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Abstract

Organic semiconductors in organic electronic devices generally exist as thin films and
both their structural quality and crystalline order significantly impact the device perfor-
mance. Hence, it is of major importance to solve their crystal structures. However, in
thin films, often surface-induced crystallographic phases form which are not existent in
powders or single crystals. As a consequence their crystal structures cannot be solved
with the main established techniques, i.e. single-crystal and powder diffraction. It is
therefore desirable to develop a procedure to solve surface induced crystal structures
from grazing incidence X-ray diffraction – a perfect technique to investigate thin (or-
ganic) films. For this purpose the software PyGid was developed.

PyGid is tailored to the evaluation of reciprocal space maps recorded with a one-
dimensional detector. The most important features of PyGid are quick and easy visu-
alization of the data, transformation to q-space, indexation of Bragg peaks as well as
proper intensity extraction. Crystal structures can then be obtained with any program
that can fit molecular packings to a list of measured intensities. In the present work,
concepts and some implementation details will be given. Up to now, PyGid was used to
solve three surface induced phases of organic molecules. With the help of these exam-
ples, the developed structure solution procedure will be introduced and its possibilities
and shortcomings will be discussed.

Another major – but still unsolved – point in organic thin film research is the question
why surface induced phases form. The lack of knowledge in this field is partly due to
the fact that studies published in literature are primarily focused on morphology and
not on crystallographic properties. Because of that the capabilities of PyGid were used
to thorougly investigate crystallographic properties of promising organic semiconductors
pentacene and sexithiophene. The thermal expansion and thermal phase behavior of
pentacene thin films as well as its growth on organic dielectrics was analyzed. Further-
more, the influence of growth parameters on the phase behavior of α-sexithiophene films
was investigated

Technical Note

Parts of this work are heavily based or literally cited from the masters thesis of myself (Moser;
2008). As this paragraph these parts are typset in a sans serif fonts to distinguish them from
the rest of this work.





Kurzfassung

Dünne Schichten organischer Moleküle sind ein wesentlicher Teil organischer Elektro-
nik. Die Kristallstrukturen dieser Schichten haben einen maßgebenden Einfluss auf die
physikalischen Eigenschaften von organischen Elektronikbauteilen. Aus diesem Grund
ist es von großer Bedeutung, diese Kristallstrukturen zu bestimmen. Da sich in dünnen
Schichten aber oft oberflächeninduzierte Kristallstrukturen bilden, ist es nicht möglich,
eine der beiden Standardmethoden – Röntgenstreuung an Einkristallen oder Pulvern
– zu verwenden. Aus diesem Grund ist es notwendig, eine Methode zu entwickeln, um
oberflächeninduzierte Kristallstrukturen mit Röntgenstreuung unter streifendem Einfall
zu lösen. Um dies zu bewerkstelligen, wurde die Software PyGid entwickelt.

PyGid ist auf die Auswertung von zweidimensionalen Abbildungen des reziproken
Raums, die mit einem eindimensionalen Detektor gemessen wurden, ausgelegt. Wichtige
Anwendungen von PyGid sind schnelle und einfache Darstellung von Daten, Transforma-
tion dieser Daten in den reziproken Raum, Indizierung von Bragg-Reflexen und die Ex-
traktion von Intensitäten. Kristallstrukturen können dann mit jeder Software bestimmt
werden, die es erlaubt, die Packung von Molekülen an gemessene Strukturfaktoren an-
zupassen. In der vorliegenden Arbeit werden die Konzepte und einige implementationss-
pezifische Details von PyGid vorgestellt. Unter Anwendung von PyGid wurden bis jetzt
drei oberflächeninduzierte Kristallstrukturen gelöst. Diese Beispiele werden verwendet
um vorzustellen, wie PyGid im konkreten genutzt werden kann, um Kristallstrukturen
zu lösen. Im Weiteren werden die Möglichkeiten und Einschränkungen der vorgestellten
Methode diskutiert.

Eine weitere wichtige Frage in der Untersuchung von organischen dünnen Schichten
ist, warum sich oberflächeninduzierte Phasen überhaupt bilden. In der Literatur ist zu
diesem Thema wenig bekannt, da die meisten Studien sich hauptsächlich mit Morpholo-
gie und nicht mit Kristallstrukturen beschäftigen. Um diese Lücke zu schließen, wurde
PyGid im Laufe dieser Arbeit eingesetzt, um die kristallographischen Eigenschaften von
wichtigen organischen Halbleitern zu untersuchen. So wurde die thermische Ausdeh-
nung sowie das thermische Phasenverhalten von dünnen Pentazenschichten wie auch das
Wachstum von Pentazen auf organischen dielektrischen Schichten untersucht. Außerdem
wurde das Phasenverhalten von α-Sexithiophene in Abhängigkeit von Wachstumspara-
metern untersucht.
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1. Crystallography and Diffraction
Principles

A large part of solids is characterized by a periodic arrangement of atoms on a microscopic
scale, resulting in both periodic and anisotropic physical behavior. For example mechan-
ical, electrical and optical properties depend on the crystal structure of the material in
question.

Crystallography deals with the description of these systems by reducing them to a
repetitive element, sufficient for the description of physical properties. Conclusions can
even be drawn without regarding the actual material (i.e. the type of molecules or atoms)
but by merely taking the specific crystal structure into account. Please note that it is also
of vital importance to consider defects in crystals because they have a significant influence
on the physical properties.

In the following sections, the basic elements of crystallography will be introduced fol-
lowing the textbooks by Schwarzenbach (1993) and by Luger (1980). The introduction
on the basics of X-ray diffraction is based on the book of Birkholz (2006) and the one of
Weißmantel and Hamann (1995).

1.1. The Direct Lattice

Periodicity on microscopic scales means that a specific motif, composed of physical ob-
jects (as atoms or molecules), is repeated regularly in space. Therefore such systems are
fully described by their translational lattice. In three-dimensional space translations in 3
directions are possible.

ruvw = ua + vb + wc, withu, v and w integers. (1.1)

The lattice vectors a,b and c are the - in general oblique - base of the translation lattice
and all lattice points are linear combinations as given in Eq. (1.1). This lattice base is
also called unit cell and is a parallelepiped with volume V = (a×b)c. In crystallography,
usually not the vectors, but their magnitudes in combination with the mutual angles are
used. Therefore, the six unit cell parameters are:

a, α = ∠(b, c)

b, β = ∠(a, c)

c, γ = ∠(a,b)

19



1. Crystallography and Diffraction Principles

Table 1.1.: Notation of points, lines and planes in a lattice

uvw a single lattice point

xf , yf , zf fractional coordinates 0 ≤ xf , yf , zf < 1

[uvw] specific lattice direction (or lattice line)

〈uvw〉 all equivalent lattice lines

(hkl) one single lattice plane (Miller indices)

{hkl} all equivalent lattice planes

hkl a diffraction maximum (Laue indices)

Positions within a unit cell are described relative to the corresponding lattice point
(u, v, w) by fractional coordinates (xf , yf , zf ):

ruvw,xfyf zf = ruvw+rxfyf zf = (u+xf )a+(v+yf )b+(w+zf )c with 0 ≤ xf , yf , zf < 1
(1.2)

A very important concept in X-ray diffraction are the Miller indices. Lattice points are
referred to by their coordinates (u, v, w) whereas lattice planes are denoted by their Miller
indices. A plane can be described by the following equation:

u

m
+
v

n
+
w

p
= 1. (1.3)

Here (u, v, w) are coordinates of points in the plane, and (m,n, p) are the intersections
of the plane with the axes of the corresponding base. The ratio of the axis intersections
m : n : p is for parallel planes the same (a family of lattice planes) and it follows that
mN , nN and pN are integral multiples of m,n and p. Hence

uN
mN

+
vN
nN

+
wN
pN

= 1, (1.4)

uN
m

+
vN
n

+
wN
p

= M. (1.5)

For practical purposes, not m,n and p but

h = C/m (1.6)

k = C/n (1.7)

l = C/p (1.8)

are used where C is the least common multiple of m,n, p. h, k, l are the Miller Indices.
They are integers and equal for all parallel lattice planes.

The notation listed in Tab. 1.1 is used in crystallography by convention and will be
used in this work as well.

20



1.2. The Reciprocal Lattice

1.2. The Reciprocal Lattice

The reciprocal lattice is an important concept of crystallography especially crucial for the
description of X-ray diffraction experiments. The reciprocal lattice is - like the direct one
- an oblique translational lattice and its unit cell vectors are defined via

a∗ = 2π
b× c

a(b× c)
, (1.9)

b∗ = 2π
c× a

a(b× c)
, (1.10)

c∗ = 2π
a× b

a(b× c)
. (1.11)

The angles α∗, β∗ and γ∗ are defined in analogy to the direct lattice (page 19).
Using trigonometric functions the vector equations (1.9)-(1.11) can also be expressed

by the six scalar lattice parameters (Krischner and Koppelhuber-Bitschnau; 1994):

V = abc ·
√

1− cosα2 − cosβ2 − cos γ2 + 2 cosα cosβ cos γ (1.12)

a∗ = 2π · bc · sinα/V (1.13)

b∗ = 2π · ca · sinβ/V (1.14)

c∗ = 2π · ba · sinγ/V (1.15)

cosα∗ =
cosβ cos γ − cosα

sinβ sin γ
(1.16)

cosβ∗ =
cos γ cosα− cosβ

sin γ sinα
(1.17)

cos γ∗ =
cosα cosβ − cos γ

sinα sinβ
(1.18)

By interchanging a∗ with a, b∗ with b etc., the back-transformation from the reciprocal
to the direct lattice parameters is obtained.

All reciprocal lattice vectors h are

h = ha∗ + kb∗ + lc∗ withh, k, l integers. (1.19)

Directly from the definition of the reciprocal lattice it follows:

aa∗ = 2π ab∗ = 0 ac∗ = 0

ba∗ = 0 bb∗ = 2π bc∗ = 0

ca∗ = 0 cb∗ = 0 cc∗ = 2π

(1.20)

Finally, two important relations between direct lattice planes and reciprocal lattice vec-
tors are introduced (Weißmantel and Hamann; 1995, p.140f).

21



1. Crystallography and Diffraction Principles

1. Reciprocal lattice vectors with coordinates h, k, l are perpendicular to the direct lat-
tice plane (h, k, l).

Assuming a lattice plane which intersects the axes at: ma, nb, pc, three vectors in
this plane are found as

r1 = ma− nb, r2 = pc−ma, r3 = nb− pc

Scalar products of these vectors with h = n(ha∗ + kb∗ + lc∗) yield (consider Eq.
(1.20)):

r1h = 2π(mh− nk)
(1.6)
= 2π(m

C

m
− nC

n
) = 0;

r2h = 0 and r3h = 0 follow analogously. Hence the reciprocal lattice vector h
is perpendicular to the direct lattice plane. It also follows that every direct lattice
plane is represented as a lattice point in the reciprocal lattice.

2. The distance of equivalent lattice planes is proportional to the length of the corre-
sponding reciprocal lattice vector

dhkl =
2π

|hhkl|
. (1.21)

One possiblity of representing a plane is

ruvw · en = dhkl.

ruvw points to a lattice point contained in the lattice plane, en is a unit vector
perpendicular to this plane and dhkl the distance to the origin. With en = h

|h| and

Eq. (1.19) equation (1.21) follows immediately.

1.3. Interaction of X-rays with Matter

On interaction of an X-ray beam with matter, three basic processes - divided into elas-
tic and inelastic ones - occur. Inelastic processes cause Compton- and photo-electron
emission. Both processes are not significant for structure investigations considered here.

For this task the elastic part, stemming from electrons performing forced oscillations
with the same frequency as the incoming radiation, is used. Due to the acceleration the
charges emit dipole radiation of the same wavelength as the incoming radiation. For this
reason, such interaction is called elastic scattering. If a fixed relation between the phase
of incoming and scattered wave exists this process is called coherent elastic scattering.

For specifying the radiation commonly the wave number

|k| := 2π

λ
=
ω

c
(1.22)
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1.4. Position of the Diffraction Maxima

is used instead of the wavelength. Multiplying this number by the unit vector s of the
propagation direction leads to the wave vector

k := |k|s =
2π

λ
s. (1.23)

The only quantity which changes during the scattering process is the direction of the
momentum. The conservation of the magnitude of momentum (p = ~k) is expressed by

|k0| = |k|, (1.24)

where k0 is the primary and k the scattered wave.

1.4. Position of the Diffraction Maxima

Through interaction with the primary beam every electron in a crystal becomes the origin
of a spherical wave.1 The diffraction pattern is the result of the superposition of all these
secondary waves at specific test points where the diffraction pattern is recorded.

The electric field of a spherical wave is given by

E(r) = C(r̂)E(r̂)
exp(ik(r− r̂))

r
, (1.25)

where E(r̂) is the electric field vector at the position of the scattering center. By choosing
the origin of the coordinate system inside the crystal, |r̂| is in the order of magnitude of
inter atomic distances. Therefore, |r− r̂| >> |r̂| and so r− r̂ can be approximated by r.
On addition to this approximation, spherical waves can be substituted by plane waves if
the sample to test point distance is large

E(r) = A(r̂) exp{i(kr− ωt)} · exp(iφ). (1.26)

The new (phase)factor exp(iφ) accounts for the path difference ∆l of two X-rays of
wavelength λ and leads to interference. Hence, E(r) is the electrical field of two interfering
X-rays at the measurement point. The phase difference of two beams is obtained by (see
Fig. 1.1)

φ = 2π
∆l

λ
(1.27)

=
2π

λ
(s′ − s)r̂︸ ︷︷ ︸

∆l

.

And with equation (1.23) it follows

φ = (k− k0)r̂ = q · r̂ (1.28)

In the last step the scattering vector q := k− k0 was introduced. It will be shown below
that this physical quantity is of central importance in X-ray scattering.

1Strictly this is only true for non-polarized primary radiation. If polarized radiation - e.g. at a
synchrotron - is used, it has to be taken into account that each electron emits dipole radiation.
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1. Crystallography and Diffraction Principles

Figure 1.1.: The phase difference expressed by the path difference of two interfering
X-rays. The path difference between the scattered waves is ∆l = a− b =
r̂s′ − r̂s = r̂(s′ − s)

Relation (1.26) together with (1.28) holds for a scattering process from two scattering
centers. To calculate the electric field stemming from a solid body, an integration over
the whole volume of the crystal has to be performed

E(r) =

∫
V
d3r̂A(r̂) exp{i(kr + qr̂)}. (1.29)

A(r̂) is the amplitude of the scattered wave and depends on the atom where scattering
takes place. Typically, a discrete set of scattering centers (atoms) located inside the unit
cell is of interest. Therefore the vector r̂ for the position of one specific atom located at
(uvw, xfyfzf ) gets

r̂ = ruvw + rxfyf zf = (u+ xf )a + (v + yf )b + (w + zf )c. (1.30)

Thus the integration can be changed to a summation over all lattice points uvw and
atoms j inside the unit cell

E(r) =
∑
u,v,w

∑
j

A(rxfyf zf ,j) exp{i(kr + qruvw + qrxfyf zf ,j)} (1.31)

= exp(ikr)
∑
j

A(rxfyf zf ,j) exp(iqrxfyf zf ,j)︸ ︷︷ ︸
F (q)

·
∑
u,v,w

exp{iq(ua + vb + wc)}

= F (q) exp(ikr)
∑
u

exp{iu(aq)} ·
∑
v

exp{iv(bq)}

·
∑
w

exp{iw(cq)}.

F (q) is called the structure factor. Details are found in Sec. 1.6.
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1.4. Position of the Diffraction Maxima

1.4.1. The Laue Conditions

From equation (1.31) it can be seen that a single phase shift depends on the scalar product
of a direct lattice vector with the scattering vector q. It can be seen that maxima are
observed if the equations

aq = 2πĥ,

bq = 2πk̂,

cq = 2πl̂,

(1.32)

are fulfilled simultaneously, with the Laue indices, ĥ, k̂ and l̂ taking integer values between
−∞ and ∞.

The relations (1.32) are known as Laue conditions. From the equations (1.20) and
(1.19) it follows that the Laue conditions are simultaneously fulfilled if the scattering
vector equals a reciprocal lattice vector

q = h.

Here, it becomes clear why the reciprocal lattice is important for the description of X-ray
scattering.

It has to be noted that the relation

n · (h, k, l) = ĥ, k̂, l̂

holds between Laue and Miller indices. If n > 1, the triplet ĥ, k̂, l̂ corresponds to a higher
order diffraction maximum from the lattice plane (hkl). Please note that in the following
Laue indices will be written without the hat. But to distinguish, Miller indices are written
in parentheses and Laue indices are not (Tab. 1.1).

1.4.2. The Interference Function

To gain better understanding of the above sums (Eq. (1.31)) they are further evaluated
by applying the formula of the geometric sum (Birkholz; 2006, p.7). To get an expression
for the intensity - the measurable quantity - the evaluated sums are multiplied by their
complex conjugate. The resultant expression reads

I(q) = |F (q)|2 sin2(N1aq/2)

sin2(aq/2)
· sin2(N2bq/2)

sin2(bq/2)
· sin2(N3cq/2)

sin2(cq/2)︸ ︷︷ ︸
Interference function

. (1.33)

The last three terms of this equation are known as the interference function. This function
differs significantly from zero only if the argument of the sine-function in the denominator
becomes an integral multiple of π which is equivalent to fulfilling the Laue conditions. An
exemplary graph of the interference function is plotted in Fig. 1.2.
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1. Crystallography and Diffraction Principles

Figure 1.2.: The interference function for a one-dimensional lattice I(q) = sin2(Naq/2)

sin2(aq/2)
,

for a = 1 and N = 15. It can be seen that maxima of intensity are
observed if the product aq becomes an integral multiple of 2π. The
maximum intensity is determined by N2 = 225 and plotted as a dotted
line.

1.4.3. The Scattering Vector

The scattering vector q has already been introduced above (Eq. (1.28)). The magni-
tude of this vector can be calculated from the scattering angle and the used wavelength.
Considering elastic scattering (|k| = |k0| = 2π

λ ) it can be derived as

|q| =
√

(k− k0)2

=
√

k2 − 2k0k + k2
0

= 2π
λ

√
2− 2 cos 2θ

∣∣·22
= 4π

λ

√
1− cos 2θ

2︸ ︷︷ ︸
sin θ

= 4π
λ sin θ,

(1.34)

where 2θ is the angle enclosed by the wave vectors of the primary and scattered beam.

1.4.4. The Scattering Process in Direct Space

It has already been shown that the Laue equations (1.32) are fulfilled if the scattering
vector coincides with a reciprocal lattice vector.
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1.5. Bragg Peak Positions and Translation Lattice

Figure 1.3.: Scattering geometry at an arbitrary lattice plane

In section 1.2 it is shown that every reciprocal lattice vector is perpendicular to a specific
set of direct lattice planes and that the distance between these lattice planes dhkl is given
by

dhkl = n
2π

|qn|
,

where the different orders of diffraction are considered by the factor n.
By substituting that for the left hand side in equation (1.34) the Bragg Equation

nλ = 2dhkl sin θ (1.35)

is derived.
From the elastic nature of the process and the fact that the scattering vector is perpen-

dicular to the lattice plane it follows that the incidence angle θ and the exit angle have to
have the same value (Fig. 1.3) to observe a Bragg peak.

The Bragg equation and this symmetry condition are implications of the Laue condi-
tions and it can be concluded that a diffraction maximum is observed if both criteria are
simultaneously met by the experimental settings.

1.5. Bragg Peak Positions and Translation Lattice

The interference function (Eq. (1.33)) expresses that the observed intensity pattern is a
function of the scattering vector and the lattice parameters a,b and c. Therefore it is
clear that the positions of the Bragg peaks depend only on the translational lattice and
the motif does not have to be taken into account. Furthermore to each Bragg peak a
reciprocal lattice vector can be assigned. So a scattering experiment yields a set of Bragg
peaks and the corresponding reciprocal lattice vectors. The matching translational lattice
is found by determining a base a∗,b∗, c∗ which describes all these vectors by integer
coordinates.
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1. Crystallography and Diffraction Principles

1.6. The Intensities of Bragg Peaks

The structure factor was already introduced above for point charges inside the unit
cell. In the following it is derived for more realistic cases. The electron density ρe of
the atoms is taken into account by introducing the atomic form factor f

f =

∫
at
ρe(r

′) exp(−iqr′)dr′. (1.36)

The structure factor F is defined by taking the electron density (ρe) of the whole
unit cell into account

F =

∫
UC

ρe(r
′) exp(−iqr′)dr′ (1.37)

=
N∑
n=1

∫
at
ρe(r

′) exp(−iq(r′ − rxfyf zf ,n))dr′ (1.38)

=

N∑
n=1

fn(q) exp(iqrxfyf zf ,n). (1.39)

In the second and third step, the expression for the atomic form factor (Eq. (1.36))
was inserted into the structure factor equation. Hence the integration was reduced to
a summation over the form factors of the atoms fn at the discrete positions rxfyf zf ,n
inside the unit cell.

