 
value of failure probability is given by 
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Thereby n(σ) is equal to the quantity of flaws in a RVE (V = 1) provoking failure at 
stresses smaller or equal to σ0. Thus a monotonically increasing function n(σ) is required.  

The risk of rupture B of an arbitrary stressed element with volume V follows from 
integration over the whole domain  

( )∫ ⋅= dVnB σ . (3.15)

By means of a general distribution function WEIBULL gives the probability of failure of a 
volume element with  

( ) ( )[ ]∫ ⋅−−=−−= dVnBS σexp1exp1 , with ( )SB −−= 1ln . (3.16)

Equ. (3.16) is called the “fundamental law of an isotropic brittle material” (WEIBULL, 
1939A). The ultimate stress or strength at point of failure can be calculated considering 
the limit value of the quantity of experimental trials given by  

( )[ ] σσσ ddVnb ⋅⋅−= ∫ ∫
∞

0
exp . (3.17)

For identity between (3.16) and (3.17) the specific material function n(σ) takes the form 

( )
m
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The specific material function n(σ) in (3.18) can be reformulated to  
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and the probability of failure to 
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with S = 0.63 = 63 % in case of V = 1 and σ = σ0. Thus, inserting (3.18) in (3.17) the 
strength is given by  
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In case of an arbitrary stress situation with σ → f (x, y, z) the stress function becomes 
σ = σp · f (x, y, z) which corresponds to a proportional stress increase in all three 
directions. The risk of rupture B (WEIBULL, 1939A) becomes 

( )[ ]∫ ⋅⋅⋅= dVzyxfnB p ,,σ ,  (3.22)

and with n(σ) = k ÿ σm   

( )[ ]∫ ⋅⋅⋅= dVzyxfkB
m

,,σ , (3.23)

which corresponds to a linear scaling of the system. 

Exemplarily, in case of an equal stressed volume, e.g. uniaxial tension stress, the risk of 
rupture B becomes  
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with standard deviation a given by the square root of variance a2  
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with σ as one-dimensional tensile stress. Consequently, the expectation and standard 
deviation of strength increase with decreasing volume but the relative measure of 
dispersion given by the coefficient of variation (CoV) stays constant and independent of 
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the stressed volume and of parameter σ0. Thus CoV is solely defined by power m as shape 
parameter of 2pWD. Furthermore, (3.16) constitutes a special case of the “statistical 
theory of strength”. Considering this and the limiting case of m → ∞ it follows that 
S(σ) = S(σ0) and σb → σ0. At the same time also the statistical spread expressed by a2 
tends to zero. Consequently, equivalence between the “statistical theory of strength” and 
the “classical strength theory” (σb = σ0) is only given in the limiting case of theoretically 
deterministic strengths. In reality there is always a certain amount of variability inherent 
in all natural phenomena and characteristics. Thus, real materials and structures 
demonstrate insufficient representation by means of the “classical theory of strength” 
which assumes deterministic characteristics and neglects volume effects (WEIBULL, 
1939A).  

Further considerations of WEIBULL include the definition of lower and upper boundary 
strengths of materials. Due to physics WEIBULL argues for the lower boundary value that 
σ1 ≥ 0. In (most) cases it can also be assumed that σ1 > 0, e.g. due to proof loading or pre-
stressing of materials during exploitation and production (  3pWD). In that case the 
strength is given by the three parameter model  

[ ] σσσ
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ddVkhS m
b ⋅⋅⋅−⋅+= ∫ ∫

∞
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exp1
1 , with σ1 > 0, 

01
1
S

h
−

= . (3.26)

WEIBULL discusses also an upper boundary value σ2. This is argued in reference to 
SMEKAL and the naturally inherent maximum strength of materials. This upper limit is 
defined by perfect materials free of flaws with a dimension equal to a RVE, 
representative for each relevant scale or at least defined by the maximum strength 
potential of a perfect molecular structure. Once a boundary value is introduced the 
relative dispersion CoV shows to be dependent on shape and scale parameter. 

WEIBULL (1951) reports that the empirical derived statistical distribution model enables 
well representation of a wide range of different data sets of diverse materials and 
applications. In some cases representation of data over the whole data range is given. In 
other cases a section-wise representation by section-wise fitting of WD parameters is 
advised. Concerning the latter statement the question is formulated if the WEIBULL model 
represent the data insufficiently in general or if there are some natural and material 
inherent phenomena in the investigated data which necessiate a section-wise data 
analysis.  
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To conclude, the failure probability is proportional to the stressed volume. The material 
itself is treated as continuum following the theory of elasticity. Furthermore, an isotropic 
material composed of nearly infinite finite sized elements with iid strengths is assumed. 
These assumptions allow for smearing the material characteristics by smearing the 
discrete occurrence of flaws as required for treatment as continuum (WEIBULL, 1939A,B).  

One main characteristic of WD is that its formulation is in principle the same in the 
limiting cases of minima and maxima as shown in extreme value theory (see section 
2.6.2). Coming back to the notations for WD given in section 2.4.3 with σ = x, scale 
parameter σ0 = α, shape parameter m = β and location parameter σ1 = x0 the statistical 
distribution model of minima (assuming a perfect serial system of iid strength values 
Xi ~ WD, i = 1, …, M with M as system size) is in general given by a 3pWD with CDF 
(THOMA, 2004)  
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with M = V / V0 in case of known V0 = Vref. The first two central moments are given by 
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In case of an inhomogeneous stress distribution the CDF of a 2pWD (x0 = 0, X = Σ) is 
given by 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅−−= ∫

β
β

Σ α
σψσ

V
dVzyx

V
F ,,1exp1

0
, σ > 0. (3.30)

In cases were the reference volume V0 is not defined equ. (3.30) is reformulated to  
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with fullness parameter λ (e.g. ISAKSSON, 1999) given by 
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This parameter expresses the amount of stressed volume relative to the total volume 
element in respect to the mechanical and statistical stress distribution. This is in general 
done with reference to a uniform stressed volume, e.g. an element loaded in tension 
parallel to grain. A comparison of two elements with different volumes but identical 
stress distribution can be formulated by the well known relationship (e.g. SUTHERLAND 

ET AL., 1999) 
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In case of differing stress distributions (3.33) can be reformulated to  
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In case of an anisotropic material the theory can be adapted to the “modified weakest link 
theory” by segmenting the size effect in sub-dimensions, e.g. length (l), width (w) and 
depth (d), given as  
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which represents length, width and depth effects with associated powers 1 / kl, 1 / kw and 
1 / kd, respectively.  

Based on above formulations some calculations are presented analysing the fullness 
parameters of some exemplified loading situations. If not explicitely mentioned linear 
elements of isotropic material with rectangular cross section are assumed. 

Case I: Element loaded in uniaxial Tension parallel to Grain 

In case of elements which are loaded uniaxially in tension parallel to grain the stress 
distribution in all three directions x, y, z (in direction of length, width and depth, 
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respectively, with point-of-origin in neutral axis) is constant and equal to σ, with 
σmax = ft,0. Thus the fullness parameter λ = λtension_II (3.32) is given by 
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(3.36)

This type of loading is often taken as reference stress distribution and as basis for 
comparing the influence of deviating stress distributions, e.g. bending and torsion.  

Case II: Element under pure Bending Moment 

In case of pure bending the stress distribution in direction of x and y is constant and equal 
to σ, whereas the bending stress distribution in z direction behaves linearly with 
σ(z) = σz(z) / σz,max(z = d / 2) = 2 · z / d between z = (0, d / 2) and σ(z) = –2 · z / d between 
z = (0, –d / 2). The fullness parameter λ = λbending is given by 
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The ratio bending vs. tension is given by λbending / λtension_II = 1 / (β + 1). In case of β = 5.8 
corresponding to a CoV[X] ≈ 20% the ratio is (λbending / λtension_II | β = 5.8) = 0.147 and in 
case of β = 3.2 corresponding to a CoV[X] ≈ 30% the same ratio gives 0.238. Thus the 
fullness parameter in case of pure bending only represents roughly 15% and 24% of 
elements loaded uniaxially in tension. This corresponds to expected maximum stress 
ratios according equ. (3.34) of 139.2% and 156.6% which implies that 39% and 57% 
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higher maximum stress in case of elements under pure bending moment than under pure 
tension can be expected if the same statistical distribution parameters α and β are used.  

In case of timber under pure bending the integration over the whole stress field in z-
direction is discussable due to the fact that timber in bending-compression zone shows a 
linear-elastic-plastic behaviour which contradicts the assumed brittle failure behaviour as 
it is for example given in the bending-tension zone. 

Case III: Element under Three-Point Bending 

In case of an element stressed in three-point bending the stress distribution in direction of 
y is constant and equal to σ, whereas the bending stress distribution in z direction is linear 
with σ(z) = σz(z) / σz,max(z = d / 2) = 2 · z / d between z = (0, d / 2) and σ(z) = –2 · z / d 
between z = (0, –d / 2). In x-direction the integration has to be split into 
σ(x) = σx(x) / σx,max(x = l / 2) = 2 · x / l between x = (0, l / 2) and σ(x) = 2 · (l – x) / l 
between x = (l / 2, l). Consequently, the fullness parameter λ = λ3pB is given as  
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(3.38)

The ratio of three-point-bending vs. tension is given by λ3pB / λtension_II = 1 / (β + 1)2, that 
of three-point bending vs. pure bending moment by λ3pB / λbending = 1 / (β + 1). In case of 
β = 5.8 corresponding to a CoV[X] ≈ 20% the ratio is (λ3pB / λtension_II | β = 5.8) = 0.022 and 
in case of β = 3.2 corresponding to a CoV[X] ≈ 30% the same ratio gives 0.057. Thus the 
fullness parameter in case of three-point-bending represents only about 2% to 6% of 
elements loaded uniaxially in tension. A comparison of ratios between three-point 
bending and pure bending shows (λ3pB / λbending | β = 5.8) = 0.147 and 
(λ3pB / λbending | β = 3.2) = 0.238. These values correspond to expected maximum stress 
ratios according equ. (3.34) of 193.7% and 245.2% which implies that 94% and 145% 
higher maximum stress in case of elements under three-point-bending than under pure 
tension can be expected, whereas maximum stress ratios according equ. (3.34) of 139.2% 
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and 156.6% imply that 39% and 57% higher maximum stress in case of elements under 
three-point bending than under pure bending moment are reachable if the same statistical 
distribution parameters α and β are used. The equality between the ratios of pure bending 
vs. tension and three-point bending vs. pure bending appears logical considering equal 
stress distribution and constant vs. linear stress distribution in longitudinal vs. cross 
section and cross section vs. longitudinal direction, respectively.  

Case IV: Element under Four-Point Bending 

In case of an element stressed in four-point bending the stress distribution in direction of 
y is constant and equal to σ, whereas the bending stress distribution in z direction is linear 
with σ(z) = σz(z) / σz,max(z = d / 2) = 2 · z / d between z = (0, d / 2) and σ(z) = –2 · z / d 
between z = (0, –d / 2). In x-direction the integration has to be split into 
σ(x) = σx(x) / σx,max(x = l / 3) = 3 · x / l between x = (0, l / 3), σ(x) = 1 between 
x = (l / 3, 2 · l / 3) and σ(x) = 3 · (l – x) / l between x = (2 · l / 3, l). Herein the fullness 
parameter λ = λ4pB is given by 
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(3.39)

Consequently, the ratios of four-point bending vs. tension and vs. pure bending moment 
are λ4pB / λtension_II = (3 + β) / [3 · (β + 1)2] and λ4pB / λbending = (3 + β) / [3 · (β + 1)], 
respectively. In case of β = 5.8 corresponding to a CoV[X] ≈ 20% the ratio is 
(λ4pB / λtension_II | β = 5.8) = 0.063 and in case of β = 3.2 corresponding to a CoV[X] ≈ 30% 
the same ratio gives 0.117. Thus the fullness parameter in case of four-point bending 
represents only roughly 6% to 12% of elements loaded uniaxially in tension. Comparison 
of ratios between four-point-bending and pure bending shows 
(λ4pB / λbending | β = 5.8) = 0.431 and (λ4pB / λbending | β = 3.2) = 0.492. These values 
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correspond to maximum expected stress ratios according equ. (3.34) of 160.9% and 
195.4% which implies that 61% and 95% higher maximum stress in case of elements 
under four-point bending than under pure tension can be expected, whereas maximum 
stress ratios according equ. (3.34) of 115.6% and 124.8% imply 16% and 25% higher 
maximum stress in case of elements under four-point bending than under pure bending 
moment are reachable if the same statistical distribution parameters α and β are used. 

Case V: Element under constant Load in Bending 

In case of an element under constant load stressed in bending the stress distribution in 
direction of y is constant and equal to σ, whereas the bending stress distribution in z 
direction behaves linearly with σ(z) = σz(z) / σz,max(z = d / 2) = 2 · z / d between 
z = (0, d / 2) and σ(z) = –2 · z / d between z = (0, –d / 2). In x-direction the stress 
distribution is given by σ(x) = σx(x) / σx,max(x = l / 2)= 4 · x· (l – x) / l 2 between x = (0, l). 
Herein the fullness parameter λ = λconst.load is given by 
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In case of β = 5.8 corresponding to a CoV[X] ≈ 20% the ratio is 
(λconst.load / λtension_II | β = 5.8) = 0.051 and in case of β = 3.2 corresponding to a 
CoV[X] ≈ 30% the same ratio gives 0.106. Thus the fullness parameter in case of 
elements under constant load in bending represents only roughly 5% to 11% of elements 
loaded uniaxially in tension. Comparison of ratios between constant load in bending and 
pure bending shows (λconst.load / λbending | β = 5.8) = 0.346 and (λconst.load / λbending | β = 3.2) =  
= 0.445. These values correspond to maximum stress ratios according equ. (3.34) of 
167.1% and 201.6% which implies that 67% and 102% higher maximum expected stress 
in case of elements under constant load in bending than under pure tension can be 
expected, whereas maximum stress ratios according equ. (3.34) of 120.1% and 128.7% 
which implies 20% and 29% higher maximum stress in case of elements under constant 
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load in bending than under pure bending moment are reachable if the same statistical 
distribution parameters α and β are used.  

Fig. 3.6 shows the relative expected strength E[X] / E[X | case I, II, IV] dependent on CoV[X] 
and the stress distribution within the cross section as well as along the element due to 
changing loading cases (see Fig. 3.6, right). Hereby the reference stress situation is varied 
and given as case I, II and IV. The graph clearly outlines the significant influence of 
stress distribution and CoV[X], emphasising the statements above.  

 

Fig. 3.6: Influence of stress distribution and type of loading on the expected strength capacity 
according WEIBULL’s WLT: relative expected strengths under variation of the reference 
case (I, II, IV) 

3.2.2 Strength Model for Perfect Plastic Materials  

Elastic material behaviour can be easily described by means of HOOK’s law, but for 
plastic material behaviour no simplified description is available. Perfect plastic or perfect 
elastic-plastic material behaviour is characterised by steadily increasing strain after the 
load or stress equals the yield load or stress. Consequently, perfect plastic material shows 
no hardening or softening after yielding (e.g. PRAGER AND HODGE, 1954). Unloading or 
reverse loading shows complete recovery of elastic deformations but persistence of 
plastic deformations until yielding of reverse yield stress and propagation of (infinite) 
plastic flow in reverse direction at constant maximum stress. According PRAGER (1959) a 
perfect plastic material model and its stress-strain function is given by Fig. 3.7, left 
(model of brittle, perfect plastic body). A perfect elastic-plastic material model can be 
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characterised by an additional elastic spring responsible for the elastic share as shown in 
Fig. 3.7, right (model of linear elastic perfect plastic body). With σ0 as yield stress and 
σ < σ0 the body behaves rigid (Fig. 3.7, left) or elastic. In case of σ = σ0 = constant plastic 
flow under constant maximum stress can be observed.  

 

Fig. 3.7: Perfect plastic material behaviour according PRAGER (1959): (left) brittle, perfect plastic 
body; (right) perfect elastic-plastic body 

One of the main differences between elastic and plastic behaviour is given by the lack of 
one-to-one correspondence between stress and strain. In a perfect linear elastic-plastic 
material behaviour changes in strain are composed of an elastic (e) and a plastic (p) share 
given by dεi = dεi

(e) + dεi
(p), with εi as a set of generalised strains. The strain is therefore 

given by  
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with HOOK’s law σ = E · ε(e) and ε(e) as elastic strain and ε(p) as permanent strain. The same 
relationship is given for lateral contraction, see  
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with ν as POISSON’s ratio (PRAGER AND HODGE, 1954). In isotropic materials the 
relationship between lateral contraction and strain is given by 
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which is equivalent to HOOK’s law δ / ε = ν within elastic region and ε(p) = 0. In case of 
plastic flow elastic strain ε(e) = σ / E stays constant whereas ε(p) as well as the ratio δ / ε 
increases monotonically against the limit value δ / ε = ν = 1 / 2.  
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So far stresses are small the material shows elastic behaviour. With increasing loading 
small plastic zones develop and grow steadily. Therefore at the beginning only restricted 
local plastic flow is given whereby plastic zones are surrounded by elastic behaving 
material. After a while fusion of plastic zones occurs and leads to unrestricted plastic flow 
above the flow limit (PRAGER AND HODGE, 1954).  

As a consequence of above basic characteristics of perfect plastic material, a parallel 
system composed of perfect plastic behaving elements shows load redistribution after 
elements reached their individual yield stress. Thereby, elements are capable to carry full 
load even after yielding, but every additional loading consequences in additional plastic 
flow until the load is sufficiently redistributed to elements which are still below the yield 
limit at particular load level. Consequently, the maximum system bearing capacity 
(system strength) Xsys,N of, e.g., a system under uniform tensile load is reached after all 
elements have reached their yield stress. It is defined by the weighted sum of element’s 
yield stresses  
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with Xi = Fi / Ai and Ai = A = constant as cross section of each element i, Fi as maximum 
(yield) load per element, Xi ~ DM (E[Xi], Var[Xi]) as yield stress per element i, with 
i = 1, …, N. The expectation and variance of Xsys,N are given by  
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In case of large system sizes (> N) and small dependency between the element’s yield 
stresses the system strength converges to the normal distribution following the central 
limit theorem (e.g. THOMA, 2004; KÖHLER, 2007). In case of perfect ductility the 
statistical distribution of strain is irrelevant (e.g. GOLLWITZER, 1986). In case of 
equicorrelated element strengths with correlation coefficient ρ(Xi, Xj) the variance 
Var[Xsys,N] is given by (GOLLWITZER, 1986) 
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Fig. 3.8: CoV[Xsys,N] in dependency of the system size N assuming iid elements X ~ 2pLND (left) 
and CoV[Xsys,N] / CoV[X] in dependency of the system size N and the magnitude of 
equicorrelation calculated according equ. (3.46) (right) 

Fig. 3.8 shows the dependency of CoV[Xsys,N] on the system size N as well as on the 
magnitude of equicorrelation within and between the elements. Clearly visible is the 
decrease of homogenisation with decreasing system size and increasing correlation.  

3.2.3 Strength Model for Parallel Systems with Load Redistribution: 
Daniels’s Fibre Bundle Model  

The fibre bundle model, also known as “classical model of bundle of N parallel fibres 
stretched between two clamps” (e.g. PARAMONOVA ET AL., 2006), goes back to the 
famous work of DANIELS (1945). He developed this theory on basis of PEIRCE (1926) 
who observed that materials can be considered as systems of elements arranged in serial 
and parallel, and the work of WEIBULL (1939) and his “weakest link theory”.  

In his study DANIELS examined a system of N parallel aligned and uniform stressed fibres 
(elements), loaded in pure tension in fibre direction. Contradicting to WEIBULL’s theory 
which states that the system collapses as the weakest element fails DANIELS assumed that 
the system of parallel fibres is able to withstand a certain (critical) amount of element 
failures with intermediate equilibrium (steady) states in load redistribution between 
surviving fibres under increasing load until the system looses its equilibrium and fails 
totally. This is in principle in line with a perfect parallel system in stochastics. There 
systems fail with failure of all elements.  
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Fig. 3.9: Principles, basics and assumptions of DANIELS’s fibre bundle model (FBM; DANIELS, 
1945) 

DANIELS (1945) derived the first and until now the most important of only a few available 
analytical solutions for the asymptotic statistical distribution of strength of fibre bundles. 
Thereby following assumptions are made: 

 the parallel system is composed of N parallel fibres stretched uniformly between 
two controlled parallel moving clamping devices;  

 the applicability of HOOK’s law of perfect linear-elastic stress-strain-behaviour; 

 the parallel aligned fibres are uniformly stressed with equal elongations and equal 
E-modulus (Ei = E = constant) and thus characterised by identical load-
deformation-curves but iid fibre strength values with Fmax,i = fi = Xi ~ FX(x); 

 equal (uniform) or also called global load sharing (GLS) as a mean field approach 
is supposed after load from i partial failed fibres onto r survivors has been 
redistributed, with i = 1, …, N, r = N – i + 1.  

The last but one point argues an equal and constant E-modulus. This is based on DANIELS 
experience that the spread of E1 appears negligible compared to that of the elongation at 
failure point εf,1. Considering E1 as being independent from εf,1 (referencing observations 
made from PEIRCE, 1926) DANIELS (1945) argues further that the spread of E can be 
neglected in parallel systems assuming a mean field approach whereby 
CoV[Esys,N] = CoV[E1] / ◊N, with Esys,N as E-modulus of a parallel system composed of N 
fibres. Note: This is indeed a realistic assumption but says nothing about the load 
(re)distribution potential between the fibres which are forced to equal elongation in case 
of CoV[E1] ∫ 0. This requires that the load is distributed proportional to the individual 
fibre stiffness values Ei ÿ Ai, with Ai as the fibre cross section which for simplicity can be 
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assumed to be constant and equal to one. Concerning the last assumption DANIELS (1945, 
1989) already argued that GLS may only be valid in some practical cases.  

With X(1) ≤ X(2) ≤ … ≤X(N), X(1) = min[Xi] and X(N) = max[Xi], the ultimate load of the fiber 
bundle or resistance of the system Fmax,sys = Xsys ÿ N = RN is defined by  
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In the simplest case when HOOK’s law with σ = E · ε holds, with E = 1 without loss of 
generality, the load on each fiber (element) Fi(ε) at extension ε is defined by 

( ) ( )εεεε −⋅= fi HF , (3.48)

with εf as the extension at point of fiber failure and parametrisation H(w) = 1 if w ≥ 0 
(fiber intact) and H(w) = 0 if w < 0 (fiber already failed). The total load on the fiber 
bundle at given extension ε is given by 
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and the system stress σsys(ε) at given extension ε is defined by  
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The system strength Xsys = fsys is given by  
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The maximal resistance of the fibre bundle can be calculated by means of DANIELS’s 
recursive formula (e.g. HOHENBICHLER AND RACKWITZ, 1981)  
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which is analytically exact but difficult to handle in praxis.  

DANIELS (1945) investigated the asymptotic behaviour (N Ø ¶) of the maximum system 
load distribution under specifications given above. He concluded that with 
lim N Ø ¶ y ÿ [1 – FY(y)] = 0 the asymptotic maximum system load RN follows a normal 
distribution (ND) given by 
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with expectation E[RN] and variance Var[RN] 

[ ] ( )[ ]00 1 xFxNRE XN −⋅⋅=  and [ ] ( ) ( )( )[ ]00
2

0 1 xFxFNxRVar XXN −⋅⋅⋅= ,  (3.54)

with x0 as singular solution of x ÿ [1 – FX(x)] = max[X]. The expected value of the mean 
fibre bundle resistance and its standard deviation are given by (PARAMONOVA ET AL., 
2006) 

[ ] ( )[ ]00 1 xFxRE XN −⋅=  and [ ] ( ) ( )[ ] NxFxFxRVar XXN /1 000 −⋅⋅= , (3.55)

with r survivors and load on surviving fibres given by (N – i + 1) ÿ X(i). The average 
resistance of fibres in the fibre bundle is defined by 
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The convergence to the normal distribution follows from the fact that the probability for 
an element having strength X ≥ x0 for x = x0 is given by p = 1 – FX(x0). Consequently, the 
number of intact elements having at least strength x0 follows the binomial distribution 
with E[.] = N ÿ p and Var[.] = N ÿ p ÿ (1 – p). According to the central limit theorem and 
with N Ø ¶ this converges in probability to ND. The asymptotic result derived by 
DANIELS (1945) is also given for more complex systems, e.g. if Xi follows a Markov-
chain. In general, convergence to the asymptotic distribution is very slow with rate  
O (N – 1 / 4). Beside this it was shown that DANIELS’s result could be justified to work 
sufficiently for structural design purposes. In general and in case of very small system 
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sizes (N ≤ 5) and medium variances (e.g. CoV[X] ≤ 10%) it has been observed that the 
system behaviour can be approximated by a serial (weakest link) system. Note: This is 
logical due to the fact that in case of low dispersion and small system size (<< N) the 
chance of reaching a steady state after failure of the first element and initiated load 
redistribution is low. Additionally, DANIELS (1945) already remarked that the ability and 
amount of load distribution depend on the elastic properties of the elements.  

As a more general conclusion of DANIELS’s fibre bundle model (FBM) this theory may 
be treated as the most important enlargement of WEIBULL’s weaket link theory (WLT). 
Whereas WEIBULL’s theory assumes sudden system collaps at first element failure, 
DANIELS’s model allows for load redistribution after partial failures and thus broadens the 
field of material strength and behaviour modelling in general. 

3.2.4 Advances and further Developments on the Basis of Weibull’s and 
Daniels’s Theories and Generalisation of Material Behaviour  

WEIBULL (1939) and DANIELS (1945) provide the fundamental basis for explicit 
consideration of stochastics in mechanical modelling of material strengths. Beside the 
fact that numerous assumptions are necessary to enable analytical solutions the theories 
provide a well defined basis for further developments enabled by mathematical 
description of pioneering thoughts driven from intensive observations of natural 
phenomena. 

In the last decades these theories have been intensified and broadened. Efforts have been 
made in combining both FBM and WLT and in introducting and analysing finite, even 
small system sizes as well as in describing systems composed of elements of arbitrary 
material behaviour. DANIELS (DANIELS, 1974; DANIELS, 1989; DANIELS AND SKYRME, 
1985) extended the fibre bundle model and justified the final result of system strength 
being asymptotically normally distributed by considering various approaches of 
modelling parallel systems but sticking to the main assumptions made in 1945. In the 
work of DANIELS (1974) the error of the mean function of the asymptotic fibre bundle 
strength distribution RN ~ ND (E[RN], Var[RN]) for finite system sizes of N parallel 
elements was reduced by introduction of CN as additive term on the asymptotic 
expectation with E[RN] Ø E[RN] + CN given as  
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aNCN ⋅⋅= 3/1966.0 , with 
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SEN AND BHATTACHARYYA (1976) confirmed DANIELS’s ND as asymptotic distribution 
of fibre bundle strength also under certain mixing conditions and in case of full correlated 
element strengths. PHOENIX (1979) modelled the strength of parallel systems by means of 
a quantile process approach investigating the time to failure and breakdown of the 
system as consequence of a fatigue failure. He used ordered down times on the basis of a 
probabilistic approach of the Palmgren-Miner-rule (PALMGREN, 1924 and MINER, 1945). 
A quantile process approach was also used by SMITH (1982). He inverted the fibre 
strength distribution to gain uniform distributed quantiles. He observed a much faster 
convergence to the asymptotic distribution with O (N –1 / 6) expressing the error of the 
uniform distribution. SMITH (1980) and SMITH AND PHOENIX (1981) discussed the 
asymptotic distribution of fibre bundle strength in respect to solutions provided by 
extreme value theory (EVT). They showed that in case of GLS the strength distribution 
follows asymptotically the GUMBEL or double-exponential distribution model (type I, 
EVT). In case of local load sharing (LLS), which is discussed in more detail later, and iid 
element strengths with X ~ WD also fibre bundle strength follows a WD (SMITH, 1983). 
In 1989 DANIELS modelled the asymptotic distribution of the maximum system load and 
breaking extension by considering an extension of a Gaussian process for Brownian 
motion based on the work of SMITH (1982) and PHOENIX AND TAYLOR (1973). PHOENIX 

AND TAYLOR (1973) already reformulated DANIELS’s theory by analysing the asymptotic 
maximum of system load by assuming iid extensions of fibres (elements) rather than fibre 
load. The idea dealing with the extension was judged as being natural and more realistic 
especially for materials exhibiting elastic-plastic behaviour. In their work they further 
extended DANIELS’s theory introducing a certain amount of random slack (iid for each 
fibre) as well as the possibility of some plastic yield (also independent from breaking 
extension and random for each fibre) enabling energy dissipation before fibres break. 
Therefore they made use of the asymptotic ND of the maximum system load capacity. 
The analysis of imperfect linear elastic load-extension curves of fibres due to iid random 
slack led to non-linear load-extension behaviour of the bundle and to a reduction of the 
mean asymptotic system strength. A certain amount of plasticity, modelled as plastic 
plateau after linear elasticity (bi-linear stress-strain relationship), led to an increase in 
system strength. The influence of imperfect loading which introduces unequal load 
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sharing in fibres was also investigated reflecting a reduction in the asymptotic system 
strength. 

In their pioneering work ZWEBEN AND ROSEN (1970) described materials more generally 
as “heterogenous continua composed of discrete volume elements whose 
characteristics are related to material structure and imperfections”. They assumed a 
statistical distributed strength and partial failure of elements initiating localised stress 
concentrations until the system collapses. Former works confirmed the random 
occurrence of partial failures in fibre bundles and verified that local stress concentrations 
significantly influence the system strength. The localised stress concentrations require a 
broader definition of a class of load sharing rules given by the general term of local 
load sharing (LLS). Note: In contrast to DANIELS assumption of global (uniform) load 
sharing (GLS) the class of LLS demonstrates the whole range of possible load sharing 
rules on the one hand with the limit and most optimistic case of GLS and on the other 
hand with the opposite limiting case of extreme LLS (ELLS). In ELLS the load from 
partial failures is only redistributed to directly neighboured survivors. Consequently, LLS 
characterises load redistribution within a certain domain around failed fibres as center. 
The specification of each type of LLS is done by the load enhancement factor K. In case 
of ELLS the direct survived neighbouring fibres have to carry Kk ÿ X, with factor Kk given 
by Kk = 1 + k / 2, with K0 = 1 < K1 < K2 < … and with k as the amount of failed fibres in 
the neighbourhood of the survivor (HARLOW AND PHOENIX, 1979A,B, 1981A,B, 1982; 
SMITH, 1980; SMITH, 1983). HEDGEPETH AND VAN DYKE (1967) calculated K-factors 
which are slightly smaller than these in case of ELLS. Consequently a certain amount of 
extra load is also shared by fibres which are a bit farther away as the direct neighbours. 
SMITH (1983) assumed therein a non-linear load transfer and local stress concentrations 
with peak at the centre of failed fibre(s). ZWEBEN AND ROSEN (1970) already investigated 
a serial-parallel fibre bundle model (s-p-FBM) of M serial increments with N parallel 
elements per cross sectional unit with iid strengths X ~ WD assuming ELLS due to local 
stress concentrations. The fibres were assumed to be embedded in a matrix material 
which is responsible for load transfer by shear after partial failures. The incremental 
length of M serially linked sub-systems is defined by the ineffective length δ necessary 
for shear transfer from failed fibres to survivors after partial failures (see also GÜCER AND 

GURLAND, 1962; IBNADELJALIL AND CURTIN, 1997; PHOENIX ET AL., 1997; SMITH, 
1982; HARLOW ET AL., 1983; SUTHERLAND ET AL.,1999). Thereby the fibres have to 
carry full load in tension; a certain contribution by the matrix material is neglected. In 
their work ZWEBEN AND ROSEN (1970) concentrated on the definition of a 
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representative volume element (RVE), representative in shape (depending on the 
material), dimension and the quantity of expectable flaws under consideration of a 
corresponding stress enhancement factor K dependent on quantity and consequence of 
flaws. They also included crack growth in dependency on stress concentration 
parameters. Therefore the RVE was defined in dimension with length δ and diameter of 
the element (fibre) plus proportionate share of matrix material.  

Concerning the fibre-matrix interaction SMITH (1983) noted that fibres embedded in a 
ductile matrix are not able to extend independently. In this and earlier works (e.g. SMITH, 
1980, 1982) he observed that load transfer between failed and surviving fibres is solely 
performed by shearing as discussed e.g. in ZWEBEN AND ROSEN (1970). According 
IBNADELJALIL AND CURTIN (1997) and in reference to CHOU (1992) this type of load 
transfer through the matrix is called a “shear-lag type model”. In contrast PHOENIX ET 

AL. (1997) analysed a fibre bundle embedded in a brittle matrix with GLS provided by 
stress transfer through friction and shear. They assumed a quasi periodical cracking of 
the matrix material perpendicular to fibre direction. Thereby a random occurrence of 
partial failures already before loading of the system (predamage) is considered to follow a 
Poisson distribution. Consequently matrix material is only responsible for load transfer 
from failed to surviving fibres by shear whereby the fibres solely carry the full externally 
applied load in tension. Another possibility which was considered is that load-
redistribution is performed by friction with loss of connectivity between fibres and matrix 
material. IBNADELJALIL AND CURTIN (1997) analysed the influence of matrix material by 
investigations on a 3D-fibre matrix modelled as 3D-lattice model. Brittle matrix material 
(e.g. fibre reinforced ceramics) was observed to develop cracks transversely to fibre 
direction. Thus fibres are responsible to carry the full externally applied load. In case of 
plastic matrix material (e.g. metals) yielding is given already long before reaching the 
maximum bearing capacity of the bundles. Once more the fibres are responsible to carry 
the load. In case of a linear-elastic-plastic matrix behaviour it can also be assumed that 
the bearing capacity of matrix material is reached before fibres fail. All these discussed 
possibilities of matrix material behaviour conclude that the fibres are exclusively 
responsible for transferring the system load. Nevertheless, matrix material contributes 
decisively to or even enables load sharing between fibres after partial failures occurred. 
This justifies the disregard of matrix material in modelling the maximum bearing capacity 
of fibre bundles.   
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As already discussed in ZWEBEN AND ROSEN (1970) one main expansion of WEIBULL’s 
and DANIELS’s theories was the explicit combination of both theories to the serial-
parallel fibre bundle model (s-p-FBM). There are numerous scientific papers 
addressing this subject, e.g. GÜCER AND GURLAND (1962), MISTLER (1979), HARLOW 

AND PHOENIX (1979A,B; 1981A,B; 1982), SMITH (1980, 1982, 1983), HARLOW ET AL., 
(1983), PHOENIX ET AL. (1997). SMITH (1982, 1983) investigated the s-p-FBM of GÜCER 

AND GURLAND (1962) assuming a ductile matrix and GLS (SMITH, 1982) or ELLS 
(SMITH, 1983) and iid fibre strength with X1 ~ WD. The serial system size M is given by 
M = l / δ with l as fibre length (e.g. HARLOW ET AL., 1983) and N parallel fibres per serial 
system (increment). The system strength was defined as the maximum stress the weakest 
serial increment is able to withstand. Thereby the serial system effect was modelled by 
means of EVT for minima. Consequently, load redistribution was only allowed for (as 
expectable) within N parallel elements, whereas the system of M serial linked increments 
fails with failure of the first link (weakest sub-system) and thus follows the WLT, e.g. 
WEIBULL (1939). The first failure immediately initiates system collaps due to lack of the 
possibility that the residual fibres take additional load. Nevertheless, weakest link failure 
can also occur in parallel arranged DANIELS systems if the strength values of N fibres are 
distributed in proportion to a harmonic series, e.g. [1, 1 / 2, 1 / 3, …, 1 / N] which is 
called “domino phenomenon” (PARAMONOVA ET AL., 2006). In 1982 SMITH stated that 
s-p-FBM is also of interest for polymer fibrils which consist of molecular chains with 
alternating cristalline and amorphous regions (note: e.g. cellulose; see chapter 4). SMITH 

(1983) references HARLOW ET AL. (1983) who developed an approximation for the 
strength of s-p-FBM under varying load sharing rules. It is recommended that this model 
works well only for very small N but very large M due to the dominating contribution of 
serial (weakest link) system behaviour. The approximative CDF for the critical value of k 
fibre failures as maximum number of fibre failures before the system collapses is given 
by (HARLOW ET AL., 1983) 
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with HM,N(x) as CDF of fibre bundle resistance of M serially linked increments each of N 
parallel fibres, X as load per fibre with X ~ WD(a, β), aM,N as normalising constant with 
aM,N = x0 · (M · cN) –1 / (N · β) and cN as constant depending on the load sharing rule (note: 
the dependency on the load sharing rule is not stated explicitly). In their model HARLOW 
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AND PHOENIX (1979A,B; 1981A,B; 1982) investigated s-p-FBMs under ELLS by means of 
load enhancement factor K. They found an approximative CDF given by  
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with HN
(k) as the probability of k-failures in a fibre bundle of N parallel fibres at load X, 

HM,N
(k) as the probability of k-failures in a fibre bundle of M serial increments with N 

parallel fibres each, X as iid fibre strength with X ~ WD(a, β) and aM,N
(k) as normalising 

constant. Whereas the size effect, the change in (system) strength with increasing 
(system) size, of serially linked single fibres follows a WD and is given by O (N –1 / β), the 
fibre bundle strength follows O (N –1 / (k · β)). Therefore, the decrease in strength is less 
pronounced in parallel fibre systems than in serial linked single fibres, whereby the 
critical value itself depends on N. Because k being a function of N the size effect of fibre 
bundles in the limiting case M, N Ø ∞ can be expressed by O [1 / ln(N)] or 
O [1 / ln(N · M)] (see e.g. SMITH, 1980) which serves as asymptotically lower bound of 
the size effect of parallel or serial-parallel systems, respectively. Thus k represents 
physically the “critical crack size” or “critical failure sequence”, i.e. the maximum 
number of consecutive failures before a total system collaps occurs. SMITH (1983) 
concludes that a simple WEIBULL-approximation of the lower distribution tail as 
proposed e.g. by HARLOW ET AL. (1983) is not adequate for most practical applications. 
This is because the assumption of negligible load redistribution effects in case of serial-
parallel systems and thus a solely focus on serial size effect does not hold in real 
composites. For a good choice of k, SMITH (1980) proposed to use the inequality  
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with γ(0) = 0 and γ(k)| k ≥ 1 as defined by 
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MISTLER (1979) investigated size effects on tensile strength perpendicular to grain of 
glued laminated timber beams focusing on end notches on the bending-tension side. He 
observed that the exclusive consideration of weakest link theory which implies the failure 
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of a system after first incipient cracking is not always verifyable in tests. In particular, in 
testing specimens with a relatively large surface under tension stress perpendicular to 
grain a certain amount of load redistribution after partial failure can be observed. Based 
on his experiments he developed the so called “rope-wire-model” (note: corresponding 
to a s-p-FBM) assuming serial “weakest link” behaviour (“chain”) with increasing 
number of laminations in stress direction and parallel system behaviour (“rope”) with 
increasing dimension of stressed cross section. Assuming iid strengths 
f1 = X1 ~ WD (α, β), E-modulus E1 = E = constant and GLS (note: DANIELS’s system) 
MISTLER studied by means of probability theory (inclusion-exclusion formula and 
combinatorics) the expectable strength distribution parameters of (small and finite) 
systems of N parallel elements. He concluded that the system strength also follows WD 
with fsys = XN ~ WD (αN, βN) and parameters given by 

( )[ ]171.01 64.0012.0355.0 −⋅⋅+⋅≈ −⋅− ββαα NN ,  

NccN ⋅+= 21β , with ( )ββ ln01 ⋅−≈ bc , ( )βln02 ⋅≈ bc  with default 10 =b . 
(3.62)

MISTLER verified his model by destructive tests observing a huge influence of statistical 
spread within and between the elements and showed that in case of WEIBULL’s theory 
CoV[XM] is constant and independent of M with lim M Ø ¶ E[XM] Ø 0, but in case of a 
parallel system CoV[XN] decreases with increasing N and lim N Ø ¶ E[XN] Ø L with L > 0. 
Note: Beside the fact that MISTLER (1979) analysed a finite DANIELS system no 
references to DANIELS or to literature regarding FBMs in general were made in his thesis.  

Other papers concentrated on functions for size effects and formulation of power laws to 
describe the decrease of expectation and variance of system strength and resistance with 
increasing system size in respect to the underlying load sharing rule. For example, 
simulations of SMITH (1980) confirmed DANIELS’s result that in case of GLS the standard 
deviation decreases with increasing system size proportional to ~ 1 / ◊N which follows 
directly from the average process approach. In case of LLS SMITH (1980) observed that 
the standard deviation decreases proportional to a / ln(N) with a as some constant value. 
DUXBURY AND LEATH (1994) investigated fibre bundles under ELLS by means of lattice 
models. They found that the size effect behaves proportional to [1 + k ÿ ln(L)] –1, with k 
as number of failures and L = ◊N in case of a square lattice. ZHANG AND DING (1994) 
studied the distribution of the critical average load per fibre xC of a fibre bundle which 
immediately initiates total system collaps. In general, lim N Ø ∞ xC Ø 0. The distribution of 
the burst size D(Δ), the size of elements (fibres) which simultaneously fail, follows 
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asymptotically a power law with D(Δ) ∂ Δ –ξ. The power ξ shows in general (e.g. LLS) 
dependency on CDF of fibre strength and system size N. In case of GLS ξ only depends 
on CDF. In the limiting case N Ø ∞ for GLS ξ was found to be independent of CDF with 
universal (avalanche) power ξ = 2.5 (e.g. HEMMER AND HANSEN, 1992; HANSEN AND 

HEMMER, 1994; KUN ET AL., 2000). In case of LLS the burst distribution can be 
approximated by a power law of type D(Δ) / N ∂ Δ –ξ with power ξ non-universal and 
positively correlated with N being dependent on CDF of fibre strength. Also KLOSTER ET 

AL. (1997) confirmed that the asymptotic power model of burst size distribution in case of 
LLS and GLS are not in the same universality class. They observed that the maximum 
load a fibre bundle is able to withstand increases in case of GLS proportional to N 
and in case of LLS proportional to N / ln(N).  

Further research on FBMs concentrated on critical cluster sizes which initiate system 
collaps as avalanche successive breakdown of fibre failures until reaching a steady 
state. Some papers postulate a certain transition area where the system behaviour shows 
independency from the load sharing rule. IBNADELJALIL AND CURTIN (1997) assumed 
that a critical cluster size << N exists with bundle strength being independent of the 
underlying load sharing rule GLS or LLS. The assumption is based on the occurrence of a 
certain cluster of fibres (the weakest cluster) within the parallel system decisive for the 
system which provokes system collaps (note: this can be seen as formulation of an RVE). 
IBNADELJALIL AND CURTIN (1997) assumed a fibre bundle with poor matrix-fibre 
interface determined by shear capacity (slipping and friction). They defined the ratio 
Ω = G090 / Et,0 as the ratio between shear and tensile E-modulus of matrix and fibres, 
respectively, with Ω Ø 0 representing ELLS, Ω Ø ∞ for GLS and 0 ≤ Ω < ∞ for cases in 
between. Searching for this critical cluster size necessiates the definition of a sub-system 
of Nl fibres with length δl and smearing of boundary and correlation effects (note: similar 
to the definition of an RVE) to enable the extrapolation to systems multiple-times larger 
than the critical cluster (RVE) with system size N = Nf / Nl times M = L / δl, with Nf as 
total quantity of parallel fibres and L as length of bundle or fibre length. Based on the 
work of PHOENIX ET AL. (1997) and in case of GLS it was concluded that length δl is 
given by δl = 0.4 · δc, with δc as the critical length. It was assumed that δl is independent 
of the load sharing rule but dependent on local fibre-matrix interactions. Consequently, 
the definition is assumed to be also representative in case of LLS. With fibre strength 
f1 = X1 ~ WD it was stated that nl is a function of WEIBULL shape parameter β and 
parameter Ω, with nl being smaller if β gets larger (note: the higher the variance of X1 the 
greater the RVE necessary to smear the influence of size, statistical spread and 
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correlation). HIDALGO ET AL. (2002) developed a stress transfer function to account for 
load sharing in between GLS and ELLS. They considered first thermodynamical aspects 
where materials show a finite critical strength (≥ 0) in the limiting case of N Ø ¶. 
Without such a critical point lim N Ø¶ ~ 1 / ln(N) conform to LLS. In elastic materials and 
following fracture mechanics the stress increase σadd of an element with distance r from 
crack tip shows a proportional relationship σadd ~ r –γ, in case of GLS with γ Ø 0 and in 
case of ELLS with γ Ø ¶. On basis of these power laws and under the conditions of fibre 
strength X1 ~ WD, stress σ, statically increasing load increments (no dynamical effects), 
load sharing in dependency of the radial distance between the intact fibre i and the failed 
fibre j and of elastic interaction between the fibres HIDALGO ET AL. (2002) developed the 
stress transfer function  

( ) γγ −⋅= ijij rZrF , , with normalising constant ( ) 1−

∈
−∑= Ii ijrZ γ , (3.63)

with I as the set of all intact fibres and the periodical boarder condition of the system with 
Rmax = ◊2 ÿ (L – 1) / 2, with L as linear size of the system (width and / or depth of the 
cross section of the fibre bundle). Thus parameter γ determines the “effective range of 
interaction” between failed and intact fibres with stress increase within the intact fibre i 
after failing of fibre j given by 
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with τ as time (stress) increment and B(τ) as the set of all fibres which failed within the 
time (stress) increment τ and where 
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is the total stress on element i during an avalanche in the time span (t0, t0 + T). An 
analysis of parameter γ shows that γ = 0 represents “pure” GLS but 0 ≤ γ ≤ (≈ 2.2 ± 0.1) 
also represents GLS with σc being independent of N and γ. In case of γ > γc LLS is given, 
with σc dependent on N and γ up to a possible second transition area around γ ≈ 7 with 
σc | γ ≥ ≈ 7 only depending on N with σc(N) ~ α / ln(N) for γ >> γc and N Ø ¶, and 
σc = (β ÿ e) –1 / β for σ ~ WD, 0 ≤ γ ≤ (2.2 ± 0.1), γc ≈ (2.2 ± 0.1) and σc as the ultimate 
strength of the system (see Fig. 3.10). Therefore, fibre breakdown in GLS occurs 
completely randomly without any correlated crack growth within the system. The 
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system failure occurs at a random position within the system. In case of LLS initially 
random fibre breakdown occurs but due to increasing localised stress concentration 
more and more correlated growth of clusters of failed fibres occurs and propagates 
until an avalanche breakdown (instability), initiated in the dominant cluster, causes 
system collaps. Note: These observations confirm the assumptions made by 
IBNADELJALIL AND CURTIN (1997) who assumed similar system behaviour up to a certain 
cluster size independent of the load sharing rule. The transition parameter γc is observed 
to become smaller with increasing WEIBULL shape parameter β. Note: This corresponds 
to a decrease of CoV[σ] leading to a decrease of RVE representing cluster size as already 
previously published in IBNADELJALIL AND CURTIN (1997). To conclude, the existence of 
a finite limit value for σc > 0 at N Ø ¶ was confirmed in case of GLS but in case of LLS 
asymptotic analysis gives lim N Ø ¶ σc Ø 0 as consequence of localised stress 
concentrations initiating system collaps. 

 

Fig. 3.10: Ultimate system strength σc in dependency of linear system size N and load sharing 
factor γ: (left) σc vs. γ and N; (right) σc vs. 1 / ln(N) and γ (HIDALGO ET AL., 2002)  

Beside above mentioned literature focusing on the influence of load sharing rules (GLS 
vs. ELLS) and the interaction of elements in s-p-FBMs with and without matrix material 
the basic assumptions of identical perfect linear elastic stress-strain behaviour of fibres 
and constant E-modulus as given in DANIELS (1945) were in general left. Therefore 
correlation between material characteristics within and between fibres was in 
general neglected. HOHENBICHLER AND RACKWITZ (1983) reported with reference on 
RACKWITZ (1978) that already a minor correlation between the strengths of elements in a 
parallel system can influence the system strength significantly. In their paper they 
enlarged DANIELS’s FBM by investigating an “imposed strain approach” for brittle 
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materials. Considering a parallel system of N elements under uniform load with total 
system load L and uniform imposed extension of each element with 
ε1 = εsys = ε = constant, the stress Si(ε) in each element i, i = 1, …, N given ε is given by 
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with Xi as random distributed strength of the ith element and Yi = εf,i as the corresponding 
ultimate strain. The bearing capacity and maximum system resistance are given by 
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The probability of failure Pf of the system under load L follows 
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with the last inequality as upper bound according probability theory, with 
P(…ε Aε) ≤ minε {P(Aε)}. Under consideration of ordered Yi’s with Y(1) ≤ Y(2) ≤ … ≤ Y(N) it 
follows that  
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with X(i) and S(i) corresponding to Y(i). The maximum resistance of the system is given by 
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Investigating the special case e.g. analysed bei DANIELS (1945) with 
E = Xi / Yi = constant = X(i) / Y(i) it follows  
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Given that RN ≥ (N – k + 1) ÿ X(k) for every k the probability of failure according the 
general definition of parallel (redundant) systems which fail if all elements have been 
failed is given by  
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In particular the last term corresponds to the upper bound, the highest possible strength of 
a parallel (redundant) system given as failure probability of the strongest element. 
HOHENBICHLER AND RACKWITZ (1983) performed some analysis by means of first-order 
reliability method (FORM) investigating also the influence of correlated elements. They 
concluded that FORM may be sufficient in many engineering applications. Perhaps the 
linearisation and implication of some error already in modelling of single elements 
accumulate to multiple errors calculating the failure probability of large parallel systems. 
Therefore the application of higher order reliability analysis (e.g. second-order reliability 
method, SORM) is proposed. Few years later GOLLWITZER AND RACKWITZ (1990) note 
that the rate of convergence of asymptotic results of fibre bundle strength distribution is 
in general very poor leading to unrealistic results for finite and in particular very small 
system sizes. In general GLS enables maximum of redundancy in parallel systems. 
Dynamical effects which may occur during partial failures are described as being 
dependent on the status of the system, the damping behaviour and the rate of energy 
dissipation during partial failure, e.g.   
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Nevertheless, dynamical effects (expressed by the term X(k – 1)) which seem to be decisive 
for finite systems vanish with N Ø ¶. GOLLWITZER (1986) and GOLLWITZER AND 

RACKWITZ (1990) delivered some numerical results for finite (small) systems. 
Simulations based on the assumptions of GLS and equicorrelation neglected also time-
effects. By means of the order statistics approach of HOHENBICHLER AND RACKWITZ 
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(1983) and GUERS AND RACKWITZ (1987) who performed FORM and SORM analysis, 
GOLLWITZER AND RACKWITZ (1990) modelled element’s force Ri (ε) at given 
deformation ε, in particular Ri (Y(i), Qi) at corresponding strain ε = Y(i) under consideration 
of a random parameter vector Qi necessary for further description of load-strain-
relationship given by  
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The inequality on the right side results from the possibility that a maximum of system 
resistance can occur also in between the discretised force-strain relationships of elements 
in systems, i.e. between [Y(i), Y(i + 1)], i = 1, …, N – 1. Within their numerical calculations a 
reliability index of βk = 2.0 as reference value was used. Limiting cases like perfect 
parallel, perfect serial, perfect plastic and perfect brittle material behaviour were 
analysed. Beside the fact that perfect parallel systems fail in mechanical justification, 
both perfect serial and perfect parallel systems offer studying of limiting cases of system 
reliability as well as bearing capacity calculations. Therefore GOLLWITZER (1986) and 
GOLLWITZER AND RACKWITZ (1990) modelled arbitrary stress-strain relationships by 
means of a more general formalism developed by GLOS (1978), see  
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with constraints 

( ) ( ) 000 E
d
dT === ε
ε
σ , ( ) ( ) 000 === εε

ε
σε

d
dT ,  

( ) max0 σεσ = , ( ) asymσεσ
ε

=
∞→

lim ,  
(3.76)

with E0 as E-modulus at ε = 0 and σasym as asymptotic stress at ε Ø ¶. Consequently, 
parameters Ki, with i = 1, …, 4, are given by 
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The parameter sets of various stress-strain relationships analysed by GOLLWITZER (1986) 
and GOLLWITZER AND RACKWITZ (1990) are given in Tab. 3.1.  

Tab. 3.1: Cases and parameter sets of various stress-strain relationships discussed in GOLLWITZER 

(1986) and GOLLWITZER AND RACKWITZ (1990) 

cases σmax ε0 E0 σasym ν E[ε0] / E[σmax] 

case I:  elastic, perfect plastic 1.00 0.25 16 0.98 7 1 / 4 

case II:  non-linear plastic, softening 1.00 1.00 4 0.25 7 -- 

case III:  elastic-plastic, sharp softening 1.00 0.25 16 0.25 7 1 / 4 

case IV:  brittle, non-linear softening 1.00 0.25 16 0.00 20 1 / 4 

case V:  brittle 1.00 0.25 4 0.00 20 1 / 4 

As shown in Fig. 3.11, left parallel systems show comparable behaviour to serial systems 
if << N due to the fact that load redistribution lacks existence of potential survivors. Note: 
This highly depends on the spread of element’s potential with expectation of possible 
redistribution and further increase of load in case of higher spread (> CoV). 
Consequently, in case of small system sizes it is proposed to design structures by 
single elements with high bearing capacity instead of parallel arranged elements of 
brittle material. Furthermore, the degree of ductility plays a major and decisive role for 
the expectable potential of redundancy. GOLLWITZER (1986) and GOLLWITZER AND 

RACKWITZ (1990) defined the degree of ductility Δ as  
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with upper limit of integration arbitrary chosen as 2 ÿ ε0, and ε0 as strain at maximum 
stress σmax. A full positive correlation between deformation at maximum force of each 
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element and fracture deformation is assumed. As shown in Fig. 3.11 and Fig. 3.12 system 
reliability and the gain of redundancy increases with increasing ductility or plasticity in 
element’s material behaviour with already remarkable increase even at low ductility 
measures if spread of ε0 is small.  

 

Fig. 3.11: System reliability index βsys in comparison to element reliability index β1 under various 
stress-strain relationships according GOLLWITZER (1986) and GOLLWITZER AND 

RACKWITZ (1990): (left) βsys vs. N; (right) βsys vs. ρ1  

Concerning the stochastic dependency between the element strengths the numerical 
results clearly show that the lower the correlation (–1.0 ≤ ρ ≤ +1.0) the higher the gain of 
redundancy in material with partly or full plastic behaving materials, but the higher the 
loss in the bearing capacity in serial systems or parallel systems built up of perfect elastic 
materials. Nevertheless, the reliability of serial systems increases with increasing 
correlation. In systems composed of full correlated elements the arrangement and 
interaction as well as the material behaviour plays no role. The correlation within 
elements shows only minor influence on system reliability beside systems composed of 
brittle material. Note: This seems to be obvious if the interaction between elements in 
parallel systems and relationships between these elements or between neighbouring sub-
elements is considered as decisive. It determines the system action but not the correlation 
structure within the (sub-)elements due to the fact that redundancy originate from 
interactions between the elements. The analysis of the influence of relationships between 
coefficients of variation (CoV) of action and resistance (see Fig. 3.12, right) gives a 
decreasing reduction of redundancy in case of high CoV[S] with the tendency to provoke 
a more serial than parallel system action in case of >> CoV[S]. The increase of 
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redundancy above º CoV[S] / CoV[X] ≥ 2.0 is negligible. In case of deterministic actions 
a higer CoV[X] (see Fig. 3.12, left) shows positive effects on the reliability of systems 
composed of ductile or brittle elements. For brittle systems with small N but large 
CoV[X] the negative effect disappears. Nevertheless, a higher CoV[X] corresponds to 
higher requirements on material classification to be able to reach the required design 
values which in case of strengths are normally given as 5%-quantile values.  

Another influence is given by CoV[Y] as spread of deformation at maximum load on 
elements. The results show that the reliability of systems sharply decreases with 
increasing CoV[Y] and nearly vanish for CoV[Y] > 70%, with CoV[Y] Ø ¶ leading to a 
“quasi” serial acting system (GOLLWITZER, 1986). Perhaps for most materials CoV[Y] 
can be assumed as being small. Note: This is in contradiction to DANIELS assumptions 
who assumed negligible spread of E-modulus E1 if compred to the high spread expectable 
for breaking extension εf,1. In their last study GOLLWITZER AND RACKWITZ (1990) 
analysed the influence of dynamical effects. They showed that dynamics plays even a 
decisive role in larger systems.  

 

Fig. 3.12: Reliability index βsys in comparison to β1 under various stress-strain relationships 
according GOLLWITZER (1986) and GOLLWITZER AND RACKWITZ (1990): (left) βsys vs. 
CoV[X1]; (right) βsys vs. CoV[S] / CoV[X1] = CoV[S] / CoV[Y1] 

GOLLWITZER AND RACKWITZ (1990) conclude that DANIELS’ system and his assumption 
of GLS show high redundancy effects which are negligible in case of high correlation 
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between the elements and in case of CoV[S] º CoV[R]. The influence of material 
behaviour plays a further important role showing higher redundancy in case of elements 
with some amount of ductility. They note also that attention should be paid in transfer of 
discussed results for practical application due to the fact that most parallel systems exhibit 
LLS and therefore show a tendency to behave more like serial systems. 

According IBNADELJALIL AND CURTIN (1997) GLS could be verified in case of brittle 
material behaviour but delivered poor estimates in case of metals and synthetics. Thereby 
GLS delivered the highest extra value of all load sharing rules. GURVICH AND PIPES 

(1995) investigated the influence of load sharing models as multi-step failure mechanisms 
on expectable system strength. A decrease of expected system strength (mean value) and 
of coefficient of variation CoV[XN] with increasing N was more pronounced in case of 
higher initial CoV[X1]. Furthermore, the variability of the E-modulus modelled 
independently of X1 was analysed and showed that XN decreases with increasing CoV[E] 
but only distinctively above CoV[X1] > 10% and CoV[E] > 20%. Nevertheless GURVICH 

AND PIPES (1995) concluded that the influence of CoV[E] on XN can be neglected for 
practical applications because of the predominant influence of parameters N and 
CoV[X1].  

Further papers with focus on the analysis of FBMs in respect to fibre characteristics, 
critical failure sequence and asymptotic power laws are published by KUN ET AL. (2000) 
and subsequent papers, e.g. HIDALGO ET AL. (2001). KUN ET AL. (2000) investigated a 2D 
fibre bundle structure of N parallel fibres by means of DANIELS’s model. They discussed 
the introduction of some plasticity by reducing the E-modulus after yielding by a factor α, 
with Epl = E ÿ α, given ε > εf, with 0 ≤ α ≤ 1 and εf as the extension at yield point, 
transition between linear-elasticity and plasticity. In cases where each fibre can only fail 
once (note: e.g. in case of fibre bundle with length equal the ineffective length δ) the 
bundle stress is given by 

( )[ ] ( )fPafP
N
F

sys ⋅⋅+−⋅== σσσ 1 , (3.80)

with the first term expressing the load carried by intact fibres and the second term for the 
residual load carried by already failed fibres, with the total load on the fibre bundle F, σ 
as fibre stress, P(f) as share of failed fibres, [1 – P(f)] as share of survivors and a as 
parameter characterising the residual amount of stress potential in failed fibres. In case of 
a “dry” fibre bundle (without a matrix) a = 0, and with a = 0.5 the formulation represents 
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the micromechanical model for fibre reinforced ceramic matrix composites. For cases in 
which each fibre can fail k-times further differentiation is made in “quenched disorder” 
(maximum load of each fibre stays constant in all k-failures  constant failure treshold) 
and “annealed disorder” (maximum load of each fibre varies from failure to failure  iid 
failure tresholds considering possible microscopic re-arrangements in the material 
structure) to mirror the behaviour of fibres after (k – 1) failures. Note: This model is in 
principle a s-p-FBM with k possible fibre failures equal a serial segmentation of each 
fibre in sub-elements. The model represents a second order hierarchical model beeing 
differentiated in deterministic and stochastic sub-element strengths denoted by 
“quenched” and “annealed disorder”, respectively, and stochastic element strengths. The 
fibre bundle stress in case of a maximum allowed failure quantity of kmax per fibre is in 
case of “quenched disorder” given by 
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and in case of “annealed disorder” given by 
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Investigations with f1 = X1 ~ WD confirmed that the avalanche power law (size of 
consecutive fibre failures) in case of GLS is universal and asymptotically given by the 
proportion Δ –5/2. In case of LLS, “dry” fibre bundle and continuous damage and annealed 
fibre bundles (independent from damage parameter a) the total number of clusters NC in 
the fibre bundle follows the simple scaling law NC = L2 ÿ g(F / L2). Following KUN ET AL. 
(2000), HIDALGO ET AL. (2001) made some further investigations regarding quenched and 
annealed disordered failures of fibres within a fibre bundle. They showed that in general 
weaker fibres can break more often than stronger ones. HIDALGO ET AL. (2001) described 
the failure behaviour of a fibre bundle, considering it as disordered solid, as consequence 
of microscopic failure avalanches until the avalanche breakdown looses balance which 
immediately lead to system collaps. Furthermore the energy dissipation in fibres after k-
failures as well as the influence of softening and hardening was analysed.  

In some publications notes were made regarding the distribution model of fibre strengths 
and its influence on the distribution of bundle strength. For example HOHENBICHLER AND 

RACKWITZ (1981) discussed the influence and modelling aspects of equicorrelation 
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between elements in a parallel system. Assuming a second order hierarchical model with 
Xi = Z ÿ Yi with iid Yi, independent distributed Xi and reliability RN = RN (X1, X2, …, XN) of 
N elements with strength Xi, i = 1, …, N, it follows that in case of iid X1 ~ LND the 
asymptotic CDF of the system strength considering DANIELS’s fibre bundle converges to 
a LND given by 
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with y0 = exp(η – τ ÿ x0), FY(y0) = Ф(x0), x0 as singular solution of τ ÿ Ф(x0) = φ(x0) and 
CDF of Yi  
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The rate of convergence was analysed by investigating the relative deviation ΔN of 
RN (X1, …, XN) and its limit value Z ÿ E’N, with ΔN = [RN (X1, …, XN) – Z ÿ E’N] / (Z ÿ E’N). 
It was shown that ΔN decreases roughly with N – 1 / 2 and roughly proportional to CoV[X] 
and (1 – ρ) 1 / 4. PARAMONOVA ET AL. (2006) remark that the general assumption that fiber 
strengths automatically follows X1 ~ WD is doubtful. They note that sometimes X1 ~ LND 
seems to be more appropriate for representation of fiber strength. HOHENBICHLER AND 

RACKWITZ (1981) noted that in materials with plastic behaviour in general as well as in 
parallel (redundant) systems with load redistribution the system reliability can be 
determined as appropriate weighted sum of the element strengths. They remarked that 
parallel fibre systems with brittle behaviour are often modelled to follow WEIBULL’s 
weakest link theory. Beside the fact that this is done for simplification and instead of the 
often complex models the last one perhaps mirror the parallel system behaviour more 
accurately. SUTHERLAND ET AL. (1999) discussed the applicability of WLT for fibre 
bundles and concluded that the final failure of the bundle follows a certain damage 
accumulation which contradicts weakest link failure. In the discussion about the 
applicability of linear-elastic fracture mechanics (LEFM) for modelling fibre bundle 
strength they postulated less usability. LEFM generally assumes that flaws, especially 
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splits, are in their dimension proportional to that of the system under consideration. This 
seems to be not the case in praxis, e.g. in fibre bundles the characteristics are determined 
by fibres which behave constant in length even if the investigated volume of the fibre 
bundle is changed. Furthermore LEFM does not allow for complex failure modes which 
are often observed in fibre bundles. In addition it was generally concluded that with 
changes in dimension changes in characteristics are often expressed by a “composite size 
effect” which in reality constitutes a conglomerate of various effects determined by 
testing of composites of various dimensions, e.g. changes in material properties, changes 
in test method, changes of test parameters and changes in the material structure. CALARD 

AND LAMON (2004) investigated also a fibre bundle as DANIELS’s system with failure 
probability of a fibre under constant stress distribution P(σ) ~ WD (α, β) with N as the 
number of parallel fibres of length l. They differentiated between load and 
deformation controlled tests. Whereby load-controlled failure of fibres immediately 
initiate load sharing and further processes to an unstable system failure, in case of 
deformation controlled tests load sharing has time to develop. The system does not 
necessarily fail immediately and may reach some steady state. In case of deformation 
controlled tests the share P(σ) of failed fibres r(σ) at stress σ is given by r(σ) / N = P(σ). 
The maximum load a fibre bundle can withstand in case of stable failure (deformation 
controlled) is given by dF(σ) / dσ = 0, with F(σ) as bundle load at state σ, and in case of 
instable failure (load controlled) maximum load on the bundle is given at P = Pc, with αc 
as critical ratio r(σ) / N which initiates total collaps of the fibre bundle. In case of 
deformation controlled testing it follows 
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with Fmax as the maximum bundle load and Sf as the cross section of each fibre. In case of 
load controlled testing it follows 
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( ) ( ) Ffcc SPNPFF σ⋅⋅−⋅== 1max , 

with σF = σmax as the strength of the fibre bundle at instable state. According a statistical 
definition the scatter of maximum force Fmax, naturally equal to the critical number of 
failed fibres rc, can be derived by means of the binomial distribution BN [N, P(σmax)]. 
Thus the expectation and variance of rc are given by 
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with coefficient of variation CoV[Fmax] equal to that of DANIELS (1945), MCCARTNEY 

AND SMITH (1983) and GURVICH AND PIPE (1995), given by 
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( )[ ]max
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1 σ
σ
PN

PFCoV
−⋅

= .  (3.88)

Practical tests showed remarkable differences to model predictions. Despite the 
performance of deformation controlled tests unstable failures and high CoV[Fmax] were 
observed. The analysis under consideration of a certain amount of LLS (due to friction 
between fibres, shear transfer in case of fibres embedded in a matrix material or 
dynamical effects (stress waves due to partial failures) showed that even only an amount 
of about 35% LLS enabled matching of theoretical and practical results. PRADHAN AND 

CHAKRABARTI (2008) studied the fatigue behaviour of fibre bundles in case of GLS 
analytically and by means of simulations in case of LLS. They noted that a dynamical 
failure process can be observed already with the failure of the first fibre and proceeding 
load redistribution until a certain equilibrium (steady) state is reached or the system 
collapse. They called this type of failure behaviour in the system “self-organising 
breaking dynamics”.  

In two accompanying papers CHUDOBA ET AL. (2006) and VOŘECHOVSKÝ AND 

CHUDOBA (2006) investigated in detail the fibre bundle behaviour at varying material and 
test configuration conditions by means of comprehensive Monte-Carlo simulations. The 
material parameters like cross sectional area Ai of each element i = 1, …, N, fibre 
(element) length li, amount of shear interaction between fibres as well as varying E-
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modulus Ei, fibre tensile strength fi and the system size N based on basic assumptions 
made by DANIELS (1945). The influences of varying test configuration parameters like 
clamping conditions or initiated twists in fibres (elements) were analysed. Concerning 
shear interaction it was concluded that the more intensive the interaction the more brittle 
the system fails. A delayed activation in combination with increased shear interaction led 
to a faster activation of system stiffness. Varying fibre (element) length Li assuming 
Li ~ uniformly distributed showed a decrease in system stiffness at maximum system load 
given by the factor rλ = ln(1 + λmax) / λmax, with λ as ratio of additional element length to 
nominal element length, λ = L / l, with l = lmin. In case of large elements this effect 
diminished in fibre bundle tests. The load-elongation diagram of the elements in the 
system shows constant maximum load but increasing elongation potential of fibres 
(elements) with increasing length Li. Varying cross sectional diameter and thus varying 
cross sectional area consequences a constant level of elongation but a varying E-modulus 
and maximum load in load-elongation diagram. Thereby Ai was assumed to be uniformly 
distributed. Thus the system failed at failure of the first elements, or in other words, all 
elements failed at the same elongation. The influence on system strength up to 
CoV[fi] = 10% was found to be small but Ai initiates a certain amount of spread in load-
elongation relationship and in maximum load of the system. Studies on varying fibre 
(element) activation strain (random slack), as already done by PHOENIX AND TAYLOR 

(1973), gave a load-elongation diagram with equidistant parallel shifted functions due to 
assumed uniform distributed slack with equal maximum load and E-modulus. CHUDOBA 

ET AL. (2006) split the system behaviour in three sections: The first section showed a non-
linear increase of stiffness in the system due to successive activation of elements after 
initial slack. The second section was characterised on the one hand without further 
activations but no partial failures and on the other hand with further activations and 
partial failures. The third section was characterised by in- / decreasing of load bearing 
capacity of the system due to successive partial failures. Based on their first parameter 
studies CHUDOBA ET AL. (2006) concluded that spread in fibre length and / or random 
slack significantly reduce the load bearing efficiency of parallel acting systems, in 
particular if constituted of short elements (< l), considering the choosen model 
assumptions.  

In their accompanying paper VOŘECHOVSKÝ AND CHUDOBA (2006) studied s-p_FBMs 
composed of elements with strength f1 ~ WD. They remarked that iid elements in serial 
would lead to unrealistic infinite (expectation) of system strength if the element length l1 
in relation to reference length lref, required to account for length effects as implicitly given 
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by WEIBULL distribution, is considerable shorter, with l1 Ø 0 and l1 / lref Ø 0. They 
included a certain correlation within the elements in length direction by means of an 
autocorrelation function (ACF) within a stationary, homogenous and ergodic stochastic 
process given by 
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⎥
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with lρ as correlation length, d as distance between the serial increments and r as power 
with r = 2 in case of a GAUß-ACF. Consideration of autocorrelation leads to serial size 
effects which approach the expectation (mean value) of element’s strength in case of 
l << lρ and which asymptotically approach the size effect according WEIBULL (1939) in 
case of l >> lρ and thus leads to a decrease in system strength with increasing serial 
system size with power 1 / m, with m as WEIBULL shape parameter which depends on 
CoV[fi]. Thus, in case of l << lρ the random strength field is sufficiently represented by 
the mean value whereas in case of l >> lρ the influence of serial correlation diminishes. 
With references to BAŽANT ET AL. (2004, 2007) the cross-over function is simplified by a 
bi-linear function with intersection at [lρ; fi,mean]. Consequently, three functional areas of 
statistical length effect are given, first with l / lρ Ø 0 Ø l << lρ with system strength 
fsys ~ ND, second the transition area with influence by the autocorrelation random field at 
l / lρ º 1.00 Ø l = lρ, and the third area with l / lρ Ø ¶ Ø l >> lρ and iid fsys ~ WD. 
According VOŘECHOVSKÝ AND CHUDOBA (2006) this length effect corresponds to the 
energetic-statistical size effect of quasi-brittle structures failing at crack initiation as given 
in BAŽANT ET AL. (2004, 2007). Based on simulations performed in VOŘECHOVSKÝ AND 

CHUDOBA (2006) it was found that the bi-linear intersection point [lρ; fi,mean] is 
independent of serial system size M. It was concluded that serial and parallel system 
effects can be investigated separately and their interrelationship in s-p_FBMs can be 
simply considered by multiplication of both effects. In s-p_FBMs it follows that the 
system strength decreases for l >> lρ at expectation but with constant CoV[fsys] whereas in 
case of l << lρ E[fsys] behaves constant but a distinctive decreases in CoV[fsys] proportional 
to CoV[fi] / √N is given. Based on DANIELS’s (1945) asymptotic system strength 
distribution VOŘECHOVSKÝ AND CHUDOBA (2006) give following extension 
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with α and m as scale and shape parameter of WD, lρ as correlation length and l as 
element and system length.  

These statements show that perhaps in most realistic cases of material behaviour the 
assumptions as well as the bundle strength of finite size N, considering DANIELS’s theory, 
lead to overestimations, especially in cases of linear-elastic load-extension behaviour of 
the individual fibres. Thus more realistic modelling in respect to (i) consideration of a 
certain amount of local load sharing (LLS), (ii) CoV[E], (iii) correlation within and 
between fibres, (iv) the enlargement to serial-parallel systems to account for the fibrous 
material structure as well as (v) the consideration of embedment characteristics of fibres 
within a matrix or (vi) consideration of friction between fibres and the material behaviour 
itself (elastic, plastic, …) are important aspects which have to be taken into account and 
clarified regarding their relevance.  

The necessity to examine serial-parallel fibre bundle models follows directly from the 
increasing possibility of a defect along an individual fibre with increasing length leading 
to a reduction of bearing capacity. Furthermore, the embedment of fibres within a matrix 
material gives the possibility of more than one break along the same fibre due to stress 
distribution over the matrix material. A comparable mechanism appears possible in case 
of friction as stress transfer between directly neighboured fibres. This leads to a stepwise 
three-dimensional damage accumulation of parallel aligned fibres in width and depth and 
in serial, along the fibre or fibre bundle. Hereby the weakest serial increment of 
parallel bundles defines the system strength and directly links the DANIELS’s system 
with that of WEIBULL.  

3.2.5 Intermediate Conclusions 

At the end of the foregoing four sections and in particular as conclusion of the last section 
3.2.4 some summarising remarks are made: The basic stochastic material (strength) 
models, namely the weakest link theory (WLT) of WEIBULL (1939), the perfect plastic 
material model and the fibre bundle model (FBM) according DANIELS (1945) constitute 
the fundamental basis for further developments and progress regarding strength models 
under inclusion of stochastics. Beside the fact that all these models base on very strict and 
ideal assumed material conditions they clearly outline the necessity for consideration of 
stochastics in material modelling. Therefore the consideration of variability inherent in 
characteristics of materials and structures enables the examination of effects which cannot 
be explained by mechanics alone. The deepend knowledge of material and structure 
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behaviour enhances not only the reliability in design processes but more, offer the 
engineer, producer and user to invent new combinations, to perform material design, 
optimise the production process, monitor and perform specific training of all persons in 
charge. Of course the ideal material performances seldom explain sufficiently the real 
material behaviour advanced models and enlargements of presented fundamental models 
are required. Progressing development of these models has already been initiated and 
done in the last decades. The greatest progress is given by the combination of all three 
theories to serial-parallel material models (s-p_FBMs) under consideration of a broader 
range of material behaviour and under inclusion of interaction between system elements 
over the interface of a matrix material or by friction. Furthermore, the system behaviour 
after partial failures by definition of load sharing rules (GLS vs. LLS) has been 
introduced and studied. Some comprehensive analysis based on numerical simulations 
have been made to examine the influences of stochastic parameters, in particular the 
spread of load and resistance as well as various types of correlation and some 
imperfections like random slack, random element length or some plastic yielding.  

In a first view it may appear that research in this field is comprehensive and sufficient. 
Nevertheless there are still many open questions and some model constraints which 
require a more detailed view and more detailed judgement like the serial and parallel 
system behaviour considering LND as RSDM of material strength and stiffness 
characteristics, the inclusion of spatial correlation structures (stochastic processes), the 
interaction of multi-variate or multi-modal RSDMs and the derivation of some simplified 
equations which are perhaps accurate enough for engineering applications and ready for a 
rough material and structure design. For that the following sections are dedicated to 
perform additional calculations and simulations with the aim to deliver some first answers 
and advanced models ready for practical applications with focus on finite serial and 
parallel systems.  

3.3 Stochastic Effects in serial acting Systems 

Before starting with parameter studies and detailed analysis of some cases of serial 
systems some general considerations are made. If a perfect serial acting system of serial 
arranged elements in respect to loading direction is given, the maximum bearing capacity 
of this system is determined by the weakest element XM with 

( )i
i

M XX min= , i = 1, …, M. (3.91)
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The system strength only depends on the strength of the weakest element but not on 
material behaviour, stress-strain function, E-modulus or other characteristics. Even in 
serial systems composed of elements of perfect plastic material and were all elements in 
the system are exposed to total system load the system strength is determined by the 
yielding of the weakest element XM.  

Considering the relationship between the bearing capacity and system size M a decrease 
of quantiles as well as expectation and variance with increasing M is expected. This 
follows from the focus on the minimum, e.g. the lower tail of the parent distribution of 
X1 ~ FX(x), as illustrated in Fig. 3.13. 

 

Fig. 3.13: Schematic visualisation of the expectable range of XM / X1 (left); example of a serial 
system of iid elements X1 ~ 2pLND with E[X1] = 30 and CoV[X1] = 30%, 
min[X20] ~ GUMBEL (15.84; 2.142) (right) 

As a first guess someone may argue that lim M Ø ¶ XM / X1 Ø 0. Of course extreme value 
theory (EVT) for iid elements gives limit distributions and expectations as limit values for 
lim M Ø ¶ XM / X1 Ø ≥ 0, see section 2.6.2. An approximation of lim M Ø ¶ XM / X1 Ø º 0 
appears accurate enough in most cases in particular if M is finite and not too large (see 
e.g. Fig. 3.14). Consequently, one possible simple function for the description of the 
relationship XM / X1 vs. M is provided by a general power model given by 
XM / X1 = α ÿ M –β, with α as scaling factor and β as power depending on the parent 
distribution model, the analysed distribution characteristic and the parameter vector θ of 
Xi ~ FX(x | θ). Hereby both constraints XM / X1 = 1.00 and XM / X1 | M Ø ¶ Ø º 0 are 
fulfilled.  

The power model is already linked with WEIBULL’s weakest link theory (WLT) and his 
size effect equ. (3.33) till (3.35). Nevertheless and as presented later, the power model is 
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not always sufficient for simple modelling of effects in distribution characteristics. Beside 
that even a minor correlation between the serial elements may affect the relationship 
XM / X1 vs. M significantly. Due to that a more detailed analysis of serial system effects is 
required.  

