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Kurzfassung

In den vergangenen Jahren gab es einen dramatischen Anstieg der Systemintegrations-
dichte von integrierten Halbleiterimplementierungen. Diese Marktentwicklung wurde in
erster Linie von zwei Faktoren getrieben. Erstens, der Markt für Unterhaltungselektronik
forderte eine wachsende Menge an integrierter Funktionalität in mobilen Anwendungen.
Zweitens, neue Fertigungstechnologien im deep-submicron Bereich erlaubten diese stei-
gende Integration bei nahezu gleichbleibendem Energiebedarf. Ein negativer Nebeneffekt
dieser hohen Integrationsdichten ist ein breites Spektrum an Zuverlässigkeitsproblemen,
die von den Systemdesignern gelöst werden müssen. Weiters müssen auch absichtliche
Fehler berücksichtigt werden, welche durch einen Angreifer in das System eingebracht
werden um dieses in einen fehlerhaften Zustand zu bringen. Während es in den letzten
Jahren ein breites Spektrum an Forschung auf dem Gebiet von Untersuchungstechniken
in frühen Designständen gab, z.B. simulations- oder emulationsbasierte Ansätze, gab es
kaum Bewegung am Gebiet der Fehlererkennung.

In dieser Arbeit werden neue Methoden der effizienten kontrollflussbasierten Laufzeit-
prüfung der Ausführungsintegrität gesucht und evaluiert. Zu diesem Zwecke wurden neue
signatur-basierte Techniken eingeführt, welche eine Verschmelzung der Fehlerdetektions-
mit einer Leistungsabschätzunginfrastruktur ermöglichen. Auf Grund der stark einge-
schränkten Resourcen in der gewählten Zieldomäne werden weiter neue Methodiken zur
Abschätzung der Fehlererkennungs-, Resourceverbrauchs-, Stromverbrauchseffizienz be-
nötigt. Diese Eigenschaften sollen mit Hilfe einer FPGA-basierten Emulationsplatform
evaluiert werden. Daher wurden im Rahmen dieser Arbeit neue Methodiken entwickelt,
um schnelle und genaue Evaluierungen mittels solcher Emulationssysteme zu ermöglichen.
Die hierfür implementierten Fallstudien basieren auf einer von Gaisler Research entwickel-
ten SPARC-v8 Implementierung (LEON3). Weiters wurde die generelle Anwendbarkeit der
vorgestellten Techniken in einem industriellen Anwendungsbeispiel demonstriert, welches
auf einem echten Smart-Card System inklusive einem sicheren Betriebssystem basiert.
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Abstract

Recent years showed a dramatic increase in system integration density of embedded semi-
conductor implementations. This development was driven by two main factors. First,
market demand for ever more functionality residing in small mobile devices. Second,
deep-submicron semiconductor manufacturing processes allowed to increase density at a
steady power consumption. High integration density, on the other side, results into a vari-
ety of additional problems for the system designers. A major concern in recent and future
designs in this context is execution reliability caused by operational faults. Another fault
source that got into the focus of various research groups are intentional ones caused by
malicious attackers, trying to put the target system into an unintended state. While there
has been a wide range of research concerning early design phase investigation techniques,
like simulation or emulation approaches, detection has only slightly improved.

In this work novel techniques are explored to enable efficient on-line checking of op-
eration integrity. For this task novel signature-based techniques are introduced, which
enable the integration of fault detection mechanisms into power estimation infrastructure.
Also, such new implementations require methodologies to test their effectiveness in terms
of fault detection, resource usage, and power consumption. These operational properties
are evaluated using two FPGA-based emulation systems, one of academic nature and an
industrially used one. Therefore, this work introduces new techniques to enable fast and
accurate system evaluations using general emulation-based evaluation platforms. The pro-
vided case-studies are based on the open available SPARC-v8 implementation provided
by Gaisler Research (LEON3). Furthermore, an industrial case study using a smart-card
hardware implementation and secure operating system is presented to prove the general
applicability of the introduced approaches.
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Extended Abstract

In 1965 Gordon Moore of the Intel Cooperation postulated that the amount of transistors
integrated into semiconductor systems will double every two years. His assumptions stand
true up until now and, according to Intel, will hold for the many years to come. This
development was enabled by a continuous improvement of semiconductor manufacturing
processes and system integration techniques. Currently, deep sub-micron processes enable
structures of 22nm and smaller sizes, resulting in an isolation thickness of only a few
atomic layers. From a system perspective, dense Systems-on-Chip (SoCs) implementations
concentrated many different functions (processor cores, audio and video IP cores, and
communication interfaces to name a few) into single packages.

This highly increased integration density came at a price: high peak power consump-
tion caused by the high number of sub-systems; dependability issues and device degrada-
tion problems caused by the fragility of deep sub-micron structures; security issues caused
by the intermixture of personal data and entertainment functions. These challenges have
to be dealt with at the earliest possible design-stage to avoid problems after market entry
of the finalized product. Hardware emulation approaches, based on field programmable
gate arrays (FPGAs), aim to solve previously described challenges at once. First, direct
synthesis of the RTL description of the final product for FPGA evaluation platforms, pro-
vides functional equivalence of the evaluation and production hardware model. Second, the
hardware implemented model is enabled to be evaluated at realistic clock-rates, improv-
ing speed and timing equivalence (depending on system complexity). These advantages
are used in hardware-accelerated software verification platforms, already supporting the
hardware/software co-design process for years. Unfortunately, these verification systems
do not provide power information or allow the investigation under fault conditions.

The POWER-MODES project1, which included and financed this work, aims at provid-
ing a comprehensive evaluation platform for security, dependability, and power investiga-
tions. This inter-disciplinary approach merges solutions for different but highly connected
problem spaces into a single hardware-accelerated evaluation system. While the focus lies
on the high performance verification of software implementations, the derived techniques
are also applicable on highly focused hardware verification tasks. This way, an efficient
possibility for hardware/software codesign is created for the estimation of system power ef-
ficiency and dependability under fault conditions. An overview over such a comprehensive
approach, combining two different domains into a single evaluation platform, is depicted
in Figure 1.

1POWer EmulatoR and MOdel based DEpendability and Security evaluation platform, collaborative
research project of the Graz University of Technology, Infineon Austria AG and AustriaCard GmbH.
Funded by the Austrian Federal Ministry for Transport, Innovation, and Technology under the FIT-IT
contract FFG 825749.
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Figure 1: Control-flow-based Online Fault Detection and Analysis - A Comprehensive Approach

As visualized in Figure 1, power-aware and fault-aware design relies on techniques from
various backgrounds. This thesis aims at providing a novel methodology to evaluate exist-
ing system implementations, using static and dynamic techniques, and to design variants
that solve identified weaknesses. First, the power-aware design approach for the devel-
opment of embedded software has to be extended for enabling power analysis techniques
used in security evaluations. For this purpose, a hardware-accelerated methodology has
been presented, introducing such functionality into a proven power characterization and
evaluation flow2. Such strategies can be categorized as dynamic evaluation techniques.

Second, to enable the merger of security-aware power estimation, as discussed earlier,
and direct fault-attack investigations into a single evaluation platform, additional fault
injection circuitry is necessary. In the course of this work, a modular implementation
of such fault injection hardware has been derived and integrated into existing software
verification infrastructure3. The experiences gained during the creation of a data-aware
power estimation platform has been used to introduce novel countermeasures against such
forms of attack. Under the consideration of the challenges posed by the design of resource-
constrained systems, only existing infrastructure has been reused to keep additional hard-
ware effort as low as possible4.

2Krieg et al., Accelerating Early design Phase Differential Power Analysis Using Power Emulation
Techniques, 4th IEEE International Symposium on Hardware-Oriented Security and Trust 2011 (HOST
’11), San Diego, United States of America, 5-6th of June 2011.

3Grinschgl et al., Case Study on Multiple Fault Dependability and Security Evaluations, Elsevier Mi-
croprocessors and Microsystems (MICPRO), accepted for publication, 2013.

4Krieg et al., A Side Channel Attack Countermeasure using System-On-Chip Power Profile Scrambling,
17th IEEE Intl. On-Line Testing Symposium 2011 (IOLTS ’11), Athens, Greece, 13-15th of July 2011.
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All previously discussed evaluation techniques and design practices have been inte-
grated and investigated inside a single platform. Furthermore, hardware security attacks,
as shown in previous literature, have been mapped onto this system and successfully
presented5. Large multi-processor system-on-chip (MPSoC) implementations introduced
various new issues concerning security and dependability. Under the consideration of these
new challenges, also the power estimation approach was modularized and data from the
physical implementation was included to increase the evaluation accuracy6. Again, ad-
vances in the field of evaluation techniques can be used to improve various design method-
ologies. The heterogeneous nature of MPSoCs poses a tremendous challenge for secure
system design. Considering that system-wide fault detection has to be provided, a micro-
architectural signature approach has therefore been introduced to cover this gap in existing
literature7. The integration of such novel techniques into existing implementation is a ma-
jor concern in the design of large systems. Therefore, an automatized approach has been
shown to generate complete monitor modules using the previously presented signature
characterization process8.

The major drive behind all introduced techniques for evaluation and design of digital
systems shown in this work, has been security-aware engineering. Safety engineering suffers
from many similar problems, with the difference that faults are caused by random sources9.
The dynamic evaluation of large heterogeneous digital systems is increasingly limited by
available investigation techniques and resources. Hence, formal verification methods are
introduced in various parts of the verification process. Furthermore, static analysis of the
hardware description allows for the linking of the high-level RTL view and the low-level
physical implementation of the design10.

5Krieg et al., POWER-MODES - POWer EmulatoR and MOdel based Dependability and Security evalu-
ations, ACM Transactions on Reconfigurable Technology and Systems (TRETS), Volume 5, Issue 4, Article
19, 2012

6Krieg et al., System Side-Channel Leakage Emulation for HW/SW Security Coverification of MPSoCs,
15th IEEE Symposium on Design and Diagnostics of Circuits and Systems 2012 (DDECS ’12), Tallinn,
Estonia, 18-20th of April 2012.

7Krieg et al., Characterization and handling of Low-Cost Micro-Architectural Signatures in MPSoCs,
17th IEEE European Test Symposium 2012 (ETS ’12), Annecy, France, 28th of May to 1st of July 2012.

8Krieg et al., PROCOMON - An Automatically Generated Predictive Control Signal Monitor, 15th
Euromicro Conference on Digital System Design 2012 (DSD ’12), Izmir, Turkey, 5-8th of September 2012.

9Krieg et al., Power and Fault Emulation For Software Verification and System Stability Testing in
Safety Critical Environments, IEEE Transactions on Industrial Informatics (TII), to be published in Volume
9, Issue 2, 2013.

10Krieg et al., Acceleration of Fault Attack Emulation by Consideration of Fault Propagation, 11th Intl.
Conference on Field-Programmable Technology 2012 (FPT ’12), Seoul, Korea, 10-12th of December 2012.

vi



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 David and Goliath - Design Challenges of the Large and Tiny . . . . . . . . 2
1.1.2 Power- and Fault-Awareness in Modern System-On-Chip Designs . . . . . . 4
1.1.3 Hardware-Accelerated Emulation for Software Verification . . . . . . . . . . 5

1.2 Control-State-Based Fault Detection and Analysis in Multi-Processor System-On-
Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 The POWER-MODES Project . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Contributions and Significance . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 Structure of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Related Work 10
2.1 Hardware-Accelerated Dynamic Verification Techniques . . . . . . . . . . . . . . . 10

2.1.1 Emulation-Based Power Estimation . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Power Analysis Techniques for Software Verification . . . . . . . . . . . . . 11
2.1.3 Fault Injection-Based System Analysis . . . . . . . . . . . . . . . . . . . . . 12

2.2 Fault Detection in Secure and Dependable Systems . . . . . . . . . . . . . . . . . . 12
2.2.1 Software-Based Signature Mechanisms . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Hardware-Based Signature Mechanisms . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Hardware/Software Co-Design Solutions . . . . . . . . . . . . . . . . . . . . 13

2.3 Static System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 High-Level Verification for Security and Safety Domains . . . . . . . . . . . 14
2.3.2 Classic Application of Formal Methods in Hardware Verification . . . . . . 14
2.3.3 Static VHDL code analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Fault Propagation Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Summary and Difference to the State-of-the-Art . . . . . . . . . . . . . . . . . . . 17

3 Fault Detection and Analysis for Multi-Processor Systems-on-Chip 18
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Power-Aware and Fault-Aware Software Verification . . . . . . . . . . . . . . . . . 19

3.2.1 Data-Aware Emulation-Based Power Estimation . . . . . . . . . . . . . . . 19
3.2.2 Software Verification under Fault Conditions . . . . . . . . . . . . . . . . . 22
3.2.3 Evaluation Support using Static Code Analysis Methods . . . . . . . . . . . 24

3.3 Control State Based Fault Detection and Run-time Manipulation . . . . . . . . . . 24
3.3.1 System-wide Signature-Based Fault Detection . . . . . . . . . . . . . . . . . 25
3.3.2 Run-time Manipulation of a System’s Power Consumption . . . . . . . . . . 27

vii



4 Evaluation of the MPSoC Fault Detection and Analysis Techniques 28
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Target and Evaluation Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Software Verification in Smart-Card Systems . . . . . . . . . . . . . . . . . 28
4.2.2 Multi-Core LEON3 System-on-Chip Platform . . . . . . . . . . . . . . . . . 29

4.3 Power-Aware and Fault-Aware Software Verification . . . . . . . . . . . . . . . . . 30
4.3.1 Hardware-Accelerated Power-Aware Hardware and Software Fault Attack

Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Emulation-based Secure Software Verification for Smart-Card Products in

an Industrial Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.3 Power-Aware Evaluation of Self-tests in the Safety Domain . . . . . . . . . 36

4.4 Signature-based Fault Detection in MPSoCs . . . . . . . . . . . . . . . . . . . . . . 38
4.4.1 Characterization of Systems for Optimized Signature Implementations . . . 38
4.4.2 Automatized Generation of Signature Checking Hardware . . . . . . . . . . 40

4.5 Hardware Testing Support using Static Analysis Methods . . . . . . . . . . . . . . 42

5 Conclusion and Future Work 44
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 High-Level Evaluation of Security Policies during Early Design Phases . . . 45
5.2.2 System-Level Power and Security Evaluations of Mobile Systems . . . . . . 45

6 Publications 47
6.1 Accelerating Early Design Phase Differential Power Analysis Using Power Emulation

Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Case study on multiple fault dependability and security evaluations . . . . . . . . . 56
6.3 A Side Channel Attack Countermeasure using System-On-Chip Power Profile Scram-

bling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 POWER-MODES - POWer EmulatoR and MOdel based Dependability and Security

evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5 System Side-Channel Leakage Emulation for HW/SW Security Coverification of

MPSoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.6 Characterization and Handling of Low-Cost Micro-Architectural Signatures in MP-

SoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.7 PROCOMON - An Automatically Generated Predictive Control Signal Monitor . . 105
6.8 Power And Fault Emulation For Software Verification and System Stability Testing

in Safety Critical Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.9 Acceleration of Fault Attack Emulation by Consideration of Fault Propagation . . 120

References 124

viii



List of Figures

1 Control-flow-based Online Fault Detection and Analysis - A Comprehensive Approach v

1.1 Dawn of the Machine-to-Machine (M2M) Age (adapted from [1]) - the development
of the mobile device market is far from over, M2M communication will further
increase the number of mobile devices sold . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Market developments in stationary and portable systems concerning complexity,
performance, and implementation effort, according to the ITRS . . . . . . . . . . . 2

1.3 The gap between software, hardware design productivity, and required firmware is
continuously widening if no countermeasures are taken in time (adapted from [2]) . 3

1.4 Challenges concerning the verification of future complex systems according to Men-
tor Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Manufacturing variability is strongly worsening for deep sub-micron technologies,
according to [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Usage trends for hardware-accelerated emulation during system design and verifica-
tion, according to [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 The POWER-MODES project - Tackling power-aware and fault-aware software
evaluations concurrently using a single hardware-accelerated emulation platform
(adapted from [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Publication overview concerning a comprehensive system-on-chip evaluation method-
ology for secure/reliable software and hardware implementations . . . . . . . . . . 19

3.2 Basic power emulation principle - Generating run-time power estimates from the
current state of selected control signals (adapted from [5]) . . . . . . . . . . . . . . 20

3.3 Power model creation process - Utilization of accurate power simulation to generate
reduced power macro models (adapted from [6, 5]) . . . . . . . . . . . . . . . . . . 21

3.4 Power consumption caused by CMOS gates during signal switching . . . . . . . . . 21
3.5 Power emulation architecture - Flexible and integratible hardware power estimator

(adapted from [5]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Automatized System Augmentation and Verification Platform Generation (adapted

from [5]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 High Performance Architecture for the Power Evaluation of Software under Faulty

Conditions (adapted from [5]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8 Extension of the Data-Aware Power Estimation Approach with Leakage Sensors

(adapted from [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9 Global Fault Attack Analysis Flow under the Consideration of Fault Propagation

(adapted from [8]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.10 Control Signal Signature Characterization and Implementation Methodology (adapted

from [9]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.11 Signature Checking Architecture for a General Purpose Processor (adapted from [9]) 26
3.12 Hardware generation process for modular signal monitor architectures (adapted from

[10]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



3.13 Online Power Consumption Manipulation Methodology (adapted from [11]) . . . . 27

4.1 SLE77 system-on-chip architecture overview . . . . . . . . . . . . . . . . . . . . . . 29
4.2 LEON3 system-on-chip architecture overview - Obtained with modifications from [12] 29
4.3 Power-aware software verification, run-time power estimation of the dhrystone bench-

mark program running on the SLE platform - Obtained with modifications from [5] 30
4.4 Power consumption trace of an AES software encryption with and without the appli-

cation of countermeasures using the LEON3 platform - Obtained with modifications
from [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Mapping of a fault-attack scenario to a saboteur based fault injection architecture
- Obtained with modifications from [5] . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6 AES-SBOX fault emulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7 Leakage sensor results for an AES software implementation - Obtained with modi-

fications from [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.8 Leakage sensor results for an AES hardware implementation - Obtained with mod-

ifications from [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.9 Mapping of memory attack scenarios onto an FPGA-based software verification

system - Obtained with modifications from [13] . . . . . . . . . . . . . . . . . . . . 35
4.10 Evaluation architecture for the software verification of automotive implementations

- Obtained with modifications from [14] . . . . . . . . . . . . . . . . . . . . . . . . 36
4.11 Evaluation of various reduced hash algorithm implementations, depending on dif-

ferent signature sizes - Obtained with modifications from [9] . . . . . . . . . . . . . 38
4.12 Signature-based on-line monitoring architecture for a processor pipeline - Obtained

with modifications from [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.13 Full system checking architecture - Example implementation for the LEON3 system-

on-chip - Obtained with modifications from [10] . . . . . . . . . . . . . . . . . . . . 40
4.14 Dependencies for an attacked circuit node - Obtained with modifications from [8] . 42
4.15 Checker results for a specific attack point - Obtained with modifications from [8] . 42

6.1 Publication overview concerning a comprehensive system-on-chip evaluation method-
ology for secure software and hardware implementations . . . . . . . . . . . . . . . 48

x



List of Tables

4.1 Long-time attack run using an commercial verification platform . . . . . . . . . . . 35
4.2 Fault injection into Ethernet communication results [14] . . . . . . . . . . . . . . . 36
4.3 Fault injection into Ethernet controller memory results [14] . . . . . . . . . . . . . 37
4.4 Fault injection into embedded processor memory results [14] . . . . . . . . . . . . . 37
4.5 Evaluation of embedded processor self-test procedures [14] . . . . . . . . . . . . . . 37
4.6 Resource usage comparison [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7 Characterization results [10] - Instruction/Signature Pairs . . . . . . . . . . . . . . 41
4.8 Resource usage comparison on the LEON3 platform [10] . . . . . . . . . . . . . . . 41
4.9 Fault detection efficiency comparison [10] . . . . . . . . . . . . . . . . . . . . . . . 41
4.10 Checker evaluation result for a single attacked node [8] . . . . . . . . . . . . . . . . 43

xi



List of Abbreviations
ACM Association for Computing Machinery
AES Advanced Encryption Standard
API Application Programming Interface
ASIP Application-Specific Instruction Processor
BDD Binary Decision Diagram
CAN Controller Area Network
CMOS Complementary Metal Oxide Semiconductor
CRC Cyclic-Redundancy-Check
DES Data Encryption Standard
FPGA Field Programmable Gate Array
FSM Finite-State Machine
HDL Hardware Description Language
HW Hardware
IDE Integrated Development Environment
IP Intellectual Property
IEEE Institute of Electrical and Electronics Engineers
ITRS International Technology Roadmap for Semiconductors
LUT Look-Up Table
MBU Multi-Bit Upset
MPSoC Multi-Processor System-on-Chip
NoC Network-on-Chip
NVM Non-Volatile Memory
PE Power Emulation
RFID Radio Frequency Identification
RAM Random-Access Memory
ROM Read Only Memory
RSA Rivest-Shamir-Adleman Public Key Cryptography
RTL Register Transfer Level
SER Soft Error Reliability
SEU Single Event Upset
SMV Symbolic Model Verifier
SoC System-on-Chip
SMP Symmetric Multi-Processing
SPARC Scalable Processor Architecture
SPICE Simulation Program with Integrated Circuit Emphasis
SW Software
VHDL Very High Speed Integrated Circuit Hardware Description Language
WCET Worst-Case Execution Time

xii



Glossary

Control State Based Fault Detection
The term control state based fault detection has been artificially formed from the commonly used
concept control flow checking [15, 16] and the concept of processor fingerprinting as described in
[17]. This technique uses checkpoint signatures of the current processor state, hence, such hashes
allow to check if the system behaves correctly compared to a given reference. The latter principle
is not generic enough for the purpose of this work, as it is only applicable to modular-replicated
processors running in lock-step mode or by comparing with long pre-recorded signatures.

Multiprocessor Systems-on-Chip (MPSoC)
The term multiprocessor systems-on-chip (MPSoC) has been used in recent years to describe com-
plex heterogeneous chip implementations combining the advantages of data processing parallelism
of multi-processors and high-level integration of systems-on-chip [18, 19]. The large scale introduc-
tion of these multi-functional devices enabled many functionalities common in today’s smart-phones
(i.e. multi-protocol communication, audio and video codecs etc.).

Efficiency
The term efficiency has to be substantiated depending on the field it is applied to. Concerning
fault detection, detection efficiency specifies the ability to detect a fault during run-time. Power
efficiency describes a system’s capability to regulate its power consumption and to utilize available
resources in an effective way. If system performance is concerned, efficiency means the ability to
execute a given program using available resources in an effective manner.

Information Leakage
The term information leakage means the dependency of the power profile on processed data. This
direct or indirect dependency could lead to the leakage of internal information to the outside, if
an external person applies profile-processing techniques.

Fault
A fault constitutes a deviation of normal internal system states or signals. Such deviation could
lead to the generation of wrong results, but it could also be masked by the current system state.

Error
An error describes a deviation from the expected system behavior caused by a fault. Therefore,
an error is a final consequence after a fault was activated and the result is stored by internal or
external resources.

Deep-submicron process technology
Commonly the expression deep-submicron process technology is used for manufacturing processes
using transistor channel lengths smaller than 0.18um. Such a distinction was necessary as scaling
below this size resulted in increasing problems concerning process variability, leakage power and
signal integrity.

xiii



Chapter 1

Introduction

1.1 Motivation

As of today, since the introduction of the latest smart-phones, we are all living in a mobile
world. Regardless of our current local position, we are able to communicate with everyone
who is also connected to one of the many open communication channels. This was mostly
made possible by the semiconductor design, verification, and manufacturing industry that
enabled the ongoing validity of moore’s law.
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Figure 1.1: Dawn of the Machine-to-Machine (M2M) Age (adapted from [1]) - the development
of the mobile device market is far from over, M2M communication will further increase the number
of mobile devices sold

Billions of mobile devices are already sold world-wide, with increasing numbers every
year. The now gradual introduction of IPv61 will boost these markets even more in the
near future, enabling machine-to-machine (M2M) communication (see Figure 1.1).

This development introduced a variety of new challenges for system designer, especially

1Internet Protocol version 6, extending the addressing capability of the Internet protocol version 4
significantly to 2128 devices

1



1. Introduction 2

concerning power-aware and fault-aware design. First, while research made a continu-
ing increase in integration density of integrated circuits possible, mobile power sources
improved much slower. This development gap made the introduction of various power
estimation (during design) and management (during operation) techniques necessary to
efficiently use finite power sources. Second, deep sub-micron semiconductor processing
technologies, necessary to integrate billions of transistors in small energy efficient devices,
increasingly reach the physical limits of atomic barriers. Besides increasing manufactur-
ing and testing challenges, long-term reliability is a concern in modern devices suffering
from device degradation effects like negative bias temperature instability (NBTI). Third,
a variety of mobile devices is now involved in the processing of critical personal data. In
2012, over seven billion smart secure devices will be shipped, with annual growth rates
of up to 20 percent [20]. These gigantic markets and the increasing complexity of the
involved devices call for ever improving hardware and software co-design, verification, and
test support.

1.1.1 David and Goliath - Design Challenges of the Large and Tiny

Recent years showed an increasing usage of specialized hardware and multi-core proces-
sors. This development was driven by the need for higher operation performance while
classic energy sources did not develop as quickly. Also the introduction of the green com-
puting idea, made the design of highly energy-aware systems for data-centers necessary. In
case of system-on-chip implementations, the semiconductor industry publishes forecasts
concerning design and market challenges. In Figure 1.2 such developments of the inter-
national technology roadmap for semiconductors (ITRS) concerning system heterogeneity
and complexity are depicted. Figure 1.2a shows the non-linear growth in system compo-
nents during the following years. It can be seen that the usage of classic central processing
units (CPUs) is not growing as strongly as dedicated processing elements (DPE). The rea-
son for that is that dedicated hardware can solve specific problems much more efficiently
than generalized hardware can. This is true for both, operating performance and energy
efficiency.

(a) Heterogeneity for large stationary com-
puting systems [2]

(b) The complexity of mobile system-on-chip de-
signs [2]

Figure 1.2: Market developments in stationary and portable systems concerning complexity,
performance, and implementation effort, according to the ITRS
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In Figure 1.2b the complexity of future mobile-systems is presented. Here, it is clearly
visible that such portable system-on-chips increase non-linearly in complexity, while energy
sources are only improving slowly. Therefore, every part of such complex system-in-
chips has to be optimized for their power consumption. To guarantee a certain level
of reliability of such systems, including their large in-chip communication networks like
network-on-chips (NoCs), system-level fault detection and management mechanisms have
to be provided.
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Figure 1.3: The gap between software, hardware design productivity, and required firmware is
continuously widening if no countermeasures are taken in time (adapted from [2])

The semiconductor and system industries also have to solve various challenges concern-
ing the software/hardware co-design process. In Figure 1.3 a disturbing development in
recent years is depicted, that will worsen in future years if no solutions are found. In this
figure, it can be seen that while technology capabilities (according to Moore’s law) double
every 36 months, hardware design productivity improved much slower. Only concerning
hardware development, this challenge has been partially mastered by reusing intellectual
property (IP) blocks and memory-based techniques. On the other hand, software produc-
tivity evolves even slower and, at the same time, these complex systems rely on ever more
software to control this hardware (doubling every 10 months). This leads to a strongly
opening shear between the demand for software and hardware, and the ability to provide
these. Only interdisciplinary approaches, for example the introduction of software product
line engineering and the wider usage of system-describing languages that can be compiled
into hardware, will be able to reduce this challenge.
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(a) The famous verification gap revisited [3] (b) Verification effort in recent years [3]

Figure 1.4: Challenges concerning the verification of future complex systems according to Mentor
Graphics

Another urgent challenge in the implementation of large heterogeneous system-on-
chips concerns test and verification. Already in 1999, the SEMATECH industry consor-
tium published data concerning the so called ”verification gap”, meaning the increasing
challenge to verify large systems. In 2011, Mentor Graphics showed that this gap is still,
even after the growing introduction of formal methods, widening as shown in Figure 1.4a.
This situation led to an increasing demand for verification engineers while the demand for
design personnel was stagnating (visualized in Figure 1.4b). This increase in verification
effort was mostly driven by functional verification, hence, the validation of requirements
concerning power consumption and fault-robustness have to be supported in the coming
years to counteract the widening of this verification gap.

1.1.2 Power- and Fault-Awareness in Modern System-On-Chip Designs

As described in previous paragraphs, the complexity of modern SoC implementations is
increasing tremendously and power-awareness has already been a strong challenge in recent
years. One major step towards system energy efficiency was the stop to the frequency race
and the large scale introduction of parallelism into consumer products. Integrated cores
or functional units can be completely deactivated during run-time if they are not currently
needed. This was made possible by advances in recent years concerning techniques like
clock and power gating as shown in [21] and dynamic voltage and frequency scaling (DVFS)
as described in [22]. These techniques all work on a global scale, meaning they reduce
consumption by manipulating architectural contributers.

The recent increase in implementation density has been mostly driven by the continuing
shrinkage of semiconductor technology nodes. While small transistor sizes have a positive
effect on power consumption (except leakage power, which is dramatically worsening if
no manufacturing techniques like silicon-on-insulator (SOI) are used) and available chip
space, thinner isolation and shorter transistor channels introduced tremendous reliability
problems. Besides faster device aging, manufacturing variability is affected by the demands
of modern deep sub-micron processes. To emphasize how strongly this factor is worsening,
current data and a forecast for future process nodes is depicted in Figure 1.5.
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Figure 1.5: Manufacturing variability is strongly worsening for deep sub-micron technologies,
according to [2]

This development led to a wide variety of research concerning fault detection, recov-
ery, and fault-robust devices such as [23]. However, on a system-level duplication is still
the first choice for high-reliability implementations, specifically triple-module-redundancy.
Therefore, novel strategies for such system-level techniques, that do not rely on duplica-
tion, and the evaluation concerning their power-awareness, are strongly needed.

1.1.3 Hardware-Accelerated Emulation for Software Verification

Traditional simulation techniques to verify software/hardware co-designs are increasingly
suffering from performance bottlenecks and therefore, limit their usability in the design
flow. This situation led to the increasing usage of hardware assisted emulation or FPGA
prototyping as depicted in Figure 1.6.

These techniques can be divided into several subgroups depending on their application
in the design process and the system abstraction. For this work we will identify two major
fields:

• Mapping of hardware implementations onto hardware accelerated evaluation plat-
forms and systems. Depending on the size and abstraction of the system implemen-
tation, single FPGAs or large reconfigurable logic clusters are used. This approach
has the advantage that even finalized netlists can be verified for their correctness
without any influence of the applied test hardware. Otherwise, large FPGA clusters
can only provide investigations at low clock rates. There is an additional problem of
trust, if such platforms should be provided to external parties, for example software
providers.
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• System or hardware descriptions are extended with additional structures to allow
for internal monitoring or manipulation during run-time. The design is directly
optimized for the target platform, therefore it is not completely equivalent to a real
final implementation. The main advantage is the strict separation between hardware
and software using defined interfaces. Therefore, such evaluation platforms can also
be provided to external parties when the used netlists are encrypted.

Figure 1.6: Usage trends for hardware-accelerated emulation during system design and verifica-
tion, according to [3]

While the first field has been researched very thoroughly in recent years (for example
[24]), instrumented verification platforms for software/hardware co-verification have only
been covering selective implementation challenges. For example instrumented emulation
for fault testing as shown in [25], software verification for power consumption as presented
in [26], or variability emulation as introduced in [27]. To the best of our knowledge, there is
no comprehensive approach providing all this information inside one evaluation platform,
also considering challenges of trust and security available in literature.
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1.2 Control-State-Based Fault Detection and Analysis in
Multi-Processor System-On-Chips

1.2.1 The POWER-MODES Project

This thesis is part of the ”POWer EmulatoR and MOdel based DEpendability and
Security evaluation platform” (POWER-MODES) collaborative research project2, shared
between the Institute for Technical Informatics at the Graz University of Technology,
Infineon Technologies Austria AG, and AustriaCard GmbH. This combined effort targets
the combination of early power estimation and fault injection techniques into a single
software verification platform as depicted in Figure 1.7.
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Figure 1.7: The POWER-MODES project - Tackling power-aware and fault-aware software
evaluations concurrently using a single hardware-accelerated emulation platform (adapted from
[4])

The POWER-MODES approach covers four main fields of research: hybrid fault and
power emulation, optimization of fault detection and recovery techniques, comparative anal-
ysis of power-effectiveness versus detection effectiveness, and fault-attack resistant operat-
ing system, design. This work will concentrate on the first two topics, enabling a hybrid
emulation system combined with the exploration of novel detection and recovery tech-
niques.

2Funded by the Austrian Federal Ministry for Transport, Innovation, and Technology under the FIT-IT
contract FFG 825749.
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1.2.2 Problem Statement

Large heterogeneous system-on-chips as well as resource-constrained systems used in
security-critical and safety-critical applications demand significant optimization and verifi-
cation effort. State-of-the-art hardware/software co-design flows have not been developed
with these corner cases in mind and therefore, the following deficiencies can be identified:

• Traditional fault detection techniques provide local detection

• Power efficiency of fault detection mechanisms are scarcely researched

• Lack of early evaluation techniques for the testing of power-awareness and fault-
awareness

• Lack of information-leakage estimation during secure software verification

• Simulation-based investigation flows demand high computational effort

• Lack of static analysis methods leads to a large evaluation space and missing knowl-
edge about the system-internal process during faults

These limitations have been addressed by the combination of existing hardware acceler-
ated evaluation techniques and novel estimation and detection methodologies. Signature-
based mechanisms are introduced to provide system-level fault detection capability that is
highly scalable depending on detection and power requirements. Early evaluation of power
consumption and information leakage during the software verification process is tackled
by a novel data-aware emulation methodology. Hence, the presented signature-based de-
tection mechanisms can also be evaluated for their power consumption effort.

This thesis also introduces automatized techniques to integrate these new detection
and evaluation mechanisms into system-on-chips and FPGA-based software verification
platforms. The problem of investigation complexity is addressed by novel static analysis
techniques. Furthermore, the similarity of design challenges in the security and safety
domains have been considered.

1.2.3 Contributions and Significance

In summary, this thesis provides contributions to the following fields:

1. System-Level Control-State-Based Fault Detection: A fully automated process anal-
ysis hardware behavior for a given set of benchmark applications. The introduced
methodology allows for the selection of significant control signals to derive signatures
of the system state. Resource-constrained systems are supported by a hardware
characterization process to determine the signature generation quality of reduced
hash implementations. Finally, control-state information is utilized to automatically
generate hardware checker modules for run-time integrity checking. This novel ap-
proach enables signature-based on-line testing for both, large heterogeneous systems
and resource-constrained designs.
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2. Emulation-Based Analysis of Fault Induced Security and Safety Issues: The emu-
lation framework, as introduced in this thesis, allows the concurrent evaluation of
power-related, security-related, and safety-related issues in a single platform. The
hardware-accelerated approach uses an abstracted programming interface to allow
the direct integration of the presented techniques into standardized software verifi-
cation systems. This novel combined methodology has been further extended with
data-aware power sensors to enable the early estimation of information leakage for a
given leakage intensity. The presented investigation techniques have been thoroughly
tested using software implementations of the AES algorithm and safety self-test rou-
tines.

1.2.4 Structure of the Work

The remaining parts of this work are organized as follows. In Chapter 2 the current
state-of-the-art concerning power-estimation and fault-injection in hardware/software co-
design methodologies is reviewed. This complex thematic field first has to be split into
hardware-accelerated and simulation-based power-estimation for the early investigation
of a program’s power consumption. Second, FPGA-based fault-injection approaches are
investigated, considering both security and dependability fields. Third, the static and dy-
namic evaluation of software and hardware, as part of the co-design process, is reviewed to
connect all three investigation parts into a single verification system. Chapter 3 presents
a novel methodology for the efficient evaluation of secure software implementations under
fault conditions. Part of this approach is also the resource-saving integration of novel
control-flow-based fault detection mechanisms into MPSoCs. Therefore, these techniques
cover the complete hardware/software co-design process, from system evaluation to novel
design possibilities to counteract detected deficiencies. Chapter 4 provides data from com-
prehensive evaluations that show the applicability of the previously introduced techniques.
These results are generated using open available implementations of system-on-chip code
bases to show the generality of the approach. In Chapter 5 the results of this thesis are
concluded summarizing novel insights gained into secure system designs. Furthermore, an
outlook into future work in this dynamic field of engineering is given. Finally, Chapter
6 presents a selection of publications on which this work is based. These give a deeper
understanding of the implemented techniques and additional evaluation data generated
during the POWER-MODES project.



Chapter 2

Related Work

The comprehensive power-aware and fault-aware hardware/software co-design process pre-
sented in this work is built on three basic pillars: hardware-accelerated software verifica-
tion techniques, fault detection in secure and dependable system-on-chips, and static system
evaluation. These topics have been partially covered by many publications in recent years,
improving the state-of-the-art for selective problems. Only both, the dynamic and static
evaluation of the system-under-test can provide global coverage of the system security and
dependability problem. The following section gives an overview about existing work in
these three categories. Finally, a summary is given showing how this work improves the
state-of-the-art in these fields, and how they are connected into a comprehensive approach.

2.1 Hardware-Accelerated Dynamic Verification Techniques

Dynamic verification of hardware and software has been researched for many years with
different evaluation targets. Here, we will concentrate on three main topics: emulation-
based power estimation to cover the power-awareness field, power analysis techniques for
software verification including all early applicable measures to analyze the power con-
sumption profile for information leakage, and fault injection-based system analysis cov-
ering approaches to test systems under the influence of operational faults. Concerning
power estimation and characterization of computing devices, a thorough overview is given
in [28].

2.1.1 Emulation-Based Power Estimation

An overview on the basic principles of the power emulation technique is shown in [29].
This hardware-accelerated methodology provides run-time improvements of factor 10 to
500 compared to simulation-based power estimation approaches. Also strategies to min-
imize the hardware overhead caused by the emulation methodology are given in the pre-
sented work. This approach has been extended by the authors of [30] into a hybrid power
estimation methodology for complex SoCs. The use of combined simulation and emulation
techniques led to significantly reduced power consumption investigation times. The pos-
sibility of direct interpretation is a main advantage of hardware-assisted run-time power
estimation. This has been exploited for the power-aware process migration between cores

10
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as shown in [31]. A real-time power profiling unit that can be directly integrated into
FPGA-based software evaluation platforms has been presented in [26].

To allow for high estimation accuracy and low preparation effort, an automated system-
on-chip characterization methodology has been introduced in [32]. The application of
these novel early power estimation techniques for software power profiling has been further
investigated in [33]. Another application is the evaluation of dynamic voltage and frequency
scaling (DVFS) strategies as introduced in [34].