From the interference function (Eq. 1.33) it is seen that intensity can only be
observed if the vector q corresponds to a reciprocal lattice vector h. Hence, it is only
necessary to calculate the structure factor for these scattering vectors

hrxfyf zf = (ha∗ + kb∗ + lc∗)(xfa + yfb + zfc)

= 2π(hxf + kyf + lzf ).
(1.40)

Substituting this expression into Eq. (1.37) yields

F (hkl) =
N∑
n=1

fn(h) exp(2πi(hxf,n + kyf,n + lzf,n) (1.41)

=
N∑
n=1

fn(h) exp(2πi · hrxfyf zf ,n). (1.42)

1.6.1. The Electron Density as Fourier Series

Eq. (1.37) expresses that the structure factor is the Fourier transform of the electron
density within the unit cell. The position vector is now again expressed via the
fractional coordinates (xf , yfzf ) and the volume element dr ≡ dV is expressed by
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1.6. The Intensities of Bragg Peaks

an infinitesimal parallelepiped built from the three base vectors of the direct lattice
dV = da[db× dc] = a[b× c]dxfdyfdzf = V dxfdyfdzf . Hence it follows

F (hkl) = V

∫
UC

ρe(xf , yf , zf )e−2πi(hxf+kyf+lzf )dxdydz, (1.43)

and the electron density ρe is therefore the inverse Fourier transform with the structure
factors as amplitudes. Due to the fact that h, k and l are only integers the integral
can be expressed as a triple sum over all possible values for the Laue indices

ρe(xf , yf , zf ) =
1

V

∞∑
h=−∞

∞∑
k=−∞

∞∑
l=−∞

F (hkl)e2πi(hxf+kyf+lzf ). (1.44)

This representation can be derived intuitively by developing the periodic function
ρe(xf , yf , zf ) into a Fourier series and inserting this series into Eq. (1.43) or formally
from Fourier transform theory (Bennett; 2010; Shmueli; 2007).

The representation of the electron density as a Fourier series leads to fundamental
interpretations:

1. The intensity of each Bragg peak represents the squared amplitude of a plane
wave which interpolates the electron density. Hence, strong peaks indicate the
frequency and direction of strong electron density variations.

2. Plane waves contain only information about the electron density in the direction
of the wave vector and no lateral one.

3. Higher q-reflections correspond to higher frequencies and hence are sensitive to
electron density details on a smaller scale.

Some more details about the Fourier series representations and illustrations are found
in Appendix A.

1.6.2. The Phase Problem

It follows from above that the structure factor is a complex quantity and hence consists
of a real and imaginary part

F (h) = A(h) + iB(h). (1.45)

Writing a complex number as vector in the complex plane it can also be expressed via
its amplitude and the angle the vector encloses with the positive ex-axis. Hence

A(h) = |F (h)| cos(ϕ(h)),

B(h) = |F (h)| sin(ϕ(h)),
(1.46)

and therefore

F (h) = |F (h)|(cos(ϕ(h)) + i sin(ϕ(h))) = |F (h)| exp(iϕ(h)). (1.47)

29



1. Crystallography and Diffraction Principles

Considering that the intensity - the quantity observed in an X-ray experiment - is
proportional to the squared magnitude of F

I ∝ |F |2 = FF ∗ = |F |2 exp(iϕ(h)) exp(−iϕ(h))︸ ︷︷ ︸
≡1

,

it is obvious that the phase is not measured in an X-ray experiment. Therefore an
inverse Fourier transformation is not possible to obtain the electron density. This fact
is known as the phase problem. Through the years several methods for retrieving the
phase information or circumventing the phase problem have been developed.

Patterson Method

Patterson (1934) developed a first systematic approach to structure determination.
Starting point for this method is the fact that, while the structure factors depend on
the positions of the atoms within the unit cell, the relative intensities depend on the
differences of these vectors. This is demonstrated by following Shmueli (2007)

I(h) ∝ |F (h)|2 (1.48)

= F (h)F ∗(h) (1.49)

=
∑
j

∑
k

fjfk exp[2πih · (rj − rk)]. (1.50)

A Fourier transformation of the squared structure factor yields the autocorrelation
function of the electron density with the correlation vector u; i.e. u represents an
inter atomic distance (Shmueli; 2007)

P (u) =
1

V

∑
h

|F (h)|2 exp(−2πih · u) (1.51)

=

∫
cell

ρ(r)ρ(r + u)d3r. (1.52)

Eq. (1.51) is the Patterson function which is the basis for the Patterson Method. It
has the following properties:

• It has the same periodicity as the electron density and hence both can be de-
scribed by the same unit cell. But, while N atomic peaks are observed for the
electron density ρe(r), N2 peaks are observed for the Patterson function. There-
fore the unit cell can be quite crowded by Patterson peaks leading to substantial
peak overlaps.

• It is always centro symmetric. This results from the fact that it depends on inter
atomic distances and the corresponding scattering factors of involved atoms.

For details about the Patterson method please consult for example Shmueli (2007)
or Bennett (2010). Here it is just noted that based on the Patterson function crystal
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1.6. The Intensities of Bragg Peaks

structures can be solved if heavy atoms or known fragments are present in the investi-
gated material. While the presence of heavy atoms is not very likely in organic crystals,
known fragments might be present. Molecular shapes can be calculated isolated from
any crystal structure. These calculated molecular shapes are not influenced by the
weak van der Waals forces, which govern molecular crystals. Thus, known fragments
(e.g. intra molecular distances of atoms) are expected to be present in a molecular
crystal.

To conclude, Patterson methods might be useable for structure determinations of
organic thin films but have not been tested during this work.

Direct Methods

In contrast to Patterson methods, where some prior knowledge about the investigated
material is essential, direct methods do not rely on prior knowledge. Therefore they
might also be regarded as an ab-initio crystal structure solution procedure. The main
concept of direct methods is that the phases of some structure factors can be deter-
mined; e.g. from space group considerations. Then, special sets of structure factors
can be constructed and yet unknown phases predicted by probabilistic methods. The
probability to find the correct crystal structure solution with direct methods is propor-
tional to the number of measured reflexes. For structure determination on molecular
single crystals typically several thousands of reflexes are used to determine around
hundred parameters (fractal coordinates). Keeping in mind, that at best one to two
hundred peaks can be observed from thin organic films it is obvious that this method
cannot be applied to these systems.

More details about direct methods are again found in the books by Shmueli (2007)
and Bennett (2010).

Direct Space Methods

Direct and Patterson methods are also known as reciprocal-space methods because
they are based on structure factor amplitudes (|Fhkl|, Eq. (1.46)) measured in the
X-ray experiment. Another approach is chosen by direct space methods. There, test
crystal structures of the molecules are randomly sampled in direct space and the
corresponding scattering pattern is calculated. This is repeated until the calculated
scattering pattern fits the experimental data. Due to this approach the phase problem
is circumvented, because starting from a “known” crystal structure, the scattering
pattern can readily be calculated. Rietveld (1969) developed the first direct space
method for powder diffraction, where it is virtually impossible to extract the required
number of structure factor amplitudes necessary for direct or Patterson methods.

In essence, direct space methods are global optimization procedures of (potentially)
great complexity. Because of the increase in computing power and the availability
of efficient global optimization algorithms these methods have great potential today.
Algorithms used are Monte Carlo search with simulated annealing or parallel tem-
pering as well as genetic algorithms. Direct space methods can also be regarded as
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1. Crystallography and Diffraction Principles

a basic (brute-force) approach which can be executed with minimal input. But of
course chances to find a solution increase if some prior knowledge is included, because
then the complexity of the optimization problem is reduced.

During an optimization procedure a criterion to measure the quality of a test model
is needed. Therefore a cost function, depending on the optimized parameters is intro-
duced and minimized during the optimization. For powder diffraction for example,
the χ2-misfit between a calculated powder pattern and the experimentally observed
one is frequently used. If structure factor amplitudes can be extracted the χ2-misfit
between observed (Fobs) and calculated structure factors (Fcalc) can be used

χ2 =
∑
i

(|Fobsi |2 − |Fcalci |2)2

σ2
Fobsi

, (1.53)

with σFobsi
the standard deviation of the observed structure factor amplitude. Choos-

ing this approach, one is not limited to the usage of cost functions based solely on
X-ray scattering data. It is also possible to use a properly weighted sum of cost func-
tions, e.g. one taking the X-ray data into account and a second one which considers
the energy of the packing

Ctotal = A · Ccryst +B · Cenergy. (1.54)

Several software packages exist which employ direct space methods for crystal struc-
ture solutions. Please consult the paper by Favre-Nicolin and Černý (2002) for refer-
ences.

For this thesis the software FOX published in the above paper was successfully
used to solve surface induced phases of three different organic materials (See Chap.
4) by solely taking X-ray scattering data into account. This reveals that direct space
methods have large potentials in the field of crystal structure determination of new
systems.

Energy Based Optimization

As indicated above it is also possible to consider energetic calculations during a packing
optimization. It is even possible to derive crystallographic structures solely by packing
optimizations using an energy based cost function calculated by force field or density
functional theory techniques. There are several examples of a successful application
of this method (Moser et al.; 2009; Yoshida et al.; 2007; Nabok et al.; 2007; Puschnig
et al.; 2003; Hummer et al.; 2003).

To determine the quality of results obtained that way, a comparison of the resulting
structure factors with experimental intensities is obligatory. This step may also be
used to select the proper solution from a set of solutions similar in energy. More
details about this procedure are found in Chap. 4 or in one of the above papers.
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2. Experimental Details

The aim of an X-ray experiment is to record the spatial distribution and intensities
of X-ray diffraction peaks to gain insight into the micro structure of materials. As
known from Sec. 1.4.4, Bragg reflexes are only observed at distinct positions in space
when the Laue conditions are fulfilled. Especially for unknown systems it is therefore
in general necessary to scan the reciprocal space over a large volume for diffraction
peaks; i. e. orientation and length of the scattering vector have to be changed.

In an experiment, the reciprocal space is scanned by rotating the detector and
the sample on a goniometer around a common center of rotation. During the scan all
motor positions and the diffracted intensities are recorded. To obtain crystallographic
data the scattering vectors are calculated from the recorded motorpositions.

In this chapter first the implications of specific sample properties for the experi-
ment are discussed. Then the used coordinate systems are introduced. Subsequently
possible scans and different goniometer geometries are introduced and the equations
for transforming the recorded data to q-space derived.

2.1. Experiments with Polycrystalline Materials

X-ray diffraction maxima are observed if the Laue conditions are fulfilled; i.e. if the
scattering vector equals a reciprocal lattice vector. If polycrystalline samples are in-
vestigated the superposition of the reciprocal lattices of all the crystallites determines
how the Laue conditions can be fulfilled. It also determines which information can be
obtained from a sample with specific properties. Details for selected systems will be
discussed in the following.

2.1.1. Single Crystals

A single crystal is characterized by a perfect motif arrangement. The corresponding
reciprocal lattice is a set of points. To observe a Bragg reflex the scattering vector has to
coincide with one of these points. This makes it necessary to change the length as well
as the orientation of the scattering vector to record a specific Bragg peak (Fig. 2.1).

2.1.2. Powder

A crystalline powder consists of randomly oriented crystallites. The corresponding recip-
rocal lattice superposition is a set of spheres - each radius corresponding to one lattice
plane distance. Hence the orientation of the scattering vector is not important any more
because a fraction of crystallites will always be oriented correctly for observing a Bragg
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2. Experimental Details

reflex. This means, each lattice plane distance can be investigated by only changing the
length of the scattering vector via changing the scattering angle 2θ (Fig. 2.2).

2.1.3. Two-Dimensional Powder

A two-dimensional powder is an intermediate case between a single crystal and a crystalline
powder. Typical examples are organic thin films formed by physical vapor deposition onto
isotropic surfaces. A two-dimensional powder consists of crystallites oriented with the same
lattice plane parallel to a substrate surface but not showing in-plane alignment. Missing
in-plane alignment means that crystallites are randomly oriented around the surface normal
(Fig. 2.3(a)).

The resulting reciprocal lattice superposition is a set of rings where the radii are deter-

mined by the in-plane component of the scattering vector, qp =
√
q2
x + q2

y . The z-positions

of the rings correspond directly to qz.

The shape of this reciprocal lattice implies that the rotation of the sample around the
surface normal does not have to be taken into account. Performing at each qz a radial
scan along qp reveals all possible information.

Texture

Two-dimensional powder is the name given to the phenomenon outlined above. A de-
scription of two-dimensional powders is possible with the concept of texture. A powder of
crystallites is said to have a texture if the crystallites are not oriented randomly but show
some preferred orientation; i.e. a large fraction of the crystallites is oriented in the same
way.

A texture where one degree of freedom (here the rotation around the surface normal)
is present is called fiber-texture and the direction of preferred orientation is the fiber
axis (Birkholz; 2006, p. 183ff). In more detail the texture is specified by giving the
crystallographic plane (hkl) perpendicular onto the fiber axis. In this framework, a two-
dimensional powder is characterized by a fiber axis parallel to the substrate surface normal.

In a real two-dimensional powder, it is likely to observe deviations from a very strict
alignment; i.e. an onset of a three-dimensional distribution is present. This results in the
observation of partial Debye-Scherrer rings in diffraction patterns.

2.2. Coordinate Systems

Frequently the relation between the microstructure of the film and the substrate prop-
erties is of interest; e.g. crystallographic orientation of the film relative to the crystal-
lographic directions of the substrate; which lattice plane is parallel to the substrate
surface. That is, one is interested in the relation between the sample coordinate sys-
tem and the crystal system. As mentioned above detector and sample are positioned
using a goniometer. The goniometer commonly operates in the laboratory coordinate
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2.2. Coordinate Systems

Figure 2.1.: Two sets of lattice planes of a single crystal and the corresponding re-
ciprocal lattice. The orientation of the crystal as well as the length of
the scattering vector has to be changed for recording the Bragg reflex of
another family of lattice planes (Moser; 2008).

Figure 2.2.: Reciprocal lattice superposition of a crystalline powder. Only the length
of the scattering vector has to be taken into account. When the tip of the
scattering vector intersects a sphere (of reflection), a Bragg peak will be
observed (Moser; 2008).

(a) In a two-dimensional powder, all the crys-
tallites are aligned with the same lattice plane
(here (001)) parallel to the substrate surface,
but are rotated arbitrarily around the surface
normal.

(b) The reciprocal lattice superposition con-
sists of a set of concentric circles.

Figure 2.3.: Schematic drawing and reciprocal lattice superposition of a two-
dimensional powder (Moser; 2008).

35



2. Experimental Details

Figure 2.4.: The sample coordinate system. Left: The incoming k0 and scattered
wave vector kf are shown. Also the incidence angle (αi), the in-plane
(θf ) and out-of-plane (αf ) scattering angles are indicated. Right: The
scattering vector q = kf −k0 and its in-plane (qp ≡ qxy) and out-of-plane
(qz) components are shown.

system. In this section these three coordinate systems (all right handed) are intro-
duced. The mathematical relations between them – as significant for the experiments
– will be derived in Sec. 2.5 and 2.6.1.

2.2.1. Sample System

The sample coordinate system (Fig. 2.4) is defined with the z-axis perpendicular on
the sample surface. The x- and y-axis are chosen in the plane of the substrate surface.
The incoming wave is contained in the (-x,z)-plane. Frequently it is possible to rotate
the sample around its surface normal (rotation angle φ). In this case the incoming
wave is contained in the (-x,z)-plane for zero φ-rotation. The angles of incoming and
diffracted wave are (Fig. 2.4 (left)):

θi . . . in-plane incidence angle (equals zero in Fig. 2.4 (left))

αi . . . out-of-plane incidence angle

θf . . . in-plane scattering angle

αf . . . out-of-plane scattering angle

For two-dimensional powders the rotation of the sample around its surface normal has
not to be considered (Fig. 2.3). Hence the angle θi will be treated as zero throughout
this work.

Fig. 2.4 (right) shows the scattering vector q = kf − k0 and defines its in-plane
qp ≡ qxy and out-of-plane qz component. The components of the vectors k0 and kf

can be calculated by geometrical considerations from Fig. 2.4 (left), and the scattering
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2.2. Coordinate Systems

vector follows

q = kf − k0 = (qx, qy, qz), (2.1)

qx =
2π

λ
(cosαf cos θf − cosαi), (2.2)

qy =
2π

λ
(cosαf sin θf ), (2.3)

qz =
2π

λ
(sinαf + sinαi), (2.4)

qp =
√
q2
x + q2

y . (2.5)

Inverting these equations yields θf and αf as function of qp and qz

sin(αf ) =
λ

2π
qz − sinαi, (2.6)

cos(θf ) =
( λ2π qp)

2 − cos2 αf − cos2 αi

−2 cosαi cosαf
. (2.7)

From the scalar product of k0 and kf the scattering angle 2θ can be calculated.

cos 2θ =
λ2

4π2
k0kf (2.8)

=

cosαf cos θf

cosαf sin θf

sinαf


− cosαi

0

sinαi

 (2.9)

= − cosαi cosαf cos θf + sinαf sinαi (2.10)

For small incidence angles this equation reduces to

cos 2θ ∼ cosαf cos θf . (2.11)

Rotation Matrix Formulation

The above equations (2.1)-(2.5) can be derived geometrically from Fig. 2.4, but more
generally they are achieved by using rotation matrices. This formulation will ease
calculations for different goniometer geometries; especially when a one-dimensional
detector is used. Therefore this approach will be introduced in the following. Matrix
multiplications are not commutative and their sequence of application has to be chosen
to reflect the properties of the goniometer. That is, some rotation axes will change
their orientation during operation and this has to be reflected in the calculations.
The rotation matrices are defined such that a rotation with a positive angle rotates a
vector clockwise if looking along the rotation axis (e.g. a negative angle is necessary
to rotate a vector around the y-axis towards the positive z-axis).
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The rotation of vector kf in Fig. 2.4 (left) for example consists of a rotation θf
around the z-axis of the sample system followed by a rotation −αf around the rotated
y-axis= y′-axis. The matrix for this rotation is given as:

R = Ry′(−αf )Rz(θf ). (2.12)

With Rz the rotation matrix around the z-axis of the sample system and Ry′ the
rotation matrix around the y′-axis. The latter matrix is obtained by transforming the
y-rotation matrix of the sample system according to the first z-rotation

Ry′(−αf ) = Rz(θf )Ry(−αf )Rz(θf )
−1. (2.13)

Substituting this expression into the above equation (2.12) yields

R = Rz(θf )Ry(−αf ). (2.14)

It is seen that the matrix of the complete rotation is given as product of the basic
rotation matrices (the matrices which rotate around the coordinate axes) of the start-
ing coordinate system. The sequence of the matrices in the product is inverse to the
sequence of the rotations.

For calculations one starts now with the wave vectors for all goniometer angles set
to zero (k0 = kf = 2π

λ ex) and rotates them to their new positions. Application of
this strategy in the sample coordinate system results in

k0 =
2π

λ
Ry(αi)ex

=
2π

λ

 cosαi 0 sinαi

0 1 0

− sinαi 0 cosαi


1

0

0



=
2π

λ

 cosαi

0

− sinαi

 (2.15)

and

kf =
2π

λ
Rz(θf )Ry(−αf )ex

=
2π

λ

cos θf − sin θf 0

sin θf cos θf 0

0 0 1


cosαf 0 − sinαf

0 1 0

sinαf 0 cosαf


1

0

0



=
2π

λ

cosαf cos θf

cosαf sin θf

sinαf

 . (2.16)

Calculating q = kf − k0 from this two vectors gives the same results as derived
geometrically above (Eqs. (2.1)-(2.5)).
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2.3. Calibration of a One-Dimensional Detector

k0k0

}

Figure 2.5.: Sketch of the detector calibration. Left: The detector position with all
motors set to 0. At this stage the primary beam k0 hits the zero channel
of the detector c0. Right: By scanning the detector through the primary
beam the two calibration parameters c0 and cpr are obtained.

2.2.2. The Laboratory System

This is the coordinate system in which the goniometer operates. The x-axis is parallel
to the primary X-ray beam, the z-axis chosen vertically, and the y-axis is perpendicular
on the (x,z)-plane. The origin is located at the center of rotation of the goniometer.
If all goniometer motors are set to zero all its rotation axes coincide with one of the
coordinate axes of the laboratory system.

2.2.3. The Crystal Coordinate System

The direct and reciprocal lattice (Sec. 1.1 and 1.2) are vector spaces spanned by their
unit cell axes. They are used to describe the crystal structure of the investigated
material. According to symmetry there exist 7 crystal systems (Schwarzenbach; 1993,
page 62 ff.).

