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Abstract

The direct integration of Computer Aided Geometric Design (CAGD) models into a nu-
merical simulation improves the accuracy of the geometrical representation of the problem
as well as the efficiency of the overall analysis process. In this dissertation, the comple-
mentary features of isogeometric analysis and boundary integral equations are combined
to obtain a coalescence of design and analysis. Following the isogeometric concept, the
functions used by CAGD are employed for the simulation. The advantage of boundary in-
tegral equations is that the related numerical methods, namely the Nyström and boundary
element method, are based on a boundary representation. This holds equally true for the
most popular CAGD models in engineering design. An independent field approximation
is applied to obtain a more flexible and efficient formulation. In addition, a procedure
is presented which allows a stable analysis of trimmed geometries and a straightforward
positioning of related collocation points. The convergence behavior of the suggested numer-
ical methods is studied for problems governed by the Laplace and Lamé-Navier equations.
Several practical examples demonstrate the characteristics and benefits of the proposed ap-
proach as well as its applicability to complex geometries. In particular, independent field
approximation improves the computational efficiency and reduces the storage requirements
without any loss of accuracy. The flexibility of the isogeometric Nyström method is shown
by performing local refinement of tensor product surfaces. The proposed methodology per-
mits a seamless integration of the most common design models into an analysis of linear
potential and elasticity problems.

Kurzfassung

Das direkte Einbinden von Computer Aided Geometric Design (CAGD) Modellen in ei-
ne numerische Simulation verbessert sowohl die Genauigkeit der Geometriedarstellung als
auch die Effizienz des gesamten Simulationsprozesses. In dieser Arbeit werden die isogeo-
metrische Analyse und die Randintegralgleichungen miteinander vereint, um eine nahtlose
Überführung vom CAGD Modellen in eine Simulation zu gewährleisten. Die grundlegen-
de Idee der isogeometrischen Analyse besteht darin, die Funktionen des CAGD Modells
auch für die Simulation anzuwenden. Numerische Methoden wie die Nyström- und Ran-
delementmethode, welche auf Randintegralgleichungen basieren, bieten den Vorteil, dass
sie lediglich die Darstellung der Oberfläche eines Problems benötigen. Dies trifft auch auf
die meisten CAGD Modelle zu. Zusätzlich werden die verschiedenen Feldgrößen unabhän-
gig voneinander approximiert, um die Effizienz und Flexibilität der Methode zu erhöhen.
Außerdem wird ein Verfahren vorgestellt, welches eine Analyse mit geschnittenen Geo-
metrien ermöglicht. Das Konvergenzverhalten von Laplace und Lamé-Navier Problemen
wird untersucht. Die Simulation von praktischen Problemen veranschaulicht den vermin-
derten Speicherbedarf, die erhöhte Effizienz und die Anwendbarkeit für komplexe Geo-
metrien. Weiters erlaubt die isogeometrische Nyström-Methode das lokale Verfeinern von
Tensorprodukt-Flächen. Die vorgestellte Simulationsmethode ermöglicht ein Integrieren
der am weitest verbreiteten CAGD Modelle in eine Analyse von linearen Potential- und
Elastizitätsproblemen.
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1 Introduction

1.1 Motivation

Numerical methods are an important part of both design and analysis, but their principal
objectives are diverse. On the one hand, Computer Aided Geometric Design (CAGD)
generally sought to optimize the modeling and visualization of geometric objects. On the
other hand, engineering is a problem-solving discipline based on predictions by mathemat-
ical models of physical phenomena. Consequently, developments in computational analysis
focused on improving the mathematical models and the reliability and efficiency of their
numerical treatment. Yet, the accuracy of the results obtained depends also on the quality
of the geometrical representation. Hence, expertise of both fields is required to efficiently
and accurately simulate practical problems. In fact, CAGD models are often the starting
point of the simulation process, but in current engineering design they are subsequently
approximated by meshes for the computation. This procedure leads to loss of geometric
information. In addition, it impacts the overall analysis time. Figure 1.1 indicates basic
stages of an engineering analysis and the related normalized time of each step of the nu-
merical simulation involved [58]. It is noteworthy that only 20% is devoted to the problem
solving. In light of this and because of the enormously increasing computational power,
geometry manipulations and meshing are indeed the bottleneck of numerical simulation.

−∆u=f in Ω

u=g on Γ
? . . .!

Initial
Design

Mathematical
Model

Computer
Simulation

Result
Analysis

A · x= b

Geometry Mesh Solver Visualisation

(50%) (20%) (20%) (10%)

Figure 1.1: Generic model of an engineering analysis process including the normalized time
associate with each simulation step according to [58]. Note that a large portion
is associated to geometry manipulations and meshing. (Courtesy of TailSiT.)

Isogeometric analysis [37, 66] provides an alternative to the conventional methodology
and it has received much attention in recent years. Its primary aim is to enhance nu-
merical simulation by closing the gap between design and analysis. This coalescence shall
be accomplished by performing the analysis based on the technologies of CAGD, such
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as non-uniform rational B-splines (NURBS) [93, 97], subdivision surfaces [29, 40] and
T-splines [111]. As a result, design models can be directly transferred and the process of
meshing can be omitted. The desired simulation process is illustrated in Figure 1.2.

A · x= b

Geometry Mesh Solver Visualisation

Figure 1.2: Work flow of isogeometric analysis. (Pictures courtesy of TailSiT.)

NURBS are the most popular CAGD approach in engineering design and have become
an industry standard for the representation and the data exchange of geometric informa-
tion [93]. They are included into many exchange standards, like IGES and STEP, which
enable the transfer of CAGD models between different software packages. Moreover, it has
been demonstrated that NURBS not only fulfill the requirements for the application to
analysis, e.g. linear independence, but offer additional computational advantages [35, 36].

However, in order to establish a seamless integration of design and analysis several
challenges have to be faced. First of all, engineering design models are usually based on
a boundary representation (B-Rep), but the most popular numerical simulation method
employed in structural mechanics, i.e. the finite element method (FEM), requires a domain
discretization. The derivation of volume models from boundary data is far from trivial and
still an open research topic [120]. Three dimensional B-Rep models are usually defined by
a non-conforming partition of NURBS surfaces, i.e. their mathematical parametrization
has no explicit relation to each other. Besides, NURBS surfaces are based on tensor
product representations. They are very efficient but have limitations due to their four sided
nature and therefore the lack of local refinement is of particular interest, concerning their
application to analysis. Moreover, almost all NURBS based CAGD models use trimming
procedures to adapt tensor product surfaces. These schemes define certain areas of a surface
which are marked as invisible without the need to modify the underlying mathematical
parametrization [44]. Since analysis relies on the parametrization of the model rather
than its visualization, the treatment of such trimmed geometries is an important aspect.
Figure 1.3 summarizes these challenges by illustrating various perspectives of a CAGD
model representing a simple solid. The corresponding B-Rep consists of one regular and
three trimmed surfaces. In addition, the regular surface has a parametrization which is
graded towards one of its corners. It is apparent that even simple CAGD models rely on
multiple non-conforming surfaces and that any refinement would extend over the whole
surface along its parametric direction.

The motivation for this thesis stems form the desire to develop a simulation method that
does not require the generation of a mesh and takes data directly from a CAGD program.
In particular, the mentioned challenges of integrating design models into an analysis are
addressed and concepts based on boundary integral equations (BIEs) are presented to deal
with them.
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(a) Visualization (b) Components (c) Parametrization

Figure 1.3: Different perspectives of a CAGD solid model: (a) the visible part of the object,
(b) segments of its B-Rep and (c) the underlying mathematical parametrization
of each surface. In (c), dashed lines mark the boundary of the visible area
and gray lines indicate the underlying tensor product basis. Note that the
parametrization along common edges does not match. Moreover, the ’local’
refinement towards the corner of the non-trimmed component propagates over
the whole surface.

1.2 State of the Art

Isogeometric analysis and BIEs are the major fields of research used in this thesis. The
following overview provides a brief insight into the current state of research relating to the
topics that will be elaborated.

Trimmed Geometry An important issue is the proper integration of trimmed models.
Current approaches may be summarized as global and local techniques.

The former [12, 57] substitutes a trimmed surface by one or several regular surfaces. As
a consequence the continuity is either locally reduced by the non-smooth edges introduced
or the regular surfaces are distorted in many topological cases. Moreover, this approach
can not be applied to real-life geometries without user intervention.

The other techniques use the parameter space of the trimmed object as background
parametrization. In particular, it is defined by a grid of so-called knot spans and a trimming
curve that determines which part is visible. All this information is provided by the CAGD
model, but the analysis of knot spans cut by the trimming curve requires special attention.
There are different approaches [69, 70, 107, 127] which locally substitute the trimmed area
by regular elements providing a mapping from the reference element where quadrature
points are specified to the parameter space. In addition, tailored integration formulae may
be defined [87, 128]. Due to their local nature, these concepts can be applied to complex
CAGD models. However, the resulting basis functions are truncated at the trimming curve.
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In the context of collocation methods this is an disadvantage, since the collocation points,
i.e. Greville abscissae, of truncated basis functions may be located outside of the actual
domain. Moreover, the trimmed basis may lead to system matrices with large condition
numbers, if truncated basis functions have a small support. This is a serious drawback
since it affects the performance of iterative solvers and more importantly may lead to
unstable solutions.

Local Refinement Many developments in isogeometric analysis focus on establishing a
local refinement of CAGD models. For instance locally refined B-splines [39] and hierar-
chical B-splines [126] enhance tensor product parameter spaces such that local refinement
can be performed. An alternative approach is to use T-spline models [7, 110] which are
not based on a tensor product structure. However, if the original CAGD model is based
on NURBS it has to be converted first, i.e. a remodeling procedure is involved.

Non-Conforming Boundary Representation Shell formulations enable the analysis of
objects with reduced dimensionality such as plates and membranes by means of finite
element methods. Such models do not describe a solid but a manifold, i.e. a surface in three
dimensional space. Consequently, B-Rep models define the computational domain rather
than its boundary. Several authors have derived various isogeometric shell formulations,
e.g. [15, 32, 41, 68]. Moreover, it has been demonstrated that shell structures allow an
integration of design and analysis [106] which is also referred to as isogeometric B-Rep
analysis [18]. The latter uses a penalty approach to couple common edges of adjacent
surfaces. However, these approaches are not concerned with the analysis of solid models.

In the context of finite elements, solid models may be analyzed by means of fictitious
domain methods, e.g. [63, 95, 99, 103]. The basic idea is to perform the analysis on a
regular background mesh which incorporates the design model. Subsequently, the mesh
is split into a part inside and an other outside of the actual domain. Elements at the
transition are cut by the B-Rep surfaces and require special attention during the analysis.
These cut elements can result in ill-conditioned system matrices, similar to the case of
trimmed geometries.

Boundary Integral Equations Numerical approximation methods based on boundary
integral equations are a powerful alternative to finite element methods. There are many
textbooks regarding their mathematical foundation, e.g. [5, 72, 86, 102, 116]. A historical
perspective is provided in [30, 129] and brief overviews of the most important developments
are given in [47, 86]. The distinguishing feature of these methods is that they are based
on mathematical models, namely BIEs, which represent the governing equations of the
problem by means of an integral over the boundary of the computational domain. In
other words, they rely on a B-Rep in the same way as design models. Despite the obvious
benefit of the conforming geometry representations, no element connectivity is required
[89, 90, 105]. Hence, non-conforming surfaces can be handled.

The boundary element method (BEM) is the most common and versatile approach to
approximate BIEs. The textbooks of Beer et al. [14] and Gaul et al. [47] provide a coherent
introduction to the method from an engineering point of view. Recent developments of
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BEM besides the isogeometric approach are presented in [77], whereas [13] focuses on the
isogeometric BEM advancements.

There have been some early attempts to include CAGD technologies to BEM simula-
tions. In the 1980s and early 1990s, spline approximations have been used to investigate the
convergence of collocated BEM formulation in two [3, 4, 34, 100, 101] and three [2, 33, 108]
dimensions. Spline based formulations have been applied to elasticity [122], electromag-
netic [104, 123] and potential [26, 27, 76, 78, 132] problems. To the best of the authors’
knowledge, the first analysis based on NURBS surfaces has been suggested by Valle et al.
[124] and Rivas et al. [96] in order to solve Maxwell’s equations.

The introduction of isogeometric analysis gave much impetus to a rapid resurgence of
this field. During the last years, isogeometric BEM has been applied to various problems
governed by the Laplace [45, 53, 56, 94, 118], Stokes [61], Maxwell [85, 125], Lamé-Navier
[75, 82, 109, 112] and Helmholtz [91, 113] equations.
Nyström introduced an alternative numerical approximation method to solve BIEs [88].

In particular, he proposed that the boundary integrals are directly evaluated by means
of numerical quadratures and the unknown function values at the quadrature points are
treated as degrees of freedom. If the boundary integrals and the domain are smooth, the
Nyström method is in fact based on point-wise evaluations.

However, the integrands encountered in BIEs contain fundamental solutions which are
singular functions and require special treatment. In the context of the Nyström method,
several techniques have been developed such as product integration [5] and singularity
subtraction [1]. Sloan [114] provides error analysis for such methods and the convergence
behavior of several approaches is investigated in [55]. In the present implementation, the
locally corrected Nyström method [28, 117] is used, i.e. the singular function is regularized
by the local construction of a tailored quadrature rule. The interested reader is referred to
[49, 92] for a good introduction to this procedure and mathematical proofs can be found
in [52, 74].

An advantage of the Nyström method is that higher order convergence rates can be sim-
ply achieved by increasing the order of the chosen quadrature. However, a smooth bound-
ary representation is required to obtain optimal convergence behavior [5]. In other words,
standard triangulations are insufficient for curved geometries because kinks arise between
elements of the mesh. The required continuity may be restored by re-parametrization
procedures [67, 130] as suggested in [131]. Nevertheless, due to this problem the Nys-
tröm method has been mostly applied to analytical surfaces. If computational domains
are smooth but contain some defined corners or edges, higher order convergence can be
restored by a grading of the integration regions [5]. Several authors proposed alternative
approaches for two dimensional problems [20, 22, 25, 50, 60, 71]. While it is claimed that
they can be extended to the three dimensional case, only few results are reported [21].
Such procedures are also required in case of non-smooth or mixed boundary conditions
[31, 59].

Applications of the Nyström method are for example potential [5] and electro-magnetic
problems [46, 48], Stokes flow [51], elastic wave scattering [121], the analysis of edge
cracks [43], problems governed by the Helmholtz equation [23, 24, 28] and it is gener-
ally applicable to parabolic BIEs [119].
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1.3 Isogeometric Analysis based on Boundary Integral Equations

In this dissertation, an isogeometric framework for a seamless integration of design and
analysis is developed which is based on boundary integral equations. In particular, the
analysis of linear problems governed by the Laplace and Lamé-Navier equations are consid-
ered and solved using a NURBS based boundary representation. The main contributions
of this thesis are:

• Development of an independent field approximation paradigm which permits a sep-
arate approximation of integral operators.

• Application and implementation of extended B-splines for dealing with trimmed sur-
faces in an isogeometric BEM analysis.

• Formulation of a locally corrected isogeometric Nyström method and its application
to the Laplace and Lamé-Navier equations.

The first point enables an efficient and flexible formulation which allows maintaining the
original CAGD model during the analysis. With this concept and the Nyström method, the
application of local refinement is straightforward. Extended B-splines have been introduced
in the context of fictitious domain methods [62–64, 99] in order to deal with the negative
impact of cut basis functions. To the best of the authors’ knowledge, there is only a
single publication [65] related to trimmed geometries, although this application has been
suggested in the landmark paper of isogeometric analysis [66]. Moreover, the benefit of
extended B-splines regarding collocation approaches has not been investigated yet. Finally,
the first application of the isogeometric paradigm to the Nyström method is demonstrated
in this thesis.

The present work results from a research project supported by the Austrian science fund
FWF, provided under Grant Number P24974-N30. This support provided the basis for
the information published in [8–13, 80–82, 133, 134]. Some results of this dissertation have
been disseminated in these works, in addition the most recent findings, e.g. the application
of extended B-splines, are presented.

The aim of this thesis is to develop a methodology which allows a seamless integration
of the most common CAGD models in engineering design, i.e. geometries represented by
trimmed NURBS, into an analysis of linear potential and elasticity problems through the
utilization of BIEs.

1.4 Organization of the Thesis

The dissertation begins by introducing the basic features of NURBS basis functions and
the corresponding geometrical models in Chapter 2. Emphasis is given to those aspects
which are important for the subsequent application to an analysis. Chapter 3 provides a
brief overview of boundary integral equations and introduces the required operators.

In Chapter 4, the previous parts are brought together by means of a conventional iso-
geometric framework. In particular, the isogeometric Nyström method and collocated
isogeometric BEM are presented. Throughout this chapter, the isoparametric concept is
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utilized, i.e. the same basis functions are applied to all fields. In Chapter 5, this paradigm
is changed in order to obtain a more flexible and efficient formulation for both the Nyström
and BEM approach. Chapter 6 proceeds to discuss the treatment of trimmed objects us-
ing extended B-splines and the application to analysis. It provides a general procedure to
construct the related extrapolation weights and examines the quality of the approximation
obtained.

Chapter 7 is dedicated to numerical investigations of the proposed methodology. Firstly,
the convergence behavior of the presented isogeometric BEM and Nyström formulations
is critically studied. Secondly, miscellaneous examples emphasize features and benefits
of combining isogeometric analysis, boundary integral equations and independent field
approximation. Finally, trimmed CAGD models are analyzed.

In the concluding Chapter 8, the key findings are summarized and research topics iden-
tified that need further investigation.
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2 B-splines and NURBS

B-splines and their rational counterpart NURBS provide the basis for most engineering
design models. This chapter gives a brief overview of this CAGD technology focusing
on aspects which are crucial for their subsequent application to analysis. For further
information related to spline theory the interested reader is referred to [16, 44]. Detailed
descriptions of efficient algorithms can be found in [93]. In the present thesis, the terms
B-spline and NURBS are used to refer to basis functions. Moreover, the geometric objects
described using these functions, i.e. curves and surfaces, may be denoted generally as
patches.

2.1 Basis Functions

B-splines Bi,p consist of polynomial segments which are connected by a certain smooth-
ness. They are defined recursively for a fixed polynomial degree p by a strictly convex
combination of B-splines of the previous degree, p− 1, given by

Bi,p(r) =
r − ri
ri+p − ri

Bi,p−1(r) +
ri+p+1 − r
ri+p+1 − ri+1

Bi+1,p−1(r) (2.1)

with

Bi,0(r) =

{
1 if ri 6 r < ri+1

0 otherwise.
(2.2)

The essential element for this construction is the knot vector Ξ characterized as a non-
decreasing sequence of coordinates ri 6 ri+1. The parameters ri are termed knots and the
half-open interval [ri, ri+1) is called ith knot span. Each knot span has p+ 1 non-vanishing
B-splines as illustrated in Figure 2.1. Each basis function is entirely defined by p+ 2 knots

rs rs+1

Bs,0

rs rs+1

Bs−1,1

Bs,1

rs rs+1

Bs−2,2

Bs−1,2

Bs,2

rs rs+1

Bs−3,3

Bs−2,3

Bs−1,3

Bs,3

Figure 2.1: Non-vanishing B-splines Bi,p of knot span s for different degrees p = {0, 1, 2, 3}
which are based on a knot vector with equally spaced knots.
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B0

B1

B2
C1 C1

1 2 3 4

(a) Ξ = {1, 2, 3, 4}

B0 B2

C0

1 2.5 4

(b) Ξ = {1, 2.5, 2.5, 4}

Figure 2.2: Polynomial segments Bs of a quadratic B-spline due to different knot vectors Ξ.
The resulting polynomial segments are indicated by dashed lines, whereas solid
lines represent the corresponding basis function.

and its support, supp {Bi,p} = {ri, . . . , ri+p+1}, is local. Within each non-zero knot span s,
rs < rs+1, of its support, Bi,p is described by a polynomial segment Bsi . Each knot value
indicates a location within the parameter space which is not C∞-continuous, i.e. where
two adjacent Bsi join. Successive knots may share the same value, which is indicated by
the knot multiplicity m, i.e. ri = ri+1 = · · · = ri+m−1. In general, the continuity between
adjacent segments is Cp−m. This control of continuity is demonstrated for a quadratic
B-spline in Figure 2.2. If the multiplicity of the first and last knot is equal to p + 1, the
knot vector is denoted as open knot vector. The knot sequence

Ξ = {r0 = · · · = rp, rp+1 = · · · = r2p+1} (2.3)

is a special from of such a knot vector since it yields the classical pth-degree Bernstein
polynomials.
As a whole, B-splines based on a common knot vector Ξ form a partition of unity, i.e.