2.1.2 Power Analysis Techniques for Software Verification

Depending on the abstraction level, information leakage can be estimated using a vari-
ety of different techniques. First, a purely software-based solution could be applied as
introduced in [35]. Side channel leakage information is extracted from a given program
by execution and tracing of instruction and processor states. Extensible analysis module
are then used to process the resulting information. These analysis modules are directly
implemented for the Microsoft Debugger API, integrating the functionality into the in-
tegrated development environment (IDE). Unfortunately, no information about accuracy
and simulation performance has been given by the authors.

Second, instruction set simulators can provide in-system knowledge for power consump-
tion estimation. Although, high simulation speeds can be reached using this approach, it
is depending on data only available for thoroughly profiled general purpose architectures.
Such methodologies have been presented in [36] and [37]. While not giving any hints about
the accuracy of the used power profiles, both solutions promise high simulation speeds.
In a case of badly estimated information leakage, a software engineer could be led into a
sense of false security if this leakage is higher than anticipated. The work shown in [37]
relies on several abstract power models to isolate possible sources of information leakage.
As described earlier, well characterized general purposes processors are necessary for this
approach. In this case, the AVR microcontroller series of Atmel has been chosen. Based on
a performance simulator a comprehensive approach for power, area, and timing modeling
has been taken in [38].

Third, highly accurate gate-level or even transistor-level simulations can be applied
to identify critical parts of a system-under-test. High costs in terms of simulation speed
and needed simulation equipment are the price of such estimation accuracy. Therefore,
a system designer has to decide whether to choose between very short simulation times
or the isolated evaluation to the smallest possible leakage contributer. As it is of utmost
importance to know if an adversary could extract information using a high number of power
traces, the first choice can be considered infeasible. Highly accurate analog simulations
using SPICE simulators have been used in the following work: [39]. register transfer level
(RTL) simulations as presented in [40] can be also used to improve simulation speed.
Furthermore, it has been noted by the authors of [40] that RTL simulations could hide
information leakage that will only be visible after later design flow steps.
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2.1.3 Fault Injection-Based System Analysis

The reliability of high-safety applications under the influence of faults is an important
feature for which testing methods using fault injection have been introduced [41]. De-
pending on the design stage, faults can be injected into finalized parts e.g., using ra-
diation, manipulation, or during earlier phases using adaptable prototyping approaches.
These methodologies can be further divided into simulation-based and emulation-based
techniques depending on the application of the evaluated models.

High-level hardware descriptions offer the possibility to be simulated directly during
early design phases. This fact has been exploited by first non-invasive fault injection tools
using logic simulation. During design concept phases, it could also be of interest to apply
such injection methods using system-level description languages like SystemC as shown
in [42]. Advances to simulation-based techniques have been introduced for the VFIT tool
in [43]. Compared to previous work, the authors complemented this approaches with
automatized saboteur and mutant insertion techniques. Furthermore, various injection
performance improvements of simulation and emulation approaches have been shown in
[44]. Recent work utilizes existing scan-chain infrastructure for high-performance processor
reliability evaluations [45].

Higher fault injection coverage and therefore, higher evaluation performance could
only be achieved by the introduction of hardware-accelerated emulation techniques. Such
emulation methodologies promise significantly higher injection rates as presented in [25].
Therefore, a higher amount of possible fault configurations could be evaluated than us-
ing traditional simulation-based approaches. The introduction of novel FPGA devices
featuring the possibility of run-time reconfiguration, without influencing the data- and
control-flow, opened new possibilities for non-invasive fault injection. Since the introduc-
tion of these techniques several improvements concerning flexibility and performance have
been introduced [24].

These approaches have been developed for dependability investigations, targeting
mostly single event upsets (SEU). Multiple event upsets (MEU) need more complex emula-
tion techniques, such as the extensive use of run-time reconfiguration as described in [24].
Such fault constellations are especially important for security evaluations as intentional
faults could be injected at several positions at once. The complexity of today’s security
and safety systems often results in the separation of software and hardware development,
done by different entities. This introduces a conflict of trust and intellectual property that
has not been considered by previous work described in literature.

2.2 Fault Detection in Secure and Dependable Systems

The detection of operational faults during the execution of critical software sequences
has been a very active field of research for many decades. Such faults can be detected
and managed on three different abstraction levels. In this work, we will concentrate on
signature-based techniques: only on software-level using software-based signature mecha-
nisms, on hardware-level using hardware-based signature mechanisms, and comprehensive
techniques exploiting hardware-software co-design solutions.
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2.2.1 Software-Based Signature Mechanisms

Signature-based approaches on the software-level mostly rely on the automatic or semi-
automatic generation of source-code signatures. These can then be used to detect changes
in the program flow caused by adversarial tampering or environmental influences. Such
signatures are directly embedded into the executed binaries, so for the checking procedure
itself processor internal resources have to be reused. This will result in a severe increase
of program run-time.

First software solutions have been relying on the usage of extensive redundancy. An-
other strategy would be the application of control-flow state checking to identify unfore-
seen execution behavior as introduced in [46] and [47]. A pure software signature-based
approach, generating these signatures during compile time is proposed in [16]. These
software-only approaches come with the big disadvantage of having a significant impact
on execution performance (40 - 600% performance and memory overhead). Additionally,
an adversary could manipulate these software checks if such techniques are implemented
in security critical systems.

2.2.2 Hardware-Based Signature Mechanisms

Hardware monitors have been the most commonly used hardware blocks for integrity
checking for many decades. While monitoring capability can be implemented very effi-
ciently depending on the monitored unit, this advantage could be annulled if pre-computed
signatures are stored in large memories. Furthermore, the selection of the monitored sys-
tem region is a not well covered field in the current state-of-the-art. For system-on-chip
design’s heterogeneous nature approaches that only cover a processor’s pipeline are insuf-
ficient. The use of multiple monitors increases system complexity, decreases area efficiency
and therefore, is also not well suited.

As the impact of the monitoring process on the execution performance has to be re-
duced, direct access to hardware resources is needed. Therefore, control flow-monitoring
implementations using dedicated monitoring hardware have been presented. Early work
concerning dedicated monitoring hardware have been watchdog-type modules such as [48]
have been introduced. Another possibility would be the integration of smaller specialized
monitoring circuits covering only selected parts of the system as described in [49] and [50].
While these techniques use an external view of the target, also approaches relying on a
modification of a processor pipeline itself have been shown to enable the on-line evaluation
of the control flow. As stated earlier these techniques are very effective when monitor-
ing only processor applications, but are not sufficient for heterogeneous applications like
system-on-chips that include various different processing units.

2.2.3 Hardware/Software Co-Design Solutions

In recent years, various hardware/software co-design based approaches have been published
to provide wide detection coverage. These techniques exploit the possibility to adapt both
software support and hardware structure to reduce memory overhead and performance
degradation. Predestined for such systems are application-specific instruction processors
(ASIP) as described in several recent papers [51]. However, such methodologies can only
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be applied if the target architecture is either highly adaptable or the design process is at
a very early stage allowing for strong interventions in existing development flows.

If such design flow changes are not possible, it is also possible to extend existing
hardware to generate representative values to track control changes. For this purpose
test infrastructure like scan-out-chains can be exploited like the approach presented in
[52]. While the impact on the complexity of the targeted system is small, it relies on
periodic tests and therefore, cannot be considered a real on-line testing solution. The
same research group presented fingerprinting techniques based on hash-values generated
from the architectural state [17]. This very accurate fault detection mechanism leads to
high demands on circuit bandwidth because of the large amount of data collected from
system components. Further improvements and extensions to this technique for large chip
multi-processors have been presented in [53].

2.3 Static System Evaluation

The increasing complexity of system-on-chip designs becomes a growing challenge for test
and verification engineers. Therefore, static system information has to be utilized to
decrease the evaluation space or to verify the implementation in a formal manner. This
led to the increasing usage of formal methods in various parts of the design process: high-
level verification for security and safety domains, classic application of formal methods in
hardware verification, static VHDL code analysis, and finally, fault propagation modeling.

2.3.1 High-Level Verification for Security and Safety Domains

The implications of loss of trust (security) or loss of life (safety) led to the introduction of
strong regulatory bodies in the security and safety engineering domains. In recent years,
researchers in the safety engineering field spent a significant research effort on the verifi-
cation of software implementations concerning their correctness and standard compliance.
Model checking is a formal verification technique with the goal to determine whether a
finite state machine (FSM) satisfies a set of specified criteria under all circumstances. If
the criterion is not fulfilled, a counterexample for debug support is generated. This tech-
nique proved to be a powerful tool for such tasks. A comprehensive approach, using the
NuSMV model checker including the consideration of fault injection, has been introduced
in [54]. Nonetheless, the presented work is limited to software implementations and classic
verification challenges like liveness or reachability properties. An efficient application of
model checking to verify fault tolerance by using mutated models of sub-systems has been
shown in [55]. For the application of formal methods to a secure software implementation
flow, principal concepts have been introduced in [56, 57]. As abstraction is a challenge con-
cerning RTL hardware descriptions, the presented techniques cannot be directly applied
to hardware certification.

2.3.2 Classic Application of Formal Methods in Hardware Verification

Disadvantages of dynamic verification can be counteracted by the application of static
formal techniques to prove the correctness of a circuit using mathematical methods. These
do not depend on signals, clocks, waveforms, or test patterns and therefore, do not suffer
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from large exploration spaces. For this work, we will concentrate on the model checking
technique, as it has been shown to work well for the automatized verification of software
implementations.

Model checkers operate on two inputs: the modelM, denoted by FSM transitions and
the systems properties φ that should be fulfilled, denoted by formulas in temporal logic
[58]. ModelsM have to be abstracted manually as such checkers can only verify models in
their own language, this manual task limits the applicability of current implementations.
Therefore, much research effort has been spent to enable the automated extraction of such
control flow elements from RTL hardware descriptions. Full verification tools incorporating
both, FSM extraction and symbolic model checking, have been introduced in various
early work (see Section 6.9). Besides being a proprietary implementation, these works
were mainly targeting basic implementation challenges, like reachability analysis, without
considering checks for high-level rules. Similarly, earlier work describes the transformation
of simple synchronous circuits into FSMs. An automated approach for the abstraction of
hardware descriptions written using the Verilog language has been introduced in [59].
These approaches mainly focus on bit-level evaluations and therefore, are not well scalable
for very large system-on-chips. From this situation resulted the introduction of techniques
like Predicate Abstraction, or Term-Level Abstraction. Further improvements have been
shown in [60], applying high-level decision diagrams (HLDDs) not only to describe a
system’s behavior but also to correct wrong node transitions in an automated manner.
In this work, an open source implementation of a symbolic model checker from the new
symbolic model verifier (NuSMV) project is used.

2.3.3 Static VHDL code analysis

The evaluation of hard real-time and safety systems is highly depending on timing and
particularly worst-case execution time (WCET) analysis. In the past, such investigations
have been based on hand-crafted timing models extracted from a formal specification
using VHDL or Verilog. As this error-prone process results in significant engineering
effort, a framework for the static analysis of VHDL code has been introduced in [61]. The
authors treat VHDL descriptions like sequential programs to derive a control flow graph
in CRL2 (a specially developed language for the description of control flow graphs). An
abstraction-aware compiler for such hardware description models has been introduced by
the same group in [62]. The simulation of the non-deterministic view of the underlying
architecture is enabled by the extraction of C++-code from the hardware description.
Finally, these techniques and semi-automatic processes of hardware model timing analyses
have been combined into the framework presented in [63]. As the focus of this work has
been on safety and real-time applications (especially the modeling of timing behavior)
in the security domain, besides control flow also information flow has to be evaluated.
Consequently, a state-machine-based approach solving this challenge has been introduced
in [64] to determine information flow at a higher abstraction level. This high abstraction
level has been established to reduce impractical large evaluation spaces resulting from
low-level logic investigation. This research group extended the approach further for the
introduction of a novel hardware description language targeting a secure information flow
[65].
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2.3.4 Fault Propagation Modeling

Low-level logic evaluation for soft-error reliability (SER) could only be done using slow
but very accurate SPICE-based simulations until recent years. Various new methodologies
based on binary decision diagrams (BDD) to improve such investigations performance-
wise have been introduced in [66]. Thus enabling the optimization of the tested circuits
to improve this reliability metric as well as the early estimation of SER on a logic-level.
Furthermore, SER and logic masking in combinational and sequential circuits have been
analyzed using a signature-based approach as described in [67]. In the security domain
the work proposed in [68] is of special interest as it specifically targets multiple transient
faults as they would be expected during complex fault-attacks. Unfortunately, is not
directly applicable to security applications, although it describes extensive fault models
and dependability metrics. These topics have only been partially covered in [69] using
AES implementations as an example.
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2.4 Summary and Difference to the State-of-the-Art

The early estimation of power consumption is of high importance during the design of com-
plex hardware/software co-designs. Emulation-based approaches are a promising method-
ology to do such early estimations at a high evaluation speed even before silicon is available.
Another important reliability property of embedded systems is the robustness to faults
caused by environmental effects or injected by an adversary. Fault injection using ma-
nipulations of a system’s hardware description or by direct run-time reconfiguration of an
FPGA have been well proven techniques to test these properties. Currently, no combined
evaluation of power and robustness metrics is available. Furthermore, the separated devel-
opment of software and hardware by different entities has not been extensively considered
in literature.

Detection of operational faults during the execution of safety-critical and security-
critical software is a well covered field of research. Traditional techniques include the
extensive use of software and hardware replication or the usage of fault detection and cor-
rection codes. These techniques work well if the system complexity is limited or if there
are no power and cost constraints. In large system-on-chips or resource-constrained im-
plementations, such methodologies could impose unacceptable cost penalties or uncovered
system-regions.

Static analysis of software implementations has a long tradition in safety-critical sys-
tem design. On the other hand, formal techniques for hardware verification only cover
small parts of hardware implementations, like reachability analysis, testing for lifeness
properties, or equivalency checking. The verification of high-level requirements, as given
by formal descriptions demanded by regulatory bodies, has got only very limited coverage
by current literature. Especially considering the ever increasing complexity of system-
on-chip designs, static analysis methods are strongly needed in the hardware/software
co-design process.

This thesis aims at introducing the following main improvements to the state-of-the-
art, with respect to the goals defined in Section 1.2.3:

• Introduction of a hardware-accelerated software-verification platform for the test-
ing of secure software implementations under the consideration of separated soft-
ware/hardware development model

• Implementation of system-wide fault detection mechanisms for power-aware resource-
constrained systems using automatized generation techniques

Furthermore, this work introduces the following auxiliary advances:

• Extension of previous work on emulation-based power-estimation to enable the eval-
uation of information leakage depending on a given leakage level

• Exploration of static system evaluation techniques to enrich the certification-aware
hardware verification process with formal methods

• Exploration of static evaluation of RTL hardware descriptions to allow the autom-
atized generation of support hardware for hardware-accelerated investigation plat-
forms



Chapter 3

Fault Detection and Analysis for
Multi-Processor Systems-on-Chip

3.1 Overview

Fault analysis using fault injection methods on various abstraction levels has become an
inevitable step during the design and verification of reliable and secure systems. The
proposed techniques aim at supporting this process from the design of robust system-level
detection mechanisms over hardware-accelerated verification platforms to static analysis
methods for the evaluation of fault-attack effects. The various contributions, which are
part of a comprehensive approach, are opposed to the individual topics in Figure 3.1.

The basis of such an evaluation and design methodology is a comprehensive FPGA-
based investigation platform. The work presented in Section 6.1 extends existing power
emulation techniques with data-aware functionality to support differential power analysis
used during security testing. Pure emulation-based fault injection techniques are shown
in 6.2 including an industrial case study to prove the applicability of the approach. The
application of such an investigation platform for the design and test of a novel power
profile scrambling technique is described in Section 6.3. This approach can be further ex-
tended for the fault attack robustness evaluation of cryptographic software and hardware
implementations, like AES (see Section 6.4). Multi-processor systems-on-chip pose a sig-
nificant challenge during security evaluation of hardware/software co-designs because of
their heterogeneous nature. Therefore, a sensor-based technique for accurate information
leakage estimation using physical implementation data has been introduced in Section
6.5. Building on such a multi-functional verification and test platform, novel control based
fault detection mechanism can be evaluated for their efficiency (see Section 6.6). This tech-
nique, using micro-architectural signatures, has been further extended with automatized
hardware generation to enable the creation of memory-less hardware checker modules (see
Section 6.7). As security and safety domains are concerned regarding similar operational
reliability challenges, the concurrent evaluation of power- and fault-robustness properties
of safety-critical software implementations is presented in Section 6.8. The fast growing
complexity of systems-on-chip and the problem fault propagation resulted into the need
for extensive static code analysis as introduced in Section 6.9.
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Figure 3.1: Publication overview concerning a comprehensive system-on-chip evaluation method-
ology for secure/reliable software and hardware implementations

3.2 Power-Aware and Fault-Aware Software Verification

Software verification under the consideration of its power consumption and robustness
against malicious attacks has been individually described in literature, as shown in Sec-
tion 2.1.1 and Section 2.1.3. Nevertheless, many aspects of security engineering or soft-
ware verification have only been partially covered in literature. Also, no comprehensive
approach using an FPGA-based hardware accelerated solution is available that can be
flexibly applied to existing software verification infrastructure.

3.2.1 Data-Aware Emulation-Based Power Estimation

Originally, the power emulation approach, as described in [32], only considered the current
control state of carefully selected parts of the system. This power estimation principle is
depicted in Figure 3.2, and shows the possibility of direct interpretation and data storage.
By principle, such an architecture cannot be directly extended with data-dependent signal,
as it would distort the generated power profile. Therefore, a process has to be defined
to integrate such information into the existing infrastructure for the on-line and off-line
estimation of information leakage. The goal in this case is not the exact determination of
such leakage, but the evaluation of embedded systems under different scenarios, such as
best and worst case conditions.
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The power consumption itself is estimated using macro models defined as described by
Equation 3.1. The power estimate P̂ [t] consists of a static part P̂sta caused by semicon-
ductor leakage and a dynamic part P̂dyn[t] considering switching activity. While the static
power can be estimated by a single coefficient c0, dynamic shares have to be considered
more precisely.

P̂ [t] = P̂sta + P̂dyn[t] = c0 +
Nc∑

i=1

cixi[t] +
Nd∑

i=1

dixi[t] (3.1)

The estimation of dynamic power consumption as suggested by Equation 3.1 is visu-
alized in Figure 3.2. Data signals and control signals are considered by corresponding
coefficients di and ci. These are multiplied by the current value of the observed signal xi.
Data signals have to be pre-processed to be considered in the same way as state signals.
This pre-processing mechanism is described in more detail later-on.
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Figure 3.2: Basic power emulation principle - Generating run-time power estimates from the
current state of selected control signals (adapted from [5])

Based on existing knowledge concerning the characterization of systems-on-chip using
standardized benchmarks, a novel power model creation process has been derived. This
methodology is depicted in Figure 3.3, showing that the principle flow and therefore,
software support has only been slightly altered. The first step involves the generation of
training sets using standard benchmark suites and simulation (functional and RTL power)
tools. From this simulation data state and data dependent training sets are separately
extracted. These extracted sets are then utilized for model parameter selection, followed
by a non-negative linear regression based coefficient fitting process. The result of this
characterization process is a power macro model, including coefficients for state-dependent
and data-dependent signals.
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Figure 3.3: Power model creation process - Utilization of accurate power simulation to generate
reduced power macro models (adapted from [6, 5])

The generated power macro model can now be mapped onto reconfigurable hardware
in an automated way, as originally described in [26]. This process has to be adapted to
consider the power consuming nature of data signals (CMOS gates only produce power
consumption during the switching from one level to another, as depicted in Figure 3.4).
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Figure 3.4: Power consumption caused by CMOS gates during signal switching

To map both power consumption models into a single emulation platform, a conversion
of the data signals is necessary. This conversion task corresponds with the XOR function
of the data-signal with a copy of itself that is delayed by one cycle. The height of the
estimated peak current is done by the selection of corresponding power model value. Such
an extended power emulation architecture considering these differences is shown in Figure
3.5.
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Figure 3.5: Power emulation architecture - Flexible and integratible hardware power estimator
(adapted from [5])

These data-aware power estimation characterization and hardware generation concepts
are defined more precisely in Sections 6.1 and 6.4.

3.2.2 Software Verification under Fault Conditions

Power consumption and information leakage are only one of a secure software developer’s
concerns during development. A comprehensive software verification platform has also to
provide the possibility of testing the implementation under the influence of faults. For
this thesis, an FPGA-based approach has been chosen, to integrate novel investigation
techniques with an existing verification platform. This system integration is supported
by an automatized process as depicted in Figure 3.6. Before the targeted system can be
augmented, attack descriptions and security guidelines have to be studied for the determi-
nation of fault attack patterns. The power characterization processes rely on predefined
control and data signal sets, which can also be generated using scripts if a specific cod-
ing style has been followed. These tasks have to be executed during the target definition
phase, followed by the model creation process utilizing characterization and selection tasks
to extract fault and power models. During the VHDL augmentation phase these models
are integrated into a given system model using pre-defined module templates. Finally, the
combined evaluation architecture is transformed into a netlist for the application in an
FPGA-based debugging tool using system synthesis.
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Figure 3.6: Automatized System Augmentation and Verification Platform Generation (adapted
from [5])
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Depending on the amount of evaluated time slots and integrated saboteurs, a signif-
icantly high count of test vectors has to be evaluated. This time consuming process has
to be supported by controlling support hardware such as a processor hard-macro to ac-
celerate the investigation approach. Such a high-performance architecture, relying on a
fast PowerPC processor, is shown in Figure 3.7. An exhaustive FPGA-based evaluation
platform combining all these techniques is described in more detail in Section 6.4.
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Figure 3.7: High Performance Architecture for the Power Evaluation of Software under Faulty
Conditions (adapted from [5])

Up to this point, only very rough side-channel leakage investigations, exploring cor-
ner cases like best or worst case scenarios, can be done. More realistic evaluations need
information from the physical layout to include information about coupling capacitances,
which have an influence on switching power. An extended methodology to integrate phys-
ical information, from the RC extraction phase of the ASIC creation process, is depicted
in Figure 3.8. For the extraction of physical information a completely placed and routed
design is needed. The RC extraction task provides various capacitance information from
this implementation that can be used to estimate leakage caused by CMOS switching.
Such an accurate leakage model is the generated using a given filter configuration and
integrated into a leakage sensor module. Finally, these sensors are placed into the RTL
design using an automatized process.
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Standard Cell
Synthesis
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Figure 3.8: Extension of the Data-Aware Power Estimation Approach with Leakage Sensors
(adapted from [7])

The presented layout-aware evaluation and hardware preparation flow is presented in
more detail in Section 6.5.
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3.2.3 Evaluation Support using Static Code Analysis Methods

The vast complexity of large systems-on-chip makes the increasing usage of static code
analysis methods inevitable. Also during extensive testing for the application of security
and trust certificates, such static methods can be of vital importance to support the map-
ping of physical effects to the RTL descriptions. A novel methodology integrating static
structural analysis of VHDL code for the mapping of results from the laser fault injection
testbench is depicted in Figure 3.9. This multi-stage approach starts with the structural
analysis of the RTL description to extract architectural dependencies between hardware
elements. During the next step, physical attack information from a laser testbench is
mapped to the hardware constructs defined in the RTL description. This mapping in-
formation is used for the automatized generation of emulation support modules. These
modules enable the emulation of laser attack effects inside an FPGA based software veri-
fication system.
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Figure 3.9: Global Fault Attack Analysis Flow under the Consideration of Fault Propagation
(adapted from [8])

The shown techniques and methodologies including experimental data are described
in Section 6.9.

3.3 Control State Based Fault Detection and Run-time Ma-
nipulation

The experiences gathered during the extensive evaluation of processor architectures for
their fault attack robustness, is now applied to design of novel system-level fault detection
mechanisms. Furthermore, the same infrastructure can be reused to influence information
leakage and power consumption during run-time. Under the consideration of existing work
in the field of comprehensive techniques utilizing the hardware/software codesign process
as summarized in Section 2.2.3, novel signature-based detection mechanisms have been
designed.
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3.3.1 System-wide Signature-Based Fault Detection

As described in Sections 2.2.1 and 2.2.2, existing approaches either rely on large perfor-
mance or hardware overhead, or do only cover parts of the checked system. Therefore,
in this thesis, a novel methodology is presented to merge on-line power estimation in-
frastructure with a signature-based fault detection approach to provide low overhead at
high detection coverage. Such an characterization and implementation methodology is
depicted in Figure 3.10, showing an automated approach for the augmentation of existing
system descriptions. This process relies on a pre-selected control signal search space, as
it results from former power estimation runs, and contains four processing stages for the
automatized generation of hardware augmentations. The first phase consists of two paral-
lel sub-tasks: power characterization to determine highly active control regions and signal
activity analysis for the selection of only relevant signals with deterministic behavior. The
result of this stage is a reduced control signal set that can now be utilized for the signature
hardware generation tasks that also considers certain architectural constraints given by
the design engineer. After optimized hardware signature generators have been created,
an automatized wiring process connects these to the selected control signals of the target
design.

Autom. Signal Wiring

Pre-Selected Control Signal Search Space

Power Characterization Signal Activity Analysis

Reduced Signature Control Signal Set

Sign. Hardware Generation
Architecture

Constraints

Figure 3.10: Control Signal Signature Characterization and Implementation Methodology
(adapted from [9])

This automated process results in a combined architecture for the on-line power esti-
mation and checking of pre-generated signatures, as shown in Figure 3.11. Such signatures
can be generated during software verification phase, using the same FPGA-based evalua-
tion platform as described in the previous section. The major advantages of this approach
are the rather low logic implementation effort and the possibility of saving complete control
signal chains. These concepts and methodologies are more precisely presented in Section
6.6.
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Figure 3.11: Signature Checking Architecture for a General Purpose Processor (adapted from
[9])

This architecture still relies on rather large memories for the storage of detailed sig-
nature chains. Therefore, a generation process for pure hardware solutions, as depicted
in Figure 3.12, is strongly needed. This flow consists of four basic sub-steps: signature
characterization, relation extraction, boolean minimization (optional as current synthesis
tools fulfill this task quite well), and automatized routing. The signature characterization
process includes the recording of instruction-control signal signature pairs during a chosen
program section. The MATLAB based relation extraction phase determines unambiguous
pairs for the further processing. Finally, these pairs are mapped onto a general hardware
structure for synthesis. The automated generation flow and implementation details are
described in Section 6.7.
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Figure 3.12: Hardware generation process for modular signal monitor architectures (adapted
from [10])
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3.3.2 Run-time Manipulation of a System’s Power Consumption

The existence of a control signal based power estimation and fault detection infrastruc-
ture also opens the possibility of on-line methods to directly react to power consumption
changes or attacks. Such a power profile scrambling methodology, to decrease the signal-
to-noise ratio for the application of power analysis, is shown in Figure 3.13. The power
estimation result is averaged and differentiated to retrieve only qualitative statements
about the current consumption. For each profile manipulation technique dedicated look-
up-tables (LUT) are used to determine how strongly these should influence the behavior
of the design.
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Figure 3.13: Online Power Consumption Manipulation Methodology (adapted from [11])

The presented concepts are described in more detail, including experimental data, in
Sections 6.3 and 6.4.



Chapter 4

Evaluation of the MPSoC Fault
Detection and Analysis Techniques

4.1 Overview

The techniques and methodologies presented in this work have been evaluated using two
different FPGA-based verification platforms. Using these, both, a widely used industrial
smart-card platform and an open academic system-on-chip application can be investigated.
The results derived during these investigations can be grouped into three major groups:
software verification, signature-based fault detection, and static analysis methods. The
general applicability of our fault analysis approach is demonstrated by the integration into
both FPGA-based platforms. Extensive emulation-based evaluations show the efficiency
of the presented fault-attack countermeasure implementations. Finally, static RTL code
analysis methods have been applied to support the mapping of laser-attack scenarios to
these verification systems.

4.2 Target and Evaluation Platforms

The generality of the techniques presented in this thesis calls for an experimental setup
that covers a wide range of target systems-on-chip platforms. First, an industry-grade
smart-card implementation based on the SLE77 16-bit security system-on-chip and a cor-
responding software verification platform have been selected. Second, a general FPGA-
based prototyping platform using a Xilinx Virtex5 family FPGA and the 32-bit SPARC
v8 based system-on-chip implementation from Aeroflex Gaisler have been chosen.

4.2.1 Software Verification in Smart-Card Systems

This software verification platform is directly built from the RTL description of the SLE77
family smart-card devices. Therefore, it contains the same 16-bit micro-controller that
has been specifically designed with power efficiency and fault-attack hardness in mind.
Additionally, this system-on-chip contains various peripherals and co-processors, such as
symmetric and asymmetric cryptographic cores and interfaces to common buses like I2C
or contact-less implementations. This FPGA-based prototyping platform is widely used
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as a software verification system for internal and external software developers. Hence,
it constitutes a perfect example for a typical verification platform with a trust barrier
between manufacturer and software designer. This problem of trust is solved by the usage
of encrypted net-lists and clearly defined debug interfaces.

Software Verification Platform
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Figure 4.1: SLE77 system-on-chip architecture overview

4.2.2 Multi-Core LEON3 System-on-Chip Platform

The LEON3 processor is a 32-bit SPARC v8 based microarchitecture that is released by
Aeroflex Gaisler under an open-source license and therefore, is widely used in academia
for the evaluation of novel design and test methodologies. This system-on-chip design
has also been proven in various space application and hence, comes with a wide variety
of different communication interfaces and platform support modules. For this work, this
SoC implementation has been implemented on a Xilinx Virtex5 FPGA including an ad-
ditional PowerPC processor for process control. The open nature of the design allows for
deep changes inside the system design and the hard-macro PowerPC core highly improves
execution performance. The processor itself is well supported by open-source software
development tools and the Linux kernel. The core is also highly configurable and allows
the instantiation of upto 16 processors cores.
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Figure 4.2: LEON3 system-on-chip architecture overview - Obtained with modifications from
[12]
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4.3 Power-Aware and Fault-Aware Software Verification

The methods introduced in Section 3.2 have been evaluated on both available investigation
platforms, to prove general applicability and implementation correctness. This evaluation
has been divided into three parts, of which two are security-related and the last one maps
the developed methodology to safety investigations.

4.3.1 Hardware-Accelerated Power-Aware Hardware and Software Fault
Attack Evaluation

The introduction of power emulation techniques for the run-time generation of power
estimates allows for the detection of strong variations in the power profile of secure software
implementations. In Figure 4.3 the execution of the dhrystone benchmark on a common
smart-card platform using such a software verification approach, is shown.
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Figure 4.3: Power-aware software verification, run-time power estimation of the dhrystone bench-
mark program running on the SLE platform - Obtained with modifications from [5]

This control signal based technique has been extended with data-aware information to
enable power analysis on the power consumption profile as described in Section 3.2.1. One
application of such a mixed evaluation technique is the determination of the effectiveness
of novel countermeasures. Applying this technique to a software implementation of the
AES algorithm is depicted in Figure 4.4. Sub-figure a shows one encryption run including
all 10 rounds without the application of a novel control manipulating countermeasure.
The sub-figure b this countermeasure has been activated and it can be clearly seen that
the signal-to-noise ratio is significantly increased without any changes to the software
implementation. Such a power analysis countermeasure method has been described in
detail in Section 3.3.2.
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a.) AES software encryption without the application of any countermeasures

b.) AES software encryption under the influence of a clock gating algorithm
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Figure 4.4: Power consumption trace of an AES software encryption with and without the
application of countermeasures using the LEON3 platform - Obtained with modifications from [5]

As shown in Section 3.2.2 the power-aware software verification approach can now
be extended for fault injection investigation by the integration of saboteur modules and
corresponding control logic. This technique can also be used for the fault attack hardness
evaluation of hardware blocks, such as cryptographic IP blocks.
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In Figure 4.5 an attack on the AES algorithm as described in literature, is depicted.
This test case shows how a hardware-independent attack can be mapped to any hardware
implementation by only placing a few saboteurs at specific points. In this case, a single
saboteur is used to disrupt the key scheduling in a defined way.
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Figure 4.5: Mapping of a fault-attack scenario to a saboteur based fault injection architecture -
Obtained with modifications from [5]

The results of such an attack is shown in Figure 4.6. If the key scheduling process is
influenced by an attack in the ninth round the original key can be calculated from the
corrupted output, as described in [70].

1F 1B 17 13
1E 1A 16 12
1D 19 15 11
1C 18 14 10

(a) Original Key

E0 1B F7 08
E1 1A F7 08
E2 19 F7 08
31 84 E9 1C

(b) Corrupted Output

1F 1B 17 13
1E 1A 16 12
1D 19 15 11
1C 18 14 10

(c) Calculated Key

Figure 4.6: AES-SBOX fault emulation results

At this stage information leakage through the power consumption profile could only
be emulated in a static way without link to the physical design. Therefore, Section 3.2.2
described a novel strategy to use information from physical capacitance data to generate
leakage sensors. The efficiency of such leakage sensors has been investigated for both a
software implementation of the AES algorithm as well as a hardware implementation.
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In Figure 4.7 the accumulated sensor results are shown for different randomly chosen
plaintexts for encryption and keys for the filtering process as described in Section 3.2.2.
Sub-figure a shows an AES encryption using a random plaintext filtered with the correct
known key. The information leakage caused by the loading of the key into the processor
pipeline can be clearly identified. Sub-figure b just enforces this filtered result. In sub-
figure c it can be seen how this filtering approach is depending on a correct key and also
shows the applicability of the proposed technique.
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b.) AES encryption using random plaintext, filtered with correct key
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c.) AES encryption using random plaintext, filtered with random key
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Figure 4.7: Leakage sensor results for an AES software implementation - Obtained with modifi-
cations from [7]
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The same approach can also be applied to hardware modules, for example to investigate
masking techniques. Such an evaluation is depicted in Figure 4.8. Sub-figure a shows 100
traces recorded from hardware block internal leakage sensors without the application of any
masking techniques. This results in visible peaks caused by every AES encryption process.
In case of the evaluation run depicted in sub-figure b a simple masking approach has
been implemented and this results in a more randomized leakage distribution. Sub-figure
c demonstrates why a badly implemented masking scheme isn’t protecting a complete
system. In this case, the key is leaking through the processor data caches, as in this
general purpose implementation the key itself has not been protected.

a.) AES hardware module – 100 traces without masking
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b.) AES hardware module – 100 traces with masking
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c.) AES hardware module – Processor data cache input leakage

Figure 4.8: Leakage sensor results for an AES hardware implementation - Obtained with modi-
fications from [7]
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4.3.2 Emulation-based Secure Software Verification for Smart-Card Pro-
ducts in an Industrial Setting

The evaluation platform presented in the previous section has been tested in an indus-
trial environment to prove its general applicability. This specific case study relies on the
emulation of attacks on the memory sub-system of a smart-card. This implementation
is depicted in Figure 4.9, mapping given attack scenarios using a saboteur on the cache
data bus. The control of these attack runs is provided by a programmable fault injection
controller that is connected to the verification system’s serial interface. This enables the
parametrization through standard APDU (Application Protocol Data Unit) commands.
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Figure 4.9: Mapping of memory attack scenarios onto an FPGA-based software verification
system - Obtained with modifications from [13]

The results of a long-time attack evaluation running for about 22 hours is shown in
Table 4.1. Such exhaustive attack campaigns led to various findings: first, over three
quarters of the attacked cells are never accessed, second, most of the successful attacks
have no effect on generated output values and third, all remaining successful attacks have
been successfully detected.

Table 4.1: Long-time attack run using an commercial verification platform

Number Percentage [%]

Number of injections [total] 156672 100

Attacked cell never accessed 121570 77.6

Attack resulted into Fault 35102 22.4

No output effect 30373 19.4

Fault detected 4729 3.0
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4.3.3 Power-Aware Evaluation of Self-tests in the Safety Domain

The requirements demanded on the software implementation in security and safety do-
mains are often quite similar. Therefore, the same evaluation methodology as described
in Section 3.2.2 can be applied to a verification platform for safety critical designs. Such a
comprehensive evaluation platform for the testing of software implementations on different
implementation levels, is depicted in Figure 4.10.
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Figure 4.10: Evaluation architecture for the software verification of automotive implementations
- Obtained with modifications from [14]

The evaluations itself have been carried out on three different abstraction levels. First,
the outside communication of an Ethernet controller has been attacked and the commu-
nication packages have been evaluated on the software levels. These results are concluded
in Table 4.2 for two benchmarks of the MiBench Benchmark suite. In this case, damaged
packages are detected by the IP hardware block or the client Ethernet card in every case,
resulting in lost packages, which can be detected by the usage of sequence numbers.

Table 4.2: Fault injection into Ethernet communication results [14]

Benchmark Injected Faults CRC Fails Sent Packages Received Packages Lost [%]

Basicmath small (Client) >255000 0 13860 9761 29.6

Basicmath small (Server) >255000 0 9761 9761 -

Basicmath large (Client) >162000 0 1900 302 84.1

Basicmath large (Server) >162000 0 302 302 -
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During the next attack campaign faults inside the Ethernet controller’s FIFO memories
have been emulated. As the results in Table 4.3 show, these defects are detected by the
CRC mechanism of the Ethernet protocol. Furthermore, damaged packages are detected
by the controllers, again resulting in lost packets.

Table 4.3: Fault injection into Ethernet controller memory results [14]

Benchmark Injected Faults CRC Fails Sent Packages Received Packages Lost [%]

Basicmath small (Client) > 260000 10 7929 7019 11.5

Basicmath small (Server) > 260000 835 7094 7929 -

Basicmath large (Client) > 248000 3 1608 1361 15.4

Basicmath large (Server) > 248000 157 1451 1608 -

The same benchmark applications have finally been attacked by fault injections into
embedded processor memories. As seen in Table 4.4 such malfunctions cannot be covered
by simple protocol error checking and hence, result in corrupted outcomes.

Table 4.4: Fault injection into embedded processor memory results [14]

Benchmark Injected Faults Calculations Corrupted Corrupted [%]

Basicmath small (Client) > 1460000 5637182 590432 10.47

Basicmath large (Client) > 791000 3048202 264451 8.68

In modern safety systems, processor defects are detected using self-test procedures
covering a wide range of processor elements. Such self-tests have been investigated and
the results are shown in Table 4.5. It can be seen that almost in all cases, all injected
faults have been correctly detected.

