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Abstract

As the complexity of software systems increases, testing becomes more and more

important and expensive. Thus, the need to automate as much as possible of

this task also arises. The academic community o�ers promising tools providing

amongst others capabilities for test case generation. Usually such tools require

personnel skilled in the �eld of formal methods. The lack of such personnel often

hinders the adoption of the tools in an industrial environment. This work attempts

to breach the gap between academic model-based testing tools and their usage in

industry. This is achieved by allowing the speci�cation of the desired behavior of

the system in a widely accepted industry notation (UML statecharts) and then

deriving a formal speci�cation of the system by means of the LOTOS language

via a behind the scene model transformation.

The present work proposes an approach to generate test cases from deter-

ministic distributed reactive systems speci�ed as asynchronously communicating

UML statecharts. Two approaches are presented for the generation process. The

�rst one is fully automated and generates test cases aimed at structural coverage

of the UML model. The second requires the intervention of the tester in order to

annotate states and/or transitions partially describing a test scenario of interest.

In model-based testing the size of the model has a great impact on the time for

computing test cases. In model checking, slicing of speci�cations is used to obtain

reduced models pertinent to criteria of interest. In speci�cations described using

state based formalisms slicing involves the removal of transitions and merging of

states thus obtaining a structural modi�ed speci�cation. Using such a speci�ca-

tion for model based test case generation activities where sequences of transitions

represent test cases might provide traces that are not valid on a correctly behav-

ing implementation. In order to avoid this, the present work suggests the use of

control, data and communication dependencies for identifying parts of the model

that can be excluded so that the remaining speci�cation can be safely employed

for test case generation.
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Kurzbeschreibung

Da die Komplexität von Software-Systemen steigt, wird Testen wichtiger aber

auch teurer. Somit entsteht die Notwendigkeit möglichst viel dieser Aufgabe zu

automatisieren. Die akademische Gemeinschaft bietet vielversprechende Proto-

typen an die unter anderen Funktionen auch die Generierung von Testfällen er-

möglichen. Normalerweise erfordern solche Werkzeuge Mitarbeiter die auf dem

Gebiet der formalen Methoden quali�ziert sind. Das Fehlen einer solchen Personal

hindert oft die Annahme diesen Werkzeuge in einer industriellen Umwelt. Diese

Arbeit versucht, die Lücke zwischen akademischer modellbasierten Testtools und

deren Verwendung in der Industrie zu schlieÿen. Dies wird durch die Angabe der

gewünschten Verhalten des Systems in einem allgemein anerkannten Industrie-

Notation (UML Statecharts) erreicht. Das UML Modell wird dann verwendet,

um daraus eine formale Spezi�kation des Systems mittels der LOTOS Sprache zu

extrahieren.

Die vorliegende Arbeit stellt ein Modell-basierte Testfall Generierung Ansatz

vor. Die Modelle beschreiben deterministische verteilte reaktive Systeme die asyn-

chron kommunizieren und als UML Statecharts spezi�ziert sind. Es gibt zwei

Möglichkeiten für die Generierung der Testfälle. Die erste ist voll automatisiert

und erzeugt Testfälle die auf strukturelle Abdeckung des UML-Modells angestrebt

sind. Die zweite erfordert die Hilfe des Testers, um Zustände und/oder Transitio-

nen zu annotieren. So wird ein Testszenario teilweise beschreiben.

In modellbasierten Testen hat der Gröÿe des Modells einen groÿen Ein�uss auf

die Testfallgenerierung Zeit. In Model Checking wird Slicing von Spezi�kationen

verwendet, um reduzierten Modellen zu erhalten. In Spezi�kationen beschrieben

mit Zustand-basierten Formalismen, Slicing beinhaltet die Entfernung von Tran-

sitionen und Zusammenführen von Zustände. So wird eine strukturell veränderte

Spezi�kation erzeugt. Bei Verwendung eines solchen Spezi�kation für Modell-

basierte Testfallgenerierung besteht die Gefahr ungültige Testfälle zu bekommen.

Um dies zu vermeiden, schlägt die vorliegende Arbeit die Verwendung von Steuer-

, Daten- und Kommunikations-Abhängigkeiten vor. Die Abhängigkeiten werden
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eingesetzt zum Identi�kation von Teile des Modells, die sicher während die Test-

fallgenerierung ausgeschlossen werden können.
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Chapter 1

Introduction

1.1 Motivation

Today's software enabled-systems are becoming increasingly complex, distributed

and highly reactive. In this respect the software's functional correctness with

regard to its requirements is a major quality attribute. To ensure functional cor-

rectness in a practical setting - besides following appropriate software engineering

methods - software testing is the predominant veri�cation technique. However,

designing appropriate test cases is regarded as a rather expensive task. Testing

activities usually consume an important part (estimated to be of up to 50 %

[Alb76, Mye04]) from the resources of software development projects. Thus it is

desired to automate as much as possible from this task.

Activities like test case execution and evaluation already enjoy a high degree

of automation. Even though there have been some advances in the automatic

generation of test cases, there is still work to be done in this direction. The

integration of this activity in the already existing testing process is of great im-

portance. UML statecharts [OMG13] are the de-facto accepted industry standard

for modeling the behavior of software systems. They are also part of the indus-

trial setting in which the current work was conducted. Therefore the generation

of test cases from UML statecharts is desired.

In most situations, test cases are created manually this being an error prone

and time consuming process. Even though UML statecharts have enough expres-

sive power o�ering building elements to describe di�erent behavioral aspects, for

the automatic generation of test cases we need a formal representation of the

system and a sound testing theory. The test case generation approach proposed

in this work is based on the formal language LOTOS [ISO89] and on the input

output conformance (IOCO) relation [Tre08] as the underlaying theory of the test

case generator TGV [JJ05].
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4 CHAPTER 1. INTRODUCTION

Formal Description Techniques (FDT) like LOTOS encompass those methods

used for the unambiguous and exact speci�cation of telecommunication (and not

only) services and protocols. The fact that these type of systems are generally

distributed also suggests the use of such techniques in our setting regarding the

description of distributed embedded systems.

The main advantages of FDT are abstractness, implementation-independence,

formal semantics and support of veri�cation methods [FH92]. In our particular

context of model-based test case generation these are exactly the characteristics

we need our test speci�cation to have.

Abstractness and implementation-independence relate to the fact that in model-

based test case generation, a speci�cation should be at a higher level of abstraction

than the implementation of the system. This means that the speci�cation needs

to be simpler than the implementation in order for it to be veri�ed more easily

than the implementation. If the same level of granularity existed between the

implementation and speci�cation, the e�ort of verifying the speci�cation would

be equivalent to that needed for the veri�cation of the implementation.

Formal semantics and support for veri�cation methods of FDT are important

since these make the speci�cation machine readable thus allowing an increased

degree of automation in the process of test case generation (and not only).

Formal languages are not very user friendly and this is an important im-

pediment in the adoption of academic model-based testing tools in an industrial

context. The present work is also intended as an attempt to breach this gap

by allowing the speci�cation of the system in a widely accepted industry nota-

tion (UML statecharts) and the connection to academic tools (like the CADP

framework [GMLS07]) by providing a behind the scene formal representation

of the system using the formal language LOTOS. There are many examples

[APWW07, SBBW09, Tan09, SZWH11] of the successful use of the CADP frame-

work in industrial settings. As LOTOS contains no timing constructs the current

work also presents an approach for abstracting timing information from the UML

statechart model. In the generated LOTOS speci�cation the proposed timing ab-

straction aims at keeping the visible output behavior of the system by preserving

the order timeout transitions �re with respect to each other.

In model-based testing the size of the used model has a great impact on the

time for computing test cases. In model checking, dependence relations have

been used in slicing of speci�cations in order to obtain reduced models pertinent

to a criteria of interest. Usually in speci�cations described using state based

formalisms slicing involves the removal of transitions and merging of states thus

obtaining a structural modi�ed speci�cation. Using such a speci�cation for model

based test case generation activities where sequences of transitions represent test

cases might provide traces that are not valid on a correctly behaving implemen-

tation. In order to avoid this, the present work suggests the use of control, data
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and communication dependencies for identifying parts of the model that can be

excluded so that the remaining speci�cation can be safely employed for test case

generation. This information is included in test purposes which are then used in

the test case generation process.

1.2 Problem Statement

Many software controlled functionalities in modern vehicles are distributed over

several electronic control units (ECU). These ECUs communicate with each other

in order to implement the required functionalities. Due to the di�erent depen-

dencies involved in such functionalities testing them becomes a complex and error

prone task. A promising technique for supporting the test engineers in such tasks

is the use of formal model based testing techniques. The generation of test cases

from a formal model in our setting involves several challenges that need to be

considered:

Testing Technique and Modeling Language In the academic domain

there are several testing techniques each having di�erent assumptions in order to

be able to treat di�erent issues. So �nding and eventually extending the proper

and most simple technique able to deal with the particularities of the considered

type of systems are important issues.

In order to apply test case generation techniques one needs a formal model of

the system. The direct use of a formal language in an industrial environment is

usually hindered by the lack of trained personnel. UML is the de-facto modeling

language used in industrial environments (including our project setting) thus be-

ing the obvious choice for the modeling process. However UML enjoys a formal

syntax but lacks a formal semantic. A formalization �tted for the considered

environment semantic needs to be achieved.

Another issue is the fact that the chosen testing technique might not accept

the UML model as input. Thus the formalization of the semantics needs to be

provided in a formalism compatible with the testing technique. This process

however needs to be fully automated and hidden from the user.

Timing Given that the considered type of systems also use timing constructs

to realize their functionalities, a method to accommodate this need has to be

researched. Even though there are also modeling languages and testing techniques

allowing the use of timing constructs, these were not always usable within our

research context.

Test Case Selection Once the appropriate test case generation technique

and formal model are in place, the question of how to select the appropriate set

of test cases arises. There are several approaches tackling this issue. The use of

test purposes has shown to be very promising for this task. Test purposes repre-

sent abstractions of scenarios that need to be tested. They are usually speci�ed
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manually by using some sort of formal representation.

The automatic generation of test purposes has great potential in reducing the

complexity of the testing process. Structural coverage criteria can be used to

achieve this. However a high coverage does not necessarily mean that the system

is well tested. So providing the means for the test engineer to specify the test

purposes and thus steer the test case generation process is also important. The

speci�cation of test purposes suited for use in an industrial environment needs to

be explored.

State Space Explosion The exponential growth of the number of possible

states representing the behavior of a system is a well known problem not only in

the testing domain. This is also known as the state space explosion problem and

is one of the biggest problems in�uencing the test case generation process. The

generation time and the probability of �nding the required test cases are directly

in�uenced by the size of the possible behaviors of the system.

Depending on the type of the model, the size of its state space is usually

in�uenced by the use of variables, loops and parallelism. A variable will generate

a state of the system for each of its allowed values. In the case when several

variables are used, the allowed value combinations of the variables must also be

considered. Loops and parallelism in�uence the size of the state space through

the number of possible executions they have.

The issue of state space explosion has yet to be fully resolved. So depending

on the situation at hand di�erent techniques need to be considered in order to

alleviate this problem.

1.3 Thesis Statement

A model-based test case generation approach can be used in practice to generate

test cases for deterministic systems whose desired behavior is described by means

of asynchronously communicating UML Statecharts.

1.4 Contribution

This thesis describes a test case generation approach for asynchronously commu-

nicating UML Statecharts. A prototype tool has been developed implementing

the proposed approach. The work�ow describing the functionality of the tool is

presented in Figure 1.1. The input for the tool is an UML model describing (by

means of communicating statecharts) the desired behavior of the system under

test. The model is then used to automatically derive a formal representation in

form of a LOTOS speci�cation. Another input is represented by the user de�ned

annotations partially describing scenarios to be tested. These annotations are

used internally to generate test purposes for the TGV test generator. The tool
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Figure 1.1: Tool work�ow

can also be used to generate test cases without the user annotations. In this case

test purposes are automatically generated and aimed at achieving state and/or

transition coverage on the UML model.

The work described in this thesis has been partially published in international

workshops and conferences:

• A �rst variant of the transformation of one UML statechart model into a

LOTOS speci�cation was presented in [CSP09a]. Also �rst considerations

of how to include also several other statecharts models was described in

[CSP09b]. These transformation variants were not automated and did not

consider the use of timeouts in the original UML model.

• In [CW11] we presented an approach for the treatment of timeouts during

the transformation. The approach abstracts the real timing by considering

only the visible output of the system. Thus the order timeout transitions

�re with respect to each other is preserved. The presence of a global clock

is simulated through LOTOS abstract data types and several control points

arti�cially inserted in the speci�cation. The goal is to ensure that the

transition triggered by the timeout with the smallest value will always �re

before any other timeout transition.

• In order to steer the test case generation process, the mechanism of test

purposes is used. In [CW12] we present two approaches for generating test

purposes. One of which is aimed at providing structural coverage and is
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fully automatic. The second approach to test purpose generation is partially

automated requiring the intervention of the user for specifying desired test

scenarios by annotating states and/or transitions of the statechart model.

• In [CW13] we introduce the usage of di�erent statechart dependence rela-

tions in order to enhance test purposes with refuse states. These states are

used by the TGV test-case generation tool in order to limit the searched

state space during the test case search process. We use these refuse states

in order to improve a previously presented test case generation technique

[CW12] aimed at structural coverage (state and transition coverage) of the

speci�cation.

1.5 Research Context

Part of this thesis is the result of a joint research project by the Institute of

Software Technology - Graz University of Technology, the Area E - Virtual Vehicle,

and two industrial partners from the automotive industry.

The main project goal was to analyze the testing environment, existing models

and tool chain in place at the industrial partner, propose an appropriate model

based test case generation technique and implement this technique in a prototype

tool. Another important goal was the integration of the technique with the already

existing tool chain.

The models and tool chain of our industrial partners also impose some restric-

tions on the used models and proposed model-based test case generation tech-

nique. One of the limitations is the fact that only deterministic models are used.

The communication scheme is also a deterministic one. So after a sequence of

inputs the system will always return the same output. The need for deterministic

behavior for embedded systems has also been acknowledged in [HK04].

The afore mentioned restrictions do limit the applicability of the proposed

approach to the considered semantics. However the technique can be adapted to

also accept nondeterministic systems. The used formalism (LOTOS) is very well

suited to describe nondeterministic behavior. The test case generation technique

will require future research for dealing with such nondeterministic behavior.

1.6 Organization

The remainder of this thesis is organized as follows: Chapter 2 presents in Section

2.1 topics regarding software testing and model based testing. In Sections 2.2 and

2.3 we present the UML statecharts used for modeling the system's behavior in

our industrial setting and the LOTOS formal language respectively.

Chapter 3 presents a running example used in the rest of the thesis and also

several other models we used in our experiments. The transformation of UML
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statecharts into LOTOS is described in Chapter 4 while in Chapter 5 we introduce

the treatment of timing concepts in the transformation.

Chapter 6 presents a method for automatically generating test cases aiming

at structural coverage (state and transition coverage) of the model. It also shows

how to semi-automatically generate test cases by making use of user provided

annotations on the UML model. Chapter 7 describes an approach regarding the

use of control, data and communication dependencies for identifying parts of the

model that can be excluded during test case generation for a given test purpose.

This information is used in order to enrich test purposes with refuse transitions.

These transitions specify which parts of the model are not of interest (will not be

explored) in the search for test cases satisfying the given test purposes.

Related work is discussed in Chapter 8 and the thesis is concluded in Chapter

9 where we present conclusions and directions for future work.





Chapter 2

Preliminaries

2.1 Software Testing

Throughout the literature there have been given several de�nitions for software

testing. The general understanding for it [UPL06] is that �Testing aims at showing

that the intended and actual behaviors of a system di�er, or at gaining con�dence

that they do not. The goal of testing is failure detection: observable di�erences

between the behaviors of implementation and what is expected on the basis of

the speci�cation.�

Regarding the con�dence gained through testing it is important to mention

that �Testing shows the presence, not the absence of bugs� (Edsger Dijkstra).

Thus testing cannot prove that a system will always behave correctly.

To better present this topic we need to de�ne some of the most important

terms in software testing. We shall further use the de�nitions given by [AO08].

The �rst terms we introduce are those of faults (De�nition 2.1.1), errors (De�ni-

tion 2.1.2) and failures (De�nition 2.1.3). Basically, a failure is the observation of

incorrect behavior of the implementation while a fault represents the cause of a

failure. A fault could be for example an incorrect instruction in the implementa-

tion. The manifestation of a fault is called an error which can be for example an

incorrect internal state of the implementation.

De�nition 2.1.1. Software Fault: A static defect in software.

De�nition 2.1.2. Software Error: An incorrect internal state that is the man-

ifestation of some fault.

De�nition 2.1.3. Software Failure: External, incorrect behavior with respect

to the requirements or other description of the expected behavior.

11
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It is also important to note that not all inputs will execute the faulty instruc-

tion and reveal the failure. Even if the instruction gets executed depending on

the values of the inputs, the failure might or might not be revealed. In order to

reveal the fault, the instruction containing the fault needs to be executed, the

implementation needs to be in an incorrect state (error) and the error must prop-

agate so that it causes the output of the software to di�er from the expected one.

Thus a failure has been revealed.

Software Testing assumes the execution of a system with the goal of detecting

failures [UL07]. A di�erentiation needs to be made between testing and other

quality improvement techniques such as static veri�cation, code inspections, re-

views and debugging. Debugging is the process of �nding a fault once a failure

has been identi�ed through testing.

The process of testing usually implies the execution of the implementation

against test cases. A test case can be seen as an experiment in providing inputs

to the implementation in order to verify that it behaves according to the expected

results. De�nition 2.1.4 presents the de�nition of test cases as it was given by

[AO08]. The test case values in the de�nition are the values needed to perform

some execution of the implementation. The pre�x values represent those values

needed in order to take the implementation to a state where it can consume the

test case values. The set of post�x values is composed of those values that need

to be provided to the software after it has received the test case values.

De�nition 2.1.4. Test Case: A test case is composed of the test case val-

ues, expected results, pre�x values and post�x values necessary for a complete

execution and evaluation of the software under test.

There are di�erent kinds of testing classi�ed according to various criteria

[UL07]:

• Scale of the system under test (SUT ) :

� Unit Testing - a single unit at a time is tested e.g. a single method,

class etc.

� Component Testing - each component/subsystem is tested separately.

� Integration Testing - aims at testing that several components work

together correctly.

� System Testing - the system is tested as a whole.

• Characteristics being tested:

� Functional Testing - is the most common type of testing and aims at

testing the functionality of the system e.g. given a set of inputs the

correct outputs are obtained.
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� Robustness Testing - tests the system under invalid conditions e.g.

unexpected inputs, hardware or network failure etc.

� Performance Testing - tests how a system performs in terms of respon-

siveness and stability under heavy load.

� Usability Testing - is focused in discovering user interface problems

that might result in making the system di�cult to use.

• Tests derived from :

� Black Box Testing - does not consider any details regarding the internal

structure of the SUT treating it as a black box. In this case, tests are

derived from the system requirements describing the desired behavior

of the SUT.

� White Box Testing - uses the actual code of the implementation in order

to design test cases e.g. design test cases such that each statement of

a method is executed by at least one test case (statement coverage).

The classic testing process contains three main tasks [UL07]:

• Test case design activities assume the creation of test cases from the

requirements of the system.

• Test case execution and result analysis activities relate to the execution
of the test cases on the SUT. The failed runs are analyzed in order to

determine the cause of the failure.

• Verifying how the test cases cover the requirements is usually a

criterium used to measure the quality of the testing process.

In software development processes, testing activities encounter various di�cul-

ties. Di�erent process oriented approaches have emerged in order to solve some

of the problems related with testing activities. Depending on the used testing

process, it is possible to di�erentiate between the following testing approaches

and also points out their pros and cons [UL07]:

• Manual Testing Process was the �rst testing process used where all the

activities were performed manually. It is however still used. Some of the

advantages and disadvantages of this approach are:

� Pros: Used for functional testing.

� Cons: Imprecise coverage of SUT functionality, no capabilities for

regression testing, very costly process, no e�ective measurement of

test coverage.
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• Capture Replay Testing Process is the process that saves the interac-

tions of the SUT during test execution (capture) with the goal to replay

them during following test executions. The main goal of this process is the

reduction of the costs generated by test re-execution. The rest of the testing

activities are still carried out manually. Pros and cons of this approach :

� Pros: Provides the possibility to automatically execute the captured

test cases.

� Cons: Imprecise coverage of SUT functionality, weak capabilities for

regression testing, costly process.

• Script-Based Testing Process assumes the use of test scripts to further

increase the automation degree of the approach. The scripts are used in

order to run test cases but also observe the behavior of the SUT.

� Pros: Automates the execution and re-execution of test scripts.

� Cons: Imprecise coverage of SUT functionality, complex scripts are

di�cult to write and maintain, requirements traceability is developed

manually.

• Keyword-Driven Automated Testing raises the abstraction level of the

test cases in order to overcome the maintenance problem of test scripts. This

is achieved by using action keywords corresponding to di�erent fragments of

a test script. These action keywords are then used to de�ne the test cases.

The test execution framework translates the keyword and data values in the

abstract test cases in order to generate executable test cases.

� Pros: Higher level test scripts are easier to develop.

� Cons: Imprecise coverage of SUT functionality, requirements trace-

ability is developed manually.

2.1.1 Model-based Testing

The main understanding of model-based testing (MBT) (also valid in our setting)

refers to the generation of executable test cases that include oracle information

based on models of the SUT behavior [UL07].

De�nition 2.1.5. Model-Based Testing is the automation of the design of

black-box tests.

One advantage of MBT over the other methods mentioned in Section 2.1 is the

fact that it o�ers a higher degree of automation of the di�erent testing activities.

Thus test cases are no longer designed manually but are automatically generated

from the model of the SUT's behavior. By using di�erent test selection criteria
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Figure 2.1: Model-Based Testing steps

the same model can be used in order to generate di�erent test suites. Another

advantage is the fact that the model is used as a test oracle and thus the expected

results for the test cases are also automatically generated.

MBT assumes the usage of a model describing the desired behavior of the SUT

and employs automatic tools in order to generate tests from the model. Since the

models are used as the basis for generating the test cases it is obvious that they

play a crucial role in MBT. The models need to be validated themselves this being

a �reciprocal activity: validating the model usually means that the requirements

themselves are scrutinized for consistency and completeness� [UPL06]. Two main

characteristics of the models used in MBT can be identi�ed [UPL06]:

• The model must be simpler (at a higher abstraction level) than the SUT

or at least easier to check, modify and maintain. Otherwise, the e�orts of

validating the model would equal the e�orts of validating the SUT.



16 CHAPTER 2. PRELIMINARIES

• Even though the model is more abstract than the SUT it is crucial that it

preserves enough details regarding the behavior that needs to be tested in

order for it to be used for generating �meaningful� test cases.

Figure 2.1 presents the �ve activities involved in MBT. These activities [UL07]

are:

1. Model the SUT and/or its environment. The models need to be simpler

than the SUT and focus only on the aspects that need to be tested.

2. Generate abstract test cases. Since the used model is more abstract than

the SUT, any test cases generated from it will also be at a higher abstrac-

tion level compared to the SUT. Hence these test cases can not be directly

executed against the SUT. Since usually the amount of possible test cases

is in�nite, some kind of selection criteria is used in order to obtain a �-

nite set of test cases. Such criteria can be structural coverage of the model

(e.g. state and/or transition coverage) or �some test case speci�cations in

some simple pattern language to specify the kinds of test cases we want

generated�[UL07].

3. Concretize the abstract test cases into executable ones. This is usually

achieved by employing �adapter code that wraps around the SUT and imple-

ments each abstract operation in terms of lower level SUT facilities�[UL07].

This step �lls in the details that were abstracted during the modeling step

thus bringing the abstract test cases at the same abstraction level as the

SUT.

4. Execute the test cases on the SUT.

5. Analyze the results of the test execution.

Advantages of using MBT in industrial settings are also pointed out by several

experience reports. One work [PERH04] analyzed a set of 15 case studies (most

performed in industrial contexts) in order to evaluate the applicability of MBT.

The survey indicated that MBT was able to �nd errors in systems that were

considered mature and well tested. Other reports [FHP02, BLLP04, PPW+05]

indicate that MBT found at least the same number of errors when compared

to manual testing. The amount of uncovered errors variates form one case to

another. This variation depends on the type of systems and also on the used

tools. Another important factor in the success of MBT is the experience of the

tester in modeling the SUT and choosing the appropriate test selection criteria.

Further advantages indicated by the case studies include the fact that MBT can

reduce the time needed for the design of test cases and also helps in discovering

problems related to the requirements of the SUT.
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Even though the application of MBT o�ers quite a few advantages over the

classic testing process, it has however its limitations [UL07]:

• Requires di�erent skills compared to manual test design. Such skills include

the ability to model the SUT and apply appropriate abstractions.

• It is mainly used for functional testing. The models describe only behavioral

aspects of the systems. Robustness, performance and usability testing are

left to be done manually.

• The models need to be updated once the requirements change. But also in

a manual testing process, once the requirements change the test cases need

to be updated.

• Some parts of the SUT might be di�cult to model so it might be better to

manually design test cases to test such parts.

• Time to analyze failed tests relates to the fact that a failed test case might

indicate an error in the SUT, adapter code (needed to concertize the abstract

test cases) or in the model. Something like this happens also in other testing

approaches where a test case might fail due to a fault in the SUT or an error

in the test script.

So the application of MBT in practice depends on the context of the project

and on the ratio between advantages and limitations of applying the technique.

2.2 UML Statecharts

A state machine describes the behavior of systems in terms of sequence of states

by specifying its evolution as responses to external stimuli. This type of notation

imposes the restriction that the described behavior is composed of a �nite number

of states. This due to the fact that such diagrams need di�erent states to represent

every valid combination of parameters describing the behavior of the system. The

problem with this restriction is obvious in the case of more complex systems. Even

in the case of systems of reduced complexity, such diagrams can become quite

complex and di�cult to understand. The description of more complex behaviors

becomes impossible due to the fact that the number of states and transitions

needed is very large and often in�nite.