This section is dedicated to modelling of stochastic effects in serial acting systems by 
means of ND, LND and WD as parent distributions (RSDMs) for the strength of 
elements. Having in mind that the limit distribution models of all these parent 
distributions are provided by EVT in case of iid elements the question still remains how 
to model the statistical distribution of finite, in particular small system sizes M. Of course, 
for WD analytical expressions are explicitly available and inherent in the distribution 
model with the special feature that the principle model can be directly used for the 
limiting cases of maxima and minima. ND or LND distributed elements suffer from not 
closed solveable DMs. In addition the convergence to the GUMBEL distribution (type I, 
EVT) with M Ø ¶ is still unclear.  

Starting first with a brief overview by discussing the influence of each distribution model 
on the system behaviour, the following sub-sections are dedicated to define some 
simplified models for estimating the system distribution in dependency of system size M, 
the RSDM and the parameters of elements X1. Serial systems composed of iid elements 
but also of correlated elements are analysed. Furthermore the influences on system 
behaviour as well as the simplified consideration in models are discussed.  

3.3.1 Distribution of the Minimum in dependency of RSDM and 
Distribution Characteristics 

Within this section effects from serial system action on distribution parameters and 
quantiles are discussed. In case of ND and LND as RSDMs random variates of elements 
X1 were generated. The data was gained by performing Monte-Carlo simulations in R 

(2009). Thereby 10,000 serial systems with system size M = 1, 2, …, 103 were generated 
according the parent distribution of X1 and its parameters, with an arbitrary chosen 
E[X1] = 30 (which has no influence on the normalised results) and varying 
CoV[X1] = 10%, 20%, …, 50%, 75%, 100%. The random samples were created by 
sampling each system separately, 10,000 times for each system configuration. In case of 
WD as RSDM analytical expressions for elements are available (see sections 2.4.3 and 
3.2.1). Fig. 3.14 shows the relative change of expectation, standard deviation and 
CoV[XM] as well as of some quantiles in relationship to M. As expected the system 
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capacity decreases with increasing system size M. This decrease is more pronounced in 
systems composed of elements with a high CoV[X1].  

 

Fig. 3.14: Relative changes in distribution characteristics of XM in dependency on serial system 
size M and the RSDM of elements X1: (left) X1 ~ ND; (middle) X1 ~ 2pLND; (right) 
X1 ~ 2pWD 
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Fig. 3.15: Plots of probability paper for 2pLND (left) and GUMBEL distribution (right) gained from 
simulations of serial systems of iid elements X1 ~ 2pLND, E[X1] = 30, 
CoV[X1] = (10, 30, 50)% and system sizes M = 1, 10, 100, 1,000  
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In particular the decrease is steeper the higher the p-values of the underlying quantile 
calculation. This is due to the shift of system strength values to the minimum, the weakest 
element. Of course not only the distribution parameters change but also the characteristics 
of the distribution, as given by EVT. Following EVT the parent distributions ND and 
LND converge to GUMBEL or double-exponential distribution (type I, EVT) whereas WD 
as RSDM remains in principle the same but with adaptations in the distribution 
parameters as given in section 3.2.1. 

Focusing on finite serial acting systems and thereby on their minimum the information of 
the limit distribution model does not help much without a supporting description of the 
converging process, e.g. from ND and 2pLND to GUMBEL distribution in dependency of 
M. Without providing a description of this converging process or of sufficiently reliable 
and accurate approximations, information about the limit distribution is even worthless. 
To get a first idea about this converging process Fig. 3.15 shows probability paper plots 
for 2pLND elements depending on various system sizes and CoV[X1]. As visible, there is 
a significant influence on the distribution shape, the skewness and kurtosis. These plots 
show also that in serial systems of M = 1,000 iid elements representation of the strength 
distribution of XM by 2pLND is even better than by GUMBEL distribution.  

Due to statements above a simple and perhaps approximative description of the 
convergence process is not given on hand. Therefore, next section concentrates on the 
establishment and analysis of some approximative methods with the aim to cope with a 
sufficient accurate and simple decription of the statistical distribution of minima of serial 
acting systems composed of a finite number of iid elements. 

3.3.2 Estimation of the Statistical Distribution Parameters in Case of iid ND 
or 2pLND distributed Variables 

This section is dedicated to the analysis of statistics gained from simulated serial systems 
composed of iid elements represented by ND or 2pLND variates. The simulations were 
performed in R (2009). First results of these simulations have already been presented in 
section 3.3.1. Thereby Fig. 3.14 shows the relative change of some distribution 
characteristics (mean, standard deviation, CoV and quantiles) in dependency of the parent 
distribution of iid elements X1 ~ (ND, 2pLND, 2pWD). As already mentioned, whereas 
the distribution function of serial systems in case of iid 2pWD elements is known 
analytically and irrespective of system size M, for serial systems composed of iid ND or 
2pLND elements analytical expressions of the statistical distribution of serial systems are 
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only available in the limiting case M Ø ∞ (see section 2.6.2 concerning EVT). Thus the 
first idea to come up with expressions for statistics of finite, small system sizes is to find 
some approximations. These approximations are analysed first to describe the relative 
change of statistics as function of system size M, CoV and RSDM of X1, and secondly by 
discussing approximative distribution functions of finite and small system sizes. 

The importance of discussing approximations for small, finite M is in particular of 
interest for the convergence of ND or 2pLND variables to type I of EVT.  

Firstly relative changes of statistics are analysed. Due to the practical relevance of 
modelling elements by 2pLND the following findings are restricted to this parent 
distribution model. Thereby iid elements X1 ~ 2pLND are examined. Following Fig. 3.14 
it is obvious that the relative changes in all statistics are characterised by a non-linear 
decrease with increasing M. To characterise the relationship Kξ = XM,ξ / X1,ξ, with X1,ξ as 
specific characteristic ξ of elements (e.g. mean, standard deviation, CoV) and XM,ξ as 
specific characteristic ξ of a serial system composed of M elements, a function has to be 
defined which fulfills following conditions: 

 1lim
1
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ξK
M
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Approximative Description of the relative Changes of Statistics in Case of Serial 
Systems composed of iid Elements X1 ~ 2pLND 

By analysing Fig. 3.14 it is obvious that in case of iid X1 ~ 2pWD and according 
WEIBULL (1939) a simple power model is sufficient to describe the relative change of 
distribution characteristics, see  
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and  
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Nevertheless, the simple power model is not adequate to characterise Kξ defined as ratio 
between distribution parameters and characteristics of serial systems composed of iid 
2pLND elements. It can be shown that changes in statistics not only depend on CoV[X1] 
but also on system size M (see e.g. Fig. 3.14). Thus Kξ has to be a function of CoV[X1] 
and M. Analysis of Kξ in dependency of M showed heuristically some logarithmic 
relationship. To fulfill the requirement of XM,ξ ª X1,ξ at M = 1 a shift of function ln(M) by 
one is required.  

In case of iid X1 ~ 2pLND and in dependency of finite and small M the analysis of 
statistical distribution parameters by the ratio Kξ = XM,ξ / X1,ξ and the distribution itself by 
performing a series expansion of rank statistics would be straight forward. ARNOLD ET 

AL. (2008) provide a general adaptable expansion of FX
–1(U(i)) in a Taylor series around 

the point E[U(i)] = i / (M + 1) = pi in relationship to successive derivatives of kth order of 
FX

–1(k)(u) evaluated at u = pi of the inverse CDF FX
–1(u) given as  
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Here U(i) is the ith order statistics of a (0, 1) uniformly distributed vector (U1, …, UM) with  
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i ,  (3.95)

and X(i) | M is the ith order statistic of the vector (X1, …, XM) with  
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with X(1) | M as denoted above as XM. Following ARNOLD ET AL. (2008) the expectation 
and variance are approximately given as  
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plus higher order terms in FX
–1(k)(pi), and 

( )[ ] ( )( ){ }
( )

( )[ ( )( ) ( )( )+⋅⋅−⋅⋅
+

⋅
+⋅

+
⋅

≈ −−−
iXiXii

ii
iX

ii
i pFpFpq

M
qppF

M
qpMXVar 2111

2
211

111
2

22

 ( )( ) ( )( ) ( )( ){ } ...
2
1 2213111

111
+⎥

⎦

⎤
⎥⎦
⎤

⎢⎣
⎡ ⋅+⋅⋅⋅+ −−−

iXiXiXii pFpFpFqp ,  
(3.98)

with  

1
11

+
+−

=−=
M

iMpq ii .  (3.99)

Thus the Taylor series requires the evaluation of the derivatives of FX
–1(u). In case of 

X1 ~ 2pLND it is not available in explicit form. Nevertheless, ARNOLD ET AL. (2008) 
provide, based on the relationships  

( )( ) ( ) ( ) ( )( )uFfxfdu
dxuF

du
duF

XXX
XX 1

111 11
−

−− ==== ,  (3.100)

the first two derivatives of FX
–1(u) in case of X ~ ND, given as  
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Above formulations can also be used for iid X1 ~ 2pLND by evaluating ln(X1) ~ ND. 
Nevertheless, equations above do not provide an easy evaluation of extreme values, in 
particular of minimas X(1) | M. They also not provide explicit insight in the change of 
statistical distribution parameters in dependency of M. Therefore an explicit formulation 
of the inverse CDF of X1 would be required which is not available in case of X1 ~ ND or 
2pLND. Thus the aim of this section is to define and analyse simple relationships for the 
description of distribution parameters of serial systems expressed by Kξ on empirical 
basis and to provide estimators for parameters required.  

Assuming that equ. (3.92) should in principal remain the same but approximately an 
adequate function in M a formulation is found by  
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Thereby Kξ fulfills the condition XM,ξ ª X1,ξ at M = 1, independent of parameters αξ and 
βξ.  

 

Fig. 3.16: Goodness of fit of equ. (3.102) for various relative quantiles in comparison with 
goodness of fit of a simple power model (left) as well as residuum plots for judgement 
of model fit for relative quantiles (middle) as well as relative changes of mean, standard 
deviation and CoV (right): comparison of model fit for various CoV[X1] 

Comparing (3.102) with the simple power model in (3.92) following equivalences are 
given. The system size M in (3.92) is substituded by the expression [ln(M) βξ + 1] in 
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(3.102). The power parameter λ in (3.92) is substituded by the power parameter αξ in 
(3.102).  

Fig. 3.16 exemplarily presents the goodness of fit between the simulated data and the 
simple power model in (3.92) as well as by means of the adapted model of (3.102). 
Therefore standardised residues ei,st based on ei = (Kξ,M,obs – Kξ,mod) are given. 

The standardised residues ei,st are defined as (see e.g. STADLOBER AND SCHAUER, 2007)  
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and hii as the diagonal element of the hat-matrix, defined for the simple linear regression 
model. As shown (3.102) performs perfectly in representing qp,M, the observed values of 
quantiles xp,M of XM, even in case of high CoV[X1] and large system size M. Only the 
CoV[XM] is less adequate in case of very high values of CoV[X1]. This can be explained 
by the definition of CoV[X] as ratio σ[X] / E[X]. Thus changes in CoV[XM] are directly 
linked with E[XM] and σ[XM].  

 

Fig. 3.17: Parameters αξ (left) and βξ (right) of equ. (3.102) vs. CoV[X1] as best fit according LSM 
to simulated data and in dependency of the statistics analysed 
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Nevertheless, (3.102) requires the estimation of parameters αξ and βξ which itself depend 
on ξ. Parameter estimates for αξ and βξ found by means of the least squares method 
(LSM) are given in Tab. 8.1 and Tab. 8.2 in annex 8.1 and visualised in Fig. 3.17, 
analysing first the relationship to CoV[X1]. 

Following statements can be made: Analysing first the power parameter αξ it can be found 
that αCoV is nearly constant and independent of M. The parameter αp shows to be a 
function of probability p and CoV[X1]. ασ and αμ show also to depend on CoV[X1] with 
ασ ≈ αμ + αCoV. Furthermore, in the limiting case of CoV[X1] Ø 0 it follows that αp Ø 0, 
ασ Ø αCoV and αμ Ø 0.  

Concerning parameter βξ it is obvious that βp is nearly solely a function of p but not of 
CoV[X1]. Hereby β50 is equal to βμ in the limiting case of CoV[X1] Ø 0. In contrast to βp 
parameters βμ, βCoV and βσ suggest a dependency on CoV[X1] and p. Furthermore, over 
the range of p and by comparing βp with p = (5, 50, 95)% it can be found that βp appears 
to be right-skewed distributed.  

 

Fig. 3.18: Parameter αp vs. CoV[X1] (left) and vs. p (right) 

Fig. 3.18 gives graphs for αp vs. CoV[X1] and αp vs. p. In Fig. 3.18 (left) estimates of αp 
show distinctive unsteady (irregular) behaviour, in particular in the region of 
CoV[X1] = [50 ÷ 100]% and p ≤ 25%, which influences any kind of fitting procedure so 
far analytical expressions are missing. Fig. 3.18 (right) shows estimates of αp(p| CoV[X1]) 
and αp vs. p at given CoV[X1]. Thereby αp shows an asymmetric convex behaviour which 
diminishes with decreasing CoV[X1]. The gradient decreases with p Ø 0 and the level of 
αp increases with increasing CoV[X1]. Due to the fact that parameter αp is a function of 
CoV[X1] and p, in the limiting case CoV[X1] Ø 0 parameter αp converges to zero. This is 
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trivial because at zero dispersion all xp’s are equal and thus xp,M converges to xp,1, with 
αp Ø 0 and CoV[X1] Ø 0. Thus xp,M = E[X1] = E[XM]. Of course, if X1 is deterministic 
(CoV[X1] = 0) there is by default also no stochastic serial system effect and Kξ = 1.0, 
irrespective of ξ. Thus the description of αp requires a function which gives αp = 0 for 
CoV[X1] = 0, independent of p, and which shows increasing αp-values and an increase in 
the asymmetric convex behaviour for increasing CoV[X1]. Thus a function of αp is 
demanded which fulfills  
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The simplest function capable to describe the non-linear decrease of αp vs. CoV[X1] and 
the asymmetric convex behaviour of αp vs. p is given by a polynom of 2nd order. Mixing 
both functional parts gives the expression  

[ ]( ) [ ] [ ] [ ] [ ]1
2

1
22

1 , XCoVfpepdXCoVcpbpapXCoVp ⋅+⋅+⋅+⋅+⋅+⋅=α ,   (3.105)

with p œ [0, 1], CoV[X1] œ +, αp(CoV[X1] = 0, p) = 0 and αp(CoV[X1], p = 0) 
≥ αp(CoV[X1], p = 1). The six model parameters a, b, …, f are found by means of LSM 
minimising the sum of squared differences between the observed αp from simulations 
(αp,obs), and αp,mod estimated according equ. (3.105). The parameter set is given as  

 a = –0.1077;  b = +0.3807;  c = –0.8714; 

 d = +1.5919;  e = –2.3511;  f = +3.7959.  

The degree of determination for p = (2.5, 5.0, …, 95.0, 97.5)% by means of equ. (3.105) 
was found between r2 = 0.983 ÷ 0.999. The residues were checked and qualitatively 
proved to be approximately normally distributed with ei ~ ND (0, 0.0252 ÷ 0.122) showing 
higher variation at lower p-values. A comparison of model output and best LSM 
estimates from simulation data is given as plot of αp,mod vs. αp,obs in Fig. 3.19. 
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Fig. 3.19: Parameter αp,mod vs. αp,obs for various p-values 

The over all sum of LSM is ∑ (αp)| LSM = 0.722. The overall mean difference of αp,obs and 
αp,mod is found as 0.003 and the variance as 0.004. The range R of differences decreases 
with increasing p, from R = 0.42| p = 0.025 to R = 0.10| p = (0.25 ÷ 0.75) and 
R = 0.17| p = 0.975 giving some limit of a weaker representation of αp for extreme values 
of p. Nevertheless enlargement of the model by a third-order polynom for αp(p) showed 
only minor reduction in ∑ (αp)| LSM to 0.616 but no significant improvement in R over the 
whole range analysed for p. Overall the model for αp performs well beside the fact that 
differences between αp,mod and αp,obs are higher in case of extreme values of p.  

 

Fig. 3.20: Parameter βp vs. p: observed values given as mean ± standard deviation; model as beta-
distribution (left); βp,mod vs. βp,obs (right) 

In the next step parameter βp is analysed in more detail. As already mentioned above βp 
was found to be solely a function of p and thus independent of CoV[X1] (see Fig. 3.17). 
Thus mean values and variance of estimated βp| p were calculated from estimates gained 
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from simulations (Tab. 8.2, annex 8.1). As expected, mean values vary significantly with 
p whereas Var[βp| p] was found to be low and about 0.1% to 0.2% of βp,mean,obs. 

Fig. 3.20 (left) shows mean values ± standard deviation of βp,obs| p vs. p based on 
simulations. Due to the defined range of the parent distribution of iid elements 
X1 ~ 2pLND within [0, ∞] and the serial system characteristic XM defined as XM = min[Xi] 
over i, with i = 1, …, M, in the limiting case M Ø ∞ values of XM converge to 0, the 
quantile value xp,M| p = 0 will always be equal to zero, independent of the system size M. 
Thus βp | p = 0 is also equal to zero. In the limiting case p Ø 1 parameter βp converges to 
one due to the fact that βp = 1 delivers the lowest value for K performing maximum 
influence (reduction) of X1,p, if βp is bounded by ≤ 1.0 which is supported by the course of 
βp,obs versus p. This is conforming to the fact that the highest quantile values are mostly 
affected by serial system action. Thus βp is defined within [0, 1] showing an asymmetric 
concave-convex behaviour within p œ [0, 1]. The simplest function to describe the course 
of βp(p) œ [0, 1] is a two-parameter model. Thereby the two-parameter Beta-distribution 
(2pBeta) which is defined within [0, 1] was identified as representative model (see  
Fig. 3.20, left). In general, the PDF and CDF of a 2pBeta are given as  
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with the Beta-function  
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The expectation and variance of X ~ 2pBeta are  
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For modelling of βp parameters pbeta,est ≈ 0.333 and qbeta,est ≈ 0.156 were estimated by 
means of LSM. Thus the parameter βp can be estimated following  
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A comparison of βp,obs vs. βp,mod is shown in Fig. 3.20 (right). Besides a minor non-linear 
concave trend between βp,obs and βp,mod leading to underestimation of βp in case of p ≥ 0.95 
and p ≤ 0.10 the model performs well. The observed mean difference between βp,obs and 
βp,mod was –0.0004 and to observed variance 0.0003.  

 

Fig. 3.21: Kp,M,mod vs. Kp,M,obs (above) and standardised residuum plots for Kp,M,mod (below) for 
CoV[X1] of 10% (left), 50% (middle) and 100% (right) 

Having adequate models for αp and βp as given in (3.105) and (3.109), respectively, it is 
possible to give good estimates for xp| (CoV[X1], p, M). Therefore Fig. 3.21 exemplarily 
provides some plots of Kp,M,mod versus Kp,M,obs for CoV[X1] = (10, 50, 100)% and for 
p = 0.05, 0.50, 0.95. In addition plots of standardised residuals ei,st versus Kp,M,mod are 
presented. The residual-plots show a decreasing bias of Kp with increasing p. Over all this 
leads to underestimation of Kp. In fact this underestimation is rather small and generates 
minor conservative values. Over all, the presented models behave satisfactorily and 
enable a very simple calculation of Kp-values. Thus the model gives good estimates for 
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the relative change of the capacity of serial systems composed of iid lognormally 
distributed elements on various quantile levels. The model is in principal restricted to the 
examined parameter space of CoV[X1] = (5, …, 100)%, p = 0.025, …, 0.975 and 
M = 1, …, 1,000. Nevertheless, good approximations can be also expected for M > 1,000 
but not too small p-values.  

In principal having an expression for calculation of xp given p the inverse operation 
calculating p given x would deliver the distribution function FX,M(x) as function of X1, 
E[X1], CoV[X1] and system size M (see section 2.5). Before discussing approximations of 
the distribution function of serial systems some expressions for KM,μ, KM,CoV and KM,σ 
have to be defined.  

Tab. 3.2: Regression models for parameters αξ and βξ of equ. (3.102) for mean, standard deviation 
and coefficient of variation of serial systems composed of iid elements X1 ~ 2pLND 

ei ~ ND ( e , s ) regression models r2  

e  s  

αμ,mod = –0.826 · CoV2[X1] + 2.925 · CoV[X1]  1.00 0 0.024 

βμ,mod = –0.005 · CoV2[X1] + 0.160 · CoV[X1] + 0.309 0.98 0 0.007 

ασ,mod = –0.806 · CoV2[X1] + 2.858 · CoV[X1] + 0.681  0.99 0 0.045 

βσ,mod = 0.253 · CoV2[X1] – 0.188 · CoV[X1] + 0.510  0.78 0 0.016 

αCoV,mod = 0.011 · CoV2[X1] – 0.051 · CoV[X1] + 0.681  0.67 0 0.008 

βCoV,mod = 0.326 · CoV2[X1] + 0.112 · CoV[X1] + 0.555  0.90 0 0.044 

The identified regression models by means of second order polynomials are given in  
Tab. 3.2. Additional bias in βCoV,mod is induced by using the same functional relationship 
for the description of CoV[XM] / CoV[X1]. Nevertheless, derivation of a model based on 
mean and standard deviation becomes more complex. In practise CoV[XM] should 
therefore be computed based on estimates of E[XM] and Var[XM].  

A comparison of calculated and observed parameter values of αξ and βξ is given in  
Fig. 3.22. Please be aware that axis of the graphs are scaled differently. As already given 
in Tab. 3.2 βCoV,mod overestimates βCoV,obs by a bias of roughly 0.06 (see also Fig. 3.22). 
Beside that the models can be said to deliver satisfactorily estimates of αξ and βξ and 
therefore give a good basis for estimating μ[XM] and σ[XM]. 
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Fig. 3.22: Parameters αξ (above) and βξ (below) for ξ as mean (left), standard deviation (middle) 
and coefficient of variation (right): model vs. observations from simulations  

Approximative Method for Distribution and Characteristics of Serial Systems 
composed of iid Elements X1 ~ ND or X1 ~ 2pLND based on Rank Statistics 

Considering the definition of serial systems by means of extreme value statistics which is 
in general given by  

( ) ( )[ ] M
X MxFMxF 1|11|min =−−= ,  (3.110)

with the general definition of CDF  
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By means of relations between order statistics and the distribution parameters of a normal 
distribution with  
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[ ] [ ] ( )50.01−=== XFXmedXE μ ,  (3.112)

and 
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with 

( ) σΦμ ⋅+= − pxp
1 ,  (3.114)

an approximation for calculating statistics for XM of serial systems is given. Thereby it is 
assumed that the distribution model for finite M, with M ≤ 1,000, can be approximated by 
the parent distribution of X1 but with adapted distribution parameters θ, with 
θ → θ (M) = θM.  

Following equations above and in case of iid ND-variates X1, estimates for expectation 
and standard deviation are  
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In case of iid variates X1 ~ 2pLND the same formulas can be applied after X1 was 
transformed to logarithmic domain, with Y1 = ln(X1) and Y1 ~ ND.  

Fig. 3.23 and Fig. 3.24 show the relative bias between some approximated distribution 
characteristics and simulated data for iid X1 ~ ND and iid X1 ~ 2pLND, respectively, 
where parameters are derived by leaving the parent distribution model constant and 
independent of M but adapting its distribution parameters as function of M. For 
emphasising the region of M with largest deviations from simulation data the graphs are 
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given with a logarithmic x-axis. The graphs show changes in statistics referenced to the 
input parameters μ[X1] and σ[X1]. The random data shows partly distinctive spread. For 
analysing the mean bias between calculated and simulated data a trend-line for each 
distribution characteristic analysed versus M was fitted by means of command “nls (.)” 
(non-linear least squares) in R (2009) and the following function  

( ) ( ) 1ln,| −− ⋅⋅== ββα αMMMfy .  (3.117)

As shown in Fig. 3.23 the approximation method leads to non adequate results for 
characteristics of XM if the serial systems are composed of iid elements X1 ~ ND. In 
particular in case of large system sizes and / or high variability a remarkable bias appears. 
This is due to the fact that lower quantiles as well as the expectation of XM changes from 
positive to negative values as X1 ~ ND is defined within (–¶, +¶). Furthermore, due to 
higher concentration of the distribution of XM on the lower tail of the distribution of X1 
the distribution of XM becomes heavily right skewed. The assumption that the parent 
distribution of X1 can be approximately used for XM fails in case of X1 ~ ND. Only the 
distribution characteristic σ[XM] = σM shows comparable minor bias increasing with M 
steadily concave and independent of CoV[X1]. This is by definition strictly defined on the 
positive domain +. Overall the approximation works poor for finite serial systems 
composed of iid elements X1 ~ ND. Fig. 3.24 shows results of the approximative method 
in case of serial systems composed of iid elements X1 ~ 2pLND. In contrast to Fig. 3.23 
with X1 ~ ND the relative bias of characteristics μM, σM, CoV[XM], XM,05 and XM,95 is low. 
In contrast to ND the parent distribution 2pLND is already characterised by a right 
skewed shape. Thus 2pLND is already much more like the asymptotic minimum 
distribution type I according EVT (see section 2.6.2) even in case of small M and high 
varying characteristics, e.g. expressed by CoV[X1]. Furthermore, 2pLND is already 
bounded below by zero. This prevents changes of the statistics from positive to negative 
domain as observable in case of X1 ~ ND. The graphs in Fig. 3.24 show also an 
equidistant increasing bias with increasing CoV[X1]. Hence linear interpolation for 
estimates of bias in case of arbitrary CoV[X1] is possible. Overall, the approximation 
defined in equ. (3.115) and (3.116) provides usable results in case of serial systems 
composed of iid elements X1 ~ 2pLND. Thereby the bias of main characteristics μM, σM, 
CoV[XM], XM,05 and XM,95 can be extraxted from the graphs provided in Fig. 3.24 and 
directly used for correction of the calculated characteristics. In case of arbitrary CoV[X1] 
linear interpolation between neighboured values of CoV[X1] can be performed. In case of 
iid elements X1 ~ ND the approximation can only be used for small systems and low 
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CoV[X1] (see Fig. 3.23). Even than the modelled statistics show remarkable bias. In all 
cases the results are restricted to the analysed domain in respect to CoV[X1], DM and M.  

 

Fig. 3.23: Relative bias between calculated and simulated data of characteristics E[XM] = μM, σM, 
CoV[XM], XM,05 and XM,95 of serial systems composed of iid elements X1 ~ ND: 
calculation is based on rank statistic relationships as given in equ. (3.115) and (3.116) 
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Fig. 3.24: Relative bias between calculated and simulated data of characteristics E[XM] = μM, σM, 
CoV[XM], XM,05 and XM,95 of serial systems composed of iid elements X1 ~ 2pLND: 
calculation is based on rank statistic relationships as given in equ. (3.115) and (3.116) 
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Approximations for the Distribution of Minima (and Maxima) of finite sized Serial 
Systems following EVT Type I 

The simplest way to approximate the expected value of minima and maxima of finite 
sized systems is given by the so called characteristic smallest and largest values. These 
are defined by quantiles xM,p and xN,p of X1 corresponding to p = 1 / M and p = 1 – 1 / N, 
for minima and maxima, respectively (BURY, 1975). Thus xM,p and xN,p, respectively, 
decreases and increases with increasing sample size M and N. Thereby it is assumed that 
the distribution model of the system is equal or at least can be well approximated by the 
parent distribution model. Nevertheless, to give approximations for the whole distribution 
of minima and maxima more sophisticated methods are required. In case of very large 
and nearly infinite sized systems asymptotic distributions are provided by EVT (see 
section 2.6.2). For systems composed of a finite and in particular in case of a small 
number of elements some approximations in reference to BURY (1975) are presented and 
compared to the approximations discussed so far.  

In case of X1 ~ ND (μ, σ2) and CDF FX(x) BURY (1975) delivers an approximative method 
for the calculation of distribution parameters for the extreme value Xmax = XN following 
type I EVD with XN ~ GD (μN, σ2

N) in case of finite and small sample sizes N, with 
abreviation GD for the GUMBEL distribution. The calculations are based on the hazard 
function h(x)  
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X
−

=
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.  (3.118)

In general, a hazard function is defined as the proportion of items which fail in a certain 
time intervall (x, x + dx) divided by the proportion of survivors up to time x (BURY, 
1975).  

The parameters μN and σN are approximated by μN,app and σN,app, see  
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,
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=σ ,  (3.119)

with xp,N as the most likely or characteristic largest value equal to mode [XN], 
respectively, with pN = 1 – 1 / N. Thus the approximative distribution of maxima is given 
by XN ~ GD (μN,app, σ2

N,app). The expectation and variance can be calculated by means of 
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equ. (2.138) and (2.139) given in section 2.6.2. Nevertheless, this approximative method 
is limited to maxima.  

Another approximation which can be applied for minima and maxima is provided by 
FREUDENTHAL AND GUMBEL (1956). They showed that in case of X1 ~ ND (μ, σ2) and 
CDF given as FX(x) the appoximative CDFs of minima XM and maxima XN of X1 are 
given as  
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with μ and σ2 according the parent distribution of X1 and the parameters A and B (with 
M = N) given as  
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The approximative method for minima is further called MINapprox,ND.  

A possible approximation for extremes of X ~ 2pLND (μ, σ2), with μ and σ2 according the 
normal distribution of Y1 = ln(X1), is given by the WEIBULL distribution for extremes (see 
section 2.6.2). Thereby the distribution parameters are adapted to (BURY, 1975)  
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β 1 ,  (3.122)

with parameters A and B according equ. (3.121). The approximative method for minima 
is further called MINapprox,2pLND. Thereby the calculation of E[XM], Var[XM] and xp,M 
follows the equations given in section 2.4.3 concerning 2pWD. Thus system size M is 
already taken into account by the parameters A and B according equ. (3.121).  

Fig. 3.25 and Fig. 3.26 compare simulated data to fitted or approximative models of serial 
systems composed of iid elements X1 ~ 2pLND. Thereby FIT2pLND stands for a fitted 
2pLND by means of the empirical statistics mean and standard deviation taken directly 
from the simulated data and for every system size M. The same procedure was applied by 
fitting GD to simulated data (FITGD). Hereby the distribution parameters were estimated 
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by means of equ. (2.142). For the approximative calculation of statistics for these 
simulated systems which base solely on the stochastic information of the elements, two 
methods were applied: The first method conforms to the approximation MINapprox,2pLND 
presented previously. The second approximation is made by applying the models for 
parameters of the approximative 2pLND given in Tab. 3.2. Interestingly, even for 
systems of up to 1,000 serial elements and CoV[X1] ≤ 100% it can be found that 2pLND 
gives better fit to the simulated data than GD, although GD is the limiting distribution for 
the simulated system strength. Nevertheless, the differences between the fits of 2pLND 
and GD become smaller with increasing CoV[X1] and M. This comparison already 
reflects that the approximative 2pLND gives good results if the parameters can be 
estimated accurately.  

 

Fig. 3.25: Comparison of fitted and approximative models for minima of serial systems composed 
of iid X1 ~ 2pLND elements in dependency of CoV[X1] and system size M ≤ 1,000  

Analysing the results of the two approximative models CALC2pLND and MINapprox,2pLND 
shows that in case of M Ø 1 the approximation CALC2pLND fits significantly better than 
MINapprox,2pLND and that CALC2pLND delivers results comparable to FIT2pLND. This 
confirms that parameters of FIT2pLND are well estimated by means of models given in  
Tab. 3.2. Nevertheless, power in estimation gets worse in case of very large CoV[X1], e.g. 
CoV[X1] = 100%. In contrast, the approximations based on MINapprox,2pLND gets better 
with increasing M and delivers always conservative estimates of analysed quantiles in 
case of CoV[X1] ≤ 50%. The approximation is also stable by delivering comparable 
deviations from simulated data, irrespective of CoV[X1]. The approximation CALC2pLND 
shows an increasing bias with increasing CoV[X1], in particular in estimating the 5%-
quantile. Nevertheless, CALC2pLND gives better results for 95%-quantiles than 
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MINapprox,2pLND, irrespective of CoV[X1] and within the whole analysed range of M, and 
also better results for medians in case of CoV[X1] ≥ 50%. In particular if estimates of 
characteristics of small systems with M ≤ 50 are required CALC2pLND enables more 
accurate and more stable estimations already at M > 1 than MINapprox,2pLND as 
CoV[X1] ≤ 50%. At CoV[X1] = 100% a remarkable drift in the 5%-quantile estimated by 
CALC2pLND can be observed. Focusing on a practical range of CoV[X1] = (5 ÷ 50)% and 
M ≤ 50 the approximative model CALC2pLND in comparison to MINapprox,2pLND is the better 
choice even if extreme quantile estimates have to be derived on estimated distribution 
parameters and thus not directly calculated by means of equ. (3.105) and (3.109).  

 

Fig. 3.26: Comparison of fitted and approximative models for minima of serial systems composed 
of iid X1 ~ 2pLND elements in dependency of CoV[X1] and system size M ≤ 50  

To conclude, in this section 3.3.2 serial systems composed of iid X1 ~ ND and 2pLND 
were analysed. In particular the influences of CoV[X1] and system size M were examined 
by means of simulated data with 10,000 replicates of each system. Thereby focus was on 
systems composed of X1 ~ 2pLND. The reason for this is that for strength data or in 
general for data based on multiplicative processes distribution 2pLND automatically 
follows from central limit theorem. As it is not possible to define an explicit formula for 
calculating minima of serial systems composed of iid elements X1 ~ 2pLND 
approximative models were defined, analysed and compared with simulated data. This 
was motivated by the observation that especially in systems of size M < 100 or even 
M < 1,000 distribution characteristics derived from the asymptotic distribution model GD 
according the EVT delivers inaccurate or not representative values. Based on the 
examinations made on serial systems composed of iid elements it can be concluded that: 



Serial and parallel System Actions and related Effects with Focus on Strength  

158 

 characteristics of XM of serial systems composed of iid elements X1 ~ 2pLND and 
finite system size M < 1,000 can be approximated by a 2pLND; this delivers 
better results than GD, even in case of large systems and even if best fitted 
distribution parameters for GD are used;  

 equ. (3.102) shows to be able to perfectly describe the change in characteristics 
with change of M in serial systems composed of iid elements X1 ~ 2pLND; this 
was proved for analysed quantiles in the range of 2.5% to 97.5% and for the 
characteristics mean, standard deviation, variance and CoV of XM; nevertheless 
adequate parameter estimation is required;  

 the approximative method worked out for 2pLND and with distribution 
parameters given in Tab. 3.2 shows to work well and enables simple calculation 
of distribution parameters of minimas dependent only on CoV[X1] and M;  

 within the range of M ≤ 50 and CoV[X1] ≤ 50% this approximative method 
delivers even more accurate results than the approximative method proposed by 
FREUDENTHAL AND GUMBEL (1956), even if the quantile statistics are computed 
from transformed distribution parameters and not directly by the models worked 
out for quantile estimation as given in equ. (3.105) and (3.109). 

3.3.3 Estimation of Statistical Distribution Parameters in Case of Serial 
Correlated 2pLND Variables 

Within this section serial systems composed of equally correlated elements X1 ~ 2pLND 
are analysed. The analysis is based on data from Monte-Carlo simulations performed in R 

(2009). Serial systems of M = 1, 2, …, 100, each with 10,000 independent runs, were 
generated by means of transformation of lognormal to normal domain and application of 
a multivariate normal approach. As in the previous sections E[X1] was kept constant and 
equal to E[X1] = 30 whereas CoV[X1] varied with CoV[X1] = (10, 30, 50)%. Calculation 
of lognormal distribution parameters from E[X1] Ø μND and Var[X1] = (CoV[X1] · E[X1])2 
Ø σ2

ND, was done according equ. (2.70). Values of the expectation vector of the 
multivariate normal distribution with length M were put equal to μX, that of the variance-
covariance matrix (dimension M × M) equal to σ2

ND, if i = j, and equal to σ2
ND · ρND, if 

i ≠ j. The correlation coefficient ρND was recalculated from equ. (2.89), see  

( )[ ]
2

2 1expln

ND

XNDX
ND σ

ρσρρ −+⋅
= , 0.00 ≤ ρX ≤ 1.00.  (3.123)
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It has to be noted that the correlation was well achieved on average but showed a 
remarkable variation from system to system. The statistics gained from simulations, as 
the statistics of the minimum of each simulated serial system of size M, are visualised in 
Fig. 3.27.  

The influence of correlation on the magnitude of serial system effects is remarkable and 
increasing with increasing correlation. In the limiting case ρX Ø 1.00 the ratio XM,ξ / X1,ξ 
becomes by default 1.00, irrespective of M.  

 

Fig. 3.27: Influence of correlation in serial systems composed of identical distributed elements 
X1 ~ 2pLND: relative influence on E[XM] (left-above); S[XM] (middle-above); CoV[XM] 
(right-above); q05,M (left-below); q50,M (middle-below); q95,M (right-below) by variation 
of CoV[X1] = (10, 30, 50)%  

Due to good experiences made by fitting 2pLND to statistics of serial systems composed 
of X1 ~ 2pLND according equ. (3.102) and estimation of parameters αp and βp according 
equ. (3.105) and (3.109), respectively, it was verified that in principal the same formulas 
can also be used for serial systems composed of correlated elements. By means of 
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equ. (3.102) a perfect fit to the ratio XM,ξ / X1,ξ between characteristics of simulated data 
was possible. Nevertheless, to account for the influence of correlation on parameters αξ 
and βξ an adaptation was necessary. Thereby it was observed that quantiles of simulated 
data were more stable than characteristics like standard deviation or coefficient of 
variation. Only the ratio of Xmean,M / Xmean,1 could be represented well by means of a 
simple formula.  

In general, the combination of equ. (2.75) and (2.80) enables the calculation of 
2pLND (μND, σ2

ND) distribution parameters based on at least two quantiles, including the 
median. Thus the distribution parameters are given by 

( )50ln xND =μ , 
( ) ( )

( )p

xxp
ND 1

50lnln
−

−
=

Φ
σ , with 50xxp ≠ , 0.00 < p < 1.00,  (3.124)

with x50 as median, xp ≠ x50 as an arbitrary quantile and Ф–1(p) as operator of the inverse 
SND.  

 

Fig. 3.28: Parameters αp,ρ / αp,ρ=0 vs. ρX (left) and βp,ρ / βp,ρ=0 vs. ρX (right): simulated serial systems 
of elements X1 ~ 2pLND, with CoV[X1] = (10, 20, 30)%, p = (25, 50, 75)% and 
M = 1, 2, … 100  

Fig. 3.28 shows the dependency of parameter ratios αp,ρ / αp,ρ=0 and βp,ρ / βp,ρ=0 on the 
correlation coefficient, exemplarily for p = (25, 50 75)% and CoV[X1] = (10, 30, 50)%. 
From the data points it can be concluded that the ratio αp,ρ / αp,ρ=0 appears to be by trend 
dependent on p and CoV[X1]. The ratio βp,ρ / βp,ρ=0 shows also to be influenced by 
CoV[X1] and p but no clear tendency is given. Due to the fact that in principle good 
estimates for quantiles near the median and equal to the median are at least required for 
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estimating the distribution parameters μM,ND and σM,ND a function of αp,ρ / αp,ρ=0 was found 
by means of LSM, see  

( ) XX
p

p ρρ
α
α

ρ

ρ −≈−=
=

11
533.0963.0

0,

, ,  (3.125)

with R2 ≈ 1.00 and ei ~ (0.0004; 0.00532). Note: The statistics of residuum ei and of R2 
are solely based on four values averaged for fixed ρX but varying CoV[X1]. The deviation 
of E[ei] from zero comes from rounding effects.  

For simplification and due to the lack of a clear trend in βp,ρ / βp,ρ=0 vs. ρX a simplified 
relationship of βp,ρ / βp,ρ=0 = 1.00 is used. Now the distribution parameter μND,M,ρ can be 
easily calculated. For the parameter σM,ND,ρ it is recommended to average two quantile 
estimates symmetrical to the median, e.g. p = 45% and 55% according  
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xxxx
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Fig. 3.29: Residue ei = (qp,M,obs / qp,1,obs) – (qp,M,mod / qp,1,mod) vs. qp,mod,M / qp,mod,1: comparison 
between calculations based on simplified models and simulated serial systems of 
elements X1 ~ 2pLND, with CoV[X1] = 10% (left); 30% (middle); 50% (right), 
p = (5, 50, 95)% and M = 1, 2, …, 100  

By means of the equations derived the distribution parameters were calculated solely with 
the information of E[X1], CoV[X1], M, ρX and 2pLND as RSDM of X1. To verify the 
accuracy of the model the 5%-, 50%- and 95%-quantiles were calculated by varying M 
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and ρX and on the assumption of 2pLND as RSDM even for XM. The residue-plots are 
shown in Fig. 3.29. The results are satisfying for CoV[X1] not too large even for the 
extreme quantiles q05 and q95. Nevertheless, the deviation between simulated and 
calculated quantiles increases with increasing CoV[X1] and ρX and show at least up to 9% 
under- and up to 5% overestimation of the 5%- and 95%-quantiles, respectively, based on 
CoV[X1] = 50% and M = 100. It can be concluded that these deviations are only 
remarkable at high variability and at a high number of serial arranged elements. 
Therefore, the application range of above formulas is at least restricted by the 
investigated domain of CoV[X1] = (0 ÷ 50)%, ρX = 0 ÷ 0.75 and M = 1 ÷ 100.  

As noted above a simple and well representing function of the description of the ratio 
Xmean,M / Xmean,1 vs. ρX could be defined for the parameter ratios αmean,ρ / αmean,ρ=0 and 
βmean,ρ / βmean,ρ=0, see  

X
mean

mean ρ
α
α

ρ

ρ −=
=

1
0,

, , with R2 ≈ 1.00 and ei ~ (0; 0.00472),  (3.127)

and 

00.1
0,

, =
=ρ

ρ

β
β

mean

mean , with R2 ≈ ε and ei ~ (0; 0.01522).  (3.128)

Note: The statistics of residue ei and R2 in equ. (3.127) and (3.128) above are based only 
on four and three values, respectively, averaged for fixed ρX but varying CoV[X1]. The 
deviation of E[ei] from zero comes from rounding effects. 

Based on examinations above with simulated data of serial systems composed of identical 
distributed but correlated elements X1 ~ 2pLND following findings are given: 

 all simulations were restricted to positive correlation within the range of 
0.00 ≤ ρX ≤ 1.00;  

 the Monte-Carlo simulations performed in R (2009) were proved to work 
satisfactorily on average but correlation in individual systems showed remarkable 
variation; this is in fact a logical stochastic outcome; nevertheless as discussed in 
LAI ET AL. (1999) robustness of sample correlation in skewed distributions 
requires an unexpected high quantity of realisations to prevent bias, in bivariate 
2pLND roughly three to four million; in fact the herein simulated data show only 
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10,000 replicants of each system, but also for multivariate 2pLND with M up to 
100 which increases the robustness also;  

 the characteristics calculated from simulated data also show that the influence on 
system effects in case of increasing correlation is non-linear, in particular convex 
on mean, standard deviation and on all analysed quantiles; consequently, serial 
systems composed of only minor correlated elements can be treated as being 
uncorrelated whereas systems composed of elements with ρX ≥ 0.50 are 
remarkable influenced by correlation showing significant reduced system effects; 
this is in particular true for low quantiles (e.g. q05,M) but not so distinct in higher 
quantiles (e.g. q95,M); interestingly, the influence of correlation on CoV[XM] is 
inverse, being more pronounced at low values of ρX near zero (see Fig. 3.27); 

 as already shown for uncorrelated systems the formula presented in equ. (3.102) 
was again verified to be able to perfectly describe the change in all analysed 
statistics of correlated serial systems composed of elements X1 ~ 2pLND, as 
parameters αξ and βξ can be accurately determined; consequently, models for 
parameters αp,ρ, βp,ρ, αmean,ρ and βmean,ρ were defined;  

 by means of an additionally approach presented for the determination of 
lognormal distribution parameters μND and σND based on at least two quantile 
values, the applicability of models for parameters αp,ρ and βp,ρ was verified by 
comparing simulated data with calculated quantiles q05,M, q50,M and q95,M, derived 
with the information on E[X1], CoV[X1], M, ρX and 2pLND as RSDM of X1;  

 during verification it was shown that differences between calculated and 
simulated data increase with CoV[X1] and M but deliver satisfactorily results for 
serial systems not too large and moderate CoV[X1]; due to that models are 
restricted to the analysed scope and range of CoV[X1] = (0 ÷ 50)%, ρX = 0 ÷0.75 
and M = 1 ÷ 100. 

3.4 Stochastic Effects in Parallel Acting Systems  

This section is dedicated to examinations on stochastic effects in parallel acting systems. 
At first this section starts with a general discussion and elaboration of basic aspects. 
Secondly, system effects of parallel systems composed of linear-elastic and iid elements 
are analysed on four case studies. The systems are virtually generated by means of 
Monte-Carlo simulations.  
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In the following types of systems and differences between parallel and serial action are 
discussed briefly:  

 ideal parallel acting systems provide full redundancy (“cold reserve”); such 
systems are designed according their weakest elements and consequently as 
perfect serial system of (iid) elements with the background knowledge that N – 1 
elements are able to carry at least full load even after failure of the first element; 
this system type is not treated further in this chapter; principal findings are 
already given in section 3.3;  

 parallel systems which are characterised by load redistribution and intermediate 
steady states in cumulative loading exhibit initially the same mean E-modulus as 
the elements but enable higher extensions or deflections with progressing system 
failure and thus provide the chance of load transfer to stronger system 
components activated by the exceedance of limits in extension or deflection; such 
“load sharing systems” are treated in more detail within this chapter;  

 due to activated homogenisation effects, spread in characteristics is significantly 
reduced; the expectation of system strength can increase or decrease with 
increasing quantity of elements in the system, but the amount of decrease will 
reach that of serial systems only in limiting cases; therefore parallel systems 
exhibit in general a significant increase in reliability if compared to serial systems 
of the same size.  

Further aspects were already discussed in section 3.1. 

According to DANIELS (1945) parallel acting systems enable a certain amount of load 
redistribution after partial failure of elements. If only interested in the system load 
bearing capacity at first failure it is again a minimum value which is of interest. Of course 
if the elements in the system are constraint to elongate equally or to be equally loaded 
(e.g. system under tension stress in loading direction and parallel deforming infinite stiff 
load distribution bars providing load transfer on equally elongated elements) the 
minimum is not defined as the minimum strength, but by the minimum ultimate strain 
multiplied with the mean E-modulus of all N elements. Assuming perfect linear-elastic 
stress-strain relationship according HOOK’s law the system strength or stress at first 
element failure is given as  
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It is obvious that in parallel systems not only the interaction between the elements but in 
particular the relationship between strength and stiffness (stress-strain relationship) as 
well as the material behaviour (linear vs. non-linear; elastic vs. plastic; etc.) becomes 
decisive for the description of the system behaviour and in particular for computation of 
the mechanical potential.  

These parallel acting systems are strain-constraint in contrast to being pure strength-
constraint in case of serial acting systems. Consequently, in perfect brittle systems or 
systems under high dynamic loading were any possible load redistribution between 
surviving elements is prevented, the first partial system failure initiate probably a total 
system collaps. Therefore, system strength at first element failure serves as (conservative) 
estimate of finite but systems not too small.  

 

Fig. 3.30: Case studies of theoretical stress-strain relationships in case of perfect linear-elastic 
material behaviour with brittle failure: ideal cases with deterministic ultimate strain 
εf,1 = εf (case I), element strength f1 = f (case II), E-modulus E1 = E (case III) and a 
general relationship according HOOK’s law (case IV) 

As already discussed in section 3.2.4 parallel systems composed of only a few elements 
can act like serial systems. This is due to the simple fact that either a lack of potential 
surviving elements to carry the extra load is missing or that CoV[f1] is too small which 
makes load redistribution on survivors nearly impossible due to lack of extra load carring 
capacity. 

Following equ. (3.129) it is obvious that the system bearing capacity is in general not 
defined by the average strength of the elements. Parallel system stress / strength is given 
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by the average of stresses in all surviving elements at given strain, in particular at the 
minimum strain defined by the ultimate strain of the elements which currently fail.  

Over all the mechanical behaviour and stochastic nature of parallel acting systems is more 
complex than that of serial acting systems. This is in respect to stress-strain relationships, 
material behaviour, dynamics, correlation and the provided interaction between the 
elements (e.g. direct or indirect (matrix) stress transfer; rigid or flexible composite 
action). There are some more possibilities in which systems composed of parallel 
elements respond similar to serial systems. In contrast, serially arranged elements always 
act serially. Therefore additional investigations comparable to the literature are made on 
systems composed of elements with linear-elastic stress-strain relationship and perfect 
brittle failure. Hereby no softening or hardening in elements before or after fracturing or 
partial damage is assumed. Nevertheless, the ability to redistribute stresses after partial 
fracturing is allowed. These investigations are made on four case studies, see Fig. 3.30. 
As in general expectable the elements in the parallel system are treated iid, but the 
correlation between characteristics (e.g. between strength and E-modulus) within each 
element is considered.  

Case I (Fig. 3.30, left) is defined by a deterministic ultimate strain. Given σmax,1 = f1 
HOOK’s law is reduced to f1 = E1 ÿ εf, with εf,1 = εf = constant. Thus the element and 
system strength depends only on E-modulus and vice versa. Case II (Fig. 3.30, left-
middle) shows constant element strength f1 = f. Thus E-modulus and ultimate strain εf,1 
depend on each other and are given by E1 = f / εf,1 and εf,1 = f / E1, with scalar f. In case III 
(Fig. 3.30, middle-right) a constant E-modulus E1 = E for all elements composing as 
parallel acting system is assumed. This is in line with the assumptions made by DANIELS 

(1945), see section 3.2.3. The element strength f1 depends only on the ultimate strain εf,1 
and is given by f1 = E ÿ εf,1, with E as scalar. Case IV (Fig. 3.30, right) defines the element 
strength according HOOK’s law with stochastic quantities E1 and εf,1. Therefore the 
element strength and further the system strength depends strongly on the correlation 
structure between E-modulus E1 and ultimate strain εf,1 as well as on the variability in 
both characteristics, e.g. CoV[E1] and CoV[εf,1].   

Within the following sections all four cases are analysed in more detail. Examinations in 
respect to GLS (and ELLS) and calculation of characteristics at first and final system 
failure are made. Whereas case I, II and III are only analysed by assuming GLS, in 
case IV GLS and ELLS are considered. If structures are composed of parallel arranged 
and rigid or flexible connected elements independency between the elements is assumed. 
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As already mentioned by GOLLWITZER (1986) even in case of iid parallel interacting and 
independently stressed elements a certain dependency structure occurs in system 
behaviour. Nevertheless, all elements are further treated as being iid with f1; E1 ~ 2pLND. 
The focus on 2pLND is due to the lack of analysis in regard to this type of distribution 
model and due to the wide applicability of 2pLND in particular for models as discussed 
later in chapter 5. This becomes obvious by analysing equ. (3.129). The system bearing 
capacity of successive failures and the ultimate system strength are defined by the mean 
E-modulus (average E-modulus of surviving elements defined by an ultimate strain 
higher or equal that of already failed elements) and the minimum ultimate strain at a 
given system status. Consequently, ultimate strain and E-modulus are in a certain 
dependency due to ranking of both characteristics.  

3.4.1 Analysis concerning Case I: εf,1 = constant 

In case I a deterministic ultimate strain εf,1 = εf = constant for all N elements in a parallel 
acting system is given (see Fig. 3.31 and Fig. 3.32).  

Due to the fact that system failure is a function of the ultimate strain the system fails 
immediately with reaching εf. Therefore no load redistribution is provided; all elements 
reach their ultimate strain at the same time. In that ideal case the maximum (ultimate) 
system strength is given by 
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Fig. 3.31: Case I, εf,1 = deterministic: expected stress-strain relationship of parallel systems (bold, 
red graph) exemplarily composed of four elements (thin graphs) assuming in principal 
an element-wise failure scenario (from left to right) 
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Fig. 3.32: Case I, εf,1 = deterministic: expected load-elongation relationship of parallel systems 
(bold, blue graph) exemplarily composed of four elements (thin graphs; including also 
stress-strain relationship) assuming in principal an element-wise failure scenario (from 
left to right) 

As there is no possibility to redistribute stresses GLS or LLS can not occur. The 
expectation E[fN], variance Var[fN] and CoV[fN] in case of iid elements are given by 
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According the central limit theorem and irrespective of the parent distribution of f1 a fast 
convergence of fN to ND with increasing N is given, see Fig. 3.33 as well as section 2.6.1. 
Thus the distribution of system strength and E-modulus is the same as in case of perfect 
plastic material behaviour as discussed in section 3.2.2. Nevertheless, the system failure 
behaviour is different. In perfect plastic material large deformation capacity useable for 
monitoring of structural elements is given. These deformations offer the possibility to 
react before the structure gets out of control. In contrast, deterministic ultimate strain in 
parallel systems composed of perfect linear-elastic brittle elements leads to sudden and 
perfect brittle system failure without any warning in advance. Nevertheless, the parallel 
system in case I exhibit a remarkable increase in reliability due to a sudden decrease of 
spread in strength and E-modulus forced by the common action of all elements in the 
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parallel acting system. This is expressed by a significant homogenisation effect which is 
often treated as averaging model, in case of iid elements given as  

[ ] [ ]1fEfE N = , [ ] [ ]
N

fCoVfCoV N
1= . (3.132)

 

Fig. 3.33: Converging process of f1 ~ 2pLND to fN ~ ND in case of parallel systems composed of 
iid elements with deterministic ultimate strain εf: simulations with sets of n = 100; 
variation of system size N and CoV[f1]: (above) probability paper plots of ND; (below) 
plots of absolute residuals between simulated data and fitted ND 

Fig. 3.34 shows the relative deviations between calculated and simulated 5%- and 95%-
quantiles of parallel systems composed of iid-elements f1 ~ 2pLND. The simulations were 
performed in R (2009) with (arbitrary choosen) E[f1] = 30 and CoV[f1] = (10, 30, 50)%. 
The ultimate and deterministic strain was fixed with εf = 0.003 and the expected E-
modulus taken with E[E1] = 10,000. The model calculations were made with E[fN] and 
CoV[fN] according equ. (3.132) and fN ~ ND or 2pLND. The plots in Fig. 3.34 show a 
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distinctive decrease of relative deviations with increasing N and decreasing CoV[f1] for 
both distribution models, and in general a smaller bias in case of 2pLND. The fast 
convergence to zero deviations follows from the distinctive reduction of CoV[fN]. 
Whereas in case of 2pLND deviations between calculated and simulated 95%-quantiles 
are larger than in 5%-quantiles vice versa is given in model ND. Consequently it is 
proposed to stick in principle to the parent distribution model of f1 also for calculation of 
e.g. quantiles of fN by means of expectation and variation according equ. (3.132).  

 

Fig. 3.34: Relative deviations between calculated and simulated 5%- and 95%-quantiles by 
varying CoV[f1] = (10, 30, 50)%, left, middle, right, respectively; values of qp,mod are 
calculated with ND or 2pLND, with E[fN] = E[f1] and CoV[fN] = CoV[f1] / ◊N  

To conclude, case I constitutes a very specific system behaviour were the first and 
ultimate system failure occurs at the same time. Thus the system characteristics are 
defined by the average of strength and E-modulus of all interacting elements. As load 
cannot be redistributed the system fails perfect brittle and immediately with the 
attainment of εf,1 = εf. Nevertheless, this system arrangement leads to remarkable system 
effects due to a maximum of homogenisation in CoV[fN] by leaving E[f1] = E[fN] 
unchanged.  

3.4.2 Analysis concerning Case II: f1 = constant 

In this ideal case a deterministic ultimate strength f1 = f = constant of all elements within a 
parallel system is assumed together with a random E-modulus E1 and random ultimate 
strain εf,1 (see Fig. 3.35 and Fig. 3.36). 
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Fig. 3.35: Case II, f1 = deterministic: expected stress-strain relationship of parallel systems (bold, 
red graph) exemplarily composed of four elements (thin graphs) assuming in principal 
an element-wise failure scenario (from left to right)  

 

Fig. 3.36: Case II, f1 = deterministic: expected load-elongation relationship of parallel systems 
(bold, blue graph) exemplarily composed of four elements (thin graphs; including also 
stress-strain relationship) assuming in principal an element-wise failure scenario (from 
left to right) 

The first partial failure is caused by the element with the lowest ultimate strain according 
the element with the highest E-modulus and given as  
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By ranking the elements in ascending order according their ultimate strain εf,i (or 
descending according Ei) so that εf,(1) ≤ εf,(2) ≤ … ≤ εf,(N) (E(1) ≥ E(2) ≥ … ≥ E(N)) the 
maximum system strength in case of GLS is defined by 
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with k = 1, 2, …, N as the amount of partial failures, (N – k + 1) as the amount of intact 
elements and E(k) as E-modulus associated with εf,(k).  

For the analysis of such systems Monte-Carlo simulations were performed in R (2009). 
Thereby the iid E-modulus followed E1 ~ 2pLND, with expectation E[E1] = 10,000. The 
strength of the elements f1 was taken as deterministic with E[f1] = f1 = 30. Consequently, 
the ultimate strain of elements εf,1 also follows a 2pLND, with ρ(E1, εf,1) = –1.00 and 
CoV[εf,1] = CoV[E1]. Each system of N = 1, 2, …, 100 elements was simulated 10,000 
times. The influence of variation was analysed with a CoV[E1] = (10, 20, …, 50)%. As 
output of the simulations the system strength / stress at first failure, fN,1, and the maximum 
system strength fN,max together with the corresponding E-moduli (EN,1 and EN | fN,max) and 
rank of Ei | fN,max were recorded. The output is further visualised and discussed as relative 
change of statistics in relationship to the corresponding input parameters of the elements. 

Fig. 3.37 (left) shows the relative change of mean system strength versus system size N 
under variation of CoV[E1]. Thereby a direct comparison between fN,1,mean and fN,max,mean, 
representing the mean system strength at first failure and the maximum system strength, 
respectively is provided. The mean system strength decreases nonlinearly with increasing 
N and CoV[E1]. This decrease is less pronounced in fN,max,mean. The decrease nearly 
diminishes in systems of N ≥ (20 ÷ 30) elements. The corresponding system size depends 
on CoV[E1] and decreases with increasing CoV[E1]. Systems of only a few elements 
show no distinctive difference between fN,max,mean and fN,1,mean. This is in particular obvious 
in systems composed of elements with low CoV[E1]. Of course, in systems with small N 
and low CoV[E1] can not provide enough reserve capacity required for load redistribution 
in conjunction with further increase in load. 

Fig. 3.37 (right) gives absolute values of CoV[fN,1] and CoV[fN,max]. The plotting of 
absolute values was necessary to prevent dividing through zero, with CoV[f1] = 0. 
Whereas CoV[fN,1] increases up to a certain level and behaves nearly constant after that, 
CoV[fN,max] shows a much lower increase followed by a sharp decrease with increasing N. 
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The system size corresponding to the point were CoV[fN,1] remains nearly constant 
increases with CoV[E1]. The system size at the peak of CoV[fN,max] decreases with 
increasing CoV[E1]. This is because the variability in fN,1, expressed by CoV[fN,1], 
increases at first with increasing N because it is defined by max[Ei] or min[εf,i] of the 
system elements. Thereby fN,1 becomes more and more correlated with εf,N,1. In contrast, 
CoV[fN,max] in small systems behaves like CoV[fN,1] but starts to decrease significantly 
with the possibility of load redistribution in combination with further stress increase. 
Hereby the rate of decrease in CoV[fN,max] nearly reaches that of the averaging model, see 
equ. (3.132).  

 

Fig. 3.37: Relative mean system strength vs. N (left) and relative CoV[fN] vs. N (right) at first 
failure and at maximum system strength in dependency of CoV[E1] 

Fig. 3.38 shows the relative 5%- and 95%-quantiles of system strengths fN,1 and fN,max in 
dependency of N and CoV[E1]. Thereby the observable decrease is even higher in lower 
quantiles of system strength.  

 

Fig. 3.38: Relative 5%- (left) and relative 95%-quantiles (right) of system strength at first failure 
and at maximum system strength in dependency of CoV[E1] 
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The relative change in mean and CoV of the E-modulus of systems at first failure and at 
the point of maximum system strength is shown in Fig. 3.39. By definition EN,1,mean and 
CoV[EN,1] follow the averaging model as given in equ. (3.132). As a consequence of GLS 
the mean system E-modulus EN,max,mean is defined as EN,max,mean ≤ (EN,1,mean = E1,mean). As 
expected the differences between EN,max,mean and EN,1,mean increase with increasing 
CoV[E1] up to a certain system size which also increases with increasing CoV[E1]. As 
during GLS more and more stiff elements fail and the quantity of surviving elements for 
calculation of the system E-modulus decreases, the relative decrease in CoV[EN,max] 
decreases with increasing CoV[E1].  

 

Fig. 3.39: Relative mean (left) and relative CoV (right) of E-modulus at first failure and at 
maximum system strength in dependency of CoV[E1] 

 

Fig. 3.40: Relative rank of Ei at given N and at maximum of system strength vs. N and in 
dependency of CoV[E1] 

Fig. 3.40 gives the ratio of the mean rank[Ei], at given N and at the point of maximum 
system strength, and of system size N. (1 – rank[Ei]mean / N | N; fN,max) corresponds to the 
mean relative failure rate or to the share of elements which failed before reaching the 
maximum system strength fN,max. The failure rates are very small and increase with 



Serial and parallel System Actions and related Effects with Focus on Strength 

  175 

increasing CoV[E1], for example to about 14% at CoV[E1] = 50% and N = 100. 
Consequently, only a small amount of elements can fail before no further load increase is 
possible and the maximum system strength is reached.  

 

Fig. 3.41: Ratio between mean of maximum system strength and mean system stress at first failure 
(left) and between median of maximum system strength and median system stress at 
first failure (right) vs. N and in dependency of CoV[E1]  

 

Fig. 3.42: Ratio between 5%-quantile of maximum system strength and 5%-quantile of system 
stress at first failure (left) and between 95%-quantile of maximum system strength and 
95%-quantile of system stress at first failure (right) vs. N in dependency of CoV[E1] 

Fig. 3.41 and Fig. 3.42 visualize the extra reserves in parallel systems between the system 
capacity at first failure and the maximum system strength. Once again the ratios are 
higher the lower the analysed quantile-level. This is true in absolute and relative values.  

In a next step the system reliability is examined in more detail. For simplification, both, 
action (A) and resistance (R) were modelled by a 2pLND. 

In general, system reliability is equal to the probability of survival PS given as  
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fS PP −=1 ,  (3.135)

with Pf as the probability of failure.  

A measure for reliability in the special case of R, A ~ ND is given by the reliability index 
β which is simply defined in relationship to Pf, see 

( )βΦ −=fP ,  (3.136)

with Φ(.) as the CDF operator of the SND.  

Given a limiting function  

ARg −= ,  (3.137)

with the events “failure” and “survival” at g ≤ 0 and g > 0, respectively, and Pf = P(g ≤ 0) 
and R, A ~ ND(μ, σ2) the reliability index β can be simply calculated as 

g

g

σ
μ

β = , with g ~ ND(μR – μA, σ2
R + σ2

A).  (3.138)

In case of R, A ~ 2pLND the reliability index β can be in principle equally derived by 
means of expectation and variance of the logarithmised variables.  

The advantage in analysing β or PS instead of characteristics like mean or CoV is because 
these values contain information of the whole distribution.  

Before the calculation procedure for β can be applied it was verified that the assumption 
that fN,1, fN,max are iid lognormally distributed can be sufficiently secured. This verification 
was successfully done via qualitative judgement by means of qq-plots.  

Fig. 3.43 (left) gives the ratio βN / β1 vs. N and analysis the resistance of systems at first 
failure (fN,1) and at the point of maximum system strength capacity (fN,max). Thereby β at 
N = 1 was fixed at 4.2 which corresponds to a probability of failure Pf = 1.33 · 10–5. A 
distinctive decrease in reliability is visible meaning that by equal action the reliability of 
the system decreases with increasing N. For the design of systems at given action the 
required mean system strength (fN,1,mean and fN,max,mean) at given β, CoV[E1] and Var[fN,1] or 
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Var[fN,max] to guarantee a constant reliability index of β = 4.2 was calculated. The results 
are shown in Fig. 3.43 (right). Compared to Fig. 3.37 the decrease of the useable 
percentage of fN,1,mean for keeping β constant is even higher. This is due to the fact that 
together with the mean also the variability of system strength decreases. Due to the 
decrease in CoV[fN] the probability mass gets closer to the action. Consequently an 
additional decrease in resistance is given if not corrected properly.  

 

Fig. 3.43: Relative safety index βN vs. N (left) and required ratio between mean maximum system 
strength and mean strength of elements for constant safety index of β = 4.2 vs. N (right) 
in dependency of CoV[E1] 

After the examination of relative changes in important statistics of the system strength 
and E-modulus it is now the aim to define and verify a model for at least the computation 
of system strength and E-modulus at the first failure. As already previously mentioned the 
system E-modulus EN,1 follows the averaging model given in equ. (3.132). In respect to 
modelling of system strength fN,1 the right hand side of equ. (3.133) can be split into two 
parts: The left part corresponds to the mean E-modulus of all elements in the system. This 
mean value follows the averaging model above mentioned. The right part represents the 
minimum of the ultimate strain of all elements in the system. As the ultimate strain also 
follows a 2pLND (see equ. (2.85)) it is possible to make use of the model defined in 
section 3.3.2, equ. (3.102) and Tab. 3.2. Thereby the distribution of min[εf,i] can be well 
approximated by a 2pLND. Having now estimates for min[εf,i] ~ 2pLND and 
EN,1,mean ~ 2pLND the distribution parameters of fN,1 ~ 2pLND can be simply calculated 
by means of equ. (2.91). Thereby the correlation ρ(EN,1, εf,N,1) has to be considered. As 
mentioned earlier the correlation at N = 1 is by default ρ(E1, εf,1) = –1.00. Due to the fact 
that EN,1 equals the mean value of all Ei | N and εf,N,1 the minimum of all εf,i | N the 
correlation fulfills the inequality |ρ(EN,1, εf,N,1)| ≤ |ρ(E1, εf,1)|. This circumstance is 
illustrated in Fig. 3.44 (left). Thereby the transformation of the observed correlation 
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coefficient from simulations to normal domain is considered by use of reformulated 
equ. (2.89). The relationship shows a nonlinear decrease of the absolute correlation which 
shows also a dependency on CoV[E1]. This nonlinear decrease was found to be roughly 
explainable by a simple logarithmic model given as  

( ) ( ) ( ) 00.1ln, ,1,,1, −⋅= NkE ENfN ερερ ,  (3.139)

with kρ(E, ε) as free parameter. This parameter was found to decrease approximately 
linearly with CoV[E1] and can thus estimated by (see also Fig. 3.44, right)  

( ) [ ] 1766.01701.0 1, +⋅−= ECoVk E ερ .  (3.140)

The results of estimated ρ(EN,1, εf,N,1) fitted to observed values of ρ(EN,1, εf,N,1) are already 
given in Fig. 3.44 (left). These estimates appear sufficiently accurate for low CoV[E1] 
and moderate systems. As the constraint lim N Ø ∞ ρ(EN,1, εf,N,1) Ø 0.00 is not fulfilled by 
equ. (3.139) in combination with (3.140) the formula may not be applied to systems with 
N > 100 and CoV[E1] > 50%. 

 

Fig. 3.44: Correlation between E-modulus and extension vs. N and in dependency of E1 (thin 
graphs: simulation results; bold functions: model calculations) (left) and parameter kρ(E,ε) 
vs. CoV[E1] (right) 

The relative deviations between the model calculations and the simulation results are 
visualised in Fig. 3.45 (mean and standard deviation) and Fig. 3.46 (5%- and 95%-
quantiles). Over all absolute deviations increase with increasing CoV[E1] but are not 
higher than 6%, despite the estimation of standard deviation of very small systems. The 
congruence between simulated and model results is in particular given on the mean level. 
Deviations in extreme quantiles are a bit higher and influenced by the bias of the 
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estimated standard deviation. Over all the combination of simple models enables a 
relatively fast and accurate estimation of the strength potential and its distribution of the 
analysed type of parallel systems. 

 

Fig. 3.45: Relative bias between model and simulation results vs. N in respect to mean system 
strength (left) and standard deviation of system strength (right) and in dependency of E1 

 

Fig. 3.46: Relative bias between model and simulation results vs. N in respect to 5%- (left) and 
95%-quantile of system strength (right) and in dependency of E1 

To conclude, case II of a parallel system bounded in strength of the elements is again a 
very specific system type. The simulated results gained from GLS assumption show a 
remarkable decrease in mean strength potential with increasing N and CoV[E1] if system 
failure is defined with failure of the first element characterised by max[Ei | N] or 
min[εf,i | N]. If system strength is defined as the maximum system stress a moderate 
decrease down to some kind of constant mean strength potential can be observed. A 
conversely behaviour can be observed in CoV[fN,1] and CoV[fN,max]. Of course, the share 
of elements in the system which are expected to fail before the maximum system strength 
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is reached is low. Nevertheless, the gain in bearing potential between first failure and 
maximum is remarkable and about 95% in the 5%-quantile of systems with N = 100 and 
CoV[E1] = 50%. Despite this remarkable extra safety margin reliability index calculations 
show that in this type of system mean strength has to be reduced even more than expected 
from observed mean values to keep a certain safety level at increasing N. Additionally a 
simple model was presented which estimates system strength capacity as well as the 
distribution of system E-modulus at first system failure. Over all good congruence 
between model and simulation results could be observed.  

3.4.3 Analysis concerning Case III: E1 = constant 

Case III describes the ideal situation of a parallel acting system composed of elements 
with random strength f1 and random ultimate strain εf,1 but deterministic E-modulus 
E1 = E = constant assuming perfect linear-elastic material behaviour (see Fig. 3.47 and 
Fig. 3.48). These conditions form the basis of DANIELS (1945) analysis regarding fibre 
bundle models (FBMs) and his famous asymptotic result of bundle strength distribution 
in case of GLS (see section 3.2.3).  

As already proposed by DANIELS (1945) ranking the elements in respect to strength or 
ultimate strain in ascending order with (f(1), εf,(1)) ≤ (f(2), εf,(2)) ≤ … ≤ (f(N), εf,(N)) the system 
strength in case of GLS is given by 
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N
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N

ff ⋅+−⋅=⋅⋅+−⋅== 1max11max1max ,,max, ε , (3.141)

with k = 1, 2, …, N as amount of failed elements and (N – k + 1) as quantity of survivors.  

In line with previous section 3.4.2 Monte-Carlo simulations were performed in R (2009) 
to generate data for the analysis of the system behaviour in dependency of CoV[f1] and N 
and in respect to the definition of system strength, (1) as system stress at first failure, and 
(2) as maximum of all analysed system stresses per system. Following default settings are 
given: E[f1] = 30, E[E1] = E1 = E = 10,000, iid f1 ~ 2pLND, CoV[f1] = (10, 20, …, 50)%, 
N = 1, 2, …, 100 and n = 10,000 simulations per system configuration. The only variable 
parameter was CoV[f1]. This parameter also directly determines CoV[εf,1]. The analysis of 
the simulated data is presented by the following figures.  
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Fig. 3.47: Case III, E1 = deterministic: expected stress-strain relationship of parallel systems (bold, 
red graph) exemplarily composed of four elements (thin graphs) assuming in principal 
an element-wise failure scenario (from left to right) 

 

Fig. 3.48: Case III, E1 = deterministic: expected load-elongation relationship of parallel systems 
(bold, blue graph) exemplarily composed of four elements (thin graphs; including also 
stress-strain relationship) assuming in principal an element-wise failure scenario (from 
left to right) 

Fig. 3.49 (left) gives the relative change in fN,1,mean and fN,max,mean in dependency of N and 
CoV[f1]. In comparison to Fig. 3.37 in section 3.4.2 it can be seen that the relative 
reduction in fN,1,mean is in case III even a bit higher than in case II. Nevertheless, the 
amount of reduction in fN,max,mean is in both cases comparable. The relative influence of N 
and CoV[f1] on CoV[fN,1] and CoV[fN,max] is shown in Fig. 3.49 (rigth). Whereas 
CoV[fN,1] / CoV[f1] versus N appears to be nearly independent of CoV[f1], 
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CoV[fN,max] / CoV[f1] versus N shows firstly a higher relative decrease and secondly a 
dependency on CoV[f1] which seems to diminish with increasing CoV[f1]. The significant 
higher decrease in CoV[fN,max] if compared to CoV[fN,1] follows from successive 
reduction in respect to ultimate strain or strength ordered elements before the maximum 
system strength is reached. 

 

Fig. 3.49: Relative mean system strength vs. N (left) and relative CoV[fN] vs. N (right) at first 
failure and at maximum system strength in dependency of CoV[f1] 

 

Fig. 3.50: Relative 5%- (left) and relative 95%-quantiles (right) of system strength at first failure 
and at maximum system strength in dependency of CoV[f1] 

Fig. 3.50 contains graphs of the relative change of 5%- and 95%-quantiles of system 
strength at first failure and at the point of maximum system strength. Due to the 
significant decrease in CoV[fN,1] the decrease of fN,1,05 in case III is not as high as in 
case II. Nevertheless, as the relative change of fN,1,mean is comparable in both cases the 
reduction in fN,1,95 in case III is higher than in case II. Of course, these results are true if 
the system strength is defined by the system stress at first failure of the first element. By 
examination of the maximum system strength only a minor reduction and even an 
increase in fN,max,05 / f1,05 can be observed with increasing N and in particular with 
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increasing CoV[f1]. This is due to the fact that despite the remarkable decrease of 
fN,max,mean this type of system offers a relatively high potential of load redistribution 
followed by further potential of stress increase in the remaining system. This becomes in 
particular obvious in Fig. 3.51 which corresponds more or less to the mean failure rate 
relative to N at the point of fN,max. 

 

Fig. 3.51: Relative mean rank of εi at given N and at maximum system strength vs. N and in 
dependency of CoV[f1] 

Compared to Fig. 3.40 of system case II (section 3.4.2) the amount of elements which can 
be expected to fail before the maximum system strength is reached is more than doubled. 
This remarkable share of elements which are expected to fail without loss in system 
strength capacity leads on the one hand to an outstanding reduction in CoV[fN,max] and on 
the other hand also to a remarkable increase in εf,N,max. The possibility of higher 
extensions in systems compared to elements enables e.g. monitoring for warning before a 
system gets out of control. Thereby the system E-modulus behaves unaffected but the 
stiffness decreases linearly with each further element failure.  

Fig. 3.52 and Fig. 3.53 outline the additional system potential fN,max / f1 versus N and 
CoV[f1] on the mean, median and 5%- and 95%-quantile level, respectively, and in 
dependency of CoV[f1].  

As introduced in the previous section 3.4.2 again the safety index βN in relationship to 
β1 = 4.2 versus N and in dependency of CoV[f1] was calculated. Fig. 3.54 (left) shows the 
results for fN,1 and fN,max. Even if only fN,1 is considered a slight increase in reliability of 
parallel systems can be achieved if N is small and CoV[f1] is high. Furthermore, the 
decrease in reliability in case III is negligible if compared to that of case II and appears to 
be nearly independent of CoV[f1] if CoV[f1] ≥ 20%. Nevertheless, by analysing the 
reliability of parallel systems of type III by fN,max a remarkable increase can be observed 
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for CoV[f1] ≥ 30%. Consequently, if a certain reliability has to be fulfilled the mean 
resistance of fN,1 has to be decreased to about 70% of f1,mean in case of N = 100 and 
CoV[f1] ≥ 20%, whereas fN,max,mean can be increased, e.g. by a factor of about 1.65 in case 
of CoV[f1] = 50% and N ≥ 30.  

 

Fig. 3.52: Ratio between mean of maximum system strength and mean system stress at first failure 
(left) and between median of maximum system strength and median system stress at 
first failure (right) vs. N and in dependency of CoV[f1] 

 

Fig. 3.53: Ratio between 5%-quantile of maximum system strength and 5%-quantile of system 
stress at first failure (left) and between 95%-quantile of maximum system strength and 
95%-quantile of system stress at first failure (right) vs. N and in dependency of CoV[f1] 

At the end and in line with the analysis of case II a comparable model for computation of 
the distribution and parameters of fN,1 in dependency of N and CoV[f1] was formulated 
and verified. The model requirements are even a bit simplier because E1 is deterministic 
and so the distribution of EN,mean. Consequently, the same procedure for computation of 
fN,1 as presented in section 3.4.2 can be applied but without consideration of ρ(EN,1, εf,N,1). 
The output of the model as relative deviation from simulation results from mean, standard 
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deviation and 5%- and 95%-quantile is shown in Fig. 3.55 and Fig. 3.56, respectively. In 
case of larger systems (N ≥ 20) the results of case II and case III are nearly equal.  

 

Fig. 3.54: Relative safety index βN vs. N (left) and required ratio between mean maximum system 
strength and mean strength of elements for constant safety index of β = 4.2 vs. N (right) 
in dependency of CoV[f1] 

To conclude, the examinations in regard to case III show again a remarkable influence of 
CoV[f1] which directly determines also CoV[εf,1]. Despite a comparable decrease in 
fN,1,mean and fN,max,mean but due to the significant decrease in CoV[fN,1] and in particular in 
CoV[fN,max] an increase in reliability could be verified. This increase is due to the 
remarkable decrease of CoV[fN,max] which nearly reaches that of the averaging model. 
This decrease follows from the relatively high expectable failure rate of elements before 
the system reaches its maximum strength. At the end a simple model for estimating the 
distribution of fN,1 was successfully verified. This model enables a fast computation with 
deviations from simulation data in a range comparable with case II.  