Table 4.5: Evaluation of embedded processor self-test procedures [14]

Self-test Injection Type Faults Injected Detected [λS ] Fault Coverage [SFF]

Multiplier Stuck-At 1 1000 1000 100%

Multiplier Transient 1 1000 1000 100%

ALU Stuck-At 1000 1000 100%

ALU Transient 1000 1000 100%

Shifter Stuck-At 1000 1000 100%

Shifter Transient 1000 999 99.9%
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4.4 Signature-based Fault Detection in MPSoCs

In Section 3.3 novel methodologies for the generation and implementation of area efficient
signature generators are described. These techniques have been thoroughly evaluated
using the LEON3-based system-on-chip platform introduced in Section 4.2.2.

4.4.1 Characterization of Systems for Optimized Signature Implemen-
tations

The basic idea behind the signature approach introduced in this work, is the breaking up
of existing hash algorithms. This process has been chosen to retrieve hash generators that
fulfill basic properties of well defined signature algorithms at highly reduced hardware
cost and low generation latencies. These hash properties have to be re-determined using a
characterization process, which results for different implementations are depicted in Figure
4.11.

8 16 32 64
10

0

10
1

10
2

10
3

10
4

Signature Size [Bits]

N
o

 s
ig

n
at

u
re

 c
h

an
ge

 

 
CRC
One-at-a-time
MD5 based
SHA based

8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

4

Signature Size [Bits]

M
e

an
 S

w
it

ch
in

g 
R

at
io

 

 
CRC
One-at-a-time
MD5 based
SHA based

8 16 32 64
0

50

100

150

200

250

Signature Size [Bits]

FP
G

A
 S

lic
e

s

 

 
CRC
One-at-a-time
MD5 based
SHA based

a.) Evaluation of hash algorithm implementations for signature collisions

b.) Evaluation of hash algorithm implementations for their switching ratio

c.) Evaluation of hash algorithm implementations for their hardware effort

Figure 4.11: Evaluation of various reduced hash algorithm implementations, depending on dif-
ferent signature sizes - Obtained with modifications from [9]
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During this investigation process, four different signature hardware implementations
have been evaluated for their susceptibility to collisions (different input vectors share the
same generated signature), the input-output bit switching ratio and the needed hardware
implementation effort after FPGA synthesis. These tests have been executed for four
different signature widths to identify eventual corner cases for very small and very large
signatures. In Sub-figure a it can be seen that a CRC-based implementation has the most
favorable properties with very low collisions for the smallest signature sizes. Sub-figure b
depicts the measure input-output bit switching ratio, resulting in very similar results for
all implementations with exceptionally good results for the one-at-a-time design for the
smallest hash class. As seen in Sub-figure c in terms of hardware implementation effort
the CRC-based generators require the lowest amount of logic.

To compare our proposed hardware architecture with existing designs described in
literature, we integrated our generators into a LEON3 system. As shown in Table 4.6
both derived hardware blocks, the generator and controller, result in insignificant hardware
effort. This implementation is based on pre-computed control signal hashes and a run-time
checking logic.

Table 4.6: Resource usage comparison [9]

Unit Slices Slice Regs LUTs Resource [%]

System 15937 15017 30768 -

Core 3342 3248 6633 21.6

Signature Generator 103 102 263 0.85

Signature Controller 234 146 451 1.47

Arora et.al [71] - - - 3-9a

aIn [71] several different techniques have been proposed
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4.4.2 Automatized Generation of Signature Checking Hardware

A large portion of on-line checking implementations described in literature are based on
pre-computed signatures or control flow trees to detect execution disruptions. In resource-
constrained system the application of such designs using rather large memories could
be undesirable. Therefore, in Section 3.3.1 a pure logic-based approach is described to
generate hardware blocks predicting expected signatures for given input vectors. The
integration of such a monitoring module into a processor’s pipeline is depicted in Figure
4.12.
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Figure 4.12: Signature-based on-line monitoring architecture for a processor pipeline - Obtained
with modifications from [10]

While this implementation example only describes a processor pipeline monitor, it is
also applicable to a full system monitoring approach. Such an integration is depicted in
Figure 4.13 constituting a simple data accumulation and emergency reset design.
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Figure 4.13: Full system checking architecture - Example implementation for the LEON3 system-
on-chip - Obtained with modifications from [10]
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This monitoring block is generated by the utilization of a software characterization
process. During this task, unambiguous pairs of input instructions and resulting control
signal signature are searched. The result of such a characterization for different benchmark
applications is shown in Table 4.7. The difference between these applications comes from
their diverging execution behavior.

Table 4.7: Characterization results [10] - Instruction/Signature
Pairs

Application Reg-Pairsb Exe-Pairsb Mem-Pairsb Xce-Pairsb

CoreMark 287 276 83 74

Dhrystone 100 142 80 64

basicmatha 145 344 141 141

bitcounta 87 64 92 98

aRound-reduced part of MiBench embedded systems benchmark suite
bReg(register access), Exe(execution), Mem(Memory access),

Xce(exception) stage

The former introduced processor pipeline monitoring approach has been implemented
for our LEON3-based FPGA platform and has been compared to existing techniques
described in literature. These results are summarized in Table 4.8, showing that this novel
design requires a comparable hardware effort compared to existing implementations.

Table 4.8: Resource usage comparison on the LEON3 platform [10]

Unit Slices Slice Regs LUTs Resource [%]

System 7613 7413 15378 -

Core 3903 3567 7841 50.99

Signature Generators 28 109 102 0.66

PROCOMONb 407 0 1114 7.24

Arora et.al [71] - - - 3-9a

aIn [71] several different techniques have been proposed
bDepending on amount of signature-instruction pairs (bit count)

Also the detection efficiency and latencies have been determined and compared to
existing work. As seen in Table 4.9 both performance targets have been met.

Table 4.9: Fault detection efficiency comparison [10]

Approach Det. Bit Flips [%] Det. latency [Instr.]

This work > 99 1

Mao et.al Control flow [49] 26 23.6

Mao et.al Hash4 [49] 94 1

Arora et.al [71] >99 6
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4.5 Hardware Testing Support using Static Analysis Meth-
ods

Laser-based certification testing and the increasing complexity of novel designs made the
continuing introduction of formal methods into the verification process inevitable. For
this task a Java-based parser and analyzer for RTL designs written in VHDL has been
developed. As introduced in Section 3.2.3, these tools allow for the determination of
static dependencies inside the design and hence, can be used to extract and analyze fault
propagation paths. An example for the analysis of the activation and propagation paths
of an attack on the physical design is depicted in Figure 4.14. In this case the physical
location of the attack has been translated to an attacked register (r) on RTL-level.
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Figure 4.14: Dependencies for an attacked circuit node - Obtained with modifications from [8]

This information can now be used for the automated generation of hardware devices
mapping the system-internal effects onto an emulation-based verification platform. As
visible in Figure 4.15 the results of such an investigation could be the determination of
fault-sensible time regions of a given software implementation. This data can be used to
significantly reduce fault attack investigation times or to harden the software implemen-
tation against attacks.
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Figure 4.15: Checker results for a specific attack point - Obtained with modifications from [8]
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The importance of such tests can be especially seen in Table 4.10 showing that in only
11% of all checker activations, the attack target was sensible to the attack.

Table 4.10: Checker evaluation result for a single attacked node [8]

Checker Name Checker activ. Fault sens. Fault sens. [%]

AHBCTRL HRDATAS 65896 7261 11



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Highly integrated multi-processor SoCs have been increasingly introduced into every day’s
life in recent years. These systems cover both ends of the performance scale, from high-
performance implementations integrating various additional co-processors and peripherals
to low-performance smart-card systems with strict security constraints. Both design tar-
gets, high performance or security and reliability through the extensive use of parallelism,
introduce a wide range of novel challenges concerning power consumption and executions
security. Furthermore, besides theses hardware related challenges such complex systems
also come with highly optimized software implementations to implement the various ap-
plications running on these platforms. Therefore, the hardware/software co-design process
plays a crucial role in managing all these performance and integrity tasks under the watch-
ful eye of certification bodies, in case of high-security or safety applications.

This work engages this hardware/software co-design process on different levels to en-
able power-efficient and secure/safe products from design to early evaluation and verifica-
tion. First, a novel software verification platform based on hardware accelerated emulation
techniques is described. This technique enables the early investigation of power consump-
tion and fault-attack hardness. By this integration of both evaluation techniques into a
single FPGA-based verification platform, both hardware and software designers are en-
abled to ensure the compliance of the derived implementation to given power and security
constraints. The power estimation infrastructure is based on state-of-the-art control-state-
based power estimation techniques. Furthermore, it is enriched with data-aware mecha-
nisms to emulate information leakage through the power consumption profile at extreme
border line conditions. While the amount of information leakage is defined by the verifying
engineer, methodologies to include data from the physical implementation process are also
covered by this work.

The heterogeneous nature of complex multiprocessor SoCs and cost constraints in high
security smart-card implementations call for novel fault detection techniques. Based on
our novel verification platform, a signature-based fault-detection mechanism has been de-
veloped to allow for the efficient integration of multiple signature-generators into existing
designs. Each signature generator is fed with control information from selected control
signals inside modules-under-test. This results in representative signatures every clock

44
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cycle that can be pre-recorded to generate a reference stream, or they are generated at
run-time to be used in tightly connected redundant architectures. This approach pro-
vides much higher coverage of complex systems and faster reaction times than existing
techniques which are only comparing module outputs. The integration into the design
is supported by automatized routing processes and optimum implementation efficiency is
provided by a characterization mechanism. The increasing complexity of novel MPSoC
designs and the continuously stricter certification process make the introduction of static
system analysis methodologies inevitable. This development is covered in this thesis by
source code analysis tools for the VHDL description language and automatized processes
for the evaluation of physical implementation data. These techniques allow for both, the
direct mapping of fault attacks from physical laser injections to emulation platforms and
the increased application of formal techniques for the design verification.

5.2 Directions for Future Work

5.2.1 High-Level Evaluation of Security Policies during Early Design
Phases

Trust between manufacturer and customer of high security products is a major challenge
during and after the design of novel implementations. System certification aims at provid-
ing a defined level of trust between all participants of the supply chain of security critical
products. Such assurance levels are defined by Common Criteria to describe how well
documented the design process (besides other processes) of such a product is. In case of
smart-cards, high assurance levels make it necessary that certain fault attack scenarios
are tested by independent test laboratories. This work aims at providing a software ver-
ification platform to prepare software and hardware implementations for such tests and
real-world attacks. Unfortunately, such emulation-based testing as well as physical tests
cannot guarantee that the investigated system is covering all possible attack scenarios.
Furthermore, the complexity of smart-card systems is also steadily increasing and hence,
the evaluation space is increasing. This continuously increasing verification problem cre-
ates a strong need for an extended use of formal methods during the design and verification
phases of the implementation. Recent years showed an increased effort in academia and
industry to solve these problems, but no comprehensive solutions responding to the specific
needs of this industry sector have been found.

5.2.2 System-Level Power and Security Evaluations of Mobile Systems

The massive introduction of smart-cards into the payment and personal ID sectors came
with an increasing introduction of mobile reader systems to communicate with these de-
vices. While power and security related challenges in smart-card and reader systems are
well known, research concentrated on the resolution of only these isolated problem do-
mains. The interaction between a contact-less smart-card and the reader system and
challenges resulting from this wireless connection have not been well investigated. This
results into possible security problems and power consumption issues on reader as the
transmission power is kept at a maximum level. This results from the fact that currently
neither smart-card nor reader system have information about the transmission channel
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during run-time to react accordingly.
The META[:SEC:]1 collaborative research project [72] aims at solving this research

gap between low-level circuit optimizations on smart-card side and power-constraints of
portable reader systems. This effort is supported by the long-time experience of the project
partners in their specific fields. The continuing research collaboration between industry
and university also fosters an increasing aggregation of knowledge concerning the handling
of power- and security constraints in reader/smart-card systems.

1Mobile Energy-efficient Trustworthy Authentication Systems with Elliptic Curve based SECurity, col-
laborative research project of the Graz University of Technology, Infineon Austria AG and Enso Detego
GmbH. Funded by the Austrian Federal Ministry for Transport, Innovation, and Technology under the
FIT-IT contract FFG 829586.



Chapter 6

Publications

This chapter presents a brief collection of publications containing a more detailed de-
scription of the presented methodology shown in Chapter 3. They also include a very
comprehensive overview of the current state-of-the-art as introduced in Chapter 2 and
introduction in several sub-topics as presented in Chapter 1. Various experiments have
been conducted to show the evaluations introduced in Chapter 4 in a more explicit way.
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The techniques described in Chapter 3 and the results presented in Chapter 4 have been
disseminated in various publications. The fields investigated during the realization of
this thesis can be grouped into the following sectors: FPGA-based Fault Emulation, On-
line Detection, Analysis and Manipulation, and Off-line Implementation Analysis. The
selected publications have been assigned to several sub-topics as depicted in Figure 6.1.
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Figure 6.1: Publication overview concerning a comprehensive system-on-chip evaluation method-
ology for secure software and hardware implementations

The first publication shown in Section 6.1 extends the work of the POWERHOUSE
project to allow data-aware investigations of secure software implementations. In Section
6.2 a modular fault-injection system is presented and a case-study given by our industrial
partners. This work illustrates the applicability of our approach in an industrial setting
and the lessons learned at this stage will be used for all following implementations. The
possibility of direct system-internal power estimation has been exploited to manipulate
a system’s consumption in order to close this side-channel. This approach, using only
internal resources for manipulation, is presented in Section 6.3 in more detail. The appli-
cability of these techniques, fault-injection, power emulation, and manipulation have been
combined to enable comprehensive security evaluations in Section 6.4. Complex system-
on-chips contain a wide variety of interfaces that could suffer from possible information
leakage, therefore, a modular monitoring and evaluation approach is being reported in
Section 6.5.
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The combined work of all previous sections created a powerful emulation platform
for power consumption investigation under fault influences. Such a platform allows for
the evaluation of novel fault detection approaches like the signature-based one shown in
Section 6.6. This methodology utilizes control-signal monitoring infrastructure to provide
efficient integrity checking hardware. Furthermore, an automatized hardware-generation
technique for such checker modules is presented in Section 6.7. Power consumption and
fault-effect robustness are not only a concern in security-related products, but also in
implementations in the safety domain. To conquer such challenges, several standards have
been introduced (such as the IEC 61508 and ISO 26262). The application of the presented
fault-emulation and power-emulation platform for the investigation of such safety critical
software implementations is being described in Section 6.8. Finally, the application of
static code analysis, integrating information from the physical design flow, is introduced
in Section 6.9.
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Abstract—The personal banking and ID sector has seen a
tremendous change in recent years, partially caused by the
widespread introduction of smart-cards. Because of the extensive
implications of a successful attack on these devices, a wide
range of practical as well as purely academic attacks has been
developed during the last years. These attacks have unveiled
weaknesses in hardware as well as software implementations of
several different, partially widely used cryptographic algorithms.
An especially powerful method, the differential power analysis
(DPA), extracts secret information from power consumption
and electro-magnetic emission profiles. The efficiency of a DPA
attack significantly depends on the quality of the cryptographic
algorithm implementation. These traces currently can only be
generated using real hardware or simulation-based approaches.
Depending on the chosen simulation accuracy these evaluations
result in time-consuming RTL and SPICE simulations often
limiting the maximum amount of available execution traces.
This paper introduces a novel high-speed methodology for early
security evaluations of integrated processor systems using power
emulation. First, the usage of power emulation hardware allows
for the estimation of attack effort that an adversary will have
to invest to gain secret information from an algorithm’s execu-
tion profile. Second, countermeasures against differential power
analysis attacks can be quickly evaluated in terms of effective-
ness. The shown approach uses semi-automatic characterization
techniques and fully synthesizable emulation hardware to reduce
the designer’s dependency on time-consuming simulation runs.

I. INTRODUCTION

The common availability of power analysis attacks poses
a difficult challenge to system designers. Realistic power
consumption profiles of a given system-under-test for complex
test cases are only available at late design stages, i.e., after first
tape-out silicon is available and power measurements can be
performed. However, to prevent information leakage in the
first place, the system needs to be designed with possible
information leakage in mind. The same applies to embedded
software developers involved in a hardware/software co-design
flow who have to guarantee that their implementation does
not compromise a secured hardware architecture. To close
this information gap in the system design process several
simulation approaches have been proposed. These are based
on the assumption that information leakage is caused by two
major contributors:

• The root of power leakage is the switching behavior of
the used logic style [1]

• Instructions cause different power consumption profiles
depending on their complexity [2]

Designers of cryptographic hardware implementations are
mostly concerned about leakage caused by a given logic
implementation because many cryptographic algorithms are
implemented directly in hardware due to performance require-
ments. On the logic-level evaluations are very time-consuming
as they are based on complex, low-level simulation models.
Software designers mostly rely on higher level instruction set
simulators to verify functionality and, in some cases, to also
extract the power profile of a given algorithm. While these
high-level approaches offer the benefit of faster simulation
times, allowing for the simulation of complex test-cases, they
entail the risk of concealing low-level hardware effects and,
hence, information leakage.

Especially advanced DPA attacks have become a serious
problem in a secure hardware/software co-design process [3].
These attacks rely on a very large number of power traces
recorded at very high resolutions. Using low-level simulations
it is difficult to provide the required amounts of power
traces within reasonable simulation times. Instruction-level
simulators, however, do not provide bit- and cycle-accurate
processing information, hence limiting their use in DPA-
resilience evaluation.

In this paper, we therefore propose the use of state-of-the-
art power emulation hardware to provide hardware-accelerated
run-time power tracing capability at reasonable levels of
resolution. An automated characterization flow facilitates the
integration of the power emulation methodology into the
design process and allows for the adaption of the approach to
novel hardware architectures. Our proposed solution provides
additional tools to support the side channel evaluation on
different abstraction levels as proposed in [3]. The main
contributions of this work are:

• A semi-automatic switching activity-aware power char-
acterization process.

• The introduction of a data-dependent power model for
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hardware accelerated security evaluations.
• A case study using a commonly used software implemen-

tation of the AES algorithm.
This paper is structured as follows. Section II briefly reviews

the current state-of-the-art concerning work on simulation and
emulation techniques to evaluate cryptographic software and
hardware implementations. Section III gives an overview over
power analysis approaches to retrieve secret information from
any given system by analyzing its power consumption profile.
Section IV provides technical details about the used power
emulation approach and necessary changes to enable DPA
using such a emulation technique. In Section V the proposed
DPA analysis flow is being described in detail. Section VI
illustrates experimental results using RTL simulations and the
FPGA-based emulation platform. Finally, some concluding
remarks concerning the results of this publication are given
in Section VII.

II. RELATED WORK

In terms of related work three distinct methods for analyzing
the characteristics of a system regarding power analysis char-
acteristics have been presented. They all represent simulation-
based approaches.

The first approach comprises a purely software-based so-
lution [4]. For extracting side channel leakage information
from a given program, it is executed and every instruction and
processor state is traced. This information is fed into an easily
extensible analysis module. Such analysis modules are directly
implemented for the Microsoft Debugger API. The authors
do not state any information about accuracy and simulation
performance.

The second approach uses in-system knowledge provided by
power consumption simulators using instruction set simulators.
While promising high simulation speeds this approach is
mostly limited to thoroughly profiled general purpose archi-
tectures. Implementations of this approach were presented in
[5] and [6]. Both solutions promise high simulation speeds,
but do not present any hints about the accuracy of the used
power profiles. Inaccurate power profiles could lead a software
engineer into a sense of false security as the possibility of
missed information leakage could be higher than anticipated.
The implementation presented in [6] uses several abstract
power models to isolate possible sources of leakage. The
presented approach has been designed for the Atmel AVR
microcontroller series.

The third approach uses highly accurate gate- or even
transistor-level simulations to identify critical parts of the
circuit-under-test. This level of accuracy comes with high
costs in terms of simulation speed and needed simulation
equipment. The designer therefore has to choose between very
short simulation times or reduction of the evaluation to the
smallest possible leakage contributer. The former choice is
mostly infeasible because it is of utter importance to know if
an adversary could extract information using a high number
of power traces. Works based on highly accurate analog
simulations using SPICE simulators [1], [7], [8] and using

register transfer level (RTL) simulations [9] for improving
simulation speeds have been presented. However, the timely
effort of offline power simulations remains a limiting factor
for the trace count. The authors of [9] also note that RTL
simulations may hide leakage contributors only visible after
further design flow steps. To the best of our knowledge no
other DPA evaluation approaches exist in literature that are
employing hardware emulation techniques.

III. POWER ANALYSIS (PA)

Power analysis takes advantage of the fact that the power
consumption and the emitted radiation of a given system
depends on the workload it executes. This allows for extracting
timing and statistical information about the executed algo-
rithm. Therefore it has become a vital source of information
for cryptologists and adversaries.

A. Simple Power Analysis (SPA)

In case of SPA the power consumption or radiation profile
of a cryptographic system is analyzed in a direct manner, i.e., a
low number of traces is searched for specific variations caused
by weaknesses of the implementation-under-test. Therefore it
is necessary to know at least some details about the used
software or hardware implementation.

For example, the usage of branches could cause visible
variations depending on the used en-/decryption key. If the
different execution paths differ significantly this also can be
easily exploited through timing analysis, as the execution time
of each path could differ. SPA attacks can be hindered by
randomization and general avoidance of data-dependent run-
time behavior.

B. Differential Power Analysis (DPA)

DPA is an advanced form of power analysis using statistical
methods. It has been published by Kocher et. al. in 1999 [10]
and has been proven to be a powerful tool to extract secret
key information from cryptographic systems. This technique
exploits the fact that the power profile or the radiated electro
magnetic field depends on how many logic gates are switching
at the same time. Therefore this leaked execution information
can be dependent on the used key bits. The techniques origi-
nally presented in [10] still required a high amount of power
traces to successfully attack a system if basic countermeasures
are available. Therefore several advanced approaches have
been developed to improve analysis performance such as
correlation DPA [11], [12].

IV. POWER EMULATION (PE)

The power emulation methodology, i.e., the hardware-
accelerated power estimation of a given system-under-test, is
a promising alternative to simulation-based power profiling
approaches. The speed-up of the emulation-based approach
in comparison to software simulators is especially useful
regarding DPA analysis, allowing for the fast generation of
a large number of profile traces.

82 2011 IEEE International Symposium on Hardware-Oriented Security and Trust

6. Publications Publication 1 - IEEE HOST 2011 51



Functional Verification

FPGA Board

Power Emulation

System-under-Test (RTL)

Functional Emulation

P
o
w

e
r

Time

MOV @R8, R12

INC R8, #0x02

ADD R8, R5

Host PC
Power Verification

Trace of Functional 

Execution

Trace of Power 

EstimatesPower Models &

Control Unit (RTL)

Activity Data
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A. Principle of Power Emulation

The principle of power emulation (PE), as initially intro-
duced in [14], is based on state-of-the-art functional emulation
that is being augmented with hardware-implemented power
models. Thereby, the power estimation process and the func-
tional emulation are executed concurrently during the run-time
of the system. The functional and power emulation traces are
recorded and can be analyzed on a host computer as depicted
in Figure 1.

B. Extended Power Emulation Unit

The high-level power emulation unit as depicted in Figure 2
and initially introduced in [13] serves as the foundation of this
work. The unit utilizes additive linear power macro models
as expressed in Equation 1 to generate static and dynamic
power consumption estimates for different system components
by monitoring power-relevant signals xi.

P̂ [t] = P̂sta + P̂dyn[t] = c0 +

N∑

i=1

cixi[t] (1)

For the purpose of enabling DPA evaluations, the PE unit
has been further extended to monitor power-relevant state as
well as data signals and to store a set of state-dependent
(SD) as well as data-dependent (DD) power model coefficients
for each system component. Originally the PE unit has been
analyzing the state of various system components by eval-
uating selected power-relevant control signals. While this ap-
proach is sufficient to determine the power consumption within
reasonable accuracy, it is typically not usable for security
evaluations because there is no direct relation between power
profile and current workset data. Therefore this approach has
to be extended with signal switching information of data-
dependent architecture elements. To achieve the inclusion of
this information an additional pre-processing stage has been
added computing an XOR-operation of a data-signal with
its state one clock-cycle ago. For our used system-under-
test we have chosen to extract this information from both
ALU operands and the corresponding result signals. This
approach allows to introduce data-dependency into the power
consumption model without worsening the power emulation
result. Compared to the gate-level power simulations the result
represents a similar level of accuracy as the power model only
employing control signals.
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Fig. 2. Extended power emulation unit for DPA evaluations: The unit is
monitoring various system components and therefrom derives state- and data-
dependent power estimates (adapted from [13])

Furthermore, the PE unit has been extended with an internal,
configurable FIFO buffer to allow for easy run-time power
tracing using our FPGA based evaluation platform. The small
memory allows to store the sub-trace of a single encryption
run without interference of test control instructions with the
cryptographic algorithm. After the code-under-inspection has
been finished this FIFO can be safely read and its contents
stored to an external memory.

C. Extended Power Characterization for DPA Evaluations

For deriving power models that consist of both state-
dependent and data-dependent model coefficients we have fur-
ther extended the automated power characterization method-
ology presented in [15]. The power characterization flow as
depicted in Figure 3 consists of multiple stages:

1) Generation of training-set data: A set of microbench-
marking applications, covering all components of the
system-under-test, is simulated and power-profiled on
the given system-under-test using state-of-the-art gate-
level power estimation tools. The resulting training-set
contains both signal activity as well as power estimation
data.

2) Parameter selection: The training-set data is then used
to determine power-relevant signals, i.e., power model
parameters xi. In contrast to the completely automated
approach considering mainly control-related signals [15]
for power modeling, we now also add data signals
based on a user-defined configuration. Data signals are
preprocessed using a VCD-file analyzer tool to extract
only the signal’s switching activity.

3) Coefficient fitting: For the parameters selected before,
coefficients ci are determined by means of a model
coefficients fitting process using a non-negative linear
regression technique. The resulting power model con-
tains both state- and data-dependent coefficients.

V. DPA EVALUATION FLOW

The proposed DPA evaluation flow is based on the power
emulation methodology [13], [16] and a power analysis
methodology built upon the openly available Open Side Chan-
nel Analysis (OpenSCA) kit for Matlab [17]. The hardware-
accelerated DPA analysis flow is depicted in Figure 4 and can
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be divided into a profiling phase V-A and an analysis phase
V-B.

A. Profiling Phase

Power profile tracing can be executed in two ways:
• Run-time profile tracing using the extended PE unit
• Power profile tracing using RTL simulation
RTL simulation can be performed very early in the design

process. The simulation model generates simple text-style
power trace files that can be easily imported into Matlab. In
this case minor adjustments are made to the source code to
ease sub-profile extraction later on. In our experimental tests
we used hard-coded NOP (no operation) instructions to level
the power profile for a short period of time.

To generate the same text-style trace file during run-time
operation the PE unit has to be augmented with internal tracing
memory as described in Section IV-B. After each evaluation
run the data saved inside the FIFO has to be read and stored
into the test-system’s memory.

TABLE I
LEON3 PROCESSOR CONFIGURATION

Operating Frequency [MHz] 40

Instruction Cache Sets 2

Instruction Cache Set Size [kB] 4

Data Cache Sets 1

Data Cache Set Size [kB] 4

MMU TLB Entries 8

MMU Page Size [kB] 4

B. Analysis Phase

After the power profile trace of the executed evaluation
program has been recorded, it is parsed for processing in
Matlab. This trace covers the whole program execution and
therefore has to be divided into its sub-traces containing only
one encryption run each. This is done using a two pass
approach that is, first, marking the trace separation sections
and, second, extracting the sub-traces between these markers.
Because of small computational differences between these sub-
traces they are cropped to guarantee traces of equal length.
Slight delays between these sub-traces can be corrected using
cross-correlation.

Finally the stored traces are analyzed using scripts of the
OpenSCA toolkit. These have been slightly modified to allow
the automatized calculation of all 16 key bytes without further
need of user interaction.

VI. EXPERIMENTAL RESULTS

To prove the applicability of our approach we chose a
widely used hardware platform and software implementation
of the AES cryptography algorithm. For our hardware platform
we selected an open source implementation of the SPARC
v8 architecture developed by Aeroflex Gaisler [18]. This
processor has been synthesized using Xilinx ISE software and
tested on the ML507 evaluation board also from Xilinx. The
characterization process has been done using gate-level and
power simulations using Synopsys PrimeTime provided by
our industrial partner. Our operating system tests have been
executed using the SnapGear Linux distribution provided by
Aeroflex Gaisler. The processor’s configuration is summarized
in Table I. Our analysis platform consists of MathWorks
Matlab 2009b on an six-core 3.2 GHz AMD Phenom-II
machine using eight giga-bytes of RAM.

The completed PE characterization process resulted in less
than seven percent average and 20 percent root mean square
error (RMSE) compared to gate level simulations for all micro-
benchmark programs. These results are similar to those of
previous versions of the PE unit, using only control signals.
The resulting power model consists of 141 coefficients and
therefore it was necessary to equip the PE unit with a seven
stage pipelined adder tree to reach clock frequency targets.
Emulation accuracy could be improved by including more
coefficients but at the cost of a more complex hardware design
and increased adaption effort for new target designs.
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As an exemplary implementation of the AES algorithm we
chose a widely known C implementation [19]. This source
code provides the user with several customization options
to choose between high computation performance and low
memory footprint. The slowest possible settings do not use any
table functionality and are executed using loops and therefore
a high amount of branches. Such an implementation would
be easy to attack, as the adversary has a clear view on the
current status of the calculation. Therefore we decided to apply
high performance settings using predefined SBOX tables.
The following options have been activated for this particular
implementation: FIXED TABLES, FF TABLES, ARRAYS,
FAST VARIABLE.

The target of our experimental evaluations is the AES
encryption of randomly chosen 16-byte plaintexts using a 128
bit key. The point of attack is the SubBytes operation for which
the hypothetical power consumption will be calculated using
the Hamming Weight model.

The whole processor system including the power emulation
unit has been synthesized using Xilinx ISE 12.3 and tested
on the ML507 evaluation board mentioned earlier. For run-
time power tracing a 32kSample FIFO has been included
using Xilinx Virtex BRAM blocks. For our run-time evaluation
system the FPGA board has been equipped with the Linux
distribution and the results are saved to the host computer
using a network drive (NFS). Performance evaluations have
been done using a 152MB memory buffer (4-bytes data width,
2000 traces, 20000 data-points per trace). These 2000 traces
have been recorded in 594 seconds resulting in a tracing speed
of 3.37 traces per second.

A. Unprotected System

First measurement runs are undertaken using an unmodified
version of the software AES implementation and LEON3
processor. The performance of the analysis phase is sum-
marized in Table II. Our experimental results show that
without any precautions the used AES implementation will
leak too much information through its power consumption
profile (Table III). Especially if the trace alignment is corrected
through cross-correlation the amount of necessary power traces
to successfully guess the used key is reduced significantly
(Table IV). Therefore the complete 16-byte long key could be
extracted using less than 300 traces. It has to be noted that no
sophisticated techniques like higher-order or template power
analysis techniques have been used to achieve this result. As
shown in Table V the FPGA emulation technique provides
a significant speedup compared to the direct RTL simulation
without any further power estimation steps.

A typical power trace for one encryption run and the result
for the key guess of the first key byte is shown in Figures 5.

B. Software Countermeasures

A simple and easy implementable countermeasure against
DPA attacks would be to introduce randomized elements
into the execution. This can be achieved through the random

TABLE II
ANALYSIS PERFORMANCE USING 1000 POWER TRACES

Operation Time [sec]

Tracefile Parsing 766,9

Mask Generation 37,3

Power Trace Masking 152,5

Trace Cropping 17,2

Alignment Correction 4,4

Saving Traces to Container 5,9

Saving Plaintexts to Container 0,1

TABLE III
DPA RESULTS ON THE UNPROTECTED SYSTEM (UNALIGNED TRACES)

Used traces Corr. Bytes Corr. Bytes [%] Time [sec]

200 1 6,25 7,3

300 7 43,75 9,6

400 9 56,25 12,0

500 10 62,5 15,7

600 14 87,5 18,9

700 14 87,5 19,5

800 14 87,5 21,3

850 16 100 22,4

TABLE IV
DPA RESULTS ON THE UNPROTECTED SYSTEM (ALIGNED TRACES)

Used traces Corr. Bytes Corr. Bytes [%] Time [sec]

200 14 87,5 7,6

300 16 100 10,2

TABLE V
TRACING PERFORMANCE: RTL SIMULATION VS. FPGA EMULATION

Traces Time [sec] Speedup

Direct RTL Simulation 100 3850.05 -

FPGA Emulation (w/o OS-overhead) 100 0.0258 149226

FPGA Emulation (w/ OS-overhead) 100 43.13 89.27

injection of NOP instructions for example. Through the intro-
duction of algorithm-independent instructions the time-relation
between algorithm-dependent power contributers and recorded
traces is distorted at a small cost of performance degradation.
For this proof-of-concept example we implemented a pure
software solution in which random values are selected before
the evaluation for each test-run. NOPs are inserted after each
encryption run to reduce trace correlation.

The maximum number of evaluated traces was 3000 without
resulting in exposed key bytes. Therefore the effort to extract
secret information has been increased sufficiently to protect
against our DPA attack setup.

C. Hardware Countermeasures

Similar to the software approach shown in Subsection
VI-B the DPA result is influenced by reduction of inter-trace
correlation. This is achieved by run-time augmentation of
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Fig. 5. Tracing and DPA analysis results for an unprotected system

the processor’s clock signal. Depending on the steepness of
existing power peaks in the power profile the clock signal is
masked.

We recorded up to 3000 traces without being able to extract
the used key. The clock signal manipulation while being easy
to implement comes with a high increase in execution time
(9600 vs. 17400 clock cycles). The reduction of the strength
of this clock manipulation approach would lead to higher
correlation and therefore a good balance between performance
and efficiency has to be found.

VII. CONCLUSION

In this paper we have shown that run-time power emulation
hardware accelerates the analysis of software implementations
of the AES cryptographic algorithm for their sensitivity to
power analysis attacks. This opens several new possibilities
to designers of embedded systems for cryptographic purposes
and provides them with a high performant analysis tool.

We showed that the usage of power emulation techniques
not only allows to analyze a high amount of power traces
during the design phase, but also how this information can be

instantly used to improve system software and hardware. Most
of the used and proposed analysis flows are highly automatized
and therefore do not imply additional effort for the system
designers.

The proposed hardware could also be used for run-time
power analysis in complex system-on-chip designs. Explo-
rations in this direction will be part of our future work.
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a b s t r a c t

The increasing level of integration and decreasing size of circuit elements leads to higher probabilities of
operational faults. More vulnerable electronic devices are also more prone to external influence from
energizing radiation. Additionally, the concerns of chip designers include not only the natural causes
of faults but also the misbehavior of chips due to ‘‘planned’’ attacks, as, for example, in critical security
applications. In particular, smart cards are exposed to complex attacks through which an adversary
attempts to extract knowledge from secured systems by provoking undefined states. These problems
increase the need to test new designs for their fault robustness.

This paper presents a case study on fault injection strategies. An in-system fault injection strategy for
automatic test pattern injection by enabling the emulation of fault effects on the circuit level is intro-
duced. Second, an approach is presented that provides an abstraction of the internal fault injection struc-
tures to a more generic high-level view. Through this abstraction, it is possible to help the operating
system designer test a product against different fault effects without knowing how to produce this effect
by a fault attack. Therefore, we implemented a modular fault injection controller that is located along
with the system under test on the emulator platform.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The continuing success of the semiconductor industry with re-
gard to downscaling structures has led to highly integrated but
also highly sensitive devices. External radiation effects and thermal
and electric degradation have become common problems for the
dependability of a system [1].

Through these effects, transient or even permanent faults are
introduced, which leads to a change in the system behavior. These
faults occur randomly, unlike faults resulting from so-called fault
attack scenarios. In this case, an attacker deliberately injects faults
into a system to change the system behavior. Without dedicated
precautions, such attacks are easy to implement [2].

In recent years, intensive research has introduced several differ-
ent tools to simulate or emulate possible fault scenarios during the
design phase. In particular, fault emulation proved to be a very
effective way of testing systems under the influence of fault
sources. The platform usually used to emulate such a faulty system
is a field programmable gate array FPGA because of its flexibility.
An example of such an FPGA fault injection platform is shown in
Fig. 1. There are different ways to inject faults into circuits. One

is the use of partial reconfiguration features of the FPGA [3], but
this design approach heavily limits the platform choice because
there are only a few candidates, such as the Virtex families from
Xilinx [4]. Another way is to instrument the given circuit either
with manipulated logic elements or with integrated controllable
fault elements. The latter case can distinguish between saboteurs
and mutants [5]. Saboteurs are small circuit elements that do not
affect the system behavior under normal conditions. If activated,
they directly inject faults into the targeted submodule by disturb-
ing the internal signals. To disturb signals, saboteurs must be
placed between their source and their sink. Mutants are modified
submodules that also do not affect system behavior under normal
conditions but, if activated, behave like a faulty version of the ori-
ginal. To simulate or emulate fault attacks with mutants, the sub-
module must be replaced by a mutated submodule.

To accomplish such a test setup, it is necessary to have access to
the hardware description or a standardized test interface. Such a
test interface could consist of test chains [6]. Another important
step in creating an effective fault injection platform is the selection
of a proper fault model. For dependability evaluations, a single
event upset (SEU) fault model is often sufficient. If the faults are
caused by radiation or degradation, it can be safely assumed that
only a single random fault will occur at a time [7]. In contrast, secu-
rity evaluations consider intentional faults. Therefore, it is possible
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that an attacker introduces several faults at once to achieve the de-
sired effect of secret exposure.

This type of multi-bit fault model results in much more com-
plex fault relationships than SEU models because the time and
space of such faults cannot be assumed to be random. This model
must reflect the interdependency of several SEUs. Thus, in depend-
ability analyses, similar types of sensitive sub-circuits will fail at
the same time. In security evaluations, this dependency is defined
by the attack scheme of the adversary.

Finally, the controlling element itself must be designed very
carefully. The scope ranges from a very simple implementation
completely controlled by an external source such a personal com-
puter to very sophisticated integrated designs. Simple implemen-
tations have the advantage of being very adaptable to system
changes, but they are also highly dependent on the communication
interface used. Therefore, they can be considered slow. An imple-
mentation based on a PCI interface is shown in [6]. Sophisticated
solutions allow for very high fault injection rates but are difficult
to adapt to system changes [8]. In recent years, implementations
of fault injection emulation controllers have been either simple
and limited by slow interface performance or highly complex and
therefore not portable from one design to another.

In this paper, we propose a modular fault injector (MFI) that
combines the advantages of a simple portable design and fast,
highly complex implementations. It also helps to provide a com-
mon platform for fault injection campaigns on different target
architectures. Another point that has often been neglected in pre-
vious work in this field is the consideration of fault attacks.

