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Abstract

In this thesis several strongly correlated bosonic systems are studied by means of
Quantum Monte Carlo (QMC). The QMC method is introduced and first applied
to cold atoms in optical lattices as well as a to a recently proposed system of coupled
light modes in cavities. The Bose–Hubbard model is studied in one and two dimensions
with and without a parabolic confining potential. The cavities are described by the so
called Jaynes–Cummings–Hubbard model which is studied in one dimension. Although
these two models describe completely different systems, the physics is similar in many
respects – even in their dynamical properties.

The focus lies on the calculation of excitation spectra such as the dynamical structure
factor and one particle spectral functions. These quantities are accessible experimen-
tally by means of spectroscopy, which has recently been applied to cold atomic systems.
A comparison to approximate methods is made. This is important since most of the
experimental data is compared to such calculations, like mean field or Bogoliubov ap-
proaches. It is shown, in which regions of the phase diagram of the Bose–Hubbard
model such approaches give reasonable results when dynamical properties are investi-
gated and more importantly, where more involved calculations should be used.

Furthermore, the Holstein model which is a model of spinless fermions that couple
to phononic degrees of freedom is investigated. To this end an extension to an existing
method is introduced. This method was developed for spin–Peierls systems in which
the phonon degrees of freedom are sampled in Fourier space for each electron config-
uration in the Monte Carlo. Here a variant of the algorithm is presented, that uses a
path integral representation of the electronic part of the partition sum instead of the
stochastic series expansion (SSE) representation.

Again the main interest is in dynamical properties such as the dynamical structure
factor or the phonon spectral function.





Kurzfassung

In dieser Arbeit werden verschiedene stark korrelierte Systeme, die bosonische Frei-
heitsgrade besitzen, mit Hilfe der Quanten Monte Carlo (QMC) Methode untersucht.
Nach einer Einführung in die Methode werden ultrakalte Atome in optischen Git-
tern untersucht. Diese Systeme werden sehr gut durch das Bose–Hubbard Modell
beschrieben, welches wir in einer und in zwei Dimensionen untersuchen. In einer
Dimension wird weiters der experimentell interessante Fall mit einem zusätzlichen
quadratisches Potential betrachtet. Weiters werden Systeme von gekoppelten Licht-
moden in Kavitäten untersucht, welche mit dem sogenannten Jaynes–Cummings–
Hubbard Modell beschrieben werden. Obwohl das Bose–Hubbard Modell und das
Jaynes–Cummings–Hubbard Modell sowohl formal sehr verschieden sind als auch sehr
unterschiedliche Systeme beschreiben gibt es weitreichende Gemeinsamkeiten in der
beobachteten Physik.

Das Hauptaugenmerk liegt in der Berechnung von dynamischen Größen, wie etwa der
Einteilchen–Spektralfunktion. Diese Anregungsspektren sind mit spektroskopischen
Methoden dem Experiment zugänglich und wurden kürzlich auch bei kalten Atomen
gemessen. Wir vergleichen unsere Ergebnisse mit approximativen Ergebnissen, wie
Mean Field oder Bogoliov Theorie, die häufig herangezogen werden um experimentelle
Daten zu beschreiben. Wir zeigen in welchen Regionen des Phasendiagramms des
Bose–Hubbard Modells solche Methoden korrekte Ergebnisse für spektrale Größen
liefern und wo exakte Methoden herangezogen werden sollten.

Weiters untersuchen wir das Holstein Modell, welches freie spinlose Fermionen beschreibt,
die an phononische Freiheitsgrade koppeln. Dazu wird eine existierende Methode
erweitert, die entwickelt wurde um Spin–Peierls Modelle zu untersuchen indem die
bosonischen Freiheitsgrade für jede elektronische Konfiguration im Fourier Raum be-
handelt werden.

In dieser Arbeit wird eine Variante des Algorithmus entwickelt, bei der eine alterna-
tive Darstellung für den elektronischen Teil der Zustandssumme verwendet wird.

Wiederum liegt der Fokus in der Berechnung dynamischer Größen, etwa der Phononen–
Spektralfunktion oder des dynamische Strukturfaktors.
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Part I

Introduction





1 Outline of the Thesis

This thesis contains two major parts.
Part II deals with the simulation of artificial quantum systems, namely gases of cold

atoms in optical lattices and so called quantum cavity electro dynamics which describes
the interaction of light and matter in systems of coupled cavities.

The large amount of experimental achievements during the last years made it not
only possible to produce Bose–Einstein condensed atoms. They have also been im-
mersed into standing laser fields to create lattice models (e.g. the Bose–Hubbard
model). The Mott insulator to superfluid transition [1] and many more phenomena
from many-body physics have been observed (see Ref. [2] and references therein). Re-
cently, even basic quantum excitations have been measured with spectroscopic accuracy
in these artificial strongly correlated systems [3, 4].

However there are many experimental complications, like heating of the condensate
due to the lattice lasers, which make an interpretation of results difficult. Thus it is
important, that unbiased methods are applied to simulate these systems. Within this
thesis, Quantum Monte Carlo (QMC) is used to obtain spectral properties as they are
measured in the experiments mentioned above.

A different approach, using light modes in coupled cavities, that interact with two
level systems, strongly correlated systems can be simulated as well. This experimental
setup allows to construct Bose–Hubbard like models (the so called Jaynes–Cummings–
Hubbard model) with the advantage of local addressability of sites (See Ref. [5] for a
review). Again QMC is applied to obtain spectral properties and to investigate the
phase transition that occurs in such models in more detail.

In chapter 3, these artificial quantum systems are explained in more detail.
Results are presented in chapter 4, which deals with dynamical properties of the

Bose–Hubbard model in one dimension with constant chemical potential. This chap-
ter mainly follows Ref. [6]. Furthermore, the Jaynes–Cummings–Hubbard model (see
section 3.2) in one dimension is studied. The main focus lies apart from the unpertur-
bative calculation of spectral properties on the comparison of the two models, which
show very similar physics, even in their dynamical behavior. In chapter 5 results for
the 2D Bose Hubbard model are presented. In particular, the effects of finite tempera-
ture on spectral properties are investigated. Finally, in chapter 6 the situation of cold
atoms in a quadratic trapping potential in one dimension is studied. This case is most
closely related to recent experiments.

In part III the Holstein model of spinless fermions, that treats the effects of phonons
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on fermionic systems, is investigated. Different from the topics presented in part II,
in a solid state system one has to rely on severe approximations to model certain
properties. Thus it is important to include as many physical effects of the solid as
possible. Here we address the problem of phonons, and how they affect the electronic
system in a low dimensional solid. While part II applies well established methods the
focus in part III lies on the algorithm itself. After a short introduction to the Holstein
model (section 7.1) the algorithm is presented in detail in section 7.2. Benchmark
results are presented in section 7.3.

Although the physics presented in the parts II and III is very different, we apply
related Quantum Monte Carlo methods. The methods and the concepts they are based
on are described in chapter 2.

A summary of the results can be found in chapter 8.



2 QMC Simulations of Strongly Correlated
Systems

Strongly correlated systems are of great interest mainly in solid state physics for their
unconventional physical properties such as high temperature superconductors of the
cuprates and pnictides, colossal magneto-resistance in the manganities, one dimen-
sional conductors and many others.

When there are strong correlations, local approaches such as density functional the-
ory in the local density approximation do not work. The alternative approach is to
find effective Hamiltonians that describe the important physical processes and that
consider correlations between the main constituents (electrons, spins, phonons, etc.).
A well–known example is the Hubbard model. It is hoped that variants of it describe
high temperature superconductors. Unfortunately, despite its simplicity, there is no
exact solution except for the one dimensional case and many analytical approaches
suffer from uncontrollable approximations.

For many such models QMC is the method of choice since it suffers only from
statistical errors without any systematical bias. Unfortunately for fermionic systems,
QMC suffers from the infamous sign problem. Within this work we apply the method
to bosonic systems, where no sign problem occurs.

In this chapter, a quick review of the methods used throughout this thesis is given.
A review of the Quantum Monte Carlo methods can be found in [7, 8, 9].

2.1 Representations of the Partition Sum

All the QMC methods discussed in this thesis rely on the evaluation of observables

〈O〉 =
1
Z

Tr(Ôe−βĤ) =
Tr(Ôe−βĤ)

Tr(e−βĤ)
, (2.1)

with β = 1/T the inverse temperature1, some Hamiltonian Ĥ and the partition sum
Z = Tr(e−βĤ). A direct evaluation of the trace in not manageable on today’s classical
computers2 due to the exponential size of the Hilbert space. We thus need a represen-

1If not otherwise noted, we leave out factors of ~ and the Boltzmann constant kb.
2Since the problem is exponentially hard also an exponential growth of computer power does not

solve the problem.
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tation of the partition sum, such that we can apply a Monte Carlo scheme. That is,
we want to draw configurations C out of the sum Eq. 2.1 such that the approximation
〈O〉MC =

P
cOce

−βEcP
c e
−βEc approaches the real expectation value.

In the subsections below, I shortly review two commonly used representations of
the partition sum, the so called world line representation (sec. 2.1.1), which is a path
integral evaluation of Z, and the stochastic series expansion (SSE) (sec. 2.1.2), which
is a high temperature expansion in β.

Then, I will show in section 2.1.3 how one can map from one representation to the
other to make use of the advantages of both. [10, 11, 12]

Furthermore I will shortly review the update algorithm used throughout this work
in section 2.2.

2.1.1 Path Integral Representation

The path integral representation of lattice Hamiltonians presented below relies on the
Suzuki-Trotter decomposition [13, 14] of the partition sum. The trick is to divide the
Hamiltonian H into parts, where all terms in each part commute with each other. E.g.
the simple tight binding Hamiltonian on a chain Ĥ = −t∑ â†i âi+1 + h.c. is split into
one part which acts only where i is even while the other part acts only for i odd

H = −t
∑
i even

(â†i âi+1 + h.c.)︸ ︷︷ ︸
He

−t
∑
i odd

(â†i âi+1 + h.c.)︸ ︷︷ ︸
Ho

. (2.2)

All terms in He and Ho commute with each other while [He, Ho] 6= 0.
The partition sum is then written as a successive application of small imaginary time

evolutions

Tr(e−βH) =Tr(e−∆τ(He+Ho))M

=Tr(e−∆τHee−∆τHo)M +O(∆τ2) (2.3)

=
∑

{α1,α2,...α2m}

〈α1|e−∆τHe |α2〉 〈α2|e−∆τHo |α3〉 . . . 〈α2m|e−∆τHo |α1〉︸ ︷︷ ︸
W ({|αk〉})

+O(∆τ2).

|αk〉 are complete basis sets - e.g. in the case of free fermions we chose the occupation
number basis and the sum goes over all possible basis states. One can visualize this
representation graphically (Fig. 2.1) by drawing shaded squares for the action of one
operator e−∆τHe or e−∆τHo . The configuration along each time slice corresponds to one
of the states |αk〉. One usually connects particles on neighboring time slices with lines.
Each of these so called ”world line” configurations corresponds to one configuration of
{|αk〉} and thus to one term in Eq. 2.3 associated with some weight W ({|αk〉}) ≡Wwc.3

We finally arrived at a mapping from a d-dimensional quantum system to a d + 1-
dimensional classical system, which can now be sampled by standard Monte Carlo
schemes. The Monte Carlo samples in the space of possible world line configurations.

3wc stands for world line configuration.
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Observables can be evaluated as

〈Ô〉 =
∑

wcOwcWwc∑
wcWwc

, (2.4)

meaning that 〈Ô〉 is given as the average of some estimator Owc over all sampled world
line configurations

〈Ô〉 = 〈Owc〉 (2.5)

The Suzuki-Trotter decomposition, as pre-

i1

i

space direction

im
ag

in
ar

y 
tim

e

i2

i3

2m

Figure 2.1: The Suzuki Trotter decomposi-
tion: Thick red lines connect sites which are
occupied by one particle. These are the so
called ”worldlines”.

sented above, introduces a time discretization
error which is proportional to ∆τ2. However,
when the representation of the model is dis-
crete 4, it is possible to perform the contin-
uum limit ∆τ → 0 to get a path integral rep-
resentation without any discretization error.
Since the probability for a non-diagonal pla-
quette (jump of a world line from one site
to an other) in the tight binding model is
sinh(∆τ t) ∝ ∆τ ∝ 1/M , it follows that the
number of jumps remains constant even in
the limit M →∞. From a technical point of
view, that means instead of storing the states
in all of the 2M time slices one simply stores
the times where a jump of a world line occurs.

We will perform this limit in section 7.2.1
in the context of the Holstein model.

2.1.2 Stochastic Series Expansion (SSE)

The stochastic series expansion (SSE) [15] is a generalization of a method invented by
Handscomb [16, 17], which relies on a Taylor expansion of the partition sum. In the
end, similar to the wordline formulation, we will derive a representation in terms of a
d+ 1 dimensional classical system, which can by simulated by means of Monte carlo.

Given that the Hamiltonians we are interested in can be written as sum over – in
general – non commuting operators that act on bonds Ĥ =

∑
Ĥb. Here, Ĥb can be

something like a†iaj or ni + nj , where the sites i and j are connected by a bond.
Expanding the partition sum in a Taylor series reads

Z = Tr

(∑
n

(−β)n

n!
Ĥn

)
=
∑
α

∑
n

βn

n!

〈
α
∣∣∣ (∑(−Ĥb)

)n ∣∣∣α〉 , (2.6)

4This is already necessary for the worldline picture
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where we chose some convenient set of basis states {|α〉}. In most of the work presented
this will be the occupation number basis |n〉 = |n1〉 ⊗ |n2〉 ⊗ . . . |nL〉.

Since the operators Ĥb generally do not commute one has to sum over all possible
expansions of

(∑
(−Ĥb)

)n
. Let us call one expansion in the sum of Ĥn

Sn :=
n∏
i=1

Ĥti
bi

(2.7)

an operator string Sn of length n, where bi labels the bond on which the operator acts
and ti should be the type of the operator (e.g. density-density interaction, spin-flip, or
hopping). One usually includes identity operators Ĥ1 = 11 to get rid of the sum over n
in Eq. 2.6. Thus one operates only on one operator string of length L, that has n < L
non unitary operators.5 The partition sum finally becomes

Z =
∑
α

∑
{SL}

βn(L− n)!
L!

〈
α

∣∣∣∣∣
L∏
i=1

(−Ĥti
bi

)

∣∣∣∣∣α
〉

︸ ︷︷ ︸
W (SL,α)

. (2.8)

With that at hand one can formulate a Monte Carlo algorithm that samples in the
space of possible operator strings and states (SL,|α〉). That is of course only possible
if the weight function W (SL, α) is always positive or zero, i.e. all matrix elements of
each bond operator have to be negative or zero. For diagonal operators one can always
add a constant to the Hamiltonian to ensure that.6

Unfortunately for non diagonal operators this simple trick does not work. However
for many Hamiltonians one can show that only an even number of negative signs in
the product of Eq. 2.8 occurs and thus the Monte Carlo is sign problem free in many
cases (e.g. for bosons or for spins on non frustrated lattices).

One can represent one configuration in the partition sum graphically as operators
Hb acting on some state |α〉 (see Fig. 2.2). The trace in Eq. 2.8 ensures ”periodic
boundary conditions” in the index direction. From Fig. 2.2 one can already see, that
SSE resembles the wordline picture. Again we have ”worldlines” connecting states
with the same local quantum number.

Given the weightW (SL, α) of each configuration, one can easily calculate expectation
values of observables as

〈Ô〉 =

∑
α

∑
{SL}O(α, SL)W (SL, α)∑
α

∑
{SL}W (SL, α)

, (2.9)

5In principle one has to sum over all lengths L of the operator string too. But one can chose L very
large and increase the size if n becomes comparable large.

6One should not forget to subtract the constant from the energy in the end.
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1 2 3 4 5

1

3

4

5

2

0 1 0 1 2

unit operator

diagonal

non diagonal

site

state

index

Figure 2.2: Graphical representation of one configuration of the partition sum (SL,|α〉). Thick
horizontal lines represent operators. States are represented by vertical lines (no line ∼ |0〉, dashed line
∼ |1〉), and solid line ∼ |2〉).

that is, the simulation estimate 〈Ô〉 is given by the average of the estimator O(α, SL)
over the sampled configurations

〈Ô〉 = 〈O(α, SL)〉 . (2.10)

For many observables, there exist simple estimators. E.g. the internal energy E =
〈Ĥ〉 involves only the number of non identity operators n [18]

E = −〈n〉 /β, (2.11)

and the heat capacity is simply given by [18]

C = 〈n2〉 − 〈n〉2 − 〈n〉 . (2.12)

2.1.3 Mapping from SSE to a Path Integral Representation

As shown above, there exist many estimators for observables that can be calculated
very easily in the SSE representation. Unfortunately it is very cumbersome to ob-
tain correlation functions like 〈Ôi(τ)Ôj(0)〉 since they involve a convolution of Green’s
functions at different SSE distances. Even with very involved methods most of the
computational time is consumed by the calculation of correlation functions.[19]
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Thus although the SSE representation is convenient from a computational point of
view, since only integer values need to be assigned in the operator index sequence, it
becomes inefficient when correlation functions are measured.

In Ref. [20] it has been shown that a MC procedure can be directly formulated in a
continuous time formulation of the path integral. For Hamiltonians of the form

Ĥ = Ĥ0 + V̂ (2.13)

with diagonal and off-diagonal parts Ĥ0 and V̂ respectively, one performs the standard
time–ordered perturbation expansion in V̂

Z =
∞∑
n=0

(−1)n
∫ β

0
dτn . . .

∫ dτ2

0
τ2

∫ dτ1

0
τ1

× Tr[e−βH0V (τ1)V (τ2) . . . V (τn)]. (2.14)

In Ref. [10] it has been shown, that using this perturbation also the update schemes
developed for the SSE representation can be used.

Michel and Evertz showed [11, 12], that the problem of measuring Green’s functions
in an SSE simulation can be solved by going one step further. By doing the perturbation
expansion in all terms of the Hamiltonian instead of V̂ one can directly map an SSE
operator string to a continuous time world line representation. One can then perform
the MC updates in the SSE representation – having only integer values to operate with
– and perform measurements of time dependent correlations in continuous time with
nearly no extra computational cost.

In practice the SSE operator string SL is updated using standard schemes. Then a
time 0 < τ < β is assigned stochastically to each operator in SL. The times must be
sampled uniformly out of [0, β). We do that by sampling L+ 1 distances ∆τi out of a
Poisson distribution and calculate the times using

τi =
β
∑i

k=1 ∆τk∑L+1
k=1 ∆τk

. (2.15)

Doing that one arrives at a valid world line configuration. Graphically one can visualize
that by going from (c) → (b) in Fig. 2.3 (The diagonal terms are taken into account
by imaginary time evolution in the world line picture). For diagonal7 operators Ô
correlation functions like 〈Ôi(τ)Ôj(0)〉 can then directly be measured. For off diagonal
operators like 〈â (τ)â†j(0)〉 this is slightly more complicated and will be discussed below.
However also in that case the computational extra cost is negligible.

7diagonal in the chosen basis {|α〉}
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Figure 2.3: Equivalence of the world line representation and SSE of the partition sum. Suzuki-Trotter
decomposition (a), continuous time path integral representation (b), and SSE (c). The continuous time
in the path integral is replaced by an integer index in the operator string, at the cost of diagonal terms
(blue lines).

2.2 Efficient Monte Carlo Update Schemes

In the previous chapter, we showed how to map quantum system onto classical world
lines. In this representation standard Metropolis Monte Carlo algorithms with local
updates of the configuration are applicable. This approach however suffers from critical
slowing down at second order phase transitions. Furthermore the number of world
lines remains unchanged, meaning that simulations have to be performed at constant
particle number or magnetization.

A solution to these problem was provided by the loop algorithm [21, 9], which was
originally formulated in discrete imaginary time, but later extended to continuous
time [22]. There exist other methods like the worm algorithm [23], the operator loop
update [24] or, as a generalization, the directed loop algorithm [25], which have in
common, that they construct some path – either in world line picture or the SSE –
along which the quantum number is changed. The construction of the path follows
local rules, while the change of the configuration is of global nature.

A sketch of the procedure can be seen in Fig. 2.4. In that case a continuous time world
line representation is used, but the idea is the same in the SSE representation. Given
some valid worldline configuration (Fig. 2.4 (a)), an operator pair â† â is inserted. One
usually calls one of them loop head and the other one loop tail. The loop head moves
around in the space–time plane changing the local state. The movement is governed
by local rules. This is continued until the head hits the tail of the loop again (Fig. 2.4
(b)). When the loop is closed, we finally arrive at a valid world line configuration, that
is globally different from the original one (Fig. 2.4 (c)).

Using such update algorithms one can simulate large systems at very low temperature
due to very small auto-correlation times.
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Figure 2.4: Directed loop algorithm: Starting from a valid world line configuration, an operator pair

â† â is inserted (a). The loop head â moves around following local rules until it hits the loop tail â†

again (b), arriving at a valid world line configuration (c).

Within this work we use the directed loop algorithm in the SSE representation in
part II and in a path integral representation in part III of this thesis. In section 7.2.1
we demonstrate how to obtain the rules for the movement of the loop head.

2.2.1 Simulation of Bosonic Systems

Within this thesis, mainly bosonic systems are investigated. For bosonic problems
these methods are extremely well suited, since there is no sign problem as long, as
there is no geometric frustration.

In part II a straight forward application of the directed loop algorithm is applied.
That is, one uses the bosonic occupation number as basis states |α〉 and restricts
the maximum number of allowed bosons per site to some number Nmax. We check
throughout the simulation, that |Nmax〉 is never reached. Thus we are able to simulate
bosonic systems without any systematic errors.

In part III a different approach is applied to the Holstein model of spinless fermions.
In that model, (bosonic) phonon modes couple to otherwise free fermions. We show in
detail in section 7.2 how an efficient update of the phonon degrees of freedom can be
formulated in Fourier space.

2.2.2 Measurement of the Propagator

During the loop update the configuration is not a valid contribution to the partition
sum. However one can directly measure the propagator 〈âi(τ)â†j(0)〉 during the move-
ment of the loop head. To this end, we introduce some time grid to measure the time
dependent correlation function only on discrete times 0,∆τ, 2∆τ, . . .. Whenever the
loop head crosses a time slice we measure the propagator at one specific distance in
space and imaginary time.
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Here, ∆τ has nothing to to with the time discretization of the Suzuki-Trotter decom-
position, but limits only the maximum energy Emax ∼ 1/∆τ that can be investigated.

2.3 Inversion of Dynamical Correlation Functions

The main interest is of course not into imaginary time dependent correlation functions,
but into quantities that are experimentally accessible. In particular, we want to cal-
culate ARPES/IPES spectra A(k, ω), the dynamical structure factor S(k, ω) – which
is obtained by Bragg spectroscopy – or the phonon spectral function Sx(k, ω).