 

Fig. 3.55: Relative bias between model and simulation results vs. N in respect to mean system 
strength (left) and standard deviation of system strength (right) and in dependency of f1 
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Fig. 3.56: Relative bias between model and simulation results vs. N in respect to 5%- (left) and 
95%-quantile of system strength (right) and in dependency of f1 

3.4.4 Analysis concerning Case IV: General Case 

Within case IV a more general behaviour of parallel systems composed of iid and perfect 
linear-elastic brittle elements is examined. Thereby a quasi static failure process is 
assumed which enables the ability of load redistribution after partial failure. Intermediate 
steady states in load redistribution within the system are in principle possible until it 
finally fails. These steady states should be reachable even under step-wise progressing 
load enhancements. Therefore all three parameters of HOOK’s law, the element strength 
f1, the E-modulus E1 and the ultimate strain εf,1 are treated as random but correlated 
variables (see Fig. 3.57 and Fig. 3.58). 

 

Fig. 3.57: Case IV, general case: expected stress-strain relationship of parallel systems (bold, red 
graph) exemplarily composed of four elements (thin graphs) assuming in principal an 
element-wise failure scenario (from left to right) 
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Fig. 3.58: Case IV, general case: expected load-elongation relationship of parallel systems (bold, 
blue graph) exemplarily composed of four elements (thin graphs; including also stress-
strain relationship) assuming in principal an element-wise failure scenario (from left to 
right) 

The first partial failure is caused by the element with lowest ultimate strain which 
confirms to the element with highest E-modulus. Consequently, if the system strength is 
defined as first failure strength it is given as  
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By ranking the elements in ascending order according their ultimate strain εf,i (or 
descending according Ei) so that εf,(1) ≤ εf,(2) ≤ … ≤ εf,(N) (E(1) ≥ E(2) ≥ … ≥ E(N)) the 
maximum system strength in case of GLS is defined by 
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with k = 1, 2, …, N as the amount of partial failures, (N – k + 1) as the amount of intact 
elements after k failures and E(j) as E-modulus associated with εf,(j). These equations are 
equal to that of case II, see equ. (3.133) and (3.134).  
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Global Load Sharing (GLS) – Simulations and Conclusions 

Within this section only the case of global load sharing (GLS) is discussed. It is assumed 
that the stresses released by failed elements are uniformly distributed on survivors 
irrespective of the relative position of survivors to failed elements. For analysis of parallel 
system effects in case IV and in line with previous sections 3.4.2 and 3.4.3 Monte-Carlo 
simulations were performed in R (2009). To examine systems in dependency of CoV[f1] 
and N data sets were generated and collected for statistical analysis in respect to the 
definition of system strength, (1) as system stress at first failure, and (2) as maximum of 
all analysed system stresses per system. Following settings were used: iid element 
strength f1 ~ 2pLND with E[f1] = 30 and CoV[f1] = (10, 30, 50)%, iid E-modulus of 
elements E1 ~ 2pLND with E[E1] = E1 = E = 10,000 and CoV[E1] = (10, 30, 50)%, 
correlation between strength and E-modulus with ρ(f1, E1) = (0.00, 0.25, 0.50, …, 1.00), 
system size N = 1, 2, …, 100 and n = 10,000 simulations per system configuration. 
Default settings which were kept constant for analysis of the influence of a specific 
parameter are given in red.  

 

Fig. 3.59: Relative mean of system strength at first failure and of maximum system strength in 
dependency of ρ(f1, E1) (left), CoV[f1] (middle) and CoV[E1] (right) and N; GLS  

Fig. 3.59 shows the relative change in mean system strength versus system size N and in 
dependency of parameters ρ(f1, E1) (left), CoV[f1] (middle) and CoV[E1] (right). Results 
for both, strength at first element failure and for the maximum system strength are given. 
Thereby fN,mean / f1,mean increases progressively with increasing ρ(f1, E1). This behaviour is 
more pronounced in fN,1,mean than in fN,max,mean. The increase is moderate up to 
ρ(f1, E1) ≤ 0.75 and the decrease in mean maximum system strength much lower than at 
first system failure. In particular at ρ(f1, E1) ≤ 0.50 the influence of ρ(f1, E1) on fN,max,mean is 
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nearly negligible. Concerning the influence of CoV[f1] and CoV[E1] on fN,1,mean and 
fN,max,mean it can be concluded that (1) the influence of CoV[f1] is stronger than of 
CoV[E1], (2) the decrease in fN,1,mean / f1,mean and fN,max,mean / f1,mean increases progressively 
with increasing CoV[f1] and / or CoV[E1], and (3) influence of CoV[f1] is by default 
higher for higher variability. Consequently, the higher the correlation between E-modulus 
and strength of elements and the lower the values CoV[f1] and CoV[E1] the lower the 
reduction in fN,mean / f1,mean. 

 

Fig. 3.60: Relative CoV of system strength at first failure and of maximum system strength in 
dependency of ρ(f1, E1) (left), CoV[f1] (middle) and CoV[E1] (right) and N; GLS 

The relative changes in CoV[fN] are given in Fig. 3.60. Again, the influence of ρ(f1, E1), 
CoV[f1], CoV[E1] and N on the system strength are analysed. Thereby a concave and up 
to ρ(f1, E1) ≤ 0.75 a nearly linear progression in decrease of CoV[fN,1] / CoV[f1] with 
increasing ρ(f1, E1) can be observed followed by a remarkable increase between 
ρ(f1, E1) = 0.75 and ρ(f1, E1) = 1.00. At ρ(f1, E1) = 1.00 the decrease in CoV[fN,1] / CoV[f1] 
follows the averaging model for CoV[XN]. The influence of ρ(f1, E1) on CoV[fN,max] is 
more or less negligible. In contrast, variation of CoV[f1] remarkably influences CoV[fN]. 
In particular if CoV[f1] < CoV[E1] even an increase in CoV[fN] can be observed which 
moderately decreases after a peak in CoV[fN,1] and suddenly falls down in case of 
CoV[fN,max]. If CoV[f1] ≥ CoV[E1] the influence on CoV[fN,1] and CoV[fN,max] is only 
moderate but leads to a progressive decrease of CoV[fN], in particular of CoV[fN,max]. This 
can be explained by the fact that higher variability of strength between the elements 
enables a higher proportion of partial failures which leads to a successive reduction in 
system size and thus in variability of element stresses at a given ultimate system 
extension. With CoV[f1] = 50% and the rest of parameters with default settings the 
decrease in CoV[fN,max] / CoV[f1] reaches nearly that of the averaging model for CoV[XN]. 
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In contrast, Fig. 3.60 (right) analysis the influence of CoV[E1] on CoV[fN] which shows a 
contrary behaviour to CoV[f1]. It can be observed that a variability in E1 corresponds to a 
relative reduction in CoV[fN]. This is in particular given for CoV[fN,1] but minor for 
CoV[fN,max]. Thereby ratio CoV[fN,max] / CoV[f1] reaches nearly the averaging model for 
CoV[XN] at CoV[E1] = 10%. The influence of increasing CoV[E1] appears convex. To 
conclude, the higher the reduction in CoV[fN] the higher the homogenisation effect and 
thus the utilisable amount of positive system effects. Thus a maximum of positive system 
effects are reached by combination of a high correlation ρ(f1, E1), a high CoV[f1] but a 
low CoV[E1], in particular with the constraint that CoV[f1] ≥ CoV[E1].  

 

Fig. 3.61: Relative 5%-quantile of system strength at first failure and of maximum system strength 
in dependency of ρ(f1, E1) (left), CoV[f1] (middle) and CoV[E1] (right) and N; GLS 

Due to the fact that in current semi-probabilistic concepts 5%-quantiles of strength 
characteristics are taken as basis for design calculations the relative change of 5%-
quantiles of system strength are given in Fig. 3.61 and analysed in respect to the influence 
of parameters ρ(f1, E1), CoV[f1] and CoV[E1]. Discussing first the influence of correlation 
ρ(f1, E1) on fN,05 it can be observed that a maximal increase in fN,05 / f1,05 is given at 
ρ(f1, E1) = 1.00. Even at ρ(f1, E1) = 0.75 an increase in fN,05,max with increasing N can be 
expected. The decrease in fN,05,max at lower values of ρ(f1, E1) is moderate and not more 
than roughly 15%. Thereby a slight increase of fN,05,max at ρ(f1, E1) = 0.00 and N ≥ 5 can be 
observed. Nevertheless, fN,1,05 decreases remarkable with decreasing ρ(f1, E1) and 
increasing N. Thereby a reduction of fN,1,05 of roughly 57% at ρ(f1, E1) = 0.00 and N = 100 
if compared to fN,05 can be observed. In Fig. 3.61 (middle), which analysis the influence 
of CoV[f1] on fN,05,1, it can be seen that the change of characteristics in 2pLND at 
CoV[X] = 30% (see Fig. 3.2, right) lead to the effect that the decrease in fN,05,1 at 
CoV[f1] = 30% is lower than at CoV[f1] = 10% or 50%. This effect is not visible in 
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fN,05,max. In contrast to all beforehand discussed figures CoV[f1] shows to effect fN,05,max 
more than fN,05,1. Again fN,05,max can be increased by a CoV[f1] > 30%, with 
fN,05,max / f1,05 ≈ 1.00 at CoV[f1] = 30%. Parameter CoV[E1] acts inversely to CoV[f1] and 
provokes higher values of fN,05,max or in general a lower decrease of fN,05 if CoV[E1] is 
small. Increasing CoV[E1] initiates a progressive and increasing effect on fN,05 / f1,05. 
Consequently, a high correlation factor ρ(f1, E1), high but not too high CoV[f1] and low 
CoV[E1] influence fN,05 positively.  

Fig. 3.62 shows the relative change of EN,mean in dependency of ρ(f1, E1), CoV[f1], 
CoV[E1] and N. Thereby EN,mean,1 = E1,mean is by default explained by the averaging model. 
As a consequence of successive failing elements until the maximum strength in parallel 
systems is reached EN,mean,max is affected by ρ(f1, E1), CoV[f1] and CoV[E1] and shows by 
default a reduction in expectation. This loss in stiffness is more pronounced at low 
ρ(f1, E1) and / or CoV[f1] and / or high CoV[E1]. Thereby low correlation and high 
CoV[E1] enables a higher amount of partial system failures and thus a successive failure 
of stiffer elements. The same is true for low values of CoV[f1] in combination with a 
higher CoV[E1]. Consequently, a reduction in EN,mean is positive in case of parallel, 
redundant structures were sub-systems or system products can transfer stresses to 
adjacent stiffer sub-systems. This structural behaviour can be supported by activating 
some plastic behaviour at the hinges and perhaps utilised for advanced warning before a 
structure gets out of control, e.g. by exceedance of beforehand regulated deformation 
limits. If a reduction in EN,max,mean can not be allowed for some reasons it is recommended 
to keep ρ(f1, E1) and CoV[f1] high but CoV[E1] low.  

 

Fig. 3.62: Relative mean of system E-modulus at first failure and at maximum system strength in 
dependency of ρ(f1, E1) (left), CoV[f1] (middle) and CoV[E1] (right) and N; GLS  
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In contrast to EN,mean parameters ρ(f1, E1), CoV[f1] and CoV[E1] show only small and even 
negligible effects on CoV[EN], see Fig. 3.63. In fact, CoV[EN,1] follows analytically the 
averaging model for CoV[XN] irrespective of chosen parameter sets. The minor influence 
of ρ(f1, E1) and CoV[f1] on CoV[EN | fN,max] shows to increase with decreasing parameters 
ρ(f1, E1) and CoV[f1]. The inverse is given for CoV[E1]. Nevertheless, it can be concluded 
that CoV[EN,max | fN,max] is sufficiently represented by CoV[EN,1]. Consequently, modelling 
by means of the averaging model is sufficient, so far CoV[E1] is not too large.  

 

Fig. 3.63: Relative CoV of system E-modulus at first failure and at maximum system strength in 
dependency of ρ(f1, E1) (left), CoV[f1] (middle) and CoV[E1] (right) and N; GLS 

Fig. 3.64 shows the ratio between the average rank of εf,i and N at maximum system 
strength versus N. As the elements in a given system fail in ascending order of εf,i starting 
with the smallest (rank[εf,i] | min[ε | N] = 1) graphs in Fig. 3.64 correspond to the average 
failure rate of elements at the point of maximum system resistance. Simulation results 
reflect an increasing average failure rate with decreasing ρ(f1, E1), e.g. of about 20% and 
3% at ρ(f1, E1) = 0.00 and 1.00, respectively, and N = 100. This can be explained by a 
reduced chance for reaching a system strength above the first-failure system strength in 
case of ρ(f1, E1) = 1.00 due to the fact that fi = Ei · εf,i. A convex increasing average failure 
rate can be also achieved at higher values of CoV[f1]. Thereby, a higher CoV[f1] 
represents higher potential differences between the elements. These differences allow a 
higher amount of redistribution after partial system failures. In contrast, an increase of 
CoV[E1] lowers the average failure rate because of a reduced probability of reaching a 
system strength above that at first failure. Nevertheless, the influence of CoV[E1] on 
average failure rate is negligible small. In general, a high failure rate before achievement 
of the maximum system strength is of interest if the chances of redistribution, robustness 
and advanced warning of a structure are considered. Nevertheless, Fig. 3.64 and already 
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previous figures reflect that a high failure rate is not always positively attituded. For 
example in case of a high correlation ρ(f1, E1) a remarkable decrease e.g. in fN,max,mean and 
fN,max,05 can be observed.  

 

Fig. 3.64: Relative mean rank of εf,i at maximum system strength in dependency of ρ(f1, E1) (left), 
CoV[f1] (middle) and CoV[E1] (right) and N; GLS 

Fig. 3.65 gives the ratio βN / β1 versus N. In comparison to all previous plots this is the 
most important one because the graphs implicitly include all system effects on 
expectation, variance and shape of the distribution function in dependency of input 
parameter sets and system size N. Fig. 3.65 (left) shows the influence of ρ(f1, E1). 
Thereby, an increase in βN,max with increasing N at ρ(f1, E1) > 0.25 can be observed. 
Nevertheless, even in case of ρ(f1, E1) ≤ 0.25 the loss in βN,max is negligible and for 
example amounts only about 5% at default system settings and N = 100 but 
ρ(f1, E1) = 0.00. Beside that, if load redistribution in a system after first element failure is 
not possible a remarkable decrease in βN,1 at ρ(f1, E1) < 0.50 after an increase is given. 
Thereby the system size at max[βN,1] increases with increasing ρ(f1, E1), e.g. N = 3 and 4 
in case of ρ(f1, E1) = 0.50 and 0.75, respectively. In case of ρ(f1, E1) = 1.00 a continuous 
concave increase of βN,1 / β1 is given. With increasing ρ(f1, E1) differences between βN,1 
and βN,max become smaller and for example in case of ρ(f1, E1) = 1.00 even zero. A 
significant increase in βN,max can be only observed up to about N = 20. Further increase of 
βN,max for N ≥ 20 is nearly negligible. Parameter CoV[f1] also remarkable affects the 
reliability of a system. For example, in case of CoV[f1] ≥ 30% an increase even in βN,1 
and small N can be observed followed by a decrease afterwards. Also βN,max is 
significantly influenced by CoV[f1], e.g. with βN,max / β1 = 70%, 105% and 146%, 
respectively, at CoV[f1] = 10%, 30% and 50% and N = 100. Thus the difference between 
βN,1 and βN,max shows a positive but convex relationship with CoV[f1]. Parameter CoV[E1] 
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has only a small but negative influence on βN. Whereas loss in βN,1 is significant, it is 
moderate in βN,max with βN,max / β1 between 95% and 109% at CoV[E1] = (10 ÷ 50)%. To 
conclude, it can be observed that βN,max / β1 in case of [CoV[f1] = 30%; ρ(f1, E1) = 1.00] 
versus N corresponds well with the course of [CoV[f1] = 50%; ρ(f1, E1) = 0.50]. A similar 
observation can be made for βN,max / β1 at [CoV[f1] = 30%; ρ(f1, E1) = 1.00] and 
[CoV[f1] = 30%; ρ(f1, E1) = 0.50], or for βN,1 / β1 at [CoV[f1] = 30%; ρ(f1, E1) = 0.00] and 
[CoV[f1] = 10%; ρ(f1, E1) = 0.50].  

 

Fig. 3.65: Relative safety index βN of system resistance against stresses at first failure and at 
maximum system strength in dependency of ρ(f1, E1) (left), CoV[f1] (middle) and 
CoV[E1] (right) and N; GLS 

To summarise, within this section effects on strength and E-modulus of general parallel 
systems composed of linear-elastic iid elements X1 ~ 2pLND with correlated strength and 
E-modulus were analysed. In particular the effects of parameters ρ(f1, E1), CoV[f1] and 
CoV[E1] on distribution characteristics as well as on the reliability index βN were 
examined in more detail. The findings can be seen as a first guideline for optimisation of 
parallel system behaviour. Nevertheless, before final conclusions and recommendations 
for the composition of idealised parallel systems are listed the influence of extreme local 
load sharing (ELLS) and plastic behaviour are discussed briefly within the next three 
sections.  

Exteme Local Load Sharing (ELLS) – Simulations and Conclusions 

In parallel systems and in case of extreme local load sharing (ELLS) the position of 
elements within the system and to each other becomes important. This is because ELLS is 
defined by load redistribution only to the direct neighboured survivors of failing 
elements. Consequently, also the arrangement of the parallel aligned elements, in 
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particular if it is a 1D or 2D system, affects failure process and achievable system 
resistance. Thereby center elements in 2D systems are exposed to higher stresses than 
edge or corner elements which are only exposed to potential failing elements on three or 
two sides, respectively, in contrast to center elements which have a maximum of four 
neighbours. Following that not only the correlation ρ(f1, E1), CoV[f1], CoV[E1] and the 
quantity of elements within the system but also the composition of the system in y- and z-
direction, expressed by the quantity of elements Ny = N and Nz has to be taken into 
account. In the following, the total system size in case of Nz = 1 is defined by N = Ny and 
in case of Nz > 1 by N = Ny · Nz.  

According to previous sections and in particular to the last section concerning GLS again 
parallel systems composed of linear-elastic iid elements X1 ~ 2pLND were virtually 
generated in R (2009). Again, both definitions of system strength, (1) as system stress at 
first failure, and (2) as maximum of all analysed system stresses per system, were 
examined. As in the previous section the default settings were: iid element strength 
f1 ~ 2pLND with E[f1] = 30 and CoV[f1] = (10, 30, 50)%, iid E-modulus E1 ~ 2pLND with 
E[E1] = E1 = E = 10,000 and CoV[E1] = (10, 30, 50)%, correlation between strength and 
E-modulus with ρ(f1, E1) = (0.00, 0.25, 0.50, …, 1.00), system size Ny = N = 1, 2, …, 30 
and Nz = 1, 2, …, 5, 10, 20 and n = 10,000 runs per system configuration. Default settings 
which were kept constant for analysing the influence of a specific parameter are given in 
red. 

The simulation procedure starts with the generation of correlated random vectors or 
matrices of length N or size Ny / Nz of variables f1 and E1. For each generated system a 
matrix of survivors and direct neighbours is created and subsequently updated after every 
partial system failure. After that the system gets stressed until the first element defined by 
min[εf,i] = εf,(i) fails. It follows that stress is redistributed to direct neighbours of failed and 
sequential failing elements until a steady state is reached. Hereby the total system stress is 
kept constant. Thus the system is kept load controlled. This is logical because the system 
stress cannot be reduced, e.g. by loss in stiffness, before an equilibrium stress status is 
reached. A steady state marks an equilibrium status of the system which shows no further 
element failures after redistribution of stresses of sequentially failed elements. The 
quantity of potential neighbours per element is given by a maximum of four, three and 
two, respectively for center, edge and corner elements. As the radial distance to all these 
neighbours is equal the released stress is transferred uniformly to potential and still 
surviving neighbours. In cases were no neighbours had been survived the released stress 
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is redistributed uniformly to all surviving elements in the system, comparable to GLS. 
After attainment of a steady state the stress on the system is increased until the next still 
surviving element fails. The above mentioned procedure was repeated until the system 
has failed completely. During these simulations system characteristics at first system 
failure, fN,1 and EN,1, characteristics at maximum system strength fN,max and EN,max as well 
as “# survivors” as the quantity of surviving system elements immediately before the final 
system collaps, “max[# steady]” and “max[# avalanche]” as the amount of steady states 
and as the maximum size of an avalanche, respectively, immediately before the final 
system collaps were registered and further analysed statistically. Thereby, the size of an 
avalanche is defined as quantity of element failures between two steady states or at least 
between a steady state and the final system collaps. 

The following figures show the relative change of distribution characteristics of system 
strength and E-modulus versus N as well as the development of expectation of additional 
characteristics like “# survivors / N”, “max[# steady] / N” and “max[# avalanche] / N”. At 
first effects of parameters ρ(f1, E1), CoV[f1] and CoV[E1] versus N on system strength and 
E-modulus are analysed. Results for fN,1 and EN,1 are by default equal to them found for 
GLS. The additional gains in system strength and E-modulus at maximum system 
strength in case of ELLS are shown in Fig. 3.66 to Fig. 3.70.  

 

Fig. 3.66: Relative mean of system strength at first failure and of maximum system strength in 
dependency of ρ(f1, E1) (left), CoV[f1] (middle) and CoV[E1] (right) and N; ELLS  

In comparison with GLS it can be concluded that effects of parameters in case of ELLS 
are qualitatively the same but the gain, the difference between system strength and E-
modulus at first failure and at maximum system strength is much lower and in most cases 
even negligible. In a simplified manner, knowing the system characteristics at first 
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element failure in case of ELLS is mostly sufficient for the description of system 
resistance. Only in cases of very low correlation ρ(f1, E1) ≤ 0.25 and / or high 
CoV[f1] ≥ 30% a significant gain in system reliability from βN,1 Ø βN,max can be realised, 
see Fig. 3.70. The effects of parameters on EN,max are even not presented here as being 
absolutely negligible. For modelling of system E-modulus the averaging model approach 
is absolutely sufficient if the analysed parameter range is not abandoned. To conlude, 
there is only a small chance that sequentiel loading and redistribution of stresses to 
surviving elements in case of ELLS leads to a further enhancement of system strength 
above that at first element failure.  

 

Fig. 3.67: Relative CoV of system strength at first failure and of maximum system strength in 
dependency of ρ(f1, E1) (left), CoV[f1] (middle) and CoV[E1] (right) and N; ELLS 

 

Fig. 3.68: Relative 5%-quantile of system strength at first failure and of maximum system strength 
in dependency of ρ(f1, E1) (left), CoV[f1] (middle) and CoV[E1] (right) and N; ELLS 
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Fig. 3.69: Relative safety index βN of system resistance against stresses at first failure and at 
maximum system strength in dependency of ρ(f1, E1) (left), CoV[f1] (middle) and 
CoV[E1] (right) and N; ELLS  

Fig. 3.70 shows the mean share of survivors immediately before the final system collaps. 
The average share decreases with increasing ρ(f1, E1) but even at ρ(f1, E1) = 0.00 the share 
of survivors is about 90% meaning that on average 10% of elements fail before the 
system ultimately fails. This share can only be increased by CoV[f1] ≥ 50%.  

 

Fig. 3.70: Share of survivors at the last steady state before final system failure in dependency of 
ρ(f1, E1) (left), CoV[f1] (middle) and CoV[E1] (right) and N; ELLS  

The average amount of steady states decreases significantly with increasing N, see  
Fig. 3.71. This decrease can only be marginally reduced by a low ρ(f1, E1) and / or a high 
CoV[f1]. On the part of CoV[E1] a significant influence is not given. The sharp decrease 
in the amount of steady states marks that in parallel systems under ELLS the amount of 
intermediate partial and stable system failures decreases relatively with increasing system 
size N. This effect is also visible in Fig. 3.70. Thereby an increase in ratio between 
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average amount of survivors and N after reaching a lower bound at about N ≈ 6 can be 
observed. At N ≈ 6 graphs in Fig. 3.71 show an inflexion in their course.  

 

Fig. 3.71: Expectation of the ratio between the quantity of steady states and N in dependency of 
ρ(f1, E1) (left), CoV[f1] (middle) and CoV[E1] (right) and N; ELLS 

In Fig. 3.72 the relative change of average maximum avalanche versus N is illustrated. 
The effects of parameters ρ(f1, E1), CoV[f1] and CoV[E1] on this characteristic are 
negligible but the relationship to parameter N has to be briefly addressed. Starting at 
N ≥ 1 a fast increase of max[# avalanche]mean / N is given up to a peak at approximately 
N = 3 to 4. After that peak, which corresponds to an average avalanche of about 65% of 
system size N (corresponds to two elements at N = 3), a slight convex decrease can be 
observed, for example to about 50% at N = 30.  

 

Fig. 3.72: Expectation of the ratio between the maximum avalanche size and N in dependency of 
ρ(f1, E1) (left), CoV[f1] (middle) and CoV[E1] (right) and N; ELLS  
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So far only 1D parallel systems have been analysed. To examine the influence of two-
dimensionality the effect of parameter Nz on fN,max, EN,max and βN,max of systems with 
Nz = 1, 2, …, 5, 10, 20 and Ny = 1, 2, …, 30 was analysed in more detail. The other 
parameter settings were fixed as default values.  

Fig. 3.73 (left) shows that the decreasing course of fN,max,mean / f1,mean versus total system 
size (Ny · Nz) becomes marginally smaller with increasing Nz. Ratio CoV[fN,max] / CoV[f1] 
versus (Ny · Nz) in Fig. 3.73 (right) gives an increase in downward trend as Nz increases. 
The graphs versus Nz change between Nz ≤ 10 and Nz = 20 and imply to become reverse 
with further increase of Nz. Significant influences of Nz on EN,max were not observed.  

 

Fig. 3.73: Relative mean (left) and relative coefficient of variation (right) of system strength at 
first failure and of maximum system strength in dependency of system size Nz and 
(Ny · Nz); ELLS 

Fig. 3.74 (left) shows the relative change of the average quantity of survivors versus total 
system size (Ny · Nz) and Nz. The relationship shows at first a sharp decrease at Nz ≥ 1 to a 
lower bound followed by a concave increasing trend. The system size (Ny · Nz) which 
corresponds to the minimum of lower bound increases with Nz whereas the magnitude of 
this minimum decreases up to Nz ≤ 3 followed by an increase with increasing Nz > 3. The 
slope of the increase in average share of survivors after the peak also becomes smaller 
with increasing Nz ≥ 1. Nevertheless overall effect of Nz is small. Fig. 3.74 (right) gives 
the relative change of average maximum avalanche versus (Ny · Nz). As expected, the 
courses of these graphs are inversely and with an upper bound if compared with the 
characteristic discussed before. Whereby up to Nz ≤ 5 only an increase in slope after 
attainment of the upper bound with constant magnitude can be observed, in case of 
Nz ≥ 10 also a shift of bound and corresponding system size (Ny · Nz) together with a 
minor reduction in slope is given.  
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Fig. 3.74: Share of survivors (left) and expectation of the ratio between the maximum avalanche 
size and (Ny · Nz) at the last steady state before final system failure (right) in 
dependency of system size Nz and (Ny · Nz); ELLS 

In Fig. 3.75 the ratio βN / β1 in dependency of Nz and versus (Ny · Nz) is discussed. As 
mentioned earlier calculation of reliability indexes has the advantage that the whole 
distribution information is implicitely considered by only one parameter. The type of load 
redistribution (GLS vs. ELLS) between the elements and the arrangement of elements 
(1D vs. 2D) has by default no influence on EN,1 and fN,1. Nevertheless, it can be observed 
that βN,max and the slope of βN,max / β1 versus (Ny · Nz) increases with increasing Nz ≤ 10. 
Nevertheless, already at Nz = 10 a marginal decrease in reliability in systems of size 
(Ny · Nz) ≤ 50 can be observed. At Nz = 20 a distinctive reduction in reliability is given in 
combination with a very low gradient which becomes nearly zero at (Ny · Nz) > 60, with 
[βN / β1 | (Ny · Nz) = 20] ≈ 91% and [βN / β1 | (Ny · Nz) = 60] ≈ 90%. The change in system 
behaviour with higher values of Nz is due to the fact that at first the number of neighbours 
increases, for core elements from a maximum of two at Nz = 1 to three and four at Nz = 2 
and Nz = 3, respectively. Thereby not only the probability that elements have to bear 
additional stresses from neighboured failing elements increases but also the probability 
that stresses can be carried by surviving neighbours. The last aspect is due to the fact that 
the released stresses can be shared by a higher quantity of elements. Secondly, at Nz ≥ 4 
only the shares of core elements to edge and corner elements become larger. This 
circumstance only marginally contributes to the ability of increased load redistribution. 
As already mentioned in the literature survey within section 3.2.4 failures in parallel 
systems under ELLS have the tendency to cluster in case of large quantities of (Ny · Nz). 
Consequently, very large systems change their failure behaviour from parallel to parallel, 
sub-serial. Nevertheless, the influence of Nz on βN / β1 is small within the analysed 
parameter ranges and only about 3% at (Ny · Nz) = 30. At the beginning failures of system 
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elements occur randomly. Thus the latter tendency of very large parallel systems under 
(E)LLS to act parallel, sub-serial can be explained by the increasing probability that these 
random failures cluster to only a few dominating failure domains. Therefore two-
dimensionality is required and provokes splitting of (Ny · Nz) systems into sub-systems. 
The size of such sub-systems must thereby be small enough for splitting but large enough 
to initiate sudden system collaps with failure of the weakest sub-system. An idea of the 
minimum size of such a sub-system is given at least by the average expectable failure 
rate, see Fig. 3.74.  

 

Fig. 3.75: Relative safety index βN of system resistance against stresses at first failure and at 
maximum system strength in dependency of system size Nz and (Ny · Nz); ELLS 

To conclude, characteristics of parallel systems under ELLS are only marginally 
influenced by parameters ρ(f1, E1), CoV[f1] and CoV[E1]. Only in case of very low 
ρ(f1, E1) and / or high CoV[f1] a noticeable effect on the difference between fN,max and fN,1 
is given. Nevertheless, two-dimensionality up to Nz ≤ 5 nearly doubles the gain from βN,1 
to βN,max. Higher values of Nz show a reduction in βN,max but in combination with a 
reduction in slope with nearly a constant ratio of βN,max / β1 at Nz ≥ 20, independent of 
(Ny · Nz). Over all it has to be concluded that ELLS will be seldom or even never found in 
real systems. Thus the results deliver a conservative lower boundary in contrast to 
progressive upper boundaries supported by systems under GLS. Consideration of both 
enables judgement of real system behaviour within at least two extreme boundaries.  

Models for Calculation of System Strength and System E-Modulus at first Element 
Failure 

As already mentioned in previous sections irrespective of the arrangement of elements in 
systems (1D vs. 2D) and irrespective of the way of load redistribution after partial failure 
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(GLS ¨ ELLS) system strength at first failure is equal and solely dependent on input 
parameters which are the RSDMs of strength and E-modulus and corresponding 
parameters like E[f1], CoV[f1], E[E1], CoV[E1], correlation ρ(f1, E1) and system size N or 
(Ny · Nz). Knowledge of predictability of system strength at first failure becomes 
important e.g. in (1) very dynamic system failure scenarios with a reduced probability in 
finding a steady state and further strength increase, (2) in first-failure systems were 
subsequent failure can not be tolerated, and (3) in case of ELLS were differences between 
fN,max and fN,1 are nearly negligible. Furthermore, also GLS-systems with a high value of 
ρ(f1, E1) or very low CoV[f1] and / or N are also characterised by a ratio of 
fN,max / fN,1 ≈ 1.00. Consequently, the ability to estimate system strength at first failure is a 
first important step in modelling parallel systems.  

Given a parallel system of N or (Ny · Nz) linear elastic iid elements with strength 
f1 ~ 2pLND, E-modulus E1 ~ 2pLND and correlation between strength and E-modulus of 
the same element ρ(f1, E1). In this case the system strength fN,1 follows equ. (3.142) and 
thus is nothing else than a multiplication of the system E-modulus EN,1 and the minimum 
ultimate strain of system elements min[εf,1,i], with i = 1, …, N. Thereby, system E-
modulus constitudes the average of element’s E-moduli following the averaging model 
with E[EN,1] = E[E1] and CoV[EN,1] = CoV[E1] / ◊N. Based on input parameters of f1 and 
E1 and equ. (2.92) in section 2.4.2 the distribution of ultimate strain εf,1 follows  
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by transforming ρ(f1, E1) by means of inverse equ. (2.89), see  
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For calculation of the minimum ultimate strain of system elements the serial model for 
minima of iid elements provided in section 3.3.2 and given by equ. (3.93) with parameter 
estimators in Tab. 3.2 can be applied. For multiplication of so far determined EN,1 and 
min[εf,1,i] knowledge of correlation ρ(EN,1, εf,N,1) is required. Correlation ρ(E1, εf,1) can be 
derived analytically by means of the definition of PEARSON’s correlation coefficient 
given in equ. (2.46), see  
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After transformation of ρ(E1, εf,1) to ρ(E1, εf,1)trans as shown for ρ(f1, E1) in equ. (3.145) the 
distribution of f1 = E1 · min[εf,1] can be rewritten as  
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Nevertheless, ρ(EN,1, εf,N,1) is dependent on total system size given by N or (Ny · Nz). As 
no analytical formulation of the relationship ρ(EN,1, εf,N,1) versus N is available on hand a 
heuristic approach gained by fitting adequate models on simulated data was formulated. 
Based on exact knowledge of the starting value ρ(E1, εf,1) this model was searched for by 
analysing the ratio ρ(EN,1, εf,N,1) / ρ(E1, εf,1) versus N, see Fig. 3.76. Thereby effects of 
parameters ρ(f1, E1), CoV[f1] and CoV[E1] were examined. It can be observed that up to 
ρ(f1, E1) ≤ 0.75 only a minor but steady decrease of the ratio in combination with 
increasing variance of simulation results is given. At ρ(f1, E1) = 1.00 the ratio is constant 
and equal to one. Consequently, effects of ρ(f1, E1) on ρ(EN,1, εf,N,1) / ρ(E1, εf,1) can be 
neglected at least up to ρ(f1, E1) ≤ 0.75 and at ρ(f1, E1) = 1.00 taken as one.  
Fig. 3.76 (middle) gives the relationship ρ(EN,1, εf,N,1) / ρ(E1, εf,1) in dependency of N and 
CoV[f1]. Again the relative reduction of ρ(EN,1, εf,N,1) versus N increases non-linear 
convex with increasing CoV[f1]. The other way round can be observed in Fig. 3.76 (right) 
which gives the effect of parameter CoV[E1] on relative change of ρ(EN,1, εf,N,1) versus N. 

 

Fig. 3.76: Effect of parallel system action on correlation between E-modulus and ultimate strain at 
first failure: variation of ρ(f1, E1) (left), of CoV[f1] (middle) and of CoV[E1] (right)  
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For the description of a representative non-linear model for ρ(EN,1, εf,N,1) / ρ(E1, εf,1) 
versus N two regression equations are discussed under consideration of two limiting cases  
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The two models are (1) a logarithmic and (2) a power regression model, see  
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Fig. 3.77: Best fitted parameters ζlog and ζpower of logarithmic and power model, respectively, for 
the description of ρ(EN, εf,N) / ρ(E1, εf,1) versus N: variation of ρ(f1, E1) (left), of CoV[f1] 
(middle) and of CoV[E1] (right)  

Both models fulfill the requirement for N Ø 1.00, but only the power model is also 
suitable at N Ø ∞. The results of best fitted model parameters ζlog and ζpower in 
dependency of parameters ρ(f1, E1), CoV[f1] and CoV[E1] are shown in Fig. 3.77. 
Parameter ζpower appears to be more sensitive to variation in input parameters than ζlog. 
Furthermore, total sum of squared deviations between simulation results and model 
estimates were in case of the power model always higher than by means of the 
logarithmic regression function. Despite the fact that the logarithmic model does not 
fulfill the limit constraint at N Ø ∞ but nevertheless gives a good representation of 
simulation data up to N ≤ 100 it is further preferred for modelling the ratio 
ρ(EN,1, εf,N,1) / ρ(E1, εf,1) versus N. Due to minor changes in ζlog in case of ρ(f1, E1) ≤ 0.75, 
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CoV[f1] ≤ 50% and CoV[E1] ≤ 30% in modelling the parameter setting at default case 
ρ(f1, E1) = 0.50, CoV[f1] = CoV[E1] = 30% is applied only. As shown in Fig. 3.77 (right) 
ζlog is in particular sensitive to CoV[E1] showing a distinctive convex increase with 
increasing CoV[E1].  

 

Fig. 3.78: Relative bias between model and simulation results vs. N in respect to mean system 
strength (left), standard deviation (left-middle), 5%-quantile (right-middle) and 95%-
quantile (right) of system strength, in dependency of ρ(f1, E1)  

 

Fig. 3.79: Relative bias between model and simulation results vs. N in respect to mean system 
strength (left), standard deviation (left-middle), 5%-quantile (right-middle) and 95%-
quantile (right) of system strength, in dependency of CoV[f1]  

The relative deviations between model calculations and simulation results versus N in 
dependency of parameters ρ(f1, E1), CoV[f1] and CoV[E1] are given in Fig. 3.78, Fig. 3.79 
and Fig. 3.80, respectively. Thereby satisfactorily results can be achieved with deviations 
in analysed distribution characteristics smaller than ± 4%. Despite the fact that all 
comparisons show a minor bias in dependency of N and / or variation in parameter 
settings these figures also deliver the information for direct bias correction if higher 
accuracy in modelling is required. Over all a good representation can be found apart from 
ρ(f1, E1) = 1.00 and CoV[E1] > 30%. Nevertheless, in case of ρ(f1, E1) consequencies of 
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parallel action can be directly calculated by means of the averaging model. Beside that, 
requirements for modelling systems with CoV[E1] > 30% will perhaps be seldom the 
case. Nevertheless, an estimate of ζlog for CoV[E1] = 50% is available. 

 

Fig. 3.80: Relative bias between model and simulation results vs. N in respect to mean system 
strength (left), standard deviation (left-middle), 5%-quantile (right-middle) and 95%-
quantile (right) of system strength, in dependency of CoV[E1] 

To conclude, the presented model for estimation of strength and E-modulus distributions 
of herein discussed parallel systems shows to perform satisfactorily. It provides an easy 
applicable tool for judgement of parallel system behaviour and consequencies. It thereby 
delivers a possibility for designing high performance parallel systems under consideration 
of limitations in parameter settings also in conjunction with production requirements and 
achieveable accuracy and stability in manufacturing and / or classification of elements 
and system products.  

Some Comments on the Effect of Plasticity 

In analysing equ. (3.142) and (3.143) which give the bearing capacity at first failure and 
at maximum system strength, respectively, it is obvious that system strength capacity is 
not a direct function of element’s strengths but more of the ultimate strain of elements 
defined explicitly by the minimum ultimate strains of all surviving and contributing 
elements after k failures. Consequently, even a small amount of plastic flow or ductility 
has a significant effect on system strength, see Fig. 3.81.  

This is obvious because the possibility of elements to elongate without softening, only 
minor amount of softening or even hardening enables the achievement of higher 
capacities in all residual survivors of a system. 
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Fig. 3.81: Influence of plasticity on strength and bearing capacity of parallel systems, exemplarily 
composed of two elements: linear-elastic material behaviour (left) vs. linear elastic-
plastic material behaviour (right)  

To conclude, plastic material behaviour remarkably increases homogenisation and gains 
in system strength. This was already discussed for ideal linear elastic-plastic material 
behaviour in section 3.2.2. In this ideal case homogenisation equal to the averaging model 
can be reached. This was also found for ideal systems following case I. In contrast to 
case I plastic flow gives much better failure behaviour with the ability of advanced 
warning and load redistribution to stiffer components within a higher ranking structural 
system. Furthermore, in particular hierarchical materials can be always expected to show 
some amount of plastic flow due to step-wise failure processes in sub-hierarchical levels. 
More on that question and in particular in regard to wood and timber will be presented 
within the next chapter 4.  

3.4.5 Parallel System Action and Effects: Findings and Recommendations 

Within the last sections effects of various parallel system configurations were analysed. 
Thereby focus was on lognormally distributed strength and E-modulus of elements. 
Within the examinations effects caused by varying input parameters like CoV[f1], 
CoV[E1] and ρ(f1, E1) as well as the arrangement of elements (1D vs. 2D) and the type of 
load redistribution (GLS vs. ELLS) were investigated for system strength and E-modulus 
at first element failure and for maximum system strength and corresponding E-modulus. 
Already at the end of each section a short summary and conclusions are provided. 
However, some additional and more general statements can be made:  
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 real parallel acting systems are far away from ideal parallel systems, in particular 
if focusing on system strength; hereby the maximum gain in system effects is 
seldom equal or even higher than the averaging model even in case of GLS;  

 analysing failure behaviour and limits in systems but also in elements is normally 
done by analysing the ultimate loads and strengths; nevertheless, analysis of 
parallel systems, and thus also of real materials which are always something like 
a parallel, sub-serial composition, are definitely restricted by ultimate strain; this 
aspects are in particular of interest in modelling systems composed of elements 
with non-linear or not ideal linear-elastic brittle material; thus improvements in 
modelling of serial systems directly enhance the ability in modelling parallel 
systems;  

 it could be proven and explicitly shown by the equations for fN,1 and fN,max that 
extreme value statistics (EVT) and in particular models for calculation of minima 
play a decisive role in modelling parallel system behaviour with focus on strength 
potential;  

 within previous sections and in conjunction with section 3.3.2 dealing with 
models of serial system strength it was shown that through the combination of 
heuristic and analytical expressions satisfactorily accurate modelling of system 
strength at first failure can be achieved even for f1, E1 ~ 2pLND;  

 the ideal assumption of GLS can be argumented to overestimate real system 
behaviour; nevertheless, the ideal assumption of linear-elastic and perfect brittle 
materials appears also a bit unrealistic and if compared to reality conservative; 
both effects together balance each other somehow in real life;  

 discussing the expectable bearing capacities of parallel systems is also a 
discussion of the type of loading if it is applied deformation- or load-controlled; 
this discussion is directly linked with the type of load sharing, between GLS and 
ELLS. 

Some more comments and conclusions found in analysing the special cases, case I to 
case III:  

 concerning the special case I system strength and E-modulus can be well 
modelled by the averaging model approach; thus this kind of system enables a 
very high degree of homogenisation and in particular a maximum of 
homogenisation in variance of system characteristics; nevertheless this system 
provides no load redistribution and suddenly fails at failure of the first element; 
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 in the analysis of case II a remarkable decrease in mean system strength but 
reduced chances of load redistribution in combination with further increase of 
system strength is given; nevertheless, a remarkable reduction in variability of 
system strength fN,max leads to a moderate increase at least in lower quantiles, e.g. 
fN,05,1 Ø fN,05,max;  

 case III shows a very high potential of redistribution after partial failures with the 
ability to further increase the system strength capacity; the homogenisation in 
CoV[fN,max] is moderate.  

Based on the analysis in previous sections the following general recommendations for 
optimisation of parallel system behaviour are possible: 

 the reliability of parallel systems increases with increasing ρ(f1, E1); this is due to 
the fact that the achievable system strength increases with a better coincidence of 
strength and E-modulus within elements;  

 the reliability also increases with increasing CoV[f1]; this is because a high 
variation in strength corresponds with high potential differences between the 
elements and thus with a high potential for homogenisation in conjunction with a 
higher potential of partial failures;  

 an increase in system reliability can also be achieved with a low value of 
CoV[E1]; thereby a low variation in E1 directly corresponds with the ability of 
partial system failures due to restrictions in ultimate strain εf,1;  

 to achieve a high system bearing capacity it is proposed to ensure that the ratio 
CoV[f1] / CoV[E1] is ≥ 1.00; 

 in case of ELLS arrangement of elements in a two-dimensional structure shows 
an increase in reliability up to Nz ≤ 5 in combination with a decreasing influence 
of βN / β1 on (Ny · Nz);  

 even a small amount of plasticity in material behaviour significantly affects 
system strength; it was noted that in hierachical structured materials a certain 
amount of plastic flow can be always expected; if plasticity can not or not 
sufficiently delivered by the elements’ material, plasticity can be also induced by 
adequate designed and performed joints between the elements;  

 adequate system behaviour can not always achieved by optimising the bearing 
capacity or potential of advanced warning; occasionally system requirements are 
heavily defined by restrictions in deformations and / or partial failures or defined 
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by optimal stiffness and bearing potential; such behaviour is for example given in 
case I or in general systems with very low CoV[E1] and CoV[f1] in combination 
with a very high amount of ρ(f1, E1).  
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Chapter 4 

4 Hierachical Structure and Scaling in Wood, 
Timber and Timber Engineering 

The term “scaling” in regard to material stands for self similarity in 
behaviour and characteristics over various hierarchical levels. Within this 
chapter general aspects concerning scaling are addressed. After a short 
introduction emphasise is on scaling and hierarchical levels of wood and 
timber (tissues). In particular the tensile properties along the hierarchical 
chain are discussed from molecular level up to construction timber. In a 
review main constituents and their functions are presented adressing each 
wood and timber hierarchy seperately. Analogies between natural hierarchies 
and in particular between natural and technical hierarchies are discussed. At 
the end some thoughts on consideration of scaling effects and stochastics in 
material modelling are presented.  

4.1 General Remarks concerning Scaling  

The term “scaling” is defined as self-similarity of functional relationships, shape, 
geometry and / or structure. It constitutes logarithmic scale invariance (e.g. WASER, 
2004). Following that, functions, shapes and characteristics are in principle independent 
of the observed hierarchical level. Thereby scaling is not only a proportional resizing of 
dimensions or a transformation of a functional behaviour by volumetric resizing. It 
involves the whole structural system underlying each hierarchy, and shows similarity in 
the functional behaviour and characteristics between all these hierarchies. In some cases it 
is also a preservation of physical similar systems, as for example provided by 
Buckingham-PI-theorem (BUCKINGHAM, 1914). Scale invariance accounts for similar 
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structural behaviour and similar geometries of systems over all (several) hierarchical 
levels. Scaling itself appears dimensionless (RECHENBERG, 2000). The functional 
relationship exhibiting scale invarience is given by the power law  

( ) ( )kk xOxayxf +⋅== ,  (4.1)

with a as prefactor, k as the (universal) scale exponent (power) and O(xk) as the error 
term, often replaced by ε (e.g. NEWMANN, 2005). The power law satisfies 

( ) ( )xfxcf ∝⋅ ,  (4.2)

with c as constant. Power laws are invariant functional relationships (NEWMANN, 2005). 
The functional relationships of logarithmic scale invariant characteristics are linear (with 
constant gradient) if the kernel function is transformed to logarithmic domain, see  

( ) [ ] ( ) ( )xkayxayxf k lnlnlnln ⋅+=⎯→⎯⋅== .  (4.3)

The logarithmised scale parameter a now functions as shift parameter ln(a) and the scale 
exponent k gives the slope. Re-scaling of equ. (4.1) affects the proportion but not the 
shape of a function. It gives a linear shift of the power model but preserves the slope in 
logarithmic domain (see Fig. 4.1).  

 

Fig. 4.1: Example of a power model: linear domain (left); logarithmised domain (right) 

Power laws are often used for modelling of natural phenomena but also for modelling of 
phenomena in human society (e.g. physiology, sociology). For example they are used to 
model body sizes, diameters of volcanic craters, dimensional distribution of cities and for 
the distribution of words in texts (e.g. NEWMANN, 2005). Some more examples are the 
Gutenberg-Richter law of earthquakes, the Pareto-law or the structural scale invariance of 
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fractals. In the field of material research and in engineering practice many phenomena 
and effects are found to follow power laws, e.g. the size effect according WEIBULL 

(1939). WEIBULL’s power model has thereby treated with caution. The reference volume 
or dimension for calculating the volume (size) effect on strength of an arbitrary volume 
can be choosen freely. The power k of the volume (size) effect (see section 3.2.1, 
equ. (3.33)) directly depends on the observed variability in strength. Due to material 
inherent system effects parameter k also depends on the dimensions or even the geometry 
of the reference volume and stress. Thus “size effects” have to be clearly differentiated 
from “scaling effects”. Here “size effects” describe effects on characteristics (e.g. 
strength) as a consequence of changes in dimension(s) on a specific hierarchical level. In 
contrast “scaling effects” are in principle the outcome of changes in the material structure 
and / or relationships between characteristics comparing the system or the material on 
different hierarchical levels (e.g. SUTHERLAND ET AL., 1999; BRANDNER, 2008). For 
example scaling effects are observable by changing the production technique or solely by 
extracting a part of the total volume. Thereby the composition of the structure or mass 
shares of constituents is changing (SUTHERLAND ET AL., 1999). Size effects result from 
the influence of changed dimensions on material characteristics (e.g. strength or stiffness) 
without changes in the material structure. They are more related to the stochastic 
occurrence of flaws which influence the analysed characteristic. SUTHERLAND ET AL. 
(1999) conclude that material properties associated with a certain volume of produced 
elements and of elements cut out from a larger volume are not equal. Thus WEIBULL’s 
power model for size effects can be used as scaling modell only if the power k and thus 
the variability in strength is constant on all hierarchical levels. For illustration, Fig. 4.2 
shows exemplarily an exponential volumetric growth between hierarchies. Arbitrarily, in 
each hierarchy 18 reference volume elements form a critical cluster in scale transition. 
Thus the quantity of system elements on hierarchy j is generally given as n(x, j) = x j, and 
with x = 18 as n(18, j) = 18 j. Under ideal isotropic, linear elastic and brittle material 
conditions with single failure criteria for system collaps according WEIBULL (1939) and 
power k as constant in all hierarchical levels, the system strength is given by the power 
law  
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Thus exponential growth in volume results in equi-distant graduation of material 
hierarchies in logarithmic space of strength vs. volume (see Fig. 4.2).  
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Fig. 4.2: Schematic size and scale transition: exponential volumetric growth (left); volume effect 
according WEIBULL (1939) assuming constant k (right) 

For the analysis of systems on various hierarchical levels both, overview and detailing are 
required to capture the principal system behaviour. Thereby system analyses are always 
constrained by the system boundaries, as discussed in section 1.3. For determination of 
general system behaviour studying different hierarchies (sub-systems) is indispensible. At 
least the foregoing and the next (the neighboured) hierachical structures, additionally to 
the range of required hierarchy(ies), have to be analysed as well, otherwise it may occur 
that general or global trends are smeared by the stochastics of system behaviour within 
one hierarchy. This principle of analysing effects on the edges and in the center is also 
well known e.g. in design of experiments (DOE). Fig. 4.3 illustrates this circumstance by 
means of a scatter plot.  

Some more examples of simple power models in material modelling are given by GIBSON 

AND ASHBY (1999). They modelled E-modulus and strength ratios in relation to the 
apparent density, given as  
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with apparent density ρ* / ρS, as ratio between the density of cellular solid and the density 
of material (volume fraction), the power parameter v, with vE = 3 in case of bending, 
vσ = 2 in case of elastic buckling failure and vσ = 3 / 2 in case of failure in plastic hinges 
or brittle crushing, and CE, Cσ as factors to account for changes in the material structure.  
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Fig. 4.3: Global vs. local trends exemplified on a schematic scatter plot: local trends based on 
local observations within hierarchical levels; global trend based on observations made 
on several hierarchical levels  

It is very specific that in analysis of systems on one hierarchy all characteristics of 
foregoing hierarchical levels are present. Consequently, their structures, relationships and 
properties determine the system on the observed hierarchy. This implies that scale 
transition, the change from one hierarchical level to the next, can never be discontinuous 
or aprubt. Nature does normally not change discontinuously, not on microscopic nor on 
macroscopic level. Therefore scaling models have to assure continuous transition 
processes. Thus all materials which are composed of interacting elements on more than 
one hierarchy are hierarchically structured and exhibit scaling. This is also of interest if 
e.g. stepwise failure processes by stepwise energy release and dissolution of a material 
can be observed. 

The definition of hierarchical levels in materials in regard to strength can be done in 
conformity with significant changes in type and dimension of the main failure inducing 
characteristics. This is in conjunction with changes in the material structure. These are 
clearly observable on each specific hierarchy, on nano, micro, meso and macroscopic 
level.  

4.2 Wood and Timber (Tissues): Characteristics on Natural 
and Technical Hierarchical Levels  

Wood and timber are naturally grown and evolutionary optimised tissues. They constitute 
geniously raw materials usable for a nearly infinite variety of technical applications. If 
sustainable cultivated and harvested, wood and timber demonstrate one of the real 
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answers to regulate climate unbalance, availablility of resources and energy by being 
CO2-active and a renewable carbon sink until combustion. Thereby wood and timber are 
by nature optimised load bearing materials. They show the ability to perform dual 
adaptation, in shape as well as in the microstructure itself (FRATZL AND WEINKAMMER, 
2007). As “biologically controlled self-assemblies” wood and timber have the ability to 
remodel or adapt shape and structure according changing environment. Thereby nature 
uses a common blueprint which is adapted to structures following local, individual needs 
(FRATZL AND WEINKAMMER, 2007).  

Within this section characteristics of wood and timber, its constituents and dimensions are 
presented. As the material structures on different hierachical levels are sometimes viewed 
as being self-contained materials, the material structure on a higher hierarchical level 
constitude nothing else than a composition of sub-materials of previous levels. 

Within this section the materials wood and timber are not only discussed on their natural 
hierarchies but also on their so called “technical hierarchical levels” (see Fig. 4.4). The 
difference between both scales is obvious considering the formation of materials wood 
and timber naturally as bottom-up process (e.g. from cell division to the tree), whereas 
technical hierarchies are characterised by dissolution of naturally grown structures, e.g. 
by the breakdown process of logs to sawn products (boards, beams, …) or further 
separation by mechanical and / or chemical dissolution (e.g. clear wood  flakes, 
strands, fibres, cellulose nanofibrils, …  bottom-down). After dissolution the tissues are 
formed to new agglomerations, new systems. Nevertheless, observations of materials in 
laboratory on natural hierarchical levels are in dependency of the technical treatment, the 
preparation process, and thereby always somehow influenced (e.g. BRÄNDSTRÖM, 2001; 
BERGANDER AND SALMÉN, 2002; ZIMMERMANN ET AL., 2007). The technical use of 
wood and timber with focus on load bearing purposes not only results in separation. By 
means of “connection techniques” (see Fig. 4.4) beforehand classified elements are 
positioned and joined to larger structures (systems) known as engineered wood and 
timber products. These are designed to fulfill specific requirements e.g. in regard to  

 stress transfer (1D, 2D);  

 dimensions;  

 homogenisation of physical properties by reduction of naturally inherent 
variability (e.g. strength, stiffness, density, swelling and shrinkage);  

 surface (e.g. coating, haptic features, colour, multifunctionality e.g. in acoustics).  
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Fig. 4.4: Overview of natural and technical hierarchies in wood tissues, wood, timber and timber 
engineering 

Following sub-sections present the main constituents and their functions on different 
hierachical levels. At first natural hierarchies are discussed followed secondly by the 
technical hierarchical levels, as illustrated in Fig. 4.4.  

4.2.1 Natural Hierarchical Levels: Constituents, Functions and Models  

In the following the bottom-up principle observable in natural creation of wood and 
timber is presented. The discussion starts at the atomistic level and ends briefly with some 
comments on forests. 
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Hierarchy of Atoms 

This hierarchical level is defined within 10–19 to 10–10 m (= 1 Å). On that level e.g. 
quarks, neutrons, electrons and protons are the constituting elements of atoms. The 
atomic model consists of neutrons and protons in the core and electrons on discrete 
energy levels as shells of the atom. The main elements in wood and timber are carbon 
(C; ≈ 50%), oxygen (O2; ≈ 43%), helium (H; ≈ 6%) and nitrogen (N) (organic agents) as 
well as minerals (anorganic agents). The last two are together about about 1% of the mass 
of molecules (FENGEL AND WEGENER, 1989).  

The mechanical behaviour on this hierarchical level can be studied by ab-initio 
calculations based on first-principle of quantum mechanics (e.g. COLUMBO, 2008).  

Hierachy of Molecules 

This level is defined within the range of 10–10 to 10–6 m known as “nano-level”. The main 
molecules are cellulose (40% in Norway spruce; in general 40 ÷ 50%), hemicelluloses 
(polyoses) (31% in Norway spruce; in general 15 ÷ 35%), lignin (28% in Norway spruce; 
in general 20 ÷ 35%) as organic constituents, and about 1 ÷ 3% of anorganic substances 
(0.5% in Norway spruce; FENGEL AND WEGENER, 1989). The structure of wood is often 
viewed in analogy to reinforced concrete. Thereby cellulose acts as reinforcement and 
lignin as concrete (e.g. CLARKE, 1938; GOLDSTEIN, 1991). BOOKER AND SELL (1998) 
specify cellulose as steel reinforcement, hemicellulose as cement and lignin as rock and 
sand filler. Overall the wood polymer with its main constituents cellulose, hemicellulose 
and lignin can be best described as fibre-reinforced composite with cellulose as 
reinforcement and lignin and hemicelluloses as matrix material (e.g. SCHICKHOFER, 1994; 
SALMÉN, 2004; WATHÉN, 2006).  

Thereby the cellulose constitute a 1,4 β-glycosidic bonded, linear and unbranched chain-
like molecule of β-D glucose. In native form it exhibits a high degree of polymerisation 
(DP), in the range of 10,000 to 15,000 (e.g. BLEDZKI AND GASSAN, 1999; WATHÉN, 
2006). The chain consists of 89 ÷ 96% crystalline (ordered) and 4 ÷ 11% amorph 
(unordered) regions (FENGEL AND WEGENER, 1989). The cellobiose units with 
dimensions l / w / d = 1.03 nm / 0.8 nm / 0.8 nm are the basic units. These are further 
linked in serial to cellulose molecules.  
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The cellulose is anisotropic (BERGANDER AND SALMÉN, 2002) and unsolvable (FENGEL 

AND WEGENER, 1989; EICHHORN ET AL., 2001). Its mean density is ρmean = 1,500 kg/m³ 
(e.g. ROBERTS ET AL., 1995; EICHHORN ET AL., 2001; STEELE, 2007). Cellulose is highly 
affine to intra- and intermolecular H-bondings (WATHÉN, 2006). If stressed, two types of 
bindings are observable. These are C-O-C and H-H (HINTERSTOISSER ET AL., 2001). It 
behaves visco-elastic. In general its material characteristics are dependent on moisture, 
temperature and time (WATHÉN, 2006). Due to its chain-like linear structure and 
predominant longitudinal orientation in wood and timber cellulose predominantly 
determines the strength and stiffness characteristics in fibre direction. Interestingly, the 
maximum tensile strength is already reached at DP ≈ 2,000 (CLARK, 1938). The softening 
temperature of cellulose is given with ≥ 230 °C (WATERHOUSE, 1984).  

Polyoses or hemicelluloses show a DP of 50 to 300 (WATHÉN, 2006). It consists of 
pentosis and hexosis (polysaccharides) like xylose, mannose, galactose and arabinose. 
The molecules are more or less branched chains (EICHHORN ET AL., 2001), anisotropic 
(BERGANDER AND SALMÉN, 2002) and constitute a kind of mediator between cellulose 
and lignin by stiffening and strengthening their interaction. Hemicellulose and lignin 
together form the matrix material in the fibre composite wood. They dominate the 
stiffness characteristics of fibres in transverse direction (SALMÉN, 2004). In particular at 
10% moisture content hemicellulose and lignin together constitute an active stress 
transfer matrix between cellulose molecules (fibrils) (KERSAVAGE, 1973; BERGANDER 

AND SALMÉN, 2002). In comparison with cellulose hemicelluloses shows lower 
mechanical characteristics. Thereby xylose was found to be most important for strength 
(SPIEGELBERG, 1966; SJÖHOLM ET AL., 2000). It is assumed that hemicellulose 
crystallises after extraction which makes it difficult to determine reliable properties by 
mechanical testing (BERGANDER AND SALMÉN, 2002). The softening temperature of 
hemicelluloses is within the range of ≥ 150 ÷ 220 °C (WATERHOUSE, 1984). 

Lignin is in particular in the later discussed middle lamella (ML) a highly branched 
macromolecule of phenylpropane units and assumed to be isotropic, at least if extracted 
(BERGANDER AND SALMÉN, 2002). Lignin is amorph and shows softening above 80 °C 
(SALMÉN, 2004) or at least above 124 ÷ 193 °C (WATERHOUSE, 1984). Lignin shows 
high resistance against compression (CLARKE, 1938). Together with hemicellulosis it acts 
as connector between cellulose fibrils and in particular between wood cells in the middle 
lamella. The lignification, an infiltration process of polysaccharides and lignin into the 
cell wall, starts in the middle lamella and already after the cell has reached its final size 
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(FENGEL AND WEGENER, 1989). SALMÉN (2004) describes lignin as material with a high 
degree of visco-elasticity and cellulose as well as hemicellulose as elastic. Both, cellulose 
and hemicellulose are hydrophil. Up to the fibre saturation point they are able to absorb 
four to five times the amount of water of lignin (COUSINS, 1978), with lignin being more 
or less hydrophob. Thereby only 20% of celluloses are able to absorb water (SALMÉN, 
2004). According SALMÉN (2004) the loss of stiffness in cells up to 20% moisture content 
is caused by changes in hemicellulose.  

Overall, for modelling wood tissues on molecular hierarchical level continuation of ab-
inito calculations as well as the use of molecular dynamics, quantum mechanical models 
or empirical models based on classical physics are applied (e.g. COLUMBO, 2008).  

Hierarchy of Cells 

This level is dedicated to wood tissues within 10–6 to 10–3 m and is often named as “micro 
level”. Within this level the main molecule cellulose aggregates to larger complexes. 
Together with hemicellulose and lignin these build up wood cells. In general a cellular 
structured material shows an optimised ratio of mechanical properties and weight 
(GIBSON AND ASHBY, 1999) and gives masterplans for an efficient use of resources. In 
the following firstly aggregates of cellulose molecules are discussed briefly followed 
secondly by the structure of the cell wall and detailed information for each wall-layer. A 
state-of-the-art review of cell wall mechanics serves as example of high sophisticated 
evolution by nature and source for transfer to technical applications.  

Cellulose Aggregates 

At first 30 ÷ 40 parallel aligned and densely packed cellulose molecules aggregate to 
elementary fibrils of 3 ÷ 4 nm in diameter (FENGEL AND WEGENER, 1989; SALMÉN, 
2004; WATHÉN, 2006). About 18 ÷ 20 of these elementary fibrils (WATHÉN, 2006) 
further agglomerate to microfibrils of about 10 ÷ 30 nm in diameter (FENGEL AND 

WEGENER, 1989; EICHHORN ET AL., 2001; WATHÉN, 2006). As next these microfibrils are 
more or less parallel aligned in the cell wall layers and covered by strongly bonded and 
highly visco-elastic glucomannan. This causes an in-between distance of about 3 ÷ 4 nm 
by being oriented in cell direction and surrounded by hemicelluloses and lignin  
(SALMÉN, 2004).  
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The Structure of Wood Cells  

The cell wall consists of several layers (see Fig. 4.10, left) starting with the primary cell 
wall (P) followed by the secondary cell wall (S), which itself consists of S1, S2 and S3. In 
some timber species also a tertiary cell wall (T) is present. The cells themselves are 
connected by a thin middle lamella (ML). Due to its minor thickness a clear 
differentiation from P is difficult. Thus it is common to decribe it as combined middle 
lamella (CML), as assembly together with the adjacent P-walls. The overall density of 
cell wall material is given with 1,500 kg/m³ (KOLLMANN AND CÔTE, 1968; ASHBY ET 

AL., 1995; EDER ET AL., 2009; MICHELL AND WILLIS, 1978; MICHELL ET AL., 1978; ORSO 

ET AL., 2006) and thus equal to the density of cellulose.  

Tab. 4.1: Characteristics of cell wall layers of wood: shares of main constituents 

cell wall 
[--] 

 

cellulose 
[%] 

mass | volume 

hemicellulose 
[%] 

mass | volume 

lignin 
[%] 

mass | volume 

ML ≈ 0% 1);12% 3) 44% 1); 26% 3) 56% 1); 62% 3) 

P 15% 1); 12% 3) 33% 1); 26% 3) 52% 1); 62% 3) 

CML 16% | 11% 2) 29% | 14% 2) 55% | 75% 2) 

S1 
45% | 37% 2) 

28% 1); 35% 3) 
33% | 35% 2) 

31% 1); 30% 3) 
22% | 28% 2) 

41% 1); 35% 3) 

S2 
56% | 45% 2) 

50% 1) 3) 
28% | 34% 2) 

31% 1); 27% 3) 
22% | 21% 2) 

19% 1); 23% 3) 

S3 
44% | 34% 2) 

48% 1); 45% 3) 
34% | 36% 2) 

36% 1); 35% 3) 
22% | 30% 2) 

16% 1); 20% 3) 
1) BERGANDER AND SALMÉN (2002) 
2) BURGERT (2007) 
3) FENGEL (1969) and KOLLMANN AND CÔTE (1968)  

Tab. 4.1 and Tab. 4.2 give an overview of mass and volume fraction of the main 
molecules for each cell wall. Additionally the thickness and construction of cell walls in 
respect to the orientation of microfibrils relative to the cell axis, the microfibril angle 
(MFA) with MFA = 0° and MFA = 90° corresponding to parallel and perpendicular to 
cell axis, respectively, is given.  
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Tab. 4.2: Characteristics of cell wall layers of wood tissues: dimensions, MFA 

cell wall 
[--] 

 

thickness 1)  
[μm] 

 

thickness 
[%] 

early- | latewood 

MFA 
[°] 

 

# sub-lamellas 3) 
[--] 

 

ML 0.30 -- | -- -- -- 

P 0.10 -- | -- unordered 1) -- 

CML 0.50 
4.2% | 2.1% 2) 

5% 3) 

4.3% | 2.1% 4) 
-- -- 

S1 0.15 
12.5% | 9.0% 2) 

10% 3) 
12.4% | 8.8% 4) 

–70 ÷ +70 1) 

50 ÷ 70 3) 5) 
4 ÷ 6 

S2 1.60 
78.7% | 85.4% 2) 

75% 3) 
79.0% | 85.8% 4) 

0 ÷ 10 1) 
10 ÷ 30 3) 5) 

30 ÷ 150 

S3 0.03 
4.5% | 3.3% 2) 

10% 3) 
≈ 70 1) 

60 ÷ 90 3) 5) 
0 ÷ 6 

T -- 4.3% | 3.3% 4) -- -- 
1) BERGANDER AND SALMÉN (2002) 
2) FENGEL AND STALL (1973) 
3) SCHNIEWIND (1989) and DINWOODIE (1989)  
4) FENGEL AND WEGENER (1989)  
5) HAKKILA (1998) 

In the following paragraphs structure and function of the cell wall layers are discussed 
separately. BOOKER AND SELL (1998) studied fracture processes in cell walls with the 
hypothesis that they follow the path requiring lowest energy (lowest resistance). They 
observed that fracturing of microfibrils requires more energy than fracturing of matrix 
material. On that basis possible fracture paths and fracture mechanisms were analysed. 
Some of their results are presented for each layer.  

The connecting layer between the cells, the middle lamella (ML), is a very thin and 
isotropic (CLARKE, 1938) layer primarily built up of lignin (≈ 60%) and hemicelluloses 
(≈ 30%).  
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The primary wall (P) is the first cell layer which is created by differentiation of a new 
wood cell by the secondary meristem cambium. It shows low MFA and antidromic net-
like sub-layers composed of microfibrills. The P-layer consists of thin microfibrils and 
shows a high amount of hemicelluloses, pectin and lignin (CLARKE, 1938). The net-
structure together with the high amount of branched molecules enables the P-layer to 
expand easily during cell differentiation in all directions, in particular transversely. Both 
cell layers, ML and P, play an important role in the mechanical potential and fracture 
mechanics of wooden cells. Following BOOKER AND SELL (1998) the combined middle 
lamella (CML) resists delamination of the double cell walls (interwall checking) and 
prevents internal checking. Additionally it is a part of the vibration energy absorption. 
CLARKE (1938) report that green wood under tension stress parallel to grain fails in P or 
ML. GORDON AND JERONIMIDIS (1974) analysed fibre composites under tension load 
parallel to grain and observed fibre separation (failure initiated in P or ML) followed by 
tension buckling. Thereby tension buckling stands for cell folding followed by 
subsequent cell collaps (e.g. EDER ET AL., 2008A).  

The secondary wall (S) is created after primary cell differentiation. It is responsible for 
stability and strength of the cell in longitudinal and transverse direction. Its structure 
prevents radial cell expansion (CLARKE, 1938). The secondary wall layer consists of three 
sub-layers S1, S2 and S3. The sub-layer S2 with a share of roughly 80 ÷ 90% of total cell 
wall thickness clearly dominates the characteristics of the total cell wall. It is primary 
responsible for its mechanical stability in longitudinal direction. Sub-layers S1 and S3 
dominate cell wall mechanics in transverse direction and play an important role in 
explaining differences between early- and latewood (BERGANDER AND SALMÉN, 2002). 
The fibrils in S1 and S3 are more or less perpendicular oriented to that in S2 (BOOKER 

AND SELL, 1998). This activates some locking effect. In the following paragraphs each 
sub-layer will be outlined separately. 

Compared to S2 sub-layer S1 consists of more loosely packed microfibrils. These change 
their orientation alternating between each sub-sub-layer from S- to Z-helix, e.g. in 
Norway spruce with overall MFA = 54° and MFA = 46° in early- and latewood, 
respectively (BRÄNDSTRÖM, 2001; FENGEL AND WEGENER, 1989). BOOKER AND SELL 

(1998) report that the MFA in Norway spruce changes from S-helix outside (boundary of 
P and S1) with MFA = 45° to a Z-helix and MFA = 70° inside (boundary of S1 and S2). 
Thus a nearly perpendicular orientation of fibrils from out- to inside of the cell with main 
orientation transverse to the cell axis can be observed. In cell wall mechanics in case of 
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axial compression S1 limits the maximum shear stresses in CML by limiting the 
expansibility of later discussed S2 sub-layer (locking effect). Due to the fact that fibrils 
are not tightly packed it is assumed that the constraining mechanism starts already above 
a certain limit. Furthermore S1 prevents interwall cracks from developing into transwall 
cracks (BOOKER AND SELL, 1998). Nevertheless, MARK AND GILLIS (1970) report that 
fracture in cell wall initiates at the boarder or within S1. This was experimentally 
observed by DAVIES (1968), GROZDITS AND IFJU (1969), KEITH AND CÔTE (1968), 
KÓRÁN (1967) and MARK (1967).  

The sub-layer S2 is the dominating layer in wooden cells. The densily packed microfibrils 
are strongly parallel aligned in a Z-helix with a low MFA of 0 ÷ 30° (0 ÷ 20° according 
BOOKER AND SELL, 1998).  

The orientation of microfibril aggregates transversely the cell wall is controversely 
discussed. KERR AND GORING (1975), CLARKE (1938), FAHLEN AND SALMÉN (2002), 
RUEL AND GORING (1978) and SALMÉN (2004) propose an arrangement in concentric 
lamellas. Thereby CLARKE (1938) states that the observable arrangement of microfibrils 
depends on the treatment done in preparing the specimen. SELL AND ZIMMERMANN 

(1993), SELL (1994), BOOKER AND SELL (1998), SCHWARZE AND ENGELS (1998) and 
ZIMMERMANN ET AL. (2006, 2007) confirm the observation that the observable structure 
depends on the treatment beforehand. In dependency of the treatment concentric, radial as 
well as random arrangements of microfilbril aggreagates were found. Nevertheless, a 
sandwich construction of microfibril reinforced radial ribs is proposed by ZIMMERMANN 

ET AL. (1994). From the mechanical point of view this arrangement increases the 
resistance of the cell against buckling (axial compression forces), against collaps 
(negative pressure induced by water transport), and it increases the bending stiffness 
(BOOKER AND SELL, 1998). A high resistance of S2 is required because this layer is in 
principle responsible to support own weight as well as normal stresses imposed externally 
(e.g. by wind or snow) (BOOKER AND SELL, 1998). If axially compressed S2 rotates 
slightly due to MFA > 0° and compresses (expands) like a spring (FRATZL AND 

WEINKAMMER, 2007; GORDON AND JERONIMIDIS, 1974; KECKES ET AL., 2003). Thereby 
the compression (expansion) capacity and rotation of S2 is restricted by S1. The role of 
MFA is apparent. The steeper the windings the stiffer the respond of S2 against stresses. 
Furthermore, all cells show in principle the same helical orientation. Thus neighboured 
cell walls show opposite MFA which lead to a kind of reinforcement, a locking effect, 
between the cells. This induces shear stresses in ML and CML (e.g. KECKES ET AL., 
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2003). Thereby higher branched 3D lignin is suitable to resist these shear stresses. 
Furthermore, it supports the damping mechanism by dissipating vibrational energy. This 
damping mechanism is also present within the rib-like structured microfibrill aggregates 
in the cross section of S2. Thereby it damps the rotation due to lignin-layers between 
cellulose ribs stressed under cyclic shear. S2 also remarkable resists transwall crack 
propagation (BOOKER AND SELL, 1998). Additionally, mechanics of S2 seem to be 
independent of tree species. This was observed by analysing tension tests on cell walls 
performed on Norway spruce, pine and poplar (EDER, 2007).  

The structure of the third sub-layer S3 shows a MFA varying between 60 ÷ 90° 
(HAKKILA, 1998) and a flat helical arrangement of microfibrils (CLARKE, 1938). BOOKER 

AND SELL (1998) give a MFA = 70° and a Z-helix on the outside which changes to 
MFA = 30° and to an S-helix in the inside of S3. Following that, microfibrils at outside 
and inside in S3 are nearly perpendicular to each other with most fibrils oriented 
transversely to the cell axis. Furthermore a high variation of MFA in the range of 30° and 
90° between tracheids in the innermost part of S3 is reported. In cell wall mechanics S3 
strengthens the cell wall against collapse, e.g. due to hydrostatic tension forces from 
negative pressure as consequence of water transport. Furthermore, the sub-layer 
reinforces the cell wall against transwall fracturing perpendicular to grain and stiffens the 
cell wall decisively transversely (BOOKER AND SELL, 1998). 

The tertiary cell wall layer (T) is not present in all wood species. Its fibrils are in a flat 
and not strictly parallel arrangement. The surface is sometimes covered by warts (warty 
layer).  

So far characteristics and mechanics of cell wall layers have been discussed. Analysing 
fracture processes of the whole wooden cell PAGE ET AL. (1972) and PAGE AND EL-
HOSSEINY (1976) remark that the occurrence and amount of local fibre defects and MFA 
in S2 are the main parameters. According PAGE ET AL. (1971) failure of single fibres 
stressed in tension is initiated by buckling (tension buckling). JAYNE (1959) describes 
fibres under tension parallel to grain as viscoelastic. KERSAVAGE (1973) report that dry 
fibres of low MFA stressed in tension parallel to grain behave linear-elastic. FRATZL AND 

WEINKAMMER (2007) remark that modulation of strength and stiffness properties 
between layers of the cell wall create an effective crack stopping mechanism. This is due 
to the variation of constituents and MFA. REITERER ET AL. (1999) states that < MFA in 
the dominating layer S2 makes cell wall stiff and brittle whereas > MFA shows flexible 
and tough behaviour if stressed in tension parallel to grain. More generally FRATZL AND 
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WEINKAMMER (2007) state that during elongation of cells and decrease of MFA matrix 
between fibrils is sheared up to a critical point. Above this point partial and irreversible 
deformation is given due to successive failing bonds. After stress release a rebonding is 
assumed which leads to some kind of arresting of the cell in elongated position. Thus the 
matrix is not irreversible damaged although the cell is irreversible elongated (KECKES ET 

AL., 2003). This mechanism requires strong bindings between fibrils and matrix (KECKES 

ET AL., 2003; FRATZL ET AL., 2004). WATHÉN (2006) references HILL (1967) who 
observed a decreasing MFA in wood under creep stresses in tension parallel to grain. 
Stiffening and increase of plastic deformation was also observed in cyclic tensile tests of 
wood fibres by WILD ET AL. (1999), SEDIGHI-GILANI AND NAVI (2007) and EDER ET AL. 
(2008B). 

Although the following belongs to the next hierarchy some notes on early- vs. latewood 
as well as juvenile vs. adult wooden fibres are already given now. These facts support the 
understanding of fracture processes and its influencing parameters. According MARK 

(1967) latewood cells are in comparison to earlywood cells not only stiffer and stronger 
because of thicker cell walls but also because of a lower MFA (see also BRÄNDSTRÖM, 
2001). EDER ET AL. (2008A) tested wet fibres of Norway spruce in tension parallel to 
grain. They report on tension buckling in cells after initial fibre folding in (thin) 
earlywood fibres and transverse cracking in (thick) latewood fibres. In the latter case 
weak zones like piths or pith fields showed to be more relevant for cracking than in thin 
walls. Comparing trees with different growth rates BRÄNDSTRÖM (2001) report that MFA 
in cells of fast growing trees is higher. MFA decreases significantly from pith to bark 
influenced by juvenile and adult cambium meristem, respectively.  

