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Abstract

When humans engage with the Web, they produce sequential digital

trails on a massive scale. Examples of such human trails on the Web are

websites humans navigate, consecutive businesses they review or successive

songs they listen. Studying human trails has been of interest to our

research community since the advent of the World Wide Web; different

models, insights and hypotheses have emerged. While many of them are

advanced and well studied, some of them warrant further investigations.

This thesis deals with modeling aspects of human trails based on this

challenge. Mainly, it provides methodological contributions facilitating

future research concerned with the analysis of patterns, regularities and

strategies in human trails on the Web focusing on some sub-problems. (i)

First, this thesis deals with the open question of whether human trails

on the Web exhibit memory effects which is an important factor for the

Markov chain model that is frequently applied to human trails on the Web.

Predominantly, the Markov chain model has been memoryless in a wide

range of applications such as Google’s PageRank. The usefulness of this

memoryless property has been discussed without much consensus in the

past. To that end, this thesis presents a framework that allows researchers

to comprehensively evaluate the appropriate Markov chain order based on

several advanced statistical inference methods. (ii) Apart from memory

effects, it is partially unclear whether other structural patterns in human

trails might be utilized beyond what previous work has done. This thesis

tackles this by exemplarily demonstrating that human navigational trails

on the Web can be leveraged for the task of calculating semantic relatedness

between concepts. Thus, this thesis argues for an expansion of the existing

arsenal of Web data sources to also consider human trails on the Web.

(iii) Given these structural and behavioral investigations, it has been of

interest to our research community to further understand how human

trails on the Web are produced. However, it has been difficult to make

informed decisions about hypotheses regarding this production (beliefs

in transitions). Thus, this thesis presents HypTrails, an approach for

expressing and comparing hypotheses about human trails on the Web.

Overall, the aspects presented in this thesis are relevant for researchers

interested in studying and modeling human trails on the Web.
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Kurzfassung

Durch die Kommunikation von Menschen mit dem Web wird eine Vielzahl

von sequentiellen, digitalen Pfaden produziert. Beispiele solcher menschli-

chen Pfade im Web sind navigierte Webseiten, aufeinanderfolgende Unter-

nehmen welche Menschen bewerten oder Folgen von Liedern die sie hören.

Seit Bestehen des World Wide Webs ist die Studie menschlicher Pfade ein

wichtiger Aspekt unserer Forschungsgemeinschaft wodurch verschiedene

Modelle, Erkenntnisse und Hypothesen entstanden sind. Obwohl viele

von ihnen gründlich untersucht und weit entwickelt sind, erfordern einige

von ihnen weitere Untersuchungen. Basierend auf dieser Herausforderung

beschäftigt sich diese Dissertation mit der Modellierung verschiedener

Aspekte menschlicher Pfade. Sie präsentiert eine Reihe von methodolo-

gischen Beiträgen, welche zukünftige Forschung bezüglich Muster, Re-

gelmäßigkeiten und Strategien im menschlichen Pfaden erleichtern sollen.

(i) Zu Beginn beschäftigt sich diese Arbeit mit der offenen Frage ob mensch-

liche Pfade Gedächtniseffekte aufweisen, welche ein wichtiger Faktor für

Markov Ketten Modelle darstellen. Das Markov Ketten Modell ist ein

prominentes Modell für menschliche Pfade im Web, jedoch ist es in einer

Vielzahl von Applikationen (z.B. Google’s PageRank) gedächtnislos. Die

Nützlichkeit dieser gedächtnislosen Eigenschaft wurde in einigen Studien

ohne klaren Konsens untersucht. Dementsprechend präsentiert diese Arbeit

ein Framework, welches Forschern ermöglicht umfassende Einsichten in

die Evaluierung der geeigneten Markov Ketten Ordnung anhand verschie-

dener statistischer Inferenzmethoden zu erlangen. (ii) Abgesehen davon,

ist es teilweise unklar ob andere strukturelle Muster menschlicher Pfade

über bisherige Anwendungen hinaus nutzbar gemacht werden können.

Um dies zu untersuchen, demonstriert diese Dissertation beispielsweise,

dass menschliche Navigationspfade im Web für die Bestimmung semanti-

scher Ähnlichkeit zwischen Konzepten nutzbar gemacht werden können.

Folglich argumentiert diese Arbeit, dass das bestehende Arsenal an Web

Datenquellen auf menschliche Pfade des Webs erweitert werden soll. (iii)

Gegeben dieser strukturellen und verhaltensbezogenen Untersuchungen ist

es für unsere Forschungsgemeinschaft auch von Bedeutung ein erweitertes

Verständnis der Produktion menschlicher Pfade zu erlangen. Jedoch ist

es schwierig fundierte Entscheidungen bezüglich Hypothesen (Glaube an
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Transitionen) dieser Produktion zu treffen. Um dieses Problem zu adres-

sieren, präsentiert diese Dissertation HypTrails, ein Ansatz der Forschern

erlaubt Hypothesen über menschliches Verhalten auszudrücken und zu

vergleichen. Gesamt gesehen sind die Aspekte dieser Dissertation von Re-

levanz für Forscher, welche an der Analyse und Modellierung menschlicher

Pfade am Web interessiert sind.
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1. Introduction

1.1. Motivation

In 1945, Vannevar Bush introduced the hypothetical system called memex

in his seminal work ”As We May Think” [Bush, 1945]. The word memex

is a portmanteau of the words memory and index or index. Bush argued

that the human brain operates by association based on an internal web of

trails which it leverages for associative reasoning. In this web, frequent

trails influence and dominate a person’s decisions while infrequent ones

become irrelevant. Bush prototyped the memex as a large device (actually

a desk) that allows humans to store books and other manuscripts and

which represents an ”enlarged intimate supplement to a person’s memory”.

In analogy to the brain’s web of trails, his idea was to allow humans to

store common trails such as sequences of books retrieved. These stored

trails should then facilitate later retrieval and sharing. Bush also proposed

a potential new profession called trail blazers who should store common

transitions and then share them with others.

Decades later, the ideas of Vannevar Bush led to the development and

concept of Hypertext [Nelson, 1965] as well as the World Wide Web

[Berners-Lee and Fischetti, 2000]. In these new information structures,

humans produce sequential digital trails on a much more massive scale than

possibly ever imagined by Bush. Some examples of such emerging human

trails on the Web are: consecutive websites humans navigate, sequences of

friends they add on social media sites like Facebook or successive songs

they play in online music services.

Understanding human trails and how they are produced has been a complex

challenge for researchers for years. Several prominent models such as

Google’s PageRank [Brin and Page, 1998] or advertising models [Archak
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1. Introduction

et al., 2010] are based on assumptions about successive human behavior on

the Web. Consequently, it is crucial for studying human trails on the Web

for gaining insights into humans’ associative reasonings and behavioral

aspects. Apart from mentioned examples, acquired findings can e.g., be

useful for enhancing information network structures [Borges and Levene,

2000; Perkowitz and Etzioni, 1997], for predicting human clicks [Bestavros,

1995] or for recommender systems [Rendle et al., 2010]. This thesis deals

with modeling aspects of human trails on the Web based on this larger

challenge. Primarily, it aims at providing tools for facilitating future

research concerned with the analysis of patterns, regularities and strategies

in human trails. Thus, this thesis is relevant for researchers interested in

studying human trails on the Web.

In the following Section 1.2, this thesis provides a short overview of

what human trails are and challenges and opportunities they implicate.

Subsequently, an overview of the problem statement, the objectives and

main approach of this thesis is provided in Section 1.3 before this thesis

elaborates the exact research questions in detail in Section 1.4. All main

publications part of this cumulative thesis are listed in Section 1.5, the

main contributions are emphasized in Section 1.6 and the structure of this

thesis is outlined in Section 1.7.

1.2. Human Trails on the Web

This thesis considers human trails as sequences of at least two consecutive

states which are produced when humans interact with the Web. States are

observed from a given categorical and finite state space. In Figure 1.1, an

illustration of the general schema of human trails is provided. It depicts

two different trails that are produced by two distinct persons. Overall,

five different states are considered. The type of states depends on the kind

of trails one is interested in. Next, a series of types of human trails are

introduced which are also subject to this thesis that mainly focuses on

human navigational trails.

2



1.2. Human Trails on the Web

S1 S2 S3

S4 S5 S4

Figure 1.1.: General schema of human trails. This figure depicts
an example of two human trails produced. The state space
consists of five different states S = {S1, S2, S3, S4, S5}. The
type of states depends on the type of trails one is interested in.
For example, let us suppose that states refer to five distinct
songs listened to on Last.fm. The first person (top row, green)
starts by listening to song S1, before she listens to song S2
and finally to song S3. The second person (bottom row, red)
first listens to song S2 before she plays song S5. Finally, the
person again plays track S2. States can refer to other kinds
of categorical observations such as websites or other entities
such as songs.

1.2.1. Human navigational trails

Navigating websites represents one of the most fundamental interactions of

humans with the Web and is important to study [Huberman et al., 1998].

By navigating the Web, humans produce human navigational trails. Thus,

the state space consists of all sites humans navigated over in observed

data. As an example, suppose a person currently is on Facebook and sees

a funny video on Youtube posted by a friend. The person decides to click

on the hyperlink leading to corresponding video. By doing so, she has

performed a navigational step producing a two-step navigational trail. For

matters of simplicity, this thesis focuses on studying intra navigational

trails consisting of navigational steps between sites of a single platform

(e.g., Wikipedia). Figure 1.2 depicts an illustration of an exemplary trail

over three consecutive Wikipedia pages visited: Austria, Germany and

Carl Friedrich Gauss.

3



1. Introduction

Austria Germany C. F. Gauss

Figure 1.2.: Example of human navigational trail on Wikipedia.
This figure depicts an example of one human navigational
trail over Wikipedia pages produced by one person. The
person starts on the Wikipedia page of Austria; then she
decides to click on the hyperlink on Austria’s page leading to
Germany. Let us assume that the person is very interested
in learning more about important researchers of Germany
and hence, clicks on the hyperlink leading to the Wikipedia
page of Carl Friedrich Gauss. After that, the person leaves
Wikipedia and her navigational steps have produced the intra
navigational trail consisting of three subsequent Wikipedia
pages visited as depicted.

1.2.2. Human edit trails in collaborative ontology engineering

projects.

Humans not only click, but also edit content on the Web such as con-

cepts on Wikipedia or on ontologies. As an example, human edit trails

in collaborative ontology engineering projects are produced by humans

consecutively editing concepts or properties in ontology projects. Several

different types of edit trails can be derived from usage logs of ontology

engineering projects. The two main types are (i) class-based and (ii)

person-based edit trails. The former capture the chronology of a specific

feature of all changes that were performed by any person on a single class,

while the latter depict the ordered list of specific features of changes that

were performed on any class by a single person. Exemplary features are

the properties of classes edited by humans. In that case, the state space

at interest consists of all properties edited. Figure 1.3 illustrates two

examples of such human edit trails (class and person-based).

4



1.2. Human Trails on the Web

Title Note Type

Label Title Type

Class

Figure 1.3.: Example of human edit trails in collaborative ontol-
ogy engineering projects. This figure depicts examples of
human trails that are produced when humans perform edits
in collaborative ontology engineering projects. The first row
shows a class-based trail where properties of the given class
are consecutively changed by any person. In this example,
some person first edited the property Title before another one
edited the property Note and finally, some other arbitrary
person edited the Type property. The second row illustrates a
person-based trail which covers subsequent properties changed
by one person on any class. In this case, the person first edited
the Label property on some class, before she edited the Title
property and finally the Type property of some other classes.

1.2.3. Human business review trails.

Nowadays, humans frequently consult the Web for getting recommen-

dations about businesses, products, movies, songs or other things. For

doing so, they often resort to reviews given by other humans. A series of

platforms offer reviewing mechanisms such as Yelp for businesses, IMDB

for movies or Amazon for products. When providing reviews, humans

do that in successive manner which produces human review trails. As

an example, human business review trails on Yelp consist of trails that

capture the business reviewing history of a single person in some given

time frame. Figure 1.4 provides an example of such a trail for which the

state space consists of five different businesses – in this case restaurants –

a person reviewed during a trip to Italy.
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1. Introduction

B
A

C

D

E

Figure 1.4.: Example of human business review trail. This figure
depicts an example of a person successively reviewing five
different businesses. In this example, suppose someone is
traveling through Italy and reviews the restaurants visited
on a platform like Yelp. The person starts in the north and
travels to the south. Hence, she first reviews restaurant B,
then C, D and finally, in the south restaurant E. At the end
of the trip, the person is going back north and before leaving
Italy she reviews restaurant A.

1.2.4. Human listening trails.

Several Web platforms allow humans to listen to music. For example, on

Last.fm, humans can listen to songs and use a comprehensive recommen-

dation system. On YouTube, they can listen to songs by watching the

corresponding music videos and Spotify offers a large library of songs to

listen to by paying a monthly fee. By consecutively listening to songs,

humans produce what we call human listening trails. For example, such

trails may capture the history of songs played on a given time frame or for

a given playlist. Figure 1.5 provides a simple example of such a human trail

that consists of three consecutive songs listened to. Hence, the resulting

state space consists of distinct songs that humans have listened to.

6



1.2. Human Trails on the Web

Roar Royals Happy

Figure 1.5.: Example of human listening trail. This figure depicts
an example of a human trail that is produced by a person
successively listening to different songs. The person starts to
listen to the song Roar by Katy Perry before she listens to
Royals by Lorde and finally to Happy by Pharrell Williams.

1.2.5. Challenges and Opportunities

The production of human trails on the Web is omnipresent. The examples

provided in Section 1.1 as well as Section 1.2 are just a small selection and

part of a massive set of diverse human trails. Due to the importance of

gaining a better understanding of the production of these trails, a series

of previous works has focused on studying human trails on the Web in

various aspects. In the rest of this section, I want to highlight some few

challenges and opportunities that this thesis deals with which are mostly

motivated by related work. Based on these, I introduce the problem

statement, objectives and general approach of this thesis in Section 1.3

before I present the detailed research questions in Section 1.4.

In early work, Huberman et al. [1998] emphasized that strong regularities in

World Wide Web surfing behavior of humans exists. Such online behavioral

regularities were also observed and confirmed by the work of Wang and

Huberman [2012]. Actually, we might even say that these regularities are

reasoned by inherent regularities of human behavior in general as pointed

out by Song et al. [2010]. For handling the huge amounts of information on

the Web, humans might also follow certain strategies [Chi et al., 2001]. Yet,

one can hypothesize that our research community has not fully utilized

these opportunities that human trails on the Web offer.

For instance, many prominent models such as Google’s PageRank [Brin

and Page, 1998] assume that humans act in a memoryless way. This means

that they make their next choice only based on their current one and not on

7



1. Introduction

a series of preceding ones. This assumption is rooted in the Markov chain

model which is prominently used for modeling human trails on the Web.

Given the inherent regularities of human trails as mentioned, one might

argue that memory may play a more crucial role for humans as considered.

This has also been studied in the past (see e.g. [Pirolli and Pitkow, 1999;

Borges and Levene, 2000; Chierichetti et al., 2012]), but observations have

been contradictory. This warrants further studies regarding the presence

of memory and structure in human trails. According insights may change

some basic assumptions of models of human trails on the Web.

Furthermore, if human trails on the Web indeed exhibit common patterns

and regularities at least on some level, they might be leveraged for tasks

that go beyond modeling aspects. If one can utilize patterns that are

produced by humans simply interacting with the Web – e.g., navigating

websites – one may have a new promising source for inferring knowledge.

For example, a prominent task conducted on the Web is calculating

semantic relatedness between concepts. Predominantly, this has been

tackled by using Web content such as Wikipedia page text that has been

produced by a small set of people. One can hypothesize that human trails

on the Web may be leveraged in a similar way as also suggested in previous

work [Chalmers et al., 1998; West et al., 2009]. If this holds, this argues for

further studies into how humans make their consecutive decisions on the

Web. Which hypotheses about how human trails on the Web are produced

are more plausible than others? Gaining insights into these and similar

questions can unseal new perspectives on human behavior on the Web

which may be utilized in several ways.

1.3. Problem Statement, Objectives and

General Approach

This section introduces the central problem statement of this thesis moti-

vated by the challenges and opportunities that human trails on the Web

implicate as discussed in Section 1.2.5. Also, I define the main objectives

and general approach taken for tackling these problems. The following

Section 1.4 presents the fine-grained research questions accordingly.

8



1.4. Research Questions

Problem statement. The production of human trails on the Web is

omnipresent and has evoked a significant array of studies concerned with

various aspects of human trails. Many different tools, models, insights and

hypotheses have emerged. While some are well established, contradictory

statements have been made regarding some aspects of human trails. An

open question has been whether human trails on the Web exhibit memory

effects as well as structural patterns which might be utilized beyond what

previous work has done. Also, researchers have questioned what drives

the production of human trails on the Web. However, it is difficult for

our research community to make informed decisions about these aspects

within coherent research approaches.

Objectives. To that end, this thesis aims at providing tools for facilitating

future research concerned with the analysis of patterns, regularities and

strategies in human trails on the Web. Of special interest is the detection

of memory effects in human trails as well as gaining insights into how

human produce human trails based on how they transition between states.

Additionally, this thesis has the objective to investigate the usefulness of

utilizing human trails on the Web for inferring knowledge. For generality,

this thesis aims at studying several types of different human trails on the

Web, across domains.

General approach. The main approach of this work is to model human

trails on the Web with Markov chain models which allow to probabilistically

model transitions between states of human trails. Specific configurations

of model parameters allow to study different assumption and hypotheses

about human trails. By utilizing statistical inference methods such as

Bayesian inference, this thesis can make informed decisions about the

plausibility of these.

1.4. Research Questions

This thesis aims at studying three sub-problems regarding the greater

challenge of studying human trails on the Web. To that end, I aim at

modeling the following aspects of human trails: (i) studying memory and

structure in human trails by utilizing varying order Markov chain models,

9



1. Introduction

(ii) leveraging human trails for the task of calculating semantic relatedness

between concepts as well as (iii) expressing and comparing hypotheses

about human trails that focus on beliefs about transitions. Next, the

detailed research questions are introduced. Furthermore, a structural

overview of each research question is provided in Table 1.1. This table

highlights the relation of all articles of this thesis to the research questions

described next. Additionally, it describes which (i) types of human trails,

(ii) main topics, (iii) main contributions and (iv) methods each research

question and article focuses on.

RQ1: What is the memory and structure in human trails on

the Web?

Problem. For accurately modeling aspects of human trails on the Web,

it is important to understand whether human behavior on the Web is

memoryless or not and which structural patterns emerge. This is particu-

larly essential to the Markov chain model – a prominent model for human

trails on the Web [Pirolli and Pitkow, 1999]. Predominantly, the Markov

chain model has been memoryless in a wide range of applications such

as Google’s PageRank [Brin and Page, 1998]. This means that the next

state in a trail only depends on the current one and not on a sequence of

preceding ones. The appropriateness of this memoryless property has been

discussed in a series of works in the past (e.g., [Pirolli and Pitkow, 1999;

Borges and Levene, 2000; Sen and Hansen, 2003; Gonçalves et al., 2009]).

However, the statements about the appropriate Markov chain order have

been quite contradictory. Yet, the dominant consensus has been that the

memoryless model is an appropriate way for modeling human trails on the

Web. Recently, an article by Chierichetti et al. [2012] has picked up on

this question and has argued that Web users are not Markovian leading to

the potential benefit of using higher order Markov chain models. However,

such higher order Markov chain models have much higher complexity due

to the exponentially rising number of parameters needed. Their better

fit may be simply reasoned by overfitting. Thus, this warrants further

investigations about the appropriate Markov chain order given human

trails on the Web that specifically consider whether higher order models

10



1.4. Research Questions

expose statistically significant improvements over lower order ones. As a

consequence, our research community would benefit from a general frame-

work that allows a comprehensive detection of the appropriate Markov

chain model order based on statistical inference.

Approach. For tackling this research question, this thesis utilizes Markov

chain models of varying order which are fitted to the data by utilizing (i)

Bayesian and (ii) frequentist inference. The appropriate Markov chain

order is evaluated by resorting to a series of statistical methods: (i)

likelihood ratio test, (ii) Bayes factors, (iii) information-theoretic methods

(AIC and BIC) as well as (iv) cross validation.

Findings and contributions. To that end, in Section 3.2, I present a

framework for detecting the appropriate Markov chain order given human

trail data as developed in [Singer et al., 2014c]. This framework is one

of the main contributions of this thesis. It allows researchers to make

informed decisions about the appropriate Markov chain order with the

aid of a series of different approaches for evaluating Markov chain orders

as described above. Based on the availability of this broad spectrum of

evaluation methods as well by having the ability to study the consistency

of their results, this framework allows for a comprehensive analysis of

memory in human trails on the Web going beyond what previous work

has done.

For demonstrating the general applicability and mechanics of the frame-

work, presented work [Singer et al., 2014c] (Section 3.2) applies it to a

series of human navigational trail datasets. By now having the feasibility

to compare the results of several advanced statistical inference methods –

each with its own advantages and disadvantages – this work demonstrates

that by applying the framework one can make informed decision about the

appropriate Markov chain order. However, as this thesis infers from theory

and as previous work has suggested (e.g., [Pirolli and Pitkow, 1999]), all

methods consistently highlight the difficulty of making statements about

the appropriate Markov chain order having insufficient data but a large

number of states. Yet, by reducing the state space by abstracting away

from the page to a topical level, the results show that memory plays at

least some role in human navigational trails on the Web. Additionally,

11



1. Introduction

this work showcases that the Markov chain framework can also be utilized

for deriving common structural patterns in given trails.

Subsequently, this thesis studies memory and structure in human edit

trails in collaborative ontology engineering patterns n Section 3.3 and

in Section 3.4 based on joint work [Walk et al., 2014b,a]. These works

further demonstrate the general applicability and features of the framework.

The results indicate that the framework is capable of eliciting certain

regularities, patterns and memory effects in such edit trails. Additionally,

this thesis successfully confirms the importance of studying memory effects

in human trails on the Web. By incorporating memory into Markov chain

models applied to some types of human trails on the Web, we can improve

the accuracy when predicting trails.

The presented applications of the framework argue that the results are

dependent on several factors such as complexity and choice of data. How-

ever, the main benefit of presented framework is that it allows researchers

to detect the appropriate Markov chain order given their specific data

and problem setting by consulting several statistical inference methods

implemented by the framework.

RQ2: Can we leverage human navigational trails for the task of

calculating semantic relatedness between concepts?

Problem. This research questions aims at leveraging human navigational

trails for calculating semantic relatedness. The calculation of semantic

relatedness between concepts is an important step towards a semantically-

enabled Web. It determines a score – usually between zero (not related) and

one (synonymous) – that specifies how semantically related two concepts

are to each other Predominantly, this and many other knowledge inferring

tasks on the Web have been solved by using mostly human-generated

content. While such content has been shown to be valuable, it only

captures the semantics of a limited set of people who generated it. Thus,

such data is restricted to humans who actively contribute to the Web, but

neglects the massive number of humans simply interacting with the Web –

e.g., lurkers [Nonnecke and Preece, 2000].
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As an example, millions of humans navigate Wikipedia daily and produce

human navigational trails. The findings of the first research question

suggest that at least some structural patterns, regularities and strategies

guide human navigational behavior on the Web. Thus, I hypothesize that

we can also utilize these patterns for inferring knowledge. Tailored to this

research question as well as motivated by insights of previous research

[Chalmers et al., 1998; West et al., 2009], I study whether we can leverage

human navigational trails for the task of calculating semantic relatedness

between concepts.

Approach. For calculating semantic relatedness between concepts, this

thesis resorts to the idea that the relative position between concepts in a

trail influences their semantic relatedness. If many people navigate between

two concepts, I hypothesize that they are semantically related in some

way. Based on the observations of the first research question, I want to

harness emerging structural patterns in human trails on the Web. For now

calculating semantic relatedness between concepts based on this idea, this

thesis utilizes a method based on co-occurrence information. Co-occurrence

is calculated by counting how many times humans have navigated between

two concepts and this information is used for weighing a vector-space

model. Finally, for calculating semantic relatedness between two concepts,

the approach calculates the cosine similarity between two vectors. In

analogy to our Markov chain models of the first research question, we

can think of these vectors as rows of a first-order Markov chain transition

matrix (without accounting for the order of states). In order to investigate

whether memory effects might be useful for this task, this thesis extends

the calculation to also consider the co-occurrence between two concepts

that are not adjacent in a given trail. This can be achieved by using sliding

windows over trails.

Findings and contributions. In Section 3.5 , I study whether human

navigational trails derived from the Wikigame can be leveraged for the

task of calculating accurate semantic relatedness scores between concepts

based on joint work with colleagues [Singer et al., 2013a]. Presented work

uses the abovementioned co-occurrence approach and evaluates the results

based on a series of gold-standard datasets such as the WordSimilarity-353

corpus. The results indicate that it is indeed possible to leverage human

13
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navigational trails for the task of calculating semantic relatedness between

concepts which is the second main contribution of this thesis. Additional

experiments on baseline corpora reveal that semantic relatedness calculated

on this kind of human navigational trails can be more precise than semantic

relatedness calculated on trails automatically extracted from Wikipedia’s

topological link network. However, not all trail corpora are equally useful

and intelligent selection can be beneficial.

This work further highlights that certain patterns, regularities and strate-

gies guide humans’ consecutive behavior. This suggests that we can also

utilize human trails on the Web for tasks that are usually solved by using

Web content only and argues for existing and future methods to also con-

sider them for deriving knowledge. While this work only focuses on human

navigational trails and semantic relatedness, the ideas can be extended to

study other kinds of human trails on the Web as well as to infer knowledge

for other tasks.

RQ3: How can we compare hypotheses about human trails on

the Web?

Problem. This research question tackles the issue of studying how human

trails on the Web are produced. In detail, it questions how we can express

and compare hypotheses about human trails on the Web. The study of the

first two research questions has revealed that human behavior on the Web

is at least partly guided by regularities, patterns and strategies. These

studies and a series of previous works have identified cognitive strategies

humans seem to apply while producing human trails on the Web. This

leads to the development of hypotheses about human trails. In this thesis,

I define such hypotheses as beliefs about transitions in human trails. For

example, based on the insights of the second research question of this thesis,

a belief could be that humans navigate the Web by choosing semantically

related websites while a contrasting hypotheses could express that we

believe in humans navigating randomly. It is crucial for our research

community to make judgements about which hypotheses are more relevant

than others for making informed decisions about models of human trails.

Also, corresponding insights can unfold unexplored behavioral aspects that
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we also might successfully leverage or steer. Yet, expressing and comparing

such hypotheses about human trails is difficult and is the main objective

of this research question.

Approach. For expressing and comparing hypotheses with each other,

this thesis fundamentally resorts to first-order Markov chain models and

Bayesian inference. Hypotheses are intuitively expressed as adjacency

matrices with values corresponding to believes in transitions. For example,

if someone has the hypothesis that humans navigate by choosing semanti-

cally related websites consecutively, she could set the values of the matrix

according to their semantic relatedness. Higher values refer to higher

beliefs. The main idea of the approach is to incorporate these hypotheses

expressed as matrices as informative Dirichlet priors into the Bayesian

inference process. For doing so, it elicits Dirichlet priors from hypotheses

by resorting to an adapted version of the so-called (trial) roulette method

that sets the pseudo counts of the priors according to specified matrices.

Finally, it utilizes the sensitivity of the Bayes factor on the prior for

making informed decisions about the relative plausibility of hypotheses.

If a hypotheses represents a valid hypotheses about behavior producing

human trails on the Web according to given data, the evidence is higher

compared to a uniform prior or an unlikely hypothesis.

Findings and contributions. To that end, in Section 3.6, I present

HypTrails, an approach for expressing and comparing hypotheses about

human trails, based on collaborative work [Singer et al., 2014b]. HypTrails

implements the approach as described above and is the final main con-

tribution of this thesis. For demonstrating the general applicability and

mechanics, presented work applies HypTrails to different types of human

trails: (i) business reviews on Yelp, (ii) tracks listened to on Last.fm,

(iii) navigational trails over Wikipedia and (iv) synthetic trails produced

according to know mechanisms.
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1.5. Main Publications

This cumulative thesis consists of the following publications:

• Article 1: [Singer et al., 2014c] Singer, P., Helic, D., Taraghi, B.,

and Strohmaier, M. (2014c). Detecting memory and structure in

human navigation patterns using markov chain models of varying

order. PloS One, 9(7):e102070

• Article 2: [Walk et al., 2014b] Walk, S., Singer, P., Strohmaier, M.,

Tudorache, T., Musen, M. A., and Noy, N. F. (2014b). Discovering

beaten paths in collaborative ontology-engineering projects using

markov chains. Journal of Biomedical Informatics, 51:254–271

• Article 3: [Walk et al., 2014a] Walk, S., Singer, P., and Strohmaier,

M. (2014a). Sequential action patterns in collaborative ontology-

engineering projects: A case-study in the biomedical domain. In

International Conference on Information and Knowledge Manage-

ment

• Article 4: [Singer et al., 2013a] Singer, P., Niebler, T., Strohmaier,

M., and Hotho, A. (2013a). Computing semantic relatedness from

human navigational paths: A case study on wikipedia. International

Journal on Semantic Web and Information Systems, 9(4):41–70

• Article 5: [Singer et al., 2014b] Singer, P., Helic, D., Hotho, A.,

and Strohmaier, M. (2014b). Hyptrails: A bayesian approach for

comparing hypotheses about human trails. arXiv:1411.2844 [cs.SI]

A full list of co-authored articles that have been published during the

course of my PhD studies can be found in Appendix A.

1.6. Contributions and Implications

Most of the contributions of this thesis are of methodological nature

supplemented with empirical experiments. Overall, this thesis makes the

following three main contributions:
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• First, this work presents a framework for evaluating the appropriate

Markov chain order given human trail data based on a series of ad-

vanced statistical inference methods each with their own advantages

and disadvantages. By having this broad spectrum of different meth-

ods for evaluating varying order Markov chain models as well as being

able to study the consistency of their results, this framework allows

researchers to comprehensively gain insights into potential memory

effects in human trails on the Web. Additionally, the framework

and corresponding models can be utilized for detecting structural

patterns as well as for predicting trails. The framework is made

open-source and is available online1. By applying the framework

to a series of empirical trail data stemming from distinct domains,

this thesis demonstrates the mechanics of the framework as well as

suggests that regularities, patterns and memory effects drive the

production of human trails on the Web at least at some scale.

• Second, this thesis experimentally showcases the potential usefulness

of harnessing human trails for tasks that are usually solved by

utilizing content data. As an example, the thesis demonstrates that

we can successfully leverage human navigational trails for the task

of calculating semantic relatedness between concepts. The utilized

method uses co-occurrence information between concepts in trails

and an implementation is also made available online2.

• Third, this thesis presents HypTrails, an approach that allows re-

searchers to express and compare hypotheses about human trails.

Hypotheses are defined as beliefs about transitions of human trails.

This thesis demonstrates the general mechanics and applicability of

HypTrails in a series of experiments on experimental and empirical

human trail data. The approach is made open-source and is available

online3.

The methodological contributions of this thesis can provide helpful tools for

researchers and practitioners interested in modeling aspects of human trails

on the Web. The models and observations may not only help to identify

1https://github.com/psinger/PathTools/
2https://github.com/psinger/PathTools/
3https://github.com/psinger/HypTrails/
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1. Introduction

the behavior of humans in a platform, but may also be used for improving

the work-flow, models of human trails, interface aspects or simply the user

experience. Additionally, this thesis makes an arguments for expanding

the existing arsenal of data sources by also considering human trails on

the Web. By and large, this thesis provides a further stepping stone

for the larger challenge of modeling human trails and gaining a better

understanding of human trails and how they are produced.

1.7. Structure of this Thesis

The rest of this thesis is structured as follows. I start with a discussion of

related work in Chapter 2. In this chapter, I first focus on methodological

concepts utilized throughout this thesis in Section 2.1. Next, I discuss

empirical studies and theories of human trails on the Web relevant for this

thesis in Section 2.2.

The following Chapter 3 represents the main body of this cumulative

thesis by presenting the main publications as mentioned in Section 1.5

for answering the research questions elaborated in Section 1.4. To give

a better overview over the content and aspects studied in this thesis as

presented in Chapter 3, I provide a structural overview in Table 1.1. In

this table, I describe the relation of each section and article of Chapter 3

to the research questions at interest. Furthermore, I highlight which (i)

types of human trails, (ii) main topics, (iii) main contributions and (iv)

methods utilized in corresponding sections and publications.

Finally, Chapter 4 concludes the work by summarizing the research results

and contributions in Section 4.1 as well as implications in Section 4.2. Lim-

itations and future work are shortly discussed in Section 4.3. Apart from

the publications presented in this cumulative thesis, I have co-authored a

list of further publications as listed in Appendix A.
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Table 1.1.: Structural overview over content and aspects of this thesis. This table provides a structural
overview of the main content of this thesis by describing the relation of each section and article to the
research questions at interest. Furthermore, the table highlights the corresponding (i) types of human
trails, (ii) main topics, (iii) main contributions and (iv) utilized methods for each section (article).

Section
(Article)

RQ Human Trails Topics Main contribution Main methods
applied

Section 3.2
(Article 1)

RQ 1 navigational trails memory,
structure

A framework for the
detection of the appropriate

Markov chain order
(memory effects) given

human trails

MC modeling,
frequentist statistics,
Bayesian statistics,

information-theoretic
statistics, cross

validation

Section 3.3
(Article 2)

RQ 1 edit trails in
ontology projects

structure Demonstration of the MC
framework for pattern

detection

MC modeling,
frequentist statistics

Section 3.4
(Article 3)

RQ 1 edit trails in
ontology projects

structure,
memory,

prediction

Demonstration of the MC
framework for prediction

MC modeling, Bayesian
statistics, cross

validation, pattern
mining

Section 3.5
(Article 4)

RQ 2 navigational trails,
synthetic trails

semantic
relatedness

Demonstration of the
usefulness of leveraging

human navigational trails
for calculating semantic

relatedness

co-occurrence, vector
space model, cosine

similarity

Section 3.6
(Article 5)

RQ 3 navigational trails,
review trails,

listening trails,
synthetic trails

hypotheses
about
human
trails

HypTrails approach for
comparing hypotheses about

human trails

MC modeling, Bayesian
statistics, (trial)
roulette method
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2. Related Work

This chapter is structured by first discussing the methodological concepts

utilized in this thesis in Section 2.1 before it presents empirical studies

and theories of human trails on the Web in Section 2.2. I have the main

intention of giving a broad overview of the research areas relevant for this

thesis. For a higher level of detail, please consult the corresponding related

work sections of the papers part of this cumulative thesis.

2.1. Methodologies

This section aims at introducing and discussing the main methodological

concepts utilized in this thesis. First, I present the Markov chain model

in Section 2.1.1 which is the main model applied in this thesis and which

represents an intuitive way for modeling human trails on the Web. The

Markov chain model is of specific importance for the first and third research

question of this thesis. After that, I focus on statistical inference and

model comparison methods that play a crucial role to this thesis (first and

third research question) in Section 2.1.2. I focus on parameter inference

and model comparison for Markov chain models, but want to emphasize

that the developed concepts can be applied to other models and problem

settings. Finally, I discuss methods for calculating semantic relatedness

between concepts in Section 2.1.3 as this this elemental to the second

research question of this thesis.

2.1.1. Markov Chain Modeling

Introduction and definition. Markov chain models have a long history

and high importance for a wide range of scientific fields. A Markov chain
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model represents a stochastic system that models transitions between states

from a given state space S. A Markov chain can be seen as a discrete-valued

Markov process. A Markov process itself can be defined as a stochastic

process that adheres to the Markovian property described later in this

section. In this thesis, let us focus on discrete-time Markov chain models

which correspond to a process having a discrete set of times. Also, let us

only consider finite state spaces S = {s1, s2, ..., sm} with m = |S|; e.g.,

the state space could include all distinct Wikipedia pages navigated over.

Transitions between states are expressed via probabilistic values that give

the probability of transitioning from one state to another. The eponymous

Markov chain models are named after Andrey A. Markov who was the first

who theoretically introduced Markov chains in 1906 [Markov, 1906]. As an

application, Markov focused on applying the method to poetries where he

analyzed patterns of vowels and consonants. He presented the results in

1913 [Markov, 2006] doing all calculations by hand [Hayes et al., 2013]. In

the following years, researchers such as Kolmogoroff [1936] picked up on

the ideas by Markov and the model has been established as a fundamental

method still having high impacts nowadays (e.g., Google’s PageRank [Brin

and Page, 1998]). I will present a small excerpt of related works applying

Markov chain models after introducing their mechanics.

Usually, a Markov chain process is defined as memoryless. This means,

that the next state is only dependent on the current one and not on a

sequence of preceding ones. This is also known as the Markovian property

and the resulting model is a first-order Markov chain model. For a sequence

of random variables X1, X2, ..., Xt we can define it as follows:

P (Xt+1 = sj |X1 = si1 , ..., Xt−1 = sit−1 , Xt = sit) =

P (Xt+1 = sj |Xt = sit) = pi,j . (2.1)

We can represent a Markov chain model by a stochastic transition matrix

P that has elements pi,j . These elements describe the probability of

transitioning from state si to sj . As this transition matrix is stochastic,

the probabilities of each row i sum to 1.
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In this thesis, I am also interested in studying memory effects in human

trails. Hence, it is of interest to extend Markov chain models to also

incorporate them. In such higher-order Markov chain models, the next

state not only depends on the current one, but on a series of preceding

ones. Let us denote the order of a model as k – i.e., a chain with memory

k. Then, we can formally write:

P (Xt+1 = sj |X1 = si1 , ..., Xt−1 = sit−1 , Xt = sit) =

P (Xt+1 = sj |Xt−k+1 = sit−k+1
, ..., Xt = sit). (2.2)

For tractability, this thesis always converts higher-order Markov chain mod-

els to first-order models. This can be done in straight-forward manner by us-

ing compound states [Chierichetti et al., 2012]. Hence, the new state space

includes all sequences of length k which results in a state space of size mkm.

For example, for a second-order Markov chain model, the state space would

look like S = {(s1, s1), (s1, s2), (s1, s3), ..., (sm−1, sm), (sm, sm)}. Note that

higher order Markov chain models are always better fits to the data com-

pared to lower order models by definition as lower order models are nested

within higher order models. However, higher order Markov chain models

need more parameters than lower order ones due to the need of using

compound states. Hence, their better fit may be due to simple overfitting

which is why one needs to gauge whether their improvements are statisti-

cally significant. This is fundamental to this thesis and one of the main

tasks as tackled by the first research question. In Section 2.1.2, I discuss

several methods that can be utilized for this task.

Applications. Apart from the application of Markov chain models for

modeling human trails on the Web as I will discuss in detail in Section 2.2.4,

they have been historically applied to a series of problem settings as I

shortly want to discuss next. One of the most classic application of Markov

chain models is for modeling weather data. At universities around the

world, a Markov chain model is frequently introduced by stochastically

modeling states that refer to weather conditions. This has also been done

in a more rigorous statistical context. For example, a prominent study
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is by Gabriel and Neumann [1962] who used Markov chain models for

modeling rainfall data in Tel Aviv.

Markov chain models are applied in various scientific domains. Amongst

many others, I want to highlight a few examples next. In [Nix and Vose,

1992], Markov chain models are used for modeling genetic algorithms.

Kurzweil [2012] leveraged them for converting speech to text. Furthermore,

Markov chain models can be utilized for statistical software testing as

discussed by Whittaker et al. [1994]. They have also found their place in

methods applied in economics and finance such as the work by Kijima and

Komoribayashi [1998] demonstrates by studying the process of valuing

credit risk derivatives.

Extensions. Markov chains and corresponding processes with the Marko-

vian property do not only play a role for the Markov chain models explained

in this chapter and utilized in this thesis, but are also relevant for a series of

extension. First of all, I want to mention the variable order Markov chain

model which extends higher order Markov chain models to have different

orders based on the context [Bühlmann et al., 1999]. This means that

some states are independent from the future states. By applying variable

order Markov chain models, one can reduce the complexity of higher order

Markov chain models, by still retaining some of its benefits. A further very

prominent method is the so-called Markov chain Monte Carlo (MCMC)

which refers to a method for sampling from a probability distribution.

A thorough introduction is given by Gilks [2005]. This is achieved by

constructing a Markov chain that has a stationary distribution in the form

of the desired distribution. By successively sampling from this Markov

chain, it is possible to achieve a sample from the desired distribution.

Markov chain Monte Carlo methods have gained popularity in the past

few years for the evaluation of posterior distributions in Bayesian models.

As mentioned later in Section 2.1.2, the marginal likelihoods frequently

can not be integrated analytically; then MCMC methods come in handy

[Kass and Raftery, 1995].

Another well-known model is the hidden Markov model (HMM) which

refers to a Markov process with states that are unobserved and hidden. For

an introduction, see the work by Rabiner and Juang [1986] and Rabiner
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[1989]. This is in contrast to the classic Markov chain model utilized in

this thesis where states can be observed directly and hence, transition

parameters need to be determined only. Hidden Markov models have been

applied in a wide range of applications such as speech recognition [Rabiner,

1989] or bioinformatics [Karplus et al., 1998]. A further alternative to the

classic Markov chain model is the Markov decision process which is applied

when states can be fully observed, but state transitions additionally are

related to an action vector. Markov decision processes can be dated back

to Bellman [1957].

As a final extension, I want to mention Markov random fields also called

Markov networks. In a Markov random field, a state not only depends on

the previous state in time as for the classic Markov chain model, but rather

on the neighbors as described by a graph. Instead of Bayesian networks

which are directed, Markov random fields are undirected representations.

Markov random fields are applied in domains like computer vision [Li,

1995] or text processing [Metzler and Croft, 2005]. An introduction to

Markov random fields and a further elaboration of applications can be

found in the work by Kindermann et al. [1980].

2.1.2. Statistical inference and model comparison

When fitting models such as the Markov chain model of interest in this

thesis, statistical inference for determining the parameters of the models is

necessary. Furthermore, we need proper statistical methods for comparing

models with each other which I frequently tackle throughout this thesis.

For providing a broad spectrum of methods, I resort to the two main

statistical schools: (i) Frequentist statistics and (ii) Bayesian statistics.

Both offer diverse methods for statistical inference and model comparison.

For model comparison, I supplement these methods with (iii) information-

theoretic and (iv) cross validation approaches. By providing such a broad

spectrum of different statistical methods, I can get a thorough view on the

appropriateness of competing models and also counteract some potential

disadvantages of methods. All approaches resort at least partly to the

likelihood function which I describe next. Then, I give introductions to the

distinct statistical methods as well as some historic background and their
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advantages and disadvantages. For a thorough historic recap of statistics

please also refer to the excellent work by Stigler [2002]. I lay focus on

Bayesian inference as it is utilized in several contexts of this thesis. Also,

all elaborations are tailored towards Markov chain models. However, the

ideas and concepts can be applied to other models and settings at interest.

A more thorough discussion about these methods can be found in one of

the papers of this cumulative thesis [Singer et al., 2014c] (Section 3.2) as

well as in [Singer et al., 2014b] (Section 3.6).

Likelihood function. The term likelihood and corresponding likelihood

function was coined by R.A. Fisher in the 1920’s [Fisher, 1922]. The

likelihood function represents the probability of observing the data given a

model with specific parameter configurations. It represents the fundament

for many statistical methods today and is used by statisticians of all

schools. It also is elementary for statistical inference. For tractability, the

natural logarithm is mostly used for calculating the likelihood function,

which we can call the log-likelihood. For Markov chain models having

the Markovian property as defined in Equation 2.1, we can define the

likelihood function as:

P (D|θ) =
∏

i

∏

j

p
ni,j

i,j (2.3)

where pi,j correspond to the probabilities of transitions of transition matrix

P and ni,j is the number of transitions observed in data D from state si

to state sj .

Frequentist statistics. Frequentist statistics are usually associated with

concepts by Fisher, Neyman and Pearson. While the adjective frequentist

is commonly used nowadays, it was uncommon in the early days of this

statistical field in the 1920’s [Fienberg et al., 2006]. Frequentist inference

can be characterized by the motion of drawing conclusions by looking at

the frequency of data. Usually, parameters of models are seen as being

fixed, but unknown.
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A popular method for determining these parameters is the maximum likeli-

hood estimate (MLE) which is the estimation of parameters that maximize

the likelihood function (see [Royall, 1997] for a detailed introduction to

MLE). For Markov chains, the MLE for the parameters (pi,j) is simply

the number of transitions between two states si and sj expressed as ni,j

divided by the total number of transitions from one state si to all other

states:

pi,j =
ni,j∑
j ni,j

(2.4)

Hence, we use the frequency of data for making decisions about the

parameters of the models. Due to abovementioned higher complexity

of higher order Markov chain models paired with potential overfitting

[Murphy, 2002], looking at likelihoods of varying order models is not

enough for gauging their appropriateness. For properly comparing the

models, we can resort to statistical hypothesis testing which is a key

technique of frequentist statistics and which was coined by Fisher [1925].

The main idea is to compare a null and alternative hypothesis with each

other by calculating the evidence against the null hypothesis. For doing

so, one has to choose a proper test statistic and calculate the p-value

which gives insights into the statistical significance of the result [Goodman,

1999]. We can reject the null hypothesis if the p-value is below a given

significance level.

One commonly used test statistic of the frequentist community is the

likelihood ratio test [Neyman and Pearson, 1992]. For comparing Markov

chain models, we can also utilize these likelihood ratio tests as discussed

by Tong [1975]. The test is suited for comparing the fit of two competing

models who are nested. The final ratio tells whether one model is more

likely than the other one. For calculating the statistical significance of this

ratio, a χ2 test is utilized with a degree of freedom equal to the difference

of the number of parameters of both models [Bartlett, 1951].

While frequentist statistics and corresponding hypothesis tests utilizing

p-values are widely-used, they also have been criticized in the past (e.g.,

see [Cohen, 1994; Loftus, 1996; Goodman, 2008; Nuzzo, 2014; Morrison
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and Henkel, 2006]). Amongst others, p-values can measure whether a

result happens by chance, but not what the odds are that a hypothesis

is true as pointed out by Nuzzo [2014]. The author also stated that p-

values can not make statements about the underlying reality and that they

cannot make a statement about how much of an effect can be observed.

It may also happen that a small p-value is the result of small datasets.

Nonetheless, studies have shown that likelihood ratio tests represent a very

understandable way of specifying statistical significance between model

fits [Perneger and Courvoisier, 2010] which is also coupled with the clear

statement the resulting ratio tells us. We need to note though that the

likelihood ratio test only works with nested models. While this is the case

for our nested Markov chain order models, it may be problematic for many

other scenarios.

Bayesian statistics. Bayesian statistics can be traced back to the ideas

and concepts of Reverent Thomas Bayes who first talked about it in 1764.

The famous Bayes’ theorem itself was introduced later by Pierre-Simon

Laplace [Stigler, 2002]. Bayesian inference refers to the statistical method

that aims at determining the parameters of a model by utilizing the Bayes’

rule defined as follows:

posterior︷ ︸︸ ︷
P (θ|D,M) =

likelihood︷ ︸︸ ︷
P (D|θ,M)

prior︷ ︸︸ ︷
P (θ|M)

P (D|M)︸ ︷︷ ︸
marginal likelihood

(2.5)

θ corresponds to the parameters (transition probabilities) we want to

determine, D to the underlying data and M to a specific model (e.g.,

first-order Markov chain model) at interest. The likelihood P (D|θ,M)

refers to the probability of the parameters given data and model. P (θ|M)

is the so-called prior probability which refers to our prior estimates of

the parameters. P (D|M) is called marginal likelihood or evidence and

plays an important rule for comparing models. The final P (θ|D,M) is the

posterior to be determined.
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For a detailed introduction to Bayesian inference please refer to [Box and

Tiao, 2011]. I now shortly introduce the corresponding aspects of Bayesian

inference relevant for Markov chain modeling. For further details, please

refer to [Strelioff et al., 2007] and to one of the publications of this thesis

[Singer et al., 2014c] (Section 3.2).

As earlier, the likelihood function for Markov chain modeling is defined

as in Equation 2.3. The prior reflects our belief in the parameters of

a model, before we see the data. In Markov chain models, each row of

the transition matrix represents a categorical distribution for which the

Dirichlet distribution is the conjugate prior. The advantage of conjugate

priors is that by using them, the posterior distribution is from the same

distribution family as the prior. For each row i of the transition matrix P

of a Markov chain model, we have a prior Dirichlet distribution Dir(α)

with α = [α1, α2, ..., αm]. The hyperparameters αi,j correspond to the

mentioned prior belief in the parameters and can be seen as pseudo counts.

Hence, the posterior distribution represents a combination of our prior

belief in transitions αi,j and the actual transitions ni,j we observe. For

a more thorough introduction into conjugate priors and the Dirichlet

distribution, please refer to Huelsenbeck and Andolfatto [2007].

The marginal likelihood or evidence as used in Equation 2.5 expresses the

probability of the data D according to a model M . It is specifically utilized

for comparing models with each other. For Markov chain inference, we

can define it as follows (derivation provided in Section 3.2 and in [Singer

et al., 2014c; Strelioff et al., 2007]):

P (D|M) =
∏

i

Γ(
∑

j αi,j)∏
j Γ(αi,j)

∏
j Γ(ni,j + αi,j)

Γ(
∑

j(ni,j + αi,j))
(2.6)

For comparing models with each other, Bayesians usually resort to Bayes

factors which represent a Bayesian alternative to the hypothesis testing

methods of frequentist statistics. Kass and Raftery [1995] describe Bayes

factors in detail. By again using Bayes’ theorem, we can determine the

posterior probability of a model H given the data D:
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P (M |D) =
P (D|M)P (M)

P (D)
(2.7)

The likelihood P (D|M) is the marginal likelihood (evidence) defined in

Equation 2.6, P (D) is the probability of data regardless the model and

P (M) is the prior probability of a model M . For a fair and unbiased

comparison researchers usually assume that all models are equally likely

a priori by using a uniform prior over the models. In such a case, we

can define the Bayes factor for comparing two models M1 and M2 given

observed data D as:

B1,2 =
P (D|M1)

P (D|M2)
(2.8)

Throughout this thesis, I resort to such Bayes factors in several occasions.

For example, I use them for comparing Markov chain models of different

orders or for comparing hypotheses about human trails. One disadvantage

of this approach is that it is often very difficult to calculate Bayes factor

as the necessary integrals might not be able to be solved analytically. In

such a case, practitioners often resort to alternatives that try to avoid

this issue – e.g., asymptotic approximation or sampling from the posterior

(MCMC, Gibbs) [Kass and Raftery, 1995]. In the case of Markov chain

models, we do not have this problem as the conjugate Dirichlet priors can

be integrated analytically.

A further thing to note is that one common critique of Bayes factors

is their high sensitivity on the choice of the prior as originally pointed

out by Kass and Raftery [1995]. Contrary, posterior measures are more

ignorant regarding the influence of the prior the more data one observes and

incorporates [Vanpaemel, 2010]. Actually, when the number of observations

becomes very large, the Bayesian posterior tends to the maximum likelihood

estimation. Nonetheless, literature has pointed out that the high influence

of the prior on the marginal likelihood and Bayes factors should not only

be seen as a limitation, but also holds opportunities. As emphasized by

Vanpaemel [2010], if ”models are quantitatively instantiated theories, the

prior can be used to capture theory and should therefore be considered as
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an integral part of the model”. Hence, Bayes factors can also be used as an

instrument for making informed decisions about the plausibility of scientific

theories by incorporating them as priors into Bayesian inference. However,

the process of eliciting informative priors from theories is no trivial task

and requires careful steps as discussed in [Oakley, 2010; Garthwaite et al.,

2005]. Wolf Vanpaemel tackles this issue in follow-up work [Vanpaemel

and Lee, 2012; Vanpaemel, 2011].

In this thesis, I utilize this sensitivity for the task of comparing hypotheses

about human trails as presented in Section 3.6. In detail, I incorporate

such hypotheses as informative Dirichlet priors for Bayesian Markov chain

inference. Then, I use marginal likelihoods and Bayes factors for comparing

hypotheses with each other. I present an adaption of the so-called (trial)

roulette method for the task of eliciting proper Dirichlet priors from ex-

pressed hypotheses. This method was first introduced in [Gore, 1987] and

discussed in [Oakley, 2010; Davidson-Pilon, 2014]. The general concept is

to distribute a given number of chips to a grid that represents bins of a

distribution. In my case, I see the grid as a matrix representing beliefs

about transitions in a Markov chain model. Chips are then automatically

distributed for determining pseudo counts for the hyperparameters of

Dirichlet priors.