In an X-ray experiment the reciprocal lattice is observed and hence this will mainly
be used in this work. The Laue indices hkl are the (integer) coordinates. The lattice
base is generally oblique and hence the coordinates (Laue indices) will be transformed
to an orthogonal coordinate system to ease calculations. Most important is the trans-
formation to the sample coordinate system because there the relation between the
crystal structure of a thin film and the substrate can be studied most naturally.

2.3. Calibration of a One-Dimensional Detector

Nowadays one dimensional detectors are quite widespread. But before using them
the angular resolution has to be calibrated properly. For this purpose the detector is
scanned with a defined step width through the primary beam as illustrated in Fig. 2.5.
This scan provides data tuples (c,∆) (channel number, angle). The two calibration
parameters zero channel (c0) and channel per rad (cpr)1 are obtained by a linear fit

1Please note that in PyGid this value is called channel per degree cpd.
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(a)

(b)

Figure 2.6.: Data of a detector calibration experiment. (a) shows the curves measured
during one calibration scan with a step width of one degree. (b) shows
area and height of the individual peaks. The peak height decreases by
≈ 40% while the area is more or less constant.
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of the equation

c = c0 + cpr · tan ∆. (2.17)

After calibration channel numbers are transformed into (detector-)angles by applying

∆ = arctan

(
c− c0

cpr

)
. (2.18)

For calibration it is not necessary to take the goniometer radius into account, because
only directions of diffracted waves will be measured (i.e. vectors with fixed length
2π
λ ), and hence knowing the angles is sufficient.

Fig. 2.6 (a) shows the individual calibration curves where ∆ was scanned from
0 . . . 7◦ in one degree steps. The detector was mounted such that for ∆ = 0◦ the lower
part of the detector was hit by the primary beam (at approximately channel number
80).

The calibration experiment illustrates an important implication of one-dimensional
detectors. The incidence angle of the radiation (onto the detector) changes along the
detector, leading to a decrease of the peak height and an increase of the peak width.
But while height and width change, the peak area is constant. This can be seen from
Fig. 2.6 (b) where peak area (estimated by the sum of all data points) and peak height
(estimated by the maximum of the data points) are shown. Therefore only peak areas
are a proper measure for intensities obtained with a one-dimensional detector.

2.4. Reciprocal Space Maps

By using a one-dimensional detector for X-ray experiments not only one-dimensional
but two-dimensional data is recorded. The best way of representing them is by means
two-dimensional pseudo color plots.

From the Bragg equation (1.35) it is evident that angular positions of Bragg peaks
depend on the used wavelength. Therefore different patterns will be obtained for different
X-ray sources, making a comparison of the different results quite difficult. Because of that
a wavelength-independent representation of the measured signals is favored.

Keeping in mind that the scattering vector corresponds to the momentum transfer
in the scattering process it is clear that it is independent from the used primary beam
energy and therefore independent from the used X-ray source. Hence the scattering vector
(q = (qx, qy, qz)) is well suited to be used as the independent variable. Which components
of the scattering-vector are meaningful depends on the nature of the investigated system;
e.g. for a powder only the magnitude |q| while for a two-dimensional powder the qz and
the qp component are relevant. For a single crystal all three components qx, qy and qz
are significant.

The representation of the experimental results in a two-dimensional plot is called recip-
rocal space map. For grazing incidence diffraction data of a two-dimensional powder this
is the best representation because it is indeed a two dimensional system with coordinates
qp and qz.
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Figure 2.7.: Schematics of the θ/2θ geometry in the sample coordinate system.

2.5. Co-Planar Experiments

In X-ray diffraction the plane spanned by the incoming wave k0 and the scattered
wave kf is called the scattering plane. This plane divides X-ray experiments into
co-planar and non-co-planar scans. For co-planar scans the surface normal of the
sample is contained within the scattering plane while for non-co-planar ones it is not.
θ/2θ scans and rocking curves discussed in the following are co-planar scans while in
grazing incidence reciprocal space mapping mainly non-co-planar data is recorded.

2.5.1. The θ/2θ-Experiment

A schematic representation of the θ/2θ scan in the sample coordinate system is given in
Fig. 2.7. The main characteristic of this setup is a synchronous variation of the angle of
incidence and diffraction, both called θ. Due to this symmetric configuration the beam
is reflected specularly from the sample and the primary and the diffracted beam always
enclose an angle of 2θ (Fig. 2.7). I.e. the scattering vector is constantly perpendicular onto
the sample surface and only its length is changed. Hence it follows that only crystallites
oriented parallel to the sample surface contribute to the diffraction pattern.

In the case of two-dimensional powders only one lattice plane is parallel to the substrate
surface and therefore only one Bragg peak and its higher order reflections are expected in
a specular pattern. This is not the case if the two-dimensional powder is polymorphic, i.e.
it is built from crystallites of different crystallographic phases each obeying a preferred
orientation. In that case more than one - but a small number of - Bragg peak series will
be observed.

2.5.2. Rocking Curves

The length of the scattering vector is solely determined by the angle between primary
and scattered wave (2θ, Eq. (1.34)). For rocking curves this 2θ angle is set to a
constant value, and the incidence angle - called ω now - is varied (Fig. 2.8 right).
Due to the fixed 2θ-angle the scattered intensity is not sensitive to different lattice
plane distances but to the number of crystallites which are oriented symmetrically to

42



2.5. Co-Planar Experiments

Figure 2.8.: Sketch of the beam paths when a one dimensional detector is used in
co-planar scattering. Diffraction corresponding to a bunch of scatter-
ing vectors different in length and orientation is recorded simultaneously.
Left: The situation of a θ/2θ scan is shown. The dashed lines show the
situation for a specular scattering vector (q), the full lines the situation
for an off specular scattering vector (q′). The components of the scatter-
ing vector are calculated according to Eq. 2.19. Right: The situation for
a rocking scan is shown. The components of the scattering vector in the
sample coordinate system are calculated according to Eq. 2.20

incoming and diffracted wave. Hence the orientation distribution of the crystallites
can be mapped. In studying two-dimensional powders this scan is used to check how
well defined the preferred orientation of the crystallites is.

2.5.3. Co-Planar Scans with a One Dimensional Detector

θ/2θ Scans If a one dimensional detector is used in a θ/2θ scan, not only the spec-
ular scattering vector but also a bunch of off-specular scattering vectors are recorded
(sketched in Fig. 2.8 left). In that case also co-planar data can be presented as a recip-
rocal space map. Figure 2.9 shows on the left the raw data of such an experiment with
the incidence angle θ on the x-axis and the detector angle ∆ on the y-axis. According
to Fig. 2.8 (left) the q-coordinates for each pixel of the raw data are calculated as

q = 4π
λ sin(θ + ∆/2),

qp = −q sin(∆/2),

qz = q cos(∆/2).

(2.19)

The right image of Fig. 2.9 shows the result of applying these equations to the raw
data.
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Figure 2.9.: Left: θ/2θ scan measured with a one-dimensional detector. Right: The
data transformed to q

Rocking Curves In the case above the accessible qp-range is limited by the size of
the detector. To measure the maximum qp range possible in a co-planer experiment
one has to perform a rocking scan. I.e. each channel of the detector is kept at a fixed
angle 2θ = 2θc0 + ∆ and the incidence angle ω is changed (independently of 2θ from
0 . . . 2θ). Hence there is no relationship between 2θ and ω. Therefore 2θ and ω have
to be used as coordinates for transforming to q (Fig. 2.8 right) (this is contrary to
the above case where it was sufficient to know (the constant) ∆)

q = 4π
λ sin(2θ/2),

qp = q sin(ω − 2θ/2),

qz = q cos(ω − 2θ/2).

(2.20)

Please note that rocking scans are a good possibility to fill the part of a pattern which
is not accessible in grazing incidence geometry. An example of this application is
found in Fig. 5.2.
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2.5. Co-Planar Experiments

Figure 2.10.: Left: Rocking curve measured with a one-dimensional detector. Right:
The data transformed to q. The same data is shown together with
grazing incidence data in Fig. 5.2.
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2.6. Grazing Incidence Diffraction

Above it was outlined that for two-dimensional powders only information on one family
of lattice planes is obtained from specular scans. This information is not sufficient to
perform an indexation and in the following a crystal structure determination.

Grazing Incidence Diffraction (GID) is a surface (sensitive) diffraction technique well
suited for obtaining lateral crystallographic information from thin-textured films. In GID
one works with an incidence angle near the critical angle of total external reflection; i.e. for
organic materials it is commonly chosen below 0.5◦. At these angles very low penetration
depths are achieved and scattering mainly from the top layers is observed, i.e. from the
organic film. The penetration depth is below 10nm for angles smaller than αc while it
exceeds 100 µm at specular Bragg peaks.

Another advantage of this setup is that for an incidence angle near to the critical
angle an enhancement of the intensity is observed. This is due to refraction effects
and is described by the transmission function. The transmission function (Ti) depends
on the incidence angle and the electron density (ρe ∝ δ). Neglecting absorption it is
(Dosch; 1987)

Ti(αi, δ) =
2 sinαi

sinαi +
√

sinα2
i − 2δ

. (2.21)

Multiplying the right side by 2k
2k , and substituting 2δ by the critical angle gives

Ti(q, αc) =
2q

q +
√
q2 − 4k2α2

c

. (2.22)

Finally dividing by q and considering that αc is generally very small and hence αc '
sinαc results in an expression which depends only on the scattering vector

Ti(q, qc) =
2

1 +
√

1− q2
c/q

2
. (2.23)

The transmission function takes it maximum value of 2 at the critical angle of total
reflection. Therefore a fourfold enhancement of the measured intensity Im = I · T 2

i is
observed, if the incidence angle is set to the critical angle of total reflection. Please note
that an analogous expression holds for the diffracted wave. Instead of the incidence
angle αi the out-of-plane diffraction angle αf is the independent variable and the
function is called Tf .

GID is also suited for the investigation of layers as thin as mono-layers. It is recalled
that the diffracted intensity is proportional to the number of unit cells illuminated in the
direction of the scattering vector (Eq. (1.33)). Therefore, the diffracted intensity of a
thin layer increases with the in-plane component of the scattering vector.

In grazing incidence diffraction with a fixed incidence angle (αi ≈ 0) not the whole
reciprocal space is accessible. The accessible region of reciprocal space for a fixed
incidence angle can be determined from Eq. (2.1)-(2.5). These equations show that all
reciprocal lattice points within a circle of radius 2π/λ centered at 2π/λ(cosαi,− sinαi)
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2.6. Grazing Incidence Diffraction

Figure 2.11.: Sketch of the accessible region in co-planar and grazing incidence geom-
etry with incidence angle αi ≈ 0.

can be accessed (sketched in Fig. 2.11). For small incidence angles this is in very
good approximation the region which cannot be accessed by experiments in co-planar
geometry, making these two techniques complementary. A reciprocal space map where
these two techniques have been combined is shown in Fig. 5.2.

2.6.1. Transformation Equations for Different Goniometer Geometries

As mentioned in the introduction within this work different goniometer geometries
were used. For each geometry the transformation to the sample system is different.
In the following sections transformation equations for the used experimental setups
will be derived.

The Z-Axis Setup

The z-axis setup (Fig.: 2.12 (a)) is very common in surface diffraction (Lohmeier
and Vlieg; 1993; Bloch; 1985). The rotation axes of the goniometer are the axes
of the laboratory coordinate system xL, yL, zL and the laboratory coordinate system
coincides with the sample system as long as ω and χ are set to zero (Fig. 2.6 (a)).
In this setup the goniometer motors are directly corresponding to the angles in the
sample coordinate system αi = ω, θf = ν and αf = δ. The δ-motor is mounted on top
of the ν motor; i.e. a ν-rotation influences the δ-rotation-axis. Hence the scattered
beam is given by a rotation around the z-axis of the laboratory system, followed by
a rotation around the rotated y-axis (Fig. 2.6 (a)). This is the same sequence of
rotations as used above (Eq. 2.16). Hence the scattering vector can be calculated
according to above formulas with αi, αf and θf substituted by ω, ν, and δ

kf =
2π

λ
Rz(ν)Ry(−δ)ex.

If a one dimensional detector mounted vertically on the goniometer is used the
formulas change as derived in the following.
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2. Experimental Details

(a) The z-axis setup (b) The pseudo z-axis setup.

Figure 2.12.: (a) The z-axis setup and (b) the pseudo-z-axis setup. The sample coor-
dinate system and the laboratory coordinate system are sketched. Also
the names for the goniometer angles are defined.

The position vector to the channel number c - with all motors set to 0 - is given
as dc = (1, 0, tan ∆). ∆ is the detector angle which is calculated from the channel
number c (Eq. 2.18). By applying the goniometer rotations to the position vector
dc one obtains the diffracted wave vector kfc corresponding to this channel. Elastic
scattering is used and therefore dc has to be normed because otherwise the length of
kfc would be different from k0.

kfc =
2π

λ
Rz(ν)Ry(−δ) dc

|dc|

=
2π

λ
√

1 + tan ∆2

cos ν(cos δ − sin δ tan ∆)

sin ν(cos δ − sin δ tan ∆)

sin δ + cos δ tan ∆

 (2.24)

Calculating the in-plane scattering angle

tan θf =
kfc,y
kfc,x

=
sin ν

cos ν
×
����������(cos δ − sin δ tan ∆)

(cos δ − sin δ tan ∆)

= tan ν (2.25)

⇒
θf ≡ ν

shows that θf is independent of ∆, i.e. for each channel of the detector (each scattering
vector measured simultaneously) the in-plane scattering angle is the same and equals
the motor position ν (Fig. 2.14).
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2.6. Grazing Incidence Diffraction

The Pseudo Z-Axis Mode

Very often it is more convenient to set αi by tilting the sample (around the y-axis)
instead of the incoming X-ray beam. Then the sample coordinate system and labora-
tory system do not coincide and after calculating kfc according to equation (2.24) one
has to transform it into the sample system. This transformation is performed with a
positive rotation around the y-axis

k′fc = Ry(αi)kfc

=
2π

λ
√

1 + tan ∆2

 cosαi 0 sinαi

0 1 0

− sinαi 0 cosαi


cos ν(cos δ − sin δ tan ∆)

sin ν(cos δ − sin δ tan ∆)

sin δ + cos δ tan ∆

 (2.26)

=
2π

λ
√

1 + tan ∆2

 cosαi cos ν(cos δ − sin δ tan ∆) + sinαi(sin δ + cos δ tan ∆)

sin ν(cos δ − sin δ tan ∆)

− sinαi cos ν(cos δ − sin δ tan ∆) + cosαi(sin δ + cos δ tan ∆)

 .

Comparing the x- and y-component of the k′fc-vector it is seen that ∆ does no more
cancel out if the in-plane scattering angle θf is calculated as above (Eq. (2.25)). That
is, not only αf but also θf depends on ∆ (or rather the channel number). In grazing
incidence diffraction this is not crucial because due to the small incidence angle the
tilt is negligible (sinαi ' 0 and cosαi ' 1 in the term for the x-component).

The 2+2 Geometry

The 2+2 geometry is very similar to the z-axis setup. The degrees of freedom for
rotating the detector and sample are the same as in the z-axis setup. But the motors
of the detector are mounted opposite. The first rotation is around the y-axis (angle δ)
and the second one around the rotated z-axis=z′-axis (angle ν). That is, the detector
moves in a plane enclosing the angle δ with the sample surface (Fig. 2.13(left)). Hence
– compared to the z-axis geometry – one has to switch the sequence of the rotations:

kf c =
2π

λ
Ry(−δ)Rz(ν)

dc
|dc|

(2.27)

=
2π

λ
√

1 + tan ∆2

cos ν cos δ − sin δ tan ∆

sin ν

sin δ cos ν + cos δ tan ∆

 .

Like in the pseudo z-axis setup the in-plane θf and out-of-plane scattering angle αf
depend on ∆. While in the pseudo z-axis setup the detector tilt was determined by
the incidence angle it is here determined by the value of δ. This leads to a significant
tilt which is sketched in Fig. 2.14.
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Figure 2.13.: Left: Sketch of the 2+2 geometry. The vector r points towards the
detector at position (ν, δ). δ is the rotation angle around the y-axis
and ν the rotation angle around the z′-axis. The ν-rotation moves the
detector in the plane which encloses the angle δ with the sample surface.
The azimuth and elevation in the sample coordinate system θf and αf
are also sketched. Right: The projection of two scattering vectors onto
the sample surface. To measure the correct azimuthal angle between q1

and q2 φ has to be realigned about ∆φ (Eq. 2.29)

Grazing Incidence Pole Figures in 2+2 Geometry

If azimuthal relationships (pole figures) in the 2+2 geometry are measured it has to
be considered, that the projection of the scattering vector onto the sample depends
on the position of the detector. This is sketched in the left image of Fig. 2.13.
The vector r points towards the detector at position (ν, δ), and its projection on the
sample surface is rxy. The angles θf and αf are the azimuth and elevation in the
sample coordinate system. If the detector is moved around the z′-axis both θf and
αf change. To measure the correct azimuthal relation between two lattice planes the
rotation angle around the sample surface normal φ has to be realigned. The actual
value of the realignment depends on the detector position (ν,δ).

In the 2+2 geometry the scattering vector in the sample coordinate system is

q =

 cos ν cos δ − cosαi

sin ν

cos ν sin δ + sinαi

 . (2.28)

For each scattering vector (detector position) the azimuthal angle (θf = ∠(qxy, ex)) in
the (x,y)-plane is calculated. The differences ∆φn relative to θf of the first experiment
gives the necessary realignment (right image in Fig.: 2.13); i.e. the first experiment
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defines the zero point of φ on the sample.

θf1 = arctan

(
q1y

q1x

)
= arctan

(
sin ν1

cos ν1 cos δ1 − 1

)
θfn = arctan

(
qny
qnx

)
= arctan

(
sin νn

cos νn cos δn − 1

)
(2.29)

∆φn = θf1 − θfn

Please note that the above formulas are only valid for point detectors, or rather the
zero channel of a one-dimensional detector.

The pseudo 2+2 Geometry

Also in the 2+2 geometry the incidence angle is frequently set by tilting the sample
(as in the pseudo z-axis geometry). It can be taken into account as in the above
treatment (Eq. (2.26)) and it follows

kf
′
c = Ry(αi)kf c

=
2π

λ
√

1 + tan ∆2

 cosαi 0 sinαi

0 1 0

− sinαi 0 cosαi


cos ν cos δ − sin δ tan ∆

sin ν

sin δ cos ν + cos δ tan ∆

 (2.30)

=
2π

λ
√

1 + tan ∆2

 cosαi(cos ν cos δ − sin δ tan ∆) + sinαi(sin δ cos ν + cos δ tan ∆)

sin ν

− sinαi(cos ν cos δ − sin δ tan ∆) + cosαi(sin δ cos ν + cos δ tan ∆)

 .
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Figure 2.14.: Detector movements in the z-axis (black) and 2+2 setup (grey). The
black dash-dotted lines give the arm on which the detector is mounted,
the thick dashed black line represents the position of the detector when
all diffractometer angles are set to zero. The solid black and grey line
show the detector position for the two geometries with the two detector
angles set to 45 degrees. The black and grey line in the (x,y) plane rep-
resent the projection of the detector onto the sample surface. Clearly it
can be recognized, that in the z-axis setup each channel measures the
same in-plane scattering angle θf while in the 2+2 geometry the detec-
tor is heavily tilted and each diffracted wave measured simultaneously
corresponds to a different in-plane diffraction angle (θf (c0) + ∆θf ).
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2.7. Intensity Correction

For a crystal structure determination structure factor amplitudes are necessary. These
amplitudes can be determined from Bragg peak intensities because

I ∝ |F |2. (2.31)

The intensity is not equal to the structure factor because several correction factors –
considering geometrical influences of the experiment – have to be applied. For surface
diffraction there are four correction factors necessary. They have been derived in the
sample coordinate system by Smilgies (2002). Applying the correction factors the
proportionality is turned into an equality

I = L · P ·A ·R · |F |2, (2.32)

and the squared structure factor can be calculated

|F |2 =
I

LPAR
. (2.33)

The four correction factors are

L . . . the Lorentz factor,

P . . . the polarization factor,

A . . . the area factor,

R . . . the rod interception factor.

2.7.1. Correction Factors in the Sample Coordinate System

In the following the equations for L, P, and R as derived by Smilgies (2002) will be
reproduced. Please consult the reference for details. For the area factor a numerical
approach was used; the details will be outlined.

The Lorentz Factor takes into account how the detector entrance window intersects
the Ewald sphere for different goniometer angles. For the z-axis setup at a synchrotron it
is given by

L = 1/(cos(αi) sin(θf ) cos(αf )). (2.34)

The Polarization Factor is influenced by the polarization of the X-ray source. Taking
into account that synchrotron radiation is horizontally polarized in the ring plane, the
polarization factor

P = cos2(αf ) cos2(θf ) + sin2(αf ) (2.35)

follows.
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Figure 2.15.: Visualization of the active area for different detector positions. The used
parameters are: αi = 0.15◦, SIw×SIh = (0.4×0.005)cm, SOw×SOh =
(0.8×0.02)cm (Variables are defined in the text). Please note the primary
beam strikes the sample from the right.