FRATZL AND WEINKAMMER (2007) state that natural (nano) composites combine two in 
principle contradicting properties, namely stiffness and toughness. The stress-strain 
relationship shows high stiffness at lower stresses but a much softer behaviour at high 
stresses comparable to an elastic-plastic spring (FRATZL AND WEINKAMMER, 2007). As 
common in all composites also wooden fibres are joined by a thin glue layer which is 
loaded under shear. Thus stiffness comes from fibres whereas toughness results from 
plastic deformations of the glue layer (FRATZL AND WEINKAMMER, 2007). 

Wood Cell Types 

So far constituents, structure and function of cell wall layers were discussed. As next, the 
types of cells and their function in the living tree are presented. At first differentiation is 
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made in cell types of softwoods (coniferous tree species) and hardwoods (deciduous tree 
species). In regard to the evolution timeline hardwoods are younger than softwoods and 
are characterised by a more complex structure and cell types which are optimised for each 
specific function. Tab. 4.3 gives a brief overview of cell types and functions of both, soft- 
and hardwoods. For example Norway spruce consists of about 95.3% tracheids and 
1.4 ÷ 5.8% longitudinal and 4.7% radial parenchyma cells (FENGEL AND WEGENER, 
1989). In general tracheids decisively determine the physical (mechanical) properties of 
softwoods. The main parameters influencing the mechanical performance are 

 length;  

 diameter;  

 cell wall thickness;  

 structure of S2 (e.g. share of cellulose and MFA).  

Tab. 4.3: Wood cell types and their functions in soft- and hardwoods (according FENGEL AND 

WEGENER, 1989) 

function softwoods hardwoods 

mechanical function (e.g. load bearing, stress 
transfer, stiffening) latewood tracheids 

libriform fibres 
fibre tracheids 

conducting (transport) function 
earlywood tracheids 
radial parenchyma 

(wood rays) 
wood vessels (tracheae) 

storage function 
radial parenchyma 

longitudinal parenchyma 
(resin channels) 

radial parenchyma 
longitudinal 
parenchyma  

(resin channels) 

secretion function epithel cells epithel cells 

local mechanical function (reaction wood) 
compression wood 
(opposite wood) 

tension wood 
(opposite wood) 

An overview of the dimensions of tracheids is given in Tab. 4.4. In Norway spruce 
tracheids show a mean length of 1.7 ÷ (2.9) ÷ 3.7 mm and a diameter of 
20 ÷ (30) ÷ 40 μm (FENGEL AND WEGENER, 1989). In general, the length of tracheids 
depends on the fusiform cambial cell (BRÄNDSTRÖM, 2001). After differentiation the cell 
elongates to its final shape. The length of tracheids can change afterwards to initiate some 
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pre-stress in tension or compression transversely (WEINKAMMER AND FRATZL, 2007; 
MATTHECK, 1994, 2003).  

Tab. 4.4: Characteristics of tracheids of Norway spruce: dimensions in juvenile vs. adult wood as 
well as early- vs. latewood 

 juvenile wood 1) mature wood 1) earlywood latewood 

 tracheid length [mm] 1.3 ÷ 2.7 2.8 ÷ 4.3 -- -- 

 tracheid diameter (rad.) [μm] 39.3 2) 13.1 2) 

 tracheid diameter (tan.) [μm] 
15.0 ÷ 29.0 29.3 ÷ 39.7 

32.7 2) 32.1 2) 

 tracheid wall thickness (rad.) [μm] 3.5 3) 6.2 3) 

 tracheid wall thickness (tan.) [μm] 
0.8 ÷ 4.6 2.1 ÷ 7.5 

2.9 3) 4.7 3) 
 1) BOUTELJE (1968)  
 2) FENGEL (1969)  
 3) OLLINMAA (1961)  

Additional differences between early- and latewood as well as between juvenile and adult 
wood are discussed in the next section, dedicated to the hierarchy of growth.  

Beside fibre tracheids libriform fibres are responsible for load bearing and stiffening in 
hardwoods (FENGEL AND WEGENER, 1989).  

Parenchyma cells operate as storage. Radial oriented parenchyma (wood rays) act 
additionally as reinforcement of wood in transverse direction (FENGEL AND WEGENER, 
1989; MATTHECK, 1994). 

Wood vessels or tracheae are only common in hardwoods. They are one impressive proof 
of the evolution of wood tissue from soft- to hardwoods and the separation of conducting 
and transport from the mechanical function. Thereby vessels are responsible for transport 
of water and nutrients (FENGEL AND WEGENER, 1989). 

Epithel-cells are secretion channels (FENGEL AND WEGENER, 1989).  

To conclude, for cell wall mechanics it is required to have comprehensive knowledge of 
dimensional relationships, volume and mass fractions of constituents, geometry, MFA in 
layers and sub-layers and about the interaction between adjacent cells. Thereby it is 
recommended not to model two or more cells instead of single cells or at least to study 
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double cell walls build up of S3, S2, S1, CML, S1, S2, S3 and empty lumen (BARBER 

AND MEYLAN, 1964).  

Hierarchy of Growth 

The hierarchy of growth is roughly defined within 10–3 to 100 m. Thereby cells of 
previous mentioned types form large structures (tissues) which aggregate to wood and 
timber. Its main structure is the annual or seasonal growth ring as the result of secondary 
growth in thickness. In temperate climate zones on wood (xylem) and bark side (phloem) 
every year a ring of several cell rows is formed by the secondary meristem cambium. In 
tropical or subtropical climate the formation is linked to breaks in growth. In extreme dry 
and cold regions with extreme short vegetative periods sometimes only a partial growth 
ring is created (see e.g. Pinus longaeva). Nevertheless, the focus is on tree species of 
temperate climate zones and in particular on softwoods. Every annual growth ring 
consists radially of an early- and latewood zone. As given in Tab. 4.3 earlywood is 
primary responsible for conductive and transport whereas latewood primary provides 
mechanical stability. The wider the annual growth rings the wider the zones of earlywood 
by more or less constant thick latewood. In hardwood two distinctive different formations 
of cells in growth rings can be distinguished, namely ringporous species and diffuse 
porous species. Ringporous species create one or more rings of tracheae (vessels) in 
spring responsible for conductive and transport. This earlywood zone follows a zone of 
libriform fibres, tracheids and longitudinal parenchyma cells which is responsible for the 
mechanical stability, strength and stiffness of the tree. The wider the growth rings the 
thicker the latewood zones. Thereby the porous ring zone stays constant over the years. In 
growth rings of diffuse porous species vessels are randomly distributed and give a more 
regular pattern. Nevertheless, due to denser wood at the end of the growth ring they are 
visible macroscopically.  

Back to early- and latewood of softwoods PAAKKARI AND SERIMAA (1984) observed 
higher MFA in early- than in latewood. Differences between both are explained with 
different shares of hemicelluloses (BERGANDER AND SALMÉN, 2002). Tracheids in 
latewood are observed to be longer than in earlywood but distinctively decrease in length 
at the end of the growth ring (BRÄNDSTRÖM, 2001). The cell wall thickness is also higher 
in latewood but decreases sharply at the end of the annual growth ring (in reference to 
DENNE, 1973; GINDL AND WIMMER, 2000). The cell wall thickness and the share of 
latewood increase with age and height of the tree (BRÄNDSTRÖM, 2001). The changing 
dimensions and shares in early- and latewood affect also the density. In Norway spruce it 
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increases from 300 kg/m³ in earlywood to 450 kg/m³ in transition wood and to 
1,000 kg/m³ in latewood of nearly constant width of 0.2 mm (PERSSON, 2000).  

 

Fig. 4.5: Qualitative trend of density transversely with analogies to changes in MFA, length of 
tracheids and cell wall thickness  

The cell diameter in tangential direction is more or less constant whereas in radial 
direction earlywood cells are larger e.g. BRÄNDSTRÖM, 2001; Tab. 4.4). Changes in cell 
diameter and wall thickness together lead to a remarkable increase of bulk material in 
latewood. Together with a reduced MFA a further increase in strength and stiffness 
longitudinally is given.  

With maturing of the cambium the characteristics of cells change in radial direction of the 
tree, from pith to bark. These changes are known as transition process from juvenile to 
adult wood. This transition process is in particular distinctive in softwoods but also 
present in hardwoods (see Fig. 4.6). 

The juvenile wood zone is characterised by a sudden change of wood properties, increase 
e.g. in density, fibre length, cell wall thickness, strength and stiffness longitudinally, 
share of latewood and swelling and shrinkage transversely, as well as by a decrease e.g. 
of MFA and swelling and shrinkage longitudinally (see e.g. BENDTSEN, 1978; Fig. 4.7). 
These changes are observed as highly variable even in the same tree species and growth 
region (e.g. ABDEL-GADIR AND KRAHMER, 1993). The change was also found to passing 
nonlinearly to adult wood zone over the transformation region. The transformation zone 
is described to be associated with an age of five to twenty years in softwoods, in 
particular in Norway spruce around 20 years. Nevertheless, the timeline of the transition 
process is highly variable and depends on the analysed characteristic (e.g. ZOBEL AND 

SPRAGUE, 1998). 
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Fig. 4.6: Qualitative change in characteristics from juvenile to adult wood in softwoods as well 
as ring and diffuse porous hardwoods: exemplarily for density (ZOBEL AND SPRAGUE, 
1998) 

The adult wood is described as region of more homogeneous and nearly constant wood 
properties. Due to changes in fusiform cambial cells MFA in S2 in juvenile tracheids of 
softwoods is 20 ÷ 40° whereas adult wood shows 6 ÷ 10° (SERIMAA ET AL., 2000; 
LICHTENEGGER ET AL., 2000). The length of tracheids increases from 1.3 ÷ 2.7 mm to 
2.8 ÷ 4.3 mm in juvenile and adult wood zones, respectively (BRÄNDSTRÖM, 2001). Also 
tracheid diameter and cell wall thickness increase, from 15 ÷ 29 μm to 29 ÷ 40 μm and 
from 0.8 ÷ 4.6 μm to 2.1 ÷ 7.5 μm in juvenile and adult wood, respectively 
(BRÄNDSTRÖM, 2001).  

The zone of juvenile wood appears more or less as cylindrical volume in the core of the 
tree which corresponds to the age of cambium. In contrast, the radial change from sap- to 
heartwood, with sapwood at the outside and of constant thickness within the same tree, 
leads to a cone-shaped volume of heartwood in the core of the tree (see Fig. 4.8).  

Sapwood represents the younger wooden part positioned adjacent to the bark zone. It 
consists of a certain amount of living cells, at least the parenchyma cells as well as some 
cells of the last annual growth ring(s). Its main functions are the transport of water and 
nutrients from root to top as well as the storage of sugars. Sapwood has very high 
moisture content, often above 100%. In contrast, heartwood is in the core of trees. It has 
no living cells and lower moisture content around the fibre saturation point 
(u ≈ 25 ÷ 30%). Physiologically heartwood is the inactive wooden part in trees 
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(GROSSER, 2003). It follows after a naturally, chemically transformation process in a 
certain age of the tree leading in many species to more durable wood. Also in many tree 
species heartwood can be differentiated from sapwood by its colour. The classification of 
heartwood according its colour can be made in species with true heartwood (obligatory 
creation of distinct coloured heartwood), false heartwood (facultative occurrence of 
coloured heartwood), ripewood (heartwood without change in colour) and tree species 
with heart- and ripewood (e.g. GROSSER, 2003).  

 

Fig. 4.7: Changes in characteristics from juvenile to adult wood in softwoods according 
BENDTSEN (1978): increasing characteristics (left); decreasing characteristics (right) 

For local mechanical reaction on asymmetric or exeptional externally or internally 
applied stresses trees are able to form reaction wood in combination with opposite wood, 
placed radially on the other side of the pith. Softwood species create compression wood 
and hardwoods tension wood (see Tab. 4.3) to support the tree against local compression 
or tension stresses, respectively. Cells of compression wood are cylindrical in shape with 
a high amount of lignin (visually appearing darker in colour) (e.g. WIMMER, 2002). It 
stiffens the wood against compression stresses and supports with the reduction of contact 
area between neighboured cells that cells can glide more easily against each other. In case 
of high compressive stresses transversal expansion of cells lead to an increase of contact 
area and of stiffness. Tension wood in hardwoods is characterised by a high amount of 
celluloses. The tracheids of tension wood have a gelatinous layer (G-layer) in the 
secondary wall of highly parallel arranged cellulose fibrils which are oriented strictly in 
longitudinal direction (CÔTÉ AND DAY, 1964; WIMMER, 2002).  
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Fig. 4.8: Wood and timber zones in longitudinal and transverse direction of trunks: sap- vs. 
heartwood (left); juvenile vs. adult wood (left-middle); knot zones in trees observed 
from outside (middle-right); internal growth stresses (pre-stresses) in trees (right) 

To summarise, within the hierarchy of growth several mechanical characteristics are 
differentiated, e.g. within the growth ring (early- vs. latewood), between juvenile and 
adult wood, heart- and sapwood as well as between normal and reaction wood. Many of 
these characteristics are a consequence of the age of the tree, the age of the secondary 
meristem cambium and due to the ability to respond on externally applied stresses.  

Hierarchy of Trees 

This hierarchical level comprises all main elements of trees, like the crown, the stem, 
branches and the root system, all roughly within a range of 100 to 102 m. In regard to this 
manuscript the focus is on the stem and branches, the latter so far it is a part of the stem. 
In particular these elements play a major role in classifying wood and timber for technical 
applications. At this hierarchical level all so far discussed elements of previous 
hierarchies merge to the final complex, the individual tree, as the largest living unit on 
earth. The complex of all constituents described previously, cellulose, hemicellulose and 
lignin, the different cell wall layers, cell types and their individual specifications within 
the growth ring and along the stem, juvenile vs. adult wood, heart- and softwood and 
zones with or without knots, etc., are beside their individual and local adaptability what is 
generally experienced as a tree.  
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With focus on the trunk the key element within this hierarchy are branches. They are the 
bearing element of the leafes which form the supply unit for taking up sun energy, CO2 
and release of O2. The part of branches included in the stem is called knot. The 
longitudinal occurrence of branches appears very regular in softwoods being strongly 
apical dominant. In hardwoods this dominance is often not as strict as in softwoods. The 
formation and the age of branches in trees in longitudinal direction, from root to top, are 
linked to the position of the tree and its branches relative to the sunlight. In open stands 
branches are observable along the whole tree. In dense stands the stem of an older tree 
shows in principle three zones from root to top, respectively, a zone free of branches, a 
zone of dead branches and a zone of green leaf bearing branches (see Fig. 4.8). As 
branches normally arise from the pith, the innermost region of stems shows higher knot 
density than the outer zone. The way how branches are incorporated in the stem (see e.g. 
SHIGO, 1986) together with the higher knot density in the core of stems act like a 
reinforcing element, i.e. like dowels in case of wind loads and induced bending stresses. 
They increase the resistance of timber against shear in the most shear stressed inner zone 
and increase the resistance against bending stresses in the lateral stem region in case of 
being absent. The branch itself can be mechanically modelled as one-sided restraint 
cantilever with elastic bedding. Thereby reaction wood and opposite wood plays a major 
role in stabilising the branch, in particular near the stem. Higher bending resistance in the 
outer part of the stem is supported additionally by adult wood as well as by the pre-
stressed core of the tree (see Fig. 4.8). This pre-stressing compensates the fact that due to 
the alignment of tracheids wood is optimised for tension but not for compression 
(MATTHECK, 1995). For stabilisation against wind loads, gravity and landslide on 
hillsides trees often show reaction wood at the root end.  

Another characteristic of trees is the spiral grain. In the first years of a tree the cells wind 
longitudinally in a left spiral around the pith. Later, this helical orientation changes to a 
right helix. This helical orientation varies between and even within tree species 
remarkable. In particular in Norway spruce change in spiral orientation is found to be 
linked with the transition of juvenile to adult wood (e.g. HOFFMEYER, 1987). In sawn 
timber spiral grain is one reason for global grain deviation which describes the orientation 
of fibres in respect to the edge of prismatic sawn structural timber. The other reason for 
global grain deviation is the cutting process if not done parallel to the outside of the stem 
(which is common in standard structural timber) or not properly edging (HOFFMEYER, 
1987). Global grain deviation in sawn timber not only significantly reduces strength and 
stiffness but also amplifies warping and twisting.  
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Hierarchy of Forests 

This hierarchy overspans the range of 102 to ≥ 106 m. For example, in particular in 
Central Europe managed forests have following four main functions: 

 utility function: sustainable forest management; 

 protection function: against erosion, avalanches, falling rocks, etc.;  

 regeneration function: harmonising human life;  

 welfare function: storage and reconditioning of water and air.  

Wood and timber of each tree highly depends not only on genetics but also on local 
supply and climate conditions even if trees are grown in managed forests. Thus timber 
shows a very high variability in its characteristics, in particular in strength and stiffness, 
even between trees of the same forest and of the same species. This underlines the 
assumption that nature in principal delivers some kind of recipe for life which is every 
time adapted on local needs and challenges (FRATZL AND WEINKAMMER, 2007). As trees 
are a complex of all these individually but in context to the whole system adapted cells 
and tissues a high variability in characteristics consequences. This is in particular 
amplified by the fact that cells in trees after established and lignified are not rebuilt or 
adapted once conditions have changed, as it is known e.g. from bone.  

4.2.2 Technical Hierarchical Levels: Constituents, Functions and Models  

The aim of this section is to present or just list some utilisation examples of wood, timber 
and their tissues separately for each technical hierarchy. This is done in context to natural 
hierarchies. Technical products of these hierarchical levels are always a result of 
separation, starting by harvesting and trimming of tree stems up to mechanical or 
chemical dissolution of wood and timber to fibres and molecules (tissues). Some of the 
products follow from agglomeration of beforehand dissolved tissues or sawn timber 
products. The variety of basic elements and structures of agglomeration and the 
possibilities in joining creates numerous products and structures which can be engineered 
to be optimised for specific technical applications. Thus discussing products of technical 
hierarchies cannot be done without considering the external tool of joining techniques.  
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Hierarchy of Tissues 

Products of this hierarchy are in the range of 10–9 to 10–6 m. Examples are e.g. cellulose 
nanofibrils for the creation of high-capacity fibre reinforced composites, tannic acids e.g. 
from oak for tanneries, extractives for food industry like vanillin or suggars, for medicin 
like acetylsalicyl acid, lignin as adhesive and much more. 

Hierarchy of Fibres 

This hierarchy overspans 10–6 to 10–3 m. Wood fibres are widely used, e.g. for (high, 
medium, low density) fibre boards (with / without additional adhesives), pulp for paper 
and packaging, fibres for clothes and hygienic products or for the production of wood 
plastic composites (WPCs).  

Hierarchy of Clear Wood 

Clear wood in this hierarchy is not as strict defined as e.g. in DIN 52180. It describes 
timber without any natural growth characteristics, e.g. like knots or checks. The hierarchy 
overspans roughly 10–3 to ≥ 10–1 m. Famous technical products on this hierarchical level 
are e.g. various sawn products like battens, helves, veneers or massive panels for 
furnitures. The characteristics of clear wood are also of interest for modelling of finger 
joints in structural timber which have to be placed in a clear section.   

Hierarchy of Construction Timber 

The range of roughly 10–2 to 101 m of the hierarchy of construction timber overlaps in the 
lower region with the previous hierarchy of clear wood. Well known representatives of 
this hierarchy are sawn products like boards, posts and beams. For application as load 
bearing elements construction timber is standardised in strength and stiffness grades by 
classifying the timber according regulated requirements.  

Hierarchy of System Products  

System products or engineered timber products are typically in the range of 10–2 to 
1010 m. These products are designed to fulfill special properties as e.g. mentioned in 
section 4.2. These products base on sawn timber or even smaller timber elements which 
are joined by adequate connection techniques to linear, two- or three-dimensional load 
bearing products of dimensions even larger than trees. In particular two- and three-
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dimensional products are designed for loads in and out of plane. Some representatives of 
linear members are finger jointed construction timber, duo and trio beams and glued 
laminated timber (glulam; GLT). Products for a two-dimensional load transfer are cross 
laminated timber (CLT), plywood or laminated veneer lumber (LVL) and oriented strand 
boards (OSB). All these products base on structural timber elements which are rigidly 
joined by adhesives. Another possibility is to join the elements by means of mechanical 
fasteners, e.g. nails, screws or bolts. Well known system products in this category are 
nail-laminated posts or pre-stressed timber bridge decks.  

All these products have in common the homogenisation of physical properties of timber. 
In particular cross laminated products suffer from distinctive homogenisation of swelling 
and shrinkage. The resulting mechanical characteristics, foremost strength properties, 
depend decisively on the arrangement of the elements in respect to the stress situation, i.e. 
if they act primarily in serial or parallel. Consequently, these products are suffering from 
system effects of first and even second category, ksys,I and ksys,II, see section 1.1.  

Hierarchy of Load Bearing Structures 

This hierarchy again overlaps with the previous one. It is defined within 100 to 1010 m. It 
comprises all structures, e.g. roof-, floor- and wall-constructions as well as bridges. 
Thereby products of previous hierarchies are combined by direct joining side-by-side 
(e.g. folded pannels) or indirect connection via load distributing elements of a secondary 
or tertiary load bearing and load distributing structure. Again system effects can be 
utilised. These system effects can be a result of category one to three, ksys,I to ksys,III, see 
section 1.1. A design principle in particular relevant for this hierarchy is robustness. 
Thereby extend of damage of a structure should be in relationship to the cause of damage 
and in respect to the importance of the structure and risks. In principle in case of serial 
and brittle acting systems or statically determined structures load transfer between 
structural key elements should be prevented whereas in case of redundant, parallel acting 
systems or statically indetermined structures or in principle in systems with ductile 
behaving elements the connection between elements should enable load transfer and load 
redistribution to prevent a dramatic (local) collaps in case of partial failure without 
warning in advance (e.g. by large deformations). The ability of a structure to resist static 
as well as dynamic loading depends in principal on the type of connection which is, as in 
the previous hierarchy, a key characteristic for the design of system structures.  
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4.3 Analogies between the Hierarchies of Wood and Timber 

The term “analogy” (greek-latin) in general stands for equivalence, similarity, conformity 
and identity of relationships (DUDEN, 2005). The aim of this section is to discuss some 
analogies between several natural as well as technical hierarchies. Analogies in structure, 
the influence of angle between stress and fibre direction, similarities in failure behaviour 
on various hierarchies as well as the influence of stochastics in respect to size (volume) 
effects are presented exemplarily. Once more it is the aim to stress the hierarchical 
structure of wood and timber and to underline the importance to perform material 
research on various scales.  

4.3.1 Analogies between the Structures of Wood and Timber Tissues 

Wood and timber are widely described as being analog to fibre reinforced composites. 
Wood and timber are materials which show a distinctive relationship between physical 
characteristics and fibre orientation. This is in particular obvious if the rhombic 
anisotropic, roughly orthotropic material characteristics are considered. Summarising the 
structural details presented in the discussion of natural hierarchies in section 4.2.1 
following similarities can be found: 

 cellulose molecules of cellobiose units are polymerised to serial chains of 7,000 
to 15,000 elements; these chains have crystalline and amorph sections; strong 
tendency of intra- and intermolecular H-bondings (sub-structures for cross-
linking) leads to conglomeration to elementary- and further to micro-fibrils of 
strictly parallel aligned cellulose molecules (see Fig. 4.9); 

 the cellulose microfibrils are surrounded by branched chain molecules of 
hemicelluloses which act as cross-linking agent to the three-dimensional and 
highly branched lignin-molecules; the polymer of cellulose fibrils, hemicellulose 
and lignin are the basic elements in the cell wall;  

 the cell wall consists of various sub-layers with sub-layer S2 as dominating layer 
(roughly 80 ÷ 90% of cell wall thickness) which itself consists of strictly parallel 
aligned and densily packed fibrils; characteristics of S2 determine the cell wall 
properties longitudinally whereas sub-layers like S1 and S3 stabilise S2 by cross 
orientation of fibrils; they influence decisively the cell wall properties 
transversely (see Fig. 4.10);  
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 the cells (in softwoods roughly 95% tracheids) are again parallel aligned and 
oriented longitudinally but cross-linked in serial by the middle lamella with its 
main constituents hemicelluloses and lignin; cells are linked in serial within the 
tree forming chains e.g. for transport of water and nutrients; these chains are 
parallel aligned but the connections between the cells are interlaced 
longitudinally or layered horizontally (see Fig. 4.11);  

 cell complexes form radial circular growth rings which are reinforced 
transversely and linked by radial parenchyma (rays); branches intergrown or at 
least incorporated as knots in the stem reinforce wood against shear and tension 
as well as compression failures perpendicular to grain;  

 in trees, zones with and without knots alternate longitudinally and radially.  

                

Fig. 4.9: Arrangement of cellulose molecules: chemical structure and intra- and intermolecular 
bondings (left; UNIVERSITY OF CAMBRIDGE, 2010); interlaced arrangement of cellulose 
fibrils – amorph and crystalline zones (right; EICHHORN ET AL., 2001)  

Based on these considerations gained from analysis of wood and timber (tissues) over 
several natural hierarchies it can be concluded that wood and timber demonstrate highly 
hierarchical materials. The underlying principle in the structure of elements and 
interaction on several hierachical levels can be described as being parallel, sub-serial 
with a high degree of cross-linkage.  

Also in technical hierarchies analogies can be found. Starting at structural timber (e.g. 
boards and beams) longer systems can be generated by joining these timber elements in 
serial, e.g. by finger joints. These systems again are sub-systems in linear system products 



Hierachical Structure and Scaling in Wood, Timber and Timber Engineering 

242 

like duo and trio beams, glued laminated timber (GLT) or in two-dimensional products 
like cross laminated timber (CLT) or vertical laminated floor systems. In these products 
the sub-systems are parallel or partly cross arranged forming again parallel, sub-serial 
structures. Thereby the type of connection, the way how stresses are transferred between 
the sub-systems as well as between the elements play a major role. The way how the 
system acts in respect to the applied stresses is also decisive. The same can be found in 
technical products of lower hierarchical levels, e.g. one- or two-dimensional structures 
consisting of fibres, particles, flakes, chips, strands or veneers. These elements are further 
joined to products like paper and carton, fibre boards, particle boards, oriented strand 
board (OSB), parallel strand lumber and laminated veneer lumber (LVL).  

                                     

Fig. 4.10: Structure of wooden cell walls according SELL AND ZIMMERMANN (1993) (left); 
spiraling of cellulose fibrils (right; LICHTENEGGER ET AL., 1999) 

         

Fig. 4.11: Microscopic structure of Norway spruce (Picea abies (L.) Karst.) (REM_ESEM 600; 
INGOLIC, 2008): cross section of an annual ring (left); cross section of tracheids with 
boardered pits and a radial parenchyma ray (middle); radial structure showing interlaced 
tracheids, cross pit fields and boardered pits (right)  
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4.3.2 Analogies in respect to Stress and Fibre Orientation 

The rhombic anisotropic, roughly orthotropic material characteristics of wood and timber 
are the result of the parallel, sub-serial structure as discussed in the previous section 4.3.1. 
Thus mechanical characteristics like strength and stiffness of wood and timber on various 
natural hierarchical levels are decisively influenced by the angle between stress and 
direction of fibres. This dependency can be observed in particular on the hierarchies of 
cells, growth and trees. The same can be found in the technical hierarchies of fibres, clear 
wood and construction timber as well as on the levels of system products and structures. 
Some results gained from different hierarchies are further discussed. Fig. 4.12 shows the 
influence of stress-fibre angle α on strength and stiffness on fibres as well as the 
expectable relationships for strength and stiffness of clear wood and construction timber. 
The results as well as the models are from PAGE ET AL. (1977), HANKINSON (1921) and 

WATHÉN (2006). Similar observations made on fibres can be found e.g. in CAVE (1969), 
REITERER ET AL. (1999) and SALMÉN (2004).  

By means of classical theory of elasticity and rotation of the principal planes 
KEYLWERTH (1951) derived an equation for E-modulus under stress-fibre angle α, see  
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A similar formulation for strength is more difficult to derive because up to now a definite 
failure hypothesis for wood in dependency of stress-fibre angle α is missing. Nevertheless 
ROBERTSON (1920) and STÜSSI (1946) derived equations for the strength fα based on 
elementary theory of elasticity, see  
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with fv as shear strength, f0 and f90 as strength parallel and perpendicular to grain, 
respectively.  

 

Fig. 4.12: Strength and stiffness in dependency of MFA or stress-fibre angle α: E-modulus of 
Norway spruce fibres vs. micro fibril angle (MFA) in S2 according WATHÉN (2006) 
(left; dots represent test data, curve corresponds to the model of PAGE ET AL., 1977); 
tensile strength of fibres of Norway spruce at different MFAs of S2 vs. strain according 
WATHÉN (2006) (middle); relative change of strength and stiffness of clear wood, 
construction timber and timber system products vs. stress-fibre angle α based on 
HANKINSON (1921) (right)  

Based on curve fitting it was found that the transformation from longitudinal to transverse 
strength and stiffness characteristics follows in principle a circular formula with defined 
boarder values X0 and X90 for the longitudinal and transverse characteristics, respectively 
(e.g. HAGER, 1842; HANKINSON, 1921; KOLLMANN, 1934; PAGE ET AL., 1977; PAGE AND 

EL-HOSSEINY, 1983). The empirical relationship was originally derived for tensile 
strength (HANKINSON, 1921). Nevertheless it was found to be adequate also for other 
mechanical characteristics. The general function is given as  

( ) ( )αα ξξα cossin 900

900

⋅+⋅
⋅

=
XX
XXX ,  (4.8)

with Xα as the characteristic in dependency of angle α and ξ as power parameter fitted to 
the analysed mechanical characteristic. For the E-modulus HAGER (1842) (cited in GEHRI 

AND STEURER, 1979) and KOLLMANN (1934) found a factor of ξ = 3.00. In contrast 
GORDON AND JERONIMIDIS (1974) observed a loss of stiffness with increasing MFA 
proportional to cos2(α). For strength characteristics KOLLMANN (1934) proposed to use 
power factors in dependency of the type of loading (e.g. tension or compression). 
HANKINSON (1921) suggested simply a power factor of ξ = 2.00.  
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In addition BURGERT (2006) observed that ultimate strain of cells stressed in tension 
parallel to grain increases convex with increasing MFA of S2. He report that MFA 
becomes significantly reduced if fibres strained above their (linear) elastic limit. 

To conclude, the respond in strength and stiffness is highly dependent on the stress-fibre 
angle α. This was verified on several hierarchical levels of wood and timber and 
underlines once more similarities within the principal structure of wood and timber on 
different scales.  

4.3.3 Analogies in the Failure Behaviour exemplarily for Compression 
parallel to Grain 

In this section analogies between the failure behaviour within natural and technical 
hierarchies are discussed. In particular the failure behaviour in compression parallel to 
grain is addressed. At first the failure behaviour along the natural hierarchical levels is 
presented. Therefore POULSON ET AL. (1997) analysed comprehensively the failure 
behaviour of clear wood of Norway spruce in compression parallel to grain 
(l / w / d = 50 mm / 14 mm / 14 mm). They subdivided the stress-strain respond of clear 
wood specimen under compressive stresses in three states which describe the failure 
process as kinking and compression strength as a limiting mechanism (see Fig. 4.13).  

 

Fig. 4.13: Failure behaviour of wood and timber tissues in compression parallel to grain adapted 
from POULSEN ET AL. (1997): formation of shear bands in clear wood in radial and 
tangential direction (left); phases of compression failure as common in advanced 
composites (middle); schematic step-wise failure behaviour of a single fibre with phase 
transitions (right)  
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Fig. 4.14: Specimens of Tree-of-Heaven (Ailanthus altissima (Mill.) Swingle) which failed in 
compression parallel to grain: clear wood with 45° inclined shear band in tangential 
direction (left) and with formation of a shear wedge followed by tension failure 
perpendicular to grain (middle); structural timber specimen with shear band in roughly 
45° in tangential direction (right)  

The description of compressive failure behaviour in wood was done in analogy to 
compressive failure behaviour as common in advanced composites. Thereby three failure 
phases are given: 

 incipient kinking: this starts above linear-elastic stress-strain respond (roughly at 
about 80 ÷ 90% of fc,0) and lasts till attainment of the maximum stress, the 
compression strength; the process is determined by longitudinal shear strength as 
well as by high local fibre misalignments which are intrinsic in the microstructure 
of wood;  

 transient kinking: this describes the failure behaviour in the section between 
maximum stress and steady-state kinking; hereby incipient, local kinks develop to 
kink bands through the whole cross section; 

 steady-state kinking: this state describes the failure process after a constant stress 
limit was reached; it is characterised by a continuous expansion of deformations; 
thereby kink bands broaden continuously at a steady-state stress; this stress 
constitutes a lower bound of the peak stress.  

POULSEN ET AL. (1997) observed that incipient kinking often initiates at resin channels 
which occur longitudinally and radially in wood and which show a high amount of 
misaligned fibres (see also KUCERA AND BARISKA, 1982). Furthermore the kink-band 
angle was found to be constant and approximately 23° (see POULSEN ET AL., 1995 and 
TONNESEN ET AL., 1995). Both describe also that the kink-band is inclined in tangential 
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direction whereas in radial direction it is more or less transverse. The same was found by 
MATTHECK (2003) who argumented that radial wood rays reinforce cells in radial 
direction and thus prevent sliding of in transversely sheared surfaces as it can be observed 
in tangential direction. Furthermore MATTHECK (2003) differences between two failure 
scenarios: first scenario with formation of a tangential sheared layer inclined 45° to fibre 
direction and followed by a steady sliding, or secondly the formation of a shear wedge 
and subsequent sliding which induces tension failure perpendicular to grain (see  
Fig. 4.14). The steady state kinking process was described under a constant fibre angle of 
60° which was defined as lock-up angle. At this angle densily packed latewood fibres are 
compressed completely and show their maximum shear resistance (see POULSEN ET AL., 
1997).  

         

Fig. 4.15: Specimens failed in compression parallel to grain: hemp fibre (left; kink-band angle 
roughly 24°; EICHHORN ET AL., 2001); clear wood (left; MATTHECK, 2003); construction 
timber (middle); system product, e.g. glulam (right; RULI, 2004) 

This failure process, which is in general very common in composites, can be observed 
also at molecular level were atoms show kinking, on the hierarchy of cells and fibres  
(see Fig. 4.15, left) as well as on the technical hierarchies like construction timber and 
system products (see Fig. 4.15, middle & right).  

To conclude, analogies in the failure behaviour on several natural as well as technical 
scales of elements were presented exemplarily in compression parallel to grain. 
Furthermore, equ. (4.9) and (4.10) give regression functions of density vs. compression 
strength parallel to grain. Again similarities between clear wood and the system product 
glued laminated timber can be found. The first equation originates from tests on clear 
wood specimen of Norway spruce with l / w / d = 6 mm / 12 mm / 12 mm (u = 12%) 
made by GINDL AND TEISCHINGER (2002).  
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00.1413.0 12,0, −⋅= ρmeancf , R2 = 0.84.  (4.9)

The second equation was gained by analysing data of glued laminated timber specimen 
also of Norway spruce of tests performed by RULI (2004), see BRANDNER ET AL. (2006). 
These specimen consisted of four lamellas and had a moisture content of u = 12% and a 
dimension of l / w / d = 720 mm / 120 mm / 160 mm. Both equations have comparable 
regression coefficients. The degree of determination is lower for glulam compression 
strength. This can be attributed to additional variability caused by growth characteristics, 
e.g. knots or knot clusters. Furthermore, some constraints in the failure behaviour in 
glulam due to reinforcement of the formation of shear bands in partly tangential and 
radial direction are expected.  

15.810.0 12,,0, −⋅= ρmeangcf , R2 = 0.70.  (4.10)

Nevertheless, elements in load bearing structures which are loaded in compression 
parallel to grain are vulnerable to lateral buckling rather than to fail in compression at 
their peak load. 

4.3.4 Analogies in respect to Size (Volume) Effects exemplarily shown for 
Length Effects 

Size (volume) effects in particular on strength are an inherent feature of all materials. The 
reasons for that are at least the stochastic nature of materials and structures and the 
distinctive extreme nature of strengths. Consequently, variability in strength 
characteristics is the driving force of size effects. This was already discussed in previous 
chapters, e.g. chapter 1.2 & 3. Independent of the hierarchical level, size effects are the 
logical consequence of changes in the dimension of a structure within each hierarchy, the 
scale. Each scale consists of sub-structures of previous scales which influence the 
relationships between their constituents.  

Within this section solely size (length) effects from tension tests performed on different 
hierarchical levels are addressed. For example KERSAVAGE (1973) observed that an 
increase in free length in tensile tests of single fibres lead to a significant reduction in 
strength. The same was found already earlier by HARDACKER (1962). PAGE AND EL-
HOSSEINY (1976) also performed tension tests, in particular on sulfite pulp fibres, and 
confirmed a strength reduction with increasing testing length (see Fig. 4.16).  
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DILL-LANGER ET AL. (2003) performed tensile tests on clear wood on two different 
volumes and observed a distinctive reduction in strength with increasing volume. The 
same was already previously reported by GRAF AND EGNER (1938). They performed 
tensile tests on clear wood as well as on structural timber. BRANDNER ET AL. (2007A) 
report on tensile tests performed on finger jointed construction timber of Norway spruce 
with a cross section of w / d = 160 mm / 60 mm and variable free test length between 
1,440 mm and 17,222 mm (see JEITLER ET AL., 2007). Thereby a clear reduction in 
tension strength parallel to grain with increasing free testing length was given. This 
reduction was in particular pronounced on mean level whereas on the design relevant 5%-
quantile the reduction was lower thanks to distinctive reduction in variability.  

 

Fig. 4.16: Influence of length on tensile strength of sulfite pulp fibres adapted from PAGE AND EL-
HOSSEINY (1976): histogram (left); WEIBULL probability paper (right)  

More on size (volume) and in particular length effects on the technical hierarchies of 
wood and timber is given in the following chapter 5, in particular in section 5.1.2.  

4.4 Scaling in Wood and Timber Hierarchies, exemplarily 
for Tensile Characteristics parallel to Grain 

Within this section material characteristics of wood and timber (tissues) on several 
hierarchies of Norway spruce (Picea abies Karst.) are discussed exemplarily. Hereby 
focus is on strength and E-modulus in tension parallel to grain. The data base on a 
comprehensive literature survey on tensile characteristics of the principal molecules 
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cellulose, hemicellulose and lignin, cell wall and fibre, clear wood specimen as well as 
structural timber (see section 8.2, Tab. 8.3). All in all expectable data of four consecutive 
hierarchies are presented. The data, in particular of molecules and fibres, originate from 
tests as well as from theoretical considerations and model calculations. In that respect it 
has to be mentioned that partly tremendous variability in published values of the same 
characteristic was found. This is not estonishing if the differences in currently discussed 
cell wall models, the challenges in performing tests on nano- and micro-scale as well as 
the necessity for providing simple models capable for computation of tissues up to a 
certain scale are considered.  

Tab. 4.5: Selected physical characteristics of wood and timber (tissues) on various hierarchical 
levels: reference length of destructive tests; rounded median and range of published 
(mean) values of density, E-modulus and strength in tension parallel to grain at a 
moisture content of roughly u = 12%.  

ρ12 
[kg/m³] 

Et,0,12 

[kN/mm²] 
ft,0 

[N/mm²] 
 lref 

[mm] 

median range median range median range 

lignin -- -- -- 2 2÷7 -- -- 

hemicellulose -- -- -- 4.8 2÷18 -- -- 

cellulose  
(crystalline, fibrils) 

0.01 2) 1,500 -- 137.8 70÷319 10,000 1,000÷19,000 

cell wall & fibre 3.00 3) 1,500 -- 25.4 0.4÷7.7 860 200÷1,450 

clear wood 110 4) 430 400÷510 12.5 9÷16.7 95 70÷240 

constr. timber 1) 2,000 5) 450 410÷520 11.8 9.1÷18.1 30 15÷50 

 1) data from BRANDNER AND SCHICKHOFER (2007) 

 2) assumptions: DP = 10,000; length of cellobiose units 1.03 nm (FENGEL AND WEGENER, 1989) 

 3) mean length of tracheids of Norway spruce (Picea abies (L.) Karst.) (FENGEL AND WEGENER, 1989) 

 4) local free test length of clear wood specimen tested in tension parallel to grain according DIN 52188 

 5) reference free test length of boards for glued laminated timber in tension parallel to grain according EN 1194 

In previous section 4.2 it was outlined clearly that sub-layer S2 of the cell wall dominates 
the mechanical performance of wooden cells in longitudinal direction. The cellulose as 
fibre-reinforcement is the main constituent of S2 and nearly solely bears the tension 
stresses in the cell wall composite. Consequently, strength and E-modulus of cellulose in 
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tension parallel to grain are seen as representative characteristics of the molecular 
hierarchy of wood tissues. For the hierarchy of fibres the tension characteristics of the cell 
wall material are used, with a density of ρ12 = 1,500 kg/m³ equal to that of cellulose.  

Two different reference volumes are used in the literature. Some papers publish 
mechanical characteristics of fibres in reference to the whole fibre cross section 
(including the lumen). Other researchers calculate their strength and stiffness solely in 
reference to the cell wall geometry (volume of bulk material). Beside the fact that the 
single fibre constitudes the basic element of the cellular material wood and timber and the 
fact that both are characterised by their porosity, the mechanics of the single fibre seem to 
be more representative and better linked to the interacting sub-layers in the cell wall. 
Thus on the hierarchy of fibres characteristics of the bulk material with a reference 
density of ρ12 = 1,500 kg/m³ are used. Nevertheless in the hierarchies of clear wood and 
construction timber the porosity is included in the calculated mechanical characteristics. 
Consequently, the characteristics are automatically in conjunction with the timber species 
and their characteristic densities. Due to the high density of knots a 3% higher density in 
construction timber compared to clear wood is considered. As all tension characteristics 
are given in grain direction, in principle a correction of chracteristics of fibres, clear wood 
and construction timber according MFA would be necessary. Nevertheless, in line with 
common practise and not provided MFA in most of referenced literature this correction 
was not applied. A summary of representative statistics of all four hierarchies is given in 
Tab. 4.5.  

Fig. 4.17 shows the characteristic tensile strength and E-modulus parallel to grain in 
dependency of the reference test length lref. For additional information also the reference 
density is given. Both, abscissa and ordinate are transformed to natural logarithmic 
domain. Furthermore power regression models found by least squares method are 
presented for both tensile characteristics. All in all representative data of in total four 
consecutive hierarchies is presented, starting with molecular, to fibre, clear wood and up 
to construction timber. In particular the tensile strength characteristics reflect a nearly 
perfect linear decreasing trend. The same can be observed for the E-modulus, 
disregarding the hierarchy of construction timber. The given power models are hereby not 
seen as strict quantitative and universal power laws automatically representative for 
tensile characteristics of wood and timber tissues. But they deliver important and more 
than indicative information about trends in strength and stiffness over the range of 
represented scales. Furthermore, the high degree of determination of R2 = 0.99 and 0.93 
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for the power models of strength and E-modulus, respectively, is not surprising 
considering the fit to only four data points although they represent highly condensed 
information on the median level. 

 

Fig. 4.17: Physical characteristics of Norway spruce (Picea abies (L.) Karst.) on median level in 
dependency of the evaluated hierarchical scale: density, tensile strength (including 
range) and tensile E-modulus parallel to grain  

Nevertheless, considering the general definition of scaling and power laws as discussed in 
section 4.1, the presented hierarchical structure of wood and timber in section 4.2 as well 
as the analogies in structure and behaviour between natural, technical but also natural and 
technical hierarchical levels, it appears more than plausible that in particular for strength 
power laws in wood and timber are in principal inherent. Beside all that and as also 
presented in Fig. 4.17 dimensions of timber products used for load bearing purposes in 
engineered structures are at least up to two scales higher than normally tested in 
laboratories. The question about scaling effects in this untested dimensions as well as 
concerning scaling effects in wood and timber tissues in general are treated in the next 
section.  
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4.5 How to explain Scaling Effects in Wood and Timber and 
what can be concluded? 

As already outlined in the previous section 4.4 the aim of the fitted power functions in 
Fig. 4.17 is not to deliver strict and universal applicable power laws. This is despite the 
fact that the data underlying these presented models have very high information content. 
Nevertheless, the aim is to present some quantified qualitative information about the 
general trend of tensile characteristics parallel to the grain of wood and timber tissues. 
The significant decrease of strength and stiffness consequences from two facts: (1) the 
hierachical structure of the material, and (2) the parallel, sub-serial composition of 
elements to systems of material complexes. Both reasons are characteristic on every 
scale. The power parameter of the trend model in strength is about two times that of the 
power of stiffness, in particular if only the first three scales are analysed. Hereby the 
underlying nature of the characteristics has to be considered. Whereas the E-modulus 
constitutes the harmonic mean of local E-moduli, strength, irrelevant of the scale, is 
determined very locally by the weakest cross section. Hereby the weakest cross section is 
defined by the cross section with the lowest resistance against tension stresses.  

 

Fig. 4.18: Transformation process of system actions adapted from publications on size effects of 
quasi-brittle materials (BAŽANT AND CHEN, 1996; BAŽANT AND PLANAS, 1998 and 
BAŽANT, 2004): transformation from parallel to serial system action 
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The trend-functions only account for changes in material characteristics between scales. 
Nevertheless, scaling between hierarchies incorporates not only the output due to changes 
in the structure but automatically also changes in dimension within the hierarchies. 
Whereas E-moduli are only slightly affected by changing dimensions, in particular on the 
mean (median) level, strength characteristics exhibit tremendous change due to serial and 
parallel system effects. 

The hierarchical material structure of wood and timber tissues can thereby also be 
described as a system of elements. Hereby the elements itself are systems of the previous 
hierarchy. Considering the structure as parallel, sub-serial it follows that in the zone of 
scale transition, which is characterised by the increasing dominant occurrence of new 
structural elements which determine the new hierarchical level, a primary parallel 
arrangement of systems of the previous hierarchy together with the new structural 
elements conglomerate to a new basic element representative in the next hierarchical 
level. Within the hierarchy changes in dimension occurs primary by serial linkage of the 
elements which leads to significant serial system effects, as discussed in section 3.3. In 
case of 2pLND element strengths with a coefficient of variation CoV[f] = 30%, which is 
e.g. common in tensile strength of structural timber parallel to grain, the mean (median) 
serial system effect can be approximated locally (M = 1 ÷ 10) by a best-fitted power 
model with a power of 0.20 (0.19). Within hierarchies a scale transition from parallel to 
serial system action can be observed due to 

 primarily longitudinal orientation of tissues on all hierarchies;  

 transition from parallel to serial systems in case of LLS, see Fig. 3.10, 
section 3.2.4;  

 transition in structural strength according fracture mechanics of (quasi) brittle 
materials, evaluated as size effects according BAŽANT AND CHEN (1996), 
BAŽANT AND PLANAS (1998) and BAŽANT (2004), see Fig. 4.18.  

The scaling effects between hierarchies result from changes in the dominance of new 
strength determining elements (flaws) which become important not till then a certain 
dimension of the material structure is reached. Some examples are:  

 hierarchy of atoms Ø hierarchy of molecules: 

 inter- and intramolecular bondings;  

 hierarchy of molecules Ø hierarchy of cells: 

 crystalline and amorph regions in cellulose molecules and fibrils;  
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 inclusion of hemicellulose and lignin;  

 agglomeration of cell-layers with different MFA and share of 
constituents.  

Consequently, system effects within a hierarchy are responsible for roughly half of the 
global “scaling effect” on strength. The other half can be dedicated to a pure structural 
scaling effect which consequences from the before mentioned changes in the material 
structure. As the E-modulus behaves nearly constant within each hierarchical level it is 
not surprising that only the half value of the power parameter can be found in the global 
power trend function (Fig. 4.17). 

 

Fig. 4.19: Scaling in wood and timber tissues: global vs. local trend functions by separation of 
scaling effects between and system effects within hierarchical levels  

A qualitative model which separates scale transition between hierarchies and system 
effects observable within hierarchies is shown in Fig. 4.19. For quantification the 
definition of the transition zones is dedicated to further research. The definition is seen as 
being dependent on the:  

 dimension of characteristics decisive for the strength in the next hierarchy 
(dimension of flaws)  geometrical definition;  

 scale-dependent (characteristic) fracture length  fracture mechanical definition;  

 definition of RVEs on each scale which itself depend on the characteristic flaw 
size (see section 5.1)  stochastic definition.  
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Changes in the natural hierarchical structure are always accompanied by the inclusion of 
certain stress-transfer layers or zones (e.g. amorph regions in cellulose molecules and 
fibrils; lignin and hemicelluloses as matrix material surrounding cellulose as 
reinforcement; CML + S1 + S3 as stress-transfer layers for S2; changes in density within 
annual (seasonal) growth rings). These layers or zones lead to a certain reduction in E-
modulus from hierarchy to hierarchy but increase the ability to (re)distribute stresses 
successfully within the tissues by providing a certain amount of deformability. In that 
respect FRATZL AND WEINKAMMER (2007) outline that glued composites become flaw-
tolerant if the particles became smaller than a critical length  

2
*

th

PEh
σ

γπ ⋅⋅≈ ,  (4.11)

with parameters γ as surface energy of particle material, σth as theoretical (molecular) 
strength and EP as E-modulus of the particle material. This follows from GRIFFITH’s law 
where the strength of a particle with a flaw decreases with the square-root of the flaw 
size. Following GAO (2006) flaw-tolerance can be imposed by a hierarchical arrangement 
of composites, where the stiff fibre at each hierarchical level is in fact a composite of 
much smaller particles which are glued together. Such a hierarchical composite structure 
becomes insensitive to flaws at all length scales.  

So far scaling and system effects on the natural hierarchical structure were discussed. The 
question what can be concluded for (engineered) structural timber products of the 
technical hierarchies “construction timber”, “system products” and “load bearing 
structures” still remains unanswered. Answering would necessitate extrapolation over two 
scales. This has to be done with caution. Consequently some key considerations on the 
basis of available information are figured out:  

In general, if the underlying structure of a system does not change then scale transition 
does not occur. Only effects which are caused by the arrangement of elements, the serial 
and parallel system effects, have to be taken into account. If in addition a significant 
change in the underlying structure is given, a scale transition has to be considered as well. 
Such a significant change in the underlying structure automatically occurs in applying 
finite element method for numerical analysis of structural timber elements, system 
products or parts of system structures by means of a net of only a view millimeters or 
centimeters in one dimension. A correct and more realistic implementation necessitates 
the use of stochastic finite elements and in particular knowledge of all characteristics and 
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functions for scale transition. This to model material effects on a larger scale realistically 
and by consideration of serial and parallel system effects. For discussion of these general 
aspects each hierarchical level is further treated separately: 

I: Construction Timber 
If the characteritics are directly gained by full-scale tests made on the characteristic 
material (includig all flaws which are typical for this level) than the consideration of 
system effects is required only if the dimension(s) used deviate from the reference 
dimension(s). If the material characteristics are gained from clear wood effects due to 
scale transition as consequence of significant changes in the material structure and of 
failure characteristics have to be considered.  

II: System Products 
The necessity to consider scaling effects depends on the product itself and its basic 
element (e.g. structural timber, veneer, strands, flakes, particles, fibres). Every system 
product depends on the arrangement and connection of the elements. In case of glued 
elements which lead to systems composed of rigid joined elements only system effects 
have to be taken into account if it is secured that failures always occur in wood and 
timber tissues and not in the adhesive layers. The basic characteristics of each product 
have to be derived on the basis of the characteristics of the elements and their 
arrangement. The argument is that failure of the system occurs in the element and thus in 
the same types of flaws which cause failure of the single element. This is in particular not 
the case in laminated veneer lumber (LVL) where the failure characteristic of veneer 
layers may be significantly influenced by adhesive treatment and shakes filled with 
adhesive.  

For an arbitrary applied joining technique and in particular in case of punctiform and / or 
flexible combounds not only the structural behaviour of the elements in the system 
product but also the failure characteristic may change. In that case also scaling effects can 
become relevant.  

III: Load Bearing Structures 
In load bearing structures element or joint failures are the two principle possibilities how 
a part or a whole structure can collaps. Consequently, a change in the structural behaviour 
is mostly present and requires in principle the consideration of both, system and scaling 
effects. 
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Fig. 4.20: Trivial solutions to influence system and scaling effects: shift of mean level (left); 
reduction of slope (right) 

Nevertheless, independent of the hierarchy the two main principles (trivial solutions) to 
influence scaling and system effects are (see Fig. 4.20): 

1) Shift of Mean Level 
This can be done by classification (grading, grouping) of the elements. Nevertheless 
upgrading of one part of a sample automatically leads to downgrading of the rest. 
Classification coincides also with a reduction in variability of characteristics. This has an 
influence on the second trivial solution, the reduction of slope. Nevertheless, 
classification of timber elements in particular in regard to strength, which can only be 
done indirectly by means of relationships to non-destructively determinable indicating 
properties, has only minor influence on strength variability.  

2) Reduction of Slope 
In case of scale transition a reduction in slope can be achieved by a reduction of 
differences between existing and new flaws. In respect to system effects a reduction in 
slope can be achieved by a reduction of the variability. This can be achieved for example 
by the creation of smart designed system structures in conjunction with a systematic 
activation of system effects within one hierarchical level, e.g. by joining elements to 
primarily parallel acting and rigidly connected structures.  

4.6 Concluding Remarks to Chapter 4 

The main conclusions are: 

 wood and timber tissues are highly hierarchical structured materials which are 
organised as parallel, sub-serial systems;  
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 analogies within natural, technical as well as between natural and technical 
hierarchies were presented exemplarily;  

 serial and parallel system actions and effects are inherent in every material, in 
particular if they are structured hierarchically. Together with scaling effects they 
lead to significant lower strengths of structural material than someone would 
expect if analysing the molecular strength of material tissues alone;  

 nature provides an evolutionary optimised material which is outstanding in 
multifunctionality and in its physical characteristics;  

 scarce raw materials and limits in costs should consequently be the driving forces 
to learn from nature and to adopt mechanisms to engineering practice, material 
and structure design;  

 it was presented that global scaling trends can be separated into scaling effects 
between and system effects within hierarchical levels;  

 it was outlined that realistic numerical modelling including stochastics requires 
the material characteristics on the element scale as well as the functional 
description of scale transitions up to the hierarchical level of the analysed system 
structure adapted to the dimension choosen for finite elements, in particular if 
continuum mechanical calculations are made. 
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Chapter 5 

5 Serial and parallel acting Systems in Timber, 
Engineered Timber Products and Structures 

This chapter is dedicated to the definition and verification of stochastic 
(mechanic) models representing the structural behaviour of timber, 
engineered timber products and structures. At the beginning the applicability 
of the concept of representative volume elements is briefly discussed. 
Proposals for reference dimensions of stochastic elements characterising 
spatial distributed timber properties as well as an alternative concept for 
structuring timber are presented. In particular data of longitudinal 
distribution and correlation of global and local characteristics are collected 
and discussed. The magnitude of correlation as well as a concept for 
modelling is specified. Therefore a comprehensive literature review and 
analysis of published data were required. After clarifying all these aspects 
explicit application examples of serial-parallel system considerations for 
timber characteristics are given and properties of timber system products are 
presented and supplemented by literature reviews, modelling issues, 
discussion of model output and verification. 

5.1 Basic Considerations in Modelling of Serial and Parallel 
Stochastic System Effects  

As already and more generally discussed in chapter 3, serial and parallel system actions 
result from potential differences between common acting elements. Consequently, the 
higher the potential differences the higher the expected system effects. Due to the 
hierarchical structure of timber (see chapter 4) every system composed of timber 
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elements of level I, II or III (see section 1.1) exhibits parallel, sub-serial system actions. 
These lead to significant differences between material characteristics (e.g. strength and 
stiffness) if compared on different hierarchical levels of the material structure (see 
section 4.4, Fig. 4.17).  

Modelling of serial and parallel stochastic system effects requires knowledge of spatial 
distribution and spatial correlation of local material characteristics. Due to the 
heterogeneous, rhombic anisotropic, roughly orthotropic composition of wood and timber 
the question arises how to characterise wood and timber locally. In particular the 
definition of an incremental volume sub-element, as a representative basic unit for 
modelling of serial and parallel interactions within and between common acting timber 
elements, is needed. In view of the concept of so called “representative volume elements 
(RVEs)” known from continuum mechanics the question arises if, and how RVEs can be 
defined in case of timber and preceeding hierarchical levels (see section 4.2,  
Fig. 4.4). 

In general, a representative volume element (RVE) is defined as the basic element used 
for continuum mechanics calculations, in particular for modelling and simulation of 
biomaterial behaviour, e.g. of wood and wood-based products. These biomaterials are due 
to their hierarchical structure over various scales and due to their local varying coordinate 
system far away from continuum-based representation (LANDIS ET AL., 2002). Therefore 
the RVE has to be in size (volume) on one side large enough to show sufficient statistical 
homogenisation of the microstructural heterogeneity within the material structure, and on 
the other side small enough to sufficiently represent the behaviour of a material on a 
macrostructural level. The material behaviour should be at least representative on the 
expected (mean) level which is enabled by ergodic periodic imaging (LANDIS ET AL. 
2002; KANIT ET AL., 2003; GITMAN, 2006; ZEMAN AND ŠEJNOHA, 2007; GITMAN ET AL., 
2007). Thus the definition of an RVE depends on (i) the precision required for the 
representation of the expected macroscopic material behaviour (preventing bias), (ii) the 
physical properties and volume fractions of microstructural constituents (e.g. flaws) and 
in particular on (iii) the physical property which has to be modelled representatively on 
the (observed) macroscopic level. Thus the dimension of RVEs depends on the physical 
characteristic in question (LANDIS ET AL., 2002; KANIT ET AL., 2003; LIU, 2005; ZEMAN 

AND ŠEJNOHA, 2007; GITMAN ET AL., 2007). Consequently, an RVE shall behave 
independent of macroscopic boundary conditions and constitutes of a large number of 
microscopic heterogeneities (e.g. flaws). Nevertheless the RVE must be small enough to 
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enable continuum mechanics calculations (KANIT ET AL., 2003) but it requires also a 
separation of scales in material structure (GITMAN ET AL., 2007). Beside that one has to 
be aware that the implementation of an RVE leads to substantial loss of information 
through statistical homogenisation (ZEMAN AND ŠEJNOHA, 2007). Whereas RVEs are in 
particular applicable in elastic material description GITMAN ET AL. (2007) question the 
use of RVEs in modelling of quasi-brittle materials showing softening behaviour. For 
example, wood and timber behave quasi-brittle combined with softening, e.g. in 
compression parallel to grain.  

However, the introduction of a consistent definition of RVEs for all physical properties of 
interest is out of scope of this work. Publications which report on RVEs in continuum 
mechanics modelling of wooden structures on various hierarchical levels are e.g. ASTLEY 

ET AL. (1997) and HOFSTETTER ET AL. (2006). 

As mentioned above, the definition of RVEs for each group of characteristic, e.g. 
strength, stiffness and density, or even for each individual characteristic of timber creates 
a challenge due to common occurrence and influence by discrete and continuous 
distributed growth features of dimensions starting at e.g. knots, knot clusters, annual 
growth rings and checks. These flaws are only few times smaller or even larger than 
structural components made of wood or timber, and sometimes larger than the volume 
occupied e.g. by connection technique (e.g. pin-shaped fasteners). Furthermore, the 
variety of growth characteristics and their influences on characteristic properties affects 
and hinder the definition and standardisation of e.g. representative statistical distribution 
models (RSDMs). In fact highly sophisticated modelling, in particular of parallel system 
actions, under consideration of varying timber quality and timber strength (stiffness) 
classes, would require the combination of individual RSDMs for each growth feature to a 
multi-modal RSDM which can be used for the estimation of an individual local property 
(e.g. tensile strength). The combination (mixing) of RSDMs is done by weighting them 
according their probability of occurrence, see equ. (5.1). Thereby the mixing probabilities 
pX can be assumed as deterministic or as stochastic variables as well. This procedure 
would remarkable improve current knowledge and widen the possibilities in modelling 
timber products and structures.  
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Perhaps this approach would be theoretically straightforward but it fails due to desiderate 
stochastics and knowledge about interactions between all parameters. This lack of 
knowledge is in particular evident for rare characteristics like pre-broken tree tops or in 
compression pre-damaged local areas. However, even these characteristics often show a 
significant and even dominating influence on the distribution of strength, in particular in 
the lower distribution tail, and thus influence the characteristics required for the design of 
timber structures. Furthermore, growth characteristics like knots and knot clusters, which 
show a nearly endless variety of dimensions, possibilities of occurrence and 
combinations, make it nearly infeasible to account for all this diversity. Testing all these 
combinations is practically impossible and even testing some “representatives” is 
economically disastrous. Therefore modelling and simulation techniques are 
straightforward but require information with some degree of detailing corresponding to 
the model resolution required. Thus the definition of stochastic input parameters of RVEs 
or of elements with reference dimensions, under consideration of relationships between 
growth characteristics and characteristic mechanical properties (e.g. strength and 
stiffness), is required for a sufficiently accurate modelling of system behaviour. As long 
as modelling of system behaviour is not provided over all hierarchical levels the 
definition of RVEs and / or reference dimensions has to be done for each hierarchical 
level individually.  

Discussing the hierarchical level “timber” the material structure can be in principle 
modelled as compound of wood – roughly characterised by global stochastic properties, 
e.g. global grain deviation and density – and spatial distributed growth features, e.g. knots 
and pitch pockets, which locally influence the material properties of sawn timber, in 
particular strength. Thus structural properties which decisively influence the material 
structural behaviour are subdivided into: 

[1]  globally influencing characteristics  

characteristics which determine the basic (inherent) potential of sawn timber, in 
particular the basic material wood, with “clear wood” as one specific type of wood 
(e.g. DIN 52180);  

[2]  locally influencing characteristics  

characteristics which locally decisively influence the basic potential of timber and 
consequently determine the local potential of sawn timber and thus the possibility 
and amount of interaction is enforced to act parallel or serial-parallel systems of 
rigid or even flexible connected elements and components.   
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Representatives of categories [1] and [2] thereby have an influence on the expectation, 
the statistical spread and even on the whole shape of the statistical distribution of e.g. 
strength and stiffness. Whereas representatives of type [1] determine the basic potential of 
the element and can be treated as continuously but randomly distributed over the whole 
dimension (e.g. length, volume), representatives of type [2] are characterised by discrete 
occurrence and with or without local clustering. Thus they require additional information 
on their dimension, their spatial distribution and correlation.  

Typical characteristics which are classified to type [1] are: 

 density 
measure for the amount of principle wood tissues (cellulose, lignin, polyoses) per 
unit volume; sometimes estimated from mean width of annual growth rings and / 
or radial position within the stem; 

 global grain deviation including spiral grain 
as principal information of expectable properties in respect to the coordinate 
system of the specimen relative to grain direction. 

Typical representatives of type [2] are: 

 local grain deviation 
estimated by the occurrence, dimension and position of knots and knot clusters or 
irregular occurring growth features like pre-broken tree tops;  

 in compression pre-damaged zones  
distances between affected zones correspond to the distance between distinctive 
knots and / or knot clusters (  knots stiffen in compression and cause local pre-
damage); 

 reaction wood 

 checks, splits, … 

 degredation  
e.g. by funghi. 

Representative parameters of type [1] are further assumed to follow longitudinally a 
stationary but non-ergodic stochastic process. Thus it is assumed that expectation and 
variance vary from log to log and between sawn timber specimens. The assumption of 
stationarity can be argumented by the breakdown process of logs into sawn timber 
performed preferable parallel to pith. Furthermore sawn timber in Central Europe has a 
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typical length of 4 m. Due to the presence of juvenile and adult wood zones it is assumed 
that radial variation of basic parameters of wood, like density and E-modulus, do not 
provoke longitudinal trends in spatial variation of these parameters. This is in contrast to 
data of e.g. LAM AND BARRETT (1992) who found some longitudinal trends in local 
values of Em,0,i of sawn timber. Nevertheless it is not clear if the observed trends are 
inherent in wood or a result of local characteristics of type [2]. The preclusion of 
ergodicity follows from the rhombic anisotropic, roughly orthotropic material structure of 
timber in respect to radial and tangential direction in cross section which depends on the 
dimension and original radial position of sawn timber within the log. An ergodic 
stochastic process in longitudinal direction is not expected due to the distinctive variation 
of spatially distributed features which vary from log to log and even within sawn timber 
of the same log. For example DITLEVSEN AND KÄLLSNER (2005) reported that local 
bending strength of sawn timber with identical longitudinal position but cut halved and 
symmetric to the pith showed correlation of r ≈ 0.15 (i.e. nearly uncorrelated) whereas 
local bending strength of two segments of the same timber specimen showed serial 
pairwise equicorrelation of r ≈ 0.50.  

Representatives of type [2] are further differentiated in (i) spatially in distribution and 
dimension uncorrelated, arbitrary occurring characteristics, and (ii) spatial correlated 
characteristics with assumed correlation in distance and dimension.  

 

Fig. 5.1: Knot zones along the stem of a typical mature (softwood) tree; adapted from FRONIUS 

(1982) 

Features which are assumed to be spatially uncorrelated are for example so called 
intermediate knots. These are single knots which occur in between the dominating, 
discrete in length more regularly distributed knot clusters. Thus spatial correlated 
characteristics are for example knot clusters. They show distinctive longitudinal 
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correlation. In Norway spruce (picea Abies Karst.) knot clusters mark the primary 
(longitudinal) yearly growth increment. Thereby every year a new knot cluster grows. 
Nevertheless, growth characteristics which show a regular pattern in occurrence in the 
tree must not show this pattern again in sawn timber, after the breakdown process. Thus 
the spatial distribution and correlation of these features in sawn timber is decisively 
influenced and reduced. This influence is additionally forced by changes in the type of 
knot zones, from “green knot zone” to “rot knot zone” to zones in the tree without visible 
knots at the outside (“knot free zone”) due to the primary growth and changes in crown 
formation (see Fig. 5.1). Although these changes already occur in the living tree the 
breakdown process may produce sawn timber with two or even three different knot zones 
in longitudinal direction.  

 

Fig. 5.2: Types of knots; adapted from AUGUSTIN (2004) and GLOS (1978) 



Serial and parallel acting Systems in Timber, Engineered Timber Products and Structures 

268 

Moreover, during the breakdown process knots and knot clusters are cut under various 
angles leading to numerous types in appearance (see Fig. 5.2). Due to localised grain 
deviation the way how a knot is cut and its position within the cross section of sawn 
timber determines the strength and stiffness characteristics of sawn timber, in particular if 
stressed non-uniformly over the cross section, as e.g. in bending. 

Numerous analysis regarding the distribution of knot clusters and the influence of knots 
on strength (and stiffness) are available and corresponding models widely discussed in 
the literature (e.g. ISAKSSON, 1999; RIBERHOLT AND MADSEN, 1979; FOLEY, 1997; 
COLLING 1990). In particular the longitudinal distribution of knot clusters is in focus of 
some authors. They used the information for modelling of length effects on strength of 
timber stressed in bending, tension or compression parallel to grain (e.g. ISAKSSON, 1999; 
RIBERHOLT AND MADSEN, 1979; KÄLLSNER AND DITLEVSEN, 1994). Thereby randomly 
distributed intermediate knots are not discussed and neglected due to the fact that they are 
not treated as being strength determining so far at least one knot cluster is given in every 
element. Thereby a serial system which fails with failure of the weakest sub-element 
represented by the biggest knot cluster is assumed. This will be further discussed in 
section 5.1.2. In contrast to serial systems, adequate modelling of parallel systems 
requires detailed information of arbitrary distributed single and intermediate placed knots 
and their influence on local strength and stiffness. This is to account for local interactions 
between adjacent elements.  

 

Fig. 5.3: Serial, parallel and serial-parallel system action in and between structural timber 
elements  



Serial and parallel acting Systems in Timber, Engineered Timber Products and Structures 

  269 

Under consideration of previous statements the spatial distribution of type [2] 
characteristics is assumed to follow a general stochastic process whereby, to be honest, 
not even stationarity can be assumed. In particular in modelling local mechanical 
characteristics of timber the stochastic processes of both, type [1] and [2] characteristics, 
have to be combined. Consequently stationarity in stochastic description of spatial timber 
properties can generally not be assumed, in particular if representatives of type [2] exhibit 
some kind of irregular local clustering, for example knot clusters in longitudinal direction 
of sawn timber, which provokes a certain trend in longitudinal trajectories of strength, 
stiffness and density.  

This first discussion outlines that modelling of serial and parallel systems requires further 
simplifications in modelling of spatial distributed and correlated characteristics. 
Therefore some general thoughts on spatial distribution and correlation of timber 
characteristics are discussed before quantitative results of spatial correlation of strength, 
stiffness and density within sawn timber are presented. 

Just consider softwood trees, for illustrative purposes Norway spruce, which is 
characterised by a more or less regularly primary yearly growth increment in length 
direction. The basic potential and health of the tree is thereby defined by its genetics, the 
local conditions, e.g. soil conditions, supply of water, nutrients, sun energy and climate. 
From the first day on many of these parameters influence the primary and secondary 
growth of the tree and thus the creation of timber by cell division in the secondary 
meristem cambium. Some of these parameters may also vary over time, e.g. sun energy 
due to denser or more open stand of the tree. In temperate zones life of trees is 
additionally determined by alternating growth and recovery phases. Thus the rate of 
growth per year is to a certain amount determined by supply and growth of previous 
year(s). The basic parameters like genetics and local growth conditions determine the 
basic properties of e.g strength, stiffness and density of wood as a certain tree inherent 
potential. This potential is at least influenced by yearly changes in these parameters. Thus 
characteristics of every yearly increment are expected to have a certain common 
dependency on the basic parameters of each habitat. Following these statements two 
kinds of spatial correlation are in principle expected. First, due to yearly changes in basic 
growth parameters which are to a certain degree assumed to depend on the years before or 
at least on some foregoing cell divisions, some kind of autocorrelation or kth-order 
Markov-chain can be expected. Thereby k has to be specified but can be expected to be 
within 0 < k ≤ 5. Secondly, due to the common occurrence of representatives of type [1] 
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and type [2], whereby the variability given for representatives of type [1] is assumed to be 
small compared to that of type [2], and due to the basic potentials defined by genetics and 
growth conditions a certain amount of spatial but distance independent correlation 
between increments within sawn timber can be expected as well. This kind of correlation 
is considered as equicorrelation. Herein a common dependency of all sub-elements within 
sawn timber on a specimen inherent basic potential is given. This assumption is for 
example supported by observations of COLLING (1990). He found distances between knot 
clusters as well as the diameters of dominating knots fluctuating around specimen 
specific average values. Furthermore, the hierarchical material structure of wood and 
timber indicates a hierarchical process which is per definition in conjunction with 
equicorrelation (see section 4.2). With some references regarding the correlation of 
strengths between weak zones of the same structural element WILLIAMSON (1994) 
mentioned some explanations why a certain amount of correlation can be expected in 
principle, namely, 

 breakdown is the same for the whole stem and depends on each stem; 

 pith (radial position) or position relative to pith is the same for the whole 
structural element; 

 density and other basic characteristics can be assumed to be more or less 
deterministic in longitudinal direction (juvenile / adult wood); 

 nearly the same or comparable knot characteristics can be assumed; 

 structural elements origin from the same height of the tree; 

 identical genetics; 

 same or nearly identical characteristics in respect to moisture content.  

Note: Juvenile and adult wood is constant in distance to pith (radial position) but knot 
characteristics change in radial position as well as longitudinally (see Fig. 4.8 and  
Fig. 5.1).  

To conclude, common presence of auto- and equicorrelation in the spatial correlation 
structure of local characteristics in sawn timber can be assumed. The shares of auto- and 
equicorrelation are yet not known and will be further discussed. Retrospective to the 
findings in chapter 4 it can also be concluded that the spatial correlation observable 
within structural timber is decisively influenced by the characteristics of the foregoing 
hierarchical level of “clear wood” or wood in general. Consequently, global 
characteristics represented by type [1] can also be treated as the basic potential of wood, 
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whereas characteristics of type [2] cause the required scale transition to the hierarchical 
level of “structural timber”. The conequencies of these thoughts are discussed at the end 
of the next section 5.1.1 and in particular and qualitatively in Fig. 5.21.  

 

Fig. 5.4: General autoregressive stochastic process (left) vs. (2nd level) hierarchical stochastic 
process (right) 

The next section 5.1.1 is dedicated to spatial distribution and correlation of local 
characteristics within structural timber. Sections 5.1.2 and 5.1.3 are dedicated to (volume) 
size and system effects in timber engineering. Each section starts with a general 
introduction for classification of (volume) size and system effects. It has to be mentioned 
that the term “system effect” in timber engineering and wood technology is in general 
only associated with effects of parallel systems. Thereby system effects are defined as 
multiplication factors, e.g. defined as system factor ksys = fN,05 / f1,05 ≥ 1.00, which enhance 
the characteristic strength potentials of parallel systems compared to that of single 
elements. Serial system effects are considered in conjunction with size (volume) effects. 
Consequently research on general system effects in wood and timber engineering is often 
split in either (parallel) system effects or volume (size) effects. More information on size 
and system effects is given in sections 5.1.2 and 5.1.3. 
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5.1.1 Spatial Distribution and Correlation Structure of local Characteristics 
within and between Structural Timber Elements  

Before discussing results on spatial distribution, correlation of flaws (characteristics of 
type [2]) and physical properties e.g. density, stiffness and strength, some general 
constraints are listed: First, to the knowledge of the author examinations on local 
characteristics within sawn timber are restricted to the longitudinal direction. Studies on 
spatial variation in width or depth are expected to be scarce and not available to the 
author. Secondly, the definition of a representative length for analysing spatial variation 
of characteristics in timber is still missing and in general not even discussed in literature.  

Spatial Distribution, Correlation of Growth Characteristics and Notes on Reference 
Volume Elements in Structural Timber 

The aim to quantify length effects in sawn timber and to create a data basis for 
simulations of glulam beams were the driving forces to deal with longitudinal correlation 
within timber. Thereby the longitudinal description of local characteristics is required and 
generally performed for 2D simulation models (e.g. FOSCHI AND BARRETT, 1980; 
BENDER ET AL., 1985; EHLBECK ET AL., 1985B; FOSCHI, 1985; COLLING, 1990; FRESE, 
2006). The general lack of a reference length for the description of longitudinal 
correlation outlines on the one hand the difficulty in specifying this representative length. 
This is due to the spatial variation of flaws in dimensional scales equal to the scale of 
timber. On the other hand it is a challenge to define a universal dimension applicable for a 
variety of timber species. Hereby differing primary growth features, e.g. the amount of 
knot clusters established each year, are observable, even if observations are restricted to 
softwoods.  

Some publications (e.g. RIBERHOLT AND MADSEN, 1979; COLLING, 1990; ISAKSSON, 
1999) provide data of dimension and spatial distribution of flaws (e.g. knot clusters, 
expressed by knot share parameters, see e.g. SCHICKHOFER AND AUGUSTIN, 2001). In 
most publications dealing with practical examinations on spatial distribution it has to be 
assumed that the test span used was choosen without any plausible reasoning. It can be 
assumed that some arguments for the selection fall into the categories: (i) contraints given 
by the test equipment, (ii) considerations made in regard to the material and discrete 
distributed flaws, (iii) dimensions proportional to qualitatively comparable test 
configurations given in standards, or (iv) simple because the same span was already used 
in previous analysis and / or other authors. In particular the last argument would provide 
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direct comparability between test results of various sets and studies and thus enlarge the 
power of available results. Tab. 5.1 gives a brief summary of test spans used so far in 
literature. 

Tab. 5.1: Summary of test spans for practical examination of the longitudinal distribution of 
strength and stiffness in structural timber 

source test span characteristic(s) species 

CORDER (1965) 305 mm Em,0,i Western hemlock 

GLOS (1978) 180 mm fc,0,i Norway spruce 

HEIMESHOFF AND GLOS (1980) 137.5 mm ft,0,i; Em,0,i Norway spruce 

KLINE ET AL. (1986) 762 mm Em,0,i NN 

TAYLOR AND BENDER (1988, 1989), 
TAYLOR (1988) 610 mm ft,0,i; Em,0,i Douglas Fir 

SHOWALTER ET AL. (1987) 762 mm ft,0,i; Em,0,i Southern pine 

LAM AND VAROGLU (1991A,B) 610 mm ft,0,i Spruce-Pine-Fir 

XIONG (1991), LAM AND BARRETT (1992), 
LAM ET AL. (1994), WANG ET AL. (1995) 

152 mm fc,0,i; Em,0,i Spruce-Pine-Fir 

RICHBURG AND BENDER (1992), 
RICHBURG (1989) 610 mm ft,0,i; Em,0,i Douglas Fir 

ISAKSSON ET AL. (1994), ISAKSSON AND 

THELANDERSSON (1996), ISAKSSON (1998, 
1999) 

400 mm fm,i; Em,0,i Norway spruce 

KÄLLSNER AND DITLEVSEN (1994), 
KÄLLSNER ET AL. (1997) < 720 mm fm,i Norway spruce 

BRANDNER ET AL. (2005) 400 mm Et,0,i Norway spruce 

FRESE (2006) ≥ 150 mm ft,0,i; fc,0,i; ft,j; Et,0,i; 
Ec,0,i 

Beech 

STUEFER (2011) 150 / 300 mm ft,90,i; Et,90,i; ρ12 Norway spruce 

The motivation to deal with spatial distribution and correlation of mechanical 
characteristics in timber is versitale but divisible in three main aspects: The first aspect 
aims on the improvement of stress grading algorithms by improving strength estimation 
based on local Em,0,i instead of global Em,0 values. The second aspect serves for deeper 
understanding and enhanced modelling of size (volume) effects (in particular length 
effects) with focus on improved design of solid and glued laminated timber. The third 
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aspect concentrates on the establishment of a data base to increase the significance of 
input parameters for stochastic-mechanic modelling and simulation of glued laminated 
timber products, e.g. glulam (GLT), CLT, duo and trio beams.  