Bayesian model selection has further advantages which might make it

superior to frequentist approaches. Compared models do not need to be

nested and the main benefit is the inclusion of a natural Occam’s razor

which describes a penalty for too much complexity. The Occam’s razor

is a principle that states that in case of a set of competing hypotheses,

the one with the fewest assumptions (i.e., parameters) should be selected.

This allows researchers to get intuitive statements about the relative

appropriateness of a set of models and overcomes the issue of overfitting

[Kass and Raftery, 1995; MacKay, 1992; Murray and Ghahramani, 2005;

MacKay, 2003].

Further methods for comparing models. Throughout this thesis, I

also consider information-theoretic methods for comparing models. These

methods are principled on concepts and ideas stemming from information

theory with a focus on entropy measures. The two most well-known
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methods for model selection using information-theoretic approaches are (i)

the Akaike information criterion (AIC) and (ii) the Bayesian information

criterion (BIC). For a thorough introduction into information theory please

consult the works by Burnham and Anderson [2002, 2004]. AIC and BIC

are shortly discussed next.

AIC was introduced by Akaike [1973] and is based on the Kullback-Leibler

divergence [Kullback and Leibler, 1951] and the asymptotic properties of

the likelihood ratio statistics discussed above. The idea is to balance the

goodness of fit with the number of parameters needed by subtracting the

maximum of the likelihood of a model from the number of parameters

needed. For a set of competing models the approach is to minimize the AIC

[Gates and Tong, 1976] and for Markov chain model selection a concrete

approach was introduced by Tong [1975].

BIC follows a similar idea to AIC and was first introduced by Schwarz

[1978] which is why it is also often called Schwarz criterion. It represents

an approximation to the Bayes factor introduced above. It penalized

higher order models more compared to the AIC by adding an additional

penalization for the number of observations [Katz, 1981].

Mostly, AIC and BIC suggest the same model when both are applied. Both

approaches have been criticized and praised in the past [Burnham and

Anderson, 2004; Weakliem, 1999]. Katz [1981] emphasized that by using

AIC, one may end up with too high of an order if used for determining the

appropriate Markov chain order and hence, the work suggests to prefer

BIC over AIC for Markov chain model selection. However, BIC does not

perform too well for small datasets [Csiszár and Shields, 2000] which is why

one might prefer AIC for small sized data [Baigorri et al., 2009]. These

methods do not require the models to be nested which is why they may be

preferred over the likelihood ratio tests for some use cases. BIC can also

be used to approximate Bayes factors which might specifically come handy

if the factors can not be calculated analytically as described above.

One further common way to evaluate models or a set of models is to use

cross validation which is specifically applied in the machine learning area.

The idea is to fit the model on a portion of the data and evaluate it on

the remaining portion. This can also be applied for Markov chain order
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selection as suggested by Chierichetti et al. [2012] and Murphy [2002]. One

would use the fitted Markov chain model and predict the sequences of the

test set. The model that performs the best can then be preferred; but,

complexity needs to be considered.

2.1.3. Computation of semantic relatedness between concepts

Semantic relatedness is a metric for indicating how semantically related

two terms or documents are to each other. We can distinguish semantic

relatedness from other similar metrics like semantic similarity or semantic

distance [Resnik, 1998; Pedersen et al., 2007]. According to Harispe

et al. [2013], we can define semantic relatedness as the ”strength of the

semantic interactions between two elements without restriction regarding

the types of semantic links considered.” Note that while similar, semantic

similarity can be seen as a specialization of semantic relatedness and only

considers taxonomical relationships. Semantic distance specifies the reverse

of semantic relatedness in order to determine a semantic distance metric

between terms or documents. While slightly different in their definitions,

literature often refers to these metrics interchangeable. I focus on the more

general notion of semantic relatedness in this thesis. Amongst others, it

includes: similarity, meronymy, hypernymy or IS-A relationships. Next,

with respect to the scope of this thesis, I start with a general overview

of works calculating semantic relatedness on the Web in general. For a

discussion about calculating semantic relatedness by leveraging human

trails, please refer to Section 2.2.3.

Semantic relatedness on the Web. Computing semantic relatedness

between concepts of the Web has been studied heavily in the past and is a

fundamental approach for enabling a semantically-enabled Web. In their

seminal work, Rubenstein and Goodenough [1965] stated that a positive

relationship between the degree of semantic relatedness and the degree of

similarity of their contexts exists. Later, psychological experiments such

as by Tversky [1977] or Medin et al. [1993] demonstrated that semantic re-

latedness is both asymmetric and context dependent. Asymmetry refers to

the observation that people provide different degree of semantic relatedness
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between two concepts if their positions are changed. Context dependency

means that the degree of semantic relatedness is influenced by the context

the concepts appear in. However, Aguilar and Medin [1999] and Medin

et al. [1993] argued that asymmetry only occurs occasionally.

A large array of applications build upon the calculation of semantic related-

ness between concepts. To give some examples: word sense disambiguation

[Resnik, 1998], usage for word spelling errors [Budanitsky and Hirst, 2001,

2006], text segmentation using lexical cohesion [Kozima, 1993; Manabu and

Takeo, 1994], image [Smeulders et al., 2000] and document [Srihari et al.,

2000] retrieval or cognitive science [Talmi and Moscovitch, 2004]. For a

detailed survey on this topic see the work by Zhang et al. [2012]. The work

by Li et al. [2003] emphasizes that for calculating semantic relatedness

between concepts we can distinguish edge-counting and information-theory

based methods. According to it, edge-counting methods utilize IS-A rela-

tions only, while as pointed out by Resnik [1998], information-theoretic

methods use information content for calculating semantic relatedness be-

tween concepts. Precisely, if both concepts share more content, they

are more related to each other. A prominent method that combines

both approaches is called Jiang-Conrath distance as introduced by Jiang

and Conrath [1997]. This method can be applied to tree-shaped lexical

taxonomies. For calculating semantic relatedness between concepts, the

method uses an edge-counting scheme which it enhances with a node-based

approach as known from information content methods.

Over time, several information sources suitable for calculating semantic

relatedness between concepts have emerged. A very prominent example is

the lexical database WordNet [Miller, 1995] which has been heavily studied

in the past (e.g., see [Budanitsky and Hirst, 2001; Patwardhan, 2006;

Banerjee and Pedersen, 2003; Pedersen et al., 2004; Navigli and Ponzetto,

2012]). Budanitsky and Hirst [2006] compared five distinct methods for

calculating semantic relatedness between concepts using WordNet and

concluded that the Jiang-Conrath distance works best.

Today, human-generated content is produced at massive scale on the

Web. Hence, approaches have been developed that aim at leveraging

such content for calculating semantic relatedness between concepts. For
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example, human-generated content generated in tagging systems (e.g.,

[Strohmaier et al., 2012] or [Helic et al., 2011]) has been shown to be a

good content source for this task. But also content created on Wikipedia

can be successfully leveraged (see e.g., [Gabrilovich and Markovitch, 2007]).

Next, I will briefly cover some methods applied on Wikipedia as in this

thesis also navigational trails through Wikipedia are leveraged for the task

of calculating semantic relatedness between concepts. On Wikipedia, we

can roughly distinguish between content and link based semantic relatedness

methods. The former try to leverage the human-generated content while

the latter mainly focus on links between concepts.

Semantic relatedness on Wikipedia. Maybe the most prominent

content based method is the so-called Explicit Semantic Analysis (ESA)

method by Gabrilovich and Markovitch [2007]. The main idea is to

calculate a tfidf-weighted inverted index which can be used for calculating

semantic relatedness between concepts by e.g., utilizing cosine similarity.

The advantage of ESA is that it is not limited to word relatedness, but

can also be used on arbitrary text. A further well-known method is Latent

Semantic Analysis (LSA) [Landauer et al., 1998; Deerwester et al., 1990]

which uses singular value decomposition on word count matrices of textual

articles and then proceeds to determine similarity by calculating the angle

between vectors. While both ESA and LSA work well on Wikipedia, they

can be calculated on any other textual corpus.

Link-based methods can be partitioned into methods that focus on hyper-

link information and methods that exploit trails through the underlying

topological link network of Wikipedia. For example, Ito et al. [2008] used

co-occurrence information between links that are present on a single page

for deriving semantic relatedness between concepts; similar approaches

have been proposed by Milne [2008] and Turdakov and Velikhov [2008].

Methods that are directly applied on the underlying link network have

e.g., been suggested by Yeh et al. [2009] who presented an algorithm called

WikiWalk conducting random walks through the network and then using

these walks for specifying relatedness scores between concepts. Strube and

Ponzetto [2006] investigated direct path-based measures and also studied

a combination with WordNet for this approach.
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2.2. Empirical Studies and Theories of Human Trails

on the Web

This section gives a compressed overview of related work that studies

human trails on the Web with a specific focus on emerging theories as well

as on studies about human navigational trails on the Web as they are the

main type of trails studied in this thesis. However, I also discuss studies

on other types of human trails on the Web as well as on trails outside

the Web realm for giving insights into the bigger picture. I highlight

the corresponding main theory or observation at the beginning of each

paragraph as communicated by related work.

2.2.1. Regularities and patterns

In this section, I am mainly concerned with discussing work that has

studied regularities and patterns in human trails on the Web. This has

been of interest for our research community for nearly two decades.

Human navigational trails on the Web exhibit regularities and

patterns. One of the first studies on this topic is by Catledge and Pitkow

[1995] who investigated actual human behavior as captured from client-

side log files of NCSA’s XMosaic. The experiments identified a series of

navigation patterns such as serendipitous browsing. The article argues for

the usefulness of the identification of navigational patterns for design and

usability improvements for pages, sites or browsers. This steered further

investigations in the late 1990s making the analysis of navigational human

behavior on the Web a prominent research field. Subsequent seminal

work by Huberman et al. [1998] studied regularities in World Wide Web

surfing. The authors emphasized that navigating hyperlinks represents

one of the most common modes of accessing information on the Web. By

investigating various navigational log data such as a representative sample

based on navigational trails by AOL WWW users, the authors found

that surfing patterns on the Web reveal strong statistical regularities.

Also, humans seem to follow hyperlinks as long as they find value in

them and the probability distribution of the number of hits follows Zipf’s
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law. In the same year, Huberman and Adamic [1998] demonstrated that

recommendations play an important role in how humans choose websites

to access. Thus, the article argues that social search mechanisms are

manifested in the statistics of visits of websites on the Web. Actually,

it seems to lead to a universal power law for the number of site visits

where the exponent corresponds to the rate of new sites that humans

discover.

Patterns and regularities can also be found in other types of

human trails on the Web. Similar to the found regularities in human

navigational trails, other types of human trails also exhibit certain regu-

larities. Wang and Huberman [2012] studied randomness on two human

trail datasets. The first one captures successive comments by humans on

the who-trust-who consumer review site Epinions. The second dataset

considers human trails from the location based social network Whrrl. Each

trail consists of consecutive check-ins to places like restaurants, hotels or

bookstores by users of the website. The authors looked at predictability of

individual activities by calculating both entropy and mutual information

on the trails at hand. Their results indicate the presence of regularities

in these trails that can be used for prediction. However, it seems that

the predictability is higher when humans act alone compared to group

activities.

Structural patterns have also shown to play an important role in various

other kinds of human trails on the Web. In [Archak et al., 2010], the

authors studied trails of ads seen and clicked by humans. The authors

proposed an approach called adgraphs which can formulate graphs for

representing co-occurrences of events in given trails. Generated graphs

can capture structural properties of human trails. The article introduces

several scoring rules which are called adfactors. They are able to interpret

the global role of ads in a graph. The approach can help practitioners to

find and understand correlations in trails of ads seen and corresponding

human actions. Yang et al. [2014] presented a model for finding progression

stages in time-evolving trails. The method allows accurate prediction of

future events and the determination of progression stages. These stages

can be grouped based on similar patterns. This can not only give one
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the ability to model the data, but also to find behavioral aspects within

such trails. Similar to human navigational trails, search trails capture

subsequent search activities of humans. Trails begin with a search query

and end with either another query, inactivity or termination of the browser

[White and Drucker, 2007]. For example, Bilenko and White [2008] and

White and Huang [2010] studied the value of search trail following. In this

thesis, I am also interested in studying human edit trails in collaborative

ontology engineering projects. Pöschko et al. [2012] and Walk et al. [2013]

developed PragmatiX which is a tool for visualizing and analyzing aspects

of the history of collaborative ontology engineering projects. Change logs

of such projects have also been studied by Falconer et al. [2011], Strohmaier

et al. [2013] and Wang et al. [2013].

Regularities in human trails on the Web might be based on

inherent regularities of human behavior. Song et al. [2010] were

interested in studying the degree of predictability of human behavior.

The authors focused on studying human mobility trails collected from

mobile phone carriers. By measuring entropy of given trails, the results

indicate high predictability in human mobility. Additionally, only slight

variability in predictability could be identified. This form of determining

predictability of trails has its origins in studies on gene expressions such

as the work of Steuer et al. [2002] discusses. The article suggests that

such observations might be reasoned by inherent regularities of human

behavior in general. Hence, this confirms the abovementioned studies that

found regularities and patterns in all kinds of human trails on the Web

and argues for the necessity of a better understanding of the production

of these trails.

2.2.2. Behavioral strategies of humans

Based on these identified regularities and patterns, an array of work exists

that has focused on studying the behavioral aspects of human navigational

trails and specifically, emerging strategies.
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Human trail behavior is guided by information scent. One of the

most well-known theories about human navigation behavior is the so-called

information foraging theory [Pirolli and Card, 1999]. It postulates that

human behavior in an information environment on the Web is guided by

information scent which is based on the cost and value of information with

respect to the navigational goals that humans have in mind [Chi et al., 2001].

Consequently, humans estimate the value of information they gain on a

given trail. After they have gathered enough information, they evaluate

it by comparing it to what they expected and as soon as the information

scent decreases, they switch to a different information source. The authors

also presented two methods for modeling human needs which are based on

the concept of information scent. Like many others, Chi et al. [2001] also

highlighted that a better understanding of human navigational patterns

and corresponding human behavior can have implications for a series

of applications such as for personalizing Web environments, improving

website design or also identifying parts of websites with bad design. Shortly

after the establishment of the information foraging theory, Olston and

Chi [2003] introduced a novel approach called ScentTrails. The approach

highlights hyperlinks on websites in order to indicate trails to utilize for

searching results using the concept of information scent. Furthermore, in

[Teevan et al., 2004], the authors emphasized that indeed humans seem

to prefer to navigate websites by leveraging their contextual knowledge

instead of only using keyword based search. Downey et al. [2008] found

that navigation is specifically useful when information needs are rare and

that given a general result, navigating to more specific websites can be a

fruitful way of satisfying these needs.

Humans follow certain strategies while navigating and produced

trails differ from shortest paths. In [West and Leskovec, 2012a,b; West

et al., 2009; Scaria et al., 2014], the authors studied human navigational

trails derived from the online game Wikispeedia1. In Wikispeedia, players

receive an arbitrary start and target Wikipedia page. The goal is to reach

the target page by only clicking on hyperlinks of Wikipedia pages and

navigating Wikipedia. The work by West and Leskovec [2012a] argues

1http://cs.mcgill.ca/~rwest/wikispeedia/
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that no sophisticated background knowledge is necessary for efficiently

navigating Wikipedia. Nonetheless, as pointed out in [West and Leskovec,

2012b], produced trails differ from shortest paths in several ways. Humans

seem to prefer to navigate through high-degree hubs in the beginning of

their navigational steps before their navigational behavior is guided by

content features; this confirms the observations by Downey et al. [2008].

West and Leskovec [2012b] also demonstrated that complex solutions are

rarer but more effective compared to simpler ones. Scaria et al. [2014]

found that backtracking plays an important rule for humans navigating

Wikipedia. They mostly use it for going back to high-degree hubs. Based

on this analysis, the authors also introduced a model that predicts whether

a human abandons or finishes a corresponding game in Wikispeedia.

Humans navigate over semantically similar concepts. While nav-

igating Wikipedia and the Web, semantic relatedness between concepts

seems to play a crucial role [West et al., 2009]. West and Leskovec [2012b]

found similar behavior by demonstrating that the closer a human is to

the final target they want to reach, the more similar the navigated over

concepts are to the target. In similar context, Pierce et al. [1992] demon-

strated that semantic relatedness and omission probability affect menu

selection performance. The importance of semantic relatedness between

consecutive items that humans navigate on the Web is also emphasized by

the work of Chalmers et al. [1998].

2.2.3. Leveraging human trails

In this section, I want to shortly discuss the potential usefulness of human

trails on the Web for inferring knowledge; specifically, for calculating

semantic relatedness between concepts.

Human trails on the Web might be leveraged for calculating

semantic relatedness between concepts. The methods for calculating

semantic relatedness between concepts as described in Section 2.1.3 have

focused on using Web content only. However, as suggested by earlier work

[Chalmers et al., 1998] – or by also keeping the ideas by Bush [1945] in mind

– it might be also reasonable to look into actual human behavior patterns (in
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this case navigational trails) for calculating semantic relatedness between

concepts. In fact, Chalmers et al. [1998] studied trails over URLs requested

by a hand full of humans. The authors used a co-occurrence method for

recommending URLs and for visualizing trail components. The task of

determining semantic relatedness between concepts using navigational

trails by humans has also been investigated by West et al. [2009]. Their

work studies human navigational trails derived from Wikispeedia. The

authors have introduced a method for deriving semantic relatedness of

concepts by looking at how humans navigate between them.

Both Chalmers et al. [1998] and West et al. [2009] have provided first

insights into the potential usefulness of leveraging human navigational

trails for the task of calculating semantic relatedness between concepts.

However, their works are limited in some ways. Chalmers et al. [1998]

only studied trails from a hand full of humans for recommendation and

visualization purposes. Their work does not focus on the aspect of semantic

relatedness between concepts and it is an open question how accurately

this can be achieved as no evaluation for this task has been provided.

While West et al. [2009] have focused on explicitly calculating semantic

relatedness scores between concepts, their method only allows to calculate

relatedness between concepts that at least once co-occur in a trail. Also,

their work does not evaluate the results based on given gold-standards.

The work presented in this thesis (see Section 3.5) provides an evolution

and extension of the work by Chalmers et al. [1998] and West et al. [2009].

It applies a robust method that allows to calculate semantic relatedness

between any arbitrary concept at interest. Additionally, the method is

applied to large-scale data and rigorous evaluation based on several baseline

corpora and gold-standards is provided.

By and large, in this thesis, I can indeed showcase the usefulness of using

human navigational trails for the task of determining semantic relationships

between concepts in Section 3.5. This confirms the early hypotheses by

Chalmers et al. [1998] as well as the work by West et al. [2009]. Nonetheless,

this thesis also highlights that not all trails are equally useful and selection

strategies can improve results by a significant margin. While previous work

as well as the article presented in this cumulative thesis have focused on

calculating semantic relatedness between human navigational trails, it can
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be easily extended to other types of human trails which is an interesting

aspect to investigate in future.

2.2.4. Modeling human trails on the Web with Markov chain

models

In this section, I discuss related work that has applied the Markov chain

model (see Section 2.1.1) to human trails on the Web, again I focus on

human navigational trails.

Human navigational trails can be well modeled stochastically

and with Markov chain models. In the early days of studying human

navigational trails on the Web, several studies proposed that human navi-

gation on the Web can best be modeled stochastically, but in a memoryless

way [Huberman et al., 1998; Cunha and Jaccoud, 1997; Padmanabhan

and Mogul, 1996]. This means that a state in the model is only dependent

on the current one, and not on a series of preceding ones. With these

observations and assumptions, the Markov chain model is a logic choice

for efficiently modeling human navigation on the Web [Pirolli and Pitkow,

1999]. It is also the main model utilized in this thesis; for a thorough

introduction please refer to Section 2.1.1.

The most prominent application utilizing a Markov chain model is Google’s

PageRank [Brin and Page, 1998]. This algorithm is responsible for ranking

websites on the Web according their structure. The PageRank uses a

random surfer model which postulates that such a surfer gets bored after

a certain amount of clicks and switches to a completely random page

(damping factor). The actual page values of the PageRank indicate the

probability of a random surfer to end up at it. Actually, this can be under-

stood as a memoryless (first-order) Markov chain model having a transition

matrix with values corresponding to transitions of the PageRank.

First-order Markov chain models have also been applied in several other

applications and studies. For example, Bestavros [1995] used them for a pre-

fetching service with the intention to reduce server load. In [Sarukkai, 2000],

the utility of (first-order) Markov chain models for modeling navigational

trails on the Web is emphasized. It is stated that such models can not only
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be useful for modeling navigational click trails, but also for tasks like tour

generation or hub / authority identification. The work further praises the

generality and power of Markov chains as a tool for heuristically modeling

Web trails. Further examples are the work by Zukerman et al. [1999] who

leveraged first-order Markov chain models for predicting human navigation

on the Web or Nicholson et al. [1998] who used these models for predicting

which document humans request next. A mixture of first-order Markov

chain models was also utilized by Cadez et al. [2003] for clustering and

visualizing navigation patterns on a Web site.

The first-order Markov chain model is a practical model for hu-

man navigational trails. While, as above examples indicate and claim,

memoryless Markov chain models are well-performing for modeling human

navigation on the Web, several studies have questioned the memoryless

property [Pirolli and Pitkow, 1999; Borges and Levene, 2000]. However,

they have emphasized that the first-order indeed is a reasonable way to

model human navigation on the Web. It was argued that while increasing

the order of a Markov chain leads to a reduction in uncertainty, the higher

complexity of such models might not compensate the additional benefit

[Pirolli and Pitkow, 1999; Borges and Levene, 2000]. Similar observations

were also presented by Sen and Hansen [2003] who studied the applicability

of first-order and second-order Markov chain models of navigational log

data within a single platform. Their results indicate that while a second-

order model works reasonable well, the number of parameters necessary

is enormous which is why the authors suggest to use finite mixtures of

first-order models. This achieves a form of clustering of Web sites leading

to a limited need of parameters. Additionally, the authors also used a

Bayesian Markov chain modeling approach that incorporates prior knowl-

edge about the link structure of the underlying topological network in

order to enhance predictive accuracy.

The Markovian property might be wrong. In contrast, literature

has also suggested that the memoryless model may not be suitable for

modeling human navigation on the Web as e.g., the PageRank does. In

[Gonçalves et al., 2009], the authors proposed a model that incorporates

random effects by using an agent based model where each agent keeps

a list of pages ranked by the number of previous visits that are then
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leveraged for determining future visits; the model was later extended in

[Meiss et al., 2010]. Recently, Chierichetti et al. [2010] have picked up

on the study of memory effects in Markov chain models. Their studies

suggest that the Markovian memoryless assumption might not hold for

human navigation on the Web. However, the authors also have pointed

out that it is difficult to determine the appropriate Markov chain order

unless given a significantly large amount of data. As inferred in this thesis

in Section 2.1, simply choosing the model with the highest likelihood is

not enough, as higher order Markov chain models are always better fits to

the data [Murphy, 2002]. Hence, this warrants further investigations that

specifically account for the higher complexity needed for these higher order

models [Pirolli and Pitkow, 1999; Borges and Levene, 2000]. In this thesis,

I tackle this issue and investigate memory effects in human navigational

trails by utilizing the statistical tools described in Section 2.1.2. As a result,

I present a framework for detecting the appropriate Markov chain order

given data. In future, researchers can utilize this framework for detecting

memory effects in human trails. For a more general approach of looking

at memory in network flows please consult [Rosvall et al., 2014].
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3.1. Contributions to the Publications

This section elaborates in detail my contributions to the main publications

of this cumulative thesis.

• [Singer et al., 2014c] Singer, P., Helic, D., Taraghi, B., and

Strohmaier, M. (2014c). Detecting memory and structure in hu-

man navigation patterns using markov chain models of varying order.

PloS One, 9(7):e102070

First an foremost, I developed the methodological concepts necessary

for this work. These consist of several advanced statistical inference

methods for Markov chain models and according statistical comparisons

of Markov chain models of varying order. Subsequently, I implemented

this approach in Python which is also made open-source1 for offering

researchers a general framework for determining the appropriate Markov

chain order given human trail data. For showing the general applicability

and mechanics of this framework, I conducted a series of experiments

for detecting memory and structure in human navigational trails on the

Web.

The idea for this paper stems from discussions between Markus Strohmaier,

Denis Helic and myself. Denis Helic contributed to the design of the

approach. Behnam Taraghi provided visualizations for the structural

aspects studied. All authors contributed to interpreting and discussing

the results as well as to the writing of the manuscript.

1https://github.com/psinger/PathTools
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• [Walk et al., 2014b] Walk, S., Singer, P., Strohmaier, M., Tudorache,

T., Musen, M. A., and Noy, N. F. (2014b). Discovering beaten paths

in collaborative ontology-engineering projects using markov chains.

Journal of Biomedical Informatics, 51:254–271

My main contribution for this work was the design of the approach.

In detail, I developed and prepared the methodological Markov chain

framework that is utilized throughout the experiments of this article.

The ideas for this article stem from various discussions between the authors

of this article. Data preparation and the conduction of experiments were

done by Simon Walk. The results were mainly interpreted by Simon Walk

in coordination with all authors of this article. All authors contributed to

the writing of this manuscript.

• [Walk et al., 2014a] Walk, S., Singer, P., and Strohmaier, M. (2014a).

Sequential action patterns in collaborative ontology-engineering

projects: A case-study in the biomedical domain. In International

Conference on Information and Knowledge Management

For this article, I was responsible for the design of the approach. To that

end, I provided the Markov chain framework which this article utilizes for

detecting the appropriate Markov chain order given human edit trails in

collaborative ontology engineering projects as well as for predicting human

trails. Additionally, I developed a method for studying randomness in

human trails. I make the implementations of this method available online2.

Consequently, I also conducted the experiments for studying randomness

and regularities given the human trail data at hand.

The main idea for this work stems from discussions between Simon Walk

and myself in consultation with Markus Strohmaier who is the doctoral

adviser of both. Simon Walk designed the approach for detecting struc-

tural patterns of various length in given data. Subsequently, he was also

responsible for conducting the experiments that aimed at the detection

of patterns as well as for predicting human trails on the Web. The re-

sults were mainly interpreted by Simon Walk and myself. All authors

contributed to the writing of the manuscript.

2https://github.com/psinger/RunsTest
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• [Singer et al., 2013a] Singer, P., Niebler, T., Strohmaier, M., and

Hotho, A. (2013a). Computing semantic relatedness from human

navigational paths: A case study on wikipedia. International Journal

on Semantic Web and Information Systems, 9(4):41–70

For this article, I focused on developing the methodological fundamentals

that are utilized for calculating semantic relatedness by leveraging human

navigational trails. I make an implementation of the method open-source

and available online3. Additionally, I was involved into preparing the data

(trails, gold-standards, baseline corpora and sampling). I conducted the

experiments of this article by applying the method to the data at interest

and evaluating the results on a set of gold standards.

The idea for this work stems from discussions between Markus Strohmaier

and myself. Thomas Niebler generated parts of the baseline and sampling

corpora and designed aspects of the evaluation. He was also responsible for

producing the visualizations of this article. All authors were continuously

involved in the refinements of the methodological development and experi-

ments as well as the interpretation of the results. All authors contributed

to the writing of the manuscript.

• [Singer et al., 2014b] Singer, P., Helic, D., Hotho, A., and Strohmaier,

M. (2014b). Hyptrails: A bayesian approach for comparing hypothe-

ses about human trails. arXiv:1411.2844 [cs.SI]

In this article, I developed HypTrails, an approach for comparing hypothe-

ses about human trails on the Web. Again, I make an implementation of

this approach open-source and available online4. Additionally, I prepared

the data at hand and conducted all experiments of this article that aim at

showing the general mechanics and applicability of HypTrails.

The ideas for this paper stem from regular discussions between the authors

of this work. Additionally, the methodological fundaments, experimental

setup and results were discussed by all authors of this article on a regular

basis. Also, all authors contributed to the writing of this article.

3https://github.com/psinger/PathTools
4https://github.com/psinger/HypTrails
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3.2. Detecting Memory and Structure in Human

Navigation Patterns Using Markov Chain

Models of Varying Order

This article tackles the first research question concerning the study of

memory and structure in human trails and represents the fundament

of this thesis. To that end, it presents a framework for detecting the

appropriate Markov chain order given human trail data. For doing so,

it deploys four different approaches that stem from distinct statistical

fields: (i) likelihood, (ii) Bayesian, (iii) information-theoretic and (iv) cross

validation methods. These methods evaluate whether higher order Markov

chain models are statistically significant better fits to the data compared

to lower order models. The article highlights the strengths and weaknesses

of each method at hand and I provide an open-source implementation5

of the framework. This should give researchers an easy-to-handle and

comprehensive way to study memory effects in human trails.

For demonstrating the general mechanics and applicability of the frame-

work, colleagues and I have applied it to three distinct human navigational

trail corpora for detecting memory and structure in human navigation

patterns as presented in this article. The results confirm what this thesis

inferred from theory: It is difficult to make plausible statements about

higher order Markov chain models given only a limited set of navigational

trails. Hence, we argue that the memoryless (first-order) Markov chain

model is a plausible model for human navigational data on a page level (i.e.,

humans navigating over websites) as also mostly indicated in literature.

However, by reducing the state space by abstracting away from the page to

a topical level, the results indicate memory effects at least on this topical

level. This is coupled with the detection of several representative structural

patterns found. This argues that regularities, patterns and memory play

at least some role in human navigational trails. Hence, these observations

warrant further more rigorous investigations which can be tackled by using

the Markov chain framework presented in this thesis.

5https://github.com/psinger/PathTools
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Abstract

One of the most frequently used models for understanding human navigation on the Web is the Markov chain model,
where Web pages are represented as states and hyperlinks as probabilities of navigating from one page to another.
Predominantly, human navigation on the Web has been thought to satisfy the memoryless Markov property stating that the
next page a user visits only depends on her current page and not on previously visited ones. This idea has found its way in
numerous applications such as Google’s PageRank algorithm and others. Recently, new studies suggested that human
navigation may better be modeled using higher order Markov chain models, i.e., the next page depends on a longer history
of past clicks. Yet, this finding is preliminary and does not account for the higher complexity of higher order Markov chain
models which is why the memoryless model is still widely used. In this work we thoroughly present a diverse array of
advanced inference methods for determining the appropriate Markov chain order. We highlight strengths and weaknesses
of each method and apply them for investigating memory and structure of human navigation on the Web. Our experiments
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model represents a quite practical model for human navigation on a page level. However, when we expand our analysis to a
topical level, where we abstract away from specific page transitions to transitions between topics, we find that the
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Introduction

Navigation represents a fundamental activity for users on the

Web. Modeling this activity, i.e., understanding how predictable

human navigation is and whether regularities can be detected has

been of interest to researchers for nearly two decades – an example

of early work would be work by Catledge and Pitkow [1]. Another

example would be [2], who focused on trying to understand

preferred user navigation patterns in order to reveal users’ interests

or preferences. Not only has our community been interested in

gaining deeper insights into human behavior during navigation,

but also in understanding how models of human navigation can

improve user interfaces or information network structures [3].

Further work has focused on understanding whether models of

human navigation can help to predict user clicks in order to

prefetch Web sites (e.g., [4]) or enhance a site’s interface or

structure (e.g., [5]). More recently, such models have also been

deployed in the field of recommender systems (e.g., [6]).

However, models of human navigation can only be useful to the

extent human navigation itself exhibits regularities that can be

exploited. An early study on user navigation in the Web by

Huberman, Pirolli, Pitkow and Lukose [7], for example, already

identified interesting regularities in the distributions of user page

visits on a Web site. More recently, Wang and Huberman [8]

confirmed these observations and Song, Qu, Blumm and

might be based on the inherent regularities of human behavior in

general.

The most prominent model for describing human navigation on

the Web is the Markov chain model (e.g., [10]), where Web pages

are represented as states and hyperlinks as probabilities of

navigating from one page to another. Predominantly, the Markov

chain model has been memoryless in a wide range of works (e.g.,

Google’s PageRank [11]) indicating that the next state only

depends on the current state of a user’s Web trail. Recently, a

study [12] suggested that human navigation might be better

modeled with memory – i.e., the next page depends on a longer

history of past clicks. However, this finding is preliminary and does

not account for the higher complexity of higher order Markov

chain models which is why the memoryless model is still widely

used.

Research questions
In this paper, we are interested in shedding a deeper light on

regularities in human navigation on the World Wide Web by

studying memory and structure in human navigation patterns. We
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start by investigating memory of human navigational paths over

Web sites by determining the order of corresponding Markov

chains. We are specifically interested in detecting if the benefit of a

larger memory (or higher order Markov chain) can compensate for

the higher complexity of the model. In order to understand

whether and to what extent human navigation exhibits memory

on a topical level, we abstract away from specific page transitions

and study memory effects on a topical level by representing click

streams as sequences of topics (cf. Figure 1) – note that the terms

‘‘topic’’ and ‘‘category’’ should be seen as synonyms throughout

this work. This enables us to (i) move up from the page to topical

level and (ii) significantly reduce the complexity of higher order

models and therefore (iii) gain deeper insights into memory and

structure of human navigational patterns. Finally, we discuss our

findings and demonstrate interesting differences between human

navigation in free browsing vs. more goal-oriented settings.

Methods and Materials
We study memory and structure in human navigation patterns

on three similarly structured datasets: WikiGame (a navigation

dataset with known navigation goals), Wikispeedia (another goal-

oriented navigation dataset) and MSNBC (a free navigation

dataset). For analyzing memory, we use Markov chains to model

human behavior and analyze the appropriate Markov chain order

– i.e., we investigate whether human navigation is memoryless or

not. For model selection – i.e., the process of finding the most

appropriate Markov chain order – we resort to a highly diverse

array of methods stemming from distinct statistical schools: (i)

likelihood [13,14], (ii) Bayesian [15] and (iii) information-theoretic

methods [14,16–19]. We supplement these with a (iv) cross

validation approach for a prediction task [18]. We thoroughly

elaborate each method, put them into relation to each other and

also highlight strengths and weaknesses of each. Such detailed

derivation of model parameters and the model comparison is, for

example, missing in previous work [12], which prevents us from

drawing definite conclusions. We apply these methods to our

human navigational data in order to get an exhaustive picture

about memory in human navigation. Finally, we identify structural

aspects by analyzing transition matrices produced by our Markov

chain analyses.

Contributions
The main contributions of this work are three-fold:

N First, we deploy four different, yet complementary, approaches

for order selection of Markov chain models (likelihood,

Bayesian, information-theoretic and cross validation methods)

and elaborate their strengths and weaknesses. Hence, our work

extends existing studies that model human navigation on the

Web using Markov chain models [12]. By applying these

methods on navigational Web data, our work presents – to the

best of our knowledge – the most comprehensive and

systematic evaluation of Markov model orders for human

navigational sequences on the Web to date. Furthermore, we

make our methods in the form of an open source framework

available online (https://github.com/psinger/PathTools) to

aid future work [20].

N Our empirical results confirm what we inferred from theory: It

is difficult to make plausible statements about the appropriate

Markov chain order having insufficient data but a vast amount

of states, which is a common situation for Web page

navigational paths. All evaluation approaches would favor a

zero or first order because the number of parameters grows

exponentially with the chain order and the available data is too

sparse for proper parameter inferences. Thus, we show further

evidence that the memoryless model seems to be a quite

practical and legitimate model for human navigation on a page

level.

N By abstracting away from the page level to a topical level, the

results are different. By representing all datasets as navigational

sequences of topics that describe underlying Web pages (cf.

Figure 1), we find evidence that topical navigation of humans is

not memoryless at all. On three rather different datasets of

navigation – free navigation (MSNBC) and goal-oriented

navigation (WikiGame and Wikispeedia) – we find mostly

consistent memory regularities on a topical level: In all cases,

Markov chain models of order two (respectively three) best

explain the observed navigational sequences. We analyze the

structure of such navigation, identify strategies and the most

salient common sequences of human navigational patterns and

provide visual depictions. Amongst other structural differences

between goal-oriented and free form navigational patterns,

users seem to stay in the same topic more frequently for our

Figure 1. Example of a navigation sequence in the WikiGame dataset. Bottom row of nodes: A user navigates a series of Wikipedia articles,
which can be represented as a sequence of Web pages. Top row of nodes: Each Wikipedia article can be mapped to a corresponding topic through
Wikipedia’s system of categories. This results in a sequence of topics.
doi:10.1371/journal.pone.0102070.g001
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free form navigational dataset (MSNBC) compared to both of

the goal oriented datasets (Wikigame and Wikispeedia). Our

analysis thereby provides new insights into the memory and

structure that users employ when navigating the Web that can

e.g., be useful to improve recommendation algorithms, web

site design or faceted browsing.

The paper is structured as follows: In the section entitled

‘‘Related Work’’ we review the state-of-the-art in this domain.

Next, we present our methodology and experimental setup in the

sections called ‘‘Methods’’ and ‘‘Materials’’. We present and

discuss our results in the section named ‘‘Results’’. In the section

called ‘‘Discussion we provide a final discussion and the section

called ‘‘Conclusions’’ concludes our paper.

Related Work
In the late 1990s, the analysis of user navigational behavior on

the Web became an important and wide-spread research topic.

Prominent examples are models by Huberman and Adamic [21]

that determine how users choose new sites while navigating, or the

work by Huberman, Pirolli, Pitkow and Lukose [7] who have

shown that strong regularities in human navigation behavior exist

and that, for example, the length of navigational paths on the Web

is distributed as an inverse Gaussian distribution. These first

models of human navigation on the Web set a standard modeling

framework for future research - the majority of navigation models

have been stochastic henceforth. Common stochastic models of

human navigation are Markov chains. For example, the Random

Surfer model in Google’s PageRank algorithm can be seen as a

special case of a Markov chain [11]. Some further examples of the

application of Markov chains as models of Web navigation can be

found in [10,22–29].

In a Markov chain, Web pages are represented as states and

links between the pages are modeled as probabilistic transitions

between the states. The dynamics of a user’s navigation session, in

which she visits a number of pages by following the links between

them, can thus be represented as a sequence of states. Specific

configurations of model parameters – such as transition probabil-

ities or model orders – have been used to reflect different

assumptions about navigation behavior. One of the most

influential assumptions in this field to date is the so-called

Markovian property, which postulates that the next page that a

user visits depends only on her current page, and not on any other

page leading to the current one. This assumption is adopted in a

number of prevalent models of human navigation in information

networks, for example also in the Random Surfer model [11].

However, this property is neglecting the observations stated above

that human navigation exhibits strong regularities which hints

towards longer memory patterns in human navigation. We argue,

that the more consistency human navigation in information

networks displays the higher the appropriate Markov chain order

should be.

The Markovian assumption might be wrong. The prin-

ciple that human navigation might exhibit longer memory patterns

than the first order Markov chain captures has been investigated in

the past (see e.g., [3,10] or [30] for a more general approach of

looking at memory in network flows). However, higher order

Markov chains have been often disputed for modeling human

navigation because the gain of a higher order model did not

compensate for the additional complexity introduced by the model

[10]. Therefore, it was a common practice to focus on a first order

model since it was a reasonable but extremely simple approxima-

tion of user navigation behavior (e.g., [25,27,28,31]).

The discussion about the appropriate Markov chain order was

just recently picked up again by Chierichetti, Kumar, Raghavan

and Sarlos [12]. While the authors’ results again show indicators

that users on the World Wide Web are not Markovian, the study

does not account for the higher complexity of such models and the

possible lack of statistically significant gains of these models.

Technically, the authors analyzed Markov chain models of

different orders by measuring the likelihood of real navigational

sequences given a particular model. In the next step, the authors

compared the models by their likelihoods and found that the

Markovian assumption does not hold for their given data and,

thus, higher order Markov chain models seem to be more

appropriate. As a result, the authors argue that users on the World

Wide Web are not Markovian. However, their results come with

certain limitations, such as the fact that choosing the model with

the highest likelihood is biased towards models with more

parameters. Because lower order models are always nested within

higher order models and as higher order Markov chains have

exponentially more parameters than lower order models (potential

overfitting), they are always a better fit for the data [18]. Thus,

higher order models are naturally favored by their improvements

in likelihoods. A more comprehensive view on this issue shows that

there exists a broad range of established model comparison

techniques that also take into the account the complexity of a

model in question [14–17,19,32,33].

Moreover, the principle objects of interest in the majority of the

past studies are transitions between Web pages. Only a few studies

[27,34,35] investigate navigation as transitions between Web page

features, such as the content or context of those Web pages.

Methods

In the following, we briefly introduce Markov chains before

discussing an expanded set of methods for order selection,

including likelihood, Bayesian, information-theoretic and cross validation

model selection techniques.

Markov Chains
Formally, a discrete (time and space) finite Markov chain is a

stochastic process which amounts to a sequence of random

variables X1,X2,:::,Xn. For a Markov chain of the first order, i.e.,

for a chain that satisfies the memoryless Markov property the

following holds:

P(Xnz1~xnz1DX1~x1,X2~x2,:::,Xn~xn)~

P(Xnz1~xnz1DXn~xn) ð1Þ

This classic first order Markov chain model is usually also called

a memoryless model as we only use the current information for

deriving the future and do not look into the past. For all our

models we assume time-homogeneity – the probabilities do not change

as a function of time. To simplify the notation we denote data as a

sequence D~(x1,x2,:::,xn) with states from a finite set S. With this

simplified notation we write the Markov property as:

p(xnz1Dx1,x2,:::,xn)~p(xnz1Dxn) ð2Þ

As we are also interested in higher order Markov chain models

in this article – i.e., memory models – we now also define a
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Markov chain for an arbitrary order k with k[N – or a chain with

memory k. In a Markov chain of k-th order the probability of the

next state depends on k previous states. Formally, we write:

p(xnz1Dx1,x2,:::,xn)~p(xnz1Dxn,xn{1,:::,xn{kz1) ð3Þ

Markov chains of a higher order can be converted into Markov

chains of order one in a straightforward manner – the set of states

for a higher order Markov chain includes all sequences of length k

(resulting in a state set of size DSDk DSD). The transition probabilities

are adjusted accordingly.

A Markov model is typically represented by a transition

(stochastic) matrix P with elements pij~p(xj Dxi). Since P is a

stochastic matrix it holds that for all i:

X
j

pij~1 ð4Þ

Please note, that for a Markov chain of order the current state

xi can be a compound state of length k – it is a sequence of past k

states. Throughout this paper we use this simpler notation, but one

should keep in mind that xi differs for distinct orders k.

For the sake of completeness, we also allow k to be zero. In such

a zero order Markov chain model the next state does not depend on

any current or previous events, but simply can be seen as a weighted

random selection – i.e., the probability of choosing a state is defined

by how frequently it occurs in the navigational paths. This should

serve as a baseline for our evaluations.

Next, we want to estimate the vector h of parameters of a

particular Markov chain that generated observed data D as well as

determine the appropriate Markov chain order. For a Markov

chain the model parameters are the elements pij of the transition

matrix P, i.e., h~P.

Model Selection
In this article our main goal is to determine the appropriate

order of a Markov chain – i.e., the appropriate length of the

memory. For doing so, we resort to well established statistical

methods. As we want to provide a preferably complete array of

methods for doing so, we present and apply methods from distinct

statistical schools: (i) likelihood, (ii) Bayesian and (iii) information-

theoretic methods. Note that no official classification of statistical

schools is available; some may also argue that there are only the

two competing schools of frequentists (which we do not explicitly

discuss in this article) and Bayesians. The categorization used here

is motivated by a short blog post (see http://labstats.net/articles/

overview.html). We also supplement the methods coming from

these three schools by providing a model selection technique

usually known from machine learning: (iv) cross validation. We

provide an overall ample view of methods and discuss advantages

and limitations of each in the following sections.

Likelihood Method
The term likelihood was coined and popularized by R. A. Fisher

in the 1920’s (see e.g, [13] for a historic recap of the

developments). Likelihood can be seen as a central element of

statistics and we will also see in the following sections that other

methods also resort to the concept. The likelihood is a function of

the parameters h and it equals to the probability of observing the

data given specific parameter values:

P(DDh) ~p(xnDxn{1)p(xn{1Dxn{2):::p(x2Dx1)p(x1)

~p(x1)P
i
P

j
p

nij
ij , ð5Þ

where nij is the number of transition from state xi to state xj in

D.

Fisher also popularized the so-called maximum likelihood estimate

(MLE) which has a very intuitive interpretation. This is the

estimation of the parameters h – i.e., transition probabilities – that

most likely generated data D. Concretely, the maximum likelihood

estimate ĥhMLE are the values of the parameters h that maximize

the likelihood function, i.e., ĥhMLE~ arg maxh P(DDh) (a thorough

introduction to MLE can be found in [36]).

The maximum likelihood estimation for Markov chains is an

example of an optimization problem under constraints. Such

optimization problems are typically solved by applying Lagrange

multipliers. To simplify the calculus we will work with the log-

likelihood function L P DDhð Þð Þ~logP(DDh). Because the log

function is a monotonic function that preserves order, maximizing

the log-likelihood is equivalent to maximizing the likelihood

function. Thus, we have:

L P DDhð Þð Þ~ log p(x1)P
i
P

j
p

nij
ij

� �

~ logp(x1)z
X

i

X
j

nij logpij ð6Þ

Our constraints capture the fact that each transition matrix row

sums to 1:

X
j

pij~1 ð7Þ

We have n rows and therefore we need n Lagrange multipliers

l1,l2,:::,ln. We can rewrite the constraints using Lagrange

multipliers as:

li

X
j

pij{1

 !
~0 ð8Þ

Now, the new objective function is:

f (l, h)~L(P(DDh)){
X

i

li

X
j

pij{1

 !
ð9Þ

To maximize the objective function we set partial derivatives

with respect to li to 0, which gives back the original constraints.

Further, we set partial derivatives with respect to pij to 0 and

solve the equation system for pij . This gives:

Memory and Structure in Human Navigation Patterns

PLOS ONE | www.plosone.org 4 July 2014 | Volume 9 | Issue 7 | e102070

3. Papers

52



pij~
nijP
j nij

ð10Þ

Thus, the maximum likelihood estimate for a specific pij is the

number of transitions from state xi to state xj divided by the total

number of transitions from state xi to any other state. For

example, in a navigation scenario the maximum likelihood

estimate for a transition from page A to page B is the number

of clicks on a link leading to page B from page A divided by the

total number of clicks on page A.

Our concrete goal is to determine the appropriate order of a

Markov chain. Using the log-likelihoods of the specific order

models is not enough, as we will always get a better fit to our

training data using higher order Markov chains. The reason for

this is that lower order models are nested within higher order

models. Also, the number of parameters increases exponentially

with k which may result in overfitting [18] since we can always

produce better fits to the data with more model parameters. To

demonstrate this behavior, we produced a random navigational

dataset by randomly (uniformly) picking a next click state out of a

list of arbitrary states. One of these states determines that a path is

finished and a new one begins. With this process we could

generate a random path corpus that is close to one main dataset of

this work (Wikigame topic dataset explained in the section called

‘‘Materials’’). Concretely, we as well chose 26 states and the same

number of total clicks. Purely from our intuition, such a process

should produce navigational patterns with an appropriate Markov

chain order of zero or at maximum one. However, if we look at

the log-likelihoods depicted in Figure 2 we can observe that the

higher the order the higher the corresponding log likelihoods are.

This strongly suggests that – as previously explained – looking at

the log-likelihoods is not enough for finding the appropriate

Markov chain order. Hence, we first resort to a well-known

statistical likelihood tool for comparing two models – the so-called

likelihood ratio test.

This test is suited for comparing the fit of two composite

hypothesis where one model – the so-called null model k – is a

special case of the alternative model m. The test is based on the log

likelihood ratio, which expresses how much more likely the data is

with the alternative model than with the null model. We follow the

notation provided by Tong [14] and denote the ratio as kgm:

kgm~{2L P DDhkð Þð Þ{L P DDhmð Þð ÞÞ ð11Þ

To address the overfitting problem we perform a significance

test on this ratio. The significance test recognizes whether a better

fit to data comes only from the increased number of parameters.

The test calculates the p-value of the likelihood ratio distribution.

Whenever the null model is nested within the alternative model

the likelihood ratio approximately follows a x2 distribution with

degrees of freedom specified by (DSDm{DSDk)(DSD{1). If the p-value

is below a specific significance level we can reject the null

hypothesis and prefer the alternative model [32] – note that this

method also utilizes mechanisms usually known from the

frequentist school; i.e., hypothesis testing.

Likelihood ratios and corresponding tests have been shown to

be a very understandable approach of specifying evidence [37].

They also have the advantage of specifying a clear value (i.e., the

likelihood ratio) with can give us intuitive meaning about the

advantage of one model over the other. However, the likelihood-

ratio test also has limitations like that it only works for nested

models, which is fine for our approach but may be problematic for

other use cases. It also requires us to use elements from frequentist

approaches (i.e., the p-value) for deciding between two models

Figure 2. Log-likelihoods for random path dataset. Simple log-likelihoods of varying Markov chain orders would suggest higher orders as the
higher the order the higher the corresponding log-likelihoods are. This suggests that looking at these log-likelihoods is not enough for finding the
appropriate Markov chain order as methods are necessary that balance the goodness-of-fit against the number of model parameters.
doi:10.1371/journal.pone.0102070.g002
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which have been criticized in the past (e.g., [38]). Furthermore, we

are only able to compare two models with each other at a time.

This makes it difficult to choose one single model as the most likely

one as we may end up with several statistical significant

improvements. Also, as we increase the number of hypothesis in

our test, we as well increase the probability that we find at least

one significant result (Type 1 error). We could tackle this problem

by e.g., applying the Bonferroni correction which we leave open for

future work.

Bayesian Method
Bayesian inference is a statistical method utilizing the Bayes’

rule – Rev. Thomas Bayes started to talk about the Bayes theorem

in 1764 – for updating prior believes with additional evidence

derived from data. A general introduction to Bayesian inference

can e.g., be found in [39]; in this article we focus on explaining the

application for deriving the appropriate Markov chain order (see

[15] for further details).

In Bayesian inference data and the model parameters are

treated as random variables (cf. MLE where parameters are

unknown constants). We start with a joint probability distribution

of data D and parameters hk given a model M; that is given a

Markov chain of a specified order k. Thus, we are interested in

P(D,hk DMk).

The joint distribution P(D,hk DMk) can be written as the product

of the conditional probability of data D given the parameters hk

and the marginal distribution of the parameters, or we can write

this joint distribution as the product of the conditional probability

of the parameters given the data and the marginal distribution of

the data.

Solving then for the posterior distribution of parameters given

data and a model we obtain the famous Bayes rule:

P(hk DD,Mk)~
P(DDhk,Mk)P(hk DMk)

P(DDMk)
, ð12Þ

where P(hk DMk) is the prior probability of model parameters,

P(DDhk,Mk) is the likelihood function; that is the probability of

observing the data given the parameters, and P(DDMk) is the

evidence (marginal likelihood). P(hk DD,Mk) is the posterior

probability of the parameters, which we obtain after we update

the prior with the data.

For a more detailed and an in-depth technical analysis of

Bayesian inference of Markov chains we point to an excellent

discussion of the topic in [15].

Likelihood. As previously, we have:

P(DDhk,Mk)~p(x1)P
i
P

j
p

nij
ij ð13Þ

Prior. The prior reflects our (subjective or objective) belief

about the parameters before we see the data. In Bayesian

inference, conjugate priors are of special interest. Conjugate

priors result in posterior distributions from the same distribution

family. In our case, each row of the transition matrix follows a

categorical distribution. The conjugate prior for categorical

distribution is the Dirichlet distribution. Further information on

applying Dirichlet conjugate prior and dealing with Dirichlet

process can be found in [40]. The Dirichlet distribution is defined

as Dir(a):

Dir(a)~
C(
P

j aj)

Pj C(aj)
P

j
x

aj{1

j , ð14Þ

where C is the gamma function, ajw0 for each j and
P

j xj~1

is a probability simplex. The probability outside of the simplex is 0.

The hyperparameters a reflect our assumptions about the

parameters h before we have observed the data. We can think

about the hyperparameters as fake counts in the transition matrix

of a Markov chain. A standard uninformative selection for

hyperparameters is a uniform prior – for example, we set aj~1

for each j.