The Area Factor takes into account that depending on sample position the beam
footprint on the sample changes. It also considers, that depending on the detector
position, the portion of the sample “seen” by the detector changes. The cut of a
rectangle representing the sample, with one representing the beam footprint and one
representing the region seen by detector is the active area for the intensity (Fig. 2.15).
The calculations of the rectangle sizes are executed under the assumption of a perfectly
parallel beam. Fig. 2.15 gives four examples for the active area. The angular positions
θf and αf are given in the titles of the plots.

The footprint of the incoming beam is a rectangle with

length× width =
SIh

sin(αi)
× SIw. (2.36)

With SIh and SIw the height and width of the incoming slits in front of the sample.
αi is the incidence angle. The area that the detector sees is given by an analogous
expression. It depends on the height SOh and width SOw of the slit in front of the
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2.7. Intensity Correction

detector, and the out-of-plane scattering angle αf . For θf = 0 it reads

length× width =
SOh

sin(αf )
× SOw. (2.37)

The θf -rotation is then taken into account by rotating this rectangle around the z-
axis. Please note that this is strictly only valid for the z-axis geometry, but has been
also applied this way for the 2+2 geometry. This is definitely a point which needs
closer inspection for upcoming experiments because the tilt of the detector in the 2+2
geometry should be taken into account.
SOh and SOw are height and width of the slit on the receiving side. While for a

point detector this values are well defined the situation is different for one-dimensional
ones. The width is still given by the used slit or the entrance window of the used Soller
slits. But for the height there is no beam limiting element and therefore the vertical
”slit height” is given by the size of the single channels on the detector.

Actual calculation of the active area was done with the python polygon package
(Rädler; n.d.). This package allows to define several polygons and to perform enables
cutting operations.

The Rod Interception Factor according to Smilgies (2002) is necessary because:
“Scattering from a surface is diffuse in the direction of the surface normal, the so-
called scattering rods (Feidenhans’l; 1989; Robinson and Tweet; 1992). For proper
integrated intensities, the interception of the rod, as defined by the detector slits, has
to be corrected for (Feidenhans’l; 1989). The rod is measured with a fixed slit size and
not with fixed ∆qz.”

The expression for R depends on the slit height, SOh, and the out-of-plane diffrac-
tion angle, αf

R = SOh cos(αf ). (2.38)

2.7.2. Magnitude of Correction Factors

To get an impression about the magnitude of the correction factors they are shown
in Fig. 2.16 for a region of reciprocal space, where – for organic rod like molecules
– strong peaks are observed. Black crosses indicate peak positions of the thin-film
phase of pentacene. The indicated peaks have been used in a test where the thin-film
phase of pentacene was solved (details in Chap. 4).

In Fig. 2.16 the reciprocal value of each correction factor – scaled to the interval
[0 . . . 1] – is shown. The values have been calculated for the following parameters:

αi = 0.15◦,

θf = [10◦ . . . 45◦],

αf = [0◦ . . . 30◦],

λ ≈ 1.27[Å] ≈ 10[keV],

SIw × SIh = (0.4× 0.2)cm,

SOw × SOh = (0.8× 0.02)cm.
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(b) 1/L
max(1/L)

(c) 1/P
max(1/P )

(d) 1/A
max(1/A)

(e) 1/R
max(1/R)

Figure 2.16.: Visualization of the reciprocal Lorentz factor (b), polarization factor (c),
area factor (d) and rod interception factor (e). The black crosses show
peak positions of pentacene, and the correction factors for these positions
are shown in detail in Fig. 2.17. The top colorbar shows the color scaling
for all pictures.
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(a) Indexation of pentacene positions shown in Fig. 2.16. Please note that the axes limits are different.
Therefore the two rightmost peaks of above maps are not contained here. Their indexation is -3,-1,0
for the lower and -3,1,1 for the upper position.

(b) Calculated relative correction factors for the selected peaks shown as crosses in the maps
in Fig. 2.16.

Figure 2.17.: Effect of correction factors on selected peak positions.
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Subsequently the data has been transformed to q. Please note, the correction factors
– although shown in q – depend on the diffraction angles. Hence they are wavelength
dependent. A wavelength independent representation is not possible.

Additionally to the pseudo color plots in Fig. 2.16 the concrete correction factors
for the pentacenen peak positions are shown in Fig. 2.17. From both figures it is
evident, that the polarization factor and rod interception factor play a minor role
for the correction of the intesities. Especially the rod interception factor is virtually
constant in the investigated region and could safely be ignored for correction.

This is not the case for the Lorentz and area factor. The Lorentz factor changes
mainly along qp because the sine in

L = 1/(cos(αi) sin(θf ) cos(αf )) (2.39)

has a steep slope in this region while the slope of the cosine is rather slight for the
investigated angular region.

Also the area factor has a strong influence. The area changes strongly with αf while
θf only has a minor influence. This can be understood by looking at Fig. 2.15. By
elevating the detector (angle αf ) the footprint gets quickly smaller (∝ 1/ sin(αf )) while
rotating the detector around the z-axis (θf ) increases the active area only slightly.
Furthermore for some θfmin < θf < θfmax it can even happen that the active area
does not depend on θf any more, because the “detector rectangle”is then completely
contained within the beam footprint.

58



3. PyGid

PyGid is a software designed for reciprocal space map analysis of two-dimensional
powders, measured in grazing incidence geometry. Its main focus leis on the crystal
structure determination of thin organic films. In the following, some underlying con-
cepts and aspects concerning the indexation, data handling, and intensity extraction
will be outlined. These explanations should avoid that the program behaves like a
black box for the user.

PyGid is an advancement of the Matlab tool indapp_ng (Moser; 2008). One major
difference is the change to the python programming language. Due to its open source
nature no license restrictions exist. This makes the program easily usable by everyone.
A further advantage of python is that it is for computing tasks already today quite
popular and it seems its popularity will further increase. At the European synchrotron
radiation facility, for example, its use is promoted as well. Because of its wide spread
there are several libraries aimed to the scientific community. But due to the fact
that python is a full-fledged programming language also general task libraries (e.g.
graphical user interface libraries, data base interfaces) are available. This makes it
in many aspects superior to Matlab. One disadvantage is that in some aspects the
python libraries are not as efficient as Matlab libraries. But for the development of
PyGid this was not a major drawback.

3.1. Simulation of Bragg Peak Positions

For (manual) indexation the positions of Bragg peaks – i.e. the parallel and z-
component of the scattering vector q – in an orthogonal coordinate system have to
be calculated. As is known from Sec. 1.4.1, a Bragg peak is observed if the scattering
vector q coincides with any vector of the reciprocal lattice. Therefore Bragg peak
positions can be generated as linear combinations of the reciprocal lattice base a∗,b∗

and c∗

qhkl = ha∗ + kb∗ + lc∗, (3.1)

where h,k and l are the Laue indices of the respective Bragg reflex. As already
mentioned above (Sec. 2.2), one is generally interested in the orientational relation
between crystallites and the substrate. Hence, it is a good choice to calculate the Bragg
peak positions in the sample coordinate system via a coordinate transformation

q = A ·

hk
l

 . (3.2)
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One possible matrix for the transformation is (Salzmann and Resel; 2004)

A =

 a∗ sinβ∗ sin γ 0 0

−a∗ sinβ∗ cos γ b∗ sinα∗ 0

a∗ cosβ∗ b∗ cosα∗ c∗

 . (3.3)

This transformation matrix is valid for a textured film (two-dimensional powder) with
the (001) lattice plane parallel to the substrate surface. Hence the c∗-vector is parallel
to the substrate surface normal (z-axis). How b∗ and a∗ are mapped to the sample
system is irrelevant, because for a textured film only the in-plane-component (parallel

component) qxy ≡ qp =
√
q2
x + q2

y can be measured. It is seen that for a successful

indexation 7 parameters have to be determined: the 6 (reciprocal) unit cell parameters
and the surface parallel lattice plane. The latter can often be deduced from a specular
scan because this scan is exactly sensitive to the surface parallel lattice plane.

Change of Texture Axis; Rotation of the Crystal

If the (001) lattice plane is not parallel to the substrate the A matrix has to be
transformed for indexation. It has to be rotated around an axis perpendicular to the
plane spanned by the [001]∗-vector and the new orientation vector. This axis is calculated
as the vector product between the two orientations, o1 and o2

n =
o1 × o2

|o1 × o2|
.

The angle of rotation is obtained from the scalar product of the two orientations

cos(φ) =
o1o2

|o1||o2|
.

It has to be noted that these vector operations have to be performed in an orthogonal
coordinate system. E.g. for a rotation from [001]∗ to [111]∗, o1 and o2 are given by

o1 = A

0

0

1

 o2 = A

1

1

1

 .

The rotation matrix around axis n is then given by (Shmueli; 2006, sec. 1.1.4)

Rij = ninj(1− cosφ) + δij cosφ− εikjnk sinφ

or written in matrix form

R =

 n2
1(1− cosφ) + cosφ n2n1(1− cosφ) + n3sin(φ) n3n1(1− cosφ)− n2 sinφ

n1n2(1− cosφ)− n3 sinφ n2
2(1− cosφ) + cosφ n3n2(1− cosφ) + n1 sinφ

n1n3(1− cosφ) + n2 sinφ n2n3(1− cosφ)− n1 sinφ n2
3(1− cosφ) + cosφ

 .

And finally the new A′-Matrix, for simulating the spots of the rotated crystal is found

A′ = RA.
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3.1. Simulation of Bragg Peak Positions

3.1.1. Examples for Indexation

The positions of Bragg peaks in the surface reference frame are completely defined
by the above equations. They depend on the lattice parameters, the Laue indices
and the texture axis. Analytically analyzing these equations for special cases reveals
typical Bragg peak patterns. In the following this is demonstrated for an (001) tex-
tured monoclinic and triclinic crystal structure. For an (001) orientation this can
be done straight forward and the resulting formulas are relatively simple. For other
orientations than (001) the A-matrix has to be transformed analytically, and for a
“mixed” texture axis (e.g. (1, 1, 4)) the resulting formulas might get quite involved.
Nevertheless this is a possibility to systematically approach an indexation problem
and equations might be simplified again for special index-triplets (i.e. if one or two
indices are set to zero).

A Monoclinic System

For monoclinic systems (α = α∗ = 90◦ and γ = γ∗ = 90◦) the A matrix simplifies
and q in the sample coordinate system is calculated as

q =

a
∗ sinβ∗ 0 0

0 b∗ 0

a∗ cosβ∗ 0 c∗


hk
l

 . (3.4)

Applying this to an arbitrary (h, k, l)-vector gives the relations for qp and qz

qp =

√
h2 · a∗2 sinβ∗2 + k2 · b∗2, (3.5)

qz = h · a∗ cosβ∗ + l · c∗. (3.6)

Some conclusions which can be drawn from these equations are:

• k has only an influence on the qp position of the peak. Furthermore only its
squared value is relevant for Eq. (3.5) and therefore peaks corresponding to ±k
are observed at the same position. This is demonstrated by the 0± 2l series in
Fig. 3.1(a).

• The sign of h has no influence on the qp position, but changes the qz position
according to

qz±hkl
= l · c∗ ± h · a∗ cosβ∗, (3.7)

∆qz±hkl
= 2h · a∗ cosβ∗. (3.8)

This is demonstrated by the ±h, 2, l series in Fig. 3.1(a). There it is also seen
that the peaks are arranged symmetrically above and below the value of lc∗.

• l does only influence the qz position. This should be evident because c∗ was
chosen parallel to the z-axis.
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• For the qz component of any h00 peak it follows

qzh00 = h · a∗ cosβ∗, (3.9)

and hence the angle enclosed by any h00 peak and the ez-axis (or rather the
00l-series) is β∗ (Fig 3.1(a)).

A Triclinic System

Here, no values in the A-matrix get zero (Eq. 3.4) and q in the sample system is

q =

 h · a∗ sinβ∗ sin γ

−h · a∗ sinβ∗ cos γ + k · b∗ sinα∗

h · a∗ cosβ∗ + k · b∗ cosα∗ + l · c∗

 , (3.10)

and it follows for qp

qp =
√
q2
x + q2

y (3.11)

=

√
h2a∗2 sinβ∗2 sin γ2 + (kb∗ sinα∗ − ha∗ sinβ∗ cos γ)2 (3.12)

=

√
h2a∗2 sinβ∗2 + k2b∗2 sinα∗2 − 2hkb∗a∗ sinα∗ sinβ∗ cos γ. (3.13)

Substituting for γ from Eqs. (1.12) results in a representation of qp which only depends
on reciprocal lattice parameters. Finally it is found

qp =

√
h2a∗2 sinβ∗2 + k2b∗2 sinα∗2 − 2hkb∗a∗(cosα∗ cosβ∗ − cos γ∗), (3.14)

qz = ha∗ cosβ∗ + kb∗ cosα∗ + lc∗. (3.15)

Of course these equations are now more involved than in the monoclinic case. Some
conclusions which can be drawn from these equations are:

• k now has also an influence on the qz component. Hence the 0,±2, l series splits
into two series with identical qp component (Fig. 3.1(b)).

qz0±k0
= lc∗ ± kb∗ cosα∗ (3.16)

• l does still only influence the qz-component, because c∗ is still chosen parallel to
the ez-direction.

• The h00-series behaves still as in the monoclinic case and the 0k0-series behaves
now analogously because α∗ 6= 90◦

qz0k0 = k · b∗ cosα∗, (3.17)

and any 0k0 peak encloses the angle α∗ with the ez-axis (or rather the 00l-series).
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3.1. Simulation of Bragg Peak Positions

(a)

(b)

Figure 3.1.: Peak positions for selected indices in a (a) monoclinic and (b) triclinic
system.

63



3. PyGid

• The last term in the expression for qp (Eq. (3.14)) can take two different values
depending on the sign of h and k. Hence the signs of h and k have now also
an influence on the qp position. If both have the same sign the peak is shifted
to the left, while for opposite signs the peak is shifted to the right. Also the qz
position depends on the signs of both indices now. Therefore the peaks ±h,±k, l
are observed at four different positions. This is demonstrated by the ±1,±2, 3
peaks in Fig. 3.1(b).

3.2. Regridding

Regridding is the task of interpolating data measured on a scattered grid onto a
rectangular one. There are two important reasons for regridding:

1. Visualization of data with two-dimensional pseudo color plots in python is far
more efficient if data on a regular grid is present. This fact poses a quite severe
requirement to the algorithm. Because each time data is drawn it has to be
regridded and hence an efficient algorithm for this task is necessary.

2. Extraction of line-scans (one-dimensional data) is only easily possible if the rows
and columns of the intensity data matrix share one common coordinate; i.e. all
data points in a row should belong to the same y-coordinate, and all points in
a column to the same x-coordinate. If this prerequisite is met, ranges of data
coordinates can easily be mapped to index ranges of the data matrix.

Unfortunately no library function exists in python which meets the performance re-
quirements and hence a custom one had to be implemented. In the following the
used regridding algorithm will be described in detail. There are two major points to
address:

1. Estimate the supporting point spacings (dxi, dyi) for the regridded grid, and

2. interpolate original intensity data to the new supporting points.

ad 1.) To estimate the new supporting point positions the original data is analyzed.
For each row of the original matrix (points connected by grey lines in Fig. 3.2(a))
the x-distances are calculated. The same is done for each column (points connected
by black lines in Fig. 3.2(a)) to calculate the y-distances. The new x-distances (dxi)
and y-distances (dyi) are then chosen to the maximum of all the observed dx and dy.
Please note, this way of estimating only works well if the deviation from a rectangular
grid is not too large. For grazing incidence X-ray data in the introduced geometries,
and on commonly used scan ranges these restrictions do not serve any problem. But
if the data is for example transformed to polar coordinates the estimation of new
supporting points fails (a too fine grid is created). The only possibility to regrid in
this case is to export the data, and try to interpolate the data externally and re-import
the data.
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3.2. Regridding

ad 2.) When the grid of new supporting points is found, the intensity data I(x, y)
has to be interpolated to the new grid I(xi, yi). This is done by simply calculating
the mean of all the intensities contained within a rectangle around (xi, yi) with lower
left point (xi−dxi/2.0, yi−dyi/2.0) and upper right point (xi+dxi/2.0, yi+dyi/2.0).
These rectangles are shown as black lines in Fig. 3.2(b) and their midpoints (xi, yi)
as black crosses.

In the first step it has to be figured out to which rectangle an original intensity
value belongs to. For each point (x, y) the x- (n0) and y-distance (m0) to the first
point of the new grid (xi, yi) is calculated in multiples of dxi/2.0 and dyi/2.0. Then
they are rounded down to get an integer

n0 = bx−min(xi)

dxi/2
c ⇒ n0 ∈ N, (3.18)

m0 = by −min(yi)

dyi/2
c ⇒ m0 ∈ N. (3.19)

All odd values of n0 (m0) correspond to the left (lower) part in a rectangle and the
even ones to the right (upper) part. But what is needed, are the indices (m,n) of the
centers of the rectangles. That is, the position to which the intensity value belongs
to in the new intensity matrix. These indices are found by adding one to all the odd
values and divide by two

n =
n0 + n0%2

2
, (3.20)

m =
m0 +m0%2

2
. (3.21)

Finally the intensity at one point is estimated as the arithmetic mean of all points
sharing the same matrix indices (m,n)

I(m,n) =
1

N

N∑
In(m,n). (3.22)

The according standard deviation (σIn) is with assumption of a Poisson distribution
for the original intensity data (i.e. σ2

In
= In)

σ2
I =

1

N

N∑
i=1

σ2
In =

1

N

N∑
i=1

In =
1

N
I. (3.23)

σI =
1√
N

√
I (3.24)

The advantage of this approach is, that the indices can be computed with the
use of the internal matrix operations, which are quite efficient. Only the last step,
looping over all data points and calculating the mean intensity for each I(m,n) is
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time critical. Therefore this last part has been implemented as c-extension module,
which leads to a speed up of approximately 6 times compared to the loop written in
python. Unfortunately plattform independency is reduced through this step, but if
the c-extension cannot be used the program falls back to the python implementation.
Another advantage of this algorithm is, that neighboring data points in the new
intensity matrix remain uncorrelated. Regarding the error on the position of data
points introduced through regridding it is recognized that the position is maximally
dxi/2.0, dyi/2.0 off.

It was outlined above that in PyGid data is regridded each time it is visualized (if
necessary). It is pointed out, that this is done on the fly for visualization, and that
original data is not changed. The data is only manipulated if the user actively regrids
the data.
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3.2. Regridding

(a) Supporting points after transformation to q. The black lines connect points of one column
while the grey lines connect points of one row.

(b) Regridding of supporting points after transformation to q. The black points show original
data points, the crosses the new supporting points on the regular grid. All data points in a
rectangle are assigned to the same new supporting point.

Figure 3.2.: Regridding
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3.3. Correction for Attenuator

Due to limited maximum count rates a detector can withstand it might be necessary
to use an attenuator to decrease the beam intensity. Conventionally the attenuation
is realized by introducing some absorbing material – frequently aluminum – into the
primary beam. To tune the attenuation the thickness of the absorber can be changed
linearly in discrete steps d = kL (k = 0, 1, 2, . . .). This decreases the measured
intensity (Ik) according to a power law, and the corrected value I is obtained through

I = Ik · akL = Ik ·
(
aL
)k

= Ik ·Ak. (3.25)

a is the attenuation coefficient of the used material. In the following A (the attenuation
of the material with specific thickness L) will be called attenuation factor.

The value of A can be determined by simply counting photons Ik for some time at
a point for two different values of k where this can be without harming the detector.
The attenuation factor is then with Ik = I ·A−k

Ik
Ik+1

=
IA−k

IA−k−1
= A. (3.26)

Of course a more reliable value is obtained if Ik is measured for more than two k and
A calculated by least squares fitting A to Eq. (3.25) (or just take the arithmetic mean
of several measurements for different k and k + 1).

Tab. 3.1 shows example data measured at the W1 beamline at Hasylab. The value
for A is obtained by fitting the attenuator value to the absolute factor Ak (Fig. 3.3).
In this example the value obtained for A was 8.61.

The standard deviation of an attenuation corrected intensity value (I = AkIk) is
obtained by scaling the standard deviation (σIk) of the measured intensity (Ik)

σI = AkσIk = Ak
√
Ik. (3.27)

For the use of PyGid the value of k has to be accessible from the data file (selected
by the appropriate counter); the value of A has to be determined and accessible via
the Att factor box.