Mechanical tests thereby only provide discrete data of spatial distribution and correlation. 
Continuous or nearly continuous information is scarce and for example given for density 
estimated from X-ray scanning or for apparent E-modulus (including shear deformation) 
based on readings from machine stress rating devices. In particular the determination of 
local strength requires a certain test increment as “free span length” and additional length 
for clamping or loading devices. The introduction of load requires a certain volume 
(length) to guarantee that the measured load confirms with the assumptions made in 
calculation of stress and stiffness values. For example BOGENSPERGER (2006) showed by 
means of FE-analysis that a distance to the clamping device of about one times the 
clamping length is required to secure a uniform distribution of tensile stresses over the 
whole cross section of a specimen stressed longitudinally in tension. This may then 
conform to the theoretical assumption according the simple beam theory given by 
σt,0 = F / A, with σt,0 as tensile stress in grain direction, F as tensile force applied in grain 
direction and A = A(x) as cross section area. Thus the specification of a suitable test 
increment requires the consideration of at least two points: first to secure that the 
theoretically assumed stress distribution confirms sufficiently accurate with the real 
stresses during testing, and secondly, a certain linkage to the material structure of 
structural timber, e.g. in regard to the length increment (distance) between knot clusters. 
In that respect WILLIAMSON (1992) for example report on observations that 3 m long 
softwood boards of low quality contain approximately 20 ÷ 50 “macroscopic” flaws 
(significant in their dimension in respect to the dimension of boards) whereas boards of 
high timber quality were found to contain also the same quantity but of “microscopic” 
flaws. WILLIAMSON (1992) cites BURY (1974) who stateted that ≥ 20 elements (e.g. 
flaws) are a sufficient quantity to use an asymptotic EVT distribution model (see 
section 2.6.2). Nevertheless as discussed in section 3.3 this assumption appears a bit 
rough and if than only applicable in case of more or less iid elements. Thereby the 
heterogeneity between structural timber elements and the dependency between sub-
elements within the same element cause the same phenomenon but under a different 
perspective.  

Numerous studies concentrated on the spatial distribution of knot clusters. In structural 
timber these are often associated as best indicators of a potential failure domain. For 
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example RIBERHOLT AND MADSEN (1979) found that the distance between knot clusters 
varies remarkably even if only one timber species, i.e. Norway spruce is considered. For 
example in one series Swedish and Danish spruce showed a mean distance between knot 
zones (KZD) of E[KZD] = (330 ÷ 360) mm, with CoV[KZD] = (28 ÷ 34)%. Another 
series on Danish spruce give an expectation of E[KZD] = (450 ÷ 500) mm, with 
CoV[KZD] = (50 ÷ 63)%. Beside that a positive dependency on timber grade can be 
expected although the presented data showed no clear tendency. The distribution of KZD 
was modelled by means of an exponential distribution as a special case of the Gamma 
distribution with distance of one increment. Beside the qualitatively weak representation 
of test data by the exponential distribution model, which was also confirmed by KS-tests 
performed by RIBERHOLT AND MADSEN (1979), the model was further used as basis for 
the definition of the so called “weak zone model” which will be discussed in more detail 
later. CZMOCH ET AL. (1991) report with reference to COLLING AND DINORT (1987), 
JÖNSSON AND ÖSTLUND (1987) and FEWELL (1991) that the mean distance between knot 
clusters in Norway spruce can be assumed to be roughly 500 mm and independent of 
grading (strength) class. KÄLLSNER ET AL. (1997) found 6 (7) weak zones over 3.5 m 
long boards with a cross section of w / d = 45 mm / 120 mm. ISAKSSON (1999) analysed 
the longitudinal distribution of knots and knot clusters by means of knot share parameter 
“knot area ratio” (KAR). This parameter is defined as the relative share of knot area 
projected on the cross section area. Thereby overlapping areas are only counted once. He 
calculated the KAR values of knots of Swedish spruce, w / d = 45 mm / 145 mm of 
150 mm long board increments for every 10th mm. He predicted the occurence of knot 
clusters based on KAR readings and by means of two KAR limits of 40% and 50%. 
Thereby mean distances between knot cluster of 440 mm and 494 mm, respectively, were 
observed. The distance between weak zones was observed as being independent of the 
strength potential of the beam. This observation corresponds to findings of CZMOCH ET 

AL. (1991) but contradicts results of RIBERHOLT AND MADSEN (1979). Note: This can be 
explained by the dependency of the distance on growth and the relative radial position of 
sawn timber within the stem. Thereby strength grading is regulated by limits of knot 
diameters but not on the distance between knot clusters. As mentioned by WILLIAMSON 

(1992) the dimension of flaws is reduced in higher strength grades whereas the quantity is 
not. Nevertheless, the mean distances determined by means of KAR limits correspond 
well with the mean distances gained from direct measurements which were in the range 
of (400 ÷ 600) mm corresponding to 4 ÷ 8 weak sections within (5.1 ÷ 5.4) m long 
boards. In agreement with RIBERHOLT AND MADSEN (1979) also ISAKSSON (1999) used a 
Gamma distribution for modelling the distance between weak zones. But even though not 



Serial and parallel acting Systems in Timber, Engineered Timber Products and Structures 

276 

discussed but provided in ISAKSSON (1999) 2pLND shows qualitatively a distinctively 
better representation of knot data than the Gamma distribution. With reference to 
COLLING AND DINORT (1987) KAR-values were found to be independent of (i) growth 
region (provenience), (ii) board width or (iii) grading class. Note: KAR-values 
independent of the grading class can in general not be expected as this parameter is an 
indicating property for strength in visual and machine grading. The mean KZD was found 
to be (450 ÷ 500) mm.  

The length of knot clusters, classified as length of weak zones, is often associated with 
the length increment of knot accumulation parameters, e.g. KAR or parameters given in 
DIN 4074-1 like DEB, DAB, DEK which have to be normally determined within 150 mm 
long increments. Deviating from this rule RIBERHOLT AND MADSEN (1979) analysed knot 
share parameters within a length equal to the width of the board. Note: This specification 
is in dependency of geometric constraints defined during the breakdown process of logs 
to timber and not linked with growth features of the living tree. ISAKSSON (1999) 
modelled the length of weak zones by means of a Beta distribution and observed a range 
of (10 ÷ 380) mm.  

In general, all currently available knot parameters are brought in some relationship to 
local strength data. This is done with the aim to find all gradings relevant, but mostly only 
the maximum (worst flaw) associated with the lowest strength. Thereby the occurrence 
and ascertainable dimension of knots is merely an indicator for local grain deviation. In 
particular in wood with its roughly orthotropic material structure this grain deviation 
shows a significant and decisive impact on strength. For example in clear wood a 
deviation from parallel to grain of about α = 10° leads to about 30% loss in tensile 
strength ft,α if compared to ft,0 (see HANKINSON, 1921). Based on results of comprehensive 
research projects (i.e. SCHICKHOFER AND AUGUSTIN, 2001; FINK ET AL., 2011) 
addressing the relationships between knot accumulation parameters and strength of 
structural timber it can be concluded that a correlation between ft,0 and KAR of r = –0.47 
(SCHICKHOFER AND AUGUSTIN, 2001) as well as r = –0.55 (FINK ET AL., 2011) can be 
expected. Beside this weak negative correlation analysing the correlation between global 
parameters (type [1]) like density and dynamical E-modulus (e.g. based on 
eigenfrequency or ultrasonic speed) to ft,0 gives comparable or even higher positive 
correlation values even though no direct local information is contained (e.g. density vs. 
ft,0: r = 0.47; dyn. E-modulus based on eigenfrequency (Edyn,EF,12) vs. ft,0: r = 0.77; FINK ET 

AL., 2011). In case of multiple regression analysis including global but also local 
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characteristics of type [2] the gain on power of strength estimation models by knot 
parameters is negligible (KAR and Edyn,EF,12 vs. ft,0: r = 0.80 Ø + 0.03; FINK ET AL., 2011). 
Nevertheless, the size of knots and knot clusters give an impression and a first estimate 
for the extension of discrete weak zones in timber and thus a first estimate of the 
geometric spatial distribution of mechanical characteristics in structural timber. Note: The 
definition of the largest defect is linked to an estimate of the defect with the lowest 
strength potential or the highest impact on the strength potential of sawn timber, based on 
non-destructively determined properties and thus an “idea” of the local strength. For the 
determination of the “largest defect” a relative comparison between the estimated 
potentials of all weak sections within a board is sufficient but the relationship between the 
knot parameters and strength is generally weak.  

Within the following part analysis results of dimensional and spatial distribution of knot 
data are presented. Therefore parallel to grain tensile test data on boards accomplished on 
Norway spruce (Picea abies (L.) Karst.) of provenience Central Europe (Switzerland: I-
CH; Austria: II-AT & III-AT) taken from MISCHLER-SCHREPFER (2000) and 
SCHICKHOFER & AUGUSTIN (2001) (who partly cooperated during the reported projects) 
are presented. Tab. 5.2 contains an overview of tested dimensions and quantities as well 
as additional information like nominal grading classes according DIN 4074 and the type 
of grading, visual (vis), machine (mach) and semi-machine (semi). 

The tensile tests were accomplished according the prescriptions of test standard EN 408, 
with a minimum free testing length of lfree = 9 · w (w as width of the board) and 
measurement of local elongation within the free testing length over a distance of 5 · w. In 
general, the free testing length was maximised to lfree = 3,300 mm and 2,860 mm for 
series I-CH and series II-AT & III-AT, respectively. Furthermore, the placement of the 
specimen in the tensile testing device was done randomly without visual judgement of the 
weakest cross section. Before testing in tension the following additional information per 
board were recorded: 

 global density;  

 dynamical E-modulus (Edyn,US) by means of ultrasonic speed measurement device 
Sylvatest;  

 radial position (RP) within the log, determined as distance between the pith and 
the center of board cross section;  

 average annual ring width (ARW).  
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Tab. 5.2: Test data – overview of main- and sub-series, nominal grading classes, quantities and 
dimensions 

quantity 
[--] 

main- &  
sub-series 

[--] 

NGC 3) 

 
[--] all cen. 4) 

width w
 

[mm] 

thickness t
 

[mm] 

length l 
 

[mm] 

_1:semi:m 1) 62# 46# 

_1:semi:s 1) 62# 37# 
45 

I-
C

H
 

_1:semi:ss 1) 

not defined 2)

61# 43# 

150 

29 

4,450 

_1:vis S10 45# 35# 

_2:vis S13 45# 34# 

_3:mach MS13 45# 39# 

_4:mach MS17 41# 35# 

150 

_5:mach MS13 16# 12# 

II
-A

T
 

_6:mach MS17 14# 6# 
230 

_1:vis S10 45# 35# 

_2:vis S13 45# 34# 

_3:mach MS10 45# 37# 

_4:mach MS13 45# 32# 

II
I-

A
T

 

_5:mach MS17 44# 35# 

110 

35 3,200 ÷ 4,000 

Σ = 615# 460#  
1) m, s, ss denote different radial positions (RP) of the board (cross section center) within the log, with 

RP(m) ≈ 26.5 mm, RP(s) ≈ 79.5 mm and RP(ss) ≈ 100.0 mm 

2) pre-selected 5 m long roundwood with ultrasonic speed (Sylvatest) vUS ≥ 4,500 m/s (corresponds to the upper 43% of 
all harvested logs) and mid log diameter MDM = (29 ÷ 31) cm 

3) nominal grading class (NGC) 

4) only data sets containing all required data (complete knot data; MWZ ≥ 1; failure in free testing length; fracture in a 
registered knot cluster) 

Before testing visually detectable and measurable irregularities, especially knots and knot 
clusters were registered. Hereby, every knot with a diameter dmknot ≥ 5 mm (as common) 
was recorded regarding its dimension and position within the entire board. In total, for the 
615# boards about 40,000 knots were recorded and documented. Based on this data knot 
indicators, e.g. knot area ratio (KAR), knot density (KD) and others were derived (see 
SCHICKHOFER AND AUGUSTIN, 2001).  
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Tab. 5.3: Main statistics (mean and CoV) of geometrical and physical characteristics for each 
sub-series: statistics of all and of censored data (see Tab. 5.2) 

mean_all | mean_cen (fixed value) 
CoV_all | CoV_cen 

sub-series 
[--] 

ARW 
[mm] 

RP 
[mm] 

ρ12 
[kg/m³] 

Et,0,l,12 
[N/mm²] 

ft,0,l 
[N/mm²] 

I_1:semi:m 4.1 | 4.1 (26.5) 
404 | 403 

6.3% | 6.4% 
10,580 | 10,490 
13.6% | 13.9% 

22.7 | 22.3 
33.6% | 32.8% 

I_1:semi:s 2.5 | 2.5 (79.5) 
442 | 440 

6.6% | 7.0% 
13,310 | 13,160 
12.7% | 13.4% 

34.0 | 33.6 
32.6% | 34.5% 

I_1:semi:ss 2.3 | 2.3 (100.0) 
459 | 459 

7.3%| 7.9% 
13,720 | 13,710 
14.2% | 14.1% 

34.7 | 33.0 
32.4% | 32.0% 

II_1:vis 2.2 | 2.2 37.7 | 38.4 
450 | 453 

8.8% | 8.2% 
10,870 | 10,910 
14.0% | 11.4% 

21.1 | 20.8 
28.5% | 28.0% 

II_2:vis 1.9 | 2.0 56.1 | 56.1 
441 | 444 

8.2% | 7.9% 
12,720 | 12,810 
18.6% | 18.5% 

34.4 | 34.9 
30.7% | 30.7% 

II_3:mach 2.1 | 2.1 50.4 | 50.5 
473 | 475 

8.6% | 8.8% 
13,820 | 13,800 

7.3% | 7.7% 
32.2 | 31.8 

24.0% | 22.5% 

II_4:mach 1.6 | 1.6 51.1 | 50.3 
508 | 506 

8.6% | 8.7% 
16,390 | 16,190 
10.1% | 9.9% 

44.0 | 42.2 
25.4% | 24.0% 

II_5:mach 2.6 | 2.6 71.0 | 67.3 
437 | 438 

6.3% | 6.7% 
13,250 | 13,230 

5.4% | 5.4% 
30.5 | 30.9 

27.7% | 28.5% 

II_6:mach 2.2 | 2.2 89.4 | 87.0 
455 | 447 

8.3% | 9.3% 
14,340 | 13,570 
14.9% | 16.3% 

44.1 | 37.7 
32.8% | 34.6% 

III_1:vis 2.7 | 2.7 29.7 | 29.5 
443 | 446 

11.0% | 11.3% 
10,660 | 10,680 
16.3% | 15.8% 

23.0 | 23.3 
34.7% | 35.9% 

III_2:vis 2.5 | 2.3 42.2 | 41.0 
446 | 456 

10.2% | 9.7% 
10,290 | 10,320 
11.6% | 12.1% 

34.1 | 35.1 
23.0% | 23.2% 

III_3:mach 3.0 | 3.0 36.4 | 37.0 
425 | 424 

6.8% | 6.9% 
10,680 | 10,640 
10.9% | 11.2% 

25.4 | 24.4 
34.0% | 33.1% 

III_4:mach 2.0 | 2.0 39.1 | 39.5 
476 | 479 

6.5% | 6.6% 
10,760 | 10,550 
14.1% | 13.3% 

35.4 | 36.3 
24.2% | 23.5% 

III_5:mach 1.8 | 1.9 37.5 | 37.4 
500 | 497 

8.2% | 8.3% 
14,370 | 14,180 
17.7% | 18.6% 

38.6 | 37.2 
36.4% | 36.7% 
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For a joint consideration of knot and tensile test data the position of the board in the 
tensile testing device was recorded together with the position of the elongation 
measurement devices. Nevertheless, due to contradicting knot data of opposite or adjacent 
board sides or boards without any knot cluster (in total 101#), failure within the clamping 
area or missing data (50#) as well as missing values of maximum force (4#) in total only 
460# boards could be utilised for further computations. 

The E-modulus in tension was adjusted according EN 384 to a reference moisture content 
of u = 12%. The size effect for adjustment of tension strength of boards to a reference 
width of 150 mm as given in EN 384 or additionally to a reference length of 2,000 mm 
according EN 1194 was not applied. The main statistics of geometrical as well as physical 
characteristics are given in Tab. 5.3. The comparison of test statistics over all 615# and of 
only 460# boards shows no significant differences, whether in mean nor in variation. This 
indicates that the censoring happened randomly and that the censored data set can be 
considered as representative as the total sample. A comparison of the empirical 
distribution of tension strength for each sub-series separately with a best-fitted lognormal 
distribution (2pLND) is presented in Fig. 5.5. 

 

Fig. 5.5:  Empirical distributions as well as best fitted 2pLND of tension strength in sub-series of 
I-CH (left), II-AT (middle) and III-AT (right)  

Qualitative judgement of the distribution of ft,0 for each sub-series in Fig. 5.5 shows that 
2pLND as RSDM appears acceptable. Additionally, Shapiro-Wilk tests were performed 
in R (2009). Thereby the empirical distribution of ft,0 was tested against ND and 2pLND, 
the latter taking the logarithm of ft,0. At a confidence level of (1 – α)% = 95% in 10 of 14 
and 13 of 14 sub-series the assumption of being normal or lognormally distributed, 
respectively, could not be rejected. The same test procedure was applied for E-modulus in 
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tension parallel to grain (Et,0,12) and density (ρ12). Thereby, in 11 of 14 and 10 of 14 as 
well as in 13 of 14 and 14 of 14 cases the assumed models ND and 2pLND could not be 
rejected, respectively for E-modulus and density. By counting the cases were the realised 
significance (p-value) either of the test against ND or against 2pLND was higher the 
ratios #ND / #2pLND of 9 / 5, 10 / 4 and 4 / 10 were found. Due to grading all sub-series 
contain two- or at least one-sided truncated data. This is in particular true for density and 
E-modulus. Both are explicit or implicit strength grading parameters. Due to truncation 
an increased symmetry in distribution can be expected. Nevertheless, due to physics 
2pLND is preferred for representing strength and E-modulus in tension parallel to grain, 
even for sub-samples. The dominance of not rejected empirical distributions 2pLND was 
not expected. Nevertheless, already BURGER (1998B) chose 2pLND as RSDM for 
density. Comparable results were also found in BRANDNER AND SCHICKHOFER (2007). 
Consequently, 2pLND is also taken as RSDM for density.  

The definition of knot clusters is of particular interest in this study. In the context of 
visual grading, judgement of knot clusters has to be done within a fixed segment length in 
longitudinal direction of the board, e.g. within 150 mm as given in DIN 4074. In this 
study the definition of the length for judgement of knot clusters as well as its geometrical 
extension in longitudinal direction was kept variable and in dependency of the size of the 
knots within the corresponding knot cluster. With reference to MEIERHOFER (1976) and 
BUKSNOWITZ ET AL. (2010) (see Fig. 5.6) the area influenced by a knot is viewed in 
relation to the local grain deviation around a knot. Referring to their analysis the section 
length of knot zones in case of single knots can be defined as the measurable knot 
diameter in direction longitudinal to the global grain direction plus two times the 
measurable knot diameter transverse to global grain direction. Following that, knot 
clusters are defined as a group of knots with a maximum in-between distance of one knot 
diameter, whereby the larger diameter of two neighbouring knots is taken into account. 
The section length in case of a knot cluster is defined as the length of the knot cluster 
itself plus the diameter of the outermost knots in both directions. These geometrical 
definitions of knot (cluster) zones are theoretically straighforward. Nevertheless, for 
comparability of the presented analysis with the literature statistics of weak zones of knot 
clusters (WZ) and intermediate knots (IK) are given without the additional knot diameters 
in longitudinal direction. A further reason is to supply statistics of the length of weak 
zones equal to that used for the calculation of KAR-values. Nevertheless, for the 
definition of a representative longitudinal element the influence of local grain deviation is 
explicitely taken into account.  
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The calculated KAR-values KARWZ which correspond to the weak (knot) zones represent 
the projected knot area on the cross section by considering all knots within the defined 
segment length. Thereby, overlapping areas are only counted once.  

 

Fig. 5.6: Electronic speckle pattern interferometry (ESPI) measurements on an intergrown 
(above) and loose knot (below) with a diameter of 15 mm under tensile stress parallel to 
grain of 10 N/mm² on Norway spruce from BUKSNOWITZ ET AL. (2010): tangential 
strain (left); longitudinal strain (middle); shear strain (right)  

In general, the expected failure inducing characteristic is given by a global or local grain 
deviation. Local grain deviation is ascertainable by knots or knot clusters, which 
significantly weaken, e.g. the tensile strength capacity parallel to the grain of a board 
within the affected board segment. This follows on one hand directly from the fact that 
clear wood tensile strength perpendicular to the grain is only about 1 / 30 of that parallel 
to grain. On the other hand and due to the breakdown process, knots, which are optimised 
for bearing the branches, leaves and live loads in the living tree appear as disturbed area 
in regard to grain orientation, stress and strain flow within the board. 

As mentioned above, every knot with a diameter of dmknot ≥ 5 mm was recorded with 
regard to its dimensions and position within the board. Consequently, all knot share 
ratios, dimensions and other statistics in relation with knots are censored somehow. Some 
comments on this aspect are given later. During the tension tests fracture propagation (if 
detectable) and / or fracture characteristics were recorded for each specimen by reporting 
affected and involved knots and knot clusters. On the basis of calculated knot share ratios 
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under the assumption that the cross section with the highest share of knots within the 
fractured zone initiated the failure of the board and hence determined the tensile strength, 
the highest share of knots of all recorded knot zones along the fracture is associated with 
the tensile strength of the board. Consequently, it can be expected that all other knot 
zones along the free testing length show an equal or higher tensile strength as measured 
by the destructive test. That means that beside the quantitative information about the 
ultimate tension capacity tested, the qualitative information of the number of survived 
weak zones per board given by the number MWZ as the number of elements composing a 
serial system, is of highest interest for the representation of the length effect on strength 
(see e.g. sections 3.3, 5.1.2 and 5.4). 

Tab. 5.4: Statistics of weak zones: quantity (MWZ), width (wWZ) of and distance (dWZ) between 
weak zones within free testing length lfree 

MWZ 
[--] 

wWZ 

[mm] 
dWZ 

[mm] 
sub-series 

[--] 

median mean median CoV mean median CoV 

I_1:semi:m 4# 68 51 76% 763 709 72% 

I_1:semi:s 5# 48 35 65% 681 712 70% 

I_1:semi:ss 4# 43 31 68% 695 718 70% 

II_1:vis 9# 47 40 57% 398 340 68% 

II_2:vis 7# 38 33 50% 522 489 58% 

II_3:mach 6# 47 39 54% 554 514 59% 

II_4:mach 6# 40 34 49% 591 534 57% 

II_5:mach 5# 56 44 69% 760 569 61% 

II_6:mach 3# 58 57 48% 664 448 77% 

III_1:vis 8# 44 40 48% 466 463 60% 

III_2:vis 6# 37 31 48% 528 468 65% 

III_3:mach 6# 52 45 50% 527 544 56% 

III_4:mach 7# 41 35 56% 443 425 57% 

III_5:mach 7# 40 34 49% 475 430 51% 

As previously discussed in this section and as illustrated in Fig. 5.1 the distance between 
knot clusters corresponds to the yearly incremental longitudinal growth of the tree and 
depends on the position of the board within the stem and on the breakdown process. For 
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reproducible determination of distinctive knot clusters as potential weak zones within a 
given board a knot share limit has to be defined to classify a knot accumulation as a 
potential weak zone. As already discussed by ISAKSSON (1999) this is difficult but 
decisive for further calculations. ISAKSSON examined two limits, a 40% and a 50% limit 
of max[TKAR] of each individual specimen, whereby TKAR was determined for a fixed 
board segment of 150 mm length. The herein presented knot share ratios base on varying 
lengths of board segments. Consequently, a new definition of a practicable limit is 
required, in particular in connection with the width of the weak zone. After visually 
judgement of various possibilities it was decided to define the limit with 
KARWZ · wWZ ≥ 0.20, with KARWZ as the KAR-value corresponding to the above defined 
length of the knot zone, and wWZ as the longitudinal dimension (width) of the knot zone in 
[mm]. Tab. 5.4 gives an overview of some statistics for quantity MWZ and width wWZ of 
weak zones and (in-between center) distance dWZ between the weak zones for each sub-
series of series I, II and III. Due to the distinctive differences in dWZ between series I-CH 
and II-AT & II-AT data of I-CH is excluded from further statistical analysis.  

Fig. 5.7 and Fig. 5.8 contain the empirical distribution of KARf from fractured weak zones 
in comparison with the best fitted 2pLND. Over all KARf can be qualitatively well 
presented by 2pLND.  

A comparison between empirical and best fitted 2pLND of variable wWZ is provided in 
Fig. 5.9 and Fig. 5.10. According the definition of weak zones the width wWZ as well as 
the distance dWZ are bounded below (  3pLND). Again a good to excellent agreement 
between empD and 2pLND despite the lower boundary is given.  

 

Fig. 5.7: Empirical distribution of KARf in fractured weak zones vs. best fitted 2pLND: series  
II-AT 
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Fig. 5.8: Empirical distribution of KARf in fractured weak zones vs. best fitted 2pLND: series  
III-AT 

 

Fig. 5.9: Empirical distribution of the width of weak zones wWZ vs. best fitted 2pLND: series  
II-AT 

 

Fig. 5.10: Empirical distribution of the width of weak zones wWZ vs. best fitted 2pLND: series  
III-AT 
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Fig. 5.11 and Fig. 5.12 show the empD and best fitted 2pLND and exponential 
distribution, the latter in reference to literature. Despite the fact that the exponential 
distribution has one fitting parameter less than 2pLND representation of dWZ is over all 
poor. Comparison of empD with 2pLND gives congruent and representative results. 

 

Fig. 5.11: Empirical distribution of the distance between weak zones dWZ vs. best fitted 
exponential distribution (Exp) and 2pLND: series II-AT  

 

Fig. 5.12: Empirical distribution of the distance between weak zones dWZ vs. best fitted 
exponential distribution (Exp) and 2pLND: series III-AT 

For simplification of further examinations and to increase the significance of results all 14 
sub-series were compared in respect to their medians. Therefore the Mann-Whitney-U 
test as implemented in R (2009) was applied to compare density, E-modulus and strength 
data of all 14 sub-series. The confidence level was again chosen with (1 – α)% = 95%. 
The aim was to assembly sub-series not significantly different to at least three data groups 
which are significantly different. Thereby only data of sub-series which are assignable to 
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a specific group in all three analysed physical characteristics are accepted. The output of 
the tests lead to: 

 group g01: II-AT_1:vis & III-AT_1:vis & III-AT_3:mach (in total 107#);  

 group g02: II-AT_3:mach & II-AT_6:mach (in total 45#);  

 group g03: II-AT_4:mach (in total 35#).  

Statistics of the physical characteristics density, E-modulus and tension strength of 
grouped data are given in Tab. 5.5. Median tests performed on density, E-modulus and 
tension strength by means of Shapiro-Wilk test on normality and with a confidence level 
of (1 – α)% = 95% showed that 2pLND could be rejected in none of the groups. In four of 
nine cases this was also true for ND. Also for KARf the assumed 2pLND could not be 
rejected for g02 and g03. In g01 p-value was on the boarder of rejection.  

Tab. 5.5: Statistics of grouped data: density, E-modulus and strength in tension parallel to grain  

ρ12 [kg/m³] Et,0,l,12 [N/mm²] ft,0,l [N/mm²]  

g01 g02 g03 g01 g02 g03 g01 g02 g03 

# 107# 45# 35# 106# 45# 35# 107# 45# 35# 

min 370 400 438 7,860 10,430 14,170 11.1 18.0 20.4 

mean 440 471 506 10,740 13,770 16,190 22.9 32.6 42.2 

median 439 471 501 10,820 13,770 15,840 21.5 32.6 42.1 

max 567 601 615 14,160 16,600 20,810 50.8 54.9 71.6 

CoV [%] 9.3% 9.0% 8.7% 12.8% 9.0% 9.9% 33.3% 25.2% 24.0% 

X05 384 413 444 8,490 12,090 14,350 13.1 21.3 28.9 

X95 525 551 595 12,800 16,190 19,010 35.7 45.4 58.1 

A comparison of the medians of density, E-modulus and strength between the groups by 
means of Wilcoxon-test statistics give in all cases a rejection of the null hypotheses of 
equal medians on high significance level (p < 0.01).  

Based on 2pLND as RSDM of all three physical properties, simple linear regression 
analysis was performed on logarithmised variables. The goodness of fit was judged 
qualitatively by regression analysis on normality (qq-plot of residuals on normal 
probability paper, leverage plot, check of homoscedasticity and residual analysis) and by 
a test summary provided in R (2009) based on F-test statistics. Thereby a weak 
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relationship between density and E-modulus with r2
adj = 0.35 ÷ 0.39 was found in all three 

groups with high significant intercept and slope parameters. Despite the regression 
between E-modulus and tension strength in group g01 with r2

adj = 0.30 no significant 
relationships between Et,0,12 and ft,0 as well as between ρ12 and ft,0 were detected. The 
reason for contradicting data and lack in relationship is not clear. Comprehensive analysis 
of data sets in BRANDNER ET AL. (2012) and other literature (e.g. GLOS, 1995; 
JOHANSSON, 2000; JCSS:2006) show in general weak to moderate correlation between 
the analysed variables, see Tab. 5.6.  

Tab. 5.6: Coefficients of determination and correlation coefficients between density, E-modulus 
and strength in tension parallel to grain  

R2 / R ρ12 Et,0,12 ft,0 

ρ12 1.00 0.40 ÷ 0.55 1) 0.20 ÷ 0.30 1) 

Et,0,12 0.63 ÷ 0.74 1); 0.60 3) 1.00 0.30 ÷ 0.45 1) 

ft,0 
0.45 ÷ 0.55 1); 0.50 2) 
0.40 3); 0.54 ÷ 0.62 4) 

0.55 ÷ 0.67 1) 
0.80 3); 0.87 4) 

1.00 

1) BRANDNER ET AL. (2012): based on simple linear regression of logarithmised variables 
2) GLOS (1995)  
3) JCSS:2006 
4) JOHANSSON (2000)  

Statistics of weak zones as well as intermediate knot zones (KAR-values, width and 
distances in-between) are given in Tab. 5.7 and Tab. 5.8. On a first view a decreasing 
trend in KARf,50, KARWZ,50 and wWZ,50 together with a slight decrease in variation with 
increasing group number and thus with increasing timber grade can be observed, whereas 
the in-between distance of weak zones (dWZ,50) increases on median level. This trend was 
expected because the lower the quantity of weak zones per length unit and the smaller the 
dimension of destroyed areas in structural timber the lower the influence on strength and 
thus the higher the corresponding strength class or group number. Comparable but not so 
distinctive trends can be found in Tab. 5.8 which contains statistics of intermediate knot 
zones. In these statistics dIK is defined as distance between the centers of intermediate 
knot zones. Comparison of medians between groups of weak zone statistics rejects the 
hypothesis of equal medians at α = 5% except for wWZ,50 | g01 vs. wWZ,50 | g02 and 
dWZ,50 | g02 vs. dWZ,50 | g03. Test on equal variance at the same significance level by means 
of command “var.test” in R (2009) on logarithmised data were in general rejected for 
Var[KARWZ] with the exception of Var[KARWZ] | g01 vs. Var[KARWZ] | g02. In contrast, in 
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none of the cases the hypothetical equivalence between variance of wWZ and dWZ could be 
rejected. Comparable results were also found for the statistics of intermediate knot zones.  

Tab. 5.7: Statistics of weak zones of grouped data: KARf, KARWZ, width wWZ of and distance dWZ 
between weak zones  

KARf [--] KARWZ [--] wWZ [mm] dWZ [mm]  

g01 g02 g03 g01 g02 g03 g01 g02 g03 g01 g02 g03 

# 107# 45# 35# 829# 280# 197# 826# 279# 197# 719# 234# 163# 

min 0.06 0.10 0.08 0.05 0.04 0.08 13 14 11 57 67 62 

mean 0.29 0.26 0.23 0.23 0.21 0.17 48 48 40 447 563 591 

median 0.28 0.24 0.23 0.21 0.19 0.15 41 40 34 404 508 534 

max 0.88 0.53 0.46 0.88 0.55 0.46 175 179 132 1,743 1,876 2,264 

CoV [%] 45% 38% 38% 45% 45% 41% 53% 54% 49% 57% 61% 57% 

X05 0.10 0.12 0.12 0.10 0.09 0.09 22 23 22 111 136 174 

X95 0.48 0.42 0.36 0.41 0.40 0.29 101 100 73 802 1,313 1,158 

Tab. 5.8: Statistics of intermediate knot zones of grouped data: KARIK, width wIK of and distance 
dIK between intermediate knot zones 

KARIK [--] wIK [mm] dIK [mm]  

g01 g02 g03 g01 g02 g03 g01 g02 g03 

# 858# 174# 89# 1,248# 287# 203# 625# 126# 80# 

min 0.00 0.00 0.00 5 5 5 16 16 16 

mean 0.03 0.04 0.04 13 15 13 73 117 175 

median 0.02 0.03 0.03 7 11 8 54 78 145 

max 0.28 0.24 0.14 137 82 69 525 768 735 

CoV [%] 111% 83% 77% 101% 81% 85% 85% 96% 79% 

X05 0.00 0.00 0.01 5 5 5 19 24 26 

X95 0.10 0.09 0.11 36 40 36 191 366 404 

Fig. 5.13 shows the empirical distributions of weak zone characteristics KARWZ, wWZ and 
dWZ in comparison with best fitted 2pLND. Thereby an acceptable representation of data 
by 2pLND is observed. In line with statistics given in Tab. 5.7 the distribution of KARWZ 
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and wWZ of group g03 shows lowest variation and medians whereas dWZ of g03 has the 
highest but nearly the same median as dWZ of g02.  

 

Fig. 5.13: Empirical distribution and best-fitted 2pLND of characteristics of weak zones of 
grouped data: distribution of KARWZ (left); width of weak zones wWZ (middle) and 
distance between weak zones dWZ (right)  

 

Fig. 5.14: Empirical distribution of characteristics of weak zones within structural timber 
elements, ordered according their mean values; grouped data: KARWZ,mean (left); wWZ,mean 
(middle) and dWZ,mean (right) together with realisations within each structural timber 
element 

Fig. 5.14 supports investigations concerning serial correlation between KARWZ, wWZ and 
dWZ within the same structural timber element by separate analysis of each group. 
Thereby all elements were ordered according the mean-values of examined characteristics 
and for comparison between the groups plotted as empD. It can be concluded that no 
distinct serial correlation can be observed. The same plots were made for KARIK, wIK and 
dIK of intermediate knot zones, see Fig. 5.15 and Fig. 5.16. The results are qualitatively 
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comparable to that of the weak zones, whereby the differences between the groups 
concerning dIK are even more pronounced than in dWZ.  

 

Fig. 5.15: Empirical distribution and best-fitted 2pLND of characteristics of intermediate knot 
(zones) of grouped data: distribution of KARIK (left); width of weak zones wIK (middle) 
and distance between weak zones dIK (right) 

 

Fig. 5.16: Empirical distribution of characteristics of weak zones within structural timber elements 
ordered according their mean values; grouped data: KARIK,mean (left); wIK,mean (middle) 
and dIK,mean (right) together with realisations within each structural timber element 

Further analysis of statistics of weak zones given in Tab. 5.7 e.g. shows a distinctive 
higher KARf,50 in comparison to KARWZ, but unexpected equal maximum values. Also the 
variations are comparable. The median or mean width of weak zones is roughly 1/3 of the 
general proposed increment of 150 mm whereas the maximum values are in the range of 
(130 ÷ 180) mm. Consequently, for a simplified judgement of weak zones in visual or 
machine grading the current increment length of 150 mm can be roughly confirmed. The 
minimum of wWZ is given with wWZ ≥ 10 mm. The mean or median statistics of dWZ are in 
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the range of (400 ÷ 600) mm and thus coincide with results of e.g. RIBERHOLT AND 

MADSEN (1979), COLLING AND DINORT (1987), JÖNSSON AND ÖSTLUND (1987), FEWELL 

(1991) and ISAKSSON (1999). In line with RIBERHOLT AND MADSEN (1979) a significant 
positive dependency of dWZ on timber grade was found. 

The statistics of dIK,50 in Tab. 5.8 show also a positive dependency on timber grade. Over 
all KARIK, wIK and dIK show more variation in data than the variables of weak zones.  

So far only knot characteristics in longitudinal direction were analysed. Nevertheless, also 
an influence on knot characteristics given by the transverse dimension of structural timber 
elements can be expected. In the test data analysed three different board widths were 
tested; w = 110, 150, 230 mm. Based on Mann-Whitney-U tests done for data grouping 
and with focus on not significantly different medians in tension strength the following 
sub-series can be compared in respect to a possible influence of width on knot zone 
characteristics: 

 w = 110 mm: III-AT_4:mach & III-AT_5:mach;  

 w = 150 mm: II-AT_3:mach;  

 w = 230 mm: II-AT_5:mach & II-AT_6:mach.  

The (averaged) medians of RP and knot characteristics of weak zones and intermediate 
knot zones are given in Tab. 5.9. It can be observed that KARf and KARWZ decrease with 
increasing board width, whereas the width of and the center-distance between weak zones 
increases. Of course, these observations have to be seen in connection with the radial 
position (RP) of the board within the stem which also increases with increasing board 
width. This is reasonable since a larger log diameter is required to gain structural timber 
of larger width or depth. Based on median statistics of intermediate knot zones clear 
trends are not extractable.  

Tab. 5.9: Median statistics of knot characteristics of weak zones as well as intermediate knot 
zones: classification according the board width  

 
RP 

[mm] 
KARf 
[--] 

KARWZ 
[--] 

wWZ 
[mm] 

dWZ 
[mm] 

KARIK 
[--] 

wIK 
[mm] 

dIK 
[mm] 

w = 110 mm 39 0.26 0.20 35 428 0.03 7 58 

w = 150 mm 51 0.25 0.19 39 514 0.04 13 82 

w = 230 mm 77 0.22 0.18 51 509 0.02 7 78 
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A decrease in knot share ratios with increasing board width was also observed by 
BURGER (1998B; for DAB-values) and DENZLER (2007; for KAR-values). Nevertheless, in 
the present work the focus is on analysis of system action and on effects as result of 
different arrangements of the elements in respect to each other and in respect to stresses 
externally applied. Thereby, for every system analysed the dimension of elements in 
width and thickness are treated as deterministic. Consequently, the physical 
characteristics of the elements at a given dimension are fixed, thus effects in width and 
thickness within the elements have an influence on the absolute values e.g. on strength 
and stiffness of the elements but not directly on the relative output of system action.  

 

Fig. 5.17: Empirical distribution of knot diameter data taken from SCKICKHOFER AND AUGUSTIN 

(2001) and KASTNER ET AL. (2011) 

As mentioned at the beginning of this sub-section only knots with a diameter 
dmknot ≥ 5 mm were taken into account. This is a very common regulation in international 
grading procedures. Consequently, all knot characteristics are somehow censored. To get 
an idea of the influence of this common procedure and some statistics for correction of 
geometric knot zone data the distribution of knot diameter is analysed. Fig. 5.17 shows 
the empirical distribution of knot diameters obtained from the data of SCHICKHOFER AND 

AUGUSTIN (2001). Additionally, the empirical distribution of knot diameters as found by 
KASTNER ET AL. (2011) is given. In the second project tension characteristics of boards of 
Norway spruce (Picea abies (Karst.)) with a cross section of w / t = 170 mm / 45 mm and 
strength class C24 according EN 338 were analysed. Thereby every knot, irrespective of 
its diameter was recorded. Despite the fact that the strength class C24 examined in 
KASTNER ET AL. (2011) underestimates the mean mechanical potential of the series 
analysed in SCHICKHOFER AND AUGUSTIN (2001) the knot data show a qualitatively 
comparable distribution. Interestingly, both empDs show an unexpected change in slope 



Serial and parallel acting Systems in Timber, Engineered Timber Products and Structures 

294 

at about 50% of empD. It can be assumed that the observed empD of knot diameters is a 
mixed distribution of more homogeneous intermediate knots, which are also smaller in 
diameter, and main knots, which show a wider range and thus a higher variation in 
diameters and a higher expected value. In line with the lower mechanical potential a 
higher variation of knot diameters and higher absolute values were expected in the data of 
KASTNER ET AL. (2011). Based on the fact that 15.6% of knots showed a diameter less 
than 5 mm the empirical distribution gained from the data of SCHICKHOFER AND 

AUGUSTIN (2001) was adjusted (see Fig. 5.17). The main statistics are given in Tab. 5.10.  

Tab. 5.10: Statistics of knot diameter  

 knot diameter dmknot [mm] 

 SCHICKHOFER & AUGUSTIN 
(2001) 

SCHICKHOFER & AUGUSTIN 
(2001); adjusted 

KASTNER ET AL. (2011) 

# 22,340# -- 45,264# 

min 5 -- 1 

mean 10 -- 10 

median 8 7 7 

max 69 -- 91 

CoV [%] 59% -- 70% 

X05 5 -- 4 

X95 22 21 25 

Interpreting the empirical distributions in Fig. 5.17 and the statistics in Tab. 5.10 it can be 
concluded that the distribution in knot diameter below the median level is very steep 
characterised by low variation. Above the median level the distribution shows remarkable 
higher variation. Consequently, the censoring below 5 mm does not affect the distribution 
too much and affects predominantly knots of intermediate knot zones with minor 
relevance for the strength of full-size structural timber elements. Nevertheless, statistics 
in Tab. 5.10 provide also important values for the adjustment of wKZ and dKZ by at least 
adding median or mean diameters to the mean or median statistics of wKZ and dKZ. This to 
adjust them according the advanced knot (cluster) zone definition provided at the 
beginning of this sub-section.  

To conclude, this sub-section gives important statistics for further modelling of local 
characteristics within elements and for the definition of a representative longitudinal 
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length increment of sub-elements on the basis data groups defined herein. The 
characteristics of the variables will be used to define at least three groups of material 
quality. These groups deliver the basic information in further modelling procedures. 
Therefore connections to current European strength class systems will be also included. 
More on these aspects will be given at the end of this section 5.1.1.  

Spatial Correlation of Strength, Stiffness and Density  

After the introductory discussion of some literature on spatial distributed growth 
characteristics, test data and simulation results of various publications dedicated to 
spatial, in particular longitudinal correlation of strength, stiffness and density are 
presented. Tab. 5.11 provides a brief overview of all publications and data treated.  

Tab. 5.11: Overview of literature sources and examined data in regard to longitudinal correlation 
of material inherent characteristics  

source species 
w / d 

[mm / mm]
grade characteristics equi- or 

autocorrelated 

HOFFMEYER (1978)  NN NN NN Em,0,i 
equi 

r ≈ 0.81 ÷ 0.85 

RIBERHOLT AND 
MADSEN (1979)  

Norway 
spruce NN UG Em,0,app,i; fm,i; 

ft,0,i  
equi  

f: r ≈ 0.14 ÷ 0.49 

LEICESTER (1985) Radiata 
pine 45 / 100 F7 & F8 (LQ) fm,i  equi, r ≈ 0.10 

LEICESTER (1985) Eucalyptus 45 / 90 No. 1 & 2 (HQ) fm,i  equi, r ≈ 0.50 

SHOWALTER (1986)  NN NN NN ft,0,i equi, r ≈ 0.63 

KLINE ET AL. (1986) Southern 
pine 

38 / 89 
38 / 235 

No. 2 KD15 
(VG) 

2250f-1.9E 
(MSR) 

Em,0,i  auto  

SHOWALTER ET AL. 
(1987) 

Southern 
pine 

38 / 89 
38 / 235 

No. 2 KD15 
(VG) 

2250f-1.9E 
(MSR) 

Em,0,i; ft,0,i  auto  

TAYLOR (1988) 
TAYLOR AND BENDER 

(1988, 1989, 1991) 
Douglas fir 38 / 140 

L1 (VG, HQ) 
302-24 (VG, 

HQ) 
Em,0,i; ft,0,i  auto  

MADSEN (1989A) NN NN NN ft,0,i  equi 
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r ≈ 0.48 ÷ 0.70 

MADSEN (1989A) NN NN NN fm,i  
equi 

r ≈ 0.61 ÷ 0.72 

RICHBURG (1989),  
RICHBURG AND 
BENDER (1992) 

Douglas fir 38 / 140 
6# E-rated 

grades (MSR) 
L2 & L3 (VG)

Em,0,i; ft,0,i  auto  

LAM AND VAROGLU 
(1991A,B) 

Spruce-
Pine-Fir 38 / 89 No. 2 Em,0,app,i; ft,0,i; auto 

CZMOCH (1989, 1991)
Swedish 
pine & 
spruce 

45 / 120 
45 / 95 

K 24 
(stiffness) 

Em,0,i 
auto  

XIONG (1991),  
WANG ET AL. (1995), 

LAM ET AL. (1994) 

Spruce-
Pine-Fir 38 / 89 

2400f-2.0E 
(MSR) 

1650f-1.5E 
(MSR) 

Em,0,app,i; fc,0,i auto  

KÄLLSNER ET AL. 
(1997), DITLEVSEN 

AND KÄLLSNER (1998)

Norway 
spruce 45 / 120 UG Em,0,i; Em,0,app,i; 

fm,i  
equi  

r ≈ 0.55 ÷ 0.68 

ISAKSSON (1998, 1999) Norway 
spruce 45 / 145 UG Em,0,app,i; fm,i equi, r ≈ 0.54 

STICH (1998) Norway 
spruce 45 / 120 UG Em,0,i; fm,i equi, r ≈ 0.50 

BRANDNER ET AL. 
(2005) 

Norway 
spruce 40 / 80 S10 (VG) Et,0,i  

equi  
r ≈ 0.36 ÷ 0.41 

STUEFER (2011) Norway 
spruce 40 / 150 L25 (MSR; SQ) Et,90,i; ft,90,i; ρ12

equi  
E: r ≈ 0.42 ÷ 0.45 
f: r ≈ 0.42 ÷ 0.50 
ρ: r ≈ 0.87 

HQ … high quality; SQ … standard quality; LQ … low quality  
VG … visually graded; MSR … machine graded; UG … ungraded material  
xxx … no report concerning spatial correlation but examined by tests  
NN … data not specified or not available  

Fig. 5.18 to Fig. 5.20 show plots of serial (longitudinal) pairwise correlation of strength, 
stiffness and density, respectively. The correlation coefficient of PEARSON is used as 
adequate measure of association for continuous variables not necessarily normally 
distributed.  
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Fig. 5.18: Serial pairwise correlation according PEARSON vs. lag-distance: serial correlation of E-
modulus within timber specimen; black = Em,0,i; green = Et,0,i; red = Et,90,i; bold = 
Norway spruce 

 

Fig. 5.19: Serial pairwise correlation according PEARSON vs. lag-distance: serial correlation of 
strength within timber specimen; black = fm,i; green = ft,0,i; red = ft,90,i; blue = fc,0,i; bold = 
Norway spruce 

In addition to Tab. 5.11 further details will be discussed: RIBERHOLT AND MADSEN 

(1979) seem to be the first who analysed serial correlation of strength in timber. They 
performed bending tests on ungraded Norway spruce on three own test series and 
observed an overall correlation of r ≈ 0.14 ÷ 0.49. The correlation trajectories showed no 
coherent trend with increasing distance. Based on this fact and supported by data of 
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HOFFMEYER (1978) who also reported on local bending strengths RIBERHOLT AND 

MADSEN (1979) established a two-level hierarchical model presuming equicorrelation. In 
addition, a positive relationship between density ρ and timber quality was found. Note: 
Serial correlation follows from common dependency of strength and stiffness on the 
material inherent potential which is primary manifested by the basic characteristics of 
wood, e.g. density and E-modulus. Thus the higher the strength class, the more 
homogeneous the material exhibiting less influences by local characteristics of type [2].  

 

Fig. 5.20: Serial pairwise correlation according PEARSON vs. lag-distance: serial correlation of 
density within timber specimen; red = ρ12,i; bold = Norway spruce 

A few years later LEICESTER (1985) performed tests on low quality Radiate pine as well 
as on high quality Eucalyptus specimen analysing the local bending strength on two 
increments per board with length of 540 mm and 600 mm respectively, and a lag-distance 
of 2,150 mm. He supports the findings of RIBERHOLT AND MADSEN (1979) of increasing 
correlation with increasing timber quality, with r = 0.10 and r = 0.50 for Radiate pine and 
Eucalyptus, respectively. KLINE ET AL. (1986) report on local Em,i-values determined on 
four consecutive increments of Southern pine on two cross sections and two strength 
grades. Overall they found a decreasing correlation with increasing lag-distance. 
SHOWALTER (1986) and SHOWALTER ET AL. (1987) continued the work of KLINE ET AL. 
(1986). Thereby and additionally destructive tensile tests on the first and fourth segment, 
tested before in local Em,0,i, were performed. Whereas correlation of ft,0,i was higher for the 
smaller cross section and for visual grade, correlation of Em,0,i was also higher for visual 
grade but indifferent concerning the dimension of the cross section. 
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Later, extensive studies were made with Douglas fir. TAYLOR (1988) and TAYLOR AND 

BENDER (1988, 1989, 1991) determined the spatial distribution and correlation of Em,0,i on 
4 (5) consecutive segments and ft,0,i on first and fourth Em,0,i-segment on two high quality 
visual grades of five suppliers. Thereby significant differences in serial correlation from 
grade to grade and even between the suppliers were found. Hereby Em,0,i-values showed 
also higher correlation at higher grades whereas results of ft,0,i-values are contrary. 
RICHBURG (1989) and RICHBURG AND BENDER (1992) extended the studies of TAYLOR 

(1988) and TAYLOR AND BENDER (1988, 1989, 1991) and determined Em,0,i and ft,0,i on six 
E-rated grades and two visual grades by performing the same procedure. They found 
significant variation of correlation with grade. There is a tendency that higher E-grades as 
well as the higher visual grade show higher correlation for Em,0,i but no tendency for ft,0,i. 
Furthermore RICHBURG AND BENDER (1992) observed similar cross correlation between 
Em,0,i and ft,0,i for E-rated as well as for visual grades, as reported by TAYLOR (1988). 
CZMOCH (1991) studied serial correlation of bending stiffness applying five different load 
steps. He performed tests on Swedish spruce and pine of two different cross sections. He 
found a higher variability of bending stiffness between specimen with CoV = 22% and 
CoV = 15%, respectively. Furthermore, remarkable deviating correlation trajectories were 
observed for the five different load steps. Thus Fig. 5.18 contains only the values of the 
correlation found at the first load step. In addition comparable results of BERG AND 

HAGMAN (1976) and HJUKSTRÖM (1985) are cited for one cross section. 

In the same year LAM AND VAROGLU (1991A,B) and XIONG (1991) published their results 
on serial correlation of tensile and compression strength parallel to grain. All tests were 
performed on two-by-four SPF specimens. LAM AND VAROGLU (1991A) performed long 
span tensile tests to define the minimum tensile strength of 6.1 m long boards within a 
free testing length of 4.88 m. Thereby the largest flaw of the board was placed within the 
free testing length. Then, in total 3 ÷ 5 additional segments with free testing length of 
610 mm got tested. Thus data of in total 4 ÷ 6 incremental tensile strengths are available 
for each board. To analyse the correlation of the incomplete and incremental strength 
profiles window analysis and semivariogram were applied. They concluded, based on 
constant variance between segments of ≥ 1.83 m distance, that local tensile strength can 
be assumed being independent of each other. Note: Additionally performed and presented 
longitudinal correlation analysis clearly outlines a decreasing spatial (longitudinal) 
correlation of r = 0.75 for N = 1 (610 mm distance) to r ≈ 0.5 for N ≥ 2 (≥ 1,220 mm 
distance) which indicates autocorrelation at beginning and distinctive equicorrelation for 
lag-distances of roughly ≥ 2 m. XIONG (1991) analysed serial compression strength 
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parallel to grain as well as variation of E-modulus of strength class 2100f-1.8E. The first 
was analysed on 32 consecutive increments per specimen and the last based on readings 
of a stress grading device. Nevertheless data of serial correlation of fc,0,i are not published 
in XIONG (1991) but test results of two further strength grades can be found in WANG ET 

AL. (1995) and LAM ET AL. (1994). Thereby a slight decreasing trend in serial correlation 
can be observed with remarkable higher correlation (Δ ≈ 0.20) for the higher strength 
class.  

WILLIAMSON (1992) focused on modelling of length effects in timber. Therefore he also 
analysed strength data of serial correlation published by SHOWALTER (1986) and 
MADSEN (1989A). On the basis of his statistical analysis he found a mean equicorrelation 
of r ≈ 0.60 for bending and tension strength data. Although a slight decrease of serial 
correlation with increasing lag-distance was observed in data of MADSEN (1989A), 
significance tests led to no rejection of the hypothesis of equicorrelation. Two years later 
WILLIAMSON (1994) published results concerning serial correlation of strength gained 
from analysis of 15 data sets from literature (SHOWALTER ET AL., 1987; GERHARDS, 
1983; MADSEN, 1992; LAM AND VAROGLU, 1991A; TAYLOR AND BENDER, 1991 and a 
test series performed at NZ FRI, 1992). He calculated correlation coefficients assuming 
equicorrelation along the sawn timber. He found a range of r = 0.37 ÷ 0.72, on average 
with rmean = 0.58. Comparison of the mean value with 95 % confidence intervals of r of 
each test series showed that in only one test series rmean was not within the confidence 
intervall. In his work WILLIAMSON (1994) further concluded that (i) the assumption of 
equicorrelation can not be rejected, (ii) the assumption of decreasing correlation with 
increasing lag-distance can not be supported, (iii) that higher (visual) grades tend to have 
a higher serial correlation, (iv) that serial correlation shows to be unaffected by the length 
of specimens (  supports assumption of stationarity), and (v) that visual grades appear to 
show higher correlation than machine graded timber. The last point is argued by the 
observation that density shows high correlation along the specimen. Thus visual grading 
focuses on knots leading to reduction of knot variability but not density, whereas machine 
grading focuses more on density (note: or on dynamic E-modulus which is by physics 
directly linked with density). Consequently visual grading enforces serial correlation due 
to high correlation with density, whereas machine grading reduces serial correlation by 
restricting density variation. 

KÄLLSNER ET AL. (1997) as well as DITLEVSEN AND KÄLLSNER (1998) report on two test 
series for determination of local bending strength of ungraded specimen of Norway 
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spruce examined by KÄLLSNER AND DITLEVSEN (1994). In this context extensive studies 
on consecutive segments with one knot cluster each were performed. Every increment 
was finger jointed between two strong beams and tested under four-point bending. 
Despite all caution many failures occurred in finger joints or in the side-beams. 
Nevertheless extensive statistical analysis by means of MLE for right-censored data and 
under the assumption of a two level hierarchical model allowed to define equicorrelation 
with r = 0.55 and r = 0.68. Later, DITLEVSEN AND KÄLLSNER (2005) analysed test data of 
STICH (1998) under the same assumptions and found r = 0.50. 

ISAKSSON (1999) tested 4 ÷ 8 increments of Swedish spruce. He tested over 400 mm free 
span and applied pure bending stress, starting with the increment containing the worst 
flaw, followed by the second worst and so forth. The range of local strength within each 
board appears roughly constant over all tested specimen. This indicates an approximately 
constant variance of local bending strength data within boards. Furthermore a certain 
dependency of local fm,i on mean strength potential of each beam is observable. This is 
indicated by a shift of fm,i-range in comparison to others, if weaker or stronger. This is in 
line with observations of COLLING (1990) and his knot data analysis. Examination of 
longitudinal correlation was possible up to lag-5 and gave r = 0.54.  

BRANDNER ET AL. (2005) report on tensile tests on finger jointed flanges for I-beams. 
Thereby local Et,0,i-values of seven consecutive segments of 400 mm length as well as 
global E-modulus were determined. The position of finger joints was recorded and 
considered in the analysis of serial correlation. Two series of Norway spruce of nominal 
visual grade S10 according to DIN 4074-1 were tested, one series of provenience Styria / 
Austria (Central Europe; S) and the other series of provenience Scandinavia (N). Test 
results of strength, stiffness and density suggest to classify series (S) and (N) as C20/C22 
and C27/C30, respectively. Serial correlation of both series show equicorrelation of Et,0,i 
whereby a relationship between the magnitude of correlation and the strength class was 
not found. Recently, STUEFER (2011) tested segments of Norway spruce in tension 
perpendicular to grain. He used 150 mm and 300 mm long increments but with constant 
lag-distance of 300 mm. He determined ft,90,i, Et,90,i and ρ12,i. Overall results of serial 
correlation suggest equicorrelation, whereby trajectories of strength and density show 
higher correlation at increment length of 300 mm than in case of 150 mm.  

As shown in Tab. 5.11 models for the longitudinal correlation of local strength and 
stiffness values, in principle autoregressive vs. hierarchical stochastic processes, are 
controversly discussed in the literature. Whereas KLINE ET AL. (1986), SHOWALTER ET 
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AL. (1987), TAYLOR (1988), TAYLOR AND BENDER (1988, 1989, 1991), RICHBURG 

(1989), RICHBURG AND BENDER (1992), LAM AND VAROGLU (1991A,B), CZMOCH 

(1991), XIONG (1991), WANG ET AL. (1995) and LAM ET AL. (1994) postulate an 
autoregressive stochastic process HOFFMEYER (1978), RIBERHOLT AND MADSEN (1979), 
LEICESTER (1985), SHOWALTER (1986), MADSEN (1989A), KÄLLSNER AND DITLEVSEN 

(1994), KÄLLSNER ET AL. (1997), DITLEVSEN AND KÄLLSNER (1998), ISAKSSON (1998, 
1999), STICH (1998), BRANDNER ET AL. (2005) and STUEFER (2011) or data sets of them 
suggest the description of spatial correlation by means of hierarchical models associated 
with equicorrelation. Thereby it is interesting to notice that the latest publications and test 
series suggest equicorrelation.  

Following the discussion in section 5.1 at first both types of stochastic processes 
(autoregressive and hierarchical process) can be argumented. This by considering the 
creation processes of wood and growth characteristics like branches and the fact that the 
tree as a whole is one living unit. Nevertheless, the question which type of stochastic 
models best represents the correlation structure has to be considered in dependency of (i) 
the hierarchical material structure, (ii) the spatial distribution of discrete distributed 
material characteristics as well as (iii) the test increment choosen for the analysis of 
spatial correlation.  

 

Fig. 5.21: Schematic illustration of scale transition between two hierarchical stochastic processes  

For illustrative purposes an increment of one millimetre in length is considered. It can be 
expected that mechanical properties show distinctive serial pairwise correlation if the 
distance between the increments amounts only few millimeters. Otherwise, due to more 
or less deterministic parameters within a tree, like climate conditions or supply of 
nutrients, water and sun energy, it cannot be expected that there will be no residual 
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pairwise serial correlation after a distance of one meter or more. The critical aspect in this 
example is that an increment of one millimetre in length may be representative for the 
analysis of serial pairwise correlation in the scale of centimeters but not for meters. By 
comparing characteristics within one meter distance other features than within the scale 
of millimetres can be expected to be decisive.  

In structural timber, i.e. in Norway spruce, growth characteristics like knot clusters are 
the determining feature of characteristics, i.e. strength and E-modulus, at long lag-
distances, whereas other features are decisive on the scale of millimetres. What happens 
is a change in the representative length which causes an adaption of the length increment 
for analysing serial pairwise correlation. This adaptation was already discussed in 
section 4.5 in respect to scale transition. In view of the given example a transition process 
from the hierarchy of “wood” to that of “structural timber” is given. Due to the fact that 
the features (e.g. knot clusters) itself are stochastic variables with distribution in respect 
to dimension and distance in occurrence, scale transition is expected as a continuous 
process, e.g. as a transition function between the equicorrelation observable in wood to 
that in timber (see Fig. 5.21). Consequently, the convergence to a certain value of 
equicorrelation ρequi > 0 depends on the distribution and influence of features relevant for 
the investigated characteristic.  

 

Fig. 5.22: Serial pairwise correlation vs. lag-distance of E-modulus (Ei; left) and strength (fi; 
right): mean ± standard deviation of section-wise correlation as smoothed function; 
mean of all correlation coefficients of lag-k, k ≥ 1 (ρmean); least squares fit (LSM) 
assuming equicorrelation considering all data of k ≥ 1 (ρequi,LSM) and ρequi,LSM,Norway spruce 
considering only data from Norway spruce  
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In particular, it can be assumed that clear wood segments (increments) show high serial 
correlation. It can be also assumed that knot zones show a distinctive correlation but not 
as high as clear wood because the variability of parameters like knot arrangement, size 
and position relative to cross section is very high. Thus it can be concluded that serial 
correlation in timber within knot-free zones (hierarchy of wood) is on a high level and 
equicorrelated. This is supported by the material inherent hierarchical structure of wood 
and timber. This high serial correlation immediately changes to a lower level if knot 
zones become a part of analysed segments. Following that a representative length 
increment for timber has to include at least one (representative) knot cluster and is thus 
defined by the serial distribution of knot clusters. If the length of the increment is choosen 
too short failure characteristics of the previous hierarchical level “wood” may become 
decisive. This postulate is also supported by the outcomes of the literature study as shown 
in Fig. 5.22. Within these plots expectable correlations function as “mean” pairwise serial 
correlation in dependency of the distance between two increments is introduced.  

Further analysis of spatial correlation concerning influences given by (i) timber species, 
(ii) cross sectional dimension, (iii) load type (bending, tension parallel or perpendicular to 
grain and compression) as well as (iv) length of increment tested, showed no clear 
tendency.  

Models for the Generation of serial correlated Random Variates – Literature 
Review 

So far experimental data and observations concerning spatial correlation of strength, 
stiffness and density within sawn timber have been discussed. Nevertheless, for creation 
of models and performance of simulations by means of randomly correlated variates 
some constraints and simplifications have to be made. One of the main steps is the 
determination of RSDMs for the local physical properties. Thereby a variety of different 
distribution models proposed for the same characteristic can be observed. For example 
RICHBURG (1989) assumed a 3pLND for the representation of local Em,0,i-values whereas 
KLINE ET AL. (1986) (cit. in TAYLOR, 1988) used a ND. Analyses of TAYLOR (1988) 
showed good representation of Em,0,i by 2pLND or 3pWD but overall 3pWD was 
preferred. The same was done by WOESTE ET AL. (1979) and TAYLOR AND BENDER 

(1991) but interestingly not in TAYLOR AND BENDER (1989) were a 2pWD was used for 
modelling Em,0,i-values. Examination of data reported in BRANDNER ET AL. (2005) 
showed that 2pLND best represents local values of Et,0,i. Thereby results of fitting data 
with ND, 2pLND and 2pWD were compared. Analysis of Et,90,i-values of STUEFER (2011) 
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indicated preference of 2pLND and 2pWD as RSDMs. Thereby fitting results of models 
ND, LND and WD were analysed. The local bending strength fm,i was found to follow a 
ND (ISAKSSON, 1998; DITLEVSEN AND KÄLLSNER, 1998; KÄLLSNER ET AL., 1997) or a 
2pWD (RIBERHOLT AND MADSEN, 1979). Local tensile strength values parallel to grain 
ft,0,i were modelled by means of 2pLND (SHOWALTER ET AL., 1987), 3pLND (RICHBURG, 
1989), 2pWD or 2pLND (TAYLOR, 1988) and 3pWD (TAYLOR AND BENDER, 1991). 
STUEFER (2011) analysed the empirical distribution of ft,90,I in comparison with ND, 
2pLND, and 2pWD. He found that 2pWD best represented his data sets.  

To conclude, as discussed in section 2.4 the reduction of model parameters to an amount 
which is practically manageable and physically justifiable is strongly recommended. In 
particular the third parameter in 3pLND and 3pWD which is defined as a lower limit 
value x0 ≥ 0 can not be fixed easily and thereby is not secured in the daily production 
process. Therefore it is recommended to reduce the RSDMs for the local strength and 
stiffness values to two-parametric distribution models. Due to the multiplication process 
underlying in E- and G-moduli and the fact that strength is always a minimum value 
irrespective the size of the test increment, skewed distribution models are preferred. For 
E- and G-moduli the use of 2pLND as RSDM is proposed. This is in line with 
recommendations of JCSS (2006). For strength values the definition is not so clear and 
depends on the material behaviour observable at a specific stress. Therefore the use of 
2pLND or 2pWD is proposed, whereby 2pLND is preferred for characteristics like ft,0,i, 
fm,i, fc,0,i and fc,90,i, whereas for fv,i either 2pLND and 2pWD, and for ft,90,i the use of 2pWD 
is recommended.  

To the author’s knowledge the first who formulated a model for the stochastic process of 
serial correlation of mechanical characteristics in timber were RIBERHOLT AND MADSEN 

(1979). They created a two-level hierarchical model with equicorrelation between local 
strength increments. Then they discussed the occurrence of weak zones in accordance 
with the yearly longitudinal growth increment typical for Norway spruce. Thereby a weak 
zone was associated with a knot cluster. The occurrence was modelled by a Poisson-
process. Thus the distance between weak zones follows a Exponential distribution. The 
strength between weak zones was kept constant and equal to the highest strength of the 
weak zones within each specific board. Thus the failure of a board can only occur at weak 
zones. This was suggested as assumption sufficiently accurate for modelling length 
effects so far every sawn timber specimen contains at least one increment, at least one 
weak zone. The distribution parameters for the strength of weak zones were gained from 
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standard tests on boards with known quantity of weak zones as well as from estimates of 
longitudinal local strength profiles based on non-destructively determined grading 
parameters like local density and local E-modulus. As already discussed in section 5.1.1 
beside the fact that Poisson and Exponential distribution models failed in representing the 
number and distance between weak zones, respectively, RIBERHOLT AND MADSEN (1979) 
decided to use them in their weak zone model. From tests it was observed that the 
skewness of strength distribution of the weakest section within tested length (  serial 
system!) is higher than that of the weak section strength itself. Note: This follows directly 
from extreme value theory and the concentration of minimum values in serial systems. 
Tests of RIBERHOLT AND MADSEN (1979) showed an overall pairwise serial correlation of 
r = 0.14 ÷ 0.49. In reference to DITLEVSEN (1978) who postulated that the error of 
assuming independency between correlated sub-elements in case of r ≤ 0.5 is relatively 
small, RIBERHOLT AND MADSEN (1979) assumed iid local strengths. 

To account for material inherent correlation, in particular for modelling length effects 
LEICESTER (1985) discussed the modification of WD through adaptation of WD-shape 
parameter by scaling it proportional to the given correlation. In doing so he preconditions 
equicorrelation, with strength of two sub-elements as independent realisations but 
common and equal dependent on a basic value of the element itself. Thereby 
inconsistency is given by fitting a WD on test data assuming independency between the 
sub-elements but afterwards adaptation of the shape parameter by consideration of a 
certain amount of spatial correlation (WILLIAMSON, 1992). KLINE ET AL. (1986) modeled 
the longitudinal variability of local Em,0,i-values between 762 mm long segments by 
means of a second-order Markov-chain. SHOWALTER ET AL. (1987) enlarged KLINE’s 
model by inclusion of longitudinal variation in ft,0,i. They combined KLINE’s Markov-
process for Em,0,i with the regression model given in WOESTE ET AL. (1979) to estimate 
ft,0,i-values based on a weighted least squares regression. The residues of the regression 
model were thereby parallel modelled as a 1st-order Markov-chain.  

TAYLOR AND BENDER (1988, 1989) defined a model for the generation of local strength 
and stiffness values. Their approach consists of several steps: At first, the variance-
covariance matrix of local strength and stiffness values has to be found. Secondly, 
RSDMs as parent distribution models of strength and stiffness values have to be 
determined. In the third step SND-variates are created by means of the variance-
covariance matrix from the first step. To create local strength and stiffness values the 
length of the expectation vector as well as the squared size of the variance-covariance 
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matrix are twice the length of the serial system, the quantity of increments of sawn 
timber. In the fourth step the correlated SND-variates are transformed to their parent 
distributions. This is done by calculating the inverse FX

–1(u) which follows a uniform 
distribution U (0, 1), followed by application of the inverse transformation method 
U (0, 1) Ø FX(x) to transform the variates to their parent distribution. Thereby the RSDM 
of each variate can be completely preserved whereas the correlation can be preserved 
satisfactorily. TAYLOR AND BENDER (1991) used this approach to simulate Em,0,i- and ft,0,i-
values of four consecutive board segments. Based on test results of Em,0,i of all four 
segments but ft,0,i only of the first and fourth segment missing ft,0,i-values were generated 
by means of an autoregressive process, knowing the cross-correlation of Em,0,i and ft,0,i. 
Furthermore, enlargement of the simulation model for boards composed of ten segments 
was enabled by estimating the additionally required but not tested serial correlation 
values for Em,0,i and ft,0,i of lag-k, k > 4 by means of an autoregressive process (AR-
process) (TAYLOR AND BENDER, 1991). The suitability of the model in preserving 
satisfactorily also the correlation between arbitrary distributed variables was analysed by 
HAN ET AL. (1991). They found that correlation was well preserved if the parent 
distributions of all variates have either positive or negative skewness, whereas the 
correspondence between indicated and simulated correlation in case of variates which 
show positive and negative skewness was weaker. The model of TAYLOR AND BENDER 

(1988, 1989, 1991) was also used by RICHBURG AND BENDER (1992).  

LAM AND VAROGLU (1991B) modelled local tensile strength based on incomplete 
incremental tensile strength profiles but complete incremental profiles of Em,0,app,i from 
readings of a Cook-Bolinder SG-AF grading device. They analysed two simulation 
procedures: First a random process assuming independent local strength data, and 
secondly a random moving average process (Markov-chain) to account for serial 
correlation. Both stochastic models showed good performance if compared with results of 
a second matched sample, whereby matching was done according the Em,0-values. Note: 
The satisfactorily correspondence is not surprising since the material, grading and 
dimension conform to the first sample used for fitting of the model parameters and the 
given local tensile strength correlation between Em,0,i and ft,0,i.  

CZMOCH ET AL. (1991) modelled local bending strengths based on the model of 
RIBERHOLT AND MADSEN (1979) and by means of a stationary stochastic process.  

XIONG (1991) modelled Em,0,i-values by means of a spectral approach. Values of fc,0,i were 
generated based on Em,0,i-profiles and by means of a bivariate ND considering a stationary 
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process. Thereby the transformation method of TAYLOR AND BENDER (1988) was 
applied. The variability of fc,0,i was indirectly considered by the spectral approach. WANG 

ET AL. (1990) and WANG AND FOSCHI (1992) studied variability in glulam beams under 
serviceability loads by means of FEM. Thereby variability of Em,0,i was modelled by 
means of random fields in length and depth direction of a glulam beam (2D-model).  

LAM AND BARRETT (1992) analysed the applicability of kriging analyses to generate local 
strength and stiffness values for elements smaller than the tested length of increments. 
Thereby kriging can be interpreted as a kind of weighted interpolation method. To secure 
stationarity in serial processes of local test data, trend removal techniques were applied.  

WILLIAMSON (1992) modelled longitudinal distributed strength values by means of a 
mixed multi-modal WD or GUMBEL distribution considering autocorrelation. The mixing 
was done by weighting of a kernel WD or GUMBEL distribution for various strength 
classes (classes of weak, median or strong boards). The weighting was done according 
typical shares of strength classes occurring in an ungraded population. LAM ET AL. (1994) 
analysed the spatial distribution of Em,0,i and fc,0,i. They modelled the longitudinal 
variation by combination of a stationary as well as a random trend process to account for 
the observed non-stationarity in their test data. WANG ET AL. (1995) analysed the 
applicability of a gain-factor model for the simulation of serial correlated Em,0,i-values and 
strength profiles in standardised normal space coupled with a trend removal model and 
multivariate SNDs.  

KÄLLSNER ET AL. (1997) modelled local strength values assuming equicorrelation 
between k ≥ 1 weak cross sections per board. Thus the weak zones are reduced to discrete 
weak cross sections. The model of KÄLLSNER ET AL. (1997) is based on publications of 
RIBERHOLT AND MADSEN (1979), WILLIAMSON (1994) and ISAKSSON (1996) who all 
dedected equicorrelation. The model was also used by DITLEVSEN AND KÄLLSNER 

(2005). They enlarged the two-level hierarchical model to a three-level hierarchical 
model, with level I as variation between logs, level II as variation between beams cut 
from two sides of the log (opposite the pith) and level III as variation between strengths 
of weak cross sections of the same beam. The coefficients of variation regarding the mean 
of weak section strength are for the first and second level 9% and 13%, together 17%, and 
for the third level also 17%.  

Already before this publication ISAKSSON (1999), with reference on KÄLLSNER ET AL. 
(1997), established a three-level hierarchical model. This model is given as 
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fij = μ + τi + εij, if fij ~ ND is assumed, or in case of fij ~ 2pLND as fij = exp(μ + τi + εij). 
Thereby fij is defined as bending strength of a weak zone, μ as fm,mean of all weak zones in 
a population, τi as random difference between μ and fm,mean,i of all weak zones of one 
individual beam, and εij as random difference between τi and the weak zones of this 
specific beam. The estimated expectations and variances are given as E[μest] = 57.33, 
Var[μest] = 13.42, Var[τi,est] = 10.11 and Var[εij,est] = 8.86. This corresponds to 
CoV[μest] = 23.4%, CoV[τi,est] = 17.6% and CoV[εij,est] = 15.5%. According ISAKSSON 

AND FREYSOLDT (1997) and based on information gained from Cook-Bolinder the 
strength of clear wood sections between weak zones was found to follow  
fm,CW = –0.133 · fm,WZ + 16.48 (r2 = 0.43).  

Intermediate Conclusions concerning spatial Correlation of Characteristics in 
Structural Timber  

The aim of this sub-section is to define crucial parameters for the stochastic description of 
characteristics of structural timber. These parameters are given for three groups 
representing three different timber qualities: G_I, G_II and G_III. The material qualities 
described are on one hand in conjunction with the groups g01, g02 and g03 analysed 
before, and on the other hand somehow linked to the strength class system of EN 338, 
and thereby to C24, C30 and C40. Tab. 5.12 provides expectations and coefficients of 
variation of knot share parameter KAR for weak as well as intermediate knot zones, their 
geometric extension and center-distances, as well as specifications for various 
(equi)correlation coefficients of strength and stiffness values and density. Overall this 
table gives the basic information required for further modelling of system actions and 
related effects on density, stiffness and strength characteristics. This will be exemplarily 
demonstrated within the next sections. 

Tab. 5.12: Expectation and coefficient of variation of selected characteristics required for the 
definition of group G_I, G_II and G_III  

  G_I G_II G_III 

E[dWZ] [mm] 450 520 590 

CoV[dWZ] [%] 60% 

E[wWZ] 1) [mm] 50 + 20 = 70 

CoV[wWZ] 1) [%] 40% 

E[KARWZ] [--] 0.23 0.20 0.17 
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CoV[KARWZ] [%] 45% 

E[dIK] [mm] 70 120 170 

CoV[dIK] [%] 80% 

E[wIK] 1) [mm] 15 + 20 = 35 

CoV[wIK] 1) [%] 40% 

E[KARIK] [--] 0.04 

CoV[KARIK] [%] 90% 

ρ(ρ12; Et,0,12) [--] 0.60 ÷ 0.70 

ρ(ρ12; ft,0) [--] 0.40 ÷ 0.60 

ρ(Et,0,12; ft,0) [--] 0.55 ÷ 0.85 

ρequi(ρ12) [--] 0.80 ÷ 0.90 

ρequi(Et,0,12) [--] 0.50 ÷ 0.60 

ρequi(ft,0) [--] 0.40 ÷ 0.50 
1) longitudinal extension of knot zone as defined previously; including two times the expected knot diameter  

(and variation) for consideration of the influence of local grain deviation 

5.1.2 Volume (Size) Effects: Serial System Effects in Engineered Timber 
Products  

In timber engineering serial system effects are often modelled according WEIBULL’s 
“weakest link theory”, also known as “strength theory of brittle materials” (WEIBULL, 
1939). Beside the fact that structural timber is assumed to fail brittle in tension 
perpendicular and parallel to grain as well as in shear and quasi-brittle in bending, it has 
to be outlined that some key assumptions of WEIBULL (see section 3.2.1) are not fulfilled 
in structural timber. These aspects and more on quasi-brittle materials are discussed in 
more detail.  

Discussions about serial system effects in wood and timber are in general associated with 
volume and size effects. These effects describe the relative change of structure resistance 
due to changes of volume in one, two or even three dimensions in respect to a (arbitrary 
choosen) reference volume. Already in 1500’s LEONARDO DA VINCI observed size effects 
by testing cords and stated that “… among cords of equal thickness the longest is the least 
strong” (see e.g. LUND AND BYRNE, 2000). Later, explicit studies on size effects were 
made by GALILEO (1638), MARIOTTE (1686), GRIFFITH (1920) and many other well 
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known researchers. A comprehensive literature survey on the history of size effect models 
can be found e.g. in BAŽANT AND CHEN (1996).  