I−1∑
i=0

Bi,p(r) = 1, r ∈ [r0, rI+p] (2.4)

and they are linear independent, i.e.

I−1∑
i=0

Bi,p(r) ci = 0 (2.5)

is satisfied if and only if ci = 0, i = 0, . . . , I−1. Due to the latter property, every piecewise
polynomial fp,Ξ of degree p over a knot sequence Ξ can be uniquely described by a linear
combination of the corresponding Bi,p. Hence, they form a basis of the space Sp,Ξ collecting
all such functions

Sp,Ξ =
I−1∑
i=0

Bi,p ci, ci ∈ R. (2.6)
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The first derivative of B-splines are computed by a linear combination of B-splines of
the previous degree

B′i,p(r) =
p

ri+p − ri
Bi,p−1(r)− p

ri+p+1 − ri+1

Bi+1,p−1(r). (2.7)

This can be generalized to compute the kth derivative of a B-spline

B
(k)
i,p (r) =

p!

(p− k)!

k∑
l=0

ak,l Bi+l,p−k(r) (2.8)

with
a0,0 = 1

ak,0 =
ak−1,0

ri+p−k+1 − ri
ak,l =

ak−1,l − ak−1,l−1

ri+p+l−k+1 − ri+l
l = 1, . . . , k − 1

ak,k =
−ak−1,k−1

ri+p+1 − ri+k
.

Remark: The knot differences of the denominators involved in the recursive formulae (2.1),
(2.7) and (2.8) can become zero. In such a case the quotient is defined to be zero.

2.2 Curves

B-spline curves of degree p are defined by basis functions Bi,p due to a knot vector Ξ with
corresponding coefficients in physical space ci which are denoted as control points. The
geometrical mapping X from parameter space to physical space is given by

X (r) := x(r) =
I−1∑
i=0

Bi,p(r) ci (2.9)

with I representing the total number of basis functions. The related Jacobi-matrix is

JX (r) :=
I−1∑
i=0

B′i,p(r) ci . (2.10)

In general, control points ci are not interpolatory, i.e. they do not lie on the curve. The
connection of ci by straight lines is called control polygon and it provides an approximation
of the actual curve. An important property of a B-spline curve is that it is contained
within the convex hull of its control polygon. In particular, a polynomial segment related
to a non-zero knot span s, i.e. r ∈ [rs, rs+1), is in the convex hull of the control points
cs−p, . . . , cs. The continuity of the whole piecewise polynomial curve x(r) is inherited
from its underlying basis functions, i.e. the continuity at knots is determined by the knot
multiplicity. These relationships are illustrated in Figure 2.3. Note that the interpolatory
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0 1 2 3 4

B0,2

B1,2
B2,2 B3,2

B4,2

B5,2

B6,2

(a) Basis Functions

c0

c1

c2

c3

c4

c5

c6

(b) Quadratic B-spline Curve

Figure 2.3: (a) B-splines based on Ξ = {0, 0, 0, 1, 2, 3, 3, 4, 4, 4} and (b) a corresponding
piecewise polynomial curve. In (b), circles denote control points and the dotted
lines indicate the convex hull of the dashed curve segment r ∈ [1, 2).

B-spline B4,2 of Figure 2.3(a) corresponds to the kink at c4 in Figure 2.3(b) and that the
second polynomial segment lies within the convex hull of c1 to c3. If the curve consist of
a single polynomial segment, i.e. the related Ξ is of form (2.3), the curve is referred to
as Bézier curve. In addition, a polynomial segment of a B-spline curve is termed Bézier
segment, if it could be represented by a Bézier curve. In Figure 2.3(b), this is the case for
the segment r ∈ [3, 4] defined by the control points c4 to c6.
B-spline curves can be generalized to represent rational functions such as conic sections.

For this purpose, weights wi are associated with the control points such that

chi = (wici, wi)
ᵀ = (cwi , wi)

ᵀ ∈ Rd+1 (2.11)

where d denotes the spacial dimension of the physical space. The homogeneous coordi-
nates chi define a B-spline curve xh(r) in a projective space Rd+1. In order to obtain a
curve in Rd the geometrical mapping (2.9) is extended by a perspective mapping P with
the center at the origin of Rd+1. This projection is given by

x(r) = P(xh(r)) =
xw(r)

w(r)
with w(r) =

I−1∑
i=0

Bi,p(r) wi (2.12)

where xw =
(
xh1 , . . . ,x

h
d

)ᵀ are the homogeneous vector components of the curve. The
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xh1

xh2

w = 1

w

xh(r)
ch0

ch1

ch2

x(r)

c0

c1 c2

Figure 2.4: Perspective mapping P of a quadratic B-spline curve xh(r) in homogeneous
form R3 to a circular arc x(r) in physical space R2. The mapping is indicated
by dashed lines.

application of equation (2.12) is illustrated in Figure 2.4: a circular arc x(r) in the physical
space R2 is constructed by the projection of a quadratic B-spline curve xh(r) defined by
the control points ch0 = (2, 0, 2)ᵀ, ch1 = (2, 3, 2)ᵀ and ch2 = (0, 4, 4)ᵀ. In general, the
projection x(r) is denoted as non-uniform rational B-spline (NURBS) curve. The term
rational indicates that the represented curves are piecewise rational polynomials, whereas
the term non-uniform emphasizes that the knot values can be distributed arbitrarily.

The Jacobi-matrix of the NURBS geometrical mapping is defined by

JX (r) :=
w(r)∂x

w(r)
∂r
− ∂w(r)

∂r
xw(r)

(w(r))2 (2.13)

with

∂w(r)

∂r
=

I−1∑
i=0

B′i,p(r)wi and
∂xw(r)

∂r
=

I−1∑
i=0

B′i,p(r)c
w
i . (2.14)

Another way to represent NURBS curves is given by

x(r) =
I−1∑
i=0

Ri,p(r) ci with Ri,p(r) =
wiBi,p(r)

w(r)
. (2.15)
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The weighting function w(r) is the same as in equation (2.12) and Ri,p is denoted as
NURBS basis function. Since the weights wi are now associated with B-splines Bi,p the
mapping (2.15) employs control points ci of the physical space.
However, NURBS curves degenerate to B-spline curves, if all weights are equal. Hence,

they are a generalization of them. The properties of B-spline curves apply for their rational
counterpart as well, if the weights are non-negative which is usually the case.

2.3 Tensor Product Surfaces

Tensor products surfaces are an extremely efficient technique compared to other geometry
descriptions. Hence, they play an important role in CAGD. In particular, B-spline and
NURBS patches are very common. Basis functions for B-spline patches are obtained by
the tensor product of univariate B-splines which are defined by separate knot vectors
ΞI and ΞJ . These knot vectors determine the parametrization in the directions r1 and
r2, respectively. Moreover, they span the bivariate basis of a patch and specify its local
coordinates r = (r1, r2)ᵀ. Combined with a bidirectional grid of control points ci,j the
geometrical mapping is given by

X (r) := x(r1, r2) =
I−1∑
i=0

J−1∑
j=0

Bi,p1(r1)Bj,p2(r2) ci,j . (2.16)

The polynomial degrees for each parametric direction are denoted by p1 and p2. The Jaco-
bian of the mapping (2.16) is computed by substituting the occurring univariate B-splines
by their first derivatives, alternately for each direction. In general, derivatives of B-spline
patches are specified by

∂k+l

∂kr1∂lr2

x(r1, r2) =
I−1∑
i=0

J−1∑
j=0

B
(k)
i,p1

(r1)B
(l)
j,p2

(r2) ci,j . (2.17)

The tensor product nature of the patches is illustrated in Figure 2.5 by means of a
bivariate basis. Note that the univariate knot values propagate over the whole parameter
space. A corresponding patch is depicted in Figure 2.6. If both knot vectors are of
form (2.3) the surface is referred to as Bézier surface. Moreover, NURBS surfaces are
derived analogous to curves by the introduction of weights.
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r1

r2

(a) Parameter Space

1

2.5

4 1

2

3

4
0

1

B2,2(r2)B2,2(r1)

(b) Basis Function

Figure 2.5: Bivariate basis defined by the knot vectors ΞI = {1, 1, 1, 2, 3, 4, 4, 4} related
to r1 and ΞJ = {1, 1, 1, 2.5, 2.5, 4, 4, 4} for r2: (a) shows the bivariate basis
spanned by ΞI and ΞJ , whereas (b) illustrates the construction of a corre-
sponding bivariate B-spline.

(a) Control Grid (b) B-spline Patch

Figure 2.6: Control points (a) and resulting tensor product surface (b). The basis is given
by ΞI = {1, 1, 1, 2, 3, 4, 4, 4} and ΞJ = {1, 1, 1, 2.5, 2.5, 4, 4, 4}.
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2.4 Refinement Procedures

A given NURBS curve x(r) can be refined such that the resulting object x̂(r) is equivalent
to the original one, i.e. x(r) ≡ x̂(r). The related procedures are called knot insertion and
degree elevation. In both cases, a given knot vector Ξ is expanded to an extended knot
vector Ξ̂ by adding new knots r̂ to it. Hence, the number of basis functions is increased.
Moreover, the position of these r̂ determine the control points ĉhi of the refined NURBS
curve. In other words, the refinement procedures define a new basis and set of coordinates
including the weights wi such that the geometry representation does not change.

In case of knot insertion, the degree p of the curve is not changed but each new knot
r̂ ∈ [rs, rs+1) introduces a new control point. In addition, neighboring control points are
adjusted as well. Their coordinates are obtained by

ĉhi = αic
h
i + (1− αi) chi−1 with αi =


1 i 6 s− p

r̂−ri
ri+p−ri s− p+ 1 6 i 6 s−m

0 i > s−m+ 1

(2.18)

where m denotes the initial multiplicity of r̂. On the other hand, degree elevation increases
the degree of NURBS by replicating existing knots. According to Piegl and Tiller [93] the
construction of the corresponding control points involves the following steps:

1. Subdividing of the curve into Bézier segments by knot insertion.

2. Degree elevation of these Bézier segments given by

ĉhi = (1− αi) chi + αic
h
i−1 with αi =

i

p+ 1
, i = 0, . . . , p+ 1. (2.19)

3. Removing of superfluous knots which separates the elevated segments by the reverse
process of knot insertion in order to obtain a NURBS curve again.

Remark: Degree elevation is also denoted as order elevation. In fact, the latter is more
commonly used in isogeometric analysis. However, in CAGD the term order p̃ has a
distinct meaning and is specified as p̃ = p + 1. In this thesis, the definition as degree
elevation is used for the sake of clarity.

Figure 2.7 shows the curve of Figure 2.3 which has been refined by the insertion of two
knots r̂i = {1, 2.5}, whereas Figure 2.8 depicts a degree elevated version. Note that the
curve does not change, but its approximation by the control polygon as well as the convex
hull of polynomial segments are improved, i.e. they are getting closer to the curve, in both
cases. Regarding surfaces, the refinement can be applied separately for each parametric
direction. However, it is not possible to perform local refinement due to the tensor product
nature of the basis functions.
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(a) Refined Basis Functions
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(b) Quadratic B-spline Curve

Figure 2.7: Knot insertion applied to the curve of Figure 2.3 with r̂i = {1, 2.5}.

0 1 2 3 4

(a) Degree Elevated Basis Functions

c0

c1 c2

c3 c4

c5 c6

c7

c8 c9

c10

(b) Cubic B-spline Curve

Figure 2.8: Degree elevation applied to the B-spline curve of Figure 2.3.
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2.5 Spline Interpolation

In case of a spline interpolation problem, a given function f shall be approximated by a
B-spline curve Ihf :=

∑I−1
i=0 Bi,p ci. They agree at I data sites r̄ if and only if

f(r̄j) =
I−1∑
i=0

Bi,p(r̄j) ci, j = 0, . . . , I − 1. (2.20)

The corresponding system of equations consists of the unknown coefficients ci and the
spline collocation matrix Ar which is defined by

Ar[j, i] = Bi,p(r̄j), i, j = 0, . . . , I − 1. (2.21)

The Schoenberg-Whitney theorem [16, 44] states that the matrix Ar is invertible if and
only if

Bi,p(r̄i) 6= 0, i = 0, . . . , I − 1. (2.22)

In general, the interpolation error for every continuous function f over a fixed interval [a, b]
is bounded by

‖f − Ihf‖ ≤ constp (1 + ‖Ih‖) ‖f (p+1)‖∞ |r|p+1 (2.23)
with

|r| := max
i

∆ri = max
i

(ri+1 − ri)
‖Ih‖ := max{‖Ihf‖/‖f‖ : f ∈ C[a, b]\{0} }.

Proofs and more detailed information can be found in [16]. The bound (2.23) indicates that
the knot placement influences the approximation quality. However, in order to find optimal
knots, information about the target function f must be given, which is generally not the
case in analysis. Hence, it is focused on the norm ‖Ih‖ of the interpolation process Ih.
Since condition (2.22) guarantees that Ar does not become singular, it is expected that
‖Ih‖ gets large if r̄ approaches the limits of its allowed range. Non-uniformity of r̄ is another
reason for an increasing ‖Ih‖. In fact, ‖Ih‖ gets arbitrary large if two interpolation sites
approach each other, while the others are fixed. Several authors [6, 16, 75] recommend to
interpolate at the Greville abscissae r̄g which is obtained by the following knot average

r̄gi =
ri+1 + ri+2 + · · ·+ ri+p

p
. (2.24)

This abscissae are well known in CAGD and used for different purposes, e.g. to generate
a linear geometrical mapping [44]. The most important feature of this approach is that it
induces a stable interpolation scheme for moderate degrees p. It should, however, be noted
that it may get unstable for higher degrees, in particular for non-uniform knot vector.

The only interpolation scheme that provides a stable interpolation for any degree is
proposed by Demko [38]. It is independent of Ξ and minimizes the max-norm of the
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−1 0 1 1.5 2
0

1

Figure 2.9: Basis function defined by Ξ = {−1,−1,−1,−1, 0, 1, 1.5, 2, 2, 2, 2}. The corre-
sponding Greville abscissae are marked by circles, whereas crosses are used to
indicate the Demko abscissae.

inverse spline collocation matrix ‖A−1
r ‖, where it can be shown that

‖Ih‖ ≤ ‖A−1
r ‖. (2.25)

The minimization is achieved using the Demko abscissae r̄d, which are extrema of Cheby-
shev splines for a given knot vector Ξ. The computation of r̄d is more involved than using
the knot average (2.24). In fact, the Greville abscissae are usually used as initial guess for
an iterative process and the resulting sequence of r̄d is often similar to r̄g, as illustrated in
Figure 2.9. A more detailed comparison of these approaches is provided in Appendix A.

For the remainder of this dissertation the abscissae r̄ are generally denoted as anchors.
In particular, they are used as a means of linking basis functions Bi,p to a point at a specific
position r̄i in the parameter space.

2.6 Complex CAGD Models

Most CAGD objects are based on a boundary representation. In general, these design
models consists of several boundary patches γ

Γ =
I⋃
i=1

γi. (2.26)

where Γ denotes the objects’ boundary. If Γ is a curve, several patches may be needed
to represent distinct sections with different polynomial degrees. This is not a critical
issue since curves can be joined rather easily, even with a certain continuity. However, a
topological penalty arises as soon as it comes to surfaces, because tensor product surfaces
are four sided by definition. A single regular NURBS patch may be closed equivalently to a
cylinder or a torus. Spherical topologies may be represented as well, if degenerated edges,
i.e. an edge collapses to a point, are introduced. Yet, more complicated objects such as
a double torus require partitions into multiple NURBS patches. Moreover, the connection
of two adjacent surfaces is complicated, especially if a certain continuity is desired. In
general, non-conforming parametrizations along surface boundaries may be expected.
In order to increase the flexibility of tensor product surfaces they can be modified by
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(a) Trimmed Parameter Space (b) Trimmed Patch

Figure 2.10: Trimmed version of the surface shown in Figure 2.6: (a) trimmed parameter
space where the trimming curve is indicated by the dashed line and the visible
part is highligthed in gray and (b) the resulting trimmed surfaces.

trimming procedures. For this purpose, a curve is defined within the parametric space
of a patch. This trimming curve is usually a B-spline or NURBS curve and divides the
resulting trimmed patch into separate parts where the curve’s direction determines which
one is visible. As a result non-rectangular topologies can be represented. An example
of a trimmed patch is shown in Figure 2.10. It should be noted that the mathematical
description, i.e. the tensor product basis and the related control grid, of the original patch
does not change.



3 Boundary Integral Equations

Systems of partial differential equations (PDEs) can describe many physical processes.
This dissertation is dedicated to the solution of linear potential and elasticity problems for
homogeneous domains which are numerically solved by methods based on boundary integral
equations. These equations are obtained by transforming PDEs into integral equations so
that the unknown occurs on the boundary of the computational domain only. This process
requires a fundamental solution of the underlying differential operator. There are many
well-written books on boundary integral equations. For their in-depth discussion the reader
is particularly referred to [5, 72, 102, 116]. The aim of this chapter is to provide a brief
overview and to introduce the notation subsequently used.

3.1 Partial Differential Equations

The physical problems considered in this dissertation are governed by the Laplace and
Lamé-Navier equations. In the following, their corresponding elliptic partial differential
operators L are introduced.

The partial derivative of a physical quantity u is denoted as

∂iu = u,i =
∂u

∂xi
, 1 6 i 6 d (3.1)

where d is the spatial dimension and the spatial point related to the quantity u is denoted
by x = (x1, . . . , xd)

ᵀ. By introducing the gradient of a differentiable scalar function u

grad u := ∇u := (∂1u, . . . , ∂du)ᵀ (3.2)

and the divergence of a differentiable vector field w

div w := ∇ ·w :=
d∑
i=1

∂iui (3.3)

the Laplace operator can be defined by

∆u = div grad u = ∇ · ∇u =
d∑
i=1

∂2
i u. (3.4)

Moreover, the curl operate is specified as

curl w := ∇×w := (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1)ᵀ . (3.5)
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The application of the Laplace operator (3.4) to a scalar function u

Lu(x) := −k∆u(x) (3.6)

is used to model potential problems such as electrostatics and steady-state heat conduction.
For the latter the constant coefficient k denotes the conductivity and u the heat potential.
The operator of the Lamé-Navier equation is defined by

Lu(x) := −µ∆u(x)− (λ+ µ) grad div u(x) (3.7)

with u ∈ Rd denoting displacements. The Lamé-constants λ and µ are computed from the
Young’s modulus E and the Poisson’s ratio ν of the considered material. In particular,
the constants are defined as

λ =
E ν

(1− 2 ν)(1 + ν)
and µ =

E

2 (1 + ν)
. (3.8)

In the subsequent sections, u will be used for both the heat potential and the displace-
ment.