3.4. Correction for Monitor

Due to the changing primary beam intensity on a synchrotron the measured, scattered
intensity (Im) has to be set in relation to the primary beam intensity (I0) which is
measured by a beam monitor

I = Im/I0. (3.28)

In PyGid this is done by selecting the counter under which name the monitor data
is stored in the data file. If the monitor counts are very large (Im << I0) this might

1Note, that at the W1 beamline not the value of k but 28 times this value is contained within the
data files. Hence one has to put A1/28 = 1.08 into the attenuator box of PyGid.
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Table 3.1.: Data used for determination of the attenuation factor. At the detector
angle 2θ the intensity was measured. k is the level of attenuation. Ak the
absolute correction factor for the specific k. A(k, k + 1) gives the relative
correction factors for the two specific values of k. The value of A can be
calculated as arithmetic mean of the A(k, k+1) or by fitting using column
2 (x) and 4 (y).

2θ k (x) Intensity Ak (y) A(k, k + 1)

0.18 3 3.2 · 106 630.84
7.66

0.18 2 24.5 · 106

0.21 2 3.5 · 106 82.36
9.06

0.21 1 31.7 · 106

0.35 1 3.2 · 104 9.09
9.09

0.35 0 29.1 · 104 1

Figure 3.3.: Plot of the example data of Tab. 3.1 and fit for the determination of the
attenuation factor.

lead to very small values of I and arithmetic underflows can occur. Therefore it might
be of advantage to scale the measured intensity by S values before dividing it by I0

I =
Im · S
I0

. (3.29)

In PyGid the scaling factor S is entered in the box labeled Mul before moni.

Of course the monitor has also an effect on the intensity error. Again the proper
error is obtained by scaling the error of the actually measured intensity

σI =
S

I0
σIm =

S

I0

√
Im. (3.30)

This last correction of the intensity error can be omitted if S is chosen equal to the
mean primary intensity during one scan; then the factor S/I0 is approximately unity
and the effects on the error are small.

69



3. PyGid

3.5. Extraction of Line Scans

For a better insight on some aspects of reciprocal space map data it is often desired
to extract one dimensional data (line scans). If intensity data is extracted from a
rectangular grid, then each intensity point represents the same area in the reciprocal
space map. Hence simply summing the intensities is a proportional estimation of the
integral.

Due to the Poisson distribution the variance on each intensity value of the line scan
(I =

∑N
n=1 In) can be estimated (with σIn =

√
In),

σ2
I =

N∑
n=1

σ2
In =

N∑
n=1

In = I. (3.31)

That is, the error on the sum of Poisson distributed variables is again Poisson dis-
tributed and the conventional equation for the variance is valid.

3.6. Error on Intensity Data

In general, intensity data is distributed according to counting statistics. I.e. according
to the Poisson distribution. Hence, the standard deviation σI on one data point is

σI =
√
I. (3.32)

The effects of operations like regridding, attenuator correction, monitor correction,
and extraction of line scans on the error have been deduced above, here they are
summarized. Im represents the measured value of the intensity.

The standard deviation of:

1. Regridded data is σI = 1√
N

√∑N
n Im,n.

2. Attenuator corrected data is σI = Ak
√
Im.

3. Monitor corrected data is σI = S
I0

√
Im.

4. A data point in a line scan is σI =

√∑N In =
√
I

Taking these effects into account is important if one wants to make use of quality
parameters obtained by χ2-fitting. E.g. the quality of peak fits of line scan data or
subsequently the quality of crystal structure solutions. Of course all systematic errors
have to be eliminated before.

For the structure determination of perfluoropentacene on graphite (discussed in
Chap. 4) the intensity error was estimated as outlined. This was done outside of
PyGid to test if a quality estimation is possible. During this test indication was
found that the data is dominated by systematic errors and therefore error analysis
capabilities were not implemented in PyGid. But it is desirable for the future to
minimize systematic errors and establish an error estimation.
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4. Structure Solution of Thin Film Phases

Thin films of organic molecules are key elements for organic electronics. The physical
properties of organic thin film devices are strongly influenced by the structure and
morphology of the deposited material (Nabok et al.; 2007). Structure and morphology
in turn depend sensitively on the preparation conditions (Yagi et al.; 2004; Wu et al.;
2007), like e.g. type and temperature of the substrate (Dinelli et al.; 2004; Stadlober
et al.; 2006) (see also Chap. 5). Depending on these parameters thin-film phases
might form, which are phases whether observed in single crystals nor in powders.
Therefore, the standard crystal structure solution procedures – based on powder or
single crystal diffraction – cannot be applied for these systems.

In the following an experimental approach to the crystal structure determination
of thin organic films, deposited as two-dimensional powders, will be introduced. The
procedure is based on the extraction of structure factors from reciprocal space maps.
Then the molecular packing is obtained by a direct space search (see Sec. 1.6.2).
There, the misfit

χ2 =
∑
i

(|Fobsi |2 − |Fcalci |2)2

σ2
Fobsi

(4.1)

between observed Fobs and calculated Fcalc structure factors is minimized.
This new approach will be tested with three different materials. To cross check the

solutions will be compared to solutions obtained by packing optimizations based on
energy considerations.

Strategy

1. Indexation to find a proper unit cell for the investigated material.

2. Extract intensities from the reciprocal space map.

3. Calculate observed structure factors by applying the correction factors
from Sec. 2.7.1 to the intensities.

4. Structure optimization based on extracted structure factors using rigid body
refinement with the software FOX (Favre-Nicolin and Černý; 2002).

5. Recheck solution against measured pattern.

6. If necessary introduce additional information to the optimization procedure.

7. Redo steps 4, 5, and 6 until a satisfactory solution is found or none seems
feasible.
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4.1. Test Case Pentacene

4.1.1. Indexation

Finding the indexation of pentacene was not necessary because the thin-film phase
unit cell was already well known with a = 5.92, b = 7.54, c = 15.63, α = 81.5,
β = 87.2, and γ = 89.9 (Nabok et al.; 2007; Yoshida et al.; 2007; Schiefer et al.; 2007).
The reciprocal space map used for the structure solution is shown in Fig. 4.1. In this
map the grey dots show all Bragg peak positions in the investigated region, which are
expected from the thin-film phase. If they actually show intensity, i.e. are observable,
is not considered. Due to limitations during intensity extraction (see below Sec. 4.1.2)
only the peaks marked in white could be used for the structure solution.

Peaks not marked by dots are stemming from the bulk phase and are not analyzed.

4.1.2. Extraction of Intensities

In the reciprocal space map the peaks are quite broad along the qz direction, and are
overlapping. Due to the overlaps the peaks could not be fitted individually; therefore
line scans along the qz direction have been extracted, and multiple peak fits were
executed (see Fig. 4.2). Please note, that some peaks overlap so strongly that it is
not clear to which index the intensity should be assigned. Therefore they cannot be
used for structure solution. This is demonstrated by the second peak (qz ≈ 0.2) in Fig.
4.2(a). This peak corresponds to the two lowest grey indexation dots in the dashed
rectangle in the reciprocal space map. To explain the line scan well these overlapping
peaks have been fitted but their intensities ignored for structure solution.

A second class of peaks which might not be used for the structure solution are peaks
located directly at, or near to the critical angle of total reflection. There the intensity
is enhanced due to the transmission function and Im = I · |Tf |2 is measured (Sec. 2.6).
The transmission function as function of q/qc near to qc is shown in Fig. 4.3(a). For
values of q & 3qc the influence of the transmission function is below 5%. So, for peaks
with qz < 3qc one may consider to correct the intensity for the transmission function,
or ignore it (e.g. the first peak in Fig. 4.2(a)). In the present case no correction
was performed, and three low-q peaks (Fig. 4.1) were still used for the structure
solution. However, for enhancing the quality of structure solutions the influence of
the transmission function should be taken into account in the future.

Yet, there is another requirement to satisfy. Extracting correct (relative) intensi-
ties from two-dimensional space maps is only possible if the sample is a good two-
dimensional powder, i.e. the crystallites have to be indeed randomly rotated around
the surface normal. Otherwise an in-plane texture exists, which has an influence on
the intensities. I.e. the intensities depend not solely on the crystallographic pack-
ing but also on the texture (the investigated pentacene sample proved to be a good
two-dimensional powder).

Finally, to determine intensities rod scans (like in Fig. 4.2) have been extracted
from the whole map (each one from an equivalent area). Next to each rod a reference
background (also representing the same area) was extracted additionally.
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4.1. Test Case Pentacene

Figure 4.1.: Reciprocal space map of pentacene. The grey dots give all expected Bragg
peak positions in the investigated region. The white dots show which
peaks have been actually used for the crystal structure solution.

It was found that the background along each rod is constant, and therefore the
line scans have been fitted by a sum of Gaussian peaks plus a constant background.
This model described most of the line scans satisfactorily, only some would have been
described better by another peak shape (e.g. Fig. 4.2(a)). As already mentioned it
is not easily possible to estimate the quality of a fit via statistical methods, because
the conditions for χ2-fitting are poorly met. Hence it cannot be decided which model
is the most likely one. Finally it was decided not to use different peak shapes for
different line scans, and all peaks have been fitted by Gaussians.

After fitting, the area of each (reliably fitted) peak was used as a measure for its
intensity. Please note, that areas are a better measure for the peak intensity than
the peak height because they are less susceptible to statistical fluctuations (Birkholz;
2006). Furthermore, the peak heights depend on the incidence angle of the radiation
on the detector, while the areas do not (See Sec. 2.3).
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4. Structure Solution of Thin Film Phases

(a) Line scan along qz of the region con-
tained within the dashed rectangle in Fig.
4.1.

(b) Line scan along qz of the region con-
tained within the full rectangle in Fig. 4.1.

Figure 4.2.: Vertical line scans extracted from the data in Fig. 4.1. The black dots
show the data points, the black lines the individual fit functions (Gaussian
peaks and a constant background has been fitted). The grey line shows
the sum of all the individual fit functions.

(a) The squared transmission function around the
critical scattering vector qc.

(b) Course of the transmission function to-
gether with the first two peaks of Fig. 4.2(a).
Please note that the intensity has been scaled
to fit the magnitude of the transmission func-
tion at qc.

Figure 4.3.: Transmission function as function of q/qc.
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4.1. Test Case Pentacene

4.1.3. Correction of Intensities

To obtain structure factors the extracted areas are corrected (as described in Sec.
2.7.1) according to their positions in the sample coordinate system which are calcu-
lated from the known indexation (Eq. 2.6, Fig. 2.16).

4.1.4. Structure Optimization

The gained structure factors can now be used within any crystal structure solution
software which is capable of finding a crystal structure by fitting a list of structure
factors. In the present case, the software FOX by Favre-Nicolin and Černý (2002)
was used. FOX is a relatively easy-to-use software built around a parallel tempering
minimization algorithm performing trials in direct space, and is freely available. Fur-
thermore, it is capable of treating the individual molecules as rigid body. Due to the
generally low quality of the obtained data and the low number of diffraction features,
rigid body refinement is the only feasible method for solving crystal structures from
grazing incidence X-ray data of organic molecules.

To perform (rigid body) minimization with FOX one needs as input the conforma-
tion of the molecule (here taken from the single crystal solution by Campbell et al.
(1962)), the unit cell, and a list assigning structure factors to hkl-triplets. The number
of molecules within the unit cell has to be specified, and can generally be estimated
from mass density considerations. If known also the proper space group can be given,
but due to simplicity the test was performed with the space group set to P1. Two
molecules have been put into the unit cell. The position(s) of the molecule(s) can be
either kept fixed or can also be optimized. If the positions are fixed 3N parameters
(N . . . the number of molecules in the cell) are optimized, while for free positions 6N
parameters are optimized. For pentacene the centers of mass of the two inequivalent
molecules within the unit cell have been set to the fractal positions (0.0, 0.0, 0.0) and
(0.5, 0.5, 0.0), and kept fixed. Trying to optimize with free molecules did not result in
any physically plausible result.

Several Monte Carlo runs consisting of 2 · 105 steps have been executed for random
starting configurations. For fixed positions the minimization proofed quite stable and
always converged to the same minimum. For free positions several, but not a single
meaningful, solutions were found demonstrating the far higher demands to the amount
of data and data quality for this sort of problem.

4.1.5. Check Solution

After the refinement the solution is again compared with the reciprocal space map.
This is neccessary, because for the refinement only a limited number of peaks – the
ones for which intensity could be extracted – are used. Rechecking the data against the
map might reveal that for the found packing intensity is expected for peaks where in
the experiment no intensity was observed; in this case the solution is not satisfactorily.
To improve the quality of the solution this information is then taken into account by
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4. Structure Solution of Thin Film Phases

introducing structure factors of zero magnitude into the hkl list and then redoing the
optimization.

Figs. 4.4 (a) and (c) show a comparison between the first pentacene solution and
the experimental pattern. In the low-q region (Fig. 4.4 (a)) two structure factors
are expected where no intensity was measured, i.e. the obtained solution shows a
significant deviation from the experimental data and is not satisfactorily. Figs. 4.4
(b) and (d) show the comparison for a second solution found with a structure factor list
containing a zero structure factor for the two obviously not fitting peaks. Although
only two structure factors have been set to zero, the agreement with the data is
increased significantly, even in the high-q region (Fig. 4.4(d)).

Generally it should be kept in mind, that for a rough structure solution low-q peaks
are more important than high-q peaks. This is because the low-q peaks probe the
electron density on a large scale while the high q peaks are sensitive to electron density
variations on smaller scales (e.g. intra molecular features). It is thought that doing
refinement on small scales is not justified by the data, but it is not obvious where the
limit is.
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4.1. Test Case Pentacene

(a) Comparison of first solution in the low-q re-
gion.

(b) Comparison of solution in the low q region
after setting the two marked structure factors in
map (a) to zero.

(c) Comparison of first solution in the whole re-
gion.

(d) Comparison of solution in the whole region
after setting the two marked structure factors in
map (a) to zero.

Figure 4.4.: Comparison of solution one ((a) and (c)) and two ((b) and (d)) with the
experimental data. The center of the rings correspond to Bragg peak
positions while their area is proportional to the structure factor.
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Table 4.1.: Molecular orientation of the two obtained solutions compared with two
solutions from literature. The herringbone angle is the angle between the
surface normals of the two planar molecules in the unit cell. LMA1 and
LMA2 are the long molecular axis of each molecule.

Sol. 1 Sol. 2 Nabok et al. (2007) Schiefer et al. (2007)

Herringbone angle 53.86◦ 54.13◦ 54.96◦ 54.31◦

∠(LMA1,LMA2) 3.30◦ 0.14◦ 0.02◦ 0.63◦

∠(LMA1, c*) 7.21◦ 4.79◦ 3.01◦ 5.68◦

∠(LMA2, c*) 4.07◦ 4.83◦ 3.00◦ 6.02◦

4.1.6. Comparison to Literature Structures

Finally, to estimate the quality of the solution, it is compared to two pentacene thin-
film phase solutions found in literature. In particular the angle between the long
molecular axes (LMA) of the two molecules within the unit cell, the angle between the
LMA and the c∗-direction of each molecule and the herringbone angle are compared.
The latter is the angle formed by the surface normals of the two independent, planar
molecules in the unit cell (a motif quite common for organic rod like molecules).

In Tab. 4.1.6 the parameters for the first solution (Sol. 1) without additional
structure factors and for the second one (Sol. 2) with two additional structure factors
is compared with the solution by Nabok et al. (2007) and the one by Schiefer et al.
(2007). It is recognized that the angle between the two LMAs significantly decreases by
introducing the two additional structure factors, and is then for solution 2 very similar
to the two literature solutions. The orientations of the individual molecules (∠(LMA1,
c*),∠(LMA2, c*)) reveal that mainly the first molecule becomes more upright, while
the second one does not really change. On the other side the herringbone angle is
quite stable and does not change significantly. To sum up, the second solution seems
within an error margin that can be expected for thin film structure solutions.
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4.2. Structure Solution of Pentacene Quinone on Silicon Oxide

4.2. Structure Solution of Pentacene Quinone on Silicon
Oxide

After the encouraging test of the introduced structure solution approach it was suc-
cessfully applied to solve the thin-film phase of pentacenequinone (PQ) on silicon-oxide
substrates. The results were published in the Journal of Crystal Growth & Design.
In this study the surface induced phase of pentacenequinone was also solved by the-
oretical calculations based on energy considerations and the result agreed well with
the experimental solution.

Structure Solution of the 6,13-Pentacenequinone
Surface-Induced Polymorph by Combining X-ray Diffraction

Reciprocal-Space Mapping and Theoretical Structure Modeling

Ingo Salzmann1, Dmitrii Nabok2, Martin Oehzelt3, Steffen Duhm1, Armin
Moser4, Georg Heimel1, Peter Puschnig2, Claudia Ambrosch-Draxl2, Jürgen
P. Rabe1, and Norbert Koch1

1Humboldt-Universität zu Berlin, Department of Physics, Germany
2Montanuniversity Leoben, Chair of Atomistic Modelling and Design of Materials,
Austria
3Johannes Kepler Universität Linz, Department of Experimental Physics, Austria
4Graz University of Technology, Institute of Solid State Physics, Austria

Journal of Crystal Growth & Design, 11, 600–606, (2011)
http://dx.doi.org/10.1021/cg1015143

To further illustrate the task of structure solution here details about this part of the
work are given.

The reciprocal space map used for PQ on SiOx is shown in Fig. 4.5. This map
was measured at the W1 beamline of the HASYLAB Synchtrotron source with a
point detector. The reciprocal space map could be indexed by Ingo Salzmann with
the triclinic unit cell a = 4.69Å, b = 5.99Å, c = 13.45Å, α = 77.8◦, β = 84.1◦, and
γ = 81.1◦.

For the structure solution the rod scans and backgrounds shown in Fig. 4.5 have
been extracted as described in the last section. In contrast to the pentacene data a
significant non-constant background is observed. Rather then including it into the fit
equations it was stripped from the data prior to fitting. After background removal, the
rod scans have been fitted again by a linear combination of Gaussian peaks. Opposite
to the pentacene case above all peaks are satisfactorily described by Gaussian peaks.

The rod scan number 4 shows that there is one bad data point at the maximum of
the peak; maybe caused by saturation of the detector. For fitting of the line scan this
bad data point was ignored.

For structure solution the conformation of the PQ molecule was taken from the
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4. Structure Solution of Thin Film Phases

single crystal solution, fixed with center of mass at the origin, and treated as rigid
body (only one molecule is contained in the unit cell). The structure solution was
performed three times. First for all data, second for data where doubtful fits were
stripped (Rod 4 and Rod 7), and third where the strong 1 -1 1 peak was ignored (to
exclude the influence of a wrong intensity due to the bad data point). Although the
structure refinement has been done for three different data sets it was quite stable
and all three runs yielded the same result.

Comparing the structure factors (Fig. 4.6(a)) of the found solution with the ex-
perimental data shows, in contrast to pentacene above, no obviously wrong structure
factors, and hence no second structure solution run was necessary. Furthermore, the
experimental solution (i.e. from extracted intensities) was confirmed by the theoreti-
cally obtained one (from energy considerations). A comparison between the measured,
the theoretically obtained, and the experimentally fitted structure factors is shown in
Fig. 4.6(b).
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4.2. Structure Solution of Pentacene Quinone on Silicon Oxide

Figure 4.5.: Indexed (black dots) reciprocal space map and extracted rod scans of
pentacenequinone. The rod scans show the raw data (light grey line),
the background (dashed black line), the background corrected data (dark
grey line) and the multiple peak fits (full black line).
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4. Structure Solution of Thin Film Phases

(a) Comparison between the experimentally obtained crystal structure and the measured data. The
structure factors (∝ area of the rings) are in good agreement with the data.
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(b) Comparison of measured, theoretically obtained and experimentally fitted structure factors.

Figure 4.6.: Comparison of pentacenequinone structure factors.
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4.3. Structure Solution of Perfluoropentacene on Graphite

Figure 4.7.: Reciprocal space map of perfluoropentacene on graphite. The black dots
show peak positions for the found unit cell. The dashed rectangle encloses
the region which was measured in the first experiment with the point
detector (∼ 17 peaks are contained in this region).

4.3. Structure Solution of Perfluoropentacene on Graphite

Again in close cooperation with Ingo Salzmann a structure solution of thin films of
perfluoropentacene (PFP) on graphite was performed. All the experiments and sample
preparations have been executed by Ingo Salzmann or cooperation partners and only
the structure optimization was performed by the author of this work. Therefore again
mainly details about the structure optimization are given. The complete results of
this work are on the way of being published.

Already some time ago first grazing incidence data of PFP have been measured
with a point detector for a small region of reciprocal space (Fig. 4.7) and indexed
(a = 15.13, b = 8.94000, c = 6.51, α = 78.56, β = 108.14, and γ = 92.44). In
the reciprocal space map well defined not overlapping peaks were observed. Because
of that no line scans but just the isolated peaks have been extracted and fitted by a
Gaussian peak plus a linear background. The area from which intensity was extracted
was not kept constant here. This is not crucial if the area of extraction is chosen
large enough to contain the complete peak, because then different areas only effect
the background (baseline) which is anyway considered during fitting. Due to the
limitations of a point detector only a small part of reciprocal space could be mapped,
and hence only 17 peak intensities have been measured (Fig. 4.7).