In order to alleviate these limitations and still preserve the useful aspects

regarding the behavior description capabilities of state machines David Harel

introduced in 1987 the concept of statecharts [Har87]. Statecharts extend the

notion of state machines with the concepts of hierarchy, superstates, orthogonal

regions, pseudostates and others which will be presented later in this section. In

the following years statecharts evolved into more than 20 variants [vdB94].
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InsertCoin(coin) / Amt = Amt + coin
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[Amt >= 10] 

SelectDrink(drink) / Amt = Amt - 10

[drink == milk] [drink == Tea] 

InsertCoin(coin) / Amt =Amt + coin

[Amt > 0] 

GiveChange

/ Amt = 0

Figure 2.2: Statechart of a Drink Dispenser

Harel's statecharts have already achieved widespread use in industry. This

is also due to the fact that they have been adopted and adapted by the UML

standard [OMG13] as the basis for UML State Machines. Regarding the di�erent

variants of statecharts we will consider in the rest of this work the UML compliant

variant implemented in the IBM Rhapsody tool [IBM13]. The semantics of these

statecharts are described in previous work [HK04] and [HG96].

2.2.1 Syntax

Usually (and also in our case) when describing a system, a class diagram is used

to represent parts of the system that interact with the environment and with each

other. The dynamic part of the system (its behavior) is speci�ed with the help

of statecharts that are associated to the classes in the diagram. Thus every class

has a statechart de�ning its reactions to the events it receives. Such classes are

called reactive classes.

We present a formal de�nition of statecharts in De�nition 2.2.1. Thus a state-

chart is represented as a tuple of states, transitions, variables and an initial state.

The set of states S is composed of simple, composite states and pseudostates.
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The states represent stable points in the evolution of the system. Pseudostates

on the other hand do not and are used only to increase the expressive power of

statecharts and reduce the modeling e�ort in some situations.

De�nition 2.2.1. (Statechart) A statechart is a tuple SC = (S, T, V, ips0)

where:

• S 6= ∅ is the set of states in the statechart. S is the union of three distinct

sets, that is, S = Ss ∪ Sc ∪ Sps where:

� Ss - simple states of the system.

� Sc - the set of composite states. A composite state can contain other

states and pseudostates.

� Sps = Ips ∪ Jps ∪ Enps ∪ Exps ∪ Cps ∪Hps - the set of pseudostates.

� Ips - the initial pseudostates of the composite states. The transition

originating from such a pseudostate points to the initial state of the

containing composite state.

� Jps - the set of junction nodes. Junction nodes are semantic-free pseu-

dostates used to chain together several transitions.

� Enps - the entry points into composite states.

� Exps - the exit points of a composite states.

� Cps - condition pseudostates allow splitting of transitions into multiple

outgoing paths depending on guards on the outgoing transitions.

� Hps - history pseudostates are used to store the last active state con-

�guration inside the containing composite state.

• T ⊆ S×L×S - is the set of transitions in the statechart where: L ⊆ E×G×A
is the label of the transition. All components of a label are optional.

� E = Etr∪TMev∪{ε} - the triggers (events) that can �re the transitions.
Where Etr is the set of triggering events, TMev is the set of timeout

events and ε is the empty sequence.

� G - the guards (condition) that have to be true in order for the tran-

sition to be �red.

� A - the actions that are to be performed when the transition is �red.

• V - the set of variables used in the statechart.

• ips0 - the initial pseudostate that is the origin of the transition pointing to

the initial state of the statechart.
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The notions of states, pseudostates and transitions in De�nition 2.2.1 are

further de�ned and informally described in the rest of this section.

Example 2.2.1. We present as example in Figure 2.2 the statechart of a drink

dispenser machine that sells only two types of drinks (milk and tea). After intro-

ducing an amount of money greater than 10 the machine allows the selection of

a drink and depending on the inserted amount provides also change (in case the

amount was greater than 10). This is just a simple example that depicts some of

the characteristics of statecharts such as:

• states and transitions

• hierarchy - state DrinkDispenser contains all the other states, pseudostates

and transitions.

• pseudostates - the condition node connected to state Idle where the decision

is made if the inserted amount is su�cient for a drink (state Selecting) or

more coins are needed (state Paying).

States

�A state models a situation during which some (usually implicit) invariant con-

dition holds. The invariant may represent a static situation such as an object

waiting for some external event to occur�[OMG13]. A state can be either active

or inactive. It becomes active when a transition targeting the state is �red. An

active state becomes inactive if a transition originating from it is �red.

Example 2.2.2. In the statechart depicting the DrinkDispenser in Figure 2.2 for

the state Selecting the condition that holds is represented by the fact that the

user has inserted a su�cient amount of coins to be allowed to select a drink. The

state waits for the event SelectDrink with the appropriate drink in order for the

system to move to one of the states GiveMilk or GiveTea.

Even though in the de�nition of a statechart (De�nition 2.2.1) the set of states

includes simple, composite states as well as pseudostates (S = Ss ∪ Sc ∪ Sps) we
make a clear di�erentiation between states (simple and composite) and pseu-

dostates. As already mentioned a state models a situation where some condition

holds. Pseudostates however do not represent such situations and are only seman-

tic nodes used in the modeling of the system. This means that a system cannot

�stay� in a pseudostate. Pseudostates are used to express parallel behavior (fork

or join), conditional behavior, entry and exit in/from composite states, termina-

tion of behavior (�nal pseudostate) and others. We will discuss the di�erent types

of pseudostates later on in this section.
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Figure 2.3: Example of an orthogonal state

De�nition 2.2.2. (State) A state s ∈ S/Sps is a tuple s = (name(s), type(s),

entryAct(s), inAct(s), init(s), substates(s), exitAct(s)) where:

• name(s) is a string representing the name of state s and ∀s1, s2 ∈ S : s1 6=
s2 =⇒ name(s1) 6= name(s2) ,

• type(s) ∈ {simple, orthogonal, sequential},

• entryAct is the set of actions that are executed when state s is entered,

• inAct(s) is the set of actions that are executed while state s is active,

• init(s) ∈ Ips : type(s) = simple =⇒ init(s) = ∅ - is the initial pseudostate
of s,

• substates(s) ⊆ S : type(s) = simple =⇒ substates(s) = ∅ - is the set of
substates contained by s,

• exitAct is the set of actions that are executed when state s is exited.

In De�nition 2.2.2 we present a formal de�nition of a state s as a tuple

(name(s), type(s), entryAct(s), inAct(s), init(s), substates(s), exitAct(s)). The

state is identi�ed by a name, a type, entry and exit actions, initial state and

a set of substates. Regarding the type of a state we identify three types of states:

• simple states (also called basic states) are states that do not contain any

other states. State Idle in Figure 2.2 is such a state.

• sequential states (also called OR states) contain other states that are related

to each other by exclusive OR - if the state is active, only one of its substates

is going to be active. In the example in Figure 2.2 state DrinkDispenser is an

OR state containing all the other basic states, transitions and pseudostates.
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• orthogonal states (also called AND states) contain at least two concurrent

regions in which several substates are located. An active AND state implies

that all its regions are active (there is at least one active state in each of

its regions). In the example in Figure 2.3, State0 is such a state containing

two orthogonal regions.

Orthogonal and sequential states are also called composite states due to the

fact that they contain other substates. Graphically, states are represented as a

rectangle with the state name shown inside it. There are several variants regarding

the location of the name inside the rectangle. Orthogonal states are drawn as

having several regions separated by each other through dotted lines.

Each state can have associated entry, during and exit actions. Entry and exit

actions are executed when the state is entered and exited respectively. Internal

(or during) actions (also called �static reactions�) represent tasks that are to be

executed as long as the system is in that respective state. These reactions have

the same format as the label of a transition ev[guard]/inAct(s) [HK04]. The exe-

cution of such static reactions assumes the occurrence event ev and the ful�llment

of the guard. If these preconditions are met, then the actions inAct(s) are going

to be performed. However, the active con�guration (the set of active states) of the

system will not be changed and the state s will still be active after the execution

of the actions.

Transitions

As speci�ed in De�nition 2.2.3 a transition is a connection between a source state

and a target state. The source and target of a transition can be composite states,

basic states or pseudostates. The transition has associated a label of the form

ev[guard]/actions, where ev is the event that triggers the transition if guard

evaluates to true. Once the transition is �red, the actions de�ned on it are

executed. All of the components of the label of a transition are optional.

De�nition 2.2.3. (Transition) A transition tr is a tuple tr = (source(tr),

event(tr), guard(tr), actions(tr), target(tr)) where:

• source(tr) ∈ S is the source state from which tr originates.

• event(tr) ∈ E is the trigger (event) that needs to happen in order to �re

the transitions.

• guard(tr) ∈ G represents the guard (condition) that has to be true in order

for the transitions to be �red.

• actions(tr) ⊂ A are the actions that are to be performed when the transition

is �red.
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• target(tr) ∈ S is the state targeted by the transition.

IBM Rhapsody [IBM13] allows the usage of two types of triggers which are

events and operation calls. Events are used for asynchronous communication while

operation calls represent synchronous communication. In asynchronous commu-

nication the event gets enqueued into a FIFO queue and will be consumed as soon

as the system reaches a stable state (we discuss this in more detail later in this

section). This way the object that generated the event will continue its behavior

without considering whether the event has been consumed or not. In the case

of synchronous communication there is no enqueuing of the calls and the calling

object (the one that issues the operation call) is blocked until the callee �nishes

processing the call.

Considering only the events, we can identify two types of events: normal

events and timeout events. A timeout event is denoted in Rhapsody as tm(t)

where t is the time in milliseconds until the transition is triggered. The timeout

t starts from the activation of the source state of the timeout transition. When

it elapses a timeout event is automatically generated causing the transition to be

�red (assuming that its guard evaluates to true).

Remark. Event though there are two types of triggers that can �re a transition,

we only consider events since the aimed domain is embedded distributed systems.

Such systems usually use asynchronous communication.

Because in the rest of this work we use di�erent names to identify di�erent

categories of transitions we give here the respective de�nitions. We de�ne normal

transitions (De�nition 2.2.4) as those transitions explicitly triggered by an event

other than a timeout event. The guard and actions part of the transition are still

optional.

De�nition 2.2.4. (Normal Transition) A normal transition is a tuple trn =

(source(trn), event(trn), guard(trn), actions(trn), target(trn)) where:

• source(trn) ∈ S is the source of trn.

• event(trn) ∈ Etr is the trigger event of the transitions.

• guard(trn) ∈ G represents the guard (condition) that has to be true in order

for the transitions to be �red.

• actions(trn) ⊂ A are the actions that are to be performed when the transi-

tion is �red.

• target(trn) ∈ S is the target state of the transition.
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Paying Selecting

[Amt >= 10] 

InsertCoin(coin) / Amt =Amt + coin

Figure 2.4: Example of normal and completion transitions

Since all the components from the label of a transition are optional (including

the event) we can have transitions with no explicit triggering event. We call such

transitions completion transitions (De�nition 2.2.5). After entering the source

state of such a transition, if its guard conditions are met then the transition is

�red automatically without the need for an explicit trigging event.

De�nition 2.2.5. (Completion Transition) A completion transition is a tuple

trcmpl = (source(trcmpl), event(trcmpl), guard(trcmpl), actions(trcmpl), target(trcmpl))

where:

• source(trcmpl) ∈ S is the source of trcmpl.

• event(trcmpl) = ε.

• guard(trcmpl) ∈ G represents the guard (condition) that has to be true in

order for the transitions to be �red.

• actions(trcmpl) ⊂ A are the actions that are to be performed when the

transition is �red.

• target(trcmpl) ∈ S is the target state of the transition.

Example 2.2.3. Figure 2.4 contains two states (Paying and Selecting). The

transition looping at state Paying (InsertCoin(coin)/Amt = Amt + coin) is

an example of a normal transition triggered by event InsertCoin and updating

the amount of money accordingly as a result of its execution. The completion

transition connecting the two states ([Amt >= 10]) will be �red as soon as a

su�cient amount of coins has been inserted into the machine.

Depending on the type of the triggering event we also identify timeout tran-

sitions (De�nition 2.2.6) as those transitions explicitly triggered by a timeout

event. Similar to the other types of transitions, the guard and actions part of the

transition are still optional.

De�nition 2.2.6. (Timeout Transition)A timeout transition is a tuple trtml =

(source(trtml), event(trtml), guard(trtml), actions(trtml), target(trtml)) where:
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• source(trtml) ∈ S is the source of trtml.

• event(trtml) ∈ TMev : TMev 6= ∅ is the trigger event of the transitions.

• guard(trtml) ∈ G represents the guard (condition) that has to be true in

order for the transitions to be �red.

• actions(trtml) ⊂ A are the actions that are to be performed when the tran-

sition is �red.

• target(trtml) ∈ S is the target state of the transition.

Pseudostates

A pseudostate is an abstraction that encompasses di�erent types of transient ver-

tices in the state machine graph [OMG13]. There are several types of pseudostates

de�ned in the UML standard allowing the modeling of di�erent behaviors. They

are divided into two main categories AND and OR [HK04].

OR pseudostates imply that out of all transitions connected to such a node

only one incoming and one outgoing transitions will �re (depending of course

on the arrival of the appropriate event and the truth value of the guard). The

quoted de�nitions of the di�erent OR pseudostates below are taken from the UML

standard [OMG13]:

• The initial pseudostate represents a default vertex that is the source for

a single transition to the default state of a composite state. There can be

at most one initial vertex in a region. The outgoing transition from the

initial vertex may have a behavior, but not a trigger or guard. An initial

pseudostate is represented as a small solid �lled circle and an example can

be found in Figure 2.5.

• Junction vertices are semantic-free vertices that are used to chain together

multiple transitions. A junction can be used to unite multiple incoming

transitions into a single outgoing one. Semantically all incoming transitions

have the same target state. They just share the outgoing transition of the

junction node. The UML standard also allows junction nodes to be used

for splitting incoming transitions into several outgoing ones. However the

Rhapsody semantic (which we use) restricts the use of these nodes only to

merging. Graphically, a junction is represented as a small colored circle.

In Figure 2.5 there is an example of a junction node: the small dark circle

targeted by the transitions from states GiveMilk and GiveTea and whose

outgoing transition points to the choice pseudostate.

• Choice vertices, when reached, result in the dynamic evaluation of the

guards of the triggers of its outgoing transitions. This realizes a dynamic
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conditional branch. It allows splitting of transitions into multiple outgoing

paths such that the decision on which path to take may be a function of the

results of prior actions performed in the same run-to-completion step. In de-

terministic systems the guards on the outgoing transitions must be mutually

exclusive so that only one of the guards is true at any time during the execu-

tion of the model. In non-deterministic systems the standard speci�es that

if more than one guard evaluates as true, one of the outgoing transitions is

selected. Graphically, a choice is represented as a �diamond-shaped symbol�.

An example of such a node can be found in Figure 2.5 splitting the transition

originating from state Selecting (SelectDrink(drink)/Amt = Amt − 10)

into the two transitions ([drink == milk] and [drink == tea]) depending

on the value of the drink parameter received with event SelectDrink.

• Deep History represents the most recent active con�guration of the com-

posite state that directly contains this pseudostate (e.g., the state con�g-

uration that was active when the composite state was last exited). There

can be only one such node inside a composite state. It can have only one

outgoing transition targeting the default history state (the state that will

be activated at the �rst execution activating the parent state). Such a node

is represented as a small circle containing an H*.

• Shallow History represents the most recent active substate of its contain-

ing state (but not the substates of that substate). As in the case of deep

history, there can only be at most one shallow history pseudostate in a com-

posite state. There can also be only one outgoing transition from such a

node pointing to the default history substate. This type of pseudostate is

represented as a small circle containing an H.

• The entry pseudostate is an entry point of a composite state and has a single

outgoing transition pointing to a state inside the containing superstate.

Such a node is depicted as a small empty circle on the border of its composite

state.

• An exit pseudostate is an exit point of a composite state. Graphically, such

a node is represented as a small circle enclosing an X. The node is located

on the edge of the composite state it belongs to.

• Entering a terminate pseudostate implies that the execution of this state

machine by means of its context object is terminated. The state machine

does not exit any states nor does it perform any exit actions other than

those associated with the transition leading to the terminate pseudostate.

The node is represented as a cross.
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Selecting

GiveMilk GiveTea

SelectDrink(drink) / Amt = Amt - 10

[drink == milk] [drink == Tea] 

Served

Figure 2.5: Example of Junction and Condition pseudostates

AND connectors are usually used in the presence of orthogonal states and im-

ply that more than one (usually two) transitions segments (incoming or outgoing)

are �red at the same time. These connectors come in two variants:

• Join vertices serve to merge several transitions emanating from source ver-

tices in di�erent orthogonal regions. The transitions entering a join vertex

cannot have guards or triggers[OMG13]. Considering the example in Figure

2.6 only when the system is in states State2 and State3 and if the event ev2

occurs will the system move to State4. If the active state con�guration is for

example State1, State3 and ev2 occurs there will be no state con�guration

change and the event will be ignored.

• Fork vertices serve to split an incoming transition into two or more tran-

sitions terminating on orthogonal target vertices (i.e., vertices in di�erent

regions of a composite state). The segments outgoing from a fork vertex

must not have guards or triggers [OMG13]. An example of a fork pseu-

dostate can be found in Figure 2.6. The pseudostate is targeted by the

transition triggered by event ev1 originating from state State5. If the active

state con�guration of the system is given by State5 and ev1 occurs, the new

state con�guration will be State0 (the orthogonal state), State1 and State4.

Considering the occurrence of event ev2 while the system is in state State5

the new active state con�guration will be State0 (the orthogonal state),

State2 and State3 (due to the fact that these last two states are the default

states for their respective orthogonal regions).
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Figure 2.6: Example of Fork and Join pseudostates

2.2.2 Semantics

As already mentioned, since their introduction, several statecharts variants have

been proposed [vdB94]. Out of these variants we use the one implemented in

the UML modeling tool IBM Rhapsody. In this section we present the execution

semantics considered for the rest of this work.

The UML standard does o�er a detailed informal de�nition of the intended

semantics. However, it allows some variations due to the fact that it is intended

as a general purpose modeling language aiming to accommodate a wide range of

domains. In addition, there are also some aspects that are not clearly de�ned

when considering non-deterministic systems. For example the order of execution

of transitions in orthogonal regions. Another example would be that in some cases

of con�icting transitions (presented below), the standard allows for a nondeter-

ministic choice to be made - a transition is arbitrarily chosen to �re.

Due to the fact that we consider test case generation for deterministic sys-

tems, such variations need to be properly handled in order not to provide invalid

test cases. In Rhapsody, these cases of nondeterminism are either resolved to

deterministic choices or not allowed.

The Run-to-Completion Step

According to previous work [HK04] the behavior of a system described in Rhap-

sody is a set of possible runs. A run consists of a series of detailed snapshots

of the system's situation. Such a snapshot is called a status. The �rst in the

sequence is the initial status, and each subsequent one is obtained from its pre-

decessor by executing a step or run-to completion step (RTC) as it is called

in the UML standard.

In order to de�ne the run-to completion step execution semantics we �rst need

to de�ne the terms of active state con�guration and stable state of the system.
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DrinkDispenser

  c

Idle

Paying Selecting

InsertCoin(coin) / Amt = Amt + coin

[Amt >= 10] [Amt < 10] 

[Amt >= 10] 

InsertCoin(coin) / Amt =Amt + coin

Figure 2.7: Partial speci�cation of Drink Dispenser

De�nition 2.2.7. (Active State Con�guration) The active state con�gura-

tion of a system is the set of active states at a given moment in the execution of

the system.

Example 2.2.4. Considering the example in Figure 2.7 (a partial speci�cation

of the Drink Dispenser), after the initialization of the system (execution of the

transition originating from the initial pseudostate) the active state con�guration

is {DrinkDispenser, Idle}.

De�nition 2.2.8. (Stable State Con�guration) A system S is considered to

be in a stable state if the following conditions hold:

• All actions caused by the consumption of the last event have been performed.

• Its current active state con�guration does not have any completion transi-

tions that can be �red.

• No other type of transitions can be �red without consuming a new event.

According to De�nition 2.2.8 the system can remain in the current active state

con�guration until the arrival of a new event.

Example 2.2.5. Considering the same example in Figure 2.7 and the active state

con�guration {DrinkDispenser, Paying}, the system is in a stable state only if

after the consumption of the last InsertCoin event and the updating of the amount
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RTC step RTC step RTC step 
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Figure 2.8: The Run-to-Completion Step

variable (Amt = Amt+coin) the value of Amt is smaller than ten (the completion

transition targeting state Selecting can not �re). If however Amt >= 10 the

completion transition will �re and the stable state con�guration of the system

will be {DrinkDispenser, Selecting}.

A Run-to-completion step represents the evolution of the system from the

reception of an event until reaching the next stable state con�guration. This

means that the event has been consumed, the appropriate actions have been

completed and all possible completion transitions have been �red. Thus an RTC

step can be seen as the mechanism that makes the system evolve from one stable

state con�guration to the next one upon receiving an event.

An RTC step is said to be uninterruptable since upon starting to consume

an event, the statechart can not be interrupted until it reaches a stable state.

Thus the events that arrive for the statechart during a RTC step are enqueued

in a FIFO event queue and will be delivered to the statechart when this reaches

a stable state. If in the newly reached stable state con�guration there is no

transition that can be triggered by the event from the queue, the system will

not change to another state con�guration and the event will be discarded. This

process continues with the other events in the event queue until the queue is

emptied.

From the reception of an event and until the current RTC step is completed

several actions need to be performed and completion transitions can be �red (if

their guards evaluate to true). Thus an RTC step is described as being composed

of several microsteps. The evolution of the statechart from one stable state to

the next one is a sequence of microsteps.

Figure 2.8 [HK04] illustrates the decomposition of an RTC step into mi-

crosteps. The black circles in the �gure represent the stable state con�gurations

of the system between two RTC steps. The empty circles between two microsteps

represent unstable active state con�guration of the statechart.

Con�icting Transitions (Nondeterminism)

Two transitions are said to be in a con�ict if there is some common state that

would be exited if either of them were to be taken [HK04]. This situation appears



2.2. UML STATECHARTS 31

A

        .

B

C

ev1 ev2 D

ev2 

ev3 

Figure 2.9: Transition con�ict

in the case when more than one transitions available in the current active state

con�guration can be triggered by the same event. There are two types of con�icts

between transitions depending on their source state and the hierarchical relations

between their sources.

The �rst type of con�ict refers to the situation where two transitions triggered

by the same event (and whose guards evaluate to true) originate from the same

state. So upon the reception of the triggering event both transitions would cause

the source state to be exited. This is a clear case of nondeterminism since there

are no rules de�ned in order to specify which of the transitions should be taken.

Rhapsody does not allow this type of con�ict since the diagrams are used for code

generation and �for most embedded software systems such nondeterminism is not

acceptable�[HK04].

The second type of con�ict appears between two transitions having the same

triggering event, whose source states are on di�erent hierarchical levels in the

statechart and such that the source state of one transition is a substate of the

source of the other con�icting transition.

In this case a prioritization scheme is used in order to resolve the con�ict and

remove nondeterminism. In Rhapsody, in case of con�icting transitions the one

with the lower level source state has the higher priority.

Example 2.2.6. Consider the example in Figure 2.9 where the transition origi-

nating from state C targeting state B is in con�ict with the transition originating

from state A to state D since ev2 is the trigger for both ones. If the active state

con�guration of the statechart is {A,C} and event ev2 arrives the new active

state con�guration will be {A,B} since C is lower in the state hierarchy than A.
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System Reaction

The usage of events as transition triggers imply the use of an asynchronous com-

munication mechanism that assumes the presence of a FIFO event queue. This

queue is used to store the events that are sent to an object whose statechart

has not yet reached a stable state con�guration (the RTC step has not �nished).

Events stored in the queue are dispatched (in the order of their arrival) to their

destination once the respective RTC step has been completed.

The afore mentioned event queue is managed by an event dispatcher that is

responsible for delivering the event in the top of the queue to the object the event

was sent to. Upon receiving the event, the object consumes it according to the

RTC step semantics.

We describe below the reaction of the system during a RTC step and the

processing of an event [HK04]:

1. The dispatcher extracts event ev from the top of the event queue.

2. The transitions that have ev as triggering events and guards evaluating to

true are identi�ed. This is achieved by traversing the states in the active

state con�guration starting with the ones lowest in the hierarchy upwards.

This step identi�es a maximal set of non-con�icting transitions that can

�re.

3. The transitions identi�ed at step 2 are �red. This is done by exiting the

source states of the transition, execute the exit action of the states in the or-

der the states are exited. The states are exited according to their level in the

state hierarchy - from low to high. The actions of the transition are sequen-

tially performed followed by the entry actions of the target states, this time

starting with the states higher in the hierarchy to the lower ones. For the

newly entered composite states recursively perform the default transitions

until reaching simple states. Considering orthogonal states, the transition

execution order is not de�ned (thus implementation dependent). This means

that statecharts with orthogonal states might contain non-deterministic be-

havior.

4. At this point the event has been consumed and the system is in a new active

state con�guration. This con�guration however might not be a stable one.

So there might exist completion transitions that can be �red. These are

�red (without needing an explicit triggering event) according to the step 3

described above. This process is repeated until the system reaches a stable

state when it is ready to accept the next event from the event queue.

Example 2.2.7. Consider again the example in Figure 2.7 and that the stable

state con�guration is {DrinkDispenser, Paying} (which means that Amt < 10).
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Figure 2.10: Lotos Speci�cation as a black box

Consider also that the value of variable Amt equals eight. Upon receiving the

event InsertCoin(5) the system exits state Paying (any exit actions would now

be performed), updates the value of Amt to 13 and enters again state Paying

(if there were any entry actions de�ned for the state these would be executed).

Since the value of Amt is now greater than 10 the completion transition targeting

state Selecting ([Amt >= 10]) needs to be �red. Thus according to the system

reactions described above state Paying is exited and state Selecting is entered.

At this point there are no more completion transitions that can be �red which

means that the system is now in a stable state.

2.3 Language Of Temporal Ordering Speci�cation

The Language Of Temporal Ordering Speci�cation (LOTOS ) [ISO89] is a formal

description technique developed within ISO for the formal speci�cation of open

distributed systems.

LOTOS consists of a process algebraic [BK84, Hoa85] part based on Milner's

Calculus of Communicating Systems (CCS) [Mil89, Mil82] and on Hoare's Com-

municating Sequential Processes (CSP ) [Hoa85], and a data part based on the

abstract data type (ADT ) language ACT ONE [dMRV92].

In literature [BB87, FH92] the term Basic LOTOS is used to refer to the

variant of the language that does not use any data values (de�ned by means of

ADT) in its speci�cations. Full Lotos is used to refer to the variant using both

the process algebraic and abstract data type parts. The semantics of the latter

variant of the language builds on that of basic LOTOS by adding constructs

and concepts enriching the language by allowing the use of data types for the

description of systems. Since we use the full version of LOTOS, in the rest of this

section we shall focus on this variant of the language.