Let us discuss only the one particle spectral function A(k, ω). The discussion for
S(k, ω) and Sx(k, ω) follows the same arguments and will be described in part II and III
in more detail.
A(k, ω) is given in the spectral representation as

A(k, ω) =
1
Z

∑
m,n

| 〈m|â†|n〉 |2e−βEn(eE − ε)δ(E − (En − Em)), (2.16)

where ε = −1 for the fermionic version of Eq. 2.16 and ε = +1 for the bosonic one,
respectively.

In the fermionic case, one can relate the spectral function to the propagator via

〈âk(0)â†k(τ)〉 =
∫ ∞
−∞

dω
A(k, ω)
eβω + 1

e−ωτ . (2.17)

Unfortunately the inversion of the equation above is very ill conditioned. Since the
correlation function is subject to statistical errors, we can not invert Eq. 2.17 in a
straight forward way.

A solution to the problem was given with maximum entropy methods [26, 27].
This is used to invert Eq. 2.17 as well as a similar equation to get the dynamic

structure factor by inverting the density–density correlation function or the phonon
spectral function out of the phonon–phonon correlation function 〈x−k(τ)xk(0)〉.

2.3.1 Note on Fourier Transformation

We measure the propagator in real space, i.e. as a function of spatial distances i −
j. However we need it in k−space (see Eq. 2.17) to obtain the spectral function.
One can simply calculate the k-spece dependent correlation function with a Fourier
transformation.

Care must be taken since the propagator in real space is not only subject to statistical
errors, but the data may be strongly correlated, thus a straight forward error propa-
gation is not applicable. How to perform the calculation properly with the Jackknife
method is described in appendix A.





Part II

Quantum Simulators





3 Using Cold Atoms and Cavity Systems
as Quantum Simulators

The two dimensional fermionic Hubbard model is just one example of a model that
describes interesting physics, probably realized in, e.g. high temperature superconduc-
tors, but which remains unsolved. Although there exist many approximate methods,
there is no analytical solution nor does the QMC work well away from half filling –
which is the region of interest – due to a severe sign problem. Also variational methods
like the DMRG which are extremely efficient in one dimension can not be applied to
higher dimensional problems so far. But not only the 2D Hubbard model, also frus-
trated spin systems suffer from the problem, that there are no efficient algorithms for
classical computers.

The situation would be different if one could build a quantum computer, where all
these quantum problems could be simulated in polynomial time. Although one is still
far away from assembling a quantum computer that can be used like today’s classical
computers, with the fabrication of ultra cold quantum gases in optical lattices it has
been possible to simulate strongly correlated quantum systems experimentally [28, 1, 2].
Current cooling techniques allow to Bose-condense cold atoms and to transfer the Bose–
Einstein condensate (BEC) into optical lattices which are then a nearly ideal realization
of a bosonic Hubbard model. The ultimate goal is the realization of fermionic Hubbard
models, but with today’s cooling techniques this is still out of reach.

The goal of this work was to calculate various properties of bosonic systems that
can be built also experimentally. The Bose–Hubbard model as well as the Jaynes–
Cummings–Hubbard model (which we will discuss in subsequent chapters) can be
simulated with the QMC method without any systematic errors. It is very important
to have unbiased methods at hand, because although strongly correlated models have
never been built that cleanly before, there are still many technical problems that need
to be fully understood. E.g. due to the influence of lattice- or measurement lasers, the
condensate is heated significantly. Further more it is a quite subtle task to measure
temperatures at all. Having an unbiased method at hand for the calculation of thermal
properties can thus be of great importance for the understanding of many experimental
results.

In particular we are interested in the calculation of spectral properties such as the
one particle spectral function or the dynamic structure factor.

In the subsequent sections 3.1 and 3.2 a short review of the basic concepts of these
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µ(r)

V
0

Figure 3.1: Sketch of the energy scales involved in a cold atom gas in an optical lattice. The laser
intensity V0 is directly related to the hopping integral t and the on-site energy U . A trapping potential
µ(r) keeps the atoms localized.

artificial systems that simulate strongly correlated systems is given. In the chapers 4-6
QMC results are presented.

3.1 Ultra-cold atoms in optical lattices

As proposed by Jaksch et al. [28] Bose-Einstein condensed atoms transferred to an
optical lattice are extremely well described by the Bose–Hubbard model

Ĥ = −t
∑
〈i,j〉

â†i âj +
U

2

∑
i

n̂i(n̂i − 1)−
∑
i

µin̂i. (3.1)

â†i and âj are bosonic creation and annihilation operators respectively, [âj , â
†
i ] = δi,j .

n̂i is the density operator and 〈·〉 symbolizes a sum over nearest neighbors.
The cold atoms are usually trapped in a magneto–optical trap. The trapping po-

tential µ(r) = Kr2 localizes the Bose–Einstein condensate. Two counter-propagating
laser beams generate a periodic potential, which can be one, two, or three dimensional.
Due to an AC Stark shift the atoms feel a periodic potential with height V0 – which
can of course be different for each dimension. If V0 is strong enough, the atoms tend
to localize around the minima of the potential. Each minimum is, in the description
of Eq. 3.1, one lattice site i, j, . . . respectively. The overlap integral of neighboring
atoms is the hopping strength t. If two or more atoms are on the same lattice site the
Coulomb energy U has to be payed (Fig. 3.1).

Jaksch et al. [28] assumed that the bosons are, expressed in the Wannier basis, in
their lowest vibrational state w(x). They calculated the Coulomb repulsion strength

U = 4πas~2

∫
d3x|w(x)|4/m
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and the hopping integral

t =
∫
d3x w∗(x− xi)

[
− ~2

2m
∇2 + V0(x)

]
w(x− xi).

Thus given the Wannier functions w(x) and the s-wave scattering length as one can
determine the parameters of the model numerically.

To assure that the bosons are in their lowest vibrational level, V0 has to be strong
enough. A convenient measure for the strength of V0 is the so called recoil energy
Er = ~2k2/2m, with k the wave-number of the standing laser beam. If V0 � Er an
exact result for t and U was found [29]

t =
4√
π
Er

(
V0

Er

)3/4

e−2
√
V0/Er , (3.2)

U =

√
8
π
kasEr

(
V0

Er

)3/4

. (3.3)

In typical experiments V0 can be as high V0 ≈ 20 − 30Er which corresponds to
very deep Mott insulators. However, if V0 is that large the heating of the condensate
should not be neglected anymore. If the superfluid state of the Bose Hubbard model
is studied, where V0 � Er is not given anymore, one should also consider higher order
terms in the evaluation of the parameters t and U of the model.

Apart from the Mott insulator to superfluid transition [1], many more experiments
have been performed that demonstrated interesting many body physics with such sys-
tems (See Ref. [2] and references therein).

In recent experiments also dynamical properties have been measured using Bragg
spectroscopy [30, 3, 31, 4]. This allows to determine the dynamical structure factor as
well as the one particle spectral function.

3.2 The Jaynes–Cummings–Hubbard model

As seen in the last section, cold atoms in optical lattices allow to build strongly corre-
lated models and to fine tune the parameters very precisely. Since the lattice spacing is
on the order of hundreds of nanometers, it is however very difficult – but not impossi-
ble, as recently shown [32] – to perform local measurements. In this section we describe
another approach in which also single sites can be addressed. This artificial system,
that has recently been proposed to use as a quantum simulator consists of arrays of
cavities in which atoms interact with photons [33, 34, 35, 36, 5]. See figure 3.2 for a
sketch. Photons and atoms usually interact only very weakly. This interaction can be
increased significantly, when the light is put into a resonator. Let us consider only one
such light mode in the i-th cavity coupled to a simple two-level system. This simple
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Figure 3.2: The photons (yellow) inside of a cavity array that can move freely (top) might be dressed
due to strong atom-photon coupling (bottom).

system is very well described – using the dipole and rotating wave approximations –
by the Jaynes–Cummings Hamiltonian [37]

ĤJC
i = ε |↑〉i 〈↑|i + ω0 â

†
i âi + g

(
|↑i〉 〈↓i| âi + |↓i〉 〈↑i| â†i

)
. (3.4)

We denote the two levels of the atom as |↓〉 and |↑〉 respectively. The photon field is
described in the occupation number basis with creation and annihilation operators a†

and a. ω0 and ε are the frequencies of the resonant mode of the cavity and the atomic
transition, respectively. g is the coupling of the photon to the two-level system.

In addition to the coherent transition as described in Eq. 3.4, there are two main
loss processes: On the one hand there is spontaneous emission from |↑〉 to |↓〉 with a
rate γ and on the other hand photons of the cavity mode are lost with a rate κ. A
convenient measure for the coherence of the system is the so called cooperativity factor

ξ =
g2

2κγ
, (3.5)

which should be ξ � 1 for the coherent processes to dominate over loss processes
(Fig. 3.3 (a)).

Up to now we only considered one cavity. Interesting strongly correlated physics is
observed, if these cavities are coupled to each other (see Figures 3.2 and 3.3 (b)). A
small overlap of the wave-functions of neighboring light modes allows the hopping of
photons from one cavity to a neighboring one.
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Figure 3.3: (a) One two-level system in an array interacting with a photon mode. If the cavity
decay rate κ and spontaneous emission rate γ is small, the system is described by Eq. 3.4. (b) Coupled
cavities: each cavity is described by the Jaynes Cummings Hamiltonian Eq. 3.4 with a two level system
(red dots) and light modes (blue). A small overlap of photon wave-functions allows the photon to hop
to a neighboring cavity.

This is described by the so called Jaynes–Cummings–Hubbard Hamiltonian

Ĥ =
∑
i

ĤJC
i − t

∑
〈i,j〉

(â†i âj + h.c.) +
∑
i

µ (|↑〉 〈↑|+ â†i âi )︸ ︷︷ ︸
Np

. (3.6)

We defined the conserved quantity of the polariton number Np.
Interestingly, even though there is no strong coupling term (like n̂in̂i in the Bose

Hubbard model Eq. 3.1), this model not only has a very similar phase diagram as
the Bose Hubbard model, but also shows many other features of a strongly correlated
model.

This is due to an effective repulsive polariton–polariton interaction Ueff mediated
by the atom–photon coupling. For the Jaynes–Cummings model on one site, with
ω0 = ε the energy to add one polariton to the system can be calculated exactly as
Ueff = g

√
n, where n is the polariton number. This resembles the Coulomb repulsion

strength U in the Hubbard model.
Results will be presented in chapter 4, together with a detailed comparison to the

Bose–Hubbard model.

3.2.1 Experimental Realizations

Experimental realizations of large arrays of such cavities have still not been built, how-
ever there are many promising candidates for such systems (See Ref. [5] and references
therein):

• Quantum dots coupled to photonic band gap cavities reach ξ ∼ 10 and ξ ∼ 106

have been predicted. Currently, spontaneous emission rates and the fact that it
is hard to produce a large array limits this approach.



22 3 Using Cold Atoms and Cavity Systems as Quantum Simulators

• Another approach for building arrays of cavities uses silicon structures of a disc
or a toroidal shape. To realize the Hamiltonian Eq. 3.6 atoms are placed close to
the surface of the discs, where cooperativity factors of ξ ∼ 50 are reached. The
main challenge using this approach is to keep the atoms trapped for a sufficiently
long time.

• It has been reported that optical fibres have been used to transfer the photons
between Fabri-Pérot cavities. The cavities are formed between the tips of two
fibres which are placed on top of an atom chip. Within this approach high
cooperativity factors of ξ = 145 can be reached. However due to the optical
fibres the hopping term in Eq. 3.6 might get modified.

• Cooper-pair boxes coupled to superconducting transmission line resonators are a
promising experimental architecture to realize the Jaynes–Cummings–Hubbard
Hamiltonian in the microwave regime. Cooper pair boxes are two superconduct-
ing islands, connected with an Josephson junction. These systems are coupled
with quasi one-dimensional waveguides, which are formed on a chip and have
resonance frequencies in the microwave range. It has been predicted that up to
10 of such boxes can be coupled.

To conclude, in contrast to realizations of the Bose–Hubbard model in terms of
optical lattices, implementations of the Jaynes–Cummings Hubbard model would allow
to address singles sites. Unfortunately it seems to be rather difficult to build large
lattices with current technologies. Furthermore such systems need to be driven by
some external field, such as a pumping laser. Thus it would be more appropriate to
describe a steady state instead of the thermal state. However at least in the case of only
one site, the steady state is equivalent to the thermal state. Also in the weak pumping
limit, i.e. the hopping processes are much faster than the pump rate, a decription in
terms of thermal states is valid.



4 Dynamics of One Dimensional Bose
Hubbard and Polariton Models

This chapter follows Ref. [6] almost literally.

4.1 Abstract

Spectral properties of the Bose-Hubbard model and a recently proposed coupled-cavity
model are studied by means of quantum Monte Carlo simulations in one dimension.
Both models exhibit a quantum phase transition from a Mott insulator to a superfluid
phase. The dynamic structure factor S(k, ω) and the single-particle spectrum A(k, ω)
are calculated, focusing on the parameter region around the phase transition from
the Mott insulator with density one to the superfluid phase, where correlations are
important. The strongly interacting nature of the superfluid phase manifests itself
in terms of additional gapped modes in the spectra. Comparison is made to recent
analytical work on the Bose-Hubbard model. Despite some subtle differences due to
the polaritonic particles in the cavity model, the gross features are found to be very
similar to the Bose-Hubbard case. For the polariton model, emergent particle-hole
symmetry near the Mott lobe tip is demonstrated, and temperature and detuning
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effects are analyzed. A scaling analysis for the generic transition suggests mean field
exponents, in accordance with field theory results.

4.2 Introduction

The Mott insulator (MI) to superfluid (SF) quantum phase transition in the generic
Bose-Hubbard model[38] has attracted a lot of attention in recent years due to the
progress in experiments on cold atomic gases in optical lattices.[39] More recently,
there have also been significant advances in the coherent coupling of single atoms
and cold atomic gases to cavity radiation (cavity quantum electrodynamics).[40, 41] A
clean realization of the Jaynes-Cummings Hamiltonian has been achieved by coupling a
superconducting qubit to a microwave cavity.[42] On the theory side, multi-component
Bose gases coupled to light have e.g. been shown to support a superradiant Mott
insulator phase with polariton condensation.[43]

In parallel, several theoretical proposals have shown the possibility of having a state
of strongly correlated photons or polaritons in solid-state systems of coupled cavity ar-
rays (also referred to as polariton models or Jaynes-Cummings-Hubbard models),[33,
34] and a review of work along these lines has been given.[5] The possibility of preparing
a system of photons in a Mott state with one photon per site is a promising starting
point for quantum information processing. An important feature shared with cold
atomic gases coupled to light is the composite nature of the polaritons. Particularly
attractive properties of cavity arrays would include accessibility of local properties in
measurements and scalability in terms of size. Perhaps the most likely candidate for
setting up such a model experimentally is based on extending the work on supercon-
ducting qubits to arrays.[44, 42] In contrast to cold atomic gases, where the interac-
tion and/or hopping strength can be varied, the phase transition may be observed by
changing the detuning between the two-level system and the resonator. Analysis of
coupled cavity models is fruitful in its own right, as a detailed understanding of the
corresponding models offers insight into strongly correlated polariton systems. An im-
portant aspect of such studies is the extent to which such systems resemble the familiar
Bose-Hubbard physics.

From the above examples and many more in the literature, it is apparent that
interacting boson systems on a lattice are of great interest for the progress of both
theory and experiment. Compared to Bose fluids, the lattice changes the physics
in several aspects. Although long-range phase coherence still gives rise to phonon
excitations—despite the breaking of translational symmetry—the quenching of the
kinetic energy makes the system much more strongly correlated.[45] Besides, the lattice
allows the formation of incompressible MI states with the same integer particle number
at each site.

A large amount of work has been devoted to detailed studies of the Bose-Hubbard
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model, leading to a wealth of knowledge with and without additional complications
such as trapping potentials or disorder. However, the dynamical properties and excita-
tions in particular of the SF phase in the vicinity of the quantum phase transition, are
still not completely understood. A number of authors have addressed the dynamics of
the Bose-Hubbard model in different dimensions, [46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57] with results providing valuable information about the underlying physics, while
corresponding work on coupled cavity models has just begun.[58, 59] The two most im-
portant dynamic observables are the dynamic structure factor and the single-particle
spectral function, which are also at the heart of theoretical and experimental works
on Bose fluids.[60] Experimentally, the dynamic structure factor may be measured by
Bragg spectroscopy or lattice modulation (in cold atomic gases) as well as by neu-
tron scattering (in liquid helium), and single-particle excitations of optical solid-state
systems are accessible by means of photoluminescence measurements.

Whereas the standard Bose-Hubbard model only supports MI and SF phases, the
physics of the polariton models is slightly richer. Owing to the composite nature of
the conserved particles (polaritons), these phases can either be of polaritonic, excitonic
or photonic character[58, 61, 62, 63] with distinct dynamic properties. Which of the
cases is realized depends on the value of the detuning between the cavity mode and
the transition frequency of the atoms that mediate polariton repulsion. Very recently
it has been proposed that the fractional quantum Hall effect may also be realized in
coupled cavity arrays.[64]

In general, accurate and unbiased results are very hard to obtain. Most existing
work on spectral properties in the Mott phase is based on mean-field and/or strong-
coupling approximations, in which fluctuations of the particle numbers are more or
less restricted. Results of extensive strong coupling expansions for the phase diagram
[65, 47] do, however, agree very well with precise density-matrix renormalization group
(DMRG)[48] and quantum Monte Carlo (QMC) results.[55, 54] Bogoliubov type de-
scriptions have been found to accurately describe the SF phase only in the limit of weak
interaction, and fail to account for the transition to a MI and correlation features in
the SF close to the transition. Hence the most interesting (and most difficult) regime
is that near the quantum phase transition, where quantum fluctuations and correlation
effects cannot be neglected.

In one dimension (1D), quantum fluctuation effects are particularly pronounced
and mean-field methods are in general insufficient. Notable exceptions include situa-
tions where coupling to additional degrees of freedom provides an effective long-range
interaction.[43] An interesting aspect of 1D is that for strong (repulsive) interaction,
fermions and bosons behave in a very similar way, and that the low-energy, long-
wavelength physics is described by the Luttinger liquid model.[66]

In the present paper we employ the directed loop quantum Monte Carlo method,[67]
which is exact and therefore yields unbiased results also in difficult parameter regimes.
Importantly, our simulations preserve the full quantum dynamics.
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Few nonperturbative results are available for the spectra in the Bose-Hubbard model,
namely for the dynamical conductivity,[48] for the dynamic structure factor S(k, ω)[49,
50] on small systems, and for the single-boson spectral function A(k, ω) in the Mott
phase deduced from small systems,[52] all in 1D. For the polariton model considered
here, only A(k, ω) in the Mott phase has been calculated.[58]

The focus of our work is therefore on the calculation of excitation spectra for both
the Bose-Hubbard model and the polariton model within and around the first Mott
lobe (i.e., the lobe with density one), for which comparison to recent analytical and
numerical results is made. Other issues addressed include the sound velocity in the SF
phase, particle and hole masses, as well as temperature and detuning effects for the
case of the polariton model.

Our simulations are performed at low but finite temperatures. On one hand, this
complicates the analysis of the results, but on the other hand it matches the experi-
mental situation.[60, 68]

The paper is organized as follows. In Sec. 4.3 we introduce the two models considered.
Section 4.4 contains some details about the method. Results are discussed in Sec. 4.5,
and in Sec. 4.6 we present our conclusions.

4.3 Models

The polariton model we consider is the simplest among several recent proposals.[33, 34,
35, 36, 5] It describes an array of L optical microcavities, each of which contains a single
two-level atom with states |↓〉, |↑〉 separated by energy ε. Within the rotating wave
approximation one such cavity is represented by the Jaynes-Cummings Hamiltonian[37]
(~ = 1)

ĤJC
i = ε |↑i〉 〈↑i|+ ω0a

†
iai

+g(|↑i〉 〈↓i| ai + |↓i〉 〈↑i| a†i ) . (4.1)

Here ω0 is the cavity photon energy, and ∆ = ε − ω0 defines the detuning. The
atom-photon coupling g (a†i , ai are photon creation and annihilation operators) gives
rise to formation of polaritons (combined atom-photon or exciton-photon excitations).
Allowing for nearest-neighbor photon hopping between cavities with amplitude t leads
to the lattice Hamiltonian

ĤPM = −t
∑
〈i,j〉

a†iaj +
∑
i

ĤJC
i − µN̂p . (4.2)

The conserved polariton number N̂p =
∑

i n̂p,i, with n̂p,i = a†iai+|↑i〉 〈↑i|, is determined
by the chemical potential µ.[69] Polaritons experience an effective repulsion Ueff(np)
[see Eq. (4.11)] due to the nonlinear dependence of the single-site energy on the local
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occupation number np. We use g as the unit of energy and set ω0/g, kB and the lattice
constant equal to unity. The rotating wave approximation becomes unjustified for g
comparable to ε. The motivation for setting g = ε is direct comparison to previous
work. The Hamiltonian (4.2) has been studied in Ref. [33, 69, 35, 70, 58, 71, 5, 62, 61,
63, 59, 44].

We also consider the Bose-Hubbard Hamiltonian

ĤBHM = −t
∑
〈i,j〉

b†ibj +
U

2

∑
i

ni(ni − 1)− µN̂ , (4.3)

describing soft-core bosons with repulsion U and hopping t. Here N̂ =
∑

i n̂i =
∑

i b
†
ibi ,

is the total number of bosons, and we use U as the unit of energy.
As an alternative to the spin language used here, the polariton model (4.2) can be

written as a two-band Bose-Hubbard Hamiltonian;[72] one boson species is itinerant,
whereas the other is immobile (corresponding to localized excitons) with a hard-core
constraint. This correspondence provides a direct connection to recent work on cold
atomic gases in optical lattices, with the natural extension to the case where the
excitons are mobile as well.[43]

We shall see below that owing to the composite nature of the bosonic particles in the
polariton model, it is generally easier to understand the features of the Bose-Hubbard
model first, and then explore similarities to the polariton model. Moreover, analytical
approximations are more readily available for the Bose-Hubbard model and provide
insight into the numerical data. Periodic boundary conditions in real space are applied
in all simulations, and the system size is denoted as L.

4.4 Method

We use the directed loop method,[67] a generalization of the loop algorithm,[21, 73]
which has no systematic errors and is efficient (low autocorrelations), facilitating the
simulation of large systems at low temperatures. We make use of the ALPS library [74,
75] and of the ALPS applications,[76] which use the stochastic series expansion (SSE)
representation[15] of worldline path integrals. We have verified that we obtain the
correct phase boundary in 1D for selected points in parameter space.