Finally, the consideration of multi-bit fault patterns instead of
simple SEUs can be seen as a main contribution of this work. This
consideration is especially important for security evaluations. This
fully synthesizable controller can also be used as an online-testing
implementation if desired. The main goals of this work can be sum-
marized as follows:

� Fault effect modeling for software development.
� Fully modular fault injector design.
� Multi-bit fault injection to support fault attack emulation.

This paper is structured as follows. Section 2 briefly describes
the state of the art of work related to emulated fault injection using
integrated controllers and different reconfiguration techniques. In
Section 3, the design of the fault injection controller is described.
Section 4 presents some of the experimental results of this MFI
by means of the LEON3 processor [9]. Finally, conclusions are
drawn in Section 5.

2. Related work

The introduction of fault emulation on FPGA platforms has led
to several publications concerned particularly with the emulation

of SEUs in space applications. Approaches using direct circuit
manipulation such as the solution proposed in this paper must
be distinguished from techniques using the reconfiguration fea-
tures of certain FPGAs.

The former possibility can again be divided into two subcatego-
ries. One uses specialized hardware units to instrument saboteurs
or mutants as shown in [8]. The second variant uses available pro-
cessor cores for fault injection automation similar to the solution
provided by [10]. This solution promises a high emulation perfor-
mance because of fast on-chip communication channels, but it is
more difficult to port to other platforms.

In recent years, the partial and complete runtime reconfigura-
tion of FPGAs became a common technique to implement fault
injection in a flexible way. Reconfiguration is possible on special
FPGA series using an external communication interface to directly
feed different fault configurations into the FPGA, as shown in
[11–13]. If this external interface is too slow, it is also possible
to use existing processor resources for the reconfiguration task,
as presented in [14,15]. While the reconfiguration approach is
tempting (and has been used by several research groups), it also
limits the maximum reachable fault injection performance and
the designer’s platform selection. An approach similar to the
reconfiguration approaches is presented in [16], in which the
synthesized netlist is augmented to preserve the original struc-
ture of the system.

In the field of security evaluations, the authors of [17] used a
proven fault injection platform presented in [18]. This investiga-
tion confirms the strong need for multiple fault injection cam-
paigns in the design process. However, in their experiments, only
a small fault multiplicity (six) was used to prove this point. In
[19], a system demonstrating the use of multiple emulation plat-
forms to run simultaneous fault injection campaigns is described.
This parallelism increases the emulation speed.

3. Modular fault injector

For this case study, a fault injection method is required. There-
fore, a modular fault injection controller concept and its imple-
mentation are presented in this section. The following
requirements summarize the main drivers behind the develop-
ment of this modular fault injector (MFI):

� Effect modeling for software development.
� Support for fault patterns to support multi-bit fault injection.
� Multi-mode saboteur support.
� Scalable interfaces to support automatic saboteur placement.
� Standardized communication interface.
� Internal memory for automatic fault injection.

To support the easy application of the fault injection system to a
new design under test, a standardized communication interface is
needed. The General Purpose Input/Output (GPIO) communication
interface enables the developer to use the proposed controller in a
wide selection of different architectures. The GPIO interface con-
sists of pins that can be configured via software commands. These
pins allow for controlling the MFI without disturbing the device-
under-test. Extensive fault injection campaigns are only possible
using a large number of active saboteurs. It is not possible to route
such a large number manually; therefore, internal interfaces must
be scalable to enable automated injection processes. An effective
separation of the design and evaluator tasks can only be guaran-
teed through a generalized view of the fault injection system,
which is accomplished using so-called fault patterns, high level
representations of the underlying saboteur distribution. These

Fig. 1. Schematic view of the proposed fault injection system (obtained from [27]) .
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patterns are also necessary for efficient physical fault attack
emulation.

High-speed automated operation is enabled through a flexible
internal memory system. In the design phase of the proposed fault
injector, future advances of the evaluation platform must be con-
sidered, which include support of large fault patterns and burst
loading from the bus-system. Different fault and attack scenarios
call for different saboteur types. To simplify the reconfiguration
process, different saboteur modes are provided by a single flexible
saboteur design.

A basic block diagram of the proposed fault injection system is
shown in Fig. 1. The flow consists of the fault injection controller,
which specifies the attack scenario; the saboteurs, which disturb
signals; and a PowerPC, which is used as the interface to the PC.
The PowerPC is an optional component because the interface of
the MFI can be easily configured. As described in the following sec-
tions, the MFI is controlled over a GPIO interface. This interface can
also be controlled from different devices, e.g., for Smart card fault
emulation, and during the development process of the operation
system, the MFI can be controlled with APDU commands.

3.1. Fault injection controller

The fault injection controller is the main part of the MFI. It con-
trols the mode and the activation time of the saboteurs. As shown
in Fig. 2, the fault injection controller consists of two interfaces.
The first is the saboteur interface. This interface is a bus where,
for each saboteur, an activating signal is included. It also contains
mode signals to control the mode of the saboteurs. The second port
is the General Purpose Input/Output (GPIO) port. This interface is
used to control the fault injection controller. The internal fault pat-
tern memory is filled via the GPIO port. This memory is used to
specify when each attack pattern is activated.

Due to the GPIO interface of the MFI, it is possible to automate
fault injection campaigns. The easiest way, when using a Virtex5
FXT FPGA, is to control the MFI via GPIO commands through the
FPGA-internal PowerPC. Using this solution, a simple, generic soft-
ware interface to the generic hardware interface is provided, which
has the advantage that the test-engineer does not need specific
knowledge about the fault injection system itself. Especially in
the case of security evaluations, the evaluation engineer will be
mostly concerned with the proper mapping of a real attack sce-
nario to the saboteur matrix inside the system of interest. The GPIO
interface of the MFI can be easily changed to every other interface,
which allows the writing of the internal memory of the MFI. This

flexibility makes the whole flow independent of the test
environment.

3.1.1. Implementation
The fault injection controller is split into five main parts.

� Saboteur interface: The saboteur interface was imple-
mented to allow for easy expandability to support several
hundreds of saboteurs. The size of the saboteur interface
bus is equal to the number of saboteurs plus the mode sig-
nals to control the mode of the saboteurs. Another method
to control the saboteurs is the scan-chain approach. The
disadvantage of the scan-chain approach is that multiple
clock cycles are required for the configuration of the
saboteurs.

� GPIO interface: The GPIO interface is the interface of the
MFI to the controlled processor. All attack scenarios can
be loaded into the MFI via this port.

� Memory control: The memory control is used to place the
fault patterns into the internal fault pattern memory. It also
generates signals for the control logic if a special command
is sent via the GPIO port.

� Internal fault pattern memory: This memory stores the
fault patterns, which define the attack scenario.

� Control logic: The control logic activates the saboteurs
depending on the information stored in the internal fault
pattern memory.

� Trigger: The MFI also has a trigger source, which can be
used to synchronize the fault injection with the current
state of the executed software.

3.2. Saboteurs

To model a wide selection of possible faults, we introduce a con-
figurable saboteur. According to [20,21], saboteurs can be catego-
rized into several different types. Depending on their location,
they can be differentiated between serial and parallel saboteurs.
Depending on the directionality, a division can be made between
uni- and bidirectional ones. Finally, depending on their complexity,
simple and complex saboteurs can be distinguished. The saboteur
used in this work can be classified as a unidirectional, serial, simple
saboteur. Thus, it only works in one direction, it is located directly
in the connection signal, and it affects only one port at the input
and output side. The supported fault models of such an injection
element are shown in Table 1.

The proposed saboteur can be used to inject faults into single bit
lines or even complete buses, which allows the emulation of bus
attacks with, e.g., unfocused lasers or influence by strong external
energy sources. The first four saboteur configuration modes are
equivalent to direct circuit modifications. Bit-flips could also be
forced by short, intensive, external pulses. Delay faults emulate cir-
cuit behavior in the case of operating voltage changes. A schematic
block diagram and fault effect visualization of the proposed single-
bit saboteur is shown in Fig. 3.

Fig. 2. Schematic view of the modular fault injector (adapted from [27]).

Table 1
Saboteur operation types and their description.

Saboteur mode Fault type Description

Stuck-at-zero Permanent Signal value of ’0’ until reload
Stuck-at-one Permanent Signal value of ’1’ until reload
Indetermination Permanent Undefined signal state until reload
Bridging fault Permanent No output propagation until reload
Negation of input Permanent Undefined signal state until reload
Bit-flip Transient Output inverts input for one cycle
Artificial delay Transient Input to output propagation delay
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3.2.1. Implementation
The complexity of the implementation of the saboteurs depends

on the features a saboteur supports. Therefore, the required num-
ber of slices for one saboteur mainly depends on their complexity.
If the interface of the saboteurs is not changed, only the architec-
ture of the saboteur must be modified to support more features.
Thus, once the saboteurs are placed, the evaluation engineer can
adapt the saboteurs by changing only one file, which makes the
saboteur placement concept very flexible.

3.3. Fault pattern support

To evaluate a device-under-test for its fault attack sensitivity, it
is important to know the exact location of security relevant silicon
regions. Because the system is designed for fault effect modeling to
test security features during software development, the required
locations to place saboteurs are limited. Important locations can
be memory interfaces, inputs and outputs of the system or inputs
and outputs of calculation modules. At these locations, saboteurs
must be placed by an evaluation engineer. A fault pattern approach
is used for an effective mapping of saboteurs to their correspond-
ing fault locations. Of course, not every possible pattern combina-
tion must be transmitted to the MFI. Every pattern used represents
a very likely fault effect. For example, memory data at a specific
address have been manipulated. Where exactly the attack was
injected does not matter; only the effect that can be observed by

the software is important for the operating system designer. For
hardware evaluation, other methods must be used. This approach
allows the user to check that the software security features devel-
oped work as intended, independent of how the fault effect is pro-
duced. The basic concept of mapping the fault pattern with the
physical implementation is shown in Fig. 4.

The encoding of the fault pattern is performed by an array with
x columns and y rows. Each element represents one saboteur or an
area where no saboteur is placed. To define a special attack pattern,
only an array where the active saboteurs are marked must be
transmitted to the MFI.

3.3.1. Implementation
In this example, two methods of pattern generation are used to

show the function of the fault MFI. The first one is a random num-
ber generator to show the functionally of the MFI. The second
method is a pattern defined by a test engineer, which can be used
for fault effect production. The complexity of such a pattern gener-
ation does not increase the required slices of the MFI because the
patterns are not generated directly in the MFI.

3.4. Automatic placement of saboteurs

For a large number of saboteurs, an automatic saboteur place-
ment approach is required because manual saboteur placement
is a very time consuming and error prone process. In [20], a theo-
retical method is discussed for placing saboteurs automatically
into a VHDL design. Our approach works very similar to that ap-
proach. In Fig. 5, a schematic example of automatic saboteur place-
ment is shown. The saboteur placement tool is based on the
vMAGIC VHDL parser library [23]. VMagic is a Java API that can
parse and adapt VHDL code automatically. The flow can automat-
ically add hundreds of saboteurs [22]. Then, the VHDL code is auto-
matically adapted with saboteurs and the fault injection controller.
A method to modify the VHDL code automatically is shown in [24].

3.4.1. Implementation
For this paper, the automatic saboteur placement tool was used

to place the saboteurs into a critical signal in the design, which im-
proves the very error prone and time consuming process of manual
placement of the saboteurs.

3.5. Attack scenario

As shown in Fig. 6, the attack flow is based on a golden model
run. The golden model runs from one reset to the next reset of
the DUT. All of the golden model information is stored (e.g., the
output, none volatile memory (NVM), and timing).

Fig. 3. Block diagram of the proposed saboteur element (obtained from [27]).

Fig. 4. Schematic view of an extracted fault pattern (obtained from [27]). Fig. 5. Automatic routed saboteurs (adapted from [22]).
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The next step is to reset the whole system. Then, all of the attack
patterns are stored in the internal fault pattern memory via the
GPIO interface. In addition, the attack mode must be transmitted
via GPIO. The mode is used to define the attack type of the sabo-
teurs (e.g., bit-flip). After a pre-determined time, the specified fault
attack will be injected, and then the saboteurs are activated
depending on the fault pattern. Now, the faulty DUT will run until
it is reset or a pre-defined timeout is reached. This timeout is re-
quired because the device could run into an infinite loop after
the fault injection.

After the fault injection run is finished, the saboteurs are deac-
tivated, and the result is compared to the results from the golden
model run. If the results are not equal, a fault analysis process must
be launched. This procedure is continued until all attack patterns
are tested.

The fault pattern generator creates attack patterns for the fault
injection. In this example, only a random number generator is used
as the pattern generator to show the function of the fault MFI. The
complexity of such pattern generation does not increase the re-
quired slices of the MFI because the patterns are not generated di-
rectly in the MFI.

4. Experimental results

To prove the effectiveness of our approach, we chose to imple-
ment the proposed controller on a widely used platform, the
LEON3 SPARC V8 conformant processor from Gaisler Research [9].

The test setup is implemented on a Virtex5 FPGA using the Xi-
linx ML507 evaluation board. Simulation results are obtained using
Modelsim software, which is part of the ISE software package pro-
vided by Xilinx. The fault injection setup is configured as shown in
Table 2.

4.1. LEON3 platform setup

The LEON3 is configured for a single-core configuration using
the default platform settings for this particular evaluation board
(ML507). The MFI is configured via GPIO and can be accessed using
the PowerPC.

4.2. Saboteur configuration

The random approach of fault injection proposed in this publi-
cation can find global dependencies between local fault occur-
rences. Of course, with an increasing number of saboteurs, the
number of possible combinations increases until an analysis of
the results is not possible in a reasonable time frame. Therefore,
a small number of saboteur locations were chosen for these fault
injection experiments.

4.3. Simulation results

To ensure the correct behavior of the fault injector and its sab-
oteur, the whole LEON3 system are thoroughly simulated using the
Modelsim software package. The simulation includes not only the
fault injection process but also start and calculation instructions.
The results of these injection campaigns are shown in Table 3.

The pattern injection rate is constant for patterns smaller than
32 because of the working principle of the MFI. For larger patterns,
additional GPIO transfers are required. However, with increasing
pattern size, the amount of concurrently injected faults increases
accordingly.

4.4. Proof of fault models

To show that all possible fault models of the saboteur work as
intended, a simple program is attacked. The program attacked is
a simple program that sends five bytes via the UART to a host PC.
On the UART interface, saboteurs are placed and activated during
the send process. Table 4 shows the effects that can be reproduced
with the saboteurs. As shown, all of the effects can be reproduced
in software as well on the FPGA.

4.5. VHDL synthesis results

To estimate the necessary FPGA area requirements, the synthe-
sis of a typical platform configuration has been performed. The
results of several synthesis runs using different saboteur configura-
tions are shown in Table 5.

The MFI and its saboteurs have a negligible effect on the size of
the resulting synthesized design. Basing on the routing results, it
should be possible to implement a large number of saboteurs on
this FPGA platform. These results show that the saboteurs and
the MFI produce an overhead to the system. The PowerPC is an op-

Fig. 6. Flow diagram shows a typical fault injection run (adapted from [27]).

Table 2
Fault injection setup.

Saboteur type Fault mode Fault target type Fault injection targets

Single-bit Bit-flip Control logic Integer pipeline
Cache controller
Register file
Multiplier unit
Divider unit

Table 3
Simulated fault injection performance.

Saboteurs Inj. patterns Time (s) Patterns (s)

8 256 274 0.93
16 256 282 0.91
24 256 286 0.90
32 256 299 0.86
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tional block to control the MFI. This controller is only used to con-
trol the GPIO of the MFI. The GPIO can be controlled directly by a
host PC or any other tool.

4.6. Fault injection performance

In this subsection, the results of several fault injection cam-
paigns are presented to show that higher structural flexibility does
not come with disadvantages concerning emulation speed. It also
must be mentioned that such a multi-bit injection campaign leads
to complex results in system behavior, and therefore, the analysis
step will most likely be the slowest link in the emulation chain. The
results are summarized in Table 6. The number of saboteurs has an
influence on the number of patterns that can be injected per sec-
ond. The reason is that the GPIO interface only support the trans-
mission of 32 bits of the pattern simultaneously. If the size of the
pattern is increased, the time required for the pattern transmission
also increases. The last column shows that the transmission of one

pattern is interdependent of the number of saboteurs. It is not nec-
essary to send the whole pattern for each attack. If only one pattern
block must be changed, only one GPIO transmission is required.
Only the maximum number of faults is important because not all
of the saboteurs are activated. The more important numbers are
the patterns injected per second. The speed of the pattern injec-
tions per second is not independent of the number of saboteurs.
However, the time required for the transmission of one fault pat-
tern is constant.

The results presented in Fig. 7 shows the maximum speed that
the fault pattern can be changed per second. This number is impor-
tant if an attack is emulated by a laser moving over the chip. Thus,
it is possible to change the fault effect in the range of 300 k–2 M
times per second. If one fault per run should be injected, the whole
test requires the run time of the program that should be tested in
addition to the configuration time of the MFI.

4.7. Case study: Attack on RSA authentication

The MFI is used to show a case study of a fault attack on RSA
authentication [25]. The RSA authentication process signs a mes-
sage with a private key. To generate the signature, the RSA algo-
rithm uses multiplications. In [25], it is concluded that fault
attacks on the multiplication unit can be used to attack the RSA
algorithm. For this fault attack, the authors assume that only one
bit of the multiplier output switches. In this case study, we show
that our approach can emulate such fault attacks exactly.

For this test, we chose the LEON3 processor in a single core con-
figuration. For the attack target, the output signals and one of the
operand registers of the multiplier have been chosen. Because only
the fault effect of this one-bit result attack should be reproduced,
no hardware error detections methods are implemented in the
LEON3 processor.

An overview of the test environment is given in Fig. 8. Listing 2
shows the pseudo code describing the fault injection flow. The sab-
oteur placement methodology is described in [22]. The FPGA-inter-
nal PowerPC runs a Linux kernel to allow programming of the fault
injection flow in a comfortable way. The fault injection control
software runs on the PowerPC. The host PC evaluates the results
of the fault injection. During this attack, the saboteurs are config-
ured in bit-flip mode.

As shown in Listing 1, the code that is executed on the LEON3 is
a simple program that only calculates one multiplication and send
the result back to the host PC. This program should only be used as
a proof of concept.

The results are shown in Table 7 and Fig. 9. The MFI can emulate
a fault attack on the multiplier interface. Because the MFI supports
a large number of saboteurs, it is possible to place the saboteurs at
not only the output: it is also possible to test also the effect of a
fault injection to the input of the multiplier. If the operant 1

Table 4
Saboteur fault model simulation and emulation results.

Saboteur mode Simulation Emulation

Stuck-at-zero ok ok
Stuck-at-one ok ok
Indetermination ok ok
Bridging fault ok ok
Negation of input ok ok
Bit-flip ok ok
Artificial delay ok ok

Table 5
VHDL synthesis results.

Saboteurs Look-up-tables Overhead (%) Slices Overhead (%)

0 14897 – 10423 –
8 14950 0.36 10513 0.86

32 15107 1.41 10642 2.10
96 15194 1.99 10716 2.81

170 15244 2.33 10774 3.37
326 15478 3.9 11088 6.34

Table 6
Emulated fault injection performance.

Saboteurs Inj. patterns Time (s) Patterns (s) Pattern blocks (s)

8 100 M 46.76 2.17 M 2.17 M
32 100 M 46.76 2.17 M 2.17 M
96 100 M 114.48 873.5 k 2.17 M

170 100 M 156,4 639.4 k 2.17 M
326 100 M 282.16 354.4 k 2.17 M

Fig. 7. Speed of the fault injection depending on the number of saboteurs. Fig. 8. Overview of the test environment (adapted from [27]).
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(OP1) is attacked, the number of output bits switches depends on
which bit of the input is attacked. A similar effect can be repro-
duced by attacking multiple bits at OP1. If exactly one bit at the
output should be disturbed, the simplest method is to attack the
output (OUT) of the multiplier with exactly one saboteur.

This emulated fault reproduces a fault attack on RSA authenti-
cation where exactly one output bit of the multiplication must

be disturbed [25]. To test whether the operating system can detect
such an attack, it makes sense to place saboteurs at the output of
the multiplier and manipulate exactly one bit of the result.

4.8. Case study: Long-time test for light attack emulation on the
memory of a smart card

The MFI can also be used for tests with long durations. This test
shows how the MFI can be used in systems development to im-
prove security. As an example, the estimated effect of a light attack
on a smart card memory is emulated [26]. In particular, the effect
of permanent faults injected into the memory should be evaluated.
Therefore, security relevant memory regions must be attacked
every clock cycle.

Fig. 10 shows that only some memory regions at special times
are security relevant. The relevance of the different memory re-
gions must be defined by the evaluation engineer. Some criteria
for the engineer by which code regions should be tested can in-
clude regions that.

� Contain final or intermediate results of an security relevant
function.

� Contain keys of an encryption process.
� Contain, for example, an AES S-Box.

This reduction is required because attacking every memory cell
is too time-consuming. In Eq. (1), the number of tests required is
calculated. If the critical memory address section is 100 bytes,
the critical regions consist of 1 k clock cycles, and the number of
tested patterns per memory address is 10, we obtain an overall
number of 1 M tests. Assuming that the time required for one
run is 500 ms, then the whole test would require approximately
6 days.

Ntests ¼ Nmemoryaddresses � Nclkcycles � Nattackpatterns ð1Þ

Fig. 11 shows the structure of the fault emulator for this fault
injection campaign. For this test, the MFI is placed directly into
the Smart Card system. The MFI is controlled via a serial interface,
which can also be used to control the smart card and allows us to
control the MFI without adding an additional port to the smart
card emulation system.

For this test, we used software that requires 150 k clock cycles
for a full execution. The security-relevant region of this code is
approximately 1000 clock cycles long. During these cycles, an
authentication process is performed. To test whether the operating
system can cope with light attacks on the memory, we choose 100
attack points within security relevant regions. We also reduced the
tested memory section to 1536 bytes because only these bytes are

Listing 1. Pseudo code of the LEON3 software.

Listing 2. Pseudo code of the fault injection flow.

Table 7
Number of faults detected depending on the attack pattern.

Attack target OP1 OP1 OP1 OP1 Out
Number of saboteurs 1 2 3 4 1

No. of bit-flips
0 37 37 37 37 0
1 208 0 0 0 5000
2 275 365 129 59 0
3 477 428 532 224 0
4 676 624 478 646 0
5 899 836 862 704 0
6 942 862 762 852 0
7 714 686 787 817 0
8 369 529 580 604 0
9 226 337 432 487 0

10 105 170 221 319 0
11 40 82 99 167 0
12 20 22 56 58 0
13 9 13 13 24 0

Fig. 9. Influence of saboteurs on the multiplication unit. Bit-flips of the output
depending on the number of active saboteurs at the input/output.

Fig. 10. Critical memory regions of a smart card system.
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security-relevant. To emulate a permanent fault, we set the mode
of the saboteurs to stuck-at-one. This leads to a total of 157 k tests
(see Eq. (2)).

Ntests ¼ 1536 � 102 � 1 ¼ 156672 ð2Þ

The flow of this test is shown in Fig. 12. The test flow can be
split into seven main parts:

� Run a Golden Model: The golden model run is required as
reference to evaluate whether an attack was successful or
not. During the golden model runs, all output values and
the content of the memory are stored.

� Reset Device: The reset is required to start the execution at
the same point for each run. This reset is the reason that
the execution time of a fault injection campaign is approxi-
mately as long as the execution of the software tested.

� Initialize MFI: The initialization of the MFI requires only a
few microseconds (5–30 s). The values that must be transmit-
ted to the MFI include the following:
– What attack should be performed (in this case, stuck-at-

one).
– When the attacked should occur.
– What memory address should be attacked.

� Run the Software with Fault Injection: After the MFI is ini-
tialized, the execution of the software is started. When the
predefined time is reached, the MFI starts the fault injection.
All of the software outputs are stored. If the execution of the
software requires more than twice the execution time of the
golden model, the system is stopped.

� Dump the Memory: To determine whether the attack was
successful, the memory of the whole system is dumped out
of the device to the PC.

� Evaluate Results: The evaluation step checks what effect the
attack had on the system. The effects can include the following:
– Fault injected into memory.
– Output changed.
– Output and memory content changed.

� Report: This step writes the information collected during this
test to a file.

Finally, the results of the RAM fault emulation are shown. Table
8 shows that we used a total of 157 k fault injection runs. The exe-
cution of the whole test requires 22 h. In 122 k attack scenarios,
the fault injection had no effect because the memory cell we at-
tacked was never used after the attack. 35 thousand attacks chan-
ged the content of the RAM, but they had no effect on the non-
volatile memory or the output of the system. In the rest of the at-
tack cases, the fault detection algorithms of the smart card operat-
ing system detects the fault injection. There was no attack case
where the system was successfully attacked. The system never
sent incorrect outputs or changed non-volatile memory content.

4.9. Comparison to existent fault injector solutions

In recent years, many high-performance fault injection emula-
tion platforms have been published. While fault injection speed
is only one parameter to quantify the performance of a fault injec-
tor solution, it is important to measure how many faults can be in-
jected in a reasonable time. It is especially important for complex
system-on-chip designs with a high number of interesting injec-
tion points. In [6], fault injection campaigns using different bench-
mark configurations have been compared to typical simulation
solutions. To cover all design approaches considered, reconfigura-
tion techniques are also presented in [12]. This publication shows
two implementations, one using autonomous emulation (AE) and
one using partial reconfiguration (PR). The test object in this case
is the freely available CORDIC16 core.

Our fault injector solution profits from a higher clock frequency
and state-of-the-art FPGA hardware. Another difference that must
be considered is that, because of the pattern approach, the fault
injection rate is not constant. Therefore, the total number of acti-
vated faults is calculated based on the number of activated faults
per turn. For the evaluation, the worst case is assumed, where only
one fault is injected per pattern. If the simultaneously injected

Fig. 11. System modifications for the RAM fault emulations.

Fig. 12. RAM fault emulation flow.

Table 8
Results of the light attack emulation on the memory.

N %

Total number of injections 156672 100
Memory cell never accessed 121570 77.6
Fault injected 35102 22.4

No effect 30373 19.4
Fault detected by smart card 4729 3.0

Table 9
Fault injection performance compared to previous results.

Approach Clock cycle
(ns)

Inj. faults Time
(s)

Inj. speed
1/(s)

No. inj. speed
1/(s)

[6] 50 100 k 83 1205 603
[12] AE 16.8 129.75 M 698 185888 276619
[12] PR 18.97 10 k 1014 9.86 13
[14] DPR 10 – – 12987 32468
[14] PRR 10 – – 414.94 1037
This

work
25 100 M 46.76 2.17 M 2.17 M
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faults are increased, the number of faults per seconds will be in-
creased (one turn consists of all possible bit combinations of the
fault pattern width selected). The results of these investigations
are compared to our result in Table 9. Because of the different test
systems the values have to be normalized. The last column shows
the fault injection speed normalized to a clock cycle of 25 ns.

The results of this work presented in Table 9 shows the maximum
speed that the fault pattern can be changed per second. This number
is important if an attack is emulated by a laser moving over the chip.
Thus, it is possible to change the fault effect in the range of 300 k–
2 M times per second. If one fault per run should be injected, the
whole test requires the run time of the program that should be
tested in addition to the configuration time of the MFI.

The comparison shows that the in-system solution does not suf-
fer from additional performance penalties. Strong spatial contain-
ment of the possible fault locations leads to very high injection
results if combined with large fault injection patterns. It can also
be concluded that autonomous emulation provides injection speed
advantages compared to partial reconfiguration techniques. The
reconfiguration approach suffers not only from limiting communi-
cation interfaces but also from long delays caused by the reconfig-
uration process. This reconfiguration also does not include the time
needed to generate reconfigurable sub-blocks. These problems are
targeted by the work presented in [14]. In this publication, partial
reconfiguration is compared to direct reconfiguration using an
FPGA internal port to its configuration memory. While the recon-
figuration speed is greatly improved, it is still slower than autono-
mous emulation solutions such as the one proposed in this paper.

5. Conclusion

This paper presents a case study on multiple fault dependability
and security evaluation. A highly modularized controller solution for
portable fault injection systems was used. It has been shown that
fault injection campaigns can be executed very efficiently through
a generalized interface using a high level abstraction of physical
fault sources. The design is scalable to allow both fully automated
campaigns with a larger fault pattern memory and more user con-
trolled campaigns using a small silicon footprint. The performance
is comparable to existing platforms using circuit manipulation and
significantly faster than ones using partial and complete FPGA
reconfiguration. This study is the first step towards a complete fault
injection platform for dependability and security evaluations. Its
flexible design will allow the evaluation engineer to shift focus from
complex testing architectures to more complex fault models, which
should finally allow the modeling of not only simple SEUs but also
complex fault attack scenarios. Through the additional abstraction
level, a better separation of the test and design engineering tasks
is provided. The knowledge gained from these experiments will be
used to obtain a better understanding of inner-chip fault mechanics.
Such full scale investigations require fully automated saboteur
injection techniques, which are currently under development.
Consideration of such attacks will be necessary to design efficient
and secure smart card systems and is also valid for highly integrated
systems or systems under high environmental stress.
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Abstract—Since the discovery that hardware used for cryptographic
applications could leak secret information through its power or radiation
profile a wide range of possible attack methods has been published.
The rapid evolution of these side-channel attacks made it increasingly
important to minimize this possible information leakage. Additionally
timing information also derived from this power profile is used to
control fault-attack campaigns to drive the system into an unintended
state. Therefore a wide range of leakage countermeasures has been
developed for dedicated cryptographic hardware. Contrariwise only little
work is available concerning power profile scrambling techniques for
cryptographic software implementations running on general purpose
architectures. Such implementations often include power management
hardware to cope with several power budget constraints which could be
used to influence the system’s power consumption during run-time. This
paper proposes a novel side channel attack countermeasure technique us-
ing such power management methods in combination with techniques for
power profile manipulation. State-of-the-art power estimation hardware
using a reduced power model allows for the efficient on-line monitoring
and manipulation of the power consumption and radiation profile.

I. INTRODUCTION

Since the publication of power analysis attacks as a form of side
channel attacks numerous countermeasures have been presented to
close this dangerous information channel. The focus of most of these
publications concerns the improvement of cryptographic hardware
implementations on different abstraction levels. These measures are
often not applicable to general purpose architectures because they rely
on specialized hardware or measures that need development effort that
may not be wanted for specific low-effort projects. For such low-cost
applications generally general-purpose architectures are used which
mostly do not include any security-aware hardware optimizations.
The design challenges of such architectures for security applications
are summarized in [1].

Most hardware countermeasures described in literature concern
specialized logic styles and design flows. For the designer of a low-
cost embedded system this poses several problems. First, specialized
logic styles often lead to significantly increased production costs [2].
Second, circuit-style changing countermeasures cannot be improved
after production if they are proven to be insecure. Such problematic
combinations of masking and dual-rail logic have been investigated
in [3]. Other approaches using circuitry to produce artificial power
consumption are problematic in systems with a limited power budget.

Because of the ever increasing integration density for system-on-
chips numerous publications presented power-aware circuit-design
and energy management approaches. These power estimation and
management circuits could be used for a targeted approach to
counteract treacherous power profile variations independent from the
used cryptographic algorithm.
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Fig. 1. Power control and scrambling architecture

Therefore we propose the use of specialized power emulation
hardware in combination with power management techniques to
reduce or scramble analyzable power consumption profile peaks.
A basic overview over our proposed system architecture is given
in Figure 1. Our approach will be adaptable during run-time to
provide protection for different algorithms and to change its behavior
if flaws are detected after market entry. The resulting behavior of
an augmented system will be analyzed using our in-house security
evaluation platform. The main contributions of this work are:

• An extended power management approach using hardware-
accelerated power estimation techniques.

• The introduction of a power manipulation approach to improve
the system’s side channel and fault attack robustness character-
istics.

• A case study using a commonly used software implementation
of the AES algorithm.

This paper is structured as follows. Section II briefly reviews
the state-of-the-art concerning side channel attack hardware coun-
termeasures for general purpose architectures. Followed by Section
III showing power analysis methods to evaluate the effectiveness of
our implementation. In Section IV technical details of our chosen
hardware-accelerated power estimation approach and its application
are provided. Section V presents our power manipulation concept
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and its advantages to the state-of-the-art. Experimental results using
our simulation and evaluation platform are presented in Section VI.
Finally our results are concluded and some details about our future
work are given in Section VII.

II. RELATED WORK

For this work we will not consider countermeasures that are not
applicable to general purpose architectures. Such techniques would
include specialized logic styles and approaches that significantly
change the way an architecture works as these solutions would not
be used for such general purpose systems (such as [4]).

The most research in the field of power analysis countermeasures
concerned the flattening of the power profile using direct methods.
One technique to reduce power variations is by generating artificial
energy consumption like shown in [5]. While being very efficient
this method increases the power demand of the system by up to 70
percent. A similar approach has been presented by Ratanpal et al. in
[6].

Ambrose et al. introduced several new approaches to reduce power
variations by instruction- and architecture level techniques. In [7]
they proposed such a method based on random code injection to
randomize the power consumption of the system. While the areal
effort of this approach is very low it results in large runtime and
energy overheads of up to over 60 percent depending on the used
cryptographic algorithm. Specifically targeting the AES algorithm
they also proposed a multi-processor power balancing technique in
[8]. This work reduces runtime-overhead to nearly zero but requires
a second identical processor core to process the same instructions as
the first with inverted data as an operand. While this core can be
used for normal operation if no encryption takes place, it still forms
a significant silicon area overhead.

Another generic approach for cryptographic hardware implemen-
tations has been presented by Tiri et al. [2]. Their solution to reduce
data-dependent power variations is a secure digital design flow using
a secure logic style (wave dynamic differential logic - WDDL). They
applied this methodology on a hardware implementation of the AES
algorithm. According to their results this had a tremendously negative
impact on the gate count and maximum achievable frequency.

An energy-aware approach using clock-gating hardware has been
presented in [9], but the authors only used randomization to achieve
power masking. Their implementation neither uses feedback from
a power-estimation source nor is it adaptable during run-time. The
approach presented in [10] extends the formerly shown solutions
using existing dynamic voltage and frequency switching hardware.
The authors also show that naive power randomization techniques
that are applied every clock cycle are not sufficient to counteract
power analysis attacks.

Most of these countermeasures do not concern general purpose pro-
cessors for low-cost hardware implementations. They either imply ex-
tensive changes to the hardware structure or decrease area efficiency
by a significant factor. Therefore we introduce a modular approach
using power estimation hardware that can also be used for power
management purposes. All hardware modeling code modifications
are done in an automatized way and additional controller hardware
is small enough to be added to even low-cost systems. The scrambled
power consumption profile makes it also more difficult to find suitable
time points for fault attacks.

III. POWER ANALYSIS (PA)

Power analysis utilizes the fact that the power consumption and
emitted radiation of a given system does not only depend on the

executed code sequences but also on the processed data. This uninten-
tionally supplied information can be used to gain timing and statistical
knowledge about the executed algorithm and keys. Therefore this
method has become very popular with cryptologists and adversaries
alike in recent years.

A. Simple Power Analysis (SPA)

SPA denotes a specific form of power analysis in which the
power consumption or radiation profile of a cryptographic system
is analyzed in a direct manner. This means that a low number of
traces is examined for specific characteristics of the implementation.
Such characteristics could be timing information or more high level
data like clearly visible execution branches. It is therefore necessary
to know at least basic characteristics of the used algorithm and its
possible software or hardware implementations.

This direct power profile interpretation can also be used as a
base for differential fault analysis as shown in [11]. In this case an
intentional fault is injected into a cryptographic system to disturb the
execution in a defined way. Information provided by SPA can be of
vital importance for a successful fault analysis attack.

Countermeasures: As SPA relies mainly on the direct interpreta-
tion of the extracted power or radiation data, it is sufficient to reduce
the dependency of these profiles from the data that is processed. This
can be done by profile scrambling or execution randomization.

B. Differential Power Analysis (DPA)

As for SPA it is of importance to know the underlying crypto-
graphic algorithm, research focused on statistical methods to over-
come this complication. Therefore DPA as an advanced form of
power analysis has been published by Kocher et al. in 1999 [12].
Because it relies on the statistical evaluation of a high amount of
power consumption traces it has been proven to be a powerful tool
to extract secret key information from cryptographic systems. This
technique exploits the fact that the power profile or the radiated
electro-magnetic field is dependent on how many logic gates are
switching at the same time.

Therefore there also exists a relationship between the form of
the power or radiation profile and the state of the used key bits.
The techniques originally presented in [12] still required a high
amount of power traces to successfully attack a system if even
basic countermeasures are available. Therefore recent years showed
a variety of new high performance approaches using correlation
techniques such as those shown in [13] and [14].

Countermeasures: This leakage is caused by asymmetries of stan-
dard CMOS gates and therefore more sophisticated countermeasures
are needed than against SPA attacks. It is of vital interest to the
designer of a cryptographic system to make statistical analysis as
difficult as possible. In the optimum case the dependency of processed
data and execution profile is broken. Current countermeasures include
masking or randomization techniques as well as approaches that
reduce power profile variations directly using specialized logic styles.

IV. HARDWARE-ACCELERATED POWER ESTIMATION (PE)

The power emulation methodology has been introduced as a
promising alternative to simulation-based power profiling approaches.
Its hardware-accelerated nature makes its possible to implement
power estimation hardware into a system to gain intermediate knowl-
edge about its power consumption for further processing.

The principle of power emulation (PE), as initially introduced in
[15], is based on state-of-the-art functional emulation that is being
augmented with hardware-implemented power models. Thereby, the
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power estimation process and the functional emulation are executed
concurrently during the run-time of the system. Contrary to the
original design used for power evaluation approaches the power
estimation data can be directly used for power management purposes.

A. Power Estimation Unit

This work is based on the high-level power estimation unit as
initially introduced in [16]. The unit utilizes additive linear power
macro models as expressed in Equation 1 to generate static and dy-
namic power consumption estimates for different system components
by monitoring power-relevant signals xi. The basic working principle
of the proposed power emulation and manipulation architecture is
depicted in Figure 2.

P̂ [t] = P̂sta + P̂dyn[t] = c0 +

N∑
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Fig. 2. Power estimation and manipulation principle

To remove or scramble power profile variations these have to
be detected at the earliest possible moment. Otherwise it is not
possible to counteract peaks before they start to manifest themselves
in a detectable manner. Also for power management purposes the
high accuracy of a detailed power emulation unit is not necessary.
For integration into in-system power management solutions it is
sufficient to detect strong power variations, the accurate amount of
power currently consumed is of no immediate concern. Therefore
the required circuit-size can be reduced to a state just providing an
acceptable level of accuracy.

