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Abstract

This thesis is concerned with nonlinear geometric subdivision schemes and interpola-
tory multiscale transformations derived from nonlinear subdivision schemes.

The �rst subdivision scheme goes back to de Rham, who re�nes a polygon by an
iterative linear procedure. De Rham shows that his univariate scheme converges and that
the produced limit is C1. Beginning in the early 90s, a framework for the systematic
analysis of linear schemes has been developed. In the bivariate setting, the analysis splits
into two parts: One considers on the one hand regular meshes, and on the other hand
so-called irregular faces or vertices. This is necessary since a closed surface with non-zero
Euler characteristic cannot be modeled by a regular mesh.

Linear subdivision schemes are computationally quite cheap and are therefore widely
used to process vector-valued data. For data which are not de�ned in a vector space,
but in some nonlinear geometry, say the space of di�usion tensors or the space of rigid
motions, one tries to �nd modi�ed, necessarily nonlinear, subdivision rules so as to apply
to these data.

For the univariate case, results on the smoothness of such geometric, nonlinear, sub-
division schemes were obtained by J. Wallner and N. Dyn using the method of proximity
inequalities. On regular grids, multivariate nonlinear schemes whose dilation matrices are
multiples of the identity were treated by P. Grohs. In this thesis we show a smoothness
result for nonlinear, geometric schemes based on general dilation matrices, essentially
stating that a geometric scheme is as smooth as a linear scheme it is in proximity with.

Furthermore, we consider geometric schemes acting on general (not necessarily regular)
meshes. Here we deal with the singularities in the meshes and obtain, as a central result
of this thesis, C1 smoothness.

In general, the convergence statements for geometric, nonlinear, subdivision schemes
only hold for dense enough input data. However, for a certain class of curve subdivision
schemes acting in Cartan-Hadamard manifolds we show convergence for arbitrary input
data.

Finally, we analyze interpolatory multiscale transformations based on subdivision.
Linear transforms for regular grids were investigated by Donoho; he also proposed non-
linear geometric versions which act on manifold valued functions de�ned on Euclidean
space. These transforms were analyzed by Grohs and Wallner. In this thesis we propose
a transformation which acts on functions between manifolds. We characterize the decay
of detail coe�cients in terms of the Hölder-Zygmund smoothness of the corresponding
function.





Kurzfassung

Diese Dissertation befasst sich mit nichtlinearen Unterteilungsalgorithmen und Multi-
Skalen-Transformationen, die auf solchen Unterteilungsalgorithmen basieren.

Der erste Unterteilungsalgorithmus geht auf de Rham zurück, der einen Polygonzug
iterativ durch ein lineares Verfahren verfeinerte. De Rham zeigte die Konvergenz seines
Verfahrens und wies nach, dass der erzeugte Limes C1 ist. In den neunziger Jahren ent-
stand eine systematische Theorie zur Analyse von linearen Unterteilungsalgorithmen, die
auch den mehrdimensionalen Fall beinhaltet. Im Zweidimensionalen besteht die Analyse
aus zwei Teilen: Einerseits betrachtet man reguläre Netze, andererseits sogenannte singu-
läre Knoten beziehungsweise singuläre Facetten. Dies ist notwendig, da eine geschlossene
Fläche mit nichttrivialer Euler-Charakteristik nicht mithilfe eines regulären Netzes mo-
delliert werden kann.

Lineare Unterteilungsalgorithmen sind aus Sicht des Rechenaufwands sehr billig und
�nden daher häu�g zur Verarbeitung von vektorraumwertigen Daten Verwendung. Liegen
die Daten in einer Mannigfaltigkeit, z.B. im Raum der Di�usionstensoren oder der starren
Bewegungen, so versucht man, Unterteilungsalgorithmen so zu modi�zieren, dass sie auch
Daten in solchen nichtlinearen Geometrien verarbeiten.

Im Eindimensionalen erzielten J. Wallner und N. Dyn mithilfe von �Proximity Inequa-
lities� Ergebnisse zur Glattheit solcher geometrischer, nichtlinearer Unterteilungsalgorith-
men. Im Fall regulärer Netze wurden Unterteilungsalgorithmen, deren Dilatationsmatrix
ein Vielfaches der Identität ist, von P. Grohs behandelt. In dieser Dissertation wird ein
Glattheitsresultat für nichtlineare Algorithmen mit beliebiger Dilatationsmatrix bewiesen;
es besagt im wesentlichen, dass ein geometrischer Unterteilungsalgorithmus Glattheitsei-
genschaften von einem in der Nähe liegenden linearen Unterteilungsalgorithmus erbt.

Ein weiterer Teil dieser Arbeit besteht in der Glattheitsanalyse von nichtlinearen Algo-
rithmen für den allgemeinen Fall nicht notwendigerweise regulärer Netze. Wir behandeln
den Fall singulärer Knoten beziehungsweise Facetten und zeigen C1 Glattheit der durch
nichtlineare Unterteilung entstehenden Limiten; dies ist das zentrale Ergebnis der Disser-
tation.

Für geometrische, nichtlineare Unterteilungsalgorithmen gibt es im Allgemeinen nur
Konvergenzsätze für den Fall genügend dichter Eingangsdaten. Für spezielle Riemannsche
Mannigfaltigkeiten, sogenannte Cartan-Hadamard-Mannigfaltigkeiten, und eine gewisse
Klasse von Unterteilungsalgorithmen beweisen wir in dieser Arbeit für den eindimensio-
nalen Fall ein Konvergenzresultat ohne Einschränkung an die Eingangsdaten.

Abschlieÿend betrachten wir interpolierende Multi-Skalen-Transformationen, die auf
Unterteilungsalgorithmen fuÿen. Für reguläre Gitter und lineare Algorithmen wurden
solche Transformationen von Donoho untersucht; er schlug auch eine nichtlineare, geo-
metrische Variante vor, die auf Funktionen operiert, die Werte in einer Mannigfaltigkeit
annehmen und im Euklidschen Raum de�niert sind. Diese geometrischen Transformatio-
nen wurden von Grohs und Wallner untersucht. In dieser Dissertation stellen wir eine
Transformation vor, die auf Funktionen zwischen zwei Mannigfaltigkeiten agiert. Wir
charakterisieren die Hölder-Zygmund-Glattheit einer Funktion durch das Abklingen der
sogenannten Detail-Koe�zienten, die durch die Transformation gewonnen werden.
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1

Introduction

The �rst subdivision scheme goes back to de Rham [7]. This article takes the point
of view that a subdivision scheme is a re�nement procedure for polygons, and each step
doubles the number of vertices. He shows that iterated application of his scheme produces
a sequence of (�ner) control polygons which converge to a C1 smooth function in the limit.
Further early work was done by Chaikin [5] which is with a view towards application in
computer graphics. Both articles deal with linear schemes which means that the re�ne-
ment procedure is linear. For general linear curve schemes a framework for their analysis
has been developed in the early 90s, [4, 11].

The case of subdivision schemes which re�ne polyhedral meshes instead of polygons
is much more involved. First of all, the reader should note that a closed surface with
non-zero Euler characteristic cannot be modeled by a regular quadrilateral or regular
triangular mesh. Therefore, such meshes need to have singularities (i.e., vertices or faces
in whose neighborhood the combinatorics is not regular). Hence the analysis of surface
subdivision schemes has to treat the situation near such a singularity.

By the locality of the considered schemes the analysis splits into two parts: The �rst
part is to consider the regular mesh case, and the second one consists of the analysis
near singularities. Even the regular mesh case is more extensive than the univariate case
since one can also consider schemes based on dilation matrices di�erent to multiples of
the identity. For work on the regular mesh case we refer to [4, 49, 26, 21, 18]. The
breakthrough in the analysis near singularities is the article [47] of U. Reif. Further
references are [68, 67, 44] and the comprehensive book [45]. Reif's work contains the
�rst complete analysis of the �rst surface subdivision schemes introduced by Catmull and
Clark [3] and Doo and Sabin [10], and thus solves a problem which had been open for
more than �fteen years.

Subdivision has a wide range of applications. An overview of its use in Computer
Graphics and Geometric Modeling can be found in [69]. Note that subdivision is used to
`model everything that moves' in 3D animated movies [50]. But subdivision schemes also
have other applications; for instance, linear subdivision schemes de�ned on regular meshes
are applied to produce scaling functions in wavelet analysis [6]. Furthermore, subdivision
schemes are also used in the numerical solution of PDEs [24, 23].

In Chapter 1 we give a brief introduction to linear subdivision schemes and sum up
the results on linear subdivision we need in the subsequent chapters. Furthermore, we set
up a framework we need in the analysis of nonlinear schemes.

The theory of linear subdivision schemes is very extensive. In contrast, only in recent
years nonlinear subdivision has been subject to systematic analysis. To get an impression
of the diversity of this �eld, we exemplarily refer to [22], [57], [63] and the references
therein. We stick to geometric, nonlinear, subdivision in this work.

Geometric subdivision aims at handling data in nonlinear geometries such as Lie
groups, symmetric spaces, or Riemannian manifolds. Examples are the Euclidean mo-
tion group, hyperbolic space, Grassmannians or the space of positive de�nite matrices.
The latter space is especially interesting in di�usion tensor imaging, where data are mod-
eled as positive matrices sitting on a spatial grid. Other instances of geometric data in
connection with subdivision are given by Ur Rahman et al. [53].

In Chapter 2 we recall well known constructions which provide means of deriving geo-
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metric subdivision schemes, using characteristics of linear ones. We also introduce a new
geometric analogue which is particularly suited to subdivision in Riemannian manifolds
and which in a natural way retains the symmetries of the linear scheme it is derived from.

In the analysis of nonlinear subdivision schemes some peculiar behavior can be ob-
served; for instance, the paper [65] treats a nonlinear (but not geometric) scheme where
the smoothness of the produced limit functions depends on the input data. It turns out
that in this respect geometric schemes behave quite tame, i.e., their smoothness does not
depend on input data. However, the input should be dense enough which is, in general,
needed to guarantee that the scheme converges. A framework for the analysis of geomet-
ric, nonlinear, subdivision schemes by means of so-called proximity inequalities has been
introduced by Wallner and Dyn in [57]. They show convergence and C1 smoothness of a
large class of geometric curve subdivision schemes. Their technique splits into two parts:
The �rst part is to show that the geometric scheme ful�lls proximity conditions with a
linear scheme. The second part is to show that an arbitrary (not necessarily geometric)
scheme which ful�lls proximity conditions inherits convergence (for dense enough input)
and C1 smoothness from the linear scheme it is in proximity with. This technique has
been extended to higher smoothness in [56]. In the multivariate regular setting, such
results were only known for subdivision schemes with dilation matrices which are scalar
multiples of the identity [14] before the author's paper [60] .

In Chapter 3 we obtain results for schemes based on arbitrary dilation matrices which
operate on regular meshes. In fact, we show that the limit function obtained by a nonlinear
subdivision scheme which meets proximity conditions belongs to the Hölder-Zygmund
class Lipα where α is real number arbitrarily close to but smaller than the smoothness
index of the linear scheme which the nonlinear scheme is derived from. This applies to the
geometric analogues of linear schemes considered in this thesis. This chapter is contained
in the paper [60].

In Chapter 4 we deal with an essential part of the theory which was missing: Conver-
gence and C1 smoothness of nonlinear subdivision rules for irregular meshes. We show
that a certain class of such schemes converges and produces C1 limit functions. This
analysis is based on a local proximity inequality similar to the one in [57]: If a nonlinear
scheme is in proximity with a linear scheme which converges, respectively produces C1

limit functions, then the nonlinear scheme does the same for su�ciently dense input data.
This result applies to the geometric schemes considered in this thesis. This chapter is
based on the paper [62].

As already mentioned, convergence of geometric subdivision schemes in general is only
guaranteed if input data is dense enough. For a certain class of Riemannian manifolds,
so-called Cartan-Hadamard manifolds, and a certain class of geometric curve schemes we
can show convergence for all input data. This result is presented in Chapter 5. It is
contained in the paper [58].

The last chapter of this thesis is concerned with interpolatory multiscale transforms. In
[9], Donoho analyzes linear interpolatory wavelet transforms. In particular he characterizes
smoothness properties of a function by decay properties of the detail coe�cients which
are derived from the function via the transformation. Interpolatory transforms can also
be de�ned in a reasonable manner in the setting of geometric subdivision [53]. In [17],
Grohs and Wallner show an analogue of Donoho's result for the class of Hölder-Zygmund
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functions in the geometric setting; they consider manifold-valued functions de�ned on
Euclidean space.

In Chapter 6, we treat manifold-valued functions de�ned on a two-dimensional man-
ifold. We de�ne a multiscale transform, where both the choice of sample points and the
prediction operator are based on nonlinear geometric subdivision. We characterize the
Hölder-Zygmund smoothness of a function in terms of the detail coe�cient decay w.r.t.
our transform, in particular near irregular points. This chapter is based on the paper [61].
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5

1 Linear subdivision schemes

This thesis mainly treats geometric nonlinear subdivision schemes for arbitrary meshes.
Most of the geometric schemes we treat are intrinsically de�ned and therefore only use
intrinsic information without referring to some ambient vector space. Nevertheless, the
way we follow for constructing such geometric schemes uses quantities derived from linear
schemes. Furthermore, the analysis of a geometric scheme is based on comparison with
a linear scheme `nearby'. For this reason we start with a brief introduction to linear
subdivision. One aim is to provide the information and terminology necessary to de�ne
geometric analogues of linear schemes in Chapter 2. The other aim is to build a basis for
the analysis of nonlinear schemes in the Chapters 3, 4 and 5.

In this chapter we de�ne linear subdivision schemes for (general) two-dimensional
meshes. We explain how the analysis of convergence and smoothness of a scheme can
be reduced to the particular case of k-regular meshes. Although a regular mesh is a k-
regular mesh for certain k, this case is treated separately due to its di�erent behavior.
Another reason is that the regular mesh (or synonymously, regular grid) case immediately
generalizes to higher dimensions. These two cases of meshes are treated in detail.

We introduce our notation concerning meshes, as it is used later on. The combinatorics
(or the connectivity) of a mesh is an abstract triple K = (V,E, F ) consisting of a set of
vertices V, edges E and faces F. A mesh (K,h) in some setM consists of the combinatorics
K and a vertex based positioning function h : V → M. Typically, M = R3, e.g. in
Computer Graphics; in this thesis we are interested in the case when M is a smooth
manifold. The set h(V ) is also called vertices, since h(v) represents the geometric position
of the vertex v. When we want to emphasize the di�erence between V and h(V ) we speak
of abstract and realized vertices, respectively.

We always assume that the mesh under consideration has so-called 2-manifold topology
which means that any edge has either one or two faces adjacent and that for each vertex
the set of neighboring vertices is nonempty and connected. The valence of a vertex or a
face is the number of edges it is adjacent to.

The n-ring of a face or a vertex are those vertices in the mesh which can be reached
from the face or the vertex by passing at most n faces. We use the notation Nn(v) and
Nn(F ) for the n-ring of a vertex v, and of a face F , respectively.

A subdivision scheme S consists of a topological re�nement rule and a geometric re-
�nement rule. For a given connectivity (V0, E0, F0), the topological rule generates a new
connectivity (V1, E1, F1). The geometric rule computes new vertex positions from old ones.
In other words, it acts as an operator on the positioning functions producing h1 : V1 →M
from input h0 : V0 → M . The geometric re�nement rule should not be confused with a
geometric subdivision scheme which is just a subdivision scheme acting in a geometry, i.e.
acting on positioning functions h : V →M whereM is a smooth manifold. A subdivision
scheme is linear, ifM is a vector space and if the operator acting on positioning functions
is linear. A subdivision scheme S is interpolatory if Vi ⊂ Vi+1 and old (realized) vertex
positions are not changed during the subdivision process. In that case subdivision adds
new vertices to the existing ones.
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Figure 1: dual re�nement Figure 2: primal re�nement

Quadrilateral-based primal and dual quadrisection schemes

The historically �rst categories of topological re�nement rules were primal quadrilate-
ral-based and dual quadrilateral-based topological rules based on quadrisection, of which
the schemes of Catmull/Clark and Doo/Sabin are examples. For a visualization, see
Figures 1 and 2. A primal quadrilateral quadrisection scheme produces a new connectivity
by a so-called face split: This means old vertices are retained and a new vertex is inserted
for each old edge and face. New edges are inserted between new vertices originating from
edge and face if they were adjacent, and between new vertices originating from vertex and
edge if they were incident. After one round of subdivision all new faces have valence four.
Vertices originating from faces and edges also have valence four while `vertex'-vertices
inherit the valence of their predecessors.

A dual quadrilateral quadrisection scheme generates a new connectivity by a so-called
vertex-split: A new vertex is created for each pair of face and adjacent vertex. Vertices
arising from the same old vertex share a new edge if the faces they stem from shared an
edge, and vertices arising from the same old face share a new edge if the vertices they
stem from shared an edge. A new face originates either from an edge, or a face, or a
vertex, whereby `edge'-faces have valence four and the others inherit the valence of their
predecessors. All new vertices have valence four and therefore in a second subdivision
step, irregular faces can only originate from old faces.

In case of quad-based re�nement, vertices and faces are called regular if they have
valence four, otherwise they are called irregular.

The geometric rule computes new vertex positions from old ones. In the case of linear
subdivision, we consider a�ne invariant rules, meaning that a new vertex position h1(w)
is an a�ne combination of �nitely many previous ones:

h1(w) =
∑
v∈V0

αv,wh0(v), where
∑
v∈V0

αv,w = 1. (1.1)

We call the mapping v 7→ αv,w the stencil of w, and denote its support by suppS(w). We
further require that the rule only depends on the connectivity in a local neighborhood
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Figure 3: Dual Re�nement: The neighborhood of the irregular face becomes regular.

of globally �xed size [68]. We explain what we mean by this: Since a new vertex can
be identi�ed with either a face, an edge or a vertex of the old mesh in the primal case,
or a face-vertex pair of the old mesh in the dual case, there is a natural notion of a
neighborhood of a new vertex in the old mesh. We require that there is an integer n,
such that, for any new vertex w, the choice of the stencil α·,w in (1.1) only depends on
the combinatorics of the n-neighborhood of w. Furthermore, we require that suppS(w) is
contained in this n-neighborhood of w. This is to avoid pathologies, and can be seen as
an uniform locality condition.

After a few iterations, the greater part of the combinatorics becomes regular, i.e.,
faces and vertices have valence 4. However, there are remaining isolated singularities,
extraordinary vertices in the primal case, and extraordinary faces in the dual case, which
are surrounded by regular connectivity. For a visualization, see Figure 3. In this work
we are interested in limit properties of the subdivision scheme, i.e., for an initial mesh
(K0, h0), we consider the sequence of its i-times subdivided meshes (Ki, hi), where we are
interested in what happens if i→∞. Now the uniform locality condition guarantees that
the information needed for the limit behavior of the subdivision process near an irregular
vertex/face is contained in a certain n-neighborhood of the irregular vertex/face on each
subdivision level i, where n does not depend on the subdivision level i. If we choose the
level i high enough, this n-neighborhood has regular combinatorics except for one irregular
vertex/face. This means that the analysis of subdivision on a general mesh reduces to
the analysis of two special kinds of meshes: Firstly, a mesh with regular combinatorics,
and secondly, a mesh with only one irregular vertex/face. Such a mesh is called k-regular,
where k is the valence of the extraordinary face/vertex. These two kinds of meshes are
discussed in Chapter 1.1 and Chapter 1.2, respectively. An extensive treatment of the
above reduction process can be found in D. Zorin's thesis [66].

Schemes based on other types of topological rules

There are also various other types of topological re�nement rules. In the community
of people who apply subdivision to graphics, the systematic classi�cation of di�erent
topological rules has gained quite a lot of interest and is presently still in progress; see
e.g. [54, 25, 8] and the references therein. It is not our aim in this thesis to contribute to
this classi�cation.

Nevertheless, we consider schemes not based on quadrilateral quadrisection since they
have gained considerable importance in applications. First of all, triangle-based quadri-
section schemes like Loop's scheme or the Butter�y scheme are widely used. See Figure 4
for a visualization of the topological re�nement. Secondly, the quadrilateral-based primal
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Figure 4: Quadrisection for triangle-based
meshes.
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Figure 5:
√

3-re�nement near an irregular
vertex.

and dual schemes we considered before, approximately increase the number of vertices by
a factor of 4 per subdivision step. Certain di�erent topological rules, like e.g.

√
2-schemes

or
√

3-schemes, show the attractive feature of slow re�nement which can be desirable in
certain applications. In contrast, there are also topological rules which provide a fast
`zoom in', like e.g.

√
7-schemes. For example, subdivision schemes with fast re�nement

are applied in the context of pyramid schemes for modeling the function of the retina
[59, 34] and for representing terrain data in geophysical applications [48]. So considering
more general topological rules provides more �exibility in the re�nement speed which is
important in some applications. Last, but not least, certain schemes based on more gen-
eral topological rules provide anisotropic features, when applied in multiscale transforms
[40].

We try to introduce the reader to these classes of schemes by providing some examples.
The reader who is interested in a systematic treatment is referred to [54, 25, 8]. In
Chapter 1.2, we build a framework for the analysis near extraordinary vertices/faces,
which incorporates our examples and certain classes of the topological re�nement rules in
[54, 25, 8].

Primal
√

3-subdivision is triangle-based, i.e., after the �rst subdivision step the mesh
consists of triangles. In case of triangle-based topological rules, a vertex is regular, if it
has valence 6; a face is regular if it has valence 3. The topological rule works as follows (cf.
Figure 5): A new vertex is inserted for each old vertex and each old face. Two vertices
which are descendants of neighboring faces and two vertices which are descendants of a
face and a neighboring old vertex are connected by an edge. Faces are given by three new
vertices of the following form: They originate from two neighboring faces and the third
vertex originates from an old vertex adjacent to both old faces.√

2-subdivision is quad-based. For a visualization, see Figure 6. Similar to
√

3-schemes,
for primal

√
2-subdivision, a new vertex is given by each old vertex and each old face.

New edges are obtained between two new vertices which originate from an old face and a
neighboring old vertex. A new face is de�ned by four new vertices of the following form:
Two vertices originate from two adjacent old faces and the other two originate from two
old vertices which are both adjacent to the old edge shared by the two old faces.

The dual
√

2-topological re�nement rule (cf. Figure 7) ist obtained by applying the
primal rule to obtain combinatorics (V1, E1, F1), and then to exchange faces and vertices
to obtain the combinatorics (F1, E1, V1). More graphically, a new vertex is obtained for
each old edge. New edges are given between any two new vertices which originate from
two old edges which share a common old vertex.



1.1 Linear subdivision schemes on regular grids 9

bc bc

bcbc

bc

bc

bc

bc

bc

bc bc

bc bc

bc

bc

bc
bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

Figure 6: Primal
√

2-re�nement.
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Figure 7: Dual
√

2-re�nement.

Primal
√

7-subdivision is triangle-based. This topological re�nement has a certain
asymmetry which requires the orientability of the initial mesh. Each old vertex de�nes
a new vertex. Furthermore, three new vertices are inserted per old face, called face-
vertices. The choice of new edges and faces is best explained with the help of �gure
Figure 8. Since the initial mesh is orientable, we can a choose a consistent orientation
on the set of old faces. This orientation allows us to de�ne a one-to-one correspondence
between face-vertices and triples of the form (old vertex, old edge, old face). Then edges
are inserted between two new vertices in the following cases: Firstly, between a vertex
originating from a vertex v and face-vertex whose associated triple has the form (∗, ∗, v).
Secondly, between face-vertices whose associated triples have the same edge. Thirdly,
between face-vertices whose associated triples have the same vertex and whose associated
triples have faces which are neighbors in the old mesh. Note that the way of choosing the
correspondence between face-vertices and the triples in�uences the choice of new edges
and thus the combinatorics of the output mesh.

As in the case of primal and dual quadrisection, the geometric rule is required to be
a�ne invariant; a new vertex position h1(w) is computed by

h1(w) =
∑
v∈V0

αv,wh0(v), where
∑
v∈V0

αv,w = 1.

We furthermore require the uniform locality condition already formulated for primal and
dual quadrisection schemes. This allows us to apply the same arguments as for pri-
mal/dual quadrisection schemes in order to reduce the general mesh case to the cases of
regular combinatorics and k-regular combinatorics.

Examples of
√

3-subdivision schemes are Kobbelt's
√

3-scheme [31], Labsik and Grei-
ner's interpolatory

√
3-subdivision schemes and the schemes constructed in [41]. Examples

of
√

2-schemes can be found in [33]. An example of a dual
√

2-scheme is the well-known
simplest (or mid-edge) subdivision scheme of Peters and Reif [43]. Methods to produce√

7-schemes have been proposed by Oswald [40].

1.1 Linear subdivision schemes on regular grids

We saw that local limit properties of a linear subdivision scheme can be inferred from
studying regular and k-regular meshes. For the regular mesh part, it is enough to consider
a mesh with (abstract) vertex set Z2. This is because of the locality of the subdivision
rules; it is not necessary to consider regular meshes which are e.g. topologically isomorphic
to the torus.
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Figure 8:
√

7-re�nement.

For such a regular input mesh with abstract vertex set Z2, a subdivision scheme
produces an output mesh, which again has a combinatorics with abstract vertex set Z2;
see Figure 9 for a visualization in case of quadrisection and

√
2-re�nement. So a (linear)

subdivision scheme can be seen as a (linear) operator on the space of sequences with index
set Z2. A sequence corresponds to the vertex-based positioning function above.

With this is mind, we give the following de�nition of the subdivision operator. We
explain afterwards how a subdivision scheme de�nes a subdivision operator.

De�nition 1.1. A linear subdivision operator S = Sa,M is a linear operator on the vector
space of sequences with index set Zd given by

Sa,Mp(α) =
∑

β∈Zd
a(α−Mβ)p(β), (1.2)

where the mask a : Zd → R has �nite support, and M is a dilation matrix.

A d × d integer matrix M is called dilation matrix, if ‖M−n‖ → 0 as n → ∞. M
is called isotropic, if it is C-diagonalizable and all eigenvectors have equal modulus. We
assume that ∑

α∈Zd
a(α) = | detM |. (1.3)

This guarantees a�ne invariance, if Sa,M converges.
In the above de�nition we let d be arbitrary since this causes no trouble and provides

more generality. If we set d = 2, we are in the regular mesh case. The topological
re�nement rule is encoded in the dilation matrix. For example,

√
2-schemes can be realized

by the following dilation matrices:

M =

(
1 −1
1 1

)
, M =

(
1 1
1 −1

)
.

The left-hand matrix yields a clockwise rotation of the grid, the right-hand matrix a
counter-clockwise rotation of the grid. For

√
7 schemes the following dilation matrices are

possible:

M =

(
3 −1
1 2

)
, M =

(
2 1
−1 3

)
.



1.1 Linear subdivision schemes on regular grids 11

Figure 9: Primal quadrisection (left) and
√

2-re�nement (right), regular case.

Note that all four matrices displayed here are isotropic.
The weights for a�ne averaging which were given by the stencils αv,w in (1.1) are now

stored in the mask a. The condition
∑

v αv,w = 1 in (1.1) guarantees that (1.3) is ful�lled.
We study the subdivision operator de�ned by (1.2). We formalize the notion of con-

vergence of a subdivision scheme de�ned by a subdivision operator. Since the operator
acts on sequences with index set Zd, we can also consider it on the space of bounded
sequences l∞(Zd), where, by the �niteness of the mask, Sa,M is a bounded linear operator.

De�nition 1.2. We say that a linear subdivision scheme S converges if, for arbitrary
bounded input p on Zd, there is a uniformly continuous function f on Rd such that

‖f(M−k·)− Skp‖l∞(Zd) → 0 as k →∞.

Here f is sampled on M−kZd and a sequence on Zd is generated by the assignment α →
Mkα.

If it exists, the limit function for the Dirac sequence δ0 as input is denoted by φ. This
compactly supported function ful�lls the re�nement equation

φ =
∑

a(α)φ(M · −α)

and thus φ is called the re�nable function. Convergence of a linear scheme is equivalent to
convergence for the special input δ0. This is a consequence of the locality, continuity, shift-
invariance and linearity of the subdivision operator. This is not the case for a nonlinear
scheme as we will see later. For input p we can write the limit as

p ∗ φ =
∑

k∈Zd p(k)φ(· − k),

where φ is the re�nable function.
Furthermore, convergence of a linear scheme is equivalent to the convergence of the

cascade algorithm:

φk+1 =
∑

a(α)φk(M · −α), (1.4)

where φ0 belongs to a certain class of non-zero compactly supported continuous input
functions [21]. It turns out that the limit of this iteration coincides with the limit function
of subdivision for input δ0; see [21].
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Convergence of a subdivision scheme is also equivalent to a certain smoothness index
νa,M of the scheme being greater than zero [21]. We de�ne this index after giving some
preliminaries.

We say that a subdivision scheme satis�es sum rules of order k if for every α ∈ Zd
and any polynomial q of total degree lower than k we have the identity∑

β∈MZd
a(α + β)q(α + β) =

∑
β∈MZd

a(β)q(β).

Sum rules of order k imply polynomial reproduction of order k for the subdivision scheme
S. This means that subdivision applied to a sample p of a polynomial of total degree less
than k is again a polynomial of total degree less than k. In general, the converse is not
true [26], i.e., there are schemes which have polynomial reproduction of order k and do
not ful�ll sum rules of order k. A characterization of the equivalence of both notions in
terms of the mask can be found in [26]. As a result, if the scheme is stable, both notions
coincide. A scheme is called stable if the translation invariant subspace generated by φ is
isomorphic to l∞(Zd) via the operator producing limit functions, i.e., there are c, C > 0
such that, for all p ∈ l∞(Zd),

c‖p‖∞ ≤ ‖p ∗ φ‖∞ ≤ C‖p‖∞.

Sum rules are important to us since the maximal sum rule order determines an a priori
upper bound for the smoothness index of a scheme. So assume that the maximal sum-rule
order of S is k. Then we consider the spectral quantity ρk = ρk(a,M) de�ned by

ρk = max{limn→∞ ‖∇µSnδ0‖1/n
∞ : µ is a multiindex with |µ| = k}, (1.5)

and de�ne the smoothness index of the scheme by

νa,M = − logλmax
ρk, (1.6)

where λmax is the greatest modulus of the eigenvalues of M. We use the usual multiindex
notation here: For a multiindex µ = (µ1, . . . , µd) ∈ Nd

0, and ξ = (ξ1, . . . , ξd) ∈ Rd, we let
|µ| =

∑d
i=1 µi, µ! =

∏d
i=1 µi!, and ξ

µ =
∏d

i=1 ξ
µi
i . Furthermore we use the di�erence ∇µ

de�ned by

∇µp = ∇µ1
e1
. . .∇µd

ed
p,

where ∇e1p = p − p(· − ei) is the backward di�erence in direction of the canonical basis
vector ei.

The smoothness index may seem arti�cial at �rst glance. However, it provides a lower
bound for the smoothness of the re�nable function. Furthermore, if the scheme S is stable
and the corresponding dilation matrix is isotropic, the smoothness index determines the
smoothness of the scheme. We have

always : νa,M ≤ ν(φ), (1.7)

for stable S and isotropic M : νa,M = ν(φ). (1.8)

Here ν(φ) is the Hölder-index of the re�nable function φ given by

ν(φ) := max{λ : φ ∈ Lipλ}.
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This result can be found in [18]. Here Lipλ is the space of Hölder-Zygmund functions of
order λ. One possible de�nition of these spaces is to choose some integer k strictly greater
than λ and to consider those bounded continuous functions which ful�ll:

There is C > 0, such that ‖∇k
yf‖∞ < C|y|λRd (1.9)

for all y ∈ Rd, where ∇yf = f − f(· − y). Then the Lip-seminorm | · |Lipλ,k and the
Lip-norm ‖ · ‖Lipλ,k are given by

|f |Lipλ,k = inf{C : C ful�lls (1.9)} and ‖f‖Lipλ,k = ‖f‖∞ + |f |Lipλ,k.

With this norm Lipλ becomes a Banach space. It turns out that for di�erent choices of
k, we obtain the same linear space of functions and that di�erent norms are equivalent.
For this and more information on Hölder-Zygmund spaces we refer to the book [51].

Let us put this in the form of a theorem:

Theorem 1.3. Let S be a subdivision scheme based on a general dilation matrix M. S
converges if and only if νa,M > 0. Then the smoothness index νa,M provides a lower bound
for the Hölder-index of any limit function produced by S. If S is stable and M is isotropic,
then νa,M is the Hölder-index of any nontrivial limit function produced by S.

We are in the middle of the discussion of the smoothness index νa,M of a scheme S.
Besides from agreeing with the Hölder index of the re�nable function for isotropic dilation
and stable S, there is an important connection to the cascade algorithm which does not
rely on stability: If the dilation matrix is isotropic, νa,M > k if and only if the cascade
algorithm (1.4) converges in Ck for all input functions belonging to a certain natural class
of Ck functions [19, Theorem 4.3].

We provide some information we need in the analysis of nonlinear schemes later on.
For l < k, we de�ne the quantity ρl analogous to (1.5) by replacing k by l. The connection
between ρk and ρl for k 6= l is given by B. Han, [18, Theorem 3.1]:

Theorem 1.4. Let Sa,M be a linear subdivision operator satisfying sum rules of order k.
Let λmin be the smallest modulus of the eigenvalues of M. Then

ρl = max(ρk, λ
−l
min) for any nonnegative integer l < k. (1.10)

We later use this connection between di�erent ρl's in the proof of our smoothness
theorem for nonlinear schemes on regular meshes.

We brie�y point out some ways to compute, or at least estimate, the smoothness
exponent (1.6). A very e�cient way of computing the L2-analogue of the smoothness
index is given in [18], where also a detailed exposition of this topic and references can
be found. The problem is reduced to �nding the eigenvalues of a certain matrix which
is computationally not that expensive. Estimates from below for our L∞ setting, i.e., for
νa,M , are obtained via embedding theorems. For example, for d = 2, νa,M is bounded from
below by the smoothness index of the scheme in the L2-setting minus one. Fortunately,
there is also a quite fast algorithm for exactly determining νa,M in case that the Fourier
transform of the mask is a positive function; see also [18].
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Another approach is to use the joint spectral radius criterion [21] and to brute-force
compute upper and lower bounds of the corresponding spectral radii. These bounds
converge very slowly, which makes such computations very expensive. However, this
method also works exactly in our L∞-setting, at least in theory.

There is another, slightly di�erent, approach to the smoothness analysis of subdivision
schemes going back to Dyn [11] which is based on iteration of the following theorem
formulated for the univariate case d = 1. Here the scale of Ck spaces is considered for
measuring smoothness.

Theorem 1.5. Let S be a univariate a�nely invariant subdivision scheme with dilation
factor 2. If the derived scheme S[1] converges, then the scheme S produces C1 limit
functions.