The LOTOS model of a system can be thought of as a black box with a number

of gates (interaction points) used for communication with its environment. Figure

2.10 [BB87] conceptually presents such a representation of a LOTOS speci�cation

communicating via the gates a through g with its environment.

A LOTOS speci�cation describes a distributed system as a hierarchy of pro-

cesses where each of the processes may contain further subprocesses. Such a
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gate event 1 event nevent 2 …. Optional Predicate

    

sell ?amt : Nat !Tea [amt > 10]

Figure 2.11: Structure of a LOTOS action

process represents �an entity able to perform internal, unobservable actions, and

to interact with other processes, which form its environment� [BB87]. The interac-

tion points used by the process for communicating with its environment are called

gates. Such a gate represents an abstraction of an interface in an implementation.

In full LOTOS, an action has the structure presented in Figure 2.11 [FH92].

The upper part of the �gure represents the structure while the lower part is an

example of such an action (sell ?amt : Nat !Tea [amt > 10]). Thus an action

is composed of a gate, a list of events and an optional predicate. An event can

accept (?) or o�er (!) values. The predicate (condition) has to be satis�ed by the

variables ([amt > 10]) accepted by the action. In case of basic LOTOS an action

contains only the gate.

Example 2.3.1. Consider the example of the action in Figure 2.11 (sell ?amt :

Nat !Tea [amt > 10]). This action alone would describe a communication through

gate sell accepting a natural number (?amt : Nat) and o�ering the value !Tea if

the value of amt is greater than ten ([amt > 10]). Both Nat and the value Tea

are de�ned by using ADT.

process name_proc [ gate list ] ( parameter list ) :
functionality

b eha v i o r expression

where
t ype definitions

p r o c e s s definitions

endproc

Figure 2.12: Structure of a LOTOS process

The behavior of a process is speci�ed by means of a behavior expression. Such

expressions are created by using several LOTOS operators to combine actions and

other behavioral expressions.

When the process communicates with its environment both the process and the

environment participate equally to the action. This mechanism is called process

synchronization and is based on the concept of process rendezvous. In order for
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Table 2.1: LOTOS process synchronization types

Proc1 Proc2 Synchronization Con-
dition

Interaction Type E�ect

g !E1 g !E2 value(E1) = value(E2) value matching synchronization

g !E1 g ?x:t value(E1) is of sort t value passing x = value(E1)

g ?x:t g ?y:u t = u value generation x=y=v where
v is a value of
sort t

two (or more) processes to synchronize on an action they need to o�er the same

gate and �agree� on the gate events. Since an action can o�er (!) or accept

(?) values there are three types of interactions that can take place between two

synchronizing processes. Table 2.1 [BB87] presents the three types of interaction

for two processes Proc1 and Proc2.

The structure of a LOTOS process is given in Figure 2.12 [BB87] where the

name of the process name_proc is followed by the enumeration of the gates ([gate

list]) and the list of parameters it uses. A process can have two types of func-

tionality exit and noexit. The exit functionality denotes a process that can

execute and exit thus terminating successfully while noexit represents a process

that either does not terminate successfully or describes a behavior that will not

terminate. The behavior expression describes the process behavior in terms of

actions and other processes de�ned after the where keyword.

p r o c e s s drinkDispenser [ g ] ( drinksLeft : Nat ) : noexit

g ?amt : Nat ! Tea [ ( amt > 10) and ( drinksLeft > 0) ] ;
drinkDispenser [ g ] ( drinksLeft−1)

endproc

Listing 2.1: Example of a LOTOS process for a simple drink dispenser

Example 2.3.2. Listing 2.1 contains the declaration of a process describing a

simple drink dispenser selling only tea. It does not return any change in the case

when more than the required amount of coins necessary for a tea has been inserted.

The process drinkDispenser communicates with its environment through gate

sell and has a parameter (drinksLeft) in order to keep track of the number of

drinks left in the machine. In order to sell a tea (!Tea) the machine needs to have

at least one more drink available (drinksLeft > 0) and receive a su�cient amount

(?amt : Nat) of coins ([amt > 10]). The semicolon after the mentioned action is

the LOTOS operator action pre�x (which we will present later in this section)
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speci�cation spec_name [ gate list ] ( parameter list ) :
functionality

type definitions

behavior

behavior expression

where

type definitions

proce s s definitions

endspec

Figure 2.13: Structure of a LOTOS speci�cation

and is used to represent sequential behavior. Thus, after the completion of the

action, the process will be reinstatiated and the process parameter drinksLeft

will be updated to the value drinksLeft− 1.

The structure of a LOTOS speci�cation (Figure 2.13) is similar to that of a

process.

2.3.1 LOTOS Operators

The process behavior is speci�ed through behavior expressions composed of ac-

tions and LOTOS operators. The operators are used to combine behavior expres-

sions in order to form more complex expressions. As detailed information on the

language and tutorials can be found in [ISO89, BB87, FH92], below we present

only some of the LOTOS operators relevant to our work.

LOTOS o�ers two operators that can be considered behavioral expressions by

themselves [FH92] : stop and exit. The stop operator is used to represent a

deadlock situation where a process can not o�er any action while exit denotes

successful termination of an expression.

The action pre�x operator represented as a semicolon �;� is used to describe

sequential behavior. It composes an action with a behavioral expression denoting

that after the action, the behavior continues according to the speci�ed expression.

A generalization of the action pre�x is the enable (���) operator which has

a similar semantic but is used when composing two behavioral expressions (as

opposed to an action and an expression). When using this operator to compose

two expressions, the second one will be executed only if the �rst one terminates

successfully (by executing an exit).

The choice operator represented as �[]� o�ers a choice between two alternative

behavior expressions. The choice is not necessarily a deterministic one.

Example 2.3.3. In Listing 2.2 we have enhanced the functionality of the drink

dispenser machine. It still does not return any change if the user inserts more

than the required amount of coins needed for purchasing a drink. It now allows
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a choice (�[]�) between purchasing a drink (co�ee or tea), reseting and loading

drinks into the machine. The action pre�x is present in several places. One

of them is on line 10 where it composes the action representing a reset request

with that of returning the amount of coins that has already been inserted in the

machine (ret!amt). Successful termination (line exit) follows after returning the

coins and enables the re-instantiation of the drinkDispenser process (11). The

re-instantiation of the process on line 11 can only happen after a reset request

(only in this case successful termination exit is executed).

1 proce s s drinkDispenser [ g , s , reset , ret , load ]
( teaLeft : Nat , coffeeLeft : Nat ) : noexit

2 g ?amt : Nat ;
3 (
4 [ teaLeft > 0 ] −> s ! tea [ amt >= 10 ] ;
5 drinkDispenser [ g , s , reset , ret , load ] ( teaLeft−1,coffeeLeft )
6 [ ]
7 [ coffeeLeft > 0 ] −> s ! coffeee [ amt >= 15 ] ;
8 drinkDispenser [ g , s , reset , ret , load ] ( teaLeft , coffeeLeft−1)
9 [ ]

10 reset ; ret ! amt ; e x i t
11 )>> drinkDispenser [ g , s , reset , ret , load ] ( teaLeft , coffeeLeft )
12 [ ]
13 load ?teaAmt : Nat ?coffee : Nat ;
14 drinkDispenser [ g , s , reset , ret , load ]

( teaLeft + teaAmt , coffeeLeft + coffeeeAmt )
15 endproc

Listing 2.2: LOTOS process describing a more complex drink dispenser

In LOTOS, parallelism is expressed through the operators pure interleaving

(�|||�), partial synchronization (�|[< gates >]|�) and full synchronization

(�||�).
When using the interleaving operator (�|||�) to compose two processes (be-

havior expressions), the two behaviors are allowed to unfold completely and in-

dependently of each other by allowing all actions of the processes to interleave in

any order.

Example 2.3.4. Consider the already introduced drinkDispenser process is com-

posed by interleaving with another process representing a snack vending ma-

chine - drinkDispenser[g, s, reset, ret, load](teaLeft : Nat, coffeeLeft : Nat) |||
snackDispenser[sell, reset, ret, load](chocolateLeft : Nat, peanutLeft : Nat).

All the actions of the two machines are allowed to interleave. Thus, the function-

ing or the drinkDispenser is independent of that of the snackDispenser and vice

versa.
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We already mentioned that processes communicate with each other through

gates and depending on the gate o�erings there are several types of interactions

(see Table 2.1) allowed for such a communication to succeed.

If the situation arises when two processes need to collaborate on some of their

actions we can use the partial synchronization (�|[< gates >]|�) operator. The
term < gates > in (�|[< gates >]|�) is a place holder for the names of the gates

on which the composed processes need to synchronize in order for the behavior to

continue. The actions containing other gates not listed in the operator are allowed

to freely interleave. The set of possible actions of the expression is composed of

the set of all actions (from both processes) occurring at gates not in the operator

and the set of actions the processes are able to synchronize on at gates listed inside

the partial synchronization operator. In the case when one of the processes

can only evolve by executing an action at one of the synchronization gates it will

have to wait until the second process synchronizes on that particular action.

1 proce s s buyer [ g , s , talk , eat ]
( cash : Nat ) : noexit

2 talk ! phone ;
3 (
4 [ cash >= 10 ] −> g ! 1 0 ; s ! tea ;
5 buyer [ g , s , talk , eat ] ( cash − 10)
6 [ ]
7 [ cash >= 15 ] −> g ! 1 5 ; s ! coffeee ;
8 buyer [ g , s , talk , eat ] ( cash − 15)
9 )

10 [ ]
11 eat ! chocolate ; talk ;
12 buyer [ g , s , talk , eat ] ( cash )
13 endproc

Listing 2.3: LOTOS process describing a buyer

Example 2.3.5. Consider the process buyer from Listing 2.3 describing the be-

havior of a buyer that can either talk on the phone (line 2) and then purchase a

drink or eat a chocolate and then talk (line 11). In order for the buyer to pur-

chase a drink it needs to synchronize with the drinkDispenser on the gates [g, s]

- drinkDispenser[g, s, reset, ret, load](teaLeft : Nat, coffeeLeft : Nat) [g, s]

buyer[g, s, talk, eat](cash : Nat). When both processes are �rst initialized, the

drinkDispenser can only execute the actions at gate load since the buyer has not

yet performed the talk!phone; action. Thus all actions occurring at gates talk,

eat, reset, ret and load are allowed to interleave.

If the set of gates inside the partial synchronization operator contains all

the gates of the composed processes the partial synchronization becomes full
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synchronization. This operator is used when the processes need to cooperate on

all their actions. Full synchronization� (�||�) denotes the fact that the actions

which occur in either of the behavior expressions have to synchronize. Thus the

composition contains all actions on which the processes can synchronize on at all

communication gates.

Example 2.3.6. Consider again the process of the buyer in Listing 2.3) and con-

sider also that the line 2(talk!phone;) has been deleted from the process de�nition.

Now, the behavior of expression drinkDispenser[g, s, reset, ret, load](teaLeft :

Nat, coffeeLeft : Nat) || buyer[g, s, talk, eat](cash : Nat) will allow the selling

of drinks. This is so since the actions at gates g and s are the only ones o�ered by

both processes. The behavior will continue until either there are no more drinks

in the drink dispenser or the buyer runs out of money. All other actions at gates

other than g and s are not part of the behavior since they are o�ered by only one

of the processes and never by both at the same time.

Other LOTOS operators and concepts not detailed in this work and more

information about the language can be found in [BB87, FH92, ISO89]. As a

description of algebraic speci�cation of data types is outside the scope of this

work we refer the interested reader to [Mañ88a, Mañ88b, EM85, EM90].





Chapter 3

Modeling

The behavior of the considered type of systems is described by means of asyn-

chronously communicating UML statecharts. By asynchronous it is understood

the fact that the events the statecharts use to communicate with each other are

enqueued in an FIFO queue and consumed by the targeted statechart after it

reaches a stable state. The events used in the communication with and within

the system can also carry data values as event parameters.

As already mentioned in Section 2.1.1 a key point in using MBT is the model

itself. It is very important that the model resides at a higher level of abstraction

than the SUT. It is also important to use appropriate abstractions during the

modeling process. However the resulting model needs to retain enough informa-

tion about the described behavior of the SUT to enable it to be used for test case

generation.

Since abstractions are so important for MBT, in this chapter we further discuss

this topic in Section 3.1. In Section 3.2 we present a running example and in

Section 3.3 we shortly discuss other models used in our experiments.

3.1 Model Abstractions

By abstractions we understand simpli�cations of the model. These make the

model easier to understand and validate. Usually domain knowledge is required

in order to �nd good abstractions so that the resulting model is an appropriate

approximation of the SUT with regard to the aspects that need to be tested.

It is possible to identify the following types of abstractions that can be used

during the modeling process of MBT [PP05]:

• Functional abstractions are used with the goal of focusing the test gener-
ation only on certain parts of the functionality of the SUT by not specifying

41
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other parts (considered not important for the purpose at hand). An ad-

vantage of this abstraction in the context of MBT is the fact that several

models can be built (each containing only a part of the functionality of the

SUT) in order to test each functionality separately. An example for func-

tional abstractions is also in our running example (Section 3.2) where the

used model describes only a part of the functionality dedicated to direction

indication on vehicles. The modeled behavior is focused on the emergency

operation of the �ash light backup controller.

• Data abstractions assume the mapping of concrete data types to logical or

abstract data types. One common technique is to represent only equivalence

classes and not the concrete data values. An example of such an abstraction

is also used in one of our models describing the behavior of the Keyless Entry

functionality in modern vehicles. In that model the locking and unlocking

of the vehicle also depends on its speed. Thus if the speed value is greater

than 20 km/h the car will be locked. Otherwise, depending on the location

of the keys, the vehicle might be locked or unlocked. The equivalence classes

for the value of the speed are speed <= 20 and speed > 20.

• Communication abstractions are used in order to map a complex inter-

action of the SUT to a more simple operation. In our case such an abstrac-

tion relates to the fact that real communication messages are mapped to

data carrying events.

• Temporal abstractions consider that only the order of events is important

for the functionality at hand. Thus the precise timing of such events is

abstracted away. An example would be that of abstracting from a concrete

timer by only considering its start and �nish as two distinct events.

All of the abstractions mentioned above imply a loss of information. Thus,

the models built using such abstractions can only be used for testing those parts

of the SUT's behavior that are speci�ed [PP05].

3.2 Running Example

In this section we present the running example used in the rest of this work. It

describes part of the functionality dedicated to direction indication (blinking) on

cars. As mentioned above, the structure of the system is given in the form of a

class diagram (Figure 3.1) where each model is represented by means of a class.

The behavior of each class is described by a statechart nested inside it handling

di�erent parts of the functionality.

Please note that due to con�dentiality and readability issues the running ex-

ample is not the actual industrial model but a simpli�ed version of it. It is
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Figure 3.1: Class diagram for the Direction Indication system

NormalOperation

1

EmergencyOperation

1

evFLMC_Status

[params->active == false]/

Direction = NONE;

crash = OFF;

Hazard = OFF;

evFLMC_Status

[params->active == true]/

/* T12 */
/* T11 */

Figure 3.2: Statechart of the FLBC Class

a generic version of a blinker system encoding general functionality present on

modern vehicles. The model used in our experiments is however the model from

our industrial partner.

The structure of the system can be observed in Figure 3.1 and is composed of

several models handling di�erent parts of the functionality. The modeled behav-

ior is focused on the emergency operation of the Flash Light Backup Controller

(FLBC ). The role of the FLBC is to provide basic functionality of the �ashers in

case the Flash Light Master Controller (FLMC ) fails. The provided functionality

contains direction indication, hazard warning and crash �ashing.

In Figure 3.2 the symbols in the right conner of some states (e.g. Emergen-

cyOperation) denote the fact that those are composite states containing further

substates and transitions. The substates of the EmergencyOperation state in
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a EmergencyOperation
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reqHazardWarningON /hazard = ON
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reqHazardWarningOFF /
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[direction != OFF]

[direction == OFF]
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reqDirectionInd 

[params->direction == RIGHT]/
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reqHazardWarningON /
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direction = params->dirReq

reqAirbag /crash = ON

reqDirectionInd 

[(hazard == OFF) and (crash == OFF)

and (params->direction == NONE)]/

direction = NONE

reqDirectionInd 

[(hazard == ON or crash == ON)

and (params->direction == NONE)]/

direction = NONE

reqDirectionInd 

[params->direction == LEFT]/

direction = LEFT

/* T23 */

/* T16 */

/* T26 */

/* T17 */

/* T22 */

/* T24 */

/* T25 */ /* T27 */

/* T28 */

/* T29 */

/* T31 */

/* T30 */

EmergencyOperation

Figure 3.3: EmergencyOperation state

HazardWarningButton

                                                                                                                    c

Toggled

reqButtonToggled 

[ButtonStatus == UNPRESSED] /  

ButtonStatus = PRESSED;

ButtonStatus = UNPRESSED

[ButtonStatus == PRESSED] / 

SENDEVENT(reqBlink(NONE), FLBC)

SENDEVENT(reqBlink(BOTH), FLBC)

Unpressed

Pressed

Figure 3.4: Statechart of the HazardWarningButton class

Figure 3.2 are depicted in Figure 3.3.

The HazardPushButton model describes the behavior of toggling the hazard

button while the HazardMessageSender issues requests (via reqHazardWarning

event) to the FLBC depending on the status received from the HazardPushButton.

The DirectionIndicationLever model represents the user activation of the di-

rection indication lever and generates �ashing requests to the FLBC accordingly.

These models represent the interaction of the user with the system.

In the case of the FLMC the model describes only the situation when the

FLMC fails and not the whole functionality of the controller. After this controller

fails, the state of the FLBC changes (via the evFLMC_status event) to Emergen-

cyOperation state (see Figure 3.2). While in this state, after receiving requests

for either hazard or crash warning the new state will be BothSides_Blinking rep-
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resenting the activation of all �ashlights on the vehicle. The system can leave this

state through a request for direction indication - reqDirectionInd(LEFT/RIGHT)

or a reqHazardWarningOFF(). In the case of a direction indication request the

�ashing functionality shall continue only on the requested side (LeftSideBlink-

ing or RightSideBlinking). After the direction indication has ceased (reqDirec-

tionInd(NONE)), the system must be returned to the state previous to Direc-

tion_Blinking.

3.3 Other Models

In the rest of this work we are going to use several models when we evaluate the

proposed techniques (LOTOS transformation, test case generation and using de-

pendence relations for improving test purposes). In this section we shortly present

these models and discuss the applied abstractions. The �rst three models (Di-

rection Indication, Diagnosis and Keyless Entry) are from our industrial partners

and the others are taken from literature.

Direction Indication. The model of the directional indication was described

above. The used abstractions are :

• Functional abstractions - the model focuses only on the emergency operation

of the ECU controlling the blinking functionality. Thus not all the blinking

functionality is speci�ed.

• Communication and data abstractions - the actual messages the statecharts

use to communicate are encoded into data carrying events. At the concrete

level these are complex messages used by the actual communication network

in the vehicle.

Diagnosis. The Diagnosis model [CSP09a] describes the diagnosis function-

ality of vehicles. Its purpose is to store the type, occurrence, and origin of errors

during operation of the vehicle. Besides the diagnosis functionality the system

also contains a model describing the behavior of the ignition switch of the vehicle

and two other models de�ning the conditions needed for errors to be detected.

When such an error has been detected it is communicated to the diagnosis model.

The functionality, which is to be tested in this setting, de�nes how detected errors

are to be treated and when to create an entry in the error memory.

Similar to the Direction Indication model communication and data abstrac-

tions are used here for mapping actual network messages to data carrying events.

Keyless Entry. This model [Sch12] describes the keyless entry functionality

on modern vehicles. It is intended to allow a user to lock, unlock, enter and start

the vehicle without using the remote of the car or its key. For example, if the key is

inside the car the driver can start the vehicle without using the key to turn on the

ignition switch. The model contains three communicating statecharts. As already
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mentioned one functionality of the system is that the car will be automatically

locked if its speed exceeds 20 km/h. Used abstractions:

• Data abstraction - we use equivalence classes for the value of the speed

speed <= 20 and speed > 20.

• Communication and data abstractions - the actual messages the statecharts

use to communicate are encoded into data carrying events.

Telephony Control Protocol. - This protocol [SIG13] de�nes how voice

and data calls are set up between Bluetooth devices. It de�nes the call states

between incoming and outgoing sides. These represent the two entities that take

part in the call. We modeled the full speci�cation of the protocol as opposed to

the minimal subset of states (for use within power and memory restricted devices).

For this model we used communication and data abstractions to map the actual

communication messages to data carrying events.

Conference Protocol. This is the model of a multicast chatbox protocol

[BFd+99]. It allows the participants of a conference to exchange messages. The

participants of the conference can change dynamically by leaving and joining the

conference.

For the model we used the following abstractions:

• Functional abstractions - Only one conference at a time is considered and

only two participants are taking part in the conference.

• Data abstractions - The actual values of the messages exchanged between

the participants are abstracted away. We use a constant value for it. Also

the actual addresses and IDs of the participants are mapped to numerical

values.

• Communication and data abstractions - the actual data units used to com-

municate between the conference protocol entity and the participants were

mapped to data carrying events.

Loan Approval Web Service. This model [ZZK07] describes the behavior

of a loan approval service that accepts loan requests from costumers. Once such

a request has been received, depending on the requested amount, the system will

approve or reject the request.

For the model we used the following abstractions:

• Functional and data abstraction - the evaluation of the request is based

only on the requested amount. In a concrete implementation, the approval

of such a request might involve a real loan expert in order to check the risk

involved by individuals requesting the loan.
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• Data abstraction - we limited the amount that can be requested to 150

and de�ned as limit for the invocation of an approver the amount of 130.

Amounts smaller than that are approved.

Microwave Oven. This is a simple model [KDB11] of a microwave oven

composed of two statecharts. One represents the way a user interacts (e.g. setting

cooking time) with the oven and the other one describes how the system reacts

when the user opens or closes the door.

In Table 3.1 we present some statistics regarding the models mentioned above.

Thus the �rst column contains the name of the model while column SCNo

presents the number of communicating statecharts of the model. Columns TrNo

and StNo contain the number of transitions and states for the respective model.

Table 3.1: Model Statistics

Model SCNo TrNo StNo

Flasher 6 34 14

Diagnosis 4 38 17

KeylessEntry 3 35 22

MicrowaveOven 2 34 12

LoanApprovalWS 2 22 15

ConferenceProtocol 3 41 18

TelCtrlProtocol 2 55 26





Chapter 4

From UML Statecharts to

LOTOS

Parts of this chapter have been published in �From UML Statecharts

to LOTOS: A Semantics Preserving Model Transformation� [CSP09a]

which is joint work with Christian Schwarzl and Bernhard Peischl,

�Abstracting Timing Information in UML Statecharts via Temporal

Ordering and LOTOS� [CW11] which is joint work with Franz Wotawa.

UML statecharts are often used in industry for constructing models of software

systems. These models can be utilized in several ways including analysis of the

system, code generation and even test case generation. They enjoy a high expres-

sive power allowing the modeling of behaviors by use of concepts closer to the way

of thinking of the human mind. Such concepts refer to hierarchy, concurrency,

pseudostates, reactions to external events and also timing. But statecharts do

not have a formal semantics and in order for automatic veri�cation techniques to

be applied, they need to be translated into a representation enjoying such formal

semantics.

Since our goal is the automatic application of test case generation techniques,

the existence of a well founded testing theory and the appropriate tool support

[JJ05] is a big decision factor when choosing the formalism for the transforma-

tion. There are many examples of the successful use of the CADP framework in

industrial settings. We have chosen LOTOS since it is the main input language

for the tools in the CADP toolbox and also o�ers enough expressive power for

representing the components and operational semantics of UML statecharts.

This chapter describes the transformation rules used to derive a LOTOS spec-

i�cation from the UML description of a distributed system. In Section 4.1 we

provide an overview of the transformation process. Section 4.2 presents the �rst

step of the transformation - the �attening of the statecharts while the transfor-
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mation of the �attened statecharts into a LOTOS description is given in Section

4.3.

4.1 Overview

The �rst step of the transformation is represented by the �attening of the state-

chart in which the hierarchical structures and the pseudostates are removed. This

step delivers a behavioral equivalent statechart described only in terms of simple

states and transitions SC = (Ss, T, V, ips0).

During the �attening process transition copies are created for the transitions

originating from composite states. Each such transition generates a copy of itself

for each state contained by its source state.

After the �attening, each statechart in the system is mapped to a LOTOS

process while the variables used in the statecharts become LOTOS process param-

eters. These processes are then composed using the interleaving operator (�|||�).
Each such process (representing a statechart) will contain several subprocesses

used to represent the states in the statechart. Every subprocess o�ers choices

between several behavioral expressions generated from the transitions originat-

ing from the represented state. Such an expression preserves the id, triggering

event, guard and action of the transition. Once such a behavior expression has

been triggered, all the components of the transition (event, guard, action - value

assignments and/or generation of events to other models) are executed.

During the transformation process, LOTOS abstract data types are used in

order to preserve the traceability between the components of the UML model and

the generated LOTOS constructs. Thus in the generated speci�cation we can still

identify the statecharts, states, transitions, triggering events and variables used.

This information is required in order to map the generated test cases back to the

original UML model.

The kind of systems we employ are asynchronously communicating distributed

systems. So we also need to treat aspects such as asynchronous communication

and run to completion step among communicating statechart models. For this

purpose an extra process is inserted into the speci�cation of the model. This pro-

cess fully synchronizes with all the other models and dictates the communication

mechanism with and within the system.

4.2 Flattening Statecharts

Transforming statecharts into a formal representation is not something new. The

transformation process depends also on the targeted formalism. Usually the �rst

step in such transformations [DMY02, BIKT01, RKRT01] is the elimination of

hierarchy and pseudostates thus obtaining a �attened representation of the stat-
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echart. After this step the behavior is expressed only in terms of simple states

and transitions. The �nal formal representation is then obtained from this repre-

sentation of the statechart.

In the literature there are two directions that have di�erent understandings for

the hierarchy concept during the �attening of a statechart. One of these de�nes

statechart �attening as the removal of hierarchy and retention of concurrency

[Was04, DMY02, BLA+02] thus obtaining a representation as a set of Mealy

machines that operate concurrently.