Thus, for row i of the transition matrix we have the following

prior:

Dir(ai)~
C(
P

j aij)

Pj C(aij)
P

j
p

aij{1

ij ð15Þ

As before, it holds that:

X
j
pij~1 ð16Þ

The prior for the complete transition matrix is the product of

the Dirichlet distributions for each row:

P(hk DMk)~P
i

C(
P

j aij)

Pj C(aij) j
p

aij{1

ij
ð17Þ

Evidence. To calculate the evidence we take a weighted

average over all possible values of the parameters hk. Thus, we

need to integrate out the parameters hk.

P(DDMk)~

ð
P(DDhk,Mk)P(hk DMk)dhk ð18Þ

P(DDMk)~

ð
P(DDhk,Mk)P(hk DMk)dhk

~

ð
p(x1)P

i
P

j
p

nij
ij P

i

C(
P

j aij)

Pj C(aij)
P

j
p

aij{1

ij dhk

~p(x1)P
i

C(
P

j aij)

Pj C(aij)

ð
P

j
p

nij
ij P

j
p

aij{1

ij dhk

~p(x1)P
i

C(
P

j aij)

Pj C(aij)

ð
P

j
p

nijzaij{1

ij dhk
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Please note, that:

ðC(
P

j aj)

Pj C(aj)
P

j
x

aj{1

j dx~1

C(
P

j aj)

Pj C(aj)

ð
P

j
x

aj{1

j dx~1

ð
P

j
x

aj{1

j dx~
Pj C(aj)

C(
P

j aj)

Thus, we have

ð
P

j
p

nijzaij{1

ij dhk~
Pj C(nijzaij)

C(
P

j (nijzaij))
ð19Þ

And thus,

P(DDMk)~p(x1) P
i

C(
P

j aij)

Pj C(xij)

Pj C(nijzaij)

C(
P

j (nijzaij))
ð20Þ

Posterior. For the posterior distribution over the parameters

hk we obtain:

P(hkDD,Mk)~P
i
P

j
p

nij
ij P

i
P

j
p

aij{1

ij

C(
P

j (nijzaij))

Pj C(nijzaij)

~P
i
P

j
p

nijzaij{1

ij

C(
P

j (nijzaij))

Pj C(nijzaij)

This equation is the product of the Dirichlet distributions for

each row with parameters njzaj :

P(hk DD,Mk)~P
i

Dir(nizai) ð21Þ

The posterior distribution is a combination of our prior belief

and the data that we have observed. In fact, the expectation and

the variance of the posterior distribution are:

E½pij �~
nijzaijP
j (nijzaij)

ð22Þ

Var½(pij �~
(nijzaij)(

P
j (nijzaij){(nijzaij))

(
P

j (nijzaij))
2(
P

j (nijzaij)z1)
ð23Þ

We can rewrite the expectation as:

E½pij �~
1P

j (nijzaij)

X
j

nij

nijP
j nij

z
X

j

aij

aijP
j aij

 !
ð24Þ

Setting c~

P
j

nijP
j
(nijzaij )

, we can rewrite the expectation of the

posterior distribution as:

E½pij �~c
nijP
j nij

z(1{c)
aijP
j aij

ð25Þ

Thus, the posterior expectation is a convex combination of the MLE

and the prior. When the number of the observation becomes large

(nij&aij ) then c tends to 1, and the posterior expectation tends to

the MLE.

By setting aij~1 for each i and j we effectively obtain Laplace’s

prior; that is we apply Laplace smoothing [18].

For model selection we adopt once more the Bayesian inference

(again see [15] for a thorough discussion). We have a set M of

models Mk with varying order k and are interested in deciding

between several models (c.f. [41]). We are interested in the joint

probability distribution P(D,Mk) of data D and a model Mk. We

can write the joint distribution as a product of a conditional

probability (of data given a model, or of a model given the data)

and a prior marginal distribution (of data or a model) and by

solving for the posterior distribution of a model given the data we

again obtain the Bayes rule:

P(MkDD)~
P(DDMk)P(Mk)

P(D)
, ð26Þ

where P(D) is the weighted average over all models Mk:

P(D)~
X

k

P(DDMk)P(Mk): ð27Þ

The likelihood of data D given a model Mk is the evidence

P(DDMk) given by Equation 20, which is the weighted average

over all possible model parameters hk given the model Mk.

Following Strelioff, Crutchfield and Hübler [15], we select two

priors over the model set M – a uniform prior and a prior with an

exponential penalty for the higher order models [15]. The uniform

prior assigns the identical probability for each model:

P(Mk)~
1

DM D
: ð28Þ

With the uniform prior we obtain the following expression for

the posterior probability of a model Mk given the data:

P(Mk DD)~
P(DDMk)P
k P(DDMk)

: ð29Þ
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The prior with the exponential penalty can be defined as:

P(Mk)~
e{DSk DP
k e{DSk D , ð30Þ

where DSk D is the number of states of the model Mk and can be

calculated as:

DSk D~DSDk(DSD{1), ð31Þ

with DSD being the number of states of the model of order 1.

After solving for the posterior distribution for the prior with the

exponential penalty we obtain:

P(Mk DD)~
P(DDMk)e{DSk DP
k P(DDMk)e{DSk D : ð32Þ

The calculations are best implemented with log-evidence and

logarithms of the gamma function to avoid underflow since the

numbers are extremely small. To implement the sum for the

normalizing constant in the denominator we apply the so-called

log-sum-exp trick [42]. First, we calculate the log-evidence:

logP(DDMk) and then calculate the logarithm of the normalizing

constant log(C):

log(C)~log(
X

k

elog(P(DDMk ))): ð33Þ

A direct calculation of elog(P(DDMk)) results in an underflow, and

thus we pull the largest log-evidence Emax~max(log(P(DDMk))
out of the sum:

log(C)~Emaxzlog(
X

k

elog(P(DDMk )){Emax ): ð34Þ

One downside of using Bayesian model selection is that it is

frequently difficult to calculate Bayes factors. Concretely, it is often

complicated to calculate the necessary integral analytically and

one needs to resort to various alternatives in order to avoid this

problem. Nowadays, several such methods exist: e.g., asymptotic

approximation or sampling from the posterior (MCMC, Gibbs)

[41]. Also, we need to specify prior distributions for the parameters

of each model. As elaborated by Kass and Raftery [41], one

approach is to use the BIC (see the next section entitled

‘‘Information-theoretic Methods’’) which gives an appropriate

approximation given one specific prior.

Compared to the likelihood ratio test (see section entitled

Likelihood Method), the Bayesian model selection technique does

not require the models to be nested. The main benefit of Bayesian

model selection is that it includes a natural Occam’s razor – i.e., a

penalty for too much complexity – which helps us to avoid

overfitting [41,43–45]. The Occam’s razor is a principle that

advises to prefer simpler theories over more complex ones. Based

on this definition there is no need to include extra complexity

control as we e.g., additionally did for our exponential penalty. We

see this though as a nice further control mechanism for cautiously

penalizing model complexity and for validating the natural

Occam’s razor.

Information-theoretic Methods
Information-theoretic methods are based on concepts and ideas

derived from information theory with a specific focus on entropy. In

the following we will provide a description of the two probably

most well-known methods; i.e., AIC and BIC. A thorough

overview of information-theoretic methods can e.g., be found in

various work by K. P. Burnham [46,47].

Akaike information criterion (AIC). Akaike [16] intro-

duced in 1973 a one dimensional statistic for determining the

optimal model from a class of competing models. The criterion is

based on Kullback-Leibler divergence [48] and the asymptotic

properties of the likelihood ratio statistics described in the section

entitled ‘‘Likelihood Method’’. The approach is based on

minimization of AIC (minimum AIC estimate – MAICE) amongst

several competing models [33] and has been first used for Markov

chains by Tong [14]. Hence, we define the AIC based on the

choice of a loss function proposed by Tong [14]:

AIC(k)~kgm{2(DSDm{DSDk)(DSD{1) ð35Þ

The test represents an asymptotic version of the likelihood ratio

test defined in Equation 11 for composite hypothesis. The idea is

to choose m reasonably high and test lower order models until an

optimal order is found. MAICE chooses the order k which exhibits

the minimum AIC score and tries to balance between overfitting

and underfitting [33].

Bayesian Information Criterion (BIC). In 1978 Schwarz

[19] introduced this criterion which can be seen as an

approximation of the Bayes factor for Bayesian model selection

(see the previous section entitled ‘‘Bayesian Method’’). It is similar

to the AIC introduced above with the difference that it penalizes

higher order models even more by adding an additional

penalization for the number of observations [17]:

BIC(k)~kgm{(DSDm{DSDk)(DSD{1)ln(n) ð36Þ

Again we choose m reasonably high and test lower order models

against it. The penalty function is the degree of freedom multiplied

with the natural logarithm of the number of observations n. This

function converges to infinity at a still slow enough rate and hence,

grants a consistent estimator of the Markov chain order [17].

Frequently, both AIC and BIC suggest the same model.

However, there are certain cases, where they might slightly

disagree. In model selection literature there is a still ongoing

debate of whether one should prefer AIC or BIC over each other –

e.g., see [49] for a critique of the BIC for model selection.

However, as pointed out by Burnham and Anderson [47], each

has its strength and weaknesses in distinct domains. The authors

emphasize that both can be seen as either frequentist or Bayesian

procedures. In case of inequality, Katz [17] suggests to investigate

the patterns further by simulating observations and investigate

distinct sample sizes. In this paper we instead apply additional

model comparison techniques to further analyze the data.

The performance of AIC and BIC has also been investigated in

the terms of determining the appropriate Markov chain order

which is the main goal of this article. R. W. Katz [17] pointed out

that by using AIC there is the possibility of overestimating the true

order independent of how large the data is. Hence, he points out
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that AIC is an inconsistent method. Contrary, he emphasizes that

BIC is a consistent estimator – i.e., if there is a true underlying

model BIC will select it with enough data. Alas, it does not

perform well for small sample sizes (see also [50]). Nonetheless,

AIC is the most used estimator for determining the appropriate

order, maybe due to higher efficiency for smaller data samples, as

elaborated by Baigorri, Gonçalves and Resende [51].

While both AIC and BIC seem at first to be very similar to the

likelihood ratio test (see section entitled ‘‘Likelihood Method) there

are some elementary differences. First and foremost, they can also

be applied for non-nested models [46]. Moreover, they do not

need to resort to hypothesis testing. BIC is also closely related to

Bayesian model selection techniques; specifically to the Bayes

factor (see section called ‘‘Bayesian Method’’). Kass and Raftery

[41] emphasize the advantages of BIC over the Bayes factor by

pointing out that it can be applied even when the priors are hard

to set. Also, it can be a rough approximation to the logarithm of

the Bayes factor if the number of observations is large. BIC is also

declared as being well suited for scientific reporting.

Finally, we want to point out that one could also see AIC as

being best for prediction, while BIC might be better for

explanation. Also, as pointed out by M. Stone [52], AIC is

asymptotically equivalent to cross validation (see the section

entitled ‘‘Cross Validation Method’’) if both use maximum

likelihood estimation.

Cross Validation Method
Another – quite natural – way of determining the appropriate

order of a Markov chain is cross-validation [12,18]. The basic idea

is to estimate the parameters on a training set and validate the

results on an independent testing set. In order to reduce variance

we perform a stratified 10-fold cross-validation. In difference to a

classic machine learning scenario, we refer to stratified as a way of

keeping approximately the equal amount of observations in each

fold. Thus, we keep approximately 10% of all clicks in a single

fold.

With this method we focus on prediction of the next user click.

Markov chains have been already used to prefetch the next page

that the user most probably will visit on the next click. In the

simplest scenario, this prefetched page is the page with the highest

transition probability from the current page. To measure the

prediction accuracy we measure the average rank of the actual

page in sorted probabilities from the transition matrix. Thus, we

determine the rank of the next page xnz1 in the sorted list of

transition probabilities (expectations of the Bayesian posterior) of

the current page xn (see the section named ‘‘Markov Chains’’). We

then average the rank over all observations in the testing set.

Hence, we can formally define the average rank r(Df ) of a fold Df

for some arbitrary model Mk the following way:

r(Df )~

P
i

P
j nijrijP

i

P
j nij

, ð37Þ

where nij is the number of transition from state xi to state xj in

Df and rij denotes the rank of xj in the i-th row of the transition

matrix.

For ranking the states in a row of the matrix, we resort to

modified competition ranking. This means that if there is a tie between

two or more values, we assign the maximum rank of all ties to each

corresponding one; i.e., we leave the gaps before a set of ties (e.g.,

‘‘14445’’ ranking). By doing so, we assign the worst possible ranks

to ties. One important implication of this methodology is that we

include a natural penalty (a natural Occam’s razor) for higher

order Markov chains. The reason for this is that the transition

matrices generally become sparser the higher the order. Hence, we

come up with many more ties and the chance is higher that we

assign higher ranks for observed transitions in the testing data. The

most extreme case happens when we do not have any information

available for observations in the testing set (which frequently

happens for higher orders); then we assign the maximum rank (i.e.,

the number of states) to all states. We finally average the ranks

over all folds for a given order and suggest the model with the

lowest average rank. In order to confirm our findings we also

applied an additional way of determining the accuracy which is

motivated by a typical evaluation technique known from link

predictors [53]. Concretely, it counts how frequently the true next

click is present in the TopK (k = 5) states determined by the

probabilities of the transition matrix. In case of ties in the TopK

elements we randomly draw from the ties. By applying this method

to our data we can mirror the evaluation results obtained by using

the described and used ranking technique. Note that we do not

explicitly report the additional results of this evaluation method

throughout the paper.

This method requires priors (i.e., fake counts; see the section

named ‘‘Bayesian Method’’) – otherwise prediction of unseen

states is not possible. It also resorts to the maximum likelihood

estimate for calculating the parameters of the models as described

in the section entitled ‘‘Likelihood Method’’. Also, as shown in the

previous section called ‘‘Information-theoretic Methods’’ cross

validation has asymptotic equivalence to AIC.

One disadvantage of cross validation methods usually is that the

results are dependent on how one splits the data. However, by

using our stratified k-fold cross validation approach, we counteract

this problem as it matters less of how the data is divided. Yet, by

doing so we need to rerun the complete evaluation k times, which

leads to high computational expenses compared to the other

model selection techniques described earlier and we have to

manually decide of which k to use. One main advantage of this

method is that eventually each observation is used for both

training and testing.

Materials

In this paper, we perform experiments on three datasets. While

the first two datasets (WikiGame and Wikispeedia) are represen-

tatives of goal-oriented navigation scenarios (where the target node

for each navigation sequence is known beforehand), the third

dataset (MSNBC) is representative of free navigation on the Web

(where we have no knowledge about the targets of navigation).

Wikigame dataset
This dataset is based on the online game TheWikiGame (http://

thewikigame.com/). The game platform offers a multiplayer game,

where users navigate from a randomly selected Wikipedia page

(the start page) to another randomly selected Wikipedia page (the

target page). All pairs of start and target pages are connected

through Wikipedia’s underlying network. The users are only

allowed to click on Wikipedia links or on the browser back button

to reach the target page, but they are not allowed to use search

functionality.

In this study, we only considered click paths of length two or

more going through the main article namespace in Wikipedia.

Table 1 shows some main characteristics of our Wikigame dataset.

As motivated in Section ‘‘Introduction’’, we will represent the

navigational paths through Wikipedia twofold: (a) each node in a

path is represented by the corresponding Wikipedia page ID – we
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refer to this as the Wikigame page dataset – and (b) each node in a

path is represented by a corresponding Wikipedia category

(representing a specific topic) – we call this the Wikigame topic

dataset. For the latter dataset we determine a corresponding top

level Wikipedia category (http://en.wikipedia.org/wiki/

Category:Main_topic_classifications) in the following way. The

majority of Wikipedia pages belongs to one or more Wikipedia

categories. For each of these categories we find a shortest path to

the top level categories and select a top level category with the

shortest distance. In the case of a tie we pick a top level category

uniformly at random. Finally, we replace all appearances of that

page with the chosen top level category. Thus, in this new dataset

we replaced each navigational step over a page with an

appropriate Wikipedia category (topic) and the dataset contains

paths of topics which users visited during navigation (see Figure 1).

Figure 3 illustrates the distinct topics and their corresponding

occurrence frequency (A).

Wikispeedia dataset
This dataset is based on a similar online game as the Wikigame

wikispeedia/). Again, the players are presented with two randomly

chosen Wikipedia pages and they are as well connected via the

underlying link structure of Wikipedia. Furthermore, users can

also select their own start and target page instead of getting

randomly chosen ones. Contrary to the Wikigame, this game is no

multiplayer game and you do not have a time limit. Again, we only

look at navigational paths with at least two nodes in the path. The

main difference to the Wikigame dataset is that Wikispeedia is

played on a limited version of Wikipedia (Wikipedia for schools

http://schools-wikipedia.org/) with around 4,600 articles. Some

main characteristics are presented in Table 1. Conducted research

and further explanations of the dataset can be found in [35,54–

56].

As we want to look at transitions between topics we determine a

corresponding top level category (topic) for each page in the

dataset. We do this in similar fashion as for our Wikigame dataset,

but the Wikipedia version used for Wikispeedia has distinct top

level categories compared to the full Wikipedia. Figure 3 illustrates

the distinct categories and their corresponding occurrence

frequency (B).

MSNBC dataset
This dataset (http://kdd.ics.uci.edu/databases/msnbc/msnbc.

html) consists of Web navigational paths from MSNBC (http://

msnbc.com) for a complete day. Each single path is a sequence of

page categories visited by a user within a time frame of 24 hours.

The categories are available through the structure of the site and

include categories such as news, tech, weather, health, sports, etc. In this

dataset we also eliminate all paths with just a single click. Table 1

shows the basic statistics for this dataset and in Figure 3 the

frequency of all categories of this dataset are depicted (C).

Data preparation
Each dataset D consists of a set of paths P. A single path

contains a single game in the Wikigame and Wikispeedia dataset

or a single navigation session in the MSNBC dataset. A path p is

defined as a n-tuple (v1, . . . ,vn) with vi[V ,1ƒiƒn and

(vi,viz1)[E,1ƒiƒn{1 where V is the set of all nodes in P and

E is the set of all observed transitions in P. We also define the

length of a path len(p) as the length of the corresponding tuple

(v1, . . . ,vn). Additionally, we want to define p~ vk Dk~1 . . . nf g as

the set of nodes in a path p. Note that DpDƒn. The finite state set S

needed for Markov chain modeling is originally the set of vertices

V in a set of paths P given a specific dataset D. To prepare the

paths for estimation of parameters of a Markov chain of order k,

we separate single paths by prepending a sequence of k generic

RESET states to each path, and also by appending one RESET

state at the end of each path. This enables us to connect

independent paths and – through the addition of the RESET state

– to forget the history between different paths. Hence, we end up

with an ergodic Markov chain (see [12]). With this artificial

RESET state, the final number of states is DSDz1.

Results

In this section we present the results obtained from analyzing

human navigation patterns based on our datasets at hand

introduced in Section ‘‘Materials’’. We begin by presenting the

results of our investigations of memory – i.e., appropriate Markov

chain order using the Markov chain methods thoroughly

explained in the section called ‘‘Methods’’ – of user navigation

patterns in the section entitled ‘‘Memory’’. Based on these

calculations and observations we dig deeper into the structure of

human navigation and try to find consistent patterns – i.e., specific

sequences of navigated states – in the section named ‘‘Structure’’.

Memory
We start by analyzing human navigation over Wikipedia pages

on the Wikigame page dataset. Afterwards, we will focus on our

topic datasets for getting insights on a topical level.

Page navigation
Wikigame page dataset. The initial Markov chain model

selection results (see Figure 4) obtained from experiments on the

Wikigame page dataset confirm our theoretical considerations. We

observe that the likelihoods are rising with higher Markov chain

orders (confirming what [12] found) which intuitively would

indicate a better fit to the data using higher order models.

However, the likelihood grows per definition with increasing order

and number of model parameters and therefore, the likelihood

based methods for model selection fail to penalize the increasing

model complexity (c.f. Section ‘‘Likelihood Method’’). All other

applied methods take the model complexity into account.

Table 1. Dataset statistics.

Wikigame Wikispeedia MSNBC

#Page Ids 360,417 n/a n/a

#Topics 25 15 17

#Paths 1,799,015 43,772 624,383

#Visited nodes 10,758,242 259,019 4,333,359

doi:10.1371/journal.pone.0102070.t001
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First, we can imply already from the likelihood statistics (B) that

there might be no improvement over the most basic zero order

Markov chain model as we can not find any statistically significant

improvements of higher orders. Both AIC (C) and BIC (D) results

confirm these observations and also agree with each other. Even

though we can see equally low values for a zero, first and second

order Markov chain, we would most likely prefer the most simple

model in such a case – further following the ideas of the Occam’s

razor.

In order to extend these primary observations we used a

uniform Laplace prior and Bayesian inference and henceforth, we

obtain the results illustrated in the first two figures of the bottom

row in Figure 4. The Bayesian inference results again suggest a

zero order Markov chain model as the most appropriate as

indicated by the highest evidence (E) and the highest probability

obtained using Bayesian model selection with and without a

further exponential penalty for the number of parameters (F).

The observations and preference of using a zero order model

are finally confirmed by the results obtained from using 10-fold

cross-validation and a prediction task (G). We can see that the

average position is the lowest for a zero order model approving our

observations made above.

Summary. Our analysis of the Wikigame page dataset

thereby reveals a clear trend towards a zero order Markov chain

model. This is imminent when looking at all distinct model

selection techniques introduced and applied in this article, as they

all agree on the choice of weighted random selection as the

statistically significant most approvable model. This is a strong

approval of our initial hypothesis stating it is highly difficult to

make plausible statements about the appropriate Markov chain

Figure 3. Topic frequencies. Frequency of categories (in percent) of all paths in (A) the Wikigame topic dataset (B) the Wikispeedia dataset and (C)
the MSNBC dataset. The colors indicate the categories we will investigate in detail later and are representative for a single dataset – this means that
the same color in the datasets does not represent the same topic. The Wikigame topic dataset consists of more distinct categories than the
Wikispeedia and MSNBC dataset. Furthermore, the most frequently occuring topic in the Wikigame topic dataset is Culture with around 13%. The
Wikispeedia dataset is dominated by the two categories the most Science and Geography each making up for almost 25% of all clicks. Finally, the
most frequent topic in the MSNBC dataset is the frontpage with a frequency of around 22%.
doi:10.1371/journal.pone.0102070.g003
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order having insufficient data but a vast amount of states. The

higher performance of higher order chains can not compensate the

necessary additional complexity in terms of statistically significant

improvements. However, this may be purely an effect of the data

sparsity in our investigation (i.e., the limited number of observa-

tions compared to the huge amount of distinct states). One can

argue that real human navigation always can be better modeled by

at least an order of one, because – as soon as we have enough data

– links play a vital role in human navigation as humans by

definition follow links when they navigate – except for teleporta-

tion which we do not model in this work. Consequently, we believe

that the memoryless Markov chain model is a plausible model for

human navigation on a page level. Yet, further detailed studies are

necessary to confirm this.

At the same time, one could argue that memory is best studied

on a topical level, where pages are represented by topics.

Consequently, we focus on studying transitions between topics

next, which yields a reduced state space that allows analysis of the

memory and structure of human navigation patterns on a topical

level.

Topics navigation
Wikigame topic dataset. Performing our analyses by

representing Wikipedia pages by their topical categories shows a

much clearer and more interesting picture as one can see in

Figure 5. Similar to above we can see (A) that the log likelihoods

are rising with higher orders. However, in contrast to the

Wikigame page dataset, we can now see (B) that several higher

order Markov chain models are significantly better than lower

orders. In detail, we can see that the appropriate Markov chain

order is at least of order one and we can also observe a trend

towards an order of two or three. Nevertheless, as pointed out in

the section entitled ‘‘Likelihood Method’’, it is hard to concretely

suggest one specific Markov chain order from these pairwise

comparisons which is why we resort to this extended repertoire of

model selection techniques described next.

The AIC (C) and BIC (D) statistics show further indicators –

even though they are disagreeing – that the appropriate model is

of higher order. Concretely, the suggest an order of three or two

respectively by exhibiting the lowest values at these points. Not

surprisingly, AIC suggests a higher order compared to BIC as the

latter model selection method additionally penalized higher orders

by the number of observations as stated in the section called

‘‘Information-theoretic Methods’’.

The Bayesian inference investigations (E, F) exhibit a clear trend

towards a Markov chain of order two. The results in (F) nicely

illustrate the inherent Occam’s razor of the Bayesian model

selection method as both priors – (a) no penalty and (b)

exponential penalty for higher orders – suggest the same order

(both priors agree throughout all our investigations in this article).

Finally, the cross validation results (G) confirm that a second order

Figure 4. Model selection results for the Wikigame page dataset. The top row shows results obtained using likelihood and information
theoretic results: (A) likelihoods, (B) likelihood ratio statistics (* statistically significant at the 1% level; ** statistically significant at the 0.1% level) as
well as AIC (C) and BIC (D) statistics. The bottom row illustrates results obtained from Bayesian Inference: (E) evidence and (F) Bayesian model
selection. Finally, the figure presents the results from (G) cross validation. The overall results suggest a zero order Markov chain model.
doi:10.1371/journal.pone.0102070.g004
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Markov chain produces the best results, while a third order model

is nearly as good.

Summary. Overall, we can see that representing Wikigame

paths as navigational sequences of corresponding topics leads to

more interesting results: Higher order Markov chains exhibit

statistically significant improvements, thereby suggesting that

memory effects are at play. Overall, we can suggest that a second

order Markov chain model seems to be the most appropriate for

modeling the corresponding data as it gets suggested by all

methods except for AIC which is known for slightly overestimating

the order. This means, that humans remember their topical

browsing patterns – in other words, the next click in navigational

trails is dependent on the previous two clicks on a topical level.

Wikispeedia dataset. This section presents the results

obtained from the Wikispeedia dataset introduced in the section

entitled ‘‘Materials’’. Similar to the Wikigame topic dataset we

look at navigational paths over topical categories in Wikipedia and

present the results in Figure 6. Again we can observe that the

likelihood statistics suggest higher order Markov chains to be

appropriate (B). Yet, further analyses are necessary for a clear

choice of the appropriate order. The AIC (C) and BIC (D) statistics

agree to prefer a second order model; however, we need to note

that all orders from zero to four have similarly low values. The

Bayesian inference investigations (E, F) show a much clearer trend

towards a second order model. The prediction results (G) agree on

these observations by also showing the best results for a second

order model. This time we can also observe a clear consilience

between the cross validation and AIC results which are – as

described in the section called ‘‘Information-theoretic Methods’’ –

asymptotically equivalent.

Summary. This dataset is similar to the Wikigame topic

dataset and the results are comparable to the previous results on

the first goal-oriented dataset (Wikigame topic). Hence, even

though the game is played on a much smaller set of Wikipedia

articles and also the dataset consists of distinct categories, we can

see the exact same behavior which strongly indicates that human

navigation is not memoryless on a topical level and can be best

modeled by a second order Markov chain model. This strongly

suggests that humans follow common topical strategies while

navigating in a goal-oriented scenario.

MSNBC dataset. In this section we present the results

obtained from the MSNBC dataset introduced in the section

called ‘‘Materials’’. Again we look at navigational paths over

topical categories and henceforth, we only look at categorical

information of nodes and present the results in Figure 7.

Similar to the experiments conducted for the Wikigame and

Wikispeedia topic datasets we can again see, based on the

likelihood ratio statistics (B), that a higher order Markov chain

Figure 5. Model selection results for the Wikigame topic dataset. The top row shows results obtained using likelihood and information
theoretic results: (A) likelihoods, (B) likelihood ratio statistics (* statistically significant at the 1% level; ** statistically significant at the 0.1% level) as
well as AIC (C) and BIC (D) statistics. The bottom row illustrates results obtained from Bayesian Inference: (E) shows evidence and (F) Bayesian model
selection. (G) presents the results from cross validation. The overall results suggest that higher order chains seem to be more appropriate for our
navigation paths consisting of topics. In detail, we find that a second order Markov chain model for our Wikigame topic dataset best explains the
data.
doi:10.1371/journal.pone.0102070.g005
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seems to be appropriate. The AIC (C) and BIC (D) statistics

suggest an order of three and two respectively. To further

investigate the behavior we illustrate the Bayesian inference results

(E, F) that clearly suggest a third order Markov chain model.

Finally, this is also confirmed by the cross validation prediction

results (G) which again is in accordance with the AIC.

Summary. By and large, almost all methods for order

selection suggest a Markov chain of order three for the topic

sequence in the MSNBC dataset. Again, we can observe that the

navigational patterns are not memoryless. Even though this

dataset is not a goal-oriented navigation dataset, but is based on

free navigation on MSNBC, we can identify similar memory

effects as above.

Structure
In the previous section we observed memory patterns in human

navigation over topics in information networks. We are now

interested in digging deeper into the structure of human

navigational patterns on a topical level. Concretely, we are

interested in detecting common navigational sequences and in

investigating structural differences between goal-oriented and free

form navigation.

First, we want to get a global picture of common transition

patterns for each of the datasets. We start with the Markov chain

transition matrices, but instead of normalizing the row vectors, we

normalize each cell by the complete number of transitions in the

dataset. We illustrate these matrices as heatmaps to get insights

into the most common transitions in the complete datasets. Due to

tractability, we focus on a first order analysis and will focus on

higher order patterns later on.

The heatmaps are illustrated in Figure 8. Predominantly, we

can observe that self transitions seem to be very common as we

can see from the high transition counts in the diagonals of the

matrices. This means, that users regularly seem to stay in the same

topic while they navigate the Web. Consequently, we might get

better representations of the data by using Markov chain models

that, instead modeling state transitions in equal time steps,

additionally stochastically model the duration times in states

(e.g., semi Markov or Markov renewal models). However, we leave

these investigations open for future work. For the Wikigame (A) we

can observe that the categories Culture and Politics are the most

visited topics throughout the navigational paths. Most of the time

the navigational paths start with a page belonging to the People

topic which is visible by the dark red cell from RESET to People

(remember that the RESET state marks both the start and end of a

path - see Section ‘‘Materials’’). However, as this is a game-based

goal-oriented navigation scenario, the start node is always

predefined. In our second goal-oriented navigation dataset (B)

we can see that the paths are dominated by transitions from and to

the categories Science and Geography and there are fewer transitions

Figure 6. Model selection results for the Wikispeedia dataset. The top row shows results obtained using likelihood and information theoretic
results: (A) likelihoods, (B) likelihood ratio statistics (* statistically significant at the 1% level; ** statistically significant at the 0.1% level) as well as AIC
(C) and BIC (D) statistics. The bottom row illustrates results obtained from Bayesian Inference: (E) shows evidence and (F) Bayesian model selection.
(G) presents the results from cross validation. The overall results suggest that higher order chains seem to be more appropriate for our navigation
paths consisting of topics. Concretely, we find that a second order Markov chain model for our Wikispeedia topic dataset best explains the data.
doi:10.1371/journal.pone.0102070.g006
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between other topics. In our MSNBC dataset (C) we can observe

that most of the time users remain in the same topic while they

navigate and globally no topic changes are dominant. This may be

an artifact of the free navigation users practice on MSNBC.

Perhaps unsurprisingly, users start with the frontpage most of the

time while navigating but do not necessarily come back to it in the

end.

As we have now identified global navigational patterns on the

first order transition matrices we turn our attention to models of

higher order. Furthermore, we are now interested in investigating

Figure 7. Model selection results for the MSNBC dataset. The top row shows results obtained using likelihood and information theoretic
results: (A) likelihoods, (B) likelihood ratio statistics (* statistically significant at the 1% level; ** statistically significant at the 0.1% level) as well as AIC
(C) and BIC (D) statistics. The bottom row illustrates results obtained from Bayesian Inference: (E) shows evidence and (F) Bayesian model selection.
(G) presents the results from cross validation. The overall results suggest that higher order chains seem to be more appropriate for our navigation
paths consisting of topics. Specifically, the results suggest a third order Markov chain model.
doi:10.1371/journal.pone.0102070.g007

Figure 8. Global structure of human navigation. Common transition patterns of navigational behavior on all three topics datasets (Wikigame,
Wikispeedia and MSNBC). Patterns are illustrated by heatmaps calculated on the first order transition matrices. Each cell is normalized by the total
number of transitions in the dataset. The vertical lines depict starting states and the horicontal lines depict target states. A main observation is that
self transitions – e.g., a transition from Culture to Culture – are dominating all datasets. However, the goal-oriented datasets (Wikigame and
Wikispeedia) exhibit more transitions between distinct categories than the free navigation dataset (MSNBC).
doi:10.1371/journal.pone.0102070.g008
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local transition probabilities – e.g., being at topic Science, what are

the transition probabilities to other states. The transition weights

directly correspond to the transition probabilities from the source

to the target state determined by the MLE (see the section called

‘‘Likelihood Method’’). We illustrate these local transitional

patterns for our Wikigame dataset in Figure 9 (the investigations

on the other goal-oriented Wikispeedia dataset exhibit similar

patterns, but are omitted due to space limitations). Similar to the

observations in Figure 8 we can observe that Culture is the most

visited topic in our Wikigame dataset. We can now also identify

specific prominent topical transition trails. For example, users

seem to navigate between Culture and Politics quite frequently and

also vice versa. Contrary, there seem to be specific unidirectional

patterns too, e.g., users frequently navigate from People to Politics

but not vice versa. Higher order chains also show similar structure,

but on a more detailed level. As previously, the figure also depicts

that the vast amount of transitions is between same categories.

However, we can now observe that this is also the case for higher

order Markov chains – this suggests, that the probability that users

stay in the same topic increases with each new click on that topic.

To further look into this structural pattern, we illustrate the

number of times users stay within the same topic vs. the number of

times they change the topic during navigation in Figure 10. We

can see that the longer the history – i.e., the higher the order of the

Markov chain – the more likely people tend to stay in the same

topic instead of switching to another topic. We can also see

differences regarding this behavior between distinct categories;

e.g., users are more likely to stay in the topic Chronology than in the

topic Politics the higher the order is. For our Wikispeedia dataset

we can observe similar patterns – i.e., the higher the order the

higher the chance to stay in the same topic.

In order to contrast goal-oriented and free-form navigation, we

also depict state transitions in similar fashion derived from the

MSNBC dataset in Figure 11. In this figure we can see that the

Figure 9. Local structure of navigation for the Wikigame topic dataset. The graphs above illustrate selected state transitions from the
Wikigame topic dataset for different k values. The nodes represent categories and the links illustrate transitions between categories. The link weight
corresponds to the transition probability from the source to the target node determined by MLE. The node size corresponds to the sum of the
incoming transition probabilities from all other nodes to that source node. In the left figure the top four categories with the highest incoming
transition probabilities are illustrated for an order of k~1. For those nodes we draw the four highest outgoing transition probabilities to other nodes.
In the middle figure we visualize the Markov chain of order k~2 by setting the top topic (Culture) as the first click; this diagram shows transition
probabilities from top four categories given that users first visited the Culture topic. For example, the links from the red node (Society) in the bottom-
right part of the diagram represent the transition probabilities from the sequence (Culture, Society). Similarly, we visualize order k~3 in the right
figure by selecting a node with the highest incoming probability (Culture, Culture) of order k~2. We then show transition probabilities from other
nodes given that users already visited (Culture, Culture). For example, the links from the brown node (Politics) at the top represent the transition
probabilities from the sequence (Culture, Culture, Politics).
doi:10.1371/journal.pone.0102070.g009
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topic business is the most used. To give a navigational example:

users frequently navigate from business to news and vice versa.

However, there are also navigational patterns just going one

direction. For example, users seem to frequently navigate from

business to sports but not in the opposite direction. Again, higher

order chains show similar patterns. Like in the Wikigame topic

dataset we can as well observe that most of the transitions seem to

be between similar categories. In Figure 12 we depict the number

of times a user stays in the same topic vs. the number of times she

switches the topic for the categories with the highest transition

probabilities. We can again observe that the higher the Markov

chain the more likely people tend to stay in the same topic while

navigating. Nevertheless, an interesting difference to the Wikigame

topic dataset can be observed. Concretely, we can see that the

probability of staying in the same topic is much higher for the

MSNBC dataset. Especially, the topic weather exhibits a very high

probability of staying in the same topic (0:9 for k~1). A possible

explanation is that users navigate on a semantically more narrow

path on MSNBC. If you are interested about the weather you just

check the specific pages on MSNBC while on Wikipedia you

might get distracted by different categories at a higher probability.

So these concrete observations seem to be very specific for the

Web site and domains of the site users navigate on while the

general patterns seem to be applicable for both of our datasets at

hand.

Discussion

Our findings and observations in this article show that simple

likelihood investigations (see e.g., [12]) may not be sufficient to

select the appropriate order of Markov chains and to prove or

falsify whether human navigation is memoryless or not. To

ultimately answer this, we think it is inevitable to look deeper into

the results obtained and to investigate them with a broader

spectrum of model selection methods starting with the ones

presented in this work.

By applying these methods to human navigational data, the

results suggest that on the Wikigame page dataset a zero order

model should be preferred. This is due to the rising complexity of

higher order models and indicates that it is difficult to derive the

appropriate order for finite datasets with a huge amount of distinct

pages having only limited observations of human navigational

behavior. In this article we presented and applied a variety of

distinct model selection that all include (necessary) ways of

penalizing the large number of parameters needed for higher

order models. Yet, we do not necessarily know what would happen

if we would apply the models to a much larger number of

navigational paths over pages. Perhaps higher order models would

then outperform lower ones. As it is unlikely to get hands on such

an amount of data for large websites, a starting point to further test

this could be to analyze a sub-domain with rich data; i.e., a large

number of observations over just a very limited number of distinct

pages. However, due to no current access to such data, we leave

this open for future work.

On the other hand, the results on a topical level are intriguing

and show a much clearer picture: They suggest that the

navigational patterns are not memoryless. Higher order Markov

chains – i.e., second or third order – seem to be the most

appropriate. Henceforth, the navigation history of users seem to

span at least two or three states on a topical level. This gives high

indications that common strategies (at least on a topical level) exist

among users navigating information networks on the Web. It is

certainly intriguing to see similar memory patterns in both goal-

oriented navigation (Wikigame and Wikispeedia) and free form

navigation (MSNBC), and different kinds of systems (encylopedia

vs. news portal).

In order to confirm that these observed memory effects are

based on the actual human navigation patterns we again look at

our random path dataset introduced in the section entitled

‘‘Likelihood Method’’ with the log-likelihoods visualized in

Figure 2. We can recapitalize, that these simple log-likelihoods

would suggest a higher order model for the randomly produced

navigational patterns. However, if we apply our various model

selection techniques the results suggest a zero or at maximum a

first order Markov chain model which is the logic conclusion for

this random process. Hence, this confirms that our observations on

the real nature navigational data are based on human navigational

memory patterns and would not be present in a random process.

Figure 10. Self transition structure of navigation for the Wikigame topic dataset. The number of times users stay within the same topic vs.
the number of times they change the topic during navigation for different orders k for our Wikigame dataset. Only the top three categories with the
highest transition probabilities are shown. With high consistency, the transition probabilities to the same topic increase while those to other
categories decrease with ascending order k.
doi:10.1371/journal.pone.0102070.g010
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Finally, we showed in the section called ‘‘Structure’’ that

common structure in the navigational trails exist among many

users – i.e., common sequences of navigational transitions. First of

all, we could observe that transitions between the same topic are

common among all three datasets. However, they occur more

frequently in our free form navigational data (MSNBC) than in the

goal-oriented navigation datasets (Wikigame and Wikispeedia).

Furthermore, users also seem to be more likely to stay longer in the

same topic while navigating MSNBC while they seem to switch

categories more frequently in both the Wikigame and Wikispeedia

datasets. A possible explanation for this user behavior might be

that users on MSNBC are more driven by specific information

needs regarding one topic. For example, a user might visit the

website to get information about the weather only. Contrary, exact

information goals on Wikipedia might not always be in the same

topic. Suppose, you are located on Seoul which belongs to the

Geography topic and you want to know more about important

inventions made in Seoul. A possible path then could be that you

navigate over a People topic page and finally reach a Science topic

page. However, we need to keep in mind that our goal-oriented

datasets are based on game data with predefined start and target

nodes. This means, that if the target nodes regularly lie in distinct

categories, the user might be forced to switch categories more

frequently. To rule this out, we illustrate the heatmap of our

Wikigame dataset (cf. Figure 8) again by splitting the path corpus

into two parts (see Figure 13): (A) only considering paths where the

start and target node lie in the same topic and (B) only taking paths

with distinct start and target categories. If the bias of given start

and target nodes would influence our observations for specific

structural properties of goal-oriented navigational patterns,

Figure 13 would show strong dissimilarities between both

illustrations which is not the case. Hence, we can state with

strong confidence that the differences between goal-oriented and

free form navigation stated in this section are truly based on the

distinct strategies and navigational scenarios. Nevertheless, we also

need to keep in mind that the website design and inherent link

structure (Wikipedia vs. MSNBC) might also influence this

behavior. For example, a reason could be that Wikipedia has

more direct links between distinct categories in comparison to

MSNBC or that Wikipedia’s historical coverage steers user

Figure 11. Local structure of navigation for the MSNBC dataset. The graphs above illustrate selected state transitions from the MSNBC
dataset for different k values. The nodes represent categories and the links illustrate transitions between categories. The link weight corresponds to
the transition probability from the source to the target node determined by MLE. The node size represents the global importance of a node in the
whole dataset and corresponds to the sum of the outgoing transition probabilities from that node to all other nodes. For visualization reasons we
primarily focus on the top four categories with the highest sum of outgoing transition probabilities – i.e., those with the largest node sizes – for an
order of k~1. For those nodes we draw the four highest outgoing transition probabilities to other nodes. In the middle figure we visualize the
Markov chain of order k~2 by setting the top topic (frontpage) from order k~1 as the first click; this diagram shows transition probabilities from top
four categories given that users first visited the frontpage topic (represented by the dashed transitions in the left figure representing k~1). For
example, the links from the blue node (news) in the top-left corner of the diagram represent the transition probabilities from the sequence
(frontpage, news) to other nodes. Similarly, we visualize order k~3 in the right figure by selecting a node with the highest sum of outgoing transition
probabilities (frontpage, frontpage) and its four highest outgoing transition probabilities from order k~2 (represented by the dashed transitions in
the middle figure representing k~2). We then show transition probabilities from other nodes given that users already visited (frontpage, frontpage).
For example, the links from the red node (sports) at the top represent the transition probabilities from the sequence (frontpage, frontpage, sports) to
other nodes.
doi:10.1371/journal.pone.0102070.g011
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behavior to specific kinds of navigational patterns. To explicitly

rule this possibility out, we would need to investigate the

underlying link networks in greater detail, which we leave open

for future work. We also plan on looking at data capturing

navigational paths over distinct platforms of the Web (e.g., from

toolbar data) which may allow us to make even more generic

statements about human navigation on the Web.

Conclusions

This work presented an extensive view on detecting memory

and structure in human navigational patterns. We leveraged

Markov chain models of varying order for detecting memory of

human navigation and took a thorough look at structural

properties of human navigation by investigating Markov chain

transition matrices.

We developed an open source framework (https://github.com/

psinger/PathTools) [20] for detecting memory of human naviga-

tional patterns by calculating the appropriate Markov chain order

using four different, yet complementary, approaches (likelihood,

Bayesian, information-theoretic and cross validation methods). In

this article we thoroughly present each method and emphasize

strengths, weaknesses and relations between them. By applying this

framework to actual human navigational data we find that it is

indeed difficult to make plausible statements about the appropriate

Figure 12. Self transition structure of navigation for the MSNBC dataset. The number of times users stay within the same topic vs. the
number of times they change the topic during navigation for different values of k. Only the top three categories with the highest transition
probabilities are shown. With high consistency, the transition probabilities to the same topic increase while those to other categories decrease with
ascending order k.
doi:10.1371/journal.pone.0102070.g012

Figure 13. Common global transition patterns of navigational behavior on the Wikigame topic dataset. The results should be compare
with Figure 8. The results are split by only looking at a corpus of paths where each path starts with the same topic as it ends (A) and by looking at a
corpus with distinct start and target categories (B).
doi:10.1371/journal.pone.0102070.g013
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order of a Markov chain having insufficient data but a vast amount

of states which results in too complex models. However, by

representing pages by their corresponding topic we could identify

that navigation on a topical level is not memoryless – an order of

two and respectively three best explain the observed data,

independent whether the navigation is goal-oriented or free-form.

Finally, our structural investigations illustrated that users tend to

stay in the same topic while navigating. However, this is much

more frequent for our free form navigational dataset (MSNBC) as

compared to both of the goal-oriented datasets (Wikigame and

Wikispeedia).

Future attempts of modeling human behavior in the Web can

benefit from the methodological framework presented in this work

to thoroughly investigate such behavior. If one wants to resort to a

single model selection technique, we would recommend to use the

Bayesian approach if computationally feasible.

Our work strongly indicates memory effects of human

navigational patterns on a topical level. Such observations as well

as detailed insights into structural regularities in human navigation

patterns can e.g., be useful for improving recommendation

systems, web site design as well as faceted browsing. In future

work, we want to extend our ideas of representing Web pages with

categories by looking at further features for representation. We

also plan on tapping into the usefulness of further Markov models

like the hidden Markov model, varying order Markov model or

semi Markov model. Also, we want to improve recommendation

algorithms by the insights generated in this work and explore the

implications higher order Markov chain models may have on

ranking algorithms like PageRank.
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3. Papers

3.3. Discovering Beaten Paths in Collaborative

Ontology-Engineering Projects using Markov

Chains

This article provides further answers to the first research question of

this thesis. To that end, it demonstrates the general applicability of the

Markov chain framework presented in Section 3.2 as well as highlights new

mechanics offered. Specifically, in this article, colleagues and I have been

interested in studying structural patterns in human trails on the Web.

To that end, we have utilized transition matrices of fitted Markov chain

models for detecting common patterns. This allows to gain insights into

emerging behavioral patterns on the Web.

In detail, we have focused on first-order Markov chain models and corre-

sponding structural patterns as well as on human edit trails in collaborative

ontology engineering projects stemming from the biomedical domain. The

framework could successfully elicit dominant structural patterns which

further argues that certain aspects and strategies guide human behavior on

the Web. While just an example, this demonstrates that the application

of the Markov chain framework is not limited to human navigational trails.

It can successfully be utilized for studying memory and structure in all

kinds of human trails on the Web.
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Abstract

Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the
National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing
information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased
in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development
by the World Health Organization contains nearly 50, 000 classes representing a vast variety of different diseases and causes of
death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single
individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale
efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even
hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable
us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering
projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different
biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction
patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-
engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify
commonalities and differences between different projects that have implications for project managers, ontology editors, developers
and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain.

Keywords: Collaborative ontology engineering; Markov chains; sequential patterns; collaboration; ontology-engineering tool;
user interface

1. Introduction

Today, biomedical ontologies play a critical role in acquir-
ing, representing and processing information about human health.
For example, the International Classification of Diseases (ICD)
is a taxonomy that is used in more than 100 countries to en-
code patient diseases, to compile health-related statistics and
to collect health-related spending statistics. Similarly, the Na-
tional Cancer Institute’s Thesaurus (NCIt) represents an impor-
tant OWL-based vocabulary for classifying cancer and cancer-
related terms.

With their increase in relevance, biomedical taxonomies,
thesauri and ontologies have also significantly increased in size
to cover new findings and to extend and complement their orig-
inal areas of application. For example, the 11th revision of
the International Classification of Diseases (ICD-11), currently
under active development by the World Health Organization

∗Corresponding author (simon.walk@tugraz.at)

(WHO), consists of nearly 50, 000 classes representing a vast
variety of different diseases and causes of death. In contrast
to previous revisions, the foundation component of ICD-11 is
implemented as an OWL ontology with a broader scope than
previous ICD revisions.

This growth was accompanied by a need to adapt the way
these ontologies are engineered as no single individual or small
group of domain experts have the expertise to develop such
large-scale ontologies. New tools and processes have to be de-
veloped in order to coordinate, augment and manage collabo-
ration between the dozens or hundreds of experts, practitioners
and stakeholders when engineering an ontology.

Understanding the ways in which such a large number of
participants – e.g., more than 100 experts contribute to ICD-
11 – collaborate with one another when creating a structured
knowledge representation is a prerequisite for quality control
and effective tool support.

Objectives: Consequently, we aim at understanding how
large collaborative ontology-engineering projects such as ICD-

This article is accepted for publication and will appear in the Journal of Biomedical Informatics.
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11 unfold. In particular, we want to investigate if we can iden-
tify usage patterns in the change-logs of collaborative ontology-
engineering projects? We approach this problem by analyzing
patterns in usage logs of five biomedical ontology-engineering
projects of varying sizes and scopes. For this analysis we em-
ploy Markov chain models for investigating and modeling se-
quential interaction paths (c.f. Section 3.2). Such paths are rep-
resented by chronologically ordered lists of interactions within
the underlying ontology for (a) a single user or (b) a single class
(see Figure 2). For example, we study sequences of properties
that were either changed by (a) a single user on any class or
(b) a single class by any user in an ontology over time. For
example, as depicted in Figure 2, a sequential property path for
a single user (user-based) consists of a chronologically ordered
list of all properties (e.g., title, definition etc.), which have been
changed by that user on any class, while a sequential property
path for a single class (class-based) consists of a chronologi-
cally ordered list of properties that were changed on that class
by any user. Instead of only modeling sequences for single
users or classes, our data contains a set of paths; e.g., each path
in the dataset consists of sequences of properties whose value
has been changed by a single user over time. This allows us to
tap into accumulated patterns. Concretely, we are interested in
studying emerging patterns of subsequent steps in such sequen-
tial paths – e.g., which properties do users frequently change
after a specific given property.

The analyzed datasets range from large-scale datasets such
as ICD-11 to smaller ones such as the Ontology for Parasite
Lifecycle (OPL). Given the differences of our datasets in a num-
ber of salient characteristics, we investigate if specific patterns
can be found across all or only in certain biomedical ontology-
engineering projects. Furthermore, we investigate and discuss
features of these projects that potentially affect observed pat-
terns, which can only be found in specific datasets. This anal-
ysis can be seen as a stepping stone for collaborative ontology-
engineering project managers to devise infrastructures and tool
support to augment collaborative ontology engineering.

Contributions: We present new insights on social interac-
tions and editing patterns that suggest that large collaborative
ontology-engineering projects are governed by a few general
principles that determine and drive development. Specifically,
our results indicate that general edit patterns can be found in
all investigated datasets, even though they (i) represent differ-
ent projects with different goals, (ii) use variations of the same
ontology-editors and tools for the engineering process and (iii)
differ in the way the projects are coordinated.

To the best of our knowledge, the work presented in this pa-
per represents the most fine-grained and comprehensive study
of patterns in large-scale collaborative ontology-engineering projects
in the domain of biomedicine. In addition, our analysis is con-
ducted across five datasets of different sizes, which have been
developed using different versions of Collaborative Protégé (Ta-
ble 1).

2. Collaborative ontology engineering

According to Gruber [1], Borst [2], Studer et al. [3] an on-
tology is an explicit specification of a shared conceptualization.
In particular, this definition refers to a machine-readable con-
struct (the formalization) that represents an abstraction of the
real world (the shared conceptualization), which is especially
important in the field of computer science as it allows a com-
puter (among other things) to “understand” relationships be-
tween entities and objects that are modeled in an ontology.

Collaborative ontology engineering is a new field of research
with many new problems, risks and challenges that we must
first identify and then address. In general, contributors of col-
laborative ontology-engineering projects, similar to traditional
collaborative online production systems1 (e.g., Wikipedia), en-
gage remotely (e.g., via the internet or a client–server archi-
tecture) in the development process to create and maintain an
ontology. As an ontology represents a formalized and abstract
representation of a specific domain, disagreements between au-
thors on certain subjects can occur. Similar to face-to-face meet-
ings, these collaborative ontology-engineering projects need tools
that augment collaboration and help contributors in reaching
consensus when modeling topics of the real world.

Indeed, the majority of the literature about collaborative
ontology engineering sets its focus on surveying, finding and
defining requirements for the tools used in these projects [4, 5].