Here the derived scheme is given by

S[1]∇ = 2∇S.

Applying the derived scheme iteratively to the di�erences of the input data yields an
approximation of the derivative of the limit function if it exists.

The derived scheme exists if and only if S is a�nely invariant, which is equivalent to
the fact that �rst order sum rules are ful�lled. The existence of the k-th derived scheme is
equivalent to k-th order sum rules being ful�lled. By iterated application of Theorem 1.5,
one gets the following statement.

Corollary 1.6. Let S be a univariate convergent subdivision scheme with dilation factor
2. If the derived scheme S[k] exists and converges, then the scheme S produces Ck limit
functions.

A criterion for the convergence of a scheme S is the contractivity of the commutator
scheme 1

2
S[1], i.e.,

There is n ∈ N such that ‖(1
2
S[1])n‖∞ < 1. ⇒ S converges. (1.11)

Extending this approach to the multivariate situation is not so straightforward. The
case of dilation matrix M = nI still works in a certain sense: The statement has to be
modi�ed but the technique of using the derived scheme to approximate derivatives still
works. In the case of more general isotropic dilation certain problems arise at that point.
We consider the case of dilation matrix M = nI �rst. Multivariate di�erences for an
Rs-valued sequence p ∈ l∞(Zd)s are elements ∆p ∈ l∞(Zd)sd given by

∆p(α) = (p(α + e1)− p(α), . . . , p(α + es)− p(α))T

So ∆p is an Rsd-valued sequence on Zd. With this preparation, derived schemes can (at
least formally) be recursively de�ned by

S[l]∆ = N∆S[l−1], S[0] = S.

Note that the coe�cients in the masks of such derived schemes are no longer scalars, but
dl- matrices. This is the reason why such schemes are called vector subdivision schemes.
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Derived schemes are no longer uniquely de�ned in the multivariate setting. It turns out
that a k-th derived scheme exists if and only if k-th order sum rules are ful�lled [37].

A multivariate version of Corollary 1.6 and (1.11) reads:

Theorem 1.7. Let S be a multivariate scheme with dilation matrix NI, with sum rule
order k+1 (or, equivalently, such that the k+1-st derived scheme exists). If for all l with
0 < l ≤ k+ 1, the spectral radius ρ(S[l]|∆l) of the l-th derived scheme restricted to l times
di�erenced input data ful�lls

ρ( 1
N
S[l]|∆l) < 1

then S produces Ck limit functions.

This theorem can be found in the thesis [13] and generalizes results for dilation factor
2. References to previous work can be found in [13]. The core of the argument is that
the k-th derived scheme applied to k times di�erenced input approximates the k-th order
derivatives of the limit function. This is no longer the case, if M is a general isotropic
dilation matrix; see [49]. However, we can use the result on the smoothness-exponent
(1.7) to obtain a result similar to Theorem 1.7. We decide to do this, although it is not
the scope of the thesis, since the auxiliary lemmas we need are used elsewhere later on.
For a scheme S on Zd with isotropic dilation matrix M, we let m = d

√
det(M) and we

de�ne (again formally) derived schemes by

S[l]∆ = m∆S[l−1], S[0] = S.

This implies that, for all n ∈ N,

(S[l+1])n∆l+1 = mn(l+1)∆l+1Sn. (1.12)

Also in this case it turns out that a k-th derived scheme exists if and only if k-th order
sum rules are ful�lled [37].

Theorem 1.8. Let S be a multivariate scheme on Zd with isotropic dilation matrix M
which has sum rule order k + 1 (which is equivalent to the existence of a k + 1-st derived
scheme). Let m = d

√
det(M). If the spectral radius ρ(S[k+1]|∆k+1) of the k+1-st derived

scheme restricted to the space of k + 1 times di�erenced input data ∆k+1l∞(Zd) ful�lls

ρ( 1
m
S[k+1]|∆k+1) < 1 (1.13)

then S produces Ck limit functions.
Conversely, if S is stable and produces Ck limits, then (1.13) is true.

For the proof we need the following very interesting fact: A stable scheme with
isotropic dilation matrix which produces Ck limits has smoothness index νa,M > k. This
is a consequence of [20, Corollary 4.2]. So if the smoothness index equals an integer k,
the limit functions cannot be Ck. Or, if the limit functions are Ck, the smoothness index
is strictly greater than k.
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Proof of Theorem 1.8. We start with the second part, i.e., we assume that S is stable and
produces Ck limit functions. By [20, Corollary 4.2] νa,M > k and a ful�lls at least k+ 1-st
order sum rules. Assume the maximal sum rule order of a equals i. Since we are in the
case of isotropic dilation, (1.10) reads

ρk+1 = max(ρi,m
−(k+1)). (1.14)

We have two cases: If ρk+1 = ρi, then m−νa,M = ρk+1 by the de�nition of νa,M . The
second case is that m−(k+1) ≥ ρi. Then ρk+1 = m−(k+1). Putting both cases together,
ρk+1 = m−(k+ε), where ε = νa,M − k > 0 in the �rst case, and ε = 1 in the second case,
respectively. By (1.15) (shown independently in Lemma 1.10), for any s > 1,

‖∆k+1Snp‖∞ ≤ C(ρk+1s)
n‖∆k+1p‖∞,

where C > 0 is independent of p ∈ l∞(Zd) and n. Note that the di�erences ∇ and ∆ carry
the same information. Then, by (1.12),

‖(S[k+1])n∆k+1p‖∞ = ‖mn(k+1)∆k+1Snp‖∞ ≤ Cmn(k+1)(ρk+1s)
n‖∆k+1p‖∞

= Cmn(k+1)(m−(k+ε)s)n‖∆k+1p‖∞ = C(m(1−ε)s)n‖∆k+1p‖∞.

Choosing s > 1 small enough yields

‖( 1
m
S[k+1])n∆k+1p‖∞ ≤ C(m−εs)n‖∆k+1p‖∞ = Cγn‖∆k+1p‖∞,

where γ = m−εs < 1 and C are independent of n and p. This yields (1.13).
We consider the �rst part of Theorem 1.8, i.e., we assume that ρ := ρ( 1

m
S[k+1]|∆k+1) <

1. Letting p = δ0, and applying the de�nition of the spectral radius, there is for any ε > 0
a constant C > 0, independent of n, such that for any multiindex µ of order k + 1,

‖∇µSnδ0‖∞ ≤ Cm−kn(ρ+ ε)n‖∇µδ0‖∞

This means at least that ρk+1 < m−k(ρ + ε), and so ρk+1 < m−k. By (1.14), ρi < m−k,
and so νa,M > − logm(m−k) = k. Then the scheme produces Ck limit functions.

For later use we also formulate the following lemma.

Lemma 1.9. Let S be a linear convergent scheme with dilation matrix NI. If a derived
scheme S[1] converges, then there is a constant C ≥ 1 such that

‖∆Skp‖∞ ≤ C(1/2)k‖∆p‖∞, for all bounded p : Zd → R.

Proof. For any f ∈ l∞(Zd), ‖S[1]k∆f‖∞ ≤ D, with D independent of k since S[1] con-
verges. Restrict f to B = {−n, . . . , n}2, where n is big enough such that B controls
the limit on the unit square. We apply the Banach-Steinhaus-Theorem to the operators
(S[1])k restricted to the �nite dimensional space of sequences vanishing outside 3B and on
0. This yields that ‖2k∆Skf ′‖∞ = ‖S[1]k∆f ′‖∞ ≤ C ′‖∆f ′‖∞, for all such sequences f ′.
Here C ′ is independent of f ′. For general f, we �nd f ′, such that on B, ∇f = ∇f ′.
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Besides from Theorem 1.8 the next lemma is needed in Chapter 3. Lemma 1.10 starts
from (1.5) and establishes the inequality (1.15). The main point here is that di�erences are
incorporated in the right-hand side of (1.15) and that general input data are considered;
this is going to be important for the analysis of nonlinear schemes. We did not �nd this
statement in the literature, even it is possibly already known.

Lemma 1.10. Assume that S = Sa,M is a linear convergent subdivision rule which satis-
�es sum rules of order k. Then for every s > 1 there is C ≥ 1 such that, for all p ∈ l∞(Zd)
and all n ∈ N0,

sup
|µ|=k
‖∇µSnp‖∞ ≤ C(ρks)

n sup
|µ|=k
‖∇µp‖∞. (1.15)

Proof. By the de�nition of ρk in Equation (1.5) there is a constant C > 0 such that, for
s > 1,

‖∇µSnδ0‖∞ ≤ C(ρks)
n for all multiindices µ with |µ| = k. (1.16)

The constant C depends on the choice of s but not on the exponent n.We use the notation
l(Zd) for the space of sequences on Zd. We consider the mapping

p 7→ {∇µSnp}|µ|=k (1.17)

from l(Zd) to l(Zd)r, where r =
(
k+d−1
k

)
is the number of di�erent multiindices with

|µ| = k. This mapping is linear. We show that this mapping only depends on the k-th
order di�erences of the input p, i.e., it only depends on {∇µp}|µ|=k : Since S satis�es sum
rules of order k, S leaves the set of samples of polynomials of degree lower than k invariant
(see [26], Theorem 5.2). A sample of a polynomial p with deg(p) < k is characterized
by the vanishing of all di�erences of order k, i.e., ∇µp = 0 for all µ with |µ| = k. These
two observations guarantee that the property ∇µp = 0 for all multiindices µ with order k
implies ∇µSp = 0 whenever |µ| = k. This implies that the mapping (1.17) only depends
on the k-th order di�erences of p.

With these observations at hand we use the locality of the subdivision scheme S and
construct a scenario which allows us to apply the principle of uniform boundedness which
then yields (1.15). To that end, we consider the `discrete simplex' T = {α ∈ Nd

0 : |α| < k},
and choose N > 2k so large that the limit function of subdivision on [−1, 1]d for input p
only depends on the values of p on Q = {−N, . . . , N}d (It is well known that for �nitely
supported masks such an N exists). We start with (possibly unbounded) data p ∈ l(Zd)
and �nd p′ ∈ l(Zd) with

∇µp = ∇µp′ (µ with |µ| = k) and p′|T = 0. (1.18)

This is done by �nding a polynomial with degree lower than k which agrees with p on
T and subtracting it from p. We use the notation l(A) for the space of sequences on Zd
vanishing outside A ⊂ Zd. We consider the projection operator P : l(Zd \ T )→ l(Q \ T ),
which sets values outside Q to 0.We get a constant C which is independent of p such that

sup
|µ|=k
‖∇µPp‖∞ ≤ C sup

|µ|=k
‖∇µp‖∞.



18 1 Linear subdivision schemes

We consider the family of operators

(ρks)
−n∇µSn : l(Q \ T )→ l∞(Zd),

indexed by the multiindex µ and the exponent n. This family is bounded on any sequence
q. The principle of uniform boundedness yields a constant C, independent of q, n, and µ,
such that

sup
|µ|=k
‖∇µSnq‖∞ ≤ C(ρks)

n sup
|µ|=k
‖∇µq‖∞

for q ∈ l(Q \ T ).
We consider general p ∈ l∞(Zd) and choose a sequence p′ according to (1.18) and

de�ne q ∈ l(Q \ T ) by q = Pp′. Then we use the above estimates to get

sup
|µ|=k
‖∇µSnq‖∞ ≤ C(ρks)

n sup
|µ|=k
‖∇µp‖∞.

Furthermore, for any multiindex µ of order k, we have that ∇µSnq = ∇µSnp on
{−k, . . . , k}d. In view of the translation invariance of S, this implies (1.15).

The next proposition is also needed in Chapter 3. Its purpose is to estimate Lip-
seminorms of the limit functions by di�erences of data.

Proposition 1.11. Assume that Sa,M is a linear convergent subdivision operator which
has maximal sum rule order k. Then for every γ which is smaller that the smoothness index
νa,M , the mapping p 7→ p∗φ(Mm·) of data on level m to limit functions is a bounded linear
operator from l∞(Zd) to Lipγ for every input level m. The growth of the bounds of the
Lipγ-seminorms in m can be estimated by di�erences of input data as follows: For all
s > 1 there is C ≥ 1 such that

|p ∗ φ(Mm·)|Lipγ ,k ≤ C|λmax|mγsm sup
|µ|=k
‖∇µp‖∞, (1.19)

where C is independent of m, and λmax is an eigenvalue of M of greatest modulus.

Proof. Since the re�nable function φ is a Lipγ function, we have, for every s > 1, a
constant C > 0 such that, for every nonnegative integer m,

|φ(Mm·)|Lipγ ,k ≤ C|λmax|mγsm.

As a consequence, the Lipγ-seminorm for arbitrary bounded input data p can be estimated
by

|p ∗ φ(Mm·)|Lipγ ,k ≤ C|λmax|mγsm‖p‖∞.

This is due to the compact support of φ. Since S satis�es k-th order sum rules, q ∗ φ is a
polynomial with deg(q ∗ φ) < k for any sample q of a polynomial of degree lower than k
(see e.g. the discussion around Theorem 2.1 in [26]). Therefore, the directional di�erence
∇k
yp ∗ φ of the limit function for input p only depends on the k-th order di�erences
{∇µp}|µ|=k.
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We use the notation of the proof of Lemma 1.10, and de�ne, for p ∈ l∞(Zd), the
sequence q ∈ l(Q \ T ) by q = Pp′, where p′ is chosen according to (1.18). Then in the
cube [−1, 1]d, the limit functions p∗φ and q ∗φ are equal. If we consider the smaller cube
[−1/2, 1/2]d, we �nd a step size h > 0, such that the di�erence ∇k

yp ∗φ and ∇k
yq ∗φ agree

for all vectors y ∈ Rd with ‖y‖ ≤ h.
We consider the family of operators l(Q \ T )→ Lipγ,

q 7→ |λmax|−mγs−mq ∗ φ(Mm·),

which is indexed by the exponent m. This family is bounded on every sequence q ∈
l(Q \ T ). Therefore, the principle of uniform boundedness yields a constant C > 0, which
is independent of q and m such that

|q ∗ φ(Mm·)|Lipγ ,k ≤ C|λmax|mγsm sup
|µ|=k
‖∇µp‖∞.

This yields (1.19).

1.2 Linear subdivision schemes near extraordinary points

In the beginning of this chapter we saw that limit properties of a linear subdivision
scheme can be inferred from studying regular and k-regular meshes. After treating the
regular mesh case in Chapter 1.1 we are now going to analyze k-regular meshes in order to
see what happens near singularities. We introduce a setup in the spirit of Reif's framework
near extraordinary points [47] (but we have to incorporate some discrete component since,
in the nonlinear case, we do not have a �nite set of a priori known surface patches).

We start with primal and dual quadrisection schemes restricting ourselves to a certain
class of schemes which we call standard schemes. Our notion of standard schemes di�ers
slightly from that in [45]. Afterwards we consider the more general case of shift-invariant
schemes where we also allow for other topological re�nement rules. One di�erence between
standard schemes and the more general schemes discussed afterwards is that the latter may
have arbitrary isotropic dilation and may be triangle based. Furthermore, for the latter
class of schemes we impose weaker conditions on the eigenstructure of the subdivision
matrix.

Standard schemes

We �rst consider primal and dual quadrisection schemes. In this case the setup sim-
pli�es. In the next part we consider the more general situation and extend our setup.

Our �nal objective is to derive convergence and smoothness results for nonlinear
schemes acting on meshes with irregular combinatorics. To that end we �rst de�ne a
parametric notion of convergence near the singularity in a k-regular mesh.

Subdivision operators Sa,M based on quadrisection have dilation matrix M = 2I. We
consider De�nition 1.2. There are two notions in this parametric de�nition of convergence
which are not a priori determined by our de�nition of a subdivision scheme S for general
meshes: The grid Z2 with its re�nements 1

2n
Z2, as well as the domain of the limit function

R2. We de�ne substitutes for these two objects for k-regular meshes.
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D0D1

D2

D0D1

D2

Figure 10: 3-regular mesh combinatorics. left: Dual subdivision rules. right: Primal sub-
division rules. We show the sectors D0, D1, D2, the identi�cation of common boundaries
of D2 and D0 being indicated by arrows. Combinatorics of 3-regular meshes at level 0
(thick lines, vertex set V0) and level 1 (thin lines, vertex set V1) are shown.

We start with the domain D of the limit function: We glue k copies D0, . . . , Dk−1 of
the positive quadrant Ω = [0,∞[ × [0,∞[ together by identifying the y-axis of Dj with
the x-axis of Dj+1 (indices modulo k).

D = Ω × Zk,

where Zk are the integers modulo k. We refer to Dj as its j-th sector (see Figure 10 for a
visualization).

D becomes a metric space by de�ning the distance of points by the length of the
shortest path which connects them, with the metric in the single sectors being that of R2.
We introduce the map Rj which keeps the j-th quadrant and rotates the (j + 1)-st by 90
degrees. Thus, it bijectively maps two successive sectors to the upper half plane. Next, we
de�ne domains V0, V1, . . . which serve as a substitute for the grid Z2 and its re�nements
1

2n
Z2 (see Figure 10). In each sector we consider the set

Ṽn = 2−n(N0 × N0) (primal case), or

Ṽn = (2−n−1, 2−n−1) + 2−n(N0 × N0) (dual case).

Then we obtain V0, V1, . . . by

Vn = Ṽn × Zk,

with the appropriate identi�cations at boundaries. So Vn+1 arises from Vn by dilation
with factor 2 (see Figure 10). Rj maps parts of Vn to vertices of the regular grid 2−nZ2

(or to a translated regular grid in the dual case). We choose edges and faces such that Rj

maps the combinatorics to a part of the regular grid. So we obtain combinatorics with
one single vertex of valence k (primal case) or one single face of valence k (dual case).

The action of a subdivision scheme S on such k-regular input meshes is interpreted in
the following way: It transforms vertex data h : Vn → Rd at level n to new vertex data

Snh : Vn+1 → Rd.
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We explicitly distinguish the operations on di�erent levels since we �nd it more convenient
for the analysis of nonlinear schemes. The dilation operator σ de�ned by σf(x) = f(2x)
obviously obeys Sn+1 ◦ σ = σ ◦ Sn. We now can de�ne convergence near a singularity:

De�nition 1.12. A subdivision rule S converges on the bounded k-regular mesh p : V0 →
Rd, if there is a uniformly continuous function fp : D → Rd such that

‖fp|Vi − Si−1,0p‖∞ converges to 0, as i→∞.

Here Si,l is short for
Si,l = Si ◦ . . . ◦ Sl for i ≥ l,

and Si,l is the identity if i < l. Si−1,0 maps data on subdivision level 0 to data on level i,
by performing i steps of subdivision. For the limit we use the notation

S∞,0p := fp.

The �rst step in the convergence and smoothness analysis is to split the neighborhood
of the singularity into so-called rings Di (see Figure 11). We let

Di = Di(r) = {(x, y, j) ∈ D : 2−i−1r ≤ max(x, y) ≤ 2−ir},

where the `radius' r denotes some scaling factor which is explained later on. The segments
Dj
i (r) are given as the intersection of the i-th ring with the j-th sector:

Dj
i = Dj

i (r) = Di(r) ∩Dj.

Furthermore, we de�ne the i-th inner area D′i by

D′i =
⋃
l≥i

Dl ∪ {0}. (1.20)

Finally, we let

D−1 = D \D′0 and D′ = D′0. (1.21)

With this preparation at hand, we formulate our notion of standard algorithms.
To formulate the assumptions on the schemes we consider, we need the notion of the

control set ctrli(U) of a set U ⊂ D which is de�ned by D. Zorin in [68], and which is a
set of vertices in the i-th level mesh which determine the limit function on U. This means
that the limit function on U only depends on data on ctrli(U).

Our Setup. We impose the following conditions on linear subdivision schemes. The
major restriction in contrast to Reif's setup for standard algorithms [45] comes from the
fact that we do not take the point of view of iteratively generating control points of surface
patches. In the nonlinear case, this view is not possible since such a �nite dimensional
space of patches is not available in general. This also explains that our notion of a
subdivision matrix, given below, di�ers from [45]. For us, a standard subdivision scheme
S is a linear, primal or dual quadrilateral scheme, which is based on quadrisection, with
the following properties:
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Figure 11: Parametrization near an extraordinary vertex of valence 3 (primal and dual quadri-
section). Left: The domain D is obtained by gluing three quadrants together. The �rst three
rings D0, D1 and D2 are visualized. Right: The thick line circumscribes the control set of D0

on level 0. The particular choice of the size parameter r = 4 is valid for Kobbelt's interpolatory
quad scheme.

(1) For regular connectivity, the derived scheme S[1] converges.

(2) There is a `radius' r > 0, such that the control sets ctrli(Dj
i (r)) are vertices of a reg-

ular connectivity. The subdivision matrix A maps data on ctrli(D′i(r)), controlling
the i-th inner area D′i(r), to data on ctrli+1(D′i+1(r)).

(3) The subdivision matrix A has eigenstructure

1 > λ = λ > |µ3| ≥ . . .

with the geometric multiplicity of λ being 2. The characteristic map χ, de�ned
below, ful�lls:

χ|D′\{0} is regular and injective.

We simply write Dj
i instead of D

j
i (r). Examples of schemes which meet these requirements

are the generalized Lane-Riesenfeld schemes [70], which the classical Doo-Sabin [10] and
Catmull-Clark scheme [3] are particular examples of. Those two schemes are generalized
and analyzed in [44]. An example of an interpolatory scheme is Kobbelt's interpolatory
quad scheme [30], which was analyzed by Zorin in [67].

The notion of a characteristic map has been introduced by Reif in [47]. Our de�nition
is slightly di�erent and follows Prautzsch [46]. The limit function of subdivision on D′,
which is the union of all rings Di and 0, is determined by data on ctrl0(D′).We choose two
linearly independent eigenvectors to the subdominant eigenvalue of A. (all such choices of
eigenvectors essentially lead to the same characteristic map.) Each one determines input
data on ctrl0(D′), say h′0, h

′′
0 : ctrl0(D′) → R. We use h′0,h

′′
0 to de�ne 2D input data on
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Sh0 //

h0
//

Figure 12: Characteristic input h0 and one round of subdivision for the Doo-Sabin scheme. The
limit function for h0 de�nes the characteristic map.

ctrl0(D′0) by h0 = (h′0, h
′′
0). The limit function χ : P → R2 of these data h0 is called the

characteristic map, i.e.,

χ = S∞,0h0;

see Figure 12. We have the following important scaling property of the characteristic map

χ(2·) = λχ(·). (1.22)

The following theorem is due to Reif [47]. A proof which immediately generalizes to
Rd, d ≥ 2, has been given by Prautzsch [46].

Theorem 1.13. For a standard scheme S and input data p0 : ctrl0(D′)→ Rd, let S∞,0p0

be the limit function of subdivision. Then the map

S∞,0p0 ◦ χ−1 : χ(D′)→ Rd is C1.

For almost all input data p0, the image S∞,0p0(D′) is a two-dimensional submanifold of
Rd locally around the (extraordinary) limit point S∞,0p0(0).

Shift-invariant schemes for more general topological re�nement rules

We generalize the notions introduced for standard schemes to a setting which incor-
porates more general topological re�nement rules. Furthermore, we relax the conditions
on the eigenvalues of the subdivision matrix. Because of the greater generality the setup
becomes somewhat more abstract, but we are concerned with the same issues as for stan-
dard schemes. As in the case of standard schemes we try to �nd a parametric notion
of convergence for a scheme near a singularity. We consider primal quadrilateral and
primal triangular based schemes in detail, and point out a setup for dual schemes using√

2-schemes as an example.
We assume that for regular meshes the scheme can be represented by a subdivision

operator with isotropic dilation matrixM which is associated with a rotation of the regular
quadrilateral lattice in the plane or the regular triangular lattice in the plane, respectively.
For
√

2-schemes and
√

3-schemes the corresponding angle is ±45◦ (see Figure 9), in case
of
√

7-schemes it is ± arctan(
√

3/5) which is not a rational multiple of π [40].
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D0

D1

D2

D0
D1

D2D2D2D2D2D2D2D2D2D2D2D2D2D2D2D2D2

Figure 13: Domains for limit functions near extraordinary points for
√

2 schemes (left) and
√

3
schemes (right). The rings D0 and D2 are shown in dark gray, the ring D1 in light gray. The
union of all rings and the origin is the domain D′.

We de�ne a domain for the limit function of subdivision for a k-regular input mesh. We
refer to Figure 13 for a visualization. In the quadrilateral case, as for standard schemes,
we use k copies of the positive quadrant Ω = [0,∞[×[0,∞[ in R2 to de�ne the domain
D. In the triangular case, we have to de�ne a substitute for the positive quadrant: We
let Ω be the sector with opening angle π/3, and cyclically glue k copies of this sector Ω
to obtain the domain D for the limit function. To sum up, in both cases,

D = Ω× Zk

with identi�cation of points according to the gluing which is done as follows:
In each sector we have polar coordinates (x, φ) where 0 ≤ φ ≤ 90◦ (60◦, resp.). The

points (x, 90◦) of the �rst sector and the points (x, 0◦) of the second sector are identi�ed,
and so on, where the points (x, 90◦) in the k-th sector and (x, 0◦) in the �rst sector are
also identi�ed. In the triangular case, (x, 90◦) is replaced by (x, 60◦). In this way we
obtain polar coordinates on D where angles vary between 0◦ and (k 90)◦ (or (k 60)◦ in
the triangular case). For example, a point in D with polar coordinates (x, 110◦) comes
from the second sector and has angle 20◦ in that sector. The i-th copy of Ω in D is
referred to as i-th sector.

Next we de�ne the domain V0 for the initial k-regular mesh which serves as a substitute
for the grid Z2 we used in the regular mesh case. In the quadrilateral case, we let Σ be
the unit square [0, 1] × [0, 1] ⊂ Ω (the equilateral triangle of length 1 in the triangular
case). In the quadrilateral case, there is a quadrangulation of the sector Ω such that each
quadrilateral is congruent to Σ. We glue these sector-wise quadrangulations together to
obtain a quadrangulation of D. The vertices of this quadrangulation de�ne the set V0

which serves as domain for the initial k-regular mesh; see Figure 14 for a visualization. In
the triangular case, we have a regular triangulation of Ω where each triangle is congruent
to Σ. We glue these sector-wise triangulations together to obtain a triangulation of D.
The vertices of this triangulation de�ne the set V0 which serves as a domain for the initial
k-regular mesh.
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We de�ne the domains V1, V2, . . . for the subdivided k-regular meshes (which serve
as a substitute for the re�ned grids M−nZ2). To that end we introduce the notions of
dilation and rotation on D : In polar coordinates, dilation by a factor λ > 0 is given by
(x, φ)→ (λx, φ). Rotation about an angle ψ is given by (x, φ)→ (x, φ+ ψ). The dilation
matrixM now induces a `similarity transform' G = Gm−1,ψ with dilationm−1 = |detM |−1

and rotation angle ψ which is the same as the rotation angle in the regular case. We de�ne

Vi = GiV0

(In the standard scheme case, we used the de�nition G = Gλ,ψ with rotation angle ψ = 0
and the dilation factor λ = 1/2).
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Figure 14: Primal
√

2-subdivision for valence k = 3 near a central irregular vertex. Vertex
sets V0 at level 0 (left) and V1 = GV0 at level 1 (right).

Convergence of a scheme can now be de�ned by De�nition 1.12. As in the case of
standard schemes, the action of a subdivision scheme S on input on level n is denoted
by Sn. We let Sn,m = Sn · · ·Sm, and S∞,n is the operator mapping data on level n to the
corresponding limit function.

We de�ne subsets of D which are needed for analysis purposes. As in the case of
standard schemes, we use the symbol r to denote some scaling factor which is explained
later on and which should not be confused with the radial component of some polar
coordinate. We start with the neighborhood D′(r) of the singular point 0 of the domain
D given by

D′(r) := rΣ× Zk,

which means that D′(r) is obtained as scaling of the union of all copies of the unit square
in all sectors (or equilateral triangles in the triangular case).

Using the similarity transform G from above we obtain rings Di(r) (see Figure 13) as
follows:

D0(r) = D′(r) \GD′(r), D1(r) = GD′(r) \G2D′(r), . . . .
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The segments Dj
i (r) and the i-th inner area D′i(r) are given by

Dj
i (r) = Gi(Ω× j) ∩Di(r), D′i(r) = GiD′(r). (1.23)

The set D−1 is given in analogy to (1.21), respectively.
We now formulate the setup for our class of more general schemes. Note that that

assumptions on the eigenvalues of the subdivision matrix are also weakened.

Our Setup. We consider subdivision schemes S with the following properties near a
singularity of valence k:

(1) For regular connectivity, the smoothness index νa,M is greater than 1.

(2) There is a `radius' r > 0, such that the control sets ctrli(Dj
i (r)) are vertices of a reg-

ular connectivity. The subdivision matrix A maps data on ctrli(D′i(r)), controlling
the i-th inner area D′i(r), to data on ctrli+1(D′i+1(r)).

(3) The largest eigenvalue of A is 1, and A has a unique pair of complex conjugate
subdominant Jordan blocks (if the corresponding eigenvalue is real, we assume that
there are exactly two Jordan blocks of highest multiplicity). The characteristic map
χ : D \ {0} → R2, which is de�ned below, is regular and injective on the punctured
set U \ {0}, where U is some neighborhood of 0.

We simply write Di instead of Di(r), D
j
i instead of Dj

i (r), . . . in the following.
In order to de�ne the characteristic map we consider a (complex) Jordan vector v of

highest multiplicity to a subdominant (complex) eigenvalue λ. If λ is real, we choose v
such that Re v and Im v are linearly independent. The characteristic map χ : D → R2, is
obtained as limit of subdivision with input data [Re v, Im v].

Concerning the subdivision matrix we want to point out that the ordering of the
columns and rows of the matrix must be in correspondence to the similarity Gλ,ψ.

To mention some sources of examples,
√

3 and
√

7 schemes can be found in [41] and
[40]. Kobbelt's

√
3 scheme serves as an example in [41].

The conditions on the eigenvalues in (iii) are, for example, ful�lled for so-called shift-
invariant algorithms [45]. An algorithm is shift-invariant if it is invariant w.r.t. shifting
the sector-index. We explain this: Assume that we have data p0 on V0. Then each v ∈ V0

is of the form (x, j) with x ∈ Ω and j ∈ Zk. We can apply a shift by l ∈ Zk meaning that
(x, j) → (x, j + l). This induces a shift on the data p0; we call the result q0. Then the
shift by k applied to the limit of a shift invariant algorithm for input p0 equals the limit
for input q0. This assumption is absolutely natural for a subdivision scheme in our sense,
since for a general mesh no a priori ordering near a singularity is available (the book [45]
has a somewhat di�erent view towards subdivision which explains why shift-invariance is
a property there).

There is another interesting scheme we would like to incorporate into our framework:
Peters' and Reif's simplest subdivision scheme (mid-edge subdivision)[43]. This scheme
is a dual

√
2-scheme. We have only treated primal schemes above. Except for the choice

of the discrete domain V0 the framework presented above can remain unchanged. We



1.2 Linear subdivision schemes near extraordinary points 27

bc bc bc

bc bc bc

bc bc bc

bcbcbc

bcbcbc

bcbcbc

bcbcbc

bcbcbc

bcbcbc

B
B
B
B
B
B
B

Σ× 1Σ× 1Σ× 1Σ× 1Σ× 1Σ× 1Σ× 1Σ× 1Σ× 1Σ× 1Σ× 1Σ× 1Σ× 1Σ× 1Σ× 1Σ× 1Σ× 1

bc bc bc bc bc

bc bc bc bc bc

bc bc bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc bc bc bc

bc bc bc bc bc bc

bc bc bc bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bcbcbc

bcbcbc

bcbcbc

bcbcbc

bcbcbc

bcbcbc

��
�
��

�
��

��

G(Σ× 1)G(Σ× 1)G(Σ× 1)G(Σ× 1)G(Σ× 1)G(Σ× 1)G(Σ× 1)G(Σ× 1)G(Σ× 1)G(Σ× 1)G(Σ× 1)G(Σ× 1)G(Σ× 1)G(Σ× 1)G(Σ× 1)G(Σ× 1)G(Σ× 1)

Figure 15: Choice of vertex sets V0 (left) and V1 = GV0 (right) for dual
√

2-subdivision
near an irregular vertex of valence k = 3.

explain how to choose V0 and the re�nements Vi such that the class of dual
√

2-schemes
also �ts into our framework; see Figure 15. We let

V0 = ((1
2
, 1

2
) + N0 × N0)× Zk, and Vi+1 = G1/

√
2,±π/4Vi.

This means that V0 are the midpoints of the copies of Σ, and that the re�nements Vi are
obtained by i times application of the similarity transform with dilation factor 1/

√
2 and

rotation angle ±π/4 to V0. Proceeding similarly, one can also include other dual schemes;
in particular dual quadrilateral schemes based on quadrisection.

The following theorem of U. Reif is analogous to Theorem 1.13 and is also valid in
the case of our more general dilation matrices. This has also been observed in the papers
[41, 40].

Theorem 1.14. Let S be a subdivision scheme ful�lling the assumptions above. For input
data p0 : ctrl0(D′)→ Rd, let S∞,0p0 be the limit function of subdivision for input p0. Then
the map

S∞,0p0 ◦ χ−1 : χ(D′)→ Rd is C1.

For almost all input data p0, the image S∞,0p0(D′) is a two-dimensional submanifold of
Rd locally around the (extraordinary) limit point S∞,0p0(0).
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2 Nonlinear geometric subdivision schemes

In this chapter we introduce geometric subdivision schemes which handle data in
nonlinear geometries such as Riemannian manifolds or Lie groups. These schemes are
necessarily nonlinear. The constructions we present here use a linear rule as a template
and modify it such that the resulting scheme is able to process the geometric data. Various
such constructions have been proposed in the literature; see [53, 57, 55] and the references
cited there. We present some of them later on. The following construction is new.

Intrinsic mean subdivision:

Intrinsic mean subdivision is particularly suited to subdivision in Riemannian mani-
folds. The idea of an intrinsic mean in a Riemannian manifoldM , also called Riemannian
center of mass, goes back to Cartan. For details, we refer to [27]. In the context of
`meshless geometric subdivision', intrinsic midpoints of surfaces were used in [36].

We consider a linear scheme S. The geometric rule of S is given by the stencils αv,w
which determine new vertex positions by

h1(w) =
∑
v∈V0

αv,wh0(v), where
∑
v∈V0

αv,w = 1.

For the construction of the intrinsic mean analogue T of S, we retain the topological rule.
For de�ning the geometric rule, observe that in Euclidean space the weighted center of
mass h1(w) is the minimizer of a quadratic function:

h1(w) = argminq
∑

v
αv,w‖h0(v)− q‖2

2.