The second view [BIKT01, SP10] regarding the hierarchy and �attening of

statecharts lays closer to the semantics we described in Section 2.2. It views

�attening as the elimination of hierarchy and also of concurrency. It is true

that this second view su�ers from exponential growth regarding the number of

substates in orthogonal states but our models are aimed at being deterministic

ones and also simpler (at a more abstract level than the implementation) and

thus complex models involving a high number of orthogonal states might indicate

a model that is too detailed to be used in MBT.

In our setting, the �attening of the statecharts is according to the second

de�nition of the concept described above. In the absence of orthogonal states,

the �attening process does not increase the number of states, it might actually

reduce it since composite states are removed during this process. The number

of transitions on the other hand increases due to the elimination of hierarchy

structures and of pseudostates. New transitions are added to the model in order to

preserve the behavior that would be lost by removing hierarchy and pseudostates.

The output of the �attening process is a homogeneous structure composed

of simple states and transitions (see equation 4.1) preserving the behavior of

the original hierarchical representation. The transition set Tfl in equation 4.1

represents the set of transitions generated during the �attening process.

flatten(SC) = SCFL

SC = (S, T, V, ips0)

SCFL = (Ss, T ∪ Tfl, V )

(4.1)

In the rest of this section, when referring to the statecharts we will use the for-

mal notations introduced in Section 2.2 namely in De�nition 2.2.1. The de�nition

describes an UML statechart as a tuple SC = (S, T, V, ips0) where S = Ss∪Sc∪Sps
represents the set containing simple, composite states as well as pseudostates, T

is the set of transitions, V that of the variables while ips0 is the initial pseu-

dostate (indicating the initial state of the statechart). The pseudostates set

Sps = Ips∪Jps∪Enps∪Exps∪Cps∪Hps contains the pseudostates (initial,junction,

entry, exit, condition, history) of the statechart.
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Input: jps - the junction pseudostate
Output: TFLj - a set of transitions replacing the use of jps in the statechart
1: tout ∈ Outtr(jps) //the outgoing transition of jps - |Outtr(jps)| = 1
2: for all tin ∈ Intr(jps) do
3: target(tin) = target(tout)
4: guard(tin) = guard(tin) ∧ guard(tout)
5: action(tin) = action(tin).action(tout)
6: TFLj = TFLj ∪ tin
7: end for
8: remove(jps)
9: remove(tout)

Figure 4.1: Algorithm for the removal of Junction pseudostates

Our approach for the �attening of statecharts is based on previous work in

[SP10].The algorithm consists of two phases : removing pseudostates and elimi-

nating hierarchy. We describe these steps separately below.

4.2.1 Removing Pseudostates

The �rst phase of the �attening process is the removal of pseudostates. Since

most of the pseudostates also have a semantic meaning, care needs to be taken

in order not to miss any of the behavior modeled with the help of pseudostates.

The removal process consists of enumerating through all of the pseudostates and

calling the appropriate removal function. We describe the mentioned functions

below.

Initial pseudostates jps are eliminated by adding the action of their out-

going transition tout to the actions of its target state strg (entryAct(strg) =

action(tout).entryAct(strg)) and marking the state (isInitial(strg) = true) as

an initial state. This information will be used later in the hierarchy removal step.

From here on we will call such states initial states.

Junction pseudostates are semantic free nodes used to merge incoming tran-

sitions into a single outgoing transition. The equivalent behavior of such a merge

is that all incoming transitions target the same state.

The algorithm in Figure 4.1 describes the steps used for the removal of such

nodes. The functions Intr() (equation 4.2) and Outtr() (equation 4.3) used in the

algorithm return the set of transitions targeting and respectively originating from

the state passed as argument (jps in this case).

Intr : S → T

Intr(s) =

{ ⋃
i=1..n

ti|s ∈ S ∧ target(ti) = s

}
(4.2)
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State1 State2

State3

ev1 ev2 

[x > 2] 

Figure 4.2: Junction node

Outtr : S → T

Outtr(s) =

{ ⋃
i=1..m

to|s ∈ S ∧ source(to) = s

}
(4.3)

The elimination of the junction node jps assumes the disconnection of each

incoming transition tin from the junction node and reconnecting them to the

target state of the outgoing transition (line 3). The guard of tin is obtained

uniting by conjunction its own guard with the guard of the outgoing transition

tout of jps. The actions of tout are then appended to the actions of each of the

newly connected transitions tin. After these modi�cations, the pseudostate node

and its outgoing transitions can be removed from the statechart. Figure 4.2

shows a statechart containing a junction node while Figure 4.3 the behaviorally

equivalent version of the same statechart after the elimination of the junction

node according to the described algorithm.

The elimination of choice pseudostates (algorithm in Figure 4.4) is similar

to that of the junction nodes. In this case the source of the outgoing transitions

of the choice pseudostate becomes the source of its incoming transition. The

guards and actions of the new transitions are obtained by adding those of the

outgoing transitions to the incoming transition guard and actions respectively.

The choice node and its incoming transitions are removed from the statechart

after all outgoing transitions have been modi�ed.

History nodes are used to represent the most recent active state con�guration

of the composite state that directly contains the pseudostate. There are two types

of history nodes. Shallow history is used to store the last active substate (but

not the substates of that substate) of the state containing the pseudostate. Deep
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State4 State6

State5

ev1 [x > 2] ev2 [x > 2] 

Figure 4.3: Removing Junction pseudostates

Input: chps - the choice pseudostate
Output: TFLch

- a set of transitions replacing the use of chps in the statechart
1: tin ∈ Intr(chps) //the incoming transition of chps - |Intr(chps)| = 1
2: for all tout ∈ Outtr(chps) do
3: source(tout) = source(tin)
4: guard(tout) = guard(tin) ∧ guard(tout)
5: action(tout) = action(tin).action(tout)
6: TFLch

= TFLch
∪ tout

7: end for
8: remove(chps)
9: remove(tin)

Figure 4.4: Algorithm for removing Condition pseudostates

history keeps track of the last active state in the state hierarchy of its parent

state.

Intuitively, a transition targeting a history node can be replaced through a

number of transitions targeting the child states in the parent state. Depending

on the type of history node the considered child states are at the same level (simple

or composite) or are all the simple states (on all hierarchical levels) contained by

the parent state of the history node. The new transitions share the source of

the one targeting the history node. Such a transition �res when it receives the

appropriate event, its guard evaluates to true and its target state is the last active

child state of the state containing the history node. Only one such transition can

�re at one time.

Figure 4.6 contains the algorithm used for removing a shallow history pseu-

dostate hsshl from a statechart. Thus for each transition tin targeting hsshl (line
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Figure 4.5: Example of a statechart containing a History pseudostate

Input: hsshl - the shallow history pseudostate
Output: TFLhs

- a set of transitions replacing the use of hsshl in the statechart
1: tout = getOutTr(hsshl)
2: for all ssbl ∈ {S − Sps}|parent(ssbl) = parent(hsshl) do
3: for all tin ∈ Intr(hsshl) do
4: tnew = newTransition() //create new transition
5: if type(ssbl) == composite then
6: sttarg = init(sb)
7: else
8: sttarg = ssbl
9: end if

10: source(tnew) = source(tin)
11: target(tnew) = sttarg
12: event(tnew) = event(tin)
13: action(tnew) = action(tin)
14: guard(tnew) = “(vhst == sttarg)

′′ ∧ guard(tin)
15: TFLhs

= TFLhs
∪ tnew

16: end for
17: entryAct(starg) = entryAct(starg).“vhst = st′′targ
18: end for
19: remove(Intr(hsshl), tout, hsshl)

Figure 4.6: Algorithm for removing Shallow History pseudostates
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Figure 4.7: Removed Shallow History pseudostate

3) a number of transitions equal to the number of sibling states (line 2) of hsshl
will be generated. The newly created transitions tnew (line 4) will have the same

source, triggering event and action as tin. The target of tnew is computed depend-

ing on the type of the sibling state (line 5). If the sibling state ssbl is a composite

state, the target state of tnew is the initial state of ssbl. Otherwise ssbl itself is the

target of tnew.

In order to keep track of last active state, we insert a new variable vhst in the

statechart model (line 17). This variable is updated every time a state ssbl inside

the parent(hsshl) state is entered. If the state is a simple state vhst is updated

to point to the state itself. If the state is a composite state the variable will

always point to the initial state of ssbl. After the creation of the new transitions

and updating of the appropriate entry actions, the history pseudostate and its

outgoing transition are removed.

Example 4.2.1. Consider the statechart in Figure 4.5. After applying the algo-

rithm in Figure 4.6 we obtain the representation in Figure 4.7. The two thicker

transitions connecting State5 with State1 and State3 respectively are the ones

replacing the use of the removed shallow history pseudostate. For readability

reasons the entry and exit actions of the states are not explicitly depicted.

The algorithm used for removing deep history pseudostates in Figure 4.8 is

similar to that for shallow history. The di�erence is that this time the active state

con�guration that needs to be recreated takes into consideration all nesting levels

inside the parent of the node. Thus all simple states (at all hierarchical levels)

inside the parent of the history node (parent(hsdeep) are targeted by the newly

created transitions. This is achieved by recursively going through all the states

of parent(hsdeep).

Example 4.2.2. Consider the same statechart in Figure 4.5 but this time con-

sider that it contains a deep history node. After applying the algorithm in Figure
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Input: hsdeep - the deep history pseudostate
Output: TFLhs

- a set of transitions replacing the use of hsdeep in the statechart
1: toutgetOutTr(hsshl) //|Outtr(hsdeep)| = 1
2: for all st ∈ {S − Sps}|parent(hsdeep) ∈ ancestors(st) do
3: if type(st) == simple then
4: for all tin ∈ Intr(hsdeep) do
5: tnew = newTransition() //create new transition
6: source(tnew) = source(tin)
7: target(tnew) = st
8: event(tnew) = event(tin)
9: action(tnew) = action(tin)

10: guard(tnew) = “(vhst == st)′′ ∧ guard(tin)
11: TFLhs

= TFLhs
∪ tnew

12: end for
13: entryAct(st) = entryAct(st).“vhst = st′′

14: else
15: continue from line 2
16: end if
17: end for
18: remove(Intr(hsdeep), tout, hsdeep)

Figure 4.8: Algorithm for removing Deep History pseudostates
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ev0 [v_hst == State4_id] 

Figure 4.9: Removed Deep History pseudostate

4.8 we obtain the representation in Figure 4.9. This time the history node is re-

placed by the three thicker transitions connecting State5 every simple state inside

State0. Again for readability reasons the entry and exit actions of the stats are

not explicitly depicted.

We remove terminate pseudostates by replacing them with a simple state

with no outgoing transitions and marking it as a �nal state. We do this since

later when removing the hierarchical structures we will need to di�erentiate tran-

sitions targeting such states from transitions targeting other simple states. Upon

triggering a transition targeting a �nal state no other states are exited (no exit
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actions are performed). The behavior obtained this way is that of a system that

can not evolve any more.

In order to remove exit and entry points we use an algorithm similar to that

for removing junction pseudostates (see Figure 4.1). The algorithm is similar also

due to the fact that entry and exit nodes have only one outgoing transition and

may have several incoming ones. Since the outgoing transitions of such nodes do

not have a triggering event, guard or actions, we simply disconnect every such

transition from the pseudostate and reconnect it to the state targeted by the

outgoing transition of the entry/exit node. After this step the entry/exit nodes

and their outgoing transitions can be deleted.

4.2.2 Removing Hierarchy

The second phase of the �attening process is the removal of hierarchical structures

from the statechart. At this point, all pseudostates have already been removed and

the statechart models contain only states (simple and composite) and transitions

SC = (Ss ∪ Sc, T, V, stinit) where stinit is the initial state.
The algorithm used for the removal of hierarchy is presented in Figure 4.10

and consists of two steps.

The �rst step generates new transitions to replace all incoming and outgoing

transitions of composite states. Internal actions of states and transition con�icts

are also handled in this phase:

• Move the during actions de�ned for the states in the statechart to new

transitions. As already mentioned, these actions have the form of a normal

transition and they must have an explicit triggering event. The �ring of

such a transition does not cause its containing state to be exited but its

actions are ful�lled every time it receives its triggering event and its guard

evaluates to true. We treat such actions by generating for each of them a

transition looping on the state containing the action (line 3). The label of

such a transition is the internal action itself. The di�erence between these

transitions and the other ones is the fact that during the hierarchy removal

process, the entry and exit actions of the states they enter/exit are not

added to the action part of the transition (because internal actions do not

exit/enter states).

• For every outgoing transition trout ∈ Outtr(st) of a composite state st a

new transition will be created for every simple substate for which st is an

ancestor state (line 9). The newly created transitions will have as source

state the substate for which it has been created. The rest of the elements

of such a transition are an exact copy of trout. The rationale is that when

�red, a transition originating from a composite state exits from all active
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Input: SC - the statechart without pseudostates
Output: SCflat - the �attened representation of SC
1: Tduring = ∅ //set of transitions replacing during actions in states
2: for all st ∈ S do
3: for all actin ∈ duringAct(st) do
4: tdrng = newTransition(st, event(actin), guard(actin), action(actin), st)
5: Tduring = Tduring ∪ tdrng
6: end for
7: if st ∈ Sc then
8: createDuringTransCopies(Tduring, simpleSubstates(st))
9: for all trout ∈ Outtr(st) do //create transition copies

10: createTransCopies(Outtr(parent(st)), simpleSubstates(st))
11: end for
12: for all trin ∈ Intr(st) do
13: recursiveReconnect(trin, initialSimpleState(st))
14: end for
15: end if
16: end for
17: removeAll(trout ∈ Outtr(s)|s ∈ Sc)
18: resolveTransitionConflicts(SC)

//adding entry and exit actions
19: for all st ∈ Ss do
20: for all trout ∈ Outtr(st) ∧ ¬isDuringTrans(trout) do
21: ssprnt = parent(st)
22: while ssprnt 6= firstCommonAncester(st, target(trout)) do //complete

outgoing transitions
23: actionsexit = actionsexit.exitAct(ssprnt)
24: ssprnt = parent(ssprnt)
25: end while
26: actions(trout) = actionsexit.actions(trout)
27: stprnt = parent(target(tout))
28: while stprnt 6= ssprnt do //complete incomming transitions
29: inActions = entryAct(stprnt).inActions
30: stprnt = parent(stprnt)
31: end while
32: actions(trout) = actions(trout).inActions
33: end for
34: end for
35: removeAll(s ∈ Sc)
Figure 4.10: Algorithm for elimination of the hierarchical structure of a statechart
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substates of its source state. Thus it can be �red from any substate (on all

levels) in its source state.

• All incoming transitions trin ∈ Intr(st) of a composite state st will be dis-

connected from st and connected to the �rst initial simple state of st (line

13). This is achieved by recursively enumerating through the initial com-

posite states of st until encountering an initial simple state. The rationale

this time is that an incoming transition will activate recursively the initial

states of the composite state it targets.

• During the �attening process we also take care of solving transition con-

�icts (line 18) according to the rules already described in Section 2.2.2.

Two transitions are in con�ict if they have the same triggering event and

if the �ring of either of them would cause at least one common state to

be exited. In Rhapsody, transitions whose source states are lower in the

state hierarchy have priority over those with sources higher up in the hier-

archy. The con�ict resolution must be performed after the creation of the

transition copies because we need to know the source state (which now is

always a simple state) of the transitions in order to appropriately modify

only the transitions that would cause the same simple state to be exited. In

order to achieve this we preserve the information relating a transition copy

to the original transition it was created from. Thus we can identify the

original level of the source states of all transitions. We resolve such a con-

�ict between two transitions tl and th where originalLevel(source(tl)) <

originalLevel(source(th)) by adding the negated guard of tl to the guard

of th. Thus guard(th) = ¬guard(tl) ∧ guard(th) will impede th to be �red

if tl can also �re and the system is in state source(tl).

After the creation of the transition copies, the original transitions can be

removed from the model (line 17).

The last phase of the algorithm in Figure 4.10 consists in moving the entry and

exit actions from all states in the appropriate order on the incoming and outgoing

transitions respectively (except the transitions created for internal actions - line

20). These actions need to be moved in the order speci�ed in Section 2.2.2. That

is �rst the exit actions of states exited by transitions trout ∈ Outtr(st)|st ∈ Ss
from the lowest level up and then the entry actions of the states entered by trout
from the higher level downwards. Thus, for the transition trout the exit actions are

gathered recursively (line 22) in the order the states are exited by trout until the

�rst common ancestor of st (the source of the transition) and target(trout). The

gathered actions are then added before the actions of trout (line 26) preserving the

order in which they should be executed. Similarly, the entry actions of the states

entered by trout are added after the actions already present on the transition (lines

28 - 32). The composite states can now be removed from the model.
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Example 4.2.3. Figure 4.11 contains the �attened variant of the statechart pre-

sented in Figure 4.5 (the variant containing a deep history node). After the

removal of the pseudostates, also the hierarchy structures have been removed.

The obtained model contains now only simple states and transitions. The state

with the thicker border (State5) is the initial state of the statechart. The entry

actions of the states have now been moved on the appropriate transitions.

4.3 From Statecharts to LOTOS

At this point of the transformation process the statechart models have been �at-

tened (Section 4.2). The hierarchical structures and the pseudostates have been

removed. The �attening phase delivers a behavioral equivalent statechart de-

scribed only in terms of simple states and transitions SC = (Ss, T ∪ Tfl, V, ips0)
where Tfl is the set of new transitions that were created during the �attening

process.

LOTOS describes a system through a hierarchy of communicating processes,

so we represent each statechart model in the system through a process. Every

such process will contain several other processes corresponding to the simple states

(preserved in the �attened model) of the represented statechart.

As several aspects regarding the execution and asynchronous communication

semantics of the UML model need to be preserved also in the LOTOS representa-

tion we insert an extra process in the speci�cation. This process ( ComManager

process) dictates the communication rules and takes care of the run to completion

step in the execution semantics. It also ensures that the actions of each transi-

State1

State3

State4

ev1 / v_hst = State4_id

ev2 / v_hst = State3_id

ev0 [v_hst == State3_id] 

State5

ev0 [v_hst == State1_id] 

ev0 

ev1 / v_hst = State3_id
ev1 / v_hst = State1_id

ev0 [v_hst == State4_id] 

ev0 

ev0 

Figure 4.11: Flattened statechart
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tion are treated as atomic execution entities. The LOTOS representation for the

structure of the considered systems is given in Figure 4.12.

< lotos_spec >:= ` ( '< sc_proc >{ ` ||| '< sc_proc >} `)|| '
< synch_proc >

< sc_proc >:= < sc_name > ` [ '< gates > ` ] ( '< parameters > ` ) '
< synch_proc > := `ComManager [ '< gates > ` ]

( '< synch_params > ` ) '
< sc_name >:= `SC_name1 ' | `SC_name2 ' | . . .
< parameters >:= < param > { ` , '< param >}
< gates >:= `commGate, inGate, toQueue, fromQueue, outGate '
< param >:= `param_name1 ' | `param_name2 ' | . . .
< synch_params > := `synch_param1 ' | `synch_param2 ' | . . .

Figure 4.12: LOTOS system structure

We describe the structure by using an extended Backus-Naur notation where

the symbols used are: �:=� - de�nition, �|�-alternation, �{� �}�- zero or more repeti-

tions, �<� and �>� enclose non terminal symbols. For readability reasons terminal

symbols are quoted (using ` ') and LOTOS keywords and reserved symbols are

emphasized.

The < synch_params > token in Listing 4.12 contains a boolean parameter

for each model in the system. These parameters are used by the ComManager

process in order to monitor the state of the models in the system (more details

in Section 4.3.4). Token < parameters > contains the LOTOS parameters used

to represent the variables in the statecharts.

The gates contained by < gates > have the following functions:

• commGate is the control gate used to get information on the state of the

models in the system. The role of this gate in the execution of the system

will be further discussed in Section 4.3.4;

( DirectionLever [ commGate , inGate , toQueue , outGate ] ( ) | | |
HazardWarningB [ commGate , inGate , toQueue , outGate ] ( UNPRESSED ) | | |
FLBC [ commGate , inGate , toQueue , outGate ] ( false , false , NONE ) | | |
FLMC [ commGate , inGate , toQueue , outGate ] ( true ) | | |
FLMC_FailureDetection [ commGate , inGate , toQueue , outGate ] ( ) )
| |
ComManager [ commGate , inGate , toQueue , outGate ] ( true , true , true ,

true )

Listing 4.1: LOTOS system structure of the Direction Indication system
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• inGate is the input gate used by the models in the system to accept events

(either from the environment or from the event queue);

• toQueue is used to enqueue events in the event queue;

• fromQueue realizes the extraction of events from the event queue;

• outGate outputs the values of the process parameters (variables in the UML

statechart).

The LOTOS speci�cation of our running example is composed of several in-

terleaving processes (one for each statechart model) fully synchronized with the

ComManager process. This can be seen in Listing 4.1 where the parameters of

the processes are initialized to their default values.

4.3.1 LOTOS Data Types

1 `type TRANSITIONS is ComModels, TransType'
2 `sorts Transition'
3 `opns'
4 < trans > `: �>Transition' { < trans > `: �>Transition'}
5 `_transEq_ :Transition, Transition �>Bool'
6 `fromModel :Transition − > Model'
7 `typeOfTr :Transition − > TrType'
8 `eqns'
9 `forall t1,t2 :Transition'

10 `ofsort Bool'
11 `t1 transEq t1 = true;'
12 `t1 transEq t2 = false;'
13 `ofsort Model'
14 `fromModel('< trans > `) =' < modelName > `;'

{`fromModel('< trans > `) =' < modelName >;}
15 `ofsort TrType'
16 `typeOfTr(' < trans > `) =' < EventsF ired > `;' {`typeOfTr('

< trans > `) =' < EventsF ired >;}
17 `endtype'

Figure 4.13: LOTOS data type de�nition for UML transitions

In order to help preserve the execution semantics of the UML Statecharts, we

employ several LOTOS abstract data types. Another reason for these data types is

to keep traceability between the original UML Statechart and the derived LOTOS

representation. Thus after the transformation we can still identify UML states,

transitions, events as well as Statechart variables in the LOTOS speci�cation.
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Every component of the UMLmodel is represented by a corresponding LOTOS

data type.

Transition Data Type

The declaration of the Transition data type is presented in Figure 4.13. There

are several operations that we need to be able to perform on this data type. The

�rst one is identifying the transition (line 4) which is actually an enumeration of

the UML transitions IDs. The transEq operation is the equality operation for the

data type while fromModel associates each transition ID with the corresponding

statechart in the UML model.

In our UML models, when �red, a transition can generate more than one

events. So we also need an operation to tell us how many events will be generated

by < trans >. Operation typeOfTr does just that.

type TRANSITIONS i s ComModels , TransType

s o r t s Transition

opns
(∗ the ids of the transitions ∗)
FLMC_T36 ( ∗ ! constructor ∗) : −> Transition

FLMC_T40 ( ∗ ! constructor ∗) : −> Transition

. . .
fromModel : Transition −> Model

typeOfTr : Transition −> TrType

eqns
. . .

o f s o r t Model

fromModel ( FLMC_T36 ) = FLMC ;
fromModel ( FLMC_T40 ) = FLMC ;

. . . .
o f s o r t TrType

typeOfTr ( FLMC_T36 ) = Fires_0 ;
typeOfTr ( FLMC_T40 ) = Fires_2 ;

. . . .
endtype

Listing 4.2: Example of LOTOS data type de�nition for transitions of the
Direction Indication system

The example in Listing 4.2 contains a partial declaration of the TRANSI-

TIONS data type. Only the constructors for transitions with ids FLMC_T36

and FLMC_T40 as well as equations for the operations fromModel and typeOfTr

are presented.

Other data types appearing in Listing 4.13 are going to be brie�y discussed

in Section 4.3.1 however their names are self explanatory. For example the sort

Model on line 6 identi�es the communicating models.
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Events Data Type

The communication with and within the system is done via data carrying events.

The data type de�nition representing the triggering events is presented Figure

4.14.

1 `type EVENTS is ComModels, BOOLEAN, NATURAL, EventTypes'
2 `sorts Event'
3 `opns'
4 < event > `: �>Event' { < event > `: �>Event'}
5 `toModel :Event − > Model'
6 `ofType :Event − > EvType'
7 < getParamOperation >`: Event �>' < paramDataType >
8 `eqns'
9 `forall mod: Model, ' < param > `:' < paramType > {, < param > `:'

< paramType >}
10 `ofsort ' < paramType >
11 `getParam_'< param >`('< event >`('< model >`,' < param > `,'

{< param >} `)) =' < param >`;'
12 {`getParam_'< param >`('< event >`('< model >`,'

< param >{< param >} `)) =' < param >`;' }
13 `ofsort Model'
14 `toModel('< event >`('< model > {`,' < param > } `) ='

< model >`;'
15 {`toModel('< event >`('< model > {`,' < param > } `) ='

< model >`;'}
16 `ofSort EvType'
17 `ofSort('< event >`('< model > {`,' < param > } `) ='

< eventType >`;'
18 {`ofSort('< event >`('< model > {`,' < param > } `) ='

< eventType >`;'}
19 `endtype'

Figure 4.14: LOTOS data type de�nition for communication events

This data type provides operations for:

• Accessing the parameters of the event. Depending on the number and type

of the event parameters we generate operations for retrieving the corre-

sponding values. Parameter state from event evFLMC_State in Listing 4.3

can be accessed by using the operation getParam_state on events of type

T_evFLMC_State;

• The model the event was sent to. The communicating events can be sent to

speci�c models in the system. Thus operation toModel is used to identify
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the model targeted by the event;

• De�ning the type of the event. This is needed in order to identify the event

in the LOTOS speci�cation. For example in Listing 4.3 the type of event

evIgnitionState is T_evIgnitionState.

type EVENTS i s ComModels , BOOLEAN , NATURAL , EventTypes

s o r t s Event

opns
evIgnitionState ( ∗ ! constructor ∗) : Model , Nat −> Event

evFLMC_State ( ∗ ! constructor ∗) : Model , Nat −> Event

. . .
ofType : Event −> EvType

getParam_state : Event −> Nat
toModel : Event −> Model

. . .
eqns

f o r a l l state : Nat , mod : Model

o f s o r t Nat
getParam_state ( evFLMC_State ( mod , state ) ) = state ;
getParam_IgnState ( evIgnitionState ( mod , state ) ) = state ;
. . .

o f s o r t Model

toModel ( evIgnitionOn ( mod ) ) = mod ;
toModel ( evFLMC_State ( mod , state ) ) = mod ;
. . .

o f s o r t EvType

ofType ( evIgnitionState ( mod , state ) ) = T_evIgnitionState ;
ofType ( evFLMC_State ( mod , state ) ) = T_evFLMC_State ;

. . .