The automatized characterization process presented in [17] is used
to detect inter-signal correlation to reduce redundancy. This flow
also provides verification tools to determine the grade of estimation
accuracy by comparison to gate-level simulations done for a given
set of benchmark applications.

B. Power Characterization

A reduced power model containing only state-dependent model
coefficients has been generated using the power characterization
methodology shown in [17]. The power characterization flow can
be schematically described using the following stages:

1) Generation of training-set data: A set of microbenchmarking
applications, covering a wide range of different application
scenarios is simulated using state-of-the-art gate-level power es-
timation tools. The gate-level description of our system-under-
evaluation is derived using synthesis tools provided by our
industry partner. This simulations result in a broad collection
of signal activity as well as power estimation data.

2) Parameter selection: From this enormous amount of training-
set data it is now of interest to determine power-relevant signals,
i.e., power model parameters xi. This selection process has
been automatized as presented in [17].

3) Coefficient fitting: The parameters chosen in the previous stage
are now used in a model coefficients fitting process to determine
coefficients ci. This fitting process is based on a non-negative
linear regression technique.

V. PA COUNTERMEASURE CONCEPT

The following power analysis countermeasure concept is based on
three part approach:

1) Power Estimation: State-of-the-art power emulation hardware
is used to approximate the present power consumption with a
delay of only a few clock cycles. To guarantee earliest possible
reaction to power consumption variations only signals from the
decode stage of the processor pipeline have been selected for
the characterization process as shown in Figure 3.

2) Power Profile Manipulation: To reduce the currently needed
power budget clock gating is applied on a global level, but
the approach is flexible enough to be changed to a more fine
grained gating method. Artificial consumption is generated by
code independent cache flushing, but also other system-internal
modules could be triggered to gain a similar effect. As the
estimation result always directly depends on the executed code,
the manipulation quality can be improved by adding a true
random element to this simple calculation.

3) Power Control: A power distribution module has been imple-
mented as a central point to gate or distort the current power
consumption profile depending on the current estimation result.
The support of module-level clock gating and power generation
is assured by a small monitoring module to keep track of
currently active and idle system elements.
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Fig. 3. Reduction of Power Estimation Delay

To keep hardware requirements as small as possible the power dis-
tribution module is implemented as a simple programmable lookup-
table like control unit. Like the power estimation unit it is also
designed to keep decision latency as low as possible. A basic
overview over our proposed power scrambling architecture is shown
in Figure 1. The following aspects can be adjusted to achieve an
optimized power scrambling performance depending on the chosen
application:

• Running average sample length (min. 2 samples)
• Clock-gating look-up-table (LUT)
• Power manipulation LUT
The run-time power manipulation flow is schematically depicted in

Figure 4. As shown in this figure the power estimation result is first
differentiated and averaged (2-sample). This way the hardware is able
to detect strong positive or negative power consumption deviations.
The result of this process is then further processed to determine
proper actions.

The power manipulation logic first applies a user definable running
average filter on positive input values. Negative values are not consid-
ered and therefore a longer averaging process results in less strong
variations. This way the sensitivity of the power profile scrambler
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can be increased significantly. This design decision to include only
positive values leads to a significantly smaller controller logic while
the user looses only few influence on the decision result.

Additionally a small pre-processing average filter can be acti-
vated to influences how fast the power manipulation unit reacts to
power peaks. This value is especially important as the counteraction
performance strongly depends on its reaction speed [10]. If strong
positive variations are detected a clock gating strategy will be applied
according the user programmed gating LUT. The user has the ability
to set the length this clock gating technique should be applied. In
case of strong negative power variations cache flushing is triggered
as long as defined by the according LUT.

The LUT parameters have to be chosen very carefully otherwise
high clock-gating and cache flushing rates will have a very high neg-
ative impact on the system’s performance. These LUT and averaging
filter parameters can be easily set using special function registers
provided through the AMBA interface of the power manipulation
module.
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Fig. 4. Continuous run-time power manipulation flow

A. Advantages compared to state-of-the-art

Existing power profile scrambling solutions based on power-
management techniques as presented in Section II are either only
relying on random number generators or need dynamic voltage
and frequency scaling (DVFS) capable hardware. Previous research
has shown that frequency scaling methods could be ineffective if
advanced power analysis techniques are applied [18]. The advantages
of our chosen approach can be concluded in the following way:

1) Reconfigurability: The power profile scrambling mechanism
can be configured during runtime. This allows for optimum
support of different cryptographic algorithms and to adapt exist-
ing mechanisms if weaknesses have been detected. Scrambling
parameters can be adjusted according to the currently executed
workload to improve performance for non-security critical code
sections.

2) Low-Cost Solution: No specialized logic style or routing
strategies are needed. Existing run-time power monitoring and
management circuitry can be partially reused to implement
security functionality. No additional hardware like random
number generators or current sinks is needed.

3) Extendability: If existing random number generation hardware
is available, our approach can be easily extended to include
additional power profile randomization. Also it can be easily
extended to provide a finer grained clock-gating method and
to add additional targets to generate non-execution dependent
power consumption.

VI. EXPERIMENTAL RESULTS

To prove the usability of our approach we chose a widely used
general purpose processor and AES software implementation. The
hardware platform consists of an open source implementation of

the SPARC v8 architecture developed by Aeroflex Gaisler [19]
called LEON3. For the AES implementation we chose the widely
known C implementation from [20]. The system-under-test has been
synthesized using Xilinx ISE software and tested using the ML507
evaluation board from the same manufacturer. All micro-benchmark
characterization processes have been done using gate-level power
simulations provided through Synopsys PrimeTime made available
by our industrial partner. For these simulations a production quality
90nm standard cell library has been chosen. The proposed power esti-
mation hardware then emulates the behavior of a system synthesized
using this library. The FPGA-hardware is only used for the emulation
of the system including its hardware-accelerated power model. The
chosen configuration of the LEON3 processor is summarized in
Table I. LEON3 and the Xilinx Virtex5 FPGA-platform have only be
chosen for exemplary tests, all proposed hardware elements provide
general interfaces to guarantee platform independence (except clock
and cache interfaces which have to be adjusted accordingly). All
external analyses have been done using MathWorks Matlab 2009b
on a six-core 3.2 GHz AMD Phenom-II machine with eight giga-
bytes of RAM.

TABLE I
LEON3 PROCESSOR CONFIGURATION

Operating Frequency [MHz] 40

Instruction Cache Sets 2

Instruction Cache Set Size [kB] 4

Data Cache Sets 1

Data Cache Set Size [kB] 4

MMU TLB Entries 8

MMU Page Size [kB] 4

For our chosen decode-only power emulation approach a power
model containing only ten coefficients has been generated. This
model has been verified using power simulation data and an average
relative error of lower than 15 percent could be determined for our
micro-benchmark applications. Again we have to mention that a
rough power estimation accuracy is sufficient if only strong variations
should be detected.

Based on balanced standard settings of the Xilinx XST synthesis
tools for the Virtex5FXT FPGA the LEON3 processor including all
additional modules has been synthesized. The synthesis results are
concluded in Table II. Additionally the system overhead (OH) is given
relatively to the complete system including all peripherals.

TABLE II
SYNTHESIS RESULTS - VIRTEX5 - BALANCED STRATEGY

Unit Slice Registers OH [%] LUTs OH [%]

Complete System 8213 - 15998 -

LEON3 Core 3509 42.7 7271 45.4

Power Distributor Logic 88 1.07 157 0.98

Power Estimation Logic 100 1.22 234 1.46

The complete system has been simulated using the ModelSIM
RTL simulation software. An unmodified version of our chosen
AES software implementation has been simulated using different
parameters for the power manipulation unit. Figure 5a shows the trace
of the AES computation without any activated power manipulation.
All ten AES rounds of the chosen implementation can be clearly
seen in this power trace. An unprotected software implementation
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therefore results in a significantly amount of timing and switching
information leaking through its power profile.
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(a) Single AES-Trace without any power manipulation
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(b) Single AES-Trace using a light clock-gating strategy
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(c) Single AES-Trace using power dependent cache flushing
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(d) Single AES-Trace using light clock-gating and cache flushing

Fig. 5. Tracing and DPA analysis results without internal averaging

In Figure 5b a single AES trace is shown while a power dependent
clock gating strategy is activated. It can be seen that a significant
amount of additional noise is added to the power trace while
execution performance is only slightly influenced.

Figure 5c shows a single AES trace manipulated by a power
dependent cache flushing strategy. While this strategy increases noise
level substantially more than a pure clock gating method, it also has
a much higher impact on operating performance.

A combined approach using both clock-gating and cache-flushing
methods is depicted in Figure 5d. This solution combines the advan-
tage of very high noise levels with a decreased power consumption
of the whole system. Because of the time intensive nature of cache
flushes the execution performance is influenced negatively.

Figure 6a shows a single AES trace for a pure clock-gating
configuration using an internal 16-sample running average filter.
It can be seen that this additional filter provides a better internal
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(a) Single AES-Trace using light clock-gating strategy
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(b) Single AES-Trace using power dependent cache flushing

Fig. 6. Tracing and DPA analysis results using 16-sample averaging

distribution of profile variation points and therefore leads to more
generated noise because of a wider manipulation point distribution.

In Figure 6b the same averaging filter configuration has been used
in combination with the cache flushing technique. The performance
of the system is further decreased but also the power consumption
has been lowered.

TABLE III
POWER MANIPULATION INFLUENCE ON OPERATING PERFORMANCE -

AVERAGED OVER 1000 TRACES EACH

Strategy Power [uW] OH [%] Time [Cycles] OH [%]

No Management 1029 - 9700 -

Software Countermeasure 1045 1.55 9700 -

Clock-gating (no averaging) 1031 0.19 9800 1

Cache-flushing (no averaging) 884 -14.1 12400 27.8

Combined (no averaging) 883 -14.2 10900 12.4

Clock-gating (16 Samples) 1009 -1.9 10000 3

Cache-flushing (16 Samples) 820 -20.3 14000 44.3

Table III gives a short overview over the impact of the chosen
power manipulation techniques on the operational performance of this
system. These average values describe the mean power consumption
and execution time of one 128-bit AES encryption. It can be clearly
seen that manipulations using cache flushes have a strong impact
on execution time. For comparison reasons a low impact software
countermeasure has also been implemented (random NOP-instruction
injection).

A. DPA attack results

Based on an in-house power emulation simulation and emulation
platform DPA attacks are performed using the well known Matlab
tools of the OpenSCA project [21]. Power traces are generated using
a more detailed power model including data-dependent information
as presented in [22].

In Table IV DPA attack results are shown for different config-
urations of the proposed architecture. It can be clearly seen that
while cache-flushing proves to be a simple and effective method to
reduce correlation, pure clock gating if applied carelessly proves to
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TABLE IV
DPA ATTACK ANALYSIS

Strategy Corr. Key Bytes of 16 Evaluated Traces

No Management 16 300

Software Countermeasure 16 400

Clock-gating (no averaging) 16 200

Cache-flushing (no averaging) 12 900

Combined (no averaging) 3 900

Clock-gating (16 samples) 2 900

Cache-flushing (16 samples) 0 900

be even counterproductive. The pure clock-gating strategy could be
significantly improved using a 16-sample running average filter while
operational performance was only worsened by about three percent
as shown in Table III. The combination of a cache-flushing technique
with a 16-sample averaging filter proved to be most effective strategy
for this AES encryption testcase. The pure software countermeasure
solution, while not having a significant impact on performance, only
provides a small countermeasure effect.

VII. CONCLUSION

This paper presented a novel power analysis countermeasure
approach using power manipulation and emulation techniques. This
allows for the scrambling of power variations that could be exploited
for simple or differential power analysis attacks. Clearly visible
timing and power peak relations that could be used for fault-based
attacks can also be masked from a possible adversary. Contrary to
existing side channel attack hardware countermeasures this approach
is applicable to any general purpose architecture providing run-time
power information. The flexible approach allows to adapt the method
of operation during run-time for protection of different types of
cryptographic load. Our approach only slightly increases the system’s
power consumption and does not rely on non-standard logic styles.

The implemented hardware countermeasures are fully synthesiz-
able and optimized for smallest possible area requirements. Therefore
they can be introduced into even very cost constrained cryptographic
embedded systems. The feasibility evaluation of the implementation
of such countermeasures into low cost smart-card systems will be
part of our future work.
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Innovation cycles have been shortening significantly during the last years. This process puts tremendous
pressure on designers of embedded systems for security-or reliability-critical applications. Eventual de-
sign problems not detected during design time can lead to lost money, confidentiality, or even loss of life in
extreme cases. Therefore it is of vital importance to evaluate a new system for its robustness against inten-
tionally and random induced operational faults. Currently this is generally done using extensive simulation
runs using gate-level models or direct measurements on the finished silicon product. These approaches ei-
ther need a significant amount of time and computational power for these simulations or rely on existing
product samples.

This article presents a novel system evaluation platform using power emulation and fault injection tech-
niques to provide an additional tool for developers of embedded systems in security-and reliability-critical
fields. Faults are emulated using state-of-the-art fault injection methods and a flexible pattern representa-
tion approach. The resulting effects of these faults on the power consumption profile are estimated using
state-of-the-art power emulation hardware. A modular system augmentation approach provides emulation
flexibility similar to fault simulation implementations. The platform enables the efficient evaluation of new
hardware or software implementations of critical security or reliability solutions at an early development
phase.
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Fig. 1. Influence of security reset on power consumption profile.

in ever-decreasing implementation cycles. Second, a growing number of these highly
integrated systems are used in critical fields with high demands on system security
and reliability. Therefore system designer support is needed during the design phase
to test new hardware and software implementations for possible weaknesses [Ravi
et al. 2004].

Especially for high safety applications (e.g., space, automotive, aeroplane) a wide
variety of fault injection techniques has been developed [Arlat et al. 1990; Jenn et al.
1994; Leveugle and Hadjiat 2003]. In this field faults are mostly of a random nature
and therefore these evaluation approaches rely on a random selection and injection
of operational errors. For these platforms generally no fault attacks have been con-
sidered because of their controlled nature [Leveugle 2007]. Otherwise for modern se-
curity evaluations it is of vital importance to know the impact of faults on the power
consumption profile because it forms a direct (Simple Power Analysis SPA) or indirect
(Differential Power Analysis DPA) information source to an adversary (e.g., [Kocher
et al. 1999; Roche et al. 2011]). To estimate the power profile during runtime hardware
accelerated methods like power emulation have been proposed. These techniques can
be used to close a gap often remaining in classic fault injection platforms for reliability
purposes. Such a gap constitutes a serious problem in security-critical systems as even
the reset behavior during an attack already provides information to the attacker, as
depicted in Figure 1. Such information allows to draw conclusions about internal fault
reaction mechanisms like emergency memory accesses that would lead to increased
consumption or a decreased power profile if a simple device reboot is triggered (such
effects have been shown in Bar-El et al. [2006]).

To evaluate hardware and software implementations for their fault robustness these
techniques have been combined to form a fault effect evaluation platform. The main
contributions of this work are as follows.

— a novel evaluation flow combining fault injection, power emulation, power and fault
analysis techniques;

— the introduction of a novel FPGA-based platform for runtime fault-attack and de-
pendability evaluations;

— case studies using a common AES software and hardware implementation and
general-purpose processor.

This article is structured as follows. In Section 5 a brief overview over the current
state-of-the-art concerning similar evaluation platforms is given. Section 2 contains
a short introduction into fault injection methods and applications. We follow with
Section 3 summarizing the main characteristics of different power analysis methods.
Section 4 gives an introduction into power emulation and its application for power
analysis purposes. In Section 6 the principle methodology of the fault effect evaluation
platform is presented, followed by Section 7 showing some experimental results to
prove the viability of our approach. Finally Section 8 gives a short conclusion about
our work and some views into future developments in this field.
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2. FAULT INJECTION (FI)

The term fault injection describes the intentional introduction of faults into a system
to simulate errors that are caused by external influences changing the system’s normal
behavior. Faults can be injected on several different levels of abstraction.

— Hardware Level. This level requires the least amount of system invasion as existing
test equipment can be reused. Faults can be injected on pin level by manipulating
data and control flow [Arlat et al. 2002]. Internal manipulation is enabled through
radiation sources or by direct injection into the silicon device [Gunneflo et al. 2002].
The disadvantage of fault injection on this level is the need for existing prototype
samples.

— Software Level. The basic principle behind software fault injection is the same as
in hardware FI [Tsai et al. 2002]. A comprehensive software testing environment is
presented in Segall et al. [2002].

— Modeling Level. As shown in Section 5 direct evaluation of hardware description
level models is of utter importance to embedded system designers. As shown in
Baraza et al. [2002] faults can be introduced using simulator commands or by aug-
mentation of the descriptive code itself.

For this fault injection platform we will concentrate on hardware-description-based
approaches. In this case faults can be introduced using simulator commands in hard-
ware model simulators or by adapting the model description itself for hard-accelerated
emulation.

2.1. Simulation Based

The advantage of simulation-based approaches is that no changes to the model descrip-
tion itself are necessary. The complete model simulation flow can be reused for fault
injection examinations. Faults are activated through simulator commands to manip-
ulate certain states of the system. This can be done because every element of system
design is accessible during simulation. The disadvantage of this approach is that a
significant amount of computational power is necessary for detailed simulations of
complex designs. Especially if the abstraction level is lowered to gate level; lengthy
simulation runs are necessary for comprehensive evaluations.

2.2. Adaption Based

Adaption-based fault injection approaches augment the existing hardware description
with additional circuitry to influence the behavior of predefined system elements.
While specific knowledge about the location of faults manifesting themselves in form
of errors is necessary, very high evaluation performances are enabled. Especially
in combination with emulation techniques using FPGA prototyping platforms large
amounts of different fault patterns can be evaluated in relatively short periods of
time [Grinschgl et al. 2011b]. Two different concepts of manipulative elements are
generally used.

— Mutant. In this case a complete system module is replaced with a manipulated
version of this module. During normal operation this module works as designed but
after fault activation it behaves like a defective one.

— Saboteur. Saboteurs are small elements that are inserted into signal lines. During
normal operation these act transparently but after fault activation a predefined
fault effect influences the targeted signal.
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3. POWER ANALYSIS (PA)

In standard CMOS technology power consumption and emitted electro-magnetical ra-
diation of a given system is dependent on the amount of simultaneously switching
transistors. Therefore it not only depends on the control flow of a program but also
on the data it processes. This fact is exploited by power analysis approaches using
timing analysis or statistical methods to extract secret information like the encryption
key through this externally available power information. This powerful tool therefore
became a strong companion of adversaries and cryptologists alike.

3.1. Simple Power Analysis (SPA)

In case of SPA, only a small number of power consumption radiation traces are
recorded for further analysis. These are analyzed in a direct manner, meaning that
these traces are evaluated for specific algorithm- dependent variations and timing
characteristics. SPA is therefore based on a variant of control flow analysis of crypto-
graphic workload. To efficiently execute this evaluation at least basic knowledge about
the used algorithm or implementation is needed.

Classic programming language elements that result in strongly visible power
profile variations are branches. Depending on the branch condition these also lead to
strong timing differences that could be detected by an adversary. Therefore software
implementations of cryptographic algorithms must never be based on branches to
hinder SPA analysis. Another effective countermeasure against such power analysis
methods is execution randomization to disconnect execution behavior from algorithmic
behavior.

3.2. Differential Power Analysis (DPA)

DPA combines the power or radiation profile analysis techniques presented in Section
3.1 with statistical methods. Since its publication by Kocher et al. [1999] it has been
proven to be a powerful tool for the extraction of secret information from cryptographic
devices. While SPA is only based on visible trace variations caused by differences in
the execution of the algorithm, DPA exploits trace information depending on data-
dependent transistor switching. While the original presented techniques required
high amounts of power or radiation records if simple countermeasures are present,
newer methods reduced these significantly. Especially noticeable is correlation DPA
as shown in Brier et al. [2004] and Mangard et al. [2007].

Countermeasures could be specialized logic styles and shielding to flatten emitted
leakage profiles. Randomization and masking techniques help to counteract statis-
tical methods and power consumption assumptions. Generally it is more difficult to
efficiently fight statistical power analysis attacks. As shown in Schaumont and Tiri
[2007] some countermeasure combinations may even be counterproductive.

4. POWER EMULATION (PE)

The wish for efficient power estimation methodologies led to the development of the
power emulation technique, that is, the hardware-accelerated power evaluation of a
given system-under-test. It became a promising alternative to simulation-based power
profiling approaches and its hardware-based nature allows integration into embedded
systems.

4.1. Principle of Power Emulation

Coburn et al. introduced the principle of Power Emulation (PE) in Coburn et al.
[2005] as a state-of-the-art functional emulation using hardware-implemented power
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Fig. 2. Power emulation principle architecture (adapted from Krieg et al. [2011c]).

models. The functional emulation and power estimation process are executed concur-
rently during the runtime of the system.

As depicted in Figure 2 the generated approximated power values can be imme-
diately used for further processing or saved as traces in case of power consumption
evaluations.

4.2. Extended Power Emulation Unit

Our power evaluation platform is partially based on a high-level power emulation unit
similar to the one introduced in Genser et al. [2009]. It comprises a direct implemen-
tation of the principle architecture depicted in Figure 2.

Its basic operation utilizes additive linear power macromodels as expressed in
Eq. (1) to generate static and dynamic power consumption estimates. These values
are generated for different system components by monitoring its power-relevant con-
trol signals xi. For each member of the control signal set of size Nc a weight ci and for
each observed data-line a value di in a set of size Nd inside the macromodel is defined.
The static power consumption is considered by coefficient c0, resulting in a combined
power model size of Nc + Nd + 1 coefficients that have to be implemented inside the
emulation architecture.

P̂[t] = P̂sta + P̂dyn[t] = c0 +
Nc∑

i=1

cixi[t] +
Nd∑

i=1

dixi[t] (1)

To enable the usage of this power estimation principle for DPA evaluation, its power
model has to be extended for the usage of not only State-Dependent (SD) but also Data-
Dependent (DD) signals. The original design of the PE unit was based on the analy-
sis of the state of various system components by monitoring selected power-relevant
control signals. This approach is only viable for pure power consumption estimation
evaluations within a reasonable accuracy. A power model designed only under the
consideration of a system’s control flow is typically not usable for security evaluations
because of the missing dependency between power profile and processed data. There-
fore these power models have to be extended with basic signal switching information of
data-processing architecture elements. Such an extended power emulation hardware
module and characterization process has been presented in Krieg et al. [2011a].

In case of our chosen target architecture we selected both operand registers of its
Arithmetic Logic Unit (ALU). The elements of these operands have to be preprocessed
to extract only switching information. This approach allows to introduce data depen-
dency into the power consumption model while resulting in a very similar power emu-
lation result. This is achieved by data-line switching activity extraction to simulate the
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Fig. 3. Automated power characterization methodology for power evaluations.

current peak behavior of CMOS inverters. Such data-line weights can be either defined
dynamically to investigate worst- and best-case scenarios, or by extraction of signal
line capacitances (as provided by the RC extraction phase of common semiconductor
back-end tools). Our generated power models have been evaluated and compared to
gate-level power simulations and their accuracy has been confirmed to be similar to
power models only concerning control signals. The evaluation of software side-channel
leakage countermeasures can be enabled by scaling only these data-dependent model
coefficients. In other words, leakage can be intentionally over- and underestimated to
simulate well and less optimal routed designs resulting in different gate capacitances.

To enable our FPGA-based evaluation platform for simple runtime power tracing
the power estimation unit has been additionally extended with an internal and config-
urable FIFO buffer. This memory allows the storage of the trace of a single encryption
run without control interference of the cryptographic algorithm. After such an evalu-
ation run has been finished its contents can be safely written to an external memory
target.

4.3. Extended Power Characterization for DPA Evaluations

An automated power characterization methodology has been presented in Bachmann
et al. [2010]. A similar approach has to be extended to enable the generated power
models consisting of both state-dependent and data-dependent model coefficients. The
power characterization flow as depicted in Figure 3 can be described by the following
stages.

(1) Preprocessing. To gain a good coverage of all components of a given system-under-
test, a set of microbenchmarking applications is simulated and power-profiled us-
ing state-of-the-art gate-level power estimation tools (Synopsys PrimeTimePX).
This simulation process results in training sets containing signal activity and
power estimation data.

(2) Coefficient selection. Our characterization approach applies several filters to the
training set data retrieved during the previous stage to remove signals that show
no (zero-activity filter), irrelevant, or redundant activity (cross-correlation filter).
Basing on this filtered dataset power-relevant signals, that is, power model param-
eters xi are determined according to their correlation to the gate-level power sim-
ulation data. The completely automated approach presented in Bachmann et al.
[2010] only considers control-flow-related signals for power modeling. Therefore
we extended this approach by the addition of data signals based on a user-defined
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configuration. These data signals have to be preprocessed using an in-house VCD-
file analyzer solution to extract only its switching activity.

(3) Coefficient fitting. The resulting parameters out of the selection process are now
used for the determination of coefficients ci by means of a model coefficients fitting
process. This process is using a nonnegative linear regression technique. Finally a
power model containing both state- and data-dependent coefficients is generated.

5. RELATED WORK

This work includes the application of a variety of technologies to gain a higher-level
view of complex security problems. These techniques can be divided into three main
groups. First, there emulation-based power estimation methodologies to retrieve ac-
curate cycle-accurate power estimates at early stages of the design process. Second,
security evaluations of cryptographic software and hardware implementations rely on
the application of power analysis techniques as soon as possible during the design flow.
Finally, fault injection platforms have been presented to confront hardware models or
manufactured devices with eventual occurring faults.

5.1. Emulation-Based Power Estimation

In Coburn et al. [2005] a brief overview on the basic power emulation principle is
given. Runtime improvements by power estimation hardware acceleration of about
10x to 500x compared to commercial power estimation tools are achieved. The authors
also introduced strategies to minimize the hardware overhead caused by the emulation
methodology. In later work this approach has been extended in Ghodrat et al. [2007]
into a hybrid power estimation technique for complex SoCs. Power analysis times have
been significantly reduced by this framework through the use of combined simulation
and emulation techniques. A main advantage of hardware-assisted power estimation
is the possibility of direct interpretation during runtime of a process. Such an ap-
proach, used for the power-aware process migration between cores has been presented
in Bhattacharjee et al. [2008].

5.2. Early Power Analysis Techniques

The first approach comprises a purely software-based solution [Shumov and
Montgomery 2010]. For extracting side-channel leakage information from a given
program, it is executed and every instruction and processor state is traced. This
information is fed into an easily extensible analysis module. Such analysis modules
are directly implemented for the Microsoft Debugger API. The authors do not state
any information about accuracy and simulation performance.

The second approach uses in-system knowledge provided by power consumption
simulators using instruction set simulators. While promising high simulation speeds
this approach is mostly limited to thoroughly profiled general-purpose architectures.
Implementations of this approach were presented in den Hartog and de Vink [2005]
and Thuillet et al. [2009]. Both solutions promise high simulation speeds, but do not
present any hints about the accuracy of the used power profiles. Inaccurate power
profiles could lead a software engineer into a sense of false security as the possibility
of missed information leakage could be higher than anticipated. The implementation
presented in Thuillet et al. [2009] uses several abstract power models to isolate possi-
ble sources of leakage. The presented approach has been designed for the Atmel AVR
microcontroller series.

The third approach uses highly accurate gate- or even transistor-level simula-
tions to identify critical parts of the circuit-under-test. This level of accuracy comes
with high costs in terms of simulation speed and needed simulation equipment. The
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designer therefore has to choose between very short simulation times or reduction of
the evaluation to the smallest possible leakage contributer. The former choice is mostly
infeasible because it is of utter importance to know if an adversary could extract in-
formation using a high number of power traces. Works based on highly accurate ana-
log simulations using SPICE simulators [Li et al. 2005; Regazzoni et al. 2007, 2009]
and using Register-Transfer-Level (RTL) simulations [Bucci et al. 2007] for improv-
ing simulation speeds have been presented. However, the timely effort of offline power
simulations remains a limiting factor for the trace count. The authors of Bucci et al.
[2007] also note that RTL simulations may hide leakage contributors only visible after
further design flow steps.

5.3. Fault Injection Platforms

To improve the reliability of high-safety applications several fault injection techniques
have been introduced [Arlat et al. 1990; Jenn et al. 1994; Leveugle and Hadjiat 2003].
Faults can be injected into completely manufactured parts, for example, using radia-
tion or during the design phase using hardware description manipulations. The latter
can be divided into simulation- and emulation-based approaches depending if a model
of the implementation is simulated or emulated on an FPGA platform.

Because high-level hardware descriptions can be simulated directly during the de-
sign phase, first fault injection tools for such hardware models were based on simula-
tion techniques. One of these first simulation tools was MEFISTO specifically targeted
on fault injection into VHDL models [Jenn et al. 2002]. A higher-level approach us-
ing the system-level description language SystemC has been shown in Rothbart et al.
[2004]. A pure simulation-based technique has been complemented with automatized
saboteur and mutant insertion strategies for the VFIT tool in Baraza et al. [2006]. Fur-
ther improvements concerning the injection performance of simulation and emulation
approaches have been presented in Valderas et al. [2007].

The need for higher fault injection coverage led to the heavy research activity in the
field of emulation techniques. As shown in Leveugle [2002] emulation promises sig-
nificantly higher injection rates and therefore enables the possibility to evaluate more
possible fault configurations than using simulation. The usage of FPGAs for hardware
prototyping also allowed to use novel reconfiguration techniques for fault injection as
presented in Antoni et al. [2002]. Since the introduction of these techniques several
improvements have been introduced in Zheng et al. [2008] and Daveau et al. [2009].

All these presented approaches have been developed for dependability evaluations,
meaning that in most cases only single faults have been considered. As shown in
Leveugle [2007] security evaluations need more complex fault models as intentional
faults could happen at several positions at once.

5.4. Discussion

Existing work concerning the evaluation of SoC designs at early design stages had
strong focus on a single problem. Therefore, physical- and emulation-based approaches
have been introduced for dependability evaluations and simulation-based techniques
have been the prime choice for security investigations. This results from the need
for performance to satisfy statistical models covering random fault models and high
behavioral accuracy for the investigation of circuit effects as gate switching or faults
resulting from laser attacks.

As long as all parts of the system are investigated by the same entity, this is a valid
procedure as the test engineers can use information about the software and hardware
implementation. In large SoCs and in smart-cards this is usually not the case. The
hardware is, for example, provided by a large semiconductor manufacturer and the
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Fig. 4. Emulation hardware generation flow.

software is developed by a specialized company that targets a specific market sector.
Especially in the smart-card section a wide range of rules has been defined for security
evaluation to ensure the combination of the hardware and software fulfills a certain
level of trust. Because the hardware manufacturer will try to hide the details of the se-
cure implementation, it is not possible to provide such detailed information like a com-
prehensive simulation model to the customer. Our modular fault injection approach
allows the hardware manufacturer to provide a debugging tool that abstracts the fault
effect visible on software level from the hardware effects causing these effects.

Finally, the power consumption aspect has been completely disregarded in litera-
ture. In systems with a limited power budget a compromise has to be found between
the most secure hardware architecture and a reasonable consumption behavior. A
characterization and test environment to determine an optimized software and hard-
ware implementation that fulfills both power and security targets is therefore strongly
needed. To the best of our knowledge there is no comprehensive approach providing
power analysis, fault analysis, and a complete power characterization flow, described
in literature.

6. EVALUATION PLATFORM

The combination of fault injection and power emulation techniques opens a variety of
new design analysis possibilities. Because of their hardware-accelerated nature they
can be integrated in a combined form into an FPGA-based platform.

6.1. Emulation Hardware Generation Flow

As shown in Figure 4 the hardware-accelerated emulation architecture generation flow
has been divided into the following phases.

— Model Creation Phase. In this phase a high-level fault event is mapped to a circuit-
internal fault model. It is not necessarily run through during every fault emulation
campaign. Additional power coefficient characterization has to be performed if sig-
nificant hardware changes invalidated a previous power emulation implementation
or if the flow is applied to a new design.

— VHDL Augmentation Phase. According to the chosen fault model and location, sabo-
teurs have to be placed into the system to emulate a chosen fault effect. If necessary
for further analysis steps, additional analysis modules also have to be placed during
this stage.

These tasks have to be completed by the hardware designer to prepare the design
and fault patterns for further distribution.

Model creation phase. The fault model itself can be divided into a low-level and a
high-level view. The low-level fault model concerns the effects directly influencing the
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Fig. 5. Hardware-accelerated fault emulation architecture.

system on circuit level. Such fault models could be stuck-at, indetermination, delay,
open, close, or bit-flip faults. A more detailed overview over such low-level fault models
is given in Baraza et al. [2006]. High-level fault models can include many low-level
effects resulting in a specific influence on normal program execution. These models
are specifically important for security evaluations which include power or light attacks
that lead to several faults happening at the same time [Leveugle 2007]. Currently we
are not able to provide an automated approach to generate such high-level models and
therefore good evaluations results rely on the experience of the test designer.

If the power consumption behavior of the targeted system changed significantly,
the system has to be recharacterized to retrieve an updated power macromodel. The
process has also been automatized using MATLAB for coefficient selection, char-
acterization, and verification. The verification process compares the derived power
model to cycle-accurate power simulation results for a chosen set of verification
programs.

VHDL Augmentation Phase. After the selection of interesting fault models, fault
locations can be determined. Onto each selected fault location a saboteur has to be
placed to emulate the desired effect at the correct position. Selection, activation, and
configuration signals of these saboteurs then have to be routed to the top level to be
connected to the fault injection controller. Because of the complexity of modern pro-
cessor designs this process has been completely automated using a VHDL parser ap-
plication based on the VMagic VHDL code generator [Pohl et al. 2009]. The complete
placement process is shown in Grinschgl et al. [2011a].

6.2. Fault Emulation Architecture

All parts of the proposed fault emulation platform are designed in a technology-
independent way to allow for the application to FPGA evaluation systems of different
manufacturers. In other words all augmentations are implemented on an RTL level to
rely on existing implementation flows as provided by the evaluation board manufac-
turer. The basic hardware-accelerated fault emulation platform is depicted in Figure 5.

In case of a Virtex5-FXT-based FPGA system an integrated PowerPC processor can
be used for fault injection control. The generalized GPIO interface allows to use any
hard- or soft-core for control. Also an AMBA interface is available if an in-system so-
lution is desired. The fault injection controller can be preprogrammed to listen for a
specific Program Counter (PC) value. An internal counter is used to start the injection
process when the PC of interest is called a predetermined amount of times.
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Fig. 6. Hardware-accelerated fault and power evaluation flow.

6.3. System Evaluation Flow

After all characterization and generation tasks have been executed and proper emu-
lation architecture has been derived, the resulting netlist can be loaded onto a FPGA-
based evaluation device. As shown in Figure 6 the following phases have to be passed
through to gain information about system power consumption, leakage, and fault
robustness.

— Profiling phase. In the profiling phase test programs are executed on the target
platform while faults are continuously injected to gain knowledge about the possible
execution effects.

— Analysis phase. All data gathered during the profiling phase is now thoroughly ex-
amined to detect reasons and develop countermeasures against undesired execution
errors.

— Decision phase. Finally analysis results are used to select software or hardware
measures to improve overall robustness of the target architecture.

Profiling Phase. The profiling phase comprises the main stage of the hardware-
accelerated fault emulation process. A test set containing applications that would be
considered a typical load during normal operation is executed on the evaluation plat-
form. During this execution faults are injected using a fault injection controller and
saboteurs routed during the placement phase. The fault injection controller can be
preprogrammed to start injection at specific values of the processor program counter
or directly controlled by an additional external processor.

Power profile tracing can be executed in two ways.

— Runtime profile tracing using a PE unit with dedicated trace memory. As described
in Section 4.2 dedicated trace memory has to be provided to store intermediate
power profile information. This memory has to be regularly read and saved to a
persistent storage module for later analysis. This information can be easily con-
verted to text files for usage with MATLAB scripts.

— Power profile tracing using RTL simulation. This would be the technique of choice
if examinations have to done during a very early stage of the design process. The
simulation model of the PE unit generates text files of a simple format that can
be easily parsed and analyzed using MATLAB scripts. Encryption/decryption run
trace separations have to be ensured using software commands, for example, by
placement of NOP instructions.

Fault analysis tracing can also be done in two ways. First, the fault injection con-
troller contains a checker interface to transfer data from dedicated checker modules to
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an external processor. These modules allow to evaluate which injected faults resulted
into a direct operational fault. Second, additional analysis support modules can be
routed into the design under inspection if a completely in-system solution is desired.
Such support blocks could be checker or power data preprocessing modules to ease
data interpretation or trigger modules to detect specific system operation states.

Analysis Phase. During the analysis phase recorded data is used to gain informa-
tion about the power, dependability, and security characteristics of the targeted sys-
tem. The derived power profile trace file of the executed test set programs is parsed
using MATLAB scripts. This information then has to be divided into subtraces to re-
duce analysis effort.

In case of power analysis evaluations all en- or decryption traces have to be sepa-
rated to enable DPA. The quality of the differential power analysis is highly dependent
on the alignment of the analyzed traces. Therefore, eventual trace timing differences
have to be corrected by cross-correlation techniques. To analyze the power analysis ro-
bustness of a given cryptographical software implementation the stored power profile
traces can be processed using MATLAB scripts from the OpenSCA toolkit. This pro-
cess has been completely automatized and results in attack attempts on all key bytes
of the used key.

Fault emulation trace information recorded during execution can also be easily
parsed using MATLAB to gain data matrices usable in efficiency and statistical
analysis.

Decision Phase. After all analysis tasks have been performed the gained data can
be used to derive changes of the targeted architecture. Such changes could include
stronger error detection or recovery mechanisms or power optimizations to improve the
available power budget. If several different fault-attack countermeasures are present
it is also possible that their combination results in reduced robustness against power
analysis attacks. In this case it is possible that other combinations or weaker mech-
anisms using different countermeasure techniques lead to a better countermeasure
performance.

6.4. Automatized Fault Emulation

For real-world applications in the smart-card development and certification sector au-
tomatized fault injection campaigns are needed to ensure the coverage of a wide range
of possible attack and device aging scenarios. To allow a similar test flexibility com-
pared to slow fault simulations, modular control and fault injection elements as well
as a high-level fault model representation are needed.

6.4.1. Modular Fault Injection Control Blocks. While simple small saboteur elements en-
able to generate faults at nearly every possible position inside the design, for exhaus-
tive countermeasure testing it is also necessary to define points of time when an attack
should be emulated. Such an attack time can be derived in the following ways.

— Program Counter (PC). The PC defines the current stage of the running program. By
listening to this register an attack at a certain point of the program can be started.

— Clock. As communication programs can endure a significant amount of time, it is
more reasonable to use a clock signal counter starting at a predefined point like a
certain PC value.