Replacing the Euclidean distance by the Riemannian distance, we obtain the rule

h1(w) = argminq
∑

v
αv,w dist(h0(v), q)2. (2.1)

This minimizer is called (weighted) Riemannian center of mass or intrinsic mean. Using
the rule (2.1) naturally preserves the symmetries present in the coe�cients αv,w.

Existence and uniqueness of h1(w) is guaranteed if the contributing old vertex positions
h0(v) lie in a small enough ball. For estimates on the sizes of these Riemannian balls we
refer to Kendall [28, 27]. It is a general issue that a geometric scheme, in general, is
only de�ned for dense enough input data; a fact we also encounter for all the schemes
presented later on. By dense enough we mean that the values h0(v) which contribute
to the calculation of h1(w) are nearby. However, in certain Riemannian manifolds and
for certain schemes the above construction is globally de�ned. We discuss this topic in
Chapter 5.

We have the following nice property:∑
v
αv,w exp−1

h1(w)(h0(v)) = 0. (2.2)

Here exp is the Riemannian exponential function. If the old vertex positions p0(v) sit in a
small enough Riemannian ball, the balance condition (2.2) even characterizes the center
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of mass (2.1). This property could also serve as a de�nition if no distance is available,
like in a Lie group.

Obviously, (2.2) is equivalent to

h1(w) = exph1(w)

(∑
v
αv,w exp−1

h1(w)(h0(v))
)
. (2.3)

The following gradient descent converges to the intrinsic mean h1(w) :

yj+1 = expyj
(∑

v
αv,w exp−1

yj
(h0(v))

)
, (2.4)

whenever the initial point y0 is chosen in a small enough ball. This provides a way of
computing the mean.

In case of regular mesh subdivision the intrinsic mean analogue of S = Sa,M given by

Sp(α) =
∑

β∈Zd
a(α−Mβ)p(β),

reads

Tp(α) = argminq
∑

β∈Zd
a(α−Mβ) dist(p(α), q)2. (2.5)

The equations (2.3) and (2.4) allow us to establish a connection between the intrinsic
mean analogue and the log− exp analogue we explain next.

Log-exp subdivision:

For log-exp subdivision the data is supposed to take values in a Lie group, a Rieman-
nian manifold or a symmetric space, see [58]. It was proposed in [53]. In order to de�ne
the log-exp analogue T of a linear scheme S, we again retain the topological rule. In order
to de�ne the geometric rule, we use the a�ne invariance of S, i.e.

∑
v∈V0 αv,w = 1 and

rewrite the geometric rule of S :

h1(w) =
∑

v
αv,wh0(v) = x(w) +

∑
v
αv,w(h0(v)− x(w)), (2.6)

where x(w) is an arbitrary point in Euclidean space.
The operation `point + vector' and the operation `point − point' in (2.6) are replaced

by exp and its inverse, respectively, which are available in a Lie group, a Riemannian
manifold or a symmetric space. We obtain

h1(w) = expx(w)(
∑

v
αv,w exp−1

x(w)(h0(v))), (2.7)

with base points x(w) in the manifold. For Lie groups, expx(v) = x exp(x−1v). The choice
of base points should match with the connectivity of the mesh: a vertex of a re�ned mesh
is combinatorically associated with a vertex, edge or face of the original mesh. It makes
sense to let w's ancestor determine x(w), e.g. as intrinsic edge midpoint or face midpoint.
One possible face midpoint is the midpoint of diagonals.

For obtaining C1 smoothness on general meshes it turns out that the choice of base
points is rather arbitrary: x(w) should just be chosen to lie in a neighborhood (of globally
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�xed size) of w. For obtaining smoothness higher than C2 for regular meshes this is not
the case. Here a special choice of base points is necessary.

In the regular mesh case, the corresponding subdivision operator reads:

Tp(α) = expq(
∑

β∈Zd
a(α−Mβ) logq p(β)), (2.8)

where q is some base point dependent on α.
Ur Rahman et al. [53] choose q = p(γ) as base point, where α = Mγ + r. Numerical

experiments in [64] suggest that no high order smoothness can be expected for that choice
of base-points for non-interpolatory schemes. In that paper, Xie and Yu propose a di�erent
strategy. They choose the base point as the result of an auxiliary interpolatory scheme
Q, which ful�lls su�ciently high order sum rules. Then (2.8) reads

Tp(α) = expQp(α)(
∑

β∈Zd
a(α−Mβ) logQp(α) p(β)). (2.9)

The correct choice of base-points is also the topic of the paper [16].
As intrinsic mean subdivision, log-exp subdivision is only well de�ned for dense enough

input. This is due to the fact that the log-function and the exp-function are in general
only locally de�ned.

We owe the connection between log-exp subdivision and intrinsic mean subdivision:
By (2.4) the action of the log-exp analogue at a point in a Riemannian manifold can be
interpreted as �rst step in the iteration to the intrinsic mean on the one hand. On the
other hand, by (2.3), the intrinsic mean analogue can be interpreted as log-exp analogue
with a very special choice of base points, namely the means itself. So for analysis purposes,
intrinsic mean subdivision can be seen as an instance of log-exp subdivision.

Subdivision using the geodesic analogue:

This construction works for Riemannian manifolds and was proposed in [57]. The idea
is to write the linear rule

h1(w) =
∑
v

αv,wh0(v), where
∑
v

αv,w = 1, (2.10)

as an iterated process of a�ne averaging. To explain this, we use as an example the Doo-
Sabin scheme on regular meshes (producing the tensor product of the quadratic B-spline)
which has the form

h1(w) = 9
16
h0(v0) + 3

16
h0(v1) + 3

16
h0(v2) + 1

16
h0(v3). (2.11)

With the a�ne averaging operator avλ given by

avλ(x, y) = (1− λ)x+ λy, λ ∈ R,

we can rewrite (2.11) as

h1(w) = av1/4(av1/4(h0(v0), h0(v1)), av1/4(h0(v2), h0(v3)))
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This representation is by far not unique. It is shown in [57] that as a consequence of the
a�ne invariance every rule of the form (2.10) can be written as an iterated process of
a�ne averaging:

h1(w) = avλ0(avλ1(. . .), avλ2(. . . , avλk(. . .))). (2.12)

The replacement for the a�ne averaging operator avλ in linear case is given by the geodesic
averaging operator g-avλ . For two nearby points x and y in a Riemannian manifold we
consider the geodesic c joining x and y which is parametrized such that c(0) = x and
c(1) = y. Then the geodesic averaging operator g-avλ is de�ned by

g-avλ(x, y) = c(λ).

Replacing each occurrence of av by g-av in (2.12) we obtain a geodesic analogue T of the
scheme S :

h1(w) = g-avλ0(g-avλ1(. . .), g-avλ2(. . . , g-avλk(. . .))). (2.13)

This analogue is again well-de�ned for dense enough input data. This restriction is due
to the fact that, in general, shortest geodesics need not exist and even if they do exist,
they do not have to be unique.

Subdivision using the projection analogue:

This analogue works for surfaces M embedded in some Rn or nice closed sets M in
some Rn like compact sets with smooth boundary. In applications, the complements of
these second sets might be considered as obstacles the subdivision surface is not allowed
to intersect. The general idea is that there is some projection mapping available, such
that one can use a linear subdivision scheme S in Rn for data inM and afterwards project
the output data back to M. This way of subdivision in a surface is pointed out in [57],
and a detailed treatment can be found in [15]. The case of subdivision in the presence of
obstacles can be found in [55].

We discuss the notion of a projection (or retraction) P : If we have dense enough input
data it is reasonable to assume that the output of S applied to data in M does not lie too
far from M. So it is su�cient that P is de�ned in an (open) ε-neighborhood U of M. The
notion of a projection is formalized by requiring P ◦P = P. Since it shall be a projection
to M, we require P (U) ⊂M. Then the projection analogue T of S is de�ned by

T = P ◦ S. (2.14)

The projection is also required to be at least continuous. The smoothness of the projection
limits the smoothness of the resulting geometric scheme [15].

We give some examples of projection mappings. In the case that M is a surface one
can use a closest point projection, or if a surface in R3 is given as a level set f(x, y, z) = 0
of a smooth function f then one case use gradient �ow for projecting. The projection in
the obstacle case can be de�ned as follows: If x ∈ M, then Px = x, and otherwise P
is a projection to the boundary of M. This mapping is only continuous which limits the
smoothness we can expect to C1.
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General bundle framework:

We brie�y recall a general framework set up in [17] which we use in Chapter 6. The
framework applies to the log-exp analogues above and thus to the intrinsic mean analogue
via its interpretation as log-exp analogue with a special choice of base points.

It is assumed that the manifoldM is the base space of a smooth vector bundle π : E →
M with a smooth bundle norm (e.g. in a Lie group the trivial bundle with the Lie algebra
as �ber and some canonically extended norm on the Lie algebra, or the tangent bundle
of a Riemannian manifold with the norm induced by the Riemannian scalar product).
The substitutes of addition and subtraction are given by an operation ⊕ : E → M,
which is de�ned in a neighborhood of the zero section of the bundle, and an operation
	 : M ×M → E, which is de�ned near the diagonal (e.g., the Lie group exponential
or the Riemannian exponential and their inverses). Furthermore, y 	 x ∈ π−1({x}) and
x ⊕ (y 	 x) = y have to be ful�lled. Then the geometric analogue of (2.6) (w.r.t. this
bundle) is given by

p1(w) = x(w)⊕
∑

v
αv,w(p0(v)	 x(w)). (2.15)



33

3 Analysis of nonlinear schemes with general dilation

on regular grids

In this chapter we obtain convergence and smoothness results on regular grids for
schemes which are `not to far apart' from convergent and smooth linear schemes. The
nearness is formalized by so-called proximity conditions. We consider schemes based on
general dilation matrices. The results are applied to the geometric schemes explained in
Chapter 2. Such results have been obtained by [57, 56, 64] in the univariate case, and by
[14] in the multivariate case for standard dilation matrices, i.e., multiples of the identity
matrix. Our method of proof is not via derived schemes as in the above mentioned
references; that derived schemes exhibit problems in the case of general dilation has
already been observed by Sauer [49].

The material of this chapter is contained in [60].

3.1 Statement of the results

The fact that nonlinear subdivision is well-de�ned only for dense enough data entails
considerable technicalities in the proofs. The exact formulation of the proximity between
a nonlinear scheme and the linear scheme it is derived from is similarly technical. We
introduce the following notions: For a subset N of Euclidean space and a positive real
number σ, we consider the class PN,σ of σ-dense data which lie in N :

PN,σ =
{
p ∈ l∞(Zd, N) : ‖∇eip‖∞ ≤ σ for all canonical basis vectors ei

}
.

Typically N is a surface in Euclidean space or some open set in Euclidean space obtained
as image of a chart. Further, we consider the quantity

Ωj(p) =
∑
γ∈Γj

j∏
i=1

sup
|µ|=i

(‖∇µp‖∞)γi , where Γj = {γ ∈ Nj
0 | γ1 + 2γ2 + · · ·+ jγj = j + 1}.

(3.1)

For illustration, consider the cases j = 1 and j = 2:

Ω1(p) = sup
|µ|=1

‖∇µp‖2, Ω2(p) = sup
|µ|=1

‖∇µp‖3 + sup
|µ|=1

‖∇µp‖ sup
|µ|=2

‖∇µp‖.

Using this notation, we de�ne proximity between subdivision rules S, T which operate on
data living in a Euclidean vector space.

De�nition 3.1. Subdivision rules S and T obey proximity inequalities of order k in the
domain PN,σ if there is a constant C > 0 such that, for all p ∈ PN,σ,

sup
|µ|=j−1

‖∇µ(Sp− Tp)‖∞ ≤ CΩj(p) for j = 1, . . . , k. (3.2)

This de�nition can locally be applied to a geometric scheme acting in an abstract
manifold N by going to Euclidean space using charts (if N ⊂ Rn it can be applied
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directly). The linear scheme is applied w.r.t. to the chart representation of the data and
the output of the geometric scheme is transfered to Euclidean space by the chart.

The above conditions have been successfully applied to the analysis of geometric curve
subdivision schemes and multivariate schemes based on a dilation matrix of the form NI.
[57, 56, 64, 14]. It turns out that also in our setting, allowing dilation matrices to be
arbitrary, we can use them to obtain convergence and smoothness of T. However, we need
to follow a somewhat di�erent path in our argumentation later on.

We use the following de�nition of convergence of a nonlinear scheme where we postulate
that iterated subdivision is well-de�ned.

De�nition 3.2. A subdivision scheme T is called convergent for input data p if T np is
well-de�ned for all n, and if there is a uniformly continuous function fp such that

‖fp(M−k·)− T kp‖l∞(Zd) → 0 as k →∞.

Here fp is sampled on M−kZd and a sequence on Zd is generated from this sample by
the change of coordinates α→Mkα.

The statement of our �rst result, the following convergence theorem, is rather technical.
This is mainly due to the fact, that in the nonlinear case, where the scheme is in general
not globally de�ned, it must be guaranteed that the subdivision process is well-de�ned
on each intermediate level of subdivision. Note that we also obtain a nice sequence of
uniformly continuous functions converging to the limit of nonlinear subdivision.

Theorem 3.3. Consider a convergent linear subdivision rule Sa,M acting on a regular
grid. We assume that S is in �rst order proximity with the subdivision rule T w.r.t. the
class of data PN,σ. We assume that, for all p ∈ PN,σ, the subdivided data Tp takes its
values in some set N ′ with N ⊂ N ′ ⊂ Rn. Assume further that there is a subset N ′′ ⊂ N
and σ′ > 0 such that the σ′-neighborhood Uσ′(N

′′) obeys

Uσ′(N
′′) ∩N ′ ⊂ N.

Then there is a denseness bound σ′′ > 0 such that the subdivision rule T converges for
bounded data p ∈ PN ′′,σ′′ . Furthermore, using the notation of De�nition 3.2

T np ∗ φ(Mn·)→ fp as uniformly continuous functions.

Here φ is the re�nable function generated by S.

Since we consider quite general sets N in this theorem we have to assume the existence
of the set N ′′ with the above properties. However, if, for example, N is a ball of radius
r, then N ′′ can be chosen as the ball with the same center and radius r − σ′. Then, for
this particular choice of N , the theorem says that, if S and T ful�ll proximity conditions
w.r.t. PN,σ, then T converges for dense enough input in the smaller ball N ′′. The next
statement is the main result of the present chapter. It concerns smoothness.

Theorem 3.4. Assume that the linear subdivision rule Sa,M (acting on a regular grid)
has maximal sum rule order k and that it is in k-th order proximity with a subdivision
rule T w.r.t. to some domain PN,σ of σ-dense data. If T converges for input data p, then
the limit fp is a Lipγ function for all γ < νa,M .
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The proofs of these theorems are given in Chapter 3.2. The main reason for deriving
these theorems is that they apply to the geometric subdivision rules introduced above.
When transferring the data we operate in into Rn by means of some coordinate represen-
tation, we get nonlinear subdivision rules which work in Rn. Knowing that this produces
rules which are in proximity to linear rules, we conclude:

Theorem 3.5. The previous theorems regarding convergence and smoothness apply to
geometric subdivision rules which are the log-exp analogue or the intrinsic mean analogue
of the linear rule Sa,M . In the log-exp case, the choice of base points must follow [16] (of
which (2.9) is a special case). Furthermore, they apply to the projection analogue, where
for the smoothness result it is required that the projection mapping is Ck+1.

Corollary 3.6. If the linear subdivision scheme Sa,M is stable and M is isotropic, the
analogues mentioned in Theorem 3.5 produce limits fp whose smoothness index ν(fp) is at
least as high as the smoothness index ν(φ) of the re�nable function φ of the linear scheme.
In particular, if the linear scheme produces Ck limits, then the geometric analogues also
produce Ck limits.

3.2 Convergence and smoothness analysis

Here we prove Theorem 3.3, Theorem 3.4 and its corollaries.
The �rst lemma shows the two important inequalities (3.3) and (3.4). The estimate

(3.3) establishes a certain contractivity of the nonlinear scheme T. A similar estimate
is also an important intermediate step in all previous smoothness proofs for geometric
nonlinear schemes in the literature. In addition, we obtain the estimate (3.4) which is
central in the proof of Theorem 3.4.

Lemma 3.7. Assume that Sa,M is a linear convergent subdivision scheme with maximal
sum rule order k. Assume furthermore that Sa,M and the (nonlinear) scheme T ful�ll
k-order proximity conditions w.r.t. some class PN,σ of σ-dense input.

Then for any s > 1, we can �nd C > 0 and σ′′ > 0 such that the following is true: For
input p ∈ PN,σ′′ , for which we assume that T np is de�ned for all n and that T np ∈ PN,σ
for all n, and for any j ∈ {1, . . . , k} we have the inequality

sup
|µ|=j
‖∇µT np‖∞ ≤ C max(ρk, |λmin|−j)nsn sup

|µ|=1

‖∇µp‖∞, (3.3)

where C is independent of p. Here λmin is an eigenvalue of the dilation matrix M of
minimal modulus. In particular there is a constant L > 0 with

Ωj(T
np) ≤ L(ρjρ1s)

n sup|µ|=1 ‖∇µp‖2
∞. (3.4)

Proof. If the statement holds for some s > 1, it obviously holds for any s′ > s. So we
can �x s > 1 such that ρjs < 1 for all j = 1, . . . , k. For every j ∈ {1, . . . , k} there is, by
Lemma 1.10, a constant C ′j (dependent on s) such that

sup
|µ|=j
‖∇µSnp‖∞ ≤ C ′j(ρjs)

n sup
|µ|=j
‖∇µp‖∞.
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We let C ′ = max1≤j≤k C
′
j. Furthermore, we denote the proximity constants from (3.2) by

CP .
For the next estimate, we consider j ∈ {1, . . . , k} and a multiindex µ of order j. We

apply Lemma 1.10 and (3.2) in order to obtain, for every n ∈ N, the estimate

‖∇µT np‖∞ ≤
n−1∑
l=0

‖∇µSl(T − S)T n−l−1p‖∞ + ‖∇µSnp‖∞

≤ 2C ′
n−1∑
l=0

ρljs
l sup
|η|=j−1

‖∇η(T − S)T n−l−1p‖∞ + C ′ρnj s
n sup
|µ|=j
‖∇µp‖∞

≤ 2C ′CP

n−1∑
l=0

ρljs
lΩj(T

n−l−1p) + C ′ρnj s
n sup
|µ|=j
‖∇µp‖∞. (3.5)

Recall that by Theorem 1.4, ρm = max(ρk, |λmin|−m) for m < k. We use induction on
`the order of di�erences' j to show (3.3) and start with the case j = 1. We show (3.3) for
the case j = 1 for the constants

C = C1 := 2C ′ and σ′′ = σ′′1 := min(σ,
ρ1s(1− ρ1s)

8C ′2CP
, 1). (3.6)

To that end, we perform induction on the subdivision level n. The case n = 0 is clear,
since C ′ ≥ 1. As to general n assume that (3.3) holds for all smaller values than n (still,
j = 1). Observing that we set C = 2C ′ in (3.6), we have

Ω1(T n−l−1p) = sup
|µ|=1

‖∇µT n−l−1p‖2
∞ ≤ 4C ′2(ρ1s)

2n−2l−2 sup
|µ|=1

‖∇µp‖2
∞ (3.7)

by the induction hypothesis. This implies, using (3.5),

sup
|µ|=1

‖∇µT np‖∞ ≤ C ′ρnj s
n
(

8C ′2CP
( n−1∑
l=0

(ρ1s)
n−l−2

)
sup
|µ|=1

‖∇µp‖∞ + 1
)

sup
|µ|=1

‖∇µp‖∞.

(3.8)

Applying the geometric series, we get∑n−1

l=0
(ρ1s)

n−l−2 ≤ (ρ1s)
−1(1− ρ1s)

−1. (3.9)

Our choice of σ′′1 in (3.6) implies that

sup|µ|=1 ‖∇µp‖∞ ≤ σ′′1 ≤ 1/8 C ′−2C−1
P ρ1s(1− ρ1s). (3.10)

Plugging (3.9) and (3.10) into (3.8), we obtain (3.3) for the case j = 1.
We perform the induction step. As an induction hypothesis we assume that (3.3) is

valid for i = 1, . . . , j − 1 instead of j with constants C = 2iC ′ and σ′′j−1. This means that
we consider input p ∈ PN,σ′′j−1

, for which iterated subdivision using T is de�ned and for
which T np ∈ PN,σ for all n ∈ N. We assume that, for such input and i = 1, . . . , j − 1,

sup
|µ|=i
‖∇µT np‖∞ ≤ 2iC ′max(ρk, |λmin|−i)ns′n sup

|µ|=1

‖∇µp‖∞, (3.11)
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for any s′ > 1. We choose s′ as

s′ = s1/(j+1). (3.12)

Recall that s is chosen in a way such that ρ1s < 1, as well as ρjs < 1. We perform
induction on n to show (3.11) for i = j for the constants

C = 2jC ′ and σ′′ = σ′′j = min(σ′′j−1,
2j−2(1− ρ1s)ρjs

DCP
, 1),

where we de�ne the constant D by

D = 2j+1C ′j+1|Γj|.

The choice of D will become clear later on. The case n = 0 is obvious. For the induction
step we assume that (3.11) is valid for i = j and n replaced by smaller values than n.
There is only one γ ∈ Γj with γj 6= 0, namely γ = (1, 0, . . . , 0, 1). Using the induction
hypothesis its contribution to (3.1) can be estimated as follows:

sup
|µ|=j
‖∇µT n−l−1p‖∞ sup

|µ|=1

‖∇µT n−l−1p‖∞ ≤ 2j+1C ′2(ρjρ1s
2)n−l−1 sup

|µ|=1

‖∇µp‖2
∞.

For the other summands γ ∈ Γj (with γj = 0) we obtain, using the induction hypothesis,

j∏
i=1

sup
|µ|=i
‖∇µT n−l−1p‖γi∞ ≤

j∏
i=1

2iγiC ′γi(ρis
′)γi(n−l−1) sup

|µ|=1

‖∇µp‖γi∞

≤ 2j+1C ′j+1s′(j+1)(n−l−1)

j∏
i=1

ρ
γi(n−l−1)
i sup

|µ|=1

‖∇µp‖γi∞

≤ 2j+1C ′j+1s(n−l−1) sup
|µ|=1

‖∇µp‖2
∞ ·

j∏
i=1

ρ
γi(n−l−1)
i . (3.13)

The last inequality is a consequence of sup|µ|=1 ‖∇µp‖∞ ≤ 1 which is due to our choice of
σ′′. Next, we show the estimate ∏j

i=1
ργii ≤ ρjρ1. (3.14)

We recall that Theorem 1.4 states that ρi = max(|λmin|−i, ρk); this implies in particular
that ρk ≤ ρk−1 ≤ . . . ≤ ρ1 < 1. We distinguish di�erent cases: If j ≤ − log|λmin| ρk, which
means that ρk ≤ |λmin|−j, we apply Theorem 1.4 and obtain that ρi = |λmin|−i for all
1 ≤ i ≤ j. As a consequence, ∏j

i=1
ργii = |λmin|−j−1 = ρjρ1.

This shows (3.14) in case that j ≤ − log|λmin| ρk. So we can assume that j > − log|λmin| ρk,
i.e., ρk > |λmin|−j. Then Theorem 1.4 implies ρk = ρj. If there is some non-zero factor γi0
such that i0 ≥ − log|λmin| ρk, then∏j

i=1
ργii ≤ ρk ·

∏j

i=1,i 6=i0
ργii ≤ ρkρ1 = ρjρ1.
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This is true since ρi0 = ρk = ρj and ρi ≤ ρ1 < 1. If γi 6= 0 only for i smaller than
− log|λmin| ρk, then∏j

i=1
ργii = |λmin|−j−1 = |λmin|−j|λmin|−1 < ρkρ1 = ρjρ1.

This shows (3.14). Using the estimate (3.14) in (3.13), we obtain

Ωj(T
n−l−1p) ≤ (2j+1C ′2 + (|Γj| − 1)2j+1C ′j+1)(ρjρ1s

2)n−l−1 sup
|µ|=1

‖∇µp‖2
∞

≤ D(ρjρ1s
2)n−l−1 sup

|µ|=1

‖∇µp‖2
∞. (3.15)

We use (3.5) and (3.15) to obtain

sup
|µ|=j
‖∇µT np‖∞ ≤ 2C ′CP

n−1∑
l=0

ρljs
lΩj(T

n−l−1p) + C ′ρnj s
n sup
|µ|=j
‖∇µp‖∞

≤ 2C ′CPD
n−1∑
l=0

(ρjs)
n−1(ρ1s)

n−l−1 sup
|µ|=1

‖∇µp‖2
∞ + 2j−1C ′ρnj s

n sup
|µ|=1

‖∇µp‖∞

≤ C ′ρnj s
n
(

2CPD(1− ρ1s)
−1(ρjs)

−1 sup
|µ|=1

‖∇µp‖∞ + 2j−1
)

sup
|µ|=1

‖∇µp‖∞

≤ 2jC ′ρnj s
n sup
|µ|=1

‖∇µp‖∞.

The last inequality is valid since, by the choice of σ′′j , the term in brackets is smaller than
2j. So the induction w.r.t. both n and j is complete. Finally, the statement (3.4) is shown
by (3.7) and (3.15).

With these preparations at hand we can prove Theorem 3.3.

Proof of Theorem 3.3. We choose s > 1 such that sρ1 < 1. We let φ0 be the piecewise
linear B-Spline. Since both φ0 and the re�nable function φ associated with S reproduce
constant functions and have compact support, the inequality

‖p ∗ φ0 − p ∗ φ‖∞ ≤ C1 sup|µ|=1 ‖∇µp‖∞

holds for all bounded input data p with C1 not depending on p. Furthermore,

‖p ∗ φ0‖∞ ≤ C2‖p‖∞ and ‖p ∗ φ‖∞ ≤ C3‖p‖∞,

where the constants are the corresponding operator norms. Let C4 be the constant from
the �rst order proximity condition, and C5 be the constant from (3.3). We use the symbol
σ′′1 for the constant from (3.6). Then we let

σ′′ = min
(
σ′′1 ,

σ′

4C1C5

,
(σ′(1− ρ2

1s
2)

2C3C4C2
5

)1/2

,
σ

C5

)
. (3.16)

We show that, for input data p ∈ PN ′′,σ′′ , T np is de�ned for all n ∈ N0, and that T np ∈
PN,σ. Then the assumptions of Lemma 3.7 are met and we can use this lemma to deduce
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convergence. We use induction on n. The case n = 0 is clear. As induction hypothesis
we assume that for all k = 0, . . . , n − 1, T kp is well-de�ned and that it belongs to PN,σ.
Furthermore, we assume that T kp takes values in Uσ′(N ′′). Then T np is de�ned, and for
k = 0, . . . , n− 1,

‖T k+1p ∗ φ(Mk+1·)− T kp ∗ φ(Mk·)‖∞ = ‖(T − S)T kp ∗ φ(Mk·)‖∞
≤ C3C4 sup

|µ|=1

‖∇µT kp‖2
∞.

Using Lemma 3.7 and the above estimate we obtain, for m < n,

‖T np ∗ φ0(Mn·)− Tmp ∗ φ0(Mm·)‖∞

≤ ‖T np ∗ (φ0(Mn·)− φ(Mn·))‖∞ +
n−1∑
k=m

‖T k+1p ∗ φ(Mk+1·)− T kp ∗ φ(Mk·)‖∞

+ ‖Tmp ∗ (φ0(Mm·)− φ(Mm·))‖∞

≤ C1 sup
|µ|=1

‖∇µT np‖∞ + C3C4

n−1∑
k=m

sup
|µ|=1

‖∇µT kp‖2
∞ + C1 sup

|µ|=1

‖∇µTmp‖∞

≤ 2C1C5(ρ1s)
m sup
|µ|=1

‖∇µp‖∞ + C3C4C
2
5

n−1∑
k=m

(ρ1s)
2k sup
|µ|=1

‖∇µp‖2
∞

≤ σ′

2
(ρ1s)

m + C3C4C
2
5(ρ1s)

m(1− ρ2
1s

2)−1 sup
|µ|=1

‖∇µp‖2
∞ ≤ σ′(ρ1s)

m. (3.17)

The last inequality is true because of the choice of σ′′ in (3.16) and because, by assumption,
‖∇µp‖∞ ≤ σ′′. If we let m = 0 in (3.17), we obtain that T np takes values in Uσ′(N

′′).
Furthermore, sup|µ|=1 ‖∇µT np‖∞ ≤ C5(σ/C5) = σ. This completes the induction.

A straightforward consequence of (3.17) is that T np ∗ φ0(Mn·) is a Cauchy sequence,
which implies the convergence of T for input data p which belong to PN ′′,σ′′ . Furthermore,

‖T np ∗ (φ0(Mn·)− φ(Mn·))‖∞ ≤ C1 sup|µ|=1 ‖∇µT np‖∞,

and the right hand side approaches 0 as n → ∞. This implies that the sequence of
uniformly continuous functions T np ∗ φ(Mn·) converges to the limit of T for input p as
n → ∞. Hence, we also have that the limit fp of the nonlinear scheme is uniformly
continuous. This completes the proof.

Our next objective is the proof of our main result on smoothness of nonlinear subdi-
vision schemes in the regular grid case.

Proof of Theorem 3.4. Since, by assumption, T converges for data p, subdivided data
eventually gets dense. So we can w.l.o.g. assume that p itself is already dense enough.

We show that T np ∗ φ(Mn·) is a Cauchy sequence in Lipγ . Then Theorem 3.3 implies
that the limit function of T belongs to Lipγ . We choose s > 1 such that s2ρ1 < 1. We let
C1 be the constant of Proposition 1.11 and C2 be the proximity constant of (3.2), and we
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denote the constant of (3.4) by L. We use Proposition 1.11 to estimate

|T n+1p ∗ φ(Mn+1·)− T np ∗ φ(Mn·)|Lipγ ,k

= |T n+1p ∗ φ(Mn+1·)− ST np ∗ φ(Mn+1·)|Lipγ ,k

≤ C1|λmax|γnsn sup|µ|=k ‖∇µ(S − T )T np‖∞
≤ 2C1C2|λmax|γnsnΩk(T

np). (3.18)

By (3.4),

Ωk(T
np) ≤ L(ρkρ1s)

n sup|µ|=1 ‖∇µp‖2
∞. (3.19)

By the de�nition of the smoothness index νa,M , we have ρk = |λmax|−νa,M . Therefore,
ρk|λmax|γ < 1. Using this fact and plugging (3.19) into (3.18) we get

|T n+1p ∗ φ(Mn+1·)− T np ∗ φ(Mn·)|Lipγ ,k ≤ 2C1C2L rn sup|µ|=1 ‖∇µp‖2
∞,

where r = ρk|λmax|γs2|λmin|−1 < 1. We apply this estimate to obtain

‖T n+lp ∗ φ(Mn+l·)− T np ∗ φ(Mn·)‖Lipγ ,k

= |T n+lp ∗ φ(Mn+l·)− T np ∗ φ(Mn·)|Lipγ ,k + ‖T n+lp ∗ φ(Mn+l·)− T np ∗ φ(Mn·)‖∞
≤ C1C2L rn(1− r)−1 sup|µ|=1 ‖∇µp‖2

∞.+ ‖T n+lp ∗ φ(Mn+l·)− T np ∗ φ(Mn·)‖∞,

where the second term tends to 0 by Theorem 3.3. Therefore, T np ∗ φ(Mn·) is a Cauchy
sequence in Lipγ . This completes the proof.

Proof of Theorem 3.5. It remains to verify the proximity inequalities. The geometric ana-
logues considered in this corollary are instances of the so-called g-f -analogues introduced
in [64]. Therefore the proximity inequalities for the intrinsic mean analogue (2.5), the
log-exp analogue (2.9), and the projection analogue (2.14) follow directly from Theorems
5.8 and 5.9 of [16].

Proof of Corollary 3.6. Theorem 3.5 ensures that the mentioned analogues produce limits
fp whose smoothness index ν(fp) is at least as high as the smoothness index νa,M of the
linear scheme. Then the smoothness index of the re�nable function ν(φ) equals the
smoothness index νa,M [18]. The second statement of the corollary follows from the fact
that if Sa,M produces Ck limits, then the corresponding smoothness index νa,M is strictly
greater than k [20].
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4 Analysis of nonlinear schemes on irregular combina-

torics

In this chapter we consider meshes with irregular combinatorics. We show that a
nonlinear scheme which is `not too far apart' from a linear one converges (for dense enough
input data) and produces C1 limits, if the linear scheme meets certain assumptions. The
geometric schemes considered in Chapter 2 are schemes which are `not too far apart' from
the linear ones they are derived from. This allows us to conclude that, also on irregular
meshes, they converge (for dense enough input data) and produce C1 limits. We start by
stating our main result. The remainder of the chapter is concerned with its proof where
we �rst consider (nonlinear) perturbations of standard schemes and then proceed to the
more general class of shift-invariant schemes, both de�ned in Chapter 1.2.

The results of this chapter are contained in the papers [62, 60].

4.1 Statement of the results

The main result of this chapter is the following:

Theorem 4.1. The geometric analogues of Chapter 2, i.e., the intrinsic mean analogue,
the log-exp analogue, the geodesic analogue and the projection analogue, of the linear
schemes de�ned in Chapter 1.2 (both standard schemes and shift-invariant schemes) con-
verge provided input data are dense enough and the mesh under consideration has bounded
face and vertex valences. These limits are even C1, if considered w.r.t. the characteristic
parametrization.

There are two ways to treat convergence (for dense enough input) and smoothness
issues for geometric schemes: The �rst is to embed the manifold into Rd, the second is
to go to a chart neighborhood. In both cases the geometric scheme T , which then acts
in Euclidean space, is shown to meet a proximity condition with a linear scheme S. For
meshes of arbitrary combinatorics with a �xed, but arbitrary, bound L on the valence of
vertices and faces in the mesh, we de�ne the class of σ-dense meshes PN,σ with values in
N as all those meshes (Ki, hi) whose positioning function hi is bounded and has values
in N, and where the distance of neighboring vertices in N is smaller than σ. We use the
following (local) proximity condition.

De�nition 4.2. We consider a subset N ⊂ Rd, a denseness bound σ > 0, and two
subdivision schemes S, T with the same topological rule.

Then S and T satisfy a (local) proximity condition w.r.t. PN,σ, if there is a constant
C, such that for all input meshes (K0, h0) which belong to PN,σ, and all vertices w ∈ V1,
hT1 (w) only depends on h0|supp(α·,w) and

‖hS1 (w)− hT1 (w)‖ ≤ C sup
v1,v2∈supp(α·,w)

‖h0(v1)− h0(v2)‖2, (4.1)

Here hS1 and hT1 are the resulting positioning functions after re�nement of (K0, h0) using
S and T, respectively.
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Here supp(α·,w) is the support of the stencil αv,w which are those vertices v which
contribute to the calculation of hS1 (w). The proximity conditions used in [57] and [14] are
slightly weaker than the one in De�nition 4.2; the di�erence is that we have to use locality
in order to show smoothness for the general mesh case.