Listing 4.3: LOTOS data type declaration example for the communication events

Event Queue Data Type

Since the communication within the system is asynchronous, we need to use a

FIFO event queue that will store the events not yet consumed by the system.

Such events need to be stored in the event queue if they are sent to a model that

is not in a stable state (it is executing some transitions and the run to completion

step has not �nished yet).

So we de�ne the abstract data type Queue for this purpose. The LOTOS

declaration of the event queue is presented in Listing 4.4 and contains the usual

queue operations:

• top - returns the event representing the head of the queue without removing

it from the queue;

• add - adds an event to the tail of the queue;
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type Queue i s NATURAL , Boolean , EVENTS

s o r t s Queue

opns
nil ( ∗ ! constructor ∗) : −> Queue

add ( ∗ ! constructor ∗) : Event , Queue −> Queue

empty : Queue −> Bool
pop : Queue −> Queue

top : Queue −> Event

eqns
f o r a l l q : Queue , m : Event

o f s o r t Bool
empty ( nil ) = true ;
empty ( add (m , q ) ) = false ;

o f s o r t Event

top ( add (m , nil ) ) = m ;
top ( add (m , q ) ) = top (q ) ;

o f s o r t Queue

pop ( nil ) = nil ;
pop ( add (m , nil ) ) = nil ;
pop ( add (m , q ) ) = add (m , pop (q ) ) ;

endtype

Listing 4.4: LOTOS data type declaration for the event queue

• pop - extracts the event in the head of the queue;

• empty - returns true if there are no events stored in the queue and false

otherwise.

Other Data Types

The de�nitions of the data types representing transitions, events and the event

queue also make use of other data types. Since these are simpler data types (being

usually the enumeration of the possible values and the equality operator on that

set) we shortly present them below:

• Model - used in the Transition and Event data types for identifying the

models containing the transition (fromModel operation) and destination of

the event (toModel operation) respectively. It contains constructors for each

model in the system as well as operations for testing equality between the

elements of the Model sort.

• TrType - de�nes the number of events a transition can generate. It contains

constructors for the number of events and equality operations;

• Natural_Constants - declares the constants used in the speci�cation. Since

the speci�cation makes use of abstract data types all natural constants need

to be speci�ed in terms of already de�ned terms (usually numbers from 1
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to 10). For example a constant Q with value 245 would be de�ned as

Q = 5 + (4 ∗ 10) + (2 ∗ 10 ∗ 10);

• StatesIds - contains the ids of the states in each statechart of the system.

These are used in the speci�cation in order to keep track of the currently ac-

tive state in each model in the evolving system. It also contains constructors

for each de�ned state and the equality operation.

• EventTypes - used to identify the type of the communication events (ofType

operation in Events data type).

4.3.2 Transition Transformation

Due to the fact that all components of a transition label are optional and that

there is a conceptual di�erence between the transitions explicitly triggered by an

event and the completion transitions we treat the two separately.

Completion Transitions

Completion transitions do not have an explicit triggering event and can have

guards and/or actions. Such a transition is automatically �red when its source

state is reached and its guard evaluates to true. If such a transition can be �red,

the statechart is not in a stable state, thus the current run to completion step has

not �nished.

Considering the de�nition of statecharts in Section 2.2, the completion tran-

sitions are now de�ned as in Equation 4.4.

Tcmpl ⊆ S × L× S where L ⊆ G×A (4.4)

The LOTOS representation of such a transition is presented in Figure 4.15

where < trans_id > represents the id of the completion transition. The <

transition_guard > represents the guard of the transition while < output >

o�ers to the environment the new active state < newState > and the new values

of the variables in the statechart (if any). The token < next_process > is

the process corresponding to the state targeted by the completion transition and

de�nes the behavior of the system after the completion transition has been �red. If

the action part of the transition contains assignment statements, these are mapped

to the parameters of the targeted process by updating the values accordingly.

An example of such a transition can be seen in Figure 4.16 (transition originat-

ing from state Toggled and targeting state Pressed) and its LOTOS representation

is given in Listing 4.5. In Listing 4.5 the gate commGate is used for the execution

of the run to completion step and other communication semantics which will be

explained in more detail in Section 4.3.3. The only action of gate inGate is the id

of the transition (HazWarn_T2 ). When this transition if �red, a reqBlink(FLBC,
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[ ButtonStatus == UNPRESSED ] −>
commGate ! HazardWarning ! false ;
inGate ! HazWarn_T2 ;
toQueue ! reqBlink ( FLBC , BOTH ) ;
outGate ! Pressed ! PRESSED ;
Pressed [ commGate , inGate , toQueue , fromQueue , outGate ] ( PRESSED )

Listing 4.5: LOTOS representation of HazWarn_T2 completion transition

BOTH) is sent to the FLBC model by using the toQueue gate. Gate outGate out-

puts to the environment �rst the new active state of the model (corresponding to

the Pressed state) and than the new values of the variables in the statechart (the

state of the button is now PRESSED). The process corresponding to the state

targeted by the transition is then instantiated and the new state of the hazard

warning button is passed on as the value PRESSED for the parameter of process

Pressed.

Event Triggered Transitions

These are transitions that are explicitly triggered by an event provided that their

guards evaluate to true. Considering the de�nition of statecharts in Section 2.2,

the normal transitions are de�ned as in Equation 4.5.

Tn ⊆ S × L× S where L ⊆ Etr ×G×A and Etr 6= ∅ (4.5)

Such a transition is to be represented in the LOTOS speci�cation by a behav-

ioral expression presented in Figure 4.17.

In Figure 4.17 < condition > is the conjunction of the guard of the normal

transition, the fact that the event is the one needed to trigger the transition

(ofType(msg)) and that it was sent to the model containing the transition (to-

< compl_trans >:= ` [ '< transition_guard > ` ] − > inGate ! '
< trans_id > ` ; ' < output > ` ; ' < next_process >

< output >:= ` outGate ! '< newState > { ` ! '< paramV alue >} ;
< next_process >:= < state_name > ` [ ' < gates > ` ] ( '

< parameters > ` ) '

< parameters >:= < param > { ` , '< param >}
< gates > := ` commGate , inGate , toQueue , fromQueue , outGate '
< param > := `param_name1 ' | `param_name2 ' | . . .

Figure 4.15: LOTOS representation of completion transitions
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HazardWarningButton

                                                                                                                    c

Toggled

reqButtonToggled 

[ButtonStatus == UNPRESSED] /  

ButtonStatus = PRESSED;

ButtonStatus = UNPRESSED

[ButtonStatus == PRESSED] / 

SENDEVENT(reqBlink(NONE), FLBC)

SENDEVENT(reqBlink(BOTH), FLBC)

Unpressed

Pressed

Figure 4.16: Statechart of the HazardWarningButton

< normal_trans >:= ` inGate ! '< trans_id > ` ? msg : Event ' ` [ '
< condition > ` ] ` ; ' < output > ` ; ' < next_process >

< output >:= ` outGate ! '< newState > { ` ! '< paramV alue >} ;
< condition >:= ` ( ofType ( msg ) ==' < eventType > ` and ( toModel

( msg ) ==' < model > ` and ' < trnsition_guard >
< next_process >:= < state_name > ` [ ' < gates > ` ] ( '

< parameters > ` ) '
< parameters >:= < param > { ` , '< param >}
< gates >:= `commGate, inGate, toQueue, fromQueue, outGate '
< param >:= `param_name1 ' | `param_name2 ' | . . .

Figure 4.17: LOTOS representation of an event triggered transition

Model(msg)). So after receiving the event, the behavior of the system shall con-

tinue as speci�ed by the < next_process > which is the process corresponding

to the state targeted by the transition.

An example of a normal transition can be found in Figure 4.16 originating

from state HazardWarningButton and targeting state Toggled and its LOTOS

representation is given in Listing 4.6.

inGate ! HazWarn_T3 ?msg : Event [ ( ofType ( msg ) eveq T_reqButonToggled )
and ( toModel ( msg ) meq FLBC ) ] ;

outGate ! Toggled ! buttonStatus
Toggled [ commGate , inGate , toQueue , fromQueue , outGate ]

( buttonStatus )

Listing 4.6: LOTOS representation of HazWarn_T3 transition
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4.3.3 State Transformation

Since at this point, the statechart has been �attened, only simple states are present

in the model. Each state is represented in the LOTOS speci�cation through a

LOTOS process. Such a process can be seen as containing four parts, each one

taking care of a di�erent aspect in the execution semantics of the statechart.

Figure 4.18 presents the process representing an UML state.

< state_process > := ` p roce s s '< state_name > ` [ '< gates > ` ]
( '< parameters > ` ) '< process_body > ` endproc '

< process_body > := < communication_ctrl > ` ; '
{< treat_compl_trans >} ` [ ] ' {< treat_other_trans >}
` [ ] ' {< make_input_complete >}

< communication_ctrl >:= ` commGate ! '< model_id >
` ! '< stablestate > ` ; '

< treat_compl_trans >:= {< compl_trans > { ` [ ] '< compl_trans >
}}

< treat_other_trans >:= ` [ '< neg_compl_guards_conj > ` ] −>
( ' {< normal_trans >{ ` [ ] '< normal_trans >}} ` ) '

< make_input_complete >:= ` [ '< neg_compl_guards_conj > ` ] −>
( '{< artificial_trans >{ ` [ ] '< artificial_trans >}} ` ) '

< artificial_trans >:= ` inGate ! '< dummy_trans_id >
` ? msg : Event [ '< neg_guard > ` ] ; '< state_process >

Figure 4.18: LOTOS process representing a state from an UML statechart

The < treat_compl_trans > token in the LOTOS representation of an UML

state in Figure 4.18 takes care of o�ering to the environment a choice between

the completion transitions originating from the state < state_process >. In

deterministic systems there will always be only one such transition that will be

able to �re. In nondeterministic systems one such transition will be chosen or,

depending on the semantics chosen for the statecharts, a prioritization algorithm

can also be integrated as to di�erentiate between several completion transitions

that can �re. As already mentioned, in our setting, nondeterminism is not allowed.

The semantics of the run to completion step impedes one model to consume an

event if the model is not in a stable state, that is, if the model is in a state where at

least one completion transition can �re (its guard is evaluated as true). In order to

model this kind of behavior, a conjunction of the negated guards of the completion

transitions < neg_compl_guards_conj > is added as a guard that restricts the

behavior in the rest of the LOTOS process (< treat_other_trans >). The

obtained behavior is that the gates corresponding to non completion transition
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are o�ered to the environment only if < neg_compl_guards_conj > evaluates

to true (no completion transition can �re).

The < compl_trans > and < normal_trans > are the ones described in

Section 4.3.2 and are the LOTOS representation of the completion and normal

event triggered transitions respectively.

The last part of the process < make_input_complete > has the role of al-

lowing this process to be able to handle any input event at any time. This is

equivalent to making the state represented by the process input complete. This is

needed in order to preserve the communication semantics of the system requiring

that events that are not handled explicitly in the current state (during a run-

to-completion step) need to be ignored. This is achieved by adding behavioral

expressions representing dummy transitions that are triggered by events other

than the ones triggering normal transitions originating from the current state.

Such dummy transitions consume the events and reinstantiate the owner process

without modifying the values of the process parameters.

proce s s Toggled [ commGate , inGate , toQueue , fromQueue , outGate ]
( ButtonStatus : Nat ) : noexit :=

(∗−<treat_compl_trans>−∗)
[ ButtonStatus == UNPRESSED ]− >

commGate ! HazardWarning ! false ;
inGate ! HazWarn_T2 ;
toQueue ! reqBlink ( FLBC , BOTH ) ;
Pressed [ commGate , inGate , toQueue ] ( PRESSED )

[ ]
[ ButtonStatus == PRESSED ]− >

commGate ! HazardWarning ! false ;
inGate ! HazWarn_Trans3 ;
toQueue ! reqBlink ( FLBC , NONE ) ;
Unpressed [ commGate , inGate , toQueue ] ( PRESSED )

[ ]
(∗−<treat_other_trans>−∗)

[ not ( ButtonStatus == UNPRESSED ) and
not ( ButtonStatus == PRESSED ) ]− >
commGate ! HazardWarning ! true ;
inGate ! HazWarn_Trans1 ?msg : Event [ ( ofType ( msg ) ==

T_reqButtonToggled )
and ( toModel ( msg ) == HazardWarning ) ] ;

outGate ! ButtonStatus ;
Toggled [ commGate , inGate , toQueue , fromQueue , outGate ]

( ButtonStatus )
endproc

Listing 4.7: Lotos representation of the Toggeled state

If the UML state represented by the process also has normal transitions with

guards, dummy transitions will also be generated for each normal transition.

These dummy transitions will have as triggering event the same event as the
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normal one. The guard of such transitions will be complementary to the guard

of the normal transition so that they will �re only when the normal ones can not

consume the triggering event (due to guards evaluating to false). The modeled

behavior in this case is that if the model receives an event that can trigger a

transition in the current state but the guard of the transition evaluates to false,

the model will ignore the event (by �ring the corresponding dummy transition)

and no state change will occur.

Listing 4.7 presents an example of a LOTOS representation for state Toggeled

in Figure 4.16. As the only event triggered transition of state Toggeled does not

have a guard and the triggering event (reqButtonToggeled) is also the only one that

this statechart can receive, there is no need for making the state input complete

(no < make_input_complete > part required).

4.3.4 Communication Control

The transformation of one statechart model into a LOTOS representation has

been presented in Sections 4.3.1, 4.3.2 and 4.3.3. This transformation can be

used to represent a system composed of only one statechart and consuming the

events it receives in a synchronous manner. However, the kind of systems we aim

to handle are asynchronously communicating distributed systems. In order to

integrate these semantics we need to extend the transformation in order to treat

aspects such as asynchronous communication and run to completion step among

communicating statechart models.

For this purpose an extra process is inserted into the speci�cation of the

model. This process fully synchronizes with all the other models and dictates

the communication mechanism with and within the system. The structure of the

ComManager process is presented in Figure 4.19 and can be described as being

composed of several parts.

< communication_master_process >:= ` p r o c e s s ComManager

[ '< gates > ` ] ( '< synch_params > ` ) '
< synch_process_body > ` endproc '

< synch_process_body >:= < get_into_stable_state > ` [ ] '
< consume_events >

< synch_params >:= ` stable_ '< model_id > { ` , ' stable_ '
< model_id >}

< gates > := `commGate, inGate, toQueue, fromQueue, outGate '

Figure 4.19: Structure of the ComManager process

Where commGate is the control gate used to get information regarding the
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state of the models in the system. This information is used to identify if the

executing model has any completion transitions that could �re (if it is in a stable

state). The inGate is the input gate used by the models in the system to accept

events (either from the environment or from the event queue). The gates toQueue

and fromQueue are used to put and respectively extract events from the event

queue. The outGate gate outputs the values of the process parameters (variables

in the UML statechart).

The < synch_params > contains a boolean parameter for each model in

the system. The boolean parameters are used to store and monitor the state of

the models in the system (stable or not). These values are transmitted through

the commGate every time a new process (corresponding to an UML state) is

instantiated. If the transmitted value is !true this means that there is at least one

completion transition that can be �red from the current state of the system.

In order to extract events from the queue, the ComManager communicates

via the fromQueue with the EventQueue process (depicted in Listing 4.8) as to

receive the next event in the queue. If the queue is empty this is signaled by

sending !false followed by the dummy event !nullMsg.

proce s s EventQueue [ toQueue , fromQueue ] ( evQ : Queue ) : noexit :=
toQueue ?ev : Event ; EventQueue [ toQueue , fromQueue ] ( add (ev , evQ ) )
[ ]
[ not ( empty ( evQ ) ) ]−>

fromQueue ! true ! top ( evQ ) ; EventQueue [ toQueue , fromQueue ] ( pop (
evQ ) )

[ ]
[ empty ( evQ ) ]−>

fromQueue ! false ! nullMsg ; EventQueue [ toQueue , fromQueue ] ( evQ )
endproc

Listing 4.8: The EventQueue process

Getting the Models into a Stable State

The �rst part of the ComManager process takes care of preserving the run-to-

completion step semantic. This is achieved by �rst forcing the current executing

model to trigger all its completion transitions whose guards evaluate to true.

Thus, the ComManager will not allow the execution of other type of transitions

but completion ones. After all the completion transitions have been �red, the

next step is to extract and consume (one by one) all the events that have been

enqueued in the event queue by previously �red transitions (events that were

already in the queue before or that have been received during the current run to

completion step).
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Figure 4.20 contains the de�nition of the < get_into_stable_state > token

introduced in Figure 4.19 and describes the mechanism of getting the model into

a stable state.

1 < get_into_stable_state >= < fire_completion_trans > { ` [ ] '
< fire_completion_trans >}

2 < fire_completion_trans >:=
3 ` commGate ! '< model_id > ` ? stable : Bool ; '
4 ` [ not ( stable ) ]−>`inGate ?tr : Transition ; '

< allow_trans_execution >
5 ` [ ] '
6 ` [ stable]−> ComManager [ '< gates > ` ] ( '< synch_params > ` )

'
7 < allow_trans_execution >:=
8 ` ( typeOfTr ( tr ) eq ' < generated_events_no >
9 { ` toQueue ?msg : Event ; e x i t )>>'}

10 ` outGate ' { ` ? '< paramName > ` : '< paramType > ; } '
11 ComManager [ '< gates > ` ] ( '< synch_params > ` ) '

Figure 4.20: ComManager process - getting the system into a stable state

The behavior described by < get_into_stable_state > in Listing 4.20 is that

of �rst allowing the execution of all available completion transitions (the ones that

can be �red from the current state of the system) and then, after a stable state

has been reached allow for the consumption of events from the event queue(<

consume_events > - explained in Section 4.3.4). The data ` !'< model_id >

`?stable: Bool;' exchanged at gate commGate (line 3) is used to get information

on the state of the current executing model. All this data is provided every time

a process (corresponding to an UML state) is instantiated. Thus < model_id >

identi�es the model, stable denotes if in that model there is at least one completion

transition that can be �red.

If there is at least one completion transition that can �re, the ComManager

process will allow this by providing the corresponding sequence of actions so that

only the model identi�ed by < model_id > can execute the behavioral expression

representing a completion transition. This expression (line 4) is dynamically com-

puted based on the type of transition (line 7), the number of events its execution

will generate (line 8) and the model to which it belongs (10).

The example in Listing 4.9 partially depicts the �rst part of the ComManager

process which takes care of getting the models in the Direction Indication system

to a stable state. It contains only the part responsible with bringing the FLBC

model in a stable state. If the stable gate o�ering is false, a completion transition

will be allowed to �re, otherwise the ComManager will simply reinstantiate itself
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proce s s ComManager [ commGate , inGate , toQueue , fromQueue , outGate ] (
stable_FLBC : Bool , stable_FLMC : Bool , stable_FLMC_FailDetect :
Bool , stable_DI_Lever : Bool , stable_HazW_Button : Bool ,
stable_HazW_ButtonMsgSender : Bool ) : noexit :=

[ stable_FLBC ]−> commGate ! FLBC ?state : StateId ?stable : Bool ;
(∗ if FLBC i s not in a stable state , a completion transition

needs fire ∗)
[ not stable]−>
( inGate ?tr : Transition ;

(
(
[ typeOfTr ( tr ) teq Fires_0 ] −> ex i t
[ ]
[ typeOfTr ( tr ) teq Fires_1 ] −>

toQueue ?msg : Event ; e x i t
[ ]
. . . )>>
(∗ Allow the transition to provide as output the current

values of the attributes of the model ∗)
outGate ?crash : Bool ?hazard : Bool ?direction : Nat ;
ComManager [ commGate , inGate , toQueue , fromQueue , outGate ] (

true , stable_FLMC , stable_FLMC_FailDetect ,
stable_DI_Lever , stable_HazW_Button ,
stable_HazW_ButtonMsgSender )

) [ ]
[ stable]−> ComManager [ commGate , inGate , toQueue , fromQueue ,

outGate ]
( true , stable_FLMC , stable_FLMC_FailDetect , stable_DI_Lever ,

stable_HazW_Button , stable_HazW_ButtonMsgSender )
)

[ ] (∗ do the same for the other models and take them to a stable

state ∗)
. . .

Listing 4.9: Example of ComManager process for the Direction Indication system

and mark its stable_FLBC parameter as true (indicating that the FLBC is in a

stable state). This procedure is also applied to all the models in the system until

none of them has any completion transition that can �re.

Consuming Events

After all models have �red their completion transitions, the ComManager allows

the extraction of events from the event queue. Figure 4.21 describes the behavior

of the ComManager process when doing this. If all models are in a stable state

(line 2), ComManager attempts to extract an event from the event queue (line 3)

by using the fromQueue gate. The �rst gate o�ering ?empty: Bool is a marker

that the process handling the event queue will o�er when synchronizing with the

ComManager process. The value of empty denotes if there is at least one event
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in the queue which needs to be consumed. If so (line 5) ComManager allows the

execution of a normal transition (line 6 - 7) triggered by the event extracted from

the queue - !msg.

1 < consume_events >:= ` [ stable_ '< model_id >`== true '
2 { ` and ' stable_ '< model_id >`== true '} `]−> '
3 ` fromQueue ?empty : Bool ?msg : Event ; '
4 < empty_event_queue > ` [ ] ' < consume_external_event >
5 < empty_event_queue >:= ` [ empty == false ]−>'
6 inGate ?tr : Transition ! msg ;
7 < allow_trans_execution >
8 < consume_external_event >:= ` [ empty == true ]−>'
9 ` inGate ?tr : Transition ?msg : Event ; '

10 < allow_trans_execution >

Figure 4.21: ComManager process - consuming events

When the event queue has been emptied (line 8), ComManager simply allows

the execution of a transition triggered by an event ?msg:Event from the set of

events that can be consumed in the current state of the system. Allowing also

other events (from the ones that can not be consumed in the current state of the

system) would not make much sense since these would simply be discarded by the

system (by using the dummy transitions inserted at every state - see Section 4.3.3).

The < allow_trans_execution > in Figure 4.21 is the same one previously used

in Figure 4.20.

A partial example of the ComManager process for the Direction Indication

system taking care of the extraction and consumption of events from the event

queue can be found in Listing 4.10. After the event queue has been emptied

([empty]− >) the process allows the reception of evens coming from outside the

system (inGate ?tr: Transition ?msg:Event;). The rest of the transition execution

is similar to the one when events are enqd from the event queue and thus not

explicitly presented in the example.
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. . . .
(∗ After the models have reached a stable state , the events stored

in the event queue can be consumed by the models . ∗ )
[ stable_FLBC and stable_FLMC and stable_FLMC_FailDetect and

stable_DI_Lever and stable_HazW_Button and
stable_HazW_ButtonMsgSender]−>

(∗ extract one event from the communication queue ∗)
fromQueue ?empty : Bool ?msg : Event ;
(
[ not ( empty ) ]−> (

inGate ?tr : Transition ! msg ;
(∗ if the fired transition generates an event , this has to be

inserted in the event queue ∗)
( [ typeOfTr ( tr ) teq Fires_0 ] −> ex i t

[ ]
[ typeOfTr ( tr ) teq Fires_1 ] −>

toQueue ?msg : Event ; e x i t
. . .

)>>(
(∗ if the fired transition belongs to the FLBC model , the

model needs to be returned to a stable state before

another event can be consumed . This i s marked by

changing the value of the stable_FLBC parameter to

false ∗)
[ fromModel ( tr ) meq FLBC ) ] −>

outGate ?crash : Bool ?hazard : Bool ?direction : Nat ;
ComManager [ commGate , inGate , toQueue , fromQueue , outGate ] (

false , stable_FLMC , stable_FLMC_FailDetect ,
stable_DI_Lever , stable_HazW_Button ,
stable_HazW_ButtonMsgSender )

[ ]
(∗ if the fired transition belongs to the FLMC model . . . ∗)

[ fromModel ( tr ) meq FLMC ] −>
outGate ?stateActive : Bool ;
ComManager [ commGate , inGate , toQueue , fromQueue , outGate ] (

stable_FLBC , false , stable_FLMC_FailDetect ,
stable_DI_Lever , stable_HazW_Button ,
stable_HazW_ButtonMsgSender )

[ ]
(∗ do the same for the other models in the system depending

on the model containing the fired transition ∗)
. . .

)
(∗ if there are no more events in the queue , then the system

can receive events from the environment ∗)
[ empty]−> inGate ?tr : Transition ?msg : Event ;
. . .

endproc

Listing 4.10: Example of ComManager process for the Direction Indication system
(continued) - Consuming events



Chapter 5

Timing

Parts of this chapter have been published in �Abstracting Timing In-

formation in UML Statecharts via Temporal Ordering and LOTOS�

[CW11] which is joint work with Franz Wotawa.

In the previous chapter we described how to derive a LOTOS representation

from an UML model composed of communicating statecharts. Our models repre-

sent also embedded systems. Since such systems usually involve the use of timing

constructs for describing the desired behavior we also need to treat these in our

transformation process.

The speci�cation of timing aspects within the considered systems is done by

means of timeouts. A timeout is speci�ed with the help of timeout transitions

(De�nition 2.2.6). The triggering event of such a transition is a timeout event

written as �tm� followed by an expression that evaluates to a time value e.g.

�tm(90)�. The intended semantic is that of a clock that starts when the originating

state of the timeout transition is entered and elapses when it has measured the

value equal to the timeout parameter. At that moment the transition is executed

and the state of the system changes to the state targeted by the timeout transition.

5.1 Abstracting Timing Information

Unfortunately LOTOS does not contain any constructs to describe timing be-

havior. Other works also propose timing extensions to LOTOS. Some of them

[Led92, RBC93, LL93, LGC96] are based on the introduction of new LOTOS op-

erators. Others [Kho01, BD97] restrict the language to its basic form (the use of

data values is not allowed). ETLOTOS [BDS95] and LOTOS NT [CCG+05], the

newer versions of the language have timing constructs but still need a broader

tool support.

79
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So we propose a timing abstraction that aims to keep the visible output of

the system by preserving the order timeout transitions �re with respect to each

other.

The presence of a global clock is simulated through LOTOS abstract data

types and several control points arti�cially inserted in the speci�cation. The goal

is to ensure that the transition triggered by the timeout with the smallest value

will always �re before any other timeout transition. The employed data types for

this purpose are TmEvent and TimeContainer to represent timeout events and

the timeout event container. The afore mentioned control points are inserted in

the processes representing UML states and also in the communication manager

process that will now dictate also the timing behavior of the system. It does this

by allowing only the timeout with the smallest value to trigger its transition. In

order to keep track of all the possible timeouts in the system and always provide

the smallest one, the process has as one of its parameters a data structure of type

TimeContainer used to store all possible timeouts at the current active state of

the system.

The TmEvent data type is similar to that used for representing normal events

(see Section 4.3.1) with the di�erence that it contains as its parameters the time-

out value and the id of the transition it triggers. This data type o�ers the opera-

tions getParam_timeout, getTmTransId and decrTm. The last operation receives

as parameter a natural number subtracting its value from the value of the timeout

parameter. This operation is used for updating the value of the timeouts when

another (smaller) timeout in the system has elapsed.

The TimeContainer data type has similarities with the event queue data type

in that it is also a container for triggering events (timeout events) however the

event insertion order in the time container does not matter. The operations o�ered

by this data type are :

• min: TimeContainer -> TmEvent - returns the timeout event whose time-

out parameter has the smallest value among all the timeout events in the

time container.

• pop_min : TimeContainer -> TimeContainer - removes from the container

the timeout event returned by the min operation.

• decr_queue : Nat, TimeContainer -> TmQueue - similar with the decrTm

operation from the TmEvent data type but decreases all timeouts in the

container with the value of the provided parameter.

• containsTrans: Transition, TimeContainer -> Bool - returns true if the

container contains a timeout event of the provided transition.

• getTrans: Transition, TimeContainer -> TmEvent - returns the timeout

event of the speci�ed transition.
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NoBlinking                                                  

                                                v

LeftSideBlinking

                                                                                  

                                                                                                                         v

LeftBlinkersON LeftBlinkersOff

tm(ON_PHASE) /  

/  tm(OFF_PHASE) 

Tm(n) /

/* T42 */

/* T43 */

/* T41 */

Figure 5.1: Timeout transition example

• popTrans: Transition, TimeContainer -> TimeContainer - removes the

timeout event of the given transition

5.1.1 Timeout Transitions

Timeout transitions are transitions triggered by a timeout event. Such an event is

received after entering the source state of the timeout transition and the timeout

has elapsed. However, this behavior is abstracted in the transformation by pre-

serving the ordering relation between the timeout transitions in di�erent models

(the smallest timeout will elapse before the other timeouts)

Ttm ⊆ S × L× S where L ⊆ TMev ×G×A ∧ TMev 6= ∅. (5.1)

The resulting LOTOS behavioral expression for this kind of transitions is

similar to that for normal transitions. The main di�erence is the fact that after

the consumption of a timeout event, this information needs to be propagated to

the rest of the system. This is achieved through a dedicated gate - �timeGate�.

<tm_trans>:=`inGate ! ' <trans_id> `? Tmsg : TmEvent '
` [ ' < condition> `]; ' < broadcast_tm>`; '<next_process>

<broadcast_tm>:= ` timeGate ! getParam ( Tmsg ) ! '<model_id>

Figure 5.2: LOTOS Representation of a timeout transition

The triggering of such a transition represents the abstraction for the passing

of a period of time equal to the parameter of the timeout event. All the other

models in the system need to be informed of this event in order to update their
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timing information accordingly. This is realized through the gate timeGate that

o�ers the value of the timeout parameter and the id of the model in which the

timeout transition has been �red. All other models shall use this information to

decrease the timeout parameters in their time containers.

In Figure 5.1 we present an example of a timeout transitions (connecting state

LeftBlinkersOn with the state LeftBlinkersO�) and its LOTOS representation in

Listing 5.1.

5.1.2 State Transformation

proce s s LeftBlinkersOn [ alfaGate , inGate , toQueue , time ]
( tmQueue : TmQueue , timeSynch : Nat ) : noexit :=

[ ( timeSynch eq 0)]−> LeftBlinkersOn [ alfaGate , inGate , toQueue ,
outGate , timeGate ]

( add ( tm ( FLBC_T42 , ON_PHASE ) , tmQueue ) , 1)
[ ]
[ timeSynch eq 1]−>
alfaGate ! Blinker ! false ! min ( tmQueue ) ;
(
. . . . .
(∗ handle timeout transition ∗)
inGate ! FLBC_T42 ?tmMsg : TmEvent [ get_param ( tmMsg )==ON_PHASE ] ;
timeGate ! get_param ( tmMsg ) ! FLBC ;
toQueue ! reqLightOff ( InstrCluster , LEFT ) ;
LeftBlinkersOff [ alfaGate , inGate , toQueue , timeGate ]

( removeTmEv ( tmMsg , tmQueue ) , timeSynch )
[ ]
. . . . .
(∗ updating timing information ∗)
timeGate ?tmt : Nat ! FLBC ;
LeftBlinkersOn [ alfaGate , inGate , toQueue , timeGate ]

( decr_queue ( tmt , tmQueue ) , timeSynch )
)

endproc

Listing 5.1: LOTOS representation of state LeftBlinkersOn

In order to handle timing information, each process representing a state has

as parameter a data structure used to hold all timing events that can �re from

that state.

In case of process instantiations representing changes of state inside a com-

posite state (at the non �attened statechart) care needs to be taken in order not

to loose time progress of transitions originating from the super states.

Consider the example in Figure 5.1. If the active state is LeftBlinkersON

and the timeout transition T42 (targetting LeftBlinkersOFF ) is taken, the

timeout transition T41 must be updated with the value of the �red timeout and

its timeout event preserved in the time container. In the new active state (the
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LeftBlinkersOFF process) the transition T41 will be kept in the container only

if its guard still evaluates to true.

<state_process>:= ` p roce s s '<state_name>`[ `<gates> `] '
`( ' <parameters>`) ' <process_body> ` endproc '

<process_body>:= <update_timing_container> `−>'
<communication_ctrl>`; '<treat_compl_trans > `[ ] '
<treat_other_trans > `[ ] '<update_timing_info> ` [ ] '
<make_input_complete>

<update_timing_container>:=
{ ` [ ( timeSynch eq '<tm_tr_no>`) and '<tmTrGuard>`]−>'
<state_name>`[ `<gates> `] '
` ( add ( tm( '<tm_trans_id>, <tm_value>) ` , tmCont ) , '
timeSynch `+1 ' , <other_params> `) '
` [ ] '
` [ ( timeSynch eq '<tm_tr_no>`) and not '<tmTrGuard>`]−>'
<state_name>`[ `<gates> `] '
` ( remove ( tm( '<tm_trans_id>, <tm_value>) ` , tmCont ) , '
timeSynch `+1 ' , <other_params> `) '
}

<communication_ctrl>:= ` commGate ! '<model_id> `! ' <
is_stable>

`! ' < min_timeout > `; '
<update_timing_info>:= ` timeGate ?tmt : Nat ! '<model_id > `; '
<tm_tr_no> := tmTransition_0 | tmTransition_1 . . .
<parameters>:= ` tmCont : TimeContainer , timeSynch : Nat ' { ,

<other_params>}

Figure 5.3: LOTOS Process De�nition with timing constructs

Figure 5.3 presents the structure of a state with originating timeout transi-

tions. When the process is �rst instantiated it updates its timing container by in-

serting and/or removing the timeouts of its timeout transitions. The<tm_tr_no>

item represents ids given to the timeout transitions originating from the current

state. Thus the timeouts corresponding to these transitions are added in the local

time container of the process.

Once the time container has been updated and contains the available timeouts,

the communication gate commGate (part of <communication_ctrl>) transmits

to the communication master process only the timeout with the smallest value

which is possible in the current state. The communication master keeps track of

the smallest timeouts of each statechart in the system and allows the execution
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only for the minimum amongst them.

The <treat_compl_trans> and <make_input_complete> in Figure 5.3 are

the same described in Section 4.3.3. The <treat_other_trans> is similar to the

treatment of normal transitions in Section 4.3.2 but this time it also contains

timeout transitions.

The <update_timing_info> part is used to update the values of the timeouts

that can elapse in the current state. When a timeout transition is �red in another

model it will broadcast (via the communication master) the value of the timeout to

all the other models (by using the LOTOS multi way synchronization mechanism).

The value will be subtracted from the parameters of all other timeouts possible

at that moment. An example illustrating this can be found in Listing 5.1.

5.1.3 Communication Master and Timing

The communication master that dictates the execution and communication se-

mantics of the system receives several additions in order to handle the timing

aspects. The new structure of the process is presented in Figure 5.4. The process

uses an extra parameter of type TimeContainer in order to keep track of the

timeouts available in the system. This will contain only the smallest timeout that

can elapse at the current active state of every statechart model. The timeout

values are received via the communication gate commGate every time a new pro-

cess (corresponding to a state change) is instantiated. Using this information the

communication master updates tmContainer by removing and/or adding timeout

events depending on the newly entered states of the executing model.

<ComMgr_process>:= ` p r o c e s s ComManager [ '<comm_gates > `] '
`( ' <synch_params>`) : noexit := '
<synch_process_body> ` endproc '

<synch_process_body> := <get_into_stable_state > `[ ] '
<consume_timeout_event> ` [ ] ' <consume_external_evnets>

<comm_gates>:= ` commGate , inGate , toQueue , fromQueue ,
outGate , timeGate `

<synch_params>:= ` stable_ '<model_id>
{ ` , stable_ '<model_id>} ` , tmContainer : TimeContainer '

Figure 5.4: Communication master process de�nition with timing constructs

The execution of timeout transitions (Figure 5.5) is similar to that of normal

events but after the consumption of the timeout event and before instantiating

the communication master again, the value of the elapsed timeout is broadcasted

to all the models in the system. Such a transition can be �red only if at least
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one of the models in the system is in a state from where a timeout transition can

�re (�not(t_empty(SyncTimeQueue))�) and the timeout has the smallest value

among all the other possible timeouts (�msg == min(tmContainer)�). After �ring

the transition, the communication master will broadcast the value of the time-

out to all other models in the system (�<propagate_timing_info>�) and update

the timing container accordingly (subtract the value of the timeout from all the

other parameters of the timeout events and remove the elapsed timeout from the

container).

<consume_timeout_event>:=
` inGate ' ` ? tr : Transition ' ` ? msg : TmEvent '
` [ ' < tm_guard>`];<propagate_timing_info > `; '
<allow_trans_execution>

<tm_guard>:= ` not ( t_empty ( tmContainer ) ) ' ` and '
` ( msg = min ( tmContainer ) ) '

<propagate_timing_info>:=
` time ' ` ! getParam_timeout ( min ( tmContainer ) ) '

` ! ' < model_id > '; '
{ ` timeGate ' ` ! getParam_timeout ( min ( tmContainer ) ) '

` ! ' < model_id > '; '}

Figure 5.5: Communication master process consuming timeout events

5.2 Experimental Results

We used the proposed transformation (presented in Chapters 4 and 5) for deriv-

ing LOTOS representations of several UML models. We used three real-world

examples (Flasher, Diagnosis and KeylessEntry) originating from the automotive

domain and four more from literature. Table 5.1 presents the data regarding the

obtained speci�cations.

Table 5.1: LOTOS Transformation - Model Statistics

Model SCNo TrNo StNo Trflat Stflat Procs LoC

Flasher 6 34 14 72 19 30 2800

Diagnosis 4 38 17 44 14 21 1800

KeylessEntry 3 35 22 43 13 19 1470

Microwave 2 34 12 37 10 15 1170

LoanApproval 2 22 15 22 15 20 1210

ConferenceProt 3 41 18 41 18 24 1660

TelCtrlProt 2 55 26 70 21 26 2100
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The �rst column of the table contains the name of the model. Column SCNo

presents the number of communicating statecharts of the model. Columns TrNo

and StNo contain the number of transitions and states of the non �attened mod-

els. The number of transitions and states of the �attened version of the models

can be found in columns Trflat and Stflat respectively. Column Procs contains

the number of LOTOS processes derived from the model. The last column (LoC)

contains an approximation of the number of lines of code in the LOTOS speci�-

cation.



Chapter 6

Test Case Generation

Parts of this chapter have been published in �Model Based Test Case

Generation for Distributed Embedded Systems� [CW12] which is joint

work with Franz Wotawa.

Testing activities usually consume an important part from the resources of

software development projects (estimated to be of up to 50% [Mye04]). Thus it is

desired to automate as much as possible from this task. Activities like test case

design are a good candidate for increasing the automation degree of the testing

process.

As already mentioned, one important advantage of MBT is the fact that it

o�ers a higher degree of automation of the di�erent testing activities. Thus, test

cases are no longer designed manually but are automatically generated from the

model of SUT's behavior. In the rest of this chapter we describe a method for

automatically generating test cases aiming at structural coverage (state and tran-

sition coverage) of the model. We also show how to semi-automatically generate

test cases by making use of user provided annotations on the UML model.

6.1 Input Output Conformance Relation and TGV

The Input Output Conformance theory (IOCO) as described by Tretman [Tre08]

formalizes a set of implementations that behave consistently with a speci�cation.

The observations of a system during testing (also called traces) represent the

visible behavior of a system. Informally, the IOCO relation states that an imple-

mentation I conforms to speci�cation S if after every trace, I exhibits at least

the same outputs as S.

The IOCO relation represents the base of the conformance testing theory used

by the test case generation tool TGV. A formal and thorough description of this

theory can be found in [Cal05]. Conformance testing aims at checking that the

87
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IUT
Tester

{ Test Cases }

PCO

Figure 6.1: Testing and PCOs

TGV

Specification Test Purpose

Tunning 

Options

Abstract 

Test Case

Figure 6.2: Functional view of TGV

visible behavior of an implementation under test (IUT) is correct with respect to

a speci�cation.

TGV allows the automatic generation of conformance test cases from formal

speci�cations of reactive systems. By reactive we understand a software system

which reacts to stimuli coming from its environment.

The IUT is considered a black box whose behavior is only observable by inter-

action with its environment. During the testing process, the environment is rep-

resented by the tester that controls and observes the behavior of the IUT through

dedicated interfaces called points of control and observation (PCO). This can be

observed in Figure 6.1 [JJ05]. Thus conformance testing is a type of functional

testing of a black box nature.

In order to synthesize test cases, TGV (see Figure 6.2) requires the speci-

�cation of the system under test. This speci�cation is usually provided using

a formal language like LOTOS whose syntax can be represented in terms of a

labeled transition system (LTS).

TGV makes use of enumerative techniques (a labeled transition system rep-

resenting the semantic of the LOTOS speci�cation is generated on the �y) for

test-case generation. This means that one of the biggest challenges is the well

known state space explosion problem. In order to alleviate this problem and fo-

cus the generation process on particular aspects that need to be tested, TGV

uses the concept of test purposes. A test purpose is a more abstract (simpli�ed)

description of such a scenario. A test purpose contains less information than the
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0
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ab.*
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el.*xy.*

ACCEPT

REFUSEREFUSE

Figure 6.3: Test purpose example

test case it describes. For example in our setting a test purpose might specify a

few transitions and the order they need to be visited in order to obtain a test case

satisfying the test purpose.

An important part of such a test purposes are the ACCEPT and REFUSE

states. ACCEPT states are used to identify desired behaviors, while REFUSE

states are used to limit the exploration of the state space of the SUT by specifying

which parts are not of interest for the current test purpose. It is obvious that the

presence of more refuse states leads to a faster computation of test cases. Hence,

the chances of running into the state space explosion problem are reduced.

A test purpose can be represented as an Input Output Labeled Transition

System (IOLTS). The labels of the IOLTS can be speci�ed as strings of characters.

These strings can also contain regular expressions (e.g. chx.* will match all actions

starting with chx. We present an example for a test purpose in Figure 6.3. The

described test purpose accepts sequences of actions starting with ab (ab.* ). Once

such an action has been encountered, the next accepted one is trs. The test

purpose refuses actions starting with xy or el (xy.*, el.* ).

The basic components of a test case are interactions through PCOs [Cal05]:

• outputs are stimuli used to control the IUT's input events;

• inputs are observations of the IUT's outputs.
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Another required input is the de�nition of the input/output alphabets of the

speci�cation representing the input and output actions of the system.

The inputs of the test case may lead to di�erent verdicts:

• Fail - is returned when the IUT does not conform to its speci�cation. In

such cases we say that the IUT is rejected by the test case.

• Pass - is returned if the observation of the behavior of the IUT is correct

thus ful�lling the test purpose.

• Inconclusive - is returned if the IUT behaves correctly but it is impossible

to ful�ll the test purpose. This can happen in case of non deterministic

systems that may have a choice between several outputs to the same input.

6.2 Test Purpose Generation

The speci�cation of good test purposes is not an easy task and requires signi�cant

e�ort. In previous work [dBRS+00], the authors were not able to design test

purposes (even after ten hours) good enough as to uncover all seeded faults in a

speci�cation. One approach to this problem that reduces the e�ort required to

design the test purposes is the generation of test purposes aimed at structural

coverage of the speci�cation.

6.2.1 Coverage aimed Test Purpose Generation

Considering coverage metrics we focus on transition and state coverage on the

�attened representation of the statechart. Transition coverage on the �attened

model. Flat Transition Coverage (FTC), has the advantage that it subsumes

transition coverage on the original model.

Under the FTC metric a transition T originating from composite state S is

considered covered if all of its copies generated during the �attening process are

covered. On the non �attened version of the statechart this is equivalent to the

�ring of T from every state inside S. Under normal transition coverage metric (at

the non �attened level) T is considered covered after being �red from at least one

state inside S.

Even if it subsumes normal transition coverage FTC has the disadvantage that

some transition copies are not reachable in the �attened model. This originates

from the fact that the �ring of some transitions originating from a composite

state is conditioned by the current simple state inside the composite one. This

means that certain combinations between simple states and transition copies are

not possible even if the �attened model contains them.

Due to the fact that during the transformation we preserve the traceability

between the UML model and the LOTOS speci�cation we are able to generate
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2 30 1
.*FLBC_T23.*  .*OUTGATE.** ACCEPT

Figure 6.4: Test purpose for transition FLBC_T23

test purposes aimed at covering the original UML model. The speci�cation of

a test purpose aimed at covering a speci�c transition in the UML model comes

quite straight forward on the LOTOS speci�cation. Figure 6.4 contains the LTS

representation of a test purpose generated for covering transition FLBC_T23

from state EmergencyOperation in the FLBC statechart (Figure 6.7).

In the de�nition of the test purpose for covering transition T23, the label

.*FLBC_T23.* contains the id of the searched transition while .*OUTGATE.*

represents the action needed to get the values of the variables used in the state-

chart after triggering the transition FLBC_T23.

The generation process will stop as soon as an action matching the expres-

sion .*FLBC_T23.* followed by one matching .*OUTGATE.* is encountered.

The edge (1, *, 2) is inserted as to accept several actions between the two de-

scribed above. This is needed due to the fact that between �ring a transition

(.*FLBC_T23.*) and providing the output .*OUTGATE.*, the model might

also provide actions for enqueuing events in the event queue.

6.2.2 Test Purposes for Scenario based Testing

Due to the fact that a test suite providing high coverage of the model does not

guarantee that the system is well tested further mechanisms for the speci�cation

of test purposes are needed.

In this section we present an approach for test case generation where test

purposes are derived from annotations made on the model by the user. These

annotations provided the order in which certain UML elements (states and/or

transitions) needed to be visited in order to ful�ll a speci�c scenario of interest.

Test Purpose Speci�cation

The speci�cation of test purposes is done by annotations on the model providing

the order in which certain UML elements need to be visited. This can be regarded

as an abstraction of the scenario of interest where the amount of information

provided is always dependent on the user. It is the task of the tool to compute

the test case containing the transitions need to be �red in all models so that the

test scenario is ful�lled.

The annotation of the model is done using UML tags which are pairs consisting

of two elements - a name and a value. The name of the tag will represent the id of
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the scenario to cover with the generated test case. The annotated UML elements

can be states and/or transitions. In order to specify a test scenario there are two

types of annotations: inclusion and exclusion of UML statechart elements.

The description of such a test scenario is given in Figure 6.5.

<tp_scenario>:= <uml_tag>` , '{<uml_tag>}
<uml_Tag>:= <included_item>|<excluded_item>
<included_item>:=`IN =' <number>
<excluded_item>:=`EX =' <number>`−'<number>|<number>
<number> = ` 1 ' | ` 2 ' | ` 3 ' | . . . .

Figure 6.5: Representation of test purpose scenario

The semantic intended for the included elements is that they need to be

part of the test case in the order provided by the IN annotation with regard to

the other annotated elements.

The excluded items are used to cut o� parts of the speci�cation that are not

desired for the current test scenario but can also be used to limit the dimension

of the searched state space. The annotation EX speci�es the ranges of items

for which the current annotated element is excluded. For example EX = 3 - 6

denotes that the excluded item and the behavior it triggers will be ignored during

the test case search while investigating items with IDs between 3 and 6.

We formally de�ne a test purpose tp (De�nition 6.2.2) as an ordered sequence

of test purpose items tpij (De�nition 6.2.1)

De�nition 6.2.1. (Test Purpose Item). A test purpose item tpi is a pair

(IN,EX) where IN ⊂ TR and EX ⊂ TR are the included and excluded transi-

tions of tpi. TR is the set of transitions in the model (from all statecharts).

De�nition 6.2.2. (Test Purpose). A test purpose tp is a sequence TPI =

(tpi0, tpi1...tpin) of test purpose items where ∀tpij : 0 ≤ j ≤ n : order(tpij) <

order(tpij+1).

Consider for example the scenario for which we need a test case to test the

functionality where during a hazard warning blinking the user requests direction

indication for the left hand side (see Figure 6.7). In order to provide the infor-

mation for the test purpose, we need to annotate the transitions:

• FLBC_T23 - activate the hazard warning.

• FLBC_T16 - activate left side direction indication.

In order to help the search for the test case, we also mark as excluded item the

transition FLBC_T12 - from state Emergency_Operation to Normal_Operation
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NormalOperation
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Figure 6.6: Statechart of the FLBC class
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reqDirectionInd 
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/* T22 */

/* T24 */

/* T25 */ /* T27 */

/* T28 */

/* T29 */

/* T31 */

/* T30 */

EmergencyOperation

Figure 6.7: FLBC EmergencyOperation state

(in Figure 6.6) in order to prevent the system to return to the normal state

after the hazard warning has been enabled. This transition is excluded only for

FLBC_T16.

In Figure 6.8 we present the annotations for the considered scenario. Each

line in the example contains the id of the item on which the annotation was made

(FLBC_T23 ) followed by the tag name (R_Id_1 ) and its value (�IN = 1�).

Test Purpose Representation

Test purposes are generated by using the annotations describing the test scenarios.

A �rst step for the transformation of the annotations into a test purpose is done

by moving the annotations on the states to all the transitions targeting them.
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FLBC_T23 : R_Id_1 = ` ` IN = 1 ' ' ;
FLBC_T16 : R_Id_1 = ` ` IN = 2 ' ' ;
FLBC_T12 : R_Id_1 = ` ` EX = 2 ' ' ;

Figure 6.8: Example of test scenario annotations
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.*FLBC_T23.*

 .*OUTGATE.*

*

ACCEPT

.*FLBC_T16.* *
3 4

7
REFUSE

.*FLBC_T12.* .*FLBC_T12.*

6

REFUSE

Figure 6.9: Test purpose for the scenario hazard warning followed by left side
direction indication

Thus we obtain a speci�cation of the test scenario only in terms of desired and

excluded transitions.

The test purpose corresponding to the annotations for the example considered

in Section 6.2.2 can be seen in Figure 6.9.

The included and excluded UML transitions are represented by labels on the

edges of the IOLTS de�ning the test purpose. Edges representing excluded items

lead to REFUSE states so that, during the test case generation TGV will not

explore the parts of the model reachable via these edges. The node targeted by

the last included transition leads to an ACCEPT node providing the termination

criterium for the test case generation process.

The edges of the test purpose with label * accept all actions (except the ex-

cluded ones) during the generation and specify the fact that between two included

items, there can be an arbitrary sequence of edges.

Figure 6.10 depicts a partial representation of the test case generated for the

considered test scenario.

6.3 Experimental Results

In this section we present the results obtained by using the presented test purpose

generation techniques. For this task we have used three real-world examples

(Flasher, Diagnosis and KeylessEntry) originating from the automotive domain

and four more from literature (described in Chapter 3).

Table 6.1 contains the results obtained when using the current test purpose

generation technique aimed at transition coverage.
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0

1

INGATE !FLBC_T1

2

3

INGATE !FLMC_T48

4

36

INGATE !FLMC_FAILUREDETECTION_T55

37

38

OUTGATE !FLMC__INAKTIV

39
74

OUTGATE !FLMC_FailureDetection__FLMC_FAILED

OUTGATE !NORMAL_NO_BLINKING !FALSE !FALSE !NONE

OUTGATE !FLMC_AKTIV !TRUE

5

INGATE !FLMC_T54 !EVTOGGLEFLMC_ACTIVE()

INGATE !FLMC_FAILUREDETECTION_T58 !EVFLMC_STATE(INACTIVE)

40

41

INGATE !FLBC_T11 !EVFLMC_STATUS (FLBC, INACTIVE)

42

43

INGATE !HAZARDPUSHBUTTON_T70 !EVUSERPRESSBUTTON()

44

70

71

72

INGATE !FLBC_T26 !REQDIRECTIONIND(FLBC, LEFT)

73

OUTGATE !FLMC_FAILED

OUTGATE !NO_BLINKING !FALSE !FALSE !NONE

OUTGATE !BUTTON_PRESSED !PRESSED

OUTGATE !LEFTREQUESTED

OUTGATE !REQUESTED_DIRECTION_INDICATION !FALSE !TRUE !NONE

69

INGATE !DIRECTIONINDICATIONLEVER_T66 !EVUSERFLASHLEFT()

INGATE !FLBC_T16

76

OUTGATE !LEFTSIDEBLINKING !FALSE !TRUE !LEFT

Figure 6.10: Test case for hazard warning - left side direction indication

The �rst column of the table contains the name of the model for which the

test purposes were generated. The next column (TPs) contains the total number

of generated test purposes. Column V alidTPs presents the number of valid test

purposes. By valid test purpose we mean test purposes not targeting transition

copies that are not reachable on the �attened model.