In contrast to most previous QMC calculations of the Bose-Hubbard model, the
focus of the current paper is on dynamical properties. The SSE representation has
the drawback that dynamical correlation functions in imaginary time, which we need
to obtain spectra, are very inefficient to calculate, since they involve a convolution of
Green functions at different SSE distances.[19] On the other hand, Green functions
can be measured easily in an imaginary time representation. For this reason we revert
a mapping from continuous time to SSE[10] when measuring Green functions. To
each operator in a given SSE operator string we associate a time τ ∈ [0, β] which is



28 4 Dynamics of One Dimensional Bose Hubbard and Polariton Models

stochastically sampled out of a uniform distribution. This maps the SSE configuration
into a worldline configuration in continuous imaginary time.[77]

Correlation functions of diagonal operators can then be measured directly. For
example, in the case of 〈ρ̂i(τ)ρ̂j(0)〉 we evaluate the density ρi(τ) on a fine time grid.
This time discretization limits the high energy range of the Green function, but does
not introduce any discretization error to the QMC algorithm itself. With the Fourier
transformation of the density F(ρ̂i(τ)) = ρ̂k,ω, we measure the correlation function
F(〈ρ̂i(τ)ρ̂j(0)〉) = 〈ρ̂k,ωρ̂−k,ω〉 using fast Fourier transforms.

The evaluation of off-diagonal single-particle correlation functions of the form 〈ψi (τ)ψ†0(0)〉
requires some care. We again make use of the worldline picture, in which two oper-
ators ψ† and ψ are inserted whenever a new loop update starts. Let us assume that
ψ moves around (loop head) while ψ† is pinned (loop tail). The time and position
of the loop tail are set as the new origin of our coordinate system, and we store the
values 〈α|ψi (τ)ψ†0(0)|β〉 whenever the loop head ψi(τ) crosses a point on the time grid
with distance (i, τ) from the new origin. Here |α〉, |β〉 are the states in the world line
configuration prior to the arrival of the loop head. We then again use fast Fourier
transformation to evaluate the correlation functions in Fourier space.

Let us now define the observables of interest. The quantum phase transition can be
detected by calculating the superfluid density ρs, measured in the simulations in terms
of the spatial winding number w as ρs = L〈w2〉/β,[78, 79] β = 1/kT being the inverse
temperature. Another important observable in the context of the MI-SF transition is
the total density, n = 〈N̂〉/L in the Bose-Hubbard model, and np = 〈N̂p〉/L in the
polariton model.

Concerning dynamical properties, we compute the dynamic structure factor S(k, ω)
and the single-particle spectral function A(k, ω). The dynamic structure factor at
momentum k and energy ω is given by

S(k, ω) =
1

2πL

∫ ∞
−∞

dτeiωτ 〈ρ̂k(τ)ρ̂†k(0)〉 (4.4)

=
1
L

∑
n,m

e−βEn

Z

∣∣∣〈m| ρ̂†k |n〉∣∣∣2 δ[ω − (Em − En)] ,

with the grand-canonical partition function Z and the energy of the nth eigenstate En.
In our simulations, S(k, ω) is obtained from

〈ρ̂k(τ)ρ̂−k(0)〉 =
∫
dωS(k, ω)

e−τω

1 + e−ωβ
(4.5)

by means of the maximum entropy method.
For the Bose-Hubbard model, the density operator ρ̂i = n̂i, and ρ†k =

∑
q b
†
q+kbq.

For the polariton model, we can calculate the dynamic structure factor for photons
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[Sph(k, ω)], atoms [Sat(k, ω)] or polaritons [S(k, ω)] by using

ρ̂i =


a†iai for photons ,
|↑i〉 〈↑i| for atoms ,
a†iai + |↑i〉 〈↑i| for polaritons ,

(4.6)

respectively.
The single-particle spectral function is defined as

A(k, ω) = − 1
π

Im 〈〈ψ̂k; ψ̂†k〉〉ω (4.7)

=
∑
n,m

e−βEn

Z

∣∣∣〈m| ψ̂†k |n〉∣∣∣2 δ[ω − (Em − En)] ,

where the real-space operator ψ̂i entering the Green function is given by ψ̂i = bi for
the Bose-Hubbard model, and by ψ̂i = ai for the polariton model. maximum entropy
is again used to map to real frequencies.

The QMC algorithm samples the partition function in the grand canonical ensemble.
However, using only those configurations which have a given number of polaritons
enables us to measure observables in the canonical ensemble as well. Here this simple
but powerful trick permits us to study the fixed-density phase transition which occurs
in the polariton model as a function of t/g.

The SSE representation requires to set a maximum boson number per site. In the
Bose-Hubbard model, we allow a maximum of six bosons per site. In the polariton
model we allow from six (Mott insulator, fixed-density transition) up to 16 (SF phase)
photons per site. Convergence has been monitored by plotting histograms of the photon
number distribution, and the cut-offs have been chosen generously such that there was
no truncation error.

4.5 Results

We begin with a review of the properties of the Bose-Hubbard model and the polariton
model as they emerge from previous work. Whereas a substantial literature exists for
the Bose-Hubbard model, work on the polariton model began only recently, based
on mean-field theory,[33, 44] exact diagonalization,[69] the DMRG,[70] the variational
cluster approach,[58], QMC[80] and strong coupling theory.[59] Our discussion focuses
on 1D, and follows Fisher et al. [38] and Kühner et al. [48]

The Bose-Hubbard model describes the competition of kinetic energy and local, re-
pulsive interaction. Depending on the ratio t/U and the density of bosons n (the
system is superfluid for any t > 0 if n is not integer), the Bose-Hubbard model at tem-
perature T = 0 is either in a MI state or in a SF state. The MI is characterized by an
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Figure 4.1: Zero-temperature phase diagram for (a) the Bose-Hubbard model and (b) the polariton
model in 1D. We only show the Mott lobes with density one. These DMRG results were obtained by
(a) Kühner et al. [48] and (b) Rossini et al. [70]

integer particle density, phase fluctuations and a gap in the single-particle excitation
spectrum. In the SF phase, we have significant density fluctuations, phase coherence,
and nonzero superfluid density ρs, as well as gapless (phonon) excitations with linear
dispersion at small k.

For the case of one dimension considered here, a precise zero-temperature phase
diagram in the µ/U, t/U plane has been determined by Kühner et al.,[48] and these
data are shown in Fig. 4.1(a). There exists a Mott lobe inside which the density n = 1
(higher lobes with integer n > 1 are not shown), and which is surrounded by the SF
phase.

There are two qualitatively different ways to make a transition from the MI to the
SF.[38] The generic MI-SF transition is driven by addition or subtraction of small
numbers of particles to the incompressible MI phase, the total energy cost for which is
given by the distance in µ-direction from the nearest phase boundary. Since additional
particles or holes (which Bose condense at T = 0) can move freely, the gain in kinetic
energy can outweigh the interaction energy, leading to the MI-SF transition. Across the
generic transition, which is mean-field like in character, the density varies continuously
and the single-particle gap closes linearly as a function of the distance from the phase
boundary, Eg ∝ δ, where δ = t−tc or µ−µc is the distance from the phase boundary.[38]

There also exists a MI-SF transition at fixed density, driven by the onset of boson
hopping due to the increase of the ratio t/U , i.e. by quantum fluctuations. It has been
shown that this transition occurs at the tip of the Mott lobe, and that it has a different
universality class than the generic transition.[38] In d dimensions, the universality class
is that of the (d + 1) dimensional XY model, so that in 1D there is a Kosterlitz-
Thouless phase transition at the multicritical point. For this case, the Mott gap Eg ∝
exp(-const/

√
tc − t) closes exponentially (i.e., very slowly) as a function of the distance
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from the lobe tip,[47] and strong deviations from the parabolic lobes predicted by
mean-field theory[38] are observed in both strong-coupling[81, 65, 47] and DMRG
results.[82] Another remarkable aspect of the 1D case is the occurrence of multiple
MI-SF transitions along lines of constant chemical potential over an extended range of
µ . 0.2 [see Fig. 4.1(a)].[82, 48]

The polariton model also shows a series of Mott lobes, in which the polariton density
np is pinned to an integer (see Fig. 4.1(b) for the phase boundaries of the np = 1 lobe
obtained by DMRG[70]). Even for pinned np the photon and exciton densities can
fluctuate. Deep in the Mott phase and for np ≥ 1, we can approximate the ground
state by a product over single sites, each of which is described by the Jaynes-Cummings
eigenstates (see, e.g., Ref. [59])

|np,−〉 = cos θ(np) |np, ↓〉 − sin θ(np) |np − 1, ↑〉 ,
|np,+〉 = sin θ(np) |np, ↓〉+ cos θ(np) |np − 1, ↑〉 , (4.8)

where tan θ(np) = 2g√np/[2χ(np)−∆], χ(np) =
√
g2np + ∆2/4, and with eigenvalues

E±(np) = −(µ − ω0)np + ∆/2 ± χ(np). Hence for fixed polariton number np, the
ground state |np,−〉 is a coherent superposition of two states which differ by the state
of the atom (or spin) as well as the number of photons; this hybridization provides the
connection to exciton polaritons.

The extent of the lobes in both the µ and t directions diminishes quickly with
increasing np due to the reduced polariton-polariton repulsion Ueff(np); the t = 0
vertical width of the lobes in the Bose-Hubbard model is always U . At large values
ζt > ω−µ (ζ being the coordination number), beyond those considered in the present
work, the polariton model shows an instability.[44]

In this work we restrict our discussion to the region in the phase diagram in or close
to the Mott lobes with density np = 1 or n = 1. This lobe is the largest in the polariton
model with zero detuning, and quantum effects are most pronounced. A density of one
is also the most interesting case for experimental realizations.[33, 58]

All the discussion so far has been for T = 0. Both experiments and our simulations
are carried out at low but finite temperatures, with several important consequences.
Strictly speaking, there is no true MI at T > 0 due to thermal excitations. However,
there exist quasi-MI regions which have finite but very small compressibility (see also
the discussion of temperature effects later). As long as the density remains close to
an integer, these regions may be regarded as Mott insulating. Corresponding “phase
diagrams” at finite T have been obtained for both the polariton and the Bose-Hubbard
model.[83, 58, 56] Except for our analysis of temperature effects in Sec. 4.5, the simu-
lations have been carried out at values of β = 3L, large enough to ensure that we have
an (almost) integer density in the Mott phase.

The Bose-Hubbard model in more than one dimension (and most likely the polariton
model as well) exhibits a phase transition from a SF to a normal state (gapless with
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no phase coherence), related to the well-known λ transition in liquid helium, at a
temperature Tλ.[54, 55] This gives rise to an intervening normal region in the phase
diagram, between the MI (at small t/U) and the SF (at large t/U).[83] In the 1D case
considered here we have Tλ = 0, so that for any T 6= 0 only quasi-MI and normal
states exist in the thermodynamic limit. However, when the temperature is so low
that the SF correlation length in the thermodynamic limit far exceeds the system size
L, results will be representative of the SF state. Making use of finite size and finite
temperature effects, a scaling analysis in fact yields accurate results for the T = 0
phase boundaries.[84, 80] Remarkably, interacting 1D bosons can be realized using
cold atomic gases (the Tonks-Girardeau gas)[85, 86] and are described by the Bose-
Hubbard model at low but finite temperatures.[66]

Similar to Bose fluids, the low-energy excitations in the SF phase are phonons.
Within Bogoliubov theory,[87] these quasiparticles are described by a creation operator
ψ†k = ukb

†
k + vkb−k, and they have been observed experimentally in ultracold atom

systems.[88] As some of our results can be understood in terms of Bogoliubov theory,
let us state some key results for the Bose-Hubbard model. The coefficients of the
coherent superpositions of particle and hole excitations are given by[89]

|uk|2 =
K(k) + n0U + ωk

2ωk
,

|vk|2 =
K(k) + n0U − ωk

2ωk
= |uk|2 − 1 ,

(4.9)

with excitation energy

ωk =
√
K(k)(2n0U +K(k)) , (4.10)

K(k) = 4t sin2(k/2) .

Here n0 is the condensate fraction, equal to n0 = (µ+ t)/U in the simple Bogoliubov
approach at T = 0.[57] For small k ≈ 0, we have a linear dispersion ωk ≈ ±

√
2n0tUk,

and both |uk| and |vk| are nonzero. For large k ≈ π, the energy dispersion is ±(−ck2 +
2
√

4t2 + 2n0Ut) and thus free particle like. If we assume t� U , which is the parameter
region where Bogoliubov theory is valid, then |uk|2 ≈ 1 and |vk|2 ≈ 0 for k � 0, i.e.
only one excitation branch is populated at large momenta. This also holds true for
the parameters studied numerically in this work. We further compare to the higher
order approximation proposed in Ref. [89]. For the Bose-Hubbard model, the latter
yields the same equations for |uk|2, |vk|2 and ωk, but n0 is determined self-consistently,
allowing for depletion effects.

In the case of free bosons at T = 0, all particles condense in the same k = 0
state. However, finite temperature and/or interactions cause a certain fraction of these
particles to occupy states of higher energy. Indeed, both for U → 0 (noninteracting
bosons) and n0 → 0 (high temperature limit) we have |uk|2 = 1, |vk|2 = 0. Moreover,
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with decreasing U or n0, |vk|2 approaches zero most quickly at large k since in this case
K(k) � n0U so that ωk ≈ K(k), canceling the term −ωk in the expression for |vk|2.
This will explain the temperature evolution of the single-particle spectrum shown in
Sec. 4.5.

4.5.1 Bose-Hubbard model

Despite the extensive literature on this model, there are few nonperturbative results
available for the spectra, as mentioned in Sec. 4.2. Therefore, we investigate the single-
boson spectral function A(k, ω) and the dynamic structure factor S(k, ω), with results
shown in Figs. 4.2 and 4.4.

4.5.1.1 Single-particle spectrum

Menotti and Trivedi reviewed previous work on the single-particle spectrum, and pre-
sented results from a random phase approximation.[57] Their main findings are as
follows. For large t/U , a weakly interacting SF exists, and the spectrum consists of the
usual two gapless phonon modes which exhaust the sum rule for A(k, ω). Reducing
t/U , two additional gapped modes appear at small k whose spectral weight increases
upon approaching the quantum phase transition. At the transition, one of the phonon
modes evolves into the particle or hole mode (depending on which of the gaps Eg,p,
Eg,h is smaller), whereas one of the gapped modes in the SF becomes a gapped mode in
the MI. Menotti and Trivedi[57] argued that the appearance of gapped modes and the
redistribution of spectral weight from coherent phonon modes to incoherent gapped
modes indicate the strongly correlated nature of the SF state near the transition. Let
us point out that particle and hole dispersions in the MI have been calculated by several
authors before, [57, 47, 56, 90, 91, 53, 46, 51, 92, 52] whereas the full spectral function
of the MI (which also reveals the spectral weight and the width of the excitations) was
only shown in Ref. [52, 57].

Our numerical results for the single-particle spectral function A(k, ω) are shown
in Fig. 4.2. The four different values of the ratio t/U cover the range in which the
generic MI-SF transition takes place. According to Fig. 4.1(a), for the chosen value
of µ/U = 0.5 the transition occurs at t/U ≈ 0.14. In each panel we also report
the total density n to three decimal places, although our simulations provide much
higher accuracy. The MI [(a) and (b)] exhibits the familiar gapped particle and hole
bands.[47] The additional particles exhibit a free-particle dispersion since the energy
penalty for double occupation is the same at every site. In particular, we see in
Fig. 4.2(a), (b) that the particle band width is 8t (the factor of two arising from the
fact that particle hopping involves a doubly occupied site), whereas the hole bandwidth
is 4t. The Mott gap decreases with increasing t and a symmetry of particle and hole
bands emerges.[38, 58, 54] In addition to our QMC results we plot the mean-field
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Figure 4.2: (color online) Single-boson spectral function A(k, ω) of the 1D Bose-Hubbard model, for
different hoppings t (and total density n), corresponding to (a) the MI phase, (b) just below the MI-SF
transition, (c) just above the transition, and (d) the SF phase. Here µ/U = 0.5, L = 64 and βU = 3L.
Here and in subsequent spectra, the symbols and errorbars indicate the maxima of the peaks and the
associated errors obtained by the maximum entropy method. As discussed in Sec. 4.5.1.2, features
with very small spectral weight are difficult to determine accurately. The solid red lines in (a) are
mean field results.[90] The solid lines in (c) and (d) are the Bogoliubov results, while the dashed lines
are a fourth order approximation (see text).[89]
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Figure 4.3: (color online) Quasiparticle weights uk and vk of the gapless modes at t/U = 0.2. The
symbols are integrated intensities from QMC and maximum entropy, the lines are the predictions from
Bogoliubov-theory. The inset shows data at t/U = 0.14. Again, µ = 0.5, L = 64 and β = 3L.

dispersion [90] in Fig. 4.2(a). For larger t/U = 0.13, mean-field theory already predicts
a superfluid, although the critical hopping in 1D is tc/U ≈ 0.14.

In the SF phase [Fig. 4.2(c),(d)], we obtain the expected Goldstone modes with
linear dispersion at small k. Additionally, we see two gapped signals which we relate
to the gapped modes discussed by other authors.[51, 53, 57] Whereas the negative-
energy gapped mode is clearly visible in Fig. 4.2(c) just above tc, the gapped modes
have almost disappeared in Fig. 4.2(d). Since we approach the phase transition above
the lobe tip (µ/U = 0.5) the particle band becomes the gapless mode and carries
more spectral weight, while the gapped hole band evolves into a gapped mode in the
SF. This agrees well with the findings of Menotti and Trivedi.[57] In accordance with
Bogoliubov theory, the excitations in the SF phase are free-particle like for large k.
The bandwidths of the excitations both in the MI and the SF phase scale roughly
linearly with t.

In Figs. 4.2(c) and (d) we also show results for the phonon dispersion ±ωk (without
taking into account the weights |uk|, |vk|) from Bogoliubov theory as well as the higher-
order approximation of Ref. [89]. Whereas the simple Bogoliubov approach (neglecting
depletion of the condensate) agrees quite well with our data despite the rather small
value of t/U , we do not find the higher order approach to be systematically better.
In particular, at large k, the phonon bandwidth is noticeably underestimated, which
may be a result of an overestimate of depletion effects (these are most visible at large
k). The agreement with Bogoliubov theory at small k coincides with the findings of
Menotti and Trivedi.[57] Rey et al. [89] found the higher order approximation to be
consistent with numerical results for other observables but do not show the spectra seen
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in Fig. 4.2. Note that these authors consider larger particle densities n ≥ 5 where the
Bogoliubov-type approximations are more reliable. Finally, we tried to use our QMC
results for the superfluid fraction for n0 in the expressions obtained from Bogoliubov
theory, but the results are worse than for n0 = n.

The spectral weight of the excitations decreases with increasing k in all spectra
of Fig. 4.2, although this is more pronounced in the SF phase than in the MI. In
Fig. 4.3 we show the quasiparticle weights of the massless modes in the SF phase,
obtained by integrating over the quasiparticles peaks in the spectra, and compare
them to Bogoliubov theory (Eqs. 4.9 and 4.10). We verified that the QMC spectra
satisfy the sum rule. The spectral weight of the lower branch decreases more quickly,
consistent with the Bogoliubov picture. However, Bogoliubov theory overestimates the
quasiparticle weights, especially at small k. Besides, there is a significant broadening
of the peaks on approaching the zone boundary. At strong coupling close to the phase
transition (inset of Fig. 4.3), the quasiparticle weight of the lower branch decays much
more quickly than Bogoliubov theory would predict.

Sound velocity. The sound velocity vs = ∂ωk
∂k |k→0 of the phonon excitations in the

SF phase was calculated for the Bose-Hubbard model by Menotti and Trivedi using
a random phase approximation.[57] They concluded that vs vanishes at the generic
transition, but remains nonzero when crossing the multicritical point.[57, 53] In their
results, there is a very sharp downturn of vs toward zero close to tc. We are not aware
of any calculations of vs for the polariton model.

From our QMC simulations, we can determine vs from linear fits to the spectrum.
Apart from the limited accuracy of the maximum entropy inversion, this works quite
well away from tc. In agreement with Bogoliubov theory, we find for the Bose-Hubbard
model a linear dependence vs ∝ |t− tc| and good agreement of results for L = 32 and
64.

Determining the behavior of vs as t→ tc is more difficult for two reasons. First, the
phonon spectrum becomes nonlinear due to finite-temperature effects (see discussion
below), rendering linear fits ill-defined. Second, the position of the phase transition
changes with system size, so that no reliable finite-size scaling of vs can be carried out.
The situation is similar for the polariton model, and we therefore do not show results
for vs here, leaving this as an interesting issue for future work.

4.5.1.2 Dynamic structure factor

The single-particle spectral function provides information about the energy and life-
time of particles or holes added to the interacting ground state. In contrast, the
dynamic structure factor—corresponding to the imaginary part of the dressed particle-
hole propagator—yields insight into the density fluctuations in the ground state. In
general the two quantities do not exhibit the same features. However, for broken U(1)
gauge symmetry in the SF phase, they are both dominated by the same single-particle
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Figure 4.4: (color online) Dynamic structure factor S(k, ω) of the Bose-Hubbard model for the same
parameters as in Fig. 4.2. Panel (d) includes the same analytical approximations as Fig. 4.2(d).
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excitations (phonons).[60] We find this statement to hold in 1D even though no sym-
metry breaking occurs.

The density operator in the Bose-Hubbard model is ρ†k =
∑

l e
−ikln̂l. For k = 0,

we have ρ†k =
∑

l n̂l, and S(k, ω) has a trivial contribution at ω = 0 which we dismiss
by considering ρ̃†k =

∑
l e
−ikl(n̂l−〈n̂l〉). The above-mentioned relation to particle-hole

excitations becomes evident by rewriting the density operator as ρ†k =
∑

q b
†
q+kbq.

We show results for S(k, ω) in Fig. 4.4. According to Huber et al.,[53] S(k, ω) in the
MI phase should exhibit a continuum of particle-hole excitations, starting at ω = Eg

due to the Mott gap in the single-particle spectrum (see Fig. 4.2). For the parameters
in Fig. 4.4(a), Eg/U ≈ 0.7. The dispersion of the particle and hole bands is very weak,
Note that we find no agreement with the two single-particle excitations Ep

g + εh(k),
Eh

g +εp(k) discussed by Huber et al. This may be a result of their mean-field treatment
of the two-dimensional case. Our results do agree qualitatively with exact numerical
results on small clusters.[49]

For larger t/U , the Mott state contains nontrivial density fluctuations, and the upper
band in S(k, ω) acquires some k dependence. The energy of the excitations in S(k, ω)
[following

∑
q{εh(q) + εp(k − q)}] [53] generally increases with increasing k. This is

obvious from the momentum dependence of the particle and hole bands in A(k, ω), and
also agrees with the expectation that long-wavelength density fluctuations in a Mott
state require less energy than fluctuations with short periods in real space.

For t . tc in Fig. 4.4(b), we find a low-energy mode with nonlinear dispersion, which
we interpret as a precursor of the linear excitations of the SF phase [see panel (d)].
Even for t & tc [Fig. 4.4(c)], the gapless low-energy mode in our numerical results
is not linear. A linear spectrum is a result of the condensation of bosons in the SF
phase, but is not expected in the normal phase. Since our simulations are done at
finite temperature, and because the phase coherence length is small close to tc, we can
understand the absence of a clear, linear signature in Fig. 4.4(c). Going to larger tc, we
indeed see linear excitations near k = 0 [Fig. 4.4(d)]. Similar effects are expected for
the single-particle excitations, but are difficult to see on the scale of Fig. 4.2. Coming
back to Fig. 4.4(c), away from k = 0, we find a free-particle like contribution, similar
to the case of the MI. This excitation carries negligible spectral weight near k = 0.