Executing the structure optimization with these 17 structure factors has not pro-
vided any meaningful result. For all minima found the two molecules within the unit
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4. Structure Solution of Thin Film Phases

Figure 4.8.: Comparison of the structure factors from the first (black) and the ones
from the second (white) experiment. The data of the first experiment
was measured for a fixed sample, while it was oscillated around its surface
normal during the second experiment.

cell draw too near or even did intersect. To avoid this problem it is possible to set a
so called (not well-documented) anti-bump-parameter in FOX. Setting this parameter
introduces an additional term into the minimized cost function. This term depends
on a (minimum) distance parameter which has to be inserted for each possible com-
bination of atoms (Carbon and Fluorine in the present case). The term reaches its
maximum for half of the given distance. The anti-bump distances were set to the sum
of half the van der Waals radii for all possible combinations of atoms, as it seems a
physically plausible choice for molecular crystals. However, although the anti-bump
parameter was set, no plausible result was obtained.

Subsequently performed LEED experiments of the substrate showed that the do-
mains of the graphite substrate are azimuthally not random but rather preferred
in-plane orientations exist. If the PFP crystallites grow epitaxially on these domains
it has to be expected that also the PFP film is not a perfect two-dimensional powder;
therefore the prerequisite that no in-plane texture exists is violated. Hence the rela-
tive intensities are no more depending solely on the packing but also on this in-plane
texture rendering a structure solution impossible.

Because of these findings new scattering experiments have been performed (Fig.
4.7). To avoid the dependence of the intensity on the in-plane texture the sample was
oscillated around its surface normal during the measurements. And indeed different
intensities than in the first experiment have been measured. Fig. 4.8 compares the
structure factors from the first experiment with the ones of the second experiment.
Another difference between the two experiments was, that now a one-dimensional
detector was available. Thus, a larger region could be measured and 75 intensities
extracted.

Also from the new data the peaks have been extracted and fitted individually but
looking at the vertical shape of one example peak (Fig. 4.9(a)) reveals a strange peak
shape. It is thought that this shape is caused by small misalignments together with
the oscillation of the sample. This is why, not vertical but horizontal line scans have
been collected and fitted (Fig. 4.9(b)). Unfortunately they have been measured with
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4.3. Structure Solution of Perfluoropentacene on Graphite

P1 P2 DOF Comment

0,0,0 0,0.5,0.5 75-6 = 69 10 equivalent good solutions, pattern not
explained perfectly

0,0,0 0,0.5,0,5 77-6 = 71 7 equivalent good solutions, 3 do not ex-
plain pattern

free,0,0 free,0.5,0.5 77-8 = 69 5 equivalent good solutions with arbitrary
shift in x, 5 do not explain pattern

0,0,0 0.5,0.5,0.5 75-6 = 69 Pattern not explained

0,0,0 0.5,0.5,0.5 77-6 = 71 Pattern not explained

free,0,0 free,0.5,0.5 75-8 = 67 Pattern not explained

free free 75-12= 63 Pattern not explained

free free 77-12= 65 Pattern not explained

Table 4.2.: Parameters for the different settings for the structure solution of PFP. P1
and P2 are the positions of the first and second molecule in the unit cell
given with fractal coordinates x,y,z. DOF are the degrees of freedom (i.e.
number of structure factors minus fitted parameters).

quite a low resolution and only around 5 data points are contained within the peaks.
This is definitely the lower limit for peak fitting.

Nevertheless several structure solution runs were tried. The molecular conformation
was again taken from the single crystal solution and two molecules have been placed
into the unit cell. The structure optimization was tried for several different settings
(Tab. 4.2). For each setting 10 Monte Carlo runs have been performed. For settings
with fixed positions 500 · 103 Monte Carlo steps were executed while for settings with
free positions 1 · 106 steps were used. In a first step the solution has been executed
exclusively with the 75 measured intensities. From the four different settings only the
one with the molecules fixed at (0,0,0) and (0,0.5,0.5) gave a plausible result. Similar to
the case of pentacene, also here some too strong structure factors have been observed.
Therefore, a second run has been performed with two structure factors set to zero;
again for all four settings. The second optimization yielded two plausible results. One
for fixed molecules as in the first run, one with the x-coordinate left free. But in
essence both results where equivalent because the relative positions of the molecules
were quite similar, and the shift of the pair of them along the x-direction is due to
symmetry not significant.

As in the case of pentacenequinone, energy based packing optimizations were per-
formed as well. Roughly 200 different molecular packings have been obtained and
the proper one selected by a comparison with the experimental pattern. The solution
fitting best to the experimental pattern agreed well with the experimental one. Fig.
4.10 shows a comparison of both solutions with the experimental data.
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(a) (b)

Figure 4.9.: Vertical and horizontal line scan of the -1 1 1 Bragg peak to illustrate the
deformed out-of-plane peak shape caused by misalignment in combination
with sample oscillation around the substrate surface normal.

Figure 4.10.: Comparison of the theoretically obtained solution (black) and the exper-
imental one (grey) with the measured data. For the theoretical solution
an older not so accurate unit cell was used, hence the peak positions
are a little different to the experimental solution, but this has no critical
influence on the molecular packing.

88



4.4. Conclusion

4.4. Conclusion

In this chapter three different successful structure solutions of thin-film phases have
been shown. While the solution of the PQ phase was quite straight forward and was
found without any tweaks, the pentacene and PFP cases have been more challenging.
The examples demonstrated that one crucial part is the extraction of the intensities.
The second important point is to recheck the found packings against the data, and
introduce zero structure factors for non-fitting peaks. At first glance this last step
seems somehow artificial; however this is not the case because there is experimental
evidence for vanishing structure factors. In cases, where no physically relevant packing
is found with the extractable structure factors, one might even think about introducing
zero structure factors for peaks which are – according to the indexation – expected, but
in the experiment not observed1. Another important observed fact is that energetically
based packing optimizations seem to be capable to find most of the thin film structures,
and that they then generally agree well with experimental solutions. Nevertheless,
only by checking the possible plenty solutions against the experimental pattern the
proper solution can be selected.

The three examples did also show some

Limitations and Thinkable Enhancements

1. The peak shapes did depend on the position of the peak in the reciprocal space
map for pentacene and was influenced by the execution of the experiment for
PFP. This can be problematic for fitting as a model function has to be selected
but might not exist for the observed peak shape. The vertical peak shape
observed in the PFP data is an example for this case. Due to the fact that the
peaks for PFP have been isolated it might have been possible to estimate the
peak area by just summing all data points (of one peak) after a proper baseline
correction. On the other side, due to overlaps this would not have been possible
for pentacene. In conclusion, depending on the actual data a proper strategy has
to be chosen (rod scans, background correction, background fitting, extraction
of individual peaks, numerical estimation of peak areas without fitting, etc.).

2. Data containing heavily overlapping peaks cannot be used with an approach
where individual structure factors have to be measured. An example of a phase
which shows plenty of heavily overlapping peaks is the low temperature phase of
sexitiophene (Horowitz et al.; 1995). To tackle these problems the only possible
way is to perform packing optimizations using rod scans but for this task no
software is available. Due to the availibility of the sources it could be possible
to implement this functionality into FOX. On the other side there might exist a
framework which can do direct space packing optimizations with custom models
implemented by the user.

1Introducing these structure factors after the first solution process is more efficient because only
few obviously non-fitting have to be set to zero. In contrast, a-priori one does not know which
structure factors are crucial to be set to zero. Hence, potentially plenty have to be set to zero.
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3. The influence of the transmission function was ignored.

4. The reliability of the solution could not be tested by statistical means be-
cause the prerequisites are not met by the data. Furthermore the data might
be significantly influenced by systematic errors rendering quality estimation
even more difficult if not impossible. For a proper estimation of quality it would
be necessary to investigate the whole process of structure solution starting from
the experiment in close detail.
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Crystallization of Pentacene Thin Films on Polymeric
Dielectrics

Armin Moser1, Heinz-Georg Flesch1, Alfred Neuhold1, Marco Marchl1, Simon
J. Ausserlechner1, Matthias Edler2, Thomas Griesser2, Anja Haase3, Detlef-
Matthias Smilgies4, Ján Jakabovič5,Roland Resel1

1Institute of Solid State Physics, Graz University of Technology, Austria
2Institute of Chemistry of Polymeric Materials, University of Leoben, Austria
3JOANNEUM RESEARCH, Institute of Nanostructured Materials and Photonics,
Austria
4CHESS Center, Cornell University, USA
5Institute of Electronics and Photonics, Slovak University of Technology, Slovakia

Synthetic Metals, 161, 2598–2602, (2012)
http://dx.doi.org/10.1016/j.synthmet.2011.09.027

5.1. Abstract

Thin films of pentacene have been deposited on five different organic dielectric layers
of three different classes of organic materials: a conventional polymer, a photoreac-
tive polymer and a self assembled monolayer. The morphology and crystallographic
properties of the pentacene films were investigated with atomic force microscopy and
grazing incidence x-ray diffraction. It is found that the films form well known crystal-
lographic structures but show unusual crystal orientations with respect to the surface.
The (0 0 1) lattice plane of the Campbell phase is tilted approximately 13◦ from the
substrate surface normal while tilts between 4◦ and 7◦ are observed for the thin film
phase. The island shape and density are found to be inhomogeneous on all substrates.
In films where mainly large dendritic grains are observed the thin-film phase is the
prevalent crystallographic phase while films with a high island density and small ir-
regular grains are dominated by the Campbell phase. It is observed that the mean
surface roughnesses and mean surface energies of the substrate play a minor role for
the crystallization while the substrate’s morphology on nanoscopic scale is crucial for
the thin film growth.
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5.2. Introduction

Pentacene is one of the most investigated semiconductors in organic thin film transistor
(OTFT) research. Like other rod like organic molecules pentacene is very prone
to form polymorphic crystallographic phases. There are several known bulk phases
(Mattheus et al.; 2001) and one thin-film phase (Yoshida and Sato; 2008; Nabok et al.;
2007; Schiefer et al.; 2007). In thin films commonly a mixture of the thin-film phase
and one bulk phase is observed. Up to a critical thickness - which depends on the
deposition parameters - the films are dominated by the surface mediated thin-film
phase while for thicker films also the bulk phase appears. But it is not excluded that
the bulk phase also nucleates directly at the surface (Ruiz et al.; 2004; Mayer et al.;
2006). For OTFT applications it is desired that the pentacene film contains mainly the
thin-film phase because it shows superior charge transport properties (Nabok et al.;
2007). Additionally the device parameters are dependent on the dielectric layer used.
Frequently a silicon substrate with thermally grown oxide (SiOx) as gate dielectric
is used but with an (additional) organic dielectric layer it is possible to influence
the device parameters positively. It is for example possible to tune the threshold
voltages as well as the hole mobility of pentacene based OTFT (Yang et al.; 2007;
Marchl et al.; 2010a,b). However, these layers change the growth of the pentacene
crystallites. Differences in the morphology and crystalline qualities have been reported
(Kanjilal et al.; 2007; Ribič et al.; 2009; Yang et al.; 2005).

We have investigated the crystallographic structure and morphology of pentacene
thin films deposited on five different organic layers. The main focus is put on crys-
tallographic properties like type of phase, orientation of crystallites and the relation
between structure and morphology of the pentacene thin film.

5.3. Experimental Details

Thermally oxidized silicon wafers have been used as substrate for all samples, but
different deposition techniques were used for the organic dielectrics. Chemical vapor
deposition for the polymer parylene-c, spin-coating for the photo reactive polymer
PBHND1 and self assembled monolayer formation by immersion into solution for the
T-SC/SA2 layer. The chemical structures of the molecules are shown in Fig. 5.1.

5.3.1. Organic Dielectrics

Chemical vapor deposited parylene-c films are grown semi crystalline and pinhole free
and form films of homogeneous thickness (Vincze et al.; 2009; Flesch et al.; 2009).
Two parylene-c layers of nominally different thicknesses have been prepared and their
actual thicknesses and surface roughnesses have been investigated by x-ray reflectivity
(XRR) and are given in Tab.5.1. A clear difference in the layer thickness but no

1Poly(endo,exo-bis(2-nitrobenzyl)bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate)
270% 4-(2-(trichlorosilyl)ethyl)benzene-1-sulfonyl and 30% 4-(2-(trichlorosilyl)ethyl)benzene-1-

sulfonic acid
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Figure 5.1.: The chemical structures of the used organic dielectric surfaces: (a)
parylene-c, (b) T-SC/SA, (c) pristine PBHND, and (d) the UV irra-
diated PBHND

significant surface roughness difference is observed. The surface tension has been
determined with a Drop Shape Analysis System DSA 100 (Krüss GmbH Germany)
using the contact angles of water and diiodomethane as test liquids. Based on the
Owens Wendt method (Owens and Wendt; 1969), the surface tension of the samples
as well as the dispersive and polar components have been calculated.

PBHND is a photo reactive polymer synthesized by the procedure given in (Marchl
et al.; 2010b). The polymer has been spin coated on thermally oxidized silicon wafers
and selected samples were subsequently exposed to UV radiation for 0 min, 1 min
and 20 min. Due to this UV illumination the chemical structure changes forming
carboxylic acid groups attached to the polymer backbone. XRR investigations of a
pristine and a 20 min UV exposed PBHND layer (Tab. 5.1) showed that the UV
illumination does not change layer thickness and surface roughness significantly (con-
firmed by AFM). To investigate the surface energies contact angle measurements have
been performed (Marchl et al.; 2010a). Comparing the pristine and the 20 min ex-
posed substrates a decrease of the total surface energy from 47 to 41 mN/m, but an
increase of the polarity from 2.6% to 4.2% is found.

The third dielectric layer is a self assembled monolayer produced by immersing a
thermally oxidized silicon wafer into a solution containing a mixture of 70% TSC and
30% TSA (Pacher et al.; 2007). XRR thickness, surface roughness and the surface
energies are given in Tab. 5.1.

5.3.2. Pentacene Deposition

By physical vapor deposition a nominally 35 nm thick pentacene film was deposited
on all substrates. A rate of 0.1 - 0.2 nm/min was used for the first 5 nm and one of 0.5
nm/min for the following 30 nm. This deposition technique results in pentacene thin
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parylene-c PBHND

pris- 20 min TSC

No. 1 No. 2 tine UV TSA

d / [nm] 23.70 7.50 14.20 12.60 1.70

σ / [nm] 1.20 1.10 0.80 1.00 0.50

γ / [mN/m] 37.91 42.91 47.00 41.00 43.60

γd / [mN/m] 36.92 42.42 45.78 39.28 41.4

γp / [mN/m] 0.49 0.98 1.22 1.72 2.20
γp
γ / % 1.10 2.60 2.60 4.20 5.30

Table 5.1.: Thicknesses (d) and root mean square surface roughnesses (σ) of the di-
electric layers obtained from XRR experiments. Total (γ), dispersive parts
(γd), and polar parts (γp) of the surface energies, as well as polarities (γp/γ)
of the dielectric layers obtained by contact angle measurements.

films where the crystallites are aligned preferentially with one lattice plane parallel
to the substrate surface, but do not show any in-plane alignment. To refer to the
orientation of the crystallites it is common practice to give the Miller indices of the
surface-parallel lattice plane.

5.3.3. Investigation Techniques

XRR experiments have been performed on a Bruker D8 Discover setup in Bragg
Brentano focusing condition using radiation from a copper sealed tube. Wavelength
selection (CuKα = 1.542 Å) was done by a secondary side graphite monochromator.
The layer thickness was determined using the recursive algorithm of Parratt (Parratt;
1954) with the information about roughness included in the simulation by the model of
Névot and Croce (Névot and Croce; 1980). For the simulation the package WinGIXA
is used (Leenaers and de Boer; 1997).

Grazing incidence x-ray diffraction experiments (GIXD) were executed at the G2-
Line of the Cornell High Energy Synchrotron Source (CHESS) (Smilgies et al.; 2005),
with the wavelength set to 1.301 Å. A position sensitive 1D detector was used to
record the scattered intensity, covering an out-of-plane angular range of approximately

8◦(
∧
= 0.7 Å−1 in qz). The results of the GIXD experiments are presented as recip-

rocal space maps (RSM) using the vertical (qz) and in-plane (qp) component of the
vector of momentum transfer as coordinates. Through indexation of the RSM the
crystallographic unit cell and surface-parallel plane are obtained (Moser et al.; 2009).

The AFM system used is a commercial Dimension 3100 by Veeco. The measure-
ments were performed in tapping mode with standard silicon tips by Olympus (AC
160TS). All samples are measured at room temperature and ambient conditions. The
scan size is according to the grain size of the pentacene crystals (5 x 5) µm2.
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Figure 5.2.: Reciprocal space map of pentacene thin film grown on a parylene-c surface
near the specular direction with a logarithmic color scale. The 0 0 L
peaks of the thin-film phase (black rings, full line) and of the Campbell
phase (blue rings, dashed line) are observed. The radii of the rings are
proportional to the expected intensity. In the lower part a sketch of the
crystallites on the surface is shown. The (0 0 1) lattice planes the thin-
film phase (black, full line) and of the Campbell phase (blue, dashed line)
are indicated.

5.4. Experimental Results

5.4.1. Pentacene on Parylene-C

A RSM (Fig. 5.2), measured around the specular direction, shows two distinct Bragg
peak series of 0 0 L reflections which can be assigned unambiguously to the thin-film
phase and Campbell phase (Yoshida and Sato; 2008; Nabok et al.; 2007; Schiefer et al.;
2007; Campbell et al.; 1961, 1962). Both 0 0 L peak series are clearly tilted from the
specular direction revealing that the (0 0 1) planes of the Campbell phase crystallites
are tilted approximately 13.0◦, and the ones of the thin-film phase 4.0◦ from the
substrate surface normal. For a successful indexation and hence determination of the
surface-parallel plane a part of the scattering pattern near to the in-plane direction
was measured (Fig. 5.3(a)). This RSM was indexed with the known lattice constants
by just changing the surface-parallel planes showing that the thin-film phase grows
with the (1 -2 75) plane and the Campbell phase with the (-1 -1 12) plane parallel to
the substrate surface which is in agreement with the 4.0◦ and 13◦ tilt of the (0 0 1)
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Figure 5.3.: (a) In-plane reciprocal space map of pentacene crystallites on the
parylene-c surface together with indexation. Calculated peak positions
for the thin film (white circles) and Campbell phase (black circles) are
plotted on top of the log-scaled intensity pattern. The radii of the cir-
cles are proportional to the expected intensity. The 1 1 0 reflection of the
parylene-c is drawn as white arc. (b) AF micrograph of the corresponding
film.

planes. Due to the large peak widths and the resulting overlaps it is not possible to
get a reliable quantitative estimate for the relative amount of the phases. But from
the known packings of the crystallographic phases expected Bragg peak intensities
can be calculated and by comparing these expected intensities to the observed ones
one can estimate which phase dominates. This shows that the films on parylene-c are
dominated by the thin-film phase. Finally it is noted that on the two parylene-c films
with different thickness no differences between the pentacene layers on top of them
have been found.

The AF micrograph in Fig. 5.3(b) shows the height image of the investigated
film. Several pentacene islands of different shape can be observed showing a higher
nucleation density than on silicon oxide (Ruiz et al.; 2004). A coexistence of large
pyramidal grains and smaller grains of irregular shape is observed.
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5.4. Experimental Results

Figure 5.4.: Reciprocal Space Map of pentacene thin film on PBHND which was not
exposed to UV. The recorded intensity is given on a logarithmic scale
together with indexation. Expected peak positions of the Campbell phase
(white circles) and thin film phase are indicated (black circles). The radii
of the circles are proportional to the expected intensity. The not indexed
peaks are stemming from a (0 0 1) oriented thin-film phase.

5.4.2. Pentacene on PBHND

GIXD and AFM data of pentacene films on differently UV exposed PBHND layers
reveal a tremendous influence of the UV induced surface modification on the crystal-
lographic properties and the morphology of the grown film.

The film grown on pristine PBHND contains the thin-film phase and Campbell
phase (Fig. 5.4), but in contrast to the films on parylene-c the Campbell phase domi-
nates this film. Additionally a broad crystallite orientation distribution (mosaicity) is
revealed by the smearing of the Campbell phase diffraction features along an arc with
fixed radius (|q|) in the RSM. The maximum of the distribution (maximal intensity)
is observed at a similar tilt angle as on parylene-c; the (0 0 1) lattice plane is tilted
12◦ from the surface normal with (-1 -1 15) as surface-parallel plane. In contrast the
thin film phase shows a clear dominating (0 0 1) orientation and a minor (1 -2 40) ori-
entation indicating a 7◦ tilt of the (0 0 1) planes. If the PBHND substrate is exposed
for only 1 minute to UV radiation (see Sec. 5.8) the mosaicity of the pentacene film
is decreased significantly. The thin-film phase dominates these films and two orien-
tations are observed for both phases. Both show a dominating (0 0 1) orientation on
the one hand and the same orientations as observed on parylene-c on the other hand.
On the sample which was exposed for 20 min to UV (see Sec. 5.8) the mosaicity is
further decreased, the thin-film phase dominates, and for both phases exclusively (0 0
1) oriented crystallites are found. This scattering pattern is quite similar to patterns
usually observed for pentacene films on SiOx (Yoshida and Sato; 2008; Nabok et al.;
2007; Schiefer et al.; 2007).