3.2 Fundamental Solutions

In general, a fundamental solution U(x,y) is the solution of

LU(x,y) = δ(r) (3.9)

where r = |x− y| is the Euclidean distance and δ(r) denotes the Dirac delta function

δ(r) =

{
∞ for r = 0

0 otherwise
(3.10)

which also satisfies ∫
Ω

δ(r) dΩ = 1 x,y ∈ Ω. (3.11)

Equation (3.9) can be solved to provide the potential at the field point y due to a unit
point source applied at x, which is denoted as source point. The fundamental solution to
the Laplace operator is given by [47]

U(x,y) = − 1

2π
ln r for d = 2, (3.12)

and

U(x,y) =
1

4πr
for d = 3. (3.13)
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Kelvin’s fundamental solution for the Lamé-Navier equation is

Uij(x,y) =
1

8πµ (1− ν)
(r,ir,j − (3− 4ν) ln r δij) for d = 2, (3.14)

and

Uij(x,y) =
1

16πµ (1− ν) r
(r,ir,j + (3− 4ν) δij) for d = 3. (3.15)

It is represented as a tensor with i, j = {1, . . . , d}, where δij denotes the Kronecker delta:

δij =

{
1 if i = j

0 otherwise.
(3.16)

It should be noted that the fundamental solutions depend on the distance r = |x − y|
rather than the actual location of the field and source points. Moreover, they tend to
infinity if r → 0.

3.3 Boundary Value Problem

Let Ω ∈ Rd be a bounded domain defined by its boundary Γ := ∂Ω and n the related
outward normal. Furthermore, it is supposed that Γ is partitioned into a Neumann ΓN
and a Dirichlet part ΓD, such that Γ = ΓN ∪ ΓD and ΓN ∩ ΓD = ∅. For a given right hand
side, gD ∈ ΓD and gN ∈ ΓN , a mixed elliptic boundary value problem (BVP) can be
defined: Find u(x) such that

Lu(x) = 0 ∀x ∈ Ω (3.17)
Tru(x) = u(y) = gD(y) ∀y ∈ ΓD (3.18)
T u(x) = t(y) = gN(y) ∀y ∈ ΓN . (3.19)

Note that the unknown u(x) in the interior of Ω is represented by the Cauchy data on Γ,
i.e. u(y) and t(y). In particular, the boundary trace

Tru(x) = lim
x→y

u(x) = u(y) x ∈ Ω, y ∈ Γ (3.20)

maps the primal field u(x) in the domain Ω to u(y) on the boundary. The conormal
derivative T of the Laplace operator transforms the potential u(x) to the flux along the
boundary t(y) by

T u(x) = k∇u(y) · n(y) = t(y). (3.21)

For the Lamé-Navier operator it is defined by

T u(x) = λ∇ · u(y)n(y) + 2µ∇u(y) · n(y) + µ n(y)× (∇× u(y)) = t(y) (3.22)

which maps displacements u(x) to surface traction t(y).
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3.4 Boundary Integral Equations

The homogeneous differential equation (3.17) can be solved by means of boundary integral
equations. Using the fundamental solutions the single layer potential

u(x) =

∫
Γ

U(x,y)φ(y) dsy x ∈ Ω, y ∈ Γ (3.23)

and double layer potential

u(x) =

∫
Γ

T U(x,y)ψ(y) dsy x ∈ Ω, y ∈ Γ (3.24)

are introduced as an Ansatz for the solution u with the unknown density functions φ and ψ.
The kernel function U satisfies the homogeneous differential equation, since it is the fun-
damental solution to the underlying differential operator of the problem. Applying the
trace Tr to these potentials yields to the single layer

(Vφ)(x) =

∫
Γ

U(x,y)φ(y) dsy ∀x,y ∈ Γ (3.25)

and double layer

(Kψ)(x) =

∫
Γ

T U(x,y)ψ(y) dsy ∀x,y ∈ Γ (3.26)

boundary integral operators. The former integral is weakly singular, i.e. it is finite al-
though its integrands tend to infinity as y approaches x. The second integral operator
is strongly singular in general and treated as Cauchy principal value, i.e. the integral in
the neighborhood of the singularity x is calculated by a limiting process. This procedure
causes an integral free jump term

(Cu)(x). (3.27)

On smooth surfaces the free term is given by

C = 1
2
I (3.28)

where I denotes the identity, i.e. Iu(x) = u(x). For non-smooth surfaces, it depends on
the geometrical angle at x and the Poisson’s ratio for elasticity [47, 79].

Remark: It is noteworthy that the integral kernel of the double layer operator is zero at
the singularity in case of the Laplace equation. As a consequence the integral is also
weakly singular. In general, the calculation of the integral free term can be avoided by the
application of regularization techniques, e.g. as described in [13].
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Based on the operators (3.25) and (3.26) boundary integral equations of the first

u(x) = (Vφ)(x) ∀x ∈ Γ (3.29)

or the second kind

u(x) = ((C +K)ψ)(x) ∀x ∈ Γ (3.30)

can be derived. These indirect formulations are solved for the unknown densities φ and ψ
which are usually non-physical quantities. The actual solution of the BVP is obtained by
the corresponding potentials (3.23) and (3.24), respectively.

In order to work with physical quantities u and t on the boundary Γ only, the BVP is
solved by means of a direct boundary integral formulation

((C +K)u)(x) = (Vt)(x) ∀x ∈ Γ (3.31)

instead. Once equation (3.31) is solved all Cauchy data are known and u(x) within the
domain is obtained by the representation formula

u(x) =

∫
Γ

U(x,y) t(y) dsy −
∫
Γ

T(x,y) u(y) dsy ∀x ∈ Ω, ∀y ∈ Γ (3.32)

where T is the fundamental solution for the traction or flux which is determined by the
conormal derivative with respect to the y variable, i.e. T(x,y) = TyU(x,y). In elasto-
statics, the representation formula is referred to as Somigliana’s identity.
If not stated otherwise, the direct boundary integral formulation (3.31) will be considered

in the remainder of this thesis.
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4 Discretization of Boundary Integral Equations

In general, the boundary integral equations presented in Chapter 3 can not be solve an-
alytically. Hence, numerical methods are applied to solve the BIEs approximately. This
thesis is dedicated to the collocated boundary element method and the quadrature based
method introduced by Nyström. Beer et al. [14] and Gaul et al. [47] provide excellent
basis for the former, whereas the introduction of Peterson and Bibby [92] or Gedney and
Young [49] is recommended for the latter. In this chapter, these numerical approximation
methods are embedded into isogeometric analysis, that is, the functions of CAGD are used
for the description of the geometry and the approximation of the Cauchy data.

4.1 Geometry Representation

Following the isogeometric concept, the approximation of the computational domain’s
boundary Γ is obtained by a disjointed set of NURBS patches γ such that

Γ ≈ Γh =
I⋃
i=1

γi. (4.1)

For the moment, it is assumed that the patches are not trimmed and the treatment of
trimmed patches will be discussed later in Chapter 6. However, it should be noted that this
set of NURBS patches (4.1) is equivalent to the boundary representation (2.26) of design
models which are often starting point for the description of physical problems. Moreover,
they provide the best geometry representation available. As a result the computational
boundary is described as accurate as possible, so that Γh = Γ.
Any point x ∈ Γ can be evaluated within the corresponding patch by the geometrical

mapping
X (r) : Rd−1 7→ Rd (4.2)

which maps local coordinates r = (r1, . . . , rd−1)ᵀ to the global coordinates x = (x1, . . . , xd)
ᵀ

in the d-dimensional Cartesian system. For the sake of notational simplicity, the geometric
mappings introduced in Section 2.2 and Section 2.3 are generalized to

X (r) := x(r) =
K∑
k=1

θk(r) ck (4.3)

where K denotes the total number of B-spline or NURBS basis functions θk, which are
either univariate or bivariate. It is assumed that the mapping (4.3) is valid, i.e. the related
Gram’s determinant defined by

G(r) =
√

det (G(r)) with G(r) := Jᵀ
X (r) JX (r) ∈ R(d−1)×(d−1) (4.4)



28 4.1 Geometry Representation

is non-singular. The corresponding Gram matrix G(r) consists of the Jacobi-matrix

JX (r) :=

(
∂Xi
∂rj

)
with i = 1, . . . , d and j = 1, . . . , d− 1 (4.5)

which results from the geometrical mapping [102]. In general this assumption holds, but
in fact, it is not fulfilled if a patch is evaluated directly at an edge which degenerates to a
point. However, it will be shown in the subsequent sections that even degenerated patches
are analysis suitable, if they are solely evaluated at valid points.
Remark: Points where the geometric mapping is not valid are also referred to as EV or ex-
traordinary vertices in CAGD. They are of particular interest in the context of subdivision
surfaces and T-splines.

4.1.1 Integration Elements

Each non-zero knot span defines a different segment of its patch γ. Moreover, knots indicate
locations which are not C∞-continuous. In order to perform the numerical integration
properly, the integrands must be smooth within each integration interval. Consequently,
each non-zero knot span is defined as integration element τ . The quadrature points are
specified within the reference element τ̂ = [−1, 1]d−1 with the intrinsic coordinates ξ. The
coordinate transformation from τ̂ to the parameter space of τ is denoted by Xξ(ξ). A
proper distribution of quadrature points over a B-spline curve is illustrated in Figure 4.1.

ξ :
−1 1

Xξ(ξ)

r :
0 1 2 3 4

τ1 τ2 τ3 τ4

X (r)

x2

x1

τ1

τ2

τ3

τ4c0

c1

c2

c3

c4

c5

c6

Figure 4.1: Distribution of quadrature points over a B-spline curve defined by the knot
vector Ξ = {0, 0, 0, 1, 2, 3, 3, 4, 4, 4} and the control points ci. Each element τj
is subjected to a two point quadrature rule defined in the reference interval
ξ ∈ [−1, 1]. The quadrature points are indicated by black circles.
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4.2 Isogeometric Nyström Method

The Nyström method is a quadrature based method where the boundary integral oper-
ators are approximated by means of a numerical integration [72]. In general, numerical
quadratures approximate an integral, I =

∫ b
a
f(s) ds, by a sum over quadrature weights wq

and evaluations at quadrature points sq

I ≈ IQ =

Q∑
q=1

f(sq)wq. (4.6)

Usually, the quadratures are constructed by replacing the integrand f by an interpolation
polynomial with respect to sq. The approximation IQ converges to I as Q→∞. Another
way to improve the quality of IQ is to subdivide the integration interval into several parts
leading to a composite quadrature scheme. The quadrature weights wq are obtained by
analytic integration of the underlying interpolation polynomial. For example, Lagrange
polynomials with equidistant interpolation points lead to the classical Newton-Cotes for-
mulae. The corresponding convergence rate is related to the order pq of the quadrature
which is defined by the highest polynomial degree that it integrates exactly.

In his original paper [88], Nyström proposed to discretize second kind integral equa-
tions (3.30) by means of a numerical quadrature

((C +K)ψ)(xci) ≈ cψh(x
c
i) +

Q∑
q=1

T U(xci ,yq)ψh(yq)wq xci , yq ∈ Γ (4.7)

where yq are the corresponding evaluation points. Thereby, the solution ψ of the integral
equation is replaced by the solution ψh of a finite dimensional linear system [72]. In order
to set up a system of equations, the quadrature sum (4.7) is enforced at distinct points
xci with i = 1, . . . , Q. For the remainder of this thesis, these points are referred to as
collocation points. The solution of the obtained system of equations represents point-wise
results at xci . The results along the remaining boundary are determined by the application
of an interpolation scheme.

4.2.1 Discretization of Cauchy Data

In order to evaluate the boundary integral adequately, the patch γ is subdivided into a set
of integration elements τ , so that

γ =
I⋃
i=1

τi. (4.8)

A distinguishing feature of the Nyström method is that the element-wise discretization of
the Cauchy data is directly expressed through points on the geometry defined by the applied
quadrature rule. In particular, the present formulation applies Gauss-Legendre quadrature
formulae. The motivation for this choice is twofold: firstly, they require the minimal
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number of quadrature points to obtain results for a certain quadrature order pq. Moreover,
they are open quadratures, i.e. the quadrature points are not located at the boundary of
the integration region. Consequently, there is no evaluation at physical corners or edges,
where the integral kernel may be undefined or diverging. Furthermore, the application
of a composite quadrature is straightforward. In particular, the quadrature points are
distributed within each integration element with respect to their coordinates ξ ∈ [−1, 1]d−1

in the reference element. To compute their location y on τ in the physical space, the
mappings Xξ(ξ) for the reference element and X (r) for the geometry are consecutively
applied as depicted in Figure 4.1.

It is noteworthy that the Cauchy data are not expressed in terms of variables at control
points, in contrast to other isogeometric methods. For the analysis with the isogeometric
Nyström method, Cauchy data are taken from evaluations at the quadrature points y ∈ Γ
directly.

4.2.2 Collocation

The integral equation is enforced at the collocation points xc which are the quadrature
points, i.e. xc ≡ y, so one obtains as many equations as unknowns. For the approximated
integral equation of second kind (4.7) the matrix equation is(

C + K̃
)
ψ = f (4.9)

for a given right hand side f . The matrix K̃ denotes the discrete double layer operator
and the matrix C contains the integral free terms. For boundary integral equations of the
first kind (3.29), the system is

Vφ = f (4.10)

with the discrete single layer operator V. For a direct formulation (3.31) with mixed
boundary conditions, a block system of equations

xc ∈ ΓD :
xc ∈ ΓN :

(
VDD −KDN

VND −KNN

)(
tD
uN

)
=

(
KDD −VDN

KND −VNN

)(
gD
gN

)
(4.11)

is obtained in an analog manner to the formulation presented in [135]. If integral free terms
are present, they are already integrated in the system matrices K. The first subscript
indicates if the collocation point xci is either on a Dirichlet (D) or Neumann (N) boundary,
whereas the second one corresponds to the quadrature point yj. If the surface Γ is smooth
and the kernel function U is regular, entries of the system matrix only consist of point-wise
evaluations

V[i, j] = U(xci ,yj)wj and K[i, j] = δijc+ T U(xci ,yj)wj. (4.12)

Since the present formulation applies an open quadrature rule, the collocation points always
lie on a smooth surfaces. Hence, the integral free term is c = 1

2
. However, the kernel

functions for the applications considered are undefined if xci = yj so that special treatment
is necessary to evaluate the corresponding system matrix entries.
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4.2.3 Evaluation of System Matrix Coefficients

In the present implementation, Gauss-Legendre quadrature rules are used. For the analysis
in three dimensions, a tensor product quadrature is constructed. However, it is also feasible
to apply non-tensor product quadratures or numerical quadratures constructed for special
purposes [19].

As mentioned in Chapter 3, the integral kernels are singular if collocation and quadrature
point coincide. Such kernels require special treatment for a correct integration. For the
isogeometric Nyström method, a spatial separation of quadrature points in relation to each
collocation point is performed. An admissibility criterion

diam (τ) 6 η dist (xci ,yj) (4.13)

is introduced which separates the region with a smooth kernel function from that one
with singular or nearly singular behavior. If condition (4.13) is fulfilled, the corresponding
entries are in the scope of the far field where the system matrices consist of point evalu-
ations only. The other region is denoted as near field and is subjected to a regularization
procedure.

4.2.3.1 Far Field Evaluation

Considering the discrete single layer operator, a matrix entry for the isogeometric Nyström
method is

V[i, j] = U(xci ,yj)G(rj)JXξ(ξj)wj (4.14)

where U(xci ,yj) is the evaluation of the fundamental solution with respect to the colloca-
tion point xci and the quadrature point yj. Gram’s determinant G(rj) is defined by the
location rj of yj in the parametric space. For the integral transformation from reference
to integration element, the Jacobian of the mapping Xξ

JXξ(ξj) = det (J(ξj)) (4.15)

is evaluated with respect to the reference coordinates ξj of the quadrature point yj. Finally,
wj in equation (4.14) denotes the regular weight of the quadrature formula applied.

4.2.3.2 Near Field Evaluation

Based on a technique for the construction of quadrature rules with arbitrary order for given
singular functions, presented in [117], the authors of [28] developed the locally corrected
Nyström method for the solution of the Helmholtz equation. This particular regularization
technique is used for the framework presented in this thesis. The main idea is to replace
the contribution of the original kernel function in the neighborhood Ωxc of the collocation
point xci with a corrected regular one. As a result, a new kernel function is defined by

U∗(xci ,yj) =

{
L(xci ,yj) if xci ∈ Ωxc

U(xci ,yj) otherwise.
(4.16)
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The locally corrected kernel L for the collocation point xci is computed at the corresponding
quadrature points yj ∈ Ωxc by solving the linear system

J∑
j=1

Nk(yj)L(xci ,yj)wj =

∫
Γ∩Ωxc

U(xci ,y)Nk(y) dsy with k = 1, . . . , K. (4.17)

Equation (4.17) introduces a space of K test functions Nk, hence the singularity of the
original kernel is treated in a weak sense on the right hand side. In fact, a tailored numerical
quadrature is constructed, where the weights wj are not explicitly calculated but multiplied
with the corrected kernel, i.e. w̃j = L(xci ,yj)wj. Finally, the linear system in matrix form
is given by

Nw̃ = f with N ∈ RK×J , w̃ ∈ RJ , f ∈ RK . (4.18)

The matrix N consists of evaluations of the test functions and f contains the accurately
evaluated right hand side of equation (4.17).

Following the isogeometric concept, we propose using B-splines as test functions, i.e.
Nk = Bk,p, which are defined on the integration element τ . In particular, a Bézier patch
is constructed where the corresponding basis functions are specified by knot vectors of the
kind

Ξ = {−1, . . . ,−1, 1, . . . , 1} (4.19)

in each parametric direction. The multiplicity of the knots is chosen such that they define
at least as many basis functions as present quadrature points on the integration element.
This allows to solve equation (4.17) by means of LU -decomposition or as a least squares
problem.

The integrals of the right hand side are∫
τ

U(xci ,y)Bk,p(y) dsy or
∫
τ

TyU(xci ,y)Bk,p(y) dsy (4.20)

for the single and double layer operators, respectively. If xci ∈ τ the integrals are singular.
In that case the single layer integral is subject to coordinate transformations as described
in [73] and [42] while the double layer integral is treated with regularization techniques
presented in [54]. If xci 6∈ τ but condition (4.13) is not fulfilled, the integral is nearly singular
and treated with an adaptive numerical integration. This procedure is also required in the
context of BEM analysis and described in the subsequent Section 4.3.3.2. In practical
terms, the extent of the region where elements are marked as nearly singular is determined
by the admissibility factor η of equation (4.13).

It should, however, be pointed out that the application of the local correction leads to a
quadrature order of pq = Q with Q denoting the number of quadrature points yj used per
integration element [117]. Despite the fact that Gauss quadratures reach higher orders for
regular integrals, i.e. pq = 2Q− 1.
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4.2.4 Geometric Requirements

The applied quadrature scheme is chosen to be of open type. This particular choice brings
an advantage: due to its point-wise nature, the Nyström method does not require any
connectivities between patches. Hence, non-conforming patches are inherently supported.