In 1926 PEIRCE formulated the weakest link theory (WLT) by introduction of extreme 
value theory (EVT) originated by TIPPETT (1925) (see also section 2.6.2). After further 
developments in EVT it was WEIBULL (1939) who defined a physically driven three-
parameter distribution model based on a power law for the explanation of size effects in 
perfect brittle materials. This model got famous as the 3pWD which reduces to 2pWD in 
case of x0 = 0 (see e.g. section 2.4.3). This distribution model is in particular of interest 
because it is analytically solvable and the only model of three in EVT which formulation 
is in principle the same at M = 1 and M Ø ∞. The WEIBULL- or WLT-model is in general 
associated with the term “statistical size effect” (e.g. BAŽANT, 2001; BAŽANT ET AL., 
2004; BAŽANT AND PANG, 2006; BAŽANT AND YU, 2009). It was widely proved to be 
applicable for various types of brittle materials, e.g. ceramics and glasses. Beside that 
numerous researchers fitted 2pWD or 3pWD or just the power models of WLT (see 
section 3.2.1) also to strength data of non-brittle materials. Several publications outline 
explicitly the lack of representation and the violation of WEIBULL’s model assumptions 
and constraints e.g. as being obvious in discussions on quasi-brittle materials.  

Thereby quasi-brittle materials are in failure behaviour defined as being in between 
perfect brittle and perfect plastic. The observable behaviour depends on the stressed 
volume relative to a representative volume element (RVE) or characteristic dimension 
(e.g. characteristic length, lc). According WEIBULL (1939) perfect brittle materials are 
characterised by randomly distributed microscopic flaws and consequently have no 
reference dimension driven by material structure. According the WLT an arbitrary 
complex of brittle material fails suddenly with the failure of the first, the weakest element 
(see section 3.2.1). In contrast, quasi-brittle materials show macroscopic flaws which are 
additionally seldom randomly distributed. Consequently, modelling of this type of 
material necessitates the definition of an RVE. The RVE or the characteristic length lc can 
be defined as being two- or three-times the maximum dimension of macroscopic flaws 
(BAŽANT, 2001; BAŽANT ET AL., 2004; BAŽANT AND PANG, 2006; BAŽANT AND YU, 
2009). Some representatives of quasi-brittle materials are e.g. concrete, rock, stiff soils, 
sea ice, rigid foams, fibre composites, bone and wood (e.g. BAŽANT, 2001). Whereas 
material structures in volume in the range of an RVE are assumed to act as plastic and 
like a parallel system characterised by load-redistribution and subsequent partial failure 
with intermediate stable crack growth, volumes which are far larger than the RVE show 
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more perfect brittle material behaviour by flaws which become microscopic in 
comparison to the analysed volume (see BAŽANT, 2001; BAŽANT ET AL., 2004; BAŽANT 

AND PANG, 2006; BAŽANT AND YU, 2009). Of course, these limited examinations are not 
solely associated with size effects. These are already associated with scale transition at 
changes in the hierarchical level of the material structure so far hierarchical materials are 
concerned (see sections 4.1 and 4.5).  

BAŽANT AND YU (2009) defined six asymptotic cases which can be observed in quasi-
brittle materials, namely: 

 differentiation according the examined structural dimension: very small vs. very 
large structures;  

 differentiation according the failure process: structures failing at crack initiation 
on a smooth surface vs. deep cracks;  

 differentiation according the main cause of size effects: purely statistical 
(WEIBULL-type) size effects vs. purely energetic (deterministic) size effects.  

In case of hierarchically structured materials and with reference on previous chapters, the 
first two subdivisions are at the edge of scale transition and therefore in particular of 
interest for comprehension of material behaviour in limiting cases within a specific 
hierarchical level. The last subdivision appears heavily focused on WEIBULL’s WLT vs. 
fracture mechanics. The term “deterministic” in the energetic size effect which is 
discussed and defined in conjunction with load-redistribution and the definition of RVEs 
appears confusing. BAŽANT (2001), BAŽANT ET AL. (2004), BAŽANT AND PANG (2006) 
and BAŽANT AND YU (2009) describe this type of size effect as the result of intermediate 
stable crack growth enabled by redistribution of load as e.g. supposed by DANIELS’s 
FBM (DANIELS, 1945). Nevertheless, if the material sub-structure would be deterministic 
a redistribution of load can not occur. Therefore the stochastic nature is explicitly and 
implicitly the driving force of size effects and the last subdivision again a discussion of 
the limits of serial vs. parallel system effects. 

In the following a differentiation in various types of size effects or sub-effects is made 
(e.g. according BAŽANT AND CHEN, 1996; BAŽANT AND PLANAS, 1998; BAŽANT, 2004; 
BAŽANT AND PANG, 2005):  

 serial system effects: often associated with the statistical (WEIBULL-type) size 
effect 
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 caused by the randomness of (strength) characteristics within the material 
structure;  

 often described by means of WLT assuming brittle failure behaviour;  

 parallel system effects together with energetic, fracture mechanics size effects: 

 redistribution of stresses by energy release together with softening and 
intermediate stable crack growth caused by partial structural failures by 
subsequent load increase;  

 boundary layer size effects: 

 caused by heterogeneous internal material structure which differs from 
core to outer layers (e.g. distribution of aggregates in concrete, hardening 
processes in outside layers, characteristics influenced by sawing pattern 
e.g. in structural timber in respect to radial variation of characteristics 
like juvenile vs. adult wood; knot share; density; etc.);  

 diffusion phenomena size effects: 

 caused by external influencies, the interaction with environment, e.g. 
(delayed) transport of chemicals like water or impregnating agents, or of 
temperature, degradation e.g. by funghi or sun light;  

 material effects caused by inherent constraints within the material structure:  

 every material has its own inherent maximum dimension defined by the 
material composition (structure) and through dead load limited in 
resistance against external caused stresses;  

 e.g. for bone GALILEO (1700’S) stated: “… a small dog could probably 
carry on his back two or three dogs of his own size; but I believe that a 
horse could even not carry even one of his own size.” (TIMOSHENKO, 
1983).  

As already mentioned, the power of WEIBULL’s WLT and the associated distribution 
models 2pWD and 3pWD is noteworthy but often misused. Some notes on that were 
already given in section 3.2.4 dealing with advances in stochastic material modelling. In 
the following a brief discussion on constraints of WLT in respect to size effects and with 
focus on quasi-brittle materials is presented. Thereby aspects of WILLIAMSON (1992) and 
BAŽANT (2001) are included:  

 WLT assumes a homogeneous material composed of iid elements and infinite 
quantity of microscopic flaws without any real reference dimension; quasi-brittle 
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materials are characterised by a heterogeneous structure containing a finite 
quantity of macroscopic flaws which induce a reference volume (RVE) or 
characteristic dimension (lc);  

 according WLT the system suddenly fails with the failure of the weakest element; 
nevertheless, in quasi-brittle materials a certain amount of load-redistribution can 
be observed which contradicts WLT;  

 the structural geometry and failure mechanisms have no influence on the result 
according WLT but are decisive for quasi-brittle material strengths; in particular 
the arrangement of (sub-)elements in respect to stress direction (serial vs. 
parallel) is not considered by WLT;  

 according WLT size effects in two- or three-dimensional structures are equal; in 
contrast, deviating results are observed in tests on quasi-brittle materials;  

 WLT assumes iid elements which agglomerate randomly to a system; spatial 
correlation within the material structure or interaction between sub-elements is 
not taken into account;  

 according WEIBULL’s WLT the coefficient of variation CoV[XM] in case of 
2pWD is directly linked with the WEIBULL shape-parameter β and treated as 
material inherent parameter being independent of the stressed volume; based on 
tests often a dependency of CoV[XM] on the amount of stressed volume can be 
observed; nevertheless variable CoV[XM] follows in case of 3pWD with x0 > 0; 
the treshold value therefore must be independent of the stressed volume; this is 
again difficult to verify by tests;  

 changes in volume are often associated with scaling effects, in particular if 
material classification rules base on geometrical constraints (e.g. knot size 
restrictions in structural timber);  

 if according EVT the distribution of strength of a system or volume follows a 
WD also the strength of elements must follow a WD with equal shape parameter 
β; nevertheless, local strength values (e.g. of timber) are often found to be better 
represented by ND or LND;  

 in particular in parallel acting (sub-)elements interaction between elements as 
load sharing due to the influence of variation of E-modulus is given; according 
WLT only strength characteristics are considered, the relationship between 
strength and stiffness is neglected. 
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In particular with focus on structural timber and timber system products WEIBULL’s WLT 
theory is the basic theory for the explanation of size effects as well as of load 
configuration factors by means of fullness parameters as discussed in section 3.2.1. 
Nevertheless, with focus on structural timber all points above can be confirmed and the 
application of WLT can not be proposed in general. Furthermore, size effects in timber 
have to be in addition classified into: 

 size effects as result of using a classified material in dimensions others than 
classified:  

 due to changes in dimension after classification (grading) of the material 
changes in material characteristics can be observed; hereby material 
inherent correlation has to be taken into account;  

 size effects as result of classification of material according a specific dimension: 

 in dependency of the required dimension different size effects have to be 
considered;  

 size effects as result of composing classified elements to larger volumes: 

 by composing of systems, e.g. by finger jointing of structural timber to 
serial finger jointed construction timber, iid elements can be assumed and 
in principle WLT can be applied. 

This classification was already discussed in WILLIAMSON (1992) who comprehensively 
analysed length effects in structural timber.  

Furthermore, as structural timber in reality can be described as quasi-brittle rather than 
brittle material, the following additional influences or sub-size effects are expected: 

 size effects due to the classification of timber by limitation of flaw dimension and 
quantity;  

 species dependent size effects due to species dependent distribution and 
dimension of flaws;  

 size effects due to serial vs. parallel interaction; whereas strength distribution and 
spatial correlation influence serial effects, material behaviour and strength-
stiffness relationships contribute decisively to parallel effects. 

In the following a brief summary of the literature survey on size effects in wood and 
timber is presented.  
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For example WILLIAMSON (1992) gives a comprehensive overview of research on size 
effects in timber engineering starting with WEIBULL’s basics and the well known 
publications of BOHANNAN (1966), BARRETT (1974), BARRETT AND FOSCHI (1979), 
MADSEN (1990) and many others. Much earlier examinations on size effects on clear 
wood were made. TANAKA (1909) proposed to consider size effects in bending by 
adjustment of the section modulus by a power factor n which should be regulated in 
dependency of timber species, see 
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Congruent to him MONNIN (1932) proposed the same formalism but with power n as 
function of timber quality and not of species. Already before NEWLIN AND TRAYER 

(1924) proposed to consider size effects in bending by an additional factor multiplied on 
section modulus, see  

γ⋅
=

W
Mfm , with 1

2
07.01 −⋅−=

dγ , with d in [inch].  (5.3)

YLINEN (1942) analysed the depth effect on clear wood and timber under bending 
stresses. He found a significant dependency of bending strength on the depth of the 
specimen. The depth effect in timber with a high share of knots was as double as high as 
in clear wood, indicating a strong dependency on timber quality. He proposed to adjust 
the bending strength by means of a fictive bending strength fm,0 for d = 0 and parameters 
c1 and c2:  
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SCHNEEWEIß (1962, 1964A,B) developed a modified WLT with parameter K2 = 1 / β and β 
as WD-shape parameter:  

( ) ( ) ( )VKKfm lnlnln 21 ⋅−= , in case of changes in volume;  

( ) ( ) ( )dKKfm lnlnln 21 ⋅−= , in case of changes in depth.  
(5.5)

He remarked that according WLT only linear-elastic stress-strain relationships are 
accepted. In compression tests parallel to grain he observed little changes in the stress-
strain relationship by variation of volume but a shift of maximum stress to lower strains.  
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MARKWARDT AND YOUNGQUIST (1956) performed tension tests perpendicular to grain on 
structural timber and observed an increase in ft,90,mean of 23% in radial direction by halving 
the width of the ASTM specimen from 50.8 mm to 25.4 mm, but no significant increase 
in tangential direction. Further tests showed that volume effects are more pronounced in 
timber than in clear wood (β = 4.04 and β = 6.35, respectively) and a CoV[ft,90] 
independent of volume and thus consistent to WLT. Again, a dependency of size effects 
on timber quality was indicated. Later, BOHANNAN (1966) stated that changes in 
thickness of structural timber may lead to rather parallel than serial system effects if 
stressed in grain direction. In his discussion of size effects in timber under bending 
stresses he differentiates between elements arranged in and transverse to stress direction. 
Thereby longitudinally arranged elements are in serial whereas elements in width and 
depth direction are in parallel. Despite that both are in parallel direction, their action is 
different. Whereas all elements in width are considered as being equally stressed (note: 
equally deflected and elongated), elements in depth show different stresses according the 
principle linear bending stress distribution in z-direction. It was observed that a complete 
(cascade) failure in width occurs before a subsequent failure in depth. Thereby the stress 
on remaining elements in width increases by the factor N / (N – 1) whereas the stress 
increase in depth is much higher due to squared reduction of depth in the section 
modulus, in a rectangular cross section given by W = w · d 2 / 6. He concluded that the 
probability of a low strength element increases with width but the probability of a cascade 
failure in width decreases due to increasing chance of load-redistribution. He assumes 
that the net effect of these two is negligible and proposes, supported by tests on Douglas 
fir, not to consider a width effect but depth and length effects in clear wood under 
bending stresses of comparable magnitude. BARRETT (1974) and BARRETT AND FOSCHI 

(1979) observed well representation of size effects according WLT in clear wood and 
GLT if stressed in tension perpendicular to grain or shear. MADSEN AND BUCHANAN 

(1985) give a comprehensive report on size effects in timber stressed in bending, tension 
or compression parallel to grain. They differentiate between: 

 length effects within elements (single-member length effects);  

 length effects for elements in series (multiple-member length effects);  

 depth effects;  

 width effects;  

 load configuration effects: expressed as function of the proportion of tested and 
stressed length;  
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 stress distribution effects: expressed by the fullness parameter as discussed in 
section 3.2.1 (note: later named as load configuration factor); 

 effects of grading rules. 

Based on three comprehensive data sets prepared for the examination of size effects the 
following conclusions are given: Length effects were found to be significant in tension 
and bending strength. Due to lack of data the same length effect for both stress types is 
proposed, with kl,05 = 0.29. The multiple-member length effect in tension members was 
found to be slightly higher than the within member length effect, with kl,05 = 0.36. Note: 
This was expected since spatial correlation within elements reduces the variability and 
thus the stochastic part of the size effect. A significant depth effect was not found in 
bending. In case of bending test configurations with a constant span / depth ratio the 
introduction of a length effect is proposed.  

In general and in line with previous findings, an inverse relationship between length 
effects and timber quality was found. Furthermore, size effects were found to be in 
dependency of the analysed quantile, at p = (5, 50, 95)%, being less distinct at p = 5%. A 
dependency of size effects on timber species could not be found but a certain influence is 
indicated by test results. Note: Hereby a possible influence in particular on the length 
effect is supposedly due to a species dependent creation of knot clusters per year. 
MADSEN AND BUCHANAN (1985) also observed a species dependent knot size and 
quantity. In Douglas fir few but large knots were registered whereas in spruce many but 
small knots were observed. They also note a certain influence by the static system, in 
particular if it is determined or indetermined, with the latter (three-point bending with 
fixed ends on both sides) characterised by simultaneous failure in three or more pieces. 
Note: The analysed test configuration shows three peaks in the longitudinal bending 
moment distribution. MADSEN AND BUCHANAN (1985) proposed a modified WLT by 
assignment of size effect parameters for the different material directions as well as in 
dependency of the applied stresses.  

LAM (1987) examined length effects in tension members loaded parallel to grain by 
means of proof loading. He analysed three timber species (group) (Douglas fir, Hem fir, 
SPF), three grades (Select Structural, No. 1, No. 2), six different widths and three 
different free test lengths. He found a grade independent but species dependent width 
effect of kw,05 = 0.15 ÷ 0.30 and a species dependent length effect of kl,05 = 0.20 ÷ 0.37. 
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He proposed to model length and width effects solely by means of WEIBULL’s power 
model according the WLT.  

MADSEN (1988) reported on bending tests on SPF of cross section 
w / d = 38 mm / 140 mm. Thereby six different load configurations, three- and four-point 
bending (with 1/3 and 1/4 of test span as distance between the symmetrical placed 
loading points) were performed at spans of 1.55 m and 3.10 m. He analysed size and load 
configuration factors according WEIBULL’s WLT and found a good correspondence 
between calculated and observed bending strengths on (empirical determined) 5%-
quantile level. One year later MADSEN (1989B) summarised his findings for 
standardisation. For bending members he concluded that width effects can be neglected 
but length effects are significant and should be combined with load configuration factors. 
In elements under tension stresses he found length and width effects separately but 
proposes to combine both, perhaps together with a load configuration factor in case of 
non-constant tension stresses along the member. Length and width effects were also 
found in elements stressed in compression parallel to grain. MADSEN (1989B) proposed to 
consider these size effects in stability formulations and not in strength characteristics. 
Effects in thickness were not examined. In general, a decreasing quantity of flaws with 
increasing timber grade was found together with stress dependent size effects. 
Furthermore, variation in size effects along the strength distribution due to changes in 
failure modes was observed. He noted that the bending test procedure with explicit 
placement of the worst flaw in the maximum bending-tension zone leads to biased 
characteristics for the design of timber structures. Note: This test procedure not only 
delivers conservative values of E[fm] but also of Var[fm] which must not always lead to 
conservativeness in reliability of bending members or in their characteristic 5%-values. In 
1990 MADSEN proposed to fit a 3pWD to the lower tail (P(X ≤ x) ≤ 25%) of strength data 
to increase the representative power of statistical information for the design relevant 
region of strength. Note: In principle this would be a good idea and MADSEN was not the 
only one who proposed lower tail fitting (e.g. also done by LAM AND VAROGLU, 1990; 
SØRENSEN AND HOFFMEYER, 2001). Nevertheless, some questions still require further 
clarification: Firstly, how to guarantee the lower limit of strength according the third 
WD-parameter x0, and secondly, can the 3pWD be a general applicable RSDM of timber 
strength data. According the first remark short term strength may be limited by means of 
proof loading which rejects all specimens with strength below the proof level. 
Nevertheless, the influence of some kind of “pre-damage” and in particular the 
consequences from short time proof loading on duration of load effects still needs further 
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clarification. Concerning the second remark, the fitting of statistical distribution models 
to only one part of data by means of three parameters and finite data, is perhaps not the 
big challenge if good to moderate fitting is required. It can be expected that not only the 
WD-model gives good results (in particular skewness and kurtosis information, the 
position of median, mode in respect to mean, etc. is missing). Beside that and under 
consideration of EVT for minima (see section 2.6.2) changes in serial system size lead to 
changes in statistical parameters and even of the distribution model, influenced by the 
whole distribution information of the single elements. Thus, restricted statistical 
information causes restricted information in regard to the expected distribution of strength 
values of material complexes with deviating size or volume. Beside that, WILLIAMSON 

(1992) observed well representation of the lower distribution tail either by WD or 
GUMBEL distribution. Based on his test data of bending, tension and compression tests 
parallel to grain performed on SPF MADSEN (1990) observed a relationship between 
strength level and size effect. He proposes length effect parameters of kl,50 = 0.13, 0.09 
and 0.17, and kl,05 = 0.22, 0.10 and 0.22 for members stressed in tension, compression and 
bending, respectively. Interestingly the length effects on the 5%-level were found to be 
higher than on the 50%-level. Note: This contradicts EVT and WLT. The reason for that 
lies in the tail-fitting procedure which may induce overestimation of values in the lower 
distribution range. The same phenomenon was observed in LAM AND VAROGLU (1990) 
who performed tail-fitting to the lower 15% of test data. MADSEN (1990) also found 
width (depth) effects in compression parallel to grain and bending but not in tension 
parallel to grain. BARRETT AND FEWELL (1990) report on size effects on bending and 
tension strength. Based on a comprehensive literature survey equal length effects for 
bending and tension strength were observed with kl = 0.17. Depth (width) effects in 
bending and tension were also found to be equal, with kd(w) = 0.23. In case of a constant 
span / depth ratio a total size effect (length + depth effect) of k = 0.40 is proposed. A 
species dependent size effect could not be confirmed.  

BARRETT ET AL. (1992) again examined size effects in bending, tension and compression 
strength and proposed the use of a modified WLT with separate size adjustments for 
every material direction (see section 3.2.1). They stated that variation in member width 
lead to changes in material structure in case the material is classified by limiting flaws, 
defined relative to cross section dimension. They confirmed quality dependent size 
effects and the influence of compression-bending yielding on bending strength, in 
particular in higher timber qualities. They already mentioned the idea to explain the ratio 
between bending and tension strength by means of WLT and under consideration of size 
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and load configuration factors. This idea was later executed by BURGER AND GLOS 

(1997) who reported on an increasing ratio of ft,0 / fm = 0.60 ÷ 0.80 with increasing timber 
quality in machine graded timber and on a constant ratio of 0.70 in case of visual graded 
timber. BARRETT ET AL. (1992) proposed the same length and width factors for bending 
and tension strength as given in BARRETT AND FEWELL (1990). Length and width factor 
in compression parallel to grain were suggested to be kl = 0.10 and kw = 0.11, 
respectively.  

WILLIAMSON (1992) further observed that length effects in timber stressed in bending or 
tension parallel to grain are higher than in compression parallel to grain. Also, in lower 
timber grades length effects are more pronounced than in timber of a higher strength 
class. Note: These observations can be explained by taking into account the expectable 
dispersion of strength data in bending, tension and compression, and / or by changing 
statistical spread from low timber quality with high local (and even global) variation of 
growth characteristics and basic wood properties, to lower statistical spread as 
consequence of a more homogeneous material structure in case of high, selected timber 
quality. Therefore, and as WILLIAMSON (1992) also mentioned, statistical length effects 
(note: as all statistical system effects) are a function of variability within and between the 
elements. WILLIAMSON (1992) enlarged WLT by additional consideration of spatial 
correlation inherent in timber elements and by adaptation of WD to better represent the 
distribution of real strength data. The latter was done by implementing a mixed 
distribution model. Thereby he sticked to the limiting models of EVT, explicitly to WD 
and GUMBEL distribution, but noted that spatial correlation has a decisive influence on 
realised length effects. Based on his analysis again a grade dependent size effect was 
found (kl = 1.11 and 1.16 for high and low grade timber, respectively).  

In regard to four-point bending tests RIBERHOLT AND MADSEN (1979) noted that the full 
test span should be taken as test length if the specimen was judged and the weakest zone 
placed within the zone of maximum moment. If the specimen is positioned randomly only 
the length of maximum moment zone is accepted as test length. Note: Even if specimen 
and their weak zones are judged beforehand by means of non-destructive methods a 
reliable judgement of strength, even if only relatively, is not possible. Based on own 
experiences the chance to find the weakest zone is nearly 50%. Also LAM AND VAROGLU 

(1990) remark that only (34 ÷ 44)% of the specimen stressed in tension parallel to grain 
failed in the grade determining flaw which was found by visual or machine judgement. 
Even then the length of the specimen must be larger than the required test length to 
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guarantee that the assumed weakest section can be placed within the zone of maximum 
moment. But in that case the inspected and judged zone would be usually larger as the 
test length.  

KÄLLSNER ET AL. (1997) modelled length effects in timber by means of a discrete weak 
zone model in combination with a two- or three-level hierarchical process. In case of 
long-span timber elements with k ≥ 1 weak zones under constant bending moment, the 
beam is assumed to fail with the failure of the first weak section. In the physical model 
system failure can only occur in a weak zone with strength Z = X + Y, in particular in the 
weakest of all weak zones (WLT) with Z(1) = X + min[Y], X as random variable 
representing the variation between structural timber elements and Y a random variable 
representing the variation within structural timber as deviation from X. The bending 
strength of the structural timber is given as Zk,(1) = X + min[Yk,i]. Assuming Z1 ~ ND the 
distribution of Zk | k follows  
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with φ(.) and Φ(.) as standard normal density and distribution function, respectively, and 
μX, σX and σY as the mean of X and the standard deviations of X and Y. With K as discrete 
random variable with realisations k œ {1, 2, …} as outcome with probability pk, the 
distribution function of Z becomes 
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with expectation  
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which can be expressed by the probability generating function  

( ) [ ]KxEx =ψ ,  (5.9)
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of integer variable K. Assuming K being Poisson distributed with parameter λ · l and l as 
the length of the structural element than the probability generating function becomes  

( ) ( )[ ]1exp −⋅⋅= xlx λψ ,  (5.10)

and equ. (5.7) can be rewritten as  
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Comparison between local strength and with test data of long span beams with 6 ÷ 8 
weak zones under constant bending moment over 3,500 mm (cross section 
w / d = 45 mm / 120 mm) made by KÄLLSNER ET AL. (1997) showed that the model gives 
(5 ÷ 15)% higher bending strength values than observed from tests. It was concluded that 
size effect cannot be explained only by stochastics and that additionally energy release 
effects (as discussed e.g. in BAŽANT, 2001) have to be considered. This was concluded by 
the observation that the failure process got more progressive the longer the testing length 
was. Note: The deviations between predicted and realised strength values, perhaps and 
beside of the small number of tests, can be explained by a mixture of tension-bending 
failures and compression-bending followed by tension-bending failure. This was also 
mentioned for one series by KÄLLSNER ET AL. (1997). Compression strength in timber 
has normally a higher expectation and lower spread if compared with tension parallel to 
grain. This leads to some kind of bi-modal bending strength distribution function (see e.g. 
test data of MADSEN, 1990). Furthermore, the model assumes system failure according 
the WLT. In the tests of single weak zones, intermediate steady states and even a further 
increase of load after load-redistribution could be sometimes observed. In 2005 

DITLEVSEN AND KÄLLSNER reported again on results concerning length effects in timber 
under bending stresses. Test results of KÄLLSNER AND DITLEVSEN (1994) as well as 
STICH (1998) were analysed. In their discussion concerning interaction effects in case of 
failure between adjacent weak zones they concluded that these effects can be neglected. 
This was found by comparing predictions and realisations of systems of more than one 
weak zone by means of the single weak zone model.  

BURGER AND GLOS (1996) and BURGER (1998A,B) analysed the size effects on structural 
timber in tension parallel to grain. Based on observations which have been already 
reported earlier by others a systematic examination of size effects and distribution of 
strength determining characteristics in dependency of the dimension of structural timber 



Serial and parallel acting Systems in Timber, Engineered Timber Products and Structures 

324 

was performed. Thereby BURGER (1998B) differentiated between “direct size effects” as 
consequence of WLT, and “indirect size effects” as result of size dependent distribution 
of flaws. Strength determining characteristics as the share of knots (DAB ~ 2pLND), 
density, (~ 2pLND) annual ring width (ARW ~ 2pLND) and share of reaction wood 
(RW ~ Exp. + Heavyside function) were considered. Thereby an increase in E[DAB] and 
Var[DAB] with increasing length and decreasing width was found. E[ARW] and 
Var[ARW] also decreased with increasing width. The density shows a decrease in 
expectation but a more or less constant variance with increasing width. Based on a 
multiple regression model composed of modified terms of WLT together with a linear 
term for density and exponential terms for DAB and RW, DAB, density and test length 
were identified as the main parameters explaining about 58% of the variance of the test 
data on tension strength. Due to the influence of indirect size effects he found even higher 
length effects than predicted by WLT (stronger than predicted by WLT), a positive as 
well as negative width effect in dependency of timber quality (weaker or even contrary to 
WLT) but no influence of indirect size effects in thickness which effect was found to be 
negative. Nevertheless, the possibility of parallel system effects in width or thickness was 
not checked. He remarked the difficulty in specifying general applicable size effects 
because even the grading method itself (visual vs. machine grading) has a distinctive 
influence on them. Later, DENZLER (2007) examined by comparable principles the direct 
and indirect size effect on bending strength. By means of a multiple regression model the 
main parameters found for bending strength were density, ARW, KAR, depth and length. 
Nevertheless, beside the fact that only in 47% of analysed test specimen a brittle fracture 
was observed and in the majority a ductile or subsequent failure with further load increase 
was given, the modified WLT was taken as core of the multiple regression model with 
fm ~ WD.  

Also ISAKSSON (1999) analysed size effects on bending strength of timber. He tested in 
total 673 single weak zones of Swedish spruce with a cross section of w / d = 
= 45 mm / 145 mm and by applying a constant bending moment. He observed a roughly 
constant variance of fm,i over all tested boards. Furthermore, a certain dependency 
between local fm,i and mean strength potential of each element (fm,mean) can be observed. 
The test data of weak zones was split into bending-tension failures (fm,mean,i = 52.2 N/mm²; 
CoV[fm,i] = 22.8%) and bending-compression-tension failures (fm,mean,i = 63.8 N/mm²; 
CoV[fm,i] = 19.4%). Based on these results he formulated a two- and a three-level 
hierarchical model for normal or lognormally distributed bending strength with discrete 
distributed weak zones along the length of timber.  
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Intermediate Conclusions found in respect to Serial System Action and Effects 

As shown by the literature survey, size effects on wood and timber strengths are 
preferable modelled by means of WLT and WEIBULL-distributed strengths. Of course, in 
some material directions brittle failure behaviour can be nearly observed. Nevertheless, 
even in the prime example of timber stressed in tension perpendicular to grain of 
STUEFER (2011) in some tests there appeared partial failure followed by further load 
increase. As outlined at the beginning of this section, structural timber and even wood 
behaves quasi-brittle rather than brittle. Consequently, all main model assumptions made 
for the derivation of WEIBULL’s WLT are violated in some way or have to be at least 
questioned. This is in particular obvious by the numerous adaptions made to WEIBULL’s 
WLT.  

For example MADSEN UND BUCHANAN (1985) and BARRETT ET AL. (1992) used a 
modified WLT to account for the anisotropy of timber. BURGER AND GLOS (1996), 
BURGER (1998A,B) and DENZLER (2007) enlarged WLT by additional terms for strength 
determining characteristics. WILLIAMSON (1992) enlarged WLT by a bi-modal 
distribution and by inclusion of spatial correlation. Results not conforming to WLT were 
found by MADSEN AND BUCHANAN (1985), MADSEN (1990) and LAM AND VAROGLU 

(1990), whereas BARRETT (1974), BARRETT AND FOSCHI (1979), LAM (1987) and 
MADSEN (1988) found consistent results or at least well explanation of load configuration 
factors. A further indicator of lack in representation of timber strength data is given in 
bending. Thereby no width effect was found; see e.g. BOHANNAN (1966), MADSEN 

(1989B) and DENZLER (2007).  

In conformity with quasi-brittle material assumptions size effects were found to be 
dependent on (1) failure mode (MADSEN, 1989B), (2) timber quality (YLINEN, 1942; 
MARKWARDT AND YOUNGQUIST, 1956; MADSEN AND BUCHANAN, 1985; MADSEN, 
1989B; WILLIAMSON, 1992; BURGER AND GLOS, 1996; BURGER, 1998A,B; DENZLER, 
2007), (3) timber species (indicated in MADSEN AND BUCHANAN, 1985; confirmed in 
LAM, 1987; not confirmed in BARRETT AND FEWELL, 1990), (4) grading method 
(BURGER, 1998A,B; DENZLER, 2007), (5) strength level (MADSEN AND BUCHANAN, 1985; 
MADSEN, 1990) and (6) the arrangement of sub-elements relative to stress direction, 
parallel vs. serial (BOHANNAN, 1966; MISTLER, 1979, see section 3.2.4).  

It can be agreed that for some or even most applications a well fitted WEIBULL WLT 
delivers sufficient accurate information for the consideration of size effects in daily 
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design processes of timber structures. Someone may also argue that size effect 
dependency on timber species, grade, grading method, strength level and failure mode is 
not really a dependency but more a sign for model adjustments to in principle different 
materials. In the limiting case the same can be said against stochastics in general and in 
particular in materials, by discussing different (in)finite small material volumes which 
agglomerate to material volumes in an observable range.  

In the review also a preferred use of WD for strength values of timber was observed. Also 
in the numerous publications of BAŽANT on quasi-brittle size effects (e.g. BAŽANT, 2001; 
BAŽANT ET AL., 2004; BAŽANT AND PANG, 2006; BAŽANT AND YU, 2009) WD is 
assumed and argumented by EVT. Nevertheless, as redistribution of load is in principle 
allowed in quasi-brittle materials, fracture of an element can be described as subsequent 
failure and step-wise separation of material structure in the failure zone. This separation 
process, which can be observed in destructive tests, is comparable with “the law of 
proportionate effect” (see GIBRAT, 1930 & 1931) which is the basis for the lognormal 
distribution model. It has to be outlined that the models 2pLND or 3pLND are often cited 
as RSDMs of strength data.  

To conclude, in quasi-brittle materials strength data analysis should be made very 
carefully and in respect to observed failure modes. Following GIBRAT (1930, 1931) 
2pLND as RSDM of strength data of quasi-brittle materials can not be generally 
recommended but is assumed as a representative distribution model with physical 
background, in particular in materials and stress situations were load-redistribution and 
step-wise failure can be observed. Furthermore, current discussions on size effects 
involve both, serial and parallel system effects. It is recommended to differentiate 
explicitly between both contrary system actions and effects.  

5.1.3 System Effects: Parallel System Effects in Engineered Timber 
Products and Structures  

System effects in engineered timber products and structures are versitale. They are 
obvious e.g. in glued laminated (solid) timber or duo and trio beams if stressed in tension 
or compression parallel to grain, or in the same products if the elements are stressed 
edgewise in bending. In detail, the hierarchical structure of the material and the 
arrangement of elements which itself constitude sub-systems cause that these products act 
mainly in parallel but also in serial. As already discussed in section 4.3.1, chapter 4 these 
systems can be described as being parallel, sub-serial (see Fig. 5.23). 
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Thereby, the serial segmentation of elements on a first level (hierarchy of construction 
timber) is given in (1) serial arrangement of boards or beam segments by finger-, butt- or 
scarf-joints, and (2) by the serial composition of construction timber of alternating 
sections with or without apparent knots or knot clusters (see section 5.1.1). Nevertheless, 
system effects in these products are, if at all described or regulated, treated as general 
system effects or considered by a system or load sharing factors.  

 

Fig. 5.23: Schematic parallel, sub-serial system structure with N = 2 under tension stress parallel 
to grain (adopted from BRANDNER, 2006)  

In general, parallel systems can be differentiated according: 

 the distance between the elements 

 elements placed in (regular) center-distance larger than the thickness of 
the elements; hereby the load distribution is performed by an additional 
primary or secondary construction element 

 elements placed side-by-side  

 the type and characteristics of connection between side-by-side placed elements 

 without (loose) connection, theoretically even without friction 

 flexible connected (flexible composite) e.g. by means of nails, bolts or 
pre-stressing 

 rigid connection (rigid composite), e.g. by bonding 

 the type and characteristics of the load distributing element in parallel systems 
composed of elements in (regular) center-distance larger than the thickness of the 
elements 

 stiffness of load distributing element, in particular in relationship to the 
center-distance 
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 type and characteristics of connection between the load distributing 
element and the elements of the parallel system (possible amount of 
composite action)  

 general characteristics, e.g. timber quality, material behaviour, type of loading, 
partial or full loading.  

Parallel systems are often described as “load sharing systems”. According BONNICKSEN 

AND SUDDARTH (1966) the three main characteristics of these systems are:  

 redundancy (fail-safe; stand-by): the structure does not fail if one or even more 
elements fail;  

 load sharing: each element actively carry a share of the total system load;  

 load redistribution: load of failed elements after partial system failure is re-
distributed on the survivors. 

In general, the herein discussed load-sharing systems are in behaviour and reliability 
somewhere in-between serial (chain-type or weakest link systems) and parallel-
redundant systems (ideal parallel systems) (e.g. BONNICKSEN, 1965). It is assumed that 
the load is equally distributed on all parallel interacting elements which are restricted to 
elongate or deflect equally. The stresses in the elements are not uniform but proportional 
to the (local) stiffness of the elements.  

ZAHN (1970) mentioned three main stochastic effects which are observable in parallel 
systems: 

 effect of grouping: reduction of CoV[f] equal to a serial system type (weakest 
link);  

 mutual constraints: increase in effective strength (5%-quantile) due to load 
sharing between the elements proportional to their global stiffness;  

 local reinforcement of flaws: increase in effective strength (5%-quantile) due to 
load sharing between the segments of (adjacent) elements proportional to their 
local stiffness.  

As the first two stochastic effects are the result of the variability between the elements the 
last effect can be traced back to variability within the elements (ZAHN, 1970).  
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There are numerous parameters which influence the system behaviour. A comprehensive 
overview of these can be found e.g. in BRANDNER (2006). Following main parameters are 
given: 

 quantity of interacting, parallel elements N;  

 stochastic characteristics of the elements including correlation structure of 
strength and stiffness between and within the elements and in particular the 
variability of strength and stiffness characteristics (e.g. CoV[f], CoV[E]);  

 type of interaction (stiffness of the connection) between the elements;  

 type of loading / load configuration (bending, tension, compression, etc.).  

The definition of an element in a parallel system can be versitale. In general, the element 
is defined as the basic unit which if parallel aligned creates the described parallel system. 
Some possibilities are shown in Fig. 5.24 (see e.g. GEHRI, 1997 and BRANDNER, 2006). 

 

Fig. 5.24: Various types of elements (basic units) in parallel systems: a) structural timber; b) 
stacked structural timber; c) multi-girder; d) glued laminated (solid) timber; e) basic 
element of cross laminated timber  

The simplest case for studying system effects in engineered timber products (ETPs) is 
given by linear members stressed in tension parallel to grain. Even in compression 
parallel to grain system behaviour becomes more complex due to additional infuence of 
stability. An overview of various types of parallel acting systems if stressed in tension or 
compression parallel to grain is shown in Fig. 5.25.  

 

Fig. 5.25: Examples of parallel acting systems stressed in tension or compression parallel to grain: 
principle sketch (left); degree of connection between the elements (right)  
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Systems composed of parallel acting elements loaded in tension parallel to grain can be at 
first differentiated according the degree of connection between the elements, in loose, 
flexible and rigid. If the elements are unconnected over a certain distance in 
longitudinal direction or at least only clamped at the ends, the serial system size M is 
equal to one, if, as usual, the element strength and stiffness characteristics of the same 
dimension as used for the system are taken as basic (reference) characteristics for the 
judgement of strength and stiffness of the system. The sub-serial structure inherent in the 
elements has no influence on the system behaviour because it is already sufficiently 
considered by the element characteristics. Given the values ft,0,i and Et,0,i of the elements, 
which represent the minimum and the inverse harmonic mean of the serial segments of 
construction timber, than the expectable system characteristics are sufficiently 
characterised by a parallel system behaviour as discussed in section 3.4. Thereby the 
load distribution between the elements occurs proportional to the global E-modulus of 
each element and the system strength is defined by the element strengths. Consequently, 
additional information about within correlation of local strength and stiffness in the 
elements and their segments is not required. As a continuous connection between the 
elements is not given (except on the ends) each element can only fail once.  

In contrast, the description of the behaviour of systems composed of parallel acting, 
continuously and rigid connected structural timber elements requires sufficient 
knowledge of their parallel, sub-serial structure. Load sharing ocurs very locally and 
on the hierarchy of segments or sub-segments. Consequently, local strength and E-moduli 
and their distribution within the elements are required to model the system behaviour. 
Therefore, the correlation structure within and between structural timber as well as further 
stochastic information, e.g. RSDMs of strength and stiffness of the segments (e.g. of 
zones with and without apparent knots or knot clusters) and the appropriate distribution 
parameters have to be known. The influence of the degree of connection (loose vs. rigid) 
is schematically demonstrated in Fig. 5.26. Thereby a straight subdivision of structural 
timber longitudinally in segments with and without flaws (e.g. zones with knots or knot 
clusters and “clear wood” zones free of flaws) is made. Fig. 5.26 (left) shows the PDF of 
strength of structural timber. Fig. 5.26 (right) shows a bi-modal PDF of strength in 
segments as expected in a single structural timber element. This bi-modal PDF is created 
by weighting the PDFs of zones with and without flaws according the probability of 
occurrence, see e.g. equ. (5.1). As both PDFs represent local strength values expectation 
of strength even of zones with flaws is (much) higher than that observable in standard 
tests on structural timber. Because of the material inherent spatial correlation it can be in 
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general shown that the variability is also even lower than in structural timber which 
includes between and within element variability. Consequently, as parallel systems 
composed of rigidly and continuously connected elements enforce load sharing between 
adjacent segments a concave increase of the expectation of system strength with 
increasing N can be expected. Nevertheless, as the difference in strength between the 
segments with and without flaws decreases with increasing timber grade the increase in 
mean strength potential becomes lower or even negative. This is in particular true if the 
variability between the elements lead to a remarkable decrease of average system strength 
as it is in general observable in parallel systems composed of linear-elastic, brittle failing 
elements. Nevertheless, system action between segments is based in principle on higher 
varying strength characteristics due to bi-modal density functions. 

 

Fig. 5.26: PDF of tension strength in structural timber (including within and between strength 
variation; left); bi-modal PDF exemplarily for 20% probability of occurrence of weak 
zones (including knots) and 80% probability of occurrence of clear wood (right); all 
uni-modal distributions are assumed to follow 2pLND 

Due to continuous connection elements can fail more than one time. In reality even partial 
segmential fracture can be observed in conjunction with redistribution of stresses to 
another position in width and / or longitudinally of the system.  

Publications on parallel system behaviour composed of structural timber and stressed in 
tension or compression parallel to grain are scarse. One of them is the work of WESTMAN 

AND NEMETH (1968). They examined systems of N = 1, 2 components made of Douglas 
fir on four samples of different timber grades. Thereby the duo beams where rigidly glued 
together face-by-face. In all four groups significant increase of the 5%-quantile of tension 
strength fN,t,0,05 was observed in comparison to f1,t,0,05 of the single elements. This was due 
to the remarkable decrease in dispersion, e.g CoV[ft,0]. Furthermore a dependency of 
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system strength capacity on timber grade was found, in particular on the mean level 
fN,t,0,mean. Whereas fN,t,0,mean of the highest grade was slighly below f1,t,0,mean a remarkable 
increase of up to 107% was given in lower timber grades. A summary of the main 
statistics is given in Tab. 5.13. 

Tab. 5.13: Main statistics of tension tests parallel to grain on parallel systems composed of 
Douglas fir; WESTMAN AND NEMETH (1968) 

grading class K L-1 L-2 L-3 

group 

[--] 

# 

[--] 

ft,0,mean | min[ft,0]÷max[ft,0] | ft,0,05  
[N/mm²] 

SINGLE 42# (each) 
52.5 | 22.0÷95.7 | 

28.7 
42.1 | 7.6÷104.4 | 

19.1 
25.0 | 9.6÷89.0 | 

14.3 
10.8 | 2.9÷21.0 | 

2.9 

DUO 21# (each) 
50.9 | 28.7÷72.3 | 

31.1 
47.6 | 30.6÷76.6 | 

34.4 
33.2 | 22.5÷69.4 | 

23.9 
22.4 | 10.7÷30.1 | 

13.4 

Tab. 5.14: Main statistics of tension tests parallel to grain on parallel systems composed of finger 
jointed structural timber; BRANDNER (2006) and BRANDNER AND SCHICKHOFER (2006) 

group 

[--] 

N 

[--] 

# 

[--] 

ρ12,mean (CoV) 

[kg/m³] 

Et,0,12,mean (CoV) 

[N/mm²] 

ft,0,mean (CoV) | ft,0,05,empD 

[N/mm²] 

Z_1 1 46# 460 (6.4%) 11,900 (11.6%) 23.0 (26.8%) | 14.5 

Z_2 2 41# 453 (4.5%) 11,750 (8.4%) 24.6 (17.7%) | 16.5 

Z_4 4 30# 457 (3.6%) 12,380 (7.3%) 28.3 (14.6%) | 21.3 

BRANDNER (2006) and BRANDNER AND SCHICKHOFER (2006) report on tests performed 
on systems composed of finger jointed construction timber, with N = 1, 2, 4. The timber 
was Norway spruce, graded to S10+ in accordance to DIN 4074-1 which can be allocated 
to strength class C24+ according EN 338. The single elements had a cross section of 
w / t = 78 mm / 60 mm. The free testing length was 4,860 mm. The elements in the 
systems were glued side-by-side by means of polyurethan adhesive. All elements were 
proof-loaded in tension parallel to grain up to a proof level of 7 N/mm². The main results 
and statistics are shown in Tab. 5.14. Based on these statistics it can be observed that the 
expectation of E-modulus and density is unaffected by N. Furthermore, CoV[Et,0,12,N] and 
CoV[ρ12,N] follow the averaging model given as 
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[ ] [ ]1XEXE N =  and [ ] [ ]
N

XCoVXCoV N
1= .  (5.12)

Parameter CoV[ft,0,N] is also roughly in line with the averaging model but mean tension 
strength increases significantly with increasing N. 

Tab. 5.15: Main statistics of tension tests parallel to grain on parallel systems composed of 
unjointed and unconnected (ZL) and side-by-side glued elements (ZK); BRANDNER 

(2006)  

group 

[--] 

N 

[--] 

# 

[--] 

ρ12,mean (CoV) 

[kg/m³] 

Et,0,12,mean (CoV) 

[N/mm²] 

ft,0,mean (CoV) 

[N/mm²] 

ZL_1 1 21# 499 (8.8%) 16,030 (14.0%) 41.4 (30.3%) 

ZL_2 2 10# 481 (4.2%) 15,610 (7.2%) 32.0 (19.5%) 

ZL_3 3 7# 490 (5.0%) 15,280 (6.5%) 36.3 (17.0%) 

ZL_4 4 5# 491 (5.9%) 15,290 (6.5%) 34.3 (7.8%) 

ZK_1 1 26# 482 (7.3%) 15,210 (12.2%) 41.8 (30.7%) 

ZK_2 2 9# 496 (5.1%) 15,760 (7.4%) 44.9 (17.7%) 

ZK_3 3 7# 494 (3.8%) 16,050 (8.2%) 48.2 (27.7%) 

ZK_4 4 6# 502 (6.2%) 15,800 (16.0%) 46.2 (20.4%) 

BRANDNER (2006) reports on experiences made on two further tension test samples. The 
elements were glulam lamellas also of Norway spruce but unjointed and of grading class 
MS17 according DIN 4074 which can be allocated to strength class C40 according 
EN 338. The elements with an initial cross section of w / t = 165 mm / 40 mm were 
ripped in center-line of the width and planed to elements with a cross sections of 
w / t = 78 mm / 40 mm. Thereafter two equal sized and matched samples according their 
dynamical E-modulus based on ultrasonic runtime measurements (Edyn,US) were 
constituted. In each sample systems of N = 1, 2, 3, 4 composed of elements with roughly 
equal Edyn,US were built up. The reason of equal Edyn,US was to eliminate the influence of 
differences in global stiffness. In sample ZL the elements were left unconnected. All 
elements were constrained to equal elongation by being clamped at the ends in the testing 
device. The elements in the second sample ZK were glued side-by-side by means of 
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polyurethane adhesive. The free testing length was 3,820 mm. Tab. 5.15 shows the main 
statistics of both groups. 

The sample sizes are, except for N = 1, only small but reflect the expected differences of 
structural behaviour of systems composed of elements without (ZL) and of continuously 
rigidly connected elements (ZK). Thereby EN,t,0,12 and ρN,12 again follow roughly the 
averaging model. Mean strength fN,t,0,mean of sample ZL decreases in trend with increasing 
N. This is in line with parallel systems composed of linear-elastic and brittle failing 
elements. In contrast, strength in group ZK shows in trend an increase of fN,t,0,mean with N. 
In respect to the high strength class C40 of the base material the results appear at first to 
be contrary to that of WESTMAN AND NEMETH (1968). Nevertheless, ripping of the base 
material to elements led to an increase in variability and decrease of strength due to the 
fact that, e.g. limits in flaw dimensions for timber grades are often in conjunction with the 
dimension of cross section.  

To conclude, the last two groups ZL and ZK clearly underline the different system 
behaviour of loose and rigid connected elements. In sample ZL a decrease of fN,t,0,mean but 
a significant reduction in CoV[fN,t,0] can be observed. This is not because of local load 
sharing between segments of the elements but due to an “averaging” of element strength 
variation. In sample ZK an increase of fN,t,0,mean due to local load sharing and bridging of 
flaws by stiffer adjacent sections can be observed. Thereby CoV[fN,t,0] shows a minor 
decrease. This can be traced back to changes in the relevant basic strength distribution 
representative for consideration of the interaction between the segments (see Fig. 5.26). 
The E-modulus and the density are widely unaffected by the type of connection between 
the parallel elements, so far no or a rigid, stiff connection in longitudinal direction (e.g. 
finger joints or scarf joints) can be assured. The averaging model appears as being 
sufficient to account for system effects on E-modulus and density. There is an additional 
effect which has to be considered: Flaws in elements, in particular knots and knot 
clusters, cause a low local E-modulus. In case of elements under tension stresses and 
asymmetrical placement of flaws within the cross section moments are induced. 
Consequently, elements in long span tension tests are under MN-interaction which leads 
to an underestimation of the “real” bearing capacity of the elements in tension (see e.g. 
COLLING, 1990; FALK AND COLLING, 1994, 1995). This effect is also negatively 
dependent on timber grade, being more distinctive in lower grades which suffer from a 
high share of knots. If the elements are rigidly composed to systems averaging and 
bridging of weak zones reduces the effect of MN-interaction. Consequently, an increase 
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in fN,t,0,mean is given. In systems under compression parallel to grain (as discussed next) 
this effect can also be expected but to a smaller amount. Nevertheless as these systems 
get slender other effects, e.g. stability considerations, dominate.  

In case of parallel systems composed of elements under compression stresses parallel to 
grain stability analysis has to be additionally taken into account. Once more the type of 
connection between the elements (degree of connection; discrete vs. continuous 
connection) plays a role. It determines not only the treatment of the system as solely 
parallel or as parallel, sub-serial, but also the expectable composite action which is 
decisive for the action of the system in case of instability. Two extreme cases (i) acting 
nearly like single elements (only constrained to equal compressive strain; no connection 
in between), and (ii) acting as one complex (continuous, rigid connection) are given. In 
particular in case (ii) slender systems which are endangered to buckle homogenisation of 
E-modulus gives an extra advantage.  

WILSON AND COTTINGHAM (1952) present results of compression tests parallel to grain 
on systems of N = 8, 11, 17 elements. All systems had a cross section of 
w / d = 135 mm / 152 mm so that the elements got thinner with increasing N. The length 
of the systems was l = 915 mm. In the analysis three types of longitudinal joints were 
examined (butt-joints and scarf-joints with inclination 1:3 and 1:5) and compared with 
control samples of the same but unjointed material. Furthermore the influence of one 
single joint on the outside and that of staggered joints in neighboured elements on the 
outside of the systems was investigated. In total 36 samples of three replicants each were 
tested. On the mean level no differences between the E-modules EN,c,0,mean and strengths 
fN,c,0,mean of systems of unjointed (controls) or scarf-jointed elements could be found. 
Nevertheless, the butt joint significantly affected both characteristics, EN,c,0,mean and 
fN,c,0,mean. This led to about 30% loss in stiffness at N = 8 which decreased down to 
roughly 0% at N = 17, and to about 25% loss in strength at N = 8 which was also reduced 
to roughly 10% at N = 17. In a further step the influence of timber grade was investigated 
on systems of the same length and cross section dimension and N = 8, 17. Thereby the 
elements were classified in four groups, clear wood, No. 1, No. 2 and No. 3. Each of the 
eight groups was tested with three replicants. A comparison between the groups of N = 8 
and N = 17 shows in trend an increasing ratio of XN=17,mean / XN=8,mean for Ec,0,mean and 
fc,0,mean with decreasing timber grade. In particular in the group of clear wood the ratio is 
nearly 1.00 whereas in systems of No. 3 elements a ratio of roughly 1.30 and 1.20 can be 
observed for Ec,0,mean and fc,0,mean, respectively.  
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A further interesting study of system behaviour in compression is published by WINANS 

(2008). He analysed parallel strand lumber (PSL) of Southern pine by means of stochastic 
finite element analysis. He concludes that both, EN,c,0 and fN,c,0 follow the averaging model 
in expectation and variability.  

 

Fig. 5.27: Examples of parallel systems stressed in bending 

The next important group of parallel systems are systems under bending stresses. 
Categorisation is made in systems composed of (1) directly stressed and side-by-side 
placed elements and (2) indirectly stressed and under (equal) center-distance larger the 
width of the elements placed elements. In type (1) further subdivision is made in (1a) 
loose, (1b) flexible and discrete, and (1c) rigid and continuously connected elements. In 
systems of type (2) load sharing and thus the system action is decisively determined by 
the stiffness of the load distributing element and the connection of this element to the 
system elements. A deviating respond between the elements in type (1) and (2) can be 
expected in dependency of the connection between the elements and on the way how 
bending stresses are applied. This is not only because of different moment distributions 
but also because of the respond of the individual elements. Thereby bending moments can 
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be applied continuously (pure bending), by applying a distributed load per unit area or by 
applying line- or even point-load(s) (see Fig. 5.27).  

As already discussed for parallel systems stressed in tension or compression parallel to 
grain, the respond and the strength potential in (1) is dependent on the degree of 
connection between the elements (loose – flexible – rigid) and on the longitudinal 
distribution of the connections (discrete vs. continuous). In type (2) the degree of 
connection between the system elements and the load-distributing unit decisively 
influences the amount of T-beam action. Nevertheless, the main influence on system 
strength potential is given by the stiffness of the load distributing unit as an indicator for 
the ability to enforce the parallel elements to equal deflection and common action as the 
basic concept of herein discussed parallel systems. In the case where the stiffness of the 
load distributing element (E0 · Iy) Ø ∞ all elements are constrained to deflect equally. 
Beside the mechanical influence of T-beam action equivalent system behaviour as in type 
(1a) is given in principle.  

In the following publications dealing with examinations on type (1) systems are 
discussed. For example MCALISTER (1974), who was probably the first in testing parallel 
aligned elements without any connection in between in bending (type 1a), examined 
systems of N = 1, 2 of Southern pine, No. 2. He compared the test results of systems with 
that of beams of the same cross section as the system, same species and grade. 
Consequently direct comparison has to be done with caution. Nevertheless, EN,m,0,mean and 
fN,m,mean of 12% higher and 7% lower, respectively, together with a reduced CoV[fN,m] is 
given. Later, BAKHT AND JAEGER (1991) performed a stochastic simulation study on 
systems of type (1a) or also of type (2a) if the bending stiffness of the load distributing 
unit can be assumed to be (E0 · Iy) Ø ∞. They analysed the distribution of system stress at 
first failure and the ultimate strength by varying the stress-strain-relationship from linear-
elastic and brittle failure (case 1) to bi-linear relationship with inclination at 50% of 
maximum load and reduction of E-modulus of up to 65% (case 4). On the mean level a 
ratio of fN,m,mean / f1,m,mean of roughly 1.0 was found for case 4. In case 1 a remarkable 
concave decrease up to 0.5 for N = 20 was given. Due to the observed non-linearity of 
stress-strain relationship in structural timber under bending (see SEXSMITH ET AL., 1979) 
a ratio of 1.0 was proposed, at least for parallel systems of type (1c) in bending, shear and 
tension parallel to grain.  

Examinations on type (1b) are numerous. Thereby the degree of connection between the 
elements plays a decisive role. BONNICKSEN (1965) and BONNICKSEN AND SUDDARTH 
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(1966) report on tests on systems composed of N = 1, 3 elements of Douglas fir with 
w / d = 38 mm / 140 mm and l = 3,048 mm. The mechanical lamination was done with 
30# 20d nails with spacing of 305 mm and 457 mm in the center and at the ends, 
respectively. The edge distance was 28.6 mm. The structural timber was delivered and 
kept in green condition also during testing. During the tests a subsequent failure in most 
of the trio beams was observed. In general, failure was initiated in bending-compression 
zone followed by a subsequent failure of the elements under bending-tension stresses. A 
sudden failure of two or three elements occurred only exceptionally. The ultimate 
bending strenght fN,m shows a slight but significant reduction in mean (–5.5%) and a 
remarkable reduction in CoV[fN,m] to only 54% of CoV[f1,m]. The reduction in variation is 
even slightly below the estimate according the averaging model which was accepted in a 
statistical test up to α = 10%.  

Some results of MCALISTER (1974) were already mentioned in the previous group of 
(type 1a). Here a comparison between test results of nail-laminated duo beams and his 
control group of unconnected duo beams is presented. The nailing was done with 6d 
standard nails and spacing of 203 mm. His results indicate a slight increase in EN,m,0,mean 
and fN,m,mean of 2% and 4% due to activation of flexible composite action and load sharing 
between segments of the elements in the nail-laminated duo beams. The variability, 
expressed by CoV[fN,m], was not distinctively influenced by nailing.  

In the 1990ties a series of works on nail-laminated posts (type 1b) was published. For 
example BOHNHOFF AND MOODY (1990) performed bending tests on single and on nail-
laminated, unspliced trio beams of Southern pine, No. 1 KD15. Thereby a reduction in 
mean bending strength of 11% by roughly constant mean E-modulus was observed. The 
variation of strength and E-modulus of the systems decreased significantly to 40% and 
46% of that of the elements, respectivley. Later, BOHNHOFF ET AL. (1991) gave a 
comprehensive report on (un)reinforced and (un)spliced nail-laminated posts. Based on 
their research on unspliced nail-laminated posts they concluded that (1) the mean strength 
fN,m,mean is higher for low grade timber but nearly the same for high grades, (2) the mean 
E-modulus EN,m,0,mean is the same, regardless of grade and that (3) the CoV[XN] of strength 
and stiffness follows the averaging model. Furthermore, the size, type and location of 
nails showed no significant influence on system strength. Based on a literature survey and 
finite element simulations (see BOHNHOFF, 1989) in regard to staggered butt-joint spliced 
three-layer nail-laminated posts they conclude that (1) an overall splice length has to be 
secured to enable an effective stress distribution in the vicinity of butt joints (at least 
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0.9 m are recommended), (2) high localised stresses in wood layers can only be decreased 
by additional nails up to a certain level, (3) the longest unjointed timber element in the 
center of the system defines the primary stressed element, (4) highest nail stresses are 
always adjacent to a butt-joint in the outer layer, and (5) system strength capacity is 
related to timber grade. Consequently, an efficient increase in system strength capacity is 
expected by (i) increase of the strength of the primary stressed center element and (ii) 
reinforcement of the outside butt-joints. The last one also reduces the slip and thus the 
stress concentration on nails. In contrast to unspliced elements the strength and stiffness 
of a system composed of butt-jointed elements are significantly influenced by the size, 
type and location of the nails. BOHNHOFF ET AL. (1991) reported on tests performed on 
single and trio beams. The trio beam designs included a sample of unspliced posts as well 
as samples of posts with staggered butt-joints with and without outside reinforcement. 
The reinforcement was a high-strength toothed metal plate which was applied on the 
outside of the spliced post. Two types of nails and nail application (gun-driven ring shank 
nails of 3.68 mm in diameter and l = 102 mm vs. machine-driven nails of 4.8 mm 
diameter and l = 115 mm) were analysed in separate samples but a significant difference 
could not be confirmed. Analysis of failure characteristics of single and trio beams 
showed in principle no difference. As expected the primary element causing failure was 
the longest (sub)element in the center with the longest contact length to adjacent 
elements. This element is exposed to a maximum of local stress concentrations and load 
sharing constraints. In the samples with reinforcement the bearing capacity of the 
reinforcement was reached already before the system failed. The reinforcement not only 
homogenised the stress distribution near the butt-joint. It also caused a certain lower 
bounding of the strength distribution by preventing early failures below a certain 
threshold. By comparison of the tested designs a ratio fN,m,mean / f1,m,mean of 0.89 was found 
in the sample of unspliced posts whereas a ratio of 0.42 ÷ 0.43 was found for spliced 
posts. This reduction is much higher than expected from an engineering model were at 
least two elements are treated as being always active in a trio beam. Nevertheless, these 
two elements are not at their maximum capacity at the point where the weakest element 
fails. This consequencies on a lower system bearing capacity as assumed by an averaging 
process (see BOHNHOFF ET AL., 1991) but also because load redistribution capacity in 
systems of N = 3 is limited. Furthermore, first failure is also influenced by higher local 
stress concentrations in elements and nails due to a certain amount of interlayer slip 
between the elements as it is common in flexible splices (e.g. BOHNHOFF ET AL, 1992), 
but also due to a higher variability between the elements as one element itself is 
composed of at least two independent sub-elements. In the samples of reinforced posts 
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the ratio is 0.47 ÷ 0.50. The ratio CoV[fN,m] / CoV[f1,m] is roughly 40% in the designs of 
unspliced and spliced but reinforced posts, and roughly 55% in spliced but not reinforced 
trio beams. A significant difference between unspliced and spliced as well as between 
unreinforced and reinforced post design was confirmed. The ratio of EN,m,0,mean / E1,m,0,mean 
is 1.09 if unspliced, 0.65 if spliced and 0.80 if spliced but reinforced. The variability in 
Em,0 was only (50 ÷ 60)%, irrespective of the post design if compared to the elements. 
WILLIAMS ET AL. (1994) enlarged previous works on nail-laminated posts by analysing 
systems of N = 1, 4. In their survey they concluded that the load-bearing behaviour in 
mechanically laminated assemblies is primary dependent on (1) the interlayer shear 
transfer capacity, (2) the splice arrangement, (3) the splice length, and (4) the existence of 
a butt-joint reinforcement. In their tests the material was again Southern pine, but 
machine stress rated (MSR) to grade 2250f-1.9E. Tests on elements and in total on five 
post designs of unspliced and spliced (butt-jointed) posts were made. The influence of 
butt-joint reinforcement, splice distance and splice-design were examined. The elements 
were connected by gun-driven nails with a diameter of 3.3 mm and a length of 
l = 95.3 mm. These were placed every 305 mm in the unspliced and every 76 mm and 
152 mm in and near the spliced area. As expected, the failure took place primary in the 
center elements and near butt-joints. Also here the reinforcement buckled already before 
the maximum load of the system was reached. The ratio fN,m,mean / f1,m,mean is nearly 1.0 in 
unspliced samples, 0.30 in case of only 1.22 m splice length and 0.45 in case of 1.83 m 
splice length, with the tendency to decrease further in splice-designs with longer total 
contact length between the (sub)elements. In the group with reinforcement and 1.83 m 
splice length a ratio of 0.59 is realised. The ratio CoV[fN,m] / CoV[f1,m] is about 0.6 in the 
sample of unspliced and spliced elements with 1,219 mm splice length but reduced total 
contact length, about 0.65 in spliced posts with higher total contact length, irrespective of 
the splice distance, and 0.50 in the sample of reinforced butt-joints. The variability in 
bending E-modulus CoV[EN,m,0] follows roughly the averaging model. The change in 
overall splice length from 1.22 m to 1.83 m leads to a significant increase in system 
bearing capacity. This is because of a more homogeneous load transfer and due to the 
reduction of load per nail. The reduction of the total contact length and the use of butt-
joint reinforcements additionally lead to a significant increase in bearing capacity.  

Based on these previous works on mechanically laminated posts BOHNHOFF (1995) 
proposed repetitive member factors (equivalent to ksys,05) for the design of these systems 
in case of bending stresses applied edgewise on the elements (see Tab. 5.16). These 
factors have to be adjusted by a multiplication factor of 1.00 in case of unspliced posts 
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and 0.42 and 0.55 in case of spliced posts without and with butt-joint reinforcement, 
respectively. A further comprehensive study on nail-laminated posts was published by 
BOHNHOFF ET AL. (1997). They report on tests on systems composed of N = 1, 2, 3, 4 
unspliced elements of Southern pine of visually grade No. 2 and machine grade 2250f-
1.9E. Two further samples of MSR quattro beams were tested by loading only the outer 
elements. One of these samples had also higher nail density (nail spacing 152 mm instead 
of 305 mm) to increase the shear capacity against interlayer slip. The results show a 
concave decrease in fN,m,mean / f1,m,mean with N. This decrease is higher in systems 
composed of visually graded elements. Note: Structural timber with a remarkable higher 
variability in its characeristics. The application of load only on the outer layers of quattro 
beams showed only a minor reduction (0.96 Ø 0.94). The sample with higher nail density 
showed no increase in system strength. It can be assumed that the stiffness in case of 
305 mm nail spacing is already high enough to ensure sufficient load sharing among the 
elements. The ratio CoV[fN,m] / CoV[f1,m] shows a remarkable higher non-linear decrease 
than expected from the averaging model. In contrast, EN,m,0,mean shows only minor 
increase. The reduction in CoV[EN,m] is even stronger than expected from the averaging 
model. Nevertheless, the application of the averaging model for system E-modulus is 
proposed by BOHNHOFF ET AL. (1997). In EP559 FEB03 a guideline for the design of 
mechanically laminated posts is published. Therein the repetitive member factors in  
Tab. 5.16 were used by taken into account the results of BOHNHOFF ET AL. (1997) with 
slight changes in the factors for posts composed of visually graded elements, with 1.35 
and 1.40 for trio and quattro beams, respectively. 

Tab. 5.16: Repetitive member factors for systems composed of mechanically laminated and 
edgewise loaded elements under bending stresses; BOHNHOFF (1995)  

 DUO TRIO QUATTRO 

visually graded 1.25 1.30 1.42 

mechanically graded 1.15 1.25 1.30 

As next systems of type (1c) according Fig. 5.27 are investigated in more detail. For 
example WILSON AND COTTINGHAM (1952) analysed various lay-ups of systems under 
variation of the quantity of interacting lamellas, the type of loading and the orientation of 
elements in respect to loading direction. In one sub-series systems of Douglas fir 
composed of eigth flatwise loaded and glued elements versus systems of four edgewise 
loaded elements were tested in shear by means of a four-point bending test configuration. 
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Each sample consisted of 20 specimens. All systems had a cross section of approximately 
w / d = 150 mm / 300 mm. In both samples only 40% to 60% of the specimen failed in 
shear. Consequently all test results of WILSON AND COTTINGHAM (1952) were re-
evaluated to acount for the censoring in the data. Therefore the maximum likelihood 
method (MLE) for right-censored data was applied under the assumption of lognormally 
distributed characteristics. The parameters of 2pLND were found by maximising the log-
likelihood function  
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with indicator variable di = 1 if the event equals the target and di = 0 otherwise. The main 
statistics of both samples are given in Tab. 5.17. The expectation and CoV of bending 
characteristics are based solely on bending failures whereas statistics of shear strength are 
based on shear failures.  

Tab. 5.17: Main statistics of shear tests on systems composed of eight flatwise loaded and four 
edgewise loaded elements; test data of WILSON AND COTTINGHAM (1952); re-evaluated 
by means of MLE for right censored data 

 
Em,mean 

[N/mm²]

CoV[Em]

[%] 

fm,mean 

[N/mm²]

CoV[fm]

[%] 

fv,mean 

[N/mm²] 

CoV[fv] 

[%] 

8# flatwise loaded elements 15,923 7.1% 62.4 11.1% 3.4 9.2% 

4# edgewise loaded elements 16,201 8.6% 60.6 18.3% 4.4 11.1% 

A comparison of the statistics given in Tab. 5.17 in regard to shear strength gives in mean 
29% higher shear strength in systems of edgewise loaded elements. This is in particular of 
interest because the number of flatwise loaded elements is twice the number used in 
edgewise loaded elements.  

In the report of MCALISTER (1974) also test results from glued-laminated duo beams of 
Southern pine No. 2 are presented. Two samples, one width phenol resorcinol and the 
other with neopren-base adhesive were tested in four-point bending. A comparison with a 
control sample of unconnected duo beams shows an increase in EN,m,0,mean and fN,m,mean of 
(5 ÷ 8)% and (57 ÷ 58)%, respectively due to activation of rigid composite action with 
continuous load sharing between the segments of elements.  
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Tab. 5.18: Main statistics of bending tests performed on post-tensioned decks of various widths; 
SEXSMITH ET AL. (1979) 

 Hem fir White pine Red pine 

 
N 

[#] 

fm,mean 

[N/mm²] 

CoV[fm]

[%] 

N 

[#] 

fm,mean 

[N/mm²]

CoV[fm]

[%] 

N 

[#] 

fm,mean 

[N/mm²] 

CoV[fm] 

[%] 

single 1# 45.9 33.0% 1# 16.0 36.0% 1# 28.0 36.0% 

1 ft 6# 46.9 16.0% 6# 19.4 15.0% 6# 27.5 21.0% 

2 ft 12# 43.9 9.0% 12# 21.2 7.0% 12# 29.0 14.0% 

3 ft 19# 44.8 8.0% 16# 18.3 8.0% 17# 28.8 7.0% 

Another comprehensive test series on parallel systems composed of rigidly connected 
elements is given by SEXSMITH ET AL. (1979). They investigated the load sharing 
behaviour of post-tensioned vertically laminated beams as for example used for timber 
bridge decks. Dependent on the post-tensioning this system is in real something in 
between (1b) and (1c). Nevertheless, due to the high amount of post-tensioning and 
friction between neighboured segments of the elements this type is further treated as 
being comparable to (1c). In their analysis three timber species (Hem fir, No. 2 and better, 
green condition; White pine, ungraded, u = 19%; Red pine, ungraded, u = 19%) and three 
different widths of the decks (305 mm, 610 mm, 915 mm) and ten replicants per sample 
were tested in four-point bending. Additional bending tests on single elements with a 
cross section of w / d = 38 mm / 235 mm were performed. Based on the test results the 
averaging model for EN,m,0,mean and CoV[EN,m,0] could again be verified. The main 
statistics of bending strength are given in Tab. 5.18. Based on these and with the 
background information that the timber quality of White pine was lower than of Hem fir 
and Red pine it can again be concluded that a negative dependency of system effect on 
the mean level on timber grade is given. Hereby the ratio fN,m,mean / f1,m,mean is nearly 
always 1.00 except the samples of White pine which give a ratio in the range of 
1.15 ÷ 1.32, nevertheless without trend to N. In contrast, ratio CoV[fN,m] / CoV[f1,m] 
decreases non-linearly in N but irrespective of the timber species or grade, from 1.00 for 
N = 1 to 0.42 ÷ 0.58 at N = 6, 0.19 ÷ 0.39 at N = 12 and 0.19 ÷ 0.24 at N = 16 ÷ 19. 
SEXSMITH ET AL. (1979) postulate the full applicability of the averaging model for the 
bending strength, for expectation and variability. Furthermore, only a marginal increase 
in ductility in systems was observed with increasing N.  
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WOLFE AND MOODY (1979) performed a literature survey. In reference to BONNICKSEN 

AND SUDDARTH (1966), NEMETH (1967) and MCALISTER (1974) they concluded that the 
magnitude of parallel system effects is indicated to depend on timber quality and N. Their 
own test results performed on high quality L1 Douglas fir, medium quality N2D Southern 
pine and low quality L3 Douglas fir on systems with N = 1, 2, …, 5 elements with cross 
section w / d = 38 mm / 140 mm once again confirmed that the ratio EN,m,0,mean / E1,m,0,mean 
can be taken equal to 1.00. Furthermore, CoV[EN,m,0] as well as CoV[fN,m] follow 
approximately the averaging model. In line with previous findings a negative dependency 
of fN,m,mean on timber grade was observed. In all samples an increasing mean value was 
found, with significant increase from N = 1 Ø 2 and N = 2 Ø 3. In systems of N ≥ 3 a 
further significant increase could be determined. Note: Also CoV[f1,m] increased with 
decreasing timber quality. WOLFE AND MOODY (1979) observed no differences in the 
failure characteristics between systems and elements. They note that systems suffer from 
the edge effect which compensates weak zones in elements by stronger, adjacent 
segments. They defined the power model as given by equ. (5.14) for estimating fN,m,05 in 
dependency of CoV[f1,m], N and timber grade. Timber grade is considered by the strength 
ratio (SR) which transfers the strength of clear wood fm,mean,CW to that of structural timber 
of a specified grade. Following this model values of ksys,05,N≥3 = 1.50 and 2.50 ÷ 3.00 are 
proposed for highest and lowest timber grades, respectively.  
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WRIGHT (1987) analysed the bearing capacity of trio and quattro beams composed of 
glued finger jointed elements in four-point-bending. The systems were made of Southern 
pine of grade No. 2 KD15 and tested at u = 12%. Due to missing data for the single 
elements only a relative comparison between trio and quattro beams is possible, with 
cross sections w / d = 102 mm / 179 mm and 140 mm / 179 mm, respectively. The failure 
was primarily induced or in the area of finger joints. An increase in mean bending 
strength from N = 3 Ø 4 of +15% and an increase in bending E-modulus of +4% was 
observed, together with a slight reduction in CoV[fN,m] and CoV[EN,m,0].  

As previously discussed for systems (1a) BAKHT AND JAEGER (1991) proposed models 
for calculation of the system effect for systems of type (1c) based on simulations on 
system type (1a) and test results of SEXSMITH ET AL. (1979). They defined fN,m,s / f1,m,s vs. 
N given as  
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by an upper bound fitting to test data, with fN,m,s and f1,m,s as standard deviation observed 
in test samples of systems and elements, respectively. The model is a shifted averaging 
model of variability. The ratio of fN,m,mean / f1,m,mean was taken equal to 1.00. Following that 
and based on reliability calculations by means of 2pLND for actions and resistances, 
system factors ksys,N,05 for OHBDC-91-01 were defined. The proposed functions and 
factors are thereby in dependency of timber grade and associated CoV and the quantity of 
interacting parallel elements N, for systems under bending, shear or tension stresses 
parallel to grain.  

BRANDNER (2006) and BRANDNER AND SCHICKHOFER (2006) report on various test 
series performed for the determination of parallel system effects on duo and quattro 
beams of finger jointed structural timber, glulam and cross laminated timber (CLT). The 
first test series was performed on glulam beams (see SCHICKHOFER, 2004) composed of 
edgewise loaded lamellas of Norway spruce and strength class C16/C24 according 
EN 338. Systems of N = 1, 2, 4, 8 elements were tested in four-point bending. The cross 
section of the elements was w / d = 36 mm / 100 mm. The test results show an increase of 
fN,m,mean from 4 to 5% from N = 1 to N ≥ 2 and a reduction in CoV[fN,m], even higher than 
predicted by the averaging model. JÖBSTL ET AL. (2006) report on four-point bending 
tests on five-layered cross laminated timber elements of Norway spruce lamellas (strength 
class C24 according EN 338) with equal thickness, a depth of 110 mm and a width of the 
segment equal to the width of the board with w = 120 mm. Thereby systems of 
N = 1, 2, 4, 8 were examined. Again, an increase of fN,m,mean of 3% from N = 1 to N ≥ 2 
and a reduction in CoV[fN,m] even a bit higher than predicted by the averaging model 
could be observed. A further test series on systems composed of N = 1, 2, 4 elements of 
finger jointed construction timber of Norway spruce (strength class C24 according 
EN338) was accomplished by BRANDNER (2006). The cross section of the systems were 
N-times the cross section of the elements of w / d = 80 mm / 160 mm. All elements were 
proof loaded in tension parallel to grain with a proof level of σt,0,pl = 7.0 N/mm². The test 
results show an increase in EN,m,0,mean of about 5% and in fN,m,mean of about 15%. The 
coefficients of variation CoV[fN,m], CoV[EN,m,0] and CoV[ρN] can be well estimated by the 
averaging model. By investigating published and own results on systems stressed in 
bending and tension parallel to grain BRANDNER (2006) formulated a simple model for 
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the estimation of the 5%-quantile of system strength fN,05 in dependency of N and CoV[f1] 
by means of  

[ ] [ ]1fEfE N = , [ ] [ ] [ ]12
1

fCoV
N NfCoVfCoV ⋅−⋅= ,  (5.16)

with f1 ~ 2pLND and CoV[f1] ≤ 25%.  

EISER (2008) investigated the system bearing capacity of duo and trio beams composed of 
finger jointed glulam-lamellas of Norway spruce, w / d = 22 mm / 240 mm by testing in 
four-point bending. Two timber grades (C24/C30 and C35+ according EN 338) were 
used. Analysis of the test results shows an increase of EN,m,0,mean from N = 1 to N ≥ 2 of 
(7 ÷ 10)% and 6%, and an increase in fN,m,mean from N = 1 to N ≥ 2 of 33% and 16% in 
systems composed of elements C24/C30 and C35+, respectively. The unexpected high 
increase in fN,m,mean was interpreted as a consequence of not adequate grading, which was 
done for tensile characteristics according the requirements on glulam-lamellas and not for 
edgewise bending. In particular edge knots, which are not as decisive for tension as for 
bending, are assumed to cause low strength capacity in single elements. In systems and 
due to the edge effect a remarkable increase of strength in duo beams is given. 
Corresponding to most previous cited data sets a reduction of CoV[fN,m], CoV[EN,m,0] and 
CoV[ρN] according the averaging model was observed. Later, EISER ET AL. (2010) tested 
single elements and duo beams of Norway spruce in bending. The cross section of the 
elements (strength class C24+ according EN 338) was w / d = 40 mm / 245 mm, that of 
the duo beams 80 mm / 240 mm. The duo beams showed an increase of 5% and 21% in 
EN,m,0,mean and fN,m,mean, respectively, and again a reduction of CoV[fN,m], CoV[EN,m,0] and 
CoV[ρN] according the averaging model. As in EISER (2008) the elements were again 
graded in tension and not according the requirements on edgewise bending. Recently, a 
comprehensive research project on duo or trio beams and glulam of two or three 
laminations of the same dimensions was accomplished and published by FAYE ET AL. 
(2010). Thereby, two timber species (groups) (Douglas fir and Norway spuce & fir) and 
three timber grades (C18, C24 and C30 according EN 338) were tested in four-point 
bending. In both, edgewise and flatwise loaded systems EN,m,0,mean was found to be on 
average equal to E1,m,0,mean of the single elements tested edgewise. In particular in the 
mean bending strength fN,m,mean of edgewise loaded systems no clear trend and no 
dependency on timber grade or species was dedected. If flatwise loaded a reduction in 
fN,m,mean of roughly 10% was given. The coefficient of variations CoV[EN,m,0] and CoV[ρN] 
of flatwise and edgewise loaded systems can be well estimated by the averaging model. 
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The same was found for CoV[fN,m] in case of edgewise loaded systems, whereas in 
flatwise stressed systems (glulam) no clear trend could be determined.   