The Semantic Web community has developed a number of
tools aimed at supporting the collaborative development of on-
tologies. For example, Semantic MediaWikis [6] and its deriva-
tives [7, 8, 9] add semantic, ontology modeling and collabora-
tive features to traditional MediaWiki systems.

Protégé, and its extensions for collaborative development,
such as WebProtégé and iCAT [10] (see Figure 1 for a screen-
shot of the iCAT ontology-editor interface) are prominent stand-
alone tools that are used by a large community worldwide to
develop ontologies in a variety of different projects. Both Web-
Protégé and Collaborative Protégé provide a robust and scalable
environment for collaboration and are used in several large-
scale projects, including the development of ICD-11 [11].

Pöschko et al. [12] and Walk et al. [13] have created Prag-
matiX, a tool to visualize and analyze a collaboratively engi-
neered ontology and aspects of its history and the engineering
process, providing quantitative insights into the ongoing collab-
orative development processes.

Falconer et al. [14] investigated the change-logs of collabo-
rative ontology-engineering projects, showing that users exhibit
specific roles, which can be used to group and classify users,
when contributing to the ontology. Pesquita and Couto [15] in-
vestigated whether the location and specific structural features
can be used to determine if and where the next change is going
to occur in the Gene Ontology2.

1Note that the term traditional online production systems refers to online
platforms that have users collaborate in engineering digital goods, opposed
to a structured knowledge base that is the result of collaborative ontology-
engineering.

2http://www.geneontology.org
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Figure 1: A screenshot of iCAT, a custom tailored, web-based version of WebProtégé, developed for the collaborative engineering of ICD-11. The left part of the
interface visualizes the ICD-11 class hierarchy, the class titles, the number of annotations each class has received (speech bubbles) and its overall progress (color
and symbol before the class title). The right part of the interface shows the different user-interface sections (e.g, Title & Definition or Classification Properties),
listing all properties and property values for each class.

Goncalves et. al [16, 17, 18] performed an analysis of differ-
ent versions of ontologies by applying and categorizing Diff al-
gorithms, with the goal of categorizing the differences between
consecutive and chronologically ordered versions of the ontolo-
gies. Furthermore, they conducted reasoner performance tests
and identified factors that potentially increase reasoner perfor-
mance. For the analysis presented in this paper we were able to
rely on ChAO [19], which is a change-log provided by Protégé
and its derivatives that already provides us with detailed and
unambiguous logs of changes for the investigated ontologies.

In a similar context Grau et al. [20, 21] proposed a logi-
cal framework for modularity of ontologies and a definition of
what is to be considered as an ontology module. In general,
an ontology module can be used to extract the meaning of a
specified set of terms from an ontology. Extracting the right
amount of information is especially important for the topic of
ontology reuse. According to Grau et al. modularity also rep-
resents a crucial factor in collaborative ontology-engineering
environments as modular representations of ontologies are eas-
ier to understand, to extend and to reuse, similar to modularity
in software engineering projects.

Mikroyannidi et al. [22] investigated the detection and use
of (design) patterns in the content of an ontology, using a clus-
tering approach. In contrast to Mikroyannidi et al., our analy-
sis focuses on the detection of sequential patterns in interaction
data rather than content.

Strohmaier et al. [23] investigated the hidden social dy-
namics that take place in collaborative ontology-engineering
projects from the biomedical domain and provides new met-
rics to quantify various aspects of the collaborative engineering
processes. Wang et al. [24] have used association-rule min-
ing to analyze user editing patterns in collaborative ontology-
engineering projects. The approach presented in this paper uses

Markov chains to extract much more fine grained user-interaction
patterns incorporating a variable number of historic editing in-
formation.

The only requirement to perform the pattern analysis that
we present in this paper is the availability of a structured log of
changes that can be mapped to the underlying ontology. The
majority of the discussed collaborative ontology-engineering
environments provide such a log, allowing for a similar analy-
sis. For example, the Semantic MediaWikis store all the changes
to the articles, and thus the ontology, allowing to expand the
application of Markov chains to analyze sequential patterns as
shown in this paper.

3. Materials & methods

For the analysis conducted in this paper we concentrated our
efforts on five ontology-engineering projects in the biomedical
domain. Each of the projects (i) has at least two users who con-
tributed to the project, (ii) provides a structured log of changes
and (iii) represents knowledge from the biomedical domain. In
Section 3.1 we provide a brief history for each dataset and in
Section 3.2 we describe the sequential path analysis. To aid
readers in understanding the analyses conducted in this paper
and its implications we provide a very brief overview of Markov
chains and the involved model selection methodology in Sec-
tion 3.3.

3.1. Datasets

Table 1 lists the detailed features and observation periods
for the following five datasets that we used in our analysis. All
datasets have been created either with WebProtégé or special
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Table 1: Detailed information of the datasets used for the sequential pattern analysis to extract beaten paths in collaborative ontology-engineering projects.
ICD-11 ICTM NCIt BRO OPL

Ontology
classes 48,771 1,506 102,865 528 393
changes 439,229 67,522 294,471 2,507 1,993
DL expressivity SHOIN(D) SHOIN(D) SH SHIF (D) SHOIF

Editor tool iCAT iCAT-TM Collaborative Protégé WebProtégé Collaborative Protégé

Users users 109 27 17 5 3
bots (changes) 1 (935) 1 (1) 0 (0) 0 (0) 0 (0)

Duration first change 18.11.2009 02.02.2011 01.06.2010 12.02.2010 09.06.2011
last change 29.08.2013 17.7.2013 19.08.2013 06.03.2010 23.09.2011
observation period (ca.) 4 years 2.5 years 3 years 1 month 3 months

versions of WebProtégé. To be able to conduct the pattern de-
tection analysis for a different dataset, there is only one require-
ment that needs to be satisfied: The availability of a change-log
that can be mapped onto the ontology so that changes can be
associated with users and classes without ambiguity.

The DL expressivity [25, 26] of the five datasets is added to
Table 1 to highlight that the investigated ontologies exhibit dif-
ferent strategies regarding their OWL-DL expressivity. As all
levels of expressivity shown in Table 1 allow for the definition
and assignment of properties and classes, they do not influence
the conducted pattern detection analyses. Also, in the case of
WebProtégé and its derivatives, the data used for the pattern de-
tection analysis can be extracted from the change-logs, allowing
us to prevent parsing and extracting values from OWL directly.

The International Classification of Diseases (ICD)3 is the
international standard for diagnostic classification used to en-
code information relevant to epidemiology, health management,
and clinical use in over 100 United Nations countries. The
World Health Organization (WHO) develops ICD, and pub-
lishes new revisions of the classification every decade or more.
The current revision in use is ICD-10, a taxonomy that contains
over 15, 000 classes. The 11th revision of ICD,4 ICD-11, is cur-
rently taking place and brings two major changes with respect
to previous revisions. First, ICD-11’s foundation component is
developed as an OWL ontology using a much richer represen-
tation formalism than previous revisions. ICD-11 contains very
detailed descriptions of several aspects of diseases, mostly rep-
resented as properties in the ontology. Second, the development
of ICD-11 takes place in a Web-based collaborative environ-
ment, called iCAT (see Figure 1), which allows domain experts
around the world to contribute and review the ontology online.
ICD-11 is planned to be finalized in May 2017.

The International Classification of Traditional Medicine
(ICTM) is a WHO led project that aimed to produce an inter-
national standard terminology and classification for diagnoses
and interventions in Traditional Medicine.5 ICTM, similarly to
ICD-11, is implements an OWL based ontology as foundation
component, which tries to unify the knowledge from the tradi-
tional medicine practices from China, Japan and Korea. Its con-
tent is authored in 4 languages: English, Chinese, Japanese and
Korean. More than 20 domain experts from the three countries

3http://www.who.int/classifications/icd/en/
4http://www.who.int/classifications/icd/ICDRevision/
5http://tinyurl.com/ictmbulletin

developed ICTM using a customized version of the iCAT sys-
tem, called iCAT-TM. The development of ICTM was stopped
in 2012, and a subset of ICTM is also included as a branch in
the ICD-11 ontology.6

The National Cancer Institute’s Thesaurus (NCIt) [27]
has over 100, 000 classes and has been in development for more
than a decade. It is a reference vocabulary covering areas for
clinical care, translational, basic research, and cancer biology.
A multidisciplinary team of editors works to edit and update
the terminology based on their respective areas of expertise,
following a well-defined workflow. A lead editor reviews all
changes made by the editors. The lead editor accepts or re-
jects the changes and publishes a new version of the NCI The-
saurus. The NCI Thesaurus is , at its core, an OWL ontology,
which uses many OWL primitives such as defined classes and
restrictions. It was named thesaurus due to historical reasons,
however fully conforms to OWL semantics, thus represents an
actual ontology.

The Biomedical Resource Ontology (BRO) originated in
the Biositemaps project,7 an initiative of the Biositemaps Work-
ing Group of the NIH National Centers for Biomedical Com-
puting [28]. Biositemaps is a mechanism for researchers work-
ing in biomedicine to publish metadata about biomedical data,
tools, and services. Applications can then aggregate this infor-
mation for tasks such as semantic search. BRO is the enabling
technology used in Biositemaps; a controlled terminology for
describing the resource types, areas of research, and activity of
a biomedical related resource. BRO was developed by a small
group of editors, who use a Web-based interface (WebProtégé)
to modify the ontology and to carry out discussions to reach
consensus on their modeling choices.

The Ontology for Parasite Lifecycle (OPL) models the
life cycle of the T.cruzi, a protozoan parasite, which is respon-
sible for a number of human diseases. OPL is an OWL ontol-
ogy that extends several other OWL ontologies. It uses many
OWL constructs such as restrictions and defined classes. Sev-
eral users from different institutions collaborate on OPL devel-
opment. This ontology is much smaller and has far fewer users
than NCIt, ICD-11, or ICTM.

6The ICD-11 dataset used in our analysis did not include the ICTM branch.
7http://biositemaps.ncbcs.org
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3.2. Sequential interaction paths

For our sequential pattern analysis we analyze three differ-
ent kinds of paths, which all represent interactions with the
underlying ontology. A sequential path is represented by the
chronologically ordered list of extracted interactions for either
a single user or a single class (see Figure 2). For example, a se-
quential property path for a single user (user-based) consists of
a chronologically ordered list of all properties (e.g., title, defi-
nition etc.), which have been changed by that user on any class,
while a sequential property path for a single class (class-based)
consists of a chronologically ordered list of properties that were
changed on that class by any user.

U P2 P3 P1

C P3P2P2P1:

:

Figure 2: The top row of the figure depicts an exemplary class-based sequential
property path (P1 to P3) for class C. This means that for class C the property
P1 was changed first, then property P2 and most recently changed was property
P3. The bottom row of the figure depicts the sequential property path (P1 to
P3), however this time for a user U (user-based). Analogously, user U has first
changed P2, continued to change property P3 and most recently changed P1.

User-sequence paths: First, we analyze activity patterns
within the collaborative ontology-engineering project. This means
that we analyze sequences of users who change a class. We
want to detect and describe the different sequential patterns (the
structure) that can be extracted from the change-logs of the in-
vestigated collaborative ontology-engineering projects.

Structural paths: Analogously to the User-Sequence Paths,
we investigate edit-strategies, such as bottom-up or top-down
development, that users follow. Is it possible to detect common
patterns of which depth level a user frequently contributes to
after a given current depth level? In addition to development-
strategies, we look at the relationships (e.g., parent, child, sib-
ling, etc.) between the current and the next class a user is going
to contribute to.

Property paths: On a content-based level, we investigate
the series of property-changes users perform on. In particu-
lar, we want to identify common successive property-changes –
i.e., which properties users (user-based) regularly change con-
secutively and which properties are changed back-to-back for
classes (class-based).

3.3. Markov chain models

For the analysis conducted in this paper we are adopting the
methodology presented by Singer et al. [29] and mapped to col-
laborative ontology-engineering change logs by Walk et al. [30]
to detect sequential patterns identified in and extracted from
change-logs of collaborative ontology-engineering projects.

For a better understanding of the collected results, we will
provide a short description of Markov chains. For an in-depth
description of our methodology we point to Singer et al. [29],
Walk et al. [30].

In general, Markov chain models are used for stochasti-
cally modeling transitions between states on a given state space.
In our case, a Markov chain consists of a finite state-space
(e.g., properties that a user edits over time; see Section 3.2)
and the corresponding transition probabilities (e.g., the prob-
ability of changing property j after property i) between these
states. Markov chain models are usually described as memo-
ryless which means that the next state in a sequences only de-
pends on the current one and not on a sequence of preceding
ones (also known as Markovian property). Hence, this property
defines serial dependence between adjacent nodes in trajecto-
ries – this is where the term ”chain” comes from. Such a model
is usually called a first-order or memoryless model.

As we are interested in modeling sequential interaction paths
of collaborative ontology-engineering projects (see Section 3.2),
we fit a Markov chain model on such sequences D = (x1, x2, ..., xn)
with states from a finite set S . Then, we can write the Marko-
vian property as:

P(xn+1|x1, x2, ..., xn) = P(xn+1|xn) (1)

After the model fitting on the data, a Markov chain model
is usually represented via a stochastic transition matrix P with
elements pi j = P(x j|xi) where it holds that for all i:

∑

j

pi j = 1 (2)

For our analysis, we will make use of these transition prob-
abilities to identify likely transitions for a variety of different
states.8 For example, if we fit the Markov chain model on se-
quential property paths for users (see Section 3.2), element pi j

of the transition matrix would tell us the probability that users
change property j right after i (e.g., in 60% of all cases). By
now, e.g., looking for the highest transition probabilities from
state i to all other states of S , we can identify potential high-
frequent patterns in our data.

4. Results

4.1. User-sequence paths

In the User-Sequence Paths analysis we investigate patterns
emerging when looking at sequences of users who contribute to
a class of an ontology. Hence, given a sequence of n contrib-
utors for a class over time, we identify consecutive users who
edit the class (e.g., user Y frequently contribute to a class after
user X).

Analyzing the chronologically ordered list of contributors
for each class of the five investigated datasets provides the nec-
essary information to identify users who perform changes on
classes after (or before) other users. Note that this analysis
on its own, without regarding additional factors, such as the

8Note that throughout this article we usually refer to the entities modeled
(i.e., interactions) instead of states. However, we speak about transition prob-
abilities between these entities as we derive them directly from the resulting
model transition matrix.

5

3.3. Beaten Paths in Collaborative Ontology-Engineering Projects

75



To User

F
ro

m
 U

s
e

r

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

F
re

q
u

e
n

c
y

User 5
User 8
User 9

User 11
User 17
User 18
User 26
User 27
User 33
User 39
User 41
User 43
User 45
User 47
User 58
User 66
User 68
User 70
User 71
User 72
User 79
User 83
User 96

User 100
User 105
User 108

U
s
e

r 
5

U
s
e

r 
8

U
s
e

r 
9

U
s
e

r 
1

1
U

s
e

r 
1

7
U

s
e

r 
1

8
U

s
e

r 
2

6
U

s
e

r 
2

7
U

s
e

r 
3

3
U

s
e

r 
3

9
U

s
e

r 
4

1
U

s
e

r 
4

3
U

s
e

r 
4

5
U

s
e

r 
4

7
U

s
e

r 
5

8
U

s
e

r 
6

6
U

s
e

r 
6

8
U

s
e

r 
7

0
U

s
e

r 
7

1
U

s
e

r 
7

2
U

s
e

r 
7

9
U

s
e

r 
8

3
U

s
e

r 
9

6
U

s
e

r 
1

0
0

U
s
e

r 
1

0
5

U
s
e

r 
1

0
8

0.0

0.2

0.4

0.6

0.8

1.0

(a) International Classification of Diseases
(ICD-11)
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(b) International Classification of Traditional
Medicine (ICTM)
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(c) National Cancer Institute Thesaurus (NCIt)
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(d) Biomedical Resource Ontology (BRO)
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(e) Ontology for Parasite Lifecycle (OPL)

Figure 3: Results for the User-Sequence Paths analysis: The columns and rows of the transition maps (bottom area of Figures 3(a) to 3(e)) represent the
transition-probabilities between the users of each dataset for a first-order Markov chain, where rows are source users and columns are target users. A sequence
(or transition-probability) is always read from row to column. Darker colors represent higher transition-probabilities while lighter colors indicate lesser transition-
probabilities. Absolute probability values are dependent on the number of investigated rows and columns, hence relative differences are of greater importance. Darker
colored columns identify gardeners, a contributor focused on pruning ontology classes and fixing syntactical errors. The histograms (top area of Figures 3(a) to
3(e)) show the number of changes performed by each user (again for a first-order Markov chain) within the five ontologies in alphabetical order. Note, that the
y-axes for all histograms are scaled differently for each dataset. All datasets have a few users who contributed the majority of changes, while the rest of the users
(the long-tail) only contributed a very small number of changes. Note that the transition-probabilities depicted in the transition maps are relative numbers for each
column and row individually. The sum of all transition probabilities for one row in the transition maps is 1. For example, if User 1 exhibits a transition probability
of 0.30 to another User 2 it means that User 2 has a 30% probability of changing a class after User 1. Thus, an inspection of the transition maps and histograms is
necessary for proper interpretation. To increase readability we have removed users from the plots who have contributed only a very limited number of changes for
ICD-11, ICTM and NCIt.
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changed property or the performed change-action, does not pro-
vide information about actual collaboration. The results of this
analysis could be used to potentially identify users who work
on the same classes, however, we do not know if they actually
collaborate with or just clean up (i.e., a gardener, a contribu-
tor focused on pruning ontology classes and fixing syntactical
errors) after other users.

Path & model description: To analyze user sequences, we
iterated over each class of our datasets and extracted a chrono-
logically ordered list of contributors. For example, a given path
for a given class can look like the following: User A, User B,
User B, User C. As we are interested in uncovering patterns of
distinct users, we merged multiple consecutive changes by the
same user into a single change – our previous example would
then unfold into: User A, User B, User C. By doing so we
remove biases emerging when one single user consecutively
changes the same class over and over as this may result in un-
reasonable high transition probabilities between equal users.

We fit a first-order Markov chain model on this set of paths,
where each path represents a single class of the ontology and
each element of a path constitutes a change by a single user on
the class. The resulting transition probabilities between users
then e.g., tell us the probability that User B changed a class af-
ter User A. Hence, they give us thorough insights into frequent
consecutive user patterns that emerge when looking at which
users contribute to classes in an ontology. Due to reasons of
privacy we obfuscated the usernames and replaced them with
generic names.

Results: When investigating the transition probabilities (rep-
resenting a Markov chain of first order) between contributors
(see bottom area of Figures 3(a) to 3(e)) we can identify very
active users by looking at darker colored columns of the tran-
sition maps. Note that these darker colored columns can also
be used to identify gardeners, a contributor focused on prun-
ing ontology classes and fixing syntactical errors. As we have
merged all consecutive changes of the same user into one single
change, the diagonal, representing the transition probabilities
between the same users, is 0. The absolute transition proba-
bilities, depicted next to each transition map, are dependent on
the absolute amount of observations and users, thus are to be
interpreted relatively to each other for each row individually.
When looking at the probabilities between the three most ac-
tive users (being users 66, 45 and 47), and all corresponding
target users in ICD-11 we can see that the probabilities are very
evenly distributed among them. Meaning that, when investi-
gating the rows (From User) that correspond to the top three
most active users, probabilities to all target users (To User) are
very evenly distributed, with very minor exceptions. This in-
dicates that users who contribute many changes to ICD-11 are
not followed by specific other contributors, but exhibit an even
distribution of users that edited a class after them. Nonetheless,
we can clearly identify User 66 to be the most likely user that
edits a class after nearly all other users. This suggests, that User
66 may represent a gardener, a contributor focused on pruning
ontology classes and fixing syntactical errors, in ICD-11.

For NCIt we can clearly observe that User 7 appears to be
a gardener, who is checking all the changes contributed by all

other users. For BRO Users 2 and 5 are prominent target users,
evident in the high transition probabilities as To User (dark
columns) – i.e., they frequently edit a class after other users do.
Interestingly, the user with the highest number of changes (User
1) exhibits very low and evenly distributed transition proba-
bilities (row) and is not necessarily the user that most likely
changes a class after another users. This shows us that there
does not need to be a necessary connection between the overall
activity of users and their activity as a gardener. This could also
mean that User 1 is possibly working independently from the
other users in BRO, or that User 1 is a domain specialist and
all other users only change concepts that have not been worked
on by that specialist. However, further investigations in future
work are required to confirm this observation as our Markov
chain analysis is not able to determine this kind of distinction.
For OPL we can observe that User 3 frequently changes the
same classes after User 2. A similar observation can be made
for Users 1 and 2. However, one has to keep in mind that User 1
has contributed a limited number of changes, rendering the ob-
served transition probabilities less useful as they rarely occur.

The histograms (see top area of Figures 3(a) to 3(e)) in-
dicate that a small number of users contribute the majority of
changes (similar to a long-tail distribution). However, this ap-
pears to be more dominant for specific ontologies compared
to others. In order to measure the inequality among contribu-
tions of changes to a specific ontology by users, we analyzed
the Normalized Entropy9, which is determined by calculating
the Shannon Entropy and normalizing the entropy by dividing
by the logarithm of the length (i.e., number of users) of a dis-
tribution. This coefficient measures the statistical dispersion
of a distribution – i.e., the coefficient is one if all users con-
tributed equally to the ontology, while it is zero in case of total
inequality where a single user conducts all changes. The re-
sults indicate that ICD-11 (0.55) exhibits a low entropy value,
i.e., the changes are dominated by only a few users. For NCIt
(0.61), OPL (0.64) and ICTM (0.68) we receive medium nor-
malized entropies indicating a more democratic contribution to
the ontology by users. A high entropy can be observed for BRO
(0.81), which indicates that it is a demographically edited on-
tology – even though there are only five users.10

Interpretation & practical implications: The transition
probabilities for a first-order Markov chain unveil the roles of
certain users and can help to identify users or even groups of
users who frequently change the same classes. Users that fre-
quently change classes after other users (i.e., exhibit high tran-
sition probabilities in their columns) were identified by us as ac-
tual gardeners, curators and administrators of the corresponding
projects. If certain users always change the same classes after
specific other users, it could be worthwhile for project admin-
istrators to investigate if these users are actually collaborating,
for example by looking at the changed properties and property

9Additionally, we calculated the Gini Coefficient for each distribution con-
firming the results presented here.

10Note that we do not necessarily know whether the differences between
these distributions are statistically significant as we are mainly interested in
the behavior of single distributions.
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values, or if a single user is always cleaning up after the other
user. In all datasets we were able to observe at least one user
who contributed a high number of changes, with evenly dis-
tributed transition probabilities to all remaining users. This ob-
servation indicates that in all projects, gardeners, curators and
administrators are assigned (directly or indirectly) certain parts
of the ontology; otherwise the transition probabilities between
the very active users would be higher.

The ability of understanding who is most likely going to
change a specific class next, as well as the classes that a user
is most likely to change next could be used by project adminis-
trators to help users in finding and identifying classes (and thus
work) of interest. On the other hand, the information about the
next, most probable contributor for a class, can even be used to
create automatic class recommender systems to suggest work
to users, which could help to increase participation. However,
these two analyses are beyond the scope of this paper and are
therefore subject to future work. In particular for projects the
size of ICD-11 and NCIt, mechanisms to automatically iden-
tify and assign work are highly useful as it is still very time-
consuming to find pending work and users with the necessary
knowledge to address the identified work-tasks.

4.2. Structural paths
The investigation of Structural Paths involves an analysis

of different aspects regarding how and where users contribute
to the ontology, such as the depth level of the class that users
contribute to next (Section 4.2.1) as well as looking at the rela-
tionship distances between consecutively changed classes (Sec-
tion 4.2.2).

4.2.1. Depth-level paths
In this analysis, we investigate if users concentrate their ef-

forts on specific depth levels of the ontology and if there are cer-
tain depth levels that are frequently consecutively changed and
receive less concentrated workflows. The gathered results pro-
vide the necessary information to implement prefetching mech-
anisms, potentially helping to minimize the loading and waiting
times for contributors. Furthermore, we can determine whether
users move along the structure of the underlying ontology when
editing classes.

Path & model description: For this analysis, we stored
the chronologically ordered depth levels of each changed class
for each user (user-based). The depth level of a class is the
length of the shortest path between the root node of the ontol-
ogy and the corresponding class. For example, a given path for
a given user can look like the following: Depth 3 (for class A),
Depth 3 (for class A), Depth 3 (for class A), Depth 3 (for class
B), Depth 4 (for class C). We merged consecutive changes that
were conducted by the same user on the same class into one
single sequent change between the same depth levels. Hence,
for our previous example we would merge the three successive
changes of class A into just two consecutive ones which results
in the following final depth-level path: Depth 3, Depth 3, Depth
3, Depth 4. This approach helps us to investigate patterns of
changing distinct depth levels while still retaining the notion of
users consecutively editing the same classes.

Consequently, we fit a first-order Markov chain model on
these paths – each path represents a single user and each ele-
ment of a path represents a corresponding depth level of a class
the user has changed. The final transition probabilities give us
information about consecutive depth levels that users change
over time. For example, they might tell us the probability that
users change a class belonging to the third depth level of the
ontology after one that has a depth level of 2.

Results: First, the histograms (see top area of Figures 4(a)
to 4(e)) show that work is concentrated on certain depth levels
of the ontology, with the highest and lowest levels not receiving
as much attention as the levels in-between.

As depicted in the transition maps (bottom area of Figures 4(a)
to 4(e)), users have a high tendency to edit classes in the same
depth levels, visible in the darker colored diagonal. In ICD-11,
for the first five depth levels, users appear to have a tendency to-
wards top-down editing, evident in the darker immediately right
of the diagonal, while this tendency turns around into a bottom-
up editing behavior, evident in the darker colored squares im-
mediately left of the diagonal, at a depth level of 6 and higher,
and appears to be strictly limited to surrounding depth levels.
For ICTM (see Figure 4(b)), we can observe a similar trend,
again with the tendency towards top-down editing appearing to
be minimally more dominant. For NCIt, when only looking at
the transition map, we can identify a trend towards bottom-up
editing, evident in the squares directly left of the diagonal being
darker than the ones right of the diagonal. However, when also
considering the absolute number of changes, depicted in the his-
togram of Figure 4(c), we can infer that the levels with a higher
frequency of occurrence, even though their transition probabil-
ities are more evenly distributed, have a greater impact on the
editing strategy. This means that while we can see a bottom-up
editing behavior for levels 8 to 5 and a top-down editing behav-
ior for levels 1 to 4, classes on levels 1 to 4 are more frequently
changed than classes on the other levels, hence a tendency to-
wards top-down editing can be observed. Thus, when users are
not changing the same classes, they still exhibit a preference
towards top-down editing. Given the short observation periods
for BRO and OPL it is hard to infer edit strategies. However,
similar to the other projects, we can observe a concentration
on the same depth levels with alternating preferences towards
higher and lower depth levels. Similar to ICD-11, all datasets
exhibit higher transition probabilities between the immediately
surrounding depth levels.

Furthermore, we investigate whether the total number of
classes as well as the total number of links to the immediate
higher (children; edges to classes one level further away from
root) and lower (parents; edges to classes one level closer to
root) depth level correlate with our findings (Figures 5(f) to
5(j)). For example, the transition map for ICD-11 (see Fig-
ure 4(a)) shows that contributors exhibit a top-down editing be-
havior for the first five depth levels, with level 5 exhibiting first
signs of bottom-up editing. Figure 5(f) shows a higher number
of possible transitions from children than parents, indicating
that users are in general likelier to follow top-down editing-
strategies when changing classes, following relationships by
chance, of the first four levels. This changes for ICD-11 at level
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(e) Ontology for Parasite Lifecycle (OPL)

Figure 4: Results for the Depth-Level Paths analysis: The columns and rows of the transition maps (bottom area of Figures 4(a) to 4(e)) represent the transition
probabilities of a first-order Markov chain between depth levels, where rows are source depth levels and columns are target depth levels. A sequence (or transition
probability) is always read from row to column. Darker colors represent higher transition probabilities while lighter colors indicate lesser transition-probabilities.
Absolute probability values are dependent on the number of investigated rows and columns, hence relative differences are of greater importance. For classes closer
to root a top-down editing manner can be observed, while this is reversed for classes further away from root. The sum of all transition probabilities for one row in
the transition maps is 1. For example, if Depth-Level 6 exhibits a transition probability of 0.30 to another Depth-Level 5 it means that a class on Depth-Level 5 has
a 30% probability of being changed after a class on Depth-Level 6. The histograms (top area of Figures 4(a) to 4(e)) show the number of changes performed in
each depth level aggregated over all users of the respective projects (again for a first-order Markov chain). Throughout all projects, classes located between the first
and last few depth levels (in the middle) are changed substantially more frequently than others, suggesting that work is concentrated on some depth levels while
others receive none to very few changes at all. Note, that the y-axes for all histograms are scaled differently for each dataset. For the x-axes (and column/rows of
the transition maps) we only display depth levels which exhibit at least one change, thus, the depth level sequences are not necessarily continuous from lowest to
highest depth level.
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Figure 5: The Figures 5(f) to 5(j) depict the absolute numbers (y-axis; Frequency) of classes as well as the number of edges (isKindOf ) to classes on the immediate
higher (parents; closer to root) and lower (children; further away from root) depth level for all depth levels (x-axis; Depth-Level). According to Figures 5(f) to 5(j)
the transition probabilities depicted in the transition maps correlate with the total number of edges to children and parents for each depth level across all datasets.

5, with a higher number of transitions to parents than to chil-
dren, and continues until level 10. Resulting in a higher prob-
ability of users performing bottom-up editing-strategies when
changing classes from levels 6 to 10. The same observations
can be made for all other datasets, indicating that the class hi-
erarchy influences the edit behavior of contributors.

In all datasets, after taking a BREAK (representing an artifi-
cially introduced session break when two consecutive changes
of the same user are more than 5 minutes apart; for more infor-
mation see Section 5.4), users exhibit a clear tendency towards
changing classes on certain depth levels (e.g., levels 3 to 5 for
ICD-11, levels 4 to 5 for ICTM, levels 4 to 7 for NCIt, levels 2
to 4 for BRO and levels 6 to 9 for OPL).

Interpretation & practical implications: The results of
this analysis show if, to what extent and where (limited to lo-
cality being determined by isKindOf relationships) work is con-
ducted and concentrated within the ontology. This information
can potentially be used in a variety of ways, for example by
ontology-engineering tool developers to adapt the interface of
the ontology-engineering tool dynamically to display specific

classes after users return from a BREAK. Project managers can
adapt milestones and project progress reports to reflect the un-
derlying editing strategies (e.g., top-down editing), for example
by aligning progress with created branches (opposed to com-
plete coverage). Another potential use-case for the results of
this analysis involves the prefetching of content in certain en-
vironments (e.g., mobile or embedded systems) to minimize
waiting times. Across all projects we can observe that classes
close to and very far away from the root of the ontology are not
edited as frequently as other classes. One explanation for this
observation could be that classes in lower depth levels (closer to
root) are mainly used as content dividers and are usually created
in the beginning of a project. Thus, they may be more stable
and less frequently updated. Classes at the higher depth levels
(further away from root) on the other hand most likely require
extensive expert knowledge. Hence, only a small number of
users have the necessary expertise to contribute to these classes.
Additionally, the absolute number of classes in the higher and
lower depth levels is much lower in all investigated datasets.
Note that absolute values of depth levels are less important for
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the interpretation of the results than their relative position (i.e.,
closest to root, furthest away from root, etc.). For example, a
class at level 6 can exhibit different behaviors in ontologies with
6 or 10 levels.

In all projects, except for NCIt, the depth levels where users
start to edit the ontology after they return from a BREAK are
similar to the ones where they stop editing before taking a BREAK.
To be able to make that observation we have to take the abso-
lute numbers of changes on each depth level (bottom area of
Figure 4) into account when looking at the transition probabili-
ties (top area of Figure 4). NCIt is the only dataset where users
appear to be similarly likely to take a BREAK after changing
classes across all depth levels, except for 0 and 12.

When we combine the results of this analysis with the re-
sults of the User-Sequence Paths (Section 4.1) we may be able
to develop automatic mechanisms to curate and delegate work
to users. For example, if we know that a specific user is most
probably going to contribute to a class on level 3 and we have
a set of classes on that level where that specific user is the most
probable next user to contribute to, determined by the User-
Sequence Paths analysis, we may combine these two observa-
tions to create class (and thus work) suggestions for users.

4.2.2. Hierarchical relationship paths
Given the high number of observed transitions between the

same depth levels in the Depth-Level Paths analyses (Section 4.2.1;
bottom area of Figure 4), we conducted an additional analysis
investigating the relationships between the changed classes for
all users. Hence, we wanted to know if all worked-on classes
on the same depth-levels are siblings, cousins or any other kind
of close relative? And in general, can we determine if users
follow these hierarchical orders of an ontology when contribut-
ing to classes on the same depth level? To further strengthen our
observation that users are actually moving along the ontological
hierarchy when contributing to an ontology (see Section 4.2.1),
we analyzed the relationships between the changed classes for
each user. Note that whenever we talk about relationships for
this analysis, we refer to the hierarchical isKindOf relationships
between two classes, e.g., parent, child, sibling or cousin. For
example, when traversing the shortest-path distance of 2, mul-
tiple different nodes can be reached, such as a grandparent (i.e.,
2 times up), a grandchild (i.e., 2 times down), a sibling (i.e., 1
time up, 1 time down) or even some other relationship (e.g., 1
time down, 1 time up).

Path & model description: By combining the information
from the Depth-Level Paths and the relative movement between
depth levels, we inferred the hierarchical relationships between
two consecutively changed classes of a single user (user-based).
For example, if the difference between the depth levels of the
investigated classes would be exactly the size of the shortest-
path between them (with the shortest-path being > 0), the latter-
changed class could either be a Child, a Parent, an Ancestor or a
Descendent of the first-changed class. Given a relative DOWN
movement (to a lower depth level) value, depending on the
shortest-path value, the second class could be classified as Child
(shortest-path of 1) or Descendent (shortest-path > 1). Analo-
gously follows the definition of a Parent and Ancestor with a

relative UP movement. A Sibling is defined as the two classes
being (i) connected via the same parent with (ii) a shortest-path
distance of 2 and (iii) both classes are located on the SAME
depth level. A Cousin is used when two classes on the SAME
depth level are connected by the same grand parent while ex-
hibiting a shortest-path distance of 4. Every other possible
combination of depth level and shortest-path was classified as
Other. Self indicates that the same class that was changed last
time was changed again. For example, a consecutive change of
Sibling and Self means that a change was first performed on a
class that is a sibling of the previous class (not displayed in this
example) and then another change was performed on the same
class, however now the relationship changed to Self as no new
class was involved.

Again, consecutive changes on the same class by the same
user have been merged into one single sequent change (c.f. Sec-
tion 4.2.1), meaning that multiple (more than 2) consecutive
changes of the same user on the same class have been merged
into Self to Self. Hence, a given path for a single user can, e.g.,
look like the following: Sibling, Self, Self, Child.

We fit a first-order Markov chain model to the data – each
path represents a single user and each element represents a hi-
erarchical relationship between the classes changed by the user.
The resulting transition probabilities of the fitted model can
then give us insights into common emerging patterns. E.g., we
can identify how probable it is that users change a Sibling after
a Child.

Results: When looking at the histograms (see top area of
Figures 6(a) to 6(e)), we can observe that the relationships Self,
Sibling and Other are highly represented across all datasets.
The transition maps (bottom area of Figures 6(a) to 6(e)) show
that after a BREAK, across all five datasets, users tend to change
classes “somewhere els” in the ontology, evident in the high
transition probability from BREAK towards Other, and are likely
not to resume work in the same area of the ontology that they
stopped working on. For ICD-11, ICTM and OPL, no matter
which relationship type occurs, users tend to edit the same class
consecutively (dark colors in the Self column). From this Self
relationship, which is also the one that occurs the most often in
ICD-11, ICTM and OPL, users are very likely either to change
the same class again (Self ) or to change a Sibling of the current
class.

For NCIt, BRO and OPL we can observe that users, when
changing a Parent are very likely to change a Child of that par-
ent afterwards. Note, that this Child does not necessarily have
to be the same class that was changed prior to the traversal to
Parent. In all datasets, except for OPL, very high transition
probabilities towards Other can be observed for all not so fre-
quently present relationships. In particular for NCIt we can ob-
serve that Other is the most frequently observed transition, even
before Self and Sibling.

Interpretation & practical implications: By combining
the results of this analysis with the results of the Depth-Level
Paths analysis, we can infer that users exhibit a tendency to-
wards top-down editing while contributing to the ontology, when
only considering changes that occur on different depth levels.
If they concentrate their efforts on the same depth levels, users
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(c) National Cancer Institute Thesaurus (NCIt)
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To Relationship

F
ro

m
 R

e
la

ti
o

n
s
h

ip

0
1

0
0

2
0

0
3

0
0

F
re

q
u

e
n

c
y

Child

Cousin

Other

Parent

Self

Sibling

BREAK

C
h

ild

C
o

u
s
in

O
th

e
r

P
a

re
n

t

S
e

lf

S
ib

lin
g

B
R

E
A

K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(e) Ontology for Parasite Lifecycle (OPL)

Figure 6: Results for the Hierarchical-Relationship Paths analysis: The columns and rows of the transition maps (bottom area of Figures 6(a) to 6(e)) represent
the transition-probabilities of a first-order Markov chain between hierarchical-relationship levels, where rows are source relationships and columns are target
relationships. A sequence (or transition-probability) is always read from row to column. Darker colors represent higher transition-probabilities while lighter colors
indicate lesser transition-probabilities. Absolute probability values are dependent on the number of investigated rows and columns, hence relative differences are of
greater importance. Across all datasets, aside from Self, a very clear trend towards editing the ontology along Siblings can be observed. The histograms (top area
of Figures 6(a) to 6(e)) show the total number of occurrences of each relationship in the corresponding datasets aggregated over all users (again for a first-order
Markov chain). Note, that the y-axes for all histograms are scaled differently for each dataset. For the x-axes (and column/rows of the transition maps) we only
relationships that occur at least once in the corresponding paths, thus the x-axes could be different from project to project. Given the very high amount of Self
and Sibling transitions we can concur that users, when they contribute to classes on the same depth level follow a breadth-first strategy, meaning that they first
concentrate their work on closely related classes (Siblings) on the same depth-level before switching to a different branch on the same or any other depth-level.
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exhibit a breadth-first editing behavior, meaning that they first
concentrate their work on closely related classes (Siblings) on
the same depth-level before switching to a different branch on
the same or any other depth-level, either changing the same
class multiple times or traversing along siblings of the current
class. We can leverage this information not only to refine the
previously suggested pre-fetching of classes but also to enhance
possible class recommendations. Similarly, it is possible for
ontology-engineering tool developers to minimize the neces-
sary efforts of users to contribute to the ontology by implement-
ing, for example, guided workflows that take the underlying edit
strategies of the contributors into account.

As classes in ICD-11 and ICTM have a large number of
properties and for ICTM certain properties have to be added
in multiple languages, the high transition probabilities towards
Self (dark colors in the Self column) are not surprising. One
possible explanation for this observation for ICD-11 could be
the special functionality available in iCAT (for ICD-11) that
allows users to export parts of the ontology as spreadsheets for
local editing and adding property values. Once contributors fin-
ished editing the spreadsheet they have to enter the data into
the system manually, as no automatic import functionality is
present. In the iCAT interface, users are simultaneously pre-
sented with the ontology tree for navigating through the classes
and the corresponding properties and property values. When
users select a property they can easily switch between classes,
with the selected property staying selected, thus allowing to
quickly enter the same properties for different classes.

A similar, yet not as dominant as in ICD-11 and ICTM, be-
havior can be observed for NCIt and BRO and even to some
extent in OPL, which all do not use the export functionality.
According to our observations, users travel along the underly-
ing hierarchy when contributing to the ontology. Given the ob-
servations made for ICD-11 this behavior can be enforced by
providing certain functionalities in the user-interface especially
when they compliment the workflows of the contributors.

The results of this analysis have also shown that users are
likely to pursue a certain strategy or intermediate goal for their
edit sessions, for example changing all classes in a specific
(narrow) area of the ontology. This is evident in the obser-
vation that after returning from a BREAK, users have a very
high tendency to change the ontology “somewhere else” (see
the transition probabilities from BREAK towards Other in the
top-row of Figure 6), rather than picking up the work, where
they left off. This discovery is very important for developing
class-recommender, as we may use the results of this analy-
sis to suggest closely related classes to the current class a user
is working on, however when that user stays inactive for the
duration defined for introducing BREAKs the recommendation
strategy has to be changed.

4.3. Property paths
Aside from analyzing different aspects of activity (Section 4.1)

and the correlation between contribution patterns and the struc-
ture of an ontology (Section 4.2), we can use Markov chains
to perform an analysis on the properties that are consecutively
change by users in an ontology. This means that, for example,

if a property value was edited by a user, we extracted the prop-
erty (not the value) and created chronologically ordered lists
of properties, whose values were changed by the corresponding
users. For example, if a user changed the title of a specific class,
we would extract title, rather than the value inserted into the title
property. Now, we provide insights into emerging patterns from
different viewing angles for the observations. Thus, we look
at property sequences for (a) single users (user-based) and for
(b) single classes (class-based) – see Section 3.2. We were not
able to perform the Property Paths analysis on OPL and BRO
as these datasets contain only a very limited number of unique
property value changes during our observation periods. We also
had to discard the results from NCIt, as the ontology-editing en-
vironment for NCIt provides a unique change-queuing mecha-
nism that allows for multiple property values to be changed at
the same time, making it impossible to extract chronologically
ordered sequential property patterns.

Path & model description: First, we extracted the proper-
ties whose values were changed in ICD-11 and ICTM, sorted
either by user and timestamp or by class and timestamp. Fi-
nally, two different types of chronologically ordered property
lists were extracted, one ordered per user and one ordered per
class (for both datasets). The properties in Property Paths rep-
resent the ones which can be assigned a value for each class
in ICD-11 and ICTM. Whenever a change did not modify a
property (e.g., because the change action dealt with moving
or creating a class) we added the element no property to the
corresponding path. A potential path for a single user or class
then may look like: title, title, title, use. Similar to previous
analyses, if the same user has consecutively changed the same
property (e.g., in the previous example title) on the same class,
we merged these multiple changes into one successive change.
Analogously, however without the restriction of the same user,
if the same property was changed on the same class, we merged
these changes into one sequent change. For previous example,
if changes would have been performed editing the referenced
properties for a single class, we would end up with the path:
title, title, use.

Consequently, we fit a first-order Markov chain model on
this set of paths (for users or classes). The final transition prob-
abilities of the model then give us information about the proba-
bility of changing a value of one property Y after another prop-
erty X either for users or for classes. For instance, we can
find the property Y that most frequently has been changed after
property X for classes.

Results: When looking at the histograms (top area in Fig-
ures 7(a) to 7(d)) we can see that even after removing not very
frequently used properties,11 both datasets exhibit a few prop-
erties which have received a high number of changes, while the
remaining majority of properties only received a very limited
number of changes. For both datasets, aside from no prop-
erty, the properties use, title and definition appear to be the
most frequently used properties. As can be seen in the top area

11All properties which where rarely edited have been removed from Figure 7
as they do not hold information but their removal increased the readability of
the plots dramatically.
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Figure 7: Results for the Property Paths analysis: The columns and rows of the transition maps (bottom area of Figures 7(a) to 7(d)) represent the transition-
probabilities of a first-order Markov chain between consecutively changed properties, where rows are source properties and columns are target properties. Fig-
ures 7(a) and 7(c) represent class-based patterns while Figures 7(b) and 7(d) visualize user-based patterns. A sequence (or transition-probability) is always read from
row to column. Darker colors represent higher transition-probabilities while lighter colors indicate lesser transition-probabilities. Absolute probability values are
dependent on the number of investigated rows and columns, hence relative differences are of greater importance. Across all datasets a very clear trend towards con-
secutively editing the same properties can be observed. The histograms (top area of Figures 7(a) to 7(d)) show the total edits of each property in the corresponding
datasets aggregated over all users and classes (again for a first-order Markov chain). Note, that the y-axes for all histograms are scaled differently for each dataset.
As ICTM and ICD-11 only share a limited amount of properties the x-axes (and column/rows of the transition maps) are different from project to project. In both
projects and across all 4 different approaches the title, definition and use properties are frequently used. Due to reasons of readability we were forced to remove
properties from the plots, which exhibited only a very limited number of changes, thus did not provide substantial information for the purpose of this analysis.
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of Figures 7(a) and 7(b), multiple consecutive changes of the
same property appear to be fairly common for both datasets. In
contrast, when looking at Figures 7(c) and 7(d), which depict
the transition probabilities between the sequences of properties
changed by each user, we can see an even stronger trend to-
wards consecutively changing the same properties across dif-
ferent classes, especially definition, title and use. For ICD-11
Figures 7(a) and 7(c) show that the class-based approach is less
focused on consecutively changing the same property, evident
in the brighter diagonal, when compared to the user-based ap-
proach. This is due to the export functionality available in iCAT
combined with the manual process of inserting the same prop-
erty for different classes by users of ICD-11. In contrast, such
functionality is absent in ICTM, thus leading to similar behav-
iors for the class and user-based approaches for ICTM. The fact
that a large portion of successive changes are conducted on the
same property for both approaches analyzed for ICTM could
also be due to the multilingual nature of the project, meaning
that certain properties, such as title and definition, have to be
entered multiple times in multiple languages. Similar results
have been presented by Wang et al. [24], who used association
rule mining techniques to analyze the change-logs of ICD-11
and ICTM.

Contributors in ICD-11 have a high tendency of performing
no property changes after they return from a BREAK followed
by use, title and definition. In ICTM, users resume their work
primarily by changing the title property, the definition property
followed by no property changes.

Interpretation & practical implications: One of the main
benefits of this analysis is the identification of commonly and
consecutively changed properties for classes and users. In turn,
this information might potentially be used to suggest work (e.g.,
prompting a user to check a certain property by combining the
User-Sequence Paths analysis and the Property Paths analy-
sis), or by ontology-engineering tool developers to potentially
anticipate the property a user is most likely to change next.
The fact that classes appear to exhibit more diverse property-
contribution patterns when being changed than users could be a
direct result of the multi-lingual nature of ICTM and the already
mentioned export functionality present in iCAT. This means
that given the most recent property of a class that was edited,
we may predict which property is most likely to be changed
next. Similarly, we can predict the property a user is going to
edit next.

5. Findings and discussion

In this section we first summarize our findings in Section 5.1
before we shortly discuss the potential applicability of higher
order Markov chain models in Section 5.2. Next, we discuss
differences between the investigated projects in Section 5.3 and
finally, point out potential limitations of this work in Section 5.4.

5.1. Summary of findings

We will now discuss our main findings (Table 2) and explore
their consequences.

Emergence of micro-workflows: By investigating whether
sequential user-contribution patterns (see Section 4.1) can be
identified in five different collaborative ontology-engineering
projects, we have shown that users appear to work in micro-
workflows, indicating that for all investigated projects, each
user contains predictive information about the user, who is go-
ing to contribute to a specific class next.

Additionally, however not presented in this paper due to
reasons of space, we have also conducted an analysis to de-
termine the change type (e.g., adding a property value, moving
a class, replacing a property value, etc.) a user is most likely
to perform next (as shown in Walk et al. [30] for ICD-11). In
this analysis we were able to extract a first-order Markov chain
for all datasets presented in this paper, meaning that the last
change type that a user performed contains information about
the next change type of that user. When combining the infor-
mation about the user who is most likely to contribute to a class
next and the specific change action that this user is most likely
to conduct (or the change action that is most likely conducted
on a class next), we can create specific tasks for contributors,
asking them to perform a certain change on a specific class.

Our results could be used by project managers and ontology-
engineering tool developers to identify classes for users and
users for classes, helping editors to minimize the necessary ef-
forts for finding and identifying classes to contribute to. More-
over, automatic means of curating and delegating work-tasks to
users can be derived by ontology-engineering tool developers,
which can help to potentially increase participation as discussed
in Kittur and Kraut [31].

User roles can be identified: Across all datasets we were
able to identify that a limited number of users have contributed
to the majority of all changes. These highly active users are
very likely to be target users for all other users, meaning that
they are very likely to change the same class after another user.
Across all five datasets, the roles of these target users could be
identified by us as moderators or administrators of the corre-
sponding projects performing maintenance tasks, such as gar-
dening (e.g., pruning outdated classes, fixing errors, etc.) or
manual verification of newly added data.

Furthermore, we were able to show that moderators and ad-
ministrators divide work among each other, as they are not very
likely to change the same classes directly after another admin-
istrator or moderator, even though these users exhibit the high-
est absolute numbers of changes in the corresponding projects.
Looking at the transition probabilities of Figure 3 it is possible
to identify users or even groups of users who have a high ten-
dency to work on the same classes, thus might be collaborators
or reverting/correcting changes of each other.

Users edit the ontology top-down and breadth-first: The
Depth-Level Paths analysis (see Section 4.2.1) demonstrated
that users have a very high tendency of staying in the same
depth level when contributing to the ontology. If editors change
depth levels while editing the ontology they exhibit a minimal
preference to do so in a top-down rather than a bottom-up man-
ner. Furthermore, the results suggest that users move along the
hierarchy as we were able to show that they follow a top-down
editing strategy for classes that are closer to the root node while
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Table 2: A summary of all findings applicable to all investigated biomedical ontologies. All listed findings are discussed in more detail in Section 5.

User-sequence paths
(cf. Section 4.1)

Users work in micro-workflows Information about which users successively change a class can be
identified; i.e., information about who has edited classes in the past
contains predictive information about who is going to change a
class next.

User-roles can be identified

Looking at historic data, we can identify different user roles, i.e.,
administrators and moderators, gardeners (a contributor focused on
pruning ontology classes and fixing syntactical errors) and users
that frequently interact with (collaborate/revert) each other.

Structural paths
(cf. Section 4.2)

Users’ edit behavior is influenced by the class hierarchy Contributors, when adding content to the ontology, are influenced
by the class hierarchy.

Users edit the ontology top-down and breadth-first

By and large, users exhibit a minor tendency towards top-down
editing behavior when changing hierarchy levels while contribut-
ing. However, when staying in the same hierarchy level, contrib-
utors rather follow a breadth-first edit behavior, moving from one
sibling of a class to the next sibling.

Users edit closely related classes
Contributors have a very high tendency to consecutively change
closely related classes, as opposed to randomly and distantly re-
lated classes.

Property paths
(cf. Section 4.3) Users perform property-based workflows

Contributors, when adding content to the ontology, tend to concen-
trate their efforts on one single property, which is added and edited
for multiple classes.

this changes to a bottom-up editing strategy for classes closer to
the deepest depth levels and transitions are more likely to occur
along the immediate higher or lower depth level.

To further investigate the distances between changed classes
at the same depth levels we investigated the Hierarchical Rela-
tionship Paths (e.g., child, parent, sibling, cousin, etc.) between
these changed classes. We found that users, when they edit
classes on the same depth level, follow a breadth-first manner,
focusing on editing all the siblings of a class before switching
to a completely different area of the ontology to continue their
work after a BREAK.

Users edit closely related classes: Additionally to the breadth-
first manner that users follow when editing classes in the same
depth level, we discovered that users have a very high tendency
to work on closely related classes (e.g., the sibling or cousin
of the currently changed class). The information collected in
Section 4.2 allows to potentially predict (or narrow down) the
class a user is going to contribute to next, which, if accurate, is a
very valuable information that could be used for a variety of im-
provements and adaptions. For example, project-administrators
could adjust the milestones of the development-strategy to bet-
ter reflect the way users contribute to the ontology while user-
interface designers could emphasize certain areas of the ontol-
ogy to direct users towards specific classes – especially after
they return from a BREAK – or implement pre-fetching algo-
rithms to minimize load-times. For contributors in particular,
the task of identifying and finding classes that they (i) want and
(ii) have the necessary expert knowledge to contribute to is a
time-consuming task, which potentially can be minimized by
implementing class recommender based on the results of the
Structural Paths Analysis and User-Sequence Paths Analysis.

Users perform property-based workflows: The investi-
gation of sequential patterns for property-contributions showed
that in ICD-11, users have a very high tendency of consecu-
tively changing the same property across multiple classes. We
could also identify specific patterns that emerge when users suc-

cessively change properties in collaborative ontology-engineering
projects.