Nevertheless, the Nyström method requires smooth surfaces to converge with respect
to the order of the underlying quadrature. Isogeometric analysis is capable to fulfill this
requirement, in contrast to conventional simulations based on triangulations. However,
real-world geometries still contain corners and edges by design. They can be easily identi-
fied by the multiplicity of knots, i.e. m = p, of the related knot vectors. In order to retain
higher order convergence, the integration regions adjacent to corners or edges are graded.
According to Atkinson [5] the particular interval [rs, rs+1] is subdivided into ` elements by
introducing new parameter values r̂i specified as

r̂i = rs + (rs+1 − rs)
(
i

`

)α
and r̂i = rs+1 − (rs+1 − rs)

(
i

`

)α
(4.21)

for grading towards rs or rs+1, respectively. The exponent α is given by

α >
pq + 1

υ
with 0 < υ 6 1 (4.22)

where pq is the order of the quadrature rule and υ denotes the Hölder constant. This
grading is also applied if the boundary conditions change abruptly.

4.2.5 Postprocessing

Once the system of equations is solved, the Cauchy data exist only in the quadrature
points yj. Thus a postprocessing step is required to visualize the distribution over the whole
geometry. The Nyström-interpolation [5] is the most accurate procedure for this task. But
it requires additional kernel evaluations at all quadrature points, which is computationally
expensive. For the isogeometric Nyström method, the following approach is probably less
accurate but simpler and local to the integration elements τ . Following the isogeometric
concept, each element τ is represented by the Bézier patch already constructed for the local
correction. The results in the corresponding quadrature points yj are interpolated within
each τ by means of the basis functions Bi,p based on a knot vector of form (4.19). For
instance, the primary variable u in any point ξ of the reference element can be calculated
with

u(ξ) =
I∑
i=0

Bi,p(ξ) ci. (4.23)

In order to compute the unknown coefficients ci a spline interpolation problem is solved.
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4.3 Isogeometric Boundary Element Method

Boundary element methods can be classified as methods of weighted residuals. The residual
of a differential equation Lu = f is given by

ε := Luh − f (4.24)

where uh is the numerically obtained approximated solution. Note that ε is zero, if uh = u.
The approximation uh is defined within a finite dimensional subspace Sh that is believed
to be close to the original solution space. In particular, uh(x) can be written as

uh(x) =
I∑
i=1

φi(x) ai (4.25)

with φ spanning the basis {φ1, . . . , φI} of the I-dimensional space Sh. The corresponding
coefficients ai are determined by the requirement that the integral over the residual ε(x)
multiplied with weighting functions ωj(x) becomes zero [47], i.e.∫

Ω

ε(x)ωj(x) dx = 0, ∀ωj, j = i, . . . , I. (4.26)

If the weighting functions are chosen to be equivalent to the basis functions of the approx-
imation, i.e. ωi ≡ φi, the classical Galerkin method is obtained. The collocation approach,
on the other hand, enforces the boundary integral equation at a certain set of collocation
points xc so that

ε(xcj) = 0, ∀xcj, j = i, . . . , I (4.27)
or rather ∫

Ω

ε(x)δ(x− xcj) dx = 0, ∀xcj, j = i, . . . , I. (4.28)

where δ(x−xcj) denotes the Dirac delta function (3.10). Apparently, the location of these
collocation points is crucial and will be outlined later in this chapter.

4.3.1 Discretization of Cauchy Data

In order to provide a coherent terminology, we use the notation for the solution of the Lamé-
Navier equation. In this case, the Cauchy data are vector valued, i.e. u = (u1, . . . , ud)

ᵀ

and t = (t1, . . . , td)
ᵀ. Within each patch the Cauchy data are represented by

Yu(r) := u(r) =
I∑
i=1

ϕi(r) ũi and Yt(r) := t(r) =
J∑
j=1

ψj(r) t̃j. (4.29)

The coefficients ũi and t̃j are the control parameters of the corresponding field and the
related basis functions are denoted by ϕi and ψj. The mapping Y is similar to the geometric
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mapping (4.3) and the distinction will be important later in Chapter 5. In this chapter,
attention is given to the fact that control parameters are not interpolatory, i.e. do not lie
on their patch. Hence, the known Cauchy data on the boundary, i.e. gN and gN , can not
be applied directly but have to be expressed by means of the control parameters g̃N and
g̃D. If the whole NURBS patch has either Neumann or Dirichlet boundary conditions it
can be easily obtained by the inverse of the mappings (4.29) with

g̃D = Y−1
u gD and g̃N = Y−1

t gN . (4.30)

In addition, the appropriate choice of the location of collocation points for the unknown
ũi and t̃j is of particular interest and addressed in the next section.

4.3.2 Collocation

The so-called spline collocation method was used to develop estimates for the stability [108]
and convergence of collocated boundary element methods in two [3, 4, 100, 101] and three
dimensions [2, 33]. Most of these papers focus on uniform or smoothly graded knot intervals
on closed curves. For curves with odd degree p, collocation at the knots was applied,
whereas collocation in the middle of a knot span was employed for even p. Since the
ascent of isogeometric analysis more complex splines are used, which are usually based on
open knot vectors with arbitrary knot spacing. Hence, collocation at knots or midpoints
would not suffice.

In the following, the collocation points are generally defined by the anchors r̄ of the used
basis function, i.e. xci = X (r̄i). In particular, the Greville abscissae are used. It has been
demonstrated that this is a robust and accurate choice [6, 75, 82]. In fact, it agrees with
the approach previously mentioned, since using Greville abscissae leads to collocation at
knots and midpoints for odd and even p as well, if the knot vector is uniform.

Remark: The Demko abscissa is the optimal choice for spline interpolation problems. How-
ever, in the context of collocated BEM it may lead to numerical complications if B-splines
of odd degree are used. See Appendix A.3 for a more detailed discussion.

The system of equations is set up by collocating at the anchors of the basis functions
approximating the unknown field. It can be represented by a block system of matrices [135]
by sorting the equations with respect to the Dirichlet and Neumann boundary, leading to

xc ∈ ΓD :
xc ∈ ΓN :

(
VDD −KDN

VND −KNN

)(
t̃D
ũN

)
=

(
KDD −VDN

KND −VNN

)(
g̃D
g̃N

)
.

(4.31)

This system of equations represents the discretized boundary integral equation (3.31). In
particular,V denotes the discretized single layer andK represents the double layer operator
and the integral free jump term. For the sake of simplicity K is broadly referred to as
discretized double layer operator. The first subscript indicates the boundary type which
corresponds to the collocation point. Likewise, the second subscript denotes the boundary
type related to the integrated element or more precisely its basis functions. Hence, the
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matrix coefficients are determined by

VRC [i, j] = (Vψj)(xci) and KRC [i, j] = ((C +K)ϕj)(x
c
i) (4.32)

where xci ∈ ΓR and ψj, ϕj ∈ ΓC .

4.3.3 Evaluation of System Matrix Coefficients

4.3.3.1 Regular Integration

The system matrix coefficients (4.32) are evaluated by numerical integration. Each entry
corresponds to a basis function which spans over up to p + 1 integration elements τ . For
instance, the entry for the collocation point xci and the basis function ψj is obtained by a
sum of integrals

V[i, j] =
K∑
k=1

Iτk =
K∑
k=1

∫
τk

U(xci ,y)ψj(y) dsy (4.33)

where Iτk is the contribution of the element τk. The integration is performed for example
with standard Gauss-Legendre quadrature. For each τk this yields to

Iτk ≈
Q∑
q=1

U (xci ,yq)ψj(yq)G(rq)JXξ(ξq)wq (4.34)

where wq are the integration weights of related integration point yq = X (rq) = X (Xξ(ξq))
defined by its coordinates ξq within the reference element τ̂ . Gram’s determinant (4.4) for
the integration points is denoted by G(rq) and the Jacobian of the integral transforma-
tion Xξ from τ̂ to τ is given by

JXξ(ξq) = det (J(ξq)) . (4.35)

4.3.3.2 Nearly Singular Integration

The integrand includes the fundamental solution which tends to infinity as the integration
point approaches the collocation point, i.e. wq → xci . In order to integrate the steep
gradient near the singularity, affected elements are further subdivided into integration
regions as illustrated in Figure 4.2. Regular integration is used within each of these regions.
For more detailed information on the implemented subdivision scheme the interested reader
is referred to [82].

4.3.3.3 Singular Integration

Regular integration schemes can not be applied, if a collocation point xci is located within
the current integration element. Hence, the region where the boundary integral becomes
singular is subjected to regularization techniques. The weakly singular integral of the
discretized single layer operator V is subject to coordinate transformations according to
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xc

Figure 4.2: Subdivision of an element close to a collocation point xc. The actual elements
are indicated by continuous lines, whereas the introduced integration regions
are denoted by dashed lines.

[73] and [42]. The strongly singular integral of the discretized double layer operator K is
treated with regularization techniques presented in [54]. For more detailed information on
the implemented treatment of singular integrals is referred to [82].

4.3.4 Geometric Requirements

So far it was tacitly assumed that the whole boundary Γ is smooth. In this section, it is
focused on the situation when Γ contains C0-continuities, i.e. corners and edges, which are
denoted by Γ0.
First of all, the integral free term has to be calculated accordingly to Mantic [79], if

xci ∈ Γ0. Moreover, the traction along Γ0 is discontinuous since the outward normal n
jumps there. In order to approximate the traction accurately, discontinuous basis functions
are introduced. In particular, interpolatory basis functions are modified by means of knot
insertion so that C0 knots become C−1-continuous. The Greville abscissae r̄g related to
these discontinuous basis functions coincide. If they would be used as collocation points the
resulting system of equations would become singular. Hence, the definition of discontinuous
anchors is introduced.

Discontinuous Anchors Anchors r̄i of basis functions, e.g. ψi, are generally defined by
the Greville abscissae. In case of discontinuous basis functions an additional offset α is
applied to their parametric location. This offset is specified by an adaptation of the 2-ring
collocation scheme presented in [109]. It is given for each parametric direction by

αi =

∑K
k=1 r̄

e
i−k − r̄ei +

∑K
k=1 r̄

e
i+k − r̄ei

2K + 1
(4.36)

with

r̄e = Ξψ
⋃

r̄g, r̄ej 6 r̄ej+1 and K =

{
1 if (p− 1) < 2

2 otherwise.
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Figure 4.3: Definition and numbering of the sequence r̄e for the construction of offsets
α5 and α6. The basis is defined by Ξ = {0, 0, 0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 3}. The
Greville abscissae are marked by circles or thicker ticks. The final position of
the shifted anchors r̄5 and r̄6 is indicated by crosses.

The values r̄e represent an extension of the knot vector Ξψ, which includes the correspond-
ing Greville abscissae r̄g. In general, r̄e is sorted in a non-decreasing order. Furthermore,
Greville abscissae located at discontinuous knots, i.e. m = p + 1, are inserted at the
beginning and the end of these knots. In equation (4.36) the index i is related to the
discontinuous ψi considered and its r̄gi . Consequently, the numbering of the surrounding
entries r̄e depends on the position of r̄gi within the sequence as shown in Figure 4.3.

Fields of Applications In addition to the approximation of discontinuous field vari-
ables, discontinuous collocation can be used to deal with degenerated and non-conforming
patches. The former case is illustrated in Figure 4.4(a). There a quarter of a hemisphere
is modeled by concentrating several control points, i.e. c6 = c7 = c8. Hence, their related
collocation points would coincide as well, if they are specified by the Greville abscissae.
The offset α is applied to these anchors so that each one has its own location in the Carte-
sian system. In the example considered, this leads to the three collocation points around
the degenerated edge.

Regarding multi-patch geometries, collocation points xc of adjacent patches may coin-
cide if they are located at their common edge. In addition, the parametric coordinates of
those xc must be known within both parameter spaces in order to regularize the singular
integrals. However, collocation points at common edges are avoided if discontinuous col-
location is used there. Consequently, each patch can be treated separately. Figure 4.4(b)
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c0

c1

c2

c3

c4

c5

c6, c7, c8

(a) Degenerated Patch

γ1

γ2

ē1,2

(b) Non-conforming Patches

Figure 4.4: Discontinuous collocation applied to different geometrical cases. Control points
are indicated by black dots, whereas orange dots are used for collocation points.
In (b), the common edge ē1,2 of the patches γ1 and γ2 is highlighted in red.

shows a model which consists of two patches γ1 and γ2 with a common edge ē1,2. Since
the former is a linear and the latter a quadratic surface, it is evident that γ1 and γ2 have
non-conforming parameter spaces. On the one hand, ē1,2 is represented by 4 linear curves
since γ1 is a simple square based on linear B-splines. On the other hand, it is defined by
quadratic NURBS according to γ2. Some collocation points would lie on ē1,2, if they are
specified by continuous anchors. Due to the application of discontinuous collocation they
are situated around the common edge.
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5 Independent Field Approximation

The following explanations will refer to elasticity problems and uses the related terminol-
ogy. However, they are analogously applicable to potential problems.

In the previous chapter, numerical approximations methods based on boundary integral
equations have been included into an isogeometric framework. In this chapter, the concept
is generalized by representing the geometry, displacement and traction field independently
from each other, which leads to the term independent field approximation. The obtained
formulations are more flexible and avoid redundancies.

For example, the refinement of the geometry is in fact superfluous since knot insertion
or degree elevation does not change a NURBS patch, neither geometrically nor parametri-
cally [93]. The geometrical aspect is discussed in more detail at the end of this chapter. The
application of independent field approximation to the isogeometric Nyström and boundary
element method is examined first.

5.1 Nyström Method

5.1.1 Integration Elements

Regarding the Nyström method, the discretization of the Cauchy data is determined by
the applied quadrature rule and its underlaying interpolation polynomial. Hence, there
is no approximation by basis functions related to the CAGD model. Consequently, the
arrangement of integration regions τ̃ over a patch γ can be chosen independently of the
geometry basis, i.e. τ̃ 6= τ . Similar to the definition of the integration elements τ introduced
in Section 4.1.1, the patch γ is subdivided into a set of elements τ̃ , so that

γ =
I⋃
i=1

τ̃i. (5.1)

It should be emphasized that this partition is not determined by the knots spans of the
knot vector Ξ related to the geometry representation. But still, the geometry must be
smooth within each τ̃ . In order to consider the geometrical continuity, it is proposed to
define the elements τ̃ by means of an artificial knot vector Λ such that Ξ ⊂ Λ. To be clear,
the purpose of Λ is not to construct basis functions but to organize the global partition of τ̃
properly. The knots of Λ are denoted by ai. Based on the initial discretization, i.e. Ξ = Λ,
the approximation quality of the Cauchy data can be improved by inserting additional
knot values âi into a knot span s of Λ, such that as < âi < as+1. This procedure defines
an h-refinement that is performed in the parametric space and preserves the continuity re-
quirements with respect to the geometry. Moreover, the grading described in Section 4.2.4
can also be performed within the artificial parameter space. The independent partition of
elements τ̃ over a curve is indicated in Figure 5.1.
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Figure 5.1: The geometry of a cubic B-spline curve is defined by control points ci and
the knot vector Ξ = {0, 0, 0, 0, 2, 4, 4, 4, 4}. The elements τ̃j along the curve
are defined by Λ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4} in the parameter space. Each
element is equipped with a two point quadrature rule defined in the reference
interval ξ ∈ [−1, 1].

5.1.2 Local Refinement of Tensor Product Surfaces

The use of artificial knot vectors Λ is sufficient for the partition of τ̃ over a curve. However,
the extension of this concept to surface representations is limited. In particular, local
refinement is not possible if elements τ̃ are defined by a tensor product of ΛI and ΛJ .
In this section, a strategy for local refinement with the isogeometric Nyström method is
derived.
The proposed procedure is visualized in Figure 5.2. Global refinement is performed

by the introduction of additional artificial knots, i.e. inserting âj in ΛJ as indicated by
the dashed line in Figure 5.2(a). Both non-zero knot spans in ΛI are subdivided. The
subsequent subdivision is intended to be local for each of the elements τ̃ . In particular,
the definition of refinement points r̀ is proposed for the partitioning of local elements τ̀
within an τ̃ . Each r̀ is defined in the parametric space and located either inside or on
an edge of τ̃ . Inside τ̃ , it defines the origin of a cross which is aligned to the parametric
coordinate system and subdivides τ̃ into four local elements τ̀ . If r̀ is located on an edge,
τ̃ is subdivided into two τ̀ . Further, a local grid can be defined by combining several
refinement points simultaneously. The local refinement options described are illustrated in
Figure 5.2(b).
In order to enable further refinement of local elements, all elements are sorted in a

hierarchical tree structure and labeled with the refinement level `. The initial refinement
level ` = 0 refers to the global element, hence τ̀ 0 ≡ τ̃ . Each node of the tree may have a
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âj

(a) Global Refinement (b) Local Refinement ` = 1 (c) Local Refinement ` = 2

Figure 5.2: Subsequent refinement of integration elements defined by the tensor product
of ΛI = {0, 0, 0, 1, 1, 2, 2, 2} and ΛJ = {0, 0, 0, 2, 2, 2}. (a) Global refinement
by inserting âj = 1 into ΛJ . (b) Subdivision into local elements by refinement
points of the first refinement level which are denoted by diamonds. (c) Further
local refinement by a higher refinement level indicated by circles.

different number I of ancestors because several refinement points may be defined per level.
The local elements τ̀ `i generated in level ` cover the complete area of the local element τ̀ `−1

of the previous level

τ̀ `−1 =
I⋃
i

τ̀ `i . (5.2)

The final partition of the global element τ̃ is defined by the sum of local elements

τ̃ =
J⋃
j=1

τ̀j (5.3)

related to the leaves in the hierarchical tree structure as shown in Figure 5.3. An example
of such a locally refined patch with two levels of refinement is depicted in Figure 5.2(c). The
local refinement procedure involves the scaling and translation of the element boundaries.
Details on the construction of this transformation due to a given set of r̀ are provided in
Appendix B. Finally, local refinement of a patch is illustrated in Figure 5.4.

τ̀0 ≡ τ̃

τ̀11

τ̀21 τ̀22

τ̀12

Figure 5.3: Hierarchical tree structure of local elements τ̀ with different levels of refinement.
The final partition is defined by the leaves indicated by circles.
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Figure 5.4: The distribution of quadrature points on a locally refined surface. The basis
function of the geometry are defined by ΞI = ΞJ = {0, 0, 0, 2, 2, 2}. The
partition of local elements is defined by a global insertion of â1 = â2 = 1 and
a refinement point r̀ = (0.5, 0.5)ᵀ.

5.2 Boundary Element Method

In the context of isogeometric BEM, the Cauchy data are discretized by means of B-splines
or NURBS. The related mappings have been presented in Section 4.3.1 and are denoted
by Yu(r) and Yt(r) for displacements u and traction t, respectively. In the following,
isoparametric and subparametric patches are introduced. The former employs the isopara-
metric paradigm, i.e. all field are represented by the same basis functions, as it is generally
established in isogeometric analysis. The latter utilizes the proposed independent field
approximation. The term subparametric is used to indicate that less parameters are used
for the description of the geometry than for the Cauchy data.

5.2.1 Isoparametric Patches

In an isoparametric discretization, the mappings Yu(r) and Yt(r) are equal to the geomet-
rical one X (r). This implies some compromises. First of all, the same refinement is applied
to all fields. Refinement of the unknown field is mandatory to improve the solution. But
as a consequence, the geometry and the known field are refined even though they may
be exactly represented by the initial basis functions. In addition to refinement aspects,
the fields have different continuity requirements along corners and edges. In particular,
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discontinuous basis functions are required to describe traction jumps. On the other hand,
they are not optimal for representing the displacement field which should be continuous
according to the physical constraint. Furthermore, the number of basis functions is rising
unnecessarily.

Thus, a preliminary conclusion is that isoparametric discretization introduces superflu-
ous control variables. This increases the numerical effort and storage requirements for
setting up the discrete boundary integral operators of the right hand side block matrices
of the system of equations (4.31). Moreover, refinement of CAGD models affects the effi-
ciency of all geometry evaluations performed during the analysis. These points motivate
the application of the proposed subparametric approach presented next.