Intermediate Conclusions found in respect to Parallel System Action and Effects 

So far presentation focused on a comprehensive literature survey on parallel systems 
composed of elements placed side-by-side and constrained to equal elongation or 
deflection. Numerous publications regarding systems with a secondary load-distributing 
element also exist but due to the focus of this work these are not discussed further. 
Nevertheless, on delivered background some important conclusions can be made: 

 due to the hierarchical structure inherent in wood, timber and engineered timber 
products and structures the material (system) structure and action can be 
described as parallel, sub-serial;  

 it was found that concerning their reliability and their system behaviour herein 
discussed parallel systems are in between serial and parallel redundant systems;  

 it was generally concluded, that system effects are in principle dependent on the 
stochastics within and between elements or even sub-elements (segments);  

 the main parameters which determine system effects were identified as: (i) the 
type of system, (ii) the number of interacting elements N, (iii) the degree of 
connection between the elements, and (iv) the stochastic nature of the elements, 
in particular the variability, e.g. CoV;  

 two types of systems were defined: type 1 composed of side-by-side placed 
elements (directly stressed) and type 2 composed of elements which are 
connected by a secondary load-distributing element (indirectly stressed);  

 the required stochastic information depends on the degree of connection between 
the elements; in case of unconnected (loose) elements the system behaviour can 
be sufficiently characterised by the stochastics of elements; in case of rigidly and 
continuously connected elements comprehensive stochastic information including 
also the spatial correlation and distribution of local characteristics within and 
between the elements and segments is required;  

 on the basis of a comprehensive literature survey on parallel systems stressed in 
tension or compression parallel to grain, in bending or shear the following 
statements can be made: 
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 the expectations of E-modulus and density EN,mean and ρN,mean as well as 
their variabilities expressed by CoV[EN] and CoV[ρN] follow in principle 
the averaging model;  

 in most publications test data of strength values confirm also the 
applicability of the averaging model for the estimation of CoV[fN]; this is 
in particular of interest as SMITH (1980) observed that CoV[XN] in fibre 
bundles and in case of GLS decreases proportional to ~ 1 / ◊N whereas 
in LLS a proportional decrease of a / ln(N), with a constant was 
observed; this was also confirmed e.g. by KLOSTER ET AL. (1997) 
(see section 3.2.4);  

 the expectation of system strength fN,mean was found to depend on timber 
grade, with fN,mean / f1,mean ≈ 1.00 for high grades and fN,mean / f1,mean > 1.00 
for low grades;  

 the expectation of system strength was also found to be significantly 
influenced by the grading method used for the elements if the grading 
procedure is not congruent with later stress situations. 

5.2 System Effects on Density and their Relevance for 
Design Procedures 

Density of wood, timber and engineered timber products is in general one of the three 
characteristics determining grade. For example the strength class system provided by 
EN 338 is based on the characteristic bending strength (5%-quantile), bending E-modulus 
(mean value) and density (5%-quantile).  

In general, as the density of systems is nothing else than the average of the densities of 
elements and sub-elements composing the system, its distribution follows the averaging 
model, see equ. (3.132). Thereby independency between the elements but not necessarily 
between sub-elements can be assumed. The RSDM of global density of elements (the 
density determined by dividing total mass by total volume) is often assumed to be 
normally distributed. In general this can be expected because of the fact that already the 
global density is nothing else than the average of local densities. Nevertheless, 
comprehensive data analysis e.g. by BURGER (1998B), BRANDNER AND SCHICKHOFER 

(2007) and BRANDNER ET AL. (2012) showed a preference of 2pLND. The reason is seen 
in the distinctive equicorrelation between local densities within elements which 
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decisively contradicts constraints of the central limit theorem. Based on the analysis of 
BRANDNER AND SCHICKHOFER (2007) and BRANDNER ET AL. (2012) a relative variation 
of global density between the elements with CoV[ρ12] = (6 ÷ 10)% can be expected. As 
the arrangement of elements within the system is irrelevant, decrease of variance is 
proportional to the number of elements (N · M). Consequently and so far iid elements can 
be assumed ρ12,(N·M),mean, and CoV[ρ12,(N·M)] can be calculated as  
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,12

ρ
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The 5%-quantile can be calculated according equ. (2.80) by assuming also iid 
ρ12,i ~ 2pLND. As the median of X ~ 2pLND is smaller or equal the mean value of X the 
5%-quantiles of ρ12,1 ~ 2pLND are larger than in case of ρ12,1 ~ ND. Nevertheless due to 
the low CoV[ρ12,1] the differences are negligible and disappear with increasing number of 
elements. 

 

Fig. 5.28: Relative change of 5%-quantile of density of systems in dependency of the system size 
(N · M) and CoV[ρ12,1], assuming iid ρ12,1 ~ 2pLND 

Fig. 5.28 shows the relative change of ρ12,(N·M),05 in dependency of (N · M), with iid 
ρ12,1 ~ 2pLND and approximated ρ12,(N·M) ~ 2pLND. The changes are not dramatic because 
of the relatively low variation in density. Nevertheless, if for example the density of glued 
laminated timber (GLT) with reference cross section wGLT / dGLT = 150 mm / 600 mm and 
15 lamellas with a standard thickness of tlam = 40 mm is of interest ρ12,(N·M),05 can be 
expected to be 10% higher than ρ12,1,05. This circumstance is taken into account by current 
product standards, e.g. EN 1194 and PREN 14080. According to Fig. 5.28 it can be seen 
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that already the 5%-quantiles of density of duo, trio and quattro beams is expected to be 
about 4%, 6% and 7%, respectively, higher than that of the elements.  

The characteristic density is in particular used as indicating property for estimating the 
bearing capacity of metal fasteners placed in wood and timber, e.g. for the embedment 
strength of dowel-type fasteners and for the withdrawal strength of axially loaded (self-
tapping) screws. For dowel-type fasteners, primary stressed in shear, the local resistance 
of timber against compression stresses in an angle to grain is decisive. In contrast, the 
withdrawal resistance of screws, primary stressed axially, is defined by the local shear 
resistance of timber in an angle to grain direction. 

Current regulations for both resistance characteristics as provided by EN 1995-1-1 are 
based on regression equations. These were established by fitting test data. The 
embedment strength parallel to grain of bolts up to a diameter of d ≤ 30 mm is given as  

( ) kkh df ρ⋅⋅−⋅= 01.01082.0,0, ,  (5.18)

and the withdrawal strength perpendicular to grain as  

5.13
,90, 106.3 kkaxf ρ⋅⋅= − .  (5.19)

Thereby diameter d and characteristic density ρk (lower confidence limit of the 5%-
quantile) have to be inserted in [mm] and [kg/m³], respectively, to get fh,0,k and fax,90,k in 
[N/mm²].  

Due to the linear influence of ρk on the embedment strength the resistance of fasteners in 
timber at fixed d increases linearly with increasing ρk. Nevertheless, due to the non-linear 
influence of ρk on the withdrawal strength the resistance increases progressively with 
increasing ρk, e.g. with kN = 10% and (1 + kN)1.5 = 115.4% a plus of 15.4% in fax,90,k is 
given.  

Because of the local placement of fasteners it is not the global but the local density which 
is of interest and which decisively influences the resistance in timber. Beside this fact a 
common practise in designing fasteners placed, e.g. in GLT is to make use of the 
characteristic density of the system product, irrespective of the number of elements 
penetrated by the fastener. Furthermore, in most system products fasteners can be placed 
in different ways, e.g. in linear members like GLT perpendicular to face or edge of the 
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lamellas, penetrating ≥ 1 and only one lamella, respectively. Consequently, if only one 
element is penetrated the resistance is only determined by the local density and its 
variation. Thereby local variation can be very significant, e.g. if considering the change 
from juvenile to adult wood (see section 4.2.1) or the occurrence of knots which e.g. in 
Norway spruce shows a 3 ÷ 4 times higher density if compared to surrounding wood. 
Again, if more than one element is penetrated by a fastener at least the averaging model 
for calculating the characteristic density according equ. (3.132) can be applied. Thereby 
also the distribution of action and resistance along the axis of fasteners has to be taken 
into account. For example, full-threaded self-tapping screws placed transversely to grain 
show roughly a triangular stress distribution along the screw axis.  

In addition to this aspect of a non-linear stress distribution, system effects on density as 
indicating property of withdrawal strength are further discussed. On one hand it was 
observed that already the penetration or contribution of a small knot by a self-tapping 
screw nearly doubles the withdrawal capacity if compared to tests on knot free specimen. 
On the other hand stresses in general concentrate at stiffer elements (layers) which are in 
particular in a porous material like wood and timber directly associated with a higher 
density. So, if iid elements and a homogeneous stress distribution along the screw axis 
can be assumed, and if a high positive correlation between local density and local 
stiffness characteristics is taken into account, the withdrawal strength is given by a 
function of the maximum density of all penetrated elements as a first-failure system can 
be assumed. The last assumption is adequate because of the low variability in density and 
related withdrawal strength which allows only minor if any load redistribution and a 
further increase in bearing capacity. Consequently, the indicating property of withdrawal 
strength ρ12 is given by max[ρ12,i], with i = 1, …, (N · M).  

For quantification of this effect, systems of (N · M) = 1, …, 100 iid elements with 
densities ρ12,1 ~ 2pLND, E[ρ12,1] = 450 kg/m³ and CoV[ρ12,1] = (6, 8, 10)% were generated 
in R (2009). Thereby the maximum density of elements per system with 10,000 runs each 
was calculated and analysed statistically. Main results like the relative changes of 
E[max[ρ12,i]], CoV[max[ρ12,i]] and max[ρ12,i]05 are shown in Fig. 5.29. Due to powerful 
resuls in fitting equ. (3.101) to minima the same approach was used for the maxima 
system densities. The corresponding parameters are given in Tab. 5.19. Again and as 
already known from fitting to minima the ratio E[max[ρ12,i]] / E[ρ12,1] versus (N · M) is 
perfectly represented by equ. (3.101) whereas fitting to CoV[max[ρ12,i]] / CoV[ρ12,1] 
versus (N · M) shows minor deviations. Nevertheless, comparison of 5%-quantiles from 



Serial and parallel acting Systems in Timber, Engineered Timber Products and Structures 

352 

simulations and model calculations with the assumption that the distribution of max[ρ12,i] 
can be approximated by a 2pLND gives reliable estimates, see Fig. 5.29 (right). Overall 
this system effect influences the 5%-quantile of density to a greater extend and thus also 
the withdrawal strength as expected from the averaging model. In contrast to the 
averaging model a remarkable effect on expectation can be observed whereas the 
homogenisation expressed by relative decrease of CoV[max[ρ12,i]] is considerably lower. 
The increase in expectation was also observed in tests reported by REICHELT (2012). 
Nevertheless, before a comprehensive bearing model of self-tapping screws in timber can 
be proposed clarification of the influence of non-linear stress distribution along the screw 
axis is required.  

 

Fig. 5.29: Relative change of expectation (left), CoV (middle) and 5%-quantile (right) of density 
in dependency of system size (N · M) and CoV[ρ12,1] in case of the maximum model; 
additionally a comparison between CoV[max[ρ12,i]] / CoV[ρ12,1] based on simulations 
and according the averaging model (middle) & a comparison between simulated 
(observed) and calculated 5%-quantiles (right)   

Tab. 5.19: Best fitted parameters αξ and βξ of equ. (3.101) determined by means of LSM and for 
expectation and CoV of max[ρ12,i]  

 ξ = max[CoV[ρ12,i]] ξ = E[max[ρ12,i]] 

CoV[ρ12,1] = (6, 8, 10)% 6% 8% 10% 

αξ 0.8351 –0.1616 –0.2136 –0.2705 

βξ 0.3764 0.3281 0.3304 0.3219 

Back to the variation of local density, results in section 5.1.1 showed that a very high 
equicorrelation of ρequi[ρ12,i] = 0.80 ÷ 0.90 can be expected, e.g. between segments of 
150 mm or 300 mm length (see STUEFER, 2011). Consequently, only a small proportion 
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of variation observable between elements origin from variation within the members. For 
example, given a two level hierarchical model Zij = Yj + Xij with Yj as mean of the jth 
element and Xij as iid deviation from Yj by sub-element i of element j, with 
μX = E[Xij] = 0, Var[Xij] = σX

2, CoVar[Yj + Xij, Yj + Xkj] = Var[Yj] = σY
2, E[Zij] = E[Yj] = μY 

and Var[Zij] = σX
2 + σY

2, the equicorrelation ρequi is generally given as (see e.g. KÄLLSNER 

ET AL., 1997) 

22

2

YX

Y
equi σσ

σρ
+

= .  (5.20)

Thus the equicorrelation is the fraction of variance between the elements to the sum of 
variances between and within the elements.  

Following the above defined two-level hierarchical model for density with parameters 
ρequi = 0.85 and CoV[ρ12] = (σX

2 + σY
2) 0.5 / μY = 8% the coefficients of variation CoV[Xij] 

and CoV[Yj] are 3.1% and 7.4%, respectively. In general, hierarchical models imply a 
correlation independent of separation. Nevertheless, the involved volume of timber 
occupied by fasteners is even more locally than analysed in STUEFER (2011). Thus a scale 
transition has to be considered.  

Concerning the above discussed homogenisation effect in characteristic densities of 
systems with iid elements, only a part of the observed variance between the elements, 
expressed by equicorrelation, can be taken into account. In the example above this is not 
CoV[ρ12] = 8% mentioned before but CoV[ρ12] = 7.4%. Nevertheless, the overestimation 
of the ratio ρ12,(N·M) / ρ12,1 using CoV[ρ12] = 8% is negligible.  

To conclude, the relevance of system effects and the basics of density regulations for 
system products in relationship to the density of composing elements were shown. A 
simple model for calculating the system effect in case of iid elements was provided. The 
influence of density on fasteners was presented and discussed in respect to current design 
practise and regulations in EN 1995-1-1. Furthermore, a first model for the influence of 
density on withdrawal strength of self-tapping screws was developed, but it needs further 
adaptation to account for non-linear stress distribution along screws. However, the 
influence of local density variation within and between elements concerning the 
placement of fasteners in system products and in respect to group effects between 
fasteners is outside the scope of this study.  
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5.3 System Effects on Stiffness Characteristics and their 
Relevance for Design  

Stiffness characteristics of timber elements as well as of fasteners are relevant for a 
variety of designs. In the allocation process of structural timber and engineered timber 
products to strength classes mainly the compliance of mean E-modulus is required, but in 
designing timber structures also the 5%-quantile of modulus of elasticity and shear can be 
important. In serviceability limit state design (SLS) average stiffness determines the 
ability to withstand deflection and thus exhibit a characteristic relevant for design. In 
some cases, (i) if a deflection limit has to be guaranteed for the life-time of a 
construction, or (ii) in case of large sliding doors or automatic racking systems in high 
rack warehouses, it may be indicated to design the deflections on the 5%-level by 
additionally considering long-term effects as creep. In ultimate limit state design (ULS) 
5%-quantiles of modulus or extreme values of elasticity and shear are of relevance for 
calculations according theory of first or second order. This is in particular true for lateral 
(torsional) buckling as well as column buckling and for the calculation of internal stresses 
in statically indetermined structures. Therefore models which enable accurate estimation 
of distributions of stiffness characteristics in system products are relevant. They should 
reflect the dependency on the arrangement, quantity and characteristics of the elements in 
systems.  

The following sections concentrate (section 5.3.1) on the definition of expectable stiffness 
characteristics in structural timber and show possibilities in modelling parallel 
(section 5.3.2) and serial system effects (section 5.3.3). At the end the relevance of 
correct modelling is shown by explicit consideration of stiffness characteristics common 
in timber.  

5.3.1 Variation of E- and G-Modulus within and between Structural Timber 
Elements 

Before discussing modelling of serial and parallel system effects on E- and G-modulus 
their expectable variations have to be defined. Therefore a literature survey was 
performed to clarify the variation between and within structural timber elements. For this 
data from publications already discussed in context with serial correlation of timber 
properties in section 5.1.1 is analysed.  
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Tab. 5.20: Variation of local E-modulus in bending: analysis based on data from TAYLOR (1988) 

nom. grading class L1 302-24 

n [#] 498# 497# 

CoV[Em,0,i]mean 1) [%] 5.0% 4.0% 

CoV[Em,0]mean 2) [%] 16.9% 17.1% 
1) arithmetic mean of the coefficient of variation of E-moduli of sub-elements within one element; 4 sub-elements each 
2) arithmetic mean of the coefficient of variation of E-moduli of elements (including within and between variation) 

Tab. 5.21: Variation of local E-modulus in bending: analysis based on data from RICHBURG (1989) 

nom. grading class C14 2.3 1/6 2.3 1/3 2.0 1/6 2.0 1/3 1.7 1/4 L2 1/3 L3 1/2 

n [#] 189# 172# 29# 196# 180# 165# 173# 199# 

CoV[Em,0,i]mean 1) [%] 6.5% 5.6% 6.4% 5.8% 7.5% 6.5% 7.7% 10.8% 

CoV[Em,0]mean 2) [%] 12.4% 8.6% 10.4% 7.7% 9.0% 10.7% 13.7% 17.5% 
1) arithmetic mean of the coefficient of variation of E-moduli of sub-elements within one element; 5 sub-elements each 
2) arithmetic mean of the coefficient of variation of E-moduli of elements (including within and between variation) 

For example TAYLOR (1988) and RICHBURG (1989) examined local variation of bending 
E-modulus in Douglas fir, see Tab. 5.20 and Tab. 5.21, respectively. These two tables list 
mean values for the coefficient of variation found for local variation of E-moduli within 
the same structural element as well as for the variation of E-modulus including both, 
within and between element variations. The statistics for within element variation are 
based on four and five sub-elements, respectively. Interestingly, data of TAYLOR (1988) 
shows slightly lower CoV[Em,0,i]mean if compared to that of RICHBURG (1989), but higher 
CoV[Em,0]mean. The lower ratios of CoV[Em,0,i]mean / CoV[Em,0]mean in TAYLOR (1988) 
imply a significant higher serial correlation, see Fig. 5.18, section 5.1.1. This can be 
explained to a certain amount by the high strength classes of material analysed by 
TAYLOR (1988). Thus high homogeneous material can be expected to show high within 
element correlation. As expected, visually graded timber (both data sets of TAYLOR, 1988 
and samples L2 1/3 & L3 1/2 of RICHBURG, 1989) shows a higher CoV[Em,0]mean than 
machine graded timber. A clear tendency or even a trend in CoV[Em,0]mean and 
CoV[Em,0,i]mean versus grading class within a grading method (visual vs. machine) can not 
be confirmed. Furthermore, the number of sub-elements seems also not to have an 
influence on CoV[Em,0,i]. This confirms the assumption of equicorrelation defined to be 
independent of separation. Overall the observed amount of variation appears rather low. 
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Further discussion on this issue is required and will be continued after presenting 
additional data from literature.  

Tab. 5.22: Variation of local E-modulus in tension parallel to grain in dependency of the quantity 
of involved sub-elements per each element: analysis based on data from BRANDNER ET 

AL. (2005); source S10 (N) 

# sub-elements (M) 3# 4# 5# 6# 7# 

n [#] 9# 12# 7# 6# 25# 

CoV[Et,0,i]mean 1) [%] 10.5% 16.6% 10.8% 14.9% 16.3% 

CoV[Et,0]mean 2) [%] 17.9% 8.3% 11.8% 21.3% 16.2% 
1) arithmetic mean of the coefficient of variation of E-moduli of sub-elements within one element 
2) arithmetic mean of the coefficient of variation of E-moduli of elements (including within and between variation) 

Tab. 5.23: Variation of local E-modulus in tension parallel to grain in dependency of the quantity 
of involved sub-elements per each element: analysis based on data from BRANDNER ET 

AL. (2005); source S10 (S) 

# sub-elements (M) 3# 4# 5# 6# 7# 

n [#] 0# 10# 18# 8# 20# 

CoV[Et,0,i]mean 1) [%] -- 16.4% 14.5% 19.5% 22.3% 

CoV[Et,0]mean 2) [%] -- 19.3% 21.8% 24.6% 18.7% 
1) arithmetic mean of the coefficient of variation of E-moduli of sub-elements within one element 
2) arithmetic mean of the coefficient of variation of E-moduli of elements (including within and between variation) 

BRANDNER ET AL. (2005) report on tensile tests on finger jointed structural timber 
performed on Norway spruce. Thereby local E-moduli in tension parallel to grain were 
determined on seven successive sub-elements with a measurement increment of 400 mm 
by testing timber of two proveniencies. In the analysis only values of one, the longer 
unjointed element was used. Consequently the output gives statistics for a variation of 
sub-elements involved, see Tab. 5.22 and Tab. 5.23. To summarise the results: a clear 
trend in CoV[Et,0,i]mean and CoV[Et,0]mean in dependency of the quantity of involved sub-
elements can not be found. The ratio between CoV[Et,0,i]mean and CoV[Et,0]mean is lower 
than that of CoV[Em,0,i]mean / CoV[Em,0]mean, it is on average nearly 0.90. Furthermore it 
can be observed that lower timber quality shows higher values of CoV[Et,0,i]mean and 
CoV[Et,0]mean. This is in line with the observations made on data of TAYLOR (1988) and 
RICHBURG (1989).  
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Tab. 5.24 gives statistics obtained from test data of STUEFER (2011) who performed 
tension tests perpendicular to grain on four different samples including variation of test 
length (150 mm and 300 mm) and of radial position of the elements within the stem (“S” 
for side boards and “M” for near center boards but without pith). In each element (board) 
12 sub-elements were tested. An influence of test length on CoV[Et,90,i]mean and 
CoV[Et,90]mean can not be observed.  

Tab. 5.24: Variation of local E-modulus in tension perpendicular to grain: analysis based on data 
from STUEFER (2011) 

sample 150_S 150_M 300_S 300_M 

n [#] 6# 6# 6# 6# 

CoV[Et,90,i]mean 1) [%] 13.8% 8.7% 9.5% 15.7% 

CoV[Et,90]mean 2) [%] 12.0% 14.0% 6.4% 15.8% 
1) arithmetic mean of the coefficient of variation of the E-moduli of segments within one element; 12 sub-elements each 
2) arithmetic mean of the coefficient of variation of the E-moduli of elements (including within and between variation) 

Overall variation within and total variation including within and between variations of E-
modulus in elements were analysed. Thereby data of elements stressed in bending, 
tension parallel and perpendicular to grain were taken into account. It can be concluded 
that CoV[Ei]mean is often lower than CoV[E]mean. Beside the fact that CoV[E]mean includes 
both, within and between element variation, it has also to be considered that this value is 
a combination of between element variation and variation within elements, whereby serial 
system action between sub-elements already occured. Furthermore it was confirmed that 
lower timber quality induces higher variation. The same was found for visually graded 
timber. Hence CoV[E]mean seems to be more effected than CoV[Ei]mean. Additionally, 
based on the analysis made in section 5.1.1 the assumption of equicorrelation can be 
confirmed as no dependency of separation on variation and thus on correlation between 
the sub-elements was found.  

For discussion of the magnitude of serial and parallel system effects on stiffness in timber 
and in particular in regard to timber of Norway spruce, examinations of expectable 
variation of E- and G-modulus of elements as common in full-sized structural timber is 
required. For example, BRANDNER AND SCHICKHOFER (2007) found in their 
comprehensive data analysis a mean coefficient of variation of CoV[Em,0] = (18 ÷ 26)% 
(13 data series) and CoV[Et,0] = (10 ÷ 17)% (40 data series). A comparison between the 
statistics in Tab. 5.24 with that in Tab. 5.22 and Tab. 5.23 gives comparable results 
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between CoV[Et,0] and CoV[Et,90]. Thus in case of E-modulus in bending higher variation 
can be expected than in tension parallel or perpendicular to grain. This can be explained 
by the effect of edge knots or knot clusters in bending-tension zone of elements stressed 
in bending. These have a tremendous effect on strength, much higher than in elements 
stressed equally in tension parallel to grain. For comparison, JCSS (2006) proposes for 
the bending E-modulus a coefficient of variation of CoV[Em,0] = 13% and the same for 
CoV[Et,0], CoV[Et,90] and CoV[G090]. Furthermore, 2pLND is proposed as RSDM of E- 
and G-moduli. The last statement was also confirmed by own comprehensive data 
analysis.  

Tab. 5.25: Coefficients of variation for E- and G-moduli in dependency of equicorrelation ρequi 
defined for a two-level hierarchical model: CoV[Zij] including within and between sub-
element variation, CoV[Xij] and CoV[Yj] expressing within and between sub-element 
variation, respectively; stacked values per box give rounded values of the expected 
range considering the central 50% of coefficients of variation found in test samples 
(25%-quantile, mean value, 75%-quantile) for CoV[Zij] and associated values for 
CoV[Xij] and CoV[Yj]  

  ρ = 0.50 ρ = 0.55 ρ = 0.60 

 CoV[Zij] CoV[Xij] CoV[Yj] CoV[Xij] CoV[Yj] CoV[Xij] CoV[Yj] 

Et,0 

Et,90 

Ec,0 

10% 
15% 
20% 

7.1% 
10.6% 
14.1% 

7.1% 
10.6% 
14.1% 

6.7% 
10.1% 
13.4% 

7.4% 
11.1% 
14.8% 

6.3% 
9.5% 
12.6% 

7.7% 
11.6% 
15.5% 

Em,0 

G090 

15% 
20% 
25% 

10.6% 
14.1% 
17.7% 

10.6% 
14.1% 
17.7% 

10.1% 
13.4% 
16.8% 

11.1% 
14.8% 
18.5% 

9.5% 
12.6% 
15.8% 

11.6% 
15.5% 
19.4% 

Based on findings above it is proposed to consider CoV[Em,0] of sub-elements in the 
range of 15% to 25%, on average with CoV[Em,0] = 20%, and CoV[Et,0] = CoV[Et,90] in 
the range of 10% to 20%, on average with CoV[Et,0] = CoV[Et,90] = 15%. For shear 
modulus G090 data on structural timber are scarce. Nevertheless, results from glulam 
bending tests in BRANDNER ET AL. (2007B, 2008) give comparable coefficients of 
variation for G- and E-modulus. Thus CoV[G090] = CoV[Em,0] is a reasonable assumption. 
The mentioned ranges of CoV for sub-elements are thereby not much deviating from the 
observable range of CoV of elements. This is due to the fact that a certain amount of 
variation induced by errors in practical determination of local as well as global stiffness 
characteristics has to be considered.  
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As reported in STEIGER (1996) and MICHELITSCH (2011) the coefficient of variation of E-
modulus in compression parallel to grain is found to be in the same range as that of 
tension. Thus it is further proposed that CoV[Ec,0] = CoV[Et,0]. Based on the analysis 
concerning serial correlation between sub-elements in section 5.1.1 an equicorrelation 
coefficient with focus on Norway spruce in the range 0.50 ≤ ρequi ≤ 0.60, on average with 
ρequi = 0.55 can be expected. Furthermore, the assumption of equicorrelation in 
conjunction with a two-level hierarchical model Zij = Xij + Yj considering both, between 
and within element variation, was also confirmed by the analysis. Therefore and in 
reference to the definitions of two-level hierarchical models in section 2.6.4 and 5.2 a 
summary of current findings is given in Tab. 5.25. Therein are model parameters for 
calculation of serial and parallel system effects on E- and G-moduli, together with 
segmentation in within and between relative variations. Thereby, influences by grading 
method and timber quality can be considered by means of upper or lower values of 
equicorrelation. 

The results in Tab. 5.25 are the basis for discussions on serial and parallel system effects 
on E- and G-modulus in structural timber and engineered timber products in section 5.3.4.  

5.3.2 Parallel System Action on E-Modulus of Rigid Composite Structures 

Considering a structure as a system of N parallel aligned, parallel acting as well as rigidly 
connected elements, e.g. glulam, duo or trio beams, or elements connected with a 
connector as stiff as the elements (in that case, the quantity of system elements has to be 
increased by N – 1). In this case, the elements can be assumed to be mutually 
independent. Furthermore and based on data analysis in previous section 5.3.1, the 
lognormal distribution (2pLND) was identified as suitable RSDM of E- and G-modulus 
of identical elements if they are stressed, e.g. in bending, tension or compression parallel 
to grain. Thus the distribution of E1 is given as  

( )2
11,2~ σμpLNDE

iid

i . (5.21)

In case of N parallel acting and rigidly connected elements the E-modulus EN of the 
system follows the averaging model according equ. (5.12), with parameters  

[ ] [ ]1EEEE N = , [ ] [ ]
N

EVarEVar N
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N
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1= . (5.22)
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Thus the mean E-modulus of parallel acting systems EN,mean corresponds to the arithmetic 
mean of the elements’ E-moduli E1.  
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Fig. 5.30: Parallel system effect according the averaging model: CoV[EN] / CoV[E1] vs. N (left) 
and EN,05 / EN,1 vs. N (right); assuming iid E1 ~ 2pLND  

The interaction between the rigidly connected elements leads to a remarkable reduction of 
variability in system E-modulus in dependency of the number of system elements N. 
Therefore Fig. 5.30 exhibits graphs for CoV[EN] / CoV[E1] and EN,05 / E1,05 versus N by 
taking into account the expected range of CoV[E1] of structural timber elements as 
defined in section 5.3.1. In particular the reduced CoV[EN] is of interest for design 
situations were the whole distribution of at least the limiting value, e.g. the 5%-quantile 
EN,05, is required. This is true for lateral (torsional) buckling and buckling of columns 
under compression loads. Further examples were already mentioned in section 5.3.1. The 
consideration of parallel system effects is also of importance for the examination of 
general observable parallel, sub-serial systems like GLT, CLT and finger jointed 
structural timber. Thereby, the reduction achieved in CoV[EN] compared to CoV[E1] 
decisively determines the serial effects of M serially linked components, each of N 
parallel interacting elements. Before going into more detail serial effects on E-modulus 
are discussed within the next section 5.3.3.  

5.3.3 Serial System Action on E-Modulus in Rigid Composite Structures 

A serial system of M rigidly connected elements, sub-elements or joints with the same 
stiffness as that of the elements (in this case the quantity of the system elements has to be 
increased by M – 1) is assumed.  
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As in the previous section 5.3.2, 2pLND is taken as RSDM of E1. According mechanical 
theory for linear elasticity and serial arranged elements, e.g. serial arranged springs, the 
E-modulus of the system is given as  

∑
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(5.23)

Hence, equ. (5.23) obviously expresses the harmonic mean function.  

In general, there are three well known definitions of mean values, namely the arithmetic 
mean Xmean,arith = Xmean according equ. (5.24), the geometric mean Xmean,geo according 
equ. (5.25) and the harmonic mean Xmean,har according equ. (5.26). The magnitude of mean 
values is thereby in the order of Xmean,har ≤ Xmean,geo ≤ Xmean,arith. 
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LIMBRUNNER ET AL. (2000) give some relationships between the mean values, e.g.  

[ ]XCoVX
X

mean

harmean
2

,

1
1

+
= ; [ ]XCoV

X
X

harmean

geomean 2

,

, 1+= ; 
mean

geomean
harmean X

X
X

2
,

, = . (5.27)

MCALISTER (1879) shows that in case of Y = ln (X)  

( )geomeanarithmean XY ,, ln= .  (5.28)

For X ~ 2pLND AHRENS (1954) approximated the relationship between arithmetic and 
geometric mean by Xmean,arith / Xmean,geo ≈ 1.15 · σ2. 
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JENSEN ET AL. (1997) calculated the harmonic mean for X ~ 2pLND and Y = ln(X) ~ ND 
as  
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This result is the same as later found by LIMBRUNNER ET AL. (2000). The ratio 
Xmean,har / Xmean,arith according equ. (5.27) and (5.29) give the expectation of the maximum 
serial system effect achieveable in case of iid lognormally distributed E-moduli in the 
limiting case M → ¶. In case M = 1 both mean values, Xmean,arith and Xmean,har are 
equivalent. The same can be found for correlated E-moduli E1 with ρ = 1.00. 
Nevertheless, a description of the harmonic mean in dependency of M is so far missing. 

Following BARAKAT (1976) and his assumption that sums of lognormal variables again 
follow approximately a lognormal distribution if M → >> JENSEN ET AL. (1997) derived 
the distribution of the harmonic mean in dependency of M and with 
XM,mean,har ~ 2pLND (μY,M,har, σY,M,har

2). For iid X1 ~ 2pLND expectation and variance of the 
harmonic mean in dependency of M are  
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In the limiting case M → ¶ the variance Var[XM,mean,har] converges to zero and the 
expectation E[XM,mean,har] to Xmean,har according equ. (5.29).  

Equations above are valid only case of iid E1 ~ 2pLND. They are adaptable for the 
description of serial system action in. Identical distribution of E1 can be assumed as being 
appropriate for sub-elements (e.g. board segments) of the same element (e.g. board or 
beam). Furthermore, identically distributed E1 can also be assumed in case of elements of 
the same population, e.g. grading or strength class of structural timber. Nevertheless, the 
requirement of independency can only be assumed in case of serial systems composed of 
M elements. If serial action of sub-elements within one element is of interest dependency 
has to be taken into account, at least by adaptation of the variance of E-moduli of sub-
elements, e.g. see section 5.1.1 concerning analysis of equicorrelation. Therefore, 
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covariance CoVar[Ej, Ek] between the serial linked Ej, Ek has to be taken into account. In 
general, the covariance is defined as 

[ ] [ ]( ) [ ]( )[ ] [ ] [ ] [ ]YEXEYXEYEYXEXEYXCoVar ⋅−⋅=−⋅−=, .  (5.32)

In case of the divisor in equ. (5.23) as a summation of inverse Ej the covariance can be 
derived by considering 

[ ] [ ] [ ] [ ] ...,....,,......, ++++=++++ YYCoVarYXCoVarXXCoVarYXYXCoVar .  (5.33)

In case of identical distributed X = Xj and consequently X = Y, and in dependency of M it 
follows that  
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Using the definition of PEARSON’s correlation coefficient  
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and the binomial coefficient, to consider all possible combinations of pairs of covariance 
which can be simplified by means of  
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to  
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with  

( ) ρψ ⋅−+= 11 M .  (5.38)
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With X = E1 the distribution of EM according equ. (5.23) can be derived following a 
stepwise procedure and with identical distributed E1: E1 ~ 2pLND(μE, σE

2) and 
ln(E1) ~ ND(μln(E), σln(E)

2), see  
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with  

[ ] [ ]CEMEE M ⋅=  and [ ] [ ]CVarMEVar M ⋅= 2 .  (5.43)

The 1st step follows directly by application of equ. (2.85). Equ. (5.40) gives the 2nd step. 
Hereby the approximation given in BARAKAT (1976) together with the term considering 
the correlation between E-moduli was used. The 3rd step is equivalent to the 1st step. The 
4th step concludes with the application of simple multiplication with a scalar. During 
processing of this stepwise procedure special care has to be taken on computing the 
corresponding parameters either in untransformed or logarithmised domain. After some 
simplifications following equations for the expectation, variance and coefficient of 
variation of EM can be derived from input parameters E[E1], CoV[E1], M, correlation 
coefficient ρ and identical distributed E1 ~ 2pLND:  
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[ ] [ ]
M

ECoV
ECoV M

ψ⋅
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The lognormal distribution parameters of EM are obtained by transforming equ. (5.44) and 
(5.45) according equ. (2.70).  

In case of ρ = 0 (Ø ψ = 1) equ. (5.44) to (5.46) simplify to  
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and to  
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Using (5.29) in (5.30) and (5.31) and simplifying confirms equivalence to the equations 
above.  
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Fig. 5.31: Serial system effects on E-modulus: EM,mean / E1,mean vs. M (left); EM,05 / E1,05 vs. M 
(right); assuming iid E1 ~ 2pLND  

In case of ρ = 1 (Ø ψ = M) where all elements E1 = E are equal, equ. (5.44) to (5.46) 
simplify to  
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[ ] [ ]11 EEEE M ==ρ , [ ] [ ]11 EVarEVar M ==ρ , [ ] [ ]11 ECoVECoV M ==ρ .  (5.50)

The influence of parameters M, CoV[E1] and ρ on relative mean EM,mean / E1,mean and 5%-
quantile EM,05 / E1,05 is shown in Fig. 5.31. Both diagrams in Fig. 5.31 show a linearly 
decreasing serial effect in means and 5%-quantiles at increasing correlation and fixed 
CoV[E1]. The serial effect on mean value EM,mean increases progressively with increasing 
CoV[E1] whereas on the 5%-quantile a linear increase is shown. Nevertheless, the 
influence on EM,mean is rather low if compared with the significant increase in EM,05 with 
increasing M, increasing CoV[E1] and decreasing correlation. More concerning the 
relevance of serial effects on stiffness characteristics on the characteristics of structural 
timber and engineered timber products is given in the next section 5.3.4.  

5.3.4 Serial and Parallel System Effects on E- and G-Modulus in Structural 
Timber and Engineered Timber Products 

Let E0,1 and G090,1 be represented by a two-level hierarchical model including within and 
between element variation, with E1,0 and G1,090 as modulus of elasticity and shear of sub-
elements, respectively. This model approach was confirmed in section 5.3.1. Let E1,0 and 
G1,090 be lognormally distributed (2pLND). According a two-level hierarchical model 
Zij = Xij + Yj, variable Xij which gives the deviation of sub-elements from elements’ 
average is identically and independent distributed (iid) with E[Xij] = 0 and Var[Xij] = σX

2. 
Thus, if stochastic serial or parallel system effects within elements are of interest E1,0 and 
G1,090 can be treated as independent variables, with ψ = 1 and expectation, variance and 
coefficient of variation according equ. (5.47) to (5.49).  

Serial System Effects of unjointed and finger jointed Structural Timber 

The E-modulus of structural timber stressed in tension or compression parallel to grain 
depends on the length of the analysed system, see section 5.3.3. The longer the system the 
lower the average E-modulus and CoV[E]. Thus the reduction also depends on the 
reference length of elements. Based on comprehensive data analysis gained from 
structural timber of Norway spruce and presented in section 5.1.1, in total three groups 
with associated characteristics were defined as G_I, G_II and G_III, see Tab. 5.12. 
Furthermore, coefficients of variation given in Tab. 5.23 are associated with these length 
increments. If lref = 2,000 mm is taken as (deterministic) reference length of structural 
timber or systems composed of jointed sub-systems, as for example regulated in 
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EN 1194, than expectation and variance of M for all three groups can be calculated by 
means of equ. (2.85). The results together with input parameters are given in Tab. 5.26.  

Tab. 5.26: Expectation and coefficient of variation of dWZ (taken as length increment of elements) 
and the number of serial elements per reference length of structural timber or general 
serial systems given lref = 2,000 mm for group G_I, G_II and G_III 

  G_I G_II G_III 

E[dWZ] [mm] 450 550 590 

CoV[dWZ] [%] 60% 

E[M] [--] 6.04 4.95 4.61 

CoV[M] [%] 60% 

An analytically closed consideration of M as 2pLND variable based on computation of 
EM,0 is not possible. Consequently, parameters like expectation and variance of EM,0 were 
estimated based on 30,000 random variates generated per group and parameter set and 
created in dependency of input parameters E[E1,0], CoV[E1,0], ρequi[E1,0] = 0.55, E[M] and 
CoV[M], with iid E1,0; M ~ 2pLND. At first, systems composed of serial correlated 
elements representing unjointed structural timber were analysed. Thus only system effects 
as consequence of within member variation can be observed. The ratios E[EM,0] / E[E1,0] 
and CoV[EM,0,within] / CoV[E1,0] as well as CoV[EM,0] / CoV[E1,0] are given in Tab. 5.27. 
Thereby CoV[EM,0,within] gives the coefficient of variation of E- and also G-modulus of 
unjointed structural timber composed of M serial arranged reference elements. Thereby 
only variation observable within structural timber elements relative to E[EM,0] is included. 
Thus CoV[EM,0] = CoV[Zij,M] is given as  
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In case of serial systems composed of finger jointed sub-systems, composed of serial 
arranged elements, the sub-systems can be treated as independent whereas the elements 
per sub-system exhibit equicorrelation. It is further assumed that the E-modulus of finger 
joints is comparable with that of jointed elements. Additionally and due to the short 
length of commonly produced finger joints of only 15 to 20 mm in comparison to average 
element length of 450 to 590 mm the joints are not treated as additional elements. In such 
a system a combination of serial system effects as consequence of within element and 
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total variation has to be considered. Thus, computation of E[EM,0,FJ] and CoV[EM,0,FJ] 
require E[EM,0] and CoV[EM,0] gained from sub-systems composed of unjointed elements.  

Tab. 5.27: Ratios of expectations and coefficients of variation of serial system effects on E-
modulus in case of unjointed or finger jointed structural timber; lref = 2,000 mm  

   G_I G_II G_III 

E[EM,0] / E[E1,0] 0.992 0.993 0.993 

CoV[EM,0] / CoV[E1,0] 0.803 0.812 0.821 

15
%

 1)
 

CoV[EM,0,intern] / CoV[E1,0] 0.457 0.491 0.524 

E[EM,0] / E[E1,0] 0.986 0.987 0.988 

CoV[EM,0] / CoV[E1,0] 0.803 0.812 0.821 

0#
 F

J 
2)

 

20
%

 1)
 

CoV[EM,0,intern] / CoV[E1,0] 0.457 0.491 0.524 

E[EM,0,FJ] / E[E1,0,FJ] 0.988 0.988 0.988 

CoV[EM,0,FJ] / CoV[E1,0,FJ] 0.608 0.619 0.631 

15
%

 1)
 

CoV[EM,0,intern] / CoV[E1,0] 0.647 0.695 0.740 

E[EM,0,FJ] / E[E1,0,FJ] 0.979 0.979 0.980 

CoV[EM,0,FJ] / CoV[E1,0,FJ] 0.608 0.619 0.631 

1#
 F

J 
2)

 

20
%

 1)
 

CoV[EM,0,intern] / CoV[E1,0] 0.647 0.695 0.740 

E[EM,0,FJ] / E[E1,0,FJ] 0.986 0.986 0.986 

CoV[EM,0,FJ] / CoV[E1,0,FJ] 0.527 0.540 0.554 

15
%

 1)
 

CoV[EM,0,intern] / CoV[E1,0] 0.792 0.851 0.907 

E[EM,0,FJ] / E[E1,0,FJ] 0.975 0.976 0.976 

CoV[EM,0,FJ] / CoV[E1,0,FJ] 0.527 0.540 0.554 

2#
 F

J 
2)

 

20
%

 1)
 

CoV[EM,0,intern] / CoV[E1,0] 0.792 0.851 0.907 

E[EM,0,FJ] / E[E1,0,FJ] 0.985 0.984 0.984 

CoV[EM,0,FJ] / CoV[E1,0,FJ] 0.481 0.496 0.511 

15
%

 1)
 

CoV[EM,0,intern] / CoV[E1,0] 0.914 0.983 1.047 

E[EM,0,FJ] / E[E1,0,FJ] 0.973 0.973 0.973 

CoV[EM,0,FJ] / CoV[E1,0,FJ] 0.481 0.496 0.511 

3#
 F

J 
2)

 

20
%

 1)
 

CoV[EM,0,intern] / CoV[E1,0] 0.914 0.983 1.047 
1) CoV[E1,0] = CoV[Z1,ij] 
2) average (deterministic) number of finger joints per reference length lref = 2,000 mm 
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The parameters of sub-systems as well as of the total system depend on the number of 
finger joints per reference system length. In case of two joints the derivation of system E-
modulus is based on a system composed of three iid sub-systems, each sub-system 
consisting of M serial arranged and equicorrelated elements, with M based on 
lref / 3 = 2,000 / 3 ≈ 667 mm. Thereby both serial system effects, based on within and 
residual total variation, can be derived independently and afterwards multiplied to obtain 
the total serial system effect.  

Results for several deterministic numbers of joints per reference length of the system are 
included in Tab. 5.27. Again, ratios for E[EM,0,FJ] / E[E1,0], CoV[EM,0,within] / CoV[E1,0] and 
CoV[EM,0,FJ] / CoV[E1,0] are given.  

Overall, the influence of serial system action on expectation of E-modulus (and also G-
modulus) is small. Due to equicorrelation between elements within sub-systems but 
jointing of independent sub-systems effects on expectation are a bit higher in case of 
jointed structural timber. In contrast, system size significantly affects CoV[EM,0] and 
CoV[EM,0,FJ], being solely dependent on M and by definition not on CoV[E0,1].  

Parallel System Effects in Structural Timber and Engineered Timber Products  

As already outlined in more detail in section 5.3.2 E- and G-modulus of parallel acting 
systems follow the averaging model as given in equ (5.22). Thereby E1,0 and G1,090 are 
assumed to be iid lognormally distributed. Consequently, irrespective of within element 
correlation, e.g expressed as equicorrelation in case of a hierarchical model, the input 
variance for the averaging model includes both, within and between element variance. 
Consequently, CoV[Zij] = 15% and 20% have to be taken into account for E1,t,0, E1,t,90 and 
E1,c,0 as well as E1,m,0 and G1,090, respectively, and as given in Tab. 5.23. Consequently, as 
the averaging model gives a significant reduction in variance proportional to 1 / N by 
leaving the expectation constant, a remarkable increase in 5%-quantiles of E- and G-
modulus is given. Therefore Tab. 5.28 shows the effect of parallel action for numerous 
system sizes.  

An increase in 5%-quantiles of E- and G-modulus is given in tension or compression 
parallel to grain but also for bending. Even if the elements are rigidly connected face-by-
face and loaded flatwise more or less the same homogenisation in stiffness characteristics 
can be achieved and verified by means of rigid composite theory and stochastic input 
parameters. Nevertheless, for product modelling and stability design the interaction of 
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parallel and serial system effects is of relevance. More on this interaction is given within 
the next section.  

Tab. 5.28: Parallel system effects on coefficient of variation and 5%-quantile of E- and G-modulus 
for numerous system sizes  

N = 1 2 3 4 5 10 15 20 30 

CoV[XN] / CoV[X1] = 1 / ÷N = 1.00 0.71 0.58 0.50 0.45 0.32 0.26 0.22 0.18 

CoV[XN] 15.0% 10.6% 8.7% 7.5% 6.7% 4.7% 3.9% 3.4% 2.7% 
CoV[X1] = 15% 

XN,05 / X1,05 1.00 1.08 1.12 1.14 1.15 1.19 1.21 1.22 1.23 

CoV[XN] 20.0% 14.1% 11.6% 10.0% 8.9% 6.3% 5.2% 4.5% 3.7% 
CoV[X1] = 20% 

XN,05 / X1,05 1.00 1.11 1.16 1.19 1.21 1.27 1.30 1.31 1.33 

Interaction of Parallel and Serial System Effects and the Relevance in Stability 
Design  

System effects on stiffness characteristics of systems composed of parallel arranged sub-
systems can be modelled as serial acting sub-systems of parallel acting elements. As the 
E- and G-modulus of parallel acting elements is nothing else than the average, the 
magnitude of equicorrelation between serial sub-systems is not affected by N. 
Consequently, interaction of parallel and serial effects can be simply computed by 
multiplication of both sub-effects. Nevertheless, the coefficient of variation of sub-
systems has to be taken into account.  

For illustration, system effects in some engineered timber products are presented here 
where the same reference length of lref = 2,000 mm as in serial effects is applied. Due to 
the decrease in coefficient of variation from CoV[X1] to CoV[XN] serial effects on 
expectation are negligible even for N ≥ 2 and G_I, so far only unjointed structural timber 
is addressed.  

The first example deals with modelling of duo and trio beams where system products of 
unjointed and jointed structural timber are addressed. Following previous sections, 
parallel interaction of two or three elements decreases CoV[XN] to 71% and 58% of 
CoV[X1], respectively. Subsequent serial arrangement of sub-systems to duo and trio 
beams with ρequi = 0.55 leads to system effects and characteristics as given in Tab. 5.29.  
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Tab. 5.29: System effects on stiffness characteristics of duo and trio beams composed of unjointed 
and jointed structural timber elements  

   DUO TRIO 

   G_I, G_II, G_III G_I, G_II, G_III 

 CoV[XM,N] / CoV[XM]  0.71 0.58 

E[XM,N] / E[XM]  1.00 

CoV[X1] = 15% 1.07 1.10 0# FJ 
XM,N,05 / XM,05 

CoV[X1] = 20% 1.10 1.14 

E[XM,N] / E[XM]  1.01 

CoV[X1] = 15% 1.04 1.08 1# FJ 
XM,N,05 / XM,05 

CoV[X1] = 20% 1.08 1.11 

E[XM,N] / E[XM]  1.01 

CoV[X1] = 15% 1.05 1.07 2# FJ 
XM,N,05 / XM,05 

CoV[X1] = 20% 1.07 1.10 

Comparing expectation, coefficient of variation and 5%-quantiles of structural timber 
with that of duo and trio beams it can be observed that the relative effect on CoV[XM,N] is 
independent of CoV[XM] and solely dependent on N. The effect on expectation is 
negligible, but on 5%-quantile a ratio of XM,N,05 / XM,05 of 7% to 14% in systems 
composed of unjointed structural timber can be observed, in dependency of CoV[X1] and 
N. In case of a deterministic amount of finger joints per reference length of one or two 
comparable conclusions can be made. Nevertheless, the increase of XM,N,05 is a bit lower 
than in unjointed structural timber because of a higher amount of homogenisation already 
in serial systems. Therefore overall differences between groups G_I, G_II and G_III are 
negligible.  

In a second example system effects on stiffness characteristics of glued laminated timber 
(GLT) are analysed in more detail. Again differentiation is made between GLT composed 
of unjointed and jointed structural timber. The same reference length of lref = 2,000 mm is 
used.  

According EN 1194 the reference cross section of GLT is given by 
w / d = 150 mm / 600 mm. In Europe the thickness of standard GLT-lamellas is 40 mm. 
Thus a GLT-beam in reference dimensions consists of 15 lamellas. Nevertheless, GLT is 
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available in dimensions up to 2,000 mm or even 3,000 mm in depth which corresponds to 
50 or even 75 lamellas. Therefore system effects in GLT are discussed a bit broader.  

Tab. 5.30: E-modulus of GLT in bending as well as of constituting boards in tension parallel to 
grain: expectation, CoV and ratio of expectations; literature survey  

source series Et,0,l [N/mm²] Em,0,g [N/mm²] ratio 1) 

  E[.] CoV[.] E[.] CoV[.]  

MS10-h_300 10,840 12.5% 10,838 3.4% 1.00 

MS13-h_300 13,140 14.7% 12,354 4.5% 0.94 

MS17-h_300 14,620 17.5% 15,156 5.6% 1.04 

MS10-h_600 10,840 12.5% 11,005 4.4% 1.02 

SCHICKHOFER ET AL. (1995)

MS17-h_600 14,620 15.5% 14,489 6.8% 0.99 

SCHICKHOFER & 
RIEBENBAUER (1997) 1717_300 18,110 14.2% 16,714 5.9% 0.92 

S10_320 10,780 18.6% 10,800 9.5% 1.00 

S10_160 10,780 18.6% 11,520 9.3% 1.07 

S10+_320 12,330 20.0% 11,730 8.5% 0.95 

S13+_320 12,960 13.7% 12,580 7.3% 0.97 
BRANDNER & SCHICKHOFER 
(2010) 

GL36h_600 14,440 8.7% 

14,650 
(global) 
15,880 
(local) 

3.5% 
(global) 
3.8% 
(local) 

1.01 
(global) 
1.10 
(local) 

C30-12E_300 12,802 -- 13,000 -- 1.02 

C37-14E_300 15,102 -- 15,362 -- 1.02 

C37-14E_300 15,102 -- 14,596 -- 0.97 

VTT_M1_540 12,100 -- 11,800 -- 0.98 

VTT_M2_540 12,800 -- 12,600 -- 0.98 

VTT_M3_540 13,400 -- 13,200 -- 0.99 

VTT_M4_540 12,200 -- 12,600 -- 1.03 

SP_540 12,150 -- 11,900 -- 0.98 

RIBERHOLT (2008) 

TI_600 13,000 -- 12,600 -- 0.97 
1) ratio = Em,0,g,mean / Et,0,l,mean  
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Following the models in previous sections it can be concluded that for the calculation of 
system effects of analysed parallel, sub-serial structures it is irrelevant if sub-effects are at 
first derived on parallel or the serial interaction between the elements. Consequently, 
taken into account the ratios given in Tab. 5.27 for serial system effects, total system 
effects can be simply derived by multiplication with the ratios given for parallel system 
action in Tab. 5.28.  

Effects on expectation of system stiffness can be set equal to one for N ≥ 10 or taken as 
the inverse values of Tab. 5.27. This is because E-modulus of GLT is regulated on the 
basis of E-modulus of the constituting boards. For example, EN 1194 states that 
Em,0,g,mean = 1.05 · Et,0,l,mean, with Em,0,g,mean and Et,0,l,mean as E-modulus in grain direction of 
glulam in bending and boards in tension, respectively. This is because in testing of single 
boards a serial system effect is given which leads to a reduction in expectation. In the 
system product GLT parallel system action between rigidly connected boards and 
lamellas initiates a significant homogenisation in sub-systems of board segments to a 
degree were serial effects between these sub-systems in GLT diminish. Consequently, E-
modulus Em,0,g,mean of GLT is higher than expected from testing the constituting single 
boards.  

Nevertheless, as shown in Tab. 5.27 unjointed structural timber shows only 1% to a 
maximum of 2% reduction in E[EM] if compared to E[E1]. Even in finger jointed elements 
a maximum of 3% can be verified by models discussed before. For clarification of 
differences between calculated and regulated ratio EM,N / EM, Tab. 5.30 gives a survey of 
some test data from literature with observed ratios. Based on this data it can be concluded 
that over all Em,0,g,mean = Et,0,l,mean. Furthermore, significant reduction from CoV[Et,0,l] to 
CoV[Em,0,g] can be observed. Hereby all derived models can be verified, at least on 
average.  

To conclude, effects on stiffness characteristics of systems with elements loaded axially 
or flatwise in bending show minor and thus negligible effects on expectation but a 
significant reduction in CoV[XM,N]. However, if elements are loaded edgewise, as for 
example given in duo and trio beams and if composed of boards of a lower strength grade 
material also a significant increase in expectation E[XM,N] is given, with 
E[XM,N] / E[X1] ≈ 1.05 ÷ 1.20, see e.g. EISER (2008). This circumstance can be explained 
by the disproportionate effect of edge knots on bending stiffness of elements which 
become reinforced in case of face-to-face by adhesive rigidly connected duo and trio 
beams. For modelling this effect fragmentation of elements’ cross section and stochastic 
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assignment of local characteristics would be required. Thereby and due to the common 
breakdown process the edgewise loaded elements’ cross section acts like a composite 
which can be taken into account by means of rigid composite theory plus stochastic 
distributed properties.  

Predictability of stiffness characteristics in parallel, sub-serial systems is not only relevant 
for product modelling, but also for stability design. Thereby two cases of stability, 
compression buckling (column stability) and lateral (torsional) buckling can be 
distinguished but both can also occur simultaneously. Following the model column 
method anchored for example in EN 1995-1-1 design of columns under compression 
stresses parallel to grain has to be verified by  

[ ] 00.1
;min ,0,,,
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dc

fkk
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,  (5.52)

with σc,0,d and fc,0,d as compression stress (action) and strength (resistance) on design level, 
respectively, and factor kc which is defined in dependency of the direction of possible 
buckling, here exemplarily given for y-direction, as  
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with parameter ky, relative and geometric slenderness λrel,y and λy, respectively,  
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and with parameter βc considering pre-curvature of compression members regulated as  

2.0=cβ  in case of structural timber, and 1.0=cβ  in case of LVL or GLT,  (5.55)

Iy and iy as moment of inertia and radius of inertia in y-direction, respectively, fc,0,k as 
characteristic (5%-quantile) compression strength and E0,05 as 5%-quantile of longitudinal 
E-modulus. Consequently, buckling resistance on the part of the material can be increased 
by increasing βc, E0,05 and fc,0,k. Thereby a high 5%-quantile of compression strength 
increases on one hand and under the square root the relative slenderness parameter λrel,y 
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by counteracting positive system effects on E0,05, but on the other hand increases also 
directly the resistance of the material, see equ. (5.52).  

In case of lateral (torsional) buckling action with or without interaction with axial 
compression stresses design has to fulfill  
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with σm,d and fm,d as design bending stress and strength, respectively, and kcrit given by  
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with σm,crit as critical bending stress, My,crit and Wy as critical bending moment and section 
modulus, respectively, Iz and Itor as moment of inertia and torsion moment of inertia, 
respectively, and lef as effective length for calculation of torsional buckling resistance, 
which depends on support conditions and load configuration.  

Again, material resistance against lateral (torsional) buckling can be increased with 
increase of the product (E0,05 · G090,05) under the square root of equ. (5.58) of σm,crit and by 
increasing fm,k. Nevertheless, a higher bending strength increases also parameter λrel,m. 

Consequently, system effects which enhance the 5%-quantiles of strength and stiffness 
characteristics are relevant for the material part in stability design. Within this section 
only effects on stiffness are discussed. Starting with XM as characteristic of unjointed or 
finger jointed structural timber further system effects due to parallel arrangement of 
rigidly and continuously connected elements can be sufficiently accurate described by 
E[XM,N] = E[X1] and CoV[XM,N] = CoV[XM] / ◊N, following the averaging model in 
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combination with a minor correction in expectation. With X1 ~ 2pLND and iid 
XM ~ 2pLND the 5%-quantile XM,N,05 can be directly derived by applying equ. (2.70) and 
(2.80). Due to the fact that in stability design the resistance against bending deflection is 
of relevance the increase in 5%-quantile of E0,05 is by default calculated based on 
CoV[X1] = 20%. Results for duo and trio beams are given in Tab. 5.31 where no 
significant influences of group characteristics (G_I to G_III) are visible.  

Tab. 5.31: Ratios EM,N,0,05 / EM,0,05 of duo and trio beams composed of unjointed or jointed 
structural timber  

EM,N,0,05 / EM,0,05 0# FJ 1# FJ 2# FJ 

DUO 1.10 1.09 1.08 

TRIO  1.14 1.12 1.11 

Overall a system factor of 1.10 seems to be applicable to take into account the increase of 
EM,N,0,05 in case of duo and trio beams. Due to homogenisation of growth characteristics 
and physical properties by continuous and rigid connection of structural timber also a 
reduced value of βc = 0.15 or even 0.10 and thus equal to GLT can be proposed, in 
particular if structural components are produced and used in latter expected equilibrium 
moisture content.  

Tab. 5.32: Ratio XM,N,05 / XM,05 in dependency on N and the amount of finger joints per 
lref = 2,000 mm; CoV[X1] = 20% 

N = 5 10 15 50 • 

XM,N,05 / XM,05 | CoV[XM] ≈ 16% | 0# FJ 1.19 1.23 1.25 1.29 1.32 

XM,N,05 / XM,05 | CoV[XM] ≈ 13% | 1# FJ 1.15 1.19 1.20 1.23 1.24 

XM,N,05 / XM,05 | CoV[XM] ≈ 11% | 2# FJ 1.14 1.17 1.18 1.21 1.21 

In GLT a remarkable higher homogenisation in E- and G-modulus can be observed due to 
the commonly higher amount of interacting lamellas. Therefore, Tab. 5.32 gives some 
ratios of XM,N,05 / XM,05 in dependency of N and the amount of finger joints per 
lref = 2,000 mm. Again, the results base on CoV[X1] = 20%. The homogenisation already 
achieved by serial system action within each GLT-lamella is expressed by CoV[XM] and 
also included in Tab. 5.32. Interestingly, in lamellas containing on average one finger 
joint within 2,000 mm, which can be on average expected in Central European GLT 
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production lines, variability in E-modulus is given by CoV[EM,0] = 13%. This is exactly 
in line with the proposal in JCSS (2006), as already referenced in section 5.3.1.  

The ratio XM,N,05 / XM,05 is significantly determined by N but also by CoV[XM]. Due to the 
fact that in EN 338, which provides a strength class system for structural timber, a 
CoV[XM] = 20% is inherently supposed by E0,05 = 2 / 3 · E0,mean and iid E0,i, ratios for this 
remarkable higher CoV[XM] are given in Tab. 5.33.  

Tab. 5.33: Ratio XM,N,05 / XM,05 in dependency on N; CoV[XM] = 20% according EN 338 

N = 5 10 15 50 • 

XM,N,05 / XM,05 | CoV[XM] = 20% 1.21 1.27 1.30 1.35 1.41 

Furthermore, Tab. 5.32 and Tab. 5.33 provide also ratios of XM,N,05 / XM,05 at N Ø ¶ 
which are the same as XM,mean / XM,05. These values give the maximum achievable 
homogenisation potential on the 5%-quantile in dependency of CoV[XM]. Following both 
tables it can also be concluded that further relative gain in system effect at N ≥ 10 (15) is 
only small. Consequently it can be proposed to regulate XM,N,05 / XM,05 for 5 ≤ N < 10 with 
1.15 and at N ≥ 10 with 1.20. Consequently, in case of GLT and N ≥ 10 lamellas E0,05 in 
equ. (5.54) can be increased by 20%. The same can be done in equ. (5.58) for calculation 
of σm,crit in case of lateral (torsional) buckling. Thereby, both, E- and G-modulus can be 
multiplied by 1.20. This is in particular supported by the fact that E0 and G090 can be 
treated as independent variables, in particular in laminated products like GLT. Despite the 
fact that for example EN 338 regulates Gmean in direct relationship to E0,mean, by 
Gmean = E0,mean / 16, BRANDNER ET AL. (2007B; 2008) showed that the assumption of 
independency of both variables can be supported. Thus in case of GLT σm,crit or lef can be 
increased by 20% in comparison to solid timber. Hereby lef gives the effective distance 
between lateral supports or bracing elements.  

Nevertheless, a current proposal in PREN 14080 states that the product (E0,g,k · Gg,k) at 
N ≥ 10 can be multiplied by a factor of 1.40, with (E0,g,k; Gg,k) = 5 / 6 · (E0,g,mean; Gg,mean). 
In fact, this factor is too high; it is even above the maximum possible homogenisation at 
N Ø ¶.  

To conclude, within this section and in previous sections serial and parallel system effects 
on stiffness characteristics were discussed. Thereby and under assumption of X1 ~ 2pLND 
analytical models for correlated as well as for independent elements were presented.  
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With focus on timber, serial equicorrelation and characteristics of CoV[X1] were 
determined on the basis of data from literature and previous studies in section 5.1.1. 
Following that, serial and parallel system effects, their interaction in respect to modelling 
of product characteristics and the calculation of parameters for stability design were 
examined and discussed. In general, good to very good agreement between model results 
and test data was observed. At the end the current regulation of Xg,05 / Xg,mean = 5 / 6 
according EN 1194 can be confirmed whereas the proposal in PREN 14080 cannot be 
supported even in case when a higher CoV[XM] = 20% is applied as currently inherently 
given in EN 338.  

5.4 Serial System Effects on Tensile Strength parallel to 
Grain – Length Effects 

Within this section serial system effects on tensile strength of timber and linear 
engineered timber products are addressed. As already outlined in previous sections 5.2 
and 5.3 again serial correlation of timber characteristics is taken into account. Hereby a 
two-level hierarchical model with subdivision of total variability of strength in variability 
within and between elements is considered. Retrospective to section 5.2 and the definition 
of a two-level hierarchical model the tensile strength ft,0 = R of a structural member 
composed of serial arranged sub-elements or more general of a serial system is simply 
given by the minimum of all involved resistances as  

[ ] [ ] Mjijmjij XYXYmMZR +=+=== minmin .  (5.59)

Thus, the distribution function FR(r) of resistance R by consideration of equ. (2.190) is 
given by the convolution integral  
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Based on results gained by modelling serial system effects in section 3.3.2 the CDF of 
XM = min[Xij] can be directly and well approximated by assuming X1, XM ~ 2pLND, by 
means of equ. (3.102) and estimators for expectation and standard deviation as provided 
in Tab. 3.2. Therefore the distribution characteristics of FX | M=1(x) have to be known, in 
particular the variability of X1, which beside M constitutes the dominating parameter in 
calculating serial system effects. This information is in fact challenging as results are rare 
according tension tests on structural timber (and in particular Norway spruce) performed 
in sections. Nevertheless, EHLBECK ET AL. (1985A) report on regression equations 
formulated for simulation of strength and stiffness characteristics of board segments with 
a length of 150 mm or 137.5 mm. These equations are based on comprehensive test series 
accomplished to gain basic knowledge for modelling of glued laminated timber (GLT) 
composed of Norway spruce lamellas. For this the main part was executed and reported 
by GLOS (1978). For tension strength and E-modulus parallel to grain the regression 
equations are given as  

( ) Eijt KARE ερ +⋅−⋅+= 17.113.320.8ln 0,0, ,  (5.62)

with correlation coefficient r = 0.77 and σ[εE] = 0.180, and  

( ) ( ) ( ) fijtijt KAREf ε+⋅−⋅+−= 093.0876.0ln22.4ln ,0,,0, ,  (5.63)

with correlation coefficient r = 0.86 and σ[εf] = 0.187, with Et,0,ij and ft,0,ij as tension E-
modulus and strength of board segments in [N/mm²], respectively, ρ0 as oven dry density 
in [kg/m³] and KAR as knot area ratio in [%].  

Following the specifications for groups G_I, G_II and G_III as given in Tab. 5.12 and the 
basic assumption that these groups are somehow related to the strength classes C24, C30 
and C40 according EN 338, the densities ρ12 defined at a reference moisture content of 
u = 12% are given as 410, 460 and 500 kg/m³, respectively for group G_I to G_III. The 
oven dry densities can be calculated by excluding the mass of water and consideration of 
a reduction in volume due to shrinkage. The reduction in volume, in particular near 
u ≈ 0% is non-linear (chemisorption). Thus the differential ratio of shrinkage cannot be 
applied. Nevertheless, for the following calculations it is judged to be sufficient accurate 
to use the simplified approach given in EN 384 and to adapt the density by 0.5% per 
percent change in moisture content. A compilation of densities is given in Tab. 5.34.  
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Tab. 5.34: Expectations and coefficients of variation of densities; groups G_I to G_III 

  G_I G_II G_III 

E[ρ12] = ρ12,mean [kg/m³] 420 460 560 

E[ρ0] = ρ0,mean [kg/m³] 396 434 472 

CoV[ρ12] = CoV[ρ0] [%] 8% 8% 8% 

Furthermore, E-modulus and strength in equ. (5.62) and (5.63) are formulated in 
dependency of knot share parameter KAR. This parameter is related to 150 mm or 
137.5 mm long board segments. Due to the fact that this parameter gives the share of the 
sum of knot area within the reference segment length projected on the cross section and 
the observation that the expected width of weak zones (e.g. defined by knot clusters) was 
found by own analysis to be E[wWZ] = 70 mm (see Tab. 5.12) the same equations for local 
strength and E-modulus can be applied, even for the definition of a stochastic reference 
segment length. Assuming that the width of weak zones (wWZ) follows a 2pLND with 
CoV[wWZ] = 40% (see Tab. 5.12) it can simply worked out that 98.5% or at least 97.4% 
of all weak zones are smaller or equal to segments with a length of 150 mm or 137.5 mm.  

Based on regression equations (5.62) and (5.63) it can be observed that the whole 
variabilities of local strength and E-modulus are represented by the errors εf and εE. It can 
be shown that in the examinations of GÖRLACHER (1989) and COLLING (1990) also a 
two-level hierarchical model and thus a partitioning of total variance in within and 
between variation of E-modulus and strength of board segments took place. COLLING 

(1990) proposed to regulate σ2[εE] = σ2[εE,X] + σ2[εE,Y], with iid εE,X ~ ND(0; σ2[εE,X]) and 
iid σ2[εE,X] ~ ND(0.079; 0.272), as well as iid εE,Y ~ ND(0; 0.162). This corresponds to an 
equicorrelation of ρequi(Et,0,ij) ≈ 0.80, which is much higher than found in section 5.1 on 
average (see also Tab. 5.12). The variance of tensile strength was defined as 
σ2[εf] = σ2[εf,X] + σ2[εf,Y]. Both variances are iid σ2[εf,X] = σ2[εf,Y] ~ ND(0; 0.132) which 
corresponds to ρequi(ft,0,ij) ≈ 0.50. This is in line with the results found in section 5.1.1.  

Overall, application of regression equations (5.62) and (5.63) delivers basic strength and 
stiffness characteristics of weak zones. The results based on 10,000 randomly generated 
variates are shown in Tab. 5.35.  

On a first view values of E[Et,0,ij] are 5% to 10% below the values associated with 
strength classes C24, C30 and C40. According EN 338 these are Et,0,mean = 11,000, 12,000 
and 14,000 N/mm², respectively for C24, C30 and C40, although an additional reduction 
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of the expectations in Tab. 5.35 due to serial effects on E-modulus (see section 5.3.4) has 
to be taken into account. Values of CoV[Et,0,ij] are in contrast and on average nominal 9% 
(relative 60%) higher than expected (see e.g. Tab. 5.25 for comparison). Judgement of 
E[ft,0,ij] is currently difficult, the same is true for CoV[ft,0,ij]. Nevertheless a comprehensive 
analysis of test data of boards in BRANDNER AND SCHICKHOFER (2008) showed that 
CoV[ft,0] can be expected to be within the range of (30 ± 10)%. Based on randomly 
generated variates also a correlation coefficient between strength and E-modulus of 
ρ(ft,0,ij; Et,0,ij) = 0.75 can be observed. This magnitude of correlation is in line with that in 
Tab. 5.12.  

Tab. 5.35: Expectations and coefficients of variation of tensile strength and E-modulus parallel to 
grain of board segments; groups G_I to G_III  

  G_I G_II G_III 

E[Et,0,ij] [N/mm²] 9,912 11,554 13,472 

CoV[Et,0,ij] [%] 24.0% 23.8% 23.8% 

E[ft,0,ij] [N/mm²] 39.3 45.9 53.6 

CoV[ft,0,ij] [%] 31.5% 30.8% 30.2% 

Based on a complete set of input parameters for strength characteristics of board 
segments, in general of sub-elements, and by means of equ. (5.60) for a fixed value of M 
it is possible to calculate serial system effects of systems composed of unjointed but serial 
correlated elements and sub-elements. If M itself constitutes a random variable, as 
indicated by the stochastic nature of the distance between knot clusters (dWZ), the 
convolution integral of equ. (5.60) has to be adapted to  
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see also equ. (3.102). This can in principle be done numerically or simply by means of 
random variates. Considering the second approach and the analysed ranges of parameters 
it can be simply demonstrated that 106 random variates are sufficient to derive ratios 
XM,ξ / X1,ξ for ξ as expectation or standard deviation with an accuracy of at least three 
digits.  

Based on this facts and the models serial system effects of unjointed and finger jointed 
structural timber members are discussed in the following sections 5.4.1 and 5.4.2, 
respectively.  

5.4.1 Serial System Effects in unjointed Structural Timber  

Following the two-level hierarchical model of previous section 5.4 it can be concluded 
that the magnitude of serial system effects of unjointed structural timber depends on (i) 
the length of the timber, (ii) the distance between weak zones and (iii) the variation of 
tensile strength, observable within structural timber and expressed by CoV[Xij]. Based on 
total variation expressed by CoV[Zij] parameters CoV[Xij] and CoV[Yj] of groups G_I to 
G-III can be directly calculated by means of equ. (5.20) and by means of 
ρequi(ft,0,ij) = (0.40 ÷ 0.50) (see Tab. 5.12). The results are given in Tab. 5.36. Based on the 
observation made in section 5.1 that the amount of serial correlation increases with 
increasing timber quality the results for CoV[Xij] and CoV[Yj] in Tab. 5.36 are derived by 
adapting ρequi(ft,0,ij) group-wise.  

Retaining the same reference length lref = 2,000 mm as used in previous section 5.3 and 
expectation and variance of M as given in Tab. 5.26 the length effects and main 
characteristics of the tensile strength of boards, as given in Tab. 5.37, can be determined. 
This was done by means of 10,000 generated random variates with models and input 
parameters as mentioned above.  

Tab. 5.36: Coefficients of variation for total, within and between element variation of local tensile 
strength; groups G_I to G_III 

  G_I G_II G_III 

ρequi(ft,0,ij) [--] 0.40 0.45 0.50 

CoV[Zij] [%] 31.5% 30.8% 30.2% 

CoV[Xij] [%] 24.4% 22.8% 21.4% 

CoV[Yj] [%] 19.9% 20.7% 21.4% 
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Tab. 5.37: Strength characteristics and results of serial system action on unjointed structural 
timber; groups G_I to G_III  

  G_I G_II G_III 

ft,0,mean (CoV)  [N/mm²] ([%]) 29.4 (8.4%) 35.7 (8.2%) 43.1 (7.9%) 

CoV[ft,0] [%] 30.9% 30.6% 30.3% 

ft,0,05  [N/mm²] 17.1 20.9 25.3 

std. dev. ft,0,i | j (CoV) [N/mm²] 4.6 (21.7%) 5.4 (22.1%) 6.3 (22.5%) 

CoV[ft,0,i | j]  [%] 15.7% 15.2% 14.6% 

ft,0,mean / ft,0,ij,mean [--] 0.748 0.778 0.804 

ft,0,05 / ft,0,ij,05 [--] 0.756 0.780 0.803 

ft,0,k acc. EN 338 [N/mm²] 14.0 18.0 24.0 

If it can be assumed that the distance between weak zones (dWZ) is also equicorrelated 
with ρequi(dWZ) ≈ 0.50 an increase in the statistics of expectation and 5%-quantile of 
approximately 1% can be observed. Due to this minor effect dWZ is further treated as 
uncorrelated.  

If the bias inherent in the applied model for calculating the serial system effect for the 
5%-quantile, as illustrated in Fig. 3.26, is taken into account by linear interpolation 
between the bias at CoV[X] = 10% and 50% an overestimation of approximately 5% has 
to be considered. The bias-corrected values ft,0,05,corr are given in Tab. 5.38.  

Tab. 5.38: Bias-corrected 5%-quantile estimates for group G_I to G_III  

  G_I G_II G_III 

ft,0,05,corr [N/mm²] 16.3 19.9 24.1 

In comparison with characteristic tensile strength values for strength classes C24, C30 
and C40 as anchored in EN 338 the 5%-quantiles ft,0,05,corr in Tab. 5.38 show overall 
overestimation, in particular significant for G_I and G_II. This is not surprising because 
of the fact that the models used for generation of random variates of ft,0,ij according 
EHLBECK ET AL. (1985A) solely base on density, (estimated) E-modulus and knot share 
parameter KAR. It is well known and easy to prove that in particular lower timber 
qualities are characterised by a variety of additional global (type [1], section 5.1) and 
local (type [2], section 5.1) growth characteristics which decisively affect the tensile 
strength. For example global grain deviation, which significantly affects tensile strength 
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parallel to grain (see e.g. section 4.3.2), is in structural timber of lower qualities not as 
strict regulated and more common as for timber of strength class C40. Also the amount, 
variety and magnitude of knot clusters, indicating local grain deviation, are more distinct 
in lower timber qualities. This fact is partly taken into account by higher KAR-values and 
reduced E[dWZ]. Nevertheless, unsymmetrically placed knots and knot clusters induce 
regions of significant lower stiffness in the cross section. This causes some amount of 
MN-interaction during tensile testing which reduces the observable tensile strength of 
structural timber. This effect was e.g. published by COLLING ET AL. (1991) and FALK AND 

COLLING (1994, 1995) and is one major parameter for the explanation of the “laminating 
effect”, the homogenisation effect on strength of GLT, defined by λ = fm,g / ft,0,l, 
constituting the ratio between the bending strength of GLT and the tensile strength of the 
board material or GLT-lamellas. This effect of restricted MN-interaction by continuous 
lateral support of boards as part of GLT was estimated to be up to 1.4 (see e.g. COLLING 

ET AL., 1991). Another growth characteristic, the reaction wood, is also more common in 
timber of lower quality. This timber characteristic increases the density but reduces 
strength. This initiates some bias in the calculation of local strength and stiffness values 
based on the parameter density.  

As the values in EN 338 are mainly based on tests overestimation of ft,0,k by ft,0,05,corr is not 
surprising, in particular if the unknown uncertainties inherent in the models and 
parameter sets are qualitatively considered. Quantification and further validation of the 
magnitude of all these effects is currently not possible, even not by means of a 
relationship between characteristic board tensile strength according EN 338 (ft,0,l,k) and 
the characteristic strength of board segments (ft,0,k,sim = ft,0,ij,05) as provided by BLAß ET AL. 
(2008), see  

simktklt ff ,,0,,,0, 261.17.10 ⋅+−= .  (5.66)

This equation considers explicitly neither the influence of the discussed local and global 
growth characteristics nor the influence of changes e.g. in equicorrelation or distance 
between weak zones, associated with changes in timber quality.  