The results collected in the Section 4.3 provide new insights
for administrators and ontology-engineering tool developers, as
they allow the generation of work-tasks (e.g., Please verify the
property title of the class XII Diseases of the skin!). So far,
users are always presented first with the section of the inter-
face that allows for changing or adding the title and definition,
which could be one explanation for the high probabilities of
users changing these properties when returning from a BREAK.

Note, that for this analysis we have used the data from ICD-
11 and ICTM, which both share a very similar ontology-engineering
tool, thus the results might be biased towards the used ontology-
editor.

5.2. Higher order Markov chains

Based on our proposed methodology of using first-order
Markov chain models (see Section 3.3) resulting in the find-
ings summarized in Section 5.1, we currently lay our focus
on detecting patterns only derived from successive interactions
within collaborative ontology-engineering projects. This means,
that we identify how likely it is that one specific interaction fol-
lows another one (e.g., which user edits a class after another
one). This is reasoned by the definition of a first-order Markov
chain based on the Markovian property which postulates that
the next interaction only depends on the current one.

Contrary, Markov chain models can also be defined on higher
orders; this means that the next state of the model (or interac-
tion in our case) depends on a series of preceding ones instead
of only the current one. For example, a second-order Markov
chain model postulates that the next state depends on the cur-
rent state and also the previous one. Previous studies suggest
that human navigation on the Web might be better modeled by
using higher order models compared to first-order models (e.g.,
[32, 29]). Hence, we could assume that this might also be the
case for our use-case. By also modeling our data with such
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higher order models, we would potentially be able to identify
longer patterns (e.g., User A regularly edits a class after User B
and User C). Also, possible recommender systems could ben-
efit from the additional predictive power of such higher order
chains.12 While highly interesting, this analyses would be out-
of-scope for this article which is why we leave this open for
future work.

5.3. Differences between the investigated projects
Even though each project exhibits a different number of

depth levels, which all receive a different amount of attention by
the contributors, we can observe commonalities of edit strate-
gies between them. For example, the levels 3 to 6 exhibit the
highest number of changes in our observation period for ICD-
11, while for OPL these levels are 6 and 7.

Regarding the hierarchical relationships we can see that con-
secutively changing the same class is very likely to happen in
ICD-11, ICTM, BRO and OPL regardless of the source rela-
tionship (evident in the darker colored Self columns in Fig-
ures 6(a), 6(b), 6(d) and 6(e)). This Self -relationship is still very
prominent, however the transition probabilities towards Self for
NCIt are not as dominant as they are for the other datasets.

Another observation depicted in the transition maps is the
clear focus on transitions from Sibling to Sibling across three
out of five datasets, with the exception of ICTM and OPL. One
explanation for ICTM could be the fact that some properties of
the ontology are multi-lingual, thus require users to add multi-
ple languages for the same property, which are all stored as a
single change. For OPL, transitions, except towards Self are in
general really scarce, indicating that users focused on editing
and entering multiple property values (or one property value)
of a single class before continuing to the next class.

When looking at the sequence of changed properties for
each class (in contrast to: for each user) we can observe a
concentration on consecutively changing the same property in
ICTM, which is most likely a direct result of the multi-lingual
nature of the properties used in this project. In ICD-11 on the
other hand, transitions between changed properties of classes
are much more diverse and less focused on transitions between
the same properties. This observation indicates that either not
all properties have received a substantial amount of values for
all the possible properties and/or that users make use of this
special export functionality of iCAT, thus successively chang-
ing the same property is less common as the content is only
inserted once into the system.

In the User-Interface Sections Paths analysis we have mapped
the changed properties to the corresponding sections of the user
interface of the used ontology-engineering tools, which essen-
tially represents a more abstract analysis of the Property Paths
analysis. By investigating the sequences of user interface sec-
tions we could confirm that, for ICD-11, users have a very high
tendency to consecutively change the same properties for mul-
tiple classes, evident in the scarce transitions between different

12Note that it is necessary to apply model selection techniques as described
in [29] in order to identify the most appropriate Markov chain order based on
statistical significant improvements of higher orders compared to lower orders

sections and the high concentration on transitions between the
same sections. For ICTM this behavior was not as distinctive
as it was for ICD-11, which could be due to the missing export
functionality and therefore the lack of the previously explained
manual import sessions.

In general these observations indicate that the absence or
presence of a given functionality of the ontology-engineering
tool can produce (and influence) different editing behaviors when
developing an ontology.

5.4. Limitations
We were not able to recreate the exact class hierarchy of the

ontology for every single change across our observation periods
for all datasets. This limitation is partly due to a lack of detail in
the change-logs. Thus, we decided to focus our analysis, using
all five ontologies as is at the latest point in time, which is also
what would most likely be used in a real-world scenario.

For example, if a class was changed by a user while it was
located on depth level 3 and at a later point in time moved to
a different location where it now resides at depth level 5, we
would assume that this class has always been on depth level 5.
Please note that this bias is only present in the Structural Paths
analyses (Section 4.2). To measure the extent of the potential
bias, we counted all changes that were performed on a class be-
fore it was moved within in the ontology. Applying this rule to
our change dataset, we collected a total of 116, 204 of 439, 229
changes for ICD-11 and 18, 958 of 67, 522 for ICTM. These
numbers represent about 1/4 and 1/3 of all changes for ICD-11
and ICTM respectively. For BRO 276 of 2, 507 (ca. 1/10) and
for OPL 2 of 1, 993 of all changes were performed on classes,
which have been moved afterwards.

Note that an additional requirement for the identification of
sequential patterns in collaborative ontology-engineering projects
using Markov chains is the availability of rather large change-
logs. In general, the less common entities (e.g., properties) are
present in the change-log the more (exponentially) observations
have to be available in order to detect more fine-grained pat-
terns. Without enough observations (changes), the identifica-
tion of sequential patterns is either very hard, and can only be
approximated, or not possible at all. As can be seen in Table 1,
we have selected all of our datasets to satisfy this requirement,
as all chosen datasets exhibit a substantial number of changes.

Furthermore, we have included artificial session breaks into
our analysis as described by Walk et al. [30] to analyze where
or what users start to edit in the ontology and where or what
users edit before they take a break. For all user-based analyses
we have introduced a BREAK if two consecutive changes of the
same user were apart longer than 5 minutes.

All analyses in this paper are based on isKindOf relation-
ships for determining distances and locations within the ontol-
ogy. We plan on further expanding this analysis by investigating
the impact of other kinds of relationships and other features that
are available in ontologies on our pattern detection approach.

Even though all datasets presented in this paper are created
with WebProtégé or one of its derivatives, there is only one re-
quirement that prevents practitioners from performing this anal-
ysis on other ontologies: The availability of a change-log (in
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the required granularity for the deemed analyses) that can be
mapped onto the underlying ontology. Note that it would be
possible to conduct this analysis for ontologies created by sin-
gle individuals, meaning that “collaboration” is only a require-
ment when the nature of the analysis requires investigating tran-
sitions between multiple users.

Also, the kind of knowledge base (classification, taxonomy
or ontology), the used representation language (e.g., OWL and
OWL-DL expressivity, RDF, Turtle) or the development tool of
a particular collaborative ontology-engineering project in ques-
tion does not prohibit conducting a pattern analysis as presented
in this paper, as long as the underlying knowledge base (and
thus the change-log) exhibits the necessary granularity and the
semantic properties of interest for the analysis.

However, this also means that the differences of the knowl-
edge representation used languages (i.e., expressivity and types)
are not considered by our analysis, with NCIt being a thesaurus
and the rest of the investigated datasets being ontologies. Thus,
whenever differences are observed between NCIt and the re-
maining datasets, further research is warranted to determine the
origin of this observation.

Furthermore, the analysis presented relies on investigating
usage logs of collaborative ontology-engineering projects by
looking at changes, performed by users of the corresponding
systems. As this only represents one possible way of interacting
with the underlying ontology, albeit the most frequently used
one, an extension of the conducted Markov chain investigation
warrants future work to include, for example, discussions for
consensus building, suggestions of terms by users or automatic
imports.

6. Related work

For the analysis and evaluation conducted in this paper, we
identified relevant information and publications in the domains
of (i) Markov chain models, (ii) collaborative authoring systems
and (iii) sequential pattern mining.

6.1. Markov chain models

In the past, Markov chain models have been heavily applied
for modeling Web navigation – some sample applications of
Markov chains can be found in [33, 34, 35, 36, 37, 38]. Also,
the Random Surfer model in Google’s PageRank [39] can be
seen as a special case of a Markov chain.

Previously, researchers investigated whether human naviga-
tion is memoryless (i.e., of first order) in a series of studies (e.g.,
[40, 36]). However, these studies mostly showed that the mem-
oryless model seems to be a quite plausible abstraction (see
e.g., [41, 42, 37, 38]). Recently, a study picked up on these in-
vestigations and suggested that the Markovian assumption (i.e.,
property) might be wrong [32]. However, this study did not re-
veal any statistically significant improvements of higher order
models. Singer et al. [29] solved this problem by developing a
framework for determining the appropriate order of a Markov
chain for a given set of input data. In Walk et al. [30] we ap-
plied and mapped the presented framework onto structured logs

of changes and provided an in-depth description of the require-
ments and steps necessary to use the framework in this setting.

In this paper we present a detailed analysis of sequential
patterns by applying and analyzing Markov chains across the
change-logs of five collaborative ontology-engineering projects
in the biomedical domain. A more detailed explanation of the
necessary steps to be able to apply Markov chains onto the
change-logs of collaborative ontology-engineering projects is
presented in Walk et al. [30]. Note that we focus on applying
first-order Markov chain models in this work while we see the
application of also higher order models as highly interesting fu-
ture work as discussed in Section 5.2.

6.2. Collaborative authoring systems

Research on collaborative authoring systems such as Wikipedia
has in part focused on developing methods and studying factors
that improve article quality or increase user participation. These
problems represent important facets of collaborative authoring
systems and solutions to tackle these problems are of interest
for collaborative ontology-engineering projects.

For example, Cabrera and Cabrera [43] demonstrated the
effect of minimizing the costs and efforts necessary for users
to contribute on potentially achieving higher contribution rates.
Another approach, also presented by Cabrera and Cabrera [43],
focuses on providing an environment where interactions and
communication between contributors are encouraged and per-
formed frequently over a long period of time to establish a
group identity and to promote personal responsibility.

More recent research on collaborative authoring systems,
such as Wikipedia, focuses on describing and defining not only
the act of collaboration amongst strangers and uncertain situ-
ations that contribute to a digital good [44] but also on an-
tagonism and sabotage of said systems [45]. It has also been
discovered only recently that Wikipedia editors are slowly but
steadily declining [46]. Therefore Halfaker et al. [47] have an-
alyzed what impact reverts have on new editors of Wikipedia.
Kittur and Kraut [31] showed that an increase in participation
can be achieved by directly delegating specific tasks to con-
tributors. As simple as this approach may appear, the identi-
fication of work (and thus specific tasks) is still a tedious and
time-consuming process, which can only partly be automated
due to its assigned complexity.

With the analysis that we described here, we provide new
results that we can use to tackle some of the problems for col-
laborative authoring systems. These problems are also present
in collaborative ontology-engineering projects. For example,
we can identify new tasks by combining the results of the User-
Sequence Paths (Section 4.1) and Property Paths (Section 4.3)
analyses to suggest classes and the corresponding properties to
work on to users.

6.3. Sequential pattern mining

In 1995 Agrawal and Srikant [48] have first addressed the
problem of sequential pattern mining. They stated that given a
collection of chronologically ordered sequences, sequential pat-
tern mining is about discovering all sequential patterns weighted
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according to the number of sequences that contain these pat-
terns. The presented algorithm represents one of the first a
priori sequential pattern mining algorithms. This means that a
specific pattern cannot occur more frequently (above a thresh-
old) if a sub-pattern of this pattern occurs less often (below that
threshold). Other examples of a priori algorithms are [49, 50].

One of the biggest problems assigned to the a priori based
sequential pattern mining algorithms was (in the worst case)
the exponential number of candidate generation. To tackle this
problem Han et al. [51] developed the FP-Growth algorithm.

Many researchers have adapted different algorithms and ap-
proaches for different domains to anticipate changing require-
ments, such as Wang and Han [52] and Hsu et al. [53] who an-
alyzed algorithms for sequential pattern mining in the biomed-
ical domain.

In Walk et al. [30] the authors have presented a novel ap-
plication of Markov chains to mine and determine sequential
patterns from the structured logs of changes of collaborative
ontology-engineering projects. Making use of this framework
we investigate differences and commonalities across five differ-
ent collaborative ontology-engineering projects from the biomed-
ical domain.

7. Conclusions & future work

In this work, we discovered intriguing social and sequential
patterns that suggest that large collaborative ontology-engineering
projects are governed by a few general principles that determine
and drive development. Specifically, our results indicate that
patterns can be found in all investigated projects, even though
the National Cancer Institute Thesaurus (NCIt), the Interna-
tional Classification of Diseases (ICD-11), the International Clas-
sification of Traditional Medicine (ICTM), the Ontology for
Parasite Lifecycle (OPL) and the Biomedical Resource Ontol-
ogy (BRO) (i) represent different projects with different goals,
(ii) use variations of the same ontology-editors and tools for the
engineering process and (iii) differ in the way the projects are
coordinated. Using the presented Markov chain analysis, mul-
tiple different user-roles could be identified in all investigated
datasets. We were also able to see that users work in micro-
workflows, meaning that given a specific user, we can iden-
tify the most likely users that are editing a specific class next,
again independent from the investigated project. When con-
tributing to a project that is created using WebProtégé, iCAT,
iCAT-TM or Collaborative Protégé, users exhibit a tendency to
do so in a top-down and breadth-first manner, editing primarily
closely related classes while moving along the ontological hier-
archy. In ICD-11 and ICTM we were able to identify property-
based workflows, meaning that users concentrate their efforts
on adding and editing values for one specific property for mul-
tiple classes.

The analysis presented not only provides new insights about
the engineering and development processes of each single project,
but also shows that the analysis of sequential patterns poten-
tially provides actionable insights for different stakeholders in
collaborative ontology-engineering projects.

Furthermore, the information of the next possible action
(e.g., a user, a change-type, a property, set of classes) or the
combination of multiple of these next actions could be used
by ontology-engineering tool developers to potentially augment
users in collaboratively creating an ontology. For example, by
making use of the Property Paths analysis to highlight, prefetch,
rearrange or adjust sections and content of the interface dynam-
ically, according to the user’s needs.

The next logical step to further deepen our understanding
of collaborative ontology-engineering projects involves apply-
ing the gathered results to productive and live environments,
for example as plug-in for (Web)Protégé. Simultaneously, this
would allow us to collect valuable data to quantify the useful-
ness and actionability of the results, generated with our pre-
sented approach, in real world scenarios.

Additionally, expanding the Markov chain analysis to take
other types of interactions (e.g., discussions, automatic imports
and term suggestions by users) into account, represents a poten-
tial topic of future work. This also includes a detailed analysis
of human factors studies in terms of user-studies (e.g., with a
heuristic evaluation or A/B testing) or more sophisticated ap-
proaches, such as eye tracking, to assess the usefulness of the
presented results for augmenting users when collaboratively en-
gineering an ontology.

Furthermore, as change tracking and click tracking data will
likely become available more broadly in the future, we believe
that the analysis of this paper and the possible benefits of putting
the results into practical use represent an import step towards
the development of better (and simpler) ontology editors, which
can dynamically anticipate the editing-style of the users. Project
administrators could make use of the results of the analysis, for
example by allowing for easier delegation of work to the “right”
users. This is even more emphasized when considering that the
Markov chain analysis is not computationally intensive, making
it highly suitable for productive use.

As biomedical ontologies play an increasingly critical role
in acquiring, representing, and processing information about
human health, we can use quantitative analysis of editing be-
havior to generate potentially useful insights for building better
tools and infrastructures to support these tasks.
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3.4. Sequential Action Patterns in Collaborative

Ontology-Engineering Projects: A Case-Study

in the Biomedical Domain

This section covers the final article tackling the first research question

of this thesis. In detail, it studies the predictability of human trails on

the Web by modeling the data with Markov chain models of varying

order utilizing the developed framework of this thesis. Again, the trails

at interest stem from edit actions in collaborative ontology engineering

projects of the biomedical domain. First, this article studies whether

regularities and sequential patterns exist in such trails. For doing so,

colleagues and I have introduced and used additional methods: (i) an

adaption of the Wald-Wolfowitz runs test for randomness detection which

I make available online6 and (ii) a pattern detection algorithm based on

PrefixSpan. We have indeed found regularities as well as (longer) serial

dependence between subsequent elements of given trails.

Ultimately, we have chosen the Markov chain modeling approach presented

in Section 3.2 for predicting human trails. By keeping the findings about

regularities and patterns in mind, we have been explicitly interested

whether the incorporation of memory into the model can improve accuracy

of prediction. As expected, we have found that higher order Markov

chain models can improve accuracy for most of the trails studied. Such

models can not only be useful for various recommendation approaches,

but can also give researchers the tools for assessing the impact of potential

changes in the underlying platform. In analogy to this thesis, this article

demonstrates a further application of the Markov chain framework as well

as provides a strong argument for the benefit of studying memory effects

in question.

6https://github.com/psinger/RunsTest
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ABSTRACT
Within the last few years the importance of collaborative ontology-
engineering projects, especially in the biomedical domain, has dras-
tically increased. This recent trend is a direct consequence of the
growing complexity of these structured data representations, which
no single individual is able to handle anymore. For example, the
World Health Organization is currently actively developing the next
revision of the International Classification of Diseases (ICD), us-
ing an OWL-based core for data representation and Web 2.0 tech-
nologies to augment collaboration. This new revision of ICD con-
sists of roughly 50,000 diseases and causes of death and is used
in many countries around the world to encode patient history, to
compile health-related statistics and spendings. Hence, it is crucial
for practitioners to better understand and steer the underlying pro-
cesses of how users collaboratively edit an ontology. Particularly,
generating predictive models is a pressing issue as these models
may be leveraged for generating recommendations in collaborative
ontology-engineering projects and to determine the implications of
potential actions on the ontology and community. In this paper we
approach this task by (i) exploring whether regularities and com-
mon patterns in user action sequences, derived from change-logs
of five different collaborative ontology-engineering projects from
the biomedical domain, exist. Based on this information we (ii)
model the data using Markov chains of varying order, which are
then used to (iii) predict user actions in the sequences at hand.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Medical information systems;
H.5.3 [Information Interfaces and Presentation]: Group and Or-
ganization Interfaces—Web-based interaction
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Markov Chain; Sequential Pattern; State Prediction; Collaborative
Ontology-Engineering

∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’14, November 3–7, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2662049 .

1. INTRODUCTION
The complexity of structured knowledge representations, espe-

cially in the biomedical domain, has dramatically increased over
the last decade. This recent trend is the direct result of the increas-
ing requirements for these ontologies to satisfy, due to a growing
field of application. For example, the International Classification
of Diseases in its 10th revision (ICD-10) is used to encode patient
history data and to compile health-related spending and morbidity
as well as mortality statistics for international comparison. To in-
crease the utility of ICD, the World Health Organization (WHO) is
currently developing the 11th revision of this classification (ICD-
11), using the Internet and Web 2.0 technologies as collaboration
platform and an OWL-based core for knowledge representation.
This change in knowledge representation will allow for additional
information to be stored inside ICD-11. For example, diseases will
have (among others) explicitly defined related/affected body parts
and diagnostic criteria. Compared to ICD-10, the new revision
now contains around 50,000 diseases and causes of death, thus has
roughly tripled in size and is to be developed until 2017.

Due to this increase in complexity, ontologies, such as ICD-11,
can no longer be developed by single authorities. Instead, WHO
decided to open-up the development process of ICD-11, allow-
ing everyone with access to the Internet to contribute and discuss
changes made to the ontology. However, this open and collabo-
rative ontology-engineering process poses many, yet unidentified,
problems to tackle and anticipate. For instance, tracking and mon-
itoring user actions or the overall progress of the underlying ontol-
ogy as well as helping users to identify work tasks, which they have
the required expertise to contribute to, are two either computation-
ally expensive or very time consuming tasks. In particular, admin-
istrators of collaborative ontology-engineering projects are in need
of better tools to understand and augment users when contributing
to these projects.

Objective. Our main objective is to predict user actions in col-
laborative ontology-engineering projects; e.g., the property a user
is most likely to edit next. We want to achieve this task by first
exploring whether regularities and sequential patterns exist, then
building upon these observations for modeling the data and finally,
evaluating the prediction accuracy of each model.

Approach. Specifically, we will approach this objective as fol-
lows in subsequent order:
(i) Exploring action sequences: First, we investigate whether action
sequences based on several dimensions (e.g., sequential properties
changed by users as illustrated in Figure 1) exhibit regularities or
are emerging in random fashion before we mine and study common
sequential patterns in our data.
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(ii) Modeling action sequences: Next, we establish our model ap-
proach using Markov chains of varying order, allowing us to in-
corporate our insights from the first research approach. We also
present model selection techniques that can be used for testing and
evaluating the accuracy of these models.
(iii) Predicting user actions: Subsequently, we fit these models to
our data and evaluate each model, giving insights into their predic-
tive power. The models may be leveraged for generating recom-
mendations in collaborative ontology-engineering projects and to
determine the implications of potential actions on the ontology and
community.

We perform our experiments on five datasets stemming from dif-
ferent biomedical projects (ICD-11, The International Classifica-
tion of Traditional Medicine (ICTM), The National Cancer Insti-
tute Thesaurus (NCIt), The Biomedical Resource Ontology (BRO)
and The Ontology of Parasite Lifecycle (OPL); for more details see
Section 2).

Contributions. To the best of our knowledge, this paper presents
the most detailed analysis of sequential user actions in collaborative
ontology-engineering projects in the biomedical domain for pre-
dicting future actions. We find (significant) evidence that (i) regu-
larities and (long) sequential patterns do exist and (ii) demonstrate
their utility for predicting the action that is most likely to occur next
in our datasets.

Our insights not only improve our understanding of how users
engage in collaborative ontology-engineering projects but can also
potentially improve the workflow of collaborators by, e.g., recom-
mending properties to contributors to edit next. By doing so, we
may be able to better leverage the expertise of contributors by steer-
ing them into the right direction. Apart from that, practitioners may
also be able to enhance the quality of specific parts of the ontology
by promoting them to the right users. Having predictive models
for user actions will also allow collaborative ontology-engineering
project administrators to assess potential actions regarding their im-
plications on the underlying ontology and community.

Structure of this article. We introduce our experimental setup
in Section 2 before we explore action sequences in Section 3. We
introduce our model approach in Section 4 and apply and evaluate
these models in Section 5. We discuss (Section 6) our findings and
related work (Section 7) next and conclude our work in Section 8.

2. EXPERIMENTAL SETUP
In this section we first briefly introduce our five datasets, stem-

ming from the biomedical domain, before we elaborate on our spe-
cific dataset preparation steps.

Figure 1: The top row of the figure depicts an exemplary user-
based property sequence with properties Title, Definition and
Term for a user. This means that the first property that was
changed by the user is Title, then Definition and last Term. The
bottom row of the figure shows the class-based sequential prop-
erty path for a class and the same properties Title, Definition
and Term. Analogously, the first property that was changed for
the class was Definition, then Title and last Term.

2.1 Dataset Description
Table 1 lists the detailed features and observation periods for all

datasets used in our analysis. The two largest datasets are ICD-
111 and the National Cancer Institute Thesaurus (NCIt) [28] with
48,771 and 102,865 classes and 439,299 and 294,471 changes re-
spectively. NCIt is a reference vocabulary for clinical care, transla-
tional, basic research and cancer biology. The International Classi-
fication of Traditional Medicine (ICTM), which was first intended
to be a stand-alone biomedical ontology but was merged with ICD-
11 after our observation period, represents a collaborative ontology-
engineering project of medium size, with 1,506 classes and a total
of 67,522 changes. ICTM is developed by WHO and tries to unify
knowledge from traditional medicine practices from China, Japan
and Korea. The Biomedical Resource Ontology (BRO) and the On-
tology for Parasite Lifecycle (OPL) are two smaller sized collabo-
rative ontology-engineering projects with only 528 and 393 classes
and 2,507 and 1,993 changes respectively. BRO is a controlled
terminology for describing the source type, areas of research, and
activity of biomedical related resources. OPL models the life cycle
of a parasite, which is responsible for a number of human diseases.

2.2 Dataset preparation
We extracted sequences from activity logs of the five collabora-

tive ontology-engineering datasets to perform our experiments on.
All extracted sequences are either class- or user-based (see Fig-
ure 1). A class-based sequence depicts a chronology of a specific
feature of all changes that were performed by any user on a single
class. A user-based sequence, analogously, captures the ordered list

1http://www.who.int/classifications/icd/
ICDRevision/

Table 1: Characteristics of the investigated datasets. Note that all datasets differ in size (number of classes and users), activity
(number of changes) and observation periods. ICD-11 and ICTM both exhibit changes that were performed automatically and are
denoted as # of bots (changes) in the table. For our analysis we removed these changes.

ICD-11 ICTM NCIt BRO OPL

Ontology # of classes 48,771 1,506 102,865 528 393
# of changes 439,229 67,522 294,471 2,507 1,993

Users # of users 109 27 17 5 3
# of bots (changes) 1 (935) 1 (1) 0 (0) 0 (0) 0 (0)

Duration first change 18.11.2009 02.02.2011 01.06.2010 12.02.2010 09.06.2011
last change 29.08.2013 17.7.2013 19.08.2013 06.03.2010 23.09.2011
observation period (ca.) 4 years 2.5 years 3 years 1 month 3 months
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of specific features of changes that were performed on any class
by a single user for each dataset. Note that we are interested in
studying collaborative behavior in this paper and hence, provide
an aggregated view on the data based on all users or all classes.
Thus, we always work with a set of distinct sequences where each
sequence corresponds to one single user (user-based) or one sin-
gle class (class-based). In a preprocessing step, we pruned all se-
quences that exhibit less than two elements, for example, if a class
was only ever changed by one user, we removed this specific en-
try from our training set. Note that we have removed all automatic
changes performed in ICD-11 and ICTM for our analyses (see Ta-
ble 1). In Sections 3 and 4, we will closely investigate the following
aspects (and thus sequences) of the activity logs:
(i) Users for Classes. These, solely class-based, sequences consist
of chronologically ordered lists, where each list captures one class,
of users that changed a specific class.
(ii) Change-Types for Classes and Users. Such a sequence con-
tains a chronology of change-types of the performed changes by a
specific user on any class (user-based) or the change-types of the
performed changes for a specific class by any user (class-based).
We aggregated the performed change-types into abstract classes of
changes, which was necessary due to the large variety of different
change-types present in our investigated datasets. All changes that
edit the value of a property of a class have been aggregated (i.e.,
added property, edited property, deleted property). Analogously,
we have aggregated the changes performed on classes (i.e., added
class, moved class, removed class, deleted class).
(iii) Properties for Classes and Users. These sequences consist of
chronologically ordered lists of properties changed by a specific
user of any class (user-based) or the properties changed for a spe-
cific class by any user (class-based).

Note that we were not able to conduct the Change-Types for
Classes and Users and Properties for Classes and Users analyses
for NCIt. The reason for this is the existence of a specific feature
in the ontology-editor that is used to develop NCIt, which allows
contributors to queue changes and commit batches of changes si-
multaneously to the ontology.

3. EXPLORING ACTION SEQUENCES
In this section we explore the nature of our action sequences

at hand. We first investigate randomness and regularities in Sec-
tion 3.1 and then continue to extract common sequential patterns in
Section 3.2.

3.1 Randomness and Regularities
To begin with, we are interested in determining whether our data

sequences are produced in random fashion or based on some reg-
ularities. One common way to investigate randomness in such se-
quences or time series is to use autocorrelation with varying lags
[6]. This method builds on Pearson’s product-moment correlation
coefficient which determines linear relationships between lagged
variables. Contrary, in our paper, we work with categorical data in
our sequences (e.g., properties) which is why the autocorrelation
method is not directly applicable to our problem at hand.

Another way of determining randomness in data sequences is the
so-called runs test which is also more specifically entitled Wald-
Wolfowitz runs test [35, 7]. It is a non-parametric test in which
the null hypothesis (the sequence was produced randomly; the el-
ements of the sequence are independent to each other) is tested
against the alternative hypothesis stating that the sequence was not
produced randomly. In particular, the null hypothesis gets rejected
if the total number of runs – a run is a series of identical values
(e.g., the sequence “AABA" has three runs “AA", “B" and “A")

– is too small leading to a clustered arrangement or too large re-
sulting in a systematic arrangement [21]. Predominantly, the test is
only suited for sequences with binary or dichotomous observations.
O’Brien and Dyck [21] adapted the initial method by proposing a
test that is based on a linear combination of the weighted variances
of run lengths. This approach can now be extended to also work
with categorical observations which is required for our analyses.2

We exemplarily applied this method on our individual ICD-11 se-
quences, and can clearly see that a significant proportion of se-
quences is produced in a non-random way. This is imminent as
the null hypotheses regularly gets rejected (p-value below 0.05) –
e.g., the null hypotheses gets rejected for more than 60% of all user
property sequences. Our observations in this section warrant fur-
ther investigations of patterns and structural properties in these se-
quences. Hence, we next focus on investigating how these present
regularities in our sequential patterns look like; i.e., we focus on
mining common sequential patterns.

3.2 Sequential Pattern Mining
Given our observations made in Section 3.1, we are now inter-

ested in actual sequential patterns that account for the regularities
in the activity logs. There do exist a variety of algorithms to ex-
tract the most frequently used sequential patterns from a set of se-
quences. We make use of PrefixSpan [22] to investigate commonly
used sequential patterns in collaborative ontology-engineering project
change-logs, as the algorithm concentrates on expanding (or grow-
ing) frequently used patterns and strictly matches only patterns to
sequences that are completely identical (i.e., do not exhibit gaps
or skipped elements). Support for sequential pattern mining algo-
rithms, a measure to determine how frequent certain patterns are
observed in the data, is usually defined as the percentage of all in-
vestigated paths that contain a given pattern. Note that all paths
have to be chronologically sorted and patterns only consist of suc-
ceeding states. For example, the pattern “AB” is not present in the
sequence “ACBA”, as “B" never immediately succeeds “A”.

PrefixSpan first scans all available sequences and denotes the
number of occurrences for each element in all sequences. It then
stores the occurrences and the remainder of the sequences (the suf-
fix) and uses the most frequently used sequential patterns as prefix
requirement for the next iteration. Analogously, the prefix is again
expanded until a certain level (minimum) support is reached.

We have applied PrefixSpan on the five collaborative ontology-
engineering project datasets to see if and to what extent such se-
quential patterns are present. As can be seen in Figure 2(a), Pre-
fixSpan was able to extract between 5 to 500 patterns for the Pre-
dicting Users for Classes analysis across all five datasets with a
support of 0.2 to 0.4. This means that the identified sequential pat-
terns are present in 20 to 40 percent of all investigated sequences.
Figures 2(b) and 2(c) show the number of identified patterns of
lengths 1 to 4 for support levels of 0.0 to 0.2 and 0.2 to 0.4. Similar
observations could be made for the other analyses.

Given the high number of sequential patterns of lengths 2 to 4 we
argue that such patterns play a crucial role in the contributor logs
of collaborative ontology-engineering projects at hand. Hence, we
believe that there might be some dependence between subsequent
2We make an implementation of this method available online at
https://github.com/psinger/RunsTest. Note though that
the method has some limitations. For example, there have to be
more than one distinct run length for an element, more than one
success run and the number of successes minus the number of suc-
cess runs of an element has to exceed one. For more details please
refer to [21] and the source on github. Hence, we only recommend
to perform the test on “somewhat” longer sequences with more runs
which is the case for our data at hand.
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Figure 2: Results of the PrefixSpan analysis on the Predicting Users for Classes Sequences: Figure 2(a) shows the number of extracted
patterns (y-axis; log-scale) by PrefixSpan for a given support range (x-axis). Support is defined as the percentage of paths that exhibit
a certain pattern. For example, the roughly 500 sequential patterns extracted for ICTM with a support level of 0.2 - 0.4 are all present
in 20 to 40 percent of all analyzed sequences. Furthermore, Figures 2(b) and 2(c) depict the length (x-axis) and number (y-axis; log-
scale) of patterns found for each dataset for support levels 0.0 - 0.2 and 0.2 - 0.4.

elements in a sequence – i.e., memory effects might be in play (see
also Rosvall et al. [25] for a discussion surrounding memory in net-
works). Consequently, we want to incorporate these potential mem-
ory effects into our model approach in the next section, in which we
resort to Markov chain models of varying order. The goal is to find
a model that can describe action sequences and predict user actions
in a sound way.

4. MODELING ACTION SEQUENCES
As our main goal of this work is to predict user actions in collab-

orative ontology-engineering projects, we need to find an appropri-
ate model that we can fit to the data and leverage for prediction. Our
choice falls on Markov chain models which are suitable for model-
ing categorical sequences. Specific variations of model parameters
allow us to incorporate our findings of Section 3; i.e., that regular-
ities and specifically, serial dependence seems to play a role in the
action sequences at hand. Consequently, we first give a brief intro-
duction into Markov chain models in Section 4.1 also elaborating
a way to incorporate our observations about regularities and pat-
terns in the action sequences. Finally, we will explain two model
selection techniques in Section 4.2, which is crucial for deciding
between different models, which will help us to evaluate the per-
formance of our models. We then apply the methods established in
this section in Section 5.

4.1 Markov Chains
A Markov chain is a stochastic process that models transitions

from one state to another based on a given state space S. It usually
is referred to as memoryless which constitutes the so-called Markov
property stating that the next state only depends on the current state
and not on a series of preceding ones. We now briefly provide an
introduction to Markov chains; we point the interested reader to a
more thorough introduction in previous work [27, 37].

For such a first-order Markov chain3 – a sequence of random
variables X1,X2, ...,Xn – the following holds:

3For our chains we assume time-homogeneity, i.e., the probability
of transitions is independent of n.

P(Xn+1 = xn+1|X1 = x1,X2 = x2, ...,Xn = xn) =

P(Xn+1 = xn+1|Xn = xn) (1)

Motivated by our observations in Section 3, where we could see
that at least some sequences are arranged in a non-random way –
i.e., dependence between elements in a sequence – as well as where
we could identify longer sequential patterns to be present in our
sequences, we are now also interested in extending this notion of
memorylessness of Markov chains to also include memory effects.
This means, that we not only want to model the next state as being
dependent on the current state, but also on a sequence of preceding
states (memory effect). Hence, we now also look at Markov chain
models of order k where the future depends on the past k states.
We can define a Markov chain model of order k as a process that
satisfies:

P(Xn+1 = xn+1|X1 = x1,X2 = x2, ...,Xn = xn) =

P(Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1, ...,

Xn−k+1 = xn−k+1) (2)

Such higher order chains can be modified to a first-order Markov
chain by using a state space of compound states of size k4; i.e., the
state state includes all sequences of length k which finally leads
to a set of size |S|k|S| (see [27] for details). Additionally, we also
introduce a so-called zero-order Markov chain model where k = 0.
In such a model the next state does not depend on any other one but
we can see this as a weighted random selection that should serve as
a baseline for our Markov chain models of varying order.

A Markov chain model is represented by a stochastic transition
matrix P if the state space is finite (which it is in our case). This
matrix contains the transition probabilities of a state xi to another
state x j for all possible combinations; the probabilities of each row
sum to one. The elements of this matrix represent the parameters

4We prepend k reset states and append one reset state to each se-
quence so that we "forget" the history of other sequences in the
dataset [9].
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θ that we have to determine. For doing so we resort to Bayesian
inference (see [30, 27] for details). We use a Laplace prior for the
inference process – i.e., we set each αi j = 1.

4.2 Markov Chain Model Selection
As we are interested in modeling memory in the process, we

model the data with a set of models with varying orders k and con-
sequently, have to evaluate the performance of each model leading
to a determination of the most appropriate order out of this set.
We need to note that lower order models are always nested within
higher order ones by definition and hence, higher order models will
always fit at least as good as lower order ones. Nonetheless, such
higher order Markov chain models need exponentially more param-
eters and thus may result in severe overfitting.

First, we apply Bayesian model selection [30, 27] giving us a tool
to decide between an array of models. The benefit of this method is
that it naturally includes a Occam’s razor, which means that higher
order models receive a penalty due too much higher complexity,
which can help us to avoid overfitting and give us insights into sig-
nificance [17].

As a second method for evaluating varying order Markov chain
models we use a stratified5 k-fold cross-fold validation6. Follow-
ing the concepts of Singer et al. [27] and Walk et al. [37] we train
the Markov chain models on each training set and validate the pre-
dictive power on the test set. First, we rank the probabilities of
each row in the transition matrix – which are the expectations of
the Bayesian posterior – using modified competition ranking that
includes a natural Occam’s razor for higher orders. Next, we deter-
mine the rank of each transition of the test set – i.e., from each start
state to each target state – and henceforth, average over all transi-
tions in the test set. Finally, we average over all folds and visualize
the results. Note that the best accuracy to be achieved would be one
as this would mean that each transition in the test set would be the
highest probability of the transition matrix learned from the train-
ing set. This method also directly gives us a prediction accuracy
of each model that can provide us with insights into the general
prediction performance of a model.

5. PREDICTING USER ACTIONS
In this section we present results for fitting and evaluating (via

prediction) the Markov chain models of varying order for all con-

5Stratified refers to the fact that we try to keep the number of ob-
servations equal in each fold.
6Note that the number of folds is determined individually for each
evaluation due to their stratified nature.

ducted analyses (see Section 4.2). We were not able to conduct
all analyses for NCIt, as the ontology editor used for developing
NCIt exhibits some special functionality, which makes it impossi-
ble to extract chronologically ordered change-types and properties
(cf. Section 2).

5.1 Predicting Users for Classes
The Bayesian model selections (see Table 2) mostly suggest first-

or second-order Markov chain models to be appropriate fits for the
underlying data. Only for NCIt a higher order – i.e., a fifth-order –
is suggested. In order to study the predictive power of these varying
order Markov chain models, we conducted a stratified 3-fold cross-
fold validation task (see Figure 3(a) and Table 2) which mostly
agrees with our Bayesian model selection results in terms of or-
der appropriateness. This means, that a first- (ICD-11, ICTM and
BRO) or second-order (NCIt and OPL) model are shown to have
the best predictive power throughout all datasets (accounting for
overfitting).

The results indicate that the next event in a sequence seems to be
dependent on at least the previous one; partly, also on a sequence of
previous states (memory effects). Such Markov chain models (of
first or second order) can be used for predicting the next contrib-
utor for a class while simultaneously compensating for overfitting.
An average position of mostly below two can be achieved with the
corresponding best working model.

This tells us that we have a well-working tool for predicting
the user that is most likely changing a class next. We may lever-
age this for recommending classes to users which are eligible for
change. By doing so we may manage to severely improve the work-
flow of users as they may not need to tap into their own intuitions
about which class to change next. Also, this process could improve
the quality of some classes by automatically finding experts who
should edit the class.

5.2 Predicting Change Types for Users
The Bayesian model selection (see Table 2) suggests a fourth-

order Markov chain model for ICD-11 and ICTM, a second-order
model for BRO and a first-order model for OPL. Subsequently,
we conducted a 3-fold stratified cross-fold validation for ICD-11
and ICTM and a 2-fold stratified cross-fold validation for OPL and
BRO, due to the smaller number of users available in the latter two
datasets (see Figure 3(b) and Table 2). The results suggest that a
third-order Markov chain model performed best for predicting the
change-type a user is going to perform next for ICD-11. For ICTM
and OPL a second-order yielded the best prediction results, while
a first-order Markov chain model performed best for BRO. The

Table 2: The results for all datasets and all analyses conducted in Section 5. Rows marked with CV indicate the order of the best-
performing Markov chain models of our stratified cross-fold validation task (Section 4.2). Rows marked with Bayes depict the order
of the Markov chain models determined by the Bayesian model selection task (Section 4.2).

ICD-11 ICTM NCIt BRO OPL

Predicting Users for Classes (Section 5.1) Bayes 2 1 5 2 2
CV 1 1 2 1 2

Predicting Change Types for Users (Section 5.2) Bayes 4 4 - 2 1
CV 3 2 - 1 2

Predicting Change Types for Classes (Section 5.3) Bayes 4 3 - 2 2
CV 4 3 - 2 2

Predicting Properties for Users (Section 5.4) Bayes 2 1 - 3 4
CV 1 1 - 1 0

Predicting Properties for Classes (Section 5.5) Bayes 2 1 - 3 5
CV 1 1 - 3 5
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Figure 3: Results for the Stratified Cross-Fold Validation analysis: The plots depict the results of the stratified cross-fold validation for
all five datasets for the conducted analyses. The filled elements represent the Markov chain model for each dataset, which achieved
the best (lowest) average accuracy (position) score in the prediction tasks. The position score is calculated by determining the position
of the next most likely state to occur in a test path given k previous states, where k represents the investigated Markov chain order.
Probabilities to select the next most likely state are created using the training set to calculate the transition maps for all datasets and
Markov chain orders. The figures show that we can model activity sequences for all of our analyses as first- or higher-order Markov
chain models perform best in our prediction task for all datasets, with the only exception of OPL for the Predicting Properties for
Users analysis (see Figure 3(d)).

cross-fold prediction task also yielded an average accuracy (posi-
tion) between roughly 1.8 and 3.5.

This indicates that higher-order Markov chains can be used for
predicting the change-type a user is most likely to perform next.
Practitioners may use this information for recommending change
types users should edit next. By doing so we may help to improve
the overall progress and quality of the ontology; e.g., if we know
that several areas of the ontology or classes lack certain changes,
we can steer contributors, which exhibit a preference to perform
these kinds of changes, into a specific direction and enforce their
contributions in certain branches of the underlying knowledge rep-
resentation.

5.3 Predicting Change Types for Classes
As depicted in Table 2 the Bayesian model selection suggests a

second-order Markov chain model for BRO and OPL, while a third-
order model for ICTM and a fourth-order Markov chain model for

ICD-11 work best. A stratified 3-fold cross-fold validation (see
Figure 3(c) and Table 2) completely agrees with these results for
all datasets. The best fitting Markov chain models allow for an
average prediction accuracy (position) between 1.8 and 2.0.

The presented results indicate that we can predict the change-
type that is most likely conducted on a class next, given at least
the two most recent changes on said class as input for our trained
Markov chain models. Similar to predicting change types for users,
practitioners can use this information for recommending change
types that may be useful to change next on a given class. For exam-
ple, if a class is most likely to receive a certain change type next, we
can combine this information with the change types for users and
identify a suitable contributor to recommend this class for editing.

5.4 Predicting Properties for Users
The Bayesian model selection yields a second- and first-order

Markov chain model for ICD-11 and ICTM and a third- and fourth-
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order model for BRO and OPL (see Table 2). The conducted 3-fold
stratified cross-fold validation, to predict the property a specific
user is most likely to change next, yielded a first-order Markov
chain model for ICD-11 and ICTM (see Figure 3(d) and Table 2).
Due to a limited number of users, a stratified 2-fold cross-fold vali-
dation was conducted for BRO and OPL, which showed that a first-
and zero-order Markov chain model performs best for predicting
the next property for a given user respectively. This means that
there was no difference between the Markov chain models trained
for OPL and randomly (weighted) choosing (zero-order) the prop-
erty a user is most likely to change next.

This also means, that for ICD-11, ICTM and BRO we were able
to show that subsequent properties users change are dependent on
each other; at least for an order of one, which allows for an average
prediction accuracy between 1.9 and 2.2. For OPL, the Bayesian
model selection and the cross validation approaches do not directly
agree with each other; i.e., the Bayesian method suggest an order
of four while, interestingly, cross validation would prefer an order
of zero (weighted random selection).

In general, by using at least first-order Markov chains it is pos-
sible to predict the property a user is most likely to change next
for all datasets, except OPL. For steering users into the right direc-
tion, we may recommend appropriate properties to change next to
contributors.

5.5 Predicting Properties for Classes
Our Bayesian model selection results (see Table 2) suggests for

ICD-11 and ICTM a second- and first-order Markov chain model
respectively. Furthermore, the results indicate that for BRO a third-
and for OPL a fifth-order seem to be appropriate. A stratified 3-fold
cross-fold validation (see Figure 3(e) and Table 2) yielded the same
results, except for ICD-11, where a first-order model, instead of a
second-order model, represents the best predictive accuracy for the
underlying data. The conducted cross-fold validation prediction
task yielded an accuracy (average position) between roughly 1.8
and 2.4.

Again, our results indicate that we can predict the property that
is changed next for a given class reasonably well by using at least a
first-order Markov chain. Similar to predicting properties for users,
we may now enhance the overall quality of the ontology in an au-
tomatic way by aligning the gained information with the proper-
ties derived from our user analysis results and recommend users to
change specific suitable properties of classes next.

6. SUMMARY AND DISCUSSION
In the previous sections we have studied action sequences of

five collaborative ontology-engineering projects from the biomed-
ical domain (see Section 2). To begin with, we provided an initial
analysis regarding regularities and sequential patterns in Section 3
to give a basic insight into the processes underlying the user action
sequences at hand. First, we started by looking at randomness and
regularities by applying an adopted version of the so-called runs
test exemplary to the ICD-11 dataset in Section 3.1. Our results
clearly indicated that a significant array of sequences, based on dif-
ferent features, are produced in a non-random way; this means that
at least a portion of sequences is produced in a clustered or sys-
tematic arrangement. These observations warranted further stud-
ies regarding detailed insights into how these potential regularities
look like; hence, we focused on mining sequential patterns next
(see Section 3.2). We applied PrefixSpan on our User sequences
and could identify numerous sequential patterns of longer length
– specifically lengths 2 to 4. This lead us to the conclusion that
longer patterns seem to play a crucial role in contributor logs of

collaborative ontology-engineering projects and that there might
be a dependence between subsequent elements in the sequences
at hand. Consequently, we hypothesized that it would be beneficial
to consider memory effects when modeling our data, and thus user
actions. This means, that we wanted to incorporate information of
the past into deriving future information – for example, it might
be useful to check the two past properties a user has changed for
predicting the property she will most likely change next.

For doing so we resorted to Markov chain models of varying
order (see Section 4.1) that we applied to our data. We used a
Bayesian model selection method for finding the appropriate or-
der for each set of sequences at interest. Supplementary, we were
interested in investigating the predictive power of such models,
which we evaluated using a cross validation task as described in
Section 4.2. The results, as shown in Section 5, confirm our hy-
potheses: It is indeed useful to incorporate memory effects into the
process of modeling user contribution in collaborative ontology-
engineering projects. This is particularly imminent as several higher
order models are to be preferred throughout all investigations, as
can be seen in Table 2. For example, an order of three means that
we can best model or predict the next event (e.g., property) by look-
ing at the past three events in a sequence – hence, memory effects
are in play. We need to note that all our applied methods com-
pensate the goodness of fit with the corresponding complexity of a
model, thus, we penalize higher orders (Occam’s razor) which is a
necessary step for accounting for potential overfitting.

We can see that both the Bayesian model selection as well as
the cross validation prediction task mostly result in similar order
suggestion even though they are based on distinct approaches. If
the outcome of both methods differ, we can for the most part ob-
serve that the cross validation method ensues slightly lower orders
than the Bayesian method. This can be explained by the different
ways both methods work. The Bayesian method always learns the
Markov chain model on the complete model and then performs a
model selection strategy which is based on comparing the posterior
probabilities of varying order models. Contrary, the cross valida-
tion technique learns the Markov chain on a different set (train-
ing) compared to where it is evaluated (testing). These differences
also account for the drastic mismatch observed between the cross-
fold validation prediction task and the Bayesian model selection
for OPL in our Predicting Properties for Users analysis, where
only a very limited number of sequences (three) with unevenly dis-
tributed properties across these sequences, is available. Also, the
way we rank the probabilities in the cross validation evaluation
influences the outcome. Currently, we use modified competition
ranking which assigns the worst rank to ties and hence, we very
strictly penalize higher orders. Hence, it comes to no surprise for
us that if different, the cross validation mostly suggest lower or-
ders than the Bayesian approach. One advantage of the Bayesian
approach though is that we could further incorporate penalizations
of higher orders when working with model selection; e.g., using an
exponential prior [27].

In general, the application of Markov chains on the activity logs
of five collaborative ontology-engineering projects has shown that
regularities exist. These regularities can potentially be used and ex-
ploited by project and community managers to augment and assist
users in contributing to the underlying structured knowledge rep-
resentation. For example, knowing which property a user is most
likely to change next and which user is most likely to change a spe-
cific concept next could be used to automatically adjust and modify
the interface to allow for quicker and personalized workflows. This
is especially important for projects the size of ICD-11 or NCIt with
thousands of potential classes to contribute to.
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We also need to note that the corresponding orders that get sug-
gested might also be – at least to some extent – influenced by how
the sequences are shaped; i.e., potential influence factors might be:
the distribution of the length of sequences or the number of se-
quences in a dataset. However, we can argue that these are also
properties emerging from how users behave in such systems. Yet, if
we are specifically interested in comparing the models of different
datasets we need to look deeper into these factors which we leave
open for future work. Furthermore, we only work with limited data
which also influences the choice of order. Precisely, the number of
distinct states as well as the number of observations affect the ap-
propriate order. Basically, the more states one works with, the more
difficult it is to compensate the much higher complexity of higher
order models with the goodness of fit. Also, we do not necessarily
know what would happen if we would perform our investigations
on an unlimited number of observations; most likely higher orders
will then statistically significantly outperform lower ones (that we
e.g., found in our studies) – notwithstanding, working with limited
data is a common scenario for researchers and practitioners war-
ranting our experiments and findings.

7. RELATED WORK
The work presented in this paper was inspired by work of the fol-

lowing research areas: Collaborative ontology-engineering, Markov
chains and sequential pattern mining.

7.1 Collaborative Ontology Engineering
An ontology represents an explicit specification of a shared con-

ceptualization [14, 5, 32]. In computer-science, this definition usu-
ally refers to a construct (formalization) that is automatically pro-
cessable by a machine representing an abstraction of the real world
(shared conceptualization). Ontologies allow computers to “under-
stand” relationships between entities and objects that are modeled
in an ontology.

On the other hand, collaborative ontology engineering represents
a new field of research with many new problems, risks and chal-
lenges. Contributors of such projects, similar to Wikipedia, engage
remotely (e.g., via the Internet or a client–server architecture) in the
development process to create and maintain an ontology. As men-
tioned, an ontology represents a formalized and abstract represen-
tation of a specific domain; thus, disagreements between authors on
certain subjects can occur and tools are needed that augment col-
laboration and help contributors in reaching consensus when mod-
eling these (and other) topics. Indeed, the majority of the literature
about collaborative ontology engineering sets its focus on survey-
ing, finding and defining requirements for the tools used in these
projects [20, 13]. Various tools have been developed, specifically
aiming at supporting the collaborative development of ontologies.
For example, Semantic MediaWikis [18] and its derivatives [2, 12,
26] add semantic, ontology modeling and collaborative features to
traditional MediaWiki systems.

Protégé, WebProtégé [34] and its extensions and derivatives for
collaborative development are prominent stand-alone tools that are
used by a large community worldwide to develop ontologies in a
variety of different projects. Both WebProtégé (and its derivatives)
and Collaborative Protégé have shown to provide a robust and scal-
able environment for collaboration and are used in several large-
scale projects, including the development of ICD-11 [33].

For analyzing and visualizing the collaborative processes that oc-
cur during these projects, Pöschko et al. [24] and Walk et al. [36]
have developed PragmatiX, a tool that allows to visualize and an-
alyze aspects of the history of collaboratively engineered ontolo-
gies. The tool also provides quantitative insights into the ongo-

ing collaborative development processes. Falconer et al. [11] in-
vestigated the change-logs of collaborative ontology-engineering
projects, showing that users exhibit regularities in their contribution
behavior when editing to the ontology. Strohmaier et al. [31] ana-
lyzed the collaborative processes in a number of different collabo-
rative ontology-engineering projects by investigating hidden social
dynamics and provide new metrics to quantify various aspects of
these engineering processes. Wang et al. [39] used association-rule
mining to analyze user editing patterns in collaborative ontology-
engineering projects.