5.2.2 Subparametric Patches

In this section, subparametric patches are introduced. The key idea is to treat each field
separately in order to fulfill their individual needs. In particular, the concept of a sub-
parametric element is adopted, i.e. more basis functions will be used to represent the field
variables than for the geometry representation.

The basis functions of the geometry θ, the displacements ϕ and the tractions ψ are
defined by the knot vector Ξθ, Ξϕ and Ξψ, respectively. Without loss of generality, basis
functions of the Cauchy data are defined as an extended version of Ξθ, so that

Ξθ ⊂ Ξϕ and Ξθ ⊂ Ξψ. (5.4)

This definition guarantees a proper partition of integration elements. It should, however,
be noted that it allows the variation of basis functions types. For instance, the Cauchy
data over a NURBS patch may be approximated by B-splines. First of all, the evaluation
of B-splines is faster and furthermore there is no need to compute new weight values during
the refinement process. The approximation quality of such an approach is investigated in
Section 7.1.1. The subsequent sections are dedicated to the general refinement strategy
and the setting up of the block system of matrices (4.31).

5.2.2.1 Individual Refinement

In the present implementation the geometry knot vector Ξθ provides the initial basis for all
fields. Subsequently, basis functions are refined if an only if it is necessary. Discontinuous
basis functions are introduced for the traction field solely. The known Cauchy data are
classified as simple or complex boundary conditions as indicated in Figure 5.5. The former
can be exactly represented by Ξθ, hence the corresponding discretization does not need to
be refined. Homogeneous boundary conditions or constant loading are examples for such
boundary conditions. The latter can only be approximated and the corresponding basis
functions have to be refined in order to improve the representation of the known Cauchy
data. In such a case, refinement is performed equal to the one for the approximation of
the unknown field.



46 5.2 Boundary Element Method

Ω

ΓN,complex

ΓN,simple

ΓN,∅

ΓD,∅

Figure 5.5: Examples of simple and complex boundary conditions applied to a cantilever
beam. Homogeneous boundary condition are denoted by the subscript ∅. Cir-
cles indicate the related anchors of the basis functions.

5.2.2.2 Collocation

In isogeometric BEM, collocation points are defined by the anchors of basis functions.
Subparametric patches contain different discretizations for each field, consequently, there
are various sets of anchors as indicated in Figure 5.6. In order to obtain collocation points,
they are specified to be the anchors of the basis functions approximating the unknown
field.

This results in a mixed collocation scheme where discontinuous collocation is applied at
ΓD and continuous collocation is applied at ΓN . As a result, continuous displacements
and discontinuous tractions can be discretized simultaneously at non-smooth boundaries.
Different arrangements of collocation points at corners are illustrated in Figure 5.7. In the
mixed case 5.7(b), the displacement anchor at the corner does not induce a collocation
point xc, since the displacement is known there, i.e. x ∈ ΓD.

The application of subparametric patches leads to a block system of matrices (4.31)
similar to the isoparametric approach. In fact, the left hand side L is equivalent, but the
right hand side R varies. The size of the isoparametric one Ri ∈ Rn×n is determined by
the degrees of freedom n. However, the number of columns m of the subparametric right
hand side matrix Rs ∈ Rn×m is determined by the control parameters which represent the
known field. Usually, this number is significantly smaller than the degrees of freedom, i.e.
m� n.
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Figure 5.6: Anchors of different fields of a patch which is subjected to simple Neumann
boundary conditions. The anchors are indicated by different circles for each
field.
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Figure 5.7: Collocation situations of subparametric patches at corners: (a) discontinuous
collocation for unknown tractions, (c) continuous collocation for unknown dis-
placements and (b) mixed collocation at the join of ΓD and ΓN . White circles
indicate collocation points defined by traction anchors, whereas collocation
point of displacement anchors are green. In (b), the black circle denotes a
displacement anchor which is not used as collocation point.
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5.3 Geometry Evaluation

Independently from the applied numerical approximation method, the refinement of the
geometry basis functions is superfluous due to the fact that it does not improve the repre-
sentation of the computational domain. Nevertheless, changing the geometrical basis has
an influence on the computational effort for the evaluation of geometrical mapping X (r)
and the related Jacobi-matrix JX (r). In particular, the effort depends on the degree p of
the underlaying basis.

Table 5.1 provides the number of elementary operations, i.e. floating point operations
such as division and multiplication, which are required for evaluations of B-spline and
NURBS patches. The values are obtained by the analysis of the efficient algorithms pro-
posed in [93]. A detailed determination of these factors is given in [83]. In general, it is
demonstrated that geometry evaluations have quadratic complexity, i.e. Op(p) = O (p2),
with respect to the degree p. So it can be concluded that each superfluous degree elevation
of the geometry reduces the efficiency of the analysis.

curves surface with p = p1 = p2

X (r) JX (r) X (r) JX (r)

B-spline (3p2 + 5p+ 2) /2 (3p2 + 3p+ 6) /2 5p2 + 7p+ 2 7p2 + 13p+ 6
NURBS (3p2 + 9p+ 6) /2 (3p2 + 15p+ 14) /2 7p2 + 11p+ 4 14p2 + 27p+ 15

Table 5.1: Elementary operations required for the evaluation of CAGD geometries.

5.3.1 Assessment of Computational Effort

The influence of geometry evaluations on the integration time is examined. To be precise,
the effort for an isogeometric BEM analysis is investigated. The applied test setting is
depicted in Figure 5.8. A unit square γ defines the computational domain. The related
discrete single layer operator Vγ and double layer operator Kγ are computed for various
source points x̃r, x̃n and x̃s. These points are chosen so that regular, nearly singular
and singular boundary integrals occur. Hence, different integration schemes are applied as

1

1

γ

z

x

y
0.0
0.1

3.0

x̃s

x̃n

x̃r

Figure 5.8: Unit square γ and source points x̃ of the single patch integration test.
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described in Section 4.3.3. Moreover, the accuracy of the numerical integration is ensured
up to a user-defined quadrature tolerance εQ due to an adaptive numerical integration
scheme presented in [82]. For the following test cases, it is set to εQ = 10−9. Degree
elevation is applied to improve the discretization. For the sake of clarity the polynomial
degree of the geometry representations is denoted by pg, whereas pc is taken for the degree
of the basis functions related to Cauchy data. The patch γ is labeled isoparametric, if
Cauchy data and geometry are described by the same NURBS basis functions, i.e. pc = pg.
In contrast to the subparametric discretization where only the basis of the Cauchy data is
degree elevated. Table 5.2 shows the number of Gauss points required for the subparametric
test cases. It indicates that accurate integration in the context of BEM demands a large
number of quadrature points and therefore, many geometry evaluations.

#GP for Vγ #GP for Kγ

pc regular near. sing. singular regular near. sing singular

1 64 375 1447 64 415 1015
2 64 375 1575 100 415 1015
3 100 375 1711 100 415 1015
4 100 375 1903 100 479 1015
5 100 375 1967 100 479 1015
6 100 439 1967 100 511 1015

Table 5.2: Required number of Gauss points (#GP ) depending on degree pc on the unit
square γ which is discretized by linear basis functions, i.e. pg = 1, and different
integration schemes.

The numerical integration is performed single-threaded and repeated 100 times, in order
to obtain comparable timings. The runtime of isoparametric and subparametric patches
are denoted by ti and ts, respectively. Figure 5.9 illustrates the difference between the two
approaches in terms of computation time. In particular, the performance is compared using
the factor ti/ts. It is demonstrated that the proposed subparametric concept increases the
efficiency of the computation of the matrix entries. The graphs of the different integration
schemes are almost similar. Hence, the obtained runtime ratios are independent of the
actual number of required integration points. It seems that a speedup of approximately
12% for Vγ and 17% for Kγ is achieved for each degree elevation applied. The difference
between the two operators occurs because the latter requires an additional evaluation of
the outward normal n.
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Figure 5.9: Integration time of the unit square example for an isoparametric BEM dis-
cretization (ti) related to a subparametric one (ts) as a function of the degree pc
of the Cauchy data. The discrete single layer Vγ and double layer Kγ operators
are computed using regular, nearly singular and singular integration.



6 Analysis of Trimmed Geometries

Trimmed patches are very often a part of CAGD models because they offer a convenient
way to apply an efficient surface representation to non-rectangular surface topologies. How-
ever, their application to an analysis needs further consideration. First of all, trimming
procedures are used to define visible domains Ωp over patches independently of the under-
lying knot sequence, i.e. the original control points still remain. Hence, it is not sufficient
to define integration elements based on the non-zero knot spans. Moreover, the trimmed
basis contains degenerated basis functions which exist only partially within Ωp. In some
cases their supports may be very small and the condition number of the resulting system
matrices can become large. Consequently, a trimmed basis is not guaranteed to be stable.

In the following, a method is presented that re-establishes the stability of a trimmed
B-spline basis. Originally, it has been developed in the context of weighted extended B-
splines [63, 64, 99]. The term weighted indicates that their definition includes a weighting
function which is used to define the boundary of Ωp and to enforce essential boundary
conditions to a finite element analysis. In the context of BEM, the weighting function is
not required, thus the term extended B-splines is used. The application of such B-splines
to NURBS geometries is straightforward because of the independent field approximation.

6.1 Definition of Extended B-splines

The concept of extended B-splines Be
i,p is illustrated in Figure 6.1. The original basis 6.1(a)

is defined by the knot vector Ξ = {0, 0, 0, 1, 2, 3, 3, 3}. The domain of the trimmed patch
Ωp is determined by a trimming parameter t, i.e. Ωp ∈ (t, 3), as indicated by the dashed
vertical line. In the initial step, the stable B-splines Bi,p and degenerated B-splines Bj,p

of the basis have to be identified. Therefore the size of the supports inside Ωp may be
evaluated [63]. Here a different approach is proposed: B-splines are labeled degenerated
if their support is partially within, but the corresponding anchor is outside of the visible
domain. The related indices are stored in the index-set J. In the given example this is
the case for B0. Next, the polynomial segments of the trimmed knot span are substituted
by extensions of the polynomial segments Bsi of the closest non-trimmed knot interval s.
Finally, those extensions are defined by a linear combination of the original ones of the
trimmed knot span

Be
i,p = Bi,p +

∑
j∈Ji

ei,jBj,p (6.1)

where Ji is an index-set of all degenerated B-splines related to the current Be
i,p. Note that

equation (6.1) defines Be
i,p outside of the trimmed knot span, where Be

i,p = Bi,p, as well. It
remains to define the extrapolation weights ei,j.
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Figure 6.1: Basic procedure to get from (a) conventional to (d) extended B-splines: (b) de-
termination of degenerated B-splines and substitution of trimmed polynomial
segments by (c) extensions of non-trimmed ones.

6.1.1 Univariate Extrapolation Weights

In order to compute the extrapolation weights ei,j of an extended B-spline an interpolation
problem needs to be solved. In particular, the extended polynomial segments Bsi of the
non-trimmed knot span s shall be approximated by B-splines of the trimmed knot span t
such that

Bsi (r) =
t∑

j=t−p
Bj,p(r) ei,j, r ∈ [rt, rt+1) . (6.2)

It should be noted that Bsi can be exactly represented by Bj,p since they are polynomials
within the B-spline space Sp,Ξ . Moreover, the coefficient ei,i has to be equal to 1 due
to the fact that Bsi (r) ≡ Bi,p(r), r ∈ [rs, rs+1). Analogously, ei,k = 0 for other non-zero
B-splines Bk,p of the knot span s, since Bsi (r) 6= Bk,p(r), r ∈ [rs, rs+1). Other values are
obtained, only if the basis function is degenerated, i.e. j ∈ Ji. However, spline interpolation
requires p+1 anchors r̄ as described in Section 2.5. Unfortunately, the recommended r̄, i.e.
Greville or Demko abscissae, are not within the trimmed knot span t in general. Hence, a
quasi interpolation approach is preferred.

Quasi interpolation methods allow the computation of spline approximations without
solving an linear system of equations. In addition, the schemes are applied to single
intervals, hence they are ideally suited to compute the extrapolation weights ei,j. Here the
so-called de Boor–Fix or dual functional λj,p [16] is used: for any piecewise polynomial
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f ∈ Sp,Ξ ,

f =
J−1∑
j=0

λj,p(f)Bj,p (6.3)

with

λj,p(f) =
1

p!

p∑
k=0

(−1)kψ
(p−k)
j,p (µj) f

(k)(µj), µj ∈ [rj, rj+p+1] (6.4)

ψj,p(r) =

p∏
l=1

(r − rj+l) . (6.5)

Note that the evaluation point µj can be chosen arbitrarily within [rj, rj+p+1]. Moreover,
it can be proven that for all l,

λl,p(Bj,p) = δlj and λl,p

(
J−1∑
j=0

Bj,p cj

)
= cl . (6.6)

In order to compute ei,j the function f is substituted by Bsi , leading to

ei,j = λj,p(Bsi ) =
1

p!

p∑
k=0

(−1)kψ
(p−k)
j,p (µj) Bs

(k)

i (µj), µj ∈ [rj, rj+p+1] . (6.7)

Equation (6.7) provides in fact the entire information to set up the extrapolation weights.
However, it may seems a bit complex at first glance. So its evaluation is discussed in more
detail. The polynomial ψj,p can be rewritten in an explicit representation also known as
power basis form

ψj,p(r) =

p∑
k=0

βk r
k. (6.8)

The corresponding coefficients βk are computed by

βk = (−1)k
L∑
l=1

∏
m∈Tk,l

rm with L =
p!

(p− k)! k!
(6.9)

where the sum over Tk,l denotes all k-combinations with repetition of the knots appearing
in the definition of ψj,p, i.e. rj+1, . . . , rj+p. The segments Bsi of Bi,p can also be converted
to an explicit representation by Taylor expansion given by

Bsi (r) =

p∑
k=0

B
(k)
i,p (r̃)

k!
(r − r̃)k =

p∑
k=0

αk (r − r̃)k, r̃ ∈ [rs, rs+1) (6.10)

where the point r̃ is within the corresponding knot span s. Equation (6.10) can also be
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written in power basis form such that

Bsi (r) =

p∑
k=0

α̃k r
k with α̃k =

p∑
m=k

(
m

k

)
αm (−r̃)m−k (6.11)

where
(
m
k

)
denotes the binomial coefficient defined as(

m

k

)
:=

m!

(m− k)! k!
. (6.12)

Based on the explicit representations (6.8) and (6.11), the functional can be evaluated
without direct evaluation at a point µj. Since this point can be chosen arbitrarily, values
depending on µj cancel out [98]. Therefore, the dual functional can be written as

ei,j = λj,p(Bsi ) =
1

p!

p∑
k=0

(−1)k (p− k)! βp−k k! α̃k. (6.13)

Supplementary information regarding the evaluation of λj,p(Bsi ) is provided in Appendix C.

6.1.2 Bivariate Extrapolation Weights

Bivariate extrapolation weights ei,j are obtained by the tensor product of their univari-
ate counterparts calculated for each parametric direction. The indices i and j indicate
stable and degenerated bivariate B-splines, respectively. The construction procedure is
visualized in Figure 6.2 and examples of different bivariate extended B-splines are shown
in Figure 6.3. In general, a degenerated B-spline is distributed to (p1 + 1) (p2 + 1) interior
B-splines. Several degenerated B-splines Bj,p may be associated to an interior B-spline Bi,p.
In particular, the number of Bj,p related to Bi,p is determined by the cardinality of the
corresponding intex-set #Ji. However, the extension procedure is restricted to those basis
functions which are close to the trimming curve. For instance, the basis function shown
in Figure 6.3(a) is a conventional B-spline since it is far enough away from the trimming
curve.

The extrapolation weights may be negative, hence extended B-splines may have negative
values as well. Nevertheless, the resulting extended B-splines inherit all essential properties
of conventional B-splines including linear independence [63]. In addition, the determination
of proper anchors is straightforward since all anchors of extended B-splines are within Ωp

by construction. This is an essential feature for interpolation and collocation schemes.
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Figure 6.2: The construction of bivariate extrapolation weights ei,j. The basis is defined
by a tensor product of the B-spline depicted in Figure 6.1(a), the dashed line
indicates the trimming curve and Ωp is highlighted in gray. Stable B-splines
are marked by black and green circles. The shown values of ei,j are related
to the degenerated basis function marked by the blue circle in the upper right
corner of the parameter space. The B-splines of the closest non-trimmed knot
span are indicated by green circles. The values of the univariate extrapolation
weights are derived in Appendix C.
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(a) #Ji = 0

(b) #Ji = 1

(c) #Ji > 1

Figure 6.3: Bivariate extended B-splines Be
i,p with various cardinalities of the index-set Ji

which indicates the number of related degenerated B-splines. Note that (a) is
in fact a conventional B-spline, i.e. Be

i,p ≡ Bi,p, since Ji is empty.
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6.1.3 Assessment of Approximation Quality

In order to verify the approximation quality of extended B-splines the following test case
is studied: the initial B-spline basis defined by Ξ = {−1,−1, 1, 1} is refined by degree
elevated up to different degrees p = {2, 3, 4} and uniform knot insertion. The knot insertion
depth dk indicates how often the knot spans have been subsequently subdivided. Hence,
it defines how many knots are inserted. A trimming parameter t < 1 determines the valid
domain of the patch Ωp ∈ (−1, t).
An interpolation problem is solved using extended B-splines for each trimmed basis. In

addition a simple approach is applied, where the anchors of degenerated basis functions are
just shifted into Ωp. If a support is entirely outside of the domain it does not contribute
to the approximation in both cases. The schemes are depicted in Figure 6.4. The quality
and stability of the approximation fh(u) are specified by the relative interpolation error
measured in the L2-norm ‖εrel‖L2 as well as the condition number of the spline collocation
matrix κ(Ar).

−1 −0.5 0 0.5 1

Ωp t

(a) Extended B-splines

−1 −0.5 0 0.5 1

Ωp t

(b) Shifted Anchors

Figure 6.4: Trimmed univariate basis specified by p = 2, dk = 2 and t = 0.4 for (a) ex-
tended B-splines and (b) the simple approach. The involved basis functions
are indicated by continuous lines and their anchors are marked by circles. Dot-
ted basis functions do not contribute to the interpolation problem. In (a), the
dashed line indicates a degenerated B-spline.

6.1.3.1 Spline Interpolation in 1D

The target function of the interpolation problem is given by

f(r) =
1

|a− r| with a = −1.1 /∈ Ωp and r ∈ Ωp. (6.14)

The knot insertion depth dk is set to 4 and the interpolation is performed for several
trimming parameters t ∈ [0.5, 1). The resulting κ(Ar) and ‖εrel‖L2 of the untrimmed case,
i.e. t = 1, are given in Table 6.1 for reference purpose. All other results are summarized
in Figure 6.5 and Figure 6.6.
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p κ ‖εrel‖L2

2 2.500 1.989× 10−2

3 4.310 5.734× 10−3

4 7.938 1.750× 10−3

Table 6.1: Results of the interpolation problem of the untrimmed basis, i.e. t = 1.

It can be observed that the condition number ofAr due to shifted anchors is considerably
influenced by t. A peak is reached as soon as t approaches an anchor or a knot value. If
extended B-splines are used, κ(Ar) hardly changes. In other words, the extended B-spline
basis is stable. At the same time, the relative error is almost identical with respect to t.
The extended B-spline approach yields even more accurate results, if ‖εrel‖L2 is related to
the number of anchors, i.e. degrees of freedom n.
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Shifted Anchors
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Figure 6.5: Condition number κ(Ar) for several degrees p and trimming parameters t. The
labels of the horizontal axis indicate knots of the trimmed basis.
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Figure 6.6: Relative interpolation error of the univariate example with several degrees p
related to the trimming parameter t (left) and the degrees of freedom n (right).
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(a) Extended B-splines
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t

(b) Shifted Anchors

Figure 6.7: Trimmed bivariate basis specified by p = 2, dk = 2 and t = 0.4 for (a) extended
B-splines and (b) the simple approach. The domain Ωp of the interpolation
problem is highlighted in gray and circles indicate the basis functions involved.
Note that there are anchors on the trimming curve in case of the simple ap-
proach.