Nevertheless, for a more generalised consideration of the serial system effect the 
influence of changes in parameters are examined. Thereby parameters 
CoV[ft,0,ij] = (20, 30, 40)%, l = (1.0 ÷ 12.0) m, E[dWZ] = (400, 500, 600) mm were varied, 
by leaving parameters CoV[dWZ] = 60% and ρequi(ft,0,ij) = 0.45 constant. The results given 
as relative changes in expectation and 5%-quantile are illustrated in Fig. 5.32. Again 
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strength characteristics at lref = 2,000 mm were taken as reference. A bias correction in the 
graphs as done in Tab. 5.38 is not necessary as the bias behaves approximately constant 
for M ≥ (5 ÷ 10) serial linked elements which is on average already widely fulfilled at lref.  

 

Fig. 5.32: Serial system effects on expectation and 5%-quantile of tensile strength of unjointed 
structural timber: influence of parameter variation CoV[ft,0,ij], E[dWZ] and length as well 
as best fitted power models  

In contrast to the findings in section 3.3.1 where it was shown that serial system effects 
on 5%-quantiles are less pronounced than on expectation, the opposite can be observed in 
Fig. 5.32. This can be explained by the fact that serial system action in unjointed 
structural timber lead only to a reduction in variability within the timber elements but has 
no effect on the variability observable between the elements. As ρequi(ft,0,ij) was found to 
be only 0.40 ÷ 0.50 the magnitude of CoV[Yj] is nearly equal (≤) to that of CoV[Xij]. As 
the expectation of strength of elements with increasing length or increasing number of 
serial acting sub-elements is reduced, Var[Yj] affects the total variability of ft,0 even more 
than in cases where only sub-elements are analysed. Consequently, even a minor but with 
CoV[Zij] increasing CoV[ft,0] can be observed (see e.g. Tab. 5.39). Consequently, serial 
system action on 5%-quantiles of tensile strength of unjointed structural timber is even 
higher than on the mean value. Nevertheless, the increase in CoV[ft,0] even in members 
multiple-times the reference length is so small that a verification by tests appears only 
possible by uneconomic efforts.  

Power models by means of LSM were fitted to the simulation data to allow a comparison 
of length effects with current regulations and literature. As the influence of E[dWZ] can be 
judged as negligible these power models were only fitted to data generated with 
E[dWZ] = 500 mm. The fit to design relevant 5%-quantiles is even better and in total 
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nearly perfect than to mean-values. Overall, lack in compliance between simulation data 
and power models overall results in some conservativeness. 

Based on Fig. 5.32 it becomes obvious that CoV[Zij] constitutes the dominating parameter 
in modelling serial system effects. This is in particular expressed by its influence on the 
power parameter, being 0.090, 0.161 and 0.253, respectively for 
CoV[Zij] = (20, 30, 40)%. Due to the fact that CoV[ft,0] = (30 ± 10)% with 
E[CoV[ft,0]] = 30% and CoV[ft,0] ≈ CoV[Zij] at lref = 2,000 mm length effect on ft,0,05 can 
be represented by a power model with power parameter kl,05 = 0.16. If the whole range of 
CoV[ft,0] is split into two groups of CoV[ft,0] = (25 ± 5)% and CoV[ft,0] = (35 ± 5)%, as 
for example proposed by BRANDNER AND SCHICKHOFER (2008), the power parameters 
are proposed to be kl,05 = 0.13 and 0.21, respectively.  

Tab. 5.39: Coefficients of variation of tensile strength of unjointed structural timber in dependency 
of CoV[ft,0,ij] and the analysed length l  

 CoV[ft,0] 

CoV[ft,0,ij] l = lref = 2.0 m l = 4.0 m l = 8.0 m 

20% 18.7% 18.9% 19.3% 

30% 29.7% 31.0% 32.6% 

40% 42.2% 45.5% 49.3% 

Back to the observation that the length effect on 5%-quantiles is found to be higher than 
on mean-level it can be stated that this observation is in principle not new. Following the 
literature survey in section 5.1.2 already MADSEN (1990) found for tension strength 
power parameters kl,50 = 0.13 and kl,05 = 0.22. Later and based on a literature survey, 
BURGER (1998) concluded with factors kl,50 = 0.12 and kl,05 = 0.18. Based on his own 
experiments, data analysis and modelling he proposed to regulate length effects with 
kl,50 = 0.15 or 0.10 and kl,05 = 0.23 or 0.20 for ungraded or visually graded unjointed 
structural timber. Nevertheless, BRANDNER ET AL. (2007A) report on contrary test results 
gained from testing structural timber elements with a free test length between 
lfree = 1,440 mm and 17,222 mm. Thereby best fitted power models gave kl,mean = 0.23 and 
for kl,05 = 0.16. Nevertheless, whereas at lfree = 1,440 mm unjointed material was used, 
tests at lfree = 7,982 mm and 17,222 mm base on finger jointed structural timber. As 
discussed in more detail in the next section 5.4.2 this aspect has definitely an influence on 
the observable length effect in particular if the analysed data constitute a mixture of 
unjointed and jointed material.  
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Based on ratios ft,0,mean / ft,0,ij,mean and ft,0,05 / ft,0,ij,05 in Tab. 5.37 given for groups G_I to 
G_III it can be observed that serial system effects decrease with increasing timber quality. 
This was for example also reported by WILLIAMSON (1992) who proposed a kl = 0.11 and 
0.16 for high and low grade timber, respectively. 

Overall it can be concluded, that the factors for kl,05 found in modelling and simulation 
scenarios are within the range of published values. It can be also concluded that 
influences by E[dWZ] are negligible. Nevertheless, CoV[ft,0,ij] and thus CoV[ft,0] at lref has 
to be known or at least regulated on a reliable basis.  

The presented and discussed models enable direct consideration of within and between 
variation of strength characteristics but also of the stochastic nature of length and growth 
characteristics of single, reference elements. This allows direct reaction on changes in 
input parameter sets. It was outlined that the main parameters are not geometric 
parameters like dWZ. The overall dominating parameter is represented by CoV[ft,0]. This 
parameter has to be controlled by adequate methods or at least kept in a reliable range by 
application of adequate classification methods, e.g. the grading process of the raw 
material timber.  

5.4.2 Serial System Effects in jointed Structural Timber 

Within this section effects on finger jointed structural timber caused by serial system 
action are addressed. If such a member is longitudinally stressed in tension it can either 
fail in M elements of timber or in (M – 1) finger joints. The weakest element decides 
about the resistance capacity of the whole member, the serial system. The jointed timber 
elements are further treated as iid. This is not always completely fulfilled in practise were 
zones which are not allowed in the aimed timber quality are trimmed out and the residual 
parts are jointed again. Thus it happens that parts of the same board or beam are again 
connected. Thereby the equicorrelation between these parts is the same as before the 
trimming process. This aspect is even more obvious if beams are only trimmed and 
jointed to reduce bow and twist to an amount acceptable for the desired timber quality 
and / or for the further production process. Nevertheless, the simplification to consider the 
parts as iid is further applied, not at least due to missing information about the 
distribution of joints of correlated and uncorrelated parts.  

The number of finger joints per reference length lref = 2,000 mm is herein treated as 
deterministic. This is done because the influence of this simplification on several system 
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effects is judged as being small (see e.g. the influence of dWZ as analysed in 
section 5.4.1). Furthermore, distances between finger joints vary between producers and 
countries. Nevertheless, explicit consideration of its stochastics can be done the same way 
as demonstrated for parameter dWZ.  

Before examinations can be performed on finger jointed structural timber it is required to 
regulate the performance of finger joints in relationship to that of the joining parts, the 
timber elements. This is done in the following sub-section. 

Definition of Minimum Requirements on the Finger Joint Tensile Strength 

In general, finger joints can be described as folded scarf joint. The sum of fingers provide 
a large surface to transfer tension stresses parallel to grain applied on structural timber in 
shear along the flankes of the fingers. The connection itself is done by means of a suitable 
adhesive system which is in general optimised for resisting shearing. Thus finger joints 
constitude rigid connections with a high degree of utilisation. If the tensile strength of the 
joint is compared to the tensile strength of structural timber a degree of utilisation of one 
or even above one can be reached. The reason for this outstanding performance follows 
from the facts that (1) finger joints have to be placed in the clear wood section of timber 
elements with sufficient minimum distance to adjacent knots or knot clusters to be not 
influenced by local grain deviation, and (2) normally it has to be secured that failure is 
not governed by the adhesive system but by the joining timber parts. Concerning the 
second point failures can be differentiated into (i) net-section failures in tension caused by 
the reduced cross section on the base-line of finger joints, (ii) shear failure along the 
flankes due to exceedance of shear strength of wood or of the adhesive system (last one 
has to be prevented), (iii) tension failure outside the finger joint due to a local, strength 
reducing characteristic, and (iv) some kind of mixture of failure types (i) to (iii). In 
particular failure types (i) and (ii) are decisively influenced by the geometry, the profile 
of the fingers. Tab. 5.40 gives a brief overview of common profiles used in Europe.  

There are numerous publications dealing with stress transfer and optimisation of finger 
joint profiles and the interaction of finger joints in laminated products, e.g. AICHER AND 

KLÖCK (1990), COLLING AND EHLBECK (1992), RADOVIC AND ROHLFING (1993), 
GROOM AND LEICHTI (1994), SMARDZEWSKI (1995), HERNANDEZ (1998), SERRANO ET 

AL. (2001) and KONNERTH ET AL. (2006). Following the report of AICHER AND KLÖCK 

(1990) it can be concluded that the parameter v(bn) constitute one main parameter for the 
optimisation of the mechanical potential of finger joints as it directly gives changes in 
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normal stresses proportionally to the loss in cross section. Concerning the parameter α, an 
inversely proportional reduction in stress was observed with a maximum resistance at 
α ≈ 1 / 14 and a significant decrease in strength at α > 1 / 10. Due to concentration of 
stresses at the finger tips it was also suggested to keep the ratio lt / bt > 1.00 or even at 
≥ 1.50. Furthermore it was proposed to choose the geometry of fingers such that the ratio 
of bond surface to net cross section comply with the ratio of shear strength and tensile 
strength of timber parallel to grain.  

Tab. 5.40: Finger joint profiles, geometric measures and loss in cross section  

l 
[mm] 

p 
[mm] 

bt 
[mm] 

bn 
[mm] 

lt 
[mm] 

α 
[°] 

v(bn) 
[%] 

15 3.8 0.42 0.52 0.5 5.6 13.6% 

20 5.0 0.50 0.60 0.5 5.7 12.0% 

20 6.2 1.00 1.11 0.5 6.0 17.8% 

30 6.2 0.60 0.68 0.5 4.8 11.0% 
 

l … finger length; p … pitch; bt … tip width; bn … base width; lt … tip gap; α … angle; v(bn) … loss in cross section 

Overall it can be recommended to use an adhesive system which enables the production 
of finger joints nearly as stiff as the surrounding clear wood or even with a reduced 
stiffness. This is in particular of interest if finger jointed elements serve further as basic 
element for composing engineered timber system products of parallel aligned and 
continously, and by adhesive rigidly connected, parallel and common acting elements. In 
this case and as already intensively demonstrated in section 3.4 the stiffer an element the 
more stress it attracts. If a stiff finger joint is situated parallel to a weaker element the 
finger joint attracts the major part of stresses. If the joint is thereby as stiff as the 
surrounding clear wood in any case the resistance will be lower but the attracted stresses 
are the same. Thus it would be meaningful to reduce the stiffness of finger joints 
proportional to their resistance in relationship to that of clear wood of the weaker joining 
partner to prevent local failures. Therefore it would be required to know the performance 
of finger joints explicitly and in relationship to clear wood and of structural timber as the 
joining partners. This is in fact a challenge of its own because the performance of finger 
joints is decisively influenced not only by the materials wood, timber and the adhesive 
system but to a remarkable extend also and even more by the whole production process.  

Concerning the first part, the relationship of finger joint tensile strength (ft,0,FJ) to that of 
structural timber as joining partner (ft,0) it is for example by MOODY (1970), EHLBECK ET 
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AL. (1985B) and COLLING (1990) stated that ft,0,FJ is found to be related to the 
characteristics (e.g. strength, stiffness and density) of the weaker joining part. This is in 
fact reasonable so far failure takes place in the wooden part of the finger joint according a 
serial system in the weaker element. Thus the relationship of ft,0,FJ on density ρ and E-
modulus Et,0 indicates also a certain but in general very weak relationship to the tensile 
strength of structural timber ft,0. This becomes obvious as ft,0 is only to a small amount 
governed by the global potential of timber, e.g. expressible by parameters density and E-
modulus (representatives of type [1], see section 5.1), but primarily by local 
characteristics of weak zones (representatives of type [2], see section 5.1). Consequently, 
in the following analysis finger joint tensile strength is modelled as a random variable, 
independent of the tensile strength of structural timber of the joining members. 

Concerning the second part, the influence of production parameters on the resistance of 
finger joints, the following crucial parameters can be listed: 

 geometry of fingers;  

 service and maintenance of the production facilities, e.g. of moulder, and 
conveyors;  

 suitability of bonding parameters, e.g.  

▫ adhesive system in respect to adequate joint stiffness;  

▫ bonding pressure;  

▫ adequate lateral support to prevent or at least reduce edge effects during 
pressing;  

▫ compliance of wet life, holding and curing time 

▫ climatic conditions, in particular temperature and moisture content of 
timber;  

▫ adequate and homogeneous application of adhesive;  

▫ adequate and homogeneous blend of adhesive and hardener;  

 securing of adequate and homogeneous characteristics of the base material 
structural timber, e.g.  

▫ moisture content;  

▫ material inherent extractives;  

▫ material inherent variability of density (in respect to bonding pressure) 
and of material characteristics in general (  weakest link: in case of high 
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potential differences a remarkable reduction of the average performance 
of finger joints in combination and a higher CoV[ft,0,FJ] are given).  

The huge amount of influencing production parameters and the variety of machinery 
developed for the finger jointing process are the reasons why this in general very complex 
process leads to a manufacturer individual maximum level in finger joint performance. 
Consequently it is proposed not to model the process itself but to regulate the demanded 
performance of ft,0,FJ by the definition of minimum requirements. These should be defined 
in dependency of and suitable for the demanded performance of engineered timber 
system products. On the basis of the assumptions made in previous section 5.4.1 and on a 
comprehensive data analysis following statements and assumptions are made:  

 iid ft,0,FJ ~ 2pLND; CoV[ft,0,FJ] = (15 ± 5)%;  

 iid ft,0 ~ 2pLND; CoV[ft,0] = (30 ± 10)%;  

 ρ(ft,0; ft,0,FJ) = 0;  

 for simplicity it is assumed that the joining partners are of equal length.  

In line with current regulations of strength which are based on 5%-quantiles a model is 
sought which relates ft,0,05 to ft,0,FJ,05 e.g. by  

( ) 05,0,0505,,0, tFJt ff ⋅=≥ ζ .  (5.67)

Thereby ft,0,05 is defined as 5%-quantile of the tensile strength parallel to grain of an 
unjointed structural timber element at reference length lref = 2,000 mm and ft,0,FJ,05 as 5%-
quantile of tensile strength parallel to grain of a single finger joint placed in the clear 
wood section of structural timber of the same population and tested with the same cross 
section, and ζ05 as parameter defined as ratio between both strength characteristics. In the 
following some possibilities for the definition of minimum requirements for ft,0,FJ are 
formulated: 

[1] securing equal reliability of unjointed and jointed structural timber at reference 
length;  

[2] securing equal 5%-quantiles of unjointed and jointed structural timber at 
reference length;  

[3]  securing equal failure probability of M jointed timber elements and (M – 1) finger 
joints.  
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For requirement [1] a lognormally distributed action is defined with CoV = 30% and with 
expectation adjusted to fulfill a reliability index of β = 4.2 in dependency of the resistance 
of an unjointed structural timber element at lref = 2,000 mm. Hence expectation E[ft,0,FJ] at 
given CoV[ft,0,FJ] and (M – 1) finger joints is iteratively found by complying the 
requirement defined in [1]. The results for the cases of one, two and three finger joints per 
lref are shown in Fig. 5.33. The parameter settings for the analysis are: E[dWZ] = 500 mm, 
CoV[dWZ] = 60%, (arbitrary choosen) E[ft,0,ij] = 50 N/mm², CoV[ft,0,ij] = (15, 20, …, 45)%, 
ρequi(ft,0,ij) = 0.45 and CoV[ft,0,FJ] = (10, 15, 20)%.  

It can be concluded that in almost all cases the minimum requirements on ft,0,FJ,05 to fulfill 
equal or higher reliability between unjointed and finger jointed structural timber elements 
are even lower than on ft,0,05. Although jointing of uncorrelated elements results in 
qualitative higher loss in average strength due to more significant serial system action, 
also a higher reduction in variability and thus a reduced effect on the 5%-quantile can be 
observed. Furthermore, the expected coefficient of variation of ft,0,FJ is much lower than 
that of ft,0 which further reduces the effects caused by jointing. It can be also observed 
that the influence by the number of finger joints per reference length on the ratio ft,0 / ft,0,FJ 
is small but confirms the expectation of increasing requirements on ft,0,FJ with increasing 
number of joints. The influence of CoV[ft,0,FJ] on the analysed ratio is negligible. 
Nevertheless, in case of CoV[ft,0,FJ] < CoV[ft,0,ij] the failure of jointed structural timber is 
dominated by the failure of finger joints, with a failure rate of (70 ÷ 100)%.  
Fig. 5.33 contains exponential regression models and their degree of determination. These 
models serve as suitable basis for estimating the analysed ratio in dependency of CoV[ft,0] 
given at lref = 2,000 mm.  

 

Fig. 5.33: Ratio of ft,0,05 of unjointed structural timber at lref = 2,000 mm and of ft,0,FJ,05 of single 
finger joints vs. CoV[ft,0] and CoV[ft,0,FJ] for the cases of 1#, 2# and 3# finger joints per 
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lref: E[ft,0,FJ] defined to secure equal reliability between unjointed and jointed structural 
timber, assuming a lognormally distributed action with CoV = 30% and β = 4.2  

 

Fig. 5.34: Ratio of ft,0,05 of unjointed structural timber at lref = 2,000 mm and of ft,0,FJ,05 of single 
finger joints vs. CoV[ft,0] and CoV[ft,0,FJ] for the cases of 1#, 2# and 3# finger joints per 
lref: E[ft,0,FJ] defined to secure equal 5%-quantiles between unjointed and jointed 
structural timber 

For requirement [2] in principle the same parameter setting as for [1] was applied but 
with the aim to adjust E[ft,0,FJ] at given CoV[ft,0,FJ] such that the 5%-quantiles of unjointed 
and jointed structural timber elements at lref are equal. The results as ratio between ft,0 and 
ft,0,FJ versus CoV[ft,0] are illustrated in Fig. 5.34. It can be observed that the dependency of 
the ratio on CoV[ft,0] and / or CoV[ft,0,FJ] is small. The relevance of this kind of definition 
of minimum requirements on ft,0,FJ can be argued by the fact that current product and 
design standards based on 5%-quantiles of strength values.  

For requirement [3] again the same parameter setting as for [1] and [2] are applied. The 
results are plotted in Fig. 5.35. Hereby E[ft,0,FJ] was adjusted at given CoV[ft,0,FJ] to reach 
an equal failure probability of 50% in finger joints as well as 50% in the jointed timber 
elements. This can be achieved by equal medians  

[ ]
( )

[ ]⎥⎦
⎤

⎢⎣
⎡≡

−
FJtmt fmedfmed ,0,10, min .  (5.68)

Based on the graphs in Fig. 5.35 a significant influence of parameters CoV[ft,0] and / or 
CoV[ft,0,FJ] can be observed. Thereby the dependency on CoV[ft,0,FJ] decreases as the 
number of finger joints per lref increases. Also the slope is slightly reduced. This is 
because of the reduced variability caused by min[ft,0,FJ]. Values for parameter ζ05, defined 
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as ratio ft,0,FJ,05 / ft,0,05, are listed in Tab. 5.41. Thereby the best fitted exponential 
regression models as shown in Fig. 5.35 are used for calculation. These models show 
perfect correspondence with model and simulation results. The reason for this can be 
explained by a theoretical example of a chain consisting of one finger joint and one 
structural timber element. Following this example parameter ζ05 is simply given as  
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with k05 = Ф –1(0.05) ≈ 1.645 and Ф –1(.) as operator of the inverse SND.  

Based on the requirement given in equ. (5.68) and the general definition of the medians of 
a lognormally distributed variable Y defined by med[Y] = exp(μX) equ. (5.69) simplifies to  
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If CoV[ft,0,FJ] is fixed the first term acts as pre-factor and the second term as exponential 
term in dependency of the explaining variable CoV[ft,0]. This formulation corresponds 
inversely to the regression equations in Fig. 5.35.  

 

Fig. 5.35: Ratio of ft,0,05 of unjointed structural timber at lref = 2,000 mm and of ft,0,FJ,05 of single 
finger joints vs. CoV[ft,0] and CoV[ft,0,FJ] for the cases of 1#, 2# and 3# finger joints per 
lref: E[ft,0,FJ] defined to secure equal failure probability in finger joints and timber (equal 
median values) 

This definition of minimum requirements is suitable for the regulation of production 
requirements by keeping the maximum share of finger joint failures by a balanced value 
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of ≤ 50% which corresponds in the analysed parameter range to the fact that in most cases 
ft,0,FJ,05 > ft,0,05 is required. Nevertheless, the presented general model for the determination 
of minimum requirements allows also to define values of ft,0,FJ,05 for every probability of 
failure of finger joints.  

Tab. 5.41: Parameter ζ05 in dependency of CoV[ft,0,FJ], CoV[ft,0] and the number of finger joints per 
reference length  

 1# FJ / lref 2# FJ / lref 3# FJ / lref 

 CoV[ft,0] CoV[ft,0] CoV[ft,0] 

 25% 30% 35% 25% 30% 35% 25% 30% 35% 

ζ05 | CoV[ft,0,FJ] = 10% 1.22 1.31 1.40 1.27 1.37 1.47 1.30 1.39 1.50 

ζ05 | CoV[ft,0,FJ] = 15% 1.12 1.21 1.29 1.21 1.30 1.39 1.25 1.34 1.44 

ζ05 | CoV[ft,0,FJ] = 20% 1.04 1.11 1.19 1.14 1.23 1.32 1.20 1.29 1.38 

Having now an adequate formulation for the required finger joint strength at reference 
length of structural timber the next sub-section aims on studying the length effect 
observable in finger jointed structural timber.  

Quantification of Serial System Effects on Finger Jointed Structural Timber 

Within this sub-section serial system effects on finger jointed structural timber are 
addressed. The analysis itself is in principle equal to unjointed structural timber, as shown 
in Fig. 5.32. Additionally the influence of M iid jointed structural timber elements and 
(M – 1) iid finger joints per reference length lref = 2,000 mm are considered. Thereby and 
in-line with the examinations made in previous sub-section the strength characteristics of 
finger joints are set to fulfill equal probability of failure for finger joints and timber at lref 
and by assuming E[CoV[ft,0,FJ]] = 15%. The resulting relative means and 5%-quantiles are 
illustrated in Fig. 5.36.  

In comparison to Fig. 5.32 the length effects are even lower. Best fitted power models 
show a lower degree of determination which is in contrast to unjointed structural timber 
strength, and therefore 5%-quantiles power parameters of 0.06, 0.14 and 0.23 with 
CoV[ft,0,FJ] = (20, 30, 40)%, respectively. This is true for the case of only one finger joint 
per lref. If this number is doubled, and thus the amount of iid serial acting elements the 
power parameters also increase.  
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Overall it can be concluded that for practical applications and in particular for the design 
of finger jointed structural timber members as part of a whole structural system the same 
power parameters than for unjointed structural timber can be applied, so far the average 
number of joints per reference length does not exceed three.  

 

Fig. 5.36: Serial system effects on expectation and 5%-quantile of tensile strength of finger jointed 
structural timber: influence of parameter variation CoV[ft,0,ij] and number of finger 
joints per lref = 2,000 mm as well as best fitted power models 

To conclude, section 5.4 addressed serial system action on tensile strength parallel to 
grain of unjointed and finger jointed structural timber. Examinations focused on 
parameter settings which were found to be common for structural timber and finger 
joints. Thereby a significant length effect on expectation but more on the 5%-quantile 
was observed. A comparison with literature concerning unjointed structural timber 
showed that own results are in the range of published values.  

Based on modelling and simulations also a slight increase in CoV[ft,0] with increasing 
length was found. This small increase which is judged to be hardly verifyable in practical 
tests may be one important reason for contradicting literature data and interpretation. In 
particular the preference for WEIBULL’s theory, as for example discussed in section 5.1.2, 
whose requirements and assumptions can be hardly fulfilled by materials like timber are 
assumed to be caused by the fact of nearly constant CoV[ft,0] but to be honest also by the 
analytical closed approach and its usability for extreme value calculations.  

In contrast to current European standards which regulate length effects only for 
components shorter than the reference length it was found that this procedure is 
absolutely inadequate and physically contradicting, not justifiable nor meaningful. It 
prevents also to keep the reliability of engineered structures on the basic reliability level. 
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Therefore need for action is given to adjust current regulations but also to broaden size 
effect regulations for strength characteristics so far not considered in European standards, 
like shear strength. Therefore further comprehensive examinations and models adapted to 
the analysed stresses are necessary.  

Considering length effects on tensile strength of finger jointed structural timber it can be 
concluded that the power parameter positively depends on the number of finger joints per 
reference length. As mentioned in section 5.1.2, MADSEN AND BUCHANAN (1985) found 
a multiple-member factor (jointed material) of kl,05 = 0.36 which is larger than the single-
member factor (unjointed material) of kl,05 = 0.29. In fact both factors are much higher 
than found in presented examinations. This indicates that in their examinations the 
variability of tensile strength in structural timber and perhaps also in that of the finger 
joints was much higher than normally observable. Comparison of Fig. 5.32 and Fig. 5.36 
shows that the results at CoV[ft,0] = 40% are nearly equal, irrespective if there are joints 
or not. Thus it can be concluded that in cases of CoV[ft,0] > 40% and / or more than three 
finger joints per lref a higher length effect in finger jointed structural timber than in 
unjointed timber elements can be expected. As these aspects and in particular the 
combination of both do not correspond to the common observations of variability and 
expected number of finger joints per reference length it is proposed to regulate length 
effects of common finger jointed structural timber equal to that of unjointed structural 
timber.  

The herein presented model allows direct consideration of the stochastic nature of 
strength characteristics, their longitudinal (or even three-dimensional) distribution and in 
particular the direct consideration of their spatial correlation structure. Hereby changes in 
variability and equicorrelation, as common, e.g. by changing timber quality, can be 
explicitly considered. The model considerations given here allow also the verification of 
different design approaches which are defined in dependency of the underlying design 
concept, e.g. deterministic, semi-probabilistic or probabilistic. It allows the 
characterisation of serial system effects of unjointed or jointed members more correctly. 
This directly enhances the abilities in modelling and optimisation of existing linear but 
also two-dimensional structural members. Furthermore these tools also support the design 
process required for the definition of new products or judgement of new structural 
concepts or structures in uncommon dimensions.  
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Nevertheless, not only serial but also parallel system actions and related effects on 
strength characteristics have to be known. Therefore the next section shows exemplarily 
parallel system effects on tensile strength parallel to grain.  

5.5 Parallel System Effects on Tensile Strength parallel to 
Grain – System Effects 

Within this section system effects of parallel arranged and common acting elements of 
unjointed and finger jointed structural timber members are addressed. Thereby it is 
assumed that the elements are only in common connected at their ends or at least in 
discrete distances. This allows to use the distribution characteristics of unjointed and 
finger jointed structural timber, found in regard to serial system action in the previous 
section 5.4, directly as input parameters for the examination of parallel system action. In 
contrast, modelling of parallel system action of continuously, flexible or rigid connected 
elements is a challenge and a topic of its own and hence not addressed within this section.  

Tab. 5.42: Characteristics of E-modulus in tension parallel to grain of unjointed structural timber 
members at lref = 2,000 mm; groups G_I to G_III  

  G_I G_II G_III 

ρequi(Et,0,ij) [--] 0.50 0.55 0.60 

E[E1,t,0] [N/mm²] 9,698 11,343 13,263 

CoV[E1,t,0] [%] 18.7% 19.3% 20.1% 

ρ(f1,t,0; E1,t,0) [--] 0.70 

In the following parallel system effects on tensile strength parallel to grain are examined. 
Therefore knowledge of E-modulus, strength and their relationship are required. At first 
the stochastic parameters expectation and coefficient of variation are calculated. The 
input parameters of previously defined groups G_I to G_III, as given in Tab. 5.35, are 
used. These parameters were originally calculated for the length of board segments (sub-
elements) and have to be now adapted to structural members with a reference length of 
lref = 2,000 mm. Thereby serial system effects on E-modulus as discussed in section 5.3.3 
are taken into account. It is assumed that parameters of E-modulus in Tab. 5.35 are 
representative for the whole sub-element with a length equal to the distance between 
weak zones. This is in fact not true as the E-modulus of clear wood zones is for sure 
higher than that of zones with knots. Nevertheless it can be simply proven that a shift of 
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E[E1,t,0] alone has no influence on the magnitude of parallel system effects. The value of 
equicorrelation which is required for calculation of E1,t,0 was taken from Tab. 5.12. Again 
the increasing homogeneity of the material in context with increasing timber quality was 
considered by adaptation of ρequi(Et,0,ij). The results are given in Tab. 5.42.  

The calculation of parallel system effects according the procedure presented in 
section 3.4.4 was done by assuming iid members and by considering immediately system 
collaps initiated by the first partial failure. A correlation coefficient between E-modulus 
and tensile strength of ρ(f1,t,0; E1,t,0) = 0.70, in line with Tab. 5.12, was used. The results of 
these calculations are further discussed as system factor ksys,ξ, defined as  

ξ

ξ
ξ

,1

,
, f

f
Nk N

sys = ,  (5.71)

with ξ = {mean, 5%-quantile} given as  

mean

meanN
meansys f

f
Nk

,1

,
, =  and 

05,1

05,
05, f

f
Nk N

sys = .  (5.72)

In section 3.4.4 it was demonstrated that model calculations are biased. The range of the 
number of parallel and common acting elements within the following examinations is 
limited by N ≤ 20. Following Fig. 3.78 to Fig. 3.80 in section 3.4.4 it can be observed that 
the absolute bias up to N ≤ 10 increases, whereas between 10 < N ≤ 20 a nearly constant 
bias is given. Thus in further examinations the bias, inherent in model calculations, was 
corrected by means of a bi-linear approach. Based on Fig. 3.78 to Fig. 3.80 the bias 
factors for the range of 10 < N ≤ 20 are given in Tab. 5.43.  

Tab. 5.43: Bias correction factors as relative deviation of model calculations to simulated values of 
mean, standard deviation and 5%-quantiles  

 mean standard deviation 5%-quantile 

ρ(E1,t,0; f1,t,0) = 0.60 ÷ 0.80 ± 0% – 3.75% + 2.0% 

CoV[f1,t,0] = (20 ÷ 40)% ± 0% – 3.00% + 3.5% 

CoV[E1,t,0] = (15 ÷ 25)% ± 0% – 3.00% + 3.0% 

The results as ksys,mean and ksys,05 in dependency of N and for groups G_I to G_III are given 
in Tab. 5.44.  
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As expected a remarkable decrease in mean values can be observed whereas the reduction 
of 5%-quantiles is moderate. This is due to the fact that parallel system action 
significantly affects the variability of system strength characteristics. Overall it can be 
concluded that 5%-quantiles of strength of herein analysed systems composed of parallel 
arranged and common acting elements with N ≤ 4 are more or less equal to the 5%-
quantiles of strength of the elements. In contrast the mean values at N = 4 show a 
reduction of 20%. In comparing the results of all three groups neither a significant 
difference in ksys,mean nor in ksys,05 can be found. This can be explained by the fact that 
CoV[f1,t,0], CoV[E1,t,0] as well as the ratio f1,t,0,mean / E1,t,0,mean are nearly the same in all 
three groups. It has to be mentioned that for all groups the same correlation coefficient 
ρ(f1,t,0; E1,t,0) was applied.  

Tab. 5.44: Parallel system effects on mean and 5%-quantiles of at the ends clamped unjointed 
structural timber members at lref = 2,000 mm in dependency of N; groups G_I to G_III; 
bias corrected  

0# FJ N = 1 2 3 4 5 10 15 20 

ksys,mean 1.00 0.88 0.82 0.79 0.77 0.70 0.67 0.65 
G_I 

ksys,05 1.00 1.00 0.98 0.97 0.95 0.87 0.86 0.85 

ksys,mean 1.00 0.88 0.83 0.79 0.77 0.71 0.68 0.66 
G_II 

ksys,05 1.00 1.00 0.99 0.97 0.95 0.88 0.86 0.85 

ksys,mean 1.00 0.88 0.83 0.80 0.77 0.71 0.68 0.66 
G_III 

ksys,05 1.00 1.00 0.99 0.97 0.95 0.88 0.86 0.86 

To examine the influences on system action caused by parameters CoV[f1,t,0] and 
ρ(f1,t,0; E1,t,0), in particular on ksys,mean and ksys,05, model calculations with the following 
parameter settings were performed: E[f1,t,0] = 30 N/mm², CoV[f1,t,0] = (20, 30, 40)%, 
E[E1,t,0] = 11,000 N/mm², CoV[E1,t,0] = 15% and ρ(f1,t,0; E1,t,0) = (0.6, 0.7, 0.8). The results 
are shown in Fig. 5.37.  

Comparable to the graphs in Fig. 3.59 and Fig. 3.61 in section 3.4.4 it is once again 
illustrated that parallel system effects on only at their ends clamped and common acting 
elements mainly affects mean strength values whereas the influence on 5%-quantiles is 
much lower. This becomes even more obvious as CoV[f1,t,0] increases and / or 
ρ(f1,t,0; E1,t,0) decreases. If CoV[f1,t,0] is only slightly higher than CoV[E1,t,0] and a high 
correlation between E-modulus and strength can be achieved even values of ksys,05 ≥ 1.00 
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are reachable, for small N. Consequently, if parallel systems of herein analysed types and 
moderate N are composed of higher quality timber associated with higher homogeneity a 
higher correlation can be achieved in combination with a lower variability in strength and 
thus a ksys,05 > 1.00 or at least a ksys,05 ≈ 1.00. Thus it is in principle possible to build up a 
structural tension member of a cross section muliple-times that of available structural 
timber by this smaller sized elements and to reach resistance on the 5%-quantile of 
strength comparable to that of the elements so far the joint at the ends of the elements 
secures uniform loading of all elements. Nevertheless, if structural members are 
composed of elements discrete connected only in large distances of arbitrary material 
quality a reduction of the 5%-quantile of strength has to be considered.  

 

Fig. 5.37: Parallel system effects on mean and 5%-quantiles of at the ends clamped unjointed 
structural timber members at lref = 2,000 mm in dependency of N, CoV[f1,t,0] and 
ρ(f1,t,0; E1,t,0); bias corrected 

Tab. 5.45: Test results taken from BRANDNER (2006) and model calculations: a comparison  

 test results model calculations 2) 

  Et,0,12 [N/mm²] ft,0 [N/mm²] ft,0 [N/mm²] 

 # mean CoV mean CoV X05 
1) mean CoV X05 

ZL_1 21# 16,030 14.0% 41.4 30.3% 24.3 41.4 30.3% 24.3 

ZL_2 10# 15,610 7.2% 32.0 19.5% 22.9 36.1 22.9% 24.3 

ZL_3 7# 15,280 6.5% 36.3 17.0% 27.1 33.8 20.1% 23.9 

ZL_4 5# 15,290 6.5% 34.3 7.8% 30.1 32.4 18.5% 23.5 
1) assuming X ~ 2pLND  
2) performed with E[Et,0,12] = 15,500 N/mm²; ρ(f1,t,0; E1,t,0) = 0.70  
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For verification of model calculations only one test series is known. The results of main 
statistics together with bias corrected model calculations are given in Tab. 5.45. As the 
variation in N and the number of specimen within each sample are very different but 
overall very small the test results have to be taken with caution. Nevertheless comparison 
of statistics of strength values with the corresponding model values show overall good 
agreement. Nevertheless, as already outlined in section 5.1.3 modelling of CoV[XN] as 
function of CoV[X1] and N can also be approximated by the averaging model. This can be 
also confirmed for CoV of E-modulus and strength of the test series analysed.  

As next step parallel effects of systems composed of finger jointed structural timber 
members are exemplarily analysed. Therefore basic parameters of groups G_I to G_III 
are used. The number of finger joints within the reference length is again modelled as 
deterministic, see sections 5.3 and 5.4. As before the serial system action on E-modulus 
in dependency of the number of finger joints and thus in dependency of the number of iid 
jointed elements has to be calculated. Therefore it is assumed that the E-modulus of 
finger joints and timber elements are identically distributed. For calculation of the tensile 
strength distribution of finger jointed structural members the expectation of finger joint 
strength was adapted to secure equal probabilities of failure in timber and joints, see 
section 5.4.2. Therefore CoV[f1,t,0,FJ] was fixed with 15%. The expectations and 
coefficients of variation of strength and E-modulus of finger jointed structural timber 
members (N = 1) are given in Tab. 5.46.  

Tab. 5.46: Characteristics of E-modulus and tension strength parallel to grain of finger jointed 
structural timber members at lref = 2,000 mm; groups G_I to G_III 

   G_I G_II G_III 

E[f1,t,0] [N/mm²] 24.2 29.4 35.5 

CoV[f1,t,0] [%] 15.8% 15.7% 15.6% 

E[E1,t,0] [N/mm²] 9,535 11,139 13,007 
1# FJ / lref 

CoV[E1,t,0] [%] 13.2% 13.7% 14.2% 

E[f1,t,0] [N/mm²] 24.2 29.4 35.3 

CoV[f1,t,0] [%] 13.7% 13.7% 13.7% 

E[E1,t,0] [N/mm²] 9,480 11,071 12,921 
2# FJ / lref 

CoV[E1,t,0] [%] 10.8% 11.2% 11.6% 
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The results of model calculations are shown in Tab. 5.47 (1# FJ / lref) and Tab. 5.48 
(2# FJ / lref). Overall the factors ksys,mean are higher than found for unjointed material 
whereas nearly the same or slightly lower values are found for ksys,05. This can be 
explained by the fact that CoV[f1,t,0] of finger jointed structural timber is lower than of 
unjointed material. Consequently system effects are lower which can be observed by a 
lesser reduction in ksys,mean but also in CoV[fN,t,0]. Thus also the 5%-quantiles are lesser 
affected by parallel system action. System factor ksys,05 evaluated at N = 4 and for 1# or 2# 
FJ / lref yields about 10% (6% ÷ 11%) reduction which is much more than the 3% found 
for unjointed material. Thus it can be concluded that parallel system effects in case of 
jointed material can be even more relevant than in unjointed material. With increasing 
number of finger joints this effect will be stronger but of diminishing significance.  

Tab. 5.47: Parallel system effects on mean and 5%-quantiles of at the ends clamped finger jointed 
structural timber members at lref = 2,000 mm in dependency of N; groups G_I to G_III; 
1# FJ / lref; bias corrected 

1# FJ N = 1 2 3 4 5 10 15 20 

ksys,mean 1.00 0.94 0.91 0.89 0.87 0.84 0.82 0.80 
G_I 

ksys,05 1.00 0.99 0.98 0.96 0.95 0.89 0.88 0.87 

ksys,mean 1.00 0.94 0.91 0.89 0.87 0.84 0.82 0.80 
G_II 

ksys,05 1.00 0.99 0.98 0.96 0.95 0.89 0.88 0.87 

ksys,mean 1.00 0.94 0.91 0.89 0.87 0.84 0.82 0.80 
G_III 

ksys,05 1.00 0.99 0.98 0.96 0.95 0.89 0.87 0.87 

Tab. 5.48: Parallel system effects on mean and 5%-quantiles of at the ends clamped finger jointed 
structural timber members at lref = 2,000 mm in dependency of N; groups G_I to G_III; 
2# FJ / lref; bias corrected 

2# FJ N = 1 2 3 4 5 10 15 20 

ksys,mean 1.00 0.95 0.92 0.90 0.89 0.86 0.84 0.83 
G_I 

ksys,05 1.00 0.99 0.98 0.96 0.95 0.89 0.88 0.88 

ksys,mean 1.00 0.95 0.92 0.90 0.89 0.86 0.84 0.83 
G_II 

ksys,05 1.00 0.99 0.98 0.96 0.95 0.89 0.88 0.88 

ksys,mean 1.00 0.95 0.92 0.90 0.89 0.86 0.84 0.83 
G_III 

ksys,05 1.00 0.99 0.98 0.96 0.95 0.89 0.88 0.87 
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Based on the findings of this section it can be concluded that even the simplest case of 
parallel system action on structural timber requires much more information for modelling 
than the examination and consideration of serial system action. In particular and beside 
the number of common acting elements N the ratio CoV[f1,t,0] / CoV[E1,t,0] and the 
correlation coefficient ρ(f1,t,0; E1,t,0) significantly affect the magnitude of system action. 
The presented results serve also as lower limit of flexible connected elements. This aspect 
can be useful in design processes were the stiffness achieveable by the connection is 
judged as being low but unknown.  
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Chapter 6 

6 Conclusions 
Within this chapter main findings of the overall work are briefly 
demonstrated and concluding remarks are made. It is the aim to provide an 
overview of the whole thesis and to illustrate the relevance of performed 
analysis as well as its impact on ongoing works and future projects. As true 
for every scientific work, at the end the list of open questions seems to be 
longer than at the beginning. In this respect an outlook with some 
recommendations for further relevant analysis and future research projects is 
given. 

6.1 General Remarks  

This thesis addresses stochastic system actions and related effects in regard to engineered 
timber products and structures. It constitutes a comprehensive work on stochastic 
modelling of system actions and effects, on material description with focus on wood and 
timber as well as their characteristics, analogies and scaling, material and product 
modelling. It aims on detailed examination and critical discussion of the state of the art in 
corresponding research fields and on extension of knowledge. The achievement of 
objectives is supported by extensive numerical modelling as well as extensions and 
elaboration of new analytical solutions. Furthermore this thesis involves comprehensively 
interpreted analysis and graphs for the assessment of serial and parallel system effects for 
various RSDMs, main distributional characteristics, load configurations and quantifies 
modelling bias for systems composed of uncorrelated as well as correlated elements. It 
also exemplifies the impact of system action on the reliability of structures. At the end 
this thesis exemplarily focuses on system characteristics of timber and engineered timber 
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system products on system levels I and II and thereby on system actions and effects on 
characteristics of density, stiffness and strength.  

As every scientific work also this thesis constitutes an intermediate caesura of analysis 
and examinations but at the same time the beginning of further research projects. To 
reduce the effort in start-up phases of future projects on herein addressed topics this thesis 
aims on providing a comprehensive state of the art literature survey supported by new 
composition, classification, densification and discussion of available knowledge and 
integration of own results, comments, completed by concluding remarks. The main 
findings and conclusions in regard to these surveys were already and in detail outlined in 
the corresponding sections. In the following a brief summary of main addressed research 
fields and outcomes is presented. 

6.2 Brief Summary and Conclusions in regard to Research 
Fields addressed 

6.2.1 Stochastic Material Models and Advances  

In chapter 3 the three main stochastic material theories, WEIBULL’s weakest link theory 
(WLT; WEIBULL, 1939), the ideal (elastic) plastic material model and DANIELS’ fibre 
bundle model (FBM; DANIELS, 1945) are presented. During these analyses derivation of 
theories together with their assumptions and constraints are discussed and their 
applicability are exemplarily demonstrated. Already in chapter 2 the stochastic limit 
theory of extremes (EVT) was introduced. Due to the limited applicability of EVT, in 
principle solely for systems of infinite size, efforts have been made to achieve several 
successful adaptations and advances of the three stochastic theories considered. These 
enable a more realistic mechanic-stochastic description and modelling of materials and 
structures. In regard to the achieved advances a comprehensive review together with 
several notes is provided in section 3.2.4.  

It can be concluded that the three stochastic material (strength) theories constitute the 
fundamental basis for further development and progress. Beside the fact that all models 
revert to ideal material conditions they clearly express the necessity to consider stochastic 
approaches in material modelling. This consideration enables the examination of effects 
which cannot be explained by mechanics alone. The most remarkable progress in 
advancing the theories was made by the combination of all three approaches to serial-
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parallel material models (s-p_FBMs) together with extensions in regard to material 
behaviour as well as explicit consideration of the interaction between system elements, 
over the interface of a matrix material or by friction. Furthermore, the system behaviour 
after partial failures, in particular the redistribution of stresses, got in focus by definition 
and intensive analysis of load sharing rules (GLS vs. LLS).  

Obviously there are still many open questions and model constraints that require more 
detailed view and more detailed judgement, like the serial and parallel system behaviour 
in case of LND as RSDM of element strength and stiffness characteristics, the inclusion 
of spatial correlation in conjunction with general stochastic processes, the interaction of 
multi-variate and / or multi-modal RSDMs and the necessity to define some simplified 
equations applicable in daily and / or advanced timber engineering.  

6.2.2 Stochastic Modelling of serial and parallel System Action and Effects 

The main part of chapter 3, in particular section 3.3 and 3.4, are dedicated to extensive 
analysis of stochastic effects of systems composed of serial and / or parallel acting 
elements. The examinations are made by means of comprehensive stochastic simulation 
studies on systems composed of stochastic elements. These stochastic elements represent 
realisations of iid or identical but correlated random variables X1 with RSDM ND, 
2pLND or 2pWD. For iid X1 ~ WD numerous analytical solutions for the description of 
serial as well as parallel system actions are available. Thus the focus of this thesis is on 
elements X1 following ND and in particular 2pLND.  

In general, 2pLND is a very common distribution model, representative for numerous 
physical characteristics. According the central limit theorem 2pLND is the analytical 
RSDM of multiplicative processes and also very common for modelling of characteristics 
of hierarchically structured materials like wood and timber. Nevertheless as analytical 
solutions for the stochastic description of serial and parallel system actions of finite 
system sizes are not available the aim of these sections is not only on analysing, 
demonstrating and quantifying of system effects but also on the definition of an 
approximative setting, adequate and accurate enough for engineering purposes.  

In section 3.3, dedicated to serial systems, a heuristic approach is defined and verified 
successfully. This approach enables perfect adaptability to distribution characteristics of 
serial systems composed of iid elements X1 ~ 2pLND as relative function of CoV[X1], 
system size M ≤ 1,000 and the analysed distribution characteristic at M = 1, see 
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equ. (3.102). As this approach only depends on two parameters great efforts were made to 
define adequate estimators by considering the limiting behaviour of this proposal, see 
Tab. 3.2. A benchmark analysis with approximative methods for minimas taken from 
literature shows that the derived approach works adequately and even better than its 
competitors, even for extreme quantiles, provided that M ≤ 50 and CoV[X1] ≤ 50%. 

The same approach is also applied for modelling of serial systems composed of identical 
but correlated elements X1 ~ 2pLND, see section 3.3.3. Again and with the adaptations for 
parameter estimations provided by equ. (3.127) and (3.128) satisfactory results for system 
strength distributions can be easily derived so far CoV[X1] ≤ 50%, 0.00 ≤ ρX ≤ 0.75 and 
M ≤ 100. 

In section 3.4, which addresses parallel systems, again the same approach is applied, 
adapted and successfully verified for arbitrary system configurations of linear-elastic and 
iid elements with correlated strength and E-modulus following 2pLND. Hereby the 
conservative case of system strength associated with the first partial failure was analysed, 
see in particular section 3.4.4. 

Overall, the new modelling approach and corresponding parameter estimators is proven 
to be successful and suitable for the computation of strengths of serial and parallel 
systems. Furthermore, numerous graphical displays provide the ability to perform bias 
correction if higher accuracy in model calculations is required.  

6.2.3 Hierachical Structure of Wood and Timber 

A review and examinations regarding the hierarchical structure of wood and timber as 
natural materials are the focus of chapter 4. At the beginning of this chapter basics of 
scaling and hierarchically organised systems are presented and interpreted. The core of 
this chapter focuses on a comprehensive introduction to materials wood and timber. By 
means of a new developed concept of classification into natural and technical hierarchies 
it was aimed to provide a comprehensive summary of literature together with own 
interpretations, relevant for each hierarchy and the understanding of the material structure 
and interaction of tissues and growth characteristics. As a consequence the complexity 
but also the material inherent organisation and structure become clearer. This aspect is in 
particular intensified by some brief studies on analogies between hierarchies. Hereby 
different topics like structure, organisation, failure behaviour but also system actions are 
addressed. Especially the relevance of differentiation in effects due to scaling (scale 
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transition) and in effects due to changes in the system structure and action within the 
same scale or hierarchy is outlined. Therefore scaling on tensile characteristics parallel to 
grain on wood and timber (tissues) is exemplified and the required differentiation in 
effects within (system effects) and between hierarchies (scaling effects) is demonstrated 
qualitatively and quantitatively. At the end the relevance of these examinations is again 
shown for all three system levels by following the definitions made in chapter 1, namely 
level I: material, level II: system products, and level III: system structures.  

Overall, this chapter provides essential knowledge for a comprehensive understanding of 
the material structure and performance of wood and timber. Furthermore the information 
serves as basis for the examination of material parameters (e.g. growth characteristics) 
and assessment of their relevance for modelling of physical properties of the material on a 
certain hierarchy, e.g. system products and structures. The notes, discussions and 
interpretations serve also as basis for a more general understanding of hierarchical 
structured materials, the genius of nature, as support for understanding of fracture 
behaviour, for dedection of preferred stresses, and for finding of optimised combinations 
and activation of these tissues, appropriate for current products as well as the design of 
new system products and load bearing structures.  

6.2.4 Serial and parallel System Effects on Timber and Engineered Timber 
System Products 

Conclusions and final remarks in this section are taken from chapter 5. This chapter can 
be regarded as the core part of this thesis. It is dedicated to exemplarily demonstrate 
system actions and effects as inherent in the material structure or utilisable by the design 
of (smart) engineered timber system products and structures. Therefore at first the 
definition of a basic unit as (representative) element and its geometry and physical 
properties is required.  

Starting at the natural hierarchies of wood and timber differentiation in global (type [1]) 
and local growth characteristics (type [2]) is made. Not only the spatial distribution, with 
focus on knots and knot clusters, but also the spatial correlation of growth characteristics 
as well as physical characteristics like density, E-modulus and strength properties are 
extensively examined. Based on a comprehensive data analysis of own and literature 
results together with data preparation allowing common analysis it was not only possible 
to define RSDMs of geometric and physical properties but also to quantify their 
stochastic nature. This is done by providing distribution parameters, correlation 
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coefficients for the description of relationships between different properties and by the 
description of spatial correlation structure with focus on longitudinal direction. Thereby 
also the influence of scale transition on spatial correlation is briefly discussed.  

For preparation of the analysis and for demonstration of the state of the art concerning 
serial and parallel system effects in timber engineering literature surveys are presented. 
They include introductory lessons and classification as well as evaluation and discussion 
of data from literature which results in classification schemas. These surveys are provided 
for serial (volume) and parallel (system) effects separately, see section 5.1.2 and 5.1.3, 
respectively.  

Section 5.2 is dedicated to system effects on density. This physical property mainly 
concerns the computation of bearing capacity of local placed fasteners like self-tapping 
screws or dowel-type fasteners. A simple model based on probability theory is 
demonstrated to work perfect for evaluation of the density of system products or as input 
parameter for derivation of the resistance of fasteners simply by considering global 
density as arithmetic (weighted) mean of interacting and involved elements. In brief also 
the relevance of density as indicting property for estimating the local bearing behaviour 
of fasteners and consideration of stress distribution of fasteners along their axis if placed 
in laminar products is demonstrated and discussed. 

The analysis of the impact of serial and parallel system action on stiffness characteristics 
is dedicated to section 5.3. Descriptions of arithmetic and harmonic means are presented 
and the last one adapted also for correlated random variables. Based on this theoretical 
background serial and parallel system effects on stiffness characteristics and their 
interaction are analysed for unjointed as well as finger jointed structural timber and 
engineered timber system products (level I & II). A two-level hierarchical model 
associated with material inherent equicorrelation is considered. Thereby results relevant 
for material modelling as well as for stability design are derived and critically analysed 
also in respect to current regulations and published recommendations.  

In sections 5.4 and 5.5 serial and parallel system effects on the tensile strength parallel to 
grain of unjointed and finger jointed structural timber and engineered timber system 
products are addressed. Based on a stochastic model which includes not only the 
equicorrelation of a two-level hierarchical model but also the stochastics of the 
longitudinal distribution and extension as well as representation of weak zones is 
presented and further developed by means of the modelling approaches established in 
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chapter 3. Strength and stiffness characteristics of boards, derived by means of published 
regression equations for board segments and consideration of system effects by herein 
derived models, are critically compared with current regulations and publications. Size 
factors for unjointed as well as finger jointed structural timber members are deduced and 
simplified power models are presented. Three different definitions for minimum 
requirements on finger joint tensile strength are examined. One of them is proposed for 
general application and further used for the examination of parallel system effects on 
unjointed and finger jointed structural timber members which are at the ends clamped.  

Overall, chapter 5 represents an important chapter for material and product modelling. 
Several times it demonstrates the inclusion of stochastic nature and its impact on 
specifying material and product characteristics. The comprehensive analysis of published 
and own data delivers the required input for stochastic characterisation of the material and 
supports background knowledge for the assessment of relationships between material 
characteristics and timber quality. The stochastic parameters presented are provided if 
possible with parameter ranges and support of additional information on their relationship 
to material quality. Examinations and examples are demonstrated with the aim to give an 
approach overall and general applicable to material and structure modelling. Thereby the 
stochastic theory elaborated and provided in chapter 2 is applied. The overall approach is 
not restricted to longitudinal characterisation of the material although this is of primary 
interest in timber engineering.  

6.3 Recommendations for System Products and Structures 
with Focus on Engineered Timber System Products 

In the following sections some aspects relevant for design of serial and parallel systems 
are briefly demonstrated.  

6.3.1 Recommendations in regard to serial Systems 

 serial acting elements can be only arranged one-dimensional;  

 the material behaviour (elastic vs. plastic; brittle vs. ductile) has no significant 
influence on serial system action;  

 in case of density the statistical distribution of global density of systems follows 
the averaging approach, irrespective of the arrangement and interaction of 
elements;  



Conclusions 

412 

 in case of E-modulus serial system action can be described by means of the 
harmonic mean following the principle of serial acting springs;  

 concerning system strength the main parameters influencing serial system action 
are (i) the variability of element’s strength, expressed e.g. by CoV[X1], (ii) the 
number of serial acting elements, (iii) the serial system size M and (iv) the 
correlation, if relevant;  

 it is recommended to approximate the distribution of strength of serial systems 
composed of iid or identical distributed but correlated elements X1 ~ 2pLND by 
means of XM ~ 2pLND but adapted distribution parameters; it is shown that EVT 
by means of GD gives higher bias even if M = 1,000;  

 simulation data of serial systems composed of correlated elements X1 ~ 2pLND 
showed that system strength in case of ρX ≤ 0.5 is only minor, but in case of 
ρX ≥ 0.5 remarkable affected by correlation; in case of minor correlation 
(ρX < 0.5) these serial systems can be approximated by means of uncorrelated 
elements;  

 for serial effects of unjointed timber members or in general of unjointed materials 
characterised by equicorrelated characteristics it was demonstrated that the 
impact of serial action on 5%-quantiles of strength is even higher than on the 
average values so far equicorrelation is low; this is due to the fact that variability 
between timber elements is unaffected by serial action which only influencies the 
variability within timber elements;  

 for serial effects of finger jointed timber members or in general of jointed 
materials characterised by equicorrelated characteristics it was demonstrated that 
the number of joints per reference length has to be considered; thereby serial 
system action affects both, the variability within elements and the variability 
between jointed members; in case of strength as well as in cases were stiffness 
characteristics of joints and jointed materials are different also a mixing of 
distributions has to be considered.  

6.3.2 Recommendations in regard to parallel Systems  

 modelling of parallel system actions and effects is much more complex than that 
of serial systems;  

 parallel acting elements can be arranged one- or two-dimensional;  
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 parallel system action and thus the interaction between parallel arranged and 
acting elements is decisively influenced by the correlation of strength and 
stiffness of each element;  

 the material behaviour has a remarkable influence on parallel system action;  

 in case of density the statistical distribution of global density of systems follows 
the averaging approach, irrespective of the arrangement of elements;  

 in case of E-modulus parallel system action can be described by means of the 
averaging approach;  

 the crucial parameters influencing parallel system action on strength are again (i) 
the variability of element’s strength, expressed e.g. by CoV[X1], (ii) the number 
of parallel acting elements, (iii) the parallel system size N, (iv) the arrangement of 
the elements (one-dimensional / two-dimensional), (v) the correlation between 
strength and stiffness of the elements expressed by ρ(f1, E1), (vi) the amount of 
plasticity, (vii) the material fracture or yielding behaviour in general and, if any, 
(viii) the correlation between parallel acting elements (but here taken equal to 
zero);  

 parallel system action on ultimate system strength is decisively determined by the 
amount of load sharing between the elements after partial failures, with the 
extreme cases GLS and ELLS; hereby also differentiation in load and 
deformation controlled stressing of systems is required;  

 strength characteristics of real parallel acting systems differ remarkably from 
ideal parallel systems, in particular if focusing on strength;  

 maximum gain in system effects in parallel systems composed of identical 
distributed elements is rarely equal or higher than predicted by the averaging 
model, even in case of GLS;  

 maximum resistance of parallel systems is restricted by the minimum of ultimate 
strains of still surviving elements;  

 the higher the correlation between strength and stiffness within elements and thus 
the closer the coincidence of both characteristics the higher the gain in system 
effects or the lower the loss in system strength;  

 elements with a high variability in strength and thus with a high amount of 
potential differences show a high potential of homogenisation and thus a 
remarkable gain in strength characteristics or a lesser decrease in strength in case 
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of parallel system action; this also coincides with a high number of partial 
failures with the potential of redistribution and further increase in resistance;  

 an increase on 5%-quantiles of strength due to parallel system action does not 
always coincide with an increase in reliability, in particular if the expectation of 
system strength in comparison to that of the elements has remarkable decreased, 
shifting the mass of resistance closer to the action;  

 a low variation in E-modulus, expressed e.g. by a low CoV[E1], increases the 
amount of system effects, see e.g. DANIELS’s FBM and the assumption that 
CoV[E1] = 0; this aspect is in particular of interest as the effort in classification of 
material according stiffness and thus also in securing a certain amount of 
CoV[E1] is relatively low;  

 it was shown that the requirement of CoV[f1] / CoV[E1] ≥ 1.00 has to be secured 
to prevent an increase of variation in system strength in case of small N and in 
general to design systems efficiently in regard to parallel system action;  

 even a small amount of plasticity increases the achievable system strength 
significantly; this is due to the fact that by same or comparable strength or 
maximum stress an increase in ultimate strain raises the potential of increased 
stress transfer before the first or further partial failures;  

 strength of two-dimensional parallel systems significantly affects the gain in 
system effects, on one hand by providing edge and corner elements extra 
neighbours for stress redistribution but on the other hand by increasing the ability 
that neighboured elements fail and induce extra stress transfer in particular in 
case of ELLS and mainly on affecting core elements;  

 it was observed that the expectation of system E-modulus E[EN,max] at the point of 
maximum system strength is only marginally smaller than E[E1] = E[EN,1];  

 in real materials and structures and in particular in hierarchical organised 
materials and structures parallel, sub-serial systems have to be considered; 
thereby the system arrangement (one- or two-dimensional in parallel plus one-
dimensional in serial), the type and amount of connection between the elements 
(rigid vs. flexible; discrete vs. continuously) and the way how the system is 
stressed (parallel or perpendicular to the main axis; tension compression, shear or 
bending; stress distribution in all three dimensions) have to be considered.  
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6.4 Recommendations for further Research Projects 

In the following some recommendations for the accomplishment of further continuing or 
intensifying research projects in respect to timber engineering and system levels I, II and 
III are listed:  

 so far only parallel system actions on tensile strength parallel to grain and 
elements clamped at the ends were analysed; it is recommended to enlarge these 
analysis to continuously connected elements by considering a multi-modal 
approach for accounting the composition of reference structural timber segments 
of weak zones, zones with intermediate knots and knot free (clear wood) zones, 
as well as by considering the probability of occurrence of these zones in parallel; 
furthermore it is recommended to apply the same procedure for systems stressed 
in compression parallel to grain or in shear;  

 based on recommendations above it is suggested to analyse the interaction of 
parallel, sub-serial systems stressed in tension, compression and shear as e.g. 
given in case of bending;  

 based on models above it is recommended to enlarge stochastic material 
descriptions to residual stress configurations, e.g. tension and compression 
perpendicular to grain as well as stresses applied on orthogonal or arbitrary 
layered laminar products;  

 as already outlined in the preface and chapter 1 of this thesis the examined 
system considerations are also helpful and applicable to model the system 
behaviour of bearing structures and / or of joints composed of a system of 
connectors;  

 it may be also of importance and interest for future research projects to verify the 
suggestions and qualification / quantification of system and scaling effects in 
regard to scaling and hierarchical modelling of wood and timber tissues.  
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8 Annex 

8.1 Additional Data to Chapter 3 
 

Tab. 8.1: Estimates of parameter αξ for various characteristics of serial systems composed of iid 
elements Xi ~ 2pLND based on simulation results (see section 3.3.2) 

p-values CoV[X1]obs 

0.025 0.050 0.125 0.250 0.500 0.750 0.875 0.950 0.975

mean stand. 
dev. 

CoV 

05.1% 0.178 0.168 0.160 0.150 0.143 0.140 0.139 0.138 0.139 0.138 0.812 0.679 

10.0% 0.341 0.342 0.323 0.306 0.292 0.285 0.281 0.280 0.281 0.279 0.958 0.686 

15.0% 0.490 0.502 0.482 0.454 0.427 0.416 0.417 0.417 0.419 0.409 1.074 0.675 

20.5% 0.825 0.758 0.651 0.615 0.585 0.556 0.546 0.547 0.554 0.545 1.181 0.659 

24.8% 0.816 0.758 0.772 0.752 0.707 0.693 0.688 0.693 0.703 0.670 1.337 0.676 

30.4% 1.179 1.030 0.966 0.888 0.840 0.819 0.815 0.816 0.825 0.791 1.422 0.654 

34.9% 1.345 1.253 1.109 1.004 0.966 0.948 0.948 0.953 0.961 0.912 1.569 0.667 

40.5% 1.412 1.341 1.200 1.159 1.097 1.078 1.069 1.068 1.082 1.023 1.662 0.652 

44.5% 1.551 1.513 1.356 1.290 1.233 1.204 1.200 1.225 1.230 1.148 1.814 0.665 

50.0% 1.807 1.643 1.525 1.428 1.363 1.329 1.318 1.343 1.332 1.257 1.889 0.650 

54.0% 1.957 1.855 1.636 1.545 1.462 1.452 1.449 1.454 1.473 1.362 2.038 0.663 

59.2% 1.856 1.816 1.700 1.670 1.607 1.557 1.578 1.592 1.602 1.467 2.137 0.661 

63.7% 1.817 1.824 1.864 1.773 1.677 1.651 1.662 1.682 1.677 1.543 2.200 0.657 

69.9% 2.352 2.172 2.007 1.918 1.804 1.775 1.769 1.807 1.815 1.644 2.272 0.646 

73.1% 2.386 2.407 2.231 2.027 1.887 1.850 1.841 1.869 1.906 1.719 2.388 0.659 

80.0% 2.431 2.296 2.173 2.059 1.986 1.958 1.986 1.951 1.984 1.799 2.425 0.640 

83.4% 2.633 2.449 2.320 2.215 2.075 2.009 2.025 2.057 2.111 1.866 2.535 0.655 

88.7% 2.520 2.550 2.305 2.221 2.139 2.087 2.112 2.175 2.240 1.935 2.588 0.649 

97.9% 3.036 2.781 2.567 2.454 2.289 2.241 2.210 2.247 2.242 2.009 2.582 0.628 

97.7% 3.041 2.851 2.511 2.397 2.356 2.331 2.362 2.407 2.405 2.120 2.772 0.646 

 

 



Annex  

456 

 

 

 

 

 

Tab. 8.2: Estimates of parameter βξ for various characteristics of serial systems composed of iid 
elements Xi ~ 2pLND based on simulation results (see section 3.3.2)  

p-values CoV[X1]obs 

0.025 0.050 0.125 0.250 0.500 0.750 0.875 0.950 0.975

mean stand. 
dev. 

CoV 

05.1% 0.116 0.138 0.170 0.221 0.302 0.391 0.475 0.573 0.643 0.328 0.515 0.553 

10.0% 0.124 0.134 0.168 0.211 0.286 0.372 0.456 0.547 0.609 0.321 0.473 0.537 

15.0% 0.133 0.138 0.169 0.215 0.299 0.398 0.464 0.555 0.617 0.340 0.481 0.569 

20.5% 0.091 0.111 0.162 0.206 0.278 0.390 0.482 0.577 0.622 0.339 0.501 0.635 

24.8% 0.130 0.160 0.177 0.213 0.296 0.387 0.464 0.543 0.583 0.350 0.461 0.580 

30.4% 0.097 0.129 0.163 0.217 0.298 0.395 0.472 0.563 0.612 0.362 0.495 0.660 

34.9% 0.098 0.119 0.165 0.226 0.303 0.394 0.466 0.548 0.601 0.367 0.471 0.630 

40.5% 0.111 0.130 0.180 0.219 0.302 0.392 0.474 0.572 0.620 0.380 0.493 0.695 

44.5% 0.114 0.128 0.175 0.220 0.296 0.390 0.465 0.526 0.584 0.376 0.465 0.656 

50.0% 0.104 0.130 0.168 0.216 0.292 0.385 0.464 0.529 0.606 0.381 0.487 0.720 

54.0% 0.105 0.123 0.172 0.219 0.301 0.382 0.453 0.537 0.585 0.388 0.467 0.687 

59.2% 0.128 0.143 0.184 0.218 0.289 0.387 0.440 0.515 0.574 0.392 0.474 0.717 

63.7% 0.148 0.160 0.177 0.222 0.305 0.397 0.462 0.534 0.602 0.412 0.494 0.736 

69.9% 0.108 0.133 0.173 0.215 0.298 0.385 0.460 0.521 0.578 0.412 0.513 0.816 

73.1% 0.115 0.123 0.158 0.214 0.304 0.400 0.480 0.558 0.595 0.426 0.502 0.767 

80.0% 0.122 0.145 0.181 0.230 0.305 0.396 0.452 0.569 0.615 0.436 0.537 0.885 

83.4% 0.114 0.139 0.175 0.218 0.306 0.415 0.484 0.557 0.586 0.448 0.527 0.837 

88.7% 0.132 0.141 0.192 0.236 0.315 0.420 0.484 0.545 0.566 0.459 0.545 0.884 

97.9% 0.105 0.130 0.169 0.211 0.297 0.391 0.477 0.556 0.635 0.464 0.597 1.066 

97.7% 0.111 0.133 0.188 0.236 0.303 0.389 0.445 0.508 0.573 0.447 0.536 0.931 
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8.2 Additional Data to Chapter 4 
 

Tab. 8.3: Characteristics of wood and timber (tissues) on different hierarchical levels: literature 
survey 

source 
[--] 

tissue 
[--] 

u 
[%] 

Et,0 
[N/mm²]

Et,90 
[N/mm²] 

G090 
[N/mm²]

ft,0 

[N/mm²]

lignin 

BERGANDER AND SALMÉN (2002) 
theor.; 

orthotropic 
12% 2,000 1,000 600 -- 

COUSINS (1976); BODIG AND JAYNE 

(1982) 
tests; isotropic 12% 2,000 2,000 800 -- 

COUSINS (1976); COUSINS ET AL. (1975) tests; isotropic dry 5,500 3,100 1,200 -- 

PERSSON (2000) -- 12% 2,750 2,750 -- -- 

BURGERT (2007); SALMÉN (2004) -- 10÷20% 2,000 1,000 600 -- 

hemicellulose 

BERGANDER AND SALMÉN (2002) theor. 12% 5,500 2,150 1,400 -- 

CAVE (1978) 
model 

parameters 
-- -- 3,400 -- -- 

COUSINS (1978) tests 12% 7,500 -- -- -- 

PERSSON (2000) -- 12% 16,000 3,500 1,500 -- 

BURGERT (2007) -- dry 4,000 800 1,000 -- 

SALMÉN (2004); Et,0: OLSSON (2003) 
softened model 

p. 
12% 2,000 800 1,000 -- 

cellulose, crystalline (cellulose I; native cellulose) 

ASHBY ET AL. (1995) -- -- 100,000 -- -- 1,000 

AZIZI-SAMIR ET AL. (2004) theor. -- -- -- -- 10,000 

BLEDZKI AND GASSAN (1999) -- -- 250,000 -- -- 17,800 

CAVE (1978) model p. -- -- 18,000 -- -- 

CAVE (1978); MARK (1967); 
TASHIRO AND KOBAYASHI (1991) 

molecular 
model 

-- -- 17,700÷27,000 -- -- 
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source 
[--] 

tissue 
[--] 

u 
[%] 

Et,0 
[N/mm²] 

Et,90 
[N/mm²] 

G090 
[N/mm²] 

ft,0 

[N/mm²] 

GILLIS (1969) theor. -- 246,000 -- -- -- 

GILLIS (1969) theor. -- 175,000 -- -- -- 

KROON-BATENBURG ET AL. 
(1986) 

crystalline 
model 

-- 319,000 -- -- -- 

GLOS (1999) -- -- -- -- -- 7,500 

KROON-BATENBURG ET AL. 
(1986) 

tests; I + II -- 134,000÷136,000 -- -- -- 

MARK (1967); TASHIRO AND 

KOBAYASHI (1991) 
molecular 

model 
 -- -- 4400÷5100 -- 

MARK (1983) theor. -- 250,000÷300,000 -- -- -- 

MARK AND GILLIS (1970) -- -- 137,000 27,700 4,490 -- 

MATSUO ET AL. (1990) ; 
NISHINO ET AL. (1995); 

SAKURADA ET AL. (1962); 
TASHIRO AND KOBAYASHI 

(1991) 

tests -- 135,000÷140,000 -- -- -- 

MATSUO ET AL. (1990); NISHINO 

ET AL. (1995); SAKURADA ET AL.
(1962); TASHIRO AND 

KOBAYASHI (1991) 

molecular 
model 

-- 168,000 -- -- -- 

MICHELL (1989) -- -- 250,000 -- -- -- 

NISHINO ET AL. (2004) -- -- -- -- -- 17,800 

NISHINO ET AL. (1995) tests -- 128,000 (138,000) -- -- -- 

NISHINO ET AL. (1995) -- -- 138,000 -- -- -- 

PERSSON (2000) 
model 

parameter
-- 130,000÷170,000 15,000÷20,0003,000÷6,000 -- 

ROBERTS ET AL. (1995) -- -- -- -- -- -- 

SAKURADA ET AL. (1962) theor. 
est. 

-- 134,000÷137,000 -- -- -- 

WATERHOUSE (1984) theor. -- -- -- -- 19,000 
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source 
[--] 

tissue 
[--] 

u 
[%] 

Et,0 
[N/mm²] 

Et,90 
[N/mm²] 

G090 
[N/mm²] 

ft,0 

[N/mm²] 

SALMÉN (2004); BURGERT 

(2007); MARK (1967); 
WATANOBE AND 

NORIMOTO (2000) 

molecular 
model & tests 

12÷20% 134,000 27,200 
4,400 

(13,000) 
-- 

TASHIRO AND KOBAYASHI 

(1991) 
molecular 

model 
12% 120,000÷170,000 1,800÷30,500 3,000÷5,100 -- 

cellulose, amorph 

WATANOBE AND 

NORIMOTO (2000) 
-- -- 110,000 22,300 10,700 -- 

cellulose, fibrils 

BEECHER (2007) -- -- 145,000 -- -- 7,500 

MARK (2002) -- -- 140,000 14,000÷46,000 -- -- 

MICHELL (1989) -- -- 70,000 -- -- -- 

STEELE (2007) -- -- 150,000 -- -- 10,000 

cell wall 

EDER ET AL. (2009) 
early- & 

latewood; 
adult wood  

-- 22,000 -- -- 400÷900 

GINDL AND SCHÖBERL 

(2004); GINDL ET AL. 
(2004) 

S2; Ec,0 15% 13,500÷21,300 -- -- -- 

ORSO ET AL. (2006) -- dry 28,000 -- -- -- 

ORSO ET AL. (2006) -- 12%÷wet 20,000÷30,000 -- -- 500÷1,000 

ORSO ET AL. (2006) 
Em,0; 

cantilever 
-- 

26,000÷29,000 
(8÷13%) 

-- -- -- 

WIMMER AND LUCAS 

(1997) 
S2 -- 19,700 (15%) -- -- -- 

WIMMER AND LUCAS 

(1997) 
CML -- 6,890 (21%) -- -- -- 

fibre 

ASHBY ET AL. (1995) -- -- 35,000 -- -- -- 
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source 
[--] 

tissue 
[--] 

u 
[%] 

Et,0 
[N/mm²] 

Et,90 
[N/mm²] 

G090 
[N/mm²] 

ft,0 

[N/mm²] 

ANDER ET AL. (2003) 
kraft pulp; 
latewood 

-- 27,425 -- -- 899÷1,452 

BLEDZKI AND GASSAN (1999) pulp -- 40,000 -- -- -- 

BURGERT AND FRÜHMANN 

(2003) 
RL-cut slices 12% 6,000 -- -- 42 

BURGERT AND FRÜHMANN 

(2003) 
TL-cut slices 12% 2,000÷10,000 -- -- -- 

BURGERT ET AL. (2005A); 
BURGERT ET AL. (2005B) 

-- 15% 12,000÷31,000 -- -- -- 

EDER ET AL. (2008A) 
earlywood; adult 

wood  
wet -- -- -- 553 (6%) 

EDER ET AL. (2008A) 
transition wood; 

adult wood  
wet -- -- -- 706 (17%) 

EDER ET AL. (2008A) 
latewood; adult 

wood  
wet -- -- -- 799 (23%) 

EDER ET AL. (2008B) 
earlywood; 
sapwood  

wet 31,800 (24%) -- -- 760 (26%) 

EDER ET AL. (2008B) latewood; sapwood wet 25,700 (14%) -- -- 861 (12%) 

EDER ET AL. (2009) 
earlywood; adult 

wood  
-- 2,500÷6,000 -- -- 50÷200 

EDER ET AL. (2009) 
latewood; adult 

wood  
-- 16,000 -- -- 600 

GLOS (1999) tracheids -- -- -- -- 1,200 

KIM ET AL. (1975) tests -- -- -- -- 1,130 

MICHELL ET AL. (1978); 
MICHELL AND WILLIS (1978) 

softwood; kraft-
pulp 

-- 40,000 -- -- 1,000 

NAVI ET AL. (1995) 
Sitka spruce; TL-

cut slices 
12% 1,200÷4,100 -- -- -- 

PAGE ET AL. (1977) tests -- 76,900 -- -- -- 

PERSSON (2000) earlywood -- -- -- -- -- 
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source 
[--] 

tissue 
[--] 

u 
[%] 

Et,0 
[N/mm²] 

Et,90 
[N/mm²] 

G090 
[N/mm²] 

ft,0 

[N/mm²] 

PERSSON (2000) transition wood -- -- -- -- -- 

PERSSON (2000) latewood -- -- -- -- -- 

WATERHOUSE (1984) theor. -- 175,000 -- -- 1,350 

WATHÉN (2006) earlywood -- 14,800 -- -- 604 

WATHÉN (2006) latewood -- 19,684 -- -- 1,045 

WATHÉN (2006) 
paper; zero-

span-strength
-- -- -- -- 

155÷205 
(7÷10%) 

clear wood 

ASHBY ET AL. (1995) -- -- 9,000 -- -- 240 

BLEDZKI AND GASSAN 

(1999) 
-- -- 10,000 -- -- -- 

CARRINGTON (1923); 
HEARMON (1948) 

-- 12% 13,500÷16,700 400÷900 100÷850 -- 

DILL-LANGER ET AL. 
(2003) 

-- 12% -- -- -- 139(14%) 

DILL-LANGER ET AL. 
(2003) 

-- 12% -- -- -- 128 (11%) 

EBERHARDSTEINER (2002) -- 12% 10,000÷15,000 -- -- 70÷100 

EBERHARDSTEINER (2002) -- -- 11,000÷15,000 -- -- 70÷100 

GLOS (1999) -- -- -- -- -- 100 

KEUNECKE ET AL. (2008) -- 12% 12,800 (9%) 
397 (tan) 625 

(rad) (10÷20%) 
587÷617 -- 

NIEMZ (1993) -- 12% 10,000 -- -- 90 

SACHSSE (1984) -- 12% 10,800 -- -- 88 

SONDEREGGER AND 

NIEMZ (2004) 
-- 12% 14,510 (30%) -- -- 95 (21%) 

WAGENFÜHR (2006) -- 12% 11,000 -- -- 90 
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