Apart from finite-temperature effects, these features are qualitatively similar to the
excitations discussed by Huber et al.,[53] namely a gapless sound mode (related to
phase and density modulations) dominant at small k, and a massive mode (corre-
sponding to exchange between condensate and noncondensate at fixed density) acquir-
ing spectral weight at k > 0. Additionally, we see in Fig. 4.4(c) the (weak) signature
of a gapped mode at small k, the nature of which we cannot determine from our
present simulations. For t/U = 0.2 [Fig. 4.4(d)] the excitation “band” in S(k, ω) fol-
lows closely the Bogoliubov mode, in accordance with the discussion at the beginning
of this section.
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At this point, a comment concerning the accuracy of the spectra obtained from the
maximum entropy inversion is in order. The spectral weight of the features visible
in density plots such as Fig. 4.4(d) varies over orders of magnitude. Some very weak
signals, such as the group of points located at around k = π/2 below the main exci-
tation band (with a weight that is a factor 10000 smaller than that of the dominant
features), are expected to be artifacts. We shall see below that in the polariton model,
there actually exist real excitations with very small spectral weight which are easy to
miss in the maximum entropy inversion. To reliably study such excitations, analytical
approaches (if available) are clearly superior.[59]

Our findings for the dynamic structure factor are consistent with previous numerical
results on small systems (L = 10, 20).[50, 49] We can confirm the broadening of the
excitations with increasing k in the SF phase,[50] related to two-particle continua.[53]
However, the maximum entropy method is not capable of resolving fine structures as
(generically) seen in exact diagonalization results for small clusters.[49]

4.5.2 Polariton model

For the polariton model, the only published results on dynamic properties are for the
single-particle spectrum of the MI phase at zero temperature.[58, 59] As pointed out
before, the nature of the conserved particles in the polariton model is determined by
the detuning. We start by discussing the case ∆ = 0 for which the polaritonic character
of the excitations is most pronounced. This can readily be seen from Eq. (4.8), where
|np, ↓〉 and |np − 1, ↑〉 contribute with equal weight.

4.5.2.1 Single-particle spectrum

In Fig. 4.5 we show our QMC results for the single-photon spectral function. As for the
Bose-Hubbard model, the values of the ratio t/g range from deep in the Mott phase
across the generic transition well into the SF phase. According to a finite size scaling
analysis for µ/g = 0.4, the phase transition occurs at tc/g = 0.0626(1) (see Fig. 4.14),
in agreement with Fig. 4.1(b). Hence panels (a) and (b) are for the MI regime, whereas
(c) and (d) are for the SF phase.

The results in the MI shown in Fig. 4.5(a), (b) agree well with previous numerical
work.[58] Similar to the Bose-Hubbard model, there exist particle and hole bands,
separated by the Mott gap. It is important to stress that although we add bare
photons to the system, the particle and hole excitations reflect the properties of the
polaritons in the system. Whereas the ratio of particle and hole bandwidths is two
to one in the Bose-Hubbard model, it depends on the character of the quasiparticles
(polaritons) in the polariton model and varies with detuning.[58] With increasing t/g,
the gap closes and the bandwidths of excitations increase (effective masses decrease).

Recent analytical work revealed the existence of so-called upper polariton modes at
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Figure 4.5: Single-photon spectral function Aph(k, ω) of the 1D polariton model at µ/g = 0.4 for
different hoppings t, corresponding to (a) deep in the MI, (b) just below the MI-SF transition, (c) just
above the transition, and (d) in the SF phase. Here βg = 3L and L = 64. With increasing t, the
density plots are more and more “overexposed” to see less dominant features.
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Figure 4.6: Single-photon spectral function in the Mott phase for the same parameters as in Fig. 4.5,
showing additional excitations at higher energies.

higher energies, which represent an important difference between the Bose-Hubbard
model and the polariton model.[59] For the Mott lobe with np = 1, only one such
(particle) band exists, corresponding (for small enough t/g) to a transition between
the ground state |np = 1,−〉 and the state |np = 2,+〉 (see Eq. (4.8)). The weight of
this high-energy excitation is very small compared to the dominant particle and hole
modes discussed above (0.04 as compared to 1.46 for the k = 0 atomic-limit results
in Ref. [59]); with increasing t/g the weight difference becomes even larger.[59] The
energy splitting between the − and + branches of eigenstates increases further for
detuning ∆ 6= 0 (Fig. 2 in Ref. [33]).

The upper polariton mode is not visible in Figs. 4.5(a) or (b). Excitations with
small spectral weight are notoriously difficult to see using QMC in combination with
maximum entropy. In the present case, this is aggravated by the fact that the resolu-
tion of maximum entropy decreases at high energy. Nevertheless, we see a signature
of the upper polariton band in Fig. 4.6, and the latter is also present (but not shown)
in the high-temperature data of Fig. 4.12(a); high-energy features are easier to re-
solve in QMC/maximum entropy at higher temperatures. From the eigenvalues of the
states (4.8) we can determine the excitation energy of the upper mode in the atomic
limit as w+

p /g = −(µ− ω0)/g+ (
√

2 + 1) ≈ 3 for the parameters of Fig. 4.6, in reason-
able agreement with our results in Fig. 4.6(a) given the ill-conditioned nature of the
problem under consideration. Note that the upper polariton mode can be seen even
close to the phase transition in Fig. 4.6(b). The weight of the upper mode in Fig. 4.6 is
about a factor of 100 smaller than that of the conventional particle and hole excitations.
Although the upper polariton mode exists also in other results for the single-particle
spectrum in the Mott phase (Figs. 4.8, 4.12 and 4.13), we focus on the low-energy con-
ventional modes with large spectral weight. The latter can be determined accurately
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Figure 4.7: (color online) Quasiparticle weights uk and vk of the gapless modes of the polariton
model, similar to Fig. 4.3.

from our simulations, and will be the dominant feature in experiments.
Figures 4.5(c) and (d) contain the first spectra of the polariton model in the SF

phase. There is a clear signature of the gapless phonon modes starting at k = ω = 0,
with linear dispersion at small k. In the SF phase but close to the transition, we see
an additional gapped mode at ω < 0 [Fig. 4.5(c)]. Our results at these and at further
couplings t/g (and t/U) suggest that these gapped modes disappear more quickly with
increasing t/g than for the Bose-Hubbard model, which can be explained in terms of
the photonic SF expected for the present parameters (see below).[63] Note that a simple
Bogoliubov type theory for the polariton model does not exist, due to the composite
nature of polariton excitations.

Figure 4.7 shows the quasiparticle weights. The general shapes resemble the Bose-
Hubbard model case (Fig. 4.3), but the lower branch decays very quickly in the po-
lariton model even at t/g = 0.15 quite far from the phase transition. This may be
attributed to the fact that the energy cost for particle and hole excitations is different
due to the dependence of Ueff on np. Again, most of the spectral weight in the SF
phase is found at small k.

Fixed density. In Fig. 4.8 we show the single-photon spectrum across the fixed
density transition (np = 1), obtained by selecting configurations only at that density.
In Ref. [71], the critical hopping was determined as tc/g = 0.198 [cf Fig. 4.1(b)].
The spectra in both the MI and the SF look very similar to those across the generic
transition shown above. This may be different very close to the multicritical point, but
this regime is most demanding numerically if the results are to be used in a maximum
entropy inversion.

From the spectra obtained at constant density in the MI, we can estimate the effective
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Figure 4.8: Single-photon spectrum Aph(k, ω) of the polariton model along the line np = 1 crossing
the Kosterlitz-Thouless transition. Here L = 64 and βg = 3L.
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Figure 4.9: (color online) Effective particle (m+) and hole masses (m−) along the line np = 1, as

obtained from fits to the bands in Aph(k, ω) near k = 0.
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Figure 4.10: Polariton dynamic structure factor S(k, ω) for the same parameters as in Fig. 4.5. The
insets show an extrapolation of the Mott gap at small k to L→∞.

particle and hole masses by fitting a quadratic dispersion to the bands in the vicinity
of k = 0. In the Bose-Hubbard model, there is an emergent particle-hole symmetry
on approaching the lobe tip,[38, 54] and similar behavior is suggested by the evolution
of the particle and hole bands with increasing t/g also in the polariton model. For
fixed polariton density, the two masses approach each other and vanish at the phase
transition. This has been demonstrated in 2D based on a strong-coupling approach.[59]
In the region not too close to the phase transition, where stable fits can be obtained,
Fig. 4.9 confirms this observation also in 1D.

4.5.2.2 Dynamic structure factor

The evolution of the polariton dynamic structure factor S(k, ω) across the MI-SF
transition is shown in Fig. 4.10. Remarkably, the results look very similar to those for
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the Bose-Hubbard model. Close to the atomic limit [t/g = 0.01 in Fig. 4.10(a)] we
see a gapped, almost flat feature with energy ω ≈ 0.6g. A look at the corresponding
single-particle spectrum in Fig. 4.8(a) reveals that this value is identical to the Mott
gap. The almost flat particle and hole bands cause a very weak dispersion also for
the particle-hole excitations visible in S(k, ω). It is useful to remember that it is
the effective polariton-polariton repulsion mediated by the atom-photon coupling that
determines the Mott gap. For a single site and np = 1 (i.e., for the case of adding a
second polariton),

Ueff(1) = 2
√
g2 + (∆/2)2 −

√
2g2 + (∆/2)2 −∆/2 . (4.11)

For zero detuning (∆ = 0), Ueff(1)/g = 2−√2 ≈ 0.59.
As for the Bose-Hubbard model, the excitations in S(k, ω) acquire a noticeable

dispersion with increasing t/g, and the k = 0 gap closes. Figures 4.10(b) and (c)
are both close to the phase transition. An inspection of the k = 0 region shows a
weak linear mode with very small slope O(0.01), corresponding to the small superfluid
density existing in both L = 64 systems. The massive mode extends to k = 0 with a
tiny intensity (thus not visible in the figure). An extrapolation of the gap to L = ∞
(insets) shows that it scales to zero in Fig. 4.10(c), but stays finite at the smaller
hopping in Fig. 4.10(b). Indeed, a finite size scaling of the superfluid density (discussed
later) implies that Fig. 4.10(b) is just below the phase transition. In addition to finite
size effects, we again observe finite temperature effects in the form of deviations from
the expected linear spectrum close to tc (see discussion for the Bose-Hubbard model).
For even larger t/g, the spectrum exhibits a single linear mode at small k. Similar to
the spectral function, gapped modes seem to be suppressed quickly in the SF phase.

Clearly, the polariton dynamic structure factor S(k, ω) represents a useful probe
to distinguish between the MI and the SF phases. We have argued before that the
polariton MI has fluctuations in the photon and exciton density, whereas the polariton
density is pinned.

We now demonstrate that the exciton (atom) and photon structure factors, Sat(k, ω)
and Sph(k, ω), shown in Fig. 4.11, do not reflect this fact, and therefore cannot be used
to characterize the nature of the Mott state. To this end, it is important to notice that
the Jaynes-Cummings Hamiltonian has two branches of eigenstates |np,+〉 and |np,−〉
(the latter containing the ground state, see also Eq. (4.8)) with the same polariton
number but different energy.[37] In the atomic limit, the dynamic structure factor for
photons and excitons [Eq. (4.5)] is dominated by the contributions 〈np,−| ρ̂†k |np,−〉
(with ω = 0) and 〈np,+| ρ̂†k |np,−〉 (with energy ω = 2

√
ng2 + ∆2/4, equal to 2 in

Fig. 4.11). Any additional peaks at finite t/g have much smaller spectral weight and
cannot be accurately resolved by our method. However, since the matrix elements
of exciton and photon density operators for the combination 〈np,+| ρ̂†k |np,−〉 have
the same modulus but opposite sign, the dominant contributions to Sat(k, ω) and
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Figure 4.11: Dynamic structure factor for excitons (Sat) and photons (Sph) for the same parameters
as Fig. 4.10(a).

Sph(k, ω) cancel in the case of the polariton structure factor S(k, ω). The dispersionless
excitations near ω/g = 2 seen in Fig. 4.11 are therefore absent in S(k, ω), as confirmed
by our data. Hence, while the upper polariton modes in the single-particle spectrum
have small but finite weight, here their contribution is zero. Consequently, the polariton
dynamic structure factor closely resembles S(k, ω) of the Bose-Hubbard model.

4.5.2.3 Temperature effects

Experimental realizations of Bose-Hubbard models using cold atomic gases are usually
prepared very close to zero temperature (nK range). In contrast, due to the strong
matter-light coupling achievable in cavities, realizations of polariton models offer a
chance of operation at significantly higher temperatures. The critical temperature at
which the MI state starts to lose its characteristic integer density has been estimated
for the polariton model as T ∗/g ≈ 0.03.[58, 69] For feasible values of the coupling g, T ∗

falls into the mK range. Generally, Mott-like physics is expected as long as the Mott
gap is significantly larger than the thermal energy (and the number of particle-hole
excitations is small). The finite-temperature physics of the Bose-Hubbard model has
been analyzed by several groups.[83, 93, 94, 91] Here we consider the effect of low but
finite temperatures on the excitation spectra of the polariton model. This also provides
information about the sensitivity of the results to the (necessarily finite) value of β
used in our simulations.

The present method permits calculation of spectra also outside the MI, i.e., in the SF
and the normal phase. We have pointed out above that, strictly speaking, there is no
SF phase at T 6= 0 in 1D. Nevertheless, SF like properties can be seen for T sufficiently
small. The results in Fig. 4.12 underline the discussion of finite-temperature effects on
the dispersion in the SF near k = 0. The particle excitation is obviously not linear in
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in Figs. 4.5(a),(d).
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panels (b) and (d), for which the temperature is higher than in Fig. 4.5.
Results forAph(k, ω) are shown in Fig. 4.12. At finite but low temperature [Fig. 4.12(c,d)]

they still closely resemble the results at T ≈ 0 in Figs. 4.5(a) and (d). At high tem-
perature [Fig. 4.12(a,b)], we observe strong broadening of the particle band at all k,
and strongly suppressed spectral weight for hole excitations. Existing work for the
Bose-Hubbard model finds that at finite temperature additional multi-particle and
hole bands arise.[93] We see an additional excitation for βg = 4.4 and t/g = 0.01 at an
energy of ω/g ∼ 3.1. The weight of that excitation is about 50 times smaller than the
weight of the main peak with energy ω/g ∼ 0.2 and thus not shown in Fig. 4.12 (a).
This excitation is consistent with the upper polariton mode discussed above.

We note that a broadened “gapped” spectrum is compatible with a density that
deviates from the integer value characteristic of the MI, and this has to be kept in
mind for potential applications relying on integer density. The numerical results for
the total density are shown in each of the panels, demonstrating that despite the large
particle-hole gap the polariton density deviates significantly from the low-temperature
value np = 1 for the parameters of Fig. 4.12(a).

Some of the features observed in the SF phase can be explained by means of Bo-
goliubov theory for the Bose-Hubbard model. In particular, we have discussed above
that with increasing temperature (where the condensate fraction n0 → 0) the spectral
weight of the negative energy branch vanishes first at large k, in agreement with our
numerical results. In addition the broadened positive energy branch no longer has a
clear linear behavior at small k.

We would like to point out that not only finite temperature but also disorder is an
inevitable feature of experimental realizations of coupled cavity systems. Although
not studied here directly, it has been stated[69] that the effect of disorder (in the form
of local variations of the parameters ω0, g and t) has similar consequences as finite
temperature.

4.5.2.4 Detuning

The detuning between the cavity photon mode and the atomic level splitting is an
important parameter in the polariton model which is absent in the Bose-Hubbard
model. Its influence on the physics has been discussed before.[58, 61, 80] Detuning
can also be easily changed experimentally, motivating a calculation of the excitation
spectra for ∆ 6= 0. Our results are shown in Fig. 4.13.

The extent of the different phases, namely excitonic or polaritonic MI and photonic
or polaritonic SF in the phase diagram has been analyzed for a two-site system.[61]
The way to distinguish between the polaritonic SF and the photonic SF is to monitor
fluctuations in the exciton occupation number (pinned in the photonic SF but fluctu-
ating in the polaritonic SF). The conclusion has been that for t ≈ |∆| a polaritonic SF
exists only for ∆/g < −1 This would match with the conjectured photonic nature of
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Figure 4.13: Single-photon spectra with detuning ∆ = ε − ω0 for the excitonic case ∆/g = −2,
µ/g = −0.5 (a,b) and photonic case ∆/g = 2, µ/g = 0.64 (c,d), in the MI (a,b) and in the SF (c,d).
Here L = 64 and βg = 3L.
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the SF near the lobe tip in two dimensions.[80] However, it is not clear if these strict
values also hold for larger systems and the thermodynamic limit. Besides, the work
by Irish et al. [61] is exclusively concerned with the fixed density transition occurring
at t ≈ |∆|, whereas a polariton SF may exist also for t < |∆| if density fluctuations
are allowed (generic transition). The spectrum in Fig. 4.13(b) is for such a set of
parameters.

Again pertaining to the fixed density case, the MI state is supposed to be of excitonic
nature for ∆/g < −1, t < |∆|, and of polaritonic nature for |∆|/g < 1 and small enough
t/g respectively t/|∆|.[61] The former case is depicted in Fig. 4.13(a), whereas the latter
corresponds to the ∆ = 0 results reported in Fig. 4.5.

For ∆� g, photon excitations are always lower in energy, and the effective interac-
tion approaches zero. As a result, MI regions are very small or nonexistent, and the
photonic SF state is similar to that of the Bose-Hubbard model in the limit of large
t/U .[58]

Here we consider ∆/g = ±2 for comparison to previous calculations of the spectra
in the Mott phase.[58] (Note that the rotating wave approximation formally requires
|∆| � ε, ω0.[95]) These correspond to effective repulsions Ueff/g = 0.096 (for ∆/g = 2)
respectively Ueff/g = 2.096 (for ∆/g = −2), in excellent agreement with the width of
the np = 1 Mott lobes for the same parameters.[58]

Our results in Fig. 4.13 show that again the spectra are dominated by the generic
features of the MI and the SF. However, the detuning in the present case changes the
ratio of the bandwidths of particle and hole bands Wp/Wh in the Mott state.[58] While
for ∆ = 0, Wp/Wh ≈ 3, we find Wp/Wh ≈ 2 (similar to the result for the Bose-Hubbard
model) for ∆/g = 2 and Wp/Wh ≈ 7 for ∆/g = −2. The incoherent features observed
for ∆/g = −2 in Ref. [58] are not seen here. As mentioned before, the energy of the
upper polariton modes (not shown) increases for ∆ 6= 0.[33]

In the SF, we find the expected gapless excitations, as well as gapped modes in-
dicative of a correlated superfluid. Since for ∆/g = 2, Ueff is very small, the Mott
gap of the dispersive bands in Fig. 4.13(c) is also small (0.057g), but it is still larger
than the temperature scale in our simulation T/g = 0.005. We note that, within our
resolution, the positive energy spectrum in Fig. 4.13(d) looks gapless, but not clearly
linear. In this respect, the spectra for finite detuning resemble those obtained at high
temperatures. Apart from this issue and a scaling of energies (due to the dependence
of Ueff on ∆), the spectra obtained for ∆/g = −2 are very similar to those for ∆ = 0,
whereas those for ∆/g = 2 resemble closely the results for the Bose-Hubbard model.

4.5.2.5 Phase transition

To end with, we present a scaling analysis for the generic phase transition. As pointed
out by Fisher et al. [38] the scaling relation

ρs = L2−d−zρ̃(δL1/ν , β/Lz) (4.12)
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Figure 4.14: (color online) Finite size scaling for the generic transition in the polariton model at
µ/g = 0.4, testing the scaling hypothesis Eq. (4.12).

should hold for the superfluid density across the MI-SF transition. Here ν is the critical
exponent of the correlation length which is expected to diverge like ξ ∼ δ−ν , and z is
the dynamical critical exponent. The generic transition in the Bose-Hubbard model has
mean-field exponents z = 2 and v = 1/z = 1/2.[38, 96, 84, 55] Recent field theory[44]
and strong-coupling results[59] predict the same universality classes for the polariton
model, in conflict with numerical results in two dimensions which suggest the absence
of multicritical points.[80]

We test in 1D the scaling hypothesis Eq. (4.12) with z = 2 and the hyperscaling
relation z = 1/ν, along the line µ/g = 0.4 where the generic transition is expected [see
Fig. 4.1(b)].

To this end we keep the temperature constant at β = L2/10 and plot ρsL
d+z−2 over

(t− tc)L1/ν to obtain the universal function ρ̃ (Fig. 4.14). Defining a cost function in
the spirit of Ref. [97], allows us to evaluate the quality of the finite-size-scaling plot
quantitatively.

We find the minimum of our cost function at tc = 0.0626(1) and ν = 0.50(2) when
matching ρ̃ close to the phase transition [|(t− tc)L1/ν | < 1 in Fig. 4.14]. We note that
with the system sizes available, this result is not very stable. A fit in a larger region
of |(t − tc)L1/ν | provides a better data collapse overall (but worse close to the phase
transition), with ν ≈ 0.65 and very slightly smaller tc.

A similar scaling with z = 1 did not succeed, so that we conclude that the universality
class of the generic transition in the polariton model is the same as that in the Bose-
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Hubbard model, despite the composite nature of the quasiparticles. This is consistent
with recent field-theory and strong-coupling results.[44, 59]

An accurate scaling analysis for the fixed density transition through the lobe tip has
been found to require much larger system sizes and is therefore not shown. In the 1D
case considered, the shape of the lowest Mott lobe in 1D (see Fig. 4.1) suggests that
the similarity to the Bose-Hubbard model holds also in this respect, i.e. a Kosterlitz-
Thouless type phase transition.

4.6 Conclusions

We calculated the single-boson spectral function and the dynamic structure factor of
the Bose-Hubbard model, and for a recently proposed model of itinerant polaritons
in coupled-cavity arrays. These models undergo a quantum phase transition from a
Mott insulator to a superfluid state upon increasing the hopping integral of the bosons
respectively photons with respect to the interaction. Results in one dimension, within
and close to the Mott lobe with density one, have been obtained.

Despite the generally different nature of the conserved particles, the models exhibit
very similar spectral properties, including gapped particle and hole bands in the Mott
insulating phase, and Bogoliubov type excitations in the superfluid phase. Additional
excitations related to the second branch of upper polariton states exist in the single-
particle spectrum of the polariton model,[59] but cancel out in the dynamic structure
factor. In general, these features have high energy and very small spectral weight,
so that for practical purposes the excitation spectra are qualitatively similar to the
Bose-Hubbard model.