6.1.3.2 Spline Interpolation in 2D

The interpolation problem of the two dimensional case is set up as tensor product of the one
dimensional example as indicated in Figure 6.7. In particular, the basis and the definition
of Ωp are given by a tensor product of the univariate versions discussed in the previous
section. The target function of the interpolation problem is given by

f(r1, r2) =
1√

(a1 − r1)2 + (a2 − r2)2
with a1 = a2 = −1.2 . (6.15)

The knot insertion depth dk is set to 4 for both intrinsic directions and the interpolation
problem is performed for several trimming parameters t ∈ [0.5, 1). For the untrimmed
case, i.e. t = 1, the resulting κ(Ar) and ‖εrel‖L2 are summarized in Table 6.2. All other
results are depicted in Figure 6.8 and Figure 6.9.

It is evident that the simple approach negatively affects the condition number and sub-
sequently the quality of the approximation. The error peaks near knot values are in fact
disastrous. Astonishingly, extended B-splines provide a stable basis where κ(Ar) barely
changes for the same trimming cases. The reduction of the approximation accuracy occurs
due to the reduction of the degrees of freedom n, i.e. number of extended B-spline, as the
trimming parameter t→ 0.5.

p κ ‖εrel‖L2

2 6.250 2.108× 10−4

3 18.574 4.488× 10−5

4 63.015 7.657× 10−6

Table 6.2: Results of the interpolation problem of the untrimmed bivariate basis.
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Figure 6.8: Condition number κ(Ar) of the bivariate basis for several degrees p and trim-
ming parameters t. The labels of the horizontal axis indicate knots of the
trimmed basis.
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Figure 6.9: Relative interpolation error of the bivariate basis for several degrees p related
to the trimming parameter t. The labels of the horizontal axis indicate knots
of the trimmed basis.
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6.2 Application to Analysis

The extended B-spline basis is applied to an isogeometric BEM framework. The parti-
tioning of integration elements over trimmed surfaces and the setting up of the system
matrices is of particular interest in this section.

6.2.1 Integration Elements

Non-trimmed knot spans can be treated as in the regular case, but trimmed ones require
a different representation. The detection of trimmed knot spans is performed accordingly
to Schmidt et al. [107]. In particular, the following steps are performed:

1. Determine intersection points of the trimming curve and the grid produced by the
tensor product of the knot vectors.

2. Detect invalid cutting patterns and perform knot insertion to obtain valid ones.

3. Assign an element type to each knot span based on the valid cutting patterns.

Figure 6.10 shows a trimmed parameter space with related element types and Figure 6.11
depicts the valid cutting patterns considered in this thesis. Elements of type 1 are the
regular knot spans, whereas type −1 elements are not considered during the analysis since
they are outside of the computational domain. It remains to define the mapping Xξ(ξ)

from the reference element τ̂ = [−1, 1]d−1 to knot spans of type {3, 4, 5}.
By adapting the concept of Coons patches, we use the edges of the trimmed knot span

to specify Xξ(ξ). There is a single edge determined by the trimming curve, the others are
straight lines related to the grid of the parameter space. The latter can be represented by
the grid points and linear B-splines Bj,1 based on the knot vector Ξ = {−1,−1, 1, 1}. The
former is obtained by the application of knot insertion so that the trimming curve gets
interpolatory at the intersection points. The resulting Bézier segment xb and the opposing

1

1

1

5

4 3 -1

4

3

Figure 6.10: Trimmed parameter space and corresponding element types: 1 labels
untrimmed knot spans whereas −1 denotes knot spans which are outside of
the computational domain. In case of trimmed knot spans the element type
indicates the number of interior edges, i.e. 3, 4 or 5.
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(a) (b) (c) (d)

Figure 6.11: Illustration of valid cutting patterns of a single knot span. The actual element
type is determined by the direction of the trimming curve which is indicated
by the dashed line. The intersection points are highlighted by crosses.

straight edge xe determine Xξ(ξ) by the following construction: firstly, it is ensured that
both curves are defined on the same parameter range, i.e. ξ1 ∈ [−1, 1]. Next, the knot
vector Ξe of xe is refined by degree elevation and knot insertion so that it is equivalent
to the knot vector Ξb of xb. Consequently, both edges are described by the same basis
functions Bi,p(ξ1). Combined with a linear interpolation Bj,1(ξ2) given by the knot vector
Ξ = {−1,−1, 1, 1} the integration region of the trimmed knot span is represented by

Xξ(ξ) := x(ξ1, ξ2) =
I−1∑
i=0

1∑
j=0

Bi,p1(ξ1)Bj,1(ξ2) cri,j (6.16)

where cri,j denote the control points of xb and xe within the parametric space. In case of
the element type 3 the opposite edge xe degenerates to a point. Moreover, an element of
type 5 can be treated by subdividing it into three triangular parts. The local mapping
Xξ(ξ) is exemplary shown in Figure 6.12. It is noteworthy that the integration points do
not coincide at the degenerated point since open quadrature rules are used.

Remark: Regarding singular integration the position of a collocation point within the ref-
erence element may be needed. The corresponding intrinsic coordinates ξ are obtained by
point inversion. For more details regarding this procedure is referred to [93].

ξ2

ξ1

Gauss Point

Xξ(ξ)

(a) Regular Local Coons Patch

ξ2

ξ1

Gauss Point

Xξ(ξ)

(b) Degenerated Local Coons Patch

Figure 6.12: Mapping Xξ(ξ) from the reference element to the B-spline parameter space.
The related knot span is marked in gray, the dashed line represents the trim-
ming curve, circles indicate quadrature points and higher degree edges, i.e.
p > 1, are highlighted in green.
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6.2.2 System of Equations

The approach presented in the previous section permits a proper integration over the visible
part Ωp of a patch, since the partition of integration elements τ is such that

Ωp =
I⋃
i=1

τi . (6.17)

In order to set up the system of equations for the analysis, basis functions have to be
integrated within each τ . If extended B-splines Be

i,p are involved, they could be evaluated
directly by equation (6.1). However, they can be included into the simulation without being
considered during the integration process as well. In particular, integration is performed
with the original basis functionsBi,p, i /∈ K, where the index-setK denotes all B-splinesBk,p

which are completely outside of the domain, i.e. supp{Bk,p} /∈ Ωp. In other words, the
computation of system matrix entries does not differ from the regular case of non-trimmed
patches despite the tailored mapping Xξ(ξ) from the reference element to the parameter
space which is applied for trimmed knot span.

Consequently, the resulting system of equations K ∈ Rn×m is rectangular, where n
denotes the number of collocation points and m represents the total number of integrated
Bi,p, i /∈ K. In order to obtain a square matrix an extension operator E ∈ Rm×n is
introduced. This sparse matrix E contains all extrapolation weights ei,j including the
trivial ones, i.e. ei,i = 1. The transformation of the original to the extended B-spline basis
is performed by multiplying the extension operator to the left hand side and ride hand side
of the system of equation. Regarding a Neumann problem the stabilization is given by

KEϕũ = VEψg̃N (6.18)
Keũ = f (6.19)

where g̃N ∈ Rm, ũ ∈ Rn, f ∈ Rn and Ke ∈ Rn×n. The subscripts of E emphasize that the
extrapolation weights are related to the basis functions ϕ and ψ of the Cauchy data. Hence,
if the discretization of the known and unknown Cauchy data varies, E of the left hand side
and right hand side of equation (6.18) varies as well. The stable system (6.19) is subse-
quently solved and the obtained solution ũ ∈ Rn corresponds to the extended B-splines of
the unknown field. In case of multi-patch geometries, the extrapolation weights ei,j of each
patch have to be assembled to E with respect to the global degrees of freedom. However,
the application of the extension operator is particularly convenient, if extended B-splines
are added to an existing isogeometric code.



7 Numerical Results

In this chapter, isogeometric analysis based on boundary integral equations and indepen-
dent field approximation is applied to several potential and elasticity problems. Firstly, the
convergence behavior is investigated. Secondly, important features and advantages of the
proposed solution methods are demonstrated on various examples. Finally, the treatment
of trimmed geometries using extended B-splines is examined.

In general, the system of equations is set up by an adaptive numerical integration scheme
presented in [82]. This approach ensures an integration accuracy up to a user-defined
quadrature tolerance εQ. For large scale examples a fast solution technique is utilized
in order to reduce the computational complexity. In particular, the system matrices are
approximated by means of hierarchical matrices (H-matrices). The quality of this approx-
imation is controlled by the accuracy of the applied adaptive cross approximation (ACA)
algorithm εH. The HLib library [17] is used for the H-matrix representation and matrix
operations. For details on the applied H-matrices implementation the interested reader is
referred to [82, 135].

The present implementation is part of the research software BEFE++. The commercial
NURBS modeling tool Rhinoceros was used to define the geometry models. CAGD data
is directly transfered to the analysis software using the IGES standard exchange format.
Hence, a seamless integration of design and analysis is obtained.

7.1 Convergence Studies

The convergence behavior of the proposed methods is demonstrated on various examples.
Figure 7.1 shows the general test setting for a circular cavity in an infinite domain Ω.
The boundary of the domain is defined by Γ and the outward normal n points into the
void, denoted by Ω−. The fundamental solution U(x̃,y) which is evaluated at source
points x̃ ∈ Ω− is applied as boundary condition at y ∈ Γ. In particular, y represents
anchors and quadrature points of a BEM and Nyström analysis, respectively.
Remark: The applied test setting does not incorporate geometry approximation errors.
Since isogeometric analysis exploits the most feasible geometry representation available,
this contribution is negligible.
In order to study the accuracy of the discretized single layer operator V and double

layer operator K independently, the problem is solved by the indirect boundary integral
formulations (3.29) and (3.30). For the latter, the test setting is slightly changed, since
an interior problem has to be solved instead of an exterior one. However, based on the
computed density on Γ, interior results are derived at several field points x̂ ∈ Ω and the
point-wise error εh is measured by

εh = u(x̂)− U(x̃, x̂) ∀x̂ ∈ Ω, x̃ ∈ Ω−. (7.1)
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y

x̃ x̂

r →∞

Γ

Ω

Ω−

n

Figure 7.1: Exterior problem given by a circular boundary Γ and an exemplary source x̃ ∈
Ω− and field point x̂ ∈ Ω.

The approximation quality of V and K is given by the maximum-norm ‖εrel‖∞ of the
corresponding relative error

εrel =
εh

U(x̃, x̂)
. (7.2)

Further the direct boundary integral formulation (3.31) may be applied to a pure Neu-
mann or Dirichlet problem. The boundary condition for the former is

t(y) = T(x̃,y) ∀y ∈ Γ, x̃ ∈ Ω− (7.3)

and the error is determined by

εh = u(y)− U(x̃,y) ∀y ∈ Γ, x̃ ∈ Ω− (7.4)

where u(y) is the obtained solution. In contrast to the indirect setting, equation (7.4)
is evaluated on Γ. Hence, the approximation error can be measured with respect to the
L2-norm, i.e. ‖εrel‖L2 . For a Dirichlet problem, the boundary conditions are u(y) = U(x̃,y)
and T(x̃,y) provides the reference solution. The convergence plots are related to either
the degrees of freedom n or a normalized element diameter

h =

(
Aτmax
A

)1/(d−1)

. (7.5)

Equation (7.5) provides a dimensionless parameter h which is similar to the element length
in classical analysis with finite elements. Hence, it refers to a length in R2 and an area
in R3. The largest element size is denoted by Aτmax and related to A which is the whole
length or area of Γ. This measure will be used if a uniform h-refinement is employed.
According to the concept of independent field approximation, refinement is only applied
to the discretization of the Cauchy data, while the representation of the geometry remains
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Figure 7.2: Geometries taken for the convergence studies referring to: (a) smooth domains
in 2d, (b) non-smooth domains in 2d and (c) smooth 3d domains.

unchanged.
The investigated geometries are summarized in Figure 7.2. A smooth tunnel cross section

defined by circular arcs is shown in Figure 7.2(a). Their midpoints are m1 = (0.0, 0.0)ᵀ,
m2 = (1.6, 0.0)ᵀ and m3 = (0.0, 6.3)ᵀ with the related radii r1 = 4.55, r2 = 2.95 and
r3 = 9.45. These dimensions are scaled by 100 such that the geometry’s diameter is
less than 1.00 in order to deal with the occurring logarithmic fundamental solution. In
Figure 7.2(b) a non-smooth teardrop shape determined by its opening angle α = 90◦ is
shown. The upper part is defined by a cubic B-spline curve and the corresponding control
points ci are listed in Table 7.1. For the lower part the y-coordinates are mirrored, i.e.
multiplied by −1. The three dimensional example 7.2(c) is a torus defined by the radii
ri and rm which will be specified in the subsequent Section 7.1.1.3 and Section 7.1.2.3,
respectively.

c0 c1 c2 c3 c4 c5 c6

0.0000 0.2062 0.3241 0.4714 0.5598 0.5893 0.5893
0.0000 0.2062 0.2946 0.2946 0.1768 0.0884 0.0000

Table 7.1: Control points values of the teardrop geometries upper part.
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7.1.1 Isogeometric Boundary Element Method

This section focuses on the convergence properties of the proposed isogeometric BEM
formulation which employs subparametric patches. Optimal convergence is achieved, if a
rate of convergence O (h−p−1) is obtained [5, 102]. While this statement is valid for most
test cases, a rate of O (h−p−2) may be expected for even degrees p, if the indirect boundary
integral formulation with the single layer operator is applied [115]. Related error estimates
usually refer to smooth surfaces and small h only. In general, some refinement steps are
necessary until the predicted behavior can be observed.

7.1.1.1 Tunnel

The Lamé-Navier equation is applied to the smooth two dimensional example illustrated in
Figure 7.2(a). The corresponding Lamé constants (3.8) are given by the Young’s modulus
E = 10 000MPa and Poisson’s ratio ν = 0.25. Uniform h-refinement is performed for
different degrees p = {2, . . . , 5} by means of knot insertion in the middle of non-zero knot
spans. The geometry is represented by NURBS basis functions, since it consists of circular
arcs. However, the Cauchy data are discretized either by NURBS or B-splines and their
convergence behavior is compared. The integration accuracy is set to εQ = 10−11 and
results are shown up to one magnitude less for the relative error.

In Figure 7.3, the convergence behavior of the discrete integral operators V and K by
means of the indirect boundary integral formulations (3.29) and (3.30) is shown. The
results of the Neumann and Dirichlet problems due to the direct formulation (3.31) are
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Figure 7.3: Relative error of the indirect formulation on the tunnel example for the discrete
single layer operatorV and double layer operatorKmeasured in the maximum-
norm and related to the normalized element diameter h.
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Figure 7.4: Relative error of the Neumann and Dirichlet problems on the tunnel geometry
measured in L2-norm and related to the normalized element diameter h.

presented in Figure 7.4. In these graphs, lines and marks are used to distinguish between
NURBS and B-spline discretizations of the Cauchy data for various degrees p. Triangles
indicate the optimal rate of convergence for the lowest and highest degree, i.e. p = {2, 5}.
Note that the convergence rates corresponding to V varies for even and odd degrees.
Comparing the results of B-spline and NURBS discretizations indicates that they lead to
almost identical results. Moreover, it is apparent that optimal convergence is achieved for
all cases.

7.1.1.2 Teardrop

The convergence behavior of the isogeometric BEM on a non-smooth geometry is inves-
tigated by means of a potential problem. The corresponding geometry is depicted in
Figure 7.2(b). Discontinuous collocation is applied in order to treat the occurring corner
of the cubic curve. Refinement is performed by uniform knot insertion and the integration
error is set to εQ = 10−10.

The results of the discrete boundary integral operators are shown in Figure 7.5. The
relative L2-error of the Neumann and Dirichlet problems is illustrated in Figure 7.6. In
contrast to the smooth case of Section 7.1.1.1, the discrete single layer operator V seems
to converge with a rate of O (h−p−1) for even degree, i.e. p = 4, as well. It should, however,
be noted that the error of the finest discretization is already close to εQ. All other cases
provide the same rates as in the smooth tunnel example.
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Figure 7.5: Relative error of the indirect teardrop example for the discrete single layer
operator V and double layer operator K measured in the maximum-norm and
related to the normalized element diameter h.
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Figure 7.6: Relative error of the Neumann and Dirichlet problems on the teardrop geometry
measured in L2-norm and related to the normalized element diameter h.
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7.1.1.3 Torus

An elasticity problem in three dimensions is investigated. The elastic material parameters
are E = 1MPa and ν = 0.30. The geometry is defined by a torus with radii rm = 5.00m
and ri = 1.00m, according to Figure 7.2(c). In three dimensions the numerical complexity
increases rapidly with the number of degrees of freedom, especially in case of the Lamé-
Navier equation. Hence, the resulting system of equations is approximated by means of
H-matrices. The ACA accuracy εH as well as the integration error εQ are set to 10−7.
Figure 7.7 depicts the convergence for the indirect formulation with the single layer

operator V and double layer operator K and for the direct formulation it is shown in
Figure 7.8. Desired rates of convergence are marked by triangles for degrees p = {2, 5} in
each graph. Optimal convergence rates are obtained in all cases.
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Figure 7.7: Relative error of the indirect torus example for the discrete single layer op-
erator V and double layer operator K measured in the maximum-norm and
related to the normalized element diameter h.
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Figure 7.8: Relative error of the Neumann and Dirichlet problem on the torus geometry
measured in L2-norm and related to the normalized element diameter h.

7.1.2 Isogeometric Nyström Method

Convergence studies of the proposed locally corrected isogeometric Nyström method are
provided in this section. Regions subjected to the local correction procedure are determined
by the admissibility factor η specified in equation (4.13). On smooth surfaces, a rate of
convergence O (h−pq−1) is expected for the indirect boundary integral equations with the
double layer operator K applied to Laplace problems in two and three dimensions [5].
The literature is relatively sparse as soon as the Lamé-Navier equation is concerned. Its
mathematical analysis is more involved, because the related boundary integral is evaluated
in the sense of a Cauchy principal value. The indirect boundary integral equation with the
single layer operator V requires additional attention as well. It is not compact anymore
and the related fundamental solution is logarithmic for two dimensional problems [102].
Consequently, the straightforward application of the single layer operator V leads to linear
rates, independent of the quadrature rule applied. Higher rates may be re-established
by the application of kernel splitting or other techniques [31, 55] which are beyond the
scope of this thesis. In addition, corners reduce the convergence rate, since the gradient
of the solution becomes singular. Mesh grading towards the corner is applied according to
equation (4.21) to restore higher order convergence rates.

7.1.2.1 Tunnel

The convergence of the isogeometric Nyström method on smooth geometries is investi-
gated by solving Laplace and Lamé-Navier equations on the tunnel geometry shown in
Figure 7.2(a). The Lamé constants are equal to those of Section 7.1.1.1. The study
is focused on the performance of the discrete integral operators V and K by means of
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Figure 7.9: Relative error of the indirect Laplace and Lamé-Navier problems on the tunnel
example for the discrete single layer operator V and double layer operator K
measured in the maximum-norm with respect to the mesh parameter h.

the indirect boundary integral formulations (3.29) and (3.30). Various quadrature orders
pq = {1, . . . , 4} are applied to uniform discretizations with decreasing element diameter h.
The admissibility factor for the local correction is chosen to be η = 2.0 and the accuracy
of the involved numerical integration is set up to εQ = 10−11.