7.2 Markov chain models
In previous Web studies, Markov chain models have been fre-

quently applied for understanding and modeling Web navigation
(e.g., [23, 10, 42]). Mostly, the used Markov chain models were
memoryless following the Markovian assumption which is e.g.,
also modeled in the random surfer model in Google’s PageRank[8].
Nonetheless, various researchers were also interested in studying
the appropriateness of modeling memory effects into models of hu-
man navigation – i.e., using higher order chains (e.g., [4, 23]). Yet,
the studies revealed that the benefit of higher orders can frequently
not compensate the higher complexity and the first-order Markov
chain model seems to be a plausible choice. Recently, Chierichetti
et al. [9] turned towards again questioning the choice of a first-
order chain for modeling human navigation and suggested that the
Markovian assumption might be wrong. Consequently, Singer et
al. [27] introduced a series of precise model selection techniques
for choosing the appropriate Markov chain order. They applied
the framework to a series of human navigational datasets and again
showed that the memoryless model indeed seems to be a plausible
abstraction for human navigation based on the lack of statistically
significant improvements of higher order models mostly due to the
much higher complexity as already pointed out several years ago.
However, the authors also showed that human navigation on a top-
ical level reveals memory effects. Walk et al. [37] adopted this
framework to be applicable to structured logs of changes in collab-
orative ontology-engineering projects and investigated the structure
of first-order Markov chains for the change-logs of five different
collaborative ontology-engineering projects [38].

7.3 Sequential Pattern Mining
In 1995, Agrawal and Srikant [1] have first addressed the prob-

lem of sequential pattern mining. They stated that given a collec-
tion of chronologically ordered sequences, sequential pattern min-
ing is about discovering all sequential (chronologically ordered)
patterns weighted according to the number of sequences that con-
tain these patterns. The algorithms presented in Agrawal and Srikant
[1], in particular AprioriAll and AprioriScale, represent the first a
priori sequential pattern mining algorithm. In 1996, Srikant and
Agrawal [29] further included time-constraints and sliding win-
dows to the definition of sequential patterns and introduced the gen-
eralized sequential pattern algorithm (GSP). This means that a spe-
cific pattern cannot occur more frequently (above a threshold) if a
sub-pattern of this pattern occurs less often (below that threshold).
Many other examples of a priori algorithms have been discussed
in literature [19, 40, 3], with SPADE [41] being one of the most
prominently used and referred to algorithms. One major problem
assigned to the a priori based sequential pattern mining algorithms
was (in the worst case) the exponential number of candidate gener-
ation. To tackle this problem so called pattern-growth approaches
have been developed [15, 22].

Many researchers have adapted different algorithms and approaches
for different domains to anticipate changing requirements, such as
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[16] who analyzed algorithms for sequential pattern mining in the
biomedical domain. In Walk et al. [37] the authors have presented a
novel application of Markov chains to mine and determine sequen-
tial patterns from the structured logs of changes of collaborative
ontology-engineering projects.

For the analysis presented in this paper we made use of PrefixS-
pan [22] to investigate if the change-logs of collaborative ontology-
engineering projects exhibit commonly used, sequential patterns –
we thoroughly introduced this algorithm in Section 3.2.

8. CONCLUSIONS & FUTURE WORK
In this paper our main objective was to predict user actions in

collaborative ontology-engineering projects. To that end, we first
explored if and to what extent regularities and sequential patterns
can be extracted from the change-logs of our five datasets. We
found that at least a set of sequences were produced in a non-
random way and that frequent (longer) patterns can be extracted.
We then modeled user actions by using Markov chain models which
allowed us to incorporate our findings about regularities and pat-
terns. We fitted the models to our sequence data and evaluated them
with a specific focus on prediction accuracy. We found that incor-
porating memory effects (serial dependence) into our models can
indeed be useful. The generated predictive models for user actions
can not only be used for various recommendation purposes, but
also provide project administrators and managers with the means
to assess the impact of potential changes on the ontology and the
community. For example, knowing which user is most likely to
change a specific concept next combined with the information of
what kind of change that user is most likely to perform next can po-
tentially be exploited to create personalized task recommendations
or to adapt the user-interface to allow for dynamically assisted and
faster workflows.

In future work, we first want to extend our choice of models
for predicting user action by exploring, for example, varying or-
der Markov chain models, Hidden Markov chain models or Semi
Markov chain models. When fitting these models to the data, we
plan on providing further evaluation comparisons between these
distinct models and consequently, also want to explore the poten-
tial of incorporating memory into these alternative models. Fur-
thermore, we want to look at other data sources (e.g., Semantic
MediaWikis) to be able to produce more general statements, inde-
pendent from the datasource, and also closely investigate the influ-
ence of different data properties as discussed in Section 6.

We strongly believe that the analysis and predictive models pre-
sented in this paper represents an important step towards a better
understanding of collaborative ontology-engineering projects in the
biomedical domain.
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3.5. Computing Semantic Relatedness from Human Navigational Paths

3.5. Computing Semantic Relatedness from Human

Navigational Paths: A Case Study on

Wikipedia

This article provides answers to the second research question of this thesis.

With regard to the first three articles tackling the first research question,

this thesis has highlighted that human trails on the Web exhibit patterns,

regularities and memory effects at least on some scale. Based on these

findings and statements by related work, I have been interested whether we

can also utilize human trails on the Web for tasks that are usually solved

by using Web content only. As an example, the second research question

focuses on studying whether we can leverage human navigational trails for

the task of calculating semantic relatedness between concepts.

To that end, this article presents a series of experiments studying the

usefulness of around 1.8 million navigational trails through concepts of

Wikipedia for this task. Colleagues and I have used a method that builds

upon the notion of co-occurrence information and that captures how

humans navigate between concepts. The basic idea is that concepts are

more semantically related to each other if these concepts frequently co-

occur close by in navigational trails. I also make an implementation of this

method available online7 for facilitating future research. By applying the

method to given data and evaluating the results on a set of gold-standards

and baseline corpora, this article illustrates that we can indeed calculate

semantic relatedness between concepts by simply looking at how humans

navigate between concepts. However, not all trails are equally useful and

intelligent selection of navigational trails based on several characteristics

of trails can further enhance the quality of the calculated scores. Overall,

this article further demonstrates that human trails on the Web exhibit

patterns, regularities and strategies that seem to guide their consecutive

behavior. In fact, we can also utilize these as shown in this article for the

exemplary task of calculating semantic relatedness between concepts. This

argues for an expansion of existing methods to also consider human trails

on the Web.

7https://github.com/psinger/PathTools
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1. Introduction

Computing semantic relatedness2 between concepts represents a fundamental
challenge on our way to a semantically-enabled web. Especially, common sense
knowledge in terms of semantic relatedness is of special interest in e.g., improving
information retrieval or language processing. To obtain a judgement of semantic
relatedness of two terms or concepts, the idea is to rely on the accumulated or
common knowledge. Rubenstein & Goodenough (1965) have pointed out that
there is a positive relationship between the degree of semantic relatedness of a
pair of terms and the degree to which their contexts are similar. Hence, the idea
is that a semantic relatedness score captures this common sense knowledge over
a set of contexts and abstracts and generalizes it.

Psychological experiments (Tversky, 1977; Medin et al., 1993) have shown
that semantic relatedness is both context dependent and asymmetric. Context de-
pendency means that the determined relatedness is influenced by the context the
words appear in and the semantic relatedness may be asymmetric as people may
provide distinct ratings depending on the direction the words are presented. Nev-
ertheless, Aguilar & Medin (1999) showed that this asymmetry just occurs at spe-
cial occasions and Medin et al. (1993) also showed that the difference in ratings
for a given word pair is less than five percent. Hence, we will focus on symmet-
ric semantic relatedness in this work, as we believe that this is sufficient for the
investigations we want to conduct and we can ignore these small differences.

Recent approaches to identify semantic associations between concepts exploit
the rich fabric of emerging information networks such as Wikipedia. Existing
semantic analysis methods such as those by Gabrilovich & Markovitch (2007),
Ponzetto & Strube (2007a) or Yeh et al. (2009) have shown great potential by
using textual or structural (link) information on Wikipedia. While these methods
have produced promising results, they only capture semantics from a limited set
of people (e.g., Wikipedia editors) and they mostly neglect pragmatics (i.e., how
Wikipedia is used). At the same time, millions of web users navigate Wikipedia
daily to find information, to educate themselves or for research issues. When
navigating a set of articles on Wikipedia, users typically need to tap into their in-
tuitions about real-world concepts and the perceived relationships between them
in order to progress towards their set of targeted articles. Humans tend to find
intuitive paths instead of necessarily short paths, while contrary an automatic al-

2Note that semantic relatedness does not necessarily mean the same as similarity. Amongst
others it includes: similarity, meronymy, hypernymy or IS-A relationships.

2
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gorithm would try to find a shortest path between two concepts that may not be as
semantically rich and intuitive as a navigational path conducted by a human.

A great advantage of such navigational paths by humans is that they can be
captured in a very simple way. The only prerequisite is that there is a group of
users that navigate a system. Furthermore, many existing methods only work
well if the system at hand provides high quality content that can be leveraged for
calculating semantic relatedness. Contrary, our approach is independent of the
content of a resource. It also gives opportunities to calculate semantic relatedness
between different kind of resources. For example, suppose we want to calculate
semantic relatedness between images and textual pages of a website. This would
be a very difficult task for content based approaches, as both resources exhibit
different features. The method proposed in this work though would work on any
type of resource as long as it is navigated by users.

While such data about navigational paths could potentially represent a pro-
foundly rich resource for calculating semantic relatedness between concepts, it
has not received much attention by the research community yet.

1.1. Research Questions
Consequently, we would like to explore (i) whether human navigational paths

represent a useful resource for calculating semantic relatedness between concepts
on Wikipedia at all, and (ii) if so, in what ways, e.g., what kinds of navigational
paths are particularly useful?

In this paper, we tackle these questions and present a series of principled ex-
periments studying the usefulness of almost 1.8 million human navigational paths
on Wikipedia for calculating semantic relatedness between concepts (cf. our pre-
vious work on this topic (Singer et al., 2013)). Navigational data was obtained
from a semi-controlled, large-scale navigation experiment – a Wikipedia-based
game called “The WikiGame”3, in which users need to navigate from a given
Wikipedia concept (the starting node) to another concept (the target node). These
human navigational Wikigame paths present an abstraction of real user navigation
in information networks and enable us to give detailed insights into the usefulness
of such data4.

3http://www.thewikigame.com
4When we speak about human navigational paths throughout or experiments we refer to the

paths captured via the game.

3
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1.2. Contributions of the paper
Our experiments demonstrate that human navigational paths – captured via a

Wikipedia-based navigation game – can represent a viable source for calculating
semantic relatedness between concepts in information networks. We show that se-
mantic relatedness calculated on this kind of human navigational data can be more
precise than semantic relatedness calculated on paths automatically extracted from
Wikipedia’s plain link structure. Finally, we find that not all navigational paths are
equally useful. Intelligent selection of navigational paths based on path character-
istics can improve accuracy.

The paper is structured as follows: In Section 2, we give an overview of related
work. Section 3 describes our methodology for calculating semantic relatedness
based on navigational paths together with a description of the datasets and evalua-
tion methods that we have used in this work. This is followed by Section 4, where
we conduct baseline experiments to explore whether human navigational paths
can contribute to the task of computing semantic relatedness. In Section 5, we
present results from path selection experiments where we investigate which char-
acteristics of human navigation paths render them useful for semantic relatedness.
Finally, we discuss and conclude our work in Section 6.

2. Related Work

Computing semantic relatedness between concepts has received much atten-
tion from our research community in the last few years, and a wide array of ap-
proaches exists. Semantic relatedness scores are widely needed and used in a va-
riety of applications and studies, e.g., word sense disambiguation (Resnik, 1998),
usage for word spelling errors (Budanitsky & Hirst, 2001), text segmentation us-
ing lexical cohesion (Kozima, 1993; Manabu & Takeo, 1994), image (Smeulders
et al., 2000) or document (Srihari et al., 2000) retrieval, cognitive science (Talmi
& Moscovitch, 2004) and many more. For a great overview over many different
methods to calculate semantic relatedness, see the survey done by Zhang et al.
(2012).

Li et al. (2003) point out that semantic relatedness measures and methods can
basically be categorized into two groups: edge-counting-based and information-
theory-based methods. When we suppose that a lexical taxonomy has a tree shape
then Rada et al. (1989) proved that the distance in the minimum number of edges
that separate two given words in such a tree is a metric for specifying the semantic
distance between these two words – or to be more precise: the semantic related-
ness. While these edge-counting methods make use of IS-A relations only, they are

4
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very useful for applications with highly constrained taxonomies (Li et al., 2003).
According to Resnik (1998) the information-theory-based methods define seman-
tic relatedness between two words using information content and the more infor-
mation two concepts or words share the more related they are. Jiang & Conrath
(1997) presented an approach for computing semantic relatedness between words
and concepts combining both edge-based and information-theory-based methods.
This method is often simply referred to as the Jiang-Conrath distance.

Above described methods can be applied to different information resources.
One of the most often and successfully used resource for calculating semantic re-
latedness is the lexical database WordNet5 (Miller, 1995). Yang & Powers (2005)
proposed a new methodology for calculating semantic relatedness on WordNet
using edge-counting techniques. In (Patwardhan, 2006) the authors introduced a
WordNet based measure of semantic relatedness by combining both structure and
content of WordNet and furthermore enhanced it with co-occurrence information
derived from raw text. This enabled the authors to build gloss vectors and hence,
they used cosine similarity in order to specify semantic relatedness scores between
words. A similar approach has been conducted by Banerjee & Pedersen (2003)
who used glosses to determine the number of shared words between the defini-
tions of two words for specifying the semantic relatedness between them. Budan-
itsky & Hirst (2001) compared five different measures of semantic relatedness on
WordNet and concluded that the Jiang-Conrath distance is the most accurate by
evaluating the results against human judgements and an actual NLP task. Pedersen
et al. (2004) introduced a PERL module that implemented nine different measures
of semantic relatedness using WordNet and it is widely used by researchers. In
subsequent work by Budanitsky & Hirst (2001) the authors again evaluated sev-
eral semantic relatedness measures using the introduced PERL module using the
task of detecting and correcting real-world spelling errors. The authors again show
that the Jiang-Conrath distance is superior to other methods. Navigli & Ponzetto
(2012a) took WordNet one step further by creating BabelNet, an automatically
generated multilingual extension of WordNet. In their publication, they covered
the generation of BabelNet by incorporating WordNet, Wikipedia and Machine
Translation tools, its evaluation on both new and existing gold standard datasets
and the viability to use BabelNet as a resource to perform both monolingual and
cross-lingual word sense disambiguation (see Navigli & Ponzetto (2012b)).

More recently, with the rise of the Web 2.0, user-generated content provided

5http://wordnet.princeton.edu/
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great opportunities for calculating semantic relatedness scores by directly lever-
aging data generated by humans. Especially tagging systems have attracted lots of
interest as a source of data for this task in the past (e.g., (Strohmaier et al., 2012),
(Helic et al., 2011), (Cattuto et al., 2008) or (Markines et al., 2009)). But also
information networks like Wikipedia have received attention as a resource for cal-
culating semantic relatedness. Because giving a complete review of the literature
in this vast field of calculating semantic relatedness using user generated content
is beyond the scope of this paper, we will primarily focus our discussion on a few
algorithms and methods that are most salient and relevant to this work. Instead,
we point the interested reader to a capacious survey about the uses of Wikipedia
for many purposes done by Hovy et al. (2012).

Many of the methods we discuss here have been developed for or can easily be
applied to Wikipedia. In the following, we differentiate between methods which
focus on exploiting different aspects of information networks such as Wikipedia –
especially content and links.

2.1. Content-based methods
A simple way of determining the relatedness between concepts is to represent

the content of Wikipedia articles as bag-of-word vectors (Manning et al., 2008).
Relatedness between two concepts can then be computed by calculating the simi-
larity between vectors by e.g., using cosine similarity.

Gabrilovich & Markovitch (2007) applied tf-idf to Wikipedia and introduced
a method called Explicit Semantic Analysis (ESA). This method builds a weighted
inverted index and extracts a weighted vector of Wikipedia concepts. The vectors
of different concepts can be compared, which leads to a calculation of relatedness
between terms based on their tf-idf weighted vectors. One of the advantages of
ESA is that it allows to calculate the relatedness between arbitrary text – e.g.,
individual words or long documents.

Another method for calculating semantic relatedness is Latent Semantic Anal-
ysis (LSA) (Landauer et al., 1998; Deerwester et al., 1990). LSA can be used for
determining semantic relatedness between Wikipedia concepts by producing word
count matrices based on articles and reducing their dimensionality using singular
value decomposition. Similarity again can be calculated using the angle between
vectors.

In addition to analyzing content, link based methods have received increasing
attention by our research community lately.

6
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2.2. Link-based methods
Two main types of link based methods can be distinguished: (a) methods fo-

cusing on link information present for a specific page – i.e., links on a page can be
seen as some type of topical markers – and (b) methods exploiting paths through
Wikipedia’s link network.

2.2.1. Links as topical markers for Wikipedia concepts
Ito et al. (2008) use co-occurrence information between links present on the

same page for computing semantic relatedness between concepts using a co-
occurrence window size of k and pruning the vectors with a tf-idf based approach.
Milne (2008) has proposed a new method of calculating semantic relatedness
on Wikipedia leveraging the link structure called “The Wikipedia Link Vector
Model”. This model judges the similarity between two articles by calculating the
angle between the link vectors between two pages. The vectors are built by link
counts weighted by the probability of each link occurring. Furthermore, the links
get an additional weighting to reduce the impact of frequently occurring links to
very common target concepts. Turdakov & Velikhov (2008) have established a
similar approach to exploit Wikipedia’s link structure in order to calculate similar
Wikipedia pages. The technique uses Dice’s measure and also ranks two pages
similar, if the fraction of similar links is high. The authors as well use a differ-
ent weighting scheme for the type of link that occurs on a page and they evaluate
their approach based on a word-sense disambiguation task showing that they can
achieve better results than a naive technique of just looking at the neighborhoods
of the context and the term in Wikipedia. A more recent method is Salient Seman-
tic Analysis (SSA) (Hassan & Mihalcea, 2011). SSA leverages salient features
in the context of a term. For example, links on Wikipedia can be interpreted as
salient features for terms inside some predefined distance.

2.2.2. Topology based methods
Ito et al. (2008) have introduced an adaption to tf-idf called pfibf utilizing links

between two concepts inside Wikipedia’s link network. The assumption is that (i)
the number of paths from article i to j in the Wikipedia topology and (ii) the length
of each path from article i to j determine the relatedness between two concepts.

In (Yeh et al., 2009) the authors present WikiWalk, a method that performs
random walks based on Personalized PageRank. Based on the output vectors of
individual random walks for given words, semantic relatedness is calculated by
computing the similarity between both vectors. By pruning the initialization of

7
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the teleport vector with Explicit Semantic Analysis, the authors report that their
method can even slightly outperform ESA.

Yazdani & Popescu-Belis (2013) created a network topology by parsing the
contents of Wikipedia articles and linking articles which are semantically similar.
They applied a weighted random walk technique on both the artificially created
network as well as the basic Wikipedia topology and calculated the visiting prob-
ability from one set of nodes to another. They finally showed that a combination
of both techniques performed better than both techniques alone.

Strube & Ponzetto (2006) show that straightforward path based measures work
very well when focusing on Wikipedia’s category taxonomy and that a combina-
tion with WordNet is very suitable in order to improve the corresponding accuracy.
Furthermore, the authors have evaluated their results by performing a NLP based
case study, showing that such knowledge bases collaboratively produced by a huge
amount of users like Wikipedia actually can be used for such tasks with similar
effects to hand-crafted taxonomies by experts like WordNet (see also (Ponzetto &
Strube, 2007b)). In (Milne & Witten, 2008) the authors proposed a similar ap-
proach called the “Wikipedia Link-based Measure (WLM)” which as well only
leverages Wikipedia’s hyperlink structure while it ignores the content and cate-
gory hierarchy. In (Ponzetto & Strube, 2007a) the authors extend their idea by
automatically determining isa and notisa relations between Wikipedia categories.
An automatic extraction of the type of semantic relations has also been success-
fully conducted by Nakayama et al. (2008).

The work most related to this paper is by West et al. (2009), who have an-
alyzed a set of human navigational paths obtained from Wikispeedia6, a game
similar to “TheWikiGame”. The authors introduce a method for computing an
asymmetric relatedness measure for concepts based on human navigational paths
in the corpus. The authors focus on calculating semantic relatedness based on
information between a concept in a path and the target page of this game. To the
best of our knowledge, West et al. (2009) have been the first to study semantics in
human navigational paths on Wikipedia. While their work demonstrates the great
potential of this approach, it is limited in some ways: (i) semantic relatedness can
only be calculated between a node in a path and a specific target node of a game
if they directly co-occur in a path or (ii) the dataset was limited to a small subset
of Wikipedia and to a comparatively small set of navigational paths – concretely
1,694 paths.

6http://www.cs.mcgill.ca/ rwest/wikispeedia/
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2.3. Summary
Calculating semantic relatedness has proven to be an important facet needed

for several applications. Many researchers focused on leveraging lexical tax-
onomies for calculating semantic relatedness scores. More recently, our research
community also proposed methods for using user generated content like tagging
data or information networks like Wikipedia. As many existing state-of-the-art
works evaluated their methods on the same WordSimilarity-353 gold standard
dataset, we report some previous accuracy results in Table 1. However, we be-
lieve that it is difficult to directly compare our accuracy results to those obtained
by existing well-known methods as the exact evaluation mechanisms of existing
methods are difficult to judge. We provide a short discussion about this topic in
Section 6.

Recent research on link and path based measures (e.g., (Ito et al., 2008), (Yeh
et al., 2009) or (Strube & Ponzetto, 2006)) has demonstrated the potential of ex-
ploiting topological link structure of Wikipedia for determining semantic related-
ness. Our work significantly expands the state-of-the-art in this area by presenting
a method for calculating semantic relatedness that utilizes data about human nav-
igational paths through Wikipedia’s topological link network. We build on the
work and first signals detected by West et al. (2009), but use a novel approach
for calculating semantic relatedness based on a corpus of navigational paths that
overcomes several limitations the method of West et al. (2009) exhibits. Con-
cretely, the method conducted in this paper can calculate semantic relatedness
between any two nodes in a corpus of paths and not only between a node in a path
and a specific target game node. We also overcome the necessity of a direct co-
occurrence in at least one path between two nodes if one wants to determine the
semantic distance between these two concepts. The only limitation of our method-
ology is that a concept is present at least once in any single path of the corpus in

Table 1: WordSimilarity 353 scores for existing methods

Method Score Reference
WikiRelate! 0.48 (Strube & Ponzetto, 2006)
LSA 0.56 (Finkelstein et al., 2002)
WikiWalk 0.63 (Yeh et al., 2009)
WordNet 0.66 (Agirre et al., 2009)
WLVM 0.72 (Milne, 2008)
ESA 0.75 (Gabrilovich & Markovitch, 2007)
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order to calculate the semantic relatedness between this and any other concept.
In particular, we i) expand the scope of current investigations dramatically (we
use �1.8 million paths from games that are taking place on the entire English
Wikipedia), ii) deploy state-of-the-art evaluation techniques (WordSimilarity-353
and other standard evaluation datasets) and iii) identify characteristics of naviga-
tional paths that are most useful for computing semantic relatedness.

3. Methods and Datasets

In the following, we establish some preliminaries for our work; then we dis-
cuss different relatedness measures and the way we apply them to our corpus of
human navigational paths. Finally, we describe the datasets at hand and our eval-
uation method.

3.1. Preliminaries
We define a Wikipedia W graph G as a graph GW � pVW, EWq with ver-

tices – i.e., pages or concepts – VW and directed edges – i.e., links – EW �
tpv,wq|v,w P VWu. A page v � pid, title, contentq P VW is a triple of a positive
integer id, denoting an unique number for easy identification, a string title, denot-
ing the title of the page (name) as well as another string content, which contains
a definition as well as a description of the concept given by the title. The content
also contains all the links which define the edges originating from this page. In
fact, an edge pv,wq can only be contained in EW, iff the content of page v contains
a hyperlink to page w.

We can now define inlinkspvq and outlinkspvq for a given page v. The set of
outlinks contains all links originating from v and is easily deduced as outlinkspvq �
tpv,wq P EW|w P VWu. The set of inlinks contains all links pointing from different
pages to page v and is defined analogously as inlinkspvq � tpw, vq P EW|w P VWu,
but is not as directly tractable as the set of outlinks.

Given a graph G � pV, Eq (e.g., a Wikipedia graph GW) with vertices V
and directed edges E � tpv,wq|v,w P Vu, we now define a path p as a n-tuple
pv1, . . . , vnq with vi P V, 1 ¤ i ¤ n and pvi, vi�1q P E, 1 ¤ i ¤ n � 1. We define
P as the set of all paths and the length of a path lenppq as the length of the corre-
sponding tuple pv1, . . . , vnq. Additionally, we want to define p � tvk|k � 1 . . . nu
as the set of nodes in a path p. Note that |p| ¤ n.

10
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3.2. Measures for semantic relatedness
Schuetze & Pedersen (1997) introduced the method for calculating semantic

similarity using lexical co-occurrence information between words – or in our case
Wikipedia concepts. The basic idea is to represent each concept as a vector cap-
turing the co-occurrence count to all other concepts in a multi-dimensional space.

A simple procedure for determining semantic relatedness between concepts
based on such co-occurrence information is to use direct co-occurrence. First-
order co-occurrence (Schuetze & Pedersen, 1997) implies that concepts can only
be similar if they co-occur directly (e.g., in the same documents or in our case
paths). However, in our experiments we have observed that this way of calculating
semantic relatedness is not suitable for navigational data because many highly
related concepts never directly appear in the same path. Furthermore, many word
pairs of the WordSimilarity-353 evaluation dataset never co-occur directly in our
available data. Also, first-order co-occurrence focuses on semantic relatedness
with a tendency to more general concepts.

To avoid this problem, we calculate relatedness between concepts based on the
similarity between their corresponding co-occurrence vectors. This is referred to
as second-order co-occurrence (Schuetze & Pedersen, 1997), which assumes that
words are semantically related if they share similar neighbors. Second-order co-
occurrence emphasizes if two concepts i and j are similar in a synonymous way.
This method also removes the necessity of two concepts directly co-occurring in a
path for specifying the semantic relatedness between them and is one of the main
advantages of our method over the one introduced in (West et al., 2009). We will
use this method for the purpose of our paper.

In order to be able to calculate second-order co-occurrence similarity between
two Wikipedia concepts i and j, the corresponding vectors vi � rcoi1, coi2, ..., coins
and v j � rco j1, co j2, ..., co jns for both concepts are required. In both vectors, coik

or co jk is the corresponding first-order co-occurrence count between concepts i
and k or j and k. We can calculate the relatedness between vectors vi and v j by us-
ing a similarity (distance) measure between vectors. As an example, let us suppose
we want to calculate the semantic relatedness between concept i � Germany and
j � Ireland given our example illustrated in Figure 1a. We use the correspond-
ing vectors vi and v j present in the symmetric co-occurrence matrix v depicted
on the right side in Figure 1b and calculate the cosine similarity measure given
both vectors, which results in 0.35 for this simple example (the sliding windows
mechanism will be described in Section 3.3). Throughout this work we use cosine
similarity (Cattuto et al., 2008; Salton, 1989) which has linear complexity and has
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shown good performance in comparable cases. The choice of similarity measures
is secondary to our method7.
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(b) Co-occurrence matrix

Figure 1: Figure 1a illustrates the sliding window mechanism for a window size
of k � 3 on a path from Asteroid to Ireland8. Circles represent Wikipedia articles,
rounded rectangles represent a window. The solid arrows represent the path taken,
the dashed lines with dotted ends each represent a (symmetric) co-occurrence be-
tween two concepts. We only highlight the first two windows. The resulting
co-occurrence matrix after all steps is shown on the right in Figure 1b.

3.3. Semantic relatedness for paths
To compute semantic relatedness using co-occurrence information inside a

corpus of navigational paths, we define a co-occurence graph between concepts
as a weighted undirected graph Gcoocc � pVW, Ecooccq where the set of vertices
VW are the corresponding Wikipedia concepts available for all paths in the corpus.
The set of edges Ecoocc is defined as follows: An edge e � tu, vu lies in Ecoocc, iff
u and v appear on the same path p, i.e., if u, v P p. The weight of the edge wpeq
is determined by the number of co-occurrences of u and v on any path p P P. We
use undirected co-occurrence edges as we do not want to explicitly capture the
order of the appearance of two nodes in a path but rather specify their symmetric
co-occurrence as we are also calculating symmetric semantic relatedness between

7We used other vector similarity measures like Mutual Information or Dice Coefficient with
similar results.

8The asteroid picture is courtesy of NASA/JPL-Caltech. All other pictures are published under
the Creative Commons licence.
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two concepts. To capture relatedness of two concepts in a corpus of human nav-
igation paths, we use sliding windows of a variable size k following the natural
assumption that the distance between two concepts is crucial for calculating pre-
cise semantic relatedness scores (cf. (Schuetze & Pedersen, 1997)). In this paper
we investigate paths instead of documents. Hence, we follow and investigate the
hypothesis that the navigational distance between two concepts in a path (i.e., they
are just a specified hop range away in a path) is important in order to calculate pre-
cise semantic relatedness scores. Given a navigational path with a large length of
20 visited nodes, it may make more sense to consider the co-occurrence between
the first and third node in the path instead of the first and final target node in this
long path.

Formally, this sliding window process can be expressed in the following way:
An undirected co-occurence edge e � tu, vu between two concepts u, v P VW
only exists, iff u and v appear on the same path p and for the directed subgraph
q � pu, . . . , vq of p the inequality lenpqq ¤ k holds. Figure 1a illustrates how we
calculate the co-occurrence between concepts available in a path with a sample
window size of k � 3. The red box represents the first window of the path (left-
most window) in which the concept Asteroid co-occurs with the next k � 1 � 2
concepts in the path (C.F. Gauss and Germany). Since we use a symmetric co-
occurrence measure, the next two concepts co-occur with Asteroid as well. The
window then slides one step to the right, (blue box, right most window). We repeat
this step until position n is reached. The resulting co-occurrence matrix is shown
in Figure 1b – higher co-occurence counts are possible for larger data. Using
this matrix, the relatedness between concepts can be determined by calculating a
similarity (i.e., cosine) between two concept-vectors (see Section 3.2).

3.4. Datasets
We now introduce the datasets for our experiments and the ways in which they

have been obtained.

3.4.1. Wikigame
This dataset is based on the online game “TheWikiGame”9. The platform

offers users a multiplayer game, where the goal is to navigate from one Wikipedia
page (the start page) to another Wikipedia page (the target page) which is linked to
the start page through Wikipedia’s underlying topological link network. The users

9http://thewikigame.com/

13

3. Papers

116



can leverage Wikipedia’s directed link structure to reach their target node, but in
some cases users also establish new links in their paths between articles that might
not yet exist in Wikipedia’s topological link network. This can happen when,
for example, users use the back button in their browser to navigate to a previous
article, and the current article does not have a link back to the previous one. One
explanation for such behavior could be that users originally end up at a concept
they are not happy with and decide that going another route may be a better idea.
This is a rich feature of this dataset as it enables us to establish relations between
concepts that we normally would not see using Wikipedia’s link network. The
logic of the game can be transported to any information network consisting of
links between resources. If the user is presented with all links leading from one
page to another the game can be applied and played in similar fashion.

A path in this dataset is the attempt of a single player to solve a game. We only
consider paths where a user navigates through at least two pages and only if those
pages are available in our Wikipedia dump consisting of concepts from the main
namespace (see Section 3.4.2). Furthermore, we know which paths are successful
– i.e., the user has reached the target concept – and which are unsuccessful – i.e.,
the user has failed to find a route to the target in the given timeframe. Table 2
shows some main characteristics of our Wikigame dataset. The adjusted dataset
at hand consists of 1,799,015 navigation paths captured between 2009-02-17 and
2011-09-12. The distribution of path lengths is discussed and depicted later in
Figure 3. We can see differences in the length distribution for successful, unsuc-
cessful paths and all paths, but each distribution exhibits a peak at a length of
around six.

3.4.2. Wikipedia
Wikipedia offers complete dumps of the English Wikipedia, and for our ex-

periments, we chose a Wikipedia dump dated on 2011-11-07. The reason for this
choice was that this was the dump closest to the timestamps in the Wikigame
dataset (see Section 3.4.1) that was publicly available10. We obtained the present
page-to-page network provided by this dump and limited it to links between pages
from the main namespace and also to links between the distinct pages available in
our Wikigame dataset. The reason for this is that we want to compare the paths
through the network with the corresponding topological network; if we would
leave the original network untouched, it would be impossible to assert whether

10Wikipedia only makes a specific amount of recent dumps available for download
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the difference in our results are based on the type of paths or on the number of
distinct pages in the Wikigame dataset.

3.5. Evaluation
To evaluate semantic relatedness, we compare our results to a gold standard

dataset, specifically the WordSimilarity-353 dataset (Finkelstein et al., 2002). The
WordSimilarity-353 dataset consists of 353 pairs of English words and names and
includes all 30 nouns of the Miller and Charles dataset (Miller & Charles, 1991)
and most of the 65 pairs of the Rubenstein and Goodenough dataset (Rubenstein
& Goodenough, 1965). Each pair was assigned a relatedness value between 0.0
(no relation) and 10.0 (identical), denoting the assumed common sense semantic
relatedness between two words. For each pair of words, ratings of 16 different
people were collected. Finally, the total rating per pair was calculated as the mean
value of each of the 16 user’s ratings. This way, WordSimilarity-353 provides a
valuable evaluation base for comparing our concept relatedness scores computed
on Wikipedia to an established human generated and validated collection of word
pairs. In (Miller & Charles, 1991) it was also shown that the correlation coeffi-
cient between the two sets of ratings – i.e., the Miller and Charles dataset and
the Rubenstein and Goodenough dataset – is 0.97. Hence, we can conclude that
human knowledge about semantic similarity between words is very stable over
a large time span and we can use them for evaluating our semantic relatedness

Table 2: Characteristics of TheWikiGame dataset

#Pages 360,417
#Games 361,115
#Users 260,095
#Paths 1,799,015
#Visited nodes 10,758,242
Average path length 5.98
Average #paths per user 6.92
#Successful paths 653,081
#Visited nodes of successful paths 4,116,879
Average successful path length 6.30
#Unsuccessful paths 1,145,934
#Visited nodes of unsuccessful paths 6,641,363
Average unsuccessful path length 5.80
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calculations (Li et al., 2003).
Because WordSimilarity-353 consists of English words and names, we map

them to an according Wikipedia concept. We use an adapted version of
WordSimilarity-353 called WikipediaSimilarity-353, which contains a manual
mapping and disambiguation step of words contained in WordSimilarity-353 to
Wikipedia concepts (Milne & Witten, 2008). As a further step, we manually
checked the mappings for correctness and modified some of the mappings accord-
ingly11. For some word pairs it is not possible to map it to appropriate Wikipedia
concepts12. By removing such pairs where we can not map one word, we end up
with 314 concept pairs where we can cover a total of 308 pairs with the concepts
available in our Wikigame and Wikipedia dataset (see Sections 3.4.1 and 3.4.2).
The main reason for our choice of using manual mappings instead of for example,
using sense pairs with maximal similarity, is that the main focus of our work is to
show the viability of human navigational paths for calculating semantic related-
ness and not the necessarily best working method to date. Milne (2008) shows in
his work that the accuracy drops by a large margin if one does not use a manual
mapping and relies on automatic disambiguation. This automatic disambiguation
step itself is not trivial and can probably introduce a large negative bias to our re-
sults as this would make inference of the results difficult as we would not know if
the possibly bad results are based on the simple disambiguation step or on the bad
results of our method. In the remaining chapters, we will refer to WordSimilarity-
353 even if technically, we mean WikipediaSimilarity-353. Our final mapping can
be found online on our website13.

Finally, we compare two rankings. We extract the first ranking of the original
scores available through WordSimilarity-353. We also create a similarity ranking
for the corresponding word pairs on different paths corpora with our semantic
relatedness method, using the cosine similarity. In the last step, we compare both
rankings with the Spearman rank correlation coefficient as stated in Formula 1.
Using the Spearman rank correlation as evaluation metric enables us to specify
how closely our semantic relatedness scores are in terms of a ranked list on all
WordSimilarity-353 concept pairs. If the rank correlation is close to 1 we nearly
produce the same ranking as human judges.14

11For example, we had to correct some Wikipedia ids of concepts.
12For example there are no appropriate Wikipedia pages available for both the terms in the word

pairs “Hotel reservation” or “Boxing round”.
13http://www.philippsinger.info/wikisempaths.html
14One needs to note that the smaller the gold standard is one compares to, the more difficult it
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ρ �
CovprgWS , rgWPq

σrgWSσrgWP

P r�1; 1s (1)

In this formula, rgWS refers to the ranks in WordSimilarity-353, and rgWP to
our results. The σrgX values is the standard deviation of both ranks. Bear in mind
that ranks can also contain tied values, i.e., where two word pairs share the same
similarity value. We made sure that our implementation can also handle such ties.
We also calculated significance using a two-sided p-value which roughly indicates
the probability that a uncorrelated system produces a ranking that has at least the
same Spearman rank correlation as the one computed from the original ranking
produced by our method. We will not explicitly specify the p-values for each
calculation, as all p-values are below the significance level of 0.01. Hence, when
we talk about the Spearman rank correlation, we actually refer to the calculated ρ.

4. Semantics of navigational paths

To study feasibility, we first investigate whether a corpus of human naviga-
tional paths through an information network – i.e., navigational paths taken from
the Wikigame conducted on Wikipedia’s link network – can contribute to comput-
ing semantic relatedness of concepts using the introduced concept co-occurrence
(cf. Section 3.3) in Section 4.1. In Section 4.2 we compare the results to those
obtained from several baseline corpora to show the additional benefit of human
navigational paths.

4.1. Contribution of navigational paths to semantic relatedness
To show the usefulness of human navigational paths for calculating semantic

relatedness we conduct our experimental steps as described in Section 3.3 where
we not only use sliding windows of varying size k but also the principle that all
concepts in a path co-occur with all other present concepts in the path on the
corpus of all available paths taken from “TheWikiGame” – which we denote as a
“none” window size. One can think of the “none” window size as a size that is
always exactly as long as the path.

Table 3 presents the evaluation results for varying window sizes. We report
the number of pairs (shown in column #pairs), for which we can calculate a se-
mantic relatedness score (stated in column ws353). The reason why one can not

may get to judge the actual results.
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always evaluate against each single pair of concepts is that there might not be
co-occurrence information available for concepts of pairs using a specific window
size – i.e., generally the larger the window size, the more pair scores we can calcu-
late. A first observation is that the method of letting all concepts in a path co-occur
with all other concepts in the path denoted as “none” performs worse than some
specific sliding window sizes denoted in the table. This strengthens our assump-
tion that the distance between two concepts in a path is crucial for calculating
precise semantic relatedness scores as pointed out in Section 3.3. Furthermore,
we can see that the best accuracy can be achieved using a window size of k � 3 or
k � 4. Hence, letting the surrounding two or three concepts (k�1) given a concept
in a path co-occur with the concept seems to be the most precise co-occurrence
representation for determining the semantic relatedness between concepts in our
corpus of human navigational paths. Interestingly, this observation correlates with
the distance often applied in graph based methods for word sense disambiguation,
as reported in Navigli & Lapata (2010).

To investigate the usefulness of our approach of reporting results obtained
from evaluating the scores of all possible WordSimilarity-353 pairs for a specific
window size or corpus, we also repeat the experiments by using all 353 word
pairs and setting the relatedness scores to zero if we can not cover a pair as this
is frequently done in related work (see the last column in Table 4). However,
this method introduces high negative bias to the results as we observe that not
surprisingly, those window sizes or corpora perform better that can simply cover

Table 3: Semantic relatedness calculated on human navigational paths. Our
corpus consists of all available Wikigame paths where different window sizes
(2 ¤ k ¤ 5) as well as the principle that all concepts in a path co-occur with
all other concepts in the path denoted by “none” were evaluated against the
WordSimilarity-353 golden standard by calculating the Spearman’s rank corre-
lation coefficient between the produced rankings of each method and the ones of
the WordSimilarity-353 gold standard.

window size #pairs ws353
none 299 0.649
2 236 0.638
3 275 0.709
4 286 0.718
5 293 0.690
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more WordSimilarity-353 pairs. We also calculate statistical significance tests be-
tween the dependent Spearman’s rank correlation coefficients produced by differ-
ent window sizes for this evaluation method using a one-tailed hypothesis test for
assessing the difference between two paired correlations (Steiger, 1980). While
the results indicate no statistic significant differences between window sizes 3 to 5
it is clearly visible that we would e.g., prefer an window size of 5 over “none” (the
p-value 5.2�10�5 of the test is below the significance level of 0.05). Summarized,
this evaluation represents a pessimistic evaluation compared to our optimistic one
which only evaluates against possible word pairs, as it is hard to judge whether
better accuracy is based on more precise calculations of semantic relatedness or
simply more well defined term pairs. To further strengthen our evaluation ap-
proach we limit the evaluation in Table 3 to those pairs available throughout all
window sizes (236 pairs) – see fifth column in Table 4 – and we can observe the
exact same trend as our optimistic evaluation approach showed. Finally, we also
sample 100 random pairs 100 times and average the results again showing in the
fourth column of Table 4 that the best accuracy can be achieved using a window
size of k � 3 or k � 4 and making a strong point for our evaluation approach.
This agrees with similar observations by Ito et al. (2008) when evaluating against
different subsets of WordSimilarity-353 pairs that the trend of accuracy always
stays the same. Also, Milne & Witten (2008) pick up on this point as they directly

Table 4: Semantic relatedness accuracy calculated in similar fashion as for Ta-
ble 3. This time, we report a variety of different evaluation approaches: (a) “possi-
ble pairs” reports the same results as in Table 3 and represent our optimistic evalu-
ation, (b) “100 pairs” reports accuracy by sampling 100 word pairs 100 times and
averaging the results, (c) corresponds to the accuracy by using only those word
pairs that can successfully be determined for all windows sizes and (d) “all pairs”
fills in zero semantic relatedness scores for word pairs for which no score can be
calculated and represents the pessimistic evaluation. The observations illustrate
the usefulness of our proposed “possible pairs” method.

window size #pairs possible pairs 100 pairs 236 pairs all pairs
none 299 0.649 0.630 0.632 0.548
2 236 0.638 0.633 0.638 0.560
3 275 0.709 0.692 0.694 0.588
4 286 0.718 0.697 0.695 0.587
5 293 0.690 0.690 0.692 0.589
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show that as they only include well-defined term pairs to their evaluation, they can
achieve the appropriate results.

As the goal of this work is not to achieve the best possible semantic relatedness
scores in comparison to related work techniques, but rather to identify whether
and if so, human navigational paths can contribute to this task and to find the
most appropriate window size and path corpus, we only report results obtained
from applying our optimistic evaluation procedure which evaluates the scores of
all possible WordSimilarity-353 pairs for a specific corpus. Note that we will also
only cover a very small amount of pairs later on for our sampling strategies which
makes the other evaluation methods not applicable – i.e., only using the same
intersection of pairs for all methods would limit the gold standard tremendously
(max. 30 pairs) and using all pairs by filling in zeros for missing word pairs would
have high negative influences on methods that can only cover a small amount of
pairs due to lack of data. This choice is based on abovementioned investigations
and observations and gives us a logic way to evaluate our work. Due to tractability,
we focus on window size k � 3 for the rest of this paper15.

Table 3 demonstrates that human navigational paths contain information rel-
evant for calculating semantic relatedness between concepts by exhibiting high
quality relatedness evaluated against WordSimilarity-353. We investigate the ad-
ditional benefit of the paths at hand to several baseline corpora next.

4.2. Additional benefit of navigational paths
As our human navigational paths of “TheWikiGame” are basically subsets

of the underlying topological link network we need to investigate whether the
observed effects are based on human intuitions and patterns while navigating or if
automatic extractions of paths from the link network can produce similar or even
better results. By doing so we can also investigate which role the rich topological
link network plays for calculating semantic relatedness on paths.

To get first insights, we highlight basic properties of the Wikipedia link struc-
ture that we have studied, and the corresponding navigational paths that we have
obtained in Figure 2. The figure contrasts the degrees of nodes in a subset of
Wikipedia with the number of clicks on these nodes in a baseline random walk
and in human navigational paths. As we see, the number of clicks on nodes from

15Note that a window size of k � 4 is just by a small margin more precise than a window size
of k � 3 and the reason for only reporting results for k � 3 is based on faster runtime and better
possibilities for interprating the results or looking into fingerprints. Nevertheless, we have also
conducted further experiments by using a windows size of k � 4 which exhibit similar patterns.
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human navigational paths differs significantly from (i) the network topology and
(ii) the clicks generated by a random walk. On the one hand, we can see that hu-
man navigation tends to focus on a few nodes more heavily than a random walk
on the network topology would lead us to expect, while on the other hand, they
seem to place less focus on a wider range of nodes16. As both random walk and
human navigational paths are basically subsets of weighted links, we can see that
the weights emerging from user’s choices during the game differ from the weights
produced by a random walk. Hence, we want to explore whether these differ-
ences resulting from actual human navigation in information networks provide
additional value for calculating semantic relatedness in comparison to navigation
done by an automatic agent. To do so, we compare the corpus of paths from
“TheWikiGame” with several baseline corpora which we introduce in the follow-
ing sections. Finally, we present the results in Section 4.2.5.

4.2.1. Topological neighbor paths
A rather simple baseline for comparison consists of artificial sub-paths taken

from Wikipedia’s link network limited to concepts available in our Wikigame
dataset (see Section 3.4.2). Given Wikipedia’s topological (limited) link graph
Wwg � pVwg, Ewgq with vertices Vwg and directed edges Ewg � tpv,wq|v,w P Vwgu,
we generate all possible paths of length three, where every node still lies in Vwg.
This gives us the following set of paths
Ptb � tpu, v,wq|pu, vq, pv,wq P Ewg X Vwg � Vwgu � P.

The reason for choosing paths with the length three for this topological base-
line corpus is that we focus on a window size of k � 3 – i.e., a concept co-occurs
with the neighboring k � 1 � 2 concepts in a path – throughout this work (see
Section 4). Hence, with this corpus of artificial paths we can calculate all possible
co-occurrences between concepts in a window of size k � 3. For this baseline, we
will not only report results based on co-occurrence vectors with their respective
co-occurrence counts, but also based on binary vectors – i.e., two concepts get
a co-occurrence count of one if they appear in at least one single path of length
three together – ignoring the number of co-occurrences and thus controlling the
vast amount of artificial paths. This enables us to investigate the influence of the
degree of concepts on the results – note that again the extracted corpus of paths
is a weighted subset of the plain Wikipedia link structure where the weight is in-

16The Kullback-Leibler divergence (0.738) and the Spearman rank correlation (0.130) between
the click distributions of a random walk vs. human navigation indicate that there is indeed a
significant difference between the distributions.
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Figure 2: Properties of the Wikipedia link structure that we have studied and
corresponding navigational paths that we have obtained. The figure compares the
distribution of node degrees of the underlying Wikipedia topology (blue solid line)
with the relative click frequency on the same set of nodes obtained from a random
walk (black dashed line) and from navigational paths obtained from the Wikigame
(red dotted line). The ranks on the x-axis are based on the corresponding node
degree or #clicks for the corresponding node in descending order – e.g., the node
with rank 1 has the highest degree.

fluenced by the degree of each node (e.g., a node with an out-degree of 4 is more
likely to get higher co-occurrence counts than a node with an out-degree of 1).

4.2.2. Biased random walk paths
We aim to compare the usefulness of human navigational paths to artificial

paths (e.g., produced by an algorithm) as another kind of baseline. Therefore,
we perform a biased random walk through Wikipedia’s underlying plain topo-
logical link structure preserving some of the structural information taken from
our Wikigame paths. For each path, we select the start node and initialize a
random walk on Wikipedia’s link network limited to concepts available in the
Wikigame. The random walk then walks freely through this network by choosing
a random outlink available for a concept. The walk stops when the similar path
length as the corresponding Wikigame path is reached. By doing so we end up
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with a corpus of paths that approximately has the same number of visited pages
as “TheWikiGame” corpus, but exhibits dissimilar link weights. If the walker
reaches a concept with no out-link, it goes back one position and tries another
path. The relative concept click frequency of the resulting paths can be seen in
Figure 2. We call the resulting set of random paths Prandom.

4.2.3. Permuted Wikigame paths
To understand how important the underlying link structure is for the task of

calculating semantic relatedness on navigational paths and also to explore how
much impact the sequence of concepts in a human navigational path has, we create
so-called permuted paths. In these paths, we are still leaving the position of a
concept in a path intact, but swap it with a node on the same position of another
path and by doing so we detach the node with preceding and succeeding nodes
of the path. For a given path p � pv1, . . . , vnq P P, we randomly choose another
path q � pw1, . . . ,wmq and randomly swap a node in p with the corresponding
node at the same position in q. We receive two new paths p1 � pv1, . . . ,wi, . . . , vnq
and q1 � pw1, . . . , vi, . . . ,wmq where we lose the semantic information around
the newly inserted node. Again, we preserve as much structural information as
possible of our game paths while randomizing the semantic related information.
We call the resulting path set Ppermuted. It is important to note in this scenario,
nodes might not be linked from their predecessor or to their successor on the
underlying Wikipedia topology. These newly created paths are called Ppermuted

and contain exactly as many paths as P.

4.2.4. Swapped Wikigame paths
The purpose behind this method is to keep the link structure of Wikipedia

intact but to swap out parts of a supposedly meaningful path with parts of an-
other path. Our method works as described in the following: For a given path
p � pv1, . . . , vi�1, vmid, vi�1, . . . , vnq, we select another path
q � pw1, . . . ,w j�1, vmid,w j�1 . . . ,wmq with maybe a different length, but with
the property that the node vmid is in the middle of both paths. We cut both
paths in half and exchange the back part of p with the one of q in such a way
that we receive the new paths p1 � pv1, . . . , vi�1, vmid,w j�1, . . . ,wmq and q1 �
pw1, . . . ,wi�1, vmid, v j�1, . . . , vmq. The newly generated paths are called Pswap and
contain exactly as many paths as P.
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4.2.5. Results
Table 5 presents the results using a window size of k � 3 with all available

Wikigame paths and our baseline corpora as described above. In column #paths
one can see the number of paths available for each corpus and in column length
the total accumulated length of all paths in the corpus. Finally, in column #pairs
we can see the number of pairs of the WordSimilarity-353 dataset where we can
successfully calculate the semantic relatedness measures and the final Spearman
rank correlation to WordSimilarity-353 is shown in column ws353. Further in-
sights from these investigations are discussed next.

Wikipedia topology alone is useful: We know from other semantic analysis
methods, that the Wikipedia topology alone provides useful information. For con-
firmation, we evaluated the scores obtained from our Permuted Wikigame paths
corpus. The corresponding results confirm that we lose semantic preciseness
when ignoring the original link and navigation structure. Keeping the original
structure intact, but swapping parts of the paths – see Swapped Wikigame paths
and the corresponding description above – we can see that the original navigation
by a user has a high impact on the achieved accuracy, but that we can still achieve
reasonable results by leaving the underlying link structure and partly navigational
patterns intact. We can also see that Biased random walk paths perform similar
to our Topological neighbor paths corpus. This is not surprising, as the random
walks freely navigate the topological link network, even though they are biased
towards a specific path length and are initialized by a given start node.

Human navigation paths improve results: A first observation is that the
Wikigame path results outperform the baselines by a relevant margin – for exam-
ple, it outperforms the best baseline method Swapped Wikigame paths by 0.041

Table 5: Comparison of semantic relatedness calculations using a window size of
k � 3 evaluated against WordSimilarity-353 on all Wikigame paths with several
baseline corpora.