Like in the analysis of linear schemes we can restrict the analysis of a nonlinear scheme
T (which is in local proximity with a linear scheme S) to the neighborhood of an extraor-
dinary face or vertex, respectively, when the regular mesh case has already been treated
(which is done in Chapter 3). This restriction is possible for the following reasons: By the
locality of the proximity condition (4.1), T is also a local scheme, and a new vertex gen-
erated by T depends only on the old ones in the support of the according stencil of S. In
contrast to the linear case, this is not enough, because some additional technicality arises
in connection with the `dense enough' assumption for input data, which can be overcome
as follows: If we have an input mesh with an upper bound on the valence of faces and
vertices, we can postulate the input data even denser, such that after the �rst subdivision
steps, the mesh is still dense enough near the singularity, but the connectivity around the
latter is that of a k-regular mesh locally near the singularity. Therefore, a convergence
or smoothness statement for k-regular meshes implies a corresponding statement for the
general case. This means that in order to prove Theorem 4.1, it is enough to prove The-
orem 4.4, Theorem 4.5, and Corollary 4.6. The �rst one is a convergence theorem. The
formulation is rather technical, which is mainly due to the fact that nonlinear schemes are
in general not globally de�ned and therefore we have to guarantee the well-de�nedness of
the data during the subdivision process. For our terminology concerning k-regular meshes
we refer to Chapter 1.2.

De�nition 4.3. A subdivision scheme T is called convergent for k-regular input data p0,
de�ned on V0, if iterated subdivision using T is well-de�ned, and if there is a uniformly
continuous function f, de�ned on D, such that

‖f |Vk − Tk−1,0p0‖∞ → 0 as k →∞.

Theorem 4.4. Let S be a linear subdivision scheme as introduced in Chapter 1.2, and let
S and T ful�ll a local proximity condition w.r.t. some PN,σ. Assume that Tnpn takes its
values in a set N ′ for all k-regular data pn ∈ PN,σ where N ′ is some set with N ⊂ N ′ ⊂ Rn.
Assume further that there is a subset N ′′ ⊂ N and σ′ > 0 such that the σ′-neighborhood
Uσ′(N

′′) obeys
Uσ′(N

′′) ∩N ′ ⊂ N.

Then there is a denseness bound σ′′ > 0 such that T converges for data p0 ∈ PN ′′,σ′′ given
on V0, and

S∞,i+1Ti,0p0 → T∞,0p0 as i→∞, (4.2)

where convergence is understood in the sense of uniform convergence.

Since we consider quite general sets N in this theorem we have to assume the existence
of the set N ′′ with the above properties. However, if, for example, N is a ball of radius
r, then N ′′ can be chosen as the ball with the same center and radius r − σ′. Then, for
this particular choice of N , the theorem says that, if S and T ful�ll proximity conditions
w.r.t. PN,σ, then T converges for dense enough input in the smaller ball N ′′.
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Theorem 4.5. We consider a linear subdivision scheme S as introduced in Chapter 1.2 on
k-regular input data. Assume that S and the scheme T ful�ll a local proximity inequality
w.r.t. some class PN,σ of σ-dense input. Then the limit of subdivision using T is smooth.
More precisely, the limit function T∞,0p0 ◦χ−1 for data p0 on V0 is well-de�ned and C1 in
a neighborhood of the (extraordinary) point χ(0).

Corollary 4.6. The geometric subdivision rules de�ned in Chapter 2 converge for dense
enough input data on k-regular combinatorics and produce C1 limits w.r.t. the character-
istic parametrization.

The purpose of Chapter 4.2 is to prove these statements for standard schemes, whereas
Chapter 4.4 proves the above statements for the more general schemes of Chapter 1.2.

4.2 Analysis of standard schemes

In this part we prove Theorem 4.4 and Theorem 4.5 for standard schemes. We start
with some preparations and formulate some auxiliary lemmas we need for both the con-
vergence and the smoothness result. Then we prove the main results. These are contained
in [62].

As in Chapter 1.2 we interpret k-regular meshes as functions pn : Vn → Rd. We
introduce the following (nonlinear) di�erence operator: For some n ∈ N0, we consider
bounded input pn ∈ l∞(Vn,Rd) and a subset B ⊂ Vn. We de�ne

∆Bpn(v) = sup{‖pn(v)− pn(w)‖Rd : w is a face neighbor of v in B},

and furthermore

DB(pn) := sup{∆Bpn(v) : v ∈ B}.

We drop the index B, if B = Vn. The quantity DB obviously satis�es the triangle inequal-
ity. Then the class PN,δ of σ-dense input can be written as

PN,σ = ∪n∈N0{pn : Vn → N | pn is bounded, D(pn) ≤ σ}.

Here N denotes some subset of Rd. With view towards application to geometric schemes,
one can think of N as a chart neighborhood or a surface embedded in Euclidean space.
Then the local proximity condition in De�nition 4.2 reads: There is C > 0 such that for
all n ∈ N0, and all n-th level data pn ∈ PN,σ,

‖Snpn(v)− Tnpn(v)‖ ≤ C supv1,v2∈suppS(v) ‖pn(v1)− pn(v2)‖2.

Note that any n-th level control set of U ⊂ D w.r.t. S also controls the limit of subdivision
using T on this set U due to the locality of the proximity condition. We consider the
sequence of sets V ′n = Vn, V

′
n = ctrln(Dj

i ) or V ′n = ctrln(Dn), where n = 0, 1, 2, . . . . For
those sets, a local proximity condition implies that there is a constant F such that for
every level n and for data pn ∈ PN,σ,

‖Snpn(v)− Tnpn(v)|V ′n+1
‖∞ ≤ F (DV ′n(pn))2, (4.3)
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This follows immediately from the locality of S, using the triangle inequality and the fact
that (a+ b)2 ≤ 2 (a2 + b2) for a, b ∈ R.

We state a technical lemma which is a key ingredient in the proof of both the conver-
gence and smoothness result. The sequence gn in the lemma should be thought of as the
data the nonlinear scheme produces.

Lemma 4.7. Let S be a standard scheme. Let V ′n ⊂ Vn (n = 0, 1, 2, . . . ) be a sequence of
subsets, such that subdivision of data pn on V ′n determines Snpn on V ′n+1. We assume that
there are constants C ≥ 1 and γ ∈ (0, 1) such that the following is true: For all levels n,
all n-th level data pn ∈ l∞(V ′n,Rd), and all k ≥ n,

DV ′k(Sk−1,npn) ≤ Cγk−nDV ′n(pn). (4.4)

Let m ∈ N0 and suppose there is a constant C ′ > 0 such that for a sequence {gn}m+1
n=0 with

gn ∈ l∞(V ′n,Rd) we have the inequalities:

‖gn+1 − Sngn‖∞ ≤ C ′γ(DV ′n(gn))2 (4.5)

for all 0 ≤ n ≤ m, and

DV ′0 (g0) ≤ 1− γ
8C ′C2

. (4.6)

Then, for all 1 ≤ k ≤ m+ 1,

DV ′k(gk) ≤ 2CγkDV ′0 (g0).

Proof. We use induction on k. For k = 1, Equations (4.5), (4.4) and (4.6) consecutively
yield

DV ′1 (g1) ≤DV ′1 (g1 − S0g0) +DV ′1 (S0g0) ≤ 2C ′γ(DV ′0 (g0))2 + CγDV ′0 (g0)

≤C(2C ′DV ′0 (g0) + 1)γDV ′0 (g0) ≤ 2CγDV ′0 (g0).

We proceed with the induction step. Using (4.4) and (4.5) we have

DV ′k(gk) ≤
∑k

l=1
DV ′k(Sk−1,lgl − Sk−1,l−1gl−1) +DV ′k(Sk−1,0g0)

≤
∑k

l=1
Cγk−lDV ′l (gl − Sl−1,l−1gl−1) +DV ′k(Sk−1,0g0)

≤
∑k

l=1
2Cγk−l · γC ′(DV ′l−1

(gl−1))2 + CγkDV ′0 (g0)

We use the induction hypothesis and (4.6) to obtain

DV ′k(gk) ≤
∑k

l=1
8CC ′γk−l+1C2γ2(l−1)(DV ′0 (g0))2 + CγkDV ′0 (g0)

≤CDV ′0 (g0)
[
C2
∑k

l=1
8C ′γk+l−1DV ′0 (g0) + γk

]
≤CγkDV ′0 (g0)

[
8C ′C2

1− γ
DV ′0 (g0) + 1

]
≤ 2CγkDV ′0 (g0).

This completes the proof.
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The next lemma uses di�erences to express the condition on the subdominant eigen-
values of the subdivision matrix. It is possibly not new, but we did not �nd it in the
literature.

Lemma 4.8. Let A : Rm → Rm be a matrix with single eigenvalue 1 for the eigenvector
v1 = (1, . . . , 1)T , and assume that all other eigenvalues have smaller modulus. We set
∆′(b) := sup1≤k,j≤m |bk − bj| for b ∈ Rm. Then for every ε > 0 there is C > 1 such that,
for all l ∈ N, and all b ∈ Rm,

∆′(Alb) ≤ C(|λ2|+ ε)l∆′(b), (4.7)

where λ2 is a subdominant eigenvalue of A. If all eigenvalues µ with |µ| = |λ2| have equal
algebraic and geometric multiplicity, then we can choose ε = 0.

Proof. With the Jordan normal form J of A we have AV = V J, where the generalized
eigenvectors of A are stored in V = (v1, . . . , vm). We assume that J is ordered by modulus
and denote the dual basis of V by {v∗i }mi=1. Then we can write

Alb = AlV V −1b =
m∑
i=1

Alviv
∗
i (b).

Since Alv1 = (1, . . . , 1)T ,

|(Alb)j − (Alb)k| =
∣∣∣∑m

i=2
[(Alvi)j − (Alvi)k]v

∗
i (b)

∣∣∣
≤
∑m

i=2
|(Alvi)j − (Alvi)k| sup2≤i≤m |v∗i (b)|. (4.8)

For estimating the �rst factor, consider a Jordan block D of A of size α with eigenvalue
µ, eigenvector w0, and ordered generalized eigenvectors w1, . . . , wα−1. Then for integers
β > α > γ ≥ 0 and 1 ≤ j, k ≤ m,

|(Aβwγ)j − (Aβwγ)k| ≤
∣∣∣µβ−γ∑γ

δ=0

(
β
γ−δ
)
µδ
∣∣∣ sup0≤δ≤γ |(wδ)j − (wδ)k|.

For ε > 0 there is a constant Cµ > 0 such that for all β > α > γ ≥ 0,∣∣∣µβ−γ∑γ

δ=0

(
β
γ−δ
)
µδ
∣∣∣ ≤ Cµ(|µ|+ ε)β,

since the sum on the left-hand side is a polynomial in β. Thus, for ε > 0 there is C0 > 0,
such that ∑m

i=2
|(Alvi)j − (Alvi)k| ≤ C0(|λ2|+ ε)l sup1≤i≤m |(vi)j − (vi)k|.

For the second factor on the right hand side of (4.8) we have, for 2 ≤ i ≤ m,

|v∗i (b)| = |v∗i (b− b1v1)| ≤ ‖v∗i ‖‖b− b1v1‖∞
≤ (sup2≤i≤m ‖v∗i ‖) · sup2≤i≤m |bi − b1|,

where ‖·‖ is the norm of the linear functionals on l∞({1, . . . ,m},C). From this, the lemma
follows.
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Convergence analysis

In this part we prove Theorem 4.4 for standard schemes. The proof of this theorem
consists of two parts: The �rst one is to show that the contractivity of the di�erences of
data generated by S implies the convergence of data generated by T, if the input is dense
enough. The second part is to show this contractivity for a standard scheme S.

In order to show the �rst part, we consider the map

E : D → R2.

E bijectively maps the entire domain D to the plane by �rst squeezing the j-th quadrant
into a sector of opening angle 2π/k with a shear transformation and then rotating it by an
angle of 2πj/k. We connect the points E(Vn), by straight lines according to the k-regular
connectivity and obtain a set of faces Fn.

Note that the notion of convergence of a scheme for input p0 is invariant under
reparametrization with the help of E. So let us consider the whole subdivision process
w.r.t. E(Vn) ⊂ R2 instead of Vn ⊂ D.

The next statement is clear by the de�nition of the vertex sets Vn, the face sets Fn,
and by the locality of S.

Lemma 4.9. Let S be a standard scheme acting as operators Sn : l∞(E(Vn),Rd) →
l∞(E(Vn+1),Rd). Then ‖Sn‖ is uniformly bounded, and each face of Fn is convex. Fur-
thermore there are constants C1, C2, R > 0 such that for all n ∈ N0,

(i) the in�mum d′ of distances of neighboring vertices in E(Vn) satis�es C12−n ≤ d′

≤ maxF∈Fn diamF ≤ C22−n;

(ii) the value Snpn(v) is an a�ne combination of the local values {pn(w) : w ∈
B(v, 2−nR) ∩ E(Vn)}, where B(x, r) is the open ball with radius r around x.

Next, we need interpolation operators to extend the discrete data to continuous func-
tions. For every n ∈ N0, we de�ne the interpolation operator

In : l∞(E(Vn),Rd)→ Cu(R2,Rd),

where Cu denotes the space of uniformly continuous functions, as follows: We split each
face F ∈ Fn into triangles, each of them determined by F 's barycenter and an edge. We
get data for the barycenter by the barycenter of the data on the neighboring vertices.
Then we use linear interpolation on the triangles. For x, y in a face, we obviously have

sup
x,y∈Fn

‖Inpn(x)− Inpn(y)‖Rd ≤ D(pn).

Furthermore, these operators have the following properties:

Proposition 4.10. Let S be a standard scheme. Suppose there is γ ∈ (0, 1) and C ≥ 1
such that for any l ∈ N, pl ∈ l∞(E(Vl),Rd), and n ≥ l,

D(Sn−1,lpl) ≤ Cγn−lD(pl). (4.9)
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Then, the sequence {InSn−1,lpl}n∈N0 converges to S∞,lpl in Cu(R2,Rd). In addition, there
are constants CB, CI > 0, independent of l ∈ N0 and pl, such that

‖Il+1Slpl − Ilpl‖ ≤ CBD(pl),

‖S∞,lpl|E(Vl) − pl‖ ≤ ‖S∞,lpl − Ilpl‖ ≤ CID(pl).

Proof. We start by estimating ‖Im+1Smgm − Imgm‖ for general bounded gm, de�ned on
E(Vm). Let x ∈ R2, and choose faces Fm of Fm and Fm+1, of Fm+1, resp., which contain
x. In addition denote by vm, resp., vm+1, a vertex of Fm, resp., Fm+1, nearest to x. Then,

‖Im+1Smgm(x)− Imgm(x)‖ ≤ ‖Im+1Smgm(x)− Im+1Smgm(vm+1)‖+
+ ‖Smgm(vm+1)− gm(vm)‖+ ‖Imgm(vm)− Imgm(x)‖
≤ D(Smgm) +D(gm) + ‖Smgm(vm+1)− gm(vm)‖.

In order to estimate the last summand on the right hand side, note that the value
Smgm(vm+1) is uniquely determined by gm|E(Vm)∩B(vm+1,2−mR), where R is the constant
from Lemma 4.9. With the constant C2 of the same lemma it follows that d(vm, vm+1) ≤
3
2
C22−m. Consequently, max{d(vm, y) : y ∈ E(Vm)∩B(vm+1, 2

−mR)} ≤ 3
2
C22−m +2−mR.

Lemma 4.9(i) now implies that the number of faces in Fm not disjoint to B(vm, (
3
2
C2 +

R)2−m) is bounded by D ∈ N, where D is independent of m or vm. With B∗ :=
B(vm+1, 2

−mR), we can write Smgm(vm+1) =
∑

q∈E(Vm)∩B∗ αqgm(q) with
∑

q∈E(Vm)∩B∗ αq =

1 and
∑

q∈E(Vm)∩B∗ |αq| ≤ ‖Sm‖. We obtain

‖Smgm(vm+1)− gm(vm)‖ =

∥∥∥∥∑q∈E(Vm)∩B∗
αq(gm(q)− gm(vm))

∥∥∥∥
≤
∑

q∈E(Vm)∩B∗
|αq| ·maxq∈E(Vm)∩B∗ ‖gm(q)− gm(vm)‖ ≤ ‖Sm‖DD(gm).

Altogether, it follows that

‖Im+1Smgm − Imgm‖ ≤ D(Smgm) + (‖Sm‖D + 1)D(gm).

Equipped with this inequality, we estimate, for n ≥ l,

‖In+1Sn,lpl − InSn−1,lpl‖∞ ≤D(Sn,lpl) + (‖Sn‖D + 1)D(Sn−1,lpl)

≤Cγn−l(‖Sn‖D + 2)D(pl).

For n′′ ≥ n′ ≥ n ≥ l we make use of the geometric series and get

‖In′′+1Sn′′,lpl − In′Sn′−1,lpl‖∞ ≤C( sup
n∈N0

‖Sn‖D + 2)γn−l
1

1− γ
D(pl). (4.10)

We immediately see the �rst inequality of the proposition if we let n′′ = n′ = l. Further-
more, (4.10) implies that {InSn−1,lpl}n>l is Cauchy in the space of bounded continuous
functions. Since these functions are uniformly continuous, so is the limit, called f for the
moment. Now, ‖f |E(Vn) − Sn−1,lpl‖∞ ≤ ‖f − InSn−1,lpl‖ → 0 for n → ∞. Thus f equals
S∞,lpl. Letting n′ = l in (4.10) yields the estimate

‖f − Ilpl‖ = lim
n′′→∞

‖In′′+1Sn′′,lpl − Ilpl‖ ≤
1

1− γ
( sup
n∈N0

‖Sn‖D + 2)D(pl).

This proves the last statement of the proposition.
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Proposition 4.11. Let S be a standard scheme acting on data de�ned on E(Vn), and
suppose (4.9) holds true, i.e.,

D(Sl−1,npn) ≤ Cγl−nD(pn),

for some 0 < γ < 1, C ≥ 1, and any data pn. Let furthermore T and N ′′ be as in
Theorem 4.4, with Vn replaced by its image under E. Assume also that S and T ful�ll a
local proximity condition w.r.t. some PN,σ. Then there is σ′′ > 0 such that for any input
p0 ∈ PN ′′,σ′′ on level 0, Tl−1,0p0 (l ∈ N) is de�ned and

D(Tl−1,0p0) ≤ 2CγlD(p0), (4.11)

with the same C and γ as in (4.9). For such p0, {Tl−1,0p0}l∈N converges and the sequence
{IlTl−1,0p0}l∈N converges to the same limit in Cu(R2,Rd).

Proof. We denote the constant of (4.3) by F, and use N ′ and σ′ from Theorem 4.4. CB
is the constant from Proposition 4.10. We de�ne the denseness bound σ′′ by

σ′′ = min

{
(1− γ)γ

8FC2
,
σ

2C
,

1− γ
4CBC

σ′,

(
1− γ2

8FC2
σ′
) 1

2

}
.

The reason for this choice of σ′′ will become clear during the proof.
We intend to use Lemma 4.7 and induction on l. The condition (4.4) of Lemma 4.7

is ful�lled by our assumption on S. We start with l = 1, and let g0 = p0. Since p0 ∈
l∞(E(V0), N ′′), N ′′ ⊂ N, and D(p0) < σ′′ < σ, data p0 lie in the domain of T0. We let
g1 = T0p0. Now the proximity condition (4.3) ensures the condition (4.5) of Lemma 4.7
with constant C ′ = F

γ
. Since D(p0) ≤ (1−γ)γ

8FC2 , the condition (4.6) of Lemma 4.7 is ful�lled.
We apply Lemma 4.7 and obtain

D(T0p0) ≤ 2CγD(p0) < σ. (4.12)

The use of Proposition 4.10, the proximity condition (4.3) and our choice of σ′′ consecu-
tively yield

‖I1T0p0 − I0p0‖ ≤ ‖I1T0p0 − I1S0p0‖+ ‖I1S0p0 − I0p0‖
≤ ‖T0p0 − S0p0‖+ CBD(p0) ≤ FD(p0)2 + CBD(p0) ≤ σ′.

It follows that T0p0 takes its values in N, and together with (4.12) that T0p0 is in the
domain of T1.

We now perform the induction step. We assume that gm = Tm−1,0p0 is de�ned, that
Tm−1,0p0 takes its values in N, and that Tm−1,0p0 is in the domain of Tm, for 0 ≤ m ≤ l.

We let gl+1 = Tl,0p0. Then the proximity condition (4.3) implies condition (4.5) of
Lemma 4.7, again with C ′ = F

γ
. So Lemma 4.7 yields

D(Tl,0p0) ≤ 2Cγl+1D(p0) < σ. (4.13)
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We use the proximity condition (4.3), Proposition 4.10, the induction hypothesis, and our
choice of σ′′ to obtain

‖I l+1Tl,0p0 − I0p0‖

≤
∑l

m=0
‖Im+1Tm,0p0 − Im+1SmTm−1,0p0‖+ ‖Im+1SmTm−1,0p0 − ImTm−1,0p0‖

≤ F
∑l

m=0
D(Tm−1,0p0)2 + CB

∑l

m=0
D(Tm−1,0p0)

≤ 4FC2
(∑∞

m=0
γ2m

)
D(p0)2 + 2CBC

∑∞

m=0
γmD(p0)

≤ 4FC2

1− γ2
D(p0)2 +

2CBC

1− γ
D(p0) < σ′. (4.14)

Thus Tl,0p0 takes its values in N, and together with (4.13) Tl,0p0 is in the domain of Tl+1.
This completes the induction step.

For the convergence statement, we assume that l′′ ≥ l′ ≥ l. As in (4.14), we get

‖Il′′+1Tl′′,0p0 − Il′+1Tl′,0p0‖ ≤
4FC2

1− γ2
D(Tl−1,0p0)2 +

2CBC

1− γ
D(Tl−1,0p0)

≤ 16FC4

1− γ2
γ2lD(p0)2 +

4CBC
2

1− γ
γlD(p0).

Since the right hand side approaches 0 as l →∞, the sequence {IlTl−1,0p0}l∈N is Cauchy
in Cu(R2,Rd) and therefore convergent.

Lemma 4.12. With the notation and assumptions of Proposition 4.11, the sequence
S∞,lTl−1,0p0 converges to T∞,0p0 in Cu(R2,Rd) as l→∞.

Proof. For ε > 0, choose L ∈ N such that for all l ≥ L, ‖T∞,0p0 − IlTl−1,0p0‖ < ε
2
. By

Proposition 4.10 there is CI > 0 such that

‖S∞,lTl−1,0p0 − IlTl−1,0p0‖ ≤ CID(Tl−1,0p0) ≤ 2CICγ
lD(p0).

Now choose L0 > L such that 2CICγ
L0 < ε

2
. Then for all l ≥ L0, ‖T∞,0p0− S∞,lTl−1,0p0‖

< ε.

We have collected su�cient results to show Theorem 4.4.

Proof of Theorem 4.4 for standard schemes. It remains to show (4.9) for the operators
{Sn}n∈N0 , i.e.,

D(Sl−1,npn) ≤ Cγl−nD(pn), (4.15)

for some 0 < γ < 1, C ≥ 1, and any data pn. Then Theorem 4.4 immediately follows from
Proposition 4.11.

We consider some l-th level data Sl−1,npn and split the domain D into the l-th inner
area D′l, the rings Dl−1, . . . , Dn, and the `outer area' D− = D \D′n. Then we have

D(Sl−1,npn) = (4.16)

max

(
Dctrll(D′l)

(Sl−1,npn), max
m=n,...,l−1

Dctrll(Dm)(Sl−1,npn),Dctrll(D−)(Sl−1,npn)

)
.
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Before we consider Sl−1,npn separately on the items of the splitting, we need some prepa-
ration: Lemma 4.8 yields constants C2 ≥ 1 and γ′′ ∈ (0, 1) such that for all i, j with
i ≥ j,

sup
v,w∈ctrli(D′i)

‖Si−1,jpj(v)− Si−1,jpj(w)‖Rd ≤ C2(γ′′)i−j sup
v,w∈ctrlj(D′j)

‖pj(v)− pj(w)‖Rd .

Since the sets ctrli(D′i) are �nite, the triangle inequality yields a constant C3 > 0 such
that

Dctrli(D′i)
(Si−1,jpj) ≤ C3(γ′′)i−jDctrlj(D′j)

(pj). (4.17)

We consider Sl−1,npn separately on the items of the splitting and begin with D′l.We obtain
using (4.17) that

Dctrll(D′l)
(Sl−1,npn) ≤ C3(γ′′)l−nDctrln(D′n)(pn) ≤ C3(γ′′)l−nD(pn). (4.18)

We continue with the rings Dl−1, . . . , Dn. For the ring Dm, where m = n, . . . , l − 1, we
consider its segments Ds

m, s ∈ Zk. Since S converges on regular parts of the mesh,
and since Sl−1,npn|ctrll(Dsm) is obtained by l − m steps of regular mesh subdivision from
Sm−1,npn|ctrlm(Dsm) by our assumptions on S, we obtain

Dctrll(Dsm)(Sl−1,npn) ≤ C1(γ′)l−mDctrlm(Dsm)(Sm−1,npn). (4.19)

Here the constants C1 > 0 and 0 < γ′ < 1 are independent of the levels l, n,m and data
pn. Since ctrll(Ds

m) ⊂ ctrll(D′m), we use (4.17) and get

Dctrll(Dsm)(Sl−1,npn) ≤ C1(γ′)l−mDctrll(D′m)(Sm−1,npn) ≤ C1C3(γ′)l−m(γ′′)m−nD(pn).

(4.20)

Since the n-th level control set of the outer area D− has regular connectivity we can
proceed as in (4.19) to get

Dctrll(D−)(Sl−1,npn) ≤ C1(γ′)l−nD(pn). (4.21)

If we summarize (4.18), (4.20), (4.21) and de�ne the constants C = C1C3 and γ =
max(γ′, γ′′), we get using (4.16) that (4.15) is true. This completes the proof.

Remark 4.13. Proposition 4.10 and Proposition 4.11 are actually valid in a more general
setting: If the requirements of Lemma 4.9, where we can replace the 2 by m > 1, are
ful�lled for a sequence of arbitrary operators Sn, point sets, and face sets, then Proposi-
tion 4.10 is still valid, and works as a convergence proof. Subsequently, Proposition 4.11
carries over to this more general setting with the same proof.

Smoothness analysis

So far we have shown convergence for a nonlinear scheme T, which is in proximity to
a standard scheme S. In this part we analyze C1 smoothness.

More precisely, we reconsider the sequence S∞,nTn−1,0p0 which converges to T∞,0p0 in
C(D,Rd) by Lemma 4.12. We reparametrize each sequence member with the inverse of
Reif's characteristic parametrization χ over the relevant set D′ ⊂ D and show that then
convergence is true even in the space C1(χ(D′),Rd). The main statement is the following
which was stated as Theorem 4.5 above:
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Theorem. Let S be a standard subdivision scheme, and assume that S and T ful�ll a
local proximity condition w.r.t. PN,σ. Then for p0 ∈ PN ′′,σ′′ (which ensures convergence
of T for p0 by Proposition 4.11), the function T∞,0p0 ◦ χ−1 is continuously di�erentiable,
where T∞,0p0 : D′ → N is the limit function of T, and χ : D′ → R2 is the characteristic
map.

Notice that if T converges, data eventually get dense enough. So for showing smooth-
ness, a `dense enough' assumption is no restriction. In order to show Theorem 4.5 we �rst
prove a series of lemmas.

Lemma 4.14. Let T be in proximity to a standard scheme S w.r.t. PN,σ, and let p0 ∈
PN ′′,σ′′ (which ensures convergence of T for p0 by Proposition 4.11). Then there is a
constant C1 ≥ 1 such that, for all i ≥ l, and all j ∈ Zk,

Dctrli(Djl )
(Ti−1,0p0) ≤ C12−i+lDctrll(Djl )

(Tl−1,0p0). (4.22)

Furthermore there is a constant C2 ≥ 1 such that, for any l ∈ N,

Dctrll(D′l)
(Tl−1,0p0) ≤ C2λ

lDctrl0(D′0)(p0). (4.23)

Here λ is the subdominant eigenvalue of the subdivision matrix A.

Proof. We begin with the �rst statement. Note that Tl,0p0 is de�ned for any l ∈ N. For
any i ≥ l, we have that Si−1,lTl−1,0p0|ctrli(Djl )

is determined by Tl−1,0p0|ctrll(Djl )
by means

of subdivision w.r.t. regular connectivity. Lemma 1.9 and the triangle inequality yield a
constant C ′ > 0 such that

Dctrli(Djl )
(Si−1,lTl−1,0p0) ≤ C ′2−i+lDctrll(Djl )

(Tl−1,0p0).

This constant C ′ is independent of the level i, the segment index j, the ring index l and
data p0. We apply Lemma 4.7 with γ = 1/2 to the sets {ctrli(Dj

l )}i≥l. In Lemma 4.7, we
start on subdivision level l instead of level 0. The condition (4.4) of Lemma 4.7 is ful�lled
by Lemma 1.9. The locality of the proximity condition and the fact that p0 ∈ PN ′′,σ′′
guarantee that the remaining conditions of Lemma 4.7 are met. We conclude that (4.22)
holds true.

We show the second statement. From Lemma 4.8 we get a constant C ′ > 0 such that

Dctrll(D′l)
(Sl−1,0p0) ≤ C ′λlDctrl0(D′0)(p0).

Then we apply Lemma 4.7 for the sequence {ctrll(D′l)}l∈N0 ; the assumptions of Lemma 4.7
are ful�lled, which can be seen by a similar argument as above, and (4.23) follows.

Proposition 4.15. Let a standard scheme S and a (nonlinear) scheme T ful�ll a local
proximity condition w.r.t. PN,σ. Let furthermore χ : D′ → R2 be the characteristic map,
and p0 ∈ PN ′′,σ′′ (which ensures convergence of T for p0 by Proposition 4.11). Then
S∞,iTi−1,0p0 ◦ χ−1 ∈ C1(χ(D′), N). In addition, there is a constant C ≥ 1 such that, for
all i ≥ n, and all j ∈ Zk,

‖(S∞,i+1Ti,0p0 − S∞,iTi−1,0p0) ◦ χ−1|χ(Djn)‖C1(χ(Djn),Rd) ≤ CγiDctrl0(D′0)(p0)2. (4.24)

Here we let γ = max(2−1, λ), where λ denotes the subdominant eigenvalue of the subdivi-
sion matrix A.
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Proof. Theorem 1.13 implies that S∞,0p0 ◦ χ−1 ∈ C1(χ(D′), N). By the scaling property
of the characteristic map, i.e., χ(·/2m) = λmχ, and since S produces C1-limits on regular
connectivities, S∞,iTi−1,0p0 ◦χ−1 is C1.

In order to prove (4.24) we �rst show that there is a constant C3 > 0, which is
independent of i, j, and n, such that

‖(S∞,i+1Ti,0p0 − S∞,iTi−1,0p0)|Djn‖C1(Djn,Rd) ≤ C32i‖(Ti − Si)Ti−1,0p0‖∞. (4.25)

On a regular connectivity, the scheme S commutes with translation. Furthermore, its
corresponding mask has �nite support. Hence S∞,i is a bounded linear operator from
l∞(ctrli(Dj

n),Rd) to C1(Dj
n,Rd). Scaling a grid by two at most doubles the C1-norm, so

for any bounded data fi ∈ l∞(ctrli(Dj
n),Rd), we get

‖S∞,ifi‖C1(Djn,Rd) ≤ 2i‖S∞,0‖l∞→C1‖fi‖∞.

This implies (4.25).
Since χ is a di�eomorphism in a neighborhood of Dj

0, all h ∈ C1(Dj
0,Rd) obey the

inequality ‖h ◦ χ−1|χ(Dj0)‖C1 ≤ D‖h‖C1 for some D > 0, which is independent of h. Using
the scaling relation χ(·/2n) = λnχ again, yields a constant C4 > 0 which is independent
of i, j, and n such that, using (4.25),

‖(S∞,i+1Ti,0p0 − S∞,iTi−1,0p0) ◦ χ−1|χ(Djn)‖C1(χ(Djn),Rd)

≤ 2i−nλ−nC4‖(Ti − Si)Ti−1,0p0|ctrli+1(Djn)‖∞.

We now use the proximity condition (4.3), and obtain that there is a constant C5 > 0
such that

‖(Ti − Si)Ti−1,0p0|ctrli+1(Djn)‖∞ ≤ C5

(
Dctrli(Djn)(Ti−1,0p0)

)2

≤ C5C
2
2C

2
1λ

2n2−2i+2nDctrl0(D′0)(p0)2.

For the last inequality we used Lemma 4.14 and C1 and C2 denote the constants from
this lemma. Altogether,

‖(S∞,i+1Ti,0p0 − S∞,iTi−1,0p0) ◦ χ−1|χ(Djn)‖C1(χ(Djn),Rd) ≤ C2
1C

2
2C4C5λ

n2−i+nDctrl0(D′0)(p0)2.

This completes the proof.

Proposition 4.16. Let T be in proximity to a standard scheme S w.r.t. PN,σ, and
let p0 ∈ PN ′′,σ′′ (which ensures convergence of T for p0 by Proposition 4.11). Then
{S∞,i+1Ti,0p0}i∈N0 is a Cauchy sequence in C1(χ(D′),Rd).

Proof. The linear operators

Li : l∞(ctrli(D′i),Rd)→ C1(χ(D′i),Rd),

assigning the limit function of subdivision by S w.r.t. the characteristic parametrization
to data on ctrli(D′i), are bounded, since they operate on �nite dimensional space. We
consider, for i, k ∈ N0, the isometric isomorphism

Vi,k : l∞(ctrli(D′i),Rd)→ l∞(ctrlk(D′k),Rd),

Vi,kpi(x) = pi(2
−i+kx).
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We have Vi,k ◦ Li = Lk ◦ Vi,k. Now the scaling property of the rings of the characteristic
map yields, for any i ∈ N0 and any pi ∈ l∞(ctrli(D′i),Rd), the estimate ‖Lipi‖C1 ≤
‖L0‖λ−i‖pi‖∞, where λ again denotes the subdominant eigenvalue of the subdivision
matrix. Using the constant C3 > 0 from the proximity condition (4.3), we obtain

‖(S∞,i+1Ti,0p0 − S∞,iTi−1,0p0) ◦ χ−1|χ(D′i)
‖C1

= ‖Li+1(Ti − Si)Ti−0,0p0‖C1 ≤ λ−i‖L0‖C3Dctrli(D′i)
(Ti−1,0p0)2

≤ C ′λ−iλ2iDctrl0(D′0)(p0)2 ≤ C ′λiDctrl0(D′0)(p0)2, (4.26)

where C ′ = C2
2C3‖L0‖ with the constant C2 of Lemma 4.14. We know from Proposi-

tion 4.15 that for any i ∈ N0, the limit function S∞,i+1Ti,0p0 ◦ χ−1 ∈ C1(χ(D′),Rd). We
use both (4.24) and (4.26) and see that

‖(S∞,i+1Ti,0p0 − S∞,iTi,0p0) ◦ χ−1|χ(D′)‖C1 ≤ CγiDctrl0(D′0)(p0)2

for some C > 0 and γ := max(2−1, λ). This implies, for k, l ∈ N0,

‖(S∞,kTk−1,0p0 − S∞,lTl−1,0p0) ◦ χ−1|χ(D′)‖C1 ≤ Cγmin(k,l) 1

1− γ
Dctrl0(D′0)(p0)2, (4.27)

which completes the proof.