Correlation effects are particularly strong in the one dimensional case considered.
Our results in the superfluid phase represent the first unbiased nonperturbative spectra
for A(k, ω) in both models and for S(k, ω) in the polariton model (in both phases).
Good qualitative agreement with recent analytical work on the two-dimensional Bose-
Hubbard model was found, and we have compared our results in the superfluid phase
to Bogoliubov theory. The limiting cases of the Mott insulator close to the atomic
limit, as well as the weakly interacting superfluid are described quite well by analytical
approximations, whereas in the phase transition region, our nonperturbative results
show considerable deviation. Emerging particle-hole symmetry on approach of the
multicritical lobe tip has been demonstrated for the polariton model.

For the polariton model, we have also explored the influence of detuning and fi-
nite temperature on the spectral properties, and have presented a scaling analysis to
determine the universality class of the generic phase transition. Keeping in mind ex-
perimental realizations of coupled cavity arrays, interesting open issues for future work
include the excitation spectra in the two-dimensional case (and comparison to analyti-
cal results[59]), the behavior of the sound velocity across the phase transition (also for
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the Bose-Hubbard model) and disorder.
The present work further highlights the fact that the physics of strongly correlated

bosons as described by the Bose-Hubbard model may be observed in terms of optical
models that, if realized, would have some distinct experimental advantages and further
contain new degrees of freedom due to the mixed nature of the quasiparticles.
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5 Momentum resolved and temperature
dependent spectra of the
two-dimensional Bose–Hubbard model

This chapter is identical to the draft of a paper which is about to be submitted.

5.1 Abstract

In addition to the zero temperature phase transition from a superfluid phase to a Mott
insulating phase, the two dimensional Bose-Hubbard model exhibits a superfluid to
normal fluid phase transition at finite temperature (see Fig. 5.1). We perform precise
quantum Monte-Carlo calculations to investigate the spectral signatures associated
with these two transitions and compare our results whenever it is possible to analytical
and alternative numerical calculations. In particular, we evaluate the single-particle
spectral function and the dynamic structure factor. Both of them exhibit a gapped
spectrum in the Mott phase. The gap vanishes when increasing the temperature.
In superfluid phase we obtain linear and gapless Goldstone modes. For increasing
temperature the excitation at positive energy develops a quadratic behavior whereas
the mode with negative energy vanishes. Our results provide crucial information for
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Figure 5.1: Finite temperature phase diagramm from Ref. [54]. This is for n = 1, i.e. along the KT
phase transition line at T=0. SF stands for superfluid, NF for normal fluid, and MI for Mott insulator.
The black line is a guide to the eye. The red lines mark the parameter regions, in which we perform
most of the calculations.

Bragg spectroscopy experiments with ultracold atoms trapped in optical lattices, where
it became only recently possible to measure wave vector resolved spectral excitations.
Our numerical results might proof useful for interpreting the experimental data and
for characterizing the measured phases.

5.2 Introduction

Bose-Einstein condensates (BECs) mounted in optical lattices, which are formed by
interfering laser beams, allow to study the strongly correlated regime of interacting
bosons.[28, 2] As opposed to strongly correlated condensed matter systems the param-
eters of BECs in optical lattices can be tuned easily. That has been used for instance
to demonstrate the Mott insulator to superfluid phase transition experimentally.[1]

In recent experiments it was furthermore possible to study excitations in these sys-
tems, making also quantum dynamics directly accessible. [30, 3, 31, 4] In these ex-
periments Bragg spectroscopy has been applied to study basic excitations. Inelastic
scattering of photons allows to perturb the atoms with well defined momentum and
frequency. The high momentum and frequency resolution of this method makes a spec-
troscopic measurement of the excitations possible, which in turn allows to extract the
spectral properties of BECs trapped in optical lattices.[4]
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These systems can be modeled with the Bose–Hubbard Hamiltonian [28]

Ĥ = −t
∑
〈i,j〉

â†i âj +
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i, (5.1)

where â†i and are bosonic creation and annihilation operators on lattice site i, respec-
tively , t is the hopping amplitude, U the on-site interaction energy and µ determines
the average number of particles.

Already in the seminal paper on the Bose–Hubbard model, [38] it has been shown
that the model undergoes a phase transition from a Mott insulating phase to a su-
perfluid. Since then an extensive amount of work has been done to study this model.
Exemplary we want to mention that the phase diagram has been calculated very accu-
rately in one, two, and three dimensions. [54, 48, 47, 55] Spectral properties, containing
the one-particle spectral function and sometimes the dynamic structure factor as well,
of the two dimensional model have been investigated using various methods, includ-
ing mean field and random phase approximation (RPA) approaches, [98, 99, 100, 53]
strong coupling theory, [51] high order series expansion, [47] and the variational clus-
ter approach [101] Apart from that the oneparticle spectral function has been studied
in the one dimensional model using RPA variational cluster approach, [52, 102] The
dynamical structure factor has been investigated in Refs. [49, 103, 50, 6]

In this paper we calculate the dynamical properties of the Bose–Hubbard model in
two dimensions using unbiased QMC simulations. In particular we evaluate the one-
particle spectral function and the dynamical structure factor at various temperatures
and parameter configrations. With that we are able to unveil the phase transition
from Mott to superfluid phase and superfluid to normal fluid phase directly form
the spectral properties. Although some work has already been done to investigate the
spectral properties of the two-dimensional BH model, a comprehensive study containing
both phase transitions is still missing. As QMC is an exact simulation technique
with controllable errors our results can be used as well to check whether alternative
numerical and analytical calculations, which suffer from (sometimes uncontrollable)
approximations, lead to the right results also on the qualitative level. To this end
we compare our results, whenever it is possible, to alternative existing calculations.
Finally, since in experiments a heating of the BEC occurs due to the lattice field,
it remains important to know, whether normal fluid signatures are measured rather
than true superfluid ones. Our results on the spectral properties will provide estimates
about the necessary accuracy of Bragg spectroscopy experiments to distinguish these
two phases.

This paper is organized as follows. In Sec. 5.3 we specify the QMC algorithm used
to evaluate the dynamic properties of the Bose–Hubbard model. In addition, we state
the inverse problem which has to be solved in order to extract the one-particle spec-
tral function and the dynamic structure factor from the corresponding imaginary time



58
5 Momentum resolved and temperature dependent spectra of the

two-dimensional Bose–Hubbard model

(0, 0) (π, π) (π, 0) (0, 0)

k

−0.8

−0.4

0.0

0.4

0.8

ω
/U

t/U = 0.03
µ/U = 0.4

β U = 40

(a)

(0, 0) (π, π) (π, 0) (0, 0)

k

−0.8

−0.4

0.0

0.4

0.8

ω
/U

t/U = 0.03
µ/U = 0.4

β U = 5

(b)

0

5

10

15

20

25

Figure 5.2: Density plot of the spectral function A(k, ω) for t/U = 0.03 and µ/U = 0.4 at βU = 40,
left column, and βU = 5, right column, on the 32 × 32 lattice. The particle densities are 〈n〉 =
1.0000006(6) for βU = 40 and 〈n〉 = 0.9371(1) for βU = 5, respectively. The dashed lines are mean
field results and the solid lines are the results obtained from variational cluster approach. [101] The
black error bars mark the center of the peak as obtained from the maximum entropy method.

correlators measured in the QMC algorithm. Section 5.4 and 5.5 contain the main
results of this work. In particular, in Sec. 5.4 we investigate the spectral properties
of the two-dimensional Bose–Hubbard model in Mott phase, where we observe gapped
excitations. In addition, we study the stability of the gap with respect to temperature
which is crucial for experimental observations. Section 5.5 contains a detailed discus-
sion of the superfluid to normal fluid phase transition based on spectral signatures.
Finally, we summarize and conclude our findings in Sec. 5.6.

5.3 Method

One quantity of interest is the dynamic structure factor

S(k, ω) =
1
Z

∑
m,n

e−βEn | 〈m|ρ̂k|n〉 |2δ(ω − (ωn − ωm)). (5.2)

It is closely related to the excitations observed in Bragg-spectroscopy as well as in
lattice modulation experiments. We use the so called directed loop method,[67] a gen-
eralization of the loop algorithm,[21, 73] which is an unbiased QMC technique, that
allows—due to very low autocorrelations—to simulate large systems at low tempera-
tures. We make use of the ALPS library [74, 75] and of the ALPS applications,[76]
which use the stochastic series expansion (SSE) representation [15] of the partition
sum.

To measure imaginary time dependent correlation functions 〈ni(τ)nj(0)〉 and 〈ai(τ)a†j(0)〉
efficiently, we implement the stochastic mapping from the SSE representation to a con-
tinuous time formulation. [77] Finally we obtain the dynamical structure factor, which
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Figure 5.3: Dynamical structure factor S(k, ω) for the same parameters as in Fig. 5.2. The
inset shows the static structure factor S(k) directly measured in QMC (red dots) and fitted to
k + c

P
d=x,y sin(kd/2)2 (black line).
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Figure 5.4: Dynamical structure factor S(M,ω) evaluated at the point M = (π, π), left column, cor-
responding weight of the high and low energy peaks, midddle column, and static structure factor,right
column, for different inverse temperatures β. t/U = 0.03, µ/U = 0.4, and L× L = 32× 32.

is the Fourier transformation of the density–density correlation function, by inverting

〈n̂k(τ)n̂−k(0)〉 =
∫
dωS(k, ω)

exp(−τω)
exp(ωβ)− 1

(5.3)

using of the aximum entropy method. We furthermore calculate the spectral function
A(k, ω), by inverting an equation similar to Eq. 5.3, involving 〈ai(τ)a†j(0)〉 .

A more detailed explanation of the methods used can be found in Ref. [6].

5.4 Mott phase

In the Mott insulating phase the one-particle spectral function as well as the dynamical
structure factor exhibit a gapped spectrum with the gap ∆ approaching U as t/U → 0.
Furthermore we compare our QMC results to zero-temperature results obtained from a
mean field calculation and the variational cluster approach [101] The latter fits nearly
exactly to our calculations at βU = 40.
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We want to point out, that at zero temperature and deep in the Mott phase already
mean field calculations lead to reasonable results, which only slightly underestimate
the size of the gap. This can be understood, since the size of the gap in the Mott
phase can be directly extracted from the phase diagram. For a given t/U , the gap
∆ is simply given by the width of the Mott lobe (in µ direction). Since mean field
underestimates the size of the Mott lobe it is obvious that also the gap calculated in
mean field is always smaller than the exact one. The discrepancy becomes larger when
approaching the tip of the Mott lobe.

At higher temperatures, see Fig. 5.2 (b), the maximum of the particle– and hole–
peaks move a bit further apart. However, since the excitations become broader, it
is easier to create particles or holes leading overall to a smaller gap. Additionally
to the two branches shown in the figure we observe nearly dispersionless high energy
excitations with very small spectral weight,[102] which is about a factor 100 smaller
than the weight of the low-energy particle or hole excitations.

We evaluate the dynamical structure factor S(k, ω) at identical parameters as the
single-particle spectral functionA(k, ω), see Fig. 5.3. At small temperatures (Fig. 5.3 (a))
the dynamical structure factor S(k, ω) shows a nearly dispersionless feature at energy
ω ∼ U . This has been observed in [53] and in the one dimensional case in [103],
where it has further been that the static structure factor behaves like

S(k) ∝ sin(k/2)2, (5.4)

where S(k) =
∫∞

0 S(k, ω)dω = 〈ρkρ−k〉 . In the twodimensional case we observe the
same behavior, see insets of Fig. 5.3, show the spectral weight S(k) in the Mott
insulating phase for the spectrum plotted in the main panel. We calculated the static
structure factor directly in QMC, but we also integrated over S(k, ω) to cross check.
Both approaches yield compareable results within errorbars (data not shown).

For larger temperature an additional low energy excitation emerges, as can be seen
in Fig. 5.3 (b). The behavior of the dynamical structure factor S(k, ω) can be un-
derstood by simple perturbative arguments.[103, 104] For small hopping strength the
ground state is occupied by n particles per lattice site, where n corresponds to the inte-
ger particle density fixed by the chemical potential. The first excited states are states
where a particle is removed from one site and added to another site with respect to the
ground state. We term these states 1ph-states. The energy of the 1ph-states is about U
higher than the energy of the ground state. At zero temperature only excitations from
the ground to the 1ph-states are probed, leading to spectral weight at ω ≈ U , which is
distributed according to Eq. (5.4). At nonzero temperature, the weight stays approxi-
mately constant, see Eq. (5.2). Yet, in addition a different kind of excitation between
two 1ph-states becomes possible. The energy difference of these states is only of the
order the hopping strength t and their spectral weight is proportional to exp[−βU ],
see Eq. (5.2). In summary, the spectral weight at low energies becomes visible only at
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large enough temperatures whereas the weight of the high energy excitation remains
approximately constant. This behavior can be seen in Fig. 5.4, where S(k, ω) (a), and
the weight of the high and low energy peaks (b), are shown for various temperatures
at k = (π, π). In addition, the temperature dependence of the static structure factor
is shown in the Fig. 5.4 (c).

5.5 Superfluid to normal transition

In this section we display the spectral signatures associated with the crossover from
superfluid to normal fluid phase. Please note that the investigated systems are of finite
size. Thus, we do not expect to see a sharp phase transition at some specific value of
temperature.

5.5.1 One-particle spectral function

At zero temperature, both the one-particle spectral function A(k, ω) and the dynamic
structure factor S(k, ω) exhibit the characteristic, linear Goldstone modes in the su-
perfluid phase.

Deep in the superfluid (large t/U) and at zero temperature, Bogoliubov theory is
expected to be valid, which predicts excitations at energies

EBk = ±
√
Kk(2nU +Kk) (5.5)

with

Kk = 4 t (sin(kx/2)2 + sin(ky/2)2).

There are various more involved calculations, investigating the spectrum of the two-
dimensional Bose Hubbard model in the superfluid phase at zero temperature. An
early mean field calculation finds linear Goldstone modes. [98] In a variational mean
field calculation, [53] in a work using a strong coupling approach, [51] and in RPA
calculations [100, 57] coexisting linear and gaped modes have been found. But both
in RPA and in strong coupling theory, for a given value of momentum k, only two of
the branches have significant weight. At positive ω/U the Goldstone mode is much
stronger around k = (0, 0), while in the center of the Brillouin zone the gapped mode
is much more significant. For ω < 0 only the Goldstone mode has relevant weight.
Furthermore in all of these approximations most of the spectral weight is to be found
at momentum k = (0, 0).

The density plot in Fig. 5.5 shows our results lattice of size 32 × 32 and inverse
temperature β U = 40.

The temperature is low enough to observe superfluid rather than normal fluid be-
havior. In addition we plotted the predictions from Bogoliubov theory, from RPA, and
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Figure 5.5: Density plot of the spectral function A(k, ω) for t/U = 0.07 and µ/U = 0.4 at βU = 40
and L×L = 32× 32. The density is 〈n〉 = 1.03072(9). The solid lines are Bogoliubov modes Eq. C.1.
The dashed lines show coupling results (Eq. 19 and 20 in Ref. [51]), and the dash dotted lines are from
a RPA.
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Figure 5.6: Spectral weigths of the modes shown in Fig. 5.5 and a comparison to RPA.

from strong coupling theory. Our data shows two instead of the four predicted modes.
However, it is still consistent with the four mode theory, since our data exhibits the
peak maximum wherever large spectral weight is expected form RPA and strong cou-
pling theory. In the ω < 0 region we only see the linear Goldstone mode. Since the
gapped mode is, as mentioned before, predicted to be orders of magnitude smaller in
intensity than the linear mode, we do not expect to be able to reconstruct the gapped
mode from our Green’s functions. What seems to be one mode in the region of ω > 0
might as well be from two distinct modes, that we are unable to distinguish due to the
broadness of the peak.

Let us now look into the temperature effects on the spectral function A(k, ω). By
increasing the temperature T , apart from the shift of spectral weight to larger momenta,
we only observe significant changes at small k. The upper linear Goldstone mode
becomes quadratic, which is the signature of free bosons, while no weight remains in
the branch with ω < 0.

The crossover from linear to quadratic dispersion, i.e., from superfluid to normal
fluid regime, is shown in Fig. 5.7. The superfluid stiffness ρs for the three cases are
calculated according to

ρs =
1
2t
〈W 2〉L2−d

d β
, (5.6)

with 〈W 2〉 the winding number squared and dimension d = 2. For very small temper-
atures (Fig. 5.7 (a)) we observe the linear Goldstone modes. Fig. 5.7 (b) shows the
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Figure 5.7: Spectral function A(k, ω) for t/U = 0.1 and µ/U = 0.4 β = 20 (a), in the crossover region
β = 5 (b), and in the normal fluid region β = 3 (c). L×L = 32×32. The insets show the maxima of the
peaks. The solid line is the excitation of a free boson, the dashed lines are the Bogoliubov results, and
the dash dotted lines are RPA spectra. The superfluid densities are ρs = 0.790(2), ρs = 0.5343(7), and
ρs = 2(2) 10−6 from left to right, respectively. The associated particle densities are 〈n〉 = 1.12593(2),
〈n〉 = 1.10765(3) and 〈n〉 = 1.03859(9), respectively. The weights of the Goldstone peak from MaxEnt
at k = 0 i.e.

R
A(0, ω)dω are 1400, 728 and 25.4 from left to right. The approximate maximum values

at k = 0 are 35000,3400 and 90, respectively. The same y-scale is used for all of the plots.
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spectral weight evaluated in the crossover regime. Interestingly, in this regime already
a quadratic dispersion appears , while there is still some very small weight in the ω < 0
region. For larger temperatures (Fig. 5.7 (c)) we observe a quadratic dispersion for
ω > 0 and no spectral weight located at ω < 0 as expected from normal fluid particles.

5.5.2 Dynamic structure factor

The situation is very similar in the case of the dynamic structure factor S(k, ω). In
the superfluid phase a linear spectrum can be observed Fig. 5.8, that can be explained
at least qualitatively in terms of Bogoliubov theory (red solid line in Fig. 5.8). We
plotted Eq. C.1 (solid and dashed lines) along with our data. When we use the actual
parameters (t/U = 0.1 and n = 1), the agreement is only poor. However, as soon as a
standard least squares fit is applied to find renormalized parameters tb/U and/or nb,
we can always describe our data within Eq. C.1. This has to be kept in mind when
e.g. experimental data is fitted to Bogoliubov theory to obtain the parameters of the
model. Since Bogolibov theory is quantitatively wrong close to the phase transition,
one should not determine parameters through a simple fit to Eq. C.1.

At high temperature this linear spectrum of the superfluid becomes slightly quadratic
for small k , see Fig. 5.8 (b). Apart from that we observe a broadening of the excitation
with increasing temperature. This broadening is most pronounced in the center of the
Brillouin zone. Yet, the position of the peak maximum stays nearly constant.

We thus plotted in Fig. 5.9 (a) the dynamic structure factor S(k, ω) for k = (π, π) as
a function of temperature. One can clearly see that in the superfluid region (βU > 5)
the width of the peaks stays constant. This is in contrast to higher temperatures,
where a dramatic increase of the width can be observed. In addition, we show the
static structure factor in Fig. 5.9 (b). At low temperatures the weight of the static
structure factor evaluated in superfluid phase is much larger than in the Mott phase,
compare with Fig. 5.4 (c).

5.6 Conclusions

We calculated dynamic properties of the two-dimensional Bose–Hubbard model by
means of quantum Monte-Carlo. In particular, we evaluate the single-particle spectral
function A(k, ω) and the dynamic structure factor S(k, ω) at various temperatures and
parameter configurations. As a technical point, we used the stochastic series expansion
representation to evaluate the imaginary time correlators. The analytic continuation
from imaginary time correlators to the spectral functions has been done with the
maximum entropy method.

From the spectral properties we are able to characterize the three different phases
present in the two-dimensional Bose–Hubbard model, which are the Mott insulating
phase, superfluid phase and normal fluid phase. Strictly speaking the Mott insulating
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Figure 5.9: Dynamical structure factor S(k, ω) at momentum k = (π, π), top panel, and static
structure factor, botom panel, evaluated at different inverse temperatures β. L × L = 32 × 32,
t/U = 0.1, and µ/U = 0.4. The inset in the top panel shows the full width at half maximum (FWHM)
of the peaks (red circles) and the superfluid stiffness ρs (black diamonds).

phase exists only at zero temperature. In view of spectral properties its main feature is
that both the single-particle spectral function and the dynamic structure factor exhibit
a gap roughly of size U . With our simulations we were able to show that the gap is
still present at small but finite temperatures, which allows for an experimental obser-
vation of the Mott phase by investigating the spectral signatures. When increasing the
temperature a gapless single-particle spectrum is observed and additional low energy
excitations emerge in the structure factor.

At low temperatures yet for large hopping strength t/U we obtain a spectrum con-
taining gapless and linear Goldstone modes, which indicate the superfluid phase. For
increasing temperature the linear mode at positive energy becomes quadratic whereas
the negative energy modes vanishe. This signales the crossover to the normal fluid
phase.

Our results provide crucial information for experiments with ultracold gases of atoms
trapped in optical lattices, since it became only recently possible to measure directly
wave vector resolved dynamic properties in such systems. Due to the unprecedent
control in experiments with ultracold gases of atoms it might become possible in near
future to characterize the phases of the Bose-Hubbard model by measuring the spectral
properties. Our numerical data then might be useful for characterizing these phases.
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6 Excitations of Trapped Bosons in One
Dimension

Let us now turn to the case that is most closely related to the experimental setup. In
typical experiments, an atomic beam is slowed down using Zeeman tuned laser cooling
techniques. These cold gases are then trapped using magnetic or magneto–optical traps
in order to keep the atoms localized. In these traps, evaporative cooling is applied to
further cool the gas down until they condense into a Bose–Einstein condensate (BEC).
The BEC is transferred to an optical lattice which results in a system described by
the Bose–Hubbard model. As opposed to the simpler cases discussed in the previous
chapters, one has to keep the gas in a trapping potential. These potentials can be
created in various shapes, but quadratic potentials are most commonly used.

We consider again the Bose–Hubbard model in one dimension, but with an additional
quadratic potential

Ĥ = −t
∑
〈i,j〉

â†i âj +
U

2

∑
i

n̂i(n̂i − 1)−
∑
i

(µ0 −K(i− L/2)2)n̂i. (6.1)

The DMRG phase diagram is shown in Fig. 4.1 on page 30. A schematic zero temper-
ature phase diagram is replotted in Fig. 6.1. Due to the special form of the potential
µ(ri), the phase in which the atoms are depends strongly on the position ri. Thus given
that t/U is small enough, the system undergoes phase transitions from Mott insulat-
ing to superfluid regions as a function of ri. This results in a so called wedding cake
structure of the density n(ri), that is superfluid regions with varying density enclosed
by Mott shells with constant integer density.