The AFM data (Fig. 5.5) of these films show also a tremendous influence of the
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5. Pentacene on Organic Dielectrics

Figure 5.5.: AF micrograph of nominally 35 nm thick pentacene films on PBHND
exposed to UV for different time spans - (a) 0 min, (b) 1 min, and (c)
20 min exposed - and of the pentacene film on the T-SC/SA layer (d).

surface modification on the morphology of the pentacene layers. While the pristine
sample shows a very high island density of small irregular grains, the sample exposed
20 min to UV shows large dendritic islands as usually observed on SiOx (Ruiz et al.;
2004). In between these two extremes one finds a gradual change of the island size.
The film grown on the one minute exposed substrate shows a medium nucleation
density and a coexistence of small irregular and large dendritic grains.

5.4.3. Pentacene on T-SC/SA

The GIXD scattering pattern of pentacene on T-SC/SA (see Sec. 5.8) reveals a
dominating thin-film phase with two different orientations. A (0 0 1) orientation and
a (1 -2 50) orientation corresponding to a tilt around 5◦ are observed. In contrast only
one orientation is found for the Campbell phase revealing a 13◦ tilt as on parylene-c.

The AFM data (5.5(d)) show a similar picture as on the 1 min exposed PBHND
substrate. A medium nucleation density and coexisting large dendritic and small
irregular islands are observed.

5.5. Discussion

The presented data on pentacene thin films grown on top of different dielectric layers
show that all the pentacene films are polycrystalline and are composed of two well
known crystallographic phases: The thin-film phase and Campbell phase. These
phases are also observed on silicon oxide (Nabok et al.; 2007), where they are oriented
with their (0 0 1) lattice plane parallel to the substrate surface and large dendritic
islands are observed by AFM (Ruiz et al.; 2004). Films with the same morphology
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and crystallographic properties have been found here on the 20 min exposed PBHND
substrate. In all other cases it was found that the polymeric dielectrics have an
influence on the orientation and morphology of the crystallites. Tilted crystallites are
found on parylene-c, the pristine and 1 min UV exposed PBHND, and the T-SC/SA
surface. Overall it is observed that the thin-film phase shows a higher tendency
to form (0 0 1) oriented crystallites than the Campbell phase. To summarize, the
dielectrics have an influence on the crystallite orientation while there is no change of
the crystallographic structures formed.

The found surface-parallel planes of the tilted crystallites are quite unusual because
surface-parallel planes are commonly cleavage planes which is not the case here because
the planes intersect the pentacene molecules. There are examples where observations
of this kind are explained by twinning effects within the organic film (Resel et al.;
2001; Moret et al.; 2005) but in the present case it was not possible to identify a clear
twinning plane neither within one phase nor between different phases.

From the collected data it is also not possible to draw clear conclusions about the
role of the surface energies. On PBHND it was observed that the amount of Campbell
phase decreases with exposure time to UV and hence with increasing polarity of the
substrate. A higher polarity favors 2D growth and therefore might promote the growth
of the thin-film phase (Ribič et al.; 2009; Verlaak et al.; 2003). This behavior is not
confirmed by the other samples. This shows that on the present dielectrics the surface
energies play a minor role.

On surfaces with similar mean surface roughnesses (measured by XRR) different
mosaicities and fractions of the two phases are observed, hence the measured roughness
cannot be the reason for these observations. This can be explained if one considers
that with the resolution of XRR as well as AFM it is not possible to access the
nanoscopic morphology; i.e. the morphology on the scale of the pentacene unit cell
which is important for the growth (Lee et al.; 2008).

In the AFM images it is also observed that there are local differences in the pen-
tacene growth behavior which can only be caused by locally different surface properties
of the substrate. It is remarkable that with the increase of the amount of dendritic
grains also the diffraction features from the (0 0 1) oriented thin-film phase are getting
more pronounced. This strengthens that the dendritic grains are built of the thin film
phase. Dendritic grains are typically formed by diffusion limited aggregation which
implies that a molecule can diffuse freely and is immediately included into a grain at
the moment it gets into contact with it; i.e. after inclusion into the grain there are no
or only few rearrangements expected. We suggest that this growth mechanism favors
the formation of the kinetically but not thermodynamically stable thin-film phase.
Outside these regions the nanoscopic roughness might influence the growth and lead
to piling up of material and the formation of the bulk phase gets more probable there.
This is also the reason why the bulk phase shows a stronger tendency to form a large
mosaicity.
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5.6. Conclusion

In this report it was shown that pentacene thin films grown on selected organic di-
electrics show different crystallite orientations as well as different fractions of crystal-
lographic phases than films grown on silicon oxide. The observed behavior cannot be
explained by twinning effects, neither within one phase nor between different phases.
Also the mean surface roughness as well as the mean surface energies do not play an
important role. In general locally different growth behavior is found and reasoned
that this is caused by locally different substrate surface properties and especially the
morphology on the nanoscopic scale. Pronounced growth of large dendritic grains is
found in films which are dominated by the thin film phase while the Campbell phase
is prevalently found in films composed of small irregular islands.
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5.8. Supporting Informtaion

Figure 5.6 shows a direct comparison of all reciprocal space maps and AFM images.
The black indexation shows peaks of the thin-film phase, the white one of the Camp-
bell phase. The not indexed peaks on the 1 min exposed PBHND 5.6(c), the pristine
PBHND 5.6(d), and on T-SC/SA 5.6(e) are stemming from an (0 0 1) oriented thin-
film phase. Comparing Figure 5.6(d) and 5.6(b) one can recognize the decrease of
mosaicity and of the amount of Campbell phase. The decrease of mosaicity follows
from the decrease of the width of the peaks along an arc. The decrease of the Camp-
bell phase from the decrease of the intensities of the corresponding diffraction peaks
(marked with white circles in both pictures).
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Figure 5.6.: Comparison of all reciprocal space maps and atomic force micrographs. a)
on 20 nm parylene-c, b) on 20 min, c) on 1 min, d) on pristine PBHND,
e) on T-SC/SA.
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6.1. Abstract

This work presents the influence of temperatures above 300 K on the crystal structure
and morphology of pentacene thin films. The thermal expansion of the unit cell and
the relative amount of different phases are investigated via grazing incidence x-ray
diffraction. Geometrical considerations about the specific molecular packing of the
thin-film phase explain the anisotropic non-linear expansion. Furthermore, around
480 K a phase transformation of the thin-film phase to the bulk phase is observed. In
contrast only a weak influence of the temperature on the height distribution of the
thin-film phase crystallites is found.

6.2. Introduction

Pentacene is a material widely used in organic thin film transistor research where thin
films with thicknesses of some tens of nanometers are relevant. Although there are
several polymorphic phases of pentacene (Mattheus et al.; 2001) typically only two
of them are observed in thin films: the thin-film phase and Campbell phase (Yoshida
and Sato; 2008; Nabok et al.; 2007; Schiefer et al.; 2007; Campbell et al.; 1962). While
the Campbell phase is a bulk equilibrium structure the thin-film phase is a surface
induced, metastable crystallographic phase, which is kinetically favored during the
growth process (Dimitrakopoulos et al.; 1996). On weakly interacting substrates (e.g.
silicon oxide) the crystallites of both phases are commonly oriented with the (001)
lattice plane parallel to the substrate surface; i.e. the a and b unit cell vectors lie in
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6. Temperature Stability of Pentacene Thin-Films

Temperature [K]

Sample 1 Sample 2 Sample 3 Ref. 3Ref. 2 Ref. 4

Figure 6.1.: Lattice constants of the pentacene thin-film phase as function of the tem-
perature obtained from three independent diffraction experiments (empty
symbols). The literature values at room temperature are given addition-
ally (filled symbols).
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the substrate surface plane and the long molecular axis (LMA) is nearly perpendicular
onto the substrate surface. Atomic force microscopy (AFM) experiments commonly
show terraced, dendritic islands with diameters of some microns (Zhang et al.; 2009;
Haas et al.; 2004).

Despite the large number of scientific publications on pentacene thin films, there
are only two studies showing some influence of temperatures above 300 K(Ji et al.;
2008; Fukuda et al.; 2009). Moreover they are more focused on device performance
than on crystallographic properties. To fill this gap we have thoroughly investigated
the crystallographic properties as well as the morphology via specular and grazing
incidence x-ray diffraction experiments at temperatures ranging from 300 K up to
desorption of the film at around 500 K.

6.3. Experimental Details

Pentacene thin films with a nominal thickness of 50 nm have been physical vapor de-
posited onto thermally oxidized silicon wafers at a base pressure of 1×10−5 mbar; the
substrate was kept at room temperature. For the starting 5 nm a rate of 0.1 nm/min
while for the remaining ones a rate of 0.6 nm/min was used. AFM experiments were
performed on a commercial Dimension 3100 by Veeco with standard silicon tips in
tapping mode at ambient conditions and reveal the usually observed morphology.
Grazing incidence and specular x-ray diffraction experiments have been performed at
the ID10B beamline of the European Synchrotron Radiation Facility. For a wave-
length and goniometer independent representation of the data the components of the
scattering vector q in the surface reference frame (Moser et al.; 2009) are used as coor-
dinates. For temperature control and creation of a helium inert atmosphere a Domed
Hot Stage 900 (Resel et al.; 2003) from Anton Paar Ltd. was used. To account for
the thermal expansion of the heating stage, it was necessary to align the samples at
each temperature step.

6.4. Results and Discussion

In the measured reciprocal space maps (RSM) diffraction peaks of the thin-film phase
and Campbell phase have been observed. The positions of the Bragg peaks have been
used to calculate the unit cell parameters at different temperatures. For the thin-film
phase clear thermal shifts of the lattice parameters are observed (depicted in FIG. 6.1).
The temperature dependence of the lattice constants a and b is non-linear, in contrast
to that of c. Furthermore, the expansion of b (≈ 0.12 Å) is approximately twice that
of a (≈ 0.05 Å). This 2:1 ratio of the expansion was also found for the Holmes phase
(Holmes et al.; 1999; Mattheus et al.; 2001) under high pressure (Oehzelt et al.; 2006).
This observation is typical for the herringbone packing motive and explained by geo-
metrical considerations taking the van der Waals shape of the molecules into account
(Oehzelt et al.; 2006). Also the non linearity of the in-plane expansion is caused by
the distinct packing of the molecules. The molecules are nearly perpendicular onto
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11L 02LThin-film phase

20L11L Campbell phase qp [Å-1]

Figure 6.2.: Diffraction patterns at different temperatures as function of the scattering
vector component parallel to the substrate surface (qp). The patterns
were obtained by integrating Bragg peak series observed in a reciprocal
space map along qz ranging from 0 to 1.0 Å−1. The observed peaks can
be assigned to the thin-film phase (indicated above) and the Campbell
phase (indicated below).

Figure 6.3.: Sum of Bragg peak intensities for the thin-film phase (TF) and for the
Campbell (CA) phase which have been extracted from the in-plane scat-
tering patterns. The data for two independent samples are presented.

the (001) plane, and hence the projection of their van der Waals shape to the (001)
plane is elliptical. Upon heating librations of the rigid molecules around their LMA
play an important role (Haas et al.; 2007). To avoid overlapping caused by the libra-
tions the molecules have to shift (non linearly) into a and b direction. In contrast
the lattice constant c is nearly parallel to the LMA and the expansion is therefore
dominated by translations of the whole molecule. Hence a more linear expansion into
this direction is observed. An influence of the substrate is ruled out because the linear
expansion coefficient

(
1

L(T0)
∆L
∆T

)
of amorphous silicon oxide (≈ 0.5 · 10−6K−1) (B. El-

Kareh; 1994) is two orders of magnitude smaller than the one observed for pentacene
(≈ 1 ·10−4K−1). In contrast to the thin-film phase no reliable expansion curves could
be obtained for the Campbell phase as only five peaks have been observed.

While the unit cell expansion was determined from the Bragg peak positions their
intensities were analyzed to investigate quantitative changes of the observed phases
during temperature treatment. To perform this analysis the intensities in the RSM
have been summed along the qz direction. From the resulting line scans (see FIG.
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Figure 6.4.: Specular diffraction around the 002 Bragg peak of the thin-film phase
(qz ≈ 0.81 Å−1) and of the Campbell phase (qz ≈ 0.87 Å−1) at different
temperatures. The symbols indicate the experimental data while the lines
correspond to fits using the model defined in Eq. (6.1)-(6.2)

6.2) the total integrated intensities per phase have been extracted and depicted in
FIG. 6.3. At room temperature diffraction features from both phases are present,
however upon heating the Campbell phase intensity starts to decrease while the thin-
film phase intensity remains constant or even increases slightly. Between 380 K and
450 K no intensity from the Campbell phase is observed, but above 450 K it reappears
and reaches a maximum intensity at around 480 K. Above this temperature finally
both phases start to desorb and reach zero intensity around 500 K. Contrary, in the
specular diffraction data (FIG. 6.4) the peak of the Campbell phase is only observed
up to 360 K and the recurrence at 480 K cannot be recognized.

At low temperatures these observations show the vanishing of the Campbell phase
while around 480 K a transformation from the thin-film phase to the Campbell phase
is observed. When comparing the specular and in-plane data around 480 K it becomes
obvious that the reformed Campbell phase crystallites have only a small vertical scat-
tering volume but laterally a large one. In perfect agreement with our findings the
AFM images of Ji et al. (Ji et al.; 2008) show thin elongated islands crystallizing on
top of the film.

To gain more details about the phase changes and the morphology of the thin films
the specular diffraction data has been further analyzed. For this purpose the height
of each island is expressed in terms of the number of crystallographic layers Ni. Then
the diffraction peak from one phase is described by a weighted sum of the interference
functions from individual islands of specific height (Eq. (6.1)). The weights are
determined by the island height distribution which has been chosen Gaussian in the
present case (Eq. (6.2)) (Nefedov et al.; 1998). Furthermore to account for the two
crystallographic phases their diffraction is calculated separately and then added. To
perform global optimization the described model was implemented in the software
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Figure 6.5.: Sketch of the Gaussian height distribution of the pentacene crystallites
at 360 K. The filled islands show the thin-film phase while the empty
ones correspond to the Campbell phase. The mean island heights (N) are
indicated by a horizontal colored and white line. The standard deviation
(±σ) areas are shaded. The parameters have been obtained from the
corresponding fit of the specular data shown in FIG. 6.4

package GenX (Björck and Andersson; 2007).

I =

Nmax∑
Ni=Nmin

wNi ·
sin2(Ni/2 · qd001)

sin2(1/2 · qd001)
(6.1)

wNi =
1√

(2π)∆N2
exp

(
−(Ni −N)2

∆N2

)
(6.2)

For the thin-film phase this analysis revealed within the experimental precision
a constant mean island height (N ≈ 38) and standard deviation (∆N ≈ 7). The
thickness of the Campbell phase was found to be N ≈ 26 with ∆N ≈ 5 at room
temperature and to decrease to N ≈ 22 at 330 K and 360 K. A sketch of the height
distribution at 360 K is shown in FIG. 6.5. Please note that in the RSM the lateral
width of the diffraction peaks is dominated by the resolution function of the apparatus
and hence no lateral crystal size can be determined. Therefore the lateral widths for
the above sketch have been chosen to resemble the island size typically observed in
AFM images. It is also noted that below 420 K no broadening of the peaks due to
temperature is observed (see supplementary material).

The morphological information obtained proofs that after the deposition process the
thin-film phase crystallites are larger than the Campbell phase crystallites. Therefore
it is suggested that upon heating - in analogy to Ostwald ripening - the thin-film
phase crystallites grow on the expense of the Campbell phase. This is confirmed by
the slight increase of the thin-film phase intensity in FIG. 6.3. In contrast around 480
K it is supposed that the metastable thin-film phase transforms into the more stable
Campbell phase. In view of the used model the constant height distribution hints
that during the phase transition some of the thin-film phase crystallites transform
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completely into the Campbell phase. This behavior is similar to powders or single
crystals where around 470 K a phase transition from the Holmes phase to the Campbell
phase was found (Siegrist et al.; 2007).

6.5. Conclusion

In summary, we have found that the thermal expansion of the thin-film phase is
independent from the substrate and its non-linearity caused by the distinct packing
of the molecules. Between 300 K and 400 K the initially observed Campbell phase
vanishes while at higher temperatures a phase transition from the metastable thin-film
phase to the more stable Campbell phase was found. The morphological information
obtained indicates that some crystallites change their crystal structure completely
while the largest part of the crystallites stays unchanged. These findings encourage
molecular dynamics calculations (Yoneya et al.; 2010; Pizzirusso et al.; 2011) to further
study the details of the phase transformation from the thin-film to the Campbell phase
around 480 K.
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6.7. Supplementary Material

T [K] RT 330 360 390 420 450 460 470 480 490

FWHM [Å−1] 0.017 0.017 0.017 0.017 0.019 0.019 0.024 0.024 0.026 0.024

Table 6.1.: In-plane full width at half maximum (fitted with a Gaussian)of the (0,-2,0)
peak (qp ≈ 1.65,qz ≈ 0.25) depending on the temperature. Below 420 K
no broadening of the peaks due to temperature is observed.

Figure 6.6.: Reciprocal space map of pentacene at room temperature and 360K. No
influence of the increased temperature on the width of the peaks can be
recognized. E.g. fitting the in-plane width of the (0 -2 0) peak (qp ≈
1.65,qz ≈ 0.25) with a Gaussian gives for both temperatures a full width
at half maximum (FWHM) of σ = 0.017Å−1. Fitting the profile of this
peak along the out of plane direction gives a FWHM of σ = 0.028Å−1
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6.8. Not Published Information

6.8.1. Unit Cell Determination

For the calculation of the expansion coefficients the unit cell parameters at each tem-
perature step have been extracted. For this purpose the qp and qz position of three
in-plane peaks (see Fig. 6.7) were determined via Gaussian fits of the corresponding
line-scan. Also the qz value of the specular 002 peak was extracted. With the data of
this four peaks the unit cell was calculated using the following formulas.

a∗ =
∣∣∣qh00

h

∣∣∣ (6.3)

b∗ =
∣∣∣q0k0

k

∣∣∣ (6.4)

c∗ =
∣∣∣q00l

l

∣∣∣ (6.5)

α∗ = arccos

(
q00lq0k0

|q00l||q0k0|

)
(6.6)

β∗ = arccos

(
q00lqh00

|q00l||qh00|

)
(6.7)

γ∗ = arccos

(
|qhk0|2 − h2a∗2 − k2b∗2

2 · hk · a∗ · b∗

)
(6.8)

The last equation (6.8) follows from

|qhk0|2 = h2a∗2 + k2b∗2 + 2hk · a∗b∗ cos γ∗.

Figure 6.7.: In-plane peaks used for evaluation of the unit cell. The indices are given
to the right of the corresponding peak.
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1Institute of Solid State Physics, Graz University of Technology, Austria
2Department of Physics, Humboldt-Universität zu Berlin, Germany
3Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Germany
4Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovak Republic
5Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
6CHESS Center, Cornell University, USA

Applied Physics Letters
Under review

7.1. Abstract

This work reports the impact of the evaporation rate on the crystallographic phase
formation of vacuum deposited α-sexithiophene thin films studied by X-ray diffraction
methods. The experiments reveal the formation of two crystal phases of preferentially
standing molecules, one of which is a thermodynamically stable phase occurring at
low rates, while the second is favored by high rates. It exhibits an increased out-of-
plane lattice spacing and diffraction features typical for liquid-crystalline phases. This
frozen smectic phase of low order comprises molecules of nonuniform conformations,
and is kinetically induced.

7.2. Introduction

Organic semiconductors in organic electronic devices generally exist as thin films and
both their structural quality and crystalline order significantly impact the device per-
formance. It was shown that only slight differences in the crystalline arrangement
within distinct polymorphs (Dinelli et al.; 2004; Siegrist et al.; 2007; Mattheus et al.;
2003; Nabok et al.; 2007; Cheng and Lin; 2010) influence the intermolecular band
dispersion and, hence, the charge transport properties (Troisi and Orlandi; 2005;

113



7. Rate dependent phase behavior of α-sexithiophene

sample D [ Å] T [ K] χ [ Å/min]

a0 1560 300 36-360

a1 660 300 360-480

a2 600 411 3.6

b0 100 300 3

b1 250 300 5

b2 250 300 7

Table 7.1.: Sample designations, properties, and preparation parameters. D denotes
the nominal film thickness, T the substrate temperature, χ the deposition
rate.