Corpus #paths #pairs ws353
All Wikigame paths P 1,799,015 275 0.709
Topological neighbor paths Ptb 6,042,578,644 308 0.659
Topological neighbor paths Ptb binary 6,042,578,644 308 0.485
Permuted Wikigame paths Ppermuted 1,799,015 292 0.381
Swapped Wikigame paths Pswap 1,799,015 273 0.668
Biased random walk paths Prandom 1,797,326 274 0.660
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(0.709 vs. 0.668). When looking at the Topological neighbor paths corpus, we can
also see that Wikipedia’s inherent link structure already can be used as a powerful
resource for calculating semantic relatedness using our methodology. In order to
see how the number of co-occurrences between concepts influences the semantic
relatedness, we have also performed an analysis on the same corpus of topological
neighbor paths, but this time we do not count how often two concepts co-occur,
but only represent the co-occurrence state with a binary value – we can refer to
this as the plain structure. We can now see that the accuracy evaluated against
WordSimilarity-353 drops by a significant amount (from 0.659 to 0.485) indicat-
ing that the number of co-occurrences between concepts effects our method. We
can observe from this that the weighting of links in a path corpus has high impact
on the accuracy we can achieve.

With this initial exploration, we can conclude that human dynamic naviga-
tional paths on Wikipedia can contribute to computing semantic relatedness, but
they are based on an already powerful network topology. The weighting provided
by users’ choice during navigation exhibits the most precise information for de-
terming semantic relatedness between concepts. Next, we want to identify what
kind of navigational paths are most useful for that task.

5. Path selection experiments

Human navigational paths can be characterized along many dimensions. For
example, there exist successful paths where users were able to successfully reach
the specified target nodes, while on unsuccessful paths users could not reach their
goal. Other path characteristics may mostly move along high degree (vs. low
degree) nodes. Figure 3 shows the distribution of path lengths in all paths (black
line), only in successful paths (red line) and only in unsuccessful paths (blue line).
Only looking at such path length distributions, we can already see that such dis-
tinct path types exhibit different features. We want to explore these differences
and investigate their usefulness for the task of calculating semantic relatedness,
e.g., investigate whether a subset of only successful paths is more useful than a
subset of only unsuccessful paths.

This gives rise to a number of interesting questions related to different naviga-
tional paths, such as (a) Are all navigational paths equally useful for computing
semantic relatedness? and (b) If some navigational paths are more useful, what
are the characteristics of these paths and how can they be exploited? To ana-
lyze these and other questions, we begin our investigations by taking the corpus
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of all successful paths (which is the smaller set) and extract a random subset of
unsuccessful paths of equal size, containing the same number of visited pages.

Similar to Section 4, we use a window size of k � 3 for our co-occurrence
calculation and evaluate the relatedness scores against WordSimilarity-353; the
results can be seen in Table 6. From that table, we see that a smaller subset of
our corpus of all Wikigame paths P can perform remarkably well – compare with
Table 5. Somewhat surprisingly, we see that a corpus of unsuccessful paths per-
forms better than a corpus of successful paths with the same total number of vis-
ited concepts. A possible explanation for this behavior is that unsuccessful paths
contain the behavior of mostly inexperienced users who try to follow nodes whose
meanings are very close and hence, remain on a narrow semantic field which may
also lose them the game. On the other hand, successful players might navigate
through more distant concepts or very central concepts like “United States” which
are common strategies for winning a game. Further investigations are necessary
in order to explain this behavior in detail, which is not in the scope of this work.

Regardless the exact explanation of this behavior, the results suggest that sub-
sets of paths with specific characteristics yield different results. This leads to the
idea of investigating whether smaller sets of paths according to specific path char-
acteristics can perform similarly or even more precise in regard to our relatedness
calculations on the whole set of paths. In the following section, we will explore
this by conducting different path selection experiments.

5.1. Characteristics of Paths
We introduce several measures m : P Ñ R�0 to characterize any path p in our

corpus of paths P. Each distinct measure makes use of a path characteristic, de-
pending on the visited nodes, which actually characterize the path. The resulting
measures will be subsequently used in section 5.2 to create path selections.

In the following, we will elaborate each of the different measures in greater
detail. Let p P P be an arbitrary path represented by the sequence of nodes

Table 6: Comparison of semantic relatedness calculations using a window size of
k � 3 evaluated against WordSimilarity-353 on all Wikigame paths with several
baseline corpora.

Corpus #paths length #pairs ws353
Successful Wikigame paths 653081 4116879 230 0.636
Unsuccessful Wikigame paths 710374 4116879 257 0.683
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Figure 3: Illustration of the distribution of path lengths in all human navigation
paths (black dotted line), only in successful paths (red solid line) and in unsuc-
cessful paths (blue dashed line).

pv1, . . . , vnq.

In- and outdegree. For a path p, we determine the in- and outdegree for each con-
cept vi in p derived from Wikipedia’s complete topological link network. The idea
behind this characteristic is to differentiate hubs and strongly connected concepts
from dead ends and rather weakly connected concepts. The measure is calculated
as (moutdegreeppq is defined analogously):

mindegreeppq �
1

lenppq

ņ

k�1

indegreepvkq.

Ratio. This measure represents a ratio of in- and outdegree for each node in a
corpus of paths smoothed by the square root of the indegree (see (Trattner et al.,
2012)). This characteristic is motivated by the notion that a page with e.g., 200
inlinks and 100 outlinks should be more important than a page with two inlinks
and one outlink. If the outdegree for a node is zero, we set the ratio to zero as
well. ratiopvq is calculated in the following way for a node v:

ratiopvq �
indegreepvq

outdegreepvq
�
b

indegreepvq.
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Thus, the value of a path p is determined by

mratioppq �
1

lenppq

ņ

k�1

ratiopvkq.

TF-IDF. Interpreting a path as a document and the concepts present in a path as
terms, we use the well known tf-idf scores (cf. (Salton & Buckley, 1988)) of each
node in a path as a further characteristic. The idea behind this characteristic is that
we can identify paths that include many concepts that are very important for the
individual path compared to all other paths in the corresponding corpus. Hence,
for each path p, we again take the mean of all tf-idf values in the path:

mt f id f ppq �
1

lenppq

ņ

k�1

t f id f pvkq.

Length. Finally, we use the length of a path p – i.e., the number of concepts
visited in a path – as a last characteristic:

mlengthppq � lenppq.

Our motivation for taking the length of a path as a characteristic is the notion that
longer paths potentially contain more information because of more co-occurrences
between concepts of the paths. Furthermore, we could observe in Figure 3 differ-
ent path length characteristics for different types of Wikigame paths, which is
interesting to investigate in greater detail.

5.2. Path selection strategies
Based on the characteristics described in Section 5.1 we now select smaller

sets of paths according to abovementioned path characteristics. We investigate
whether the relative performance of reduced corpora of paths Pm, based on the
accuracy of our relatedness scores, increases or decreases, compared to the per-
formance of our complete set of paths P, in analogy to Koerner et al. (2010).

For each characteristic, we calculate ten subsets of increasing size where the
tenth subset corresponds to the set of all available Wikigame paths. The sizes of
our subsets are calculated by the number of visited nodes inside the subset. If we
consider the sum of all nodes node sum �

°
pPP

lenppq, a path selection of e.g., 10%

does not necessarily contain 0.1 � |P|, but rather 0.1 � node sum. More formally,
we can express it as follows: Consider an ordered list lm � pp1, . . . , pnq of paths,
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generated by a measure m. A selected subset Pm
x of size x for measure m can be

expressed as:

Pm
x �

#
pk|k � max

#
s|

ş

j�1

lenpp jq ¤
x

100
� node sum

++
. (2)

Thus, a potential path selection with very long paths consists of fewer actual paths
than a selection with mostly short paths, but both sets contain roughly the same
amount of visited nodes. This renders the selection process more fair than just
pure path counting as it enables us to fairly compare two corpora of the same size
selected based on different path characteristics. Each selection process generated
subsets consist of x � t10, 20, . . . , 90u% of all visited pages. By proceeding with
this selection process, the first subset – i.e., the 10% subset – consists of paths
with the lowest measures for a corresponding characteristic – e.g., paths with the
lowest mean indegree. Furthermore, we also revert the ordered list lm in order
to get a ranking lrev

m � pvn, . . . , v1q where the small subsets contain paths with
higher measures for a specific characteristic – e.g., paths with the highest mean
indegree. After the generation of the path ordering lists and the path selection
process described above, we run our semantic evaluation for each of these subsets.

Furthermore, we create a baseline for each individual split to learn whether
the distinct accuracy results are genuinely dependent on the corresponding path
selection process based on several characteristics. We shuffle the corpus of paths
independently and randomly ten times in order to remove the original ordering in
the complete set of paths. For each of these ten independent shuffles, we extract
subsets according to the selection process described above. We end up with ten
selections for each subset containing x � t10, 20, . . . , 90u% of the visited pages.
Finally, we perform our semantic analysis and evaluate the results accordingly for
each selection and subset. We average the results for each subset based on the sum
of selections for the corresponding subset and report the results in the following
section; we will refer to this baseline as random baseline.

5.3. Results
In Figure 4 we present the results obtained from our individual sub-corpora

of navigational Wikigame paths using our selection strategies pointed out in Sec-
tion 5.2 based on characteristics of paths – or to be precise: characteristics of
concepts inside paths averaged for each path – described in Section 5.1. Figure 4a
illustrates selections where we can achieve better accuracy – i.e., Spearman rank
correlation evaluated against WordSimilarity-353 – than using random selections
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Figure 4: Semantic relatedness calculated on different path selections. Larger values on the
y-axis correspond to higher Spearman rank correlation with the WordSimilarity-353 dataset. The
black horizontal line depicts the result for the entire set of paths. Figures 4a and 4b show the
results of different selection strategies. Figure 4a shows selection results with better-than-random
performance while Figure 4b shows results with worse-than-random performance. In Figure 4a,
we can see that only a small subset of 30% low indegree paths produces more precise semantics
than the whole path corpus P would (scoring a rank correlation of 0.760 to the WordSimilarity-
353 dataset). Paths characterized by low in- and outdegree always perform better than a random
baseline, while their counterparts, starting from high degrees, perform significantly worse. Similar
patterns can be observed when selecting paths according to their tf-idf values.
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of all Wikigame paths – i.e., random baseline (black line, �) – while Figure 4b
shows selections performing worse. The horizontal black line with a Spearman
rank correlation of 0.709 shows the results achieved when taking a corpus of all
Wikigame paths (see also Table 3). For all selections we use a window size of
k � 3 for our co-occurrence and subsequent semantic relatedness calculations.
Our key findings are discussed next.

Intelligent path selection improves semantic relatedness. A first observa-
tion when looking at Figure 4a is that smaller random path selections do not lead
to a similar or better accuracy (black line, �), but that we indeed can find smaller
corpora of navigational paths – selected on several characteristics – that perform
equally or better than the complete corpus of Wikigame paths (that reaches an ac-
curacy of 0.709). By incrementally adding paths with the lowest average indegree
of their concepts, we can achieve the highest Spearman rank correlation with a
sub-corpus of only 30% of all Wikigame paths (red line,

�
). The respective ac-

curacy of 0.760 outperforms the accuracy of the whole Wikigame corpus by about
5% while covering less than a third of all visited pages in the complete corpus.
Contrary, we can see in Figure 4b that a reverse accumulation of paths, beginning
with those having a high average indegree (red line,

�
), leads to much worse ac-

curacy compared with the random baseline and as well as with the accuracy of the
complete corpus. A possible explanation for this is that low indegree nodes rep-
resent concepts that do not seem to be hubs nor exceptionally abstract concepts
in comparison to high indegree nodes. Also, high indegree concepts may have
much more co-occurrence counts with several other concepts while low indegree
concepts may only have co-occurrence connections to a few very specific con-
cepts (even when looking at a window size of k � 3). Hence, the co-occurrence
vectors may be sparser, but more precise and this may enable us to calculate more
accurate semantic relatedness scores. If we look deeper into the paths included
in our selection corpora we can see that paths with the highest average indegree
all include the concept United States which is on the one hand, the most central
concept in Wikipedia’s topological link network, and on the other hand, also by
far the most often navigated concept in our Wikigame paths. Hence, this concept
co-occurs with many others and is no suitable descriptor for determining the se-
mantic relatedness between concepts while paths with the lowest average indegree
contain more variety and also more descriptive co-occurrences. To summarize:
Small selections of low indegree paths exhibit more fine-grained and precise
semantics than the set of all paths.

To give an example we illustrate in Figure 5 the concept co-occurrence vec-
tors for the concepts Vodka, Brandy and Bread on the one hand, using our best
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Figure 5: Semantic “fingerprints” for the concepts Vodka, co-occurrence count of
fifteen to the corresponding concept. All counts are normalized by the L2 norm
of the vector and fingerprints for a 30% low indegree selection (solid lines) and
the full set of paths (dashed lines) are shown. The 30 % low indegree selection
exhibits more fine-grained and precise semantics than the set of all paths.

overall performing corpus of 30% low indegree paths (solid lines, ©) and on the
other hand, deriving the information from the all path corpus (dashed lines, �).
For visualization purposes the vectors are reduced in dimensionality by only rep-
resenting co-occurrences to concepts where at least one vector exhibits a count
of larger than 15. Furthermore, all counts are normalized by the L2 norm of the
complete vector. In Figure 5 we can see that the concepts Alcoholic beverage,
Distilled beverage and Ethanol exhibit similar peaks for the concepts Vodka (red
solid line,©) and Brandy (green solid line,©) for the corpus of 30% low indegree
paths, while having only few diverse peaks. We can observe that these common
peaks contribute a lot to the high cosine similarity of 0.8043 that we can compute
with this subset for the corresponding concept pair. This score agrees extremely
well with the human score of 8.13 present in the WordSimilarity-353 dataset. In
contrast, we can see that there are only a few similar normalized co-occurrences
for the concepts Vodka (pink dashed line, �) and Brandy (orange dashed line, �)
using the corpus of all paths and that the concept Russia exhibits a large diver-
sity regarding the co-occurrence patterns for both concepts negatively influencing
the relatedness score resulting in only 0.4205. The co-occurrence vectors for the
concept Bread show for both corpora – i.e., 30% low indegree paths (blue solid
line,©) and all paths (turquoise dashed line, �) – no common peaks to both other
concepts resulting in extremely low relatedness scores. We can see from this, that
our selection of low indegree paths exhibits much more fine-grained patterns for
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the concept pair Vodka and Brandy reaching also a higher relatedness score than
our corpus of all paths by still keeping low scores for concept pairs, that are not
semantically related.

Other degree based selection strategies and corpus based characteristics
(e.g., tf-idf) can also improve accuracy. Similar observations as above can be
seen by selecting according to the average outdegree of paths starting with the
lowest value depicted in Figure 4a (pink line, N). Smaller selections can outper-
form the corpus of all paths, but we can not achieve as good results as with our
30% selection of low indegree paths. Again, the opposite occurs for the reverse
selection of paths starting with those having a high outdegree shown in Figure 4b
(pink line, N) – i.e., all selections perform worse than the baseline and the com-
plete corpus. Selections based on the average ratio of paths (green line, ) not
surprisingly show similar patterns as the selection according to in- and out-degree,
but indicate that a selection according to the average indegree of paths can achieve
higher accuracy than using a combined measure. Selection strategies based on the
tf-idf values of nodes inside paths indicate that we can strongly outperform the
baseline and the target accuracy of a corpus of all paths for several sub-corpora
incrementally adding paths with a high average tf-idf value shown in Figure 4a
(blue line,

�

). Contrary, selecting paths with low tf-idf scores never reaches the
accuracy of the random baseline as we can see in Figure 4b (blue line,

�

). Low
average tf-idf valued paths exhibit similar patterns than those with a low average
indegree. The difference though is that this measure is only corpus dependent and
ignores characteristics of the underlying topological link network and this may
exhibit advantages for specific scenarios. Finally, we can see from both illustra-
tions in Figure 4 that a selection according to the length of paths (orange line,©)
produces just three sub-corpora of paths – i.e., 70% to 90% selections of longest
paths – that can slightly outperform the corpus of all paths.

A combination of successful and unsuccessful paths produces more pre-
cise semantics than using unsuccessful paths only. Our initial experiments
showed that a corpus of unsuccessful paths outperforms a corpus of successful
paths in regard to the accuracy of our semantic relatedness scores (see Table 6).
Now that we know that a path corpus with lower indegree paths works better one
possible reason for the better performance of unsuccessful paths might be that the
average indegree of unsuccessful paths is lower as the average indegree of suc-
cessul paths as we have investigated. However, with the observation that there
are more intelligent ways of selecting a corpus of paths accordingly (e.g., by se-
lecting low indegree paths), the question arises if we can furthermore improve the
preciseness of semantic relatedness calculation by performing a similar selection
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just on the corpus of unsuccessful paths. To this end, we use our best perform-
ing characteristic measure – namely the indegree – and select in the typical way
sub-corpora of unsuccessful paths starting with those having the lowest mean in-
degree. We do the same selection for successful paths to be able to compare both
subsets. Again, we accumulate the number of paths in a selection towards the total
number of visited nodes of the corpus of all paths; we end up with more selec-
tions for unsuccessful paths than for successful paths as we have a larger fraction
of unsuccessful paths.

In Figure 6a we identify that we can outperform the horizontal black solid
line indicating the accuracy obtained from a corpus of all Wikigame paths. The
best results can be achieved by using a 20% split of only unsuccessful paths (blue
solid line). While this accuracy of 0.733 outperforms the whole set of all paths,
we still get a better result by selecting the whole corpus in a similar fashion as
depicted in Figure 4a, where we could reach an accuracy of 0.760. When we now
look deeper into the subsets of low indegree based selections calculated for the
complete dataset, we see that around 25% of the paths inside the best performing
30% low indegree sub-corpus (selected on all paths) are successful paths (see Fig-
ure 6b). While unsuccessful paths tend to exhibit characteristics that make them
more useful for computing semantic relatedness, we find that overall a combina-
tion of successful and unsuccessful paths produces the best results. The results
also suggest that other characteristics such as the indegree and not success are
better suited for selecting good subsets when performed on the whole set of paths.

Evaluating against other gold standard datasets confirms our observa-
tions. Throughout this section we have only used the WordSimilarity-353 dataset
as a gold standard for our evaluations. The reason for this choice was that it is a
widely used gold standard for evaluating semantic relatedness scores against hu-
man judgements. Nevertheless, there also exist other prominent datasets similar
to WordSimilarity-353: (a) the Miller Charles gold standard (Miller & Charles,
1991) (30 overall word pairs) and (b) the Rubenstein Goodenough gold standard
(Rubenstein & Goodenough, 1965) (65 overall pairs). In order to triangulate our
observations, we conducted the same experiments on both datasets by mapping
words to concepts manually and calculating Spearman rank correlation. Again,
we make our mappings available online17. The results for both gold standards are
illustrated in Figure 7. Again, we can clearly see that we can outperform the ac-
curacy of the complete set of paths by sampling smaller sets affirming the patterns

17http://www.philippsinger.info/wikisempaths.html
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Figure 6: Effect of successful / unsuccessful paths: (a) shows successful (red solid line) and
unsuccessful paths (blue solid line) selected according to their average indegree starting with low
indegree paths and their respective Spearman rank correlation evaluated against WordSimilarity-
353. (b) shows the percentage of successful (red solid line) and unsuccessful paths (blue solid line)
for our best performing selection of 30% low indegree paths (see Figure 4a). While path selection
based on unsuccessful paths performs better than a selection of successful paths, we can see that
overall a combination of successful and unsuccesful paths produces the most accurate results.
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Figure 7: Semantic relatedness evaluation for our sampling strategies evaluated against both the
Miller Charles and Rubenstein Goodenough gold standards calculated and illustrated in similar
fashion as in Figure 4. Again, we can see that specific samples can outperform the corpus of
all Wikigame paths by excelling their corresponding Spearman rank correlations of 0.767 for the
Miller Charles dataset and 0.809 for the Finkelstein Goodenough dataset.
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observed in these experiments. This indicates that such sampling strategies can
help us to remove paths with some kind of semantic noise by e.g., ignoring paths
with a high average indegree of their visited concepts. By doing so, we can pro-
duce more precise semantics out of navigational path data. However, we need to
take the results for these two additional evaluations with caution, as both gold stan-
dards are very limited in their number of word pairs they cover. We also can only
capture at maximum 21 pairs for the Miller Charles and 40 pairs for the Ruben-
stein Goodenough dataset, while some samples can only cover a very low amount
of pairs. Hence, this may also give rise to the slight unstable results in Figure 7
as sometimes the samples might simply capture very well-defined concept pairs
while leaving others out. Contrary, this is not the case for the WordSimilarity-353
dataset where much more word pairs are available and where we can also cover
much more pairs for all sub-samples.

6. Discussion and conclusions

To the best of our knowledge, this work represents the largest and most com-
prehensive effort to study semantics in human navigational paths to date. We
(i) systematically evaluated information on �1.8 million human navigation paths
captured via a semi-controlled navigation experiment against baselines that use
the Wikipedia topology only or alternate the human navigational paths at hand
and we (ii) evaluated the results against common reference datasets of related-
ness. The main contributions of our work are the following. (1) Our experiments
further indicate that such human navigational paths can represent a viable source
for calculating semantic relatedness between concepts in information networks.
(2) We show that semantic relatedness calculated based on human navigational
data may be more precise than semantic relatedness computed from Wikipedia’s
link structure alone and (3) we find that not all navigational paths are equally use-
ful. Intelligent selection of navigational paths based on path characteristics can
improve accuracy.

If we compare our results to those obtained by previous works evaluated on the
same full gold standard (see results from some well-known methods in Table 1)
we can observe that we can match the accuracy of existing methods (our best score
ends up at 0.76). Yet, there are obstacles in comparing the results to other methods
directly. The main evaluation process of most of the related work remains a black
box. Only slight adoptions to the Wikipedia dump used – e.g., by removing low
degree concepts as ESA does – can already change the outcome tremendously. As
the goal of this work is not to achieve the best performing method but rather detect
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signals in the data and show the usefulness of our approach we will not directly
try to compare us with other works due to abovementioned reasons.

The method of leveraging human navigational paths using co-occurrence in-
formation presented throughout this work could also provide opportunities for
improving existing content based methods in the sense of complementary infor-
mation. For example, we could easily enrich existing co-occurrence based meth-
ods by interpolating the information extracted from human navigational paths.
This would be a great way to incorporate pragmatic patterns to the content itself.
In future, we want to concretely investigate the usefulness of such an approach
by using navigational information by humans as additional signals for semantic
relatedness for existing approaches.

A main limitation of this work is that we focus on human navigational paths
derived from a game – namely “TheWikiGame”. The game design itself may af-
fect the structure of the paths and the resulting semantic relatedness scores. Some
possible constraints of the game are: (a) a random choice of start and target nodes
– hence, users also do target based navigation instead of pure exploration naviga-
tion, (b) users have a time constraint while navigating or (c) users tend to evolve
strategies in order to win a game that may be counterproductive in terms of spec-
ifying semantic relatedness. Contrary, one could argue that real navigation more
focuses on the goal of getting as much information as possible. One could also
argue that such real human navigational data can even be more useful as humans
may take more time for checking the current page and the next link would be
chosen more accurately. They may also navigate on a more semantically narrow
path. Nevertheless, the human navigational Wikigame paths present an abstrac-
tion of real user navigation in information networks and provide a further signal
that such data can indeed be very useful for calculating semantic relatedness. In
future we want to investigate human navigational paths in a less controlled navi-
gational setting and investigate whether such paths can also contribute as much –
or as hypothesized even better – as the data at hand indicates.

As mentioned throughout the work, our Wikigame paths are basically a subset
of weighted links. Even though our results suggest that these paths can be more
precise than artificial paths derived from Wikipedia’s topological link network
– note that these paths are again path sub-corpora of weighted links, where the
weight is determined by an algorithm – we do not know if there might be a con-
figuration of weights that leads to better results. Nevertheless, it is a complicated
and not trivial task to automatically determine such a configuration of weights.
As we can see from our experiments, human navigational paths seem to produce
weighted link paths that can be very precise when calculating semantic related-

38

3.5. Computing Semantic Relatedness from Human Navigational Paths

141



ness. So, we may be able learn weighting configurations with the help of human
navigational paths in order to automatically derive paths based on such weightings
that may be even better than the human navigational paths themselves.

Our results are not limited by our evaluation approach as a) WordSimilarity-
353 is an established gold standard that is frequently used to evaluate methods
for computing semantic relatedness and b) our experiments with alternative gold
standards for semantic relatedness have produced results exhibiting similar trends
(cf. Section 5.3). However, we want to extend our evaluation approach in future by
showing the usefulness of our method of computing semantic relatedness by using
the output for several NLP tasks like word sense disambiguation, recommendation
or text segmentation. Furthermore, we want to establish automatic disambiguation
processes for our pipeline.

The findings of this work have interesting implications for future research: i)
While our results focus on semantic relatedness, it appears plausible that other
semantic tasks, such as hypo/hypernym detection can benefit from data about hu-
man navigational paths as well. For example, West & Leskovec (2012) have found
that navigation in semi-controlled settings tends to consist of two phases where in
an initial exploration phase more abstract concepts are sought out, while in a sub-
sequent exploitation phase more specific semantic concepts are selected. This
could be used in future methods to compute different levels of abstractedness for
concepts based on their position in navigational paths. ii) While we have studied
the usefulness of human paths in a semi-controlled navigation scenario, a natu-
ral next step would be to study less controlled navigational scenarios - such as
actual human navigation paths - and their usefulness for computing semantic re-
latedness. None of our measures for modeling navigational paths is constrained to
semi-controlled navigation scenarios, and they can all be applied to less controlled
scenarios as well. iii) Our work makes a compelling argument for expanding the
existing arsenal of data sources for calculating semantic relatedness. It suggests
that in addition to data from textual or structural (link) sources, usage data - such
as human navigational paths - could play a pivotal role in the future. Hence, we
can envision that future methods for computing semantic relatedness might not
produce objective scores for semantic relatedness, but subjective scores that take
into account how concepts are used and perceived by large user populations via
analyzing their aggregate navigation behavior.
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3.6. Hyptrails: Comparing Hypotheses about Human Trails

3.6. Hyptrails: A Bayesian Approach for Comparing

Hypotheses about Human Trails

In the final article presented in this cumulative thesis, I aim at answering

the third research question which is motivated by the findings of the first

four articles tackling the first two research question. In detail, this thesis

has identified several patterns and strategies that seem to guide human

trails on the Web. This is accompanied by various findings of a series of

related works regarding behavioral aspects of human trails. However, it is

difficult to gauge these hypotheses’ relative plausibility within a coherent

research approach which is the task of the third research question tackled

by this article.

Following this, colleagues and I have presented an approach called Hyp-

Trails in this article. HypTrails allows researchers to express and compare

hypotheses about human trails on the Web. We understand hypotheses as

beliefs in transitions between states. For example, based on the observa-

tions in the previous sections, we might have a strong belief (hypothesis)

that humans prefer to navigate the Web by choosing semantically related

concepts on Wikipedia while navigating. With this approach, it is possible

to compare this and similar hypotheses with each other given empirical

human trail data.

Technically, HypTrails models human trails with a first-order Markov

chain model utilizing Bayesian inference. The main idea is to incorporate

hypotheses about human trails on the Web as informative Dirichlet priors

into the inference process. Marginal likelihoods and Bayes factors are then

leveraging for comparing the plausibility of hypotheses with each other.

By doing so, HypTrails makes use of the sensitivity of the Bayes factor

on the prior as thoroughly discussed in Section 2.1.2. By presenting a

novel adaption of the so-called (trial) roulette method, the approach allows

researchers to intuitively express their hypotheses about human trails on

the Web as matrices with elements capturing beliefs in transitions between

states. These matrices are then used by our method for eliciting proper

Dirichlet priors.
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We have demonstrate the general mechanics and applicability of HypTrails

by performing experiments with both synthetic as well as empirical human

trail data as introduced in Section 1.2. The synthetic trails have been

produced according to known mechanics which we control. The empirical

trails stem from three different domains: (i) human navigational trails

on Wikipedia, (ii) business reviews on Yelp and (iii) songs listened to on

Last.fm. Overall, this article answers the final research question, facilitates

future studies about the production of human trails, and expands the

repertoire of methods for studying human trails on the Web.
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ABSTRACT
When users interact with the Web today, they leave sequential digital
trails on a massive scale. Examples of such human trails include
Web navigation, sequences of online restaurant reviews, or online
music play lists. Understanding the factors that drive the production
of these trails can be useful for e.g., improving underlying network
structures, predicting user clicks or enhancing recommendations.
In this work, we present a general approach called HypTrails for
comparing a set of hypotheses about human trails on the Web, where
hypotheses represent beliefs about transitions between states. Our
approach utilizes Markov chain models with Bayesian inference.
The main idea is to incorporate hypotheses as informative Dirichlet
priors and to leverage the sensitivity of Bayes factors on the prior
for comparing hypotheses with each other. For eliciting Dirichlet
priors from hypotheses, we present an adaption of the so-called
(trial) roulette method. We demonstrate the general mechanics
and applicability of HypTrails by performing experiments with (i)
synthetic trails for which we control the mechanisms that have
produced them and (ii) empirical trails stemming from different
domains including website navigation, business reviews and online
music played. Our work expands the repertoire of methods available
for studying human trails on the Web.
Categories and Subject Descriptors: H.5.3 [Information Inter-
faces and Presentation]: Group and Organization Interfaces—Web-
based interaction
Keywords: Human Trails, Markov Chain, Hypotheses

1. INTRODUCTION
The idea of human trails in information systems can be traced

back to early work by Vannevar Bush ("As We May Think" [10]),
in which he described a hypothetical system called Memex. Bush
hypothesized that human memory operates by association, with
thoughts defined by internal connections between concepts. The
Memex itself was intended as users’ extension of their memory,
where common associative trails between documents can be stored,
accessed and shared. Eventually, Bush’s ideas led to the concept of
Hypertext [28] and the development of the World Wide Web [4].

Today, the Web facilitates the production of human trails on a
massive scale; examples include successive clicks on hyperlinks
when users navigate the Web, successive songs played in online
music services or sequences of restaurant reviews when sharing
experiences on the Web. Understanding such human trails and how
they are produced has been an open and complex challenge for our
community for years. A large body of previous work has tackled
this challenge from various perspectives, including (i) modeling
[7, 8, 13, 32, 36, 37], (ii) regularities and patterns [20, 44, 45] and
(iii) cognitive strategies, finding that, for example, humans prefer to
consecutively choose semantically related nodes [38, 47], humans
participate in partisan sharing [2] or users benefit from following
search trails [49]. In this paper, we are interested in tackling an
important sub-problem of this larger challenge.
Problem. In particular, we take a look at the problem of express-
ing and comparing different hypotheses about human trails given
empirical observations. We define trails as a sequence of at least
two successive states, and hypotheses as beliefs about transitions
between states. An intuitive way of expressing such hypotheses
is in the form of Markov transitions and our beliefs in them. For
example, we might have various hypotheses about how humans
consecutively review restaurants on Yelp. Figure 1 (a-c) shows three
exemplary hypotheses for transitions between five restaurants (A-E)
in Italy, and actual empirical transitions (d). The uniform hypothesis
in Fig 1(a) expresses a belief that all transitions are equally likely (a
complete digraph). In Fig 1(b), the geo hypothesis expresses a belief
that humans prefer to consecutively review geographically close
restaurants, while the self-loop hypothesis in Fig 1(c) expresses the
belief that humans repeatedly review the same restaurant without
ever reviewing another one. Other hypotheses are easily conceivable.
What is difficult today is expressing and comparing such hypothe-
ses within a coherent research approach. Such an approach would
allow to make relative statements about the plausibility of different
hypotheses given empirical data about human trails.
Objectives. We thus tackle the problem of comparing a set of
hypotheses about human trails given data. We present a Bayesian
approach – which we call HypTrails1 – that provides a general
solution to this problem.

1Portmanteau for Hyp(ertext/otheses) Trails
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E
(a) Uniform hypothesis: all
transitions are equally likely

B
A

C

D

E
(b) Geo hypothesis: regional

node transitions are most likely

B
A

C

D

E
(c) Self-loop hypothesis:

self-transitions are most likely

B
A

C

D

E
(d) Empirical transitions:

obtained from real world data
Figure 1: Example. This figure illustrates three exemplary hypotheses (a), (b), and (c) about human trails as well as empirical obser-
vations obtained from real-world data (d). We look at trails of online restaurant reviews in Italy; nodes A-E represent restaurants.
Hypotheses (a) – (c) are expressed via edges, with edge weights indicating strength of belief. For empirical data (d), edge weights cor-
respond to actually observed transitions (how many times a restaurant has been reviewed before another restaurant). Our proposed
approach compares evidences for different hypotheses given observed data (d). In this example, the geographic hypothesis (b) would
be the most plausible one as we can mostly observe regional transitions between restaurants in the data (d).

Approach & Methods. The HypTrails approach utilizes a Markov
chain model for modeling human trails and Bayesian inference for
comparing hypotheses. The main idea is to (i) let researchers ex-
press hypotheses about human trails as adjacency matrices which
are then used for (ii) eliciting informative Dirichlet priors using an
adapted version of the (trial) roulette method. Finally, the approach
(iii) leverages the sensitivity of Bayes factors on the priors for com-
paring hypotheses with each other. We experimentally illustrate our
approach by studying synthetic datasets with known mechanisms
which we then express as hypotheses. We demonstrate the general
applicability of HypTrails by comparing hypotheses for empirical
datasets from three distinct domains (Wikigame, Yelp, Last.fm).

Contributions. Our main contribution is the presentation of
HypTrails, a general approach for expressing and comparing hy-
potheses about human trails. While the basic building blocks of
HypTrails are well established (Markov chains, Bayesian inference),
we combine, adapt and extend them in an innovative way that fa-
cilitates intuitive expression and elegant comparison of hypotheses.
In particular, our adaption of the (trial) roulette method represents
a simple way of eliciting priors for Markov chain modeling. We
demonstrate the applicability of our framework in a series of ex-
periments with synthetic and real-world data. Finally, to facilitate
reproducibility and future experimentation, we make an implemen-
tation of HypTrails openly available to the community2.

Structure. We present our approach in Section 2. Section 3 de-
scribes the synthetic and empirical data analyzed; corresponding
experiments are presented in Section 4. We discuss our work in Sec-
tion 5, present related work in Section 6 and conclude in Section 7.

2. THE HYPTRAILS APPROACH
We start with defining the problem setting and giving a short

overview of the proposed approach in Section 2.1. We proceed
with explaining the fundaments of our approach based on Bayesian
Markov chain modeling in Section 2.2 where we also emphasize
our main idea of incorporating hypotheses as Dirichlet priors and
leveraging the sensitivity of Bayes factors for comparing hypotheses
with each other. In Section 2.3 we thoroughly discuss the process of
eliciting Dirichlet priors from scientific hypotheses.

2https://github.com/psinger/HypTrails

2.1 Problem Definition & Approach
We aim to produce a partial ordering O over a set of hypotheses

H = {H1,H2, ...,Hn}. We base the partial order on the plausibility
of hypotheses given data D. Each hypothesis H describes beliefs
about common transitions between nodes while data D captures
empirically observed human trails. A hypothesis H can be expressed
by an adjacency matrix Q where transitions qi, j with strong belief
receive larger values than those with lower belief.

For generating the partial ordering O, our HypTrails approach
resorts to Bayesian inference utilizing a Markov chain model. We
incorporate a hypothesis H as informative Dirichlet priors into the
inference process. For eliciting Dirichlet priors Dir(α) from a
given hypothesis H expressed as matrix Q – i.e., for setting corre-
sponding hyperparameters αi, j – HypTrails uses an adaption of the
so-called (trial) roulette method. The partial ordering O is achieved
by calculating marginal likelihoods P(D|H) (weighted averages of
likelihood, where the weights come from the parameters’ prior prob-
abilities) for competing hypotheses H which we then can compare
with each other by determining Bayes factors B.

2.2 Bayesian Markov Chain Modeling
HypTrails is based on Bayesian Markov chain modeling. In the

following, we only cover those fundamentals that are directly related
to our approach, and point the reader to previous work [37, 40] for
a more detailed treatise of the topic.

Markov chain definition. A Markov chain model represents a
stochastic system that models transitions between states from a
given state space S = {s1,s2, ...,sm} with m = |S| (e.g., the distinct
restaurants of our example in Figure 1). It amounts to a sequence
of random variables X1,X2, ...,Xt . This random process is usually
memoryless (the so-called Markov property, first-order) meaning
that the next state only depends on the current state and not on a
sequence of preceding states. Note though that Markov chain models
can also be extended to incorporate higher orders; see Section 5 for
a discussion. We can define the Markov property as:

P(Xt+1 = s j|X1 = si1 , ...,Xt−1 = sit−1 ,Xt = sit ) =

P(Xt+1 = s j|Xt = sit ) = pi, j.
(1)

Markov chain models have been established as a robust method
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for modeling human trails on the Web in the past (e.g., [14, 37, 45]),
specifically focusing on human navigational trails (e.g., [6, 32])
with Google’s PageRank being the most prominent example [8].
Hence, the Markov chain model is a natural and intuitive choice
for our approach as it lets us explicitly model human trails with a
dependence of the next state on the current state. We also consider
hypotheses as beliefs about transitions without memory.

A Markov model is usually represented by a stochastic transition
matrix P with elements pi, j = P(s j|si) which describe the probabil-
ity of transitioning from state si to state s j; the probabilities of each
row sum to 1. The elements of this matrix are the parameters θ that
we want to determine. For doing so we resort to Bayesian inference.

Bayesian inference. Bayesian inference refers to the Bayesian
process of inferring the unknown parameters θ from data; it treats
data and model parameters as random variables. For a more detailed
discussion of Bayesian inference please refer to [37, 40]. Following
Bayes’ rule, the posterior distribution of parameters θ given data D
and hypothesis H is then defined as:

posterior︷ ︸︸ ︷
P(θ |D,H) =

likelihood︷ ︸︸ ︷
P(D|θ ,H)

prior︷ ︸︸ ︷
P(θ |H)

P(D|H)︸ ︷︷ ︸
marginal likelihood

(2)

The likelihood function describes the likelihood that we observe
data D with given parameters θ and hypothesis (model) H. The prior
reflects our belief about the parameters before we see the data or –
more technically – the prior encodes our hypothesis H. Thus, we use
the prior as a representation for different hypotheses about human
trails. More precisely, we model the data with different – mostly
informative – priors. We use the conjugate prior of the categorical
distribution as the prior of each row of the transition matrix P; i.e.,
the Dirichlet distribution Dir(α). The hyperparameters α represent
our prior belief of the parameters and can be seen as a vector of
pseudo counts α= [α1,α2, ...,αm]. Given such a prior, the posterior
distribution represents a combination of our prior belief and the
actual data that we observe. For each row i of P we now have a
posterior in the form of Dir(ni,1 +αi,1, ...,ni,m +αi,m) where ni, j
are the actual transition counts of the data between states si and s j
and αi, j are the prior pseudo counts assigned to this transition. We
provide a thorough description of how we elicit the needed Dirichlet
priors from expressed hypotheses by researchers in Section 2.3.

Comparing hypotheses. Finally, the marginal likelihood (which
we can also call evidence) expresses the probability of the data given
a hypothesis H and plays a crucial role for comparing hypotheses;3

it is defined as follows (for derivation please consult [37, 40]):

P(D|H) = ∏
i

Γ(∑ j αi, j)

∏ j Γ(αi, j)

∏ j Γ(ni, j +αi, j)

Γ(∑ j(ni, j +αi, j))
(3)

Note that the hyperparameters αi, j differ for various hypotheses H as
we express them via different Dirichlet priors; the actual transition
counts ni, j are the same for each hypothesis. For comparing the plau-
sibility of two hypotheses, we resort to Bayes factors [21, 46]. Bayes
factors are representing a Bayesian method for model comparison
that include a natural Occam’s razor guarding against overfitting.
In our case, a model represents a hypothesis at interest with each
having different priors with different hyperparameters that express
corresponding beliefs. For illustrative purposes, we are now inter-
ested in comparing hypotheses H1 and H2 where H1,H2 ∈H, given

3Note that we calculate log-evidence utilizing logarithms of the
gamma function for avoiding underflow.

observed data D. We can define the Bayes factor – note that we
apply unbiased comparison assuming that all hypotheses are equally
likely a priori – as follows:

B1,2 =
P(D|H1)

P(D|H2)
(4)

P(D|H) is the marginal likelihood (evidence) defined in Equa-
tion 3 and the Bayes factor can be seen as a summary of the evidence
provided by the data in favor of one scientific hypothesis over the
other. HypTrails is not only suited for comparing two hypotheses
with each other, but rather a set of hypotheses H = {H1,H2, ...,Hn}.
For determining the partial order O over H, we order the evidences
that data D provides in favor of hypotheses H; i.e., by ordering
P(D|H) using a less-than-equal binary relation. However, ordering
the evidences is not enough as we need to check the significance of
their ratios which we tackle by calculating Bayes factors. In case
that the significance is not present, we consider two hypotheses as
being equal. For determining the strength of the Bayes factor we
resort to Kass and Raftery’s [21] interpretation table .
Leveraging the sensitivity of Bayes factors. Throughout this sec-
tion we have described our main idea of incorporating hypotheses in
the form of informative Dirichlet priors into the inference process.
We leverage marginal likelihoods and Bayes factors for making in-
formed decisions about the relative plausibility of given hypotheses.
Usually, one common critique of Bayes factors is that they are highly
sensitive with regard to the choice of the prior [21]. In contrast, pos-
terior measures ignore the influence of the prior the more data one
observes and incorporates in the model which is why they are more
ignorant to the choice of prior and even encourage vaguely specified
priors [41]. In our approach, we exploit this property of Bayes fac-
tors as an elegant solution to the problem of comparing hypotheses.
As we express our different hypotheses in the form of priors, we are
explicitly interested in using a measure that is sensitive to the choice
of priors and hence, can give us insights into the relative plausibility
of each hypothesis. Thus, marginal likelihoods and Bayes factors
are an appropriate measure for comparing scientific hypotheses as
pointed out by Wolf Vanpaemel [41].

2.3 Eliciting Dirichlet Priors
This section explains in greater detail how we can express the

hypotheses about human trails and how HypTrails elicits proper
informative Dirichlet priors from these. First, we illustrate how
the prior influences the evidence by studying several toy examples.
Next, we present an intuitive way of eliciting the Dirichlet priors by
introducing an adaption of the so-called (trial) roulette method.
Understanding influence of priors. In Section 2.2, we discussed
that we use the sensitivity of Bayes factors with regard to the choice
of prior (i.e., determined via marginal likelihoods) as a feature (or
solution) rather than a limitation. It allows us to model hypothe-
ses in the form of prior distributions which then can be compared
by corresponding Bayes factors. But how exactly does the prior
influence evidence (marginal likelihood)? Note that the posterior
probability (see Equation 2) is a combination of our prior belief
(pseudo counts) and the data we observe (transition counts) which
is why both influence the evidence (see Equation 3).

To illustrate the influence, we apply several toy priors to human
trail data – the choice of data is secondary and we observe the same
behavior regardless of the underlying data; in this case we exemplary
use navigation data (Wikigame dataset introduced in Section 3).
First, we apply a uniform prior; i.e., α has the same value for each
row i and element j: αi, j = 1+ c,∀i, j. By ranging the constant c
over 0,1,3,5,10,20, we observe decreasing evidence (Figure 2(a))
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(a) Uniform prior
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(b) Empirically aligned prior
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(c) Empirically opposing prior

Figure 2: Understanding influence of priors. This figure shows how the choice of prior pseudo counts influences evidence; we apply
several toy priors to navigation data (Wikigame, see Section 3). In (a) we use a uniform Dirichlet prior which means that for each
row i, α has the same value for each element: αi, j = 1+c,∀i, j. By increasing the constant c (x-axis), we can observe that the evidence
(y-axis) is decreasing; the largest evidence is at c = 0. By using an empirically aligned prior (b) as (ni, j > 0→ αi, j = 1+ c)∧ (ni, j =
0→ αi, j = 1),∀i, j, we end up with a larger evidence the larger c is. Finally, in (c) we intentionally set "bad" prior counts for the α
values via (ni, j = 0→ αi, j = 1+c)∧ (ni, j > 0→ αi, j = 1),∀i, j showing that the evidence becomes smaller as we increase c. The results
indicate that the more a hypothesis is aligned with empirical data, the larger the evidence is - and vice versa.

which is not surprising as the uniform pseudo counts do not mirror
the observed transition counts well. Technically, with increased c
the Dirichlet prior concentrates more and more of its probability
mass on a uniform distribution of parameters, and thus the weights
of alternative parameter configurations become smaller. However,
the likelihood is larger for the alternative parameter configurations
(coming from the data) and this results in a smaller weighted average
of the likelihood, i.e., in a smaller evidence.

On the other hand, if we provide some form of an empirically
aligned prior as (ni, j > 0 → αi, j = 1 + c)∧ (ni, j = 0 → αi, j =
1),∀i, j we end up with a larger evidence the larger c is as we
can see in Figure 2(b). This is because we actually increase the
pseudo counts of transitions that we also observe in our data while
we keep the pseudo counts for non-observed transitions at 1. In this
case, we concentrate the prior probability mass on the parameter
configuration that is very well aligned with the observations. As
a consequence we give more weight for parameter configurations
where the likelihood is anyhow large and this increases the evidence.

Finally, we illustrate the behavior of a toy prior that expressed
an empirically opposing prior in the form of (ni, j = 0→ αi, j =
1+c)∧(ni, j > 0→ αi, j = 1),∀i, j. In this example we intentionally
set the prior pseudo counts to the opposite of what the actual data
tells us. We assign low prior pseudo counts (1) to elements with
large observed transition counts while we incrementally increase
the pseudo counts of transitions that we do not observe in our data.
As expected, Figure 2(c) shows that the evidence decays as we
increase c. Technically, we assign the greatest weights for parameter
configurations with the smallest likelihoods resulting in a steep
decay of evidence with increasing values of c.

Note that c = 0 results in the same evidence for all three toy priors
as in all cases αi, j = 1,∀i, j (uniform prior). These toy examples
demonstrate that if the prior is well aligned with data, then the
evidence is rising with the strength of the prior. The marginal likeli-
hood is the largest if the prior and the likelihood are concentrated
over the same parameter regions and the evidence is lowest if they
concentrate on different regions [50]. Hence, we want to choose an
informative prior that captures the same regions as the likelihood.
This leads to the observation that if our prior choice represents a
valid hypothesis about behavior producing human trails on the Web,
the evidence should be larger than a uniform prior, or an unlikely
hypothesis prior with an equal amount of pseudo counts. We always
want to compare hypotheses with each other that exhibit the same
amount of pseudo counts assigned.

(Trial) roulette method. Our approach requires to define the pa-

rameters of prior Dirichlet distributions by setting the pseudo counts
(hyperparameters) αi, j given the hypothesis at interest. However,
the process of eliciting prior knowledge is no trivial problem and
requires careful steps (see [18, 29] for a discussion). As a solution,
we present an adaption of the so-called (trial) roulette method which
was originally proposed in [19] and further discussed in [16, 29]. It
is a graphical method that allows experts to express their subjective
belief by distributing a fixed set of chips (think about casino chips
you set on a roulette table) to a given grid (e.g., bins representing
result intervals). The number of chips assigned to an element of the
grid then reflect the experts’ belief in the specific bin.

In our work we adapt the (trial) roulette method. The grid can
be understood as a matrix Q where each element qi, j of the grid
represents the belief of a given hypothesis about the transition from
state si to state s j. Values qi, j are set by researchers for expressing
a hypothesis. They need to be positive values and larger values
indicate stronger belief in a given transition. The prior of each row
of the transition matrix P of the Markov chain model is defined as
a Dirichlet distribution (cf. Section 2.2) with parameters (pseudo
counts) [αi,1,αi,2, ...,αi, j] which we want to set given the hypothesis.
Concretely, we want to automatically distribute a number of chips to
the given pseudo counts according to the values provided in matrix
Q expressing a hypothesis H. We define the overall number of chips
to distribute for a given hypothesis as:

β =

uniform prior︷︸︸︷
m2 + k ·m2

︸ ︷︷ ︸
additional informative prior

(5)

m = |S| and m2 amounts to the uniform prior – i.e., we assign
the same number of pseudo counts (1) to each transition – which is
why the number of uniformly assigned chips is equal to the overall
number of parameters of the Markov chain model. Additionally, we
distribute k ∗m2 informative pseudo clicks for the given hypothesis,
where k describes a weighting factor for the informative part. The
larger we set k, the more we concentrate the Dirichlet distributions
according to a hypothesis at interest – see Section 5 for a discussion.

By and large, the goal of our adaption of the (trial) roulette method
is to not only give researchers an intuitive way of expressing their
hypotheses as matrices Q, but also to elicit informative Dirichlet
distributions according to the values qi, j of Q. Next, we want to
illustrate the process of expressing a hypothesis and assigning prior
pseudo counts via the example shown in Figure 3 using the (trial)
roulette method. Let us again focus on human trails over reviewed

3. Papers

154



®
i ABCDE

® j

A
B

C
D

E

nr
. o

f c
hi

ps
1
2
3
4
5

0.00 1.00 0.00 0.00 0.00 hE

1.00 0.00 0.00 0.00 0.00 hD

0.00 0.00 0.00 1.00 0.90 hC

0.00 0.00 1.00 0.00 0.70 hB

0.00 0.00 0.90 0.70 0.00 hA

hE hD hC hB hA(a)

(b)

¯=50¡25=25 chips left

®
i ABCDE

® j

A
B

C
D

E

nr
. o

f c
hi

ps

1
2
3
4
5

0.00 3.47 0.00 0.00 0.00 hE

3.47 0.00 0.00 0.00 0.00 hD

0.00 0.00 0.00 3.47 3.12 hC

0.00 0.00 3.47 0.00 2.43 hB

0.00 0.00 3.12 2.43 0.00 hA

hE hD hC hB hA(c1 )

(c2 )

¯=25¡22=3 chips left

®
i ABCDE

® j

A
B

C
D

E

nr
. o

f c
hi

ps

1
2
3
4
5

0.00 0.47 0.00 0.00 0.00 hE

0.47 0.00 0.00 0.00 0.00 hD

0.00 0.00 0.00 0.47 0.12 hC

0.00 0.00 0.47 0.00 0.43 hB

0.00 0.00 0.12 0.43 0.00 hA

hE hD hC hB hA(d1 )

(d2 )

¯=3¡3=0 chips left ✓

Figure 3: Illustration of the (trial) roulette method. In this figure the most important steps of our trial roulette method are visualized.
We begin with a matrix expressing a researcher’s hypothesis about human trails in (a) – in this case the exemplary geographic
hypothesis for trails over businesses reviewed (cf. Figure 1). The (trial) roulette method proceeds with distributing a given number
of chips (pseudo counts, in this case β = 50) to the Dirichlet priors. It starts by assigning one chip to each element (uniform) as can
be seen in (b) before it proceeds by assigning the remaining chips according to their values of our given matrix in (a) as can be seen
from (c) to (d). In each column, values of the matrices that receive at least one chip are marked bold and in the same color as the bars
indicating chip assignments for the Dirichlet priors. In case of ties the ranking is produced in random fashion. For details please see
Section 2.3.

restaurants in Italy (see Figure 1) and illustrate the method using the
geographic hypothesis given in Figure 1(b). For this visualization,
we assume that we set k = 1 leading to β = m2 +m2 chips we want
to distribute. The following steps are necessary:

(a) Expressing the hypothesis. Researchers start with expressing
the hypothesis matrix Q with elements qi, j that capture the belief
about transitions of underlying human trails; the matrix can be seen
in Figure 3(a). In this example, we have five states (restaurants)
– i.e., S = A,B,C,D,E and m = 5 leading to β = 50 chips to dis-
tribute – and we express our geographic hypothesis about common
transitions with values between 0 and 1. The precondition is that
only positive values are used and larger values (qi, j) always express
stronger beliefs compared to smaller values. In this case, the closer
a value is to 1 the closer two restaurants are geographically and the
more we believe in corresponding transitions. As can be seen in
Figure 1(b), both restaurant pairs B-C and E-D are the closest in
geographical terms which is why we lay the strongest belief in these
symmetric transitions – concretely, we set qB,C = 1.0, qC,B = 1.0,
qD,E = 1.0 and qE,D = 1.0. The next closest restaurant pair is A-C
which is why we also have strong beliefs in humans consecutively
reviewing restaurant A after C and vice versa – we set qA,C = 0.9
and qC,A = 0.9. Finally, we set qA,B = 0.7 and qB,A = 0.7 as we also
have some (lower) belief that humans consecutively review given
restaurants. We set all other transitions to zero as we believe that
given restaurants are too far away. One matrix Q represents one
general hypothesis H about human trails – hence, in a more realistic
scenario one would want to express several of such matrices (such as
for the other hypotheses given in Figure 1). Also note that we hand-
pick values for this example and in a more rigorous investigation one
would potentially use an automatic method for determining them
(as we do in Section 4). The next steps are automatically performed

by HypTrails for eliciting Dirichlet priors from such matrices, more
specifically by the adapted (trial) roulette method.