We are again mainly interested in dynamical properties like the dynamical structure
factor S(k, ω) and the one particle spectral function A(k, ω). These have been measured
by various groups, first with lattice modulations at k = 0, and later more directly with
Bragg spectroscopy for a few momenta in the Mott insulator as well as in the superfluid
phase [31, 3, 105, 106]. Recently even the full momentum resolution has been presented
in the superfluid region [4].

Experiments have so far only been compared to simple Bogoliubov or mean field
calculations. Even though they agree well in many cases, it is important to compare
to results obtained from numerically exact methods - which do not need any fitting
parameter to adjust.
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Figure 6.1: Schematic phase diagram of the Bose–Hubbard model. Mott insulating (MI) lobes
enclosed by superfluid (SF) regions. For a given t/U the chemical potential µ(ri) changes from a
maximum value in the center to zero on the edge. Depending on the position ri, the system is either
in the Mott insulating (red) or in the superfluid phase (blue).

6.1 Experimental and Numerical Parameters

As mentioned earlier, for large lattices, the parameters of the microscopical Hamilto-
nian can directly be compared to experimental quantities [29]. The hopping amplitude
is given by

t =
4√
π
Er

(
Vx
Er

)3/4

exp(−2
√
Vx/Er) (6.2)

and the on-site potential reads

U = 4
√

2π
asEr
λ

(
VxV

2
⊥

E3
r

)1/4

(6.3)

with Vx the depth of the periodic potential. V⊥ is the potential depth in directions y
and z, Er = ~2k2/2m is the recoil energy, as is the s–wave scattering length and λ is
the wavelength of the standing light field.

In recent experiments by the Florence group [31, 3] a 3D BEC is trapped in two
orthogonal optical lattices (λ = 830nm) with an amplitude V⊥ = 35Er. This results in
independent 1D BECs since the transverse hopping is much smaller than the inverse
time scale of the experiment. The longitudinal potential Vx = sxEr drives the system
in the strong coupling regime. Excitations as a function of the lattice depth sx have
been investigated (0 < sx < 30) with two photon Bragg spectroscopy. The 3D BEC
consisted of approximately Nb = 105 particles, thus in each 1D system they have
approximately 300 particles.

In the experiment mentioned above, 87Rb atoms have been used. We set as =
5.45 nm for the s-wave scattering length. Plugging the numbers in Eq. 6.2 and Eq. 6.3
we find that the hopping strength varies from t/U = 0.005 up to t/U = 0.2 (see
table 6.1)
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Table 6.1: Comparison of the hopping parameter t/U to the experimental parameter Vx = sxEr for
87Rb and λ = 830nm.
sx 5 7 10 15 20
t/U 0.209 0.109 0.046 0.013 0.005

Since we know that there are about 300 particles in each 1D system and following
Ref. [31, 3] we know that there are about three particles in the center of the trap we
can tune µ0/U and K such that the experimental situation is well captured by our
simulation.

In the simulations presented below we chose L = 180, µ0 = 0 and K = 0.001 which
results in a particle number between n = 230 (t/U = 0.01) and n = 300 (t/U = 0.3).

6.1.1 A Note on Dimensionless Quantities

In other experiments by other groups a larger number of particles has been used. This
would make calculations much more time consuming. However, it has been pointed
out by various authors [107, 108, 109], that only the actual shape of the density profile
n(i) is important rather than the exact values of the parameters. To be more precise,
using a rescaled length ξi = ri/ξ with ξ =

√
t/K, the resulting density profiles only

depend on the so called characteristic density ρ̃ = N/ξd, where d is the dimension and
N the number of particles in the system. It is thus possible to compare calculations
with much smaller N to experimental situations also quantitatively, by using the same
characteristic density ρ̃.

6.2 Static properties

Let us first discuss some static properties of the system to characterize the state. As
mentioned above, the most important quantity is the shape of the density n(i) = 〈n̂i〉.
Typical density profiles are shown in Fig. 6.2 (red diamonds) for various t/U and
temperatures βU . Parameters are close to those of the experiments described above
(Ref. [31, 3]). One can see the wedding cake structure for small t/U : i.e. Mott insulating
regions (constant density) interrupted by small superfluid shells.

6.2.1 Density Fluctuations and Compressibility

To characterize the local state (superfluid or Mott insulating), we can no longer take
the superfluid density ρs as used in the chapters above as the global world line-winding
number squared. Instead of that we need some local quantity that signals whether we
have a superfluid or a Mott insulating phase. One way to probe the local properties is
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Figure 6.2: Density profiles (red) for various hopping parameters t/U and temperatures β. In addition

∆nr and κlocalr is plotted in arbitrary units.

to measure the density fluctuations

∆nr = 〈n̂2
r〉 − 〈n̂r〉2 . (6.4)

In Ref. [110] the so called local compressibility

κlocali =
∂ 〈N〉
∂µi

=
∫ β

0
d τ (〈ni(τ)N〉 − 〈ni(τ)〉 /N) , (6.5)

has been defined. That is the response to a local change of the chemical potential of
the total particle number N . ni(τ) = eβHnie

−βH is the imaginary time dependent
density.

We plotted ∆nr along with κlocali in Fig. 6.2. For large lattice depths t/U = 0.01
(∼ sx = 15), one can clearly distinguish the Mott plateaus from the superfluid regions,
as long as the temperature is low enough. For smaller sx (larger t/U) the Mott regions
are very narrow, thus nearly all of the particles are in the superfluid phase. Small tips
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Figure 6.3: Momentum distribution function n(k). t/U = 0.01 (a) and t/U = 0.2 (b). The inset
in (b) is a magnification for small momenta. Compare to the density profiles in Fig. 6.2. Note the
different y-scale in (a) and (b).

in the compressibility and the density fluctuations mark the regions where the Mott
phase is crossed.

6.2.2 Momentum Distribution Function and Correlations

The momentum distribution function

n(k) =
1
N

∑
i,j

eik(ri−rj) 〈â†i âj〉 (6.6)

is of special interest since it can be measured directly in experiments in time-of-flight
(ToF) measurements. Here N is the total number of particles, to normalize n(k).
Then, n(0) should give the coherence fraction of the condensate. Sharp peaks in n(k)
are usually interpreted as the signature of superfluidity. This should be taken with
care, since it has been shown by Kato et al. [111], that also above Tc sharp peaks are
visible on a broad background. They show, that a very narrow peak on top of the
broader peak, centered at k = 0 is the true signature of the superfluid.

Here, we show results for the 1D system, where strictly speaking a superfluid only
exists at T = 0 (see Fig. 6.3). However one can qualitatively distinguish between
the broad feature of the Mott insulator dominated region at t/U = 0.01 (Fig. 6.3 a)
and the very sharp peak at t/U = 0.2 (Fig. 6.3 b). In both cases the peaks become
significantly broader, when temperature is increased.

A further quantity of interest is the one particle density matrix or correlation function

g(i, j) = 〈â†i âj〉 (6.7)

In Fig. 6.4 we measure g(s, s− r) for a site s = −9 close to the edge of the superfluid



72 6 Excitations of Trapped Bosons in One Dimension

−10 −5 0 5 10 15 20 25
r

10−6

10−5

10−4

10−3

10−2

10−1

100

g
(s

,s
−

r)
(a) t/U = 0.01

βU = 15
βU = 120

−60 −40 −20 0 20 40 60
r

10−2

10−1

100

g
(s

,s
−

r)

(b) t/U = 0.2

βU = 15
βU = 120

Figure 6.4: Correlation function g(s, s − r) from site s = −9, which is close to the edge of the
superfluid region in the middle. Again, t/U = 0.01 (a) and t/U = 0.2 (b). Parameters are the same
as in Fig. 6.3.

region in the middle of the system. The parameters are the same as for the density
profiles in Fig. 6.2. First of all, it is important to notice, that at low temperatures
correlations become much more important. Further more, for large t/U = 0.2 where
nearly all particles are superfluid, there are large spacial correlations.

The correlation length ξ is fitted using a standard least squares fit to Ae−r/ξ for
positive r and give:

t/U = 0.01 β = 15 ξ = 0.702(2)
t/U = 0.01 β = 120 ξ = 4.48(2)
t/U = 0.2 β = 15 ξ = 24.6(2)
t/U = 0.2 β = 120 ξ = 75(1)

(r > 2 for t/U = 0.01 and r > 5 for t/U = 0.2 respectively)

6.3 Excitation Spectra

Experimentally, it is fairly clear what happens overall during a Bragg-spectroscopy
measurement, but the processes involved on a microscopic scale are a subject of current
discussion.

Shortly before the gas expands, two Bragg pulses are applied. These are two laser
beams with momenta ~k1 and ~k2 and energies ν1 and ν2 respectively. After the
absorption of a photon from the first laser, the photon is emitted into the second
laser via stimulated emission, transferring energy ~ω = ~(ν1 − ν2) and momentum
~k = ~(k1 − k2) to the atomic cloud [112].

It is usually argued, that the energy transfer as function of k and ω is given by

E(k, ω) ∼ ωS(k, ω) (6.8)
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Figure 6.5: Dynamical structure factor S(k, ω) for the density profiles depicted in Fig. 6.2. t/U = 0.01
(left) and t/U = 0.2 (right) at βU = 120. The inset on the left hand side shows the weight of the
excitation at ω/U = 1.0 and a fit to c sin2(k/2) (red line).

In Ref. [106] it is argued that, depending on the energy bands that are involved in
the two photon transition, the excitations are either related to S(k, ω) or A(k, ω). The
low energy response of Bragg spectroscopy (typically ω < 2π 10kHz) can be described
by the structure factor, which corresponds to density fluctuations. For high excitation
energies (ω > 2π 30kHz) it is argued that the single-particle spectral function is mea-
sured. Atoms which are excited into high-energy bands do not interact with the lower
bands. Thus, the measured spectrum is described by a convolution of the density of
states of the lower occupied with the upper unoccupied band. From this convolution
the spectral function of the lower strong-correlated bands can be extracted [106, 113].

A problem that needs to be discussed is, that momentum is not conserved in the
experiment. When a boson is excited and momentum is transferred, the momentum
may have changed when the stimulated emission takes place. We ignore this problem
and assume, that stimulated emission takes place instantaneously after the absorption.
That might be a problem when small energies are involved, because small energies can
be translated into large time–scales, in which the momentum is no longer conserved.

This problem is however also ignored in all simpler approaches such as mean field
calculations or in perturbation theory [103]. Here we treat the system as if there were
periodic boundary conditions (assuming that k is still a good quantum number) and
set k equal to the momentum transfer during a Bragg experiment.

Fig. 6.5 shows two examples of the dynamic structure factor for the density profiles
shown in Fig. 6.2 at temperature βU = 120.

In the small hopping regime (t/U = 0.01), in addition to the main feature at ω/U ∼
0.1, which we attribute to the superfluid parts of the condensate, there is a very small
excitation at ω/U ∼ 1. This is only barely visible in the density plot, but we draw
the weight of the excitation as a function of k in the inset on the left hand side of
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Fig. 6.5. The weight of the excitation can be described with a sin2(k/2) behavior. We
thus identify this as the signature of the Mott insulating regions of the condensate
(compare to the inset of Fig. 5.3 on page 59 and the discussion of Eq. 5.4 on page 60).

This feature at constant energy is absent in the pure superfluid region t/U = 0.2 (see
right hand side of Fig. 6.5), where one main superfluid feature is visible together with
a weaker excitation at smaller energies that also shows the signatures of a superfluid.

It is remarkable however that in both large and small hopping regions the superfluid
signatures are dominant. This can be understood when we compare to our data of
the homogeneous system. At low temperatures, the static structure factor S(k), which
is the integrated spectral wheight, is about 100 times larger in the superfluid region
(Fig. 5.9 (b)) than in the Mott insulating region (Fig. 5.4 (c)).

In Fig. 6.6 we plot the dynamic structure factor S(k, ω) at k = π for different hopping
strengths t/U . Both the Mott bands at ω/U ∼ 1 and the low energy bands at larger
t/U are only barely visible. The main feature (wich we attribute to the superfluid
phase) grows linearly (or close to linearly). From simple Bogoliubov theory arguments
(see section 4.5.1.1 on page 33) it is known that the sound velocity is proportional
to ∝ √nt. Given the actual form of the spectrum, the sound velocity determines the
bandwidth – at least to some extend. In the simulations n is not constant but smaller
for t/U = 0.01 than for t/U = 0.2. Thus, this ”smaller than linear”–behaviour is
consistent with our observation that this peak stems from the superfluid phase.

On the right hand side of Fig. 6.6 the condensate fraction, which is up to some
normalization constant n(0) where n is defined in Eq. 6.6. Since there are always
superfluid regions between the Mott insulating shells, the condensate fraction never
vanishes completely, as it would do in the homogeneous case for small t/U . As a matter
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of course, finite temperature suppresses the amount of superfluidity significantly.
In conclusion we find, that the qualitatively different situations (see Fig. 6.2) for

small and large hopping are not only visible in e.g. the momentum distribution function
Eq. 6.6 but also in the Bragg spectrum.
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Coupled to Phonons





7 QMC Simulation of the 1D Holstein
Model

Different from the situation in cold atoms, in a real solid a description in terms of low
energy Hamiltonians is always accompanied by severe approximations. Interactions
with the core electrons, impurities and lattice defects are very often discarded.

In this chapter we want to include phononic degrees of freedom which is necessary
very often to understand physical properties of many fascinating systems. They be-
come even more important in low dimensional systems where strong electron-electron
and electron-phonon correlations result in rich physics. Fascinating examples include
conjugated polymers or quasi one dimensional charge transfer salts. [114]

The aim of this chapter is to introduce an efficient Quantum Monte Carlo method
based on a world line representation of the partition sum.

We describe the method and apply it to the simplest model, that includes electronic
and phononic degrees of freedom, namely the Holstein model of spinless fermions in
one dimension. However the method can be applied to more involved models without
algorithmic complications. After a short introduction of the model in section 7.1 we
will describe the method in some detail in section 7.2.

We then present some tests and results in section 7.3. In particular we calculate
dynamical properties such as the dynamical structure factor or the phonon spectral
function.

7.1 Model

The Holstein model of spinless fermions in one dimension that couple to dispersionless
phonons reads

H = − t
∑
i

(ĉ†i ĉi+1 + h.c)︸ ︷︷ ︸
Ĥe

− g
∑
i

x̂i(ĉ
†
i ĉi −

1
2

)︸ ︷︷ ︸
Ĥe−ph

+ ω0

∑
i

(â†i âi +
1
2

)︸ ︷︷ ︸
Ĥph

, (7.1)
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Figure 7.1: Zero temperature phase diagram of the one dimensional Holstein model of spinless
fermions obtained from DMRG [115]. For small coupling the model exibits Luttinger liquid behaviour
while for large g/ω0 it is in a charge density wave (CDW) insulating phase. We distinguish the adiabatic
and anti-adiabatic regions respectively. The red dots mark specific points in the phase diagram at which
we perform our calculations.

with bosonic creation (annihilation) operators a†i (ai ) and fermionic ones ĉ†i (ĉi ) re-
spectively. x̂i denotes the elongations of the harmonic oscillators x̂i = (â†i+âi ). During
the last 50 years in which this model has been studied, many different definitions of
the model have been introduced. In appendix D an overview over the most commonly
used definitions of coupling constants is given.

Here we consider the simplest form of such a Hamiltonian, namely the Holstein
model of spinless fermions coupled to Einstein phonons. We want to point out that
the method described below is also applicable to more complicated models, namely to
all models with momentum dependent coupling gq and phonon dispersion ωq as long
as the electronic part of the Hamiltonian is sign problem free for g = ω = 0. 1

The Holstein model of spinless fermions exhibits a phase transition from a metallic
towards an insulating phase with increasing electron phonon coupling g (see Fig. 7.1).
In the limit of ω0 → 0 (adiabatic limit) the critical coupling gc goes to zero, meaning
that every finite g leads to a Peierls distortion. In the limit of ω0 →∞ (anti–adiabatic
limit) the model can be transformed to the XXZ model, which is exactly solvable and

1Applications of the method to more involved models will be published elsewhere.
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exhibits a Kosterlitz-Thouless (KT) phase transition [116].
Monte Carlo [117, 115], variational [118] and RG [119] calculations determined the

phase boundary, but results from the various approaches differed a lot. More pre-
cise DMRG [120, 121] and ED [122] calculations yield the now well established phase
diagram (see Fig. 7.1).

Dynamical properties have been observed by Hohenadler et al. [123] using a exact
diagonalization and the cluster perturbation theory. This is a perturbative method,
where the system is divided into identical clusters. On each small cluster the Hamilto-
nian is diagonalized exactly and the interaction with the remaining clusters is added
in a variational way. In the case of the Holstein model, there is no phonon–phonon
interaction, thus there is the same information for the phonon spectral function on the
total system than on a small cluster. However, the results from the small cluster are
exact.

They found a phonon softening (hardening) in the attractive (repulsive) LL, and
determined the phonon spectral function in the band insulator (ω0 small, g large)and
in the polaronic superlattice phase (ω0, g large). Sykora et al. [124, 125] used the so
called projector–based renormalization method to study the dynamics of the Holstein
model obtaining results for the one–particle spectral function and the phonon spectral
function. Although their results turn out to to be extremely accurate, they were unable
to perform calculations in the insulating phase at large t/ω0. Furthermore the method
introduces uncontrollable sources of error and might not be the method of choice for
other models.

Using a determinatal QMC, Creffield et al. [126] studied the phonon softening in the
CDW phase. For a slightly different model – the spinfull Holstein model at quarter
filling – a diagrammatic determinantal QMC procedure has been implemented to cal-
culate e.g. the dynamic structure factor and one particle spectral functions. [127, 128]
Unfortunately, these determinantal QMC calculations are limited to rather small sys-
tem sizes (L ∼ 20).

The QMC method presented below can be used for large system sizes at low temper-
atures. The only errors that are present are statistical errors and a time discretizetion
error in the phonon coordinates. This time discretizetion error can however be con-
trolled very well by starting from a coarse time grid which is made finer and finer until
convergence is reached.

7.2 Method

The outline of our method is as follows: We start from a path integral representa-
tion of the partition sum e−βH[{ni(τ),xi(τ)}], with {ni(τ)} denoting the electron density
of some configuration in the path integral and the {xi(τ)} some phonon elongation
respectively. i is the site index while τ represents imaginary time. We then update
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the electronic configuration using a directed loop algorithm, [24, 25] arriving at some
new configuration {n′i(τ)}. Keeping the new electronic configuration {n′i(τ)} constant
we update the phonons in Fourier space, where the problem is bi-quadratic and a
new phonon configuration {x̃′k(ω)} can thus be sampled from a normal distribution.
The new phonon configuration is transformed back to real space, and the procedure is
started again by updating the electronic configuration.

The same idea has been used by Michel and Evertz to study spin–Peierls systems [11,
12]. Instead of a path integral representation, the SSE has been used for the electronic
part of the partition sum. This is however not the optimal choice, when off-diagonally
dominated Hamiltonians are studied.2 Another difference compared to Ref. [11, 12]
is a slightly different treatment of the phonons. In contrast to a continous time path
integral representation and a cutoff in the Matsubara frequencies in Ref. [11, 12],
a discretized version of the path integral is used here. Then, no cutoff has to be
introduced in Fourier space since the discretization has already been performed in real
space.

In both cases an error – cutoff or time discretization – has to be introduced, which
is comparable large.

Starting from a world line path integral representation we denote the partition sum
as

Z = Tr(e−βH)

= Tre
∫
Dx exp

(
−
∫ β

0
dτH[{ni(τ), xi(τ)}]

)
,

(7.2)

where Tre is a trace over the electronic parts of freedom and
∫ Dx indicates the path

integral over all possible phonon elongations xi(τ).
In order to handle the problem numerically we introduce some time grid to store the

phonon elongations only on times t = n δτ , n = 0, . . . N − 1 and N = β/δτ . Note that
the electronic configurations are known without any time discretization error, since we
only store the times where a kink in the world line configuration occurs.

7.2.1 Update of the Electronic Configuration:

Although Eq. 7.2 is written in continous time, we start with a time discretized version
of the partition sum (compare to Eq. 2.3 on page 6 or Fig. 2.1 on page 7) and perform
the continous time limit for the electrons in section 7.2.1.3.

The update rules are calculated according to the directed loop algorithm (see chapter
IV in Ref. [25] for a discussion of directed loops using a path integral representation).

2If there are no diagonal terms in the Hamiltonian, one can either simulate only at constant length of
the operator string n, which is a simulation at constant energy, or introduce artificial unit operators
in the Hamiltonian to overcome this problem.
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One starts the electronic update by chosing one corner of one plaquette randomly from
the current configuration of the partition sum (see Fig. 2.1 on page 7). Both the loop
head and the loop tail are put onto this corner. While the loop tail stays on this edge,
the loop head moves around, according to the rules specified below, changing the local
state of each corner which has been visited. This continues until the loop head hits
the loop tail again. At this piont we arrived at a valid contribution to the partition
sum again.

To calculate the rules for the loop head, we need to evaluate the weights of the
plaquettes Ws, depending on the spin configuration s. Furthermore the weights of the
possible paths on each plaquette need to be calculated. This is done in the subsequent
subsections.

7.2.1.1 Determination of the plaquette weights

Let us start with the calculation of the plaquette weights that determine the proba-
bilities for the path of the loop head. Fist, let us rewrite the Hamiltonian in a more
symmetric form, such that it acts on one plaquette

He +He−ph = −t
∑
i

(â†i âi + h.c.)− g

2

∑
i

[(n̂i − 1/2)︸ ︷︷ ︸
ŝi

x̂i + (n̂i+1 − 1/2)︸ ︷︷ ︸
ŝi+1

x̂i+1]. (7.3)

We defined n̂i+1 − 1/2 ≡ ŝi to simplify notation. Note that the possible quantum
numbers of ŝi can either be +1/2 or −1/2. Thus we will denote the associated states
as |↑〉 and |↓〉 respectively. With this at hand we can write down the plaquette weights

Wp = 〈β|e−∆τHp |α〉 .
The states |α〉 and |β〉 are the states of the plaquettes at the two different time slices
(see fig. 7.2 upper left panel). We assume that xi(τ) = xi(τ + ∆τ) because later on
we will do the limit of ∆τ → 0 while we will keep the finite number of time slices
on which the phonon elongations xi(t) are defined constant.3 We then find the off
diagonal plaquette weight (where is 〈α|β〉 = 0) W1 and the diagonal ones (〈α|β〉 = 1)
Wsi,si+1 up to first order in the exponential to be

W1 = 〈↑↓ |e−∆τHp | ↓↑〉 = 〈↓↑ |e−∆τHp | ↑↓〉 ≈ t∆τ (7.4)

Wsi,si+1 ≈ 1 +
g

2
[si(τ)xi(τ) + si+1(τ)xi+1(τ)] ∆τ, (7.5)

where si(τ) is the eigenvalue of the operator ŝi at time τ . Since we later let ∆τ go to
zero it is sufficient to expand the exponential up to first order.