Finally we are able to show Theorem 4.5.

Proof of Theorem 4.5 for standard schemes. By Lemma 4.12, S∞,nTn−1,0p0 converges to
T∞,0p0 on D′ in the sup norm. Since this sequence is Cauchy on χ(D′) with respect to the
C1 norm by Proposition 4.16, its limit T∞,0p0◦χ−1 must be continuously di�erentiable.

We can add a condition which guarantees that T∞,0p0(D′) locally is a submanifold
around the extraordinary point T∞,0p0(0). Note that the statement below is not as strong
as the respective statement in the linear case.

Corollary 4.17. Let a standard scheme S and a (nonlinear) scheme T be in proximity
w.r.t. PN,σ, and let p0 ∈ PN ′′,σ′′ (which ensures convergence of T for p0 by Proposi-
tion 4.11). Assume that the Jacobian J0(S∞,0p0 ◦χ−1) in the extraordinary point 0 of the
limit function of linear subdivision using S ful�lls ‖J0(S∞,0p0 ◦ χ−1)(x)‖∞ ≥ ξ‖x‖∞ for
some ξ > 0. Assume further that

Dctrl0(D′)(p0) < (ξ(1− γ)/C)
1
2 ,

where C is the constant from (4.27), γ = max(2−1, λ), and λ is the subdominant eigenvalue
of the subdivision matrix A. Then also the nonlinear scheme T produces a 2-dimensional
manifold locally around the extraordinary point.

Proof. From (4.27) it follows that

‖(S∞,0p0 − T∞,0p0) ◦ χ−1|χ(D′)‖C1 ≤ C(1− γ)−1Dctrl0(D′)(p0)2.

Thus, for any x ∈ R2 with ‖x‖ = 1,

‖J0(T∞,0p0 ◦ χ−1)(x)‖ ≥ ‖J0(S∞,0p0 ◦ χ−1)(x)‖ − ‖(S∞,0p0 − T∞,0p0) ◦ χ−1‖C1

≥ ξ − C(1− γ)−1Dctrl0(D′)(p0)2 > 0.

This shows that the Jacobian is regular in 0, which completes the proof.
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Figure 16: Initial rounds of subdivision for a subdivided cube connectivity.

We still owe the proof of Corollary 4.6.

Proof of Corollary 4.6 for standard schemes. By Theorem 4.4 and Theorem 4.5, conver-
gence and smoothness are ensured, if a local proximity condition holds. Although Wallner
and Dyn's and Grohs' proximity inequality in [57] and [15], respectively, is slightly weaker,
they actually prove our local proximity condition for the geodesic analogue in [57], Lemma
5, and the projection analogue in [15], Theorem 4, respectively. A proof which works for
the log-exp analogue is the proof of [14], Proposition 7.2. Then the local proximity condi-
tion (4.1) for the intrinsic mean analogue is a consequence of its interpretation as log-exp
analogue with special base points.

4.3 An application

As an application we show how subdivision in the geometric setting can be used to
generate manifold-valued smooth functions on smooth two-dimensional manifolds. To
that end, we consider two meshes with the same connectivity. Let us assume the �rst
mesh has its values in the smooth manifold N. Let the second mesh `cover' a smooth
2-manifold M, and assume that its positioning function is one-to-one. Then we have a
map from the positions in M to that in N. Now, let S be a standard scheme, T be an
analogue acting in M, and T ′ an analogue acting in N. Iterated application of both T
and T ′ simultaneously yields a sequence of mappings, de�ned in discrete subsets of M,
with values in N. The �rst steps of this process are visualized in Figure 16 and Figure 17.
Here we used the projection analogue on spheres on the one hand, and intrinsic mean
subdivision in the Riemannian manifold of positive matrices on the other hand. The
theoretical basis is given by the following corollary, formulated near extraordinary points
of valence k.

Corollary 4.18. Let T and T ′ be analogues of the same standard scheme S, and let input
data p0 : V0 → M and p′0 : V0 → N be dense enough. If T∞,0p0 ◦ χ−1 : χ(D′) → M is
injective and regular, then

T ′∞,0p
′
0 ◦ (T∞,0p0)−1 : T∞,0p0(D′)→ T ′∞,0p

′
0(D′) (4.28)

is a C1 mapping.

Note that Corollary 4.17 gives a su�cient condition for regularity near the extraordi-
nary point. Then, at least in a small neighborhood, we also have injectivity.
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Figure 17: Two rounds of subdivision analogous to the Doo-Sabin scheme using projec-
tion and intrinsic means. One can clearly observe the oscillation near the valence 16
extraordinary face, especially in the data position. Also note that 8 valence 3 faces are
nearby.

Proof. Consider the following commutative diagram:

χ(D′) ⊂ R2

C1

&&MMMMMMMMMMMMMMMMMMMMMMM

M ⊃ T∞,0p0(D′)

C1

88qqqqqqqqqqqqqqqqqqqqqqq

D′

χ

OO

T∞,0p0oo
T ′∞,0p

′
0 // T ′∞,0p

′
0(D′) ⊂ N

This means that T ′∞,0p
′
0 ◦ (T∞,0p0)−1 = T ′∞,0p

′
0 ◦ χ−1 ◦(T∞,0p0 ◦ χ−1)−1, where χ is the

characteristic map. Now the statement follows from Theorem 4.5.

4.4 Analysis of shift-invariant schemes

The purpose of this part is to prove Theorem 4.4 and Theorem 4.5 for nonlinear
schemes meeting local proximity inequalities with a linear shift-invariant scheme intro-
duced in Chapter 1.2. It is actually not di�cult to generalize the result concerning
convergence of standard schemes. This is done �rst. Then we show C1 smoothness w.r.t.
the characteristic parametrization, which involves some work since in contrast to standard
schemes the conditions on the eigenvalues of the subdivision matrix are relaxed. This part
is contained in [60].

Our �rst task is to establish contractivity of a nonlinear scheme T which is in proximity
to a linear shift-invariant scheme S (from Chapter 1.2) near the singularity. The next
lemma uses Lemma 4.8 and the proximity condition (4.1) to get a grip on the di�erences
of data near the extraordinary point obtained during the subdivision process.

Lemma 4.19. Assume that a linear shift-invariant scheme S from Chapter 1.2 and the
scheme T ful�ll the local proximity condition (4.1) w.r.t σ-dense input PN,σ. Then for
s > 1 there is a constant C > 0 and σ′′ > 0 such that the following is true: If the input
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data p0 belongs to PN,σ′′ , if iterated subdivision for input p0 is de�ned, and if Tl−1,0p0 stays
within PN,σ for all l < n, then

Dctrln(D′n)(Tn−1,0p0) ≤ C(λs)nDctrl0(D′0)(p0), (4.29)

where λ is the modulus of a subdominant eigenvalue of the subdivision matrix of S.

Proof. We start by rephrasing (4.7). For any s > 1 there is a constant CL ≥ 1 such that
for all levels n the following is true: The linear scheme is contractive for data on the
control sets of the inner areas D′n (de�ned by (1.23)) in the following sense

Dctrln(D′n)(Sn−1,0p0) ≤ CL(λs)nDctrl0(D′0)(p0). (4.30)

To see this, we consider the de�nition of the subdivision matrix A of the scheme S in
Chapter 1.2. The subdivision matrix A maps data on ctrl0(D′0) to subdivided data on
ctrl1(D′1). Therefore, An maps data on ctrl0(D′0) to n-times subdivided data on ctrln(D′n).
In this interpretation, (4.7) estimates di�erences of dim(A) many subdivided data items
by dim(A) many input data items. Therefore, application of the triangle inequality and
enlarging the constant C of (4.7) yields (4.30).

We also rewrite the local proximity condition (4.1) in the following way: There is a
constant C such that for σ-dense input pn ∈ PN,σ on some data level n,

‖Snpn(w)− Tnpn(w)‖∞ ≤ C supv1,v2∈supp(α·,w) ‖pn(v1)− pn(v2)‖2, (4.31)

where supp(α·,w) denotes the set of vertices on level n which contribute to the calculation
of Snp(w). The locality of the proximity condition guarantees that any n-th level control
set of U ⊂ D w.r.t. S also controls the limit of subdivision using T on this set U. This
fact and estimating di�erences on supp(α·,w) by di�erences of neighboring vertices yields
a constant CP such that, for σ-dense input pn ∈ PN,σ,

‖(Snpn − Tnpn)|ctrln+1(D′n+1)‖∞ ≤ CP (Dctrln(D′n)(pn))2. (4.32)

Here we also used that (a+ b)2 ≤ 2 (a2 + b2) for a, b ∈ R.
With these preparations we de�ne the `denseness'-bound σ′′ by

σ′′ =
(1− λs)λs

8CPC2
L

. (4.33)

For data p0 meeting the requirements of the lemma we show that

Dctrln(D′n)(Tn−1,0p0) ≤ 2CL(λs)nDctrl0(D′0)(p0), (4.34)

using induction on n; this implies (4.29) with C = 2CL.We start with n = 1 and estimate

Dctrl1(D′1)(T0p0) ≤ Dctrl1(D′1)(T0p0 − S0p0) +Dctrl1(D′1)(S0p0)

≤ 2‖T0p0 − S0p0|ctrl1(D′1)‖∞ +Dctrl1(D′1)(S0p0)

≤ 2CP (Dctrl0(D′0)(p0))2 + CL(λs)Dctrl0(D′0)(p0)

≤ CL(2CPDctrl0(D′0)(p0) + λs)Dctrl0(D′0)(p0)

≤ 2CL(λs)Dctrl0(D′0)(p0).



4.4 Analysis of shift-invariant schemes 57

The second inequality estimates di�erences by twice the sup-norm of data. For the third
inequality we used proximity in the form of (4.32) and the contractivity of the linear
scheme near the singularity in the form of (4.30). For the fourth inequality notice that
CL ≥ 1. The last inequality is a consequence of our choice of σ′′ in (4.33). As induction
hypothesis we assume that (4.34) is true for all l < n. We now show (4.34) by estimating

Dctrln(D′n)(Tn−1,0p0)

≤
∑n

l=1
Dctrln(D′n)(Sn−1,lTl−1,0p0 − Sn−1,l−1Tl−2,0p0) +Dctrln(D′n)(Sn−1,0p0)

≤
∑n

l=1
CL(λs)n−lDctrll(D′l)

(Tl−1,0p0 − Sl−1Tl−2,0p0) +Dctrln(D′n)(Sn−1,0p0)

≤
∑n

l=1
2CL(λs)n−lCP (Dctrll−1(D′l−1)(Tl−2,0p0))2 + CL(λs)nDctrl0(D′0)(p0).

For the second inequality we used the contractivity of S near the singularity in the sense
of (4.30). For the third inequality we estimated di�erences by twice the sup-norm and
then applied the proximity inequality (4.32). We use the induction hypothesis and obtain

Dctrln(D′n)(Tn−1,0p0)

≤
∑n

l=1
8CLCP (λs)n−lC2

L(λs)2(l−1)(Dctrl0(D′0)(p0))2 + CL(λs)nDctrl0(D′0)(p0)

≤ CLDctrl0(D′0)(p0)
[
C2
L

∑k

l=1
8CP (λs)n+l−2Dctrl0(D′0)(p0) + (λs)n

]
≤ CL(λs)nDctrl0(D′0)(p0)

[
8CPC

2
L

(1− λs)λs
Dctrl0(D′0)(p0) + 1

]
≤ 2CL(λs)nDctrl0(D′0)(p0).

For the �rst inequality we use the contractivity of T which is the induction hypothesis.
The last inequality is true by our choice of σ′′. This completes the induction.

We have collected all information to show Theorem 4.4 (for shift-invariant schemes),
which we recall here.

Theorem. Let S be a linear subdivision scheme as introduced in Chapter 1.2, and let
S and T ful�ll a local proximity condition w.r.t. some PN,σ. Assume that Tnpn takes its
values in a set N ′ for all data pn ∈ PN,σ where N ′ is some set with N ⊂ N ′ ⊂ Rn. Assume
further that there is a subset N ′′ ⊂ N and σ′ > 0 such that the σ′-neighborhood Uσ′(N

′′)
obeys

Uσ′(N
′′) ∩N ′ ⊂ N.

Then there is a denseness bound σ′′ > 0 such that T converges for data p0 ∈ PN ′′,σ′′ given
on V0, and

S∞,i+1Ti,0p0 → T∞,0p0 as i→∞, (4.35)

where convergence is understood in the sense of uniform convergence.

Proof. We split the proof of this statement into several parts. In part (1) we obtain the
contractivity of the nonlinear scheme T, where we assume that Tn,0p0 is de�ned for all n
and certain input data p0. In part (2) we de�ne interpolation operators which extend the
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discrete data on di�erent levels to continuous functions and derive some properties. In
part (3) we de�ne the constant σ′′ and explain our choice of σ′′. In part (4) we apply the
interpolation operators from part (2) to show that that iterated subdivision by T is well
de�ned for σ′′-dense data p0 in PN ′′,σ′′ , thus justifying the assumption of (1). Furthermore,
we use the proximity of S and T and the contractivity of T to derive the convergence of
T for data in PN ′′,σ′′ . In part (5), we use part (4) and the interpolation operator from part
(2) to show (4.35).

(1) In this part we obtain contractivity of T. We denote a subdominant eigenvalue
of the subdivision matrix of the linear scheme S by the symbol λ, and we let M be the
dilation matrix corresponding to S. We choose s > 1 such that

γ := smax(|λ|, 1/
√

detM) < 1.

We show that there is σ′′1 and C1 ≥ 1 such that the following is true: If input data p0 on
level 0 belongs to PN,σ′′ , if iterated subdivision for input p0 is de�ned, and if pl = Tl−1,0p0

stays within PN,σ for all l < n, then

D(Tn−1,lpl) ≤ C1γ
n−lD(pl). (4.36)

This is a consequence of the corresponding statement near the singularity which is formu-
lated in Lemma 4.19 and the corresponding statement for the regular mesh case which is
Lemma 3.7. The constant C1 is the product of the corresponding constants of Lemma 3.7
and Lemma 4.19, and σ′′1 is obtained as follows: We apply Lemma 4.19 for the denseness
bound σ used in the statement of the theorem. We obtain a constant σ′′Lemma 4.19. Then
we apply Lemma 3.7 for this constant, i.e., we replace the σ in Lemma 3.7 by σ′′Lemma 4.19.
The resulting denseness bound is denoted by σ′′1 .

In order to conclude (4.36), one has to show that `no interaction takes place between
the neighborhood of the singularity and the regular part': To that end we split the domain
D into the inner area D′n (de�ned by (1.23)), the rings Di, i = 0, . . . , n−1 and the `outer'
ring

D−1 = D \D′.

The union of the corresponding n-th level control sets equals Vn, and control sets of
neighboring items of the splitting overlap (recall that control sets were de�ned w.r.t. the
linear scheme S and that any n-th level control set of U ⊂ D w.r.t. S also controls the
limit of subdivision using T on this set U).

We consider (4.36) separately on the items of the splitting: The control set of the
outer ring D−1 intersected with each sector has regular combinatorics on all data levels.
Therefore the validity of (4.36) on ctrln(D−1) is a consequence of Lemma 3.7. On D′n,
(4.36) is a direct consequence of Lemma 4.19 applied to ctrln(D′n). We consider the rings
Di : For each segment Dj

i of the i-th ring we consider its n-th level control set and get

Dctrln(Dji )
(Tn−1,0p0) ≤ CLemma 3.7(s detM−1)(n−i)/2Dctrli(Dji )

(Ti−1,0p0)

≤ CLemma 3.7CLemma 4.19(s detM−1)(n−i)/2(sλ)iDctrl0(D0)(p0) ≤ C1γ
nD(p0).

Altogether, this shows (4.36) and completes part (1).
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(2) The convergence of subdivision with T is quite intricate, mostly due to the fact
that the well-de�nedness of iterated application of T has to be guaranteed. That is why
we need interpolation operators Ii which map data on level i to a uniformly continuous
function on the domain D. The domain D is perfectly suited to smoothness analysis
across sector boundaries (not near the central point). However, in this part we are only
concerned with convergence and we use a homeomorphism E : D → R2 to reparametrize
data on each level, and to reparametrize limit functions. E maps the entire domain D to
the plane by �rst squeezing the j-th sector into a sector of opening angle 2π/k by means
of a shear transformation and then rotating it by an angle of 2πj/k. It is straightforward
to see that there are constants c1, c2 such that for x, y ∈ D,

c1 dist(x, y) ≤ dist(E(x), E(y)) ≤ c2 dist(x, y).

This implies that convergence of a scheme is invariant under reparametrization by means
of E.

The points E(Vi) are still associated with a k-regular combinatorics. By connecting
points in E(Vi) with straight lines according to the combinatorics we get a realization of
its edges and faces in R2. For de�ning the interpolation operator Īi which maps data on
E(Vi) to a function on R2 we split each face into triangles, each of them determined by
the face's barycenter and an edge. We get data for the barycenter by the barycenter of
the data on the neighboring vertices. Then we use linear interpolation on the triangles.
For x, y in a face and data pn de�ned on E(Vn), we obviously have

sup
x,y belong to the same face

‖Īnpn(x)− Īnpn(y)‖Rd ≤ D(pn). (4.37)

Furthermore the in�mum d′ of distances of neighboring vertices in E(Vi) satis�es

c3(detM)−i/2 ≤ d′ ≤ {diamF : F is a face on level i} ≤ c4(detM)−i/2, (4.38)

where the constants c3, c4 are independent of the the level i. In addition, there is a constant
R for all levels i such that the value

Sipi(v) is an a�ne average of {pi(w) : w ∈ B(v, (detM)−i/2R)}. (4.39)

Here the considered points w are elements of E(Vi), and B(x, r) is the open ball with
radius r around x.

Interpolation operators Ii mapping data on Vi to functions on D are obtained from
the operators Īi by reversing the reparametrization E.

The interpolation operators Ii have the following properties: There are constants
CB, CI > 0, which depend neither on i nor on bounded data pi on level i, such that

‖Ii+1Sipi − Iipi‖ ≤ CBD(pi), (4.40)

‖S∞,ipi|Vi − pl‖ ≤ ‖S∞,ipi − Iipi‖ ≤ CID(pi). (4.41)

When showing (4.40) and (4.41) we may replace Ii by Īi, and we may reparametrize both
data and limit functions using the map E. This is justi�ed, since a reparametrization does
not e�ect the statements. We begin with (4.40). For arbitrary x ∈ R2 we choose faces Fi
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and Fi+1 containing x on levels i and i+ 1, respectively. We consider vertices vi of Fi and
vi+1 of Fi+1 and estimate, using (4.37),

‖Īi+1Sipi(x)− Īipi(x)‖
≤ ‖Īi+1Sipi(x)− Īi+1Sipi(vi+1)‖+ ‖Sipi(vi+1)− pi(vi)‖+ ‖Īipi(vi)− Īipi(x)‖
≤ D(Sipi) +D(pi) + ‖Sipi(vi+1)− pi(vi)‖.

In order to estimate the last summand on the right hand side, note that by (4.39) the
value Sipi(vi+1) is uniquely determined by pi|E(Vi)∩B(vi+1,(detM)−i/2R). With the constant
c4 of (4.38) it follows that dist(vi, vi+1) ≤ 2c4(detM)−i/2. Consequently, max{dist(vi, y) :
y ∈ E(Vi) ∩ B(vi+1, 2

−iR)} ≤ 2c4(detM)−i/2 +(detM)−i/2R. The left hand inequality
in (4.38) now implies that the number of faces on level i which are not disjoint to the
ball B(vi, (2c4 + R)(detM)−i/2) is bounded by some integer D which is independent of
the level i and vi. With B∗ := B(vi+1, (detM)−i/2R), we can rewrite (4.39) as Sipi(vi+1)
=
∑

q∈E(Vi)∩B∗ αqpi(q), where
∑

q∈E(Vi)∩B∗ αq = 1 and
∑

q∈E(Vi)∩B∗ |αq| ≤ ‖Si‖. We obtain

‖Sipi(vi+1)− pi(vi)‖ =

∥∥∥∥∑q∈E(Vi)∩B∗
αq(pi(q)− pi(vi))

∥∥∥∥
≤
∑

q∈E(Vi)∩B∗
|αq| ·maxq∈E(Vi)∩B∗ ‖pi(q)− pi(vi)‖ ≤ ‖Si‖DD(pi).

Altogether, it follows that

‖Īi+1Sipi − Īipi‖ ≤ D(Sipi) + (‖Si‖D + 1)D(pi). (4.42)

This implies (4.40), since ‖Si‖ is uniformly bounded in i.
We show (4.41) for the interpolation operators Īi. Equipped with (4.42), we estimate,

for n ≥ i,

‖Īn+1Sn,ipi − ĪnSn−1,ipi‖∞ ≤D(Sn,ipi) + (‖Sn‖D + 1)D(Sn−1,ipi)

≤C1γ
n−i(‖Sn‖D + 2)D(pi),

where we used the contractivity of S which follows, for example, from part (1), since S
can be seen as a scheme in proximity to S. For n′′ ≥ n′ ≥ n ≥ i we make use of the
geometric series and get

‖Īn′′+1Sn′′,ipi − Īn′Sn′−1,ipi‖∞ ≤C( sup
n∈N0

‖Sn‖D + 2)γn−i
1

1− γ
D(pi). (4.43)

Thus {ĪnSn−1,ipi}n>i is a Cauchy sequence in the space of bounded continuous functions.
Since these functions are uniformly continuous, so is the limit, called f for the moment.
Now, ‖f |E(Vn) − Sn−1,ipi‖∞ ≤ ‖f − ĪnSn−1,ipi‖ → 0 for n → ∞. Thus f equals S∞,ipi.
Letting n′ = i in (4.43) yields the estimate

‖f − Īipi‖ = lim
n′′→∞

‖Īn′′+1Sn′′,ipi − Īipi‖ ≤
1

1− γ
( sup
n∈N0

‖Sn‖D + 2)D(pi).

This implies (4.41).
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(3) We de�ne the constant σ′′ which guarantees convergence by

σ′′ = min
(
σ′′1 ,

σ

C1

,
1− γ

2CBC1

σ′,
( 1− γ2

2CPC2
1

σ′
) 1

2
)
. (4.44)

Here σ′ and σ are the constants from the statement of the present theorem. The constant
CB is given by (4.40), and the symbol CP denotes the proximity constant as used in
(4.32). We take C1, σ

′′
1 and the contractivity factor γ from part (1), see (4.36). For

σ′′1 -dense input data p0, contractivity of T in the sense of (4.36) is guaranteed whenever
iterated subdivision for input p0 is de�ned, and Tl−1,0p0 stays within PN,σ. The choice of
the other items in (4.44) guarantees these two properties as shown in part (4). The second
item is important in the estimates (4.45) and (4.47). The last two items are important in
the estimates (4.46) and (4.48).

(4) We apply the interpolation operators from part (2) to show that iterated subdivi-
sion using T is well de�ned for σ′′-dense data p0 in PN ′′,σ′′ and that Ti,0p0 stays within PN,σ
for all i. We use induction on the subdivision level i. We consider input data p0 ∈ PN ′′,σ′′ .
Since D(p0) < σ′′ < σ, subdivision by T for input p0 is de�ned. From (4.36) we get that

D(T0p0) ≤ C1γD(p0) ≤ C1σ
′′ ≤ σ. (4.45)

The last inequality is a consequence of the choice of σ′′.
Now we use the interpolation operators from part (2) and get

‖I1T0p0 − I0p0‖ ≤ ‖I1T0p0 − I1S0p0‖+ ‖I1S0p0 − I0p0‖
≤ ‖T0p0 − S0p0‖+ CBD(p0)

≤ CPD(p0)2 + CBD(p0) ≤ σ′

2
+ σ′

2
. (4.46)

Here we used (4.40) for the second inequality and the proximity condition (4.32) for
the third inequality. The last inequality is a consequence of our choice of σ′′. From the
assumptions of the theorem it follows that T0p0 takes its values in N. Combining this fact
with (4.45), we get that T0p0 ∈ PN,σ and thus T0p0 is in the domain of T1. This serves as
the induction base (i=0).

We use as an induction hypothesis that Tn−1,0p0 is well-de�ned, that Tn−1,0p0 takes its
values in N, and that Tn−1,0p0 is in the domain of Tn, for n = 1, . . . , i.

From (4.36) we get

D(Ti,0p0) ≤ C1γ
i+1D(p0) ≤ C1σ

′′ ≤ σ. (4.47)

The last inequality is a consequence of the choice of σ′′.
Now we use the interpolation operators from part (2) and get

‖I i+1Ti,0p0 − I0p0‖

≤
∑i

n=0
‖In+1Tn,0p0 − In+1SnTn−1,0p0‖+ ‖In+1SnTn−1,0p0 − InTn−1,0p0‖

≤ CP
∑i

n=0
D(Tn−1,0p0)2 + CB

∑i

n=0
D(Tn−1,0p0)

≤ CPC
2
1

(∑∞

n=0
γ2n
)
D(p0)2 + CBC1

∑∞

n=0
γnD(p0)

≤ CPC
2
1

1− γ2
D(p0)2 +

CBC1

1− γ
D(p0) ≤ σ′

2
+ σ′

2
. (4.48)
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Here we used (4.40) and the proximity condition (4.32) for the second inequality. The
last inequality is a consequence of our choice of σ′′. From the assumptions of the theorem
it follows that Ti,0p0 takes its values in N. Combining this fact with (4.47) we get that
Ti,0p0 ∈ PN,σ and thus Ti,0p0 is in the domain of Ti+1 which means that Ti+1,0p0 is well-
de�ned. This completes the induction.

As a consequence, for σ′′-dense input in PN ′′,σ′′ , Ti,0p0 exists for all i and T is contractive
for such input in the sense of (4.36). Toward convergence, we choose i′′ ≥ i′ ≥ i and
estimate, similar to (4.48),

‖Ii′′+1Ti′′,0p0 − Ii′+1Ti′,0p0‖ ≤
CPC

2
1

1− γ2
D(Ti′,0p0)2 +

CBC1

1− γ
D(Ti′,0p0)

≤ CPC
4
1

1− γ2
γ2iD(p0)2 +

CBC
2
1

1− γ
γiD(p0).

Since the right hand side approaches 0 as i→∞, the sequence {IiTi−1,0p0}i∈N is a Cauchy
sequence in C(D,Rd) and therefore convergent. Each sequence member is uniformly
continuous, which implies the same for the limit. Thus T converges for input in PN ′′,σ′′ .

(5) It remains to show (4.35). We consider ε > 0, and choose the index L large enough
such that for all indices i ≥ L, ‖T∞,0p0 − IiTi−1,0p0‖ < ε

2
. With (4.41) we estimate, for

i ≥ L,

‖S∞,iTi−1,0p0 − IiTi−1,0p0‖ ≤ CID(Ti−1,0p0) ≤ CIC1γ
iD(p0).

Now we choose L0 > L such that CIC1γ
L0σ′′ < ε

2
. Then for all i ≥ L0, ‖T∞,0p0−

S∞,iTi−1,0p0‖ < ε. This proves (4.35).

Our next task is to prove Theorem 4.5 which is a smoothness statement w.r.t. the
characteristic parametrization. To that end, we need the following two lemmas concerning
the characteristic parametrization of limit functions.

Concerning the constants in the proofs of the remainder of this chapter we employ the
following conventions: We use generic constants c, C which can change from line to line.

Lemma 4.20. Let λ be a subdominant eigenvalue of the subdivision matrix A of a linear
subdivision scheme as de�ned in Chapter 1.2 (which has the single dominant eigenvalue
1). If we choose the ring index n0 su�ciently large, we get a constant C > 0 such that,
for all n ≥ n0 and each C1 function f : Dn → Rd,

‖f ◦ χ−1‖C1(χ(Dn),Rd) ≤ C|λ|−n(detM)−n/2‖f‖C1(Dn,Rd) (4.49)

(M is the dilation matrix, Dn is the n-th ring). The constant C does not depend on the
ring index n ≥ n0.

Proof. By our assumptions on the linear scheme S, its characteristic map χ is one-to-one
in a neighborhood of the point 0. So we �nd an index n0, such that χ is one-to-one on
D′n0

. In the following we assume that n0 is chosen such that this requirement is ful�lled.
We write χn for the restriction of χ to the ring Dn.
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Our argument is based on the following fact which we verify only at the end of the
proof: There is a ring index n0 and a constant C > 0 such that the di�erential of the
characteristic map χ obeys

‖dxχn(v)‖ ≥ C|λ|n(detM)n/2‖v‖, (4.50)

where C is independent of the ring index n ≥ n0 and the point x ∈ Dn. We use the
Euclidean norm for the tangent vectors v; ‖dxχn‖ is the induced operator norm. In other
words, (4.50) states that di�erentials are lower bounded, uniformly for all x ∈ Dn, with
constant C independent of the ring. If (4.50) is proved, we can apply the inverse function
theorem to obtain a constant C > 0 such that

sup
y∈χ(Dn)

‖dyχ−1
n ‖ ≤ C|λ|−n(detM)−n/2, (4.51)

where C is independent of the ring index n ≥ n0. Using the submultiplicativity of operator
norms we get, for y ∈ χ(Dn),

‖dy(f ◦ χ−1
n )‖ ≤ ‖dχ−1

n (y)f‖ · ‖dyχ
−1
n ‖ ≤ C|λ|−n(detM)−n/2‖f‖C1(Dn,Rd).

This implies (4.49), since sup-norms of functions do not change under reparametrization.
To show (4.50) we need some preparations. We consider a Jordan block of the subdi-

vision matrix A corresponding to a subdominant eigenvalue λ. We denote its multiplicity
by m and order the Jordan vectors wi, such that w0 is the eigenvector. For the Jordan
vector with the highest multiplicity, we have the expression

Anwm−1 =
∑m−1

i=0

(
n

i

)
λn−iwm−i−1. (4.52)

Since
(
n
i

)
grows as ni as n → ∞, the dominating term in this expression is given by(

n
m−1

)
λn−m+1w0.We de�ne vectors vi in the following way: If the subdominant eigenvalues

of A are complex conjugate numbers, we use the vectors wi to de�ne new vectors vi
where each component consists of the tuple of real numbers consisting of the real and the
imaginary part of the corresponding component of wi. If the subdominant eigenvalues of A
are real and equal, we use vectors wi as above and a second set of vectors w̄i corresponding
to the second subdominant Jordan block with the same ordering as above. We de�ne new
vectors vi where each component consists of the tuple of real numbers consisting of the
corresponding components of wi and w̄i, respectively.

Then the characteristic map χ is the limit of subdivision for the input data stored in
the vector vm−1. We de�ne ξn : D0 → R2 by

χn = ξn ◦ (Gn)−1. (4.53)

Then ξn is the limit function on D0 of linear (regular mesh) subdivision for 0-th level
input data obtained from Anvm−1.

We let ψ : D0 → R2 be the limit function for input data on level 0 obtained from v0,
and let fi : D0 → R2 be the limit functions for the other vi. All these limits are C1 on
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D0, since they were obtained by regular mesh subdivision. Furthermore, the �niteness of
the control set ctrl0(D0) yields

‖S∞,0p0‖C1(D0) ≤ C‖p0‖∞,

for arbitrary input data p0 on ctrl0(D0). Knowing this and the fact that Anvm−1 is dom-
inated by

(
n

m−1

)
λn−m+1v0 for n → ∞, which is a consequence of (4.52), we see that the

sequence of mappings (
n

m−1

)−1
λm−n−1ξn(·)→ ψ(·) in C1(D0),

as n tends to ∞. This implies that ψ is regular, since we assumed that ξn (which is a
reparametrization and restriction of the characteristic map) is regular for su�ciently large
n. This fact allows us to estimate the Jacobian of ξn from below as follows: We start out
by using the inverse triangle inequality to estimate

‖dxξn(v)‖ = ‖
(

n
m−1

)
λn−m+1dxψ(v) +

∑m−2

i=0

(
n
i

)
λn−idxfm−i−1(v)‖

≥
(

n
m−1

)
|λ|n−m+1‖dxψ(v)‖ −

∑m−2

i=0

(
n
i

)
|λ|n−i‖dxfm−i−1‖‖v‖. (4.54)

We use that
(
n
i

)
grows as ni as n → ∞ to estimate the binomial coe�cients. Due to

the compactness of D0 we �nd a constant C > 0 such that for all points x ∈ D0 and
all functions fi the di�erentials obey ‖dxfi‖ ≤ C. Since ψ is regular we get a lower
constant c > 0 such that, for all x ∈ D0, ‖dxψ(v)‖ ≥ c‖v‖. Making the constant c smaller
(which comes form estimating the binomial coe�cients and multiplying with λm−1) these
estimates help us to get

‖dxξn(v)‖ ≥ c nm−1|λ|n‖v‖ − C
∑m−2

i=0
ni|λ|n‖v‖ ≥ nm−1|λ|n‖v‖(c− Cn−1). (4.55)

If we now choose n0 large enough, there is a constant c > 0 which does not depend on
the index n > n0 such that

‖dxξn(v)‖ ≥ cnm−1|λ|n‖v‖. (4.56)

With (4.53) we get, for x ∈ Dn,

‖dxχn(v)‖ ≥ c|λ|n‖dxG−n(v)‖ ≥ c|λ|n detMn/2‖v‖.

This proves (4.50).