— Addresses. If certain memory blocks have to be changed during an attack sequence
it is necessary to examine system internal address and data buses. Access to the
memory point of interest can be manipulated during transmission from or to the
processor pipeline or cache.
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Fig. 7. High-level fault pattern approach.

To enable easy augmentation of a system-under-test so-called trigger modules are in-
troduced that can be placed to a certain point of interest. As shown earlier most attack
scenarios can be accomplished by listening to the PC register, clock signal, and ad-
dress buses. The needed trigger functionality can be further reduced to two types of
trigger modules: single-bit and multibit triggers. These trigger modules only output
a binary signal to show if a given condition has been reached and therefore they can
be combined by logic functions to create different fault activation conditions. All trig-
ger modules are connected to the fault injection controller by shared buses to enable
power-on configuration.

Single-bit trigger module. A single-bit trigger module contains a very simple
counter structure and a configurable detection circuit. If the input signal changes
a predefined amount of times, an output signal is raised to trigger further processing
of other trigger modules or the fault injection controller.

Multibit trigger module. Similar to the single-bit trigger module this larger variant
contains a counter structure and additional circuits to mask and compare the input
value to a given target value. If necessary additional conditions can be compared, for
example, the bus access status or specific access rights.

6.4.2. High-Level Fault Model Representation. The fault emulation system will also be
provided to another company section or customer to test preproduction software on
the given presilicon hardware design. As such a customer usually must not have in-
ternal information about the RTL description fault of model representations have to
be provided. Such representations could be very specific fault patterns to emulate an
attack shown in Section 7 or more general representations to simulation intentional
memory changes.

Using control elements as presented in Section 6.4.1 the complete memory space of
a given target application can be manipulated during runtime. This approach enables
software developers with no access to the RTL description to do detailed fault-attack
campaigns as depicted in Figure 7. These are necessary during certification phases or
early evaluations of new secure operating systems.
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Fig. 8. Dhrystone benchmark: comparison gate-level to power emulation.

Table I. Fault Injection Performance Compared to Previous Approaches

Approach Clock cycle Inj. Faults Time Inj. Speed Nor. Inj. Speed
[ns] [s] 1/[s] 1/[s]

[Civera et al. 2002] 50 100k 83 1205 603
[Lopez-Ongil et al. 2007] AE 16.8 129.75M 698 185888 276619
[Lopez-Ongil et al. 2007] PR 18.97 10k 1014 9.86 13
[Kafka 2008] DPR 10 - - 12987 32468
[Kafka 2008] PRR 10 - - 414.94 1037
This work 25 100M 46.76 2.17M 2.17M

7. EXPERIMENTAL RESULTS

To prove the usability of our approach we chose a widely used hardware platform and
software implementation of the AES cryptography algorithm. For our hardware plat-
form we selected an open-source implementation of the SPARC v8 architecture devel-
oped by Aeroflex Gaisler [2010]. This processor has been synthesized using Xilinx ISE
software and tested on the ML507 evaluation board also from Xilinx.

Our operating system tests have been executed using the SnapGear Linux distri-
bution provided by Aeroflex Gaisler. Our analysis platform consists of MathWorks
Matlab [2009b] on an six-core 3.2 GHz AMD Phenom-II machine using eight gigabytes
of RAM.

The characterization process has been done using gate-level and power simulations
using Synopsys PrimeTime provided by our industrial partner. This process resulted
into a data-aware power macromodel containing 90 coefficients. For our selected 90nm
production process library we achieved accuracies of lower than 4% average and lower
than 15% RMSE cycle-accurate estimation errors. In Figure 8 a comparison of gate-
level measurements with the results of power emulating the dhrystone benchmark is
shown.

In Table I a performance overview is shown comparing the achievable injection
speed of our approach to previously published systems. This evaluation concerns the
pure injection of fault patterns into a given processor as shown in Grinschgl et al.
[2011b].

The comparison is valid as these approaches only concern the injection of faults
without any further processing of the resulting operating errors. Other solutions use
autonomous emulation (AE), Partial Reconfiguration (PR), Partial Runtime Reconfig-
uration (PRR) and Direct Runtime Reconfiguration (DRR).
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Table II. Fault Injection Evaluation of Parity-Based Error Detection
Scheme - Data-Cache-Bus

Detected Errors (DE) DE [%]
Injected Faults 100000 - -
2-bit Parity Scheme - 74783 74.78
4-bit Parity Scheme - 93705 93.7
5-bit Parity Scheme - 96873 96.87

7.1. Dependability Evaluation

Fault injection is already widely used for the emulation of faults to test the efficiency of
fault detection and recovery approaches. Existing solutions often do not consider the
impact of such dependability improving hardware extensions on the system’s power
consumption profile. In power-constrained systems high power consumption peaks
could lead to dangerous supply voltage drops that endanger operating reliability. To
present the advantages of a multidisciplinary approach our LEON3 target system has
been augmented with three different parity-based error detection schemes. These error
detection mechanisms (2-, 4-, and 5-bit parity codes) have been added to the Memory
Management Unit (MMU) to protect the instruction- and data-cache data-bus. These
parity codes are checked inside the integer unit to ensure integrity of the read data.
To implement our fault injection experiments we augmented this bus with a bus sabo-
teur transparent under normal conditions. This saboteur allows the injection of mul-
tiple faults to every data-line routed through it. Fault patterns have been selected
randomly and injected into a looping calculation. Data errors are detected if the par-
ity code generated inside the MMU is different from the parity code generated inside
the IU.

The results of such a fault injection campaign are shown in Table II and match our
expectations concerning their operation principles. The 2-bit parity implementation
performs significantly worse than stronger implementations. For the next evaluation
step we could therefore select the 5-bit implementation for our power consumption
explorations.

Another application for automated fault emulation campaigns would be timing in-
vestigations to test given designs for their robustness against device degradation ef-
fects. Signal delays caused by Negative-Bias Temperature Instability (NBTI) can be
emulated by high-clocked delay elements inside the signal path [Krieg et al. 2011c].

Conclusion. Common error detection schemes using parity-based hamming codes
have been thoroughly examined for their error detection efficiency. The proposed plat-
form can also be used for the concurrent examination of fault resistance, power con-
sumption, and delay behavior of a given RTL description.

7.2. Security Evaluation A (AES Software Implementation)

The nature of faults occurring during an attack scenario is very different to one of
those resulting from natural causes. The reason is that these faults happen randomly
while an adversary intentionally injects such faults in order to drive the attacked sys-
tem into an unintended state. To prove the feasibility of our approach we chose a
published attack on the AES symmetric cryptographic algorithm shown in Schmidt
et al. [2009]. The authors presented a light attack on the AES-SBOX residing inside
an programmable flash memory device. This attack is emulated by the placement of
saboteurs on the memory data bus of our target architecture. These saboteurs are
always activated when the memory region containing the AES-SBOX is read by our
test program. This way all SBOX accesses return 0xFF as a result and are therefore
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Table III. AES-SBOX Fault Emulation Results

1F 1B 17 13

1E 1A 16 12

1D 19 15 11

1C 18 14 10

(a) Original Key

e0 1b f7 08

e1 1a f7 08

e2 19 f7 08

31 84 e9 1c

(b) Corrupted Output

1F 1B 17 13

1E 1A 16 12

1D 19 15 11

1C 18 14 10

(c) Calculated Key

Fig. 9. Tracing and differential power analysis (DPA).

equivalent to accesses to a device erased using ultra-violet light. The resulting wrong
intermediate results can then be used to calculate the complete key used for this AES
encryption. In Table III the input key of the AES encryption (a), the corrupted AES
output (b), and the calculated key after the fault injection process (c) are shown.

By using a data-aware power estimation macromodel different power analysis types
are also enabled. Figures 9(a) and 9(b) show cropped power traces containing one AES
encryption run with and without influence of a simple clock-gating-based countermea-
sure as described in Krieg et al. [2011b]. To reduce power profile artifacts caused by
task switching done by the operating system kernel, these figures have been recorded
during RTL simulation. For emulation a 32000-sample FIFO has been implemented
to allow the storage of a single trace in hardware for further analysis. The evaluation
software has to read out this data after each tracing run to store large amounts of in-
vestigation data. A performance comparison of all applied techniques, as determined
in Krieg et al. [2011a], is shown in Table IV. Figures 9(c) and 9(d) give an overview
how successful a DPA attack on the unmodified and augmented architecture would be.
Clock gating has been described in literature as a measure to increase profile noise
and to decrease interprofile correlation [Benini et al. 2003]. In this case the chosen
countermeasure would not have a significant impact on power consumption but its
effectiveness against power analysis would have to be improved.

Conclusion. Therefore additional hardware used for improved circuit reliability
can also be used to improve fault attack robustness. Simple manipulations of the clock
signal provide only weak protection against power analysis attacks.
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Table IV. Tracing Performance: RTL Simulation vs. FPGA Emulation
(taken from Krieg et al. [2011a])

Traces Time [sec] Speedup

Direct RTL Simulation 100 3850.05 -
FPGA Emulation (w/o OS-overhead) 100 0.0258 149226
FPGA Emulation (w/ OS-overhead) 100 43.13 89.27

Fig. 10. Structure of the AES core fault-attack mechanism.

7.3. Security Evaluation B (AES Hardware Implementation)

In Takahashi et al. [2007] the authors describe a differential fault attack on the key
schedule of an AES implementation. The authors claim that using this method it is
possible to extract a complete 128-bit secret key using only seven pairs of correct and
faulty cipher-texts without using brute-force search.

A reduced variant proposed in Takahashi et al. [2007] only needs two pairs of correct
and faulty cipher-texts to extract 48 bit of the AES key. For this work we will show
how to evaluate a given AES hardware block for its robustness against such a reduced
fault attack.

Target of this approach is the key schedule mechanism, which can be manipulated
at three different points as shown in Figure 10. The first point to be attacked is the
3rd 32-bit column of the 9th round key. Another possibility would be to attack 2nd
32-bit column and the 1st 32-bit column of the 9th round key. Both scenarios result in
corrupted cipher-texts that can be used for the calculation of the final AES key. The
following process is defined by seven rules as proposed in Takahashi et al. [2007] and
does not require further attacks on the hardware.

For this case study we chose to attack the 3rd column of the AES calculation. For our
target we chose an open implementation of the AES algorithm [OpenCores 2011]. As
seen in Figure 10 we placed a saboteur into the 3rd column key generation mechanism.
This saboteur is controlled by the Fault Injection Controller(FIC). The FIC has also
been connected to the internal AES round counter register. This way the fault injection
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Table V. Two Plain-Texts and Its Corresponding Cipher-Text Pairs

00 44 88 cc

11 55 99 dd

22 66 aa ee

33 77 bb ff

(a) Plain-text 1

69 6a d8 70

c4 7b cd b4

e0 04 b7 c5

d8 30 80 5a

(b) Cipher-text 1

29 2a 71 fc

6b c0 63 1b

27 d1 1a c2

06 ec fc 92

(c) Faulty cipher-text 1

00 04 08 0c

01 05 09 0d

02 06 0a 0e

03 07 0b 0f

(d) Plain-text 2

0a 41 f1 c6

94 6e c3 53

0b f0 94 ea

b5 45 58 5a

(e) Cipher-text 2

4a 01 67 92

3b 7c d4 fc

e6 4f 39 ed

44 99 24 92

(f) Faulty cipher-text 2

Table VI. Fault Attack and Key Calculation Results

process can be automatically activated when this register reaches the 9th round.
During the fault attack random bits of the targeted round key column are flipped.

Table V shows plain-texts and their corresponding cipher-text pairs with and with-
out manipulation. After the fault attack using methods described in Takahashi et al.
[2007] the following key bytes (K0,3, K2,0, K2,1, K2,3, K3,0, K3,3) have been calculated
as shown in Table VI.

Conclusion. In this section the application of a direct manipulation of a crypto-
graphic hardware module has been shown. The saboteur-based approach allows the
testing of general crypto-implementations as long as the RTL-level hardware descrip-
tion is available to the test engineer. The general applicability of our automatized
fault injection approach has been proven using an open available AES module and a
nonimplementation specific hardware attack described in literature.

8. CONCLUSION

This article presents a novel FPGA-based platform and methodology for reliability and
security evaluations of smart-card and general-purpose processor implementations.
Through the combination of fault injection and power emulation techniques efficient
hardware/software cosimulation of cryptographic software and hardware is enabled.
The instant evaluation of power consumption and fault resistance behavior allows
for the design of novel architectures under the consideration of power and security
constraints. The effectiveness of our proposed hardware-accelerated fault emulation
platform has been shown using software and hardware implementations of the
symmetrical AES algorithm. Novel modular trigger and fault injection mechanisms
allow for the efficient execution of long-running injection campaigns.
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The efficient modeling and implementation of fault attacks will be play a vital role
during the design of future secure architectures and certification for high security
standards.

Our future work includes the usage of the proposed platform to examine new smart-
card architectures for possible weaknesses. It also will be used to identify effective
modifications for general-purpose architectures to improve their reliability and fault
attack robustness. The combined approach will also allow for a detailed trade-off anal-
ysis of different error detection and recovery mechanisms considering both power and
security constraints.
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Abstract—During recent years a tremendous number of em-
bedded systems has been introduced into every person’s house-
hold. Such systems cannot only be found inside non-critical
applications like entertainment devices but also in safety or
security critical implementations like smart-cards. The increasing
complexity leads to the introduction of several different co-
design techniques to enable the parallel design of the system’s
hardware and software. Especially concerning security evaluation
procedures this may raise a problem of trust between the
manufacturer of the hardware and the software if both are
different entities. To enable a bridge between these two worlds,
simulation and emulation-based approaches have been shown in
literature and industry to provide abstracted information about
fault-attack effects to the software developer. However, no fast
and cost-effective approach is available to provide a metric about
how much of a given secret is leaking from the device to its
environment. Therefore, this paper proposes such a metric and
an emulation-based methodology to enable an early estimation
of side-channel leakage to a possible adversary. The effectiveness
of our approach is shown using a common available system-on-
chip implementation using an open-source standard-cell library
for characterization and a FPGA-based emulation platform for
demonstration.

I. INTRODUCTION

Differential power and fault analysis attacks (e.g. as pro-
posed in [1] and [2]) create a tremendous problem for soft-
ware and hardware manufacturers of secure applications like
smart-cards. Power analysis attacks have been counteracted
by masking techniques and complex new logic styles to
reduce data and control dependency of the device’s power
consumption. To reduce the risk of information leakage caused
by unintended system behavior resulting of a fault-attack,
redundant processor architectures and periodic software checks
have been introduced. All these countermeasures have a sig-
nificant impact on needed hardware resources and operation
performance and therefore are in direct contradiction to cost
and performance constraints demanded by the customers.

The result of this situation are compromises that provide
a high-level of security at acceptable system cost and speed.
To prove the resistance of this security reduced solutions, a
large amount of simulation and emulation testing is needed. In
case of intellectual property inside a general purpose system-
on-chip architecture it has to be tested if secrets are not
lost outside of the pre-tested secure hardware block. Another

important problem arises if certain security aspects are pushed
from the hardware to the software level, in which case the
software developer needs a possibility to estimate if the chosen
countermeasures are sufficient.
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Fig. 1. System security emulation approach

Therefore, we propose an FPGA-based emulation platform
using modular leakage sensor blocks to evaluate complex
system-on-chips for eventual side-channels. This system ap-
proach allows to identify information leakage at any area of
the complete data-path. This constitutes a strong advantage if
not the complete device can be secured or if different entities
are concerned with the implementation of the secure system.
The main contributions of this work are:

• Extension of a power and fault-attack emulation approach
with side-channel leakage estimation as shown in Fig. 1.

• Introduction of a novel methodology for the coverification
of secure software and hardware in MPSoCs.

• A case study using a commonly available software and
hardware implementation of the AES algorithm.

This paper is structured as follows. Section II provides
a short overview about techniques for security hardware-
software coverification. Followed by Section III introducing a
novel side-channel leakage emulation flow. In Section IV the
current state-of-the-art concerning simulation and emulation-
based techniques for evaluation of secure systems is briefly
reviewed. The efficiency of the proposed approach is exper-
imentally investigated in Section V. Finally, our results are
concluded and some details about our future work are given
in Section VI.

978-1-4673-1188-5/12/$31.00 ©2012 IEEE

6. Publications Publication 5 - IEEE DDECS 2012 93

c© 2012 IEEE. Reprinted, with permission, from Proceedings of 15th IEEE Symposium on Design &
Diagnostics of Electronic Circuits & Systems 2012.



II. EMULATION METHODOLOGY FOR SECURE
APPLICATIONS

Research on early side-channel evaluation techniques has
been concentrated on hardware implementations of crypto-
graphic algorithms like AES or DES. This resulted in highly
optimized and secured crypto-modules while the surrounding
architecture has remained fairly untouched. Large buses and
memories are usually protected by simple masking techniques,
encryption and physical shields to avoid probing [3]. To allow
correct and secure operation also during fault-attacks, several
standard tests have been introduced in the security evaluation.
Both, the provider of the system software and of the hardware
often strive to reach high certification levels, resulting in long
and expensive evaluations of certified test labs. In case of
found problems these tests have to be repeated resulting in
longer time to market, increased costs and successively in a
failed product.

Therefore, it is of vital importance to find deficiencies as
soon as possible during the design phase and long before
physical devices are available. At this development phase no
physical side-channel measurements are possible, so develop-
ers have to rely on either simulation or emulation models.
Additionally the hardware provider will not provide accurate
information about system-internals for security and certifica-
tion reasons. Basically there are two possible ways to solve
this verification problem, first a detailed simulator or second
a emulation system can be provided to the software manufac-
turer. Already emulation systems are provided to enable early
software debugging, such systems can therefore be augmented
with security relevant models to extent their functionality.

The advantage of emulation-based techniques in comparison
to pure simulation models are manifold:

• High evaluation performance: Real-time execution with
clock frequencies of the final product.

• Evaluation accuracy: The emulation netlist can be based
on the same hardware description as the final device.

• Low costs: Existing debugging tools using FPGA-based
functional emulation can be reused and additional func-
tionality integrates into existing test-flows.
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Fig. 2. Emulation-based power estimation flow (adapted from [4])

Because of the similarity of the basic system evaluation
challenges the function principle of a power emulation ap-
proach is shown in Fig. 2. The power consumption behavior is
determined through a characterization process and the context
between control signal behavior and consumption stored inside

a power macro model [4]. This way a cycle-accurate monitor-
ing of the device’s power consumption is enabled during run-
time. Our proposed side-channel leakage flow, as described in
the next section, will use such an abstracted model to provide
an accumulated view on the system’s information leakage
while not providing detailed circuits information about internal
structures.

III. SIDE-CHANNEL LEAKAGE EMULATION FLOW

Relying on the lessons learned from fault attack effect em-
ulation for software verification purposes, a new side-channel
leakage evaluation flow is proposed reducing a global problem
to the examination of carefully chosen system elements. An
adversary will most likely (very small semiconductor struc-
tures and strong shielding techniques result in very high costs
for an adversary if one needs to access internal structures)
only have access to the power consumption and emission of
the device. In the optimum case these are not dependent on
the control-flow and data used in the executed software. While
they are caused by a large number of contributers, only these
that constitute a possible security problem are of interest to
the system and software engineer. Furthermore the path of a
chosen secret and the behavior of the chosen logic elements
concerning power consumption is well known.

A. Side-channel leakage modeling
Accurate modeling of side-channel information leakage is

a complex field that has seen a large amount of research as
shown in Section IV. Former work focused on the view of a
cryptographic hardware developer that needs a very accurate
model of the generated data-dependent power consumption.
According to [5] the power consumption of CMOS circuits
can be summarized by Equations 1 to 4.

PCharge = pt ∗ CL ∗ V 2
dd ∗ fclk (1)

PShortCicuit = pt ∗ ISC ∗ Vdd ∗ fclk (2)
PLeakage = ILeakage ∗ Vdd (3)

Ptotal = PCharge + PShortCircuit + PLeakage (4)

While the first three terms contribute to the total power
consumption of a CMOS circuit, only parts are relevant if
only side-channel leakage is considered. The third term only
describes the influence of the semiconductor leakage current
ILeakage on the circuit consumption, it is therefore not data-
dependent. If the first and second term are considered, supply
voltage VDD and operating frequency fclk are constant and
hence also not of concern. As the short circuit current ISC is
only technology dependent, only the coefficients pt and CL

remain for consideration in a side-channel leakage model.
• pt means the switching probability of the investigated

logic circuit. This value is directly depending on the
processed data, as it is dependent on the switching activity
during clock signal changes.

• CL means the load capacitance that has to be charged
during switching of the logic gate. It is routing and imple-
mentation dependent and can be derived from the placed
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and routed digital circuit during the RC extraction phase
(if the standard cell library provides such information).

Hence, a side-channel leakage sensor has to at least consider
switching activity of the observed data lines and the loading
capacity of the observed logic gates. In Fig. 3 an intelligent
sensor concept is presented that does not only detect data line
bit toggling, but also provides a simple math function F (x) for
advanced analysis purposes. This approach for example allows
to simulate masking mechanisms and to retrieve switching
leakage that would result from the executed masked data. The
result of this process are the number of toggled bits and a
boolean value signaling if the unprocessed input was valid
after comparison with the chosen filter data.
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Fig. 3. Generic side-channel leakage sensor model

B. Leakage accumulation as a side-channel metric

Especially concerning cryptographic software verification
an abstraction level between the hardware implementation and
the emulation debugging platform is needed. To gain such
an abstracted view on possible security leakage problems, the
power analysis problematic is reduced to its core contributor,
gate switching dependent power consumption. As described
earlier leakage power is directly proportional to the capac-
itance of the placed gate. This behavior is not only valid
for standard CMOS implementations, but every security logic
style that relies on standard CMOS gates. For example, in the
WDDL logic style, leakage highly depends on perfect routing
to avoid glitches causes by asymmetries. As this style still
uses CMOS gates, this problem could be modeled using the
proposed intelligent sensor approach.

L =
Nb∑

i=1

ci ∗ xi[t] (5)

Laccumulated =
Nm∑

i=1

Li (6)

The retrieved side-channel leakage metric is described in
Equations 5 and 6 where L denotes the amount of leakage for
a specific sensor and Laccumulated for the complete system.
In case of a single sensor module, ci means a coefficient of
the leakage model and xi[t] the boolean value of an observed
bit after processing at a given time.

C. Emulation methodology
The emulation methodology allows to evaluate crypto-

graphic software and hardware implementation on different
abstraction levels. Similar to fault emulation, modular sensor
blocks are placed into the RTL code of the target device.
Depending of the stage of the design process a generic or
capacitance-based model is implemented inside the leakage
accumulator as visualized in Fig. 4. These capacitance values
are extracted from place&route data generated during the
RC-extraction phase of the physical implementation process.
After a model configuration has been chosen or extracted, the
resulting RTL source can be directly simulated or fed into an
FPGA synthesis process. This allows to do architecture and
routing explorations before synthesizable and manufacturable
source is available.
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Fig. 4. Side-channel leakage emulation methodology

D. Emulation architecture
After a leakage sensor design has been chosen, these have

to placed at critical data-path areas of the system. As shown
in Fig. 5 this should include the complete path from mem-
ory to the processor internal pipeline registers. Additionally
cryptographic hardware modules, like AES and DES en- and
decrypters, can be included into the evaluation architecture
to test existing masking techniques, or to simulate different
masking strategies.

IV. RELATED WORK

Side-channel attack evaluation techniques can be divided
into two main groups depending on the used system models.
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The first group would be simulation techniques that have been
researched for many years now resulting in a wide range
of methodologies on different abstraction levels. The second
group would be hardware-accelerated emulation methods to
map system behavior to a FPGA-based evaluation platform.

A. Hardware Model Simulation

Tiri and Verbauwhede described simulation models for side-
channel information leaks in a very detailed way in [6]. The
authors described possible simulation inaccuracies caused by
the wrong selection of circuit capacitances for generating
a simulation model. These problems are of concern if an
accurate model for DPA attacks is of interest, however if only
the fact that information is leaked is investigated, the model is
decoupled from the process of direct interpretation i.e. an DPA
analysis. In [7] the authors describe RTL-level power-analysis
attack testing without the inclusion of layout information.
A highly theoretical platform-independent approach has been
presented in [8], focusing on the security modeling challenges
themselves. In [9] simulation performance is improved by
the introduction of simplified capacitor charging models. All
proposed techniques are relying on RTL or SPICE-level sim-
ulations and therefore cannot provide a suitable evaluation
platform to an external entity.

B. Full System Simulation

In [10] a pure software-based analysis solution is presented.
In this case the processor itself has been modeled for software
verification purposes, however, the authors do not mention
how a correct hardware model has been retrieved. The work
presented in [11] relies on complete high-level modeling
framework using the GEZEL hardware description language.
The authors note that the usage of such complete new system-
level design techniques needs novel tool chains, design cul-
tures and practices. In [12] a full-system evaluation platform
based on the SystemC modeling language has been introduced.
While this has been a large step into the right direction it
is still not based on the code base as the final product and
therefore simulation inaccuracies will exists, especially if this
language is not used for further evaluation purposes. In [13] a
design flow and evaluation framework for novel systems with
instruction set extensions has been introduced. Another pure
software approach has been taken in the work shown in [14].

C. Emulation-based

State-of-the-art security system evaluation still heavily relies
on simulation or investigation of manufactured devices. Only
few literature is available describing emulation techniques for
power analysis attack evaluation. The most similar approach
compared to this work has been presented in [15], in which
the authors presented high-level modeling technique based
on toggle counting. Contrary to our proposal a hardware-
verification method has been chosen, meaning that every
logic cell has been extended with a ’toggle-counting-cell’.
The resulting resource demands included a doubled need of
lookup-tables (LUTs) and strong introduction of flip-flops.
This increase makes this methodology not suitable for full-
system emulation that includes a wide range of additional
debug-functionality. A different approach has been proposed
in [16] using an existing power-emulation characterization
process to add data-dependent information into a pure control-
flow power estimation flow. Hence, security relevant infor-
mation can only be extracted using a statistical evaluation
methodology, reducing emulation performance if applied to
long-time tests.

D. Contribution

These evaluation techniques include the use of sophisticated
differential power-analysis attack methodologies or rely on
the application of large resource effort to gain information
about the target application. Such toolkits are not usable in
long-time testing environments because of needed computation
performance and needed detailed hardware knowledge. This
opens a wide variety of problems resulting from bad or even
missing system security countermeasures. This is especially
true considering software side-channel countermeasures that
are not tested by experienced hardware engineers. Therefore,
there exists a dangerous gap between hardware and software
verification that could lead to unregarded side-channels re-
sulting from bad system design. Our novel emulation ap-
proach utilizes intelligent modular sensor blocks to enable
the observation of several different points inside the system,
specifically the data-path. To the best of our knowledge there
exist no emulation-based approaches for side-channel leakage
estimation in literature.

V. EXPERIMENTAL RESULTS

Our proposed methodology is implemented and demon-
strated using an open source implementation of the SPARC v8
architecture developed by Aeroflex Gaisler [17]. This system-
on-chip example has been synthesized using Xilinx ISE soft-
ware and is functionally tested on the ML507 evaluation board
provided by Xilinx. All software evaluations are done using an
open available and widely tested AES software implementa-
tion [18]. The hardware implementation has been taken from
opencores.org and is therefore also generally available [19].
All physical capacitance data has been derived from a placed,
routed and RC-extracted implementation using Cadence syn-
thesis and P&R tools. The design has been generated using the
open 45nm generic standard cell library provided by NanGate.
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A. Software Verification (SWV)

For software verification purposes several traces using
different randomly chosen plaintexts are generated and the
resulting leakage accumulation data can then be evaluated
visually. Because the filtering process cannot directly distin-
guish between a transferred key and generic data, some key-
independent data will also be visible inside the leakage trace.
This behavior can be seen when comparing traces in Fig. 6a
and Fig. 6b, as well as the regular peaks resulting from the
unprotected processed key bytes. The key-independent trace
fractions can also be visualized by filtering using any random
key that is different from the actual used one as shown in Fig.
6c.

A.) AES encryption using random plaintext, filtered with correct key

B.) AES encryption using random plaintext, filtered with correct key

C.) AES encryption using random plaintext, filtered with random key
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Fig. 6. AES software evaluation with correct and random keys

The modular sensor approach also allows for the location
of strong leakage contributers. In Fig. 7a and Fig. 7b only the
switching power for the two ALU input registers is shown.
Because no bus is connected to these registers the resulting pin
capacitances are relatively low and therefore their contribution
is small as expected. For comparison the leakage contribution
of the data-cache input bus is visualized in Fig. 7c.

Although data-buses are the strongest contributers to switch-
ing power leakage, as described in literature, smaller fractions
generated inside the processor pipeline cannot be ignored,
especially if other system parts have been secured.

B. Hardware Verification (HWV)

For the evaluation of an unsecured cryptographic module
16 byte-wide intelligent sensors have been placed onto an
internal intermediate result register (SBOX-input). In Fig. 8a
100 encryption runs can be seen as the leakage result will
peak when all sensors detect a correct key-byte. Because of
the smaller sensor input width the amount of key-independent

A.) Leakage sub trace for sensor 3 – IU operand register 1
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B.)  Leakage sub trace for sensor 4 – IU operand register 2

C.)  Leakage sub trace for sensor 5 – Data cache input
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Fig. 7. AES software evaluation - submodule traces

data is higher than during the processor evaluations resulting
in increased trace noise. The intelligent sensor approach allows
to simulate a hardware masking technique, for example in Fig.
8b this internal result has been masked using a changing mask
value. While the designer of the AES module now could feel
safe about this chosen masking mechanisms, Fig. 8c shows
that transfers of the key from the processor to the data-cache
are strongly visible.

C. FPGA Implementation Results

As described earlier the proposed evaluation platform has
been synthesized using Xilinx implementation tools to be used
on the ML507 Virtex5 evaluation board. The results from this
synthesis process are presented in Table I and show that the
resource overhead is small enough to allow the placement of a
large number of leakage sensors. The size of the data collector
modules results of large adder structures that can be scaled
down by the application of pipelining techniques.

TABLE I
SYNTHESIS RESULTS - VIRTEX5 - BALANCED STRATEGY

Unit Slice Registers OHa [%] LUTs OHa [%]

Complete System 11568 - 38154 -

LEON3 Core 5611 48.5 12650 33.2

Data Collector SWV 23 0.19 3665 9.61

Data Collector HWV 27 0.23 1473 3.86

Leakage Sensorb 64 0.55 244 0.64

Leakage Sensorc 16 0.14 83 0.22

aOverhead compared to overall system resources
b32-Bit Sensor with XOR-function
c8-Bit Sensor with XOR-function
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A.) AES hardware module – 100 traces without masking

B.) AES hardware module – 100 traces with masking
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C.) AES hardware module – Processor data cache input leakage

Fig. 8. AES hardware module evaluation with and without applied masking

Even using unoptimized adder structures inside the data
collector modules, the necessary hardware overhead for an
FPGA implementation is significantly lower than comparable
solutions described in literature, as shown in Table II. It has to
be noted that the work described in [15] only a masked AES
SBOX has been implemented with full logic coverage.

TABLE II
SYNTHESIS RESULTS - OVERALL OVERHEAD

Approach Slice Reg. Overhead (OH) OHa [%] LUTs OH LUTs OHa [%]

This work 1171 10.12 8216 21.53

Chen2009 [15] 744 -b 248 200

aOverhead compared to overall system resources
bOriginal design included no registers

VI. CONCLUSION

In this paper a novel side-channel leakage aware emulation
methodology is introduced to enable the coverification of
secure hardware and software for MPSoCs. High evalua-
tion performance of FPGA-based investigation platforms is
combined with leakage estimation based on post-place and
route capacitance information taken from a standard cell
digital system implementation flow. This technique allows to
estimate possible information leaks inside the data-paths of
hardened and unprotected multi-core processors during the
design phase. Abstracted leakage information is provided to a
possibly external software developer to also enable the eval-
uation of software countermeasures for unsecured hardware
implementations. Combined with fault-attack effect emulation
the functionality of countermeasures under attack conditions
can be tested at early phases of the implementation process.

Our future work includes the research and implementation
of efficient emulation-based techniques to enable fast and
accurate coverification of secure MPSoCs. This includes the
combination of power consumption estimation, fault-attack
effect emulation and information leakage investigation into a
single FPGA-based evaluation platform.
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Abstract—In recent years the wide spread introduction of small
embedded systems into every corner of everyday life lead to the
strong need for highly reliable and secure computing machines.
These machines now affect the safety of humans as well as the
security of personal data and consequently money transactions.
To ensure the integrity of these systems’ operating state, several
fault detection mechanisms have been developed to safely correct
or stop unforeseen execution behavior. Because of the rise of
battery or even field-supplied systems these mechanisms often
heavily decrease available power budgets or lead to significantly
increased production costs.

Therefore, this paper introduces novel micro-architectural
execution signature characterization and handling techniques for
system-on-chip designs providing power estimation hardware.
Existing power sensor infrastructure is reused to enable efficient
system-state monitoring using micro-architectural hashes to cover
a wide range of implemented system functionality. Reduced hash-
ing implementations are characterized for their fault detection
efficiency. This hardware-based approach provides a completely
transparent solution to counteract faults resulting from emerging
wear-out defects or intentional attacks on the execution integrity.

I. INTRODUCTION

Research on sophisticated fault detection mechanisms using
on-line control flow monitoring has been ongoing for decades.
The main driver behind this research has been computing
machines for high-availability and security applications. Such
threats to system integrity come from two major contributors.
First, continuing semiconductor process integration leads to
finer transistor structures and therefore to a higher probability
of transistor defects. Second, criminal subjects try to gain
secret information from secure devices by disturbing normal
operation using sophisticated fault attacks.

In case of systems for highly dependable applications it
is important to detect control flow changes because of faults
resulting of environmental influences or manufacturing de-
fects. These faults are of a random nature and their detection
will usually lead to the activation of countermeasures to
prevent erroneous actions that could result in loss of money
or life. In case of high-security applications like smart-cards,
fault detection is essential to identify attacks by an external
adversary. The primary function is to prevent the loss of
information and to hide the fact that the attack was successful.

To guarantee a high fault detection coverage usually modular
redundancy techniques are used. By duplicating or tripling
processing units, even small control flow changes or data
manipulations can be detected or corrected in case of a triple
configuration. The disadvantage of such a fault detection
approach are high implementation and manufacturing costs. In
the high volume smart-card market such additional production
costs are prohibitive.

Therefore, a strong need for control flow manipulation
detection mechanisms providing a similar detection coverage
as modular duplication while relying on a smaller resource
footprint rose in the recent past. To gain an area effective
implementation of a control flow observation mechanism,
existing infrastructure has to be reused and simplified hashing
implementations have to be found. Accurate on-line power
estimation is also dependent on a view of the current control
state of the system and therefore a hybrid monitoring structure
is proposed. Hashing mechanisms are simplified by round and
structure reduction and have to be characterized for the impact
of these simplifications on fault detection efficiency.

The main contributions of this work are:

• Introduction of a novel control-signal signature hardware
characterization strategy and hybrid power and fault mon-
itoring infrastructure

• Integration of the proposed methodology into a state-of-
the-art power profiling and functional emulation flow

• Case study using an augmented version of an open
available system-on-chip implementation

This paper is structured as follows. Section II is giving
a short introduction into control-state based hardware power
estimation. In Section III common mechanisms for micro-
architectural signatures are roughly described and the state-
of-the-art concerning these signatures for general purpose
architectures is briefly reviewed. Followed by Section IV
introducing a novel transparent micro-architectural signature
generation methodology. The efficiency of the proposed ap-
proach is experimentally investigated in Section V using a
common general-purpose-processor system. Finally, our re-
sults are concluded and some details about our future work
are given in Section VI.
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II. CONTROL-STATE BASED
HARDWARE POWER ESTIMATION

Hardware power estimation has emerged as a rich technique
in order to obtain power consumption information in a cycle-
accurate manner. Having on-chip power information available
to drive power management algorithms is becoming increas-
ingly important for power-constrained embedded systems [1].
In particular in field-supplied systems it is mandatory to have
power monitoring mechanisms available in order to track the
power consumption of the system and to detect and to prevent
the occurrence of harmful events (i.e., power peaks, supply
voltage drops).

Additional hardware blocks enable the observation of in-
ternal system states, which are then fed to a power model
implemented in hardware. Power estimates delivered by the
power model can then be exploited by power management
mechanisms. The principle of control-state inspection for sys-
tem monitoring is similar to a signature-based fault detection
approach as proposed in this work. Therefore a fusion of both
evaluation techniques (power and fault) is possible to optimize
resource efficiency. This step includes the relying on a joined
activity sensor infrastructure and characterization process.

A. Power Model
The set of internal system states x, each of which denoted

by xi and model coefficients ci constitute the power model as
depicted in (1)

P (x) =
n−1∑
i=0

cixi + e. (1)

The power model’s result gives power estimates P̂ (x)
corresponding to the linear combination of internal system
states xi and the model coefficients ci. The difference of the
power estimate P̂ (x) to the real power consumption P (x)
is denoted by error e. The selection of a representative set
of internal system states as well as the determination of the
power model coefficients is performed during a power charac-
terization process [2]. This process includes the execution of
benchmarking programs using a gate-level description of the
design to create an accurate power consumption abstraction.

B. Power Estimation Architecture
The power estimation architecture as depicted in Figure 1

consists of a number of power sensors that observe and map
internal system states xi to power model coefficients ci. Power
estimates delivered by the power sensors are summed up in
the power accumulation unit, which finally provides the power
estimate P̂ (x).

The accuracy of the power estimate P̂ (x) gathered from the
power model depends on the number and quality of the ob-
served system states. The approach is flexible in a way that the
system state granularity at which the system is observed can
be tailored to accuracy requirements of the power estimates.
This is also advantageous for the coverage of control-flow
based fault detection mechanisms by increasing the number
of instruction-decode stage signals that are considered.
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Fig. 1. Control signal based power estimation principle (adapted from [3])

III. RELATED WORK

State-of-the-art research in the field of fault detection mech-
anisms using on-line control flow monitoring can be split into
three main groups.

A. Software-based signature mechanisms

Purely software-based approaches mostly rely on the au-
tomatic or semi-automatic generation of code signatures to
detect program flow changes caused by tampering or environ-
mental influences. These signatures are directly embedded into
the executed binaries. For the signature checking procedure
itself processor internal resources have to be reused resulting
in a high impact on execution performance.

Pure software solutions have been proposed using extensive
redundancy as shown in [4] or by applying additional state
checking to catch unforeseen execution control behavior as
presented in [5] and [6]. An approach solely based on software
signatures generated during compile time is proposed in [7].
The main disadvantage of these software-only approaches is
their significant impact on execution performance. Further-
more, software checks could be manipulated by an adversary
if such techniques are used in security critical applications.