3We denoted the time grid for the phonons as t = n δτ with n = 0, . . . N − 1 and N = β/δτ .
This is kept constant throughout the derivation of the electronic update. To make the assumtion
xi(τ) = xi(τ + ∆τ) valid let us assume that ∆τ � δτ . Note that this is reasonable since the limit
∆τ → 0 will be performed.
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β

α

Figure 7.2: Two examples of plaquettes before the update (very left). Black and white circles denote
occupied and empty sites respectively. The states |α〉 and |β〉 are the states at the times t+ ∆τ and t
respectively. The three panels on the right hand side show the possible paths of the loop head.

7.2.1.2 Detailed balance

Let us consider a plaquette with weight Ws and an electron configuration s and as-
sume that the loop head enters the plaquette on one corner e. We want to find the
probabilities that the loop leaves the plaquette on some other corner x changing the
electron configuration to s′ and the weight to Ws′ . Let p(x|e, s) be the probability that
the exit leg of the loop is x. The detailed balance condition then reads

Wsp(x|e, s) = Ws′p(e|x, s′). (7.6)

We further denoteW (s, e, x) = Wsp(x|e, s) as the weight of one particular path through
one plaquette. Since a loop always continues – that is one exit corner is always chosen
– it follows that

∑
x p(x|e, s) = 1. Thus∑

x

W (s, e, x) = Ws. (7.7)

By solving eq. (7.7) together with eq. (7.6) we can determine the path weights for the
loop head. For example eq. (7.7) applied to the two plaquettes depicted in fig. 7.2 one
has the following equation

W↑↑ = d+ v +B1 (7.8)
W1 = d+ h+B2 (7.9)

where d is the weight of the diagonal path through the plaquette and v, h and B
correspond to the weights of the vertical, horizontal and the bounce move respectively.
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Figure 7.3: Imaginary time evolution of x(τ). If |x| is larger than some threshold, bounce weights
are set to some non-zero values.

The two diagonal path weights in eq. (7.8) and eq. (7.9) are equal due to the detailed
balance condition eq. (7.6). One also finds the time reversal symmetry: by flipping the
plaquette (and the path through it) upside-down the weights are not changed. Using
these symmetries and writing down all the equations for all possible paths one finds a
set of 12 linear equations with the following solution. Let us label the corner sites of
the plaquette i and j, where i is the corner where the loop head enters the plaquette.

Diagonal plaquettes On a diagonal plaquette the weight for a vertical move is

v = 1 +

(
− t

2
− g

2
sjxj +

−B<
j −B>

j

2

)
∆τ, (7.10)

where B> and B< are the only two non-zero bounce-weights. If the plaquette is
”antiferromagnetic”, a horizontal move can occur, if it is ”ferromagnetic” a diagonal
move can happen. The associated weights are

d = h =
(
t

2
+
g

2
sixi + sign(si)

B<
i −B>

i

2

)
∆τ. (7.11)

From the equation above we see why we called the bounce weights B> and B<. If
si = 1/2 and xi < −2t

g the weight would become negative if we would not add B<.
If si = −1/2, a weight B> has to be added if x > 2t

g (fig. 7.3). Thus given a phonon
configuration {xi(τ)} we assign a value to B<

i (τ) if x is smaller than some threshold
−2(t+ε)

g and we will set B>
i (τ) = xi(τ) − 2(t−ε)

g if x > 2(t−ε)
g . This is done once after

each update of the phonon configuration such that all weights are positive. We store
B
</>
i (τ) at all sites and times t = nδτ . We will see in a subsequent paragraph why

we added the constant value ε.
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Off diagonal plaquettes On an off diagonal plaquette only horizontal and diagonal
moves can occur.

d = h =

(
t

2
+
g

2
sjxj + sign(sj)

B<
j −B>

j

2

)
∆τ. (7.12)

Note that these are the bounce weights of the exit corner. The bounce weights of the
entry corner can be set to zero.

7.2.1.3 The continuum limit

A downside of the path integral formulation in discrete imaginary time is the fact
that if ∆τ becomes smaller – to decrease the error of the Trotter decomposition – the
vertical move becomes more and more probable. Thus even if we make our time grid
finer, the number of jumps remains the same. Beard and Wiese [22] have shown, that
the continuum limit ∆τ → 0 can directly be taken. The constant probability per unit
time for a jump corresponds to a Poisson process. So instead of randomly chosing the
move of the path on each plaquette, a new time for a diagonal or horizontal jump is
drawn out of a Poisson distribution.

In our case it is slightly more complicated, since

Wl

Wr
vr

vl
τ

τ+∆τ

τ+2∆τ

Figure 7.4: The probability that a
loop does not jump to another site is
vl
Wl

vr
Wr

with plaquette weights W and
path weights v.

the probability for a vertical move is not constant
but a function of xi(τ). First consider the prob-
ability that a loop goes from time τ to τ + 2∆τ
without jumping to another site (fig. 7.4)

Pstraight(τ → τ + 2∆τ) =
vl(τ)
Wl(τ)

vr(τ + ∆τ)
Wr(τ + ∆τ)

,

with left and right path weights vl/r and plaquette
weights Wr/l. Consequently the probability that a loop goes straight up to a time τ ′

and that one of the processes d or h happens at τ ′ is

P (τ → τ ′)∆τ =
(

1− vl(τ ′)
Wl(τ ′)

+ 1− vr(τ ′)
Wr(τ ′)

) τ ′∏
t=τ

vl(t)
Wl(t)

vr(t)
Wr(t)

. (7.13)

To simplify notation we assumed that the two neighbouring plaquettes are at the same
time t4. Note that v Eq. 7.10 and W Eq. 7.5 are both of the the same form

Wl/r(t) = 1 + al/r(t)∆τ
vl/r(t) = 1 + bl/r(t)∆τ.

4Since they are only seperated by one time slice this will be ok in the continuum limit.
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Plugging this into Eq. 7.13 the limit ∆τ → 0 can be taken (the time index is omitted
for better readability)

lim
∆τ→0

P (τ → τ ′)∆τ = lim
∆τ→0

(
(bl + br − al − ar)∆τ +O(∆τ2)

1 + (al + ar)∆τ +O(∆τ2)

)
×

exp

∑
t

ln(1 + (bl + br)∆τ)︸ ︷︷ ︸
→(bl+br)∆τ

− ln(1 + (al + ar)∆τ)︸ ︷︷ ︸
→(al+ar)∆τ


= al + ar − bl − br︸ ︷︷ ︸

λ(τ ′)

exp

−∫ τ ′

τ
(al + ar − bl − br)︸ ︷︷ ︸

λ(t)

dt

 dτ

P (τ → τ ′)dτ = λ(τ ′)e−
R τ ′
τ λ(t)dtdτ. (7.14)

Instead of a poisson distribution with constant density λ we arrived at a time dependent
density. Using the actual form of v eq. (7.10) and W eq. (7.5) we see that

λ(τ) = t+ g(ni(τ)− 1/2)xi(τ) +B<
i (τ) +B>

i (τ). (7.15)

Due to the time dependence of the probability distribution we are faced with another
problem. A poisson distribution can easily be sampled because it can be inverted.
Here we have to use a different strategy. If we can find some function

m(τ) ≥ λ(τ ′)e−
R τ ′
τ λ(t)dt, (7.16)

that can be sampled efficiently, we can use the rejection method to draw a new time τ
aut of the distribution eq. (7.14). A probability distribution with the property Eq. 7.16
can easily be found

m(t) = max
τ

λ(τ)e−tminτ (λ(τ)). (7.17)

From our construction of B< and B> (see text above and fig. 7.3) it is obvious that
minτ (λ(τ)) > ε > 0, thus m(t) is a decreasing function and can be normalized.5 Thus
we proceed as follows: We draw a time τ out of m(t). We then draw a uniformly
distributed random number r out of [0,m(τ)]. If r < p(τ) we accept the new time. If
not, we start again with drawing a time out of m(t) until it is accepted.

The integral over xi(τ) is done only once after an update of the phonon configu-
ration, where we calculate and store the field Xi(τ) =

∫ τ
0 xi(t)dt, for imaginary times

τ = 0, δτ, . . . β. The computational cost is thus of order L× β.
After the phonon update, Xi(τ), B</>

i (τ), and xi(τ) are stored for each point on
the space-time grid. If during the loop update one of these quantities is needed for an
arbitrary time kδτ < τ < (k + 1)δτ we apply a linear interpolation between the two
time points kδ and (k + 1)δ.

5We added ε in order to guarantee that m(t) decreases strictly monotonic.
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7.2.2 Update of the phonon elongations

The phononic update is performed on the basis of Ref. [11, 12]. In these references
the phononic part of the path integral was formulated in a continous version. This
results in infinitely many Matsubara frequencies ωn after a Fourier transformation,
and a cutoff in ωn needs to be introduced. Furthermore, the continous phonons have
to be discretized later to do the actual simulations.

Here we already start from time discretized phonon coordinates which lead to a
slightly different form of the Fourier transformed frequencies (see below). We need no
artificial cutoff frequency, since the number of frequencies is equal to the number of
time slices.

The phononic part of the partition sum can readily be written as

Z{ph} =
∫
Dx e−Sph =

∫
Dx exp

(
−He−ph −Hph

)
(7.18)

=
∫
Dx exp

(
− β

N

∑
i,τ

{
− gxi(τ)

(
ni(τ)− 1

2
)

+
pi(τ)2

2
+ ω2

0

xi(τ)2

2

})
,

with the momentum pi(τ) = (xi(τ)− xi(τ − δτ)) /δτ . After a Fourier-transformation
of xi(τ)→ x̃k,n and ni(τ)− 1/2→ ñk,n respectively, δτ2pi(τ)2 becomes∑

τ

(xk(τ)− xk(τ − δτ))2 =
∑
n

∣∣∣1− e2πin/N
∣∣∣2 |x̃k,n|2

= 4 sin2
(πn
N

)
|x̃k,n|2 (7.19)

and consequently the action reads

Sph =
β

2N

1. B.Z.∑
k

∑
n

−2 g x̃k,nñk,n + (ω2
0 + ω2

n)︸ ︷︷ ︸
=:ωk,n

x̃2
k,n (7.20)

where we defined ωn = 2N
β sin

(
π n
N

)
. By completing the square we can easily see that

both real and imaginary part of {xk,n} can be sampled from a normal distribution with
mean µ and variance σ2

µk,n =− g ñk,n
ωk,n

σ2
k,n =

N

ω2
k,nβ

.
(7.21)
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Figure 7.5: During the loop update, a sign change of the propagator can occur (See text for expla-
nation).

We used the hermitian symmetry x̃∗k,n = x̃−k,−n and ñ∗k,n = ñ−k,−n. Since Eq. (7.20)
is biquadratic in x̃k,n, we always accept our proposal Eq. (7.21).

A generalization to more complex models with dispersion of ω and/or g is simply
made by replacing ω0 → ωk and g → gk respectively.

7.2.3 The fermionic sign problem

Since we simulate fermions, a sign problem occurs in the path integral Monte Carlo
simulation. However a negative sign of one specific configuration only occurs if the
winding number is odd and the number of fermions is even. If one tunes the parameters
such that there is an odd number of fermions in the system and if the temperature
is low enough – to prevent density fluctuations – the average sign in a simulation is
nearly one.

We perform our simulations at half filling with systems of length L, where L/2 is
odd. In all of our simulations, the average sign was exactly one.

7.2.4 Measurements of dynamical properties

The phonon spectral function Sx(k, ω) is obtained by inverting

〈x−k,nxk,n〉 =
∫ ∞
−∞

ω Sx(k, ω)
ω2 + ω2

n

dω, (7.22)

which is done using the maximum entropy method. [26, 27] The correlation function
can be written as

〈x−k,nxk,n〉 = σ2
k,n + µ2

k,n, (7.23)
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i.e. for a given electron configuration it can be measured exactly in the (k, ωn)-plane
where we already integrated over the phonon degrees of freedom.6

Also the dynamic structure factor can easily be evaluated by measuring the density
density correlation function and an inversion of the following equation

〈n−k(τ)nk(0)〉 =
∫ ∞
−∞

Sn(k, ω)e−τω

e−βω + 1
dω. (7.24)

The same holds for the one particle spectral function

〈ck(τ)c†−k(0) + c†k(τ)c−k(0)〉 =
∫ ∞
−∞

A(k, ω)e−τω

e−βω + 1
dω. (7.25)

Measuring of the correlation function (e.g. ck(τ)c†−k(0)) is straight forward during one
loop update. Given a loop head at time t1 and site i and the loop tail at t27 and site j
one obtains for the weight of the propagator w = 〈α|ci (t2 − t1)c†j(0)|β〉 = 1 where 〈α|
and |β〉 are the electron configurations prior to the loop update.

As mentioned above, the fermionic sign problem is not relevant for certain system
sizes at low temperature. However there is a small complication for the measurement
of the propagator. Due to the fermionic nature of the operators c and c† also the sign
of the propagator can change during an update. There are several reasons for a sign
change:

(i) In one dimension, two spinless fermions on neighboring sites can not switch its
positions – which would result in a sign change. However, during a loop update,
in this extended configuration space it is also possible for spinless fermions to
change places. This is depicted in Fig. 7.5 (a) and (b). Denoting the weight of
the propagator in Fig. 7.5 (a) as w = 〈α|c1c

†
2c
†
1|β〉 it becomes w′ = 〈α|c†2|β〉 = −w

after the jump of the loop head to site two in Fig. 7.5 (b).

(ii) If there is an even number of fermions, the sign of the propagator changes when
the loop head crosses the boundary.

Although spinless fermions in 1D can be mapped onto the XXZ model via the Jordan-
Wigner transformation, this is the reason, why the spectral functions of the XXZ model
and of free fermions differ significantly [129].

6Note that σk,n and µk,n solely depend on the electron configuration.
7These times are in practice taken to be on a time grid, with some spacing ∆t. This limits the

maximum energy that can be resolved Emax ∼ 1/∆t. This time grid is independent from the
phononic one with spacing δτ . Furthermore it does not affect the continous time directed loop
algorithm.
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7.2.4.1 Exact Moments of the Phonon Spectral Function

The accuracy of the maximum entropy method can be substancially improved, if exact
known moments of the spectral function are used as input of the inversion as well [11].

Given the spectral function Sx(k, ω), the ith moment is given as

M (i)
x =

∫ ∞
−∞

Sx(k, ω)ωidω (7.26)

One can find an expression of the moment in terms of commutators with the Hamil-
tonian

M (i)
x = 〈[ [[[x̂], Ĥ], . . . Ĥ]︸ ︷︷ ︸

i−j times

, [Ĥ . . . , [Ĥ, [Ĥ, x̂]]]︸ ︷︷ ︸
j times

]〉 , 0 ≤ j ≤ i. (7.27)

Using the canonical commutation relation [x̂m, p̂n] = iδm,n, one can easily calculate
[Ĥ, x̂n] = −ip̂n and [Ĥ, p̂n] = −iω2

0x̂n. This leads together with Eq. 7.27 to the first
and third moment

M (1)
x = 1 (7.28)

M (3)
x = ω2

0, (7.29)

respectively. We use that in all results presented below.
In general on obtains M (2n+1)

x = ω2n
0 . These moments are not taken into account in

the maximum entropy procedure.

7.3 Results

All of the results presented below are simulations of the L = 66 sites chain with periodic
boundary conditions and an inverse temperature β = 10L. We take 10 β time slices
for the phonons. For the measurement of dynamical properties we have to introduce a
time grid on which we measure correlation functions. We chose ∆t = 0.1.

As mentioned in many previous works, there are four distinct regions in the phase
diagram that show different physics (see Fig. 7.1). The parameter ω0/t controls the
adiabaticity of the system. In the adiabatic regime ω0/t � 1 phonons can be seen as
static while in the anti-adiabatic limit ω0/t � 1 the lattice deformation is adjusted
instantaneously by the movement of electrons. For weak electron phonon coupling
g2/t � ω0 the system is in a Luttinger liquid (LL) phase with attractive (repulsive)
interactions in the adiabatic (anti-adiabatic) regime. Above some critical coupling
strength gc(ω0) the model shows a charge density wave (CDW) insulating phase which
can either be a band insulator (ω0/t � 1) or a polaronic superlattice (ω0/t � 1),
meaning that the electrons are heavily dressed by phonons.
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Figure 7.6: Phonon spectral function Sx(k, ω) in the four distinct regions of the phase diagram. The
letters (a)-(d) correspond to the letters (a)-(d) in Fig. 7.1. The black error bars mark the center of
the peaks. The dashed line is at ω = ω0. The inset in (c) shows that there are indeed two bands
splitting at small k. The inset in (a) shows the 100 times less intense excitations at larger energies.
An additional weak dispersion-less feature at ω/t ∼ 8 is not shown in (b).

In Fig. 7.6, the phonon spectral function Sx(k, ω) is shown in the four regions dis-
cussed above. Our results agree well with previous calculations. [123, 124, 125]

In the articles by Sykora et al. [124, 125] and by Hohenadler et al. [123] two distinct
scenarios for Sx(k, ω) have been described in the LL regime. While they reported
phonon softening in the adiabatic region (ω0/t� 1) they saw a hardening scenario in
the anti-adiabatic region (ω0/t � 1). This is in accordance to the ω ∼ ω0 bands at
k = π in Fig. 7.6 (c) and (d).

However, we want to point out, that the two scenarios are not that distinct. In
both cases there exist two bands (see Fig. 7.6 (c) and (d)). One starting at k = 0
at an energy ω = ω0 which is, according to Ref.[124, 125], strongly dressed by the
free electrons. Thus the phonons are hardened and show the features of a cosine-like
free electron dispersion. A second band with linear dispersion for small k is observed
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Figure 7.7: Dynamic structure factor Sn(k, ω) in the same parameter regions as in Fig. 7.6.

in both the adiabatic and the anti-adiabatic regime as well. This is the soft phonon
band. We want to point out, that only the weights of the two bands and the amount
of softening (hardening) differ in the two regions of small and large ω0/t – but the
situation of two bands, one soft and one hard one, remains the same.

In the CDW insulating phase (Fig. 7.6 (a) and (b)) the situation differs a lot for small
and large ω0. While we observe a gapped mode at ω ∼ ω0 that is slightly softened in
both cases, there is an additional gapped mode at high energy in the band insulating
region (Fig. 7.6 (a)) and a gapless mode with sine-like dispersion in the polaronic
superlattice (Fig. 7.6 (b)). This low energy excitation in the polaronic superlattice has
been observed by Hohenadler et al. [123] too. However, due to their small lattice sizes,
the sine-like dispersion has not been resolved.

For free fermions the dynamic structure factor Sn(k, ω) should be equivalent to
that of the XXZ model, which displays the magnon continuum between 2t sin(2k)
and 4t sin(k). This is also the main behaviour of the Holstein model in the LL
phase Fig. 7.7(c) and (d). In addition one can observe excitations exactly at the
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Figure 7.8: One particle spectral function A(k, ω) in the four distinct physical regions. Free electrons
in the LL (c) and (d) and gapped modes in the CDW with (a) and without dispersion (b).

energy of the Einstein phonons at ω = ω0 = 0.4 in the adiabatic region.

This is in contrast to the insulating phase, where nearly dispersion-less and gapped
modes at ω/t ∼ 4 can be seen (see Fig. 7.7(a) and (b)). While in the adiabatic limit,
a strong excitation at the bare phonon frequency ω0 is observed, in the antiadiabatic
limit the sine-like dispersion, that has already be seen in the phonon spectra (Fig. 7.6
(b)), is present as well.

In Fig. 7.8 we show our results for the one particle spectral function A(k, ω). In the
LL phase, i.e. for small coupling g/ω0 we observe the dispersion of free electrons with
only small precursors of a gap both in the adiabatic and in the antiadiabatic limit, see
Fig. 7.8(c), and (d).

In the insulating phase one can distinguish the band insulator Fig. 7.8(a) with gapped
but dispersive excitations from the so called polaronic superlattice, where non disper-
sive bands at multiples of ω = 2t occur, see Fig. 7.8(d).
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7.4 Conclusions

We presented an efficient method to study electron phonon models by means of Quan-
tum Monte Carlo. We benchmarked our approach to calculate dynamical properties
of the half filled Holstein model of spinless fermions. Results from previous calcula-
tions [123, 124, 125] for single particle spectra are confirmed and we presented the
dynamic structure factor S(k, ω) for the first time in the four distinct physical regions
of the Holstein model.

Furthermore we note that the method is applicable to more complicated models that
include dispersive phonons ω(k) and electron–phonon coupling g(k).





8 Overall Conclusions

This thesis consists of two major parts. In the first part, experimental realizations of
strongly correlated systems are investigated by means of very well established QMC
methods. In particular, the Bose-Hubbard model describing gases of cold atoms in
optical lattices and a polariton model that can be realized in terms of arrays of coupled
cavities, is studied.

The directed loop algorithm in the SSE representation, together with a mapping
to continuous time and the Maximum Entropy method is applied to obtain spectral
properties.

Unbiased results for the one-particle spectral function and the dynamic structure fac-
tor for the one– and two–dimensional Bose–Hubbard model are presented. These
quantities are accessible in experiment from Bragg spectroscopy – allowing to measure
excitations with high energy and momentum resolution.

QMC data is compared to analytical results, that are usually taken to fit experi-
mental data. In the atomic limit (t/U small), the one-particle spectral function shows
a gapped spectrum and can be described very well by simple mean field approaches.
Both the spectral weight and the associated energies compare well to the unbiased
results. The dynamic structure factor has a gapped mode at energy ∼ U and an
associated weight proportional to sin2(k/2), which has previously been predicted by
perturbation theory calculations.

Close to the Mott insulator to superfluid phase transition, mean field calculations
become quantitatively wrong. This is not unexpected, since it is known that mean
field approaches underestimate the size of the Mott lobe, resulting in wrong phase
boundaries.

In one dimension, in the superfluid region linear Goldstone modes are observed.
Bogoliubov theory gives qualitatively right results. However on the quantitative level
it fails close to the phase transition and is thus not appropriate to describe experimental
data.

In two dimensions the QMC data is consistent with RPA and strong coupling theory,
while there are large discrepancies when comparing to Bogoliubov theory. In addition
to the linear modes, also gapped modes are predicted from RPA and strong coupling
theory. Due to the small spectral weight of the gapped modes at k ∼ 0 we can not
resolve these additional modes with our method.

Furthermore, the finite temperature behavior in the two dimensional case is inves-
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tigated. This is important, since temperature effects may be relevant in experiments
since both the lattice lasers as well as the Bragg lasers heat the condensate signifi-
cantly. Furthermore most analytic approaches work at zero temperature and may not
be accurate in the general case.

The dynamic structure factor shows the most severe dependence on temperature.
While in the Mott phase the relevant energy scale for the excitation is ∼ U in the
high temperature normal fluid phase it is governed by t/U which is very small. Thus,
although the Mott insulator only exists at T = 0 one can clearly distinguish the Mott
like physics at low temperature from the high temperature normal fluid phase.

In the superfluid region, there is a phase transition to a normal fluid phase. In
the one particle spectrum this can be observed by a transition from linear modes to
quadratic modes. The dispersion of the dynamic structure factor shows only little
dependence on temperature. However, above the critical temperature there is a severe
broadening of the peaks which might aid the determination of temperature in experi-
ments.