In column TCs we give the number of generated test cases. We imposed a limit

of 25 minutes per test purpose. If no test case was generated within this time, the

generation process is stopped. Column CompTime contains the time TGV was

allowed to run for the generation process. The last two columns (TCovflat and

TCov) contain the transition coverage on the �attened and non �attened model

respectively.

In the case of three of the models (Diagnosis, MicrowaveOven and Conferen-

ceProtocol), the search for some valid test purposes did not succeed within the

imposed time limit. This happened due to the size of the searched state space.

In order to cover the searched transition we manually speci�ed the required test

purposes equipped with several refuse states limiting the searched state space.

We present the results of using the presented technique of deriving test pur-

poses from user annotations in Table 6.2. As expected, the generation for test
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Table 6.1: Coverage aimed test case generation results

Model TPs V alidTPs TCs CompTime TCovflat TCov

Flasher 72 70 70 58m10s 97% 100%

Diagnosis 44 42 38 1h43m50s 95% 97%

KeylessEntry 43 39 39 2m38s 91% 100%

MicrowaveOven 37 37 36 27m20s 97% 97%

LoanApprovalWS 22 22 22 1m20s 100% 100%

ConferenceProtocol 41 41 39 1h42m27s 95% 95%

TelCtrlProtocol 65 65 65 4m6s 100% 100%

purposes with manually de�ned REFUSE states is faster than for the generated

ones which are missing such states. Of course the result of the generation process

when using refuse transitions depend on the excluded items in test purposes and

also on the size of the state space they de�ne.

Table 6.2: Scenario based test purposes results

Model TPs TCs T ime

Flasher 51 51 10m17s

Diagnosis 32. 23 4m41s

KeylessEntry 15 15 52s

MicrowaveOven 15 15 57s

LoanApprovalWS 15 15 56s

ConferenceProtocol 15 15 15m5s

TelCtrlProtocol 15 15 55s



Chapter 7

Enhancing Test Purposes

Parts of this chapter are taken from �Using Dependency Relations to

Improve Test Case Generation from UML Statecharts� [CW13] which

is joint work with Franz Wotawa.

In model-based testing the size of the used model has a great impact on the

time for computing test cases. In model checking, dependence relations have

been used in slicing of speci�cations in order to obtain reduced models pertinent

to a criterium of interest. Usually in speci�cations described using state based

formalisms slicing involves the removal of transitions and merging of states thus

obtaining a structural modi�ed speci�cation. Using such a speci�cation for model

based test case generation activities where sequences of transitions represent test

cases might provide traces that are not valid on a correctly behaving implemen-

tation. In order to avoid such trouble, we suggest the use of control, data and

communication dependences for identifying parts of the model that can be ex-

cluded so that the remaining speci�cation can be safely employed for test case

generation. This information is included in test purposes.

As already mentioned in Chapter 6 TGV requires test purposes in order to

focus the generation of test cases on particular aspects of the system. This also

allows for reducing the search of the model's state space during test case gen-

eration. As already mentioned, TGV uses special prede�ned labels in the test

purposes in order to control the test case generation process. One of these is the

REFUSE label, which is used to mark parts of the model that should not be

explored in a particular test-case generation process. From here on we refer to

transitions leading to refuse states as simply refuse transitions.

Because TGV makes use of enumerative techniques (an IOLTS representing

the semantic of the LOTOS speci�cation is generated on the �y) for test-case

generation it is obvious that the presence of more refuse transitions leads to a

faster computation of test cases. Hence, the chances of running into the state

space explosion problem are reduced.

97
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In Chapter 6 we presented a method for automatically generating test cases

aiming at structural coverage (state and transition coverage) of the model. We

also showed how to semi-automatically generate test cases by making use of user

provided annotations on the UML model. The coverage generated test cases did

not contain any refuse transitions. Therefore, the generation process was not as

e�cient as in the case when the user provides annotations that can be used as

refuse transitions in the test purpose.

In this chapter we describe how to use di�erent dependence relations (control,

data, and communication) in order to automatically identify parts of the models

that can be omitted during the generation process. This is done by computing

direct and indirect dependences for the transitions we aim to cover. The depen-

dence information is used to insert refuse transitions in the test purposes, and

thus reducing the searched state space during the generation process.

The way of using these dependences di�ers from other approaches [ACH+09,

LG08, JW02] where the models are sliced according to a slicing criterium. These

approaches have proven their worth in situations involving techniques like model

checking and debugging. In our approach we do not modify the structure of

the model. Instead we enhance the test purpose with refuse transitions that

capture those parts of the model that are not going to be explored. The modi�ed

test purposes focus test case generation and thus indirectly cut out transitions

and states. Thus the speci�cation is sliced during the generation process by

not exploring its excluded parts. This is di�erent to slicing approaches which

eliminate transitions (by merging their source and target states) on which the

slicing criteria (transitions and/or variables) do not depend.

By using classical slicing techniques for test case generation, the obtained se-

quences representing test cases might not be valid on the original model. Another

drawback is the need for generating a model for each considered criteria and then

using it for the purpose at hand. Hence, depending on the complexity of the

model the e�ort needed for compiling every variant of the model might be time

consuming. In our approach we use the same model, which needs to be compiled

only once. There is however in our approach the possibility that the number

of eliminated transitions might be smaller than in the case of the other slicing

approaches. This depends however on the size and structure of the model.

7.1 Dependences

In literature there are several di�erent control, data and communication depen-

dence de�nitions for state based models. This variation in de�nitions has several

causes. Some of these are due to the di�erent syntax and/or semantics of the

models (Input Output Transition Systems [LG08], Extended Finite State Ma-

chines (EFSM) [ACH+09], IF language [BFG03]etc.)). Some are caused by the



7.1. DEPENDENCES 99

type of system whose behavior has to be described for example, if embedded

systems with cyclic behavior are considered.

S_Diagnose_Model_Message
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evErrorNotActive / Timer = Off;

H

[EventCounter >= TimeQual]/

Timer = OFF;

Vz = GW_copy;

EventCounter = 0;

OccurenceCounter ++;
[(Timer == OFF)&& 

(GW_copy > Vz)]/

OccurenceCounter = 0;

EventCounter = 0;

evErrorNotActive

[Timer == ON]/

EventCounter++;

evRequestErrorMemoryClear/

Timer = OFF;

OccurenceCounter = 0;

evErrorActive/

EventCounter++

evErrorNotActive/

 EventCounter = 1; Timer = ON;

[(Event_Counter >= TimeDisQual) 

&& (Timer == ON)]/

Timer = OFF; Vz = GW_copy + 40;

evSetGwUnlearnCounterCopy/

GW_copy++;

evErrorActive

[Timer == ON]/

EventCounter++;

[(EventCounter >= TimeQual) 

&& (Timer == ON)]/

Timer = OFF; Vz = GW_copy;

EventCounter = 0;

OccurenceCounter ++;

evErrorActive[Timer == OFF]/ 

Timer = ON;EventCounter = 1;

/*T1*/

/*T2*/

/*T3*/

/*T4*/

/*T5*/

/*T6*/

/*T7*/

/*T8*/

/*T9*/

/*T10*/

/*T11*/

/*T12*/

/*T13*/

/*T14*/

Figure 7.1: Statechart of Diagnosis functionality

As running example for the rest of this chapter we are going to use the model

depicted in Figure 7.1, which describes the diagnosis functionality of modern ve-

hicles. Its purpose is to store the type, occurrence, and origin of errors occurring

during operation of the vehicle. Since the diagnosis functionality is distributed

over several ECUs, the description of its behavior is also modeled using commu-

nicating UML statecharts. Besides the diagnosis functionality our system also

contains models describing the behavior of the ignition switch of the vehicle. Two

other models de�ne the conditions needed for errors to be detected. When such

an error has been detected it is communicated to the diagnosis model. The func-

tionality, which is to be tested in this setting de�nes how detected errors are to

be treated and when to create an entry in the error memory. The statechart

model consists of �ve states and accepts four messages namely evErrorActive, ev-

ErrorNotActive, evRequestErrorMemoryClear and evSetGwUnlearnCounterCopy.

The state S_NotActive_NotStored corresponds to normal functioning when

no error is detected. After an error is detected, the system moves to the state

S_Active_NotStored, which means that an error has been detected but is not
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yet stored. The error is stored after receiving �ve evErrorActive events, and the

system moves to the S_ActiveStored state. This means that the real ECU has

now stored the error in its bu�er, which might be read out using a dedicated

diagnosis hardware. The diagnosis module shall leave this state and move to the

S_NotActive_Stored state only after receiving an evErrorNotActive event.

S_NotActive_NotStored S_Active_NotStored

S_NotActive_Stored S_Active_Stored

/*T1*/

/*T2*/

/*T3*/

/*T4*/

/*T5*/

/*T6*/

/*T7*/

/*T8*/

/*T9*/

/*T10*/

/*T11*/

/*T12*/

/*T14_c1*/

/*T13_c1*/

/*T13_c4*/

/*T14_c2*/

/*T14_c3*/

/*T14_c4*/

/*T13_c3*/

/*T13_c2*/

Figure 7.2: Flattened representation of Diagnosis

We use the transformation rules de�ned in Chapter 4 in order to derive a LO-

TOS speci�cation from the diagnosis model. As already mentioned, the �attening

process removes the hierarchical structures and the pseudostates preserving the

execution semantics of the models. This step delivers a behavioral equivalent

statechart using only simple states and transitions SC = (Ss, T, V, ips0). Figure

7.2 presents the �attened representation of the diagnosis statechart from Figure

7.1. Due to readability reasons the labels of the transitions in Figure 7.2 have

been omitted, however they remain the same as in the original model. During

the �attening process transition copies are created for the transitions originating

from composite states. Each such transition generates a copy of itself for each

state contained by the composite state. In our running example (Figures 7.1 and

7.2) transition T14 generates the copies T14_c1, T14_c2, T14_c3 and T14_c4.
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7.1.1 Control Dependence

Informally, in classical de�nitions of control dependence for sequential programs

a statement sj is control dependent on a statement si if statement si causes the

execution of statement sj . Such de�nitions impose that the control �ow graph

(CFG) of the program meets certain properties. The presence of a �nal node in

the CFG is one such restriction. However in the case of EFSM there might be

the case where either no such node exists or several such nodes are present.

This restriction can be lifted [RAB+07] by considering two de�nitions for

control dependence for structures with zero or more end nodes. The new control

dependences are not given in terms of paths to one �nal node but in terms of

maximal (see De�nition 7.1.1) or sink bounded paths (see De�nition 7.1.3) of the

CFG.

The �rst de�nition Nontermination-Sensitive Control Dependence is given in

terms of maximal paths (which can also be in�nite paths) and takes into con-

sideration the fact that a potential in�nite execution of a loop (an in�nite path)

may impede the execution of other nodes and thus providing a control depen-

dence. Informally a node nj is control dependent on node ni if the execution of

one branch of ni will always lead to nj and the execution of another branch (a

maximal path) might not lead to nj (nj might not be executed). In Equation 7.1,

MaximalPahts(SC) denotes the set of maximal paths in the �attened statechart

SC.

De�nition 7.1.1. (Maximal Path). A path π is maximal if it terminates in

an end state (state with no outgoing transitions) or is in�nite.

MaximalPahts(st) = {π|π = (ti, ti+1, ..., tn) : source(ti) = st∧
π ∈MaximalPahts(SC)}

(7.1)

The second control de�nition is similar to the �rst one di�ering only in terms

of the considered paths. Making use of sink bounded paths (De�nition 7.1.3) it

does not consider the situation where a loop might execute in�nitely and thus

it is nontermination-insensitive. Informally a control sink (De�nition 7.1.2) is a

region of the EFSM that once entered is never left. This can also be an end node

of the EFSM or a state with no outgoing transitions. This de�nition is closer

to the classical de�nition of control dependence given that the paths are always

�nite.

De�nition 7.1.2. (Control Sink). A control sink, K, is a set of nodes that

form a strongly connected component (SCC).

De�nition 7.1.3. (Sink-bounded Paths). A maximal path π is sink bounded

i� there exists a control sink K such that:
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Start Wait Closing

Opened

Closed

Opening

setTimer / Timer:=5 ready [timer == 0] 

timeout 

buttonInterrupt / timer := 3

fullyClosed 

fullyOpened 

openTimer / timer := 10

closing 

openTimer [timer > 0] / timer = timer - 1

opening 

closeTimer 

waitTimer [timer > 0] / timer := timer - 1

/*T5*/

/*T10*/

/*T2*/

/*T3*/

/*T4*/

/*T6*/

/*T7*/

/*T8*/

/*T9*/

/*T1*/

/*T11*/

/*T12*/

Figure 7.3: EFSM of Elevator Door Control system

1. π contains a node form K and

2. if π is in�nite then all nodes in K occur in�nitely often.

Figure 7.3 depicts the EFSM speci�cation for a door control of an elevator

system [ACH+09]. We are going to use it for exemplifying the di�erences between

the control dependence de�nitions. In Figure 7.3 the SCC formed by the states

Closing, Closed, Opening, Opened is such a control sink and the path Wait,

Closing, Closed, Opening, Opened is a sink-bounded path. The path Closing,

Opening, Opened, Closing is a maximal path. It is not a sink bounded path since

the SCC Closing, Opening, Opened can be exited by going to state Closed. To

be self-contained we informally introduce SCC. A SCC is a directed sub-graph of

the original graph where there is a path from every node to every other node of

the sub-graph.

Both afore mentioned control de�nitions are computed on CFGs and pro-

vide dependences between nodes of the CFG. EFSMs however have di�erent se-

mantics and properties and thus the de�nitions need to be adapted. Decisions

(Boolean conditions) are made in CFGs at node level whereas in EFSMs they

are made at the level of transitions. Therefore, [ACH+09] adapted and extended

the nontermination-insensitive control dependence for EFSM providing the Un-

fair Non-termination Insensitive Control Dependence (De�nition 7.1.5). They

do this by removing the fairness condition of De�nition 7.1.3 (the second con-

dition) and give the de�nition of unfair sink-bounded paths. In Equation 7.2

below, UnfairSinkPaths(SC) denotes the set of unfair sink-bounded paths in

the �attened statechart SC.

De�nition 7.1.4. (Unfair Sink-bounded Paths). A maximal path π is an

unfair sink bounded path i� there exists a control sink K such that π contains a

transition from K.
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UnfairSinkPaths(st) = {π|π = (ti, ti+1, ..., tn) : source(ti) = st∧
π ∈ UnfairSinkPaths(SC)}

(7.2)

De�nition 7.1.5. (Unfair Non-termination Insensitive Control Depen-

dence (UNTICD)). ti
UNTICD−−−−−→ tj means that tj is control dependent on a

transition ti i� ti has at least one sibling tk such that:

1. for all paths π ∈ UnfairSinkPaths(target(ti)), the node source(tj) be-

longs to π;

2. there exists a path π ∈ UnfairSinkPaths(source(tk)) such that source(tj)

does not belong to π.

According to De�nition 7.1.5 in Figure 7.3 we have the following control de-

pendences : T5 UNTICD−−−−−→ T9, T10, T6 UNTICD−−−−−→ T7, T8, T8 UNTICD−−−−−→ T9, T10,

T10 UNTICD−−−−−→ T11, T12 and T12 UNTICD−−−−−→ T4, T5, T6.

As already mentioned, the usage of maximal paths (especially in�nite ones) is

supported by the fact that a potentially in�nite execution of a loop may impede

the execution of other nodes. Another important observation of [RAB+07] (also

acknowledged in [LG08]) is that reaching a start node in a reactive system is

analogous to reaching an end node in a program, i.e., the behavior will start

again. Since these observations are also valid in our setting we are going to use the

adapted version of the nontermination-sensitive control dependence (De�nition

7.1.6) in order to identify control dependences of our models.

De�nition 7.1.6. (Non-termination Sensitive Control Dependence

(NTSCD)). ti
NTSCD−−−−−→ tj means that tj is non termination sensitive control

dependent on a transition ti i� ti has at least one sibling tk such that:

1. for all paths π ∈MaximalPahts(target(ti)), the source(tj) belongs to π;

2. there exists π ∈ MaximalPahts(source(tk)) a path such that source(tj)

does not belong to π.

Considering the �attened representation of the diagnosis model (Figure 7.1)

both UNTICD and NTSCD would deliver the same control dependences. This

is so due to the fact that the whole model is a Strongly Connected Component

(SCC). In such a case both de�nitions deliver the same results.

Compared to UNTICD, in the elevator door control EFSM in Figure 7.3 we

have the same control de�nitions in the SCC Closing, Closed, Opening, Opened

but also some other relations outside the SCC. The extra T3 NTSCD−−−−−→ T4, T5, T6

relations (not given in the case of UNTICD) are provided by NTSCD due to the

presence of the in�nite loop of transition T2 at state Wait.
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It is possible to prove that inside control sinks NTSCD and UNTICD provide

the same results [ACH+09]. Outside the control sinks UNTICD �nds control

dependences only if it can �nd alternative sink bounded paths bypassing the

targeted transitions. If UNTICD is used for slicing, it might provide smaller

slices because it does not consider in�nite paths that do not end in control sinks.

NTSCD on the contrary might �nds more dependences (providing larger slices)

exactly due to the fact that it also takes into consideration in�nite loops. This

is a good thing in our setting since any alternative path that might not in�uence

the targeted transition is a potential refuse transition for our test purpose.

Computing Control Dependence

Input: SC = (Ss, T, V, sti)
Output: CD(T), PI(T)
1: for all t ∈ {t|t ∈ T (SC) ∧ ∃ts ∈ sibling(t) : target(ts) 6= target(t)} do
2: for all sc ∈ {sc|∃ti ∈

⋂
maxPaths(t) : source(ti) = sc ∨ target(ti) = sc}

do // for common nodes on all paths
3: if ∀tst ∈ sibling(t)∃π ∈ maxPaths(tst) : ∀ti ∈ outgTr(sc) → ti /∈ π

then
4: for all to ∈ {to|to ∈ T (SC) ∧ source(to) = sc} do
5: CD (to)← CD (to) ∪ t
6: for all tst ∈ {tst|tst ∈ sibling(t)∧

∃π ∈ maxPaths(tst) : ∀ti ∈ outgTr(sc), ti /∈ π}
do

7: PI (to)← PI (to) ∪ tst
8: end for
9: end for

10: end if
11: end for
12: end for

Figure 7.4: NTSCD computation algorithm

The algorithm for computing the NTSCD is depicted in Figure 7.4. The

used symbols and an informal description are presented bellow. We apply this

algorithm for every �attened statechart SC = (Ss, T, V, sti) in our model.

Because we consider maximal paths (which include also in�nite paths) we need

to identify end states (states with no outgoing transitions) and cycles in our model

SC. The end states can be easily found by enumerating through the states of the

model and testing for the absence of outgoing transitions. For the identi�cation

of cycles we use a slightly modi�ed version of depth �rst search (DFS) that at
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every re-occurrence of an already visited state si saves in a list of sets all the

states present on the stack starting with the �rst occurrence of si. After this step

we obtain the set CY CLES(SC) whose elements are sets of states representing

the cycles in the model SC.

For transitions that are not part of a cycle, all nodes of the cycle that are

targeted by transitions whose sources are not part of the cycle can be considered

sink states. Thus we de�ne SINKS(t) (Equation 7.3) as the set containing all

such states, end states and also the initial state sti [RAB
+07, LG08]. In the

algorithm we also make use of the function maxPaths(t) (Equation 7.4) which

provides all maximal paths starting with transition t.

SINKS(t) = {s|s ∈ Ss(SC) ∧ |outTr(s)| = 0} ∪ {sti}∪
{s|s ∈ Ss(SC) ∧ ∃C ∈ CY CLES(SC) :
(s ∈ C ∧ source(t) /∈ C)}

(7.3)

maxPaths(t) = {(t1, t2, ...tn)|t1 = t ∧ target(tn) ∈ SINKS(t)} (7.4)

The algorithm for computing the NTSCD (Figure 7.4) requires as input a

�attened statechart SC = (Ss, T, V, sti) and provides as output two key value

maps:

1. CD(T) - key value map containing as key a transition and as value a set of

transitions on which t is control dependent on;

2. PI(T) - key value map containing as key a transition and as value transitions

that potentially do not in�uence t (from the NTSCD point of view).

The transitions with at least one sibling (statement 1) might NTSCD control

other transitions. Only transitions originating from the states that appear in all

maximal paths (statement 2) of transition t might be control dependent on t.

If there exists at least a sibling tst of transition t that has at least one maximal

path, which does not contain the considered state sc, all the outgoing transitions

to of sc (outgTr(sc)) are NTSCD control dependent on transition t (statements

4 - 5). Since we need as test cases sequences of transitions that are valid on the

speci�cation, the transitions on maximal paths starting at t and containing sc are

also added to the list of transitions outgTr(sc). For simplicity reasons this is not

explicitly depicted in the algorithm. Also all the sibling of t that possess at least

one maximal path bypassing sc are added as potential independent transitions for

to (statements 6 - 7).



106 CHAPTER 7. ENHANCING TEST PURPOSES

7.1.2 Data Dependence

Classical data dependence de�nitions are given in terms of variable de�nitions

and uses. Thus in terms of EFSM a variable is used on a transition if its value

appears in the guard of the transition or appears on the right hand side of an

assignment in the action of the transition. A variable is de�ned if it is assigned a

value when the respective transition is �red.

We adopt the data dependence de�nition of [ACH+09] since the used formal-

ism of EFSM is very similar to the representation we obtain after the �attening

of the statecharts. Other data dependence de�nitions are also available in the

literature (IOSTS [LG08]) but they are adapted to other formalisms that di�er

from the one we use.

De�nition 7.1.7. (Data Dependence(DD)). ti
DD−−→v tk means that transition

ti and tk are data dependent with respect to variable v if the following conditions

hold:

1. v ∈ D(ti), where D(ti) is the set of variables de�ned by actions of transition

ti;

2. v ∈ U(tk), where U(tk) is the set of variables used in the guard and actions

of transition tk;

3. there exists a path in the EFSM from source(ti) to the target(tk) whereby

v is not modi�ed.

Due to the fact that we do not modify the structure of the speci�cation, in

addition to computing the data dependence between a transition ti and tk with

respect to a variable v we are also interested in the de�nition free paths, i.e., paths

from ti to tk along which v is not rede�ned. We compute these paths by using

DFS to explore the model backwards starting from tk and following the incoming

transitions of source(tk). Each time a variable v used by tk is de�ned we save

the respective path and add the transitions on it to the set of transitions tk is

dependent on. The considered paths are all simple paths (are not allowed to visit

the same state twice). Thus after the execution of such an algorithm the map

DD(tk) will contain the transitions on which tk is data dependent on.

Since we are only interested in the execution of certain transitions, we reduce

the set of variables of interest to the ones used in the guards of the transitions

(including the variables that directly or indirectly in�uence them). The rationale

behind this is the fact that the truth value of the guards is the one that allows

for the execution of the transitions. Thus we reduce the set DD(tk) to the set

of transitions that directly or indirectly might in�uence (by de�ning variables in

guards) the truth value of the guard of tk.
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7.1.3 Communication Dependence

Depending on the state based formalism used, there are several de�nitions for com-

munication dependence under di�erent names: synchronization [JW02], global

synchronization [VLH07], or communication [LG08] dependence.

Out of these, the one closest to what we need in our setting is the one given by

[JW02] called synchronization dependence. This de�nition is more general and is

given in terms of states and transitions in concurrent models. Informally it states

that if the trigger event of some transition in an element x (x can be a state or

transition) is generated by the action of an element y, and the automatons of x

and y are concurrent, then x is synchronization-dependent on y.

In our particular case the communication dependence only relates to tran-

sitions within concurrent models. Thus we adapt the de�nition of [JW02] to

De�nition 7.1.8.

De�nition 7.1.8. (Communication Dependence(COMD)). Given two tran-

sitions ti ∈ T (SC1) and tk ∈ T (SC2), ti
COMD−−−−→v tk means that transition tk is

communication dependent on ti i� the following conditions hold:

1. SC1 and SC2 are two concurrent statecharts and

2. trigger(tk) - the triggering event of tk is generated by the actions of ti.

Informally a transition tk is communication dependent on a transition ti in a

concurrent statechart if the execution of ti will generate the triggering event of

tk.

The direct communication dependences are computed by iterating through

the transitions whose actions generate events and adding these transitions to the

key value map COMD(t) where t is the transition triggered by the generated

event.

7.1.4 Computing Indirect Dependence

After computing the direct dependences for each model in our speci�cation we

compute the indirect dependences given a set of transitions of interest. Informally

transition tj is indirectly dependent on transition ti if there exists a sequence of

dependences leading from ti to tj [LG08]. This represents the transitive closure

between ti and tj considering the ID relation.

De�nition 7.1.9. (Indirect Dependence (ID)). ti
ID−−→ tj means that tj is

indirectly dependent on ti i� there exists a sequence (t1, ..., tk) where t1 = ti
and tk = tj such that for all 1 ≤ n ≤ k: tn

NTSCD−−−−−→ tn+1 or tn
DD−−→ tn+1 or

tn
COMD−−−−→ tn+1.
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Input: T (M), CD, DD, COMD, TI
Output: TIND(t) - set of transition t does not depend on
1: for all t ∈ T (M) do
2: TCTRL(t)← TCTRL(t) ∪ t
3: TIND(t)← PI(t)
4: finished← true
5: repeat
6: finished = true
7: for all ti ∈ {T (M) \ TCTRL(t)} do
8: if controls(ti, TCTRL(t)) = true then
9: finished← false

10: TCTRL(t)← TCTRL(t) ∪ ti
11: TIND(t)← TIND(D) ∪ PI(t : i)
12: end if
13: end for
14: until finished
15: TIND(t)← TIND(t) \ TCTRL(t)
16: end for

Figure 7.5: Independent transitions computation algorithm

In Figure 7.5 we present the algorithm for computing the independent tran-

sitions (TIND) as well as the indirect dependences (TCTRL) for each transition t

in the model M (containing the communicating statecharts). The inputs for the

algorithm are the set of transitions in the model T (M) for which the dependence

relations (CD, DD, COMD) and potential independents (TI) have been previ-

ously computed. The algorithm computes TIND(t) - the set of transitions that

do not in�uence t for every transition in the model.

The function controls(ti, TCTRL(t)) (statement 8) returns true if at least a

transition in TCTRL is control, data or communication dependent on ti. The

algorithm iterates through the transitions of M and when it �nds a transition

ti for which controls(ti, TCTRL(t)) returns true it updates the sets TCTRL and

TIND accordingly. The algorithm is repeated until no more transitions are found

such that controls(ti, TCTRL(t)) = true. The set di�erence between TIND and

TCTRL represents the transitions that do not in�uence (directly or indirectly) the

transition t.