Lemma 4.21. Let pn be input data on the control set ctrln(D′n) of the inner area D′n for
data level n. Then for large enough n0, and s > 1, there is a constant C > 0, which does
not depend on the level n ≥ n0 and data pn, such that

‖S∞,npn ◦ χ−1‖C1(χ(D′n),Rd) ≤ C|λ|−nsn‖pn|ctrln(D′n)‖∞. (4.57)

Here λ is a subdominant eigenvalue of the subdivision matrix.
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Proof. We use the notation of the proof of Lemma 4.20 and choose the integer n0 so large
that χ is regular and injective on D′n0

\ {0} and such that Lemma 4.20 works. Over the
characteristic parametrization, the subdivision scheme S produces C1 limit functions. As
in Lemma 4.20, from the �niteness of the control set ctrln0(D′n0

) we conclude that the
di�erential of limit functions w.r.t. the characteristic parametrization can be estimated
by

sup
x∈χ(D′n0 )

‖dx(S∞,n0pn0 ◦ χ−1)‖ ≤ C‖pn0|ctrln0 (D′n0 )‖∞, (4.58)

where the constant C is independent of the n0-th level input data pn0 given on ctrln0(D′n0
).

In order to derive (4.57) from (4.58) we consider input pn on level n > n0, given on the
control sets ctrln(D′n) of the inner area D′n. Reparametrizing this discrete data with the
help of the similarity transform G, i.e., applying Gn0−n, yields data p̄n0 on level n0. The
limit function S∞,npn(overD′n) equals S∞,n0 p̄n0◦Gn−n0 .Our objective is to get the estimate

sup
x∈χ(D′n)

‖dx(S∞,npn ◦ χ−1)‖ ≤ C|λ|−nsn sup
x∈χ(D′n0 )

‖dx(S∞,n0 p̄n0 ◦ χ−1)‖ (4.59)

with the constant C not depending on the level n > n0. If this estimate is established,
then (4.57) is a direct consequence of (4.58) if we keep in mind that a reparametrization
of any function does not change its sup-norm. To show (4.59), we split D′n and D′n0

into
rings and show (4.59) on the rings. More precisely, we show, letting r = n− n0, that

sup
x∈χ(Dl+r)

‖dx(S∞,npn ◦ χ−1)‖ ≤ C|λ|−rsr sup
x∈χ(Dl)

‖dx(S∞,n0 p̄n0 ◦ χ−1)‖ (4.60)

with the constant C not depending on the l > n0 and r > 0. Although the exponents of |λ|
and s in (4.59) and (4.60) di�er by n0 this does not a�ect the estimate since the resulting
constant |λ|n0sn0 is independent of l and r, or n, respectively. Although (4.60) does not
consider the central point 0, it nevertheless implies (4.59), since we know that both the
function S∞,npn ◦χ−1 and the function S∞,n0 p̄n0 ◦χ−1 are continuously di�erentiable in 0.

In order to show (4.60) we consider the maps ξl+r and ξl introduced in the proof of
Lemma 4.20. Those maps are reparametrizations of the characteristic map on the rings
Dl+r and Dl, respectively, such that both maps are de�ned on D0. We use the mapping

Zl,r := ξl ◦ ξ−1
l+r : χ(Dl+r)→ χ(Dl)

to reparametrize limit functions de�ned on χ(Dl+r) and to obtain functions de�ned on
χ(Dl) ⊂ χ(D′n0

) where we have the estimate (4.58). In order to analyze the mappings Zl,r
we need some preparations. First, the estimate (4.56) together with the inverse function
theorem shows that there is a constant C > 0, independent of the indices l > n0 and
r > 0, such that

sup
y∈χ(Dl+r)

‖dyξ−1
l+r‖ ≤ C(l + r)1−m|λ|−l−r. (4.61)

Secondly, we proceed similar to (4.54) and (4.55) in Lemma 4.20, but estimate from above,
instead of from below, to get a constant C which does not depend on l and x ∈ D0 such
that

‖dxξl‖ ≤ C|λ|llm−1‖dxψ‖. (4.62)
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Using the chain rule and both (4.61) and (4.62), we obtain

sup
y∈χ(Dl+r)

‖dyZl,r‖ ≤ C
(
(l + r)1−m|λ|−l−r

)
·
(
|λ|llm−1

)
≤ C |λ|−rsr,

where C is independent of l > n0 and r > 0. Since S∞,npn ◦χ−1 = S∞,n0 p̄n0 ◦χ−1 ◦Zl,r on
the ring χ(Dl+r), we can apply the chain rule to estimate

sup
x∈χ(Dl+r)

‖dx(S∞,npn ◦ χ−1)‖ ≤ sup
x∈χ(Dl+r)

‖dxZl,r‖ sup
x∈χ(Dl)

‖dx(S∞,n0 p̄n0 ◦ χ−1)‖

≤ C|λ|−rsr sup
x∈χ(Dl)

‖dx(S∞,n0 p̄n0 ◦ χ−1)‖,

where the constant C does not depend on l > n0 and r > 0. This proves (4.60), which
completes the proof.

We proof the main result of this part.

Proof of Theorem 4.5. We use the ring index n0 of Lemma 4.20 which guarantees that
the estimates of Lemma 4.20 and Lemma 4.21 are valid.

We show that the functions S∞,iTi−1,0p0 ◦ χ−1 form a Cauchy sequence in the Banach
space C1(χ(D′n0

),Rd). Since this sequence (with each member reparametrized by χ) con-
verges to the limit of subdivision in the space C(D,Rd) according to Theorem 4.4, it also
converges to the reparametrized limit of subdivision in the space C(χ(D′n0

),Rd). So if the
sequence is Cauchy in C1 its limit agrees with the reparametrized limit of subdivision,
which must then be a C1 function.

In order to show that the sequence S∞,iTi−1,0p0 ◦ χ is Cauchy we show that there is a
constant C, which does not depend on the level i ≥ n0, such that

‖(S∞,i+1Ti,0p0 − S∞,iTi−1,0p0) ◦ χ−1‖C1(χ(D′n0 ),Rd) ≤ CγiDctrl0(D′0)(p0)2, (4.63)

for γ = s2 max((detM)−1/2, |λ|), and s > 1 chosen such that γ < 1. If (4.63) is shown,
the geometric series yields the desired statement.

We consider (i+ 1)-st level data qi+1 given by

qi+1 := (Ti − Si)Ti−1,0p0.

According to (4.63), we have to estimate the C1 norm of the limit function S∞,i+1qi+1 of
linear subdivision using S for input data qi+1 w.r.t. the characteristic parametrization. In
order to get �ne enough estimates, we split the n0-th inner area D′n0

into the rings Dn

(n0 ≤ n ≤ i) and the (i + 1)-st inner area D′i+1. We estimate S∞,i+1qi+1 ◦ χ−1 on the
domains χ(Dn) and χ(D′i+1) separately.

We begin with the rings Dn. We �x n with n0 ≤ n ≤ i. From Lemma 4.19 we get a
constant C > 0 which does not depend on the ring index n such that

Dctrln(D′n)(Tn−1,0p0) ≤ C|λ|nsnDctrl0(D′0)(p0). (4.64)

In Chapter 1.2 we assumed that the control sets ctrln(Dj
n) of the segments Dj

n have
regular combinatorics. Therefore, the limit function w.r.t. linear subdivision using S on
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the domain Dn is obtained from n-th level data on ctrln(Dn) by means of subdivision on
a regular part of the mesh. By the locality of the proximity inequality, the same is true
for using T instead of S. Then Lemma 3.7 implies that

Dctrli(Dn)(Ti−1,0p0) ≤ C detM (n−i)/2si−nDctrln(Dn)(Tn−1,0p0)

≤ C detM (n−i)/2|λ|nsiDctrl0(D′0)(p0).

For the second inequality we used (4.64). The constants C do not depend on i. The
proximity inequality and the above estimate yield

Dctrli+1(Dn)(qi+1) ≤ C Dctrli(Dn)(Ti−1,0p0)2

≤ C detMn−i|λ|2ns2iDctrl0(D′0)(p0)2, (4.65)

where the occurring constants do not depend on the index i. We turn to estimating C1

norms. From the scaling relation and the translation invariance of the scheme S in regular
parts of a mesh we get a constant C which is again independent of i and the level n, where
n0 ≤ n ≤ i, such that

‖S∞,i+1qi+1‖C1(Dn,Rd) ≤ C detM i/2‖qi+1|ctrli+1(Dn)‖∞. (4.66)

These facts together with Lemma 4.20 imply

‖S∞,i+1qi+1 ◦ χ−1‖C1(χ(Dn),Rd) ≤ C |λ|−n(detM)−n/2‖S∞,i+1qi+1‖C1(Dn,Rd)

≤ C |λ|−n(detM)(i−n)/2‖qi+1|ctrli+1(Dn)‖∞.
≤ C |λ|ns2i(detM)(n−i)/2Dctrl0(D′0)(p0)2.

The constants C do not depend on the indices n and i. For the �rst inequality we used the
estimate (4.49) of Lemma 4.20. The second and the third inequality are a consequence
of (4.66) and (4.65), respectively. This proves (4.63) on the rings χ(Dn) with ring index
n0 ≤ n ≤ i.

It remains to consider the (i+ 1)-st inner area D′i+1. We obtain

‖S∞,i+1qi+1 ◦ χ−1‖C1(χ(D′i+1),Rd) ≤ C |λ|−isi‖qi+1|ctrli+1(D′i+1)‖∞
≤ C |λ|−isiDctrli(D′i)

(Ti−1,0p0)2

≤ C |λ|is2iDctrl0(D′0)(p0)2,

where the constants C are independent of i.We use Lemma 4.21 for the �rst estimate. The
second inequality is obtained by applying the local proximity inequality, and Lemma 4.19
gives the last inequality. This estimate proves (4.63) on χ(D′i+1), which completes the
proof.

Note that if we have pure eigenvalues, χ is already invertible on D′0 and Lemma 4.21
is true for any n ∈ N0. So we can choose n0 = 0 in that case.

Finally, we show Corollary 4.6.

Proof of Corollary 4.6. It remains to verify the local proximity condition (4.1). This
follows directly from [57, Lemma 5] for the geodesic analogue, [15, Theorem 4] for the
projection analogue, from [14, Proposition 7.2] for the log-exp analogue, and for the
intrinsic mean analogue by its interpretation as log-exp analogue with special choice of
base points.



68 5 Convergence of schemes in Cartan-Hadamard manifolds

5 Convergence of schemes in Cartan-Hadamard mani-

folds

This part of the thesis is concerned with convergence of geometric subdivision schemes
for all input data. The results of this chapter are contained in [58]. This circle of problems
is much more involved than the convergence results for dense enough input data. This is
due to the fact that convergence for dense enough input data is a local problem and thus
only local properties of manifolds (which are locally homeomorphic to Rn) enter the scene.
In contrast, when we are interested in convergence for all input data, the global structure
of the manifold is important. Furthermore, the geometric analogues we considered in
Chapter 2 are, in general, even only well de�ned for dense enough input data. So if we
want to speak about convergence for all input data, we need manifolds with additional
properties which guarantee that the geometric scheme under consideration is well de�ned
for all input data. A class of manifolds meeting this requirement for the intrinsic mean
analogue is the class of so-called Cartan-Hadamard manifolds provided the mask of the
scheme is positive. Cartan-Hadamard (CH-)manifolds are complete simply connected
Riemannian manifolds with nonpositive sectional curvatures. Examples are the spaces of
positive n× n-matrices which are e.g. treated in Chapter XII of [32]. CH-manifolds have
the nice feature that the Riemannian exp-map is a di�eomorphism. Furthermore, the
weighted intrinsic mean of �nitely many points is globally well de�ned [29, Ch. 8, Thm.
9.1] .

In this chapter we thus consider intrinsic mean subdivision schemes with positive
weights in CH-manifolds. The main result of this chapter is the following theorem for the
curve case:

Theorem 5.1. Assume that T is an `intrinsic mean' curve subdivision scheme analogous
to an a�nely invariant linear scheme S with positive mask. Let T act on data in a
CH-manifold. If S is contractive in the strong sense, i.e., for bounded input p,

sup
i

dist(Spi, Spi−1) ≤ γ sup
i

dist(pi, pi−1), γ < 1, (5.1)

then the same inequalities true with S replaced by T (with the same constant γ), and T
converges for all input data.

Note that the derived scheme S[1] of any linear scheme S yields a constant γ = S[1]/N
(where N is the dilation factor of S) which can be used for Equation (5.1) provided γ < 1.
This yields the following corollary.

Corollary 5.2. If T operates in a CH-manifold and is the intrinsic mean analogue of an
a�nely invariant linear curve scheme S with positive mask and the derived scheme ful�lls
‖S[1]‖ < N, then T converges for all input data.

As an example we consider the Lane-Riesenfeld schemes which produce B-Splines
as limit functions. For these schemes the dilation factor is 2. It is well known that
‖S[1]‖ = 1 < 2. This together with the smoothness result of Theorem 3.5 implies the
following corollary:
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Corollary 5.3. The intrinsic mean subdivision schemes which inherit their weights from
the Lane-Riesenfeld curve schemes converge for all input data in a CH-manifold and the
limits are as smooth as the corresponding B-splines.

For the proof of Theorem 5.1 we need the following lemma from di�erential geometry:

Lemma 5.4. Let M be a CH-manifold and let ci be nonnegative weights with
∑n

i=1 ci = 1.
We consider two sets of points pi and qi and regard the corresponding intrinsic means
m(pi,ci) and m(qi,ci) of these two sets of points with the same weights ci. Then

dist(m(pi,ci),m(qi,ci)) ≤
n∑
i=1

ci dist(pi, qi). (5.2)

Remark 5.5. A similar statement with constants on the right hand side is true locally
without requiring the manifold to be a CH-manifold. These constants depend on the
sectional curvature of the manifold in question. We refer to [27] for details.

Proof. We follow the proof of Corollary 1.6. in [27]. We use the notation mp = m(pi,ci)

and mq = m(qi,ci). Consider the real-valued mapping Pq de�ned on the CH-manifold given
by

Pq(x) = 1
2

∑
i

ci dist(x, qi)
2.

By [27, Theorem 1.2], its gradient reads

gradPq(x) = −
∑
i

ci exp−1
x qi. (5.3)

It is a consequence of [27, (1.5.1)] and the last sentence in the proof of [27, Theorem 1.2]
that for all x in the manifold

dist(x,mq) ≤ | gradPq(x)|. (5.4)

Here the nonpositive sectional curvature of the CH-manifold is used. Combining (5.3)
and (5.4), and letting x = mp, yields

dist(mp,mq) ≤
∣∣∑

i

ci exp−1
mp qi

∣∣. (5.5)

CH-manifolds have the additional important property that the exp-mapping is not de-
creasing distances [32], i.e., for points x, y, z in the manifold,

| exp−1
z x− exp−1

z y| ≤ dist(x, y). (5.6)

In our current notation the balance condition (2.2) for the intrinsic mean mp reads∑
i

ci exp−1
mp(pi) = 0. (5.7)
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Starting from (5.5) we use (5.6) and (5.7) to estimate

dist(mp,mq) ≤
∣∣∑

i

ci exp−1
mp qi

∣∣
=
∣∣∑

i

ci exp−1
mp qi −

∑
i

ci exp−1
mp pi

∣∣
≤
∑
i

ci

∣∣∣exp−1
mp qi − exp−1

mp pi

∣∣∣
≤
∑
i

ci dist(qi, pi).

We are going to prove Theorem 5.1.

Proof of Theorem 5.1. We show that for data p,

sup
i

dist(Tpi, Tpi−1) ≤ γ sup
i

dist(pi, pi−1). (5.8)

Locality of T implies that w.l.o.g. we can assume that data are bounded. From (5.8)
we immediately conclude that data eventually gets dense enough after su�ciently many
subdivision steps. This means that if we have shown (5.8) the statement of the theorem
is a consequence of Theorem 3.3.

To that end we consider the scheme S with mask {ai}i∈Z. Depending on the dilation
factor N, we obtain N essentially di�erent sets of nonnegative averaging coe�cients b(k) =
{ak−lN}l, where k ∈ Z. These coe�cients are used to de�ne the weights for the intrinsic
means. In order to estimate

dist(Tpi, Tpi−1) = dist(m
(pl,b

(i)
l )
,m

(pl,b
(i−1)
l )

) (5.9)

we are going to apply Lemma 5.4. If we compare the right-hand side of (5.9) and the
left-hand side of (5.2) we see that on the one hand we have one sequence of points and two
sets of weights, on the other hand we have two sequences of points and one set of weights.
To overcome this problem we de�ne a new sequence of weights wj using the weights b(i)

l

and b(i−1)
l , and we derive new sequences of points xj and yj from the sequence pl. Below,

we are going to show that the following means coincide:

m
(pl,b

(i)
l )

= m(xj ,wj) and m
(pl,b

(i−1)
l )

= m(yj ,wj). (5.10)

We de�ne the weights wj, and xj, yj as follows: For l ∈ Z, we denote the partial sums of
the weights b(i) and b(i−1) by

Cl =
∑
r≤l

b(i)
r and Dl =

∑
r≤l

b(i−1)
r .

We merge the two monotonously increasing sequences Cl andDl and order them according
to their values. We get a monotonously increasing sequence Wj and two monotonously
increasing mappings jC , jD : Z→ Z of indices such that

W (jC(l)) = C(l) and W (jD(l)) = D(l).
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We de�ne the weights wj by

wj = Wj −Wj−1.

Surely, wj de�nes a nonnegative weight sequence. In order to de�ne the point xj we
consider the smallest index k0 ≥ j in the sequence W which `comes from the sequence C',
i.e., k0 = min{k ≥ j : k ∈ jC(Z)}. The preimage j−1

C (k0) de�nes the index in the sequence
of points p we use to de�ne xj. For yj we proceed in an analogous way. Thus we let

xj = pmin{m:jC(m)≥j} and yj = pmin{m:jD(m)≥j}.

We show (5.10): We consider the sequence members pi as formal objects, meaning
that pr = ps if and only if r = s. We start with the left-hand side of (5.10). We consider
a point pl, examine the sequence x to �nd the indices j with xj = pl, and show that the
sum of corresponding weights

∑
wj = b

(i)
l .

For �xed l, xj = pl if and only if jC(l − 1) + 1 ≤ j ≤ jC(l). This is a consequence of
jC being monotonously increasing. So x is of the form (. . . , pl−1, pl, pl, . . . , pl, pl, ppl+1

. . .),
and

jC(l)∑
j=jC(l−1)+1

wj = WjC(l) −WjC(l−1) = Cl − Cl−1 = b
(i)
l .

Therefore, for all x,

∑
l

b
(i)
l dist(x, pl)

2 =
∑
l

jC(l)∑
j=jC(l−1)+1

wj dist(x, xj)
2 =

∑
j

wj dist(x, xj)
2.

This implies that m
(pl,b

(i)
l )

= m(xj ,wj). The second part of (5.10) follows by the same
argument.

Application of (5.9), (5.10) and (5.2) yields

dist(Tpi, Tpi−1) ≤
∑
j

wj dist(xj, yj). (5.11)

We investigate the right-hand expression of (5.11): We are going to show that∑
j

wj dist(xj, yj) ≤
∑
l

|Cl −Dl| · sup
i

dist(pi, pi−1). (5.12)

We �x j and consider two neighboring sequence members Wj and Wj−1 (Wj > Wj−1) and
examine subsequences of the form {WjC(l), . . . ,WjD(l)}, the values being between Cl and
Dl. We want to �nd the indices l with

{Wj−1,Wj} ⊂ {WjC(l), . . . ,WjD(l)}. (5.13)

Clearly, the index l ful�lls (5.13) if and only if jC(l) < j ≤ jD(l). This is the case if and
only if min{m : jD(m) ≥ j} ≤ l < min{m : jC(m) ≥ j}. With the roles of Cl and Dl
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exchanged we obtain {Wj−1,Wj} ⊂ {WjD(l), . . . ,WjC(l)} if and only if min{m : jC(m) ≥
j} ≤ l < min{m : jD(m) ≥ j}. This means that the number of indices

#{l : {Wj−1,Wj} ⊂ {Wmin(jC(l),jD(l)), . . . ,Wmax(jC(l),jD(l))} }
= |min{m : jC(m) ≥ j} −min{m : jD(m) ≥ j}|. (5.14)

Furthermore, by de�nition,

xj = pmin{m:jC(m)≥j} and yj = pmin{m:jD(m)≥j}.

Note that the right-hand side of (5.14) is the absolute value of the di�erence of the indices
of the sequence p appearing in xj and yj. We show (5.12):∑
j

wj dist(xj, yj) =
∑
j

(Wj −Wj−1) dist(pmin{m:jC(m)≥j}, pmin{m:jD(m)≥j})

≤
∑
j

(Wj −Wj−1) · |min{m : jC(m) ≥ j} −min{m : jD(m) ≥ j}| · sup
i

dist(pi, pi−1)

=
∑
l

max(jC(l),jD(l))∑
j=min(jC(l),jD(l))+1

(Wj −Wj−1) · sup
i

dist(pi, pi−1)

=
∑
l

|Cl −Dl| · sup
i

dist(pi, pi−1).

Here we have used the triangle inequality. The last but one equality is a consequence of
(5.14). This completes the proof of the estimate (5.12). We conclude, using (5.11), that

dist(Tpi, Tpi−1) ≤
∑
l

|Cl −Dl| · sup
n

dist(pn, pn−1). (5.15)

We are going to show that ∑
l

|Cl −Dl| ≤ γ. (5.16)

Then plugging (5.16) into (5.15) yields (5.8) which completes the proof. To show (5.16)
we de�ne the `sign sequence' σl by

σl = sign(Cl −Dl). (5.17)

Then we have ∑
l

|Cl −Dl| =
∑
l

σl(Cl −Dl)

=
∑
l

σl
(∑
r≤l

b(i)
r −

∑
r≤l

b(i−1)
r

)
=
∑
r

(∑
l≥r

σl
)
b(i)
r −

∑
r

(∑
l≥r

σl
)
b(i−1)
r . (5.18)



73

We de�ne a test data sequence q : Z → R by qr =
∑

l≥r σl. Obviously, this sequence is
bounded and |qr − qr−1| ≤ 1 for all r. By (5.18),∑

l

|Cl −Dl| =
∑
r

qrb
(i)
r −

∑
r

qrb
(i−1)
r =

∣∣∑
r

qrb
(i)
r −

∑
r

qrb
(i−1)
r

∣∣
= |Sqi − Sqi−1| ≤ γ sup

r
|qr − qr−1| = γ. (5.19)

This shows (5.16) which completes the proof.
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6 Interpolatory multiscale transforms for functions be-

tween manifolds

This last chapter uses geometric subdivision schemes to de�ne interpolatory multiscale
transforms for functions between manifolds. We consider the case when the domain
manifold is a 2-manifold. The purpose of this chapter is to characterize the smoothness
of a function by the decay of its detail coe�cients which are derived by the transform.
This chapter is contained in [61].

Such results have quite a history. In [9], D. Donoho analyzes linear interpolatory
wavelet transforms. He characterizes smoothness properties of a function by decay prop-
erties of the detail coe�cients which are derived from the function via the transformation.
Interpolatory transforms can also be de�ned in a reasonable manner in the setting of ge-
ometric subdivision which has been observed by Donoho et al.[53]. In [17], Grohs and
Wallner show an analogue of Donoho's result concerning the decay of detail coe�cients
for the class of Hölder-Zygmund functions in the geometric setting. More precisely, they
consider a continuous function

f : Rn →M,

where M in a manifold. This function is sampled on the grid 2−iZn to obtain a grid
function

fi : 2−iZn →M

A geometric subdivision scheme T is applied to fi and the (generalized) di�erence 	
(de�ned at the end of Chapter 2) between this prediction Tfi and the �ner sample fi+1

on the grid 2−i−1Zn gives the i-th level detail coe�cients:

di = fi 	 Tfi−1.

Then the transform reads

f → (f0, d0, d1, . . .). (6.1)

The corresponding linear transform is obtained by replacing T by a linear scheme S, and
	 by −.

Smoothness of a function f is related to decay of the coe�cients di by the following
theorem which is part of the results of [9] and the result of [17]. In this context smoothness
of a function is measured by its membership in the Hölder-Zygmund classes Lipα .

Theorem 6.1. Let S be a linear interpolatory subdivision scheme on the regular mesh
which produces Lipα limits, and assume that f is a continuous function on Rd with image
contained in a compact subset. Let γ < α.

Then f ∈ Lipγ if and only if the coe�cients di w.r.t. the linear scheme decay as
O(2−γi), i.e., there is C > 0 such that 2γi‖di‖∞ ≤ C for all i.

Assume furthermore that T is a geometric analogue of S, and that f0 is dense enough
such that the geometric version of the transform is de�ned. Then the detail coe�cients
w.r.t. T also decay as O(2−γi) if and only if f ∈ Lipγ .
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In contrast, we treat domains which are not necessarily Euclidean, i.e., we deal with
manifold-valued functions, de�ned on a two-dimensional manifold. We consider a multi-
scale transform, where both the choice of sample points and the prediction operator are
based on nonlinear geometric subdivision. Since 2-manifolds with non-zero Euler charac-
teristics cannot be covered with regular quad meshes or triangular meshes, we must be
able to process irregular combinatorics.

The chapter is organized as follows. In Chapter 6.1 we give the de�nition of the trans-
form. The remainder of the chapter is devoted to the characterization of Hölder-Zygmund
functions in terms of the detail coe�cient decay w.r.t. our transform, in particular near
irregular points. The results are stated in Chapter 6.2, where we also give some examples.
The proofs are collected in Chapter 6.3.

6.1 De�nition of a multiscale transformation for geometric data

In the following let N be a two-dimensional smooth domain manifold, and let M
be a smooth target manifold of arbitrary dimension. We explain a way of sampling
continuous functions from N to M : Consider a mesh (K0, p0) which covers N. We use an
interpolatory subdivision scheme T ′, which processes data in N and which is a geometric
analogue of a linear scheme S. Application of T ′ yields a sequence of subdivided meshes
(K1, p1), (K2, p2), . . . . The (realized) vertex sets Xi = pi(Vi) in N are nested.

We assume that two (realized) vertices pi(v) and pi(w) never coincide, i.e., we assume
that pi is injective. Su�cient conditions for injectivity are given in Chapter 6.2.

We propose the following discrete interpolatory multiscale transform: We point-sample
a continuous function f : N →M on Xi and let

fi = f |Xi .

So fi is an M -valued function de�ned in the discrete subset Xi ⊂ N.
To de�ne a prediction operator T we use a second interpolatory analogue T ′′ of S

which processes data in the target manifold M . T ′′ is applied to the mesh (Ki, f ◦ pi)
whose realized vertex set is f(Xi). The result is a mesh (Ki+1, gi+1) where gi+1 has values

Xi

fi

��

subdivision in N// Xi+1

Tfi

��

Vi

pi
<<yyyyyyyyy

f◦pi ""DD
DD

DD
DD

D Vi+1

pi+1

ccFFFFFFFF

gi+1=T ′′(f◦pi)||xx
xx

xx
xx

x

f(Xi)subdivision in M
// M

Figure 18: De�nition of the prediction op-
erator for a multiscale transform based on
interpolatory geometric subdivision.

in M. By our assumption on the injectivity of pi+1, the function gi+1 ◦ p−1
i+1 : Xi+1 → M

is well de�ned. We de�ne the prediction operator T by

Tfi = gi+1 ◦ p−1
i+1.

Using the geometric operation 	 (de�ned at the end of Chapter 2) pointwise, detail
coe�cients are de�ned by

di = fi+1 	 Tfi.
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Our multiscale transform is now de�ned by

R : f → (f0, d0, d1 . . .). (6.2)

Note that the well-de�nedness of the transform depends on the well-de�nedness of the
subdivision operators T ′ and T ′′, which in general can only be guaranteed for dense enough
input data. This translates to the fact that we cannot arbitrarily choose the coarsest level
for sampling (as in the linear case), but there is a bound on the maximal `zoom out'.
It turns out, however, that the guaranteed theoretical bounds are very pessimistic in
contrast to what can be observed in practice.

In applications, we have the following �nite version of the transform. It reads

Rn : fn → (f0, d0, . . . , dn−1). (6.3)

A special case occurs if M is a vector space and T ′′ is a linear scheme. Then the
multiscale transform is linear.

On the other hand, if N = R2 and the initial covering of N is given by the Z2 lattice,
choosing T ′ as an interpolatory linear scheme which reproduces linear functions yields the
multiscale transform (6.1) which was de�ned in [53].

6.2 Statement of the results and examples

In order not to introduce additional technical problems, we formulate our results for
the case when N is compact. However, considering compact sets N and using a local
de�nition of Hölder-Zygmund functions seems a straightforward way to generalize the
results to non-compact N.

Our main theorem is Theorem 6.4. Its formulation needs the following notions: the
smoothness index of a linear subdivision scheme, Hölder-Zygmund functions between
manifolds, a certain non-degeneracy property referring to a mesh covering a manifold,
and the quantities ‖di‖i,γ (i ∈ N0) which encode the decay of the coe�cients under the
transformation (6.2). We de�ne these objects �rst and then state the theorem.

Non-degeneracy Property of a Covering Mesh

Consider the initial mesh covering the manifoldN in Chapter 6.1. In order to formulate
the non-degeneracy property, we need a certain di�erentiable manifold Q. Q is obtained
by imposing a smooth structure on the mesh by considering it as a topological space in
the canonical way and using the characteristic maps χv as charts (which are de�ned in
each 1-ring neighborhood Nv of a vertex v):

χv : Nv ⊂ Q→ R2.

For analysis purposes, we consider the mapping κ from the manifold Q to N, which is
given as the limit of subdivision. We request the following non-degeneracy property:

κ : Q→ N is regular and injective. (6.4)
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Obviously, this property guarantees that no vertices of the initial mesh or its subdivided
meshes coincide in N as required in Chapter 6.1. Furthermore, it guarantees that κ is
onto, and thus invertible. This follows e.g. from degree theory [35]1.

If N has non-zero Euler characteristic, we can weaken (6.4) by dropping the injectivity
assumption which then is ful�lled automatically. Again, this a consequence of degree
theory [35]2.

Corollary 4.17 yields a way to infer the regularity of κ from properties of initial data
p0 using the regularity of the according limit of S (if p0 does not satisfy this condition,
there is still the chance that p1, p2, . . . do). So (6.4) can be e�ectively veri�ed for given
initial data p0 (or the following p1, p2, . . .).

De�nition of the decay measure ‖di‖i,γ

Our decay conditions near extraordinary vertices are only slightly more involved than
the very simple decay conditions in Theorem 6.1. To formulate these conditions we again
need the notion of the control set ctrli(U) of a set U ⊂ D which is de�ned by D. Zorin
in [68], and which is a set of vertices in the i-th level mesh which determine the limit
function on U. This means that the limit function on U only depends on data on ctrli(U).

First we consider k-regular meshes and use the notation of Chapter 1.2. For �xed i, we
split the domain D into the rings Dj (0 ≤ j < i) and the inner area D\(D0 ∪ . . .∪Di−1).
For their i-th level control sets we use the notation

V j
i = ctrli(Dj), j < i,

V i
i = ctrli(D\(D0 ∪ . . . ∪Di−1)). (6.5)

The corresponding subsets of Xi (de�ned at the beginning of Chapter 6.1) are denoted
by Xj

i = pi(V
j
i ). We take the di�erence di−1 = fi 	 Tfi−1 and measure each component

with its bundle norm. Then we de�ne

‖di‖i,γ = maxj(λ
−j2i−j)γ‖si|Xj

i+1
‖∞, where si(x) = ‖di(x)‖. (6.6)

Here λ is the subdominant eigenvalue of the subdivision matrix A (of our considered
standard scheme). It turns out that this is the appropriate quantity to measure the detail
coe�cient decay near extraordinary vertices with.

Note that our de�nition is essentially a weighted sup-norm, where the weights depend
on the `distance' to an extraordinary vertex.

1For the reader's convenience we give the following short direct argument: Consider a curve γ : [0, 1]→
N connecting a point x = γ(0) in the image κ(Q) and an arbitrary point y = γ(1) in N. Consider the
maximal parameter t0 such that for all smaller parameters t < t0 the curve γ([0, t]) stays in κ(Q). The
compactness of N implies that γ([0, t0]) ⊂ κ(Q). So there is p ∈ Q with κ(p) = γ(t0) and κ is a local

di�eomorphism. Now, if t0 were not 1, the inverse function theorem and the continuity of γ would

guarantee that there is a neighborhood U of κ(p) ⊂ κ(N) and ε > 0 such that γ([t0 − ε, t0 + ε]) ⊂ U.
This is a contradiction and therefore κ is onto.

2As above, we give a short argument for the reader's convenience: By the regularity of κ and the

compactness of Q, it follows that κ is a smooth �nite covering. Then the Euler characteristic of the

covering space Q must be a multiple of the Euler characteristic of N. But this is a contradiction to the

fact that the manifolds N and Q are homeomorphic.
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The de�nition of ‖ · ‖i,γ naturally extends to an arbitrary mesh and the corresponding
subdivided meshes: Near extraordinary vertices, we locally use the above de�nition and
obtain a global de�nition by `gluing'. Therefore, we do not introduce complicated notation
for that situation.

Smoothness Index of a Linear Subdivision Scheme

We assume that S is a standard scheme or a triangular quadrisection scheme ful�lling
all the requirements of a a standard scheme except for being quadrilateral based. Let ν
be the smoothness index of S on regular meshes, i.e., the greatest number such that S
produces Lipγ limits for all γ < ν. Now we consider the subdivision matrix A for a valence
k vertex. We order the eigenvalues according to their modulus by 1, λ, λ, µ3, µ4, . . .. Then
we let ν ′ = min(logλ |µ3|, 2) (subdivision schemes with logλ |µ3| > 2 are not desirable
anyway [45]). We call

ω = min(ν, ν ′) (6.7)

the smoothness index of S near an extraordinary vertex of valence k. For a general mesh,
take the minimum of the smoothness indices of all extraordinary vertices.

On the De�nition of Hölder-Zygmund Classes for Functions between Manifolds

Here we �rst follow Triebel [52] to de�ne Hölder-Zygmund functions from the compact
manifold N to R. We equip N with an auxiliary Riemannian structure. We consider
�nitely many exponential charts exp−1

pi
(whose images are balls of the same radius r)

covering N and a subordinate C∞ partition of unity {ϕi}. We say a continuous function
f : N → R belongs to the Hölder-Zygmund class Lipα(N,R) if (fϕi) ◦ exppi is a Lipα-
function on R2, if we consider it extended by 0 outside the ball of radius r; Lipα was
de�ned in Chapter 1.1 with the help of (1.9).

Note that this de�nition does not depend on the chosen Riemannian structure. It also
does not depend on the chosen centers of the balls, nor on the radius r, nor the partition
of unity [52]. So the imposed Riemannian structure is only a tool for de�ning the Hölder-
Zygmund Classes, and does not prejudice the subdivision scheme we are going to employ:
If N is, for example, a Lie group we can still use a Lie group scheme.

We are going to de�ne the class Lipα(N,M) where both N and M are smooth mani-
folds and N is compact. We equip both N andM with an auxiliary Riemannian structure.