B. Hardware-based signature mechanisms

Most commonly used hardware blocks for integrity check-
ing are hardware monitors. Depending on the monitored unit
these monitors can be implemented very efficiently. This
advantage is counteracted if large memories are integrated to
store precomputed signatures. Another problem concerning the
state-of-the-art in this field is the selection of the monitored
system region. Pipeline-only approaches may be insufficient
for system-on-chips and the use of multiple monitors increases
system complexity and decreases area efficiency.

To reduce the impact of the monitoring process on the
operating performance and to gain direct access to hardware
resources, control flow-monitoring approaches using dedicated
monitoring hardware have been introduced. Such dedicated
monitoring hardware could be watchdog-type modules as
shown in [8] and [9] or smaller specialized monitoring circuits
covering only selected parts of the system as presented in [10],
[11] and [12]. Other approaches rely on modification of the
processor pipeline to enable the observation of the control flow
[13]. While being very effective in processor-only applications,
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it is often not sufficient for system-on-chips including a wide
range of different processing units.

C. Hardware-Software co-design solutions

To ensure a wide detection coverage several co-design based
approaches have been published. In this case the possibility to
adapt both software support and hardware structure is used
to reduce memory overhead and performance penalties. Such
systems are generally based on application-specific instruction
processors (ASIP) as published in several recent papers [14]–
[16]. By design it is only possible to apply such techniques
if the target architecture is either highly adaptable or the
design process is at a very early stage enabling instruction
set changes.

Another possibility would be to augment existing hardware
to generate representative values to track control changes
inside the system-under-test. Such reusable hardware blocks
could be scan-out-chains as presented in [17]. This approach
while having only a small impact on the complexity of the
targeted system relies on periodic tests and therefore is not
a real on-line testing solution. Another possibility would
be fingerprinting techniques generating hash-values from the
complete architectural state as published in [18]. The pro-
posed fingerprinting approach while providing very accurate
fault detection mechanisms leads to high demands on circuit
bandwidth.

D. Contributions

Our proposed approach can be categorized into group
number three supporting system-internal fault detection mech-
anisms as well as software controlled solutions. Compared
to existing work our implementation does not rely on large
architecture augmentations as necessary in group two and
does not imply performance degradations of group one. It can
be applied to any hardware containing state-dependent power
estimation (PE) units without relying on large hash gener-
ation circuitry. This co-existence with PE hardware should
also result in a very limited amount of additional needed
area resources. Furthermore, our approach not only covers a
microprocessor’s pipeline but large parts of the entire system-
on-chip to guarantee a wide fault detection coverage. The
general applicability only relies on the availability of the RTL
system description.

IV. SIGNATURE MECHANISM FOR
RESOURCE CONSTRAINT SYSTEMS

In resource constraint systems like smart-cards huge mem-
ory, runtime or hardware overhead is prohibitive. Therefore,
large control-flow graphs, embedded code signatures or ex-
tensive monitoring hardware cannot be employed to ensure
correct system behavior. On the other hand the continuing inte-
gration of additional components into system-on-chip devices
also adds a wide range of additional targets for attacks and
points where degradation could lead to system failure.

Therefore, we propose a complete signature element se-
lection and hardware description augmentation methodology

using passive signature generation and comparison hardware.
The goal of this approach is to provide high control flow
security compared with low performance and area overhead.
An overview of this proposed characterization and generation
methodology is depicted in Figure 2.

Autom. Signal Wiring

Pre-Selected Control Signal Search Space

Power Characterization Signal Activity Analysis

Reduced Signature Control Signal Set

Sign. Hardware Generation
Architecture

Constraints

Fig. 2. Signature architecture augmentation methodology

A. Control signal selection

This part of the signature implementation process is crucial
to keep hardware effort low while enabling reliable and
efficient system monitoring. The following two main criteria
are important when selecting control signals for monitoring
purposes:

• Relevance: Significant control signals should show strong
activity in a large selection of standard applications. This
requirement is also of importance considering control
signal based power estimation to gain good estimation
accuracy. Therefore, a power model characterization pro-
cess will be employed to determine good candidates for
hardware block signatures. A good example for such a
characterization process is given in [2].

• Determinism: Signal activity must be directly dependent
on the executed instruction sequence. In this case similar
criteria are important for fault injection campaigns to sim-
ulate device degradation effects caused by high transistor
activity in systems manufactured using very fine semi-
conductor technologies. Therefore RTL-simulation based
activity analysis techniques will be used to determine
good execution-signal correlation. The principle analysis
techniques are similar to those shown in [19].

B. Signature type selection

Selection of a proper signature type is crucial to keep hard-
ware overhead low without increasing the risk of collisions
over an unacceptable level. Most hash signature algorithms,
while being very robust against collisions and providing good
coefficient mixing, need a significant amount of area in
their hardware implementations. In case of system-internal
execution signatures collisions are of lower concern than con-
straints on coefficient mixing. Therefore, the design can rely
on hash algorithms with good avalanche behavior, meaning
large output changes at small input changes, while being less
optimal in means of collision resistance. Another important
point when selecting a good hardware signature algorithm
is calculation latency. Arora et. al. solved the problem of
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limiting maximum calculation latencies by adding hardware
and limiting the maximum block size to 512 [20]. Still their
MD4 and MD5 implementations had a significant impact
on operating performance because the pipeline stalled until
the hash generation is finished. An overview over small and
fast hash functions for hash table lookup including MD4 is
shown in [21]. To gain a lightweight memory-free hardware
implementation only functions are considered that do not rely
on coefficient tables. This excludes the simple SBOX-function
that relies on large data tables while being computationally
simple. All chosen signature implementations have been con-
figured to result into a compression factor of 2:1. Meaning
that the resulting hash value is only half as wide as the input
vector. All hash implementations have been round reduced and
simplified to retrieve a highly efficient hardware integration.
Specifically a single-round implementation has been targeted
to gain fast detection of execution variations.

For our exemplary implementations the following algo-
rithms have been chosen:

CRC hashing: Well documented and automatically gener-
atable for a wide variety of bit-widths are cyclic-redundancy-
check (CRC) code generator-modules. For the VHDL code
generation all even coefficients have been chosen to retrieve a
constant hardware structure [22].

One-at-a-time hash function: The one-at-a-time hash
algorithm shown by Jenkins et al. in [21] has been chosen
because of its simple structure and because it can be simply
implemented in hardware without additional execution latency.
Compared to CRC one-at-a-time provides very good avalanche
behavior while more hardware effort is needed.

MD5 secure hash: The well known MD5 hash algorithm
has been reduced to retrieve a small and fast implementation.
This reduction is achieved by only using one simplified round
of MD5.

SHA secure hash: The basic structure of this signature
implementation is very similar to the MD5-based one. There-
fore, the same restrictions and characteristics apply for this
low-cost hash function.

C. Signature segmentation

The possibility of fault location extraction from an execution
signature is of vital importance for further fault analysis
processes. Therefore, it has to be segmented depending on the
available systems elements. After control signals have been
grouped depending on their original location, individual sig-
natures are generated and concatenated as shown in Figure 3.
Such groups would be individual processor-cores in multi-core
systems or system-on-chip elements like network controllers
or caching control blocks. The selection of group members is
done using a component-aware power characterization process
to identify deterministic and relevant module control signals.

The efficiency of the segmented signature approach depends
on the scalability of the hashing implementation and the
granularity of the signature segments.

Sign0

Control Signal Segments

Signature SegmentsSign1 Sign2 S3

System Signature

IU0 Cache0 MMU MUL0

Hash Function

Segment Concatenation

Fig. 3. Signature segmentation approach

D. Signature-based execution architecture

Depending on the available memory resources on-line or
off-line signature checking techniques can be used.

Off-line techniques would include a software characteriza-
tion process to generate execution signatures of targeted code
regions. In this case a set of the calculated hashes has to be
saved to the target device to be compared in hardware during
regular operation. The advantage of this approach is the lack
of multiple signature generator circuits as the reference is
produced using a system emulator provided to the software
developer. On the other hand large signature memories are
needed to store the control flow history of the complete code
execution.

On-line approaches include both, the reference and control
signature generation, inside the target hardware. This can be
implemented in a completely memory-free manner using a
reference signature generation step during the fetch stage of
the pipeline. Another possibility would be to use a system
emulator for instruction characterization and in-system com-
parison at the end of the processor’s pipeline. The memory-
free approach will rely on a complex signature generation
circuit predicting the future of the control signal state at
a later stage. Instruction-only characterization constitutes a
good compromise between needed circuit and memory re-
quirements.

For our experimental evaluations an off-line approach us-
ing complete pre-calculated signatures has been chosen to
demonstrate the feasibility of our technique. These signatures
have been derived using a golden model run of the selected
benchmark programs. The selected architecture is depicted in
Figure 4.

Target StateActual State

P
C

LEON3Integer Unit MMURegister File

Signature Generator Signature Memory

Power Estimator Unit

. . .

. . .

Error / OK

Fig. 4. Signature generation and comparison architecture

V. EXPERIMENTAL RESULTS

The applicability of our approach is shown by using a
widely known hardware platform based on an open source
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implementation of the SPARC v8 architecture developed by
Aeroflex Gaisler (www.gaisler.com).This system-on-chip ex-
ample has been synthesized using Xilinx ISE software and
tested on the ML507 evaluation board provided by Xilinx.
This processor type constitutes not a classical example of a
smart-card processor because of its complexity but it is still
used to prove the general applicability of the chosen approach.
Our analysis platform consists of MathWorks Matlab 2010b
on a six-core 3.2 GHz AMD Phenom-II machine.

Using the semi-custom design flow and power simulation
tools provided by our industrial partner a power macro model
containing 63 coefficients has been derived. The power esti-
mation module itself implements this power model using a
three stage pipelined adder structure.

The following experimental evaluations of the signature
generator modules have been done using 100000 randomly
generated input vectors. To enable a common simulation
environment all blocks have been implemented into a single
testbench scaled for different input widths.

A. Signature performance

First the signature hardware selection has been evaluated to
determine if every input change also results in a signature
change. Especially when using small signature widths or
reduced implementations suboptimal hash generator hardware
will lead to increased amount of such collisions. Figure 5
shows the behavior of every signature implementation for
different hash widths. It can be clearly seen that while one-
at-the-time is the worst and CRC-based the best, SHA-based
and MD5-based modules result in similar results.
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Fig. 5. No signature switching on input change

Second the amount of switched input bits compared to
switching output bits has been evaluated. This ratio is sup-
posed to be as low as possible, meaning that an input signal
change results into a large change of the output value. The
results are shown in Figure 6 concluding to a similar behavior
of CRC-based, MD5-based and one-at-a-time implementa-
tions. Our SHA-based module had a significant less optimal
performance than the other candidates.

B. Area Requirements of different signature implementations

In a resource-constrained environment hardware resource
usage plays an important role, especially if the inclusion of a
large amount of control signals should be enabled. Therefore,
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all modules have been synthesized for the Xilinx Virtex5
FPGA using different signature widths. Figure 7 shows the
results of these synthesis runs concluding that all implemen-
tations scale as expected and one-at-a-time is needing the
largest amount of FPGA slices. The lowest resource use was
determined for all CRC-based modules.
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Fig. 7. Signature hardware resource usage

C. Evaluation using fault injection

After the signature hardware selection phase CRC proved to
be the most promising candidate concerning hardware resource
usage, scalability and hash performance. Therefore, a tree-
structure has been implemented to generate a segmented hash
containing information of three integrated processor cores.
Each core outputs 63 state signals containing information
about the processor’s integer pipeline as well as register file,
instruction cache, data cache, MMU and divider unit. This
could be easily extended for further system units such as
bus and network controllers. The monitored signals have been
grouped into four segments per processor, resulting in five
signature blocks per processor finally resulting in 15 hash
generating hardware units. For small signature sizes (three,
four, five) no compression has been implemented to avoid high
collision ratios. The retrieved signatures contain 34 hash bits
per processor core, resulting in a 102 bit system hash value.

Table I shows the resource usage of all signature generators
combined in comparison to the complete system and one
processor core. Furthermore, it provides a comparison to the
implementations presented by Arora et. al. in [20]. Each of the
monitored hardware units has been augmented using saboteur
blocks to enable run-time fault injection.
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TABLE I
RESOURCE USAGE COMPARISON

Unit Slices Slice Regs LUTs Resource [%]

System 15937 15017 30768 -

Core 3342 3248 6633 21.6

Signature Generator 103 102 263 0.85

Signature Controller 234 146 451 1.47

Arora et.al [20] - - - 3-9a

aIn [20] several different techniques have been proposed

To reduce the evaluation complexity only the first proces-
sor has been penetrated using 10000 randomly chosen fault
patterns during our fault injection campaign. Table II gives
an overview comparing our approach to the ones presented in
[20] and [11].

TABLE II
FAULT DETECTION EFFICIENCY COMPARISON

Approach Det. Bit Flips [%] Det. latency [Instr.]

This worka >99 1

Mao et.al Control flow [11] 26 23.6

Mao et.al Hash4 [11] 94 1

Arora et.al [20] >99 6

aSingle-round reduced CRC implementation

Our approach only needs a negligible amount of the sys-
tem’s resources while providing higher or similar detection
rates than previously presented work. This result is achieved
without influencing the execution performance as signature
generation and comparison have been done in-system using
dedicated memories. Communication to the integrity checking
hardware is minimized to detection (de-)activation commands.
Furthermore, in contrast to the earlier shown existing solutions
our approach does not rely on any modification of the source
or binary code.

VI. CONCLUSION

This paper presented a novel micro-architectural execution
signature handling and characterization methodology for ar-
chitectures providing existing control-state monitoring infras-
tructure. Our approach works fully transparent and does not
rely on any changes of the executed software to detect unfore-
seen control flow changes. All presented hardware extensions
have a low-impact on logic resources and can be efficiently
integrated into existing power estimation infrastructure. Its
modular design allows to generate execution signatures with
varying signing granularity. Resulting signatures can then
be used for transparent control-flow checking as well as
for continuing modular-redundancy checking in high-security
systems. The segmented approach allows for the direct lo-
calization of execution manipulations in a wide selection of
system-on-chip submodules. All proposed circuits are fully
synthesizable and have been successfully tested for their fault
detection capability using an FPGA-based evaluation platform.

Compared to existing state-of-the-art signature-based fault
detection mechanisms our approach promises high detection
efficiency without the need of additional watchdog hardware.
The needed software overhead can be scaled according to the
requirements of the chosen application.
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Abstract—Today security and safety applications are often a
large conglomerate of complex different components. Because
of a strong trend to high system integration to fulfill financial
and production cost constraints, as much of these components
as possible are combined to form large-scale system-on-chips.
Risks of dependability and security problems caused by device
degradation and adversaries lead to a wide range of research
concerning fault detection and recovery techniques in recent
years. Especially in safety systems the concurrent use of different
checking techniques, to protect the integrity of the operation, is
preferred. Standard duplication or triplication methods for such
critical devices are not completely fulfilling this property and
raising a need for new on-line testing and recovery methodologies.
Furthermore, the smart-card sector produces a strong need for
new checking techniques with a low resource footprint. Therefore,
this paper presents a novel automatized hardware generation
flow to create a predictive control signal monitor unit in an
automatized way. Depending on the instruction loaded by the
processor pipeline this unit will predict the signature of following
control signal changes. Hence, a new way of fault detection,
weak checking, is implemented without introducing any large
additional hardware blocks. A case study using an open-source
processor is also presented to show the applicability of our
approach.

I. INTRODUCTION

The modeling and detection of faults has been a very active
field of research in recent years. This work is motivated by the
continuously intensifying problem of unreliable operation of
highly integrated complex systems. This dependability issues
are caused by sensitive, deep sub-micron structures used in
current semiconductor manufacturing processes. Combined
with high operating frequencies and low supply voltages the
chance of random bit-flips is drastically increased. At the same
time these complex embedded systems are introduced into
an ever increasing amount of markets. In terms of necessary
fault robustness two different types of fault sources have to be
differentiated.

For high-availability systems like safety applications mainly
random bit-flips are of concern to the engineer. Such faults
can basically happen anywhere inside the implementation,
but will only manifest themselves if the change has been
stored in a register. Erroneous execution could lead to the

activation of emergency units during normal operating re-
sulting in catastrophic effects. Because of the risk to human
life in many safety applications, there already exist strict
standards requiring different control functionality to avoid
false decisions.

In case of high-security applications the nature of the
occurring faults is very different. The location and the time
of activation is defined by the adversary that tries to put the
system into an unintended state. The target of the designer of a
secure implementation is not only to detect injected faults but
also to prevent loss of trust and reduce available information
to the attacker. The reaction time to fulfill this goals has to be
kept as low as possible. A common solution to achieve fast
fault detection is by modular duplication, drastically increasing
the needed hardware resources. To make attacks even more
difficult different control mechanisms are preferred, an aim
that cannot be reached by replication of hardware blocks.

To combine the principle of different control mechanisms
for the same target with high area efficiency and operating
speed this work introduces a novel hardware generation flow
for hardware checkers. This flow also includes new character-
ization steps to predict the control signal signature based on
loaded instructions. The main contributions of this work are:

• The introduction of a generated signature-based memory-
less execution monitoring unit.

• Presentation of a novel predictive control signal weak
checking surveillance methodology.

• A case study using an open SoC implementation.

This paper is structured as follows. First, Section II gives
a brief introduction into on-line monitoring techniques for
processors and complex system-on-chips. Followed by Section
III presenting a novel hardware monitor generation flow to
provide area efficient and low latency fault detection. Section
IV provides experimental results using an open-source system-
on-chip platform to prove the applicability of our proposed
approach. In Section V a summary of the current state-of-the-
art concerning signature-based fault detection mechanisms is
given. Finally, Section VI concludes this work with a short
summing-up of the achieved results.
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II. ON-LINE MONITORING OF PROCESSORS AND
SYSTEM-ON-CHIPS

Fault detection and recovery have always been vital fields of
research. Main reasons for this general interest have been influ-
ences by environmental stress like radiation and temperature.
In recent years device degradation caused by highly integrated
semiconductor manufacturing processes and intentional faults
injected by an adversary moved into the focus of researchers.

A comprehensive overview over the current state-of-the-
art in this field has been given in [1]. Many of previously
proposed approaches to enable on-line detection in processor
systems relied on high performance or area overheads. In
this work we will consider techniques that can be used in
resource-constraint systems without the need of implementing
new system architectures at a slight cost of detection efficiency.
For this work we reduce the abundance of different possibil-
ities to implement such a fault-aware system to three major
groups: modular hardware redundancy, redundant execution
and hardware checking.

A. Modular hardware redundancy

The use of redundant hardware modules to enable fault
detection capability is a classic approach to solve this problem.
The reason for this is the simplicity of the system aug-
mentation and implementation of the checking mechanisms.
Depending on the used techniques performance overhead
is usually very low but hardware cost is high. Therefore,
only specific parts of the system are realized in a replicated
way. Another important point of fault detection efficiency is
detection latency. As the increased hardware cost is usually
conflicting with cost constraints existing in many embedded
applications, researchers tried to reduce duplication to sub-
modules of the system at the cost of detection coverage. Such
implementations concerning redundant or partitioned cores,
pipelines, and ALUs have been shown in [2]–[4].

B. Redundant execution

Software based approaches usually take the way of redun-
dant execution to enable fault robustness of a given design.
This approach has been primarily used in safety systems
because of the assumption that a random error will very
unlikely happen twice at the same time and location. The main
advantage of these solutions is the lack of necessary hardware
changes. On the other hand detection latency is high and
especially in slow applications time constraints prohibit the
introduction of such measures. Another advantage compared
to hardware redundant implementation is detection coverage,
as the high level will cover every hardware module involved
in the observed software algorithm.

C. Hardware checking

Similar to redundant hardware implementations, hardware
checking also relies on the introduction of additional cir-
cuitry to allow for the testing of operation integrity. Classic
approaches would be watchdog modules or build-in self-test
(BIST) circuits checking certain assumptions about the system

state. BIST-based and classic checker module-based solutions
introduce performance overhead and high detection latencies
depending on the implementation. Therefore, research in re-
cent years concentrated on control flow-signature methodolo-
gies as shown in Section V. While these advances improved
detection latency and hardware effort, there has been no
comprehensive system observing approach usable in resource
constraint systems. Hence, this work fills this gap in the field
of fault detection implementations for such small embedded
systems based on general-purpose architectures with a strictly
defined structure.

D. Resource constraint systems

All these software and hardware-based techniques have
significant disadvantages concerning resource-constraint sys-
tems. In case of hardware-based mechanisms, high detection
accuracy is bought at the cost of high manufacturing costs.
Software solutions have a strong impact on either execution
performance or rely on large integrated memories to store
execution signatures like hash values. While hash value gen-
eration for internal control flow properties has been shown to
be a strong fault detection technique (as shown in Section
V), hash generator hardware also results in a significant
hardware demand. These algorithms are usually round-based
to provide certain security properties necessary for their use in
cryptographic applications. These round-based designs would
result in long detection delays because the signature would
only be valid after all rounds have been calculated.

Fortunately for pure fault detection purposes strict crypto-
graphic properties do not have to hold, as the generated hash
values are not used for critical calculations. Only the following
characteristics have to be met by a signature algorithm used
in pure on-line testing:

• Collision robustness : Especially if small hash signatures
are used, collisions will happen, meaning that there are
several input values with the same corresponding hash
value. Therefore, a well designed fault detection signature
hardware will be able to avoid such collisions even for
low signature widths.

• Switching ratio : This ratio indicates how many bits of
the output hash value will change compared to changing
input bits. To retrieve highly unique signatures this ratio
has to be as high as possible, a property that is also
thought after in traditional hash algorithms.

Finally a signature generator implementation has to provide
very low detection latency and low resource usage. There-
fore, traditional hash and cyclic checking mechanisms can be
stripped, meaning that they are reduced to only one generation
round. Obviously, this reduced implementation still has to
comply with the properties defined earlier. To find a suitable
signature generation algorithm an additional characterization
process is necessary (see [5]). For this work we build on
previous work concerning the selection of a well designed
hash generator and concentrate on techniques for an efficient,
resource-saving memory-less monitoring system.
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III. NOVEL CONTROL MONITOR GENERATION FLOW

Recent years showed a variety of research concerning fault
detection in high performance systems and safety applications.
These domains, while suffering from the same lack of relia-
bility and same security difficulties, are not strictly constraint
in resource usage terms. Such highly constraint systems could
be smart-cards, an application unifying high security demands
with strong cost restrictions. Therefore, the introduction of
software or hardware redundancy for fault detection purposes
is often not a viable choice for the manufacturer. To fill
this behavioral checking gap in the current state-of-the-art, a
novel signature-based checking methodology has to fulfill the
following properties:

• Adaptability : Usually on one basic design a variety
of different applications are built upon. It is therefore
important to support the automatized integration of a new
checking infrastructure into existing source code.

• Low resource usage : Because of strict cost constraints,
additional semiconductor area or memory space are to be
kept as low as possible. Therefore, a memory-less pure
logic implementation is preferable in such an environ-
ment.

• Fast response : Especially in the security domain fast
reaction to intentional changes of the control flow are
an important feature that has been neglected by work
described in literature. Detection latency has to be kept
below the pipeline length to prevent the writing of pos-
sibly secure data to an unsecured memory region.

To enable the fulfillment of all these properties a segmented
approach is necessary, mainly to reduce necessary hash value
widths but also to increase detection coverage. Therefore, we
propose a weak checking methodology using several small
monitors only covering a limited part of a program’s temporal
behavior. Combined a full temporal coverage can be achieved
as depicted in Figure 1 for a given pipeline monitoring
example.

Pipeline State „Memory Access“ MonitorPipeline State „Register Access“ Monitor

Pipeline State „Execute“ MonitorPipeline State „Exception“ Monitor

t = 0 t = (end)

Executed Instruction Stream

Fig. 1. Execution monitoring coverage - Principle of weak checking, gain
high detection coverage by several small monitors of low detection coverage

The following stages of the tracing and hardware generation
process are based on existing pre-characterization tasks. These
are necessary to determine relevant control signals of the
target system elements. Such a signal-set could result out of
a power-evaluation task or could be simply determined by an
experienced system designer.

A. Code preparation
The augmentation of the existing hardware is not only

necessary during the integration of the checker phase but

also before characterization to enable fine grained tracing
of internal processes. This preparation flow, as used in our
proposed methodology, is shown in Figure 2.

Generator
Placement

Trace Process
Placement

Connection
Routing

Generator
Template

System HW
Description

   SIMULATION

Fig. 2. System preparation flow - Automatized introduction of signature
generator hardware and tracing processes for the efficient further evaluation
of control signal behavior

• Generator placement : Depending on the chosen hash
generation algorithm, appropriate generator modules are
placed in the system-under-test. This process has to be
done for every evaluated control signal which has been
selected during a pre-characterization run.

• Trace process placement : For execution behavioral trac-
ing purposes VHDL processes are placed into the target
module to save all executed instructions and generated
signatures.

• Connection routing : After all support modules and
processes have been integrated into the existing hardware
description, these have to be connected. This routing run
finalizes the system for the characterization of the target
application or benchmark suite.

After all these tasks have been completed, simulatable code
for RTL simulation is available to be processed using any
standard simulator like Mentor Graphics ModelSIM.

B. Execution characterization

To fulfill the adaptability property an automatized process
for the generation of the checking hardware has to be im-
plemented. Similar to control signal-based power estimation
infrastructure generation (such an approach has been shown
in [6]) standardized benchmarks can be used for such a
characterization process. The approach of generating hard-
ware by analyzing certain properties of the executed software
opens also new possibilities for hardware/software pairing. The
generic software characterization flow is shown in Figure 3.

• Target application loading : First the target application
or part of a benchmark suite is loaded into the system-
under-test.
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Load
Benchmark / Application

   RTL-SIMULATION

Save Traces
For further Processing

Fig. 3. Software characterization flow - RTL simulation based control signal
behavior characterization using standardized benchmark suites or specific
future application targets

• RTL simulation : For this characterization RTL simu-
lation is sufficiently fast, so the application is executed
using a common RTL simulator. The included tracing
processes will now save all signal activity of selected
control signals when activated by a software commando.

• Trace storage : All information gathered during this
golden model run is now stored for further processing
in MATLAB or a similar evaluation environment.

After characterization a small database of text-based trace
files will be available to be analyzed during the following
generation processes. Additional evaluation techniques could
be introduced at this stage to improve detection coverage or
gain information for fault or power modeling.

C. Hardware generation
After the control signal behavior of a selected application

or a benchmark suite has been derived, this information can
be used to generate the hardware checker modules. The basic
generation flow, beginning from the relation extraction to the
VHDL module implementation is depicted in Figure 4.

• Characterization : The characterization process itself is
the largest part of the whole generation process, consist-
ing of several sub-steps. First the execution traces from
the golden model execution are loaded and parsed to
extract only instructions and signatures recorded during
the software part of interest (markers have been set in
the application itself). Now all invalid data is removed,
meaning multiple instruction-signature relationships or
redundant information not usable during the further gen-
eration process.

• Relation extraction : After all invalid and unnecessary
information were removed, the remaining instruction-
signature pairs can be collected for further processing. To
enable boolean minimization using tools like Espresso (
[7]) these pairs are stored into a file with PLA-format.

Signature 
Characterization

Relation
Extraction

Boolean
Minimization

Automatized
Routing

Fig. 4. Hardware generation flow - Dynamic generation of hash value
predicting hardware based on an execution profiling characterization process

• Minimization : During this optional task a boolean
minimization process can be applied to reduce logic
complexity and further reduce resource usage.

• Routing : An automatized routing process is used to
insert checker modules into existing source code and
connect it to the control signals of interest. Depending on
the chosen countermeasures in case of a detected fault,
also result signals can be connected to this infrastructure.

D. Checking architecture

The hardware checking architecture itself is of a very simple
structure, only containing a signature source and a monitor
block checking these input values. Optionally an interface for
evaluation can be included to check certain states of the current
program execution. This basic architecture and the principle
of its placement near to the processor’s pipeline is depicted in
Figure 5.

• Signature generation : Based on the current state of a se-
lected amount of control signals, a representing signature
is generated. The resource usage of the overall checking
infrastructure is highly depending on the selection of
efficient hash-generation hardware (as described in [5]).

• Signature checking : This process is mapped by the
previous characterization and hardware generation pro-
cesses into a static structure. If resource usage is not
the uppermost concern during the design phase this can
also be implemented using memories to store signature
instruction pairs to increase on-line testing flexibility.

• Result evaluation : Optionally an evaluation and con-
figuration interface can be provided to read out current
checker states during execution or to reload internal
memories in case of a flexible implementation.

This generic approach also allows to apply the same tech-
niques to other parts of an integrated system, as long as there
is a deterministic relation between a signature value and an
observable state of the system.
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Fig. 5. Control signal based monitoring architecture - Specific implemen-
tation for a 7-stage pipeline in a SPARC v8 compatible CPU, each stage
contains hash generators, PROCOMON predicts expected values depending
on instruction

This specific example only provides on-line testing func-
tionality for the processor’s pipeline. That maybe sufficient if
only simply control flow checking inside the CPU domain is
demanded by the designer. If a more comprehensive approach
is needed, a system-wide monitoring technique has to be used
as suggested in Figure 6.

Device-Under-InspectionMonitoring Support

LEON3

Integer Unit (IU)

Multiplier

Divisor

I-CACHE

D-CACHE

AMBA
Controller

.

.

.
Monitor Data
Accumulator

MMU

R
E
S
E
T

Fig. 6. Full system-on-chip monitoring architecture - An additional monitor-
ing accumulator unit is responsible for the collection of eventual PROCOMON
block alarms, activating for example a system reset in case of an emergency

IV. EXPERIMENTAL RESULTS

To show the applicability of our chosen approach a widely
known hardware platform based on an open source implemen-
tation of the SPARC v8 architecture developed by Aeroflex
Gaisler is used. It has been configured as shown in Table I and
synthesized using Xilinx ISE software. All executed tests have
been done using the ML507 evaluation board from the same
manufacturer providing the synthesizer suite. The provided
hardware description library includes not only a processor and
memory environment but a large selection of peripherals that
can be used as signature sources. MathWorks Matlab 2010b

has been chosen to do all characterization operations using
an six-core 3.2 GHz AMD Phenom-II machine equipped with
sixteen giga-bytes of RAM.

TABLE I
LEON3 PROCESSOR CONFIGURATION

Operating Frequency [MHz] 40

Instruction Cache Sets 2

Instruction Cache Set Size [kB] 2

Data Cache Sets 1

Data Cache Set Size [kB] 2

MMU TLB Entries 8

MMU Page Size [kB] prog.

The target of this experimental setup is to characterize parts
of the MiBench benchmark suite. The results of this process
are then used to generate signature monitoring units for the
processor’s pipeline. This augmented architecture is then thor-
oughly tested using a proven fault injection platform to derive
the detection performance of the chosen implementation.

A. Characterization results - CRC-based hash

Depending on the target application investigated during the
characterization the resulting checker complexity varies. This
is a consequence of the fact that the current control signal
state partially depends on the previous executed instructions.
Multiple dependencies between instructions and signature have
to be removed to provide unambiguous state detection.

TABLE II
CHARACTERIZATION RESULTS - INSTRUCTION/SIGNATURE PAIRS

Application Reg-Pairsb Exe-Pairsb Mem-Pairsb Xce-Pairsb

CoreMark 287 276 83 74

Dhrystone 100 142 80 64

basicmatha 145 344 141 141

bitcounta 87 64 92 98

aRound-reduced part of MiBench embedded systems benchmark suite
bReg(register access), Exe(execution), Mem(Memory access)

and Xce(exception) stage

These pairs can be evaluated in two ways, checking if the
current signature for a certain instruction is correct or vice
versa. The reason for this is that for certain execution profiles
one or the other mode results in better characterization results.
As this applies to the memory-access and exception-stages of
the pipeline, they are implemented in swapped configuration.
Meaning that the input of the PROCOMON-submodule will
be the current stage-signature and the monitor will check if
the current active instruction is valid.

B. FPGA implementation results

The final implementation of the pipeline checkers and an
AMBA peripheral bus (APB) interface has been integrated into
a LEON3 system-on-chip design. This implementation then
has been synthesized and tested using our Xilinx Virtex5-based
evaluation board.
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TABLE III
RESOURCE USAGE COMPARISON

Unit Slices Slice Regs LUTs Resource [%]

System 7613 7413 15378 -

Core 3903 3567 7841 50.99

Signature Generators 28 109 102 0.66

PROCOMONb 407 0 1114 7.24

Arora et.al [8] - - - 3-9a

aIn [8] several different techniques have been proposed
bDepending on amount of signature-instruction pairs (bit count)

Using standard settings provided by the LEON3 config-
uration the complete system has been implemented for our
ML507 board. As shown in Table III our approach relies on
less system resources than previously published work while
providing comparable detection performance.

C. Fault injection efficiency

Based on a proven systematic fault injection approach
(saboteur-based technique similar to the one presented in
[9]) the proposed fault detection mechanisms is tested under
faulty conditions. The results of these injection campaigns is
compared to existing literature in Table IV.

TABLE IV
FAULT DETECTION EFFICIENCY COMPARISON

Approach Det. Bit Flips [%] Det. latency [Instr.]

This work > 99 1

Mao et.al Control flow [10] 26 23.6

Mao et.al Hash4 [10] 94 1

Arora et.al [8] >99 6

For these tests 10000 randomly injected faults into control
signals of the pipeline have been used to determine the
detection performance of our chosen approach. The results
are compared to previous work published in [8] and [10].

V. RELATED WORK

State-of-the-art research in the field of fault detection mech-
anisms using on-line control signal monitoring can be divided
into three main groups.

A. Software-based signature mechanisms

In case of purely software-based approaches automatic or
semi-automatic generation of code signatures is used to detect
program flow changes caused by tampering or environmental
influences. For on-line testing these signatures are directly
embedded into the executed binaries. The hardware signature
checking procedure is itself relying on processor internal re-
sources, resulting in high execution performance degradation.

In [11], a pure software solution using extensive redun-
dancy has been proposed. An approach using additional state
checking to detect unforeseen execution control behavior is
shown in [12] and [13]. Software signatures, generated during
compile time, are the base of the work presented in [14]. These

software-only approaches have the distinctive disadvantage of
resulting in a significant impact on execution performance.

B. Hardware-based signature mechanisms
Hardware monitors are the most commonly used hardware

modules for integrity checking. The efficiency of these units
is hereby directly dependent on the monitored system region.
This advantage is lost if large signature storage memories are
integrated to store precomputed signatures. The current state-
of-the-art in this field fights another problematic situation,
the selection of the monitored system region. Approaches
only considering the processor pipeline may be insufficient
for system-on-chips. The use of multiple monitors could be
prohibitive in terms of system complexity and area efficiency.

Control flow-monitoring methodologies using dedicated
monitoring hardware have been successfully introduced to re-
duce the impact of the on-line testing process on the execution
performance. They also allow to gain direct access to the real-
time behavior of hardware resources. Watchdog-type modules
are classical examples for such dedicated monitoring hardware
modules as shown in [15] and [16]. Smaller specialized
monitoring circuits covering only selected parts of the system
are presented in [10], [17], [18]. In [19], an approach relying
on the modification of the processor pipeline to enable the
observation of the control flow is presented.

C. Hardware-Software co-design solutions
Software/hardware co-design based approaches help to pro-

vide a wide detection coverage. The possibility to adapt
both software support and hardware structure helps to reduce
memory overhead and performance degradation. Because of
the high grade of invasion into these systems application-
specific instruction processors (ASIP) are the first choice for
such implementations. Examples of such approaches have
been published in several recent papers [20]–[22]. Of course,
in many applications it is not possible or wanted that the design
is build in such a way. For example if the targeted processor
has been already thoroughly tested, recertification would lead
to increased development costs. Therefore, in these cases these
techniques cannot be applied.

Augmentation of existing hardware for the generation of
representative values to track control changes inside the
system-under-test would be another possibility. A proven
approach for such reusable hardware blocks could be scan-out-
chains methodologies as presented in [23]. However, this ap-
proach is not a real on-line testing solution as it relies on peri-
odic tests that have a strong impact on execution performance.
In [24], fingerprinting techniques generating hash-values from
the complete architectural state have been published. In the
resource-constraint systems domain strict constraints are de-
fined concerning the resource-usage of checking approaches.
In [5], different signature generation techniques have been
characterized for signature size and detection efficiency.

D. Contributions
Our proposed approach can be categorized into group

number three supporting system-internal fault detection mech-
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anisms as well as software controlled solutions. Compared
to previously published fault detection approaches we can
provide very short reaction times because of the direct interpre-
tation of the current system control state. The characterization-
based monitor module allows to provide this functionality
without relying on large memories of pre-recorded signature
streams. The applied system execution characterization also
provides for the absence of false positives during the evaluated
time frame. Another advantage of our methodology is the lack
of needed software augmentations and therefore, a complete
lack of performance degradation. It is perfectly suited for
resource constraint systems with small memories and tight
cost constraints concerning development and production costs.
Furthermore, the security and dependability of the complete
system is not only based on a single type of fault detection,
as it would be in a modular redundant implementation.

VI. CONCLUSION

In this work an automatized hardware generation method-
ology for on-line testing applications has been introduced.
The generated signature-based processor and peripheral unit
monitor allows for the immediate detection of unforeseen
changes in the intended control flow. This approach does not
rely on the augmentation of the executed software and even
the signature characterization steps have been reduced into a
single monitor generation process. Low detection latencies,
low resource demands and the direct pairing of hardware and
security-critical software especially fits this technique for the
smart-card domain.

The applicability of our methodology has been shown using
an open available system-on-chip implementation and the
experimental results show a significant improvement compared
to the current state-of-the-art in terms of detection speed,
accuracy, and resource requirements. Detection efficiency has
been evaluated using a proven fault injection emulation plat-
form. Our future work includes further research concerning
fault detection mechanisms with low resource requirements
to replace modular redundancy approaches in smart-card and
general system-on-chip implementations.
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Abstract—In recent years the complexity of digital control
systems in safety critical environments increased steadily from
simple discrete control units to complex embedded systems. A
wide industrial consensus about the necessity of a set of safety
definitions lead to the introduction of several functional safety
standards like IEC61508. To achieve that novel embedded sys-
tems comply with these requirements, thorough testing is needed
during early design stages of the integrated device. Currently only
fault injection testing using manufactured products and netlists of
system-on-chips are used to determine the fault resistance of the
embedded system. This late testing could result in expensive re-
designs and hide implementation errors because of the black-box
approach. This approach is also not practicable if software and
hardware providers are separate entities. This paper presents a
flexible fault injection and power estimation platform to enable
thorough examinations of novel complex system-on-chips for
automotive or similar critical environments. The microprocessor
evaluation approach is extended with smart bus fault emulation
units for common buses like Ethernet. The combined power and
fault emulation techniques allow for the instant exploration of
eventual power supply peaks and implementation weaknesses.