The results are summarized in Figure 7.9. All graphs corresponding to V show linear
behavior as expected. The discrete operator K obeys the theoretical higher order con-
vergence rates for the Laplace problem, but the convergence ceases at a certain level of
h-refinement in the Lamé-Navier case. However, it is noteworthy that there is a significant
offset between the different discretizations with respect to the applied quadrature order pq
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Figure 7.10: Convergence of the discrete single layer V and double layer potential K on the
smooth tunnel geometry due to p-refinement. The corresponding exponential
function (7.6) is indicated by dotted lines and the aligned number denotes the
exponential factor s.

in all cases. Hence, p-refinement may be a preferable strategy. The related performance is
shown in Figure 7.10. In particular, the first three h-refined representation of the initial
mesh hs are taken as starting point and the results of each are improved by increasing the
quadrature order pq. The observed convergence behavior can be described with respect to
the degrees of freedom n by

‖εrel‖∞ = C exp(−ns) . (7.6)
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Figure 7.11: Indirect Lamé-Navier problem on tunnel example solved by the Nyström
method with a very large admissibility factor η. The relative error is measured
in the maximum-norm and plotted with respect to the mesh parameter h.

The constant C is determined by the mesh size and the exponential factors s varies from
0.41 to 0.60 for the numerical example investigated.
At this point, it should be emphasized that the straightforward implementation pre-

sented in this thesis does not employ regularization techniques which may improve the
convergence behavior. In addition, it was observed that reasonable variation of the ad-
missibility factor η does not cause essential impact. Nonetheless, the convergence rates
improve if η is chosen such that local correction is always applied. The results related to
Lamé-Navier equation are depicted in Figure 7.11. Unfortunately, this approach is not
really useful since it destroys the point-wise nature of the Nyström method and increases
the numerical effort significantly.

7.1.2.2 Teardrop

Due to the observations of the previous section, this example focuses on convergence of
the boundary integral equations of the second kind (3.30), i.e. the discrete double layer
operator K. A Laplace problem is solved on the teardrop-shaped domain illustrated in Fig-
ure 7.2(b). The corner with opening angle α = 90◦ introduces a singularity of the solution,
since its gradient becomes singular. Corresponding convergence behavior is studied for
various quadrature orders pq = {1, . . . , 5} and two different refinement strategies. On one
hand, uniform h-refinement is applied. The other scheme employs grading towards the
corner, which is determined by equation (4.21). In particular, the number of sub-elements
is set to ` = 6 and the Hölder constant is υ = 1. Moreover, the admissibility factor for
the local correction is chosen to be η = 6.0 to deal with small elements at the corner. The
local correction is performed with an integration accuracy of εQ = 10−11.
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Figure 7.12: Relative error of the indirect teardrop example for the discrete double layer
operator K measured in the maximum-norm with respect to the number of
degrees of freedom n. The h-refinement has been performed either uniformly
(left) or by grading towards the corner (right).

The occurring convergence rates are depicted in Figure 7.12. Note that the relative error
of both discretizations is illustrated with respect to degrees of freedom n. It is apparent
that higher order convergence can not be obtained by uniform h-refinement. However,
it can be re-established by the proposed grading procedure. In all test cases, the full
convergence of the indicate boundary integral equation with the double layer operator K
is restored.

7.1.2.3 Torus

The Laplace and Lamé-Navier equations are solved on a torus with radii rm = 0.90m
and ri = 0.20m. The Lamé constants are given by Poisson’s ratio ν = 0.3 and Young’s
modulus E = 1.00GPa. The admissibility factor for the local correction is set to η = 4.0
and the involved numerical integration is performed with a tolerance of εQ = 10−10.

The results for the Laplace equation are outlined for both operators in Figure 7.13.
The Lamé case is shown in Figure 7.14 focusing on the indirect boundary integral equa-
tion (3.30) with the double layer operator K. Similar to the two dimensional example of
Section 7.1.2.1, convergence rates of pq + 1 for K and linear behavior for V are observed.
Regarding p-refinement the error follows equation (7.6) with an exponential factors s ≈ 0.3.
Note that there is no convergence plateau in the graphs of to the Lamé problem, in contrast
to the two dimensional case. However, it is uncertain if this holds for further h-refinement
steps.
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7.2 Computational Effort

The subsequent sections contain miscellaneous examples emphasizing features and benefits
of combining isogeometric analysis, boundary integral equations and independent field
approximation. Sections (7.2.1) to (7.2.3) are dedicated to the application of independent
field approximation in the context of an isogeometric BEM analysis and its capability to
save computational time and storage. Regarding the isogeometric Nyström method, the
ability of local refinement and the influence of the admissibility factor of the local correction
is outlined at the end. The direct boundary integral formulation (3.31) is applied in general.

7.2.1 Spherical Excavation

An excavation of a spherical cavity with radius rs = 5.00m is investigated. Isotropic
elastic material is considered with Poisson’s ratio ν = 0.30 and Young’s modulus E =
1000MPa. Hydrostatic stress σ0 = 1.00MPa is applied as loading which leads to a uniform
internal pressure along the excavation surface. The resulting radial displacement ur can
be determined analytically by

ur = σ0
1 + ν

2 E

r3
s

r2
(7.7)

where r denotes the distance of the point observed to the sphere’s center. Hence, the
reference solution for ur along the boundary, i.e. r = rs, is 3.25× 10−3 m.
The problem is solved by conventional and isogeometric BEM simulations. Both ap-

proaches employ quadratic basis functions. The conventional BEM meshes approximate
the boundary of the computation domain with quadratic Serendipity elements. In the
isogeometric case NURBS basis function of degree p = 2 are used. In fact, the geometry
can be represented exactly by a single NURBS patch which has degenerated edges at each
pole of the sphere. This model has been exported from the CAGD software Rhinoceros,
where the precision of the exported data was set to εe = 10−8. Discontinuous collocation
is applied in order to deal with the degenerated edges of the model.
The relative error of the radial displacement εur as well as the relative deviation of the

geometry representation to an analytical sphere εgeo are summarized in Table 7.2. Further,
three numerical results and their corresponding discretizations are illustrated in Figure 7.16
and Figure 7.15, respectively.
The error εgeo demonstrates clearly the superiority of the isogeometric concept concern-

ing accurate geometry representations. The unrefined NURBS patch provides already a
precise geometric model, while a large number of Serendipity elements is required for an
adequate approximation. Note that εgeo correlates to the accuracy of the input data εe in
the isogeometric case. Moreover, the isogeometric solution provides excellent results for
ur despite of the low number of degrees of freedom n. It should, however, be noted that
the example suits NURBS basis functions ideally. Such remarkable gaps between isoge-
ometric and conventional BEM solutions can not be expected in general. Nevertheless,
conic sections and their three dimensional counterparts, e.g. spheres and cylinders, are
very common design elements for which NURBS surpasses the approximation quality of
conventional basis functions.
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Isogeometric BEM Conventional BEM

n εur εgeo n εur εgeo

216 1.74× 10−5 3.42× 10−8 483 1.61× 10−2 4.76× 10−1

288 2.65× 10−6 3.42× 10−8 2436 1.27× 10−3 1.53× 10−2

9312 5.58× 10−4 1.81× 10−3

12 120 4.42× 10−4 1.10× 10−3

21 858 1.49× 10−4 3.21× 10−4

38 886 7.52× 10−5 1.08× 10−4

Table 7.2: Relative error of solution εur and geometry representation εgeo of the spherical
excavation measured in L2-norm due to an isogeometric and conventional BEM
analysis with quadratic basis functions.

(a) n = 288 (b) n = 483 (c) n = 38 886

Figure 7.15: Various unknown field discretizations of the spherical cavity with different
degrees of freedom n: (a) finest isogeometric BEM, (b) coarsest and (c) finest
conventional BEM analysis.

(a) n = 288 (b) n = 483 (c) n = 38 886

3.249 43× 10−3 3.250 03× 10−3

Figure 7.16: Radial displacement ur of various spherical excavation discretizations:
(a) finest isogeometric BEM, (b) coarsest and (c) finest conventional BEM
analysis.
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Figure 7.17: Dimensions and boundary conditions of the cantilever beam example.

7.2.2 Cantilever

A three dimensional cantilever beam is considered to investigate the quality of the re-
sults and storage requirement of the proposed subparametric discretization. Figure 7.17
illustrates the geometry and boundary conditions of the problem. The elastic material is
defined by Poisson’s ratio ν = 0.0 and Young’s modulus E = 29 000MPa. The problem is
discretized with subparametric and isoparametric patches. The former refines the basis of
the unknown field only, since the boundary conditions are exactly represented by the initial
patch. Hence, the right hand side matrix R of the system of equations is approximated
differently in the two approaches. The difference is expressed by the compression rate

cs =
St(Ri)

St(Rs)
(7.8)

with St(Ri) and St(Rs) denoting the storage requirements for the right hand side matrix
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Figure 7.18: Left: vertical displacement of the cantilever beam’s end uz(xend) for different
polynomial degrees p and degrees of freedom n. Lines indicate the results due
to the isogeometric, while markers are used for the subparametric discretiza-
tion. Right: compression cs of the right hand side matrix due the application
of the subparametric formulation.
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due to the iso- and subparametric formulation, respectively. In both cases, matrix entries
related to homogeneous boundary conditions, i.e. zero entries, are not measured. In
order to verify the quality of the results the vertical displacement uz of the endpoint
xend is determined. Refinement is preformed until Timoshenko’s analytic solution, i.e.
uz(xend) = −0.5214m, is obtained.
Comparing the resulting displacements uz(xend) and related compressions cs in Fig-

ure 7.18 demonstrates that the subparametric concept leads to almost identical results,
although the storage requirements are evidently decreased. In fact, the right hand side
matrix of the finest discretizations is 100 times smaller than its isoparametric counterpart.

7.2.3 Crankshaft

In this section, the concept of independent field approximation is applied to a crankshaft
example. The geometry is defined by several regular NURBS patches and illustrated in
Figure 7.19. Displacements are fixed at the axle and flywheel, while the crank pins are
subjected to vertical loading. These boundary conditions are exactly represented by the
initial discretization and do not require refinement. The material property is specified
by E = 210GPa and ν = 0.25. In order to handle the computational effort the system
matrices are approximated by means of H-matrices.
Subparametric and isoparametric discretizations are applied to the problem. They differ

not only in the refinement procedure, but the type of basis function used for the represen-
tation of the Cauchy data. In particular, B-splines are employed in the subparametric case.
The degree of the basis functions related to Cauchy data pc is either equal to the one of
the geometry representation pg or increased by means of degree elevation, i.e. pc = pg + 1.
Subsequently, knot insertion is used to improve the results. For each simulation, the anal-
ysis time ti and ts of the isoparametric and subparametric discretization are compared. To
be precise, the runtime for the set up of the left hand side L and the right hand side R of
the block system (4.31) is measured. Each analysis has been performed single-threaded,
concurrently for each ti and ts and repeated several times. In order to achieve an accept-
able computational effort for this study the H-matrix accuracy εH as well as the tolerance
for the numerical integration εQ are set to 10−3. The resulting speedup factors ti/ts are
summarized in Figure 7.20. Figure 7.21 shows the displacements corresponding to the
third h-refinement step of the case where pc = pg.

crank pins

flywheel

axle

Figure 7.19: Geometry model of the crankshaft.
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Figure 7.20: Computational time for the set up of L and R related to various discretization
of the crankshaft example as a function of the degrees of freedom n. The
runtime of the isoparametric discretization ti is related to the subparametric
one ts.

(a) Isoparametric

(b) Subparametric
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Figure 7.21: The absolute displacement |u| of the crankshaft example without degree el-
evation and three h-refinement steps due to an (a) isoparametric BEM and
(b) subparametric BEM discretization.
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Figure 7.22: Total compression rates ctot for the system matrices of the crankshaft example
discretized with subparametric patches as a function of the total degrees of
freedom n.

In addition, the storage requirements of the subparametric approach is investigated
focusing on those discretizations which are not degree elevated. The total compression
rates

ctot =
St(L)

St(LH)
and ctot =

St(R)

St(RH,s)
(7.9)

of the left hand and right hand side are compared. The former is solely determined by the
H-matrix approximation, whereas the latter is further compressed due to the application of
subparametric patches. The matrix approximation is performed with different accuracies,
i.e. εH = {10−3, 10−5, 10−7}. The resulting ctot are illustrated in Figure 7.22 with respect
to the number of degrees of freedom n.

The shown results indicate that independent field approximation reduces the compu-
tational effort regarding both time and storage, especially for the right hand side of the
block system of equations. The number of columns of R is constant for all subparametric
discretizations, because known Cauchy data do not need to be refined. Hence, its storage
requirement is linear with respect to n, which exceeds the almost linear behavior O(n log n)
of H-matrices. The efficient geometry evaluation as well as the substitution of NURBS by
B-splines are the key factor regarding the faster computation of L in the subparametric
case. The former impact is indicated clearly by the additional offset between the graphs
related to pc = pg and pc = pg + 1 on the left hand side of Figure 7.22 and confirms the
findings of Section 5.3.1.
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Figure 7.23: Geometry and boundary conditions of the Fichera cube example: (a) shape of
the model where the dotted lines indicate the paths used for the comparison
to the reference solution and (b) corresponding L-shape in two dimensions
from which the non-zero Neumann boundary conditions are derived. In both
cases, the Dirichlet boundary ΓD is highlighted green.

7.2.4 Fichera Cube

A heat conduction problem is solved by the isogeometric Nyström method in order to verify
its feasibility to perform local refinement. The admissibility factor of the local correction
is set to η = 6.0 and εQ = 10−6 is the related tolerance of the numerical integration.
The computational domain is determined by a unit cube subtracted from a larger one, i.e.
Ω = (−1, 1)3− [0, 1]3, which is a three dimensional counterpart to a L-shape domain. The
problem’s geometry is illustrated in Figure 7.23(a). Homogeneous boundary conditions
are applied at the Dirichlet boundary ΓD, i.e. gD = 0. The known Cauchy data along the
Neumann boundary ΓN are determined by an analytic solution of the L-shape domain in
two dimensions, where the heat potential u2d is given by

u2d = r2/3 sin

(
2θ

3

)
with r =

√
ζ2

1 + ζ2
2 (7.10)

leading to the flux

t2d = n[i]
∂u2d

∂ζi
with i = 1, 2 . (7.11)

Here, ζi labels local coordinates of the L-shape and n denotes its unit outward normal
vector, as depicted in Figure 7.23(b). The resulting flux t2d is evaluated for each L-shape
with respect to the xy-, yz- and the xz-plane. Their accumulation provides a smooth heat
flux gN on the Fichera cube which is enforced on ΓN . The chosen boundary conditions
lead to a singularity at the inverted corner. Hence, local h-refinement is preformed towards
this singular point to approximate the unknown flux t ∈ ΓD accurately. Various grading
steps are illustrated in Figure 7.24.

In order to verify the numerical analysis, the point-wise results of the isogeometric
Nyström method are compared with a FEM solution computed with the Abaqus software
package. The reference model has been adaptively refined and employs quadratic elements.
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(a) 1st Refinement (b) 2nd Refinement (c) 3rd Refinement

Figure 7.24: Integration elements of the Fichera cube for different local h-refinements.

In particular, the results along two straight paths on Γ are evaluated: the variation of the
heat potential u is evaluated along a line from (0, 0, 1) to (−0.5,−0.5, 1), whereas the
heat flux t is compared along a line from (0, 0, 0) to (0.5, 0.5, 0). The paths are sketched
in Figure 7.23(a) and the corresponding values are shown in Figure 7.25. The rise of the
flux towards the singularity is slightly steeper in case of the isogeometric Nyström. On the
whole, t as well as u demonstrate a very good agreement with the FEM solution.
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Figure 7.25: Variation of the heat potential u and heat flux t due to the finest discretization
of the Fichera Cube example 7.24(c) compared with a FEM solution. The
values are evaluated along the paths defined in Figure 7.23(a).

7.2.5 Spanner

The computational effort of the isogeometric Nyström method is examined. In particular,
the impact of the admissibility factor for the local correction η is investigated. The analyzed
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ΓD

tz = −15 MPa

x
y

z
path on ΓN

Figure 7.26: Boundary conditions of the spanner example. Black lines indicate the inte-
gration elements and the dotted line marks the path for the comparison to
the reference solution. The Dirichlet boundary is highlighted in green.

model is a single-ended open-jaw spanner. Figure 7.26 illustrates the utilized partition of
integration elements. Constant vertical loading is applied at the handle of the spanner
and the displacements at the Dirichlet boundary ΓD are fixed. The material properties are
ν = 0.3 and E = 2.10× 105 MPa. In the following, the local correction is performed with an
integration accuracy of εQ = 10−6. Two different quadrature orders are applied pq = {3, 4}
and various admissibility factor η = {1.0, . . . , 10.0} are used. The quality of the obtained
results is indicated by means of the maximal displacement |umax|. The computational
effort is expressed by the total number of kernel evaluations (#KE) required to set up the
system of equations. Note that it includes evaluations due to the local correction as well.

The resulting |umax| and #KE are depicted in Figure 7.28. In addition, the deformation
of the simulation with pq = 3 and η = 4.00 is shown in Figure 7.27. The visualization uses
the postprocessing strategy described in Section 4.2.5. In order to verify the numerical
outcome, the results are compared with a FEM solution. To be precise, the vertical and
horizontal deflection are measured along a straight line at the top of the handle, as indicated
by the dotted path shown Figure 7.26. The values are compared in Figure 7.29.

The Nyström results are in excellent agreement with the FEM counterpart. However, the
region subjected to local correction has to be sufficiently large. For the shown example this
is the case for η > 3. At the same time, unnecessarily increasing of η yield to superfluous
computational effort.

0.000 7.640

Figure 7.27: Deformation as a result of an isogeometric Nyström analysis with the degree
pq = 3 and the admissibility factor η = 4.00.



7 Numerical Results 87

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

η

|u
m

a
x
|

Maximum Displacement

1 2 3 4 5 6 7 8 9 10
1

2

3

4

·108

η
#
K
E

Kernel Evaluations

pq = 3 pq = 4

Figure 7.28: Maximal displacement |umax| of the spanner and the corresponding numerical
effort with respect to the admissibility factor for the local correction η. The
numerical effort is measured by the total number of kernel evaluations (#KE).
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Figure 7.29: Vertical displacement uz and horizontal displacement ux in [mm] at the top
of the spanner along the path depicted in Figure 7.26.
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7.3 Trimmed Geometries

This section focuses on the integration of trimmed CAGD objects into an isogeomet-
ric BEM analysis using extended B-splines. The first example investigates the obtained
approximation accuracy by studying a simple geometry represented by either regular or
trimmed patches. Later, a trimmed CAGD model of a real-world object is eventually
included into an isogeometric BEM simulation.

7.3.1 Trimmed Cube

In order to investigate the approximation quality of extended B-splines in the context of
an isogeometric BEM analysis a unit cube is analyzed. The geometry is discretized by
two different models as illustrated in Figure 7.30. One is described by 6 regular patches,
whereas 4 trimmed patches are included in the other. Both represent the same geometry,
i.e. `x = `y = `z = 1.0, which defines the boundary Γ of an infinite domain. The boundary
condition is given by

t(y) = T(x̃,y) y ∈ Γ, x̃ ∈ Ω−. (7.12)

In particular, a source point x̃ in the center of the cube defines the boundary conditions for
the exterior Neumann problem. The Laplace and Lamé-Navier equations are applied. The
discretizations are set up for different degrees p = {1, 2, 3} and knot insertion is applied to
improve the solutions. The results are summarized in Figure 7.31 and Figure 7.32.