De�nition 6.2. Let f : N → M be a continuous function. Choose �nitely many open
geodesic balls B(xi, r) which cover N, and �nitely many balls B(yj, R) which cover im f,
such that each f(B(xi, r)) is contained in one of the balls B(yj, R). We choose a partition
of unity {ϕi} subordinate to the balls B(xi, r). The continuous function f : N → M
belongs to the class of Hölder-Zygmund functions between N and M,

f ∈ Lipγ(N,M) ⇐⇒ fi ∈ Lipγ(Rm,Rn), for all i.

Here fi is obtained from (giϕi)◦ expxi : B(0, r)→ Rn by extending with 0 outside the ball,
and gi = exp−1

yj
◦f |B(xi,r).
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Note that in the above de�nition, the main purpose of introducing the Riemannian
structure is to obtain nice charts. Concerning well-de�nedness we have the following
statement, whose proof is given later on.

Proposition 6.3. The de�nition of Lipγ(N,M) does not depend on the imposed Rieman-
nian structure, the particular choice of balls, or the partition of unity.

We formulate our main result:

Theorem 6.4. Let S be an interpolatory linear standard scheme or a triangular scheme
based on quadrisection which ful�lls all the assumptions imposed on a standard scheme
except for being triangular based instead of quad based. Assume furthermore that the two
interpolatory schemes T ′ and T ′′ (acting in N andM, resp.,) both ful�ll the local proximity
conditions (4.1) w.r.t. S. Assume that an initial mesh covering N has the non-degeneracy
property (6.4), and that the smoothness index of S ful�lls ω > 1 on its mesh combinatorics.
Then the multiscale transform R de�ned by T ′, T ′′ and the initial mesh covering N has
the following property: The smoothness of a continuous function f : N →M is related to
the decay of detail coe�cients di w.r.t. R by

f ∈ Lipγ(N,M) if and only if supi∈N0
‖di‖i,γ ≤ C (6.8)

for 0 < γ < ω. Here ‖ · ‖i,γ is de�ned by (6.6).

In Chapter 6.1 we already encountered the fact that nonlinear subdivision schemes are
in general only de�ned for dense enough input. By choosing a high enough index i0, the
samples of the continuous function f on all levels Xi with i ≥ i0 are dense enough such
that the multiscale transform is well de�ned if we start on level i0 instead of level 0. Then
the statement of the theorem holds if we choose the i0-th level mesh as initial mesh. As
the statement is an asymptotic one in i, the initial level i0 does not matter anyway.

Remark 6.5. We want to point out that by considering N as a smooth (meaning C∞)
manifold, Theorem 6.4 does not apply to the case when N itself is a subdivision surface
in R3. The central technical reason is our use of geodesic balls in the de�nition of the
Hölder-Zygmund classes. This is done to obtain `nice' chart neighborhoods. However, a
subdivision surface already brings nice chart neighborhoods. Although we omit this case
in this paper to avoid further technical complications, we strongly conjecture that the
above theorem is also true when N is a subdivision surface.

Remark 6.6. Modi�cations of our proofs would also work for C1 schemes with ω = 1.
However, this would produce an additional case in most situations which we want to
omit. Furthermore, we want to point out that we do not know how to prove the above
theorem if the scheme is not C1, or ω < 1.

For the geometric situation we have the following result:

Corollary 6.7. If T ′ and T ′′ are geometric (bundle) analogues of a linear scheme S which
operate in N and M, respectively, then (6.8) is valid in this geometric setting.

Linear schemes which meet our requirements are the modi�ed butter�y scheme and
Kobbelt's interpolatory quad scheme [30]. The butter�y scheme was proposed by Dyn
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et al.[12]. It was modi�ed by Zorin [72] to produce smooth limits near extraordinary
vertices. An analysis of both schemes can be found in [67].

As a consequence of Corollary 6.7, the Riemannian analogues (2.1) and (2.7) of the
modi�ed butter�y scheme and of Kobbelt's interpolatory quad scheme ful�ll (6.8). Other
analogues meeting the requirements of the corollary are the projection analogue and the
geodesic analogue analyzed in [57].

The exact value of the smoothness index ω de�ned by (6.7) depends on the valences
of the vertices in the combinatorics K. For its numerical evaluation in case of Kobbelt's
scheme we refer to [67].

The modi�ed butter�y scheme has some properties which are very nice for our pur-
poses:

Corollary 6.8. Let T ′ and T ′′ be geometric (bundle) analogues of the modi�ed butter�y
scheme in N and M, respectively, and assume that the initial mesh which covers N ful�lls
(6.4). Then for continuous f : N →M and and any positive γ, which is smaller than the
smoothness index of the butter�y scheme on regular meshes,

f ∈ Lipγ(N,M) if and only if ‖di‖∞ ≤ C2−iγ.

Here di are the coe�cients of the multiscale transform (6.2).

The above corollary involves the smoothness index of the butter�y scheme on regular
meshes which is known to lie in the interval [1.44, 2]. The lower bound is given in [18],
and the upper bound is clear since the 4-point scheme does not produce C2 limits. Note
that the statement of Corollary 6.8 does not depend on the valences of the vertices in the
combinatorics K, and that the decay conditions are as in the regular mesh case. This
corollary is proved at the very end of Chapter 6.3.

6.3 Proofs

The main part of this section is devoted to the proof of Theorem 6.4. We begin by
providing some information on the invariance properties of Hölder-Zygmund functions.

For an open subset U ⊂ Rn and 0 < α ≤ 1 we de�ne the Hölder classes C1,α(U,Rd) as
the space of C1 functions f : U → Rd such that, for the di�erential of f , ‖dxf − dyf‖ ≤
C‖x− y‖α, for all x, y ∈ U.

We need the following properties of Hölder-Zygmund and Hölder classes which mainly
concern invariance under composition and multiplication.

Proposition 6.9. Assume that 0 < γ < 2 and that 0 < α ≤ 1 such that α ≥ γ − 1.
Consider f ∈ Lipγ(Rn,Rd). Let U , V be open sets in Rn, and let g : U → V be a C1

di�eomorphism with g ∈ C1,α(U,Rn). Furthermore, assume that U ′, V ′ are open sets in
Rd, and that h : U ′ → V ′ is a C1 di�eomorphism with h ∈ C1,α(U ′,Rd). Let K ⊂ W ⊂ Rn

be a compact set contained in the open set W, and f ′ : W → Rd be a continuous bounded
function which ful�lls ‖∆2

tf
′(x)‖ < C‖t‖γ for all x ∈ K and ‖t‖ < t0, where B(y, 2t0) ⊂

W for all y ∈ K. Under the assumption that all sets are connected and contain 0, we have
the following statements.

(i) If u ∈ Lipγ(Rn) with suppu ⊂ intK, then the product uf ′ : Rn → Rd (extended by
0 outside K) belongs to Lipγ(Rn,Rd).
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(ii) If L ⊂ U is compact, then there is an open neighborhood N of g(L), such that
g−1 ∈ C1,α(N,Rn).

(iii) If f is compactly supported in V, then f ◦g ∈ Lipγ(Rn,Rd). Furthermore, ‖f ◦g‖Lipγ

≤ C‖g‖C1,α(supp f)‖f‖Lipγ .

(iv) If f has compact support and im f ⊂ U ′, then h ◦ f ∈ Lipγ(Rn,Rd).

Proof. Note that for 0 < α < 1 the Hölder spaces C1,α(Rn) and the Hölder-Zygmund
spaces Lip1+α(Rn) coincide (which is, in general, no longer true, if we replace Rn by an
open set U).

In order to avoid pathologies (arising from the choice of domains), the Hölder functions
and the Hölder-Zygmund functions in the statements are compactly supported or de�ned
in a neighborhood of the open set of interest− not only on the open set itself. This allows
us to use certain results for the Rn case rather than having to deal with problems at
the boundaries of the domain. In particular, certain proofs given for the Rn case which
are based on di�erences and moduli of continuity (which are quantities of a local nature)
carry over to our setting.

In case γ 6= 1, (i) is a straightforward computation. For γ = 1, we can use the
representation [2, Equ. (2.4)] and proceed in a way analogous to the proof of Proposition
3 in [2]. This is justi�ed, since our setup allows to apply [2, Equ. (2.2)].

We come to (ii). The corresponding statement for the Rn case is stated as Theorem
2.1 in [1] and is there attributed to Norton [38]. The argumentation in [1] is a local one,
and choosing N as a set with compact closure in g(U) yields (ii).

For γ 6= 1, statements (iii) and (iv) in the Rn case are Lemma 2.2 and Lemma 2.3
of [1]. Again, by the locality of the arguments in the proof of these lemmas, and by the
compactness of supp f, (iii) and (iv) hold true as stated.

The Rn statement analogous to (iii) for γ = 1 is the composition theorem of [39]. Its
proof which is based on certain moduli of continuity also applies to the situation in (iii).

A statement similar to (iv) in the Rn case for γ = 1 is Theorem 2 of [2]. The di�erence
is that only the case d = 1 is stated. However, the moduli η and ν employed in [2] can
be generalized to arbitrary dimension d in the obvious way. Then the generalization to
arbitrary d of Proposition 4 and Theorem 6 in [2] remains valid. An analysis of the proofs
of Proposition 4 and Theorem 6 of [2] shows that they also apply to the situation in (iv)
(every C1,α function ful�lls the condition [2, Equ. (1.1)]).

We decided to give a not too detailed proof because following the lines in the references
and checking that they are of local nature, and thus apply to our situation, is easily
possible while explicitly writing down the argumentation would mostly copy the lines in
the references and take up lots of space.

With the help of Proposition 6.9 we are able to show Proposition 6.3.

Proof of Proposition 6.3. It is su�cient to show the result for connected N. We assume
that the conditions of De�nition 6.2 are ful�lled for a function f and geodesic balls B(xi, r)
and B(yj, R), respectively. We consider another such set of balls B′(zk, r′) and B′(vl, R′)
with respect to di�erent Riemannian metrics on N and M, respectively. Consider the
partition of unity {ϕi} and the functions fi as in De�nition 6.2, and an analogous partition



82 6 Interpolatory multiscale transforms for functions between manifolds

of unity {ϕ′k} and the corresponding functions f ′k corresponding to the di�erent choice of
balls. We have to show that, for all k, f ′k ∈ Lipγ(Rm,Rn).

To that end, we choose some small enough R′′ and �nitely many balls B′(qt, R′′)
which cover f(N) such that, for each t, there is j and l with B′(qt, R′′) ⊂ B(yj, R) and
B′(qt, R

′′) ⊂ B′(vl, R
′). Then we choose some small enough r′′ and �nitely many balls

B′(ps, r
′′) which cover N such that, for each s, there is i and k with B′(ps, r′′) ⊂ B(xi, r)

and B′(ps, r′′) ⊂ B′(zk, r
′), and such that there is t with f(B′(ps, r

′′)) ⊂ B′(qt, R
′′). We

let {ϕ′′s} be a partition of unity subordinate to the balls B′(ps, r′′).
We construct the functions f ′′s following De�nition 6.2, using the balls B′(ps, r′′),

B′(qt, R
′′) and the partition of unity {ϕ′′s}. The statements (i),(iii), and (iv) of Propo-

sition 6.9 together yield f ′′s ∈ Lipγ(Rm,Rn) for all s.
Consider now f ′k. Modulo a change of exponential charts, we can write f ′k =

∑
s ψsf

′′
s

with smooth functions ψs with compact support. By Proposition 6.9 (iii) and (iv), this
change of exponential charts leaves the Lipγ property invariant. By Proposition 6.9(i),
multiplication with ψs leaves the Lipγ property invariant. Thus f ′k ∈ Lipγ(Rm,Rn).

We have shown that our de�nition of Hölder-Zygmund functions between manifolds is
consistent.

Recall that, for a function pn on Vn for some k-regular mesh and a subset B of Vn, we
use the notation

DB(pn) = sup{‖pn(v)− pn(w)‖ : v and w are neighbors in B}.

We drop the index B, if B = Vn. DB gives an upper bound on the coarseness of the
corresponding mesh on B. Theorem 4.5 is only concerned with C1 smoothness. We need
the following generalization concerning Hölder functions.

Theorem 6.10. Let S be a linear subdivision scheme which meets the requirements of
Theorem 6.4, and let T be in proximity with S. Let ω > 1 be the smoothness index of S for
a k-regular mesh. If T converges for k-regular input p0 (which is guaranteed if p0 is dense
enough in the sense that D(p0) is small) then its limit is in C1,α−1 w.r.t. the characteristic
parametrization, whenever 1 < α < ω.

Proof. We �rst consider linear subdivision and then use the results to obtain the corre-
sponding statement for the nonlinear case.

We consider the limit function h = S∞,0p0 for input p0 and its restriction hm = h|Dm to
the ring Dm. As before, λ denotes the subdominant eigenvalue of the subdivision matrix
A and µ denotes the modulus of the sub-subdominant eigenvalue(s). We are ordering the
eigenvalues of A by their modulus, 1 > λ = λ > |µ3| ≥ . . . ≥ |µr| ≥ . . . . Then h0 can
be represented as h0 =

∑
r

∑lr
j=0 β

j
re
j
r with {ejr} being the eigen-rings of the subdivision

scheme [45] and βjr being coe�cients. Here the index r corresponds to the eigenvalues
and the index j corresponds to the Jordan block of the corresponding eigenvalue. The
limit function on the m-th ring has the nice representation

hm = β0 + β1λ
me1(2m·) + β2λ

me2(2m·)

+
∑
r

lr∑
l=0

(
m
l

)
µm−lr

lr∑
i=l

βire
i−l
r (2i·) =: h′m + h′′m. (6.9)
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See Chapter 4.6 of [45] for details.
Consider now the function hm ◦χ−1, i.e., we look at the characteristic parametrization

of the limit. By [45], the di�erential of h′′m as de�ned by (6.9) ful�lls d(h′′m ◦ χ−1) =
O(λ−m(µs)m) uniformly on Dm as m→∞ for every s > 1.

Assume that α is a real number with 1 < α < ω. Since limits on regular meshes are
C1,α−1, for all points x, y in, say, three consecutive rings χ(Dm−1)∪χ(Dm)∪χ(Dm+1) the
Hölder condition

‖dx(h ◦ χ−1)− dy(h ◦ χ−1)‖ ≤ C‖x− y‖α−1 (6.10)

is ful�lled for some constant C > 0 which is independent of the particular m.
We consider the situation near the central point 0.We write h′ for the function de�ned

on each Dm by h′m (m ∈ N) and by β0 in 0 (h′m is de�ned in (6.9)). Analogously, we de�ne
h′′, the only di�erence being that h′′(0) = 0. Then h′ ◦χ−1 is an a�ne-linear function and
therefore dx(h′ ◦ χ−1)− dy(h′ ◦ χ−1) = 0. Hence

‖dx(h ◦ χ−1)− d0(h ◦ χ−1)‖/‖x‖α−1 = ‖dx(h′′ ◦ χ−1)‖/‖x‖α−1.

Now, consider x ∈ χ(Dm). Two consecutive rings are λ-homothetic. So there are k,K > 0
which are independent of x and m such that kλm ≤ ‖x‖ ≤ Kλm. Therefore, there are
C1, C2 > 0 such that

‖dx(h′′m ◦ χ−1)‖/‖x‖α−1 ≤ C1‖dx(h′′m ◦ χ−1)‖/λm(α−1)

≤ C2λ
−m(µs)m/λm(α−1) = (s(µ/λα))m.

We choose s > 1 such that ρ = sλν−α < 1. Then s(µ/λα) = (µ/λν)(sλν−α) = ρ. This is
because the �rst factor equals 1 by de�nition of ν. Then, ‖dx(hm ◦ χ−1)‖/‖x‖α−1 ≤ C2ρ

m

≤ C2. This implies that the Hölder condition (6.10) holds also in 0.
For points x and y, which lie in two rings, say χ(Dr) and χ(Ds), with |r − s| > 2, we

estimate di�erentials by

‖dx(h ◦ χ−1)− dy(h ◦ χ−1)‖ ≤ ‖dx(h ◦ χ−1)− d0(h ◦ χ−1)‖+ ‖dy(h ◦ χ−1)− d0(h ◦ χ−1)‖.

By the contraction of the rings, ‖x − y‖α ≥ cmax(‖x‖α, ‖y‖α) for some c > 0 which is
independent of x and y as long as |r− s| > 2. This yields a (larger) constant C ′ such that
(6.10) still holds with C replaced by C ′. Altogether, this implies that the limit of linear
subdivision is a C1,α−1 function.

Since we now know that S produces C1,α−1 limits for α < ω, we can base the proof
for the nonlinear case upon the perturbation arguments used in the proof of Theorem 4.5.
We assume α < ω.We point out where modi�cations are necessary. First of all, note that
for a function u on Rn and some h > 0, we have c, C > 0 such that the dilated function
u(h·) can be estimated by chα‖u‖C1,α−1 ≤ ‖u(h·)‖C1,α−1 ≤ Chα‖u‖C1,α−1 . (C is a generic
constant, which can change from line to line from now on.) With this in mind, we can
use the argumentation of Proposition 4.15 to obtain that

‖(S∞,i+1Ti,0p0 − S∞,iTi−1,0p0) ◦ χ−1|χ(Dn)‖C1,α−1

≤ C(2i−nλ−n)α‖(Ti − Si)Ti−1,0p0|ctrli+1(Dn)‖∞.
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Invoking this estimate yields a statement analogous to (4.24) for the rings near the ex-
traordinary vertex:

‖(S∞,i+1Ti,0p0 − S∞,iTi−1,0p0) ◦ χ−1|χ(Dn)‖C1,α−1 ≤ Cγ(2−α)iDctrl0(D′)(p0)2, (6.11)

where γ := max(2−1, λ). The C1,α−1 version of (4.26) reads

‖(S∞,i+1Ti,0p0 − S∞,iTi−1,0p0) ◦ χ−1|χ(D′i)‖C1,α−1 ≤ Cλ(2−α)iDctrl0(D′)(p0)2. (6.12)

The estimates (6.11) and (6.12) now imply that the limit using T is C1,α−1. This follows
with minor modi�cations from the proofs of Proposition 4.16 and Theorem 4.5.

The next proposition treats Euclidean space data de�ned over a 2-manifold. It is a
special case of our main result.

Proposition 6.11. Let the interpolatory scheme T ′ act on the smooth compact 2-manifold
N and assume that it is in proximity to a linear interpolatory scheme S. Assume that
the initial mesh (K0, p0) in N ful�lls the non-degeneracy property (6.4). Let ω > 1 be
the smoothness index of S for that mesh. We apply the linear version of the transform
(6.2) to a continuous function f : N → Rd. Then for any γ with 0 < γ < ω we have the
characterization

f ∈ Lipγ(N,Rd) if and only if supi∈N0
‖di‖i,γ ≤ C. (6.13)

Furthermore, ‖f0‖∞ + supi∈N0
‖di‖i,γ provides an equivalent norm on Lipγ(N,Rd).

Proof. The proof of this statement takes some time. We split it into several parts. Part
(1) reduces the statement to a statement involving only one extraordinary vertex. In
parts (2)�(5) we show the reduced statement: Part (2) is the `only if'-part in case γ 6=
1. The `if'-part of the statement is treated in part (3). In part (4) we explain why
‖f0‖∞ + supi∈N0

‖di‖i,γ de�nes an equivalent norm on Lipγ(N,Rd) in case γ 6= 1. In Part
(5) we show the `only if'-part and treat the norm equivalence for γ = 1.

We need the sets Vi and Xi which were de�ned in Chapter 1.2 and at the beginning
of Chapter 6.1, respectively. The subsets V j

i and Xj
i are given by (6.5) and the lines

following (6.5), respectively. We let C be a generic constant which can change from line
to line.

(1) We reduce the statement to a more accessible situation near extraordinary vertices.
To that purpose, consider the neighborhood of an extraordinary vertex x ∈ X0 ⊂ N and
the corresponding point 0 ∈ V0 in the glued domain D. Denote by X̄i = χ(Vi) the image
of Vi under characteristic parametrization. With the di�eomorphism κ of (6.4), χ ◦κ−1 is
a local di�eomorphism mapping x to 0 ∈ R2. Thus χ◦κ−1 sends neighbors of x ∈ Xi ⊂ X0

to neighbors of 0 ∈ X̄i. For a visualization see Figure 19.
Now choose �nitely many small geodesic balls B(yj, r) which cover N, such that each

κ−1(B(yj, r)) is completely contained in some characteristic chart neighborhood. Let {ψj}
be C∞ functions such that each ψj is supported in B(yj, r) and equal to 1 on B(yj, r− ε),
where ε > 0 is so small such that the balls B(yj, r − ε) still cover N. If f ∈ Lipγ(N,Rd)
then fψj is compactly supported in B(yi, r) and the extension of its chart representation
with 0 outside the ball is in Lipγ(R2,Rd). Let us denote this extension also by fψj.
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Figure 19: Setup for the proofs of Proposition 6.11 and Theorem 6.4.

The mapping uj = χ ◦κ−1 ◦ exp−1
yj

is a di�eomorphism from B(0, r) into R2. Its image
contains the compact set uj(supp fψj). Since κ is a limit of subdivision, Theorem 6.10
implies that the inverse u−1

j is C1,α−1 for all α < ω. Therefore, for α with γ < α < ω,
Proposition 6.9 implies that (fψj)◦u−1

j ∈ Lipγ(R2,Rd) (with the usual 0-extension). This
means that a Hölder-Zygmund function on N transforms to a Hölder-Zygmund function
near 0 in the image of a characteristic chart.

Conversely, if we have a Hölder-Zygmund function g in the image of a characteristic
chart which is compactly supported in uj(B(0, r)), we use Proposition 6.9 to obtain that
g ◦ uj is Hölder-Zygmund on N (with extension by 0). For a Hölder-Zygmund function
g de�ned on χ(D) which is not necessarily supported in uj(B(0, r)) we can multiply g
with ψj ◦ u−1

j to obtain a function that has support in uj(B(0, r)) and apply the above to
obtain a Hölder-Zygmund function on N.

We de�ne the details d̄i and the control sets X̄j
i analogous to the details di and the

control setsXj
i , only by replacingXi ⊂ N byX ′i ⊂ R2. Then, locally near an extraordinary

vertex, the details di of f given on N and the details d̄i of f ◦ κ ◦ χ−1 are equal.
If a ball B(yj, r) in N does not contain an extraordinary vertex, then we are in the

regular mesh case. But this is a special instance of a 4-regular mesh in case of quad
meshes, and a 6-regular mesh in case of triangular meshes which is treated by the general
k-regular case.

Summing up, it is enough to show the following reduced statement for the k-regular
mesh for a continuous function f with compact support in a neighborhood of χ(D′):

f ∈ Lipγ(χ(D),Rd) if and only if supi∈N ‖fi − Si−1fi−1‖i,γ ≤ C. (6.14)

We also show that ‖f0‖∞ + supi∈N0
‖fi − Si−1fi−1‖i,γ provides an equivalent norm on

LipKγ (χ(D),Rd) = {f ∈ Lipγ(χ(D),Rd) : supp f ⊂ K} (6.15)

for some �xed but arbitrary neighborhood K of 0. Then the corresponding statement in
the proposition follows from Proposition 6.9(iii).

For the further proof we let d = 1, since the right hand expression in (6.14) is equiva-
lent (lower and upper constants) to the maximum of the corresponding component-wise
expressions.

(2) We show the `only if'-part of (6.14) for γ 6= 1. So our assumption is that f ∈
Lipγ(χ(D),R). fi denotes the restriction of f to X̄i. The subdivision scheme S acts on
functions on Vi as a linear operator Si and thus also on functions on X̄i. We denote this
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operator on functions on X̄i by Si, too. We abuse notation and also use S∞,i to denote
the operator which maps input X̄i → R to its limit χ(D)→ R.

Consider the restriction of fi to the sets X̄j
i (the index i corresponds to level i and

the index j to the ring j near an irregular vertex). In the course of the proof we have to
estimate the norm of (fi − Si−1fi−1)|X̄j

i
. We have to distinguish two cases depending on

whether l := i− j, (i.e., the di�erence between level and ring index) is small or not.
If we choose l su�ciently large, say l ≥ l0, we get that

‖(fi − Si−1fi−1)|X̄j
i
‖∞ ≤ ‖(f − S∞,i−1fi−1)|χ(D′′j )‖∞, (6.16)

where we let D′′j = Dj−1 ∪Dj ∪Dj+1. This is a consequence of S being interpolatory and
the fact that the control sets X̄j

i on level i of χ(Dj) are contained in D′′j .
For l = i − j < l0, we �nd r ∈ N such that X̄j

i ⊂ χ(D′j−r), where D
′
l := D′\(D0 ∪

. . .∪Dl−1). (D′ was de�ned as the union of all the rings Di, i ∈ N, and 0 in Chapter 1.2.)
Then

‖(fi − Si−1fi−1)|X̄j
i
‖∞ ≤ ‖(f − S∞,i−1fi−1)|χ(D′j−r)

‖∞. (6.17)

Observe that showing

‖(f − S∞,i−1fi−1)|χ(Dj)‖∞ ≤ Cλjγ2(j−i)γ and (6.18)

‖(f − S∞,i−1fi−1)|χ(D′i)
‖∞ ≤ Cλiγ (6.19)

is enough to complete this part of the proof. This is because (6.18) and (6.19) together
imply that (6.18) is valid with Dj replaced by D′′j or by D

′
i, respectively, if we enlarge the

constant C. Then (6.16) and (6.17) imply ‖(fi − Si−1fi−1)|X̄j
i
‖∞ ≤ Cλjγ2(j−i)γ, where C

is independent of i and j. This is the right-hand side of (6.14).
We show the approximation estimates (6.18) and (6.19). We consider the two cases

γ > 1 and γ < 1, and use the fact that in both cases the spaces of Hölder-Zygmund
functions and Hölder functions on Euclidean space coincide with equivalent norms (which
is not true for γ = 1). If γ > 1, we write f = f(v) + dvf(· − v) + g(·) with g(x) =
O(‖x − v‖γ) for x → v by our assumption. The linear bounded operator which �rst
samples f and then maps the result to the limit of subdivision reproduces constants.
Furthermore, it reproduces linear functions f : χ(D) → R. So, for a vertex v ∈ X̄i−1,
we have S∞,i−1fi−1 = f(v) + dvf(· − v) + h(·) for some h with h(x) = O(‖x − v‖γ) by
Theorem 6.10. Then, if v is a point in X̄i−1 nearest to x, we obtain

f(x)− S∞,i−1fi−1(x) = g(x)− h(x) = O(‖x− v‖γ) for x→ v. (6.20)

If γ < 1, the estimate (6.20) is shown in the same way, without using di�erentials.
In order to estimate ‖x−v‖ in (6.20) we introduce the notation σ(A,B) = supx∈Ainfv∈B

‖x− v‖. By the de�nition of Vk, σ(D′k, V
k
k ) = O(2−k) and σ(Dr, V

r
k ) = O(2−k) as k →∞,

uniformly in r for r < k. Because the characteristic map is a di�eomorphism on each ring
Dk, ful�lling the scaling relation χ(2−1·) = λχ(·), we have that σ(χ(D′k), X̄

k
k ) = O(λk) and

that σ(χ(Dr), X̄
r
k) = O(λr2r−k) as k → ∞ uniformly in r for r < k. So for x ∈ χ(D′i−1),

we get infv∈X̄i−1
‖x − v‖ = O(λi). Also, for j ≤ i − 1, and x ∈ χ(Dj), we obtain that

infv∈X̄i−1
‖x− v‖ = O(λj2j−i).
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Then plugging ‖x − v‖ ≤ Cλj2(j−i) into (6.20) and enlarging the constant C yields
both (6.18) and (6.19). This completes part (2) of the proof.

(3) We show the `if'-part of (6.14). The continuous functions gi = S∞,ifi uniformly
converge to f on χ(D) for the following reason: Since S is interpolatory, for a vertex
vi ∈ X̄i nearest to x we get

‖gi(x)− f(x)‖ ≤ ‖S∞,ifi(x)− S∞,ifi(vi)‖+ ‖f(x)− f(vi)‖
≤ C sup{‖f(v)− f(w))‖ : v, w neighboring vertices}+ ‖f(x)− f(vi)‖,

and the right hand side tends to 0 as i→∞.
The right-hand side of (6.14) implies that, for i > j,

‖gi − gi−1|χ(Dj)‖∞ ≤ ‖S∞,0‖‖fi − Sfi−1|X̄j
i
‖∞ ≤ C ′‖S∞,0‖2(j−i)γλjγ. (6.21)

Here C ′ is the constant in the decay condition which depends on f. In this part, we
continue to use the symbol C as a generic constant which can change from term to term,
but we only employ it if it does not depend on f. We use (6.21) to quantify the distance
between f and the approximants gi on the ring χ(Dj) :

‖f − gi|χ(Dj)‖∞ ≤
∑∞

k=i+1
‖gk − gk−1|χ(Dj)‖∞

≤ C ′‖S∞,0‖
∑∞

k=i+1
2(j−k)γλjγ ≤ C ′C2(j−i)γλjγ. (6.22)

Now we consider the inner domains χ(D′j). Using the right-hand side of (6.14), an estimate
analogous to (6.21) yields

‖gi − gi−1|χ(D′j)
‖∞ ≤ C ′Cλiγ, (6.23)

whenever i ≤ j. Then,

‖f − gi|χ(D′j)
‖∞ ≤

∑∞

k=i+1
‖gk − gk−1|χ(D′j)

‖∞

≤ C‖S∞,0‖(
∑j

k=i+1
λkγ +

∑∞

k=j+1
2(j−k)γλjγ)

≤ C ′Cλiγ
∑∞

k=1
max(2−1, λ)kγ ≤ C ′Cλiγ. (6.24)

We proceed to estimate second di�erences, beginning on the rings χ(Dj). By enlarging
the constant C in (6.22), the statement of (6.22) remains valid for su�ciently small ε-
neighborhoods Uj of χ(Dj). We choose the neighborhoods Uj in such a way that each Uj
is a scaled copy of the neighborhood U0 where the scaling factor equals λj. Then there is
h0 > 0 such that, for any j, all x ∈ χ(Dj), and all t with ‖t‖ < λjh0, the second di�erence
∆2
tf(x) only depends on f |Uj.
We let α be a real number with γ < α < ω. Consider the modulus of continuity

ωj2(h, f) := sup‖t‖<h ‖(∆2
tf)|χ(Dj)‖, for h < λjh0. We have the estimate

ωj2(h, f) ≤ ωj2(h, f − gn) +
∑n−1

i=0
ωj2(h, gi+1 − gi) + ωj2(h, g0)

≤ 4‖(f − gn)|χ(Uj)‖∞ +
∑n−1

i=0
hα‖gi+1 − gi‖α,j + ωj2(h, g0), (6.25)
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where ‖ · ‖α,j := suph h
−αωj2(h, ·) +‖ · |χ(Uj)‖∞.

With the help of (6.22) and (6.24) we can estimate the �rst summand on the right-hand
side of (6.25) by

‖(f − gn)|χ(Uj)‖∞ ≤ CC ′λmin(n,j)γ2−max(n−j,0)γ. (6.26)

We note that the last summand in (6.25) can be estimated by ωj2(h, g0) ≤ CC ′hγ by Theo-
rem 6.10. We consider the sum in (6.25). By the locality of the subdivision scheme S, the
limit function locally is a linear combination of �nitely many generating functions. Fur-
thermore, on a regular mesh, an integer shift of those generating functions is a generating
system for the shifted functions. Near 0 in a k-regular mesh, changing to a �ner resolution
only dilates the generating systems, we get ‖gi+1−gi‖α,j ≤ C2(i−j)αλ−jα‖gi+1−gi|χ(Uj)‖∞
in case that i > j. If i ≤ j, we obtain ‖gi+1 − gi‖α,j ≤ Cλ−iα‖gi+1 − gi|χ(Uj∪D′j)‖∞. By
combining these estimates, we get∑n−1

i=0
hα‖gi+1 − gi‖α,j ≤ C

∑n−1

i=0
hαλ−min(i,j)α2max(i−j,0)α‖gi+1 − gi|χ(Aj)‖∞

≤ CC ′
∑n−1

i=0
hαλ−min(i,j)(α−γ)2max(i−j,0)(α−γ). (6.27)

Here Aj = Uj for i > j, and Aj = Uj ∪D′j for i ≤ j. For the second inequality we used the
estimates (6.21) and (6.23). We further discuss this upper bound in (6.27). We consider
n with n > j and set h = 2j−nλj. Then,

h−γ
∑n−1

i=0
hαλ−min(i,j)(α−γ)2max(i−j,0)(α−γ) =

∑n−1

i=0
λ(j−min(i,j))(α−γ)2(max(i−j,0)+j−n)(α−γ)

≤
∑j−1

i=0
λ(j−i)(α−γ) +

∑n−1

i=j
2(i−n)(α−γ) ≤ C, (6.28)

where C is independent of n and j. We plug (6.28) into (6.27) and the result into (6.25).
For h = 2j−nλj and j < n we obtain, using also (6.26),

h−γωj2(h, f) ≤ 4C ′C + CC ′ + CC ′, (6.29)

where the constants do not depend on j and n. Since the sequence hn = 2j−nλj nicely
tends to 0, it follows that there is h′0 with 0 < h′0 < h0 such that, for all j and h with
0 < h < h′0λ

j,

h−γωj2(h, f) ≤ C ′C. (6.30)

Having estimated second di�erences on the rings χ(Dj) we now consider the neighborhood
of the central point. Instead of Dj we consider the central domain D′j, and employ the
second modulus of continuity ω̃j2(h, f) := sup‖t‖<h ‖(∆2

tf)|χ(D′j)
‖, for h < λjh0. Analogous

to (6.25) we estimate

ω̃j2(h, f) ≤ ω̃j2(h, f − gj) +
∑j−1

i=0
ω̃j2(h, gi+1 − gi) + ω̃j2(h, g0)

≤ 4‖(f − gj)|χ(U ′j)
‖∞ +

∑j−1

i=0
hα‖gi+1 − gi‖α,j + ωj2(h, g0), (6.31)
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where the above de�nition of ‖ · ‖α,j is modi�ed by replacing Uj by U ′j. By (6.24), the �rst
summand on the right-hand side of (6.31) is bounded from above by 4‖(f − gj)|χ(Uj)‖∞
≤ CC ′λjγ. Similar to (6.27) and (6.28), letting h = (cλ)j, for some c with 0 < c < 1,
which is small enough to guarantee that ω̃j2 is de�ned, we obtain, using (6.23),

h−γ
∑j−1

i=0
hα‖gi+1 − gi‖α,j ≤ Ch−γ

∑j−1

i=0
hαλ−iα‖gi+1 − gi|χ(U ′j)

‖∞

≤ CC ′h−γ
∑j−1

i=0
hαλ−i(α−γ).