The so called Jaynes–Cummings–Hubbard model describes the polaronic nature of
light modes in coupled cavities that couple to two-level systems. Interestingly, al-
though there is no interaction term present in the Hamiltonian, the physics is very
similar to that of the Bose–Hubbard model. Again excitation spectra are calculated,
which have in general the same properties as those of the Bose–Hubbard model. How-
ever due to the polaronic nature of the excitations, additional bands with very small
spectral weight occur. Furthermore, the possibility of detuning of the laser fields lead
to richer physics.

The Mott insulator to superfluid phase transition is investigated in more detail.
From a finite size scaling the dynamical critical exponent z = 2 is obtained, leading to
the conclusion that the generic phase transition (i.e. away from the lobe tip) is of the
same nature as that of the Bose–Hubbard model. Another similarity can be seen at
the KT transition (that is the transition at constant polariton density np = 1), where
an emergent particle hole symmetry is demonstrated on approach of the tip of the lobe.

In the second part of the thesis, existing QMC methods are extended to be appli-
cable to electron–phonon models. The main idea of using global cluster updates for
the electrons and an update in Fourier space for the phonons has already been used
previously to study spin-Peierls transitions [11, 12]. In that approach the SSE repre-
sentation has been used for the electronic part of the partition sum. This is however
not the optimal choice for Hamiltonians that are dominated by off-diagonal terms.

Here a slightly different approach is used, formulating the electronic update in a
continuous time path integral representation. To benchmark the method it is applied
to the well known Holstein model of spinless fermions in one dimension. It proves to
be an efficient method to obtain unbiased results, including correlation functions and
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spectral properties.
Furthermore this method can be applied to more complicated models including dis-

persive phonons ωk and electron-phonon couplings gk without any algorithmic compli-
cations.





Part IV

Appendices





A Error Propagation by Jackknife and
Fourier Transformation

Some Greens’s function gr(τ)1 is measured within some uncertainty gr = ḡr ±∆gr2. ḡr
is the estimator for the mean of gr and ∆gr is the statistical error (e.g. the estimator
for the square root of the variance). Our aim is to fourier transform gr. Thus a correct
error propagation should be applied.

We want to know the error of the Fourier transformed values

Gk =
∑
r

eikrgr ≡ fk(g)

where we defined the vector g = (g1, g2, . . . gN ) and the linear function f .
Let us assume that the measurements are uncorrelated, then a linear approximation

for the combined standard uncertainty ∆Gk of the measurement result Gk is given by

(∆Gk)2 =
∑
j

(
∂fk(g)
∂gj

)2

(∆gj)2. (A.1)

Since ∂fk(g)
∂gj

is simply eikj we have

(∆Gk)2 =
∑
j

e2ikj(∆gj)2 (A.2)

This is however only true if the measurements are uncorrelated, which is not the case
here. A correct treatment of the correlations can be done by including all covariances
with is very cumbersome.

A.1 The Jackknife method

An alternative approach is the so called Jackknife method, which is a systematic way
of obtaining error estimates for a set of stochastic measurements. Within this so called
resampling method, the original data is split into blocks of length M (to avoid auto-
correlation effects, one choses M � τ). Then, for each block m = 1 . . .M , expectation
values 〈O〉m are calculated by using all data except the m-th block.

1E.g. the 〈a(τ)a†(0)〉 Green’s function.
2we drop the time dependence τ for better readability.
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An error estimate of one observable can be calculated as

∆ 〈O〉 =

√√√√M − 1
M

M∑
m=1

[〈O〉m − 〈O〉]2, (A.3)

where 〈O〉 is the expectation value, calculated with all of the data. The error estimate
for functions of observables f(〈O〉) are easily evaluated with

∆f =

√√√√M − 1
M

M∑
m=1

[f(〈O〉)m − f(〈O〉)]2. (A.4)

Note that Jacknife is robust, even when f is nonlinear, and/or when the data is corre-
lated.

Since Jackknife is already part of ALPS, it is easy to implement a Fourier transfor-
mation of a vector of RealObsEvaluator’s

A.2 Details of the Implementation

First, I defined different types of the Fourier transformation (FT) in analogy to the
fftw3 package:

enum fftw3 TYPE { REDFT00,REDFT10,REDFT01,REDFT11,
ERROR00 } ;

The definitions for REDFTXX can be found in the fftw3 documentation. ERROR00 is the
same as REDFT00, but with k → 2k to evaluate Eq. (A.2).

The FT–class is templated with some double type T wich can also be a RealObsEvaluator.
The constructor takes the size of the input array and the type of the FT. The matrix
elements of kernel k,j are exp(ikj), or a variant of it, depending on the fftw3 TYPE.

template<class T>
class FourierTransform
{
public :

typedef T double type ;
typedef boost : : numeric : : ub las : : vector<double type>

vec to r ;
typedef boost : : numeric : : ub las : : matrix<double> matrix ;

FourierTransform ( int L = 2 ,
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fftw3 TYPE f f t w t y p e = REDFT00) ;
vec to r trans form ( const vec to r & in )
{

i f ( in . s i z e ( ) != s i z e )
boost : : throw except ion (

std : : runt ime e r ro r ( ” . . . ” ) ) ;
return norm ∗my prod<double type>( ke rne l , in ) ;

}
void r e s i z e ( int L)

private :
fftw3 TYPE f f t w t y p e ;
u int s i z e ;
double norm ;
matrix k e r n e l ;

} ;

Unfortunately, the boost matrix–vector product does not work with RealObsEvaluator.
Thus I implemented the product in a straight forward way:

template<class T>
boost : : numeric : : ub las : : vector<T>
my prod ( const boost : : numeric : : ub las : : matrix<double> & m,

const boost : : numeric : : ub las : : vector<T> & v )
// S t r a i g h t forward matrix v e c t o r product .

{
boost : : numeric : : ub las : : vector<T> r e s u l t ( v ) ;
for ( u int r = 0 ; r < v . s i z e ( ) ; r++)

r e s u l t [ r ] ∗= 0 . 0 ; // to ge t the same number o f runs
// necessary f o r +=

for ( u int k = 0 ; k < m. s i z e 1 ( ) ; k++)
for ( u int r = 0 ; r < m. s i z e 2 ( ) ; r++)

r e s u l t ( k ) += m(k , r )∗v ( r ) ;
return r e s u l t ;

}

From a user point of view, the only thing that needs to be done is storing the ob-
servables in a boost vector

boost::numeric::ublas::vector<RealObsEvaluator> in(size),out(size);
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defining a FT

FourierTransform<RealObsEvaluator> ft(size,REDFT00);,

and performing the FT

out = ft.transform(in);
One can easily access the mean and the error of the element i of the vector with

out(i).mean(), out(i).error(), or with out(i).variance().



B Extensions to the ALPS dirloop sse

program

In this appendix a few extensions to the ALPS dirloop sse program, which im-
plements directed loops in the SSE representation, are presented. In particular the
measurement of dynamical correlation functions are explained.

All of the extensions are made to the ALPS version 1.3.4.

B.1 ”Canonical” Monte Carlo

Although the QMC algorithm always works in the grand canonical ensemble, one can
easily get a canonical algorithm, by just selecting measurements with some specific
value of some quantum number. One can e.g. evaluate only those measurements with
an average particle number of n = 1.

Therefor, the parameters

CANONICAL=true
CONSTRAINT=”n”
CONSTRAINT VALUE=1

have to be set in the input file. One can use any diagonal operator that is defined in
the model ("n","Sz", . . . ).

In the output file, the observable counts gives the average number of updates that
are done, until a measurement is performed.

This has been used to study the fixed density KT tranistion in the Bose Hubbard
model.

B.2 Correlation functions

In the ALPS-input file, the following settings invoke a measurement of dynamical
Green’s functions

MEASURE[ Dynamic Green]=true
MEASURE[ Dynamic SzSz ]=true
GREENS FUNCTION DISCRETISATION=300
c o r r e l a t i o n f i l e=” f i l e t o s t o r e c o r r e l a t i o n f u n c t i o n ”
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The first line invokes a measurement if 〈ai(τ)a†j(0)〉 (or 〈S−i (τ)S+
j (0)〉 for spin models),

while the second one does FT (〈n(τ)n(0)〉) = 〈|ñk,ω|2〉 (or the same for Sz for spin
models).
GREENS FUNCTION DISCRETISATION is the number N of time slices for the correlation

function measurement. Thus ∆τ = β/N is the time difference between to time slices
and ∼ 1/∆τ is the maximal energy that can be resolved.

Note, that the correlations are not stored in the usual way. The output is not seen
in the *.out.xml file because of the large amount of data. The correlation functions
are only stored in the correlation file in binary format.

The data can only be extracted with the evaluate greens program.

B.2.1 Additional Measurements

The static structure factor
SO(k) = 〈O−kOk〉

is already implemented in ALPS, where the operator O is either the density n or the
Sz operator for spin models. It can be used by setting

MEASURE[ St ructure Factor ]=true

I added the Suzeptibility

χO(k) =
∫ β

0
dτ 〈O−k(τ)Ok(0)〉 .

See SSE.Measurements.cpp for details of the implementation.

MEASURE[ S u s c e p t i b i l i t y ]=true

The name of the observabele in the *.out.xml file is Density Susceptibility or
Spin Susceptibility depending on the model.

If the standard ALPS parameter

MEASURE[ Local Density ] = true

is set, not only the local density 〈ni〉 (or 〈Szi 〉) is stored under the name Local Density
but also 〈n2

i 〉 is stored (Local Density2̂).

B.3 Technical Details

B.3.1 Mapping to continuous time

To each element of the operator string, a time τi is attached. These M times are
randomly chosen in the interval [0, β] from a uniform distribution. Note that in the
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SSE program all times are between [0, 1] in some cases this has to be taken into account.
To sample the times, I take the cumulative sum of M + 1 exponentially distributed
numbers and divide it with the last number. This is much faster than sorting M
uniformly distributed numbers.

The variable

std : : vector<double> tau ;

stores the times of the vertices.

B.3.2 Implementation of Green’s function measurements

The Greens class stores the value of the Green’s function on a discrete space–time
grid. The first index of std::vector<std::valarray<double> > greens ; is the
site index, the second one the (discrete) time index.

class Greens
{
public :

Greens ( int L = 1 , int nTau = 1) :
L (L) , nTau (nTau ) , worm counter (0 )

virtual ˜Greens ( ){}
void setWeight (double w){ weight = w; } ;
void startNewWorm ( )
{ worm counter ++; }

void add ( const int &l ,
const t i m e s t r u c t& t1 , const t i m e s t r u c t& t2 ,
bool up ) ;

void a d d t r i v i a l l o o p ( const int & s ) ;
void add ze ro z e ro (double weight00 , int z e r o s i t e = 0 ) ;
std : : va larray<double> getTimeSl i ce ( int t ) const
{ return g r e e n s [ t ] / ( worm counter ∗ 1 . 0 ) ; }

protected :
s td : : vector<std : : va larray<double> > g r e e n s ;
double weight ;
int L , nTau ; // s i z e o f d i s c r e t i z e d space and time
int worm counter ;

} ;

Additionally, operators = and + are defined, as well as the operators >> and << for
input and output to an ALPS dump.

public :
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Greens& operator=(const Greens & other ) ;
friend Greens operator+(const Greens &g1 , const Greens &g2 ) ;
friend std : : ostream& operator<<(std : : ostream&, const Greens &);
friend a lp s : :ODump& operator<<(a lp s : :ODump&, const Greens &);
friend a lp s : : IDump& operator>>(a lp s : : IDump&, Greens &);

In the program it is very simple to use this class. First, initialize an instance of
greens. Resizing can be done afterwards.

Greens green1 ( ) ;
Greens green2 ( 1 0 0 , 1 3 4 ) ; //100 s i t e s and 134 time s l i c e s
green1 . r e s i z e (50 ,12)

During the loop – update one can add some weight along the path of the worm. In
the following example the loop has a weight of 0.5 and is added from t1 in upward
direction if direction is true until t2 at site s.

green2 . setWeight ( 0 . 5 ) ;
green2 . startNewWorm ( ) ;
during the loop update :

t i m e s t r u c t t1 ( time1 ) ;
t i m e s t r u c t t2 ( time2 ) ;
bool d i r e c t i o n = true ; // t rue . . . move up ,

// f a l s e . . . move down in time
green2 . add ( s , t1 , t2 , d i r e c t i o n )

Measurements within the ALPS framework can be done as follows. First, a
RealVectorObservable has to be added to the ObservableSet measurements

ObservableSet measurements ;
measurements << a lp s : : make observable (

a lp s : : RealVectorObservable ( ”Greens func t i on ” ) ,
i s s i g n e d ) ;

Later, after the Greens function has been measured, one can add it to the Observable-
Set. If you want to measure the equal time greens function,

std : : va larray<double> g = green2 . getTimeSl i ce ( 0 ) ;
measurements [ ”Greens func t i on ” ] << g ;
green2 . r e s e t ( ) ; // r e s e t a l l v a l u e s to zero

After the simulation finished, the data can be stored into a file:

s td : : s t r i n g name = ” green . data ” ;
OXDRFileDump dump(name . c s t r ( ) ) ;
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dump << c o r r e l a t i o n s ;

In some cases, e.g. for the 〈Sz(τ)Sz(0)〉 correlation function, it is convenient to
perform a Fourier Transformation (FT) in space and time. The values of 〈Szi (τ)〉
are stored, then a FT is applied to obtain S̃k,ω = FT (Szi (τ)). In Fourier space,
the convolution is a product, and the correlation function can easily be measured
FT (〈Sz(τ)Sz(0)〉) = 〈|S̃zk,ω|2〉.

To use this fact, the class FFTGreens is derived from Greens.

class FFTGreens : public Greens
{
public :

FFTGreens ( int L = 2 , int nTau = 8 ) ;
FFTGreens ( const FFTGreens & other ) ;
void trans form ( ) ;
std : : va larray<double> g e t w s l i c e ( int ) ;
s td : : va larray<double> g e t k o f w ( int ) ;
s td : : va larray<double> g e t k o f t a u ( int ) ;
void r e s i z e ( int L , int nTau ) ;
FFTGreens& operator=(const FFTGreens & other ) ;
void operator+=(const FFTGreens &other ) ;
friend FFTGreens operator+(const FFTGreens &g1 ,

const FFTGreens &g2 ) ;
private :

s td : : vector<std : : va larray<double> > f f t g r e e n s ;
} ;

One can choose between gω(k) , gk(ω) and ,gk(τ) where the variable in brackets is the
index in the valarray<double> that is returned from the functions get w slice(int),
get k of w(int), or get k of tau(int) respectively.

As a non trivial example, I show how to measure the polariton density–density
correlation function. First record all Szi (τ) values for both site types (Atoms live on
sites with site type 1 and photons have site type 0). Since the operators + = are
defined, it can be calculated as follows:

FFTGreens szsz0 , // sz on s i t e t y p e 0
s z s z1 ; // sz on s i t e t y p e 1

for loop over s i t e s s :
s z s z0 . add ( s , . . . ) // record Sz va l u e s

FFTGreens p o l a r i t o n ;
p o l a r i t o n = sz s z0 ; // do t h i s in two s t e p s to
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p o l a r i t o n += sz s z1 ; // avoid f f t i n i t ( )
p o l a r i t o n . trans form ( ) ;
std : : va larray<double> g = p o l a r i t o n . g e t k o f t a u ( 3 ) ;
measurements [ ”Greens func t i on at k = 3” ] << g ;

Helper classes To apply the periodic boundary conditions in continuous time I used
the very convenient class time struct from the worms code of the ALPS library. This
is a double variable which is defined on the interval [0, 1]. The operators +, − and =
and a conversion to double operator double() are available. The operators +, and −
care for the pbc. Since the Green’s functions are measured on time grid I also wrote a
small helper class discrete time struct which is an integer with periodic boundary
conditions.

B.3.3 Problems with the SSE ALPS program

Special care has to be taken for the measurement of 〈ai(0)a†i (0)〉. I drop the time and
site indices for better readability, then 〈aa†〉 = 〈n〉+ 〈[a, a†]〉. For bosons, [a, a†] would
be 1. On a computer, we have to limit our self to hardcore bosons with some maximum
quantum number Nmax and the commutation relation reads

[a, a†] =

{
−n if n = Nmax

1 otherwise

To include this behaviour, the function add zero zero(weight,distance) has been
added to the Greens class. It allows to manually add some weight to the correlation
function at zero distance in imaginary time.

The default value for distance=0. The distance between two sites is calculated in
ALPS with the function distance(i,j). On a lattice with more than one sitetype
distance(i,i) may give different results depending on the sitetype of i. E.g. in the
Jaynes–Cummings–Hubbard one has to distinguish whether the loop starts on sitetype
0 (photonic site) or 1 (atomic site). If siteype(i)=0, then distance(i,i) = 0. If
siteype(i)=1, then distance(i,i) may give some result not equal to zero.

Thus, add zero zero(weight,distance(s,s)) should be used with the ALPS in-
ternal distance function where s is the site where the loop starts.

B.3.3.1 Start of the loop update

The right way to start the loop update, is to randomly choose a point in the space–time
plane (i, τ). In the original program a vertex has been chosen randomly which is ok
as long as the Green’s function is not going to be measured. Assume we want to start
our at some point S in the (i, τ)-plane (see Fig. B.1). We chose the direction of the
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S

 B

A

Figure B.1: Part of an SSE configuration with two operators (blue). S marks the starting point of
the loop if we used a worldline representation. A and B are the vertices where an SSE loop may start.

loop stochastically and search for the vertex which is closest to S in that direction.
If we went upwards we would use A as our starting vertex. Thus we have to add the
measurement of the propagator for the distance S − A prior to the start of the loop.
When the loop closes, we have to check whether the loop head comes from somewhere
above A or from vertex B. If the loop closes from somewhere above we have to add
the propagator on the line A−S. If it closes from B we have to subtract along A−S.





C Fit to Bogoliubov Theory

In this appendix we want to point out some issues with a simple maximum likelihood
fit of spectral data to Bogoliubov theory. Since there are too many parameters in the
fit, there is not one minimum in the least squares procedure but a broad distribution
of possible parameters that are consistent with the data.

In particular we want to show, that a simple fit of the data in Fig. 5.8 (a) to
Bogoliubuv theory should always be taken with care. We replotted the maxima of the
spectral function in Fig. C.1 (black diamonds). Let us call the maxima of the peaks
(our data) Dk ± σk.

We want to fit the peak maxima to Bogoliubov theory, which predicts excitations at
energies

EBk (n, t/U) = ±1/U
√
Kk(2nU +Kk) (C.1)

with

Kk = 4 t (sin(kx/2)2 + sin(ky/2)2).

(The 1/U stems from the fact that we usually measure EBk in units of U)
Performing a simple least squares fit one wants to maximize the likelihood function

R(n, t/U) =
1
Z

exp
{
−(Dk − Ek(n, t/U))2

2σ2
k

}
. (C.2)

Since we are only interested in the maximum we can neglect the normalization factor
Z.

In Fig. C.1 we show the function Ek(n, t/U) for the maximum of the R(n, t/U) in the
space (n, t/U). Looking only at the figure one could be perfectly satisfied. However,
much more important than the maximum of R is the actual shape, which is plotted in
Fig. C.2. If R was just of Gaussian form – i.e. one peak that drops exponentially with
the distance from the center of the peak – one could indeed take just the maximum of
R. In our case we see a narrow region of large R. Thus if we keep one parameter fixed,
say t/U which is usually known from the experimental setup, we can find a fairly good
approximation to our data varying only n.

To be precise, the parameters of our simulation are t/U = 0.1 and n = 1, while the
best fit to Bogoliubov theory gives t/Ubog = 0.042 and nbog = 2.09.
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Figure C.1: Original data and best maximum likelihood (least squares) fit. Data is taken from

Fig. 5.8 (a). Original data Dk ± σk and best fit EBk (n, t/U).

Figure C.2: Logarithm of the likelihood obtained from the data in Fig. 5.8 and Fig. C.1. The cross
marks the maximum of the likeli-hood.
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This is a problem, which occurs when experimental data is fitted to Bogoliubov
theory. As long as the dispersion is ”Bogoliubov-like”, one can always find a good
approximation to Bogoliubov theory – although with renormalized parameters. Thus,
given only one experimental parameter, one can not deduce the other parameter from
a maximum likelihood fit to Bogoliubov theory.





D The Tower of Babel: Conventions for
the Holstein model

The Holstein model of spinless fermions has been studied intensively for more than
50 years. Unfortunately there are nearly as many definitions of the parameters of the
model as there are papers on it. In this appendix I want to summarize some of the
different definitions.

In all of the works considered the electron hopping parameter is called t and the
bare phonon Hamiltonian is ω0

∑
i b
†
ibi plus some constant terms that only shift the

energy.

(i) The most commonly used version of the electron phonon coupling is

He,ph = gI
∑
i

(b†i + bi )ni (D.1)

This has been used by Sykora et al., [130, 124, 125], in the QMC paper by
McKenzie et al.,[115], in the DMRG work by Bursill et al.. [120], in Jeckelmann et
al. [131, 121] where gII = γ (in Ref. [121] they use the additional parameter α
which is gIII , see below),

In Ref. [115] a dimensionless parameter λ = g2I
πtω has been defined which is similar

to that discussed in (ii) up to a constant factor π/2.

The definition above is also used within this work.

(ii) The alternative definition

He,ph =
√
εpω0

∑
i

(b†i + bi )ni (D.2)

has been used in works from Fehske et al. [122, 132, 133] and by Hohenadler et
al. [123].

In these works, the dimensionless parameters α = ω0/t (the adiabaticity param-
eter), gII =

√
εp/ω0, and λ = εp/2t have been introduced to characterise the

adiabatic (α� 1), the anti-adiabatic (α� 1), the strong coupling (λ� 1), and
weak coupling (λ� 1) regimes.
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With these definitions Eq. D.2 reads

He,ph = gIIω0

∑
i

(b†i + bi )ni, (D.3)

which can be found in Jeckelmann and White [134], in the works of Fehske and
coworkers [135, 136], in Loos et al. [137],

(iii) Furthermore, the definition

He,ph = gIII
∑
i

xini (D.4)

can be found in Jeckelmann and White. [121] (gIII = α), in the work of Hirsch
and Frandkin [117] (gIII = λ) and in Creffield et al. [126].

(iv) Mona Berciu [138] studied the polaron problem and defined the Holstein model
as

He,ph =
g√
N

∑
k,q

c†k−qck(b
†
q + b−q), (D.5)

which is the same as in (i) appart from factors proportional to N due to the
Fourier transformation of ci → ck.

One could in principle change from definition (i) to (iii) easily, by using the phonon
elongation instead of creation and anihilation operators xi = 1√

2ω0
(b†i + bi ). In many

works however, the phonon elongation has been defined as xi = b†i + bi , redefining the
units of the phonon elongation. [131, 120, 123]
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