Index Terms—Automotive embedded system, fault injection,
fault tolerance, power estimation, software verification.

I. INTRODUCTION

T HE safety system-on-chip manufacturing markets, like
the automotive industry, have seen a tremendous increase

of system complexity in recent years. Main drivers behind this
development are not only more passenger comfort functions,
but also more complex engine management, high amounts of
smart sensors and finally a growing number of safety func-
tionalities. As these systems often consist of a large amount of
different individual units, large bus-systems are necessary to
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connect this functionality. The control systemmanufacturer and
specifically semiconductor design centers have an increasing
problem concerning the test of this mixed software/hardware
implementations. With the introduction of FPGAs into critical
safety-relevant control systems, additional reliability problems
of these devices have to be considered [1], [2]. Finally, new
safety standards like IEC 61508 for systems in critical envi-
ronments like automotive or energy production applications
promote extensive testing and simulation to provide correct
operation.
In recent years two main strategies have been selected to en-

sure a final device is tested for common sources of operational
faults. First, model-based approaches help to identify design
deficits at a very early stage. This approach is highly depen-
dent on very accurate system models and some implementation
characteristics are not available until the system has been man-
ufactured. The second approach would be to test the final device
inside an environment that closely resembles the final target en-
vironment. These tests can only be done at a very late stagewhen
a final device is available. Some information like the power con-
sumption behavior are also of high interest to the software and
system developers [3].
Existing work trying to fill this gap inside the design test

chain is only considering very limited cases of random single
event upsets. Research has shown that such simple fault models
are not sufficient to model faults resulting of degradation in de-
vices manufactured using deep submicron semiconductor man-
ufacturing processes [4]. This is especially true for recent safety
standards concerningmulti-bit-upsets, which also rely on spatial
proximity information [5]. In modern safety control systems not
only safety but also security concerns have to be considered as
critical systems are indirectly connected to entertainment mod-
ules. Therefore, this work provides a comprehensive platform
to enable the designer of safe system-on-chips to not only eval-
uate software and hardware for their fault resistance but also for
its power consumption behavior. The main contributions of this
work are
• Extension of power and fault emulation approaches into
the safety system engineering domain under consideration
of standards such as IEC 61508 or ISO 26262.

• Introduction of a novel high-level multi-disciplinary pro-
cessor and bus-system testing methodology.

• A case study using an open-source implementation of a
SPARC-based processor including bus modules.

1551-3203/$31.00 © 2012 IEEE
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Fig. 1. Power emulation principle—Control activity of selected functional
units (FU) is transformed to cycle accurate power estimates (adapted from [7]).

This paper is structured as follows. First, Section II gives
a brief introduction into principle power and fault emula-
tion techniques. Second, Section III summarizes the current
state-of-the-art concerning reconfigurable software and hard-
ware testing systems. Followed by Section IV presenting a
novel FPGA-based evaluation platform for combined software
and hardware testing in safety applications. In Section V
experimental results using an open available system-on-chip
implementation are shown to prove the applicability of this
work. Finally, Section VI gives some conclusive words de-
scribing the impact of this paper.

II. POWER AND FAULT EMULATION

A. Power Consumption Emulation

The principle of power emulation (PE) as a state-of-the-art
functional emulation using hardware-implemented power
models has been introduced by Coburn et al in [6]. Meaning
that the functional emulation and power estimation process are
executed concurrently during the run-time of the system.
Depending on the application field the generated approxi-

mated power values can be immediately used for further pro-
cessing or saved as traces in case of power consumption evalu-
ations, as depicted in Fig. 1.
1) Extended Power Emulation Unit: Power consumption es-

timations are provided using a high-level power emulation unit
similar to those shown in [8]. As depicted in Fig. 1 it constitutes
a direct implementation of the power macro model approach.
The operation of this module is based on additive linear

macro models to generate static and dynamic power con-
sumption estimates (as expressed in (1)). Monitoring of
power-relevant control signals results into estimates for
several different system components. These components are
weighted using the values from the hardware integrated
power macro model. The static part of the power consumption
is described using the coefficient . Both, and are deter-
mined through a thorough benchmark-based characterization
process as proposed in [8].

(1)

Interference-free run-time power tracing is enabled by ex-
tending the traditional emulation platform with an internal and
configurable FIFO buffer. This memory decouples the storage
of the trace from the evaluated control algorithms to remove

eventual profile distortions. After each evaluation process its
contents are safely copied to an external memory device.

B. Fault Injection Testing

Fault injection means the intentional introduction of faults
into a system for the simulation and emulation of errors. Such
operation disruptions can be caused by external influences like
radiation, attacks or internal reasons like device degradation.
Depending on the level of abstraction, several different methods
have been described in literature:
• Hardware-Level: At this abstraction level manufactured
devices are available and existing automated test equip-
ment can be reused. By nature the possible points of fault
injection are very limited. Such points can be physical in-
or outputs (pin-level) which can be used to manipulate data
and control flow. Internal error sources can be simulated
through external radiation sources or directly by physical
manipulation of the silicon device.

• Software-Level: The basic principle behind software fault
injection is the same as in hardware FI. Themain difference
lies in the manipulation target, variables and other system
elements are changed directly while the hardware works as
originally designed.

• Modeling-Level: Especially for designers of embedded
systems fault testing during earlier development stages,
before a final device is available, is of utter importance.
Therefore several different techniques using direct manip-
ulation of the RTL description, partial run-time reconfig-
uration of FPGA resources or by utilizing simulator com-
mands have been shown in the past.

To provide early access to software power consumption data
and fault resistance results, our approach is based on the au-
tomatized augmentation of the hardware description (similar to
[9]). Basically there are two possible ways to achieve evaluation
results on RTL level, one would be by using cycle accurate sim-
ulation and the other by executing the adapted hardware model
on a reconfigurable test platform.

III. RELATED WORK

The reliability of systems used in space flight applications
has been of concern for many years leading to a wide range of
publications about test methods using fault injection techniques.
The target of such fault injection campaigns can be completely
manufactured parts for example using radiation or if early tests
are needed during the design phase using manipulation of the
hardware description.
The advantage of high-level hardware descriptions to be

simulatible directly during the design phase was exploited
in early fault injection tools based on simulation techniques.
One of these first simulation tools was MEFISTO specifically
targeted on fault injection into VHDL models [10]. A pure
simulation-based technique has been complemented with
automatized saboteur and mutant insertion strategies for the
VFIT tool in [11]. In [12] further improvements concerning the
injection performance of simulation and emulation approaches
have been presented. Similar to these previous works and our
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chosen concepts, flexible automatized routing approaches have
been shown in [9].
The need for higher fault injection coverage led to the heavy

research activity in the field of emulation techniques. As shown
in [13] emulation promises significantly higher injection rates
and therefore enables the possibility to evaluate more possible
fault configurations than using simulation. In [14] novel partial
reconfiguration capabilities of certain new FPGAs are used to
enable fault injection without modification of the system code
base. Further improvements concerning performance and prac-
ticality have been introduced in [15], [16]. The work presented
in [5] additionally enables the importing of netlists into the
FPGA-based system and is using proximity information for cor-
rect and fast MBU robustness investigations.
The main motivation behind these approaches has been de-

pendability evaluations. Security evaluations by nature (inten-
tional faults could happen at several positions at once) result in
more complex fault scenarios therefore multiple fault models
have to be considered as suggested in [17]. This is now also
valid for many highly integrated systems not destined to the se-
curity domain because of reliability issues of deep-submicron
semiconductor process technologies.
Specifically in the automotive industries emulation-based

system fault testing is already playing a vital role as shown in
[18]. Their approach is based on gate-level fault emulation, a
very low abstraction often unwanted for software evaluations
during early design stages. Systematic high-level methodolo-
gies for the testing of automotive communication systems
are shown in [19], [20]. Specifically targeting a CPLD-based
fail-safe system the authors of [21] applied a saboteur-based
approach. In this case tests are still done at a very low system
level to ensure correct function of this safety implementation.
To increase emulation capacity and performance a parallelized
approach is presented in [16]. Still the authors only consider
random fault distributions and single hardware modules.
Therefore, it is of vital importance to create a bridge between
low-level hardware verification and high-level system verifica-
tion.
Hence, a hybrid platform combining the advantage of

state-of-art verification systems as shown in [22] and very
low-level emulation approaches as presented in [23] is needed.
The importance of accelerated evaluation techniques for soft-
ware verification in the security domain has been shown in [8],
but this work considered information leakage as its primary
concern. To the best of our knowledge there is currently no
such comprehensive approach, also considering the dynamic
power consumption behavior, available. Also, there is no
flexible fault injection approach for the early verification of
high-level software safety and security specifications, which
clearly specify high-level fault effects.

IV. POWER AND FAULT EMULATION-BASED SAFETY TEST
METHODOLOGY

Large scale integration resulted in tremendous problems con-
cerning power consumption and fault resistance. To counteract

Fig. 2. Hardware accelerated fault emulation flow—From system characteri-
zation to final architecture and software optimization decisions.

possible false behavior after market introduction a comprehen-
sive methodology is needed. Some of the necessary infrastruc-
ture tasks to enable power and fault emulation are very similar,
hence they can be combined into a single FPGA-based platform.
The emulation flow starting with the model power character-

ization and ending with architecture improvements is depicted
in Fig. 2. This emulation flow consists of six principle stages,
three of which only have to be done after significant changes to
the target system.
• Power model characterization: This time-consuming
power simulation based process has only to be executed
if significant changes to the modeled system or units have
been done.

• Fault model selection: Especially for safety systems spe-
cial care has to be taken when choosing an appropriate fault
model. The aimed Safety Integrity Level (SIL) and the ap-
plication of the chip should already be known at this point.
Depending on the desired SIL level and application (e.g.,
processing unit or discrete digital circuit) different fault
models have to be considered for the simulation or emu-
lation. Most of the fault models consider single stuck-at or
transient faults and focus on memory registers.

• Placement process: Only if the power characterization or
the fault model change, new analysis hardware has to be
placed into the evaluation platform.

• Injection Process: During the injection process a
pre-tested workload is loaded into the system-under-test.
Also the emulation controller is configured according to
the chosen fault models and investigation targets.

• Analysis process: The injection processes result in a sig-
nificant amount of data that has to be processed in order to
make a sound decision.
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Fig. 3. FPGA-based system test platform.

The integrated power consumption and fault injection archi-
tecture is depicted in Fig. 3. Using an automated VHDL hard-
ware description augmentation approach five different types of
modules and signals are routed into the system-under-test.
• Power estimator: Top level module collecting all system
state signals to generate a power estimate.

• Fault emulation control unit: Top level unit to provide an
automated emulation flow.

• Power sensors: Signals to power consumption relevant
signals are connected to the power estimator.

• Trigger modules: Small trigger modules to allow the ob-
servation of fault activation conditions.

• Saboteurs: Small signal disturbing units to emulate the
low-level fault behavior.

Depending on the verification process, trigger modules and
power sensors are optional. Randomized testing as used in hard-
ware verification will prefer fast injections without the consid-
eration of architectural hardware elements to more targeted ap-
proaches as used in software verification.

A. Fault Injection Implementation

State-of-the-art fault injection implementations for safety ap-
plications rely on statistical methods for randomly activated
faults. This approach results into several problems to the de-
signer of the evaluation platform and the system design engi-
neer.
• Very high fault injection speeds are necessary to provide
enough data for statistical fault injection investigations.

• Analysis of the results of such a campaign are difficult to
interpret, meaning problematic hardware descriptions are
difficult to identify if a certain fault injection campaign
resulted into an error.

• While hardware verification relies on test coverage com-
pleteness of the final gate-level design, high-level soft-
ware verification relies on a more abstract view. Results
of netlist fault injection campaigns are only useful when
lower-level hardening and replication is applied [24].

• If security or safety concerns play a role during the inves-
tigations, random injections are not sufficient anymore. In

both cases the parts of a system-on-chip contain specific
countermeasures against certain pre-defined fault sce-
narios. This results out of the abstracted view an adversary
or software developer has of the attacked/investigated
system. These countermeasures have to be accurately
tested to achieve correct functionality during the scenario
they have been designed for.

To enable efficient emulation that can satisfy both, hardware
and software verification needs, a saboteur-based approach has
been chosen. This is possible because in this work only high-
level fault detection mechanisms targeting high-level fault ef-
fects (i.e., at address 0x100 and cycle 1000 bit 3 of word 0 flips)
are concerned. Additional evaluation flexibility is gained by a
modular trigger concept, allowing for the use of basically every
hardware signal as a fault activation source.
1) Safety Standard Considerations: To conquer the problem-

atic implications of the introduction of complex distributed sys-
tems into several critical applications, several functional safety
standards have been defined. In the safety critical system engi-
neering industry sector two are of outstanding importance:
• IEC 61508: A general market consensus standardized by
the international electro-technical commission (IEC)[25].

• ISO 26262: A specific functional safety standard for the
automotive industry, standardized by the international or-
ganization for standardization (ISO) [26].

Both standards include the definition of Safety Integrity
Levels—SIL metrics for hardware safety integrity and hardware
fault tolerance (ASIL in case of ISO 26262). The following
failure rate metrics have been defined by IEC 61508:
• : rate of failures that do NOT affect system safety;
• : detected safe failure rate;
• : undetected safe failure rate;
• : rate of failures that result in safety degradation;
• : detected dangerous failure rate;
• : undetected dangerous failure rate.
For system level safety the so called Safe Failure Fraction

metric has been defined. This function is defined as shown in
(2). This ratio of safe and detected dangerous failures to the
complete failure rate is used to determine the SIL level of the
evaluated system

(2)

For the calculation of the SFF metric the lambda values have
to be known for all sub-components. These -values are either
provided by the manufacturer of a certain system element, or
are determined during the FMDEA (Failure Mode Diagnostic
and Effects Analysis) process. Alternatively these values can
be derived using system simulation or emulation techniques.
Therefore, it is of importance to allow for the early evaluation
of customized integrated circuits. Another metric important in
this context isHardware fault tolerance (HFT)which is defined
in the following way:” HFT faults could cause a
loss of the safety function.” Especially for the HFT analysis the
consideration of multiple-bit faults is important. The usage of
classic full coverage hardware verification tools is not feasible
in case of industrial settings which treat gate-level netlists as a
company secret. Therefore, a targeted approach using high-level
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fault models is needed to enable external entities to test their
software or hardware implementations for fault robustness.
Depending on the SIL level that the designers of a novel

system aim at, the safety standards demand the consideration
of design-for-testability and ”resilient functioning” techniques
during design time. This resilient implementation has to be veri-
fied by fault injection methodologies as required by the standard
for ASIC and FPGA devices.

B. Evaluation Methodology

The finally applied evaluation methodology highly depends
on the group of engineers using the proposed approach for their
system investigations. The targets of software and hardware ver-
ification engineers are very different, therefore both verification
techniques have to be considered for their own. An even higher-
level view is taken by engineers testing inter-system communi-
cation networks, mainly considering protocol measures to en-
sure communication integrity.
1) Hardware Verification: Hardware verification is relying

on very high test coverage of the hardware implementation,
hence random testing using widely spread saboteurs is the first
choice. To be able to analyze the high amounts of data resulting
of such random fault injection campaigns, already partitioning
is used to test submodules inside the complete system environ-
ment.
This approach is directly supported by the chosen autom-

atized hardware description augmentation approach while
strictly random injection implementations need deeper intru-
sions into the system design. While it is possible to augment the
system with a large number of saboteurs, it is more suited for
the testing of hardware interfaces inside of system-on-chips.
This way the evaluation complexity is reduced, while still
enabling the verification of hardware interface specifications.
Therefore, a practical approach includes the selection of a

unit-under-test, augmentation of the hardware description of
this unit and finally long-time testing of this unit. The FPGA-
based approach allows for the parallel testing of several units at
the same time in real-time, allowing for a quick and thorough in-
vestigation of the complete system-on-chip. During these cam-
paigns power consumption traces can be stored for further anal-
ysis to avoid eventual power bugs that have not been detected
during traditional power simulations.
2) Software Verification: The software design and verifi-

cation engineers consider a very abstracted view on the used
system. Many hardware parts are hidden by architectural ele-
ments like memories, registers and program counters. Random
testing on the flip-flop or even transistor-level is therefore un-
practical to ensure the functionality of software fault detection
and recovery implementations. This is especially problematic as
some safety relevant functions are implemented in software to
avoid expensive redesigns of the hardware architecture (diver-
sified programming as considered in IEC 61508–3).
Therefore, a modular trigger-system has been implemented to

observe such architectural elements and allow for the random
injection of faults into memories, registers etc. during prede-
fined time frames inside the software implementation. In this
case the hardware description is only modified once to place
trigger and saboteur modules. Further test configurations are

done using the configuration of the fault injection controller. As
for the hardware verification, power profile tracing is enabled
through all injection campaigns to ensure a power-aware soft-
ware implementation.
3) Communication Testing: Reliable communication pro-

tocols feature several countermeasures to allow for the correct
transmission even under environmental stress. Usually error
correction capabilities are tested by sending data packages that
violate certain protocol assumptions. This can be done using an
external tester system or using a saboteur at the bus peripheral
or controller units. Like in the software verification method-
ology smart trigger modules can be used to specifically target
certain bits of the current transmission. Our saboteur approach
allows not only for the emulation of bit-flips and stuck-at faults
(not useful for communication testing) but also of certain delay
effects as they exist in realistic implementations. It therefore
fulfills the requirement of IEC 61508 to test a safe communica-
tion protocol for its ability to detect lost or corrupted packages.

V. EXPERIMENTAL RESULTS

A generally available system-on-chip platform based on an
open source implementation of the SPARC v8 architecture de-
veloped by Aeroflex Gaisler is used to show the applicability
of our approach. An exemplary configuration using Ethernet
bus peripherals is chosen and has been synthesized using Xilinx
ISE software. The result has been tested on the ML507 evalu-
ation board manufactured by Xilinx. While this processor con-
figuration cannot be classified as a typical example of a safety
system implementation, it is still possible to prove the basic
principles of our methodology as it can be used for any ap-
plication available in form of RTL source code. As an emu-
lation control unit, the PowerPC 440 processor integrated into
the Xilinx Virtex5FXT FPGA has been chosen to achieve inde-
pendent operation from the evaluated target system. Analytical
results and characterization data is produced using MathWorks
Matlab 2010 b on an six-core 3.2 GHz AMD Phenom-II ma-
chine using sixteen giga-bytes of RAM. All evaluated applica-
tions have been taken from the widely known and heavily tested
MiBench benchmark suite [27].
After system characterization a power macro model con-

taining 63 coefficients using the semi-custom design flow and
power simulation tools provided by our industrial partner has
been derived. This large macro model has been implemented in-
side the power estimation module using a three stage pipelined
adder structure.

A. Automotive Software Power Characterization

Power consumption characterization of a software implemen-
tation is important because of several reasons. If the targeted
system only provides a very limited power budget, consumption
peaks could lead to a fluctuations in the power supply. This will
lead to the disruption of the software execution or even other
devices supplied by the same supply [28]. In case of secure ap-
plications an adversary could retrieve information about the im-
plementation usable for a possible attack.
To prove the applicability of our power emulation approach

Fig. 4 shows the power consumption profile of the MiBench
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Fig. 4. Power consumption profile of benchmark basicmath_small.

automotive benchmark basicmath_small. While a simple em-
bedded processor will not have a strong influence on wire-pow-
ered system, it is still a good example to demonstrate the soft-
ware power verification process.
In Fig. 4 several distinctive consumption peaks can be

identified. If this current implementation violates certain power
supply constraints the developer effectively has two choices:
• Change the implementation: Switching of idle system
units, usage of power saving processor instructions or
reducing the ”consumption density”. The latter means the
use of a slower but less aggressive implementation.

• Dynamic voltage and frequency scaling (DVFS): Trying to
find a suitable trade-off between high operating frequency
and high supply voltage for high execution speeds and high
power consumption efficiency.

1) Experimental Conclusion: Based on an open available au-
tomotive application selection, a typical domain dependent soft-
ware load has been characterized. This standard implementation
showed several power consumption peaks during its operation
that could lead to potential reliability problems. This detailed
temporal power consumption information can be directly used
to optimize application behavior for better resource usage.

B. Fault Resistance Evaluation

To demonstrate the variability of our saboteur-based fault in-
jection methodology three evaluation targets of our system-on-
chip have been chosen. First, the implementation of a simple
client-server communication protocol is tested by placing sabo-
teurs between the Ethernet MAC-controller and its physical in-
terface. Second, the effects of high environmental stress on the
FIFO-memory of a peripheral controller are emulated. Finally,
the software implementation of typical automotive workload
as provided by the MiBench benchmark suite is tested for its
robustness against multiple bit-flips in its main memory. As
a low-level fault model stuck-at-one and stuck-at-zero models
have been chosen, but also the change to a bit-flip model would
only require a short reconfiguration of the saboteurs.
1) Ethernet Communication Testing: A typical client-sever

communication protocol has been implemented to provide a
defined transmission and reception process between the Eth-
ernet MAC-controller and its physical interface. The embedded
system-on-chip has been configured as the data producing client
(running MiBench’s basicmath_small benchmark) and a stan-
dard PC is always resending the same package back to the client.
Two basic mechanisms have been implemented to provide the

TABLE I
FAULT INJECTION INTO ETHERNET COMM. RESULTS

TABLE II
FAULT INJECTION INTO ETHERNET CONTROLLER MEMORY RESULTS.

detection of lost or corrupted data packages. Data corruption is
detected by a CRC8 and CRC16 checksum and data loss is iden-
tified by a sequence number integrated into every data packet.
The result of these long-time fault injection campaigns are

shown in Table I. Both benchmark programs have very dif-
ferent execution profiles, basicmath_small needs less computa-
tions resulting in a lower turn-around time. The communication
between MAC-controller and physical interface is using fault
detection, hence, no data corruption but only lost packages can
seen by the communication software.
2) Peripheral Controller Testing: In this test case typical

random faults resulting of environmental stress or device
degradation is emulated. Faults are randomly injected into the
FIFO memories of the Ethernet controller. The same com-
munication protocol as during the basic communication tests
has been chosen including the same software fault detection
mechanisms.
As can be seen in Table II the hardware fault detection mech-

anisms are not able to detect latent memory data faults. There-
fore, data corruption can be seen in both, received and sent data
packages. All data corruption has been caught using the imple-
mented software fault detection mechanisms.
3) Embedded Controller Software Verification: Specifically

in implementations using software based system integrity
checks it is vital for functional safety to obtain information
about the diagnostic coverage (lamda values) of these tests. The
automotive applications from the MiBench benchmark suite
have been augmented with simple memory integrity checks
and its efficiency is tested using fault injection into the cache
bus. A set of critical variables of the application program has
been defined to reduce the fault injection target memory space.
Trigger-based fault injection enables the testing of fault detec-
tion software parts in a realistic operating system environment
without influencing the OS itself.
The temporal redundant calculation implementation detected

all calculation errors, at the cost of a doubled execution time.
Depending on an eventual hardware error detection, such

faults at the cache-data-bus could stay unnoticed if no precau-
tions at a higher level (e.g., software) are taken.
4) Safety Standard Considerations: The SIL metrics define

several levels for hardware safety integrity and fault tolerance.
While SIL 2 only calls for the consideration of stuck-at faults,
higher levels also require a diagnostic coverage fault model as
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TABLE III
FAULT INJECTION INTO EMBEDDED PROCESSOR MEMORY RESULTS.

TABLE IV
EVALUATION OF EMBEDDED PROCESSOR SELF-TEST PROCEDURES.

well as the regard of soft-errors and dynamic cross influence of
memory cells. To detect such problems during runtime, as re-
quired by safety standards, software self-tests have to be imple-
mented. Without proper fault insertion testing it is not possible
to check these self-tests for their effectivity. For the following
test, we took an embedded processor core self-test collection
from [29] aiming at testing the Multiplier, the ALU, and the
Shifter unit of a processor. We injected faults into those units
and obtained the resulting fault coverage values, which are nec-
essary for safety certification, from the self-test results.
The results shown in Table IV mainly correspond to the cov-

erage values given in [29] and distinguish between transient and
stuck-at faults, which is required by the safety standard.
5) Experimental Conclusion: Fault resistance has become a

system-wide issue in novel automotive systems that cannot be
reduced to the evaluation of isolated modules anymore. There-
fore, faults have been injected at ethernet protocol, controller
and software level. The results show the importance of check-
sums and sequence numbers to provide communication and op-
eration integrity. This gets especially evident when faults are
injected into the ethernet controller’s memory because protocol
tests showed that this core is able to handle external faults,
but not ones happening inside of the implementation. Finally,
self-test routines for various parts of a system-on-chip have been
tested for their fault detection efficiency.

VI. CONCLUSION

This work presented a systematic methodology for inte-
grated power and fault emulation to efficiently evaluate the
power consumption and fault resistance behavior of safety
critical system-on-chip implementations. This combination of
low-level hardware resource access with high-level emulation
techniques allows for the direct evaluation of embedded digital
control systems including its controlling software. Long-time
testing experience from the smart-card industry sector has
been used to develop a comprehensive hardware/software
test strategy including a systems field bus connectivity. This
methodology allows for the long-time multiple-bit fault inves-
tigations needed for comprehensive emulation-based testing as
described in safety standards like IEC 61508.
The applicability of our approach has been evaluated using a

common system-on-chip implementation including peripherals

based on Ethernet bus connections. The retrieved experimental
results proved its high performance and general adaptability to
different system modules. Our future work includes the further
investigation of structured RTL-level fault emulation for auto-
mated industrial system testing.
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Abstract—In recent years the number of deployed embedded
systems increased significantly. These system-on-chips are widely
used for high-availability as well as security applications. There-
fore, the reliable operation of these devices plays a vital role
and disturbed operation can lead to loss of confidence and trust.
To ensure correct operation during random or intentional fault
events, injection techniques for system simulation and emulation
have been presented. The targeted use of these approaches is
often difficult because of the device complexity and the lack
of knowledge about internal processes after a fault has been
activated. To improve the current state-of-the-art in this field this
paper presents fault propagation analysis and hardware checker
generation techniques based on static VHDL code analysis.
These help to gain a deeper understanding of system internal
propagation paths and their influence on normal operation.
Physical layout data is included to enable the mapping of a
fault attack location to its corresponding logic gates. Hardware
checkers enable higher fault injection evaluation efficiency by
removing masked system parts from the target space.

I. INTRODUCTION

The continuing introduction of smart-cards into the mone-
tary cycle and for personal ID applications created a viable tar-
get for criminal subjects [1]. This led to intense research con-
cerning attack methods and corresponding countermeasures to
prevent the leakage of vital information to the environment.
Basically, two different kinds of attacks can be differentiated,
passive ones, listening to the device’s behavior and active ones,
influencing normal operation by the introduction of faults.
Such fault-based attacks are used to drive the system into an
unintended state to disable existing countermeasures and to
disrupt the normal mode of cryptographic operation [2].

These issues resulted in a wide range of research concern-
ing fault simulation and emulation techniques. Using these
methodologies software and hardware developers should be
enabled to test their implementations for its robustness against
operational errors. These evaluation platforms have been used
to replicate the effects of soft and hard errors on embedded
system implementations. Unfortunately there is a distinctive
lack of research concerning the link between low-level faults
and high-level erroneous results. Especially when testing large
system-on-chips the success of a fault injection can only be

seen through errors manifesting themselves on system outputs
or memories. Faults that have been temporarily masked could
lead to errors during later operation and hence, could result in
false evaluation outcomes.

Therefore, there is a strong need for static code analysis
techniques to determine fault propagation paths and to provide
efficient injection platforms. In this work a novel methodology
is presented, combining knowledge about fault attack locations
and internal propagation paths to enable real-time emulation
of logic fault effects on system operation (depicted in Figure
1). The incorporation of the precise fault attack location is
specifically important in case of accurate laser attacks as used
by test laboratories and adversaries [3].

A B
C

Laser Testbench

VHDL
Structural
Analysis

Attack / System
Mapping

Generation

SynthesisHardware
Description

FPGA-based
Emulation

Fig. 1. Global fault attack emulation flow

The main contributions of this work are:
• A static VHDL analysis flow to provide the automatic

generation of fault injection emulation support modules.
• Introduction of a novel fault attack propagation analysis

flow for post-laser injection evaluation analysis.
This paper is structured as follows. First, Section II will

give a brief introduction into static analysis methods of VHDL
code. Followed by Section III introducing our methodology for
efficient emulation of fault-based attacks. Section IV compares
our methodology and results with recent developments in this
area. In Section V experimental results are shown to prove the
applicability of our approach. Finally, Section VI concludes
this work and gives a short overview over our future work.
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II. STATIC SYSTEM ANALYSIS

For security evaluations not only information of the basic
system structure is sufficient, therefore our approach includes
also information from the device layout and the laser attack
coordinates used on a physical test bench.

A. Static code analysis
The first step includes the automatized extraction of the

signal and variable dependency graphs. This process consists
of three stages.

VHDL File Parsing : Existing digital design flows already
include simple interdependency checking mechanisms to opti-
mize their compilation processes. While our proposed VHDL
parsing engine is able to process large VHDL file compilation,
such pre-processing stages can be used to reduce the parsing
effort needed during this stage. Basically all significant VHDL
file elements are extracted e.g. signals, variables, process
and constants. This includes eventual assignment targets and
sources or elements inside sensitivity-lists.

Local Dependency Extraction : After all significant el-
ements are available inside an internal database, local de-
pendency extraction can be started. This process consists of
processing all assignment source and target lists to generate
local (module-internal) dependency graphs.

Global Dependency Extraction : The result of the local
extraction step are individual objects containing dependency
graphs. These are finally connected to gain a complete system
graph including all found objects and their relations.

B. Layout analysis
After the hardware description has been analyzed a con-

nection between layout position data and the laser attack
coordinates has to be established. Again this flow includes
three basic stages that have to be executed to provide an
accurate fault model.

Layout-Location-Data : The first step contains the extrac-
tion of the logic gate positions inside the finalized layout.
This information is included in the DEF-file produced by
layout tools such as those provided by the Cadence digital
implementation flow.

Laser-Grid-Positions : These laser attack positions are
provided by the laser bench test engineer team. Basically every
order of positions can be used, most likely this will be a
systematic grid.

Attack-Position-Mapping : A mapping process is finally
used to identify logic gates that are affected by the chosen
laser attack. The effect radius depends on the accuracy of the
chosen laser beam. Additionally knowledge of physical design
engineers can be included into the determination of affected
gates. Such information is depending on laser spot size, shot
duration and pulse strength.

C. Location to RTL mapping
The results of the former two process steps now has to be

connected to retrieve a connection between the physical lay-
out and the higher-level hardware description. This mapping
process consists of three stages.

Signal Filtering : The layout processing stage resulted in
a list of affected gates and signals and their corresponding
positions on the layout. This information is now filtered,
because not every element known at the RTL level is also
visible after synthesis.

Signal-to-Node Mapping : Now only elements are avail-
able that also visible in the RTL description, therefore it
is possible to map the physical positions to internal nodes
existing in the dependency graphs.

Node-to-Graph Mapping : Finally, these nodes are mapped
into the global design dependency graph to enable further
dependency analysis.

After RTL and layout extraction and mapping processes, a
complete database is available containing affected elements
and their relations. This information can now be used to
generate checker modules and the optimum positions for
saboteur blocks to emulate laser attack effects.

III. FAULT ATTACK EMULATION

An accurate physical fault model now has been established
and can be included into an FPGA-based emulation platform.
The flow starting with the generation of saboteur modules and
resulting in evaluation conclusions is divided into four steps.

Generation Process : First, saboteurs and checker modules
have to be generated depending on the amount of signals that
have to be disturbed or monitored. This information is taken
from the local dependency graphs of the selected attack targets.
Manipulations are done using free configurable saboteurs and
system properties are monitored using trigger modules (similar
to the approach taken in [4]).

Placement Process : During the placement process the
generated modules are placed into the RTL description of the
target system and are connected to analysis support blocks.
Such blocks include the fault injection controller which is
handling all the saboteurs and controlling the injection process.

Injection Process : At this stage the RTL source code has
been prepared and synthesized to fit into the FPGA of the
evaluation platform. The fault injection control is configured
with all selected attack patterns and starts with the evaluation
the system-under-test. Results from these injection campaigns
can be directly derived from placed checker modules or by
monitoring selected outputs and memories.

Analysis Process : All stored evaluation results are fi-
nally stored onto a connected PC and analyzed to identify
unprotected information paths. Also this information helps to
understand possible failures identified during laser bench tests
that are part of system certification.

The final emulation architecture includes a controlling
micro-processor to ensure a fast and independent injection
process as shown in Figure 2. This system-external controller
can also be used to efficiently monitor certain aspects of the
target system like state signals or memory buses. Fault attack
effects are mapped to the design using saboteur modules that
emulate various signal manipulation types.
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IV. RELATED WORK

A. Fault simulation and emulation

An early implementation of such a simulation environ-
ment under fault conditions was called MEFISTO [5]. In
case of MEFISTO the behavior of the system is directly
influenced by small saboteur modules placed between target
signal and variable sources and sinks. The following years
various improvements to this simulation approach have been
presented, mainly to improve simulation speed, e.g., the VFIT
tool presented in [6]. In the last years also a wide range of
SystemC-based approaches have been proposed [7], [8]. At the
cost of injection flexibility hardware-accelerated FPGA-based
approaches have been presented to increase performance and
to enable large-scale dependability investigations [9]. In [10],
authors showed that this single-fault model is not sufficient
if intentional faults, as expected in security evaluations, are
concerned. Specifically targeting fault simulation of optical
fault attacks, an approach has been presented by the authors
of [11] and [12]. As test costs demanded by certification labs
increased dramatically, high speed software verification using
hardware-accelerated methods became important. A modular
methodology for such an emulation-based platform has been
shown in [4] and hardware checker generation has been
presented in [13].

B. Fault propagation modeling

For many years low-level logic evaluation for soft-error
reliability (SER) has been done using slow but very accurate
SPICE-based simulations. Few years ago the authors of [14]
introduced various new techniques based on binary decision
diagrams to improve such investigations performance-wise.
Similarly, a signature-based approach has been introduced in
[15] to analyze SER and logic masking in combinational and
sequential circuits. Especially of interest in the security domain
is the work proposed in [16] specifically targeting multiple
transient faults as they would be expected during complex
fault-attacks.

C. Static VHDL code analysis

Timing and particularly worst-case execution time (WCET)
analysis is an important part of the evaluation of hard real-
time and safety systems. To automate this error-prone process,
which includes a hard engineering effort, the authors of [17]
presented a frame work for the static analysis of VHDL code.

In this early work the VHDL description is treated like a
sequential program to derive a control flow description in
CRL2. The same research group introduced an abstraction-
aware compiler for such hardware description models in [18].
Finally, this semi-automatic process of hardware model timing
analyses has been completed with the framework shown in
[19]. In the security domain not only control flow, but also
flow of information is of essential importance. Therefore, a
state-machine-based approach has been presented in [20] to
determine information flow at a higher abstraction level.

V. EXPERIMENTAL RESULTS

Our proposed methodology is implemented and demon-
strated using an open source implementation of the SPARC
v8 architecture developed by Aeroflex Gaisler. This system-on-
chip example has been synthesized using Xilinx ISE software
and is functionally tested on the ML507 evaluation board.

A. Attack mapping

The first step includes the mapping of a laser-based attack to
the hardware description of the emulation system. To increase
demonstration quality the chosen attack-path is very short and
locally limited. Such a sample file includes information about
laser impact radius and targeted coordinates.

This file is parsed and influenced hardware elements are
identified using the DEF-file of the place&route process. In
this case a 32-bit wide register inside the AHB-controller of
the LEON3 processor has been disturbed. The resulting depen-
dency graph for this node is depicted in Figure 3. Full black
arrows mean signal or variable assignments from one node to
another. Dotted lines indicate that the target node is sensitive
on the given source node because the assignment happens
inside a process. Bold grey lines depict enable relation-ships
if the assignment is located inside an if-structure.

clk

r

rin

v hrdata

msto

slvo

hresp

msti

Fig. 3. Simplified isolated dependency graph of influenced node

The influenced node is part of a ring-dependency, meaning
that the reading of rin is triggered by the two inputs msto and
slvo while writing into node r is triggered only by the clock-
signal. The backward connection is realized via variable v,
which is the only externally written part. The writing of v is
enabled via variable hresp. Finally the result residing in r is
written to the output msti. This information can now be used
for the generation of hardware modules for efficient emulation
of this chosen attack. This includes saboteur modules to
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manipulate this register in a way our chosen laser impulse
would and hardware checkers to enable these saboteurs only
when this attack would not have been masked.

B. Attack emulation and effectiveness evaluation

Such isolated dependency graphs are now processed for the
further generation of VHDL hardware blocks like saboteurs
or checkers. In the former case the simple manipulation of
the targeted element can be relatively simply implemented and
several approaches using saboteurs have been shown in Section
IV. On the other hand, checker modules allow more in-depth
analysis of internal processes after fault activation.

In this combinatorial block a change of r directly triggers
the writing of rin. The graph in this case (record types) is a bit
misleading because only a very small part of r is influenced.
One control signal of this record is also enabling the writing
of hrdata and hence the fault propagates to the output. Such
a checker generated trace can be seen in Figure 4, visualizing
that there are large parts of the execution that are insensitive.
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Fig. 4. Checker result trace - CPU startup and AES encryption

As seen in Table I only 11 percent of all accesses to this
register would lead to a propagation of this fault because in
all other cases there is no enable.

TABLE I
CHECKER EVALUATION RESULT FOR A SINGLE ATTACKED NODE

Checker Name Checker activ. Fault sens. Fault sens. [%]

AHBCTRL HRDATAS 65896 7261 11

Besides the observation of node-activity of our attacked
system blocks, we are enabled to implement saboteur modules
at this point to emulate signal manipulations. In such a case
the results of the placed support modules, like these checker
blocks, will provide input to the injection control to trigger
attacks at fault sensitive points of time.

VI. CONCLUSION

In this work a novel methodology for the efficient generation
of hardware checker modules and fault emulation support
blocks is presented. Static VHDL code analysis methods
have been applied to extract fault propagation paths from the
investigated system and combined with information gained
after physical evaluation. Physical properties of the laser point
of attack are abstracted into a single region of logic interaction.
This way a gap between physical attacks using laser impulses
and the RTL design is closed to enable a better understanding
of effects caused by physical fault injection.

Our approach has been tested using open available source
of a system-on-chip implementation and its modular software
design allows for the integration into existing design tools.
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