= CC ′
∑j−1

i=0
λ(j−i)(α−γ) ≤ CC ′. (6.32)

Here the constants C, C ′ are independent of j. Combining these two estimates and plug-
ging them into (6.31), we get, on the inner domain χ(D′j),

h−γω̃j2((cλ)j, f) ≤ C ′C (6.33)

uniformly in j. Firstly, this yields the decay condition ‖∆2
tf(0)‖ ≤ C ′C‖t‖γ in the central

point. Furthermore, if we consider some x in the j-th ring χ(Dj), and some y in the i-th
ring with j− i ≥ 2 then (6.33) ensures that ‖f(x)−2f(x+y

2
)+f(y)‖ ≤ CC ′‖x−y‖γ. If the

distance is smaller, then (6.30) applies. In summary, this shows that f ∈ Lipγ(χ(D),Rd).

(4) We explain why in the case γ 6= 1 the expression ‖f‖′γ = ‖f0‖∞ + supi∈N0
‖fi −

Si−1fi−1‖i,γ is an equivalent norm on LipKγ (χ(D),Rd) (which is de�ned by (6.15)). By (2)
and (3) the subspace of continuous functions where ‖ · ‖′γ < ∞ coincides with LipKγ . It
is a straightforward computation that ‖ · ‖′γ de�nes a norm. The constants C occurring
in (3) do not depend on f (for constants depending on f, we used the symbol C ′). This
implies existence of C > 0, independent of f, such that

‖f‖LipKγ
≤ C‖f‖′γ. (6.34)

Since part (3) includes the case γ = 1, (6.34) is also valid for γ = 1.
For the converse part, we have to analyze the proof of part (2). In the beginning of part

(2), we reduce the statement of part (2) to (6.18) and (6.19). Examining this reduction
we see that the occurring constants `C' do not depend on f. It remains to analyze the
constants occurring in the proof of (6.18) and (6.19): By careful examination, it turns out
that f only in�uences constants via the O()-term in (6.20). This means that we have to
look at the Hölder constants of the functions g and h occurring in part (2). By de�nition,
those Hölder constants are bounded by some multiple of the Hölder norm of f. Summing
up, there is C > 0, independent of f such that

‖f‖′γ ≤ C‖f‖LipKγ
, (6.35)

in case γ 6= 1. Thus those norms are equivalent for γ 6= 1 (The inequality (6.35) for the
case γ = 1 is shown at the end of part (5)).

(5) It remains to show the `only if'-part of (6.14) for γ = 1. To that purpose, we use
interpolation theory. We refer to [42] for a thorough treatment in connection with Hölder-
Zygmund classes. It is well known that Lip1 is the interpolation space [Lip1−ε,Lip1+ε]1/2.
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This notation means the following: For two Banach spaces X and Y with Y ⊂ X, the
symbol [X, Y ]θ denotes the space of all f ∈ X such that Peetre's K-functional K(f, t) ≤
Ctθ, for 0 < t ≤ 1, where

K(f, t) = infg∈Y ‖f − g‖X + t‖g‖Y .

The interpolation space becomes a Banach space with norm ‖ · ‖ = supt t
−θK(·, t).

We proceed in the following way: We assume that f ∈ Lip1 ⊂ Lip1−ε . Then for every
t with 0 < t ≤ 1 there is gt ∈ Lip1+ε such that t−1/2‖f − gt‖Lip(1−ε) +t1/2‖gt‖Lip(1+ε) < C,
where C does not depend on t.

We let ht = f − gt. We consider the coe�cients under the multiscale transform of
f, ht and gt on X̄j

i for arbitrary but �xed i. We denote these coe�cients on X̄j
i by

d(f), d(gt), . . . . By (4) we have ‖d(ht)‖∞ < C ′2(j−i)(1−ε)λj(1−ε)‖ht‖Lip(1−ε), and ‖d(gt)‖∞ <
C ′′2(j−i)(1+ε)λj(1+ε)‖gt‖Lip(1+ε). By applying the triangle inequality and letting t1/2 =
2(j−i)ελjε we get

2i−jλ−j‖d(f)‖∞ ≤ 2i−jλ−j‖d(ht)‖∞ + 2i−jλ−j‖d(gt)‖∞
≤ C ′2−(j−i)ελ−jε‖ht‖Lip(1−ε) + C ′′2(j−i)ελjε‖gt‖Lip(1+ε)

≤ max(C ′, C ′′)(t−1/2‖f − gt‖Lip(1−ε) + t1/2‖gt‖Lip(1+ε))

≤ C‖f‖Lip1
. (6.36)

For the last inequality we have used the equivalence of the norm induced by the K-
functional and the norm induced by second di�erences. (6.36) means that we have the
desired decay of the multiscale coe�cients if f ∈ Lip1 .

Furthermore, the coe�cient based norm ‖ · ‖′1 from part (4) obeys

‖f‖′1 ≤ C‖f‖Lip1
.

The other direction, i.e., ‖f‖Lip1
≤ C‖f‖′1, was already established in (6.34). Hence ‖f‖′1

is an equivalent norm on Lip1 .

Having collected all this information we are now able to prove Theorem 6.4.

Proof of Theorem 6.4. This proof is quite long which is the reason why we split it into
several parts. In part (1) we reduce the statement to a statement only involving one
extraordinary vertex. We proceed similar to the proof of Proposition 6.11 which is the
reason for keeping this part short. Part (2) is the `only if'-part of the reduced statement,
and part (3) is its `if'-part (which is actually the hard estimate).

For a visualization of the setup we refer to Figure 19. We use the notation of the proof
of Proposition 6.11. Furthermore, we use the symbol C for a generic constant which can
change from line to line.

(1) Similar to the proof of Proposition 6.11 we reduce the statement to the situation
near an extraordinary vertex. We show that a certain way of `applying charts' does neither
a�ect the Hölder-Zygmund classes nor the decay of detail coe�cients.

We cover f(N) with ballsB(zk, R), andN with ballsB(yj, r) such that each f(B(yj, r))
is completely contained in one of the B(zk, R)'s and such that the image of each B(yj, r)
under κ−1 is completely contained in some characteristic chart neighborhood.
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We let ψj be C∞ functions supported in B(yj, r) and equal to 1 in B(yj, r− ε), where
ε > 0 is so small that the balls B(yj, r − ε) still cover N. Then the extension by 0 of
gj = exp−1

zk
◦(fψj) ◦ exp−1

yj
is in Lipγ(R2,Rd). Except for applying charts, gj agrees with f

on B(yj, r − ε).
With the mapping uj = χ ◦ κ−1 ◦ exp−1

yj
already de�ned in part (1) of the proof

of Proposition 6.11 we obtain that the 0-extension of gj ◦ u−1
j is in Lipγ(R2,Rd), by

Proposition 6.9.
Conversely, assume that we have Hölder-Zygmund functions gj (of order γ) such that

each gj is supported in a neighborhood of χ(D′) and maps to Rd. We also write f, ψj and
B(yj, r) for their corresponding reparametrizations by charts. We assume that each gj
agrees with f ◦ u−1

j on uj(suppψj). Then we restrict gj to uj(B(yj, r)) and multiply the
result with ψj ◦u−1

j to obtain a Hölder-Zygmund function g′j with support in uj(suppψj).
Then g′j ◦ uj (extension by 0) is Hölder-Zygmund and agrees with f on B(yj, r − ε).
Furthermore, the coe�cients of the multiscale transform for gj around 0 and the transform
of f near the corresponding extraordinary vertex agree.

After going to charts for M, the following statement implies the theorem. For a k-
regular mesh and for a continuous function f with compact support in a neighborhood of
χ(D′) we have

f ∈ Lipγ(χ(D),Rd) if and only if supi∈N ‖fi − Ti−1fi−1‖i,γ ≤ C. (6.37)

There is one more thing to explain here: We let the scheme T act in a chart which allows
us to write an ordinary minus sign in (6.37). The right-hand side expression in (6.37),
‖fi−Ti−1fi−1‖i,γ, which is based on the Euclidean norm, is bounded both from above and
below by constants times ‖fi 	 Ti−1fi−1‖i,γ, which is based on the smooth bundle norm.
This is true locally (because in �nite dimensional spaces every two norms are equivalent
and the bundle norm is smooth) and also globally because the image of f is compact.

(2) We show the `only if'-part of (6.37), assuming f ∈ Lipγ(χ(D),Rd). Equation
(6.14) yields that supi∈N0

‖fi − Si−1fi−1‖i,γ ≤ C ′. We consider the sets X̄j
i and observe

‖fi − Si−1fi−1|X̄j
i
‖∞ ≤ C ′2(j−i)γλγj. Since S and T ful�ll the proximity condition (4.1),

‖fi − Ti−1fi−1|X̄j
i
‖∞ ≤ ‖fi − Si−1fi−1|X̄j

i
‖∞ + ‖(Si−1fi−1 − Ti−1fi−1)|X̄j

i
‖∞

≤ C ′2(j−i)γλjγ + CDX̃j
i−1

(fi−1)2. (6.38)

Here we let X̃j
i = X̄j

i , if i ≥ j, and X̃j
i = X̄ i

i , if i < j. Then DX̃j
i−1

(fi−1) is the di�erence

of function values of f on neighboring vertices in X̃j
i−1. Neighboring vertices in X̃

j
i−1 have

distance of order 2−min(i−j−1,0)λmin(j,i−1); this was shown at the very end of part (2) of the
proof of Proposition 6.11.

If f ∈ Lipγ, then f ∈ Lipγ/2+ε, when we choose ε > 0 such that ε < max(1−γ/2, γ/2).
This choice of ε guarantees that γ/2 + ε < 1. Then the Lipschitz norm based on �rst
di�erences is an equivalent norm on Lipγ/2+ε . Hence, since f ∈ Lipγ/2+ε, and all fi's are
samples of f, we get, with the above order of distances of neighboring vertices, that

DX̃j
i−1

(fi−1) ≤ C2−min(i−j−1,0)(γ/2+ε)λmin(j,i−1)(γ/2+ε). (6.39)
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Plugging (6.39) into (6.38) yields the decay of the detail coe�cients w.r.t T which is
required by (6.37).

(3) We now consider the `if'-part of (6.37), i.e., we assume that a continuous function
f has coe�cient decay as stated by (6.37). We again look at the control sets X̃j

i . By
assumption, the decay conditions read:

‖(fi − Ti−1fi−1)|X̃j
i
‖ ≤ Cf2

−(i−j)γλjγ, for i > j (6.40)

‖(fi − Ti−1fi−1)|X̃i
i
‖ ≤ Cfλ

iγ. (6.41)

Here Cf is a constant which depends on the continuous function f, but is neither dependent
on the `ring-index' j nor on the detail level i. Our aim is to show that (6.40) and (6.41)
imply that for i > j,

‖(fi − Si−1fi−1)|X̃j
i
‖ ≤ C ′2−(i−j)γλjγ, (6.42)

and the same for i = j, but with the right hand side replaced by C ′λiγ. Here the constant
C ′ should not depend on i or j. Once (6.42) is proved we apply (6.14), and obtain that
f ∈ Lipγ as desired.

It remains to show (6.42) which will take some time. We start by invoking the prox-
imity and decay conditions to obtain the following estimate for i+ 1 > j :

‖(fi+1 − Sifi)|X̃j
i+1
‖ ≤ ‖(fi+1 − Tifi)|X̃j

i+1
‖+ ‖(Tifi − Sifi)|X̃j

i+1
‖

≤ Cf2
−(i+1−j)γλjγ + CprDX̃j

i
(fi)

2. (6.43)

Here Cpr is the proximity constant. This estimate is valid for dense enough input, which
we can always achieve by going to a �ner sampling level since f is continuous. Analogously,
if i+ 1 ≤ j,

‖(fi+1 − Sifi)|X̃j
i+1
‖ ≤ 2Cfλ

iγ + CprDX̃j
i
(fi)

2. (6.44)

From (6.43) and (6.44) we can conclude (6.42) if we know the estimates

DX̃j
i
(fi) ≤ C2−(i−j)γ/2λjγ/2 (i > j), (6.45)

DX̃j
i
(fi) ≤ Cλiγ/2 (i ≤ j), (6.46)

for some constant C > 0. We are thus left with proving (6.45) and (6.46). We write, for
i > j > i0,

fi = (fi − Si−1fi−1) + . . .+ (Si−1,j+1fj+1 − Si−1,jfj) + (Si−1,jfj − Si−1,j−1fj−1)

+ . . .+ (Si−1,i0+1fi0+1 − Si−1,i0f0) + Si−1,i0fi0

=
i∑

k=i0+1

Si−1,k(fk − Sk−1fk−1) + Si−1,i0fi0 . (6.47)
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Here i0 is a nonnegative integer which will be speci�ed later on. By Lemma 4.14, there is
a constant CS such that for any subdivision level k and input pk on level k,

DX̃j
i
(Si−1,kpk) ≤ CS2−(i−k)DX̃j

k
(pk) (i ≥ k > j),

DX̃j
i
(Si−1,kpk) ≤ CS2−(i−j)λj−kDX̃j

k
(pk) (i > j > k),

DX̃j
i
(Si−1,kpk) ≤ CSλ

i−kDX̃j
k
(pk) (j ≥ i ≥ k). (6.48)

Furthermore,

DX̃j
k
(fk − Sk−1fk−1) ≤ DX̃j

k
(fk − Tk−1fk−1) +DX̃j

k
(Tk−1fk−1 − Sk−1fk−1)

≤ 2‖(fk − Tk−1fk−1)|X̃j
k
‖+ 2‖(Tk−1fk−1 − Sk−1fk−1)|X̃j

k
‖.

We use the telescoping sum (6.47) to estimate DX̃j
i
(fi) and apply both (6.48) and the

previous inequality to the single terms: If i > j > i0 we get

DX̃j
i
(fi) ≤ 2‖(fi − Ti−1fi−1)|X̃j

i
‖+ 2‖(Ti−1fi−1 − Si−1fi−1)|X̃j

i
‖

+ 2
∑i−1

k=j+1
CS2−(i−k)(‖(fk − Tk−1fk−1)|X̃j

k
‖+ ‖(Tk−1fk−1 − Sk−1fk−1)|X̃j

k
‖)

+ 2
∑j

k=i0+1
CS2−(i−j)λj−k(‖(fk − Tk−1fk−1)|X̃j

k
‖+ ‖(Tk−1fk−1 − Sk−1fk−1)|X̃j

k
‖)

+ CS2−(i−j)λj−i0DX̃j
i0

(fi0).

Using (6.40), proximity and again (6.48), we further obtain

DX̃j
i
(fi) ≤ 2Cf2

−(i−j)γλjγ + 2CSCf

( i−1∑
k=j+1

2−(i−k)2−(k−j)γλjγ +

j∑
k=i0+1

2−(i−j)λj−kλkγ
)

+ 2CprDX̃j
i−1

(fi−1)2 + 2CSCpr

( i−1∑
k=j+1

2−(i−k)DX̃j
k−1

(fk−1)2

+

j∑
k=i0+1

2−(i−j)λj−kDX̃j
k−1

(fk−1)2
)

+ CS2−(i−j)λj−i0DX̃j
i0

(fi0) =: A+B + C. (6.49)

Here the symbols A,B,C refer to the �rst line, second plus third lines, and fourth line,
resp., in (6.49). Analogously, we obtain, for j ≤ i0,

DX̃j
i
(fi) ≤ 2Cf2

−(i−j)γλjγ + 2CSCf
∑i−1

k=i0+1
2−(i−k)2−(k−j)γλjγ

+ 2CprDX̃j
i−1

(fi−1)2 + 2CSCpr
∑i−1

k=i0+1
2−(i−k)DX̃j

k−1
(fk−1)2

+ CS2−(i−i0)DX̃j
i0

(fi0) =: A+B + C. (6.50)
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Furthermore, for j ≥ i,

DX̃j
i
(fi) ≤ 2Cfλ

iγ + 2CSCf
∑i

k=i0+1
λi−kλkγ

+ 2CprDX̃j
i−1

(fi−1)2 + 2CSCpr
∑i

k=i0+1
λi−kDX̃j

k−1
(fk−1)2

+ CSλ
i−i0DX̃j

i0

(fi0) =: A+B + C. (6.51)

We estimate the terms called `A' in the formulas (6.49), (6.50), and (6.51): Since γ/2 < 1,
we can estimate A in (6.49) by A ≤ 2CSCf · 2−(i−j)γ/2λjγ/2 · Z, where

Z =
∑i

k=j+1
2−(i−k)(1−γ/2)2−(k−j)γ/2λjγ/2 +

∑j

k=i0+1
2−(i−j)(1−γ/2)λ(j−k)(1−γ/2)λkγ/2.

In order to estimate Z we get rid of the dependence on the index j by introducing
q = max(2−1, λ) < 1 : We obtain

Z ≤
i∑

k=i0+1

q(i−k)(1−γ/2)qkγ/2 ≤
i∑

k=i0+1

qkγ/2 ≤ (1− qγ/2)−1.

This yields an upper bound on Z independent of i, j, and i0. Proceeding in an analogous
way for (6.50) and (6.51) yields a constant D ≥ 1, independent of i, j, and i0 such that

A ≤ D2−(i−j)γ/2λjγ/2 in case of (6.49) and (6.50), (6.52)

A ≤ Dλiγ/2 in case of (6.51). (6.53)

We are ready to estimate DX̃j
i
(fi). We choose i′ such that

(CSCpr)18D2 ·max(λ, 2−1)i
′ γ
2 (1−max(λ, 2−1)

γ
2 )−1 <

1

9
. (6.54)

This reason for this choice becomes clear later on.
Note that f is continuous, thus uniformly continuous because of its compact support.

Therefore we can choose the initial level i0 for our estimates such that

D(fi) ≤ min(1, (18D2CSCpr)
−1(i′ + 1)−1 min(λ, 2−1)i

′
) =: D′ for all i ≥ i0. (6.55)

We show that, for all i ≥ i0,

DX̃j
i
(fi) ≤ min(3D2−(i−j)γ/2λ(j−i0)γ/2, D′) (i > j > i0), (6.56)

DX̃j
i
(fi) ≤ min(3D2−(i−i0)γ/2, D′) (j ≤ i0), (6.57)

DX̃j
i
(fi) ≤ min(3Dλ(i−i0)γ/2, D′) (j ≥ i). (6.58)

Once (6.56)�(6.58) are proved, we obtain (6.45) and (6.46) which in turn completes the
proof.
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It remains to show (6.56)�(6.58) for which we use induction on i. The case i = i0 is
clear. We assume that (6.56)�(6.58) hold for the values i0, . . . , i−1.We get, for i > j > i0,
using the decomposition (6.49), (6.52), and (6.55),

DX̃j
i
(fi) ≤ A+B + C

≤ D2−(i−j)γ/2λjγ/2 +B + CS2−(i−j)λ(j−i0) · min(λ, 2−1)i
′

18D2CSCpr

≤ D2−(i−j)γ/2λ(j−i0)γ/2 +B +D2−(i−j)γ/2λ(j−i0)γ/2. (6.59)

Analogously, using (6.50), (6.51) and (6.52), (6.53), we obtain, for i ≥ i0 ≥ j, that DX̃j
i
(fi)

≤ 2D2−(i−i0)γ/2 +B, and for j ≥ i that DX̃j
i
(fi) ≤ 2Dλ(i−i0)γ/2 +B.

We only consider the case i > j > i0, since the other cases are analogous. In this
case, it remains to show that B ≤ D2−(i−j)γ/2λ(j−i0)γ/2. We use the induction hypothesis
(6.56)�(6.58) and see that for i0 + i′ < j, the de�nition of B in (6.49) implies

B ≤ 2CSCpr

(∑i

k=j+1
2−(i−k)DX̃j

k−1
(fk−1)2 +

∑j

k=i0+i′+1
2−(i−j)λj−kDX̃j

k−1
(fk−1)2

+
∑i0+i′

k=i0+1
2−(i−j)λj−kDX̃j

k−1
(fk−1)2

)
≤ 18D2CSCpr

(∑i

k=j+1
2−(i−k)2−(k−1−j)γλ(j−i0)γ +

∑j

k=i0+i′+1
2−(i−j)λj−kλ(k−1−i0)γ

)
+ 2CSCpr(i

′ + 1)2−(i−j)λj−(i0+i′)D′.

For the third sum, we used that, by the induction hypothesis, DX̃j
k−1

(fk−1)2 ≤ D′2 ≤ D′.

We now expand the de�nition of D′ in (6.55) in the last term and get

B ≤ (CSCpr)18D2(2−(i−j)γ/2λ(j−i0)γ/2)·

·
( i∑
k=j+1

2−(i−k)(1−γ
2

)2−(k−1−j)γ
2λ(j−i0)

γ
2 +

j∑
k=i0+i′+1

2−(i−j)(1−γ
2

)λ(j−k)(1−γ
2

)λ(k−1−i0)
γ
2

)
+ 2CSCpr(18D2CSCpr)

−1(i′ + 1)(i′ + 1)−12−(i−j)λj−(i0+i′) min(λ, 2−1)i
′
. (6.60)

We estimate the sums in brackets:

i∑
k=j+1

2−(i−k)(1−γ
2

)2−(k−1−j)γ
2λ(j−i0)

γ
2 +

j∑
k=i0+i′+1

2−(i−j)(1−γ
2

)λ(j−k)(1−γ
2

)λ(k−1−i0)
γ
2

≤
i∑

k=j+1

2−(k−1−j)γ
2λ(j−i0)

γ
2 +

j∑
k=i0+i′+1

λ(k−1−i0)
γ
2

≤
i∑

k=i0+i′+1

max(λ, 2−1)(k−1−i0)
γ
2 = max(λ, 2−1)i

′ γ
2 (1−max(λ, 2−1)

γ
2 )−1.

Plugging this into (6.60) and simplifying the last term yields

B ≤ (CSCpr)18D2(2−(i−j)γ/2λ(j−i0)γ/2)·

·max(λ, 2−1)i
′ γ
2 (1−max(λ, 2−1)

γ
2 )−1 + 1

9
2−(i−j)λj−i0 .
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We further apply (6.54) to obtain

B ≤ 1
9
2−(i−j)γ/2λ(j−i0)γ/2 + 1

9
2−(i−j)λj−i0 ≤ 2

9
2−(i−j)γ/2λ(j−i0)γ/2. (6.61)

For i0 + i′ ≥ j as well as the other two cases (6.57) and (6.58) one proceeds in an
analogous way. This completes the induction step and shows (6.56)�(6.58). The proof of
Theorem 6.4 is done.

We conclude with the proofs of Corollary 6.7 and Corollary 6.8.

Proof of Corollary 6.7. By Theorem 6.4 a local proximity condition (4.1) must be shown
for a geometric (bundle) analogue of S given by (2.15). This is done in [17].

Proof of Corollary 6.8. The smoothness index ω = min(ν, ν ′) was de�ned by (6.7). By
[71], ν ′ = 2, and since ν < 2, ω = ν. Further, the subdominant eigenvalue λ of the
subdivision matrix equals 1/2. So letting λ = 1/2 in (6.6) completes the proof.



REFERENCES 97

References

[1] Bojarski, B., Hajlasz, P., and Strzelecki, P. Sard's theorem for mappings in Hölder
and Sobolev spaces. Manuscripta Mathematica 118 (2005), 383�397.

[2] Bourdaud, G., and de Cristoforis, M. L. Functional calculus in Hölder-Zygmund
spaces. Trans. Amer. Math. Soc. 354 (2002), 4109�4129.

[3] Catmull, E., and Clark, J. Recursively generated B-spline surfaces on arbitrary topo-
logical meshes. Computer Aided Design 10 (1978), 350�355.

[4] Cavaretta, A. S., Dahmen, W., and Micchelli, C. A. Stationary Subdivision. Mem.
Amer. Math. Soc., No. 453, 1991.

[5] Chaikin, G. An algorithm for high speed curve generation. Computer Graphics and Image
Processing 2 (1974), 346�349.

[6] Daubechies, I. Ten Lectures on Wavelets. SIAM, 1992.

[7] de Rham, G. Sur quelques fonctions di�érentiables dont toutes les valeurs sont des valeurs
critiques. Celebrazioni Archimedee del Secolo XX, Siracusa II (1961), 11�16.

[8] Destelle, F., Gérot, C., and Montanvert, A. A topological lattice re�nement de-
scriptor for subdivision surfaces. In International Conference on Mathematical Methods for
Curves and Surfaces (Tonsberg, Norway, 2008).

[9] Donoho, D. L. Interpolating wavelet transforms. Preprint, Department of Statistics,
Stanford University, 1992. http://citeseer.comp.nus.edu.sg/39237.html.

[10] Doo, D., and Sabin, M. A. Behaviour of recursive subdivision surfaces near extraordinary
points. Computer Aided Design 10 (1978), 356�360.

[11] Dyn, N. Subdivision schemes in CAGD. Advances in Numerical Analysis 2 (1992), 36�104.

[12] Dyn, N., Levin, D., and Gregory, J. A. A butter�y subdivision scheme for surface
interpolation with tension control. ACM Trans. on Graphics 9 (1990), 160�169.

[13] Grohs, P. Smoothness Analysis of Nonlinear Subdivision Schemes on Regular Grids. PhD
thesis, Graz Technical University, 2007.

[14] Grohs, P. Smoothness analysis of subdivision schemes on regular grids by proximity. SIAM
J. Numer. Anal. 46 (2008), 2169�2182.

[15] Grohs, P. Smoothness equivalence properties of univariate subdivision schemes and their
projection analogues. Numerische Mathematik 113/2 (2009), 163�180.

[16] Grohs, P. Proximity analysis of nonlinear subdivision schemes and applications to
manifold-valued subdivision via the Riemannian center of mass. SIAM J. Math. Analy-
sis 42 (2010), 729�750.

[17] Grohs, P., and Wallner, J. Interpolatory wavelets for manifold-valued data. Appl.
Comput. Harmon. Anal. 27 (2009), 325�333.

[18] Han, B. Computing the smoothness exponent of a symmetric multivariate re�nable func-
tion. SIAM J. Matrix Anal. Appl. 24 (2002), 693�714.

[19] Han, B. Vector cascade algorithms and re�nable function vectors in Sobolev spaces. J.
Approx. Theory 124 (2003), 44�88.

[20] Han, B. Solutions in Sobolev spaces of vector re�nement equations with a general dilation
matrix. Adv. Comput. Math. 24 (2006), 375�403.

[21] Han, B., and Jia, R.-Q. Multivariate re�nement equations and convergence of subdivision
schemes. SIAM J. Math. Anal. 29 (1998), 1177�1199.

[22] Harizanov, S., and Oswald, P. Stability of nonlinear subdivision and multiscale trans-
forms. Constr. Approx. (to appear) (2010).

[23] Harten, A., and Osher, S. Uniformly high-order accurate nonoscillatory schemes I.
SIAM J. Numer. Anal. 24 (1987), 279�309.



98 REFERENCES

[24] Holmstrom, M. Solving hyperbolic PDEs using interpolating wavelets. SIAM J. Sci.
Comput. 21 (2000), 405�420.

[25] Ivrissimtzis, I. P., Dodgson, N. A., and Sabin, M. A. A generative classi�cation of
mesh re�nement rules with lattice transformations. Comput. Aided Geom. Des. 21 (2004),
99�109.

[26] Jia, R.-Q. Approximation properties of multivariate wavelets. Math. Comput. 67 (1998),
647�665.

[27] Karcher, H. Riemannian center of mass and molli�er smoothing. Comm. Pure Appl.
Math. 30 (1977), 509�541.

[28] Kendall, W. S. Probability, convexity, and harmonic maps with small image. i: Unique-
ness and �ne existence. Proc. Lond. Math. Soc., III. Ser. 61 (1990), 371�406.

[29] Kobayashi, S., and Nomizu, K. Foundations of di�erential geometry, Vol II. Wiley,
1969.

[30] Kobbelt, L. Interpolatory subdivision on open quadrilateral nets with arbitrary topology.
Computer Graphics Forum 15 (1996), 409�420.

[31] Kobbelt, L.
√

3-subdivision. Computer Graphics Proceedings (SIGGRAPH) (2000), 103�
112.

[32] Lang, S. Fundamentals of Di�erential Geometry. Springer, 1999.
[33] Li, G., and Ma, W. Composite

√
2 subdivision surfaces. Comput. Aided Geom. Des. 24

(2007), 339�369.
[34] Lundmark, A., Wadströmer, N., and Li, H. Hierarchical subsampling giving fractal

regions. IEEE Transactions on Image Processing 10 (2001), 167�173.
[35] Milnor, J. Topology from the di�erentiable viewpoint. Princeton University Press, 1997.
[36] Moenning, C., Memoli, F., Sapiro, G., Dyn, N., and Dodgson, N. Meshless geo-

metric subdivision. Graphical Models 69 (2007), 160�179.
[37] Möller, H. M., and Sauer, T. Multivariate re�nable functions of high approximation

order via quotient ideals of Laurent polynomials. Adv. Comput. Math. 20 (2004), 205�228.
[38] Norton, A. A critical set with nonnull image has large Hausdor� dimension. Trans. Amer.

Math. Soc. 296 (1986), 367�376.
[39] Norton, A. The Zygmund Morse-Sard theorem. Journal of Geometric Analysis 4 (1994),

403�424.
[40] Oswald, P. Designing composite triangular subdivision schemes. Comput. Aided Geom.

Design 22 (2005), 659�679.
[41] Oswald, P., and Schröder, P. Composite primal/dual -subdivision schemes. Comput.

Aided Geom. Design 20 (2003), 135�164.
[42] Peetre, J. New Thoughts on Besov Spaces. Duke University mathematics series, 1976.
[43] Peters, J., and Reif, U. The simplest subdivision scheme for smoothing polyhedra.

ACM Trans. Graph. 16 (1997), 420�431.
[44] Peters, J., and Reif, U. Analysis of algorithms generalizing B-spline subdivision. SIAM

J. Numer. Anal. 35 (1998), 728�748.
[45] Peters, J., and Reif, U. Subdivision Surfaces. Springer, 2008.
[46] Prautzsch, H. Smoothness of subdivision surfaces at extraordinary points. Adv. Comput.

Math. 9 (1998), 377�389.
[47] Reif, U. A uni�ed approach to subdivision algorithms near extraordinary vertices. Comput.

Aided Geom. Design 12 (1995), 153�174.
[48] Sahr, K., and White, D. Discrete global grid system. In Proc. 30th Symposium on the

Interface Computing Science and Statistics, vol. 30 (1998), pp. 269�278.
[49] Sauer, T. Di�erentiability of multivariate re�nable functions and factorization. Adv.

Comput. Math. 25 (2006), 211�235.



REFERENCES 99

[50] Schröder, P., and Zorin, D. Subdivision surfaces in "Geri's Game". In Subdivision for
Modeling and Animation, ACM SIGGRAPH 1999 Courses. 1999. http://www.multires.

caltech.edu/teaching/courses/subdivision.
[51] Triebel, H. Interpolation Theory, Function Spaces, Di�erential Operators. North-Holland,

1978.
[52] Triebel, H. Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds.

Arkiv för Matematik 24 (1985), 299�337.
[53] Ur Rahman, I., Drori, I., Stodden, V. C., Donoho, D. L., and Schröder, P.

Multiscale representations for manifold-valued data. Multiscale Mod. Sim. 4 (2005), 1201�
1232.

[54] Velho, L. Stellar subdivision grammars. In SGP '03: Proceedings of the 2003 Euro-
graphics/ACM SIGGRAPH symposium on Geometry processing (Aire-la-Ville, Switzerland,
Switzerland, 2003), Eurographics Association, pp. 188�199.

[55] Waller, J., and H.Pottmann. Intrinsic subdivision with smooth limits for graphics and
animation. ACM Transactions on Graphics 25 (2006), 356�374.

[56] Wallner, J. Smoothness analysis of subdivision schemes by proximity. Constr. Approx.
24 (2006), 289�318.

[57] Wallner, J., and Dyn, N. Convergence and C1 analysis of subdivision schemes on
manifolds by proximity. Comput. Aided Geom. Design 22 (2005), 593�622.

[58] Wallner, J., Nava Yazdani, E., and Weinmann, A. Convergence and smoothness
analysis of subdivision rules in Riemannian and symmetric spaces. Adv. Comp. Math. (to
appear) (2010).

[59] Watson, A., and Ahumada Jr., A. A hexagonal orthogonal-oriented pyramid as a model
of image presentation in visual cortex. IEEE Trans. Biomed. Eng. 36 (1989), 97�106.

[60] Weinmann, A. Smoothness of nonlinear subdivision schemes for arbitrary dilation matri-
ces. Geometry Preprint 2009/01, TU Graz, April 2009. http://www.geometrie.tugraz.

at/weinmann/ArbDil.pdf.
[61] Weinmann, A. Interpolatory multiscale representation for functions between manifolds.

Geometry Preprint 2010/04, TU Graz, January 2010. http://www.geometrie.tugraz.at/
weinmann/Decay.pdf.

[62] Weinmann, A. Nonlinear subdivision schemes on irregular meshes. Constr. Approx. 31
(2010), 395�415.

[63] Xie, G., and Yu, T. Smoothness analysis of nonlinear subdivision schemes of homogeneous
and a�ne invariant type. Constr. Approx. 22 (2005), 219�254.

[64] Xie, G., and Yu, T. Smoothness equivalence properties of general manifold-valued data
subdivision schemes. Multiscale Mod. Sim. 7 (2008), 1073�1100.

[65] Yu, T. How data dependent is a nonlinear subdivision scheme? SIAM Journal on Numerical
Analysis 44 (2006), 936�948.

[66] Zorin, D. Stationary subdivision and multiresolution surface representations. PhD thesis,
CALTECH, 1997.

[67] Zorin, D. A method for analysis of C1-continuity of subdivision surfaces. SIAM J. Numer.
Anal. 37 (2000), 1677�1708.

[68] Zorin, D. Smoothness of stationary subdivision on irregular meshes. Constr. Approx. 16
(2000), 359�397.

[69] Zorin, D. Session: Interactive shape editing. In Modeling with multiresolution subdivision
surfaces, ACM SIGGRAPH 2006 Courses. 2006, pp. 30�50. http://doi.acm.org/10.1145/
1185657.1185673.

[70] Zorin, D., and Schröder, P. A uni�ed framework for primal/dual quadrilateral subdi-
vision schemes. Comput. Aided Geom. Design 18 (2001), 429�454.



100 REFERENCES

[71] Zorin, D., Schröder, P., and Sweldens, W. Interpolating subdivision for meshes
of arbitrary topology. Technical Report CS-TR-96-06, Department of Computer Science,
Caltech, 1996. http://resolver.caltech.edu/CaltechCSTR:1996.cs-tr-96-06.

[72] Zorin, D., Schröder, P., and Sweldens, W. Interpolating subdivision for meshes with
arbitrary topology. Computer Graphics Proceedings (SIGGRAPH 96) (1996), 189�192.