The algorithm �nishes as soon as all indirect dependences have been found.

In the worst case all transitions of the models are directly or indirectly dependent

on each other. Thus, in this case TCTRL will contan all transitions in the model

and TIND = ∅.
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Figure 7.6: Test purpose for T7

7.2 Test Purpose Generation

In this section we describe the usage of the computed dependences for the test

purpose generation. The generation process is similar to the one we presented in

Chapter 6. The test purposes are also generated with the goal of achieving high

transition coverage. This time we use the dependences in order to augment the

test purposes with refuse transitions.

Since during the transformation we preserve the traceability between the UML

model and the LOTOS speci�cation we are able to generate test purposes aimed

at covering the original UML model. Thus, Figure 7.6 contains the IOLTS repre-

sentation of a test purpose generated for covering transition T7 in Figure 7.2.

The refuse transitions in Figure 7.6 are identi�ed by applying the algorithm

presented in Figure 7.5 for computing the indirect dependences and independent

transitions for each transition in the model. Figure 7.7 contains the test case

generated by using the afore mentioned test purpose.

In the test purpose de�nition, labels of transitions are denoted by strings that

can also be stated using regular expressions (e.g. �.*� or �.*T7.*�). The label

�.*T7.*� contains the id of the searched transition whereas �.*OUTGATE.*� rep-

resents the action needed to get the values of the variables used in the statechart

after triggering the transition T7.

The edges leading to state 3 are labeled with the IDs of the transitions T7

does not depend on. The edge with the label �REFUSE� is used to mark parts of

the model that will not be explored during the test generation process. Basically

edges in the speci�cation whose labels �t the (regular expression of) the labels

of edges in the test purpose leading to the source of the REFUSE edge will not

be explored (and thus neither the behavior that they lead to). The generation

process will stop as soon as an action matching the expression .*T7.* followed

by one matching .*OUTGATE.* is encountered.
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75

0

1

INGATE !DIAGNOSIS_T0 

2

3

INGATE !ACC_T20

4

36

INGATE !MAIN_UNIT_T1

37

38

OUTGATE !IGN_ON

39

74OUTGATE !IGNITION_ON

OUTGATE !S_NOT_ACTIVE_NOTSTORED !0 !FALSE !0

OUTGATE !S_IDLE !TRUE

5

INGATE !IGNITION_T25 !IGNSTATUS (IGNITION, 1)

INGATE MAIN_UNIT_T19 !EVIGN_ON (MAIN_UNIT)

40

41

INGATE !MAIN_UNIT_T20 !TM (MAIN_UNIT, 1000)

42

43

INGATE !DIAGNOSIS_T1_X !EVERRORACTIVE (DIAGNOSIS)

44

70

71

72

INGATE !MAIN_UNIT_T5 !EVBAPHBSTATUS (MAIN_UNIT)

73

INGATE !DIAGNOSIS_T7 !EVERRORNOTACTIVE (DIAGNOSIS)

OUTGATE !ERROR_DETECT

OUTGATE !S_NOT_ACTIVE_NOTSTORED !1 !TRUE !0

OUTGATE !HB_DETECTED

OUTGATE !NOERROR

69

INGATE !ACC_T38_X !EXTTOGGLEHB (ACC)

OUTGATE !S_NOTACTIVE_STORED !1 !TRUE !1

Figure 7.7: Test case covering transition T7

7.3 Experimental Results

We evaluated the proposed approach using three real-world examples (Flasher,

Diagnosis and KeylessEntry) originating from the automotive domain and four

more from literature (presented in Chapter 3.3). We used the identi�ed refuse

transitions in order to improve the previously presented test case generation tech-

nique (Chapter 6). The present approach complements the test purposes with the

refuse transitions identi�ed by using the dependence relations.

In Table 7.1 we present the results obtained when using the current test pur-

pose generation technique aimed at transition coverage.

The �rst column of the table contains the name of the model for which the

test purposes were generated. Column Approach contains the test case generation

approach where Deps. stands for the current approach and Apr1 for the previous

one (the one in Chapter 6). The next column TPs contains the total number

of generated test purposes. Column V alidTPs presents the number of valid test
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purposes. By valid test purpose we mean test purposes not targeting transitions

copies that are not reachable on the �attened model.

In column TCs we give the number of generated test cases. Also this time

we imposed the limit of 25 minutes per test purpose. If no test case was gener-

ated within this time, the generation process is stopped. Column DepsCompTm

contains the time needed for computing the dependence relations while column

GenTime contains the time TGV was allowed to run for the generation process.

The last two columns (TCovflat and TCov) contain the transition coverage

on the �attened and non �attened model respectively.

For most of the models, the current approach delivered better results than the

previous one. This was to be expected because one eliminated transition might

translate to a (more or less) large part of the behavior (at IOLTS level - the

enumerated behavior of the speci�cation) that is not considered during the test

case generation process.

In some cases (Diagnosis, MicrowaveOven and ConferenceProtocol) the de-

pendences helped in �nding transitions that the old approach was not able to

�nd.

Even equipped with refused transitions the current approach failed in �nding

test cases to cover three transitions in the Diagnosis model. However the previous

approach failed in �nding four such test cases. Also in this case the current

approach outperforms the old one.

In our experiments we observed a variation in the generation time of several

test cases. Even though the test purposes of these test cases had refuse transitions

the di�erences between the generation times can be explained through the size

variation of the behavior reachable through the excluded transitions.
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Chapter 8

Related work

MBT has received a lot of attention form the academic community. There are

quite a few approaches dealing with test case generation from di�erent kinds of

models. Since an exhaustive survey about the general topic of MBT is out of the

scope of this work we shall focus more on the topics related to the main parts

of this thesis. Thus, in Section 8.1 we give some references regarding the topic

of MBT applied to distributed reactive systems and in Section 8.2 we present

work related to the transformation of statecharts into LOTOS speci�cations. In

Sections 8.3 and 8.4 we discuss work related to the generation of test purposes and

the usage of dependence relations for improving test case generation respectively.

8.1 Model Based Testing

Lutess is a tool used to generate tests for synchronous reactive systems [dBORZ99].

The tool makes use of a random generator (built on the basis of a Lustre [CPHP87]

speci�cation), a unit under test and a test oracle. Lustre is a formal declarative

language for specifying synchronous reactive systems. The speci�cation is a model

of the valid environment behaviors de�ning environment of interest for the testing

process. The unit under test and test oracle are synchronous reactive programs

using only boolean inputs and outputs.

Another model based test generation approach [FHNS02] is based on �nite

state machine speci�cations, a set of coverage criteria and testing constraints.

The generated test suites are aimed to cover the provided criteria while the test

constraints are used in order to alleviate the state space explosion problem by

specifying what should be avoided during the test case generation. The approach

uses the GOTCHA [EFP02] test generation tool.

TORX [TB03] is an on-the-�y random test case generation tool. It is based

113
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on the IOCO test theory (as well as TGV) and uses as input model transition

system-based speci�cations. The models can be given in the formal languages

LOTOS and Promela. The tool uses enumerative techniques (similar as TGV).

TORX integrates together the test generation and execution. The inputs of the

test cases are generated and executed on the SUT while its outputs are checked

immediately.

The AGEDIS [HN04] project proposes a methodology for automated model

driven test generation and execution for distributed systems. It is an integrated

environment o�ering support for modeling, test generation and test execution.

The tool needs as input a model of the SUT in the form of a model speci�ed

with the AGEDIS UML pro�le (using the AGEDIS de�ned modeling semantics)

and annotated with directives given in the IF formal language [BFG03]. Other

inputs are so called test execution directives describing the testing architecture of

the SUT and also the test strategies to be used in the generation process. The

AGEDIS test generator engine is based on a combination of concepts from TGV

and GOTCHA test generators and also uses enumerative techniques. Several case

studies [CSH03] have been carried out in the project covering di�erent types of

systems: Java programming interface to a messaging protocol (IBM UK), a web-

based e-tendering application (Intrasoft International), and a piece of middleware

in a message distribution system (France Telecom). �The overall conclusions from

the case studies were mixed. There was a clear recommendation to pursue model-

based testing further, citing bene�ts obtained simply by the act of modeling. The

creation of a model by testers served to highlight inaccuracies in the speci�cations

and in several cases exposed bugs at a very early stage in the development process.

There was also much praise for the integrated nature of the tools and their inter-

faces. The abstract test suite and test execution trace format were instrumental

in the integration and interoperability of a wide variety of tools all focused on

the testing of distributed systems. The test execution framework was also seen as

providing important automation services in an easily accessible manner. On the

other hand, the industrial testers were critical of the modeling language and the

test generator. The use of statecharts as the main behavioral description of the

SUT was seen as useful in some contexts but not natural in others. The choice

of IF as the action language was also criticized, since it did not provide su�cient

high level programming constructs for e�ective high level modeling�[HN04].

A stress test methodology for �nding failures related to network tra�c in dis-

tributed systems based on UML models was presented [GBL06]. The used model

is composed of di�erent types of diagrams (Class, Sequence, Context, Network

Deployment and Modi�ed Interaction Overview Diagrams) augmented with tim-

ing information. A test model is built and together with di�erent stress test

parameters (objectives) is used to automatically (via an optimization algorithm)

derive stress requirements. The requirements are then used in order to specify
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test cases aiming to stress test the system.

Model checkers like SPIN [Hol97] have been used to verify [LMM99] software

systems. In MBT model checkers are used in order to derive test cases. This is

achieved by providing a proposition usually in some sort of logic (Linear Tem-

poral Logic) that represents a negation of a test scenario of interest. Thus the

model checker will return a trace (counterexample) that violates the property

representing actually a test case to verify the test scenario.

Other MBT approaches use symbolic approaches for handling the use of data

in the models. As opposed to enumerative techniques that enumerate the possible

values of such data variables, symbolic techniques use constraint solvers in order to

provide a valuation of the variables during the test case generation process. STG

[CJRZ02] is a symbolic test generation tool using concepts from TGV (e.g. test

purposes). Another symbolic test case generation technique is STSIMULATOR

[FTW05] based on the TORX test case generator and provides on-the-�y random

test generation. It implements a symbolic variant of the IOCO theory.

Another approach [Sch12] uses constraint solvers for the generation of test

cases. The system in this case is speci�ed communicating UML statecharts. The

model is further used in order to derive its representation in the form of commu-

nicating Extended Symbolic Transition Systems (ESTS) (introduced in the same

work). The test cases in this case are computed by searching the ESTS model

and using the constraint solver to �nd valid traces in the model. Concepts similar

to test purposes are also used in this approach. Here the test purposes specify

also included and excluded item but also further state space limitations like the

number of times a loop is allowed to be unrolled. These further speci�cation are

intended to also alleviate the state space explosion problem.

Other works [VCG+08] propose a symbolic model based test generation tech-

nique also used in Object-oriented reactive systems. It presents the SpecExplorer

tool which is used by Microsoft product groups for testing operating system com-

ponents and .NET framework components. The tool explores the state space of a

model program and generates test cases from the model automaton that it built

during the exploration process. For controlling the generation process, SpecEx-

plorer o�ers restrictions mechanisms used to impose limitations on the parameters

used to call an action, preconditions and state �lters. These restrictions are used

in order to limit the searched state space. The tool o�ers on-line and o�-line test

case generation capabilities. It also makes use of several search algorithms like

Chinese postman, shortest path, random walks etc..

Also symbolic techniques su�er form the size of the state space. For example

extensions to test purposes are needed to limit the number of symbolic traces in

the used models [Sch12]. Other limitations of symbolic techniques are related to

the limitations of the used constraint solvers [JWAW10]. Some of these relate

to the data types that are allowed to be employed within the constraint solver
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as well as the fact that the extracted constraint system might not always be

solvable (there exists no valuation of the variables in order for the constraints to

be satis�ed).

UPPAAL [HLM+08] is another tool for MBT. It uses as input a model of the

SUT given by means of compositions of concurrent timed automata. It imple-

ments a timed variant of the IOCO conformance relation as the basis of the used

testing theory. The tool used in the approach is called UPPAAL TRON [LMN05]

and is used for on line black-box testing of real-time embedded systems from

non-deterministic timed automata speci�cations. It uses a randomize algorithm

and symbolic techniques in order to represent sets of clock valuations during the

generation process. Since the test cases are generated on-line the state space ex-

plosion problem is alleviated and by dynamical exploration of the states of the

system, the approach can also deal with nondeterministic behaviors. However the

length of the obtained test cases tends to increase due to the random nature of

the used algorithm.

The attention MBT has received form the academic community and the ad-

vantages it has proved have led to the steady but sure adoption of di�erent such

techniques in industrial MBT tools:

• CONFORMIQ [CS13] uses models of the SUT constructed by means of the

QML language (UML state machines annotated with time properties). Test

cases are traces starting from an initial node to a �nal node in the used

model.

• Reactis [RS13] provides test case generation capabilities for for Simulink/S-

tate�ow models [Mat13]. The tool can be used for testing conformance

between a model and its implementation.

• CERTIFYIT [Sma13] is a tool that uses a functional model of the SUT

speci�ed by means of UML class, object and statechart diagrams enriched

with OCL for the automatic generation of test cases. Test are generated

based on requirement coverage and other user de�ned strategies.

• TVEC [Tec13] is a tool suite for model-based functional test case genera-

tion. The used models are given in a proprietary language called T-VEC

Linear Form. The generated test cases also called test vectors and include

traceability information to their associated requirements thus o�ering re-

quirement coverage.

• TESTWEAVER [Qtr13] is a tool aimed at automatic validation of systems.

It o�ers only on-line test generation capabilities. It allows the usage of

reactive and continuous models speci�ed in di�erent languages e.g. Simlulik

[Mat13], Modelica [mod13].
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Several surveys considering di�erent MBT approaches and further aspects of

the topic [AKEV08, DNSVT07, ST08, PERH04] are also available.

8.2 UML Statecharts Formal Semantics via LOTOS

The transformation of UML statecharts into LOTOS was tackled in older work

[HH01]. This approach has several limitations making it unfesable for our needs.

First it does not allow the use of data variables in the statechart using only basic

LOTOS for the transformation. Thus, there are no actions on transitions, entry,

exit and internal actions of states or completion transitions. Regarding the use

of pseudostates, only initial and �nal nodes are allowed. Communication, timing

and con�icting transitions are also not supported.

Another approach [dS01] of deriving a LOTOS representation from UML con-

structs was proposed. Starting from the UML metamodel, the authors de�ne

mapping rules for some of the structural and behavioral diagrams. Concerning

the behavioral aspects the focus is on the transformation of activity diagrams to

LOTOS. Even though they allow the use of several pseudostates, the operational

semantics of activity diagrams di�er from the ones used by statecharts. There are

no concepts of history, asynchronous communication, timing, run to completion

step.

More recently transformation rules for deriving a LOTOS speci�cation from

an UML statechart [MS08] have also been proposed. The work considers �rst

mapping rules of �at state machines to LOTOS and then tackles compositional

(to be understood as hierarchical relations) semantics regarding the passing of

control from subprocesses to their containing process. Regarding the second part

of the paper, the authors base their approach on the introduction of a new operator

allowing control passing from subprocess to parent process. By using full LOTOS,

the work allows the use of variables in the statechart and on transition triggering

events. This approach does not consider the treatment of history pseudostates,

asynchronously communicating models and timing. The treatment of the run to

completion step and con�icting transitions are also not mentioned.

Other approaches [BB11] consider transforming �nite state machines to LO-

TOS. The disadvantages of �nite state machines compared to statecharts have

already been discussed in Section 2.2. We only mention some of them : no data

values are accepted, no pseudostates, di�erent operational semantics, timing etc..

Regarding the addition of constructs representing timed behavior in LOTOS

speci�cations, there are several approaches proposing such an extension. Some

of them [Led92, RBC93, LL93, LGC96] are based on the introduction of new

operators or restrict [Kho01, BD97] the language to only its basic form (the use

of data values is not allowed). We use the standardized full version of the lan-

guage (including the data part). Thus, the insertion of new operators and lack
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of the appropriate tool support was an impediment in using the afore mentioned

approaches.

Our treatment of timing is closer to approaches [Has01] where a separate

process is used to handle timing aspects. However our approach does not enu-

merate time but uses a concept inspired from that of time intervals (the di�erent

timeouts available in the system) and urgency. However in our case actions in

LOTOS (execution of timeout transitions) occur at time tmax form the time in-

terval [tmin, tmax] (as opposed to any time t such that tmin <= t <= tmax) where

tmin is the moment the source state of the transition was entered. tmin and tmax

are not explicitly modeled however they can be computed from the resulting test

cases.

E-LOTOS [LL97, Ver99], the newer and improved variant of LOTOS even

though it supports the use of time does not yet enjoy the required tool support.

LOTOS NT [CCG+05], an earlier variant of E-LOTOS is accepted in the CADP

toolset but no handling of time is yet o�ered. Time handling was planned but

not yet implemented.

8.3 Test Purpose Generation

TGV has been used in various case studies for automatic test generation. For

example TGV was used for test case generation and was provided with manually-

designed test purposes and randomly-generated test purposes [dBRS+00]. The

use of TGV on the cache coherency protocol [KVZ98] was presented. These

works don't use a structured way of automatic test purpose generation aimed

at providing coverage metrics on the used speci�cations. The design of the test

purposes is also not very well detailed.

A strategy for generating test purposes aimed at decision/condition coverage

of a LOTOS speci�cation of a SIP Registrar [APWW07] was also presented. This

is achieved through the insertion of probes in the speci�cation and using them

as goals in the test purposes. In our case the initial representation of the system

is as UML communicating statecharts. So concerning structural aspects of the

speci�cation, of interest for us are coverage metrics on the statechart model like

state and transition coverage.

Another work [DT02] proposes a formalization of the notion of test purpose

as Message Sequence Charts (MSC). Compared to our approach, this one requires

extra e�ort for modeling the test purposes using another type of diagrams (MSC)

than the ones used for describing the desired behavior of the system.
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8.4 Improving Test Purposes

In our work, the way of using the dependences di�ers from other approaches

[ACH+09, LG08, JW02] where the models are sliced according to a slicing criteria.

These approaches have proven their worth in situations involving techniques like

model checking and debugging. We use the relations in order to identify refuse

transitions and do not modify the structure of the model. We also do not generate

a separate speci�cation for every criterium of interest.

Regarding the control, data and communication dependences, we discussed

the related work at the respective sections where we introduced each of the used

de�nitions. Moreover, there is a very good survey regarding dependency relations

and slicing of state based systems available [And12]. Hence, we focus more on

the use of dependences and slicing in the context of test case generation in this

section.

Slicing has been used for the purpose of test case generation from UML activity

diagrams [SM09]. There, the generated test cases are aimed at path coverage

(their diagrams contain an end node) by computing dynamic slices corresponding

to each conditional predicate on the edges of the diagram. In their work no static

control dependences are used and only data dependences are employed so that only

the nodes that a�ect the truth value of the predicate on the edge at run time are

kept in the slices. Some di�erences to our work include the used formalisms (UML

activity diagrams vs. UML statecharts), the type of systems (non distributed

systems vs. distributed systems using asynchronous communication) and type of

slicing (dynamic slicing vs. static slicing).

Another approach [WW09] also tries to generate test purposes and extended

them with refuse states. In this case the refused states are computed using data

�ow graphs that are extracted from LOTOS speci�cations. The dependence re-

lations (data �ow graphs), type and behavioral semantic (synchronously com-

municating processes) of the systems are some of the di�erences to the current

approach.

An approach using slicing for test case generation [BFG03] computes slices

from speci�cations given in the formal language IF. The slices are calculated with

respect to sets of signals (inputs or outputs) and also require external data in

the form of test purposes or feeds. Our approach uses di�erent formalisms and

there is no need for external user provided data. We also do not generate a new

speci�cation for each criterium.

The derivation of test purposes from temporal logic properties speci�cations

[dSM06] was also proposed. The approach uses modi�ed model checking algo-

rithms to extract examples and counterexamples from the state space of the

speci�cation. Test purposes are then constructed by analyzing the extracted

behaviors.
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Conclusions

9.1 Summary

In the current work we presented an approach for automatic model-based test

case generation in an industrial environment. The models used for the genera-

tion process are composed of asynchronously communicating components (UML

Statecharts).

The proposed approach can increase the automation degree of the testing

process and thus reduce the cost of this activity. In our speci�c project setting it

was of utmost importance to provide a solution that can easily be integrated into

the test automation set-up in place, the employed modeling paradigms (i.e. UML

statecharts), and the test engineer's domain expertise. The UML enjoys a formal

syntax but lacks a formal semantic. This was a problem since in order to use

automatic test case generation tools, a formal semantic is also required. So we

presented a semantics-preserving model transformation from UML Statecharts

to the formal language LOTOS - the primary input language of the test case

generator TGV. This process is fully automated and hidden from the user.

Given that the considered type of systems also use timing constructs to realize

their functionalities, a method to accommodate this need was also presented.

Furthermore as LOTOS has no constructs for representing time, the concept

presented in the current work can also be adapted for other types of systems

requiring timing to be speci�ed in LOTOS.

Once the appropriate test case generation technique and formal model are in

place, the question of how to select the appropriate set of test cases arises. There

are several approaches tackling this issue. The use of test purposes has shown to

be very promising for this task. Test purposes represent abstractions of scenarios

that need to be tested. These are usually speci�ed by using some sort of formal

representation. For the test case generation we presented two di�erent ways of
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generating test purposes. One of them is aimed at providing structural coverage of

the model and is fully automatic. The second approach to test purpose generation

is partially automated requiring the intervention of the user for specifying desired

test scenarios by annotating states and/or transitions of the UML model.

The exponential growth of the number of possible states representing the

behavior of a system is a well known problem not only in the testing domain.

This is also known as the state space explosion problem and is one of the biggest

factors in�uencing the test case generation process. The generation time and the

probability of �nding the required test cases are directly in�uenced by the size of

the possible behaviors of the system. The issue of state space explosion has yet

to be fully resolved. So depending on the situation at hand di�erent techniques

need to be considered in order to alleviate this problem.

In model checking, dependency relations have been used in slicing of speci�-

cations in order to obtain reduced models pertinent to a criterium of interest. In

speci�cations described using state based formalisms slicing involves the removal

of transitions and merging of states thus obtaining a structural modi�ed speci�-

cation. Using such a speci�cation for model based test case generation activities

where sequences of transitions represent test cases might provide traces that are

not valid on a correctly behaving implementation. In order to avoid such trouble,

we also propose the use of control, data and communication dependence for iden-

tifying parts of the model that can be excluded so that the remaining speci�cation

can be safely employed for test case generation. This information is used in order

to enhance test purposes with refuse states. These states are used by TGV to

limit the searched state space during the generation process.

The proposed technique is an attempt at closing the gap between the academic

tools and their usage in an industrial context. We implemented the presented

approach in a prototype tool.

9.2 Limitations

The proposed technique can increase the automation degree of the testing process.

However in order to successfully use the approach also its limitations need to be

considered.

State space explosion. As already mentioned probably the biggest problem

for applying automatic test case generation techniques is the exponential growth

of the state space describing the behavior of the model. Some of the factors

in�uencing the size of the state space are data variables (all possible values gen-

erate new states) and parallelism (di�erent behaviors combinations need to be

considered).

Model and used abstractions. In model based testing the model describing

the desired behavior of the SUT is the basis for the generation of test cases. The
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models need to be validated themselves. Thus the model must be simpler (at a

higher abstraction level) than the SUT �or at least easier to check, modify and

maintain. Otherwise, the e�orts of validating the model would equal the e�orts

of validating the SUT� [UPL06]. Even though the model is more abstract than

the SUT it is crucial that it preserves enough details regarding the behavior that

needs to be tested in order for it to be used for generating �meaningful� test cases.

So the appropriate trade o� between the two afore mentioned factors needs to be

found. This is not always an easy task requiring knowledge about the test case

generation tool limitations, modeling experience as well as domain knowledge in

order to �nd and apply the appropriate abstractions.

Deterministic models. The proposed approach only considers deterministic

models. This restriction was imposed by our research context. However it also

reduces the state space since after an input sequence the same output will be pro-

vided. As opposed to nondeterministic systems where in di�erent runs the same

inputs might cause di�erent responses (output) form the SUT thus increasing the

number of possible executions.

Communication scheme. Another particularity of our research context is

the use of an asynchronous communication between the components of the system.

This employs the usage of a FIFO queue which is used to store events received by

the system during execution. The events will be consumed by the system once it

reaches a stable state. The communication is also deterministic, that is during a

run to completion step the other statecharts in the system are not evolving (no

changes of state happen and no new events are generated).

UML modeling elements. Due to ambiguities in the UML standard refer-

ring to execution within orthogonal states in a statechart, these and the corre-

sponding pseudostates (AND connectors - join and fork) are not considered in

the proposed transformation. This restriction relates to the need of deterministic

systems since the UML does not specify the exact order in which transitions are

�red in orthogonal states if more than one transition in the state can be �red at

one time.

9.3 Future Work

Some of the directions of future research aim to alleviate the restrictions presented

in Section 9.2:

• Investigating the application of the proposed approaches in case of nonde-

terministic systems. The transformation approach can be modi�ed in order

to derive a LOTOS speci�cation that allows non-deterministic behavior of

the systems. Thus extending the transformation technique in order to ac-

commodate also UML orthogonal states and the join and fork pseudostates

is also desired. However the state space of the models will also increase so
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in order to apply test case generation techniques, further abstractions might

be needed during the modeling process.

• Further test case generation techniques are also of interest. For example

applying a randomized test case generation and comparing the results with

those obtained with the current technique.

• Regarding the use of dependences for adding refuse states to test pur-

poses, another direction of interest for future work is the investigation of

the happens-before relation for communication dependence. As also men-

tioned in [ACH+09] the communication dependence is not transitive thus

reducing the precision of the obtained slices. In our case this means a pos-

sible increase of the number of refuse transitions identi�ed and included in

the test purpose. The happens-before relation [Lam78] helps by ensuring

that dependences exist only between transitions where the source transition

can happen before the target transition. In our case this means a possible

increase of the number of identi�ed refuse transitions.
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ADT Abstract Data Type page 33

CCS Calculus of Communicating Systems page 33

CFG Control Flow Graph page 101

COMD Communication Dependence page 107
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