It can be observed from Figure 7.31 that the trimmed model yields essentially the same
results as in the untrimmed one, for lower degree, i.e. p = {1, 2}. The graphs related
to higher degree p = 3 demonstrate a similar converges behavior, yet with a noticeable
offset in favor of the untrimmed discretization. This offset may occur due to the fact that
the distance of the trimming curve to the inner knot span which provides the stable basis
functions increases with the degree.

x̃`z

`x
`y

(a) Untrimmed

x̃`z

`x
`y

(b) Trimmed

Figure 7.30: Discretization of a unit cube by (a) regular patches and (b) trimmed patches.
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Figure 7.31: Relative L2-error of an exterior Neumann problem on the (trimmed) cube
example with respect to the number of degrees of freedom n.
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Figure 7.32: Relative L2-error of an exterior Neumann problem on the (trimmed) cube
example discretized with higher degree basis functions.
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7.3.2 Tunnel Cross Passage

The excavation of a metro tunnel is analyzed. The geometry is specified by two parallel
tunnel tubes which are connected by a cross passage as illustrated in Figure 7.33. The
geometry model has been defined in Rhinoceros and is represented by several trimmed
NURBS patches. The partition into integration elements at the trimmed regions is depicted
in Figure 7.35. The soil property is determined by the Young’s modulus E = 313MPa and
the Poisson ratio ν = 0.2. The virgin stress field is given by σxx = σyy = 1.38MPa and
σzz = 2.75MPa. The resulting displacements are visualized in Figure 7.34. This real-world
example verifies the capability of extended B-splines to deal with complex trimming cases.

Figure 7.33: CAGD model of the tunnel example with trimmed NURBS patches.

2.563× 10−4 8.044× 10−2

Figure 7.34: Resulting displacements of the tunnel example.
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(a) Tunnel Tube

(b) Access Link

(c) Cross Passage

Figure 7.35: Discretizations of different tunnel parts. Black lines indicate the applied par-
tition into integration elements.
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8 Conclusion

In this dissertation, a seamless integration of NURBS based design models and numerical
analysis is accomplished by employing boundary integral equations solved by either the
Nyström or boundary element method. This includes the treatment of models with non-
conforming patches and trimmed geometries. It has been demonstrated that the proposed
methodology allows direct analysis of complex boundary representations without the need
for mesh generation. Furthermore, the simulation methods benefit from the smoothness
and accuracy of design models. In other words, isogeometric analysis and boundary integral
equations complement each other extremely well. The main contributions of the presented
work can be summarized as follows:

• Development of an independent field approximation paradigm which permits a sep-
arate approximation of integral operators.

• Application and implementation of extended B-splines for dealing with trimmed sur-
faces in an isogeometric BEM analysis.

• Formulation of a locally corrected isogeometric Nyström method and its application
to the Laplace and Lamé-Navier equations.

Independent field approximation is a key aspect for a flexible BEM formulation, allowing
mixed collocation along non-smooth boundaries, efficient evaluation of geometry values,
reduction of computational effort and storage requirements. These advantages are obtained
because refinement can be performed selectively and beyond, superfluous computations
can be avoided. In addition, field variables can be represented by B-splines even if the
geometry is described by NURBS. This capability has been utilized for the analysis of
trimmed NURBS patches, where extended B-splines provide a stable basis with excellent
approximation properties. Furthermore, these splines allow a straightforward definition of
collocation point locations on trimmed patches and are easy to integrate into an existing
isogeometric software. The concept of independent field approximation is pushed even
further in the context of the Nyström method which represents field variables point-wise
by means of a numerical quadrature. This discretization is not linked to basis functions
defining the geometry and this has been exploited by performing local refinement of tensor
product surfaces.

The convergence behavior of the implemented isogeometric BEM and Nyström method
has been numerically investigated by various examples. On the one hand, the former
exhibits optimal convergence in all cases. On the other hand, some convergence issues of
the Nyström method have been revealed such as the impact of geometric corners and the
linear convergence of the single layer operator. The most surprising observation is that
the convergence of the double layer operator ceases at a certain h-refinement step in case
of the Lamé-Navier equation. Nevertheless, the application of p-refinement is found to be
a proper strategy for the cases investigated.



94

The obtained results provide a basis and thought-provoking impulse for future research
directions. Independent field approximation may be beneficial in the context of a finite
element analysis as well, especially the aspect of efficient geometry evaluation. In ad-
dition, it allows the analysis of design models without modifying them. The treatment
of trimmed geometries by means of extended B-splines is a rather promising field and
deserves to be explored in more detail. Its approximation properties for higher degrees
and the combination with basis functions which allow local refinement are of particular
interest. Regarding the representation of trimmed knot spans, the proposed approach may
not be suitable for integration regions with a triangular topology if an evaluation at the
degenerated edge of the local Coons patch is required. It has been demonstrated that
the isogeometric Nyström method is capable of analyzing practical problems. Moreover,
it has great potential since it is applicable in principle to any surface description which
provides a valid geometrical mapping. Hence, the method can be easily adapted to forth-
coming developments in CAGD. Hopefully, this motivates further mathematical analysis
of the method to enhance its robustness. From a practical point of view, heuristic schemes
should be developed to determine the admissibility factor for the local correction so that
the integrals are accurately evaluated without superfluous computational effort.

This dissertation has neglected to address the issue of analyzing heterogeneous, time-
dependent or non-linear problems. An extension of the proposed methodology to such cases
would enhance its applicability to practical problems. On the design side, it has always
been assumed that the analyzed solid is represented by a cohesive set of boundary surfaces.
The treatment of additional geometrical details related to a boundary representation, like
a manifold connecting to a solid, has not been considered.

In conclusion, the present thesis provides a methodology which allows a seamless inte-
gration of the most common design models of solids, i.e. trimmed NURBS geometries, into
an analysis of linear potential and elasticity problems.



A Comparison of Greville and Demko Abscissae

A.1 Construction

Greville abscissae r̄g are determined by knot averages of a knot vector Ξ according to
equation (2.24). The total number of r̄g is equal to the number of basis functions I. On
the other hand, Demko abscissae r̄d are defined by the extrema of Chebyshev splines related
to Ξ. This splines oscillate constantly between their extrema which are alternately 1 and
−1. In particular, a functions f of degree p given by f(r̄di ) = (−1)I−i is represented by
B-splines Bi,p of Ξ = {r0, . . . , rI+p} such that it has max-norm 1 on [r0, rI+p]. The extrema
of Chebyshev splines r̄d are particularly suited for interpolation since they minimize the
norm of the projection, similar to Chebyshev polynomials. The determination of the
extrema involves the Newton-Raphson method and the Greville abscissae r̄g provide a
good initial guess for it. In Figure A.1, the starting point of the iterative process and the
converged solution are compared for Ξ = {−1,−1,−1,−1, 0, 1, 1.5, 2, 2, 2, 2}. Note that
the dashed curve related to r̄g exceeds the value |1|, while the Chebyshev splines stays
inside this bound.

1

0

−1
−1 0 1 2

Figure A.1: Comparison of the interpolation of the oscillating function f according to
Greville (dashed line, circles mark the points) and Demko abscissae (solid
line, crosses mark the points).
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A.2 Interpolation Quality

In the following, the interpolation property of the Demko and Greville approach are com-
pared. In particular, three different parameter spaces with open knot vectors are investi-
gated:

• Bézier: Ξ = {. . . , 0, 4, . . . }

• Uniform: Ξ = {. . . , 0, 1, 2, 3, 4, . . . }

• Graded: Ξ = {. . . , 0, 2, 3, 3.5, 4, . . . }

The interpolation quality of the different abscissae is determined by the norm of the
inverse spline collocation matrix ‖A−1

r ‖. The results for various degrees p = {2, . . . , 9} are
summarized in Figure A.2.

Both approaches behave similar for moderate degrees, i.e. p 6 5. For higher degrees the
Demko abscissae leads to better results. In addition, the quality of the Greville interpola-
tion dependents considerably on the arrangement of the interior knots. In contrast to the
Demko approach which is not influenced by the knot spacing.
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Figure A.2: Comparison of the spline interpolation matrix Ar according to Greville and
Demko abscissae for different parameter spaces and degrees.
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A.3 Collocation

The Laplace equation is solved for a Neumann problem using the isogeometric boundary
element method. The geometry considered is a circle with a diameter smaller than 1. The
system of equation is set up by collocation at either the Greville or Demko abscissae and the
corresponding convergence for different degree p = {3, 4} is depicted in Figure A.3. Note
that not all discretizations of the Demko approach are shown. In particular, the graph
related to the odd degree ends after a few refinement steps. The simulation has been
stopped because two integration points got to close to each other, i.e. distance ∆ 6 10−7.
In other words, an integration regions has become too small.

The parameter space and the related r̄g and r̄d of the canceled simulation are shown
in Figure A.4. The problem occurs during the singular integration where elements τ are
subdivided at the collocation point. Since some r̄d are very close to knots, i.e. the boundary
of τ , the subdivided elements may have a unfavorable ratio and one of them becomes very
small. Using r̄g results in anchors that are on the boundary of τ , thus, small integration
regions are avoided.
It should, however, be emphasized that the issue is not the approximation quality of the

Demko abscissa, but the numerical treatment of singular integrals.
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Figure A.3: Relative error of the circle example where the system of equation is set up by
collocating at either the Greville or Demko abscissae.
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B Local Element Mapping

In case of the isogeometric Nyström method, local refinement can be performed even for
tensor product surfaces. Here, the mapping from the initial element τ̀0 defined by a tensor
product of ΛI and ΛJ to local elements τ̀` specified by refinement points r̀` is discussed.
In a first step, each τ̀0 is represented by means of its corner nodes, i.e. the knots of its
corresponding knots span s = (s1, s2)ᵀ. They are summarized in a node matrix N0 such
that

N0 =

ΛI [s1] ΛI [s1 + 1] ΛI [s1 + 1] ΛI [s1]
ΛJ [s2] ΛJ [s2] ΛJ [s2 + 1] ΛJ [s2 + 1]

1 1 1 1

 . (B.1)

The mapping from τ̀0 to its τ̀1,i includes the translation and scaling of the corner nodes.
They are assembled in a transformation matrix T1,i which is defined for each τ̀1,i by

T1,i =

l1,r1/l0,r1 0 tr1
0 l1,r2/l0,r2 tr2
0 0 1

 . (B.2)

The last column refers to the translation t of the first corner node, whereas the diagonal
entries are related to the lengths of the initial (l0) and refined element (l1) in each para-
metric direction r. The construction of T1,i due to a set of refinement points r̀ of the first
level is summarized in Algorithm 1. Since the nodes of N0 are represented in homogeneous
coordinates with w = 1, the transformation to the nodes N1,i of local elements τ̀1,i can be
expressed by a matrix product as

τ̀1,i := N1,i = T1,i N0. (B.3)

If there are refinement points r̀` of a higher level, i.e. ` > 1, within a local element τ̀1,i

additional transformation matricesT2,i are constructed based onN1,i and r̀`. The resulting
local elements τ̀2,i are given by

τ̀2,i := N2,i = T2,i N1,j = T2,i T1,j N0. (B.4)

The accumulated transformation matrices T̂`,i relate the final τ̀`,i due to all refinement
levels to the initial knot span N0.

τ̀`,i := N`,i = T̂`,i N0 with T̂`,i =
∏
k∈L

Tk,m (B.5)

where L denotes an index-set of all levels defining τ̀`,i which is ordered decreasingly. The
set up of T̂`,i is described in Algorithm 2.
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Algorithm 1 Set up transformation matrices for the next level
Require: Node matrix N and related refinement points r̀ of the subsequent level `
1: lr1 = N[1, 3]−N[1, 1]
2: lr2 = N[2, 3]−N[2, 1]
3: initialize temporary knot vectors ΛI and ΛJ
4: ΛI ← N[1, k], k = 1, 3
5: ΛJ ← N[2, k], k = 1, 3
6: for all r̀ do
7: ΛI ← r̀i[1]
8: ΛJ ← r̀i[2]
9: lI = length of each non-zero knot spans of ΛI

10: lJ = length of each non-zero knot spans of ΛJ
11: initialize array aT for transformation matrices T
12: tr2 = 0
13: for all lj ∈ lJ do
14: tr1 = 0
15: for all li ∈ lI do
16: T = diag(li/lr1 , lj/lr2 , 1)
17: T[1, 3] = N[1, 1] (1− li/lr1) + tr1
18: T[2, 3] = N[2, 1] (1− lj/lr2) + tr2
19: aT ← T
20: tr1 = tr1 + li
21: tr2 = tr2 + lj
22: return aT
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Algorithm 2 Hierarchical refinement
Require: Node matrix N0 of an element τ̃ and refinement points r̀ of all levels
1: initialize array aT for transformation matrices T̂` ∈ R3×3

2: aT ← T0 = diag (1, 1, 1)
3: for all refinement levels ` do
4: initialize temporary array bT for T`

5: for all T`−1,k ∈ aT do B loop over all computed local elements τ̀`−1

6: N`−1,k = T`−1,kN0

7: initialize temporary array cr̀ for refinement points
8: for all r̀`,m ∈ r̀` do
9: if r̀`,m is inside τ̀`−1,k related to N`−1,k then

10: cr̀ ← r̀`,m
11: if cr̀ = ∅ then
12: bt ← T`−1,k

13: else
14: cT = array of T` set up by Algorithm 1 with N`−1,k and cr̀
15: for all T`,r ∈ cT do
16: bT ← T`,r T`−1,k

17: aT = bT
18: return aT



102



C Evaluation of Extrapolation Weights

C.1 Explicit Representation

The coefficients βk of the polynomial ψj,p are computed by equation (6.9). In particular, Tk,l
is required which represents all k-combinations with repetition of the knots {rj+1, . . . , rj+p}.
For example Tk,l in case of a cubic B-spline, i.e. p = 3, would be given by

T3,1 = {rj+1, rj+2, rj+3} , T2,1 = {rj+1, rj+2} , T1,1 = {rj+1} ,
T2,2 = {rj+2, rj+3} , T1,2 = {rj+2} ,
T2,3 = {rj+1, rj+3} , T1,3 = {rj+3} .

The power basis form (6.11) of the polynomial segments Bsi is obtained by

Bsi (r) =

p∑
m=0

αm (r − r̃)m = α̃01 + α̃1r + · · ·+ α̃pr
p (C.1)

where α̃m is for p = 1:

α̃0 = 1α0 + 1α1 (−r̃) ,
α̃1 = 1α1,

for p= 2:
α̃0 = 1α0 + 1α1 (−r̃) + 1α2 (−r̃)2 ,

α̃1 = 1α1 + 2α2 (−r̃) ,
α̃2 = 1α2,

for p= 3:
α̃0 = 1α0 + 1α1 (−r̃) + 1α2 (−r̃)2 + 1α3 (−r̃)3 ,

α̃1 = 1α1 + 2α2 (−r̃) + 3α3 (−r̃)2 ,

α̃2 = 1α2 + 3α3 (−r̃) ,
α̃3 = 1α3 .

It should be noted that the values in front of the coefficients α correspond to Pascals
triangle, which yields to the binomial coefficient in equation (6.11). In general, if the
coordinate r does not contribute to the derivative of a power basis form, e.g. r = 0, its
evaluation simplifies to

Bs(k)i (0) = k! α̃k (C.2)

which has been utilized to obtain equation (6.13).
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C.2 Example

The example shown in Figure 6.1 is considered to clarify the computation of extrapolation
weights ei,j. The knot vector is given by Ξ = {1, 1, 1, 2, 3, 4, 4, 4}, the first B-spline is
degenerated, i.e. J = {0}, and the knot span s = 3 is the closest non-trimmed interval.
Hence, the polynomial ψ0,2 is determined by the knot values {1, 1} and the correspond
coefficients are βk = {1,−2, 1}. The polynomial segments Bsi obtained by equation (6.11)
are given by

B3
1 = 0.5 r2 − 3 r + 4.5, (C.3)
B3

2 = −1 r2 + 5 r − 5.5, (C.4)
B3

3 = 0.5 r2 − 2 r + 2 . (C.5)

The extrapolation weights are computed by different approaches: firstly, the extrapo-
lation weights are obtained by means of spline interpolation. Next, the functional (6.7)
is evaluated directly by applying Horner’s method to the explicit representations (6.11)
and (6.8). Finally, the simplified functional (6.13) is used.

Spline Interpolation The anchors are chosen to be r̄ = {1, 1.5, 2} leading to the spline
collocation matrix Ar and the right hand side fi for each (C.3) – (C.5):

Ar =

 1 0 0
0.25 0.625 0.125

0 0.5 0.5

 , f1 =

 2
1.125
0.5

 , f2 =

 −1.5
−0.25

0.5

 , f3 =

 0.5
0.125

0

 .

Solving the system of equations gives

M =

e1,0 e1,1 e1,2

e2,0 e2,1 e2,2

e3,0 e3,1 e3,2

 =

 2 1 0
−1.5 0 1
0.5 0 0


where the rows correspond to (C.3) – (C.5) and the first column provides the sought
extrapolation weights ei,j for J = {0}.

Direct Evaluation of the Functional The explicit representation of ψj,p can be evalu-
ated by Horner’s method for higher derivatives [84]. The procedure is summarized in Al-
gorithm 3, which returns all values ψ(m)

j,p , m = {0, . . . , p}, collected in a vector vψ. The
same procedure can be applied to the explicit representation of Bsi , if βk is substituted by
α̃k. For the given example the position of the evaluation points is chosen to be µj = 1
which leads to the following values

vB1 =

 2
−2
1

 , vB2 =

−1.5
3
−2

 , vB3 =

0.5
−1
1

 and vψ =

0
0
2

 .
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Applying these values to (6.7) provides the extrapolation weights

e1,0 =
1

2
[2 · 2] = 2, e2,0 =

1

2
[2 · (−1.5)] = −1.5, e3,0 =

1

2
[2 · 0.5] = 0.5 .

Algorithm 3 Horner’s method for higher derivatives
Require: polynomial coefficients βk of ψj,p and the coordinate µj
1: initialize matrix M ∈ Rp+2×p+1

2: for k = 0 to p do
3: M0,k = βk
4: for m = 0 to p do B compute Horner coefficients
5: Mm+1,p = Mm,p

6: n = p− 1
7: while n ≥ m do
8: Mm+1,n = µj Mm+1,n+1 + Mm,n

9: n = n− 1
10: initialize vector vψ ∈ Rp+1

11: for m = 0 to p do B compute derivatives
12: vψm = m! Mm+1,m

13: return vψ

Indirect Evaluation of the Functional For the given example the coefficients ψ(p−k)
j,p =

(p− k)! βp−k and Bs(k)i = k! α̃k of equation (6.13) are

ψ0,2 = 1 · 1, ψ
(1)
0,2 = 1 · (−2), ψ

(2)
0,2 = 2 · 1,

respectively
B3

1 = 1 · 4.5, B3(1)

1 = 1 · (−3), B3(2)

1 = 2 · 0.5,
B3

2 = 1 · (−5.5), B3(1)

2 = 1 · 5, B3(2)

2 = 2 · (−1),

B3
3 = 1 · 2, B3(1)

3 = 1 · (−2), B3(2)

3 = 2 · 0.5 .

Hence, the extrapolation weights are computed by

e1,0 =
1

2
[2 · 4.5− (−2) · (−3) + 1 · 1] = 2,

e2,0 =
1

2
[2 · (−5.5)− (−2) · 5 + 1 · (−2)] = −1.5,

e3,0 =
1

2
[2 · 2− (−2) · (−2) + 1 · 1] = 0.5 .
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