Ambrosch-Draxl et al.; 2009; Nabok et al.; 2007). Numerous studies on polymor-
phism in organic thin-films identified the deposition parameters and the substrate na-
ture to have a severe influence on the choice of polymorph. Moreover, it was reported
that specific crystal structures different to the (mostly) solution-grown single-crystal
polymorph are preferentially found in thin vacuum-deposited films (Schiefer et al.;
2007; Yoshida et al.; 2007; Nabok et al.; 2007; Salzmann et al.; 2011, 2008; Winter
et al.; 2003). The crystal structure solution of such phases by grazing incidence X-ray
diffraction (GIXD) is an emerging field (Yoshida et al.; 2007; Schiefer et al.; 2007;
Nabok et al.; 2007; Moser et al.; 2009; Salzmann et al.; 2011; Mannsfeld et al.; 2011)
and the identification of the physical parameters decisive for crystallization in a spe-
cific phase is of high importance to gain full control over the film-production process,
thus, enabling a further optimization of future organic electronic devices.

In this study we investigated thin films of the prototypical p-type organic semi-
conductor α-sexithiophene (6T), which has been successfully employed in numerous
applications including field-effect transistors (Cosseddu et al.; 2009; Fraboni et al.;
2010) and organic photovoltaic cells (Kouki et al.; 2010; Sakai et al.; 2009). Thin
films were prepared by physical vapor deposition (PVD) under a precise variation of
the deposition rate, which allowed elucidating the complex (co-)existence of the dif-
ferent crystalline phases (Servet et al.; 1994). In addition to identifying parameters
that determine the existence of a specific phase, we found evidence for the smectic
(Sm) nature of a 6T polymorph.

7.3. Experimental Details

Two sample series of 6T thin films were prepared by PVD on thermally oxidized sil-
icon substrates at different substrate temperatures and deposition rates (TAB. 7.1).
The nominal film thickness was measured by a quartz microbalance. The first series
(samples a0-a2; deposition base pressure < 5× 10−9 mbar) was investigated by spec-
ular X-ray diffraction (sXRD) and X-ray reflectivity (XRR) on a Bruker D8 Discover
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in Bragg-Brentano geometry (CuKα radiation, secondary graphite monochromator).
The XRR data was fitted with the software GenX (Björck and Andersson; 2007), which
calculates specular reflectivity according to the Parratt-formalism (Parratt; 1954) and
uses a genetic algorithm for finding the global minimum in the parameter space uti-
lizing a Si/SiOx/(N×6Tbilayer) layer-stack as model; to account for the crystalline
nature of 6T the top layer was modeled by a sequence of bilayers with alternating
electron density. Hence, the number of crystallographic layers (N) could be deduced
from the fits. To obtain information on the lateral structure, GIXD investigations
were performed. Reciprocal space maps (RSM) have been collected at the G2-Line of
the Cornell High Energy Synchrotron Source using a one-dimensional detector and a
wavelength of λ = 1.30 Å. The indexation of the RSM was done with the custom-made
software PyGid, which calculates the Bragg-peak positions according to the scheme
presented by Moser et al. (2009), while for the calculation of the structure factors
the Computational Crystallography Toolbox (Grosse-Kunstleve et al.; 2002) was used.
For the second samples series (b0 - b2, deposition base pressure < 5 × 10−8 mbar)
sXRD experiments were performed at the W1 beamline of the synchrotron radiation
source HASYLAB (DESY, Germany) with a wavelength of λ =1.18 Å and a LiF point
detector.

To allow a geometry and wavelength independent representation all data is pre-
sented in the surface-reference frame (Moser et al.; 2009) with the in- and out-of-plane
components of the scattering vector (qp and qz, respectively) given as coordinates.

7.4. Experimental Results

The sXRD data for two samples of the first series (a0, and a2) are compared in FIG.
7.1(a). The film deposited with lower rate on a substrate kept at elevated temperature
(a2, top curve in Fig. 7.1(a)) only shows the 200 diffraction peak and higher order
reflections. This indicates a pronounced texture of the film, that is, all crystallites
are oriented with the (100)-lattice plane parallel to the substrate surface. From the
characteristic lattice spacing the 6T low-temperature phase (LT-phase) (Horowitz
et al.; 1995) is identified and the large observed number of higher-order reflections
indicates good crystalline quality. In contrast, the film deposited with an elevated
deposition rate at room temperature (a0, bottom line) shows – next to the h00 peaks
– also the -411, -211, and 020 reflections of the LT-phase. In addition a series of
diffraction peaks is observed, which corresponds to a lattice spacing of d100 = 24.5 Å
(indexed as 100* and 200*). This lattice-plane distance was already reported before
(Servet et al.; 1993, 1994) and the corresponding phase was denoted as β-phase of 6T.
Note that the increase in specular lattice spacing found for the β-phase (compared
to the LT-phase) is in-line with findings for several surface-mediated phases of other
organic rod-like molecules (Yoshida et al.; 2007; Schiefer et al.; 2007; Nabok et al.;
2007; Salzmann et al.; 2011). Overall, we found that the film deposited at low rate and
411 K exclusively exhibits the LT-phase with only one crystalline orientation, whereas
at elevated deposition rate both the β-phase and the LT-phase are simultaneously
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(a)

(b)

Figure 7.1.: (a) specular XRD scans of sample a2 (top line) and sample a0 (bottom
line). (b) Specular XRD scans of sample a2 (top line) and sample a1
(bottom line). The diffraction peaks are indexed according to the LT-
phase (indexed as hkl) and to the β-phase (indexed as hkl*).
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(a) (b)

Figure 7.2.: (a) Reciprocal space maps of sample a2 (top) and a0 (bottom) on a
logarithmic color scale together with indexation for a (100) (black) and
(-411) (white) textured LT-phase. The large white ring is the Debye-
Scherrer ring of the -4-11 diffraction peak. The vertical scattering rod
at qp ≈ 1.35Å−1 is marked by an arrow. (b) shows the reciprocal space
maps of sample a2 (top) and a1 (bottom).
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(a) (b)

Figure 7.3.: (a) X-ray reflectivity data of the first sample series. The first two peaks
of the LT-phase (hkl) and the β-phase (hkl*) are observed. (b) shows
the fits (black line) of the 400 and 200* peak of the a2 and a0 sam-
ple. The fits were performed applying Parratt’s formalism as described
in the text. Note that for simplicity roughness was not included into the
model and hence the thickness oscillations are too pronounced. From
their periodicity and from the width of the main Bragg peak the number
of crystallographic layers is still estimated reliably.

observed, where the latter shows a couple of preferred orientations of the crystallites.

Further information on the orientations and crystallographic phases is obtained
from the GIXD experiments (FIG. 7.2). A comparison of the experimental data to
calculated peak positions (center of rings) and intensities (area of rings) shows that
the RSM of sample a2 is indeed fully explained by a (100)-textured LT-phase. In
contrast, sample a0 is a mixture of (100) and (-411) oriented LT-phases. Notably, it is
apparent that the peaks of the (-411) orientation are smeared out along Debye-Scherrer
rings, which indicates a large mosaicity of the corresponding crystallites. Next to the
diffraction peaks of the LT-phase a vertical scattering rod at qp ≈ 1.35 Å−1 is observed.
Due to its straight vertical nature it can be excluded that it is caused by mosaicity,
but is related to the β-phase already observed in the sXRD data (h00* series in FIG.
7.1). Interestingly, however, although the β-phase dominates the specular pattern, this
scattering rod is the only β-phase derived diffraction feature in the map. Scattering
rods in general arise from two-dimensional structures (Robinson and Tweet; 1992),
which reveals 6T growth in a layered out-of-plane structure – observed by pronounced
specular features – without inter-layer correlation of the lateral structure.

Further details about layer thickness and crystallinity are obtained by a quantitative
evaluation of the XRR experiments (Fig. 7.3(a)). From fits of the Bragg peaks (Fig.
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Figure 7.4.: X-ray reflectivity data (gray circles) and fits (black lines) of sample a2
(top) and a0 (bottom) around the critical angle of total reflection for 6T
(qz ≈ 0.024 Å−1) and the silicon-oxide substrate (qz ≈ 0.03 Å−1) on a
linear y-axis.

7.3(b)) the vertical size of crystalline domains can be estimated. From fitting the
absorption observed in XRR data around the critical angles of 6T and silicon-oxide
(SiOx) (FIG. 7.4) the overall layer thickness can be deduced. For film a2 the peak
width reveals LT-phase crystallites comprising ≈ 18 layers (equivalent to ≈ 400 Å) and
the same thickness of ≈ 400 Å is found from the fit of the X-ray absorption. Hence,
the LT-phase is coherently crystalline over its whole thickness. In contrast, sample
a0 shows a layer thickness of 1500 Å, but, for the β-phase, only a comparably small
crystalline domain-size of about 7 coherent layers (equivalent only 150 Å). Note that
the data obtained for the thinner sample a1 shows both virtually identical specular
and in-plane data (Fig. 7.1(a) and Fig. 7.2(b)). Therefore, we can clearly rule out an
influence of the film thickness on the existence of a specific phase.

The sXRD data of the second sample series is depicted in FIG. 7.5. All three
samples were deposited at room temperature with increasing deposition rate (shown
from bottom to top). Clearly, depending on the different deposition rates, different
phases are formed, which all are (100)-textured. The film prepared at smallest rate
(bottom curve) exclusively shows the LT-phase, while that deposited at highest rate
shows almost exclusively the β-phase and only a minor fraction of the LT-phase (top
curve). Finally, the film achieved at medium rate represents an intermediate case
exhibiting both the LT- and the β-phase. Overall, identical lattice-plane distances
as reported for the first series above are observed. Comparing the peak widths of
the peaks in FIG. 7.5 suggests a similar behavior as found for the first sample series:
Again, the β-phase peaks arise from smaller crystallites (as deduced from the larger
peak widths) than the LT-phase.

7.5. Discussion

Within this study thin films of 6T – vapor deposited at different deposition rates
and substrate temperatures – were investigated by X-ray diffraction methods. Our
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Figure 7.5.: Specular X-ray diffraction data of the second sample series (b0 – b2, from
bottom to top). The peaks are indexed according to the LT-phase (hkl,
bottom) and to the β-phase (hkl*, top).

experiments reveal that the deposition rate allows precisely tuning the phase ratio in
6T films at room temperature. This is demonstrated by the evaluation of two sample
series, in which two 6T polymorphs, the LT- and the β-phase appear depending on
the preparation parameters, both mainly in a standing ((100)-oriented) molecular
orientation. At elevated deposition rates we found preferential formation of the β-
phase, which has – compared to the LT-phase – an increased lattice plane distance d100.
For lower rates, the quantitative phase ratio sensitively depends on the deposition
rates. If the deposition rate is just doubled from 3 to 7 Å/min the film entirely changes
from being composed of LT-phase to being dominated by the β-phase. Increasing
the rate further to very high values (samples a0, a1) does not significantly change
the picture. Still, the same phases develop but, in contrast, the LT-phase now forms
additional domains of lying ((-411) oriented) molecules. A possible explanation of this
complex growth behavior is found in past studies for para-hexaphenyl, another rod like
organic molecule. There it was reported that nuclei of lying molecules are first formed
and that they undergo an orientational transition to standing molecules upon reaching
a critical crystallite size (Potocar et al.; 2011). The analogous mechanism might
apply for 6T growth and the reorientation from lying towards standing molecules is
hindered at high deposition rates because the reorientation is limited to the surface of
the grown film as orientations of adsorbed molecules are frozen by the consecutively
deposited molecules. The mechanism affecting the molecular orientation in deposited
molecular films have been a subject for numerous studies; the molecular orientation
had been commonly assumed being determined by the interaction strength between
the molecules and the substrate (Verlaak et al.; 2003). In contrast recent studies
demonstrate the dominating role of growth kinetics governed by the surface order of
substrates (Ivanco et al.; 2007; Djuric et al.; 2011). Here also the assumption of a
kinetics-controlled molecular growth rationalizes the presence of lying molecules in
the films grown at high deposition rates on a substrate otherwise inducing upright
orientation.

Finally, the crystallographic characteristics of the β-phase remain to be discussed.
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In the specular diffraction experiment with increasing rate the formation of the β-
phase is observed together with an accompanying decrease of observed diffraction
orders. Finally, at very high rates (samples a0, a1) only two specular peaks of the
β-phase remain and the vertical crystallite size is small. Hence, an increase in rate is
clearly detrimental to crystalline order and correlation length. The in-plane patterns
of these samples reveal only one vertical scattering rod stemming from the β-phase
(FIG. 7.2). Diffraction patterns, which show a well-pronounced diffraction in specular
direction and significantly less defined peaks in the in-plane direction are typical for
smectic phases (Seddon et al.; 2008b). Smectic A (SmA) or SmC phases (Barón; 2001;
Seddon et al.; 2008a) show into in-plane direction one diffraction feature which is very
broad into both qz and qp direction. SmB, SmF, or SmI phases, in contrast, show up
to two scattering rods into in-plane direction. That is, diffraction features which are
elongated along the qz direction but well defined into qp direction are expected. For
details about the typical X-ray diffraction features of liquid crystalline materials please
consult Seddon et al. (2008b). A precise analysis of the molecular packing, and, hence,
the molecular conformation, is not possible for the β phase. However, we propose this
liquid crystalline state to be caused by molecules of different conformations, because
at the temperatures used for evaporation all possible internal conformations of the
molecules are populated (Pizzirusso et al.; 2011), and due to the kinetic nature of
the growth process the molecules do not reach the conformation required for the
thermodynamical minimum-energy packing. This would be an all-trans conformation
of the thiophene rings in the LT-phase crystal structure. Note that similar indications
of liquid-crystalline states of 6T have been reported before, where a nematic state
(Taliani et al.; 1990) was proposed, but X-ray diffraction data (Destri et al.; 1993)
could not clearly identify its nature as nematic or smectic phase, and, more recently,
indications for a SmA phase from molecular dynamics calculations (Pizzirusso et al.;
2011) were reported.

To conclude, in this work we studied the influence of deposition rate on the crys-
tallographic phases of vacuum evaporated 6T thin films. Our experiments revealed
the rate-dependent formation of the LT- and the β-phase of 6T as well as the rate-
dependent growth of standing and lying LT-phase crystallites. A kinetically driven
growth process was identified. While the LT-phase portion of the films – grown at
low rates – exhibited high crystalline order, the high-rate β-phase was identified to
be a frozen smectic state induced by growth kinetics. Our findings give evidence that
the low deposition rates can be benefical for high crystalline quality of 6T functional
layers.

The authors thank Yves Geerts for discussions about this topic and W. Caliebe
(W1 beamline, DESY-HASYLAB, Hamburg, Germany) for experimental support. For
financial support we thank the Austrian Science Fund:[21094]. Additionally this work
is based upon research conducted at the Cornell High Energy Synchrotron Source
(CHESS) which is supported by the NSF and NIH/NIGMS via NSF award DMR-
0936384.

121





Bibliography

Ambrosch-Draxl, C., Nabok, D., Puschnig, P. and Meisenbichler, C. (2009). The role
of polymorphism in organic thin films: oligoacenes investigated from first principles,
New Journal of Physics 11(12): 125010.

B. El-Kareh (1994). Fundamentals of Semiconductor Processing Technologies , Kluwer
Academic Publishers, Dodrecht.

Barón, M. (2001). Definitions of basic terms relating to low-molar-mass and poly-
mer liquid crystals (IUPAC Recommendations 2001), Pure and Applied Chemistry
73(5): 845.

Bennett, D. (2010). Understanding Single-Crystal X-Ray Crystallography, Wiley-VCH
Verlag, Weinheim.

Birkholz, M. (2006). Thin Film Analysis by X-Ray Scattering, 1st edn, Wiley-VCH
Verlag, Weinheim.

Björck, M. and Andersson, G. (2007). GenX : an extensible X-ray reflectivity refine-
ment program utilizing differential evolution, Journal of Applied Crystallography
40(6): 1174.

Bloch, J. (1985). Angle and index calculations for ‘z-axis’ X-ray diffractometer, J.
Appl. Cryst. 18: 33.

Campbell, R. B., Robertson, J. M. and Trotter, J. (1961). The crystal and molecular
structure of pentacene, Acta Crystallographica 14(7): 705.

Campbell, R. B., Robertson, J. M. and Trotter, J. (1962). The crystal structure of
hexacene, and a revision of the crystallographic data for tetracene, Acta Crystallo-
graphica 15(3): 289.

Cheng, H. L. and Lin, J. W. (2010). Controlling Polymorphic Transformations of
Pentacene Crystal through Solvent Treatments: An Experimental and Theoretical
Study, Cryst. Growth Des. 10(10): 4501.

Cosseddu, P., Vogel, J. O., Fraboni, B., Rabe, J. P., Koch, N. and Bonfiglio, A.
(2009). Continuous Tuning of Organic Transistor Operation from Enhancement to
Depletion Mode, Adv. Mater. 21(3): 344.

Destri, S., Mascherpa, M. and Porzio, W. (1993). Mesophase formation in α-
sexithienyl at high temperature –an X-ray diffraction study, Advanced Materials
5(1): 43.

123



Bibliography

Dimitrakopoulos, C. D., Brown, A. R. and Pomp, A. (1996). Molecular beam de-
posited thin films of pentacene for organic field effect transistor applications, Jour-
nal of Applied Physics 80(4): 2501.

Dinelli, F., Murgia, M., Levy, P., Cavallini, M., Biscarini, F. and de Leeuw, D. M.
(2004). Spatially Correlated Charge Transport in Organic Thin Film Transistors,
Phys. Rev. Lett. 92: 116802.

Djuric, T., Ules, T., Flesch, H., Plank, H., Shen, Q., Teichert, C., Resel, R. and
Ramsey, M. G. (2011). Epitaxially Grown Films of Standing and Lying Pentacene
Molecules on Cu(110) Surfaces, Crystal Growth & Design 11(4): 1015.

Dosch, H. (1987). Evanescent absorption in kinematic surface Bragg diffraction, Phys.
Rev. B 35: 2137–2143.
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A. Fourier Synthesis of Electron Density

As outlined in the main text, the electron density is the Fourier transform of the
structure factors

ρe(xf , yf , zf ) =
1

V

∞∑
h=−∞

∞∑
k=−∞

∞∑
l=−∞

F (hkl)e2πi(hxf+kyf+lzf ). (A.1)

Changing the summations to run from 0 to ∞ and writing the electron density for
only two dimensions it follows

ρe(xf , yf ) =
1

A

∞∑
h=0

∞∑
k=0

F (hk)e2πi(hxf+kyf ) + F (−h− k)e2πi(−hxf−kyf )︸ ︷︷ ︸
♠

+ (A.2)

+F (−hk)e2πi(−hxf+kyf ) + F (h− k)e2πi(hxf−kyf )︸ ︷︷ ︸
♣

. (A.3)

For real valued data (electron densities) the relation

F (hk) = F (−1 · (hk))∗ (A.4)

Ahk + iBhk = A−h−k − iB−h−k (A.5)

holds. Using Euler’s identity (eiφ = cosφ + i sinφ), and writing (hxf + kyf ) = kr it
follows

♠ = (Ahk + iBhk)(cos(2πkr) + i sin(2πkr)) + (A.6)

+(Ahk − iBhk)(cos(2πkr)− i sin(2πkr)) (A.7)

= 2Ahk cos(2π(hxf + kyf ))− 2Bhk sin(2π(hxf + kyf )). (A.8)

♣ follows analogously and hence the electron density is

ρe(xf , yf ) =
2

A

∞∑
h=0

∞∑
k=0

Ahk cos(2π(hxf + kyf ))−Bhk sin(2π(hxf + kyf )) +(A.9)

+A−hk cos(2π(hxf + kyf ))−B−hk sin(2π(hxf + kyf )). (A.10)

This last equation explicitly expresses that the electron density is the sum of plane
waves with the real part of the structure factor the cosine amplitude and the imaginary
part the sine amplitude. Additionally it is revealed that the amplitudes of waves with
anti parallel wave vectors are the same. Hence only one term will be considered in
the images showed in the following.
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Two examples for two dimensional electron densities are shown on the next two
pages. The first column shows the structure factors as function of h and k. From top
to bottom successively terms (frequencies) of the Fourier series are added, starting
from the terms with the highest amplitude. This sequence is shown in the structure
factor plot as red number. The actual term added in the last step (plane wave) is
shown colored in the second column on top of the original electron density (grey scale).
The third column shows the actual interpolation, i.e. the sum of all so far selected
terms. The last column finally shows the original electron density that was used to
calculated the structure factors. This images should just illustrate that the best fitting
frequencies show the highest intensities. They should also emphasize, that from one
Bragg peak and its higher order reflections only information in the direction of the
wave vector and no lateral one can be obtained.



Figure A.1.: Fourier synthesis of a two-dimensional analogue of a silicon crystal.
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A. Fourier Synthesis of Electron Density

Figure A.2.: Fourier synthesis of two dimensional pseudo pentacene molecules.
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