(b) Initial uniform distribution. The (trial) roulette method starts
with assigning uniform chips to each transition which can be seen
as obtaining Laplace’s prior (αi, j = 1 for each i and j) and accounts
to the uniform prior part of Equation 5. The updated prior (i.e.,
hyperparameters for the Dirichlet distributions) can be seen in Fig-
ure 3(b) with black bars; all elements where one chip is assigned
to are marked bold and black in Figure 3(a). By subtracting the
distributed number of chips from β we have β = 50−25 = 25 chips
left for the informative part described next.

(c) Informative distribution. Matrix Q gets normalized and then
multiplied by the number of chips left: Q = Q

||Q||1 ∗β where ||Q||1
is the `1-norm and β = 25. The resulting matrix can be seen in
Figure 3(c1). The method assigns as many chips to elements of the
prior as the integer floored values of Q specify. So e.g., qA,B = 2.43
and

⌊
qA,B

⌋
= 2 leading to αA,B+= 2 whereas

⌊
qB,D

⌋
= 0 which is

why the pseudo count for this transition is not increased. Overall,
the method distributes 22 more chips marked bold and blue in
Figure 3(c1) leading to β = 25−22 = 3 chips left; the updated prior
distributions (new chips marked blue) can be seen in Figure 3(c2).

(d) Remaining informative distribution. Finally, the method
subtracts the integer floored values from Q leading to the matrix
illustrated in Figure 3(d1) calculated by Q = Q−bQc. It now needs
to distribute the chips left (three in this case) according to the re-
maining values in Q. The method accomplishes that by ranking the
values in descending order and assigning one chip to each element
until none is left, starting from the largest and ending at the small-
est. In case of a tie the ranking for the ties is produced in random
fashion – hence, in this case αD,E does not receive one more chip.
We mark the elements that receive one further chip bold and red in
Figure 3(d1) and update our prior pseudo counts as can be seen in
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Figure 3(d2) also in red color. Now, the (trial) roulette method has
no chips left and is finished.

The final chip assignment as can be seen in Figure 3(d2) now
represent the prior (hypothesis). In detail, each row corresponds
to a Dirichlet distribution with corresponding pseudo counts (hy-
perparameters) αi, j – e.g., αC,B = 5. By proceeding, our HypTrails
approach now uses these Dirichlet priors for Bayesian Markov chain
modeling inference as described in Section 2.2. Concretely, in com-
bination with the transitions ni, j observed from data they influence
the marginal likelihood calculated as defined in Equation 3. See
Figure 2 for a visualization of how the prior influences the evidence.
By repeating the trial roulette method and evidence calculation

3. DESCRIPTION OF DATASETS
In this section, we introduce both synthetic as well as empiri-

cal datasets which we consider for our experiments. We produce
synthetic data consisting of simulated human trails – in this case
navigational trails – with known mechanisms from a generated (i.e.,
artificial) network. The introduced empirical data stems from three
real-world datasets from different domains. The state space S inves-
tigated is always defined by the distinct elements the trails traverse
over – e.g., if we observe trails over five distinct restaurants being
reviewed (see Figure 1) we consider these five for the state space.

3.1 Synthetic Datasets
We start by generating a directed random network using a gener-

alized version of Price’s preferential attachment scale-free network
model [3, 33]. The network generation algorithm starts with a clique
containing 11 nodes and proceeds to add nodes with an out-degree
of 10 leading to an overall network size of 10,000 nodes. These
parameters are arbitrary and could be set differently. Next, we simu-
late three different kinds of navigational trails, each consisting of
exemplary 1,000 trails of length 5, as follows:
Structural random walk. For each trail we start at a random node
of the network and perform a random walk through the network. The
walker chooses the next node by randomly selecting one out-going
link of the current node.
Popularity random walk. Again, the walker starts at a random
node of the network, but now selects the next node by choosing
the out-link according to the target’s in-degree. The walker lays
a softmax-like smoothing over the in-degrees of all target nodes
(edeg−(s)10) and then chooses the next node according to given prob-
ability leading to a small stochastic effect. This is aimed at averting
too long loops that would happen with simple greedy selection.
Random teleportation. Again, we start with a random node in the
network for each trail. However, we now completely ignore the
underlying topological link network and simply randomly choose
any other node of the network – i.e., teleporting through the network.

3.2 Empirical Datasets
For our experiments we also consider three different empirical

datasets which are described next.
Wikigame dataset. First, we study navigational trails over Wikipedia
pages that are consecutively visited by humans. The dataset is based
on the online game called Wikigame (thewikigame.com) where
players aim to navigate to a given Wikipedia target page starting
from a given Wikipedia start page using Wikipedia’s link struc-
ture only. All start-target pairs are guaranteed to be connected in
Wikipedia’s topological link network and users are only allowed to
click hyperlinks and use the browser’s buttons such as refresh, but
not use other features such as the search field. In this article we study
trails collected from users playing the game between 2009-02-17

and 2011-09-12. Overall, the dataset consists of 1,799,015 trails –
where each trail represents the consecutive websites visited by one
user for one game played – through Wikipedia’s main namespace
including 360,417 distinct pages with an average trail length of
around 6. We use corresponding textual and structural Wikipedia
article data for hypotheses generation. In particular, we use the
Wikipedia dump dated on 2011-10-074.

Yelp dataset. Second, we study human trails over successive busi-
nesses reviewed by users on the reviewing platform Yelp (yelp.com)
– we have used this setting as an example throughout this article (e.g.,
see Figure 1). For generating these trails we use a dataset publicly
offered by Yelp5. Overall, we generate 125,365 trails – where each
trail describes the subsequent review history of one single user –
over 41,707 distinct businesses with an average trail length of 8.
The data also includes further information about the businesses like
the geographic location or category markers assigned, which we
will use for hypotheses generation.

Last.fm dataset. Third, we study human trails that capture con-
secutive songs listened to by users on the music streaming and
recommendation website Last.fm (lastfm.com). We use a publicly
available dataset for generating the trails at hand focusing on listen-
ing data stemming from one day (2009-01-01). Overall, the dataset
consists of 275 trails – where each trail captures the successive songs
listened to by one user on a given day – over 11,166 distinct tracks
with an average trail length of 52.8. For generating hypotheses, we
consult the MusicBrainz (musicbrainz.org) API as describe later.

4. EXPERIMENTS
To demonstrate HypTrails and its general applicability, we per-

form experiments with both synthetic as well as empirical datasets
(as introduced in Section 3).

4.1 Experiments with Synthetic Data
Our first experiments focus on applying HypTrails to three syn-

thetic trail datasets, generated by the following mechanisms: telepor-
tation, a random walk and a popularity random walk (see Section 3).
In our experiments, we look at these three datasets and compare
three corresponding hypotheses (uniform, structural, popularity)
that capture the generative mechanisms of each dataset. As we
know from theory, HypTrails ranks the hypothesis that best captures
the underlying mechanisms as the most plausible one. Next, we
introduce the hypotheses in greater detail, before we discuss the
experimental results.

Hypotheses. We now describe how we express the three hypotheses
as matrices Q. Note that we only have to specify the hypothesis ma-
trix Q (see Section 2.3) while the concrete pseudo count distribution
for generating proper priors is handled by our approach.

Uniform hypothesis. This hypothesis has the intuition that
trails have been purely generated by random teleportation and all
transitions are equally likely. Thus, we equally believe in each
transition and set each element of Q to an equal value (here 1).

Structural hypothesis. This hypothesis captures our belief that
the trails have been generated by (only) following the underlying
topological link structure. Hence, we believe that agents would
always choose a random link leading from one node to another
while traversing the network. We express this by setting qi, j of
Q to 1 if a directed link between state si and state s j exists in the
topological network.

4This Wikipedia dump closely resembles the information avail-
able to players of the game for our given time period.

5yelp.com/dataset_challenge
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(a) Structural random walk
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(b) Popularity random walk
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(c) Random teleportation

Figure 4: Experiments with synthetic data. This figure depicts the results obtained when applying HypTrails to three synthetically
generated trail corpora with known mechanisms (structural random walk (a), popularity random walk (b) and random teleportation
(c)) comparing three different hypotheses: (i) uniform (solid, blue lines), (ii) structural (dashed, red lines) and (iii) popularity (dotted,
purple lines). In each figure, the x-axis depicts the strength (weighting factor k) one assigns to a given hypothesis as defined in
Equation 5 (k = 0 refers to a uniform prior) while the y-axis shows the corresponding evidence (marginal likelihood) value. For
simplicity, we can compare hypotheses with each other by comparing the evidence values (larger values mean higher plausibility)
for the same values of k as all Bayes factors are decisive. The results illustrate what we know from theory as for each dataset the
hypothesis that captures the mechanisms according to which the data has been produced best, is declared as the most plausible one.

Popularity hypothesis. This hypothesis also believes that the
trails have been generated by following the links of the underlying
link structure, but we have stronger beliefs in choosing large in-
degree nodes compared to low in-degree nodes. Hence, we set qi, j
to deg−(s j) if a directed link between state si and state s j exists in
the topological network.

Results. Figure 4 depicts the results for each hypothesis and dataset
at interest. The x-axis denotes the weighting factor k for the number
of pseudo counts assigned (cf. Equation 5). The y-axis denotes
the corresponding Bayesian evidence (marginal likelihood); for
k = 0 the evidence is the same for all hypotheses as in that case
the pseudo counts are uniformly distributed and no informative
aspect is considered. The larger k gets, the more pseudo counts are
assigned to the prior according to the given hypothesis and hence,
the stronger our belief in specific transitions of a given hypothesis.
We can compare hypotheses with each other by comparing the y-
values (evidence) for the same x-values. According to Kass and
Raftery’s interpretation table of log-Bayes factors [21], we find that
all differences are decisive which is why we refrain from presenting
explicit Bayes factors. Hence, the larger the evidence for a given
hypothesis is, the more plausible it is in comparison to the other
hypotheses at interest. Across all three synthetic datasets, we can
observe what we know from theory: the hypothesis that captures the
underlying known mechanisms of the synthetic trails best is found
to be the most plausible one. In the following we discuss the results
of each dataset in detail:

Structural random walk. In Figure 4(a) we can see that the struc-
tural hypothesis is ranked as the most plausible one as it exhibits the
highest evidences for k > 0. This result is as expected from theory
as the trails are also produced according to a structural random
walk only considering the underlying topological link network as
expressed by the structural hypothesis. The reason why the popu-
larity hypothesis is more plausible than the uniform hypothesis is
because the former also incorporates structural information while
the latter does not.

Popularity random walk. We show the results for our popular-
ity random walk generated trails in Figure 4(b). In this case the
popularity hypothesis which incorporates the in-degree (popularity)
of potential structural target nodes can be identified as the most
plausible one as it captures the mechanisms according to which the
trails have been generated.

Random teleportation. Finally, in Figure 4(c) we demonstrate
the results for our trails generated via random teleportation. As

expected, the uniform hypothesis is the most plausible one which
accounts to our prior belief that all target nodes are equally likely
to come next given a current node. Contrary, the structural and
popularity hypotheses which both incorporate structural knowledge
are less plausible hypotheses.

4.2 Experiments with Empirical Data
Our second kind of experiments focus on demonstrating the gen-

eral applicability of the HypTrails approach by applying it to three
real-world, empirical human trail datasets (Wikigame, Yelp and
Last.fm) as introduced in Section 3. We compare universal as well
as domain-specific hypotheses for each dataset which we describe
next, before we discuss the experimental results.

Hypotheses. We now describe the universal and domain-specific
hypotheses studied and how we express them. These are just exem-
plary hypotheses for illustrative purposes, researchers are completely
free to formulate other / their own hypotheses accordingly.

Uniform hypothesis. We use the universal uniform hypothesis
in a similar fashion as for our experiments with synthetic data in
order to express our prior belief that each state is equally likely
given a current state. Hence, we assign 1 to each element of the
hypothesis matrix Q. We can see this hypothesis as a baseline for
other hypotheses; if they are not more plausible than the uniform
hypothesis, we can not expect them to be good explanations about
the behavior that is producing the underlying human trails.

Self-loop hypothesis. With the universal self-loop hypothesis we
express our prior belief that humans never switch to another element
in a trail. For example, for a navigational scenario this would mean
that if a user currently is on a specific Wikipedia page, she would
always just refresh the current one and never switch to another one.
We set the diagonal to 1 in the corresponding hypothesis matrix Q
and leave all other elements zero.

Similarity hypothesis. We use the similarity hypothesis for ex-
pressing our belief that humans consecutively target nodes in trails
that are in some way (e.g., semantically) related to each other. We
now aim at modeling this hypothesis for all three datasets. However,
due to their given nature the similarity hypothesis differs for each
dataset at interest which is why we describe the domain-specific
similarity hypotheses next:

Wikigame similarity hypothesis. This hypothesis states the belief
that humans prefer to consecutively access websites that are semanti-
cally related which has been observed and hypothesized in a series of
previous works (e.g., [38, 47, 48]). Using the set of Wikipedia pages
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Figure 5: Experiments with empirical data. This figure depicts the results obtained from applying HypTrails to three different
empirical human trail datasets (Wikigame (a), Yelp (b) and Last.fm (c)) for comparing a set of hypotheses. The x-axis depicts the
strength (weighting factor k) one assigns to a given hypothesis as defined in Equation 5 (k = 0 refers to a uniform prior) while the
y-axis shows the corresponding evidence (marginal likelihood) value. For simplicity, we can compare hypotheses with each other
by comparing the evidence values (larger values mean higher plausibility) for the same values of k as all Bayes factors are decisive.
Several domain-specific hypotheses are declared as the most plausible ones for our three datasets: the structural hypothesis for the
Wikigame trails (a), the geographic hypothesis for the Yelp trails (b) and the artist similarity hypothesis for our Last.fm trails (c).

that users navigate over, we use the textual information of each site
provided by the corresponding Wikipedia dump (see Section 3) for
calculating the semantic relatedness [34] between sites. We utilize a
vector space model [34] for representing the documents (states) as
vectors of identifiers using tf-idf [35] for weighing the terms of the
vectors. We apply an automatic stop word removal process where
we ignore all terms that are present in more than 80% of the docu-
ments in our corpus. Also, we use sub-linear term frequency scaling
as a term that occurs ten times more frequently than another is not
necessarily ten times more important [26]. Additionally, we perform
a sparse random projection for reducing dimensionality while still
guaranteeing Euclidian distance with some error [1, 24]. The final
number of parameters is determined by the Johnson-Lindenstrauss
lemma [15] that states that given our 360,417 number of samples
(distinct Wikipedia pages), we only need 10,942 features while
preserving the results up to a tolerance of 10% – which is also
the tolerance level we use for dimensionality reduction. By doing
so, we can reduce the number of tf-idf features from 2,285,489 to
the specified 10,942. Finally, we calculate similarity between all
pairs of pages (states) using cosine similarity between the described
vector representations which define qi, j of our matrix Q . Each
qi, j can now exhibit a final value between 0 and 1 where 1 means
complete similarity and 0 means no relatedness at all. To increase
sparsity we only consider similarities that are equal or larger than
0.1. Additionally, we set the elements of the diagonal of Q to 1.

Yelp similarity hypothesis. With this hypothesis we express our
belief that humans choose their next business they review based
on similarity to the current business according to their categories
(e.g., subsequently reviewing restaurants but not a barber after a
restaurant). On Yelp, businesses can get assigned a list of categories
that represent them (e.g., restaurant) with we leverage for calculating
similarity between them. Again, we use a vector space model for
representing businesses as vectors of binary identifiers (category
assigned or not assigned). For calculating all-pair similarity scores
between businesses we utilize Jaccard similarity ranging from 0
to 1 which determine qi, j of the prior hypothesis matrix Q. The
diagonal is set to zero as we do not believe in humans consecutively
reviewing the same business.

Last.fm similarity hypothesis. This hypothesis captures our belief
that humans consecutively listen to songs on Last.fm if they are

produced by the same artist – e.g., only listening to songs by Eros
Ramazzotti. Hence, we set elements of the hypothesis matrix Q
between two tracks to 1 only if they are from the same artist – the
diagonal is set to zero.

Wikigame structural hypothesis. For Wikigame, we evaluate an
additional domain-specific hypothesis that captures our prior belief
that users navigate the Web (or in this case Wikipedia) primarily by
using the underlying topological link structure. The corresponding
hypothesis matrix Q can hence be built by looking whether links
between sites of our states space S exist in the underlying topolog-
ical link network G with directed edges E(G) (derived from the
Wikipedia dump as stated in Section 3.2). To be precise, the values
of the elements qi, j of Q are determined by the number of hyperlinks
linking from page si to page s j; mostly, only one hyperlink links
from one page to the other. Additionally, we set the diagonal of the
matrix to 1 as users might also subsequently navigate the same page
by e.g., clicking the refresh button of the browser.

Yelp geographic hypothesis. On Yelp, we also consider the
domain-specific hypothesis that the next business a user reviews is
one that is geographically close to the current one – we have used
this as an example throughout this article (e.g., see Figure 1(b) or
Figure 3). For doing so, we start by calculating the haversine dis-
tance [39] between the longitude and latitude values of all pairs of
businesses. As the resulting value (in km) is smaller for geographic
close businesses than for far businesses we normalize the values by
dividing them by the maximum distance before subtracting them
from 1. This leads to final values that range from 0 to 1 where 1
means geographically identical. We set the values of Q according to
the calculated values while leaving the diagonal zero.

Last.fm date hypothesis. Finally, we specify a hypothesis that
believes that successive tracks listened to on Last.fm are close re-
garding their original publication date (e.g., someone prefers to only
listen to 80s songs). We determine the date of a track by using the
Musicbrainz API and looking for the earliest release date available.
Next, we calculate the difference between dates of two songs in
years.6 Similar to the Yelp dataset, we then divide each date dif-
ference value by the maximum and subtract it from 1 giving us
scores between 0 and 1 where the latter means that two tracks are

6We only consider track pairs for which we can retrieve a date
for both tracks through the API.
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originally published in the same year. We set the transition values
of Q according to the calculated values and leave the diagonal zero.

Results. The results for all datasets are shown in Figure 5. Again,
all Bayes factors are decisive and we can simply interpret hypothe-
ses having larger y-values (evidence, marginal likelihood) as more
plausible. Across all datasets, we can identify some domain-specific
hypotheses that are more plausible compared to the universal uni-
form hypothesis which we can see as a baseline. Hence, these
hypotheses seem to capture some mechanisms well that human
behavior exhibits while producing the human trails studied. Addi-
tionally, we find that throughout all datasets the universal self-loop
hypothesis is the least plausible one with a small exception for the
Wikigame dataset. In the following, we present the results from the
different datasets in greater detail:

Wikigame. In Figure 5(a) we present the results of applying
HypTrails to the Wikigame dataset comparing the hypotheses at
interest. First and foremost, our approach shows largest evidence for
the domain-specific structural hypothesis. This indicates that users
playing the Wikigame indeed seem to prefer to navigate Wikipedia
by following links of the underlying topological link network. This
is not too surprising as the Wikigame per definition only allows users
to click on available hyperlinks for trailing through the Wikipedia
space. Additionally, we can see that the domain-specific similarity
hypothesis is more plausible than both the universal uniform as
well as the self-loop hypotheses. This corroborates the theories
and assumptions of previous work [38, 47, 48] which observed that
humans tend to follow semantically related concepts successively.

Furthermore, we observe that both the universal uniform as well
as the self-loop hypotheses are the least plausible hypotheses at
interest. Interestingly, for k = 1 the self-loop hypothesis exhibits
larger evidence compared to the uniform prior which partly also
demonstrates that self-loops are indeed an important aspect for this
dataset as also observed in previous work [37]. However, with larger
k the evidence of the uniform hypothesis surpasses the self-loop
hypothesis which may be explained by the fact that we weight the
informative part (i.e., only self-loops) too strongly while we ignore
all other possible transitions.

Yelp. We depict the results for comparing the hypotheses at
interest for our Yelp dataset (business reviews) in Figure 5(b). A
first observation is that our approach indicates the domain-specific
geographic hypothesis as the most plausible one. Hence, humans
indeed seem to prefer to successively review businesses that are
geographically close to each other on Yelp as captured by our dataset.
Contrary, the other domain-specific similarity hypothesis is less
evident compared to the uniform hypothesis which can be seen as
a baseline. Consequently, from this exemplary analysis, we can
not assume that humans prefer to consecutively review the same
businesses based on similar categoric descriptors, at least not based
on the similarity of categorical descriptors given on Yelp. Finally,
the self-loop hypothesis is indicated as the least plausible one which
indicates that humans at maximum very seldom review the same
business twice in a row in our dataset.

Last.fm. Finally, in Figure 5(c) we illustrate the results obtained
when applying HypTrails for comparing our Last.fm hypotheses.
In this case, we can see that the similarity hypothesis, expressing
our prior belief that users consecutively listen to songs that stem
from the same artist, is the most plausible one. This is visible as
the evidence values are larger for all k > 0 compared to the other
hypotheses of interest. Again, we observe that humans do not seem
to prefer to listen to the same song over and over again (self-loop
hypothesis) in our dataset. Also, for this example data, the track
date hypothesis is indicated with lower evidence compared to the
universal uniform hypothesis making it less plausible.

5. DISCUSSION
The HypTrails approach represents an intuitive way of comparing

hypotheses about human trails as we have demonstrated on synthetic
as well as empirical data. However, there are some aspects – as partly
exhibited throughout our experiments – that one should consider
when applying HypTrails; we discuss them next.

Specification of hypotheses. HypTrails allows researchers to intu-
itively express their hypotheses as arbitrary matrices (where higher
values indicate higher belief), which are then used for eliciting pri-
ors. While this is a very intuitive way of expressing hypotheses,
choices have to be made regarding several factors such as (i) which
transitions to believe in (e.g., about setting the diagonal) (ii) how
to calculate values for representing a hypothesis (e.g., haversine
distance for geographic closeness) or (iii) availability of information
(e.g., API restrictions). While several ways of doing this are con-
ceivable, our approach does not constraint the researchers’ choice
in this regard. If in doubt, our advice is to express the uncertainty
through another hypothesis (which reduces the problem) or through
a set of other hypotheses (which focus on different representations).
For example, in this article we first investigate the plausibility of
a universal self-loop hypothesis compared to a uniform hypothesis
before making a choice about the diagonal of other hypotheses. We
find that for navigational trails (Wikigame), self-loops seem to play
a role at least occasionally (cf. Figure 5(a)) which is why we also set
the diagonals in other hypotheses to larger values than zero, while
for both Yelp (cf. Figure 5(b)) as well as Last.fm (cf. Figure 5(c)) we
can not observe such behavior. Another choice to make is whether
one wants to express hypotheses in a symmetric or asymmetric way
– e.g., it might be useful to believe that transitioning from state A
to state B is more relevant than from B to A. Following our ad-
vice, we would express a symmetric and asymmetric version of the
hypothesis and compare them.

Behavior of hypothesis weighting factor k. Throughout our ex-
perimental results (see Figure 4 and Figure 5) we frequently observe
that the evidence is falling with larger k. As pointed out throughout
this article, the evidence is a weighted likelihood average and is
largest if both the prior as well as the likelihood concentrate on the
same parameter value regions. The larger we choose k, the larger
we set the hyperparameters of the Dirichlet distributions and the
more they get concentrated. Thus, only a few specific parameter
configurations (single draw from the Dirichlet distribution) receive
higher prior probabilities while many others receive low ones. As
we can not expect our hypotheses to concentrate on the exact same
areas as the likelihoods as we did for our empirically aligned toy
example in Figure 2(b), we sometimes see falling evidences with
larger k as we reduce the scope of the prior. Again, we want to
emphasize that hypotheses should not be compared with each other
for different values of k.

Memoryless Markov chain property. Currently, HypTrails is
memoryless, meaning that the next state only depends on the cur-
rent one. Previous work has been contradictory in their statements
about memory effects of human trails on the Web (see e.g., [14, 37]).
While first order models have mostly been shown to be appropriate,
it may be useful to extend HypTrails to also support memory effects
in the future. This would mean that it would allow us to not only
analyze hypotheses about how the current state influences the next
one, but also how past ones (potentially) exert influence.

Ideas for future work. While we have showcased a certain variety
of datasets and hypotheses that can be analyzed with HypTrails, we
would like to encourage researchers to see these examples only as a
stepping stone for more detailed experiments to be conducted. In
addition, in future work multiple extensions and / or experimental
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variations are conceivable. For example, it could be useful to look
at personalization or user group effects in data. Currently, the
examples only demonstrate collective behavior, but one may assume
that different groups of users produce human trails differently. One
could segment the dataset according to some heuristic criteria and
then analyze the same hypotheses on both sub-datasets. If one
hypothesis is more plausible in one dataset than the other, one can
assume differences in user behavior in different sub populations.
One might also believe that human behavior changes over time [51].
This suggests to apply HypTrails to study the temporal evolution
of hypotheses (and evidences for them). Furthermore, one can also
think about combining hypotheses with each other to form new
ones. For example, in Figure 5(a) we show that both the structural
as well as the similarity hypotheses are very plausible to explain
navigational behavior on Wikipedia. One could use a combination of
both by weighing structural transitions according to their similarity.

6. RELATED WORK
Studies of human trails in information systems have been fuelled

by the advent of the World Wide Web [4]. A fundamental way
of interacting with the Web is navigating from website to website.
Such navigational trails have been extensively investigated in the
past. An example of early work is by Catledge and Pitkow [11]
who studied navigational regularities and strategies for augment-
ing the design and usability of WWW pages. Subsequent studies,
e.g., the work by Huberman et al. [20] or Chi et al. [13], empha-
size existing regularities and rationalities upon which humans base
their navigational choices. These examples nicely demonstrate the
importance of gaining a better understanding of sequential user be-
havior producing human trails on the Web. Apart from modeling
[7, 8, 13, 32, 36, 37] and the detection of regularities and patterns
[20, 44, 45], researchers have also been interested in studying strate-
gies humans follow when producing human trails on the Web. We
highlight some exemplary findings next.

A prominent theory is the Information Foraging theory by Pirolli
and Card [31] which states that human behavior in an information
environment on the Web is guided by information scent which is
based on the cost and value of information with respect to the goal
of the user [13]. Another behavioral pattern is shown in [30] and [9]
where the authors observe that semantics affect how users search
visual interfaces on websites; the importance of semantics between
subsequent concepts is also emphasized in [12, 38, 47, 48]. Amongst
many others, further studies of human trails on the Web focus on
the detection of progression stages [51], trail prediction [22], the
study of the value of search trail following for users [5, 49], partisan
sharing [2] or approaches to capture trends in human trails [27].

While we highlight just a small excerpt of related work, all these
studies reveal interesting behavioral aspects that should be trans-
latable into hypotheses about transitions over states. What is diffi-
cult, is to compare them within a coherent research approach. In
this work we tackle this problem. Fundamentally, HypTrails is
based on a Markov chain model which is prominently leveraged
for modeling human trails on the Web. Google’s PageRank, for
example, is based on a first order Markov chain model [8] and
a large array of further studies have highlighted the benefits of
Markov chain models for modeling human trails on the Web (e.g.,
[7, 17, 23, 25, 32, 36, 37, 45, 52]). Given these advantages as well
as the fact that we are interested in studying hypotheses about mem-
oryless transitions, the Markov chain model represents a sensible
choice for our approach. For deriving the parameters of models, we
utilize Bayesian inference [37, 40].

The main idea of our approach is to incorporate hypotheses as in-
formative Dirichlet priors into the Bayesian Markov chain inference

and compare them with Bayes factors. Bayes factors are known to
be highly sensitive on the prior. This property of Bayes factors has
been seen as a limitation in the past – as originally pointed out by
Kass and Raftery [21]. However, as emphasized by Wolf Vanpaemel
[41], if "models are quantitatively instantiated theories, the prior can
be used to capture theory and should therefore be considered as an
integral part of the model". In such a case, the sensitivity of Bayes
factors on the prior can be seen as a feature – i.e., instrumental
for gaining new insights into the plausibility of theories (or in our
case hypotheses about human trails). Thus, marginal likelihoods
and Bayes factors can be leveraged as an appropriate measure for
evaluating hypotheses about human trails. The process of expressing
theories as informative prior distributions over parameters has been
discussed in follow-up work by Wolf Vanepaemel in [43] and in [42]
where the author tackles this task by using hierarchical methods. In
this work, we present an adaptation of the so-called (trial) roulette
method, which was first proposed in [19] and further discussed in
[16, 29], for this task. With our adaption, we understand the grid
as a hypothesis matrix where elements correspond to beliefs about
transitions for a given hypothesis. Also, in our case, chips corre-
spond to pseudo counts of Dirichlet priors which we automatically
set according to expressed hypotheses of researchers.

7. CONCLUSION
Understanding human trails on the Web and how they are pro-

duced has been an open and complex challenge for our community
for years. In this work, we have addressed a sub-problem of this
larger challenge by presenting HypTrails– an approach that enables
scientists to compare hypotheses about human trails on the Web.
HypTrails utilizes Markov chain models with Bayesian inference.
The main idea is to incorporate hypotheses as Dirichlet priors into
the inference process and leverage the sensitivity of Bayes factors
for comparing hypotheses. Our approach allows researchers to intu-
itively express hypotheses as beliefs about transitions between states
which are then used for eliciting priors.

We have experimentally illustrated the general mechanics of Hyp-
Trails by comparing hypotheses about synthetic trails that were
generated according to controlled mechanisms. As derived from
theory, HypTrails ranks those hypotheses as the most plausible ones,
that best capture the mechanisms of the underlying trails. Addi-
tionally, we have studied empirical data to further show the general
applicability of HypTrails. We looked at human trails from three
different domains: human navigational trails over Wikipedia arti-
cles (Wikigame), successive reviews of businesses (Yelp) as well
as trails capturing songs that users consecutively listen to (Last.fm).
Although the experiments presented in this work mainly served to
illustrate how one can apply the HypTrails approach, we hope that
they also motivate and encourage researchers to conduct further,
more in-depth studies of human trails on the Web in the future.

While we have developed HypTrails for comparing hypotheses
about hypertext trails, the approach is not limited to Web data. It can
be applied to any form of trails over states at interest in a straight-
forward manner; e.g., it could also be used to study human trails as
recorded by GPS data. Insights gained by such studies can give a
clearer picture of the underlying dynamics of human behavior that
shape the production of human trails.
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4. Conclusions

The production of human trails on the Web is ubiquitous and our research

community has been interested in modeling aspects of human trails on

the Web since the advent of the Web. Understanding the production

of human trails can be useful for a series of applications such as for

enhancing information network structures, predicting human trails or for

recommender systems. However, it has been a complex challenge for years.

In this thesis, I have tackled this challenge by mainly concentrating on

methodological tools that should provide researchers with straight-forward

mechanisms to study human trails on the Web. To that end, I have focused

on several sub-problems and methodological contributions. First of all,

related research has been contradictory regarding their statements about

whether it is useful to incorporate memory effects when modeling human

trails on the Web. By presenting a general framework for detecting the

appropriate Markov chain order – i.e., memory effects – given human

trail data in a comprehensive way, I want to encourage and facilitate

future studies. Next, this thesis highlights several regularities, patterns

and strategies in human trails on the Web as well as demonstrates that

human navigational trails can be successfully leveraged for the task of

calculating semantic relatedness between concepts. This argues for an

augmentation of existing methods to also consider human trails. Finally,

I have presented an approach called HypTrails that allows researchers to

express and compare hypotheses – beliefs in transitions – about human

trails. Next, this final chapter summarizes the results and contributions

in detail before I highlight implications, limitations and potential future

work.
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4.1. Results and Contributions

To summarize the results and contributions of this thesis, I give answers

to the research questions as defined in Section 1.4.

Memory and Structure in human trails on the Web. Previous

works have been quite contradictory regarding whether human trails on

the Web exhibit memory effects or not. This is of specific interest to the

Markov chain model which has been memoryless in a wide range of human

trail applications such as Google’s PageRank. Thus, the first research

question of this thesis to be answered has been ”What is the structure

and memory in human trails on the Web?”. To that end, I have presented

a general framework for detecting the appropriate Markov chain order

in Section 3.2 which is one of the main contributions of this thesis. By

utilizing a series of advanced statistical inference methods, this framework

allows researchers to comprehensively make informed decisions about the

appropriate Markov chain order as well as potential memory effects in

human trail data. By applying this framework to human navigational trails,

the findings demonstrate what this thesis inferred from theory in Chapter 2:

It is indeed difficult to detect the appropriate Markov chain order having

insufficient data but a vast amount of states. However, by limiting the state

space by replacing pages with corresponding topics, the results suggest

that human navigational behavior is guided by memory effects at least on

some level. In subsequent work as presented in Section 3.3 and Section 3.4,

colleagues and I have demonstrated the general applicability and potential

use cases of the Markov chain framework by applying it to human edit trails

in collaborative ontology engineering projects. The results demonstrate

that the framework can be successfully utilized for eliciting not only

memory effects, but also regularities and structural patterns in various

kinds of human trails on the Web. Additionally, experiments of Section 3.4

showcase the importance of memory effects by demonstrating that higher

order Markov chain models can be more accurate when predicting human

trails by still accounting for potential overfitting. By and large, future

researchers can benefit from the developed framework by applying it to

their problem setting and data of interest.
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Leveraging human trails. Based on the findings regarding memory and

structure in human trails on the Web, I have hypothesized that it may be

also beneficial to leverage human trails on the Web for tasks that are usually

solved by using Web content only. As an exemplary use case, the second

research question of this thesis has questioned ”Can we leverage human

navigational trails for the task of calculating semantic relatedness between

concepts?”. This question has been tackled and answered in Section 3.5 by

studying human navigational trails through Wikipedia pages captured by

logs of the Wikigame. The main idea has been that closeness of concepts

in trails can be an indicator for their semantic relatedness. For example, if

humans frequently navigate between the Wikipedia pages of Austria and

Graz, we might consider them as being semantically related to some degree.

To automatically capture this in an intuitive way, the presented work has

utilized a vector space model using co-occurrence information between

concepts. By evaluating the semantic relatedness scores on a set of gold-

standards and baseline corpora, the results indeed have shown that we can

successfully leverage human navigational trails for the task of calculating

proper semantic relatedness scores between concepts. Additionally, by

extending the neighborhood considered for co-occurrence information,

we can improve the overall quality of determined semantic relatedness

scores. However, this work has also highlighted that not all navigational

trails are equally useful; intelligent selection of trail corpora can enhance

accuracy. This thesis suggests that we can indeed harness human trails on

the Web for knowledge inferring tasks based on the exemplary application

of calculating semantic relatedness between concepts. This is the second

main contribution of this thesis and argues for existing and future methods

to also consider human trails on the Web for their tasks.

Comparing hypotheses about human trails. Given the patterns,

regularities and strategies such as that humans seem to navigate over

semantically similar websites found in this thesis, the third and final

research question has been ”How can we compare hypotheses about human

trails on the Web”. For tackling this question, I have presented an approach

called HypTrails in Section 3.6. This approach allows researchers to

intuitively express and compare an array of hypotheses about human

trails. Hypotheses can be seen as beliefs about common transitions.
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HypTrails utilizes a first-order Markov chain model for modeling the data.

For inference, it resorts to Bayesian statistics and the main idea has

been to incorporate hypotheses as informative Dirichlet priors into the

inference process. By then using marginal likelihoods and Bayes factors,

the approach can make informed decisions about the plausibility of given

hypotheses. Technically, it makes use of the sensitivity of Bayes factors

on the prior. For demonstrating the general mechanics and applicability

of HypTrails, this thesis has applied it to a set of distinct human trail

datasets from various domains: (i) business reviews on Yelp, (ii) human

navigational trails on Wikipedia and (iii) successive songs listened to on

Last.fm supplemented with experiments on (iv) synthetic trails produced

according to know mechanisms. Overall, HypTrails is the final main

contribution of this thesis and allows researchers to further understand

the production of human trails on the Web.

In order to facilitate reproducibility and future applications as well as fuel

future studies on human trails on the Web, most of the methods developed

in this thesis are made available open-source and online:

• Framework for comprehensively detecting the appropriate Markov

chain order given human trails on the Web based on several advanced

statistical inference methods as introduced in [Singer et al., 2014c]

(Section 3.2): https://github.com/psinger/PathTools.

• Additional test called runs test for studying regularities and ran-

domness in categorical trails as utilized in [Walk et al., 2014a] (Sec-

tion 3.4): https://github.com/psinger/RunsTest.

• An implementation of several methods for computing statistical

significance tests on both dependent and independent correlation

coefficients as used in [Singer et al., 2013a] (Section 3.5): https:

//github.com/psinger/CorrelationStats

• The vector space method using co-occurrence information in human

trails as applied in [Singer et al., 2013a] (Section 3.5): https://

github.com/psinger/PathTools
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• Finally, the HypTails approach for comparing hypotheses about

human trails as introduced in [Singer et al., 2014b] (Section 3.6):

https://github.com/psinger/HypTrails

4.2. Implications and Potential Applications

A better understanding of human trails as well as the development of new

modeling tools is necessary for improving various aspects on the Web such

as user interfaces, information network structure or recommender systems.

This thesis provides a further stepping stone for this larger challenge. The

main contributions of this thesis are methodologically. I am confident

that future research can benefit from the tools and insights offered by

this thesis for better understanding the production of human trails on the

Web. In the following, I want to discuss some implications and potential

applications.

Incorporating memory effects into models and applications.

When studying memory in human trails on the Web in this thesis, I

have not only focused on Markov chain models of varying order for detect-

ing these effects, but also on Markov chain models as an example of an

application that can benefit from incorporating them. However, memory

effects can be a useful extension for other kinds of models and applications.

For example, recommender systems might be improved by considering

longer (or compound) histories of behavioral patterns for future recom-

mendations. As a further potential application I want to mention network

models such as spreading models that predominantly focus on neighboring

effects only. While it is difficult to make general suggestions about memory

effects as they are highly dependent on the choice of data, sample size and

complexity as showcased throughout this thesis, the framework offered

in this thesis allows every researcher to evaluate memory effects given

their own problem setting. By doing so, they can make informed decisions

about whether it is useful to incorporate memory effects into their applied

models.
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Augmenting existing methods with human trail data. Throughout

this thesis, I have made several arguments about the inherent regularities,

patterns and strategies in human trails on the Web. Based on these

observations, I have shown that we can also leverage these patterns in

human trails on the Web for inferring knowledge. As an example, I have

showcased that we can successfully harness human navigational trails

on the Web for calculating accurate semantic relatedness scores between

concepts. Hence, I argue that researchers should consider to enrich existing

methods by also utilizing human trails on the Web. While the calculation

of semantic relatedness is a prominent example, several other methods

could benefit from such an augmentation. For instance, machine learning

algorithms applied to Web data are mostly limited to content produced by

a small set of people. By considering the arguments of this thesis and by

supplement this kind of data with pragmatic usage patterns such as human

trails, we might be capable of improving the accuracy of corresponding

models. Also, note that while this thesis has focused on human navigational

trails for this task, the ideas can be extended to other types of human

trails on the Web.

Actions based on a better understanding of human trails on the

Web. Finally, the tools presented in this thesis allow researchers to get a

much clearer picture about the production of human trails at interest. This

starts with the structural patterns that can be identified with the Markov

chain model and ends with the HypTrails approach that allows researchers

to directly compare hypotheses about human trails with each other. Such

insights can not only be important for decisions about models, but also

for implementing actions. Suppose a researcher has several hypotheses

about how humans behave on her platform. By comparing them with

HypTrails, the researcher can evaluate them. Now, she can decide whether

she wants to further steer these behavioral aspects or maybe counteract

them by making changes to the platform. Furthermore, these insights can

unfold unexplored behavioral aspects that may be leveraged similar to the

calculation of semantic relatedness between concepts.
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4.3. Limitations and Future Work

Limitations. This thesis comes with certain limitations which I want to

list next.

• Lack of generality of empirical findings. While this thesis has

heavily focused on demonstrating the developed tools, the empirical

findings lack generality. This is a consequence from the fact that the

empirical observations are driven by the specific datasets of human

trails studied. However, the main contributions of this thesis focus on

providing tools to researchers for studying human trails on the Web.

Hence, the empirical findings should be seen as an encouragement for

further studies that can be conducted by the methods, frameworks

and approaches developed in this thesis. While being developed

for hypertext trails, the methods are not limited to Web data. For

example, one can apply them to trails of whereabouts of humans as

captured by GPS data.

• Data restrictions. Apart from the lack of generality, it is difficult

to acquire appropriate human navigational trails as they mostly

have to be captured through logs of websites which are subject

to certain privacy restriction. As a consequence, I have heavily

focused on studying human navigational trails derived from game

data (Wikispeedia and Wikigame). While such game-based data

can only be seen as a proxy for real navigation, it also brings some

advantages such as that we know the start and target nodes of trails. I

have also made use of this by comparing such goal-oriented navigation

with free form navigation. Additionally, I frame this thesis to study

human trails on the Web. However, given the massive amount of

bots, crawlers and automated scripts operating on the Web, it might

happen that some trails are not produced by actual humans. Hence,

future studies should keep that in mind when generating their data

to study. Yet, I also see an opportunity in this potential limitation;

if we are able to identify non-human trails in our data, we might

also be able to learn more about trails that are produced artificially

by algorithms. It might even be possible to compare this behavior

to human behavior to see how they differ.
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• Limitation of data size. As highlighted throughout this work, the

detection of the appropriate Markov chain order given finite data is

a difficult task. The reason for this is the much higher complexity

of higher order Markov chain models. Hence, the more states and

parameters we are interested in, the more difficult it gets to find

statistically significant improvements of higher order models. Thus,

we do not necessarily know what the results would be if applied to

much larger datasets. However, I want to again emphasize that this

thesis offers the tools to conduct such studied in a straight-forward

way in future.

• Methodological restrictions. Finally, next to empirical gener-

ality, this thesis is also limited in regards to the methodological

concepts utilized. For most of the experiments, this thesis has

applied Markov chain models. I argue for the usefulness of this

approach based on previous studies as well as on the benefits this

model has shown in the past for various applications such as Google’s

PageRank. However, we might be able to explain and model human

trails on the Web in a better or simply different way by utilizing

other models.

Future work. Finally, I want to highlight some potential future works

that are partly influenced by mentioned limitations of this thesis.

• Extending the type of trails studied. As mentioned, I have

limited the empirical investigations to a set of human trail data.

There are still a lot of various other types of human trails that may

be beneficial to better understand. For example, recent studies have

been interested in better understanding diffusion on the Web. If we

see diffusion processes as trails, we can apply the methodological

concepts developed in this thesis in a straight-forward manner. This

may allow for a better understanding of these processes. But also

other types of human trails might be of interest to study; to just

name a few: (i) trails of bug reports, (ii) trails of friends added on

social media platforms or (iii) trails of persons employed as derived

from professional social networks such as LinkedIn.
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• Extending the methodological concepts. This thesis has heav-

ily focused on the application of Markov chain models for tackling

the research problems. While perfectly suited for this thesis, I plan

on extending the methods in future. For example, I want to tap into

the usefulness of further variations of Markov chain models such as

the hidden Markov model, varying order Markov models or semi

Markov models. Furthermore, the HypTrails approach currently is

limited to a first-order Markov chain model. In future, I want to ex-

tend this approach to also consider memory effects when comparing

hypotheses with each other.

• Considering memory effects for other models. In this thesis,

I have mainly studied the usefulness of incorporating memory effects

into Markov chain models. However, as mentioned above, memory

effects might also play an important role in other models. In future,

I plan on exploring this by studying models like network spreading

models. By doing so, we may be able to capture further patterns

and effects that may improve corresponding models.

• Comparing sub-corpora with each other. When calculating

semantic relatedness between concepts, this thesis has shown that not

all trails are equally useful and intelligent selection of trail corpora

can enhance accuracy. This argues that not all humans behave

similarly and warrants further studies. Hence, in future I also want

to compare different sub-corpora of human trails with each other.

These sub-corpora can be built according to certain characteristics

of humans such as their experience in the system.

• Web applications. On the one hand, this thesis has developed

methodological tools and on the other hand, it has applied them to

real-world human trail data. What is missing, is to use the methods

and insights for enhancing Web applications such as pointed out

throughout this work. For example, we might aim to incorporate

memory effects into an active recommendation algorithm on a Web

platform. This would not only allow us to potentially enhance human

satisfaction, but also to further evaluate the models at hand.
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With this thesis, I hope to facilitate and encourage future research studying

human trails on the Web. Our research community can benefit from the

tools developed in this thesis. Also, I am confident that human trails on

the Web should be utilized beyond what previous work has done. In this

thesis, I have provided several incentives for doing so.
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List of Figures

1.1. General schema of human trails. This figure depicts

an example of two human trails produced. The state space

consists of five different states S = {S1, S2, S3, S4, S5}.
The type of states depends on the type of trails one is

interested in. For example, let us suppose that states refer

to five distinct songs listened to on Last.fm. The first person

(top row, green) starts by listening to song S1, before she

listens to song S2 and finally to song S3. The second person

(bottom row, red) first listens to song S2 before she plays

song S5. Finally, the person again plays track S2. States

can refer to other kinds of categorical observations such as

websites or other entities such as songs. . . . . . . . . . . 3

1.2. Example of human navigational trail on Wikipedia.

This figure depicts an example of one human navigational

trail over Wikipedia pages produced by one person. The

person starts on the Wikipedia page of Austria; then she

decides to click on the hyperlink on Austria’s page lead-

ing to Germany. Let us assume that the person is very

interested in learning more about important researchers of

Germany and hence, clicks on the hyperlink leading to the

Wikipedia page of Carl Friedrich Gauss. After that, the

person leaves Wikipedia and her navigational steps have

produced the intra navigational trail consisting of three

subsequent Wikipedia pages visited as depicted. . . . . . . 4
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1.3. Example of human edit trails in collaborative ontol-

ogy engineering projects. This figure depicts examples

of human trails that are produced when humans perform

edits in collaborative ontology engineering projects. The

first row shows a class-based trail where properties of the

given class are consecutively changed by any person. In

this example, some person first edited the property Title

before another one edited the property Note and finally,

some other arbitrary person edited the Type property. The

second row illustrates a person-based trail which covers

subsequent properties changed by one person on any class.

In this case, the person first edited the Label property on

some class, before she edited the Title property and finally

the Type property of some other classes. . . . . . . . . . . 5

1.4. Example of human business review trail. This figure

depicts an example of a person successively reviewing five

different businesses. In this example, suppose someone is

traveling through Italy and reviews the restaurants visited

on a platform like Yelp. The person starts in the north and

travels to the south. Hence, she first reviews restaurant B,

then C, D and finally, in the south restaurant E. At the

end of the trip, the person is going back north and before

leaving Italy she reviews restaurant A. . . . . . . . . . . . 6

1.5. Example of human listening trail. This figure depicts

an example of a human trail that is produced by a person

successively listening to different songs. The person starts

to listen to the song Roar by Katy Perry before she listens

to Royals by Lorde and finally to Happy by Pharrell Williams. 7
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List of Tables

1.1. Structural overview over content and aspects of this

thesis. This table provides a structural overview of the

main content of this thesis by describing the relation of each

section and article to the research questions at interest. Fur-

thermore, the table highlights the corresponding (i) types

of human trails, (ii) main topics, (iii) main contributions

and (iv) utilized methods for each section (article). . . . 19

175





Bibliography

Aguilar, C. M. and Medin, D. L. (1999). Asymmetries of comparison.

Psychon. Bull. Rev., 6(2):328–337.

Akaike, H. (1973). Information theory and an extension of the maximum

likelihood principle. In International Symposium on Information Theory.

Archak, N., Mirrokni, V. S., and Muthukrishnan, S. (2010). Mining

advertiser-specific user behavior using adfactors. In International Con-

ference on World Wide Web.
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Bühlmann, P., Wyner, A. J., et al. (1999). Variable length markov chains.

The Annals of Statistics, 27(2):480–513.

Burnham, K. P. and Anderson, D. R. (2002). Model selection and multi-

model inference: a practical information-theoretic approach. Springer.

Burnham, K. P. and Anderson, D. R. (2004). Multimodel inference

understanding aic and bic in model selection. Sociological Methods &

Research, 33(2):261–304.

Bush, V. (1945). As we may think. The Atlantic Monthly, 176(1):101–108.

Cadez, I., Heckerman, D., Meek, C., Smyth, P., and White, S. (2003).

Model-based clustering and visualization of navigation patterns on a

web site. Data Mining and Knowledge Discovery, 7(4):399–424.

Catledge, L. D. and Pitkow, J. E. (1995). Characterizing browsing strate-

gies in the world-wide web. Computer Networks and ISDN Systems,

27(6):1065–1073.

178



Bibliography

Chalmers, M., Rodden, K., and Brodbeck, D. (1998). The order of things:

activity-centred information access. Computer Networks and ISDN

Systems, 30(1):359–367.

Chi, E. H., Pirolli, P. L. T., Chen, K., and Pitkow, J. (2001). Using

information scent to model user information needs and actions and the

web. In Conference on Human Factors in Computing Systems.

Chierichetti, F., Kumar, R., Raghavan, P., and Sarlos, T. (2012). Are web

users really markovian? In International Conference on World Wide

Web.

Chierichetti, F., Kumar, R., and Tomkins, A. (2010). Stochastic models

for tabbed browsing. In International Conference on World Wide Web.

Cohen, J. (1994). The earth is round (p¡.05). American Psychologist,

49(12):997.

Csiszár, I. and Shields, P. C. (2000). The consistency of the bic markov

order estimator. The Annals of Statistics, 28(6):1601–1619.

Cunha, C. R. and Jaccoud, C. F. (1997). Determining www user’s next

access and its application to pre-fetching. In Symposium on Computers

and Communications.

Davidson-Pilon, C. (2014). Probablistic Programming & Bayesian Methods

for Hackers.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and

Harshman, R. (1990). Indexing by latent semantic analysis. Journal of

the American Society for Information Science, 41(6):391–407.

Doerfel, S., Zoller, D., Singer, P., Niebler, T., Hotho, A., and Strohmaier,

M. (2014). How social is social tagging? In International Conference

on World Wide Web Companion.

Downey, D., Dumais, S., Liebling, D., and Horvitz, E. (2008). Understand-

ing the relationship between searchers’ queries and information goals. In

International Conference on Information and Knowledge Management.

179



Bibliography

Falconer, S., Tudorache, T., and Noy, N. F. (2011). An analysis of

collaborative patterns in large-scale ontology development projects. In

International Conference on Knowledge Capture.

Fienberg, S. E. et al. (2006). When did bayesian inference become”

bayesian”? Bayesian Analysis, 1(1):1–40.

Fisher, R. A. (1922). On the mathematical foundations of theoretical

statistics. Philosophical Transactions of the Royal Society of London.

Series A, Containing Papers of a Mathematical or Physical Character,

222:309–368.

Fisher, R. A. (1925). Statistical methods for research workers. Genesis

Publishing Pvt Ltd.

Gabriel, K. and Neumann, J. (1962). A markov chain model for daily rain-

fall occurrence at tel aviv. Quarterly Journal of the Royal Meteorological

Society, 88(375):90–95.

Gabrilovich, E. and Markovitch, S. (2007). Computing semantic relatedness

using wikipedia-based explicit semantic analysis. In International Joint

Conference for Artificial Intelligence.

Garthwaite, P. H., Kadane, J. B., and O’Hagan, A. (2005). Statistical

methods for eliciting probability distributions. Journal of the American

Statistical Association, 100(470):680–701.

Gates, P. and Tong, H. (1976). On markov chain modeling to some weather

data. Journal of Applied Meteorology and Climatology, 15(11):1145–1151.

Gilks, W. R. (2005). Markov chain monte carlo. Wiley Online Library.
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Schöfegger, K., Körner, C., Singer, P., and Granitzer, M. (2012). Learning

user characteristics from social tagging behavior. In Conference on

Hypertext and Social Media.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of

Statistics, 6(2):461–464.

Sen, R. and Hansen, M. (2003). Predicting a web user’s next access

based on log data. Journal of Computational Graphics and Statistics,

12(1):143–155.

Singer, P. (2014). Understanding, leveraging and improving human navi-

gation on the web. In International Conference on World Wide Web

